Loading...
1/*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26/*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32
33#include <linux/dma-mapping.h>
34#include <linux/iommu.h>
35#include <linux/pagemap.h>
36#include <linux/sched/task.h>
37#include <linux/sched/mm.h>
38#include <linux/seq_file.h>
39#include <linux/slab.h>
40#include <linux/swap.h>
41#include <linux/dma-buf.h>
42#include <linux/sizes.h>
43#include <linux/module.h>
44
45#include <drm/drm_drv.h>
46#include <drm/ttm/ttm_bo.h>
47#include <drm/ttm/ttm_placement.h>
48#include <drm/ttm/ttm_range_manager.h>
49#include <drm/ttm/ttm_tt.h>
50
51#include <drm/amdgpu_drm.h>
52
53#include "amdgpu.h"
54#include "amdgpu_object.h"
55#include "amdgpu_trace.h"
56#include "amdgpu_amdkfd.h"
57#include "amdgpu_sdma.h"
58#include "amdgpu_ras.h"
59#include "amdgpu_hmm.h"
60#include "amdgpu_atomfirmware.h"
61#include "amdgpu_res_cursor.h"
62#include "bif/bif_4_1_d.h"
63
64MODULE_IMPORT_NS(DMA_BUF);
65
66#define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128)
67
68static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 struct ttm_tt *ttm,
70 struct ttm_resource *bo_mem);
71static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 struct ttm_tt *ttm);
73
74static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 unsigned int type,
76 uint64_t size_in_page)
77{
78 return ttm_range_man_init(&adev->mman.bdev, type,
79 false, size_in_page);
80}
81
82/**
83 * amdgpu_evict_flags - Compute placement flags
84 *
85 * @bo: The buffer object to evict
86 * @placement: Possible destination(s) for evicted BO
87 *
88 * Fill in placement data when ttm_bo_evict() is called
89 */
90static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 struct ttm_placement *placement)
92{
93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 struct amdgpu_bo *abo;
95 static const struct ttm_place placements = {
96 .fpfn = 0,
97 .lpfn = 0,
98 .mem_type = TTM_PL_SYSTEM,
99 .flags = 0
100 };
101
102 /* Don't handle scatter gather BOs */
103 if (bo->type == ttm_bo_type_sg) {
104 placement->num_placement = 0;
105 placement->num_busy_placement = 0;
106 return;
107 }
108
109 /* Object isn't an AMDGPU object so ignore */
110 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
111 placement->placement = &placements;
112 placement->busy_placement = &placements;
113 placement->num_placement = 1;
114 placement->num_busy_placement = 1;
115 return;
116 }
117
118 abo = ttm_to_amdgpu_bo(bo);
119 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
120 placement->num_placement = 0;
121 placement->num_busy_placement = 0;
122 return;
123 }
124
125 switch (bo->resource->mem_type) {
126 case AMDGPU_PL_GDS:
127 case AMDGPU_PL_GWS:
128 case AMDGPU_PL_OA:
129 case AMDGPU_PL_DOORBELL:
130 placement->num_placement = 0;
131 placement->num_busy_placement = 0;
132 return;
133
134 case TTM_PL_VRAM:
135 if (!adev->mman.buffer_funcs_enabled) {
136 /* Move to system memory */
137 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
138 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
139 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
140 amdgpu_bo_in_cpu_visible_vram(abo)) {
141
142 /* Try evicting to the CPU inaccessible part of VRAM
143 * first, but only set GTT as busy placement, so this
144 * BO will be evicted to GTT rather than causing other
145 * BOs to be evicted from VRAM
146 */
147 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
148 AMDGPU_GEM_DOMAIN_GTT |
149 AMDGPU_GEM_DOMAIN_CPU);
150 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
151 abo->placements[0].lpfn = 0;
152 abo->placement.busy_placement = &abo->placements[1];
153 abo->placement.num_busy_placement = 1;
154 } else {
155 /* Move to GTT memory */
156 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
157 AMDGPU_GEM_DOMAIN_CPU);
158 }
159 break;
160 case TTM_PL_TT:
161 case AMDGPU_PL_PREEMPT:
162 default:
163 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164 break;
165 }
166 *placement = abo->placement;
167}
168
169/**
170 * amdgpu_ttm_map_buffer - Map memory into the GART windows
171 * @bo: buffer object to map
172 * @mem: memory object to map
173 * @mm_cur: range to map
174 * @window: which GART window to use
175 * @ring: DMA ring to use for the copy
176 * @tmz: if we should setup a TMZ enabled mapping
177 * @size: in number of bytes to map, out number of bytes mapped
178 * @addr: resulting address inside the MC address space
179 *
180 * Setup one of the GART windows to access a specific piece of memory or return
181 * the physical address for local memory.
