Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2009, Microsoft Corporation.
   4 *
   5 * Authors:
   6 *   Haiyang Zhang <haiyangz@microsoft.com>
   7 *   Hank Janssen  <hjanssen@microsoft.com>
   8 *   K. Y. Srinivasan <kys@microsoft.com>
   9 */
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/device.h>
  15#include <linux/platform_device.h>
  16#include <linux/interrupt.h>
  17#include <linux/sysctl.h>
  18#include <linux/slab.h>
  19#include <linux/acpi.h>
  20#include <linux/completion.h>
  21#include <linux/hyperv.h>
  22#include <linux/kernel_stat.h>
  23#include <linux/of_address.h>
  24#include <linux/clockchips.h>
  25#include <linux/cpu.h>
  26#include <linux/sched/isolation.h>
  27#include <linux/sched/task_stack.h>
  28
  29#include <linux/delay.h>
  30#include <linux/panic_notifier.h>
  31#include <linux/ptrace.h>
  32#include <linux/screen_info.h>
  33#include <linux/efi.h>
  34#include <linux/random.h>
  35#include <linux/kernel.h>
  36#include <linux/syscore_ops.h>
  37#include <linux/dma-map-ops.h>
  38#include <linux/pci.h>
  39#include <clocksource/hyperv_timer.h>
  40#include <asm/mshyperv.h>
  41#include "hyperv_vmbus.h"
  42
  43struct vmbus_dynid {
  44	struct list_head node;
  45	struct hv_vmbus_device_id id;
  46};
  47
  48static struct device  *hv_dev;
  49
  50static int hyperv_cpuhp_online;
  51
  52static long __percpu *vmbus_evt;
  53
  54/* Values parsed from ACPI DSDT */
  55int vmbus_irq;
  56int vmbus_interrupt;
  57
  58/*
  59 * The panic notifier below is responsible solely for unloading the
  60 * vmbus connection, which is necessary in a panic event.
  61 *
  62 * Notice an intrincate relation of this notifier with Hyper-V
  63 * framebuffer panic notifier exists - we need vmbus connection alive
  64 * there in order to succeed, so we need to order both with each other
  65 * [see hvfb_on_panic()] - this is done using notifiers' priorities.
  66 */
  67static int hv_panic_vmbus_unload(struct notifier_block *nb, unsigned long val,
  68			      void *args)
  69{
  70	vmbus_initiate_unload(true);
  71	return NOTIFY_DONE;
  72}
  73static struct notifier_block hyperv_panic_vmbus_unload_block = {
  74	.notifier_call	= hv_panic_vmbus_unload,
  75	.priority	= INT_MIN + 1, /* almost the latest one to execute */
  76};
  77
  78static const char *fb_mmio_name = "fb_range";
  79static struct resource *fb_mmio;
  80static struct resource *hyperv_mmio;
  81static DEFINE_MUTEX(hyperv_mmio_lock);
  82
  83static int vmbus_exists(void)
  84{
  85	if (hv_dev == NULL)
  86		return -ENODEV;
  87
  88	return 0;
  89}
  90
  91static u8 channel_monitor_group(const struct vmbus_channel *channel)
  92{
  93	return (u8)channel->offermsg.monitorid / 32;
  94}
  95
  96static u8 channel_monitor_offset(const struct vmbus_channel *channel)
  97{
  98	return (u8)channel->offermsg.monitorid % 32;
  99}
 100
 101static u32 channel_pending(const struct vmbus_channel *channel,
 102			   const struct hv_monitor_page *monitor_page)
 103{
 104	u8 monitor_group = channel_monitor_group(channel);
 105
 106	return monitor_page->trigger_group[monitor_group].pending;
 107}
 108
 109static u32 channel_latency(const struct vmbus_channel *channel,
 110			   const struct hv_monitor_page *monitor_page)
 111{
 112	u8 monitor_group = channel_monitor_group(channel);
 113	u8 monitor_offset = channel_monitor_offset(channel);
 114
 115	return monitor_page->latency[monitor_group][monitor_offset];
 116}
 117
 118static u32 channel_conn_id(struct vmbus_channel *channel,
 119			   struct hv_monitor_page *monitor_page)
 120{
 121	u8 monitor_group = channel_monitor_group(channel);
 122	u8 monitor_offset = channel_monitor_offset(channel);
 123
 124	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
 125}
 126
 127static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
 128		       char *buf)
 129{
 130	struct hv_device *hv_dev = device_to_hv_device(dev);
 131
 132	if (!hv_dev->channel)
 133		return -ENODEV;
 134	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
 135}
 136static DEVICE_ATTR_RO(id);
 137
 138static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
 139			  char *buf)
 140{
 141	struct hv_device *hv_dev = device_to_hv_device(dev);
 142
 143	if (!hv_dev->channel)
 144		return -ENODEV;
 145	return sprintf(buf, "%d\n", hv_dev->channel->state);
 146}
 147static DEVICE_ATTR_RO(state);
 148
 149static ssize_t monitor_id_show(struct device *dev,
 150			       struct device_attribute *dev_attr, char *buf)
 151{
 152	struct hv_device *hv_dev = device_to_hv_device(dev);
 153
 154	if (!hv_dev->channel)
 155		return -ENODEV;
 156	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
 157}
 158static DEVICE_ATTR_RO(monitor_id);
 159
 160static ssize_t class_id_show(struct device *dev,
 161			       struct device_attribute *dev_attr, char *buf)
 162{
 163	struct hv_device *hv_dev = device_to_hv_device(dev);
 164
 165	if (!hv_dev->channel)
 166		return -ENODEV;
 167	return sprintf(buf, "{%pUl}\n",
 168		       &hv_dev->channel->offermsg.offer.if_type);
 169}
 170static DEVICE_ATTR_RO(class_id);
 171
 172static ssize_t device_id_show(struct device *dev,
 173			      struct device_attribute *dev_attr, char *buf)
 174{
 175	struct hv_device *hv_dev = device_to_hv_device(dev);
 176
 177	if (!hv_dev->channel)
 178		return -ENODEV;
 179	return sprintf(buf, "{%pUl}\n",
 180		       &hv_dev->channel->offermsg.offer.if_instance);
 181}
 182static DEVICE_ATTR_RO(device_id);
 183
 184static ssize_t modalias_show(struct device *dev,
 185			     struct device_attribute *dev_attr, char *buf)
 186{
 187	struct hv_device *hv_dev = device_to_hv_device(dev);
 188
 189	return sprintf(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type);
 190}
 191static DEVICE_ATTR_RO(modalias);
 192
 193#ifdef CONFIG_NUMA
 194static ssize_t numa_node_show(struct device *dev,
 195			      struct device_attribute *attr, char *buf)
 196{
 197	struct hv_device *hv_dev = device_to_hv_device(dev);
 198
 199	if (!hv_dev->channel)
 200		return -ENODEV;
 201
 202	return sprintf(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu));
 203}
 204static DEVICE_ATTR_RO(numa_node);
 205#endif
 206
 207static ssize_t server_monitor_pending_show(struct device *dev,
 208					   struct device_attribute *dev_attr,
 209					   char *buf)
 210{
 211	struct hv_device *hv_dev = device_to_hv_device(dev);
 212
 213	if (!hv_dev->channel)
 214		return -ENODEV;
 215	return sprintf(buf, "%d\n",
 216		       channel_pending(hv_dev->channel,
 217				       vmbus_connection.monitor_pages[0]));
 218}
 219static DEVICE_ATTR_RO(server_monitor_pending);
 220
 221static ssize_t client_monitor_pending_show(struct device *dev,
 222					   struct device_attribute *dev_attr,
 223					   char *buf)
 224{
 225	struct hv_device *hv_dev = device_to_hv_device(dev);
 226
 227	if (!hv_dev->channel)
 228		return -ENODEV;
 229	return sprintf(buf, "%d\n",
 230		       channel_pending(hv_dev->channel,
 231				       vmbus_connection.monitor_pages[1]));
 232}
 233static DEVICE_ATTR_RO(client_monitor_pending);
 234
 235static ssize_t server_monitor_latency_show(struct device *dev,
 236					   struct device_attribute *dev_attr,
 237					   char *buf)
 238{
 239	struct hv_device *hv_dev = device_to_hv_device(dev);
 240
 241	if (!hv_dev->channel)
 242		return -ENODEV;
 243	return sprintf(buf, "%d\n",
 244		       channel_latency(hv_dev->channel,
 245				       vmbus_connection.monitor_pages[0]));
 246}
 247static DEVICE_ATTR_RO(server_monitor_latency);
 248
 249static ssize_t client_monitor_latency_show(struct device *dev,
 250					   struct device_attribute *dev_attr,
 251					   char *buf)
 252{
 253	struct hv_device *hv_dev = device_to_hv_device(dev);
 254
 255	if (!hv_dev->channel)
 256		return -ENODEV;
 257	return sprintf(buf, "%d\n",
 258		       channel_latency(hv_dev->channel,
 259				       vmbus_connection.monitor_pages[1]));
 260}
 261static DEVICE_ATTR_RO(client_monitor_latency);
 262
 263static ssize_t server_monitor_conn_id_show(struct device *dev,
 264					   struct device_attribute *dev_attr,
 265					   char *buf)
 266{
 267	struct hv_device *hv_dev = device_to_hv_device(dev);
 268
 269	if (!hv_dev->channel)
 270		return -ENODEV;
 271	return sprintf(buf, "%d\n",
 272		       channel_conn_id(hv_dev->channel,
 273				       vmbus_connection.monitor_pages[0]));
 274}
 275static DEVICE_ATTR_RO(server_monitor_conn_id);
 276
 277static ssize_t client_monitor_conn_id_show(struct device *dev,
 278					   struct device_attribute *dev_attr,
 279					   char *buf)
 280{
 281	struct hv_device *hv_dev = device_to_hv_device(dev);
 282
 283	if (!hv_dev->channel)
 284		return -ENODEV;
 285	return sprintf(buf, "%d\n",
 286		       channel_conn_id(hv_dev->channel,
 287				       vmbus_connection.monitor_pages[1]));
 288}
 289static DEVICE_ATTR_RO(client_monitor_conn_id);
 290
 291static ssize_t out_intr_mask_show(struct device *dev,
 292				  struct device_attribute *dev_attr, char *buf)
 293{
 294	struct hv_device *hv_dev = device_to_hv_device(dev);
 295	struct hv_ring_buffer_debug_info outbound;
 296	int ret;
 297
 298	if (!hv_dev->channel)
 299		return -ENODEV;
 300
 301	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
 302					  &outbound);
 303	if (ret < 0)
 304		return ret;
 305
 306	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
 307}
 308static DEVICE_ATTR_RO(out_intr_mask);
 309
 310static ssize_t out_read_index_show(struct device *dev,
 311				   struct device_attribute *dev_attr, char *buf)
 312{
 313	struct hv_device *hv_dev = device_to_hv_device(dev);
 314	struct hv_ring_buffer_debug_info outbound;
 315	int ret;
 316
 317	if (!hv_dev->channel)
 318		return -ENODEV;
 319
 320	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
 321					  &outbound);
 322	if (ret < 0)
 323		return ret;
 324	return sprintf(buf, "%d\n", outbound.current_read_index);
 325}
 326static DEVICE_ATTR_RO(out_read_index);
 327
 328static ssize_t out_write_index_show(struct device *dev,
 329				    struct device_attribute *dev_attr,
 330				    char *buf)
 331{
 332	struct hv_device *hv_dev = device_to_hv_device(dev);
 333	struct hv_ring_buffer_debug_info outbound;
 334	int ret;
 335
 336	if (!hv_dev->channel)
 337		return -ENODEV;
 338
 339	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
 340					  &outbound);
 341	if (ret < 0)
 342		return ret;
 343	return sprintf(buf, "%d\n", outbound.current_write_index);
 344}
 345static DEVICE_ATTR_RO(out_write_index);
 346
 347static ssize_t out_read_bytes_avail_show(struct device *dev,
 348					 struct device_attribute *dev_attr,
 349					 char *buf)
 350{
 351	struct hv_device *hv_dev = device_to_hv_device(dev);
 352	struct hv_ring_buffer_debug_info outbound;
 353	int ret;
 354
 355	if (!hv_dev->channel)
 356		return -ENODEV;
 357
 358	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
 359					  &outbound);
 360	if (ret < 0)
 361		return ret;
 362	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
 363}
 364static DEVICE_ATTR_RO(out_read_bytes_avail);
 365
 366static ssize_t out_write_bytes_avail_show(struct device *dev,
 367					  struct device_attribute *dev_attr,
 368					  char *buf)
 369{
 370	struct hv_device *hv_dev = device_to_hv_device(dev);
 371	struct hv_ring_buffer_debug_info outbound;
 372	int ret;
 373
 374	if (!hv_dev->channel)
 375		return -ENODEV;
 376
 377	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
 378					  &outbound);
 379	if (ret < 0)
 380		return ret;
 381	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
 382}
 383static DEVICE_ATTR_RO(out_write_bytes_avail);
 384
 385static ssize_t in_intr_mask_show(struct device *dev,
 386				 struct device_attribute *dev_attr, char *buf)
 387{
 388	struct hv_device *hv_dev = device_to_hv_device(dev);
 389	struct hv_ring_buffer_debug_info inbound;
 390	int ret;
 391
 392	if (!hv_dev->channel)
 393		return -ENODEV;
 394
 395	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
 396	if (ret < 0)
 397		return ret;
 398
 399	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
 400}
 401static DEVICE_ATTR_RO(in_intr_mask);
 402
 403static ssize_t in_read_index_show(struct device *dev,
 404				  struct device_attribute *dev_attr, char *buf)
 405{
 406	struct hv_device *hv_dev = device_to_hv_device(dev);
 407	struct hv_ring_buffer_debug_info inbound;
 408	int ret;
 409
 410	if (!hv_dev->channel)
 411		return -ENODEV;
 412
 413	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
 414	if (ret < 0)
 415		return ret;
 416
 417	return sprintf(buf, "%d\n", inbound.current_read_index);
 418}
 419static DEVICE_ATTR_RO(in_read_index);
 420
 421static ssize_t in_write_index_show(struct device *dev,
 422				   struct device_attribute *dev_attr, char *buf)
 423{
 424	struct hv_device *hv_dev = device_to_hv_device(dev);
 425	struct hv_ring_buffer_debug_info inbound;
 426	int ret;
 427
 428	if (!hv_dev->channel)
 429		return -ENODEV;
 430
 431	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
 432	if (ret < 0)
 433		return ret;
 434
 435	return sprintf(buf, "%d\n", inbound.current_write_index);
 436}
 437static DEVICE_ATTR_RO(in_write_index);
 438
 439static ssize_t in_read_bytes_avail_show(struct device *dev,
 440					struct device_attribute *dev_attr,
 441					char *buf)
 442{
 443	struct hv_device *hv_dev = device_to_hv_device(dev);
 444	struct hv_ring_buffer_debug_info inbound;
 445	int ret;
 446
 447	if (!hv_dev->channel)
 448		return -ENODEV;
 449
 450	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
 451	if (ret < 0)
 452		return ret;
 453
 454	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
 455}
 456static DEVICE_ATTR_RO(in_read_bytes_avail);
 457
 458static ssize_t in_write_bytes_avail_show(struct device *dev,
 459					 struct device_attribute *dev_attr,
 460					 char *buf)
 461{
 462	struct hv_device *hv_dev = device_to_hv_device(dev);
 463	struct hv_ring_buffer_debug_info inbound;
 464	int ret;
 465
 466	if (!hv_dev->channel)
 467		return -ENODEV;
 468
 469	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
 470	if (ret < 0)
 471		return ret;
 472
 473	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
 474}
 475static DEVICE_ATTR_RO(in_write_bytes_avail);
 476
 477static ssize_t channel_vp_mapping_show(struct device *dev,
 478				       struct device_attribute *dev_attr,
 479				       char *buf)
 480{
 481	struct hv_device *hv_dev = device_to_hv_device(dev);
 482	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
 483	int buf_size = PAGE_SIZE, n_written, tot_written;
 484	struct list_head *cur;
 485
 486	if (!channel)
 487		return -ENODEV;
 488
 489	mutex_lock(&vmbus_connection.channel_mutex);
 490
 491	tot_written = snprintf(buf, buf_size, "%u:%u\n",
 492		channel->offermsg.child_relid, channel->target_cpu);
 
 493
 494	list_for_each(cur, &channel->sc_list) {
 495		if (tot_written >= buf_size - 1)
 496			break;
 497
 498		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
 499		n_written = scnprintf(buf + tot_written,
 500				     buf_size - tot_written,
 501				     "%u:%u\n",
 502				     cur_sc->offermsg.child_relid,
 503				     cur_sc->target_cpu);
 504		tot_written += n_written;
 505	}
 506
 507	mutex_unlock(&vmbus_connection.channel_mutex);
 508
 509	return tot_written;
 510}
 511static DEVICE_ATTR_RO(channel_vp_mapping);
 512
 513static ssize_t vendor_show(struct device *dev,
 514			   struct device_attribute *dev_attr,
 515			   char *buf)
 516{
 517	struct hv_device *hv_dev = device_to_hv_device(dev);
 518
 519	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
 520}
 521static DEVICE_ATTR_RO(vendor);
 522
 523static ssize_t device_show(struct device *dev,
 524			   struct device_attribute *dev_attr,
 525			   char *buf)
 526{
 527	struct hv_device *hv_dev = device_to_hv_device(dev);
 528
 529	return sprintf(buf, "0x%x\n", hv_dev->device_id);
 530}
 531static DEVICE_ATTR_RO(device);
 532
 533static ssize_t driver_override_store(struct device *dev,
 534				     struct device_attribute *attr,
 535				     const char *buf, size_t count)
 536{
 537	struct hv_device *hv_dev = device_to_hv_device(dev);
 538	int ret;
 539
 540	ret = driver_set_override(dev, &hv_dev->driver_override, buf, count);
 541	if (ret)
 542		return ret;
 543
 544	return count;
 545}
 546
 547static ssize_t driver_override_show(struct device *dev,
 548				    struct device_attribute *attr, char *buf)
 549{
 550	struct hv_device *hv_dev = device_to_hv_device(dev);
 551	ssize_t len;
 552
 553	device_lock(dev);
 554	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
 555	device_unlock(dev);
 556
 557	return len;
 558}
 559static DEVICE_ATTR_RW(driver_override);
 560
 561/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
 562static struct attribute *vmbus_dev_attrs[] = {
 563	&dev_attr_id.attr,
 564	&dev_attr_state.attr,
 565	&dev_attr_monitor_id.attr,
 566	&dev_attr_class_id.attr,
 567	&dev_attr_device_id.attr,
 568	&dev_attr_modalias.attr,
 569#ifdef CONFIG_NUMA
 570	&dev_attr_numa_node.attr,
 571#endif
 572	&dev_attr_server_monitor_pending.attr,
 573	&dev_attr_client_monitor_pending.attr,
 574	&dev_attr_server_monitor_latency.attr,
 575	&dev_attr_client_monitor_latency.attr,
 576	&dev_attr_server_monitor_conn_id.attr,
 577	&dev_attr_client_monitor_conn_id.attr,
 578	&dev_attr_out_intr_mask.attr,
 579	&dev_attr_out_read_index.attr,
 580	&dev_attr_out_write_index.attr,
 581	&dev_attr_out_read_bytes_avail.attr,
 582	&dev_attr_out_write_bytes_avail.attr,
 583	&dev_attr_in_intr_mask.attr,
 584	&dev_attr_in_read_index.attr,
 585	&dev_attr_in_write_index.attr,
 586	&dev_attr_in_read_bytes_avail.attr,
 587	&dev_attr_in_write_bytes_avail.attr,
 588	&dev_attr_channel_vp_mapping.attr,
 589	&dev_attr_vendor.attr,
 590	&dev_attr_device.attr,
 591	&dev_attr_driver_override.attr,
 592	NULL,
 593};
 594
 595/*
 596 * Device-level attribute_group callback function. Returns the permission for
 597 * each attribute, and returns 0 if an attribute is not visible.
 598 */
 599static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
 600					 struct attribute *attr, int idx)
 601{
 602	struct device *dev = kobj_to_dev(kobj);
 603	const struct hv_device *hv_dev = device_to_hv_device(dev);
 604
 605	/* Hide the monitor attributes if the monitor mechanism is not used. */
 606	if (!hv_dev->channel->offermsg.monitor_allocated &&
 607	    (attr == &dev_attr_monitor_id.attr ||
 608	     attr == &dev_attr_server_monitor_pending.attr ||
 609	     attr == &dev_attr_client_monitor_pending.attr ||
 610	     attr == &dev_attr_server_monitor_latency.attr ||
 611	     attr == &dev_attr_client_monitor_latency.attr ||
 612	     attr == &dev_attr_server_monitor_conn_id.attr ||
 613	     attr == &dev_attr_client_monitor_conn_id.attr))
 614		return 0;
 615
 616	return attr->mode;
 617}
 618
 619static const struct attribute_group vmbus_dev_group = {
 620	.attrs = vmbus_dev_attrs,
 621	.is_visible = vmbus_dev_attr_is_visible
 622};
 623__ATTRIBUTE_GROUPS(vmbus_dev);
 624
 625/* Set up the attribute for /sys/bus/vmbus/hibernation */
 626static ssize_t hibernation_show(const struct bus_type *bus, char *buf)
 627{
 628	return sprintf(buf, "%d\n", !!hv_is_hibernation_supported());
 629}
 630
 631static BUS_ATTR_RO(hibernation);
 632
 633static struct attribute *vmbus_bus_attrs[] = {
 634	&bus_attr_hibernation.attr,
 635	NULL,
 636};
 637static const struct attribute_group vmbus_bus_group = {
 638	.attrs = vmbus_bus_attrs,
 639};
 640__ATTRIBUTE_GROUPS(vmbus_bus);
 641
 642/*
 643 * vmbus_uevent - add uevent for our device
 644 *
 645 * This routine is invoked when a device is added or removed on the vmbus to
 646 * generate a uevent to udev in the userspace. The udev will then look at its
 647 * rule and the uevent generated here to load the appropriate driver
 648 *
 649 * The alias string will be of the form vmbus:guid where guid is the string
 650 * representation of the device guid (each byte of the guid will be
 651 * represented with two hex characters.
 652 */
 653static int vmbus_uevent(const struct device *device, struct kobj_uevent_env *env)
 654{
 655	const struct hv_device *dev = device_to_hv_device(device);
 656	const char *format = "MODALIAS=vmbus:%*phN";
 657
 658	return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type);
 659}
 660
 661static const struct hv_vmbus_device_id *
 662hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
 663{
 664	if (id == NULL)
 665		return NULL; /* empty device table */
 666
 667	for (; !guid_is_null(&id->guid); id++)
 668		if (guid_equal(&id->guid, guid))
 669			return id;
 670
 671	return NULL;
 672}
 673
 674static const struct hv_vmbus_device_id *
 675hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
 676{
 677	const struct hv_vmbus_device_id *id = NULL;
 678	struct vmbus_dynid *dynid;
 679
 680	spin_lock(&drv->dynids.lock);
 681	list_for_each_entry(dynid, &drv->dynids.list, node) {
 682		if (guid_equal(&dynid->id.guid, guid)) {
 683			id = &dynid->id;
 684			break;
 685		}
 686	}
 687	spin_unlock(&drv->dynids.lock);
 688
 689	return id;
 690}
 691
 692static const struct hv_vmbus_device_id vmbus_device_null;
 693
 694/*
 695 * Return a matching hv_vmbus_device_id pointer.
 696 * If there is no match, return NULL.
 697 */
 698static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
 699							struct hv_device *dev)
 700{
 701	const guid_t *guid = &dev->dev_type;
 702	const struct hv_vmbus_device_id *id;
 703
 704	/* When driver_override is set, only bind to the matching driver */
 705	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
 706		return NULL;
 707
 708	/* Look at the dynamic ids first, before the static ones */
 709	id = hv_vmbus_dynid_match(drv, guid);
 710	if (!id)
 711		id = hv_vmbus_dev_match(drv->id_table, guid);
 712
 713	/* driver_override will always match, send a dummy id */
 714	if (!id && dev->driver_override)
 715		id = &vmbus_device_null;
 716
 717	return id;
 718}
 719
 720/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
 721static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
 722{
 723	struct vmbus_dynid *dynid;
 724
 725	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
 726	if (!dynid)
 727		return -ENOMEM;
 728
 729	dynid->id.guid = *guid;
 730
 731	spin_lock(&drv->dynids.lock);
 732	list_add_tail(&dynid->node, &drv->dynids.list);
 733	spin_unlock(&drv->dynids.lock);
 734
 735	return driver_attach(&drv->driver);
 736}
 737
 738static void vmbus_free_dynids(struct hv_driver *drv)
 739{
 740	struct vmbus_dynid *dynid, *n;
 741
 742	spin_lock(&drv->dynids.lock);
 743	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
 744		list_del(&dynid->node);
 745		kfree(dynid);
 746	}
 747	spin_unlock(&drv->dynids.lock);
 748}
 749
 750/*
 751 * store_new_id - sysfs frontend to vmbus_add_dynid()
 752 *
 753 * Allow GUIDs to be added to an existing driver via sysfs.
 754 */
 755static ssize_t new_id_store(struct device_driver *driver, const char *buf,
 756			    size_t count)
 757{
 758	struct hv_driver *drv = drv_to_hv_drv(driver);
 759	guid_t guid;
 760	ssize_t retval;
 761
 762	retval = guid_parse(buf, &guid);
 763	if (retval)
 764		return retval;
 765
 766	if (hv_vmbus_dynid_match(drv, &guid))
 767		return -EEXIST;
 768
 769	retval = vmbus_add_dynid(drv, &guid);
 770	if (retval)
 771		return retval;
 772	return count;
 773}
 774static DRIVER_ATTR_WO(new_id);
 775
 776/*
 777 * store_remove_id - remove a PCI device ID from this driver
 778 *
 779 * Removes a dynamic pci device ID to this driver.
 780 */
 781static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
 782			       size_t count)
 783{
 784	struct hv_driver *drv = drv_to_hv_drv(driver);
 785	struct vmbus_dynid *dynid, *n;
 786	guid_t guid;
 787	ssize_t retval;
 788
 789	retval = guid_parse(buf, &guid);
 790	if (retval)
 791		return retval;
 792
 793	retval = -ENODEV;
 794	spin_lock(&drv->dynids.lock);
 795	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
 796		struct hv_vmbus_device_id *id = &dynid->id;
 797
 798		if (guid_equal(&id->guid, &guid)) {
 799			list_del(&dynid->node);
 800			kfree(dynid);
 801			retval = count;
 802			break;
 803		}
 804	}
 805	spin_unlock(&drv->dynids.lock);
 806
 807	return retval;
 808}
 809static DRIVER_ATTR_WO(remove_id);
 810
 811static struct attribute *vmbus_drv_attrs[] = {
 812	&driver_attr_new_id.attr,
 813	&driver_attr_remove_id.attr,
 814	NULL,
 815};
 816ATTRIBUTE_GROUPS(vmbus_drv);
 817
 818
 819/*
 820 * vmbus_match - Attempt to match the specified device to the specified driver
 821 */
 822static int vmbus_match(struct device *device, struct device_driver *driver)
 823{
 824	struct hv_driver *drv = drv_to_hv_drv(driver);
 825	struct hv_device *hv_dev = device_to_hv_device(device);
 826
 827	/* The hv_sock driver handles all hv_sock offers. */
 828	if (is_hvsock_channel(hv_dev->channel))
 829		return drv->hvsock;
 830
 831	if (hv_vmbus_get_id(drv, hv_dev))
 832		return 1;
 833
 834	return 0;
 835}
 836
 837/*
 838 * vmbus_probe - Add the new vmbus's child device
 839 */
 840static int vmbus_probe(struct device *child_device)
 841{
 842	int ret = 0;
 843	struct hv_driver *drv =
 844			drv_to_hv_drv(child_device->driver);
 845	struct hv_device *dev = device_to_hv_device(child_device);
 846	const struct hv_vmbus_device_id *dev_id;
 847
 848	dev_id = hv_vmbus_get_id(drv, dev);
 849	if (drv->probe) {
 850		ret = drv->probe(dev, dev_id);
 851		if (ret != 0)
 852			pr_err("probe failed for device %s (%d)\n",
 853			       dev_name(child_device), ret);
 854
 855	} else {
 856		pr_err("probe not set for driver %s\n",
 857		       dev_name(child_device));
 858		ret = -ENODEV;
 859	}
 860	return ret;
 861}
 862
 863/*
 864 * vmbus_dma_configure -- Configure DMA coherence for VMbus device
 865 */
 866static int vmbus_dma_configure(struct device *child_device)
 867{
 868	/*
 869	 * On ARM64, propagate the DMA coherence setting from the top level
 870	 * VMbus ACPI device to the child VMbus device being added here.
 871	 * On x86/x64 coherence is assumed and these calls have no effect.
 872	 */
 873	hv_setup_dma_ops(child_device,
 874		device_get_dma_attr(hv_dev) == DEV_DMA_COHERENT);
 875	return 0;
 876}
 877
 878/*
 879 * vmbus_remove - Remove a vmbus device
 880 */
 881static void vmbus_remove(struct device *child_device)
 882{
 883	struct hv_driver *drv;
 884	struct hv_device *dev = device_to_hv_device(child_device);
 885
 886	if (child_device->driver) {
 887		drv = drv_to_hv_drv(child_device->driver);
 888		if (drv->remove)
 889			drv->remove(dev);
 890	}
 891}
 892
 893/*
 894 * vmbus_shutdown - Shutdown a vmbus device
 895 */
 896static void vmbus_shutdown(struct device *child_device)
 897{
 898	struct hv_driver *drv;
 899	struct hv_device *dev = device_to_hv_device(child_device);
 900
 901
 902	/* The device may not be attached yet */
 903	if (!child_device->driver)
 904		return;
 905
 906	drv = drv_to_hv_drv(child_device->driver);
 907
 908	if (drv->shutdown)
 909		drv->shutdown(dev);
 910}
 911
 912#ifdef CONFIG_PM_SLEEP
 913/*
 914 * vmbus_suspend - Suspend a vmbus device
 915 */
 916static int vmbus_suspend(struct device *child_device)
 917{
 918	struct hv_driver *drv;
 919	struct hv_device *dev = device_to_hv_device(child_device);
 920
 921	/* The device may not be attached yet */
 922	if (!child_device->driver)
 923		return 0;
 924
 925	drv = drv_to_hv_drv(child_device->driver);
 926	if (!drv->suspend)
 927		return -EOPNOTSUPP;
 928
 929	return drv->suspend(dev);
 930}
 931
 932/*
 933 * vmbus_resume - Resume a vmbus device
 934 */
 935static int vmbus_resume(struct device *child_device)
 936{
 937	struct hv_driver *drv;
 938	struct hv_device *dev = device_to_hv_device(child_device);
 939
 940	/* The device may not be attached yet */
 941	if (!child_device->driver)
 942		return 0;
 943
 944	drv = drv_to_hv_drv(child_device->driver);
 945	if (!drv->resume)
 946		return -EOPNOTSUPP;
 947
 948	return drv->resume(dev);
 949}
 950#else
 951#define vmbus_suspend NULL
 952#define vmbus_resume NULL
 953#endif /* CONFIG_PM_SLEEP */
 954
 955/*
 956 * vmbus_device_release - Final callback release of the vmbus child device
 957 */
 958static void vmbus_device_release(struct device *device)
 959{
 960	struct hv_device *hv_dev = device_to_hv_device(device);
 961	struct vmbus_channel *channel = hv_dev->channel;
 962
 963	hv_debug_rm_dev_dir(hv_dev);
 964
 965	mutex_lock(&vmbus_connection.channel_mutex);
 966	hv_process_channel_removal(channel);
 967	mutex_unlock(&vmbus_connection.channel_mutex);
 968	kfree(hv_dev);
 969}
 970
 971/*
 972 * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
 973 *
 974 * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
 975 * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
 976 * is no way to wake up a Generation-2 VM.
 977 *
 978 * The other 4 ops are for hibernation.
 979 */
 980
 981static const struct dev_pm_ops vmbus_pm = {
 982	.suspend_noirq	= NULL,
 983	.resume_noirq	= NULL,
 984	.freeze_noirq	= vmbus_suspend,
 985	.thaw_noirq	= vmbus_resume,
 986	.poweroff_noirq	= vmbus_suspend,
 987	.restore_noirq	= vmbus_resume,
 988};
 989
 990/* The one and only one */
 991static const struct bus_type  hv_bus = {
 992	.name =		"vmbus",
 993	.match =		vmbus_match,
 994	.shutdown =		vmbus_shutdown,
 995	.remove =		vmbus_remove,
 996	.probe =		vmbus_probe,
 997	.uevent =		vmbus_uevent,
 998	.dma_configure =	vmbus_dma_configure,
 999	.dev_groups =		vmbus_dev_groups,
1000	.drv_groups =		vmbus_drv_groups,
1001	.bus_groups =		vmbus_bus_groups,
1002	.pm =			&vmbus_pm,
1003};
1004
1005struct onmessage_work_context {
1006	struct work_struct work;
1007	struct {
1008		struct hv_message_header header;
1009		u8 payload[];
1010	} msg;
1011};
1012
1013static void vmbus_onmessage_work(struct work_struct *work)
1014{
1015	struct onmessage_work_context *ctx;
1016
1017	/* Do not process messages if we're in DISCONNECTED state */
1018	if (vmbus_connection.conn_state == DISCONNECTED)
1019		return;
1020
1021	ctx = container_of(work, struct onmessage_work_context,
1022			   work);
1023	vmbus_onmessage((struct vmbus_channel_message_header *)
1024			&ctx->msg.payload);
1025	kfree(ctx);
1026}
1027
1028void vmbus_on_msg_dpc(unsigned long data)
1029{
1030	struct hv_per_cpu_context *hv_cpu = (void *)data;
1031	void *page_addr = hv_cpu->synic_message_page;
1032	struct hv_message msg_copy, *msg = (struct hv_message *)page_addr +
1033				  VMBUS_MESSAGE_SINT;
1034	struct vmbus_channel_message_header *hdr;
1035	enum vmbus_channel_message_type msgtype;
1036	const struct vmbus_channel_message_table_entry *entry;
1037	struct onmessage_work_context *ctx;
1038	__u8 payload_size;
1039	u32 message_type;
1040
1041	/*
1042	 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as
1043	 * it is being used in 'struct vmbus_channel_message_header' definition
1044	 * which is supposed to match hypervisor ABI.
1045	 */
1046	BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32));
1047
1048	/*
1049	 * Since the message is in memory shared with the host, an erroneous or
1050	 * malicious Hyper-V could modify the message while vmbus_on_msg_dpc()
1051	 * or individual message handlers are executing; to prevent this, copy
1052	 * the message into private memory.
1053	 */
1054	memcpy(&msg_copy, msg, sizeof(struct hv_message));
1055
1056	message_type = msg_copy.header.message_type;
1057	if (message_type == HVMSG_NONE)
1058		/* no msg */
1059		return;
1060
1061	hdr = (struct vmbus_channel_message_header *)msg_copy.u.payload;
1062	msgtype = hdr->msgtype;
1063
1064	trace_vmbus_on_msg_dpc(hdr);
1065
1066	if (msgtype >= CHANNELMSG_COUNT) {
1067		WARN_ONCE(1, "unknown msgtype=%d\n", msgtype);
1068		goto msg_handled;
1069	}
1070
1071	payload_size = msg_copy.header.payload_size;
1072	if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
1073		WARN_ONCE(1, "payload size is too large (%d)\n", payload_size);
1074		goto msg_handled;
1075	}
1076
1077	entry = &channel_message_table[msgtype];
1078
1079	if (!entry->message_handler)
1080		goto msg_handled;
1081
1082	if (payload_size < entry->min_payload_len) {
1083		WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", msgtype, payload_size);
1084		goto msg_handled;
1085	}
1086
1087	if (entry->handler_type	== VMHT_BLOCKING) {
1088		ctx = kmalloc(struct_size(ctx, msg.payload, payload_size), GFP_ATOMIC);
1089		if (ctx == NULL)
1090			return;
1091
1092		INIT_WORK(&ctx->work, vmbus_onmessage_work);
1093		ctx->msg.header = msg_copy.header;
1094		memcpy(&ctx->msg.payload, msg_copy.u.payload, payload_size);
1095
1096		/*
1097		 * The host can generate a rescind message while we
1098		 * may still be handling the original offer. We deal with
1099		 * this condition by relying on the synchronization provided
1100		 * by offer_in_progress and by channel_mutex.  See also the
1101		 * inline comments in vmbus_onoffer_rescind().
1102		 */
1103		switch (msgtype) {
1104		case CHANNELMSG_RESCIND_CHANNELOFFER:
1105			/*
1106			 * If we are handling the rescind message;
1107			 * schedule the work on the global work queue.
1108			 *
1109			 * The OFFER message and the RESCIND message should
1110			 * not be handled by the same serialized work queue,
1111			 * because the OFFER handler may call vmbus_open(),
1112			 * which tries to open the channel by sending an
1113			 * OPEN_CHANNEL message to the host and waits for
1114			 * the host's response; however, if the host has
1115			 * rescinded the channel before it receives the
1116			 * OPEN_CHANNEL message, the host just silently
1117			 * ignores the OPEN_CHANNEL message; as a result,
1118			 * the guest's OFFER handler hangs for ever, if we
1119			 * handle the RESCIND message in the same serialized
1120			 * work queue: the RESCIND handler can not start to
1121			 * run before the OFFER handler finishes.
1122			 */
1123			if (vmbus_connection.ignore_any_offer_msg)
1124				break;
1125			queue_work(vmbus_connection.rescind_work_queue, &ctx->work);
1126			break;
1127
1128		case CHANNELMSG_OFFERCHANNEL:
1129			/*
1130			 * The host sends the offer message of a given channel
1131			 * before sending the rescind message of the same
1132			 * channel.  These messages are sent to the guest's
1133			 * connect CPU; the guest then starts processing them
1134			 * in the tasklet handler on this CPU:
1135			 *
1136			 * VMBUS_CONNECT_CPU
1137			 *
1138			 * [vmbus_on_msg_dpc()]
1139			 * atomic_inc()  // CHANNELMSG_OFFERCHANNEL
1140			 * queue_work()
1141			 * ...
1142			 * [vmbus_on_msg_dpc()]
1143			 * schedule_work()  // CHANNELMSG_RESCIND_CHANNELOFFER
1144			 *
1145			 * We rely on the memory-ordering properties of the
1146			 * queue_work() and schedule_work() primitives, which
1147			 * guarantee that the atomic increment will be visible
1148			 * to the CPUs which will execute the offer & rescind
1149			 * works by the time these works will start execution.
1150			 */
1151			if (vmbus_connection.ignore_any_offer_msg)
1152				break;
1153			atomic_inc(&vmbus_connection.offer_in_progress);
1154			fallthrough;
1155
1156		default:
1157			queue_work(vmbus_connection.work_queue, &ctx->work);
1158		}
1159	} else
1160		entry->message_handler(hdr);
1161
1162msg_handled:
1163	vmbus_signal_eom(msg, message_type);
1164}
1165
1166#ifdef CONFIG_PM_SLEEP
1167/*
1168 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1169 * hibernation, because hv_sock connections can not persist across hibernation.
1170 */
1171static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1172{
1173	struct onmessage_work_context *ctx;
1174	struct vmbus_channel_rescind_offer *rescind;
1175
1176	WARN_ON(!is_hvsock_channel(channel));
1177
1178	/*
1179	 * Allocation size is small and the allocation should really not fail,
1180	 * otherwise the state of the hv_sock connections ends up in limbo.
1181	 */
1182	ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind),
1183		      GFP_KERNEL | __GFP_NOFAIL);
1184
1185	/*
1186	 * So far, these are not really used by Linux. Just set them to the
1187	 * reasonable values conforming to the definitions of the fields.
1188	 */
1189	ctx->msg.header.message_type = 1;
1190	ctx->msg.header.payload_size = sizeof(*rescind);
1191
1192	/* These values are actually used by Linux. */
1193	rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
1194	rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1195	rescind->child_relid = channel->offermsg.child_relid;
1196
1197	INIT_WORK(&ctx->work, vmbus_onmessage_work);
1198
1199	queue_work(vmbus_connection.work_queue, &ctx->work);
1200}
1201#endif /* CONFIG_PM_SLEEP */
1202
1203/*
1204 * Schedule all channels with events pending
1205 */
1206static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1207{
1208	unsigned long *recv_int_page;
1209	u32 maxbits, relid;
1210
1211	/*
1212	 * The event page can be directly checked to get the id of
1213	 * the channel that has the interrupt pending.
1214	 */
1215	void *page_addr = hv_cpu->synic_event_page;
1216	union hv_synic_event_flags *event
1217		= (union hv_synic_event_flags *)page_addr +
1218					 VMBUS_MESSAGE_SINT;
1219
1220	maxbits = HV_EVENT_FLAGS_COUNT;
1221	recv_int_page = event->flags;
1222
1223	if (unlikely(!recv_int_page))
1224		return;
1225
1226	for_each_set_bit(relid, recv_int_page, maxbits) {
1227		void (*callback_fn)(void *context);
1228		struct vmbus_channel *channel;
1229
1230		if (!sync_test_and_clear_bit(relid, recv_int_page))
1231			continue;
1232
1233		/* Special case - vmbus channel protocol msg */
1234		if (relid == 0)
1235			continue;
1236
1237		/*
1238		 * Pairs with the kfree_rcu() in vmbus_chan_release().
1239		 * Guarantees that the channel data structure doesn't
1240		 * get freed while the channel pointer below is being
1241		 * dereferenced.
1242		 */
1243		rcu_read_lock();
1244
1245		/* Find channel based on relid */
1246		channel = relid2channel(relid);
1247		if (channel == NULL)
1248			goto sched_unlock_rcu;
1249
1250		if (channel->rescind)
1251			goto sched_unlock_rcu;
1252
1253		/*
1254		 * Make sure that the ring buffer data structure doesn't get
1255		 * freed while we dereference the ring buffer pointer.  Test
1256		 * for the channel's onchannel_callback being NULL within a
1257		 * sched_lock critical section.  See also the inline comments
1258		 * in vmbus_reset_channel_cb().
1259		 */
1260		spin_lock(&channel->sched_lock);
1261
1262		callback_fn = channel->onchannel_callback;
1263		if (unlikely(callback_fn == NULL))
1264			goto sched_unlock;
1265
1266		trace_vmbus_chan_sched(channel);
1267
1268		++channel->interrupts;
1269
1270		switch (channel->callback_mode) {
1271		case HV_CALL_ISR:
1272			(*callback_fn)(channel->channel_callback_context);
1273			break;
1274
1275		case HV_CALL_BATCHED:
1276			hv_begin_read(&channel->inbound);
1277			fallthrough;
1278		case HV_CALL_DIRECT:
1279			tasklet_schedule(&channel->callback_event);
1280		}
1281
1282sched_unlock:
1283		spin_unlock(&channel->sched_lock);
1284sched_unlock_rcu:
1285		rcu_read_unlock();
1286	}
1287}
1288
1289static void vmbus_isr(void)
1290{
1291	struct hv_per_cpu_context *hv_cpu
1292		= this_cpu_ptr(hv_context.cpu_context);
1293	void *page_addr;
1294	struct hv_message *msg;
1295
1296	vmbus_chan_sched(hv_cpu);
1297
1298	page_addr = hv_cpu->synic_message_page;
1299	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1300
1301	/* Check if there are actual msgs to be processed */
1302	if (msg->header.message_type != HVMSG_NONE) {
1303		if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1304			hv_stimer0_isr();
1305			vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
1306		} else
1307			tasklet_schedule(&hv_cpu->msg_dpc);
1308	}
1309
1310	add_interrupt_randomness(vmbus_interrupt);
1311}
1312
1313static irqreturn_t vmbus_percpu_isr(int irq, void *dev_id)
1314{
1315	vmbus_isr();
1316	return IRQ_HANDLED;
1317}
1318
 
 
 
 
 
 
 
1319/*
1320 * vmbus_bus_init -Main vmbus driver initialization routine.
1321 *
1322 * Here, we
1323 *	- initialize the vmbus driver context
1324 *	- invoke the vmbus hv main init routine
1325 *	- retrieve the channel offers
1326 */
1327static int vmbus_bus_init(void)
1328{
1329	int ret;
 
1330
1331	ret = hv_init();
1332	if (ret != 0) {
1333		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1334		return ret;
1335	}
1336
1337	ret = bus_register(&hv_bus);
1338	if (ret)
1339		return ret;
1340
1341	/*
1342	 * VMbus interrupts are best modeled as per-cpu interrupts. If
1343	 * on an architecture with support for per-cpu IRQs (e.g. ARM64),
1344	 * allocate a per-cpu IRQ using standard Linux kernel functionality.
1345	 * If not on such an architecture (e.g., x86/x64), then rely on
1346	 * code in the arch-specific portion of the code tree to connect
1347	 * the VMbus interrupt handler.
1348	 */
1349
1350	if (vmbus_irq == -1) {
1351		hv_setup_vmbus_handler(vmbus_isr);
1352	} else {
1353		vmbus_evt = alloc_percpu(long);
1354		ret = request_percpu_irq(vmbus_irq, vmbus_percpu_isr,
1355				"Hyper-V VMbus", vmbus_evt);
1356		if (ret) {
1357			pr_err("Can't request Hyper-V VMbus IRQ %d, Err %d",
1358					vmbus_irq, ret);
1359			free_percpu(vmbus_evt);
1360			goto err_setup;
1361		}
1362	}
1363
1364	ret = hv_synic_alloc();
1365	if (ret)
1366		goto err_alloc;
1367
 