182 */
183static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184 struct ttm_resource *mem,
185 struct amdgpu_res_cursor *mm_cur,
186 unsigned int window, struct amdgpu_ring *ring,
187 bool tmz, uint64_t *size, uint64_t *addr)
188{
189 struct amdgpu_device *adev = ring->adev;
190 unsigned int offset, num_pages, num_dw, num_bytes;
191 uint64_t src_addr, dst_addr;
192 struct amdgpu_job *job;
193 void *cpu_addr;
194 uint64_t flags;
195 unsigned int i;
196 int r;
197
198 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
199 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
200
201 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
202 return -EINVAL;
203
204 /* Map only what can't be accessed directly */
205 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
206 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
207 mm_cur->start;
208 return 0;
209 }
210
211
212 /*
213 * If start begins at an offset inside the page, then adjust the size
214 * and addr accordingly
215 */
216 offset = mm_cur->start & ~PAGE_MASK;
217
218 num_pages = PFN_UP(*size + offset);
219 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
220
221 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
222
223 *addr = adev->gmc.gart_start;
224 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
225 AMDGPU_GPU_PAGE_SIZE;
226 *addr += offset;
227
228 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
229 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
230
231 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
232 AMDGPU_FENCE_OWNER_UNDEFINED,
233 num_dw * 4 + num_bytes,
234 AMDGPU_IB_POOL_DELAYED, &job);
235 if (r)
236 return r;
237
238 src_addr = num_dw * 4;
239 src_addr += job->ibs[0].gpu_addr;
240
241 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
242 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
243 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
244 dst_addr, num_bytes, false);
245
246 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
247 WARN_ON(job->ibs[0].length_dw > num_dw);
248
249 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
250 if (tmz)
251 flags |= AMDGPU_PTE_TMZ;
252
253 cpu_addr = &job->ibs[0].ptr[num_dw];
254
255 if (mem->mem_type == TTM_PL_TT) {
256 dma_addr_t *dma_addr;
257
258 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
259 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
260 } else {
261 dma_addr_t dma_address;
262
263 dma_address = mm_cur->start;
264 dma_address += adev->vm_manager.vram_base_offset;
265
266 for (i = 0; i < num_pages; ++i) {
267 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
268 flags, cpu_addr);
269 dma_address += PAGE_SIZE;
270 }
271 }
272
273 dma_fence_put(amdgpu_job_submit(job));
274 return 0;
275}
276
277/**
278 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
279 * @adev: amdgpu device
280 * @src: buffer/address where to read from
281 * @dst: buffer/address where to write to
282 * @size: number of bytes to copy
283 * @tmz: if a secure copy should be used
284 * @resv: resv object to sync to
285 * @f: Returns the last fence if multiple jobs are submitted.
286 *
287 * The function copies @size bytes from {src->mem + src->offset} to
288 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
289 * move and different for a BO to BO copy.
290 *
291 */
292int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
293 const struct amdgpu_copy_mem *src,
294 const struct amdgpu_copy_mem *dst,
295 uint64_t size, bool tmz,
296 struct dma_resv *resv,
297 struct dma_fence **f)
298{
299 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
300 struct amdgpu_res_cursor src_mm, dst_mm;
301 struct dma_fence *fence = NULL;
302 int r = 0;
303
304 if (!adev->mman.buffer_funcs_enabled) {
305 DRM_ERROR("Trying to move memory with ring turned off.\n");
306 return -EINVAL;
307 }
308
309 amdgpu_res_first(src->mem, src->offset, size, &src_mm);
310 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
311
312 mutex_lock(&adev->mman.gtt_window_lock);
313 while (src_mm.remaining) {
314 uint64_t from, to, cur_size;
315 struct dma_fence *next;
316
317 /* Never copy more than 256MiB at once to avoid a timeout */
318 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
319
320 /* Map src to window 0 and dst to window 1. */
321 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
322 0, ring, tmz, &cur_size, &from);
323 if (r)
324 goto error;
325
326 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
327 1, ring, tmz, &cur_size, &to);
328 if (r)
329 goto error;
330
331 r = amdgpu_copy_buffer(ring, from, to, cur_size,
332 resv, &next, false, true, tmz);
333 if (r)
334 goto error;
335
336 dma_fence_put(fence);
337 fence = next;
338
339 amdgpu_res_next(&src_mm, cur_size);
340 amdgpu_res_next(&dst_mm, cur_size);
341 }
342error:
343 mutex_unlock(&adev->mman.gtt_window_lock);
344 if (f)
345 *f = dma_fence_get(fence);
346 dma_fence_put(fence);
347 return r;
348}
349
350/*
351 * amdgpu_move_blit - Copy an entire buffer to another buffer
352 *
353 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
354 * help move buffers to and from VRAM.
355 */
356static int amdgpu_move_blit(struct ttm_buffer_object *bo,
357 bool evict,
358 struct ttm_resource *new_mem,
359 struct ttm_resource *old_mem)
360{
361 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
362 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
363 struct amdgpu_copy_mem src, dst;
364 struct dma_fence *fence = NULL;
365 int r;
366
367 src.bo = bo;
368 dst.bo = bo;
369 src.mem = old_mem;
370 dst.mem = new_mem;
371 src.offset = 0;
372 dst.offset = 0;
373
374 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
375 new_mem->size,
376 amdgpu_bo_encrypted(abo),
377 bo->base.resv, &fence);
378 if (r)
379 goto error;
380
381 /* clear the space being freed */
382 if (old_mem->mem_type == TTM_PL_VRAM &&
383 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
384 struct dma_fence *wipe_fence = NULL;
385
386 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
387 false);
388 if (r) {
389 goto error;
390 } else if (wipe_fence) {
391 dma_fence_put(fence);
392 fence = wipe_fence;
393 }
394 }
395
396 /* Always block for VM page tables before committing the new location */
397 if (bo->type == ttm_bo_type_kernel)
398 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
399 else
400 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
401 dma_fence_put(fence);
402 return r;
403
404error:
405 if (fence)
406 dma_fence_wait(fence, false);
407 dma_fence_put(fence);
408 return r;
409}
410
411/*
412 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
413 *
414 * Called by amdgpu