 
 
 
 
 
1368	/*
1369	 * Initialize the per-cpu interrupt state and stimer state.
1370	 * Then connect to the host.
1371	 */
1372	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1373				hv_synic_init, hv_synic_cleanup);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1374	if (ret < 0)
1375		goto err_alloc;
1376	hyperv_cpuhp_online = ret;
1377
1378	ret = vmbus_connect();
1379	if (ret)
1380		goto err_connect;
1381
1382	/*
1383	 * Always register the vmbus unload panic notifier because we
1384	 * need to shut the VMbus channel connection on panic.
1385	 */
1386	atomic_notifier_chain_register(&panic_notifier_list,
1387			       &hyperv_panic_vmbus_unload_block);
1388
1389	vmbus_request_offers();
1390
1391	return 0;
1392
1393err_connect:
1394	cpuhp_remove_state(hyperv_cpuhp_online);
1395err_alloc:
1396	hv_synic_free();
1397	if (vmbus_irq == -1) {
1398		hv_remove_vmbus_handler();
1399	} else {
1400		free_percpu_irq(vmbus_irq, vmbus_evt);
1401		free_percpu(vmbus_evt);
1402	}
1403err_setup:
1404	bus_unregister(&hv_bus);
1405	return ret;
1406}
1407
1408/**
1409 * __vmbus_driver_register() - Register a vmbus's driver
1410 * @hv_driver: Pointer to driver structure you want to register
1411 * @owner: owner module of the drv
1412 * @mod_name: module name string
1413 *
1414 * Registers the given driver with Linux through the 'driver_register()' call
1415 * and sets up the hyper-v vmbus handling for this driver.
1416 * It will return the state of the 'driver_register()' call.
1417 *
1418 */
1419int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1420{
1421	int ret;
1422
1423	pr_info("registering driver %s\n", hv_driver->name);
1424
1425	ret = vmbus_exists();
1426	if (ret < 0)
1427		return ret;
1428
1429	hv_driver->driver.name = hv_driver->name;
1430	hv_driver->driver.owner = owner;
1431	hv_driver->driver.mod_name = mod_name;
1432	hv_driver->driver.bus = &hv_bus;
1433
1434	spin_lock_init(&hv_driver->dynids.lock);
1435	INIT_LIST_HEAD(&hv_driver->dynids.list);
1436
1437	ret = driver_register(&hv_driver->driver);
1438
1439	return ret;
1440}
1441EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1442
1443/**
1444 * vmbus_driver_unregister() - Unregister a vmbus's driver
1445 * @hv_driver: Pointer to driver structure you want to
1446 *             un-register
1447 *
1448 * Un-register the given driver that was previous registered with a call to
1449 * vmbus_driver_register()
1450 */
1451void vmbus_driver_unregister(struct hv_driver *hv_driver)
1452{
1453	pr_info("unregistering driver %s\n", hv_driver->name);
1454
1455	if (!vmbus_exists()) {
1456		driver_unregister(&hv_driver->driver);
1457		vmbus_free_dynids(hv_driver);
1458	}
1459}
1460EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1461
1462
1463/*
1464 * Called when last reference to channel is gone.
1465 */
1466static void vmbus_chan_release(struct kobject *kobj)
1467{
1468	struct vmbus_channel *channel
1469		= container_of(kobj, struct vmbus_channel, kobj);
1470
1471	kfree_rcu(channel, rcu);
1472}
1473
1474struct vmbus_chan_attribute {
1475	struct attribute attr;
1476	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1477	ssize_t (*store)(struct vmbus_channel *chan,
1478			 const char *buf, size_t count);
1479};
1480#define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1481	struct vmbus_chan_attribute chan_attr_##_name \
1482		= __ATTR(_name, _mode, _show, _store)
1483#define VMBUS_CHAN_ATTR_RW(_name) \
1484	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1485#define VMBUS_CHAN_ATTR_RO(_name) \
1486	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1487#define VMBUS_CHAN_ATTR_WO(_name) \
1488	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1489
1490static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1491				    struct attribute *attr, char *buf)
1492{
1493	const struct vmbus_chan_attribute *attribute
1494		= container_of(attr, struct vmbus_chan_attribute, attr);
1495	struct vmbus_channel *chan
1496		= container_of(kobj, struct vmbus_channel, kobj);
1497
1498	if (!attribute->show)
1499		return -EIO;
1500
1501	return attribute->show(chan, buf);
1502}
1503
1504static ssize_t vmbus_chan_attr_store(struct kobject *kobj,
1505				     struct attribute *attr, const char *buf,
1506				     size_t count)
1507{
1508	const struct vmbus_chan_attribute *attribute
1509		= container_of(attr, struct vmbus_chan_attribute, attr);
1510	struct vmbus_channel *chan
1511		= container_of(kobj, struct vmbus_channel, kobj);
1512
1513	if (!attribute->store)
1514		return -EIO;
1515
1516	return attribute->store(chan, buf, count);
1517}
1518
1519static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1520	.show = vmbus_chan_attr_show,
1521	.store = vmbus_chan_attr_store,
1522};
1523
1524static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1525{
1526	struct hv_ring_buffer_info *rbi = &channel->outbound;
1527	ssize_t ret;
1528
1529	mutex_lock(&rbi->ring_buffer_mutex);
1530	if (!rbi->ring_buffer) {
1531		mutex_unlock(&rbi->ring_buffer_mutex);
1532		return -EINVAL;
1533	}
1534
1535	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1536	mutex_unlock(&rbi->ring_buffer_mutex);
1537	return ret;
1538}
1539static VMBUS_CHAN_ATTR_RO(out_mask);
1540
1541static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1542{
1543	struct hv_ring_buffer_info *rbi = &channel->inbound;
1544	ssize_t ret;
1545
1546	mutex_lock(&rbi->ring_buffer_mutex);
1547	if (!rbi->ring_buffer) {
1548		mutex_unlock(&rbi->ring_buffer_mutex);
1549		return -EINVAL;
1550	}
1551
1552	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1553	mutex_unlock(&rbi->ring_buffer_mutex);
1554	return ret;
1555}
1556static VMBUS_CHAN_ATTR_RO(in_mask);
1557
1558static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1559{
1560	struct hv_ring_buffer_info *rbi = &channel->inbound;
1561	ssize_t ret;
1562
1563	mutex_lock(&rbi->ring_buffer_mutex);
1564	if (!rbi->ring_buffer) {
1565		mutex_unlock(&rbi->ring_buffer_mutex);
1566		return -EINVAL;
1567	}
1568
1569	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1570	mutex_unlock(&rbi->ring_buffer_mutex);
1571	return ret;
1572}
1573static VMBUS_CHAN_ATTR_RO(read_avail);
1574
1575static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1576{
1577	struct hv_ring_buffer_info *rbi = &channel->outbound;
1578	ssize_t ret;
1579
1580	mutex_lock(&rbi->ring_buffer_mutex);
1581	if (!rbi->ring_buffer) {
1582		mutex_unlock(&rbi->ring_buffer_mutex);
1583		return -EINVAL;
1584	}
1585
1586	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1587	mutex_unlock(&rbi->ring_buffer_mutex);
1588	return ret;
1589}
1590static VMBUS_CHAN_ATTR_RO(write_avail);
1591
1592static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf)
1593{
1594	return sprintf(buf, "%u\n", channel->target_cpu);
1595}
1596static ssize_t target_cpu_store(struct vmbus_channel *channel,
1597				const char *buf, size_t count)
1598{
1599	u32 target_cpu, origin_cpu;
1600	ssize_t ret = count;
1601
1602	if (vmbus_proto_version < VERSION_WIN10_V4_1)
1603		return -EIO;
1604
1605	if (sscanf(buf, "%uu", &target_cpu) != 1)
1606		return -EIO;
1607
1608	/* Validate target_cpu for the cpumask_test_cpu() operation below. */
1609	if (target_cpu >= nr_cpumask_bits)
1610		return -EINVAL;
1611
1612	if (!cpumask_test_cpu(target_cpu, housekeeping_cpumask(HK_TYPE_MANAGED_IRQ)))
1613		return -EINVAL;
1614
1615	/* No CPUs should come up or down during this. */
1616	cpus_read_lock();
1617
1618	if (!cpu_online(target_cpu)) {
1619		cpus_read_unlock();
1620		return -EINVAL;
1621	}
1622
1623	/*
1624	 * Synchronizes target_cpu_store() and channel closure:
1625	 *
1626	 * { Initially: state = CHANNEL_OPENED }
1627	 *
1628	 * CPU1				CPU2
1629	 *
1630	 * [target_cpu_store()]		[vmbus_disconnect_ring()]
1631	 *
1632	 * LOCK channel_mutex		LOCK channel_mutex
1633	 * LOAD r1 = state		LOAD r2 = state
1634	 * IF (r1 == CHANNEL_OPENED)	IF (r2 == CHANNEL_OPENED)
1635	 *   SEND MODIFYCHANNEL		  STORE state = CHANNEL_OPEN
1636	 *   [...]			  SEND CLOSECHANNEL
1637	 * UNLOCK channel_mutex		UNLOCK channel_mutex
1638	 *
1639	 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes
1640	 * 		CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND
1641	 *
1642	 * Note.  The host processes the channel messages "sequentially", in
1643	 * the order in which they are received on a per-partition basis.
1644	 */
1645	mutex_lock(&vmbus_connection.channel_mutex);
1646
1647	/*
1648	 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels;
1649	 * avoid sending the message and fail here for such channels.
1650	 */
1651	if (channel->state != CHANNEL_OPENED_STATE) {
1652		ret = -EIO;
1653		goto cpu_store_unlock;
1654	}
1655
1656	origin_cpu = channel->target_cpu;
1657	if (target_cpu == origin_cpu)
1658		goto cpu_store_unlock;
1659
1660	if (vmbus_send_modifychannel(channel,
1661				     hv_cpu_number_to_vp_number(target_cpu))) {
1662		ret = -EIO;
1663		goto cpu_store_unlock;
1664	}
1665
1666	/*
1667	 * For version before VERSION_WIN10_V5_3, the following warning holds:
1668	 *
1669	 * Warning.  At this point, there is *no* guarantee that the host will
1670	 * have successfully processed the vmbus_send_modifychannel() request.
1671	 * See the header comment of vmbus_send_modifychannel() for more info.
1672	 *
1673	 * Lags in the processing of the above vmbus_send_modifychannel() can
1674	 * result in missed interrupts if the "old" target CPU is taken offline
1675	 * before Hyper-V starts sending interrupts to the "new" target CPU.
1676	 * But apart from this offlining scenario, the code tolerates such
1677	 * lags.  It will function correctly even if a channel interrupt comes
1678	 * in on a CPU that is different from the channel target_cpu value.
1679	 */
1680
1681	channel->target_cpu = target_cpu;
1682
1683	/* See init_vp_index(). */
1684	if (hv_is_perf_channel(channel))
1685		hv_update_allocated_cpus(origin_cpu, target_cpu);
1686
1687	/* Currently set only for storvsc channels. */
1688	if (channel->change_target_cpu_callback) {
1689		(*channel->change_target_cpu_callback)(channel,
1690				origin_cpu, target_cpu);
1691	}
1692
1693cpu_store_unlock:
1694	mutex_unlock(&vmbus_connection.channel_mutex);
1695	cpus_read_unlock();
1696	return ret;
1697}
1698static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store);
1699
1700static ssize_t channel_pending_show(struct vmbus_channel *channel,
1701				    char *buf)
1702{
1703	return sprintf(buf, "%d\n",
1704		       channel_pending(channel,
1705				       vmbus_connection.monitor_pages[1]));
1706}
1707static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL);
1708
1709static ssize_t channel_latency_show(struct vmbus_channel *channel,
1710				    char *buf)
1711{
1712	return sprintf(buf, "%d\n",
1713		       channel_latency(channel,
1714				       vmbus_connection.monitor_pages[1]));
1715}
1716static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL);
1717
1718static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1719{
1720	return sprintf(buf, "%llu\n", channel->interrupts);
1721}
1722static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL);
1723
1724static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1725{
1726	return sprintf(buf, "%llu\n", channel->sig_events);
1727}
1728static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL);
1729
1730static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1731					 char *buf)
1732{
1733	return sprintf(buf, "%llu\n",
1734		       (unsigned long long)channel->intr_in_full);
1735}
1736static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1737
1738static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1739					   char *buf)
1740{
1741	return sprintf(buf, "%llu\n",
1742		       (unsigned long long)channel->intr_out_empty);
1743}
1744static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1745
1746static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1747					   char *buf)
1748{
1749	return sprintf(buf, "%llu\n",
1750		       (unsigned long long)channel->out_full_first);
1751}
1752static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1753
1754static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1755					   char *buf)
1756{
1757	return sprintf(buf, "%llu\n",
1758		       (unsigned long long)channel->out_full_total);
1759}
1760static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1761
1762static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1763					  char *buf)
1764{
1765	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1766}
1767static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL);
1768
1769static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1770				  char *buf)
1771{
1772	return sprintf(buf, "%u\n",
1773		       channel->offermsg.offer.sub_channel_index);
1774}
1775static VMBUS_CHAN_ATTR_RO(subchannel_id);
1776
1777static struct attribute *vmbus_chan_attrs[] = {
1778	&chan_attr_out_mask.attr,
1779	&chan_attr_in_mask.attr,
1780	&chan_attr_read_avail.attr,
1781	&chan_attr_write_avail.attr,
1782	&chan_attr_cpu.attr,
1783	&chan_attr_pending.attr,
1784	&chan_attr_latency.attr,
1785	&chan_attr_interrupts.attr,
1786	&chan_attr_events.attr,
1787	&chan_attr_intr_in_full.attr,
1788	&chan_attr_intr_out_empty.attr,
1789	&chan_attr_out_full_first.attr,
1790	&chan_attr_out_full_total.attr,
1791	&chan_attr_monitor_id.attr,
1792	&chan_attr_subchannel_id.attr,
1793	NULL
1794};
1795
1796/*
1797 * Channel-level attribute_group callback function. Returns the permission for
1798 * each attribute, and returns 0 if an attribute is not visible.
1799 */
1800static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1801					  struct attribute *attr, int idx)
1802{
1803	const struct vmbus_channel *channel =
1804		container_of(kobj, struct vmbus_channel, kobj);
1805
1806	/* Hide the monitor attributes if the monitor mechanism is not used. */
1807	if (!channel->offermsg.monitor_allocated &&
1808	    (attr == &chan_attr_pending.attr ||
1809	     attr == &chan_attr_latency.attr ||
1810	     attr == &chan_attr_monitor_id.attr))
1811		return 0;
1812
1813	return attr->mode;
1814}
1815
1816static struct attribute_group vmbus_chan_group = {
1817	.attrs = vmbus_chan_attrs,
1818	.is_visible = vmbus_chan_attr_is_visible
1819};
1820
1821static struct kobj_type vmbus_chan_ktype = {
1822	.sysfs_ops = &vmbus_chan_sysfs_ops,
1823	.release = vmbus_chan_release,
1824};
1825
1826/*
1827 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1828 */
1829int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1830{
1831	const struct device *device = &dev->device;
1832	struct kobject *kobj = &channel->kobj;
1833	u32 relid = channel->offermsg.child_relid;
1834	int ret;
1835
1836	kobj->kset = dev->channels_kset;
1837	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1838				   "%u", relid);
1839	if (ret) {
1840		kobject_put(kobj);
1841		return ret;
1842	}
1843
1844	ret = sysfs_create_group(kobj, &vmbus_chan_group);
1845
1846	if (ret) {
1847		/*
1848		 * The calling functions' error handling paths will cleanup the
1849		 * empty channel directory.
1850		 */
1851		kobject_put(kobj);
1852		dev_err(device, "Unable to set up channel sysfs files\n");
1853		return ret;
1854	}
1855
1856	kobject_uevent(kobj, KOBJ_ADD);
1857
1858	return 0;
1859}
1860
1861/*
1862 * vmbus_remove_channel_attr_group - remove the channel's attribute group
1863 */
1864void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
1865{
1866	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
1867}
1868
1869/*
1870 * vmbus_device_create - Creates and registers a new child device
1871 * on the vmbus.
1872 */
1873struct hv_device *vmbus_device_create(const guid_t *type,
1874				      const guid_t *instance,
1875				      struct vmbus_channel *channel)
1876{
1877	struct hv_device *child_device_obj;
1878
1879	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1880	if (!child_device_obj) {
1881		pr_err("Unable to allocate device object for child device\n");
1882		return NULL;
1883	}
1884
1885	child_device_obj->channel = channel;
1886	guid_copy(&child_device_obj->dev_type, type);
1887	guid_copy(&child_device_obj->dev_instance, instance);
1888	child_device_obj->vendor_id = PCI_VENDOR_ID_MICROSOFT;
1889
1890	return child_device_obj;
1891}
1892
1893/*
1894 * vmbus_device_register - Register the child device
1895 */
1896int vmbus_device_register(struct hv_device *child_device_obj)
1897{
1898	struct kobject *kobj = &child_device_obj->device.kobj;
1899	int ret;
1900
1901	dev_set_name(&child_device_obj->device, "%pUl",
1902		     &child_device_obj->channel->offermsg.offer.if_instance);
1903
1904	child_device_obj->device.bus = &hv_bus;
1905	child_device_obj->device.parent = hv_dev;
1906	child_device_obj->device.release = vmbus_device_release;
1907
1908	child_device_obj->device.dma_parms = &child_device_obj->dma_parms;
1909	child_device_obj->device.dma_mask = &child_device_obj->dma_mask;
1910	dma_set_mask(&child_device_obj->device, DMA_BIT_MASK(64));
1911
1912	/*
1913	 * Register with the LDM. This will kick off the driver/device
1914	 * binding...which will eventually call vmbus_match() and vmbus_probe()
1915	 */
1916	ret = device_register(&child_device_obj->device);
1917	if (ret) {
1918		pr_err("Unable to register child device\n");
1919		put_device(&child_device_obj->device);
1920		return ret;
1921	}
1922
1923	child_device_obj->channels_kset = kset_create_and_add("channels",
1924							      NULL, kobj);
1925	if (!child_device_obj->channels_kset) {
1926		ret = -ENOMEM;
1927		goto err_dev_unregister;
1928	}
1929
1930	ret = vmbus_add_channel_kobj(child_device_obj,
1931				     child_device_obj->channel);
1932	if (ret) {
1933		pr_err("Unable to register primary channeln");
1934		goto err_kset_unregister;
1935	}
1936	hv_debug_add_dev_dir(child_device_obj);
1937
1938	return 0;
1939
1940err_kset_unregister:
1941	kset_unregister(child_device_obj->channels_kset);
1942
1943err_dev_unregister:
1944	device_unregister(&child_device_obj->device);
1945	return ret;
1946}
1947
1948/*
1949 * vmbus_device_unregister - Remove the specified child device
1950 * from the vmbus.
1951 */
1952void vmbus_device_unregister(struct hv_device *device_obj)
1953{
1954	pr_debug("child device %s unregistered\n",
1955		dev_name(&device_obj->device));
1956
1957	kset_unregister(device_obj->channels_kset);
1958
1959	/*
1960	 * Kick off the process of unregistering the device.
1961	 * This will call vmbus_remove() and eventually vmbus_device_release()
1962	 */
1963	device_unregister(&device_obj->device);
1964}
 
1965
1966#ifdef CONFIG_ACPI
1967/*
1968 * VMBUS is an acpi enumerated device. Get the information we
1969 * need from DSDT.
1970 */
1971static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1972{
1973	resource_size_t start = 0;
1974	resource_size_t end = 0;
1975	struct resource *new_res;
1976	struct resource **old_res = &hyperv_mmio;
1977	struct resource **prev_res = NULL;
1978	struct resource r;
1979
1980	switch (res->type) {
1981
1982	/*
1983	 * "Address" descriptors are for bus windows. Ignore
1984	 * "memory" descriptors, which are for registers on
1985	 * devices.
1986	 */
1987	case ACPI_RESOURCE_TYPE_ADDRESS32:
1988		start = res->data.address32.address.minimum;
1989		end = res->data.address32.address.maximum;
1990		break;
1991
1992	case ACPI_RESOURCE_TYPE_ADDRESS64:
1993		start = res->data.address64.address.minimum;
1994		end = res->data.address64.address.maximum;
1995		break;
1996
1997	/*
1998	 * The IRQ information is needed only on ARM64, which Hyper-V
1999	 * sets up in the extended format. IRQ information is present
2000	 * on x86/x64 in the non-extended format but it is not used by
2001	 * Linux. So don't bother checking for the non-extended format.
2002	 */
2003	case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
2004		if (!acpi_dev_resource_interrupt(res, 0, &r)) {
2005			pr_err("Unable to parse Hyper-V ACPI interrupt\n");
2006			return AE_ERROR;
2007		}
2008		/* ARM64 INTID for VMbus */
2009		vmbus_interrupt = res->data.extended_irq.interrupts[0];
2010		/* Linux IRQ number */
2011		vmbus_irq = r.start;
2012		return AE_OK;
2013
2014	default:
2015		/* Unused resource type */
2016		return AE_OK;
2017
2018	}
2019	/*
2020	 * Ignore ranges that are below 1MB, as they're not
2021	 * necessary or useful here.
2022	 */
2023	if (end < 0x100000)
2024		return AE_OK;
2025
2026	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
2027	if (!new_res)
2028		return AE_NO_MEMORY;
2029
2030	/* If this range overlaps the virtual TPM, truncate it. */
2031	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
2032		end = VTPM_BASE_ADDRESS;
2033
2034	new_res->name = "hyperv mmio";
2035	new_res->flags = IORESOURCE_MEM;
2036	new_res->start = start;
2037	new_res->end = end;
2038
2039	/*
2040	 * If two ranges are adjacent, merge them.
2041	 */
2042	do {
2043		if (!*old_res) {
2044			*old_res = new_res;
2045			break;
2046		}
2047
2048		if (((*old_res)->end + 1) == new_res->start) {
2049			(*old_res)->end = new_res->end;
2050			kfree(new_res);
2051			break;
2052		}
2053
2054		if ((*old_res)->start == new_res->end + 1) {
2055			(*old_res)->start = new_res->start;
2056			kfree(new_res);
2057			break;
2058		}
2059
2060		if ((*old_res)->start > new_res->end) {
2061			new_res->sibling = *old_res;
2062			if (prev_res)
2063				(*prev_res)->sibling = new_res;
2064			*old_res = new_res;
2065			break;
2066		}
2067
2068		prev_res = old_res;
2069		old_res = &(*old_res)->sibling;
2070
2071	} while (1);
2072
2073	return AE_OK;
2074}
2075#endif
2076
2077static void vmbus_mmio_remove(void)
2078{
2079	struct resource *cur_res;
2080	struct resource *next_res;
2081
2082	if (hyperv_mmio) {
2083		if (fb_mmio) {
2084			__release_region(hyperv_mmio, fb_mmio->start,
2085					 resource_size(fb_mmio));
2086			fb_mmio = NULL;
2087		}
2088
2089		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
2090			next_res = cur_res->sibling;
2091			kfree(cur_res);
2092		}
2093	}
2094}
2095
2096static void __maybe_unused vmbus_reserve_fb(void)
2097{
2098	resource_size_t start = 0, size;
2099	struct pci_dev *pdev;
2100
2101	if (efi_enabled(EFI_BOOT)) {
2102		/* Gen2 VM: get FB base from EFI framebuffer */
2103		if (IS_ENABLED(CONFIG_SYSFB)) {
2104			start = screen_info.lfb_base;
2105			size = max_t(__u32, screen_info.lfb_size, 0x800000);
2106		}
2107	} else {
2108		/* Gen1 VM: get FB base from PCI */
2109		pdev = pci_get_device(PCI_VENDOR_ID_MICROSOFT,
2110				      PCI_DEVICE_ID_HYPERV_VIDEO, NULL);
2111		if (!pdev)
2112			return;
2113
2114		if (pdev->resource[0].flags & IORESOURCE_MEM) {
2115			start = pci_resource_start(pdev, 0);
2116			size = pci_resource_len(pdev, 0);
2117		}
2118
2119		/*
2120		 * Release the PCI device so hyperv_drm or hyperv_fb driver can
2121		 * grab it later.
2122		 */
2123		pci_dev_put(pdev);
2124	}
2125
2126	if (!start)
2127		return;
2128
2129	/*
2130	 * Make a claim for the frame buffer in the resource tree under the
2131	 * first node, which will be the one below 4GB.  The length seems to
2132	 * be underreported, particularly in a Generation 1 VM.  So start out
2133	 * reserving a larger area and make it smaller until it succeeds.
2134	 */
2135	for (; !fb_mmio && (size >= 0x100000); size >>= 1)
2136		fb_mmio = __request_region(hyperv_mmio, start, size, fb_mmio_name, 0);
2137}
2138
2139/**
2140 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
2141 * @new:		If successful, supplied a pointer to the
2142 *			allocated MMIO space.
2143 * @device_obj:		Identifies the caller
2144 * @min:		Minimum guest physical address of the
2145 *			allocation
2146 * @max:		Maximum guest physical address
2147 * @size:		Size of the range to be allocated
2148 * @align:		Alignment of the range to be allocated
2149 * @fb_overlap_ok:	Whether this allocation can be allowed
2150 *			to overlap the video frame buffer.
2151 *
2152 * This function walks the resources granted to VMBus by the
2153 * _CRS object in the ACPI namespace underneath the parent
2154 * "bridge" whether that's a root PCI bus in the Generation 1
2155 * case or a Module Device in the Generation 2 case.  It then
2156 * attempts to allocate from the global MMIO pool in a way that
2157 * matches the constraints supplied in these parameters and by
2158 * that _CRS.
2159 *
2160 * Return: 0 on success, -errno on failure
2161 */
2162int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2163			resource_size_t min, resource_size_t max,
2164			resource_size_t size, resource_size_t align,
2165			bool fb_overlap_ok)
2166{
2167	struct resource *iter, *shadow;
2168	resource_size_t range_min, range_max, start, end;
2169	const char *dev_n = dev_name(&device_obj->device);
2170	int retval;
2171
2172	retval = -ENXIO;
2173	mutex_lock(&hyperv_mmio_lock);
2174
2175	/*
2176	 * If overlaps with frame buffers are allowed, then first attempt to
2177	 * make the allocation from within the reserved region.  Because it
2178	 * is already reserved, no shadow allocation is necessary.
2179	 */
2180	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2181	    !(max < fb_mmio->start)) {
2182
2183		range_min = fb_mmio->start;
2184		range_max = fb_mmio->end;
2185		start = (range_min + align - 1) & ~(align - 1);
2186		for (; start + size - 1 <= range_max; start += align) {
2187			*new = request_mem_region_exclusive(start, size, dev_n);
2188			if (*new) {
2189				retval = 0;
2190				goto exit;
2191			}
2192		}
2193	}
2194
2195	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2196		if ((iter->start >= max) || (iter->end <= min))
2197			continue;
2198
2199		range_min = iter->start;
2200		range_max = iter->end;
2201		start = (range_min + align - 1) & ~(align - 1);
2202		for (; start + size - 1 <= range_max; start += align) {
2203			end = start + size - 1;
2204
2205			/* Skip the whole fb_mmio region if not fb_overlap_ok */
2206			if (!fb_overlap_ok && fb_mmio &&
2207			    (((start >= fb_mmio->start) && (start <= fb_mmio->end)) ||
2208			     ((end >= fb_mmio->start) && (end <= fb_mmio->end))))
2209				continue;
2210
2211			shadow = __request_region(iter, start, size, NULL,
2212						  IORESOURCE_BUSY);
2213			if (!shadow)
2214				continue;
2215
2216			*new = request_mem_region_exclusive(start, size, dev_n);
2217			if (*new) {
2218				shadow->name = (char *)*new;
2219				retval = 0;
2220				goto exit;
2221			}
2222
2223			__release_region(iter, start, size);
2224		}
2225	}
2226
2227exit:
2228	mutex_unlock(&hyperv_mmio_lock);
2229	return retval;
2230}
2231EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2232
2233/**
2234 * vmbus_free_mmio() - Free a memory-mapped I/O range.
2235 * @start:		Base address of region to release.
2236 * @size:		Size of the range to be allocated
2237 *
2238 * This function releases anything requested by
2239 * vmbus_mmio_allocate().
2240 */
2241void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2242{
2243	struct resource *iter;
2244
2245	mutex_lock(&hyperv_mmio_lock);
2246	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2247		if ((iter->start >= start + size) || (iter->end <= start))
2248			continue;
2249
2250		__release_region(iter, start, size);
2251	}
2252	release_mem_region(start, size);
2253	mutex_unlock(&hyperv_mmio_lock);
2254
2255}
2256EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2257
2258#ifdef CONFIG_ACPI
2259static int vmbus_acpi_add(struct platform_device *pdev)
2260{
2261	acpi_status result;
2262	int ret_val = -ENODEV;
2263	struct acpi_device *ancestor;
2264	struct acpi_device *device = ACPI_COMPANION(&pdev->dev);
2265
2266	hv_dev = &device->dev;
2267
2268	/*
2269	 * Older versions of Hyper-V for ARM64 fail to include the _CCA
2270	 * method on the top level VMbus device in the DSDT. But devices
2271	 * are hardware coherent in all current Hyper-V use cases, so fix
2272	 * up the ACPI device to behave as if _CCA is present and indicates
2273	 * hardware coherence.
2274	 */
2275	ACPI_COMPANION_SET(&device->dev, device);
2276	if (IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED) &&
2277	    device_get_dma_attr(&device->dev) == DEV_DMA_NOT_SUPPORTED) {
2278		pr_info("No ACPI _CCA found; assuming coherent device I/O\n");
2279		device->flags.cca_seen = true;
2280		device->flags.coherent_dma = true;
2281	}
2282
2283	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2284					vmbus_walk_resources, NULL);
2285
2286	if (ACPI_FAILURE(result))
2287		goto acpi_walk_err;
2288	/*
2289	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2290	 * firmware) is the VMOD that has the mmio ranges. Get that.
2291	 */
2292	for (ancestor = acpi_dev_parent(device);
2293	     ancestor && ancestor->handle != ACPI_ROOT_OBJECT;
2294	     ancestor = acpi_dev_parent(ancestor)) {
2295		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2296					     vmbus_walk_resources, NULL);
2297
2298		if (ACPI_FAILURE(result))
2299			continue;
2300		if (hyperv_mmio) {
2301			vmbus_reserve_fb();
2302			break;
2303		}
2304	}
2305	ret_val = 0;
2306
2307acpi_walk_err:
2308	if (ret_val)
2309		vmbus_mmio_remove();
2310	return ret_val;
2311}
2312#else
2313static int vmbus_acpi_add(struct platform_device *pdev)
2314{
2315	return 0;
2316}
2317#endif
2318
2319static int vmbus_device_add(struct platform_device *pdev)
2320{
2321	struct resource **cur_res = &hyperv_mmio;
2322	struct of_range range;
2323	struct of_range_parser parser;
2324	struct device_node *np = pdev->dev.of_node;
2325	int ret;
2326
2327	hv_dev = &pdev->dev;
2328
2329	ret = of_range_parser_init(&parser, np);
2330	if (ret)
2331		return ret;
2332
2333	for_each_of_range(&parser, &range) {
2334		struct resource *res;
2335
2336		res = kzalloc(sizeof(*res), GFP_KERNEL);
2337		if (!res) {
2338			vmbus_mmio_remove();
2339			return -ENOMEM;
2340		}
2341
2342		res->name = "hyperv mmio";
2343		res->flags = range.flags;
2344		res->start = range.cpu_addr;
2345		res->end = range.cpu_addr + range.size;
2346
2347		*cur_res = res;
2348		cur_res = &res->sibling;
2349	}
2350
2351	return ret;
2352}
2353
2354static int vmbus_platform_driver_probe(struct platform_device *pdev)
2355{
2356	if (acpi_disabled)
2357		return vmbus_device_add(pdev);
2358	else
2359		return vmbus_acpi_add(pdev);
2360}
2361
2362static int vmbus_platform_driver_remove(struct platform_device *pdev)
2363{
2364	vmbus_mmio_remove();
2365	return 0;
2366}
2367
2368#ifdef CONFIG_PM_SLEEP
2369static int vmbus_bus_suspend(struct device *dev)
2370{
2371	struct hv_per_cpu_context *hv_cpu = per_cpu_ptr(
2372			hv_context.cpu_context, VMBUS_CONNECT_CPU);
2373	struct vmbus_channel *channel, *sc;
2374
2375	tasklet_disable(&hv_cpu->msg_dpc);
2376	vmbus_connection.ignore_any_offer_msg = true;
2377	/* The tasklet_enable() takes care of providing a memory barrier */
2378	tasklet_enable(&hv_cpu->msg_dpc);
2379
2380	/* Drain all the workqueues as we are in suspend */
2381	drain_workqueue(vmbus_connection.rescind_work_queue);
2382	drain_workqueue(vmbus_connection.work_queue);
2383	drain_workqueue(vmbus_connection.handle_primary_chan_wq);
2384	drain_workqueue(vmbus_connection.handle_sub_chan_wq);
2385
2386	mutex_lock(&vmbus_connection.channel_mutex);
2387	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2388		if (!is_hvsock_channel(channel))
2389			continue;
2390
2391		vmbus_force_channel_rescinded(channel);
2392	}
2393	mutex_unlock(&vmbus_connection.channel_mutex);
2394
2395	/*
2396	 * Wait until all the sub-channels and hv_sock channels have been
2397	 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2398	 * they would conflict with the new sub-channels that will be created
2399	 * in the resume path. hv_sock channels should also be destroyed, but
2400	 * a hv_sock channel of an established hv_sock connection can not be
2401	 * really destroyed since it may still be referenced by the userspace
2402	 * application, so we just force the hv_sock channel to be rescinded
2403	 * by vmbus_force_channel_rescinded(), and the userspace application
2404	 * will thoroughly destroy the channel after hibernation.
2405	 *
2406	 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2407	 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2408	 */
2409	if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
2410		wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2411
2412	if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) {
2413		pr_err("Can not suspend due to a previous failed resuming\n");
2414		return -EBUSY;
2415	}
2416
2417	mutex_lock(&vmbus_connection.channel_mutex);
2418
2419	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2420		/*
2421		 * Remove the channel from the array of channels and invalidate
2422		 * the channel's relid.  Upon resume, vmbus_onoffer() will fix
2423		 * up the relid (and other fields, if necessary) and add the
2424		 * channel back to the array.
2425		 */
2426		vmbus_channel_unmap_relid(channel);
2427		channel->offermsg.child_relid = INVALID_RELID;
2428
2429		if (is_hvsock_channel(channel)) {
2430			if (!channel->rescind) {
2431				pr_err("hv_sock channel not rescinded!\n");
2432				WARN_ON_ONCE(1);
2433			}
2434			continue;
2435		}
2436
2437		list_for_each_entry(sc, &channel->sc_list, sc_list) {
2438			pr_err("Sub-channel not deleted!\n");
2439			WARN_ON_ONCE(1);
2440		}
2441
2442		atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2443	}
2444
2445	mutex_unlock(&vmbus_connection.channel_mutex);
2446
2447	vmbus_initiate_unload(false);
2448
2449	/* Reset the event for the next resume. */
2450	reinit_completion(&vmbus_connection.ready_for_resume_event);
2451
2452	return 0;
2453}
2454
2455static int vmbus_bus_resume(struct device *dev)
2456{
 
2457	struct vmbus_channel_msginfo *msginfo;
2458	size_t msgsize;
2459	int ret;
2460
2461	vmbus_connection.ignore_any_offer_msg = false;
2462
2463	/*
2464	 * We only use the 'vmbus_proto_version', which was in use before
2465	 * hibernation, to re-negotiate with the host.
2466	 */
2467	if (!vmbus_proto_version) {
2468		pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2469		return -EINVAL;
2470	}
2471
2472	msgsize = sizeof(*msginfo) +
2473		  sizeof(struct vmbus_channel_initiate_contact);
2474
2475	msginfo = kzalloc(msgsize, GFP_KERNEL);
2476
2477	if (msginfo == NULL)
2478		return -ENOMEM;
2479
2480	ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
2481
2482	kfree(msginfo);
2483
2484	if (ret != 0)
2485		return ret;
2486
2487	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);
2488
2489	vmbus_request_offers();
2490
2491	if (wait_for_completion_timeout(
2492		&vmbus_connection.ready_for_resume_event, 10 * HZ) == 0)
2493		pr_err("Some vmbus device is missing after suspending?\n");
 
 
 
 
 
 
 
 
 
 
 
 
2494
2495	/* Reset the event for the next suspend. */
2496	reinit_completion(&vmbus_connection.ready_for_suspend_event);
2497
2498	return 0;
2499}
2500#else
2501#define vmbus_bus_suspend NULL
2502#define vmbus_bus_resume NULL
2503#endif /* CONFIG_PM_SLEEP */
2504
2505static const __maybe_unused struct of_device_id vmbus_of_match[] = {
2506	{
2507		.compatible = "microsoft,vmbus",
2508	},
2509	{
2510		/* sentinel */
2511	},
2512};
2513MODULE_DEVICE_TABLE(of, vmbus_of_match);
2514
2515static const __maybe_unused struct acpi_device_id vmbus_acpi_device_ids[] = {
2516	{"VMBUS", 0},
2517	{"VMBus", 0},
2518	{"", 0},
2519};
2520MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2521
2522/*
2523 * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
2524 * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
2525 * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
2526 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2527 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2528 * resume callback must also run via the "noirq" ops.
2529 *
2530 * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
2531 * earlier in this file before vmbus_pm.
2532 */
2533
2534static const struct dev_pm_ops vmbus_bus_pm = {
2535	.suspend_noirq	= NULL,
2536	.resume_noirq	= NULL,
2537	.freeze_noirq	= vmbus_bus_suspend,
2538	.thaw_noirq	= vmbus_bus_resume,
2539	.poweroff_noirq	= vmbus_bus_suspend,
2540	.restore_noirq	= vmbus_bus_resume
2541};
2542
2543static struct platform_driver vmbus_platform_driver = {
2544	.probe = vmbus_platform_driver_probe,
2545	.remove = vmbus_platform_driver_remove,
2546	.driver = {
2547		.name = "vmbus",
2548		.acpi_match_table = ACPI_PTR(vmbus_acpi_device_ids),
2549		.of_match_table = of_match_ptr(vmbus_of_match),
2550		.pm = &vmbus_bus_pm,
2551		.probe_type = PROBE_FORCE_SYNCHRONOUS,
2552	}
2553};
2554
2555static void hv_kexec_handler(void)
2556{
2557	hv_stimer_global_cleanup();
2558	vmbus_initiate_unload(false);
2559	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
2560	mb();
2561	cpuhp_remove_state(hyperv_cpuhp_online);
2562};
2563
2564static void hv_crash_handler(struct pt_regs *regs)
2565{
2566	int cpu;
2567
2568	vmbus_initiate_unload(true);
2569	/*
2570	 * In crash handler we can't schedule synic cleanup for all CPUs,
2571	 * doing the cleanup for current CPU only. This should be sufficient
2572	 * for kdump.
2573	 */
2574	cpu = smp_processor_id();
2575	hv_stimer_cleanup(cpu);
2576	hv_synic_disable_regs(cpu);
2577};
2578
2579static int hv_synic_suspend(void)
2580{
2581	/*
2582	 * When we reach here, all the non-boot CPUs have been offlined.
2583	 * If we're in a legacy configuration where stimer Direct Mode is
2584	 * not enabled, the stimers on the non-boot CPUs have been unbound
2585	 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2586	 * hv_stimer_cleanup() -> clockevents_unbind_device().
2587	 *
2588	 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
2589	 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
2590	 * 1) it's unnecessary as interrupts remain disabled between
2591	 * syscore_suspend() and syscore_resume(): see create_image() and
2592	 * resume_target_kernel()
2593	 * 2) the stimer on CPU0 is automatically disabled later by
2594	 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2595	 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
2596	 * 3) a warning would be triggered if we call
2597	 * clockevents_unbind_device(), which may sleep, in an
2598	 * interrupts-disabled context.
2599	 */
2600
2601	hv_synic_disable_regs(0);
2602
2603	return 0;
2604}
2605
2606static void hv_synic_resume(void)
2607{
2608	hv_synic_enable_regs(0);
2609
2610	/*
2611	 * Note: we don't need to call hv_stimer_init(0), because the timer
2612	 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2613	 * automatically re-enabled in timekeeping_resume().
2614	 */
2615}
2616
2617/* The callbacks run only on CPU0, with irqs_disabled. */
2618static struct syscore_ops hv_synic_syscore_ops = {
2619	.suspend = hv_synic_suspend,
2620	.resume = hv_synic_resume,
2621};
2622
2623static int __init hv_acpi_init(void)
2624{
2625	int ret;
2626
2627	if (!hv_is_hyperv_initialized())
2628		return -ENODEV;
2629
2630	if (hv_root_partition && !hv_nested)
2631		return 0;
2632
2633	/*
2634	 * Get ACPI resources first.
2635	 */
2636	ret = platform_driver_register(&vmbus_platform_driver);
2637	if (ret)
2638		return ret;
2639
2640	if (!hv_dev) {
2641		ret = -ENODEV;
2642		goto cleanup;
2643	}
2644
2645	/*
2646	 * If we're on an architecture with a hardcoded hypervisor
2647	 * vector (i.e. x86/x64), override the VMbus interrupt found
2648	 * in the ACPI tables. Ensure vmbus_irq is not set since the
2649	 * normal Linux IRQ mechanism is not used in this case.
2650	 */
2651#ifdef HYPERVISOR_CALLBACK_VECTOR
2652	vmbus_interrupt = HYPERVISOR_CALLBACK_VECTOR;
2653	vmbus_irq = -1;
2654#endif
2655
2656	hv_debug_init();
2657
2658	ret = vmbus_bus_init();
2659	if (ret)
2660		goto cleanup;
2661
2662	hv_setup_kexec_handler(hv_kexec_handler);
2663	hv_setup_crash_handler(hv_crash_handler);
2664
2665	register_syscore_ops(&hv_synic_syscore_ops);
2666
2667	return 0;
2668
2669cleanup:
2670	platform_driver_unregister(&vmbus_platform_driver);
2671	hv_dev = NULL;
2672	return ret;
2673}
2674
2675static void __exit vmbus_exit(void)
2676{
2677	int cpu;
2678
2679	unregister_syscore_ops(&hv_synic_syscore_ops);
2680
2681	hv_remove_kexec_handler();
2682	hv_remove_crash_handler();
2683	vmbus_connection.conn_state = DISCONNECTED;
2684	hv_stimer_global_cleanup();
2685	vmbus_disconnect();
2686	if (vmbus_irq == -1) {
2687		hv_remove_vmbus_handler();
2688	} else {
2689		free_percpu_irq(vmbus_irq, vmbus_evt);
2690		free_percpu(vmbus_evt);
2691	}
2692	for_each_online_cpu(cpu) {
2693		struct hv_per_cpu_context *hv_cpu
2694			= per_cpu_ptr(hv_context.cpu_context, cpu);
2695
2696		tasklet_kill(&hv_cpu->msg_dpc);
2697	}
2698	hv_debug_rm_all_dir();
2699
2700	vmbus_free_channels();
2701	kfree(vmbus_connection.channels);
2702
2703	/*
2704	 * The vmbus panic notifier is always registered, hence we should
2705	 * also unconditionally unregister it here as well.
2706	 */
2707	atomic_notifier_chain_unregister(&panic_notifier_list,
2708					&hyperv_panic_vmbus_unload_block);
2709
2710	bus_unregister(&hv_bus);
2711
2712	cpuhp_remove_state(hyperv_cpuhp_online);
2713	hv_synic_free();
2714	platform_driver_unregister(&vmbus_platform_driver);
2715}
2716
2717
2718MODULE_LICENSE("GPL");
2719MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2720
2721subsys_initcall(hv_acpi_init);
2722module_exit(vmbus_exit);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2009, Microsoft Corporation.
   4 *
   5 * Authors:
   6 *   Haiyang Zhang <haiyangz@microsoft.com>
   7 *   Hank Janssen  <hjanssen@microsoft.com>
   8 *   K. Y. Srinivasan <kys@microsoft.com>
   9 */
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/device.h>
  15#include <linux/platform_device.h>
  16#include <linux/interrupt.h>
  17#include <linux/sysctl.h>
  18#include <linux/slab.h>
  19#include <linux/acpi.h>
  20#include <linux/completion.h>
  21#include <linux/hyperv.h>
  22#include <linux/kernel_stat.h>
  23#include <linux/of_address.h>
  24#include <linux/clockchips.h>
  25#include <linux/cpu.h>
  26#include <linux/sched/isolation.h>
  27#include <linux/sched/task_stack.h>
  28
  29#include <linux/delay.h>
  30#include <linux/panic_notifier.h>
  31#include <linux/ptrace.h>
  32#include <linux/screen_info.h>
  33#include <linux/efi.h>
  34#include <linux/random.h>
  35#include <linux/kernel.h>
  36#include <linux/syscore_ops.h>
  37#include <linux/dma-map-ops.h>
  38#include <linux/pci.h>
  39#include <clocksource/hyperv_timer.h>
  40#include <asm/mshyperv.h>
  41#include "hyperv_vmbus.h"
  42
  43struct vmbus_dynid {
  44	struct list_head node;
  45	struct hv_vmbus_device_id id;
  46};
  47
  48static struct device  *hv_dev;
  49
  50static int hyperv_cpuhp_online;
  51
  52static long __percpu *vmbus_evt;
  53
  54/* Values parsed from ACPI DSDT */
  55int vmbus_irq;
  56int vmbus_interrupt;
  57
  58/*
  59 * The panic notifier below is responsible solely for unloading the
  60 * vmbus connection, which is necessary in a panic event.
  61 *
  62 * Notice an intrincate relation of this notifier with Hyper-V
  63 * framebuffer panic notifier exists - we need vmbus connection alive
  64 * there in order to succeed, so we need to order both with each other
  65 * [see hvfb_on_panic()] - this is done using notifiers' priorities.
  66 */
  67static int hv_panic_vmbus_unload(struct notifier_block *nb, unsigned long val,
  68			      void *args)
  69{
  70	vmbus_initiate_unload(true);
  71	return NOTIFY_DONE;
  72}
  73static struct notifier_block hyperv_panic_vmbus_unload_block = {
  74	.notifier_call	= hv_panic_vmbus_unload,
  75	.priority	= INT_MIN + 1, /* almost the latest one to execute */
  76};
  77
  78static const char *fb_mmio_name = "fb_range";
  79static struct resource *fb_mmio;
  80static struct resource *hyperv_mmio;
  81static DEFINE_MUTEX(hyperv_mmio_lock);
  82
  83static int vmbus_exists(void)
  84{
  85	if (hv_dev == NULL)
  86		return -ENODEV;
  87
  88	return 0;
  89}
  90
  91static u8 channel_monitor_group(const struct vmbus_channel *channel)
  92{
  93	return (u8)channel->offermsg.monitorid / 32;
  94}
  95
  96static u8 channel_monitor_offset(const struct vmbus_channel *channel)
  97{
  98	return (u8)channel->offermsg.monitorid % 32;
  99}
 100
 101static u32 channel_pending(const struct vmbus_channel *channel,
 102			   const struct hv_monitor_page *monitor_page)
 103{
 104	u8 monitor_group = channel_monitor_group(channel);
 105
 106	return monitor_page->trigger_group[monitor_group].pending;
 107}
 108
 109static u32 channel_latency(const struct vmbus_channel *channel,
 110			   const struct hv_monitor_page *monitor_page)
 111{
 112	u8 monitor_group = channel_monitor_group(channel);
 113	u8 monitor_offset = channel_monitor_offset(channel);
 114
 115	return monitor_page->latency[monitor_group][monitor_offset];
 116}
 117
 118static u32 channel_conn_id(struct vmbus_channel *channel,
 119			   struct hv_monitor_page *monitor_page)
 120{
 121	u8 monitor_group = channel_monitor_group(channel);
 122	u8 monitor_offset = channel_monitor_offset(channel);
 123
 124	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
 125}
 126
 127static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
 128		       char *buf)
 129{
 130	struct hv_device *hv_dev = device_to_hv_device(dev);
 131
 132	if (!hv_dev->channel)
 133		return -ENODEV;
 134	return sysfs_emit(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
 135}
 136static DEVICE_ATTR_RO(id);
 137
 138static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
 139			  char *buf)
 140{
 141	struct hv_device *hv_dev = device_to_hv_device(dev);
 142
 143	if (!hv_dev->channel)
 144		return -ENODEV;
 145	return sysfs_emit(buf, "%d\n", hv_dev->channel->state);
 146}
 147static DEVICE_ATTR_RO(state);
 148
 149static ssize_t monitor_id_show(struct device *dev,
 150			       struct device_attribute *dev_attr, char *buf)
 151{
 152	struct hv_device *hv_dev = device_to_hv_device(dev);
 153
 154	if (!hv_dev->channel)
 155		return -ENODEV;
 156	return sysfs_emit(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
 157}
 158static DEVICE_ATTR_RO(monitor_id);
 159
 160static ssize_t class_id_show(struct device *dev,
 161			       struct device_attribute *dev_attr, char *buf)
 162{
 163	struct hv_device *hv_dev = device_to_hv_device(dev);
 164
 165	if (!hv_dev->channel)
 166		return -ENODEV;
 167	return sysfs_emit(buf, "{%pUl}\n",
 168			  &hv_dev->channel->offermsg.offer.if_type);
 169}
 170static DEVICE_ATTR_RO(class_id);
 171
 172static ssize_t device_id_show(struct device *dev,
 173			      struct device_attribute *dev_attr, char *buf)
 174{
 175	struct hv_device *hv_dev = device_to_hv_device(dev);
 176
 177	if (!hv_dev->channel)
 178		return -ENODEV;
 179	return sysfs_emit(buf, "{%pUl}\n",
 180			  &hv_dev->channel->offermsg.offer.if_instance);
 181}
 182static DEVICE_ATTR_RO(device_id);
 183
 184static ssize_t modalias_show(struct device *dev,
 185			     struct device_attribute *dev_attr, char *buf)
 186{
 187	struct hv_device *hv_dev = device_to_hv_device(dev);
 188
 189	return sysfs_emit(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type);
 190}
 191static DEVICE_ATTR_RO(modalias);
 192
 193#ifdef CONFIG_NUMA
 194static ssize_t numa_node_show(struct device *dev,
 195			      struct device_attribute *attr, char *buf)
 196{
 197	struct hv_device *hv_dev = device_to_hv_device(dev);
 198
 199	if (!hv_dev->channel)
 200		return -ENODEV;
 201
 202	return sysfs_emit(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu));
 203}
 204static DEVICE_ATTR_RO(numa_node);
 205#endif
 206
 207static ssize_t server_monitor_pending_show(struct device *dev,
 208					   struct device_attribute *dev_attr,
 209					   char *buf)
 210{
 211	struct hv_device *hv_dev = device_to_hv_device(dev);
 212
 213	if (!hv_dev->channel)
 214		return -ENODEV;
 215	return sysfs_emit(buf, "%d\n", channel_pending(hv_dev->channel,
 216			  vmbus_connection.monitor_pages[0]));
 
 217}
 218static DEVICE_ATTR_RO(server_monitor_pending);
 219
 220static ssize_t client_monitor_pending_show(struct device *dev,
 221					   struct device_attribute *dev_attr,
 222					   char *buf)
 223{
 224	struct hv_device *hv_dev = device_to_hv_device(dev);
 225
 226	if (!hv_dev->channel)
 227		return -ENODEV;
 228	return sysfs_emit(buf, "%d\n", channel_pending(hv_dev->channel,
 229			  vmbus_connection.monitor_pages[1]));
 
 230}
 231static DEVICE_ATTR_RO(client_monitor_pending);
 232
 233static ssize_t server_monitor_latency_show(struct device *dev,
 234					   struct device_attribute *dev_attr,
 235					   char *buf)
 236{
 237	struct hv_device *hv_dev = device_to_hv_device(dev);
 238
 239	if (!hv_dev->channel)
 240		return -ENODEV;
 241	return sysfs_emit(buf, "%d\n", channel_latency(hv_dev->channel,
 242			  vmbus_connection.monitor_pages[0]));
 
 243}
 244static DEVICE_ATTR_RO(server_monitor_latency);
 245
 246static ssize_t client_monitor_latency_show(struct device *dev,
 247					   struct device_attribute *dev_attr,
 248					   char *buf)
 249{
 250	struct hv_device *hv_dev = device_to_hv_device(dev);
 251
 252	if (!hv_dev->channel)
 253		return -ENODEV;
 254	return sysfs_emit(buf, "%d\n", channel_latency(hv_dev->channel,
 255			  vmbus_connection.monitor_pages[1]));
 
 256}
 257static DEVICE_ATTR_RO(client_monitor_latency);
 258
 259static ssize_t server_monitor_conn_id_show(struct device *dev,
 260					   struct device_attribute *dev_attr,
 261					   char *buf)
 262{
 263	struct hv_device *hv_dev = device_to_hv_device(dev);
 264
 265	if (!hv_dev->channel)
 266		return -ENODEV;
 267	return sysfs_emit(buf, "%d\n", channel_conn_id(hv_dev->channel,
 268			  vmbus_connection.monitor_pages[0]));
 
 269}
 270static DEVICE_ATTR_RO(server_monitor_conn_id);
 271
 272static ssize_t client_monitor_conn_id_show(struct device *dev,
 273					   struct device_attribute *dev_attr,
 274					   char *buf)
 275{
 276	struct hv_device *hv_dev = device_to_hv_device(dev);
 277
 278	if (!hv_dev->channel)
 279		return -ENODEV;
 280	return sysfs_emit(buf, "%d\n", channel_conn_id(hv_dev->channel,
 281			  vmbus_connection.monitor_pages[1]));
 
 282}
 283static DEVICE_ATTR_RO(client_monitor_conn_id);
 284
 285static ssize_t out_intr_mask_show(struct device *dev,
 286				  struct device_attribute *dev_attr, char *buf)
 287{
 288	struct hv_device *hv_dev = device_to_hv_device(dev);
 289	struct hv_ring_buffer_debug_info outbound;
 290	int ret;
 291
 292	if (!hv_dev->channel)
 293		return -ENODEV;
 294
 295	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
 296					  &outbound);
 297	if (ret < 0)
 298		return ret;
 299
 300	return sysfs_emit(buf, "%d\n", outbound.current_interrupt_mask);
 301}
 302static DEVICE_ATTR_RO(out_intr_mask);
 303
 304static ssize_t out_read_index_show(struct device *dev,
 305				   struct device_attribute *dev_attr, char *buf)
 306{
 307	struct hv_device *hv_dev = device_to_hv_device(dev);
 308	struct hv_ring_buffer_debug_info outbound;
 309	int ret;
 310
 311	if (!hv_dev->channel)
 312		return -ENODEV;
 313
 314	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
 315					  &outbound);
 316	if (ret < 0)
 317		return ret;
 318	return sysfs_emit(buf, "%d\n", outbound.current_read_index);
 319}
 320static DEVICE_ATTR_RO(out_read_index);
 321
 322static ssize_t out_write_index_show(struct device *dev,
 323				    struct device_attribute *dev_attr,
 324				    char *buf)
 325{
 326	struct hv_device *hv_dev = device_to_hv_device(dev);
 327	struct hv_ring_buffer_debug_info outbound;
 328	int ret;
 329
 330	if (!hv_dev->channel)
 331		return -ENODEV;
 332
 333	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
 334					  &outbound);
 335	if (ret < 0)
 336		return ret;
 337	return sysfs_emit(buf, "%d\n", outbound.current_write_index);
 338}
 339static DEVICE_ATTR_RO(out_write_index);
 340
 341static ssize_t out_read_bytes_avail_show(struct device *dev,
 342					 struct device_attribute *dev_attr,
 343					 char *buf)
 344{
 345	struct hv_device *hv_dev = device_to_hv_device(dev);
 346	struct hv_ring_buffer_debug_info outbound;
 347	int ret;
 348
 349	if (!hv_dev->channel)
 350		return -ENODEV;
 351
 352	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
 353					  &outbound);
 354	if (ret < 0)
 355		return ret;
 356	return sysfs_emit(buf, "%d\n", outbound.bytes_avail_toread);
 357}
 358static DEVICE_ATTR_RO(out_read_bytes_avail);
 359
 360static ssize_t out_write_bytes_avail_show(struct device *dev,
 361					  struct device_attribute *dev_attr,
 362					  char *buf)
 363{
 364	struct hv_device *hv_dev = device_to_hv_device(dev);
 365	struct hv_ring_buffer_debug_info outbound;
 366	int ret;
 367
 368	if (!hv_dev->channel)
 369		return -ENODEV;
 370
 371	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
 372					  &outbound);
 373	if (ret < 0)
 374		return ret;
 375	return sysfs_emit(buf, "%d\n", outbound.bytes_avail_towrite);
 376}
 377static DEVICE_ATTR_RO(out_write_bytes_avail);
 378
 379static ssize_t in_intr_mask_show(struct device *dev,
 380				 struct device_attribute *dev_attr, char *buf)
 381{
 382	struct hv_device *hv_dev = device_to_hv_device(dev);
 383	struct hv_ring_buffer_debug_info inbound;
 384	int ret;
 385
 386	if (!hv_dev->channel)
 387		return -ENODEV;
 388
 389	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
 390	if (ret < 0)
 391		return ret;
 392
 393	return sysfs_emit(buf, "%d\n", inbound.current_interrupt_mask);
 394}
 395static DEVICE_ATTR_RO(in_intr_mask);
 396
 397static ssize_t in_read_index_show(struct device *dev,
 398				  struct device_attribute *dev_attr, char *buf)
 399{
 400	struct hv_device *hv_dev = device_to_hv_device(dev);
 401	struct hv_ring_buffer_debug_info inbound;
 402	int ret;
 403
 404	if (!hv_dev->channel)
 405		return -ENODEV;
 406
 407	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
 408	if (ret < 0)
 409		return ret;
 410
 411	return sysfs_emit(buf, "%d\n", inbound.current_read_index);
 412}
 413static DEVICE_ATTR_RO(in_read_index);
 414
 415static ssize_t in_write_index_show(struct device *dev,
 416				   struct device_attribute *dev_attr, char *buf)
 417{
 418	struct hv_device *hv_dev = device_to_hv_device(dev);
 419	struct hv_ring_buffer_debug_info inbound;
 420	int ret;
 421
 422	if (!hv_dev->channel)
 423		return -ENODEV;
 424
 425	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
 426	if (ret < 0)
 427		return ret;
 428
 429	return sysfs_emit(buf, "%d\n", inbound.current_write_index);
 430}
 431static DEVICE_ATTR_RO(in_write_index);
 432
 433static ssize_t in_read_bytes_avail_show(struct device *dev,
 434					struct device_attribute *dev_attr,
 435					char *buf)
 436{
 437	struct hv_device *hv_dev = device_to_hv_device(dev);
 438	struct hv_ring_buffer_debug_info inbound;
 439	int ret;
 440
 441	if (!hv_dev->channel)
 442		return -ENODEV;
 443
 444	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
 445	if (ret < 0)
 446		return ret;
 447
 448	return sysfs_emit(buf, "%d\n", inbound.bytes_avail_toread);
 449}
 450static DEVICE_ATTR_RO(in_read_bytes_avail);
 451
 452static ssize_t in_write_bytes_avail_show(struct device *dev,
 453					 struct device_attribute *dev_attr,
 454					 char *buf)
 455{
 456	struct hv_device *hv_dev = device_to_hv_device(dev);
 457	struct hv_ring_buffer_debug_info inbound;
 458	int ret;
 459
 460	if (!hv_dev->channel)
 461		return -ENODEV;
 462
 463	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
 464	if (ret < 0)
 465		return ret;
 466
 467	return sysfs_emit(buf, "%d\n", inbound.bytes_avail_towrite);
 468}
 469static DEVICE_ATTR_RO(in_write_bytes_avail);
 470
 471static ssize_t channel_vp_mapping_show(struct device *dev,
 472				       struct device_attribute *dev_attr,
 473				       char *buf)
 474{
 475	struct hv_device *hv_dev = device_to_hv_device(dev);
 476	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
 477	int n_written;
 478	struct list_head *cur;
 479
 480	if (!channel)
 481		return -ENODEV;
 482
 483	mutex_lock(&vmbus_connection.channel_mutex);
 484
 485	n_written = sysfs_emit(buf, "%u:%u\n",
 486			       channel->offermsg.child_relid,
 487			       channel->target_cpu);
 488
 489	list_for_each(cur, &channel->sc_list) {
 
 
 490
 491		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
 492		n_written += sysfs_emit_at(buf, n_written, "%u:%u\n",
 493					  cur_sc->offermsg.child_relid,
 494					  cur_sc->target_cpu);
 
 
 
 495	}
 496
 497	mutex_unlock(&vmbus_connection.channel_mutex);
 498
 499	return n_written;
 500}
 501static DEVICE_ATTR_RO(channel_vp_mapping);
 502
 503static ssize_t vendor_show(struct device *dev,
 504			   struct device_attribute *dev_attr,
 505			   char *buf)
 506{
 507	struct hv_device *hv_dev = device_to_hv_device(dev);
 508
 509	return sysfs_emit(buf, "0x%x\n", hv_dev->vendor_id);
 510}
 511static DEVICE_ATTR_RO(vendor);
 512
 513static ssize_t device_show(struct device *dev,
 514			   struct device_attribute *dev_attr,
 515			   char *buf)
 516{
 517	struct hv_device *hv_dev = device_to_hv_device(dev);
 518
 519	return sysfs_emit(buf, "0x%x\n", hv_dev->device_id);
 520}
 521static DEVICE_ATTR_RO(device);
 522
 523static ssize_t driver_override_store(struct device *dev,
 524				     struct device_attribute *attr,
 525				     const char *buf, size_t count)
 526{
 527	struct hv_device *hv_dev = device_to_hv_device(dev);
 528	int ret;
 529
 530	ret = driver_set_override(dev, &hv_dev->driver_override, buf, count);
 531	if (ret)
 532		return ret;
 533
 534	return count;
 535}
 536
 537static ssize_t driver_override_show(struct device *dev,
 538				    struct device_attribute *attr, char *buf)
 539{
 540	struct hv_device *hv_dev = device_to_hv_device(dev);
 541	ssize_t len;
 542
 543	device_lock(dev);
 544	len = sysfs_emit(buf, "%s\n", hv_dev->driver_override);
 545	device_unlock(dev);
 546
 547	return len;
 548}
 549static DEVICE_ATTR_RW(driver_override);
 550
 551/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
 552static struct attribute *vmbus_dev_attrs[] = {
 553	&dev_attr_id.attr,
 554	&dev_attr_state.attr,
 555	&dev_attr_monitor_id.attr,
 556	&dev_attr_class_id.attr,
 557	&dev_attr_device_id.attr,
 558	&dev_attr_modalias.attr,
 559#ifdef CONFIG_NUMA
 560	&dev_attr_numa_node.attr,
 561#endif
 562	&dev_attr_server_monitor_pending.attr,
 563	&dev_attr_client_monitor_pending.attr,
 564	&dev_attr_server_monitor_latency.attr,
 565	&dev_attr_client_monitor_latency.attr,
 566	&dev_attr_server_monitor_conn_id.attr,
 567	&dev_attr_client_monitor_conn_id.attr,
 568	&dev_attr_out_intr_mask.attr,
 569	&dev_attr_out_read_index.attr,
 570	&dev_attr_out_write_index.attr,
 571	&dev_attr_out_read_bytes_avail.attr,
 572	&dev_attr_out_write_bytes_avail.attr,
 573	&dev_attr_in_intr_mask.attr,
 574	&dev_attr_in_read_index.attr,
 575	&dev_attr_in_write_index.attr,
 576	&dev_attr_in_read_bytes_avail.attr,
 577	&dev_attr_in_write_bytes_avail.attr,
 578	&dev_attr_channel_vp_mapping.attr,
 579	&dev_attr_vendor.attr,
 580	&dev_attr_device.attr,
 581	&dev_attr_driver_override.attr,
 582	NULL,
 583};
 584
 585/*
 586 * Device-level attribute_group callback function. Returns the permission for
 587 * each attribute, and returns 0 if an attribute is not visible.
 588 */
 589static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
 590					 struct attribute *attr, int idx)
 591{
 592	struct device *dev = kobj_to_dev(kobj);
 593	const struct hv_device *hv_dev = device_to_hv_device(dev);
 594
 595	/* Hide the monitor attributes if the monitor mechanism is not used. */
 596	if (!hv_dev->channel->offermsg.monitor_allocated &&
 597	    (attr == &dev_attr_monitor_id.attr ||
 598	     attr == &dev_attr_server_monitor_pending.attr ||
 599	     attr == &dev_attr_client_monitor_pending.attr ||
 600	     attr == &dev_attr_server_monitor_latency.attr ||
 601	     attr == &dev_attr_client_monitor_latency.attr ||
 602	     attr == &dev_attr_server_monitor_conn_id.attr ||
 603	     attr == &dev_attr_client_monitor_conn_id.attr))
 604		return 0;
 605
 606	return attr->mode;
 607}
 608
 609static const struct attribute_group vmbus_dev_group = {
 610	.attrs = vmbus_dev_attrs,
 611	.is_visible = vmbus_dev_attr_is_visible
 612};
 613__ATTRIBUTE_GROUPS(vmbus_dev);
 614
 615/* Set up the attribute for /sys/bus/vmbus/hibernation */
 616static ssize_t hibernation_show(const struct bus_type *bus, char *buf)
 617{
 618	return sprintf(buf, "%d\n", !!hv_is_hibernation_supported());
 619}
 620
 621static BUS_ATTR_RO(hibernation);
 622
 623static struct attribute *vmbus_bus_attrs[] = {
 624	&bus_attr_hibernation.attr,
 625	NULL,
 626};
 627static const struct attribute_group vmbus_bus_group = {
 628	.attrs = vmbus_bus_attrs,
 629};
 630__ATTRIBUTE_GROUPS(vmbus_bus);
 631
 632/*
 633 * vmbus_uevent - add uevent for our device
 634 *
 635 * This routine is invoked when a device is added or removed on the vmbus to
 636 * generate a uevent to udev in the userspace. The udev will then look at its
 637 * rule and the uevent generated here to load the appropriate driver
 638 *
 639 * The alias string will be of the form vmbus:guid where guid is the string
 640 * representation of the device guid (each byte of the guid will be
 641 * represented with two hex characters.
 642 */
 643static int vmbus_uevent(const struct device *device, struct kobj_uevent_env *env)
 644{
 645	const struct hv_device *dev = device_to_hv_device(device);
 646	const char *format = "MODALIAS=vmbus:%*phN";
 647
 648	return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type);
 649}
 650
 651static const struct hv_vmbus_device_id *
 652hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
 653{
 654	if (id == NULL)
 655		return NULL; /* empty device table */
 656
 657	for (; !guid_is_null(&id->guid); id++)
 658		if (guid_equal(&id->guid, guid))
 659			return id;
 660
 661	return NULL;
 662}
 663
 664static const struct hv_vmbus_device_id *
 665hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
 666{
 667	const struct hv_vmbus_device_id *id = NULL;
 668	struct vmbus_dynid *dynid;
 669
 670	spin_lock(&drv->dynids.lock);
 671	list_for_each_entry(dynid, &drv->dynids.list, node) {
 672		if (guid_equal(&dynid->id.guid, guid)) {
 673			id = &dynid->id;
 674			break;
 675		}
 676	}
 677	spin_unlock(&drv->dynids.lock);
 678
 679	return id;
 680}
 681
 682static const struct hv_vmbus_device_id vmbus_device_null;
 683
 684/*
 685 * Return a matching hv_vmbus_device_id pointer.
 686 * If there is no match, return NULL.
 687 */
 688static const struct hv_vmbus_device_id *hv_vmbus_get_id(const struct hv_driver *drv,
 689							struct hv_device *dev)
 690{
 691	const guid_t *guid = &dev->dev_type;
 692	const struct hv_vmbus_device_id *id;
 693
 694	/* When driver_override is set, only bind to the matching driver */
 695	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
 696		return NULL;
 697
 698	/* Look at the dynamic ids first, before the static ones */
 699	id = hv_vmbus_dynid_match((struct hv_driver *)drv, guid);
 700	if (!id)
 701		id = hv_vmbus_dev_match(drv->id_table, guid);
 702
 703	/* driver_override will always match, send a dummy id */
 704	if (!id && dev->driver_override)
 705		id = &vmbus_device_null;
 706
 707	return id;
 708}
 709
 710/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
 711static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
 712{
 713	struct vmbus_dynid *dynid;
 714
 715	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
 716	if (!dynid)
 717		return -ENOMEM;
 718
 719	dynid->id.guid = *guid;
 720
 721	spin_lock(&drv->dynids.lock);
 722	list_add_tail(&dynid->node, &drv->dynids.list);
 723	spin_unlock(&drv->dynids.lock);
 724
 725	return driver_attach(&drv->driver);
 726}
 727
 728static void vmbus_free_dynids(struct hv_driver *drv)
 729{
 730	struct vmbus_dynid *dynid, *n;
 731
 732	spin_lock(&drv->dynids.lock);
 733	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
 734		list_del(&dynid->node);
 735		kfree(dynid);
 736	}
 737	spin_unlock(&drv->dynids.lock);
 738}
 739
 740/*
 741 * store_new_id - sysfs frontend to vmbus_add_dynid()
 742 *
 743 * Allow GUIDs to be added to an existing driver via sysfs.
 744 */
 745static ssize_t new_id_store(struct device_driver *driver, const char *buf,
 746			    size_t count)
 747{
 748	struct hv_driver *drv = drv_to_hv_drv(driver);
 749	guid_t guid;
 750	ssize_t retval;
 751
 752	retval = guid_parse(buf, &guid);
 753	if (retval)
 754		return retval;
 755
 756	if (hv_vmbus_dynid_match(drv, &guid))
 757		return -EEXIST;
 758
 759	retval = vmbus_add_dynid(drv, &guid);
 760	if (retval)
 761		return retval;
 762	return count;
 763}
 764static DRIVER_ATTR_WO(new_id);
 765
 766/*
 767 * store_remove_id - remove a PCI device ID from this driver
 768 *
 769 * Removes a dynamic pci device ID to this driver.
 770 */
 771static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
 772			       size_t count)
 773{
 774	struct hv_driver *drv = drv_to_hv_drv(driver);
 775	struct vmbus_dynid *dynid, *n;
 776	guid_t guid;
 777	ssize_t retval;
 778
 779	retval = guid_parse(buf, &guid);
 780	if (retval)
 781		return retval;
 782
 783	retval = -ENODEV;
 784	spin_lock(&drv->dynids.lock);
 785	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
 786		struct hv_vmbus_device_id *id = &dynid->id;
 787
 788		if (guid_equal(&id->guid, &guid)) {
 789			list_del(&dynid->node);
 790			kfree(dynid);
 791			retval = count;
 792			break;
 793		}
 794	}
 795	spin_unlock(&drv->dynids.lock);
 796
 797	return retval;
 798}
 799static DRIVER_ATTR_WO(remove_id);
 800
 801static struct attribute *vmbus_drv_attrs[] = {
 802	&driver_attr_new_id.attr,
 803	&driver_attr_remove_id.attr,
 804	NULL,
 805};
 806ATTRIBUTE_GROUPS(vmbus_drv);
 807
 808
 809/*
 810 * vmbus_match - Attempt to match the specified device to the specified driver
 811 */
 812static int vmbus_match(struct device *device, const struct device_driver *driver)
 813{
 814	const struct hv_driver *drv = drv_to_hv_drv(driver);
 815	struct hv_device *hv_dev = device_to_hv_device(device);
 816
 817	/* The hv_sock driver handles all hv_sock offers. */
 818	if (is_hvsock_channel(hv_dev->channel))
 819		return drv->hvsock;
 820
 821	if (hv_vmbus_get_id(drv, hv_dev))
 822		return 1;
 823
 824	return 0;
 825}
 826
 827/*
 828 * vmbus_probe - Add the new vmbus's child device
 829 */
 830static int vmbus_probe(struct device *child_device)
 831{
 832	int ret = 0;
 833	struct hv_driver *drv =
 834			drv_to_hv_drv(child_device->driver);
 835	struct hv_device *dev = device_to_hv_device(child_device);
 836	const struct hv_vmbus_device_id *dev_id;
 837
 838	dev_id = hv_vmbus_get_id(drv, dev);
 839	if (drv->probe) {
 840		ret = drv->probe(dev, dev_id);
 841		if (ret != 0)
 842			pr_err("probe failed for device %s (%d)\n",
 843			       dev_name(child_device), ret);
 844
 845	} else {
 846		pr_err("probe not set for driver %s\n",
 847		       dev_name(child_device));
 848		ret = -ENODEV;
 849	}
 850	return ret;
 851}
 852
 853/*
 854 * vmbus_dma_configure -- Configure DMA coherence for VMbus device
 855 */
 856static int vmbus_dma_configure(struct device *child_device)
 857{
 858	/*
 859	 * On ARM64, propagate the DMA coherence setting from the top level
 860	 * VMbus ACPI device to the child VMbus device being added here.
 861	 * On x86/x64 coherence is assumed and these calls have no effect.
 862	 */
 863	hv_setup_dma_ops(child_device,
 864		device_get_dma_attr(hv_dev) == DEV_DMA_COHERENT);
 865	return 0;
 866}
 867
 868/*
 869 * vmbus_remove - Remove a vmbus device
 870 */
 871static void vmbus_remove(struct device *child_device)
 872{
 873	struct hv_driver *drv;
 874	struct hv_device *dev = device_to_hv_device(child_device);
 875
 876	if (child_device->driver) {
 877		drv = drv_to_hv_drv(child_device->driver);
 878		if (drv->remove)
 879			drv->remove(dev);
 880	}
 881}
 882
 883/*
 884 * vmbus_shutdown - Shutdown a vmbus device
 885 */
 886static void vmbus_shutdown(struct device *child_device)
 887{
 888	struct hv_driver *drv;
 889	struct hv_device *dev = device_to_hv_device(child_device);
 890
 891
 892	/* The device may not be attached yet */
 893	if (!child_device->driver)
 894		return;
 895
 896	drv = drv_to_hv_drv(child_device->driver);
 897
 898	if (drv->shutdown)
 899		drv->shutdown(dev);
 900}
 901
 902#ifdef CONFIG_PM_SLEEP
 903/*
 904 * vmbus_suspend - Suspend a vmbus device
 905 */
 906static int vmbus_suspend(struct device *child_device)
 907{
 908	struct hv_driver *drv;
 909	struct hv_device *dev = device_to_hv_device(child_device);
 910
 911	/* The device may not be attached yet */
 912	if (!child_device->driver)
 913		return 0;
 914
 915	drv = drv_to_hv_drv(child_device->driver);
 916	if (!drv->suspend)
 917		return -EOPNOTSUPP;
 918
 919	return drv->suspend(dev);
 920}
 921
 922/*
 923 * vmbus_resume - Resume a vmbus device
 924 */
 925static int vmbus_resume(struct device *child_device)
 926{
 927	struct hv_driver *drv;
 928	struct hv_device *dev = device_to_hv_device(child_device);
 929
 930	/* The device may not be attached yet */
 931	if (!child_device->driver)
 932		return 0;
 933
 934	drv = drv_to_hv_drv(child_device->driver);
 935	if (!drv->resume)
 936		return -EOPNOTSUPP;
 937
 938	return drv->resume(dev);
 939}
 940#else
 941#define vmbus_suspend NULL
 942#define vmbus_resume NULL
 943#endif /* CONFIG_PM_SLEEP */
 944
 945/*
 946 * vmbus_device_release - Final callback release of the vmbus child device
 947 */
 948static void vmbus_device_release(struct device *device)
 949{
 950	struct hv_device *hv_dev = device_to_hv_device(device);
 951	struct vmbus_channel *channel = hv_dev->channel;
 952
 953	hv_debug_rm_dev_dir(hv_dev);
 954
 955	mutex_lock(&vmbus_connection.channel_mutex);
 956	hv_process_channel_removal(channel);
 957	mutex_unlock(&vmbus_connection.channel_mutex);
 958	kfree(hv_dev);
 959}
 960
 961/*
 962 * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
 963 *
 964 * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
 965 * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
 966 * is no way to wake up a Generation-2 VM.
 967 *
 968 * The other 4 ops are for hibernation.
 969 */
 970
 971static const struct dev_pm_ops vmbus_pm = {
 972	.suspend_noirq	= NULL,
 973	.resume_noirq	= NULL,
 974	.freeze_noirq	= vmbus_suspend,
 975	.thaw_noirq	= vmbus_resume,
 976	.poweroff_noirq	= vmbus_suspend,
 977	.restore_noirq	= vmbus_resume,
 978};
 979
 980/* The one and only one */
 981static const struct bus_type  hv_bus = {
 982	.name =		"vmbus",
 983	.match =		vmbus_match,
 984	.shutdown =		vmbus_shutdown,
 985	.remove =		vmbus_remove,
 986	.probe =		vmbus_probe,
 987	.uevent =		vmbus_uevent,
 988	.dma_configure =	vmbus_dma_configure,
 989	.dev_groups =		vmbus_dev_groups,
 990	.drv_groups =		vmbus_drv_groups,
 991	.bus_groups =		vmbus_bus_groups,
 992	.pm =			&vmbus_pm,
 993};
 994
 995struct onmessage_work_context {
 996	struct work_struct work;
 997	struct {
 998		struct hv_message_header header;
 999		u8 payload[];
1000	} msg;
1001};
1002
1003static void vmbus_onmessage_work(struct work_struct *work)
1004{
1005	struct onmessage_work_context *ctx;
1006
1007	/* Do not process messages if we're in DISCONNECTED state */
1008	if (vmbus_connection.conn_state == DISCONNECTED)
1009		return;
1010
1011	ctx = container_of(work, struct onmessage_work_context,
1012			   work);
1013	vmbus_onmessage((struct vmbus_channel_message_header *)
1014			&ctx->msg.payload);
1015	kfree(ctx);
1016}
1017
1018void vmbus_on_msg_dpc(unsigned long data)
1019{
1020	struct hv_per_cpu_context *hv_cpu = (void *)data;
1021	void *page_addr = hv_cpu->synic_message_page;
1022	struct hv_message msg_copy, *msg = (struct hv_message *)page_addr +
1023				  VMBUS_MESSAGE_SINT;
1024	struct vmbus_channel_message_header *hdr;
1025	enum vmbus_channel_message_type msgtype;
1026	const struct vmbus_channel_message_table_entry *entry;
1027	struct onmessage_work_context *ctx;
1028	__u8 payload_size;
1029	u32 message_type;
1030
1031	/*
1032	 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as
1033	 * it is being used in 'struct vmbus_channel_message_header' definition
1034	 * which is supposed to match hypervisor ABI.
1035	 */
1036	BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32));
1037
1038	/*
1039	 * Since the message is in memory shared with the host, an erroneous or
1040	 * malicious Hyper-V could modify the message while vmbus_on_msg_dpc()
1041	 * or individual message handlers are executing; to prevent this, copy
1042	 * the message into private memory.
1043	 */
1044	memcpy(&msg_copy, msg, sizeof(struct hv_message));
1045
1046	message_type = msg_copy.header.message_type;
1047	if (message_type == HVMSG_NONE)
1048		/* no msg */
1049		return;
1050
1051	hdr = (struct vmbus_channel_message_header *)msg_copy.u.payload;
1052	msgtype = hdr->msgtype;
1053
1054	trace_vmbus_on_msg_dpc(hdr);
1055
1056	if (msgtype >= CHANNELMSG_COUNT) {
1057		WARN_ONCE(1, "unknown msgtype=%d\n", msgtype);
1058		goto msg_handled;
1059	}
1060
1061	payload_size = msg_copy.header.payload_size;
1062	if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
1063		WARN_ONCE(1, "payload size is too large (%d)\n", payload_size);
1064		goto msg_handled;
1065	}
1066
1067	entry = &channel_message_table[msgtype];
1068
1069	if (!entry->message_handler)
1070		goto msg_handled;
1071
1072	if (payload_size < entry->min_payload_len) {
1073		WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", msgtype, payload_size);
1074		goto msg_handled;
1075	}
1076
1077	if (entry->handler_type	== VMHT_BLOCKING) {
1078		ctx = kmalloc(struct_size(ctx, msg.payload, payload_size), GFP_ATOMIC);
1079		if (ctx == NULL)
1080			return;
1081
1082		INIT_WORK(&ctx->work, vmbus_onmessage_work);
1083		ctx->msg.header = msg_copy.header;
1084		memcpy(&ctx->msg.payload, msg_copy.u.payload, payload_size);
1085
1086		/*
1087		 * The host can generate a rescind message while we
1088		 * may still be handling the original offer. We deal with
1089		 * this condition by relying on the synchronization provided
1090		 * by offer_in_progress and by channel_mutex.  See also the
1091		 * inline comments in vmbus_onoffer_rescind().
1092		 */
1093		switch (msgtype) {
1094		case CHANNELMSG_RESCIND_CHANNELOFFER:
1095			/*
1096			 * If we are handling the rescind message;
1097			 * schedule the work on the global work queue.
1098			 *
1099			 * The OFFER message and the RESCIND message should
1100			 * not be handled by the same serialized work queue,
1101			 * because the OFFER handler may call vmbus_open(),
1102			 * which tries to open the channel by sending an
1103			 * OPEN_CHANNEL message to the host and waits for
1104			 * the host's response; however, if the host has
1105			 * rescinded the channel before it receives the
1106			 * OPEN_CHANNEL message, the host just silently
1107			 * ignores the OPEN_CHANNEL message; as a result,
1108			 * the guest's OFFER handler hangs for ever, if we
1109			 * handle the RESCIND message in the same serialized
1110			 * work queue: the RESCIND handler can not start to
1111			 * run before the OFFER handler finishes.
1112			 */
1113			if (vmbus_connection.ignore_any_offer_msg)
1114				break;
1115			queue_work(vmbus_connection.rescind_work_queue, &ctx->work);
1116			break;
1117
1118		case CHANNELMSG_OFFERCHANNEL:
1119			/*
1120			 * The host sends the offer message of a given channel
1121			 * before sending the rescind message of the same
1122			 * channel.  These messages are sent to the guest's
1123			 * connect CPU; the guest then starts processing them
1124			 * in the tasklet handler on this CPU:
1125			 *
1126			 * VMBUS_CONNECT_CPU
1127			 *
1128			 * [vmbus_on_msg_dpc()]
1129			 * atomic_inc()  // CHANNELMSG_OFFERCHANNEL
1130			 * queue_work()
1131			 * ...
1132			 * [vmbus_on_msg_dpc()]
1133			 * schedule_work()  // CHANNELMSG_RESCIND_CHANNELOFFER
1134			 *
1135			 * We rely on the memory-ordering properties of the
1136			 * queue_work() and schedule_work() primitives, which
1137			 * guarantee that the atomic increment will be visible
1138			 * to the CPUs which will execute the offer & rescind
1139			 * works by the time these works will start execution.
1140			 */
1141			if (vmbus_connection.ignore_any_offer_msg)
1142				break;
1143			atomic_inc(&vmbus_connection.offer_in_progress);
1144			fallthrough;
1145
1146		default:
1147			queue_work(vmbus_connection.work_queue, &ctx->work);
1148		}
1149	} else
1150		entry->message_handler(hdr);
1151
1152msg_handled:
1153	vmbus_signal_eom(msg, message_type);
1154}
1155
1156#ifdef CONFIG_PM_SLEEP
1157/*
1158 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1159 * hibernation, because hv_sock connections can not persist across hibernation.
1160 */
1161static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1162{
1163	struct onmessage_work_context *ctx;
1164	struct vmbus_channel_rescind_offer *rescind;
1165
1166	WARN_ON(!is_hvsock_channel(channel));
1167
1168	/*
1169	 * Allocation size is small and the allocation should really not fail,
1170	 * otherwise the state of the hv_sock connections ends up in limbo.
1171	 */
1172	ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind),
1173		      GFP_KERNEL | __GFP_NOFAIL);
1174
1175	/*
1176	 * So far, these are not really used by Linux. Just set them to the
1177	 * reasonable values conforming to the definitions of the fields.
1178	 */
1179	ctx->msg.header.message_type = 1;
1180	ctx->msg.header.payload_size = sizeof(*rescind);
1181
1182	/* These values are actually used by Linux. */
1183	rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
1184	rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1185	rescind->child_relid = channel->offermsg.child_relid;
1186
1187	INIT_WORK(&ctx->work, vmbus_onmessage_work);
1188
1189	queue_work(vmbus_connection.work_queue, &ctx->work);
1190}
1191#endif /* CONFIG_PM_SLEEP */
1192
1193/*
1194 * Schedule all channels with events pending
1195 */
1196static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1197{
1198	unsigned long *recv_int_page;
1199	u32 maxbits, relid;
1200
1201	/*
1202	 * The event page can be directly checked to get the id of
1203	 * the channel that has the interrupt pending.
1204	 */
1205	void *page_addr = hv_cpu->synic_event_page;
1206	union hv_synic_event_flags *event
1207		= (union hv_synic_event_flags *)page_addr +
1208					 VMBUS_MESSAGE_SINT;
1209
1210	maxbits = HV_EVENT_FLAGS_COUNT;
1211	recv_int_page = event->flags;
1212
1213	if (unlikely(!recv_int_page))
1214		return;
1215
1216	for_each_set_bit(relid, recv_int_page, maxbits) {
1217		void (*callback_fn)(void *context);
1218		struct vmbus_channel *channel;
1219
1220		if (!sync_test_and_clear_bit(relid, recv_int_page))
1221			continue;
1222
1223		/* Special case - vmbus channel protocol msg */
1224		if (relid == 0)
1225			continue;
1226
1227		/*
1228		 * Pairs with the kfree_rcu() in vmbus_chan_release().
1229		 * Guarantees that the channel data structure doesn't
1230		 * get freed while the channel pointer below is being
1231		 * dereferenced.
1232		 */
1233		rcu_read_lock();
1234
1235		/* Find channel based on relid */
1236		channel = relid2channel(relid);
1237		if (channel == NULL)
1238			goto sched_unlock_rcu;
1239
1240		if (channel->rescind)
1241			goto sched_unlock_rcu;
1242
1243		/*
1244		 * Make sure that the ring buffer data structure doesn't get
1245		 * freed while we dereference the ring buffer pointer.  Test
1246		 * for the channel's onchannel_callback being NULL within a
1247		 * sched_lock critical section.  See also the inline comments
1248		 * in vmbus_reset_channel_cb().
1249		 */
1250		spin_lock(&channel->sched_lock);
1251
1252		callback_fn = channel->onchannel_callback;
1253		if (unlikely(callback_fn == NULL))
1254			goto sched_unlock;
1255
1256		trace_vmbus_chan_sched(channel);
1257
1258		++channel->interrupts;
1259
1260		switch (channel->callback_mode) {
1261		case HV_CALL_ISR:
1262			(*callback_fn)(channel->channel_callback_context);
1263			break;
1264
1265		case HV_CALL_BATCHED:
1266			hv_begin_read(&channel->inbound);
1267			fallthrough;
1268		case HV_CALL_DIRECT:
1269			tasklet_schedule(&channel->callback_event);
1270		}
1271
1272sched_unlock:
1273		spin_unlock(&channel->sched_lock);
1274sched_unlock_rcu:
1275		rcu_read_unlock();
1276	}
1277}
1278
1279static void vmbus_isr(void)
1280{
1281	struct hv_per_cpu_context *hv_cpu
1282		= this_cpu_ptr(hv_context.cpu_context);
1283	void *page_addr;
1284	struct hv_message *msg;
1285
1286	vmbus_chan_sched(hv_cpu);
1287
1288	page_addr = hv_cpu->synic_message_page;
1289	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1290
1291	/* Check if there are actual msgs to be processed */
1292	if (msg->header.message_type != HVMSG_NONE) {
1293		if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1294			hv_stimer0_isr();
1295			vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
1296		} else
1297			tasklet_schedule(&hv_cpu->msg_dpc);
1298	}
1299
1300	add_interrupt_randomness(vmbus_interrupt);
1301}
1302
1303static irqreturn_t vmbus_percpu_isr(int irq, void *dev_id)
1304{
1305	vmbus_isr();
1306	return IRQ_HANDLED;
1307}
1308
1309static void vmbus_percpu_work(struct work_struct *work)
1310{
1311	unsigned int cpu = smp_processor_id();
1312
1313	hv_synic_init(cpu);
1314}
1315
1316/*
1317 * vmbus_bus_init -Main vmbus driver initialization routine.
1318 *
1319 * Here, we
1320 *	- initialize the vmbus driver context
1321 *	- invoke the vmbus hv main init routine
1322 *	- retrieve the channel offers
1323 */
1324static int vmbus_bus_init(void)
1325{
1326	int ret, cpu;
1327	struct work_struct __percpu *works;
1328
1329	ret = hv_init();
1330	if (ret != 0) {
1331		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1332		return ret;
1333	}
1334
1335	ret = bus_register(&hv_bus);
1336	if (ret)
1337		return ret;
1338
1339	/*
1340	 * VMbus interrupts are best modeled as per-cpu interrupts. If
1341	 * on an architecture with support for per-cpu IRQs (e.g. ARM64),
1342	 * allocate a per-cpu IRQ using standard Linux kernel functionality.
1343	 * If not on such an architecture (e.g., x86/x64), then rely on
1344	 * code in the arch-specific portion of the code tree to connect
1345	 * the VMbus interrupt handler.
1346	 */
1347
1348	if (vmbus_irq == -1) {
1349		hv_setup_vmbus_handler(vmbus_isr);
1350	} else {
1351		vmbus_evt = alloc_percpu(long);
1352		ret = request_percpu_irq(vmbus_irq, vmbus_percpu_isr,
1353				"Hyper-V VMbus", vmbus_evt);
1354		if (ret) {
1355			pr_err("Can't request Hyper-V VMbus IRQ %d, Err %d",
1356					vmbus_irq, ret);
1357			free_percpu(vmbus_evt);
1358			goto err_setup;
1359		}
1360	}
1361
1362	ret = hv_synic_alloc();
1363	if (ret)
1364		goto err_alloc;
1365
1366	works = alloc_percpu(struct work_struct);
1367	if (!works) {
1368		ret = -ENOMEM;
1369		goto err_alloc;
1370	}
1371
1372	/*
1373	 * Initialize the per-cpu interrupt state and stimer state.
1374	 * Then connect to the host.
1375	 */
1376	cpus_read_lock();
1377	for_each_online_cpu(cpu) {
1378		struct work_struct *work = per_cpu_ptr(works, cpu);
1379
1380		INIT_WORK(work, vmbus_percpu_work);
1381		schedule_work_on(cpu, work);
1382	}
1383
1384	for_each_online_cpu(cpu)
1385		flush_work(per_cpu_ptr(works, cpu));
1386
1387	/* Register the callbacks for possible CPU online/offline'ing */
1388	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1389						   hv_synic_init, hv_synic_cleanup);
1390	cpus_read_unlock();
1391	free_percpu(works);
1392	if (ret < 0)
1393		goto err_alloc;
1394	hyperv_cpuhp_online = ret;
1395
1396	ret = vmbus_connect();
1397	if (ret)
1398		goto err_connect;
1399
1400	/*
1401	 * Always register the vmbus unload panic notifier because we
1402	 * need to shut the VMbus channel connection on panic.
1403	 */
1404	atomic_notifier_chain_register(&panic_notifier_list,
1405			       &hyperv_panic_vmbus_unload_block);
1406
1407	vmbus_request_offers();
1408
1409	return 0;
1410
1411err_connect:
1412	cpuhp_remove_state(hyperv_cpuhp_online);
1413err_alloc:
1414	hv_synic_free();
1415	if (vmbus_irq == -1) {
1416		hv_remove_vmbus_handler();
1417	} else {
1418		free_percpu_irq(vmbus_irq, vmbus_evt);
1419		free_percpu(vmbus_evt);
1420	}
1421err_setup:
1422	bus_unregister(&hv_bus);
1423	return ret;
1424}
1425
1426/**
1427 * __vmbus_driver_register() - Register a vmbus's driver
1428 * @hv_driver: Pointer to driver structure you want to register
1429 * @owner: owner module of the drv
1430 * @mod_name: module name string
1431 *
1432 * Registers the given driver with Linux through the 'driver_register()' call
1433 * and sets up the hyper-v vmbus handling for this driver.
1434 * It will return the state of the 'driver_register()' call.
1435 *
1436 */
1437int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1438{
1439	int ret;
1440
1441	pr_info("registering driver %s\n", hv_driver->name);
1442
1443	ret = vmbus_exists();
1444	if (ret < 0)
1445		return ret;
1446
1447	hv_driver->driver.name = hv_driver->name;
1448	hv_driver->driver.owner = owner;
1449	hv_driver->driver.mod_name = mod_name;
1450	hv_driver->driver.bus = &hv_bus;
1451
1452	spin_lock_init(&hv_driver->dynids.lock);
1453	INIT_LIST_HEAD(&hv_driver->dynids.list);
1454
1455	ret = driver_register(&hv_driver->driver);
1456
1457	return ret;
1458}
1459EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1460
1461/**
1462 * vmbus_driver_unregister() - Unregister a vmbus's driver
1463 * @hv_driver: Pointer to driver structure you want to
1464 *             un-register
1465 *
1466 * Un-register the given driver that was previous registered with a call to
1467 * vmbus_driver_register()
1468 */
1469void vmbus_driver_unregister(struct hv_driver *hv_driver)
1470{
1471	pr_info("unregistering driver %s\n", hv_driver->name);
1472
1473	if (!vmbus_exists()) {
1474		driver_unregister(&hv_driver->driver);
1475		vmbus_free_dynids(hv_driver);
1476	}
1477}
1478EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1479
1480
1481/*
1482 * Called when last reference to channel is gone.
1483 */
1484static void vmbus_chan_release(struct kobject *kobj)
1485{
1486	struct vmbus_channel *channel
1487		= container_of(kobj, struct vmbus_channel, kobj);
1488
1489	kfree_rcu(channel, rcu);
1490}
1491
1492struct vmbus_chan_attribute {
1493	struct attribute attr;
1494	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1495	ssize_t (*store)(struct vmbus_channel *chan,
1496			 const char *buf, size_t count);
1497};
1498#define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1499	struct vmbus_chan_attribute chan_attr_##_name \
1500		= __ATTR(_name, _mode, _show, _store)
1501#define VMBUS_CHAN_ATTR_RW(_name) \
1502	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1503#define VMBUS_CHAN_ATTR_RO(_name) \
1504	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1505#define VMBUS_CHAN_ATTR_WO(_name) \
1506	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1507
1508static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1509				    struct attribute *attr, char *buf)
1510{
1511	const struct vmbus_chan_attribute *attribute
1512		= container_of(attr, struct vmbus_chan_attribute, attr);
1513	struct vmbus_channel *chan
1514		= container_of(kobj, struct vmbus_channel, kobj);
1515
1516	if (!attribute->show)
1517		return -EIO;
1518
1519	return attribute->show(chan, buf);
1520}
1521
1522static ssize_t vmbus_chan_attr_store(struct kobject *kobj,
1523				     struct attribute *attr, const char *buf,
1524				     size_t count)
1525{
1526	const struct vmbus_chan_attribute *attribute
1527		= container_of(attr, struct vmbus_chan_attribute, attr);
1528	struct vmbus_channel *chan
1529		= container_of(kobj, struct vmbus_channel, kobj);
1530
1531	if (!attribute->store)
1532		return -EIO;
1533
1534	return attribute->store(chan, buf, count);
1535}
1536
1537static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1538	.show = vmbus_chan_attr_show,
1539	.store = vmbus_chan_attr_store,
1540};
1541
1542static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1543{
1544	struct hv_ring_buffer_info *rbi = &channel->outbound;
1545	ssize_t ret;
1546
1547	mutex_lock(&rbi->ring_buffer_mutex);
1548	if (!rbi->ring_buffer) {
1549		mutex_unlock(&rbi->ring_buffer_mutex);
1550		return -EINVAL;
1551	}
1552
1553	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1554	mutex_unlock(&rbi->ring_buffer_mutex);
1555	return ret;
1556}
1557static VMBUS_CHAN_ATTR_RO(out_mask);
1558
1559static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1560{
1561	struct hv_ring_buffer_info *rbi = &channel->inbound;
1562	ssize_t ret;
1563
1564	mutex_lock(&rbi->ring_buffer_mutex);
1565	if (!rbi->ring_buffer) {
1566		mutex_unlock(&rbi->ring_buffer_mutex);
1567		return -EINVAL;
1568	}
1569
1570	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1571	mutex_unlock(&rbi->ring_buffer_mutex);
1572	return ret;
1573}
1574static VMBUS_CHAN_ATTR_RO(in_mask);
1575
1576static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1577{
1578	struct hv_ring_buffer_info *rbi = &channel->inbound;
1579	ssize_t ret;
1580
1581	mutex_lock(&rbi->ring_buffer_mutex);
1582	if (!rbi->ring_buffer) {
1583		mutex_unlock(&rbi->ring_buffer_mutex);
1584		return -EINVAL;
1585	}
1586
1587	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1588	mutex_unlock(&rbi->ring_buffer_mutex);
1589	return ret;
1590}
1591static VMBUS_CHAN_ATTR_RO(read_avail);
1592
1593static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1594{
1595	struct hv_ring_buffer_info *rbi = &channel->outbound;
1596	ssize_t ret;
1597
1598	mutex_lock(&rbi->ring_buffer_mutex);
1599	if (!rbi->ring_buffer) {
1600		mutex_unlock(&rbi->ring_buffer_mutex);
1601		return -EINVAL;
1602	}
1603
1604	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1605	mutex_unlock(&rbi->ring_buffer_mutex);
1606	return ret;
1607}
1608static VMBUS_CHAN_ATTR_RO(write_avail);
1609
1610static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf)
1611{
1612	return sprintf(buf, "%u\n", channel->target_cpu);
1613}
1614static ssize_t target_cpu_store(struct vmbus_channel *channel,
1615				const char *buf, size_t count)
1616{
1617	u32 target_cpu, origin_cpu;
1618	ssize_t ret = count;
1619
1620	if (vmbus_proto_version < VERSION_WIN10_V4_1)
1621		return -EIO;
1622
1623	if (sscanf(buf, "%uu", &target_cpu) != 1)
1624		return -EIO;
1625
1626	/* Validate target_cpu for the cpumask_test_cpu() operation below. */
1627	if (target_cpu >= nr_cpumask_bits)
1628		return -EINVAL;
1629
1630	if (!cpumask_test_cpu(target_cpu, housekeeping_cpumask(HK_TYPE_MANAGED_IRQ)))
1631		return -EINVAL;
1632
1633	/* No CPUs should come up or down during this. */
1634	cpus_read_lock();
1635
1636	if (!cpu_online(target_cpu)) {
1637		cpus_read_unlock();
1638		return -EINVAL;
1639	}
1640
1641	/*
1642	 * Synchronizes target_cpu_store() and channel closure:
1643	 *
1644	 * { Initially: state = CHANNEL_OPENED }
1645	 *
1646	 * CPU1				CPU2
1647	 *
1648	 * [target_cpu_store()]		[vmbus_disconnect_ring()]
1649	 *
1650	 * LOCK channel_mutex		LOCK channel_mutex
1651	 * LOAD r1 = state		LOAD r2 = state
1652	 * IF (r1 == CHANNEL_OPENED)	IF (r2 == CHANNEL_OPENED)
1653	 *   SEND MODIFYCHANNEL		  STORE state = CHANNEL_OPEN
1654	 *   [...]			  SEND CLOSECHANNEL
1655	 * UNLOCK channel_mutex		UNLOCK channel_mutex
1656	 *
1657	 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes
1658	 * 		CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND
1659	 *
1660	 * Note.  The host processes the channel messages "sequentially", in
1661	 * the order in which they are received on a per-partition basis.
1662	 */
1663	mutex_lock(&vmbus_connection.channel_mutex);
1664
1665	/*
1666	 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels;
1667	 * avoid sending the message and fail here for such channels.
1668	 */
1669	if (channel->state != CHANNEL_OPENED_STATE) {
1670		ret = -EIO;
1671		goto cpu_store_unlock;
1672	}
1673
1674	origin_cpu = channel->target_cpu;
1675	if (target_cpu == origin_cpu)
1676		goto cpu_store_unlock;
1677
1678	if (vmbus_send_modifychannel(channel,
1679				     hv_cpu_number_to_vp_number(target_cpu))) {
1680		ret = -EIO;
1681		goto cpu_store_unlock;
1682	}
1683
1684	/*
1685	 * For version before VERSION_WIN10_V5_3, the following warning holds:
1686	 *
1687	 * Warning.  At this point, there is *no* guarantee that the host will
1688	 * have successfully processed the vmbus_send_modifychannel() request.
1689	 * See the header comment of vmbus_send_modifychannel() for more info.
1690	 *
1691	 * Lags in the processing of the above vmbus_send_modifychannel() can
1692	 * result in missed interrupts if the "old" target CPU is taken offline
1693	 * before Hyper-V starts sending interrupts to the "new" target CPU.
1694	 * But apart from this offlining scenario, the code tolerates such
1695	 * lags.  It will function correctly even if a channel interrupt comes
1696	 * in on a CPU that is different from the channel target_cpu value.
1697	 */
1698
1699	channel->target_cpu = target_cpu;
1700
1701	/* See init_vp_index(). */
1702	if (hv_is_perf_channel(channel))
1703		hv_update_allocated_cpus(origin_cpu, target_cpu);
1704
1705	/* Currently set only for storvsc channels. */
1706	if (channel->change_target_cpu_callback) {
1707		(*channel->change_target_cpu_callback)(channel,
1708				origin_cpu, target_cpu);
1709	}
1710
1711cpu_store_unlock:
1712	mutex_unlock(&vmbus_connection.channel_mutex);
1713	cpus_read_unlock();
1714	return ret;
1715}
1716static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store);
1717
1718static ssize_t channel_pending_show(struct vmbus_channel *channel,
1719				    char *buf)
1720{
1721	return sprintf(buf, "%d\n",
1722		       channel_pending(channel,
1723				       vmbus_connection.monitor_pages[1]));
1724}
1725static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL);
1726
1727static ssize_t channel_latency_show(struct vmbus_channel *channel,
1728				    char *buf)
1729{
1730	return sprintf(buf, "%d\n",
1731		       channel_latency(channel,
1732				       vmbus_connection.monitor_pages[1]));
1733}
1734static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL);
1735
1736static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1737{
1738	return sprintf(buf, "%llu\n", channel->interrupts);
1739}
1740static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL);
1741
1742static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1743{
1744	return sprintf(buf, "%llu\n", channel->sig_events);
1745}
1746static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL);
1747
1748static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1749					 char *buf)
1750{
1751	return sprintf(buf, "%llu\n",
1752		       (unsigned long long)channel->intr_in_full);
1753}
1754static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1755
1756static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1757					   char *buf)
1758{
1759	return sprintf(buf, "%llu\n",
1760		       (unsigned long long)channel->intr_out_empty);
1761}
1762static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1763
1764static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1765					   char *buf)
1766{
1767	return sprintf(buf, "%llu\n",
1768		       (unsigned long long)channel->out_full_first);
1769}
1770static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1771
1772static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1773					   char *buf)
1774{
1775	return sprintf(buf, "%llu\n",
1776		       (unsigned long long)channel->out_full_total);
1777}
1778static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1779
1780static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1781					  char *buf)
1782{
1783	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1784}
1785static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL);
1786
1787static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1788				  char *buf)
1789{
1790	return sprintf(buf, "%u\n",
1791		       channel->offermsg.offer.sub_channel_index);
1792}
1793static VMBUS_CHAN_ATTR_RO(subchannel_id);
1794
1795static struct attribute *vmbus_chan_attrs[] = {
1796	&chan_attr_out_mask.attr,
1797	&chan_attr_in_mask.attr,
1798	&chan_attr_read_avail.attr,
1799	&chan_attr_write_avail.attr,
1800	&chan_attr_cpu.attr,
1801	&chan_attr_pending.attr,
1802	&chan_attr_latency.attr,
1803	&chan_attr_interrupts.attr,
1804	&chan_attr_events.attr,
1805	&chan_attr_intr_in_full.attr,
1806	&chan_attr_intr_out_empty.attr,
1807	&chan_attr_out_full_first.attr,
1808	&chan_attr_out_full_total.attr,
1809	&chan_attr_monitor_id.attr,
1810	&chan_attr_subchannel_id.attr,
1811	NULL
1812};
1813
1814/*
1815 * Channel-level attribute_group callback function. Returns the permission for
1816 * each attribute, and returns 0 if an attribute is not visible.
1817 */
1818static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1819					  struct attribute *attr, int idx)
1820{
1821	const struct vmbus_channel *channel =
1822		container_of(kobj, struct vmbus_channel, kobj);
1823
1824	/* Hide the monitor attributes if the monitor mechanism is not used. */
1825	if (!channel->offermsg.monitor_allocated &&
1826	    (attr == &chan_attr_pending.attr ||
1827	     attr == &chan_attr_latency.attr ||
1828	     attr == &chan_attr_monitor_id.attr))
1829		return 0;
1830
1831	return attr->mode;
1832}
1833
1834static const struct attribute_group vmbus_chan_group = {
1835	.attrs = vmbus_chan_attrs,
1836	.is_visible = vmbus_chan_attr_is_visible
1837};
1838
1839static const struct kobj_type vmbus_chan_ktype = {
1840	.sysfs_ops = &vmbus_chan_sysfs_ops,
1841	.release = vmbus_chan_release,
1842};
1843
1844/*
1845 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1846 */
1847int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1848{
1849	const struct device *device = &dev->device;
1850	struct kobject *kobj = &channel->kobj;
1851	u32 relid = channel->offermsg.child_relid;
1852	int ret;
1853
1854	kobj->kset = dev->channels_kset;
1855	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1856				   "%u", relid);
1857	if (ret) {
1858		kobject_put(kobj);
1859		return ret;
1860	}
1861
1862	ret = sysfs_create_group(kobj, &vmbus_chan_group);
1863
1864	if (ret) {
1865		/*
1866		 * The calling functions' error handling paths will cleanup the
1867		 * empty channel directory.
1868		 */
1869		kobject_put(kobj);
1870		dev_err(device, "Unable to set up channel sysfs files\n");
1871		return ret;
1872	}
1873
1874	kobject_uevent(kobj, KOBJ_ADD);
1875
1876	return 0;
1877}
1878
1879/*
1880 * vmbus_remove_channel_attr_group - remove the channel's attribute group
1881 */
1882void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
1883{
1884	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
1885}
1886
1887/*
1888 * vmbus_device_create - Creates and registers a new child device
1889 * on the vmbus.
1890 */
1891struct hv_device *vmbus_device_create(const guid_t *type,
1892				      const guid_t *instance,
1893				      struct vmbus_channel *channel)
1894{
1895	struct hv_device *child_device_obj;
1896
1897	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1898	if (!child_device_obj) {
1899		pr_err("Unable to allocate device object for child device\n");
1900		return NULL;
1901	}
1902
1903	child_device_obj->channel = channel;
1904	guid_copy(&child_device_obj->dev_type, type);
1905	guid_copy(&child_device_obj->dev_instance, instance);
1906	child_device_obj->vendor_id = PCI_VENDOR_ID_MICROSOFT;
1907
1908	return child_device_obj;
1909}
1910
1911/*
1912 * vmbus_device_register - Register the child device
1913 */
1914int vmbus_device_register(struct hv_device *child_device_obj)
1915{
1916	struct kobject *kobj = &child_device_obj->device.kobj;
1917	int ret;
1918
1919	dev_set_name(&child_device_obj->device, "%pUl",
1920		     &child_device_obj->channel->offermsg.offer.if_instance);
1921
1922	child_device_obj->device.bus = &hv_bus;
1923	child_device_obj->device.parent = hv_dev;
1924	child_device_obj->device.release = vmbus_device_release;
1925
1926	child_device_obj->device.dma_parms = &child_device_obj->dma_parms;
1927	child_device_obj->device.dma_mask = &child_device_obj->dma_mask;
1928	dma_set_mask(&child_device_obj->device, DMA_BIT_MASK(64));
1929
1930	/*
1931	 * Register with the LDM. This will kick off the driver/device
1932	 * binding...which will eventually call vmbus_match() and vmbus_probe()
1933	 */
1934	ret = device_register(&child_device_obj->device);
1935	if (ret) {
1936		pr_err("Unable to register child device\n");
1937		put_device(&child_device_obj->device);
1938		return ret;
1939	}
1940
1941	child_device_obj->channels_kset = kset_create_and_add("channels",
1942							      NULL, kobj);
1943	if (!child_device_obj->channels_kset) {
1944		ret = -ENOMEM;
1945		goto err_dev_unregister;
1946	}
1947
1948	ret = vmbus_add_channel_kobj(child_device_obj,
1949				     child_device_obj->channel);
1950	if (ret) {
1951		pr_err("Unable to register primary channeln");
1952		goto err_kset_unregister;
1953	}
1954	hv_debug_add_dev_dir(child_device_obj);
1955
1956	return 0;
1957
1958err_kset_unregister:
1959	kset_unregister(child_device_obj->channels_kset);
1960
1961err_dev_unregister:
1962	device_unregister(&child_device_obj->device);
1963	return ret;
1964}
1965
1966/*
1967 * vmbus_device_unregister - Remove the specified child device
1968 * from the vmbus.
1969 */
1970void vmbus_device_unregister(struct hv_device *device_obj)
1971{
1972	pr_debug("child device %s unregistered\n",
1973		dev_name(&device_obj->device));
1974
1975	kset_unregister(device_obj->channels_kset);
1976
1977	/*
1978	 * Kick off the process of unregistering the device.
1979	 * This will call vmbus_remove() and eventually vmbus_device_release()
1980	 */
1981	device_unregister(&device_obj->device);
1982}
1983EXPORT_SYMBOL_GPL(vmbus_device_unregister);
1984
1985#ifdef CONFIG_ACPI
1986/*
1987 * VMBUS is an acpi enumerated device. Get the information we
1988 * need from DSDT.
1989 */
1990static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1991{
1992	resource_size_t start = 0;
1993	resource_size_t end = 0;
1994	struct resource *new_res;
1995	struct resource **old_res = &hyperv_mmio;
1996	struct resource **prev_res = NULL;
1997	struct resource r;
1998
1999	switch (res->type) {
2000
2001	/*
2002	 * "Address" descriptors are for bus windows. Ignore
2003	 * "memory" descriptors, which are for registers on
2004	 * devices.
2005	 */
2006	case ACPI_RESOURCE_TYPE_ADDRESS32:
2007		start = res->data.address32.address.minimum;
2008		end = res->data.address32.address.maximum;
2009		break;
2010
2011	case ACPI_RESOURCE_TYPE_ADDRESS64:
2012		start = res->data.address64.address.minimum;
2013		end = res->data.address64.address.maximum;
2014		break;
2015
2016	/*
2017	 * The IRQ information is needed only on ARM64, which Hyper-V
2018	 * sets up in the extended format. IRQ information is present
2019	 * on x86/x64 in the non-extended format but it is not used by
2020	 * Linux. So don't bother checking for the non-extended format.
2021	 */
2022	case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
2023		if (!acpi_dev_resource_interrupt(res, 0, &r)) {
2024			pr_err("Unable to parse Hyper-V ACPI interrupt\n");
2025			return AE_ERROR;
2026		}
2027		/* ARM64 INTID for VMbus */
2028		vmbus_interrupt = res->data.extended_irq.interrupts[0];
2029		/* Linux IRQ number */
2030		vmbus_irq = r.start;
2031		return AE_OK;
2032
2033	default:
2034		/* Unused resource type */
2035		return AE_OK;
2036
2037	}
2038	/*
2039	 * Ignore ranges that are below 1MB, as they're not
2040	 * necessary or useful here.
2041	 */
2042	if (end < 0x100000)
2043		return AE_OK;
2044
2045	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
2046	if (!new_res)
2047		return AE_NO_MEMORY;
2048
2049	/* If this range overlaps the virtual TPM, truncate it. */
2050	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
2051		end = VTPM_BASE_ADDRESS;
2052
2053	new_res->name = "hyperv mmio";
2054	new_res->flags = IORESOURCE_MEM;
2055	new_res->start = start;
2056	new_res->end = end;
2057
2058	/*
2059	 * If two ranges are adjacent, merge them.
2060	 */
2061	do {
2062		if (!*old_res) {
2063			*old_res = new_res;
2064			break;
2065		}
2066
2067		if (((*old_res)->end + 1) == new_res->start) {
2068			(*old_res)->end = new_res->end;
2069			kfree(new_res);
2070			break;
2071		}
2072
2073		if ((*old_res)->start == new_res->end + 1) {
2074			(*old_res)->start = new_res->start;
2075			kfree(new_res);
2076			break;
2077		}
2078
2079		if ((*old_res)->start > new_res->end) {
2080			new_res->sibling = *old_res;
2081			if (prev_res)
2082				(*prev_res)->sibling = new_res;
2083			*old_res = new_res;
2084			break;
2085		}
2086
2087		prev_res = old_res;
2088		old_res = &(*old_res)->sibling;
2089
2090	} while (1);
2091
2092	return AE_OK;
2093}
2094#endif
2095
2096static void vmbus_mmio_remove(void)
2097{
2098	struct resource *cur_res;
2099	struct resource *next_res;
2100
2101	if (hyperv_mmio) {
2102		if (fb_mmio) {
2103			__release_region(hyperv_mmio, fb_mmio->start,
2104					 resource_size(fb_mmio));
2105			fb_mmio = NULL;
2106		}
2107
2108		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
2109			next_res = cur_res->sibling;
2110			kfree(cur_res);
2111		}
2112	}
2113}
2114
2115static void __maybe_unused vmbus_reserve_fb(void)
2116{
2117	resource_size_t start = 0, size;
2118	struct pci_dev *pdev;
2119
2120	if (efi_enabled(EFI_BOOT)) {
2121		/* Gen2 VM: get FB base from EFI framebuffer */
2122		if (IS_ENABLED(CONFIG_SYSFB)) {
2123			start = screen_info.lfb_base;
2124			size = max_t(__u32, screen_info.lfb_size, 0x800000);
2125		}
2126	} else {
2127		/* Gen1 VM: get FB base from PCI */
2128		pdev = pci_get_device(PCI_VENDOR_ID_MICROSOFT,
2129				      PCI_DEVICE_ID_HYPERV_VIDEO, NULL);
2130		if (!pdev)
2131			return;
2132
2133		if (pdev->resource[0].flags & IORESOURCE_MEM) {
2134			start = pci_resource_start(pdev, 0);
2135			size = pci_resource_len(pdev, 0);
2136		}
2137
2138		/*
2139		 * Release the PCI device so hyperv_drm or hyperv_fb driver can
2140		 * grab it later.
2141		 */
2142		pci_dev_put(pdev);
2143	}
2144
2145	if (!start)
2146		return;
2147
2148	/*
2149	 * Make a claim for the frame buffer in the resource tree under the
2150	 * first node, which will be the one below 4GB.  The length seems to
2151	 * be underreported, particularly in a Generation 1 VM.  So start out
2152	 * reserving a larger area and make it smaller until it succeeds.
2153	 */
2154	for (; !fb_mmio && (size >= 0x100000); size >>= 1)
2155		fb_mmio = __request_region(hyperv_mmio, start, size, fb_mmio_name, 0);
2156}
2157
2158/**
2159 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
2160 * @new:		If successful, supplied a pointer to the
2161 *			allocated MMIO space.
2162 * @device_obj:		Identifies the caller
2163 * @min:		Minimum guest physical address of the
2164 *			allocation
2165 * @max:		Maximum guest physical address
2166 * @size:		Size of the range to be allocated
2167 * @align:		Alignment of the range to be allocated
2168 * @fb_overlap_ok:	Whether this allocation can be allowed
2169 *			to overlap the video frame buffer.
2170 *
2171 * This function walks the resources granted to VMBus by the
2172 * _CRS object in the ACPI namespace underneath the parent
2173 * "bridge" whether that's a root PCI bus in the Generation 1
2174 * case or a Module Device in the Generation 2 case.  It then
2175 * attempts to allocate from the global MMIO pool in a way that
2176 * matches the constraints supplied in these parameters and by
2177 * that _CRS.
2178 *
2179 * Return: 0 on success, -errno on failure
2180 */
2181int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2182			resource_size_t min, resource_size_t max,
2183			resource_size_t size, resource_size_t align,
2184			bool fb_overlap_ok)
2185{
2186	struct resource *iter, *shadow;
2187	resource_size_t range_min, range_max, start, end;
2188	const char *dev_n = dev_name(&device_obj->device);
2189	int retval;
2190
2191	retval = -ENXIO;
2192	mutex_lock(&hyperv_mmio_lock);
2193
2194	/*
2195	 * If overlaps with frame buffers are allowed, then first attempt to
2196	 * make the allocation from within the reserved region.  Because it
2197	 * is already reserved, no shadow allocation is necessary.
2198	 */
2199	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2200	    !(max < fb_mmio->start)) {
2201
2202		range_min = fb_mmio->start;
2203		range_max = fb_mmio->end;
2204		start = (range_min + align - 1) & ~(align - 1);
2205		for (; start + size - 1 <= range_max; start += align) {
2206			*new = request_mem_region_exclusive(start, size, dev_n);
2207			if (*new) {
2208				retval = 0;
2209				goto exit;
2210			}
2211		}
2212	}
2213
2214	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2215		if ((iter->start >= max) || (iter->end <= min))
2216			continue;
2217
2218		range_min = iter->start;
2219		range_max = iter->end;
2220		start = (range_min + align - 1) & ~(align - 1);
2221		for (; start + size - 1 <= range_max; start += align) {
2222			end = start + size - 1;
2223
2224			/* Skip the whole fb_mmio region if not fb_overlap_ok */
2225			if (!fb_overlap_ok && fb_mmio &&
2226			    (((start >= fb_mmio->start) && (start <= fb_mmio->end)) ||
2227			     ((end >= fb_mmio->start) && (end <= fb_mmio->end))))
2228				continue;
2229
2230			shadow = __request_region(iter, start, size, NULL,
2231						  IORESOURCE_BUSY);
2232			if (!shadow)
2233				continue;
2234
2235			*new = request_mem_region_exclusive(start, size, dev_n);
2236			if (*new) {
2237				shadow->name = (char *)*new;
2238				retval = 0;
2239				goto exit;
2240			}
2241
2242			__release_region(iter, start, size);
2243		}
2244	}
2245
2246exit:
2247	mutex_unlock(&hyperv_mmio_lock);
2248	return retval;
2249}
2250EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2251
2252/**
2253 * vmbus_free_mmio() - Free a memory-mapped I/O range.
2254 * @start:		Base address of region to release.
2255 * @size:		Size of the range to be allocated
2256 *
2257 * This function releases anything requested by
2258 * vmbus_mmio_allocate().
2259 */
2260void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2261{
2262	struct resource *iter;
2263
2264	mutex_lock(&hyperv_mmio_lock);
2265	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2266		if ((iter->start >= start + size) || (iter->end <= start))
2267			continue;
2268
2269		__release_region(iter, start, size);
2270	}
2271	release_mem_region(start, size);
2272	mutex_unlock(&hyperv_mmio_lock);
2273
2274}
2275EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2276
2277#ifdef CONFIG_ACPI
2278static int vmbus_acpi_add(struct platform_device *pdev)
2279{
2280	acpi_status result;
2281	int ret_val = -ENODEV;
2282	struct acpi_device *ancestor;
2283	struct acpi_device *device = ACPI_COMPANION(&pdev->dev);
2284
2285	hv_dev = &device->dev;
2286
2287	/*
2288	 * Older versions of Hyper-V for ARM64 fail to include the _CCA
2289	 * method on the top level VMbus device in the DSDT. But devices
2290	 * are hardware coherent in all current Hyper-V use cases, so fix
2291	 * up the ACPI device to behave as if _CCA is present and indicates
2292	 * hardware coherence.
2293	 */
2294	ACPI_COMPANION_SET(&device->dev, device);
2295	if (IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED) &&
2296	    device_get_dma_attr(&device->dev) == DEV_DMA_NOT_SUPPORTED) {
2297		pr_info("No ACPI _CCA found; assuming coherent device I/O\n");
2298		device->flags.cca_seen = true;
2299		device->flags.coherent_dma = true;
2300	}
2301
2302	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2303					vmbus_walk_resources, NULL);
2304
2305	if (ACPI_FAILURE(result))
2306		goto acpi_walk_err;
2307	/*
2308	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2309	 * firmware) is the VMOD that has the mmio ranges. Get that.
2310	 */
2311	for (ancestor = acpi_dev_parent(device);
2312	     ancestor && ancestor->handle != ACPI_ROOT_OBJECT;
2313	     ancestor = acpi_dev_parent(ancestor)) {
2314		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2315					     vmbus_walk_resources, NULL);
2316
2317		if (ACPI_FAILURE(result))
2318			continue;
2319		if (hyperv_mmio) {
2320			vmbus_reserve_fb();
2321			break;
2322		}
2323	}
2324	ret_val = 0;
2325
2326acpi_walk_err:
2327	if (ret_val)
2328		vmbus_mmio_remove();
2329	return ret_val;
2330}
2331#else
2332static int vmbus_acpi_add(struct platform_device *pdev)
2333{
2334	return 0;
2335}
2336#endif
2337
2338static int vmbus_device_add(struct platform_device *pdev)
2339{
2340	struct resource **cur_res = &hyperv_mmio;
2341	struct of_range range;
2342	struct of_range_parser parser;
2343	struct device_node *np = pdev->dev.of_node;
2344	int ret;
2345
2346	hv_dev = &pdev->dev;
2347
2348	ret = of_range_parser_init(&parser, np);
2349	if (ret)
2350		return ret;
2351
2352	for_each_of_range(&parser, &range) {
2353		struct resource *res;
2354
2355		res = kzalloc(sizeof(*res), GFP_KERNEL);
2356		if (!res) {
2357			vmbus_mmio_remove();
2358			return -ENOMEM;
2359		}
2360
2361		res->name = "hyperv mmio";
2362		res->flags = range.flags;
2363		res->start = range.cpu_addr;
2364		res->end = range.cpu_addr + range.size;
2365
2366		*cur_res = res;
2367		cur_res = &res->sibling;
2368	}
2369
2370	return ret;
2371}
2372
2373static int vmbus_platform_driver_probe(struct platform_device *pdev)
2374{
2375	if (acpi_disabled)
2376		return vmbus_device_add(pdev);
2377	else
2378		return vmbus_acpi_add(pdev);
2379}
2380
2381static void vmbus_platform_driver_remove(struct platform_device *pdev)
2382{
2383	vmbus_mmio_remove();
 
2384}
2385
2386#ifdef CONFIG_PM_SLEEP
2387static int vmbus_bus_suspend(struct device *dev)
2388{
2389	struct hv_per_cpu_context *hv_cpu = per_cpu_ptr(
2390			hv_context.cpu_context, VMBUS_CONNECT_CPU);
2391	struct vmbus_channel *channel, *sc;
2392
2393	tasklet_disable(&hv_cpu->msg_dpc);
2394	vmbus_connection.ignore_any_offer_msg = true;
2395	/* The tasklet_enable() takes care of providing a memory barrier */
2396	tasklet_enable(&hv_cpu->msg_dpc);
2397
2398	/* Drain all the workqueues as we are in suspend */
2399	drain_workqueue(vmbus_connection.rescind_work_queue);
2400	drain_workqueue(vmbus_connection.work_queue);
2401	drain_workqueue(vmbus_connection.handle_primary_chan_wq);
2402	drain_workqueue(vmbus_connection.handle_sub_chan_wq);
2403
2404	mutex_lock(&vmbus_connection.channel_mutex);
2405	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2406		if (!is_hvsock_channel(channel))
2407			continue;
2408
2409		vmbus_force_channel_rescinded(channel);
2410	}
2411	mutex_unlock(&vmbus_connection.channel_mutex);
2412
2413	/*
2414	 * Wait until all the sub-channels and hv_sock channels have been
2415	 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2416	 * they would conflict with the new sub-channels that will be created
2417	 * in the resume path. hv_sock channels should also be destroyed, but
2418	 * a hv_sock channel of an established hv_sock connection can not be
2419	 * really destroyed since it may still be referenced by the userspace
2420	 * application, so we just force the hv_sock channel to be rescinded
2421	 * by vmbus_force_channel_rescinded(), and the userspace application
2422	 * will thoroughly destroy the channel after hibernation.
2423	 *
2424	 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2425	 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2426	 */
2427	if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
2428		wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2429
 
 
 
 
 
2430	mutex_lock(&vmbus_connection.channel_mutex);
2431
2432	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2433		/*
2434		 * Remove the channel from the array of channels and invalidate
2435		 * the channel's relid.  Upon resume, vmbus_onoffer() will fix
2436		 * up the relid (and other fields, if necessary) and add the
2437		 * channel back to the array.
2438		 */
2439		vmbus_channel_unmap_relid(channel);
2440		channel->offermsg.child_relid = INVALID_RELID;
2441
2442		if (is_hvsock_channel(channel)) {
2443			if (!channel->rescind) {
2444				pr_err("hv_sock channel not rescinded!\n");
2445				WARN_ON_ONCE(1);
2446			}
2447			continue;
2448		}
2449
2450		list_for_each_entry(sc, &channel->sc_list, sc_list) {
2451			pr_err("Sub-channel not deleted!\n");
2452			WARN_ON_ONCE(1);
2453		}
 
 
2454	}
2455
2456	mutex_unlock(&vmbus_connection.channel_mutex);
2457
2458	vmbus_initiate_unload(false);
2459
 
 
 
2460	return 0;
2461}
2462
2463static int vmbus_bus_resume(struct device *dev)
2464{
2465	struct vmbus_channel *channel;
2466	struct vmbus_channel_msginfo *msginfo;
2467	size_t msgsize;
2468	int ret;
2469
2470	vmbus_connection.ignore_any_offer_msg = false;
2471
2472	/*
2473	 * We only use the 'vmbus_proto_version', which was in use before
2474	 * hibernation, to re-negotiate with the host.
2475	 */
2476	if (!vmbus_proto_version) {
2477		pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2478		return -EINVAL;
2479	}
2480
2481	msgsize = sizeof(*msginfo) +
2482		  sizeof(struct vmbus_channel_initiate_contact);
2483
2484	msginfo = kzalloc(msgsize, GFP_KERNEL);
2485
2486	if (msginfo == NULL)
2487		return -ENOMEM;
2488
2489	ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
2490
2491	kfree(msginfo);
2492
2493	if (ret != 0)
2494		return ret;
2495
 
 
2496	vmbus_request_offers();
2497
2498	mutex_lock(&vmbus_connection.channel_mutex);
2499	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2500		if (channel->offermsg.child_relid != INVALID_RELID)
2501			continue;
2502
2503		/* hvsock channels are not expected to be present. */
2504		if (is_hvsock_channel(channel))
2505			continue;
2506
2507		pr_err("channel %pUl/%pUl not present after resume.\n",
2508		       &channel->offermsg.offer.if_type,
2509		       &channel->offermsg.offer.if_instance);
2510		/* ToDo: Cleanup these channels here */
2511	}
2512	mutex_unlock(&vmbus_connection.channel_mutex);
2513
2514	/* Reset the event for the next suspend. */
2515	reinit_completion(&vmbus_connection.ready_for_suspend_event);
2516
2517	return 0;
2518}
2519#else
2520#define vmbus_bus_suspend NULL
2521#define vmbus_bus_resume NULL
2522#endif /* CONFIG_PM_SLEEP */
2523
2524static const __maybe_unused struct of_device_id vmbus_of_match[] = {
2525	{
2526		.compatible = "microsoft,vmbus",
2527	},
2528	{
2529		/* sentinel */
2530	},
2531};
2532MODULE_DEVICE_TABLE(of, vmbus_of_match);
2533
2534static const __maybe_unused struct acpi_device_id vmbus_acpi_device_ids[] = {
2535	{"VMBUS", 0},
2536	{"VMBus", 0},
2537	{"", 0},
2538};
2539MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2540
2541/*
2542 * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
2543 * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
2544 * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
2545 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2546 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2547 * resume callback must also run via the "noirq" ops.
2548 *
2549 * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
2550 * earlier in this file before vmbus_pm.
2551 */
2552
2553static const struct dev_pm_ops vmbus_bus_pm = {
2554	.suspend_noirq	= NULL,
2555	.resume_noirq	= NULL,
2556	.freeze_noirq	= vmbus_bus_suspend,
2557	.thaw_noirq	= vmbus_bus_resume,
2558	.poweroff_noirq	= vmbus_bus_suspend,
2559	.restore_noirq	= vmbus_bus_resume
2560};
2561
2562static struct platform_driver vmbus_platform_driver = {
2563	.probe = vmbus_platform_driver_probe,
2564	.remove = vmbus_platform_driver_remove,
2565	.driver = {
2566		.name = "vmbus",
2567		.acpi_match_table = ACPI_PTR(vmbus_acpi_device_ids),
2568		.of_match_table = of_match_ptr(vmbus_of_match),
2569		.pm = &vmbus_bus_pm,
2570		.probe_type = PROBE_FORCE_SYNCHRONOUS,
2571	}
2572};
2573
2574static void hv_kexec_handler(void)
2575{
2576	hv_stimer_global_cleanup();
2577	vmbus_initiate_unload(false);
2578	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
2579	mb();
2580	cpuhp_remove_state(hyperv_cpuhp_online);
2581};
2582
2583static void hv_crash_handler(struct pt_regs *regs)
2584{
2585	int cpu;
2586
2587	vmbus_initiate_unload(true);
2588	/*
2589	 * In crash handler we can't schedule synic cleanup for all CPUs,
2590	 * doing the cleanup for current CPU only. This should be sufficient
2591	 * for kdump.
2592	 */
2593	cpu = smp_processor_id();
2594	hv_stimer_cleanup(cpu);
2595	hv_synic_disable_regs(cpu);
2596};
2597
2598static int hv_synic_suspend(void)
2599{
2600	/*
2601	 * When we reach here, all the non-boot CPUs have been offlined.
2602	 * If we're in a legacy configuration where stimer Direct Mode is
2603	 * not enabled, the stimers on the non-boot CPUs have been unbound
2604	 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2605	 * hv_stimer_cleanup() -> clockevents_unbind_device().
2606	 *
2607	 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
2608	 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
2609	 * 1) it's unnecessary as interrupts remain disabled between
2610	 * syscore_suspend() and syscore_resume(): see create_image() and
2611	 * resume_target_kernel()
2612	 * 2) the stimer on CPU0 is automatically disabled later by
2613	 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2614	 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
2615	 * 3) a warning would be triggered if we call
2616	 * clockevents_unbind_device(), which may sleep, in an
2617	 * interrupts-disabled context.
2618	 */
2619
2620	hv_synic_disable_regs(0);
2621
2622	return 0;
2623}
2624
2625static void hv_synic_resume(void)
2626{
2627	hv_synic_enable_regs(0);
2628
2629	/*
2630	 * Note: we don't need to call hv_stimer_init(0), because the timer
2631	 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2632	 * automatically re-enabled in timekeeping_resume().
2633	 */
2634}
2635
2636/* The callbacks run only on CPU0, with irqs_disabled. */
2637static struct syscore_ops hv_synic_syscore_ops = {
2638	.suspend = hv_synic_suspend,
2639	.resume = hv_synic_resume,
2640};
2641
2642static int __init hv_acpi_init(void)
2643{
2644	int ret;
2645
2646	if (!hv_is_hyperv_initialized())
2647		return -ENODEV;
2648
2649	if (hv_root_partition && !hv_nested)
2650		return 0;
2651
2652	/*
2653	 * Get ACPI resources first.
2654	 */
2655	ret = platform_driver_register(&vmbus_platform_driver);
2656	if (ret)
2657		return ret;
2658
2659	if (!hv_dev) {
2660		ret = -ENODEV;
2661		goto cleanup;
2662	}
2663
2664	/*
2665	 * If we're on an architecture with a hardcoded hypervisor
2666	 * vector (i.e. x86/x64), override the VMbus interrupt found
2667	 * in the ACPI tables. Ensure vmbus_irq is not set since the
2668	 * normal Linux IRQ mechanism is not used in this case.
2669	 */
2670#ifdef HYPERVISOR_CALLBACK_VECTOR
2671	vmbus_interrupt = HYPERVISOR_CALLBACK_VECTOR;
2672	vmbus_irq = -1;
2673#endif
2674
2675	hv_debug_init();
2676
2677	ret = vmbus_bus_init();
2678	if (ret)
2679		goto cleanup;
2680
2681	hv_setup_kexec_handler(hv_kexec_handler);
2682	hv_setup_crash_handler(hv_crash_handler);
2683
2684	register_syscore_ops(&hv_synic_syscore_ops);
2685
2686	return 0;
2687
2688cleanup:
2689	platform_driver_unregister(&vmbus_platform_driver);
2690	hv_dev = NULL;
2691	return ret;
2692}
2693
2694static void __exit vmbus_exit(void)
2695{
2696	int cpu;
2697
2698	unregister_syscore_ops(&hv_synic_syscore_ops);
2699
2700	hv_remove_kexec_handler();
2701	hv_remove_crash_handler();
2702	vmbus_connection.conn_state = DISCONNECTED;
2703	hv_stimer_global_cleanup();
2704	vmbus_disconnect();
2705	if (vmbus_irq == -1) {
2706		hv_remove_vmbus_handler();
2707	} else {
2708		free_percpu_irq(vmbus_irq, vmbus_evt);
2709		free_percpu(vmbus_evt);
2710	}
2711	for_each_online_cpu(cpu) {
2712		struct hv_per_cpu_context *hv_cpu
2713			= per_cpu_ptr(hv_context.cpu_context, cpu);
2714
2715		tasklet_kill(&hv_cpu->msg_dpc);
2716	}
2717	hv_debug_rm_all_dir();
2718
2719	vmbus_free_channels();
2720	kfree(vmbus_connection.channels);
2721
2722	/*
2723	 * The vmbus panic notifier is always registered, hence we should
2724	 * also unconditionally unregister it here as well.
2725	 */
2726	atomic_notifier_chain_unregister(&panic_notifier_list,
2727					&hyperv_panic_vmbus_unload_block);
2728
2729	bus_unregister(&hv_bus);
2730
2731	cpuhp_remove_state(hyperv_cpuhp_online);
2732	hv_synic_free();
2733	platform_driver_unregister(&vmbus_platform_driver);
2734}
2735
2736
2737MODULE_LICENSE("GPL");
2738MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2739
2740subsys_initcall(hv_acpi_init);
2741module_exit(vmbus_exit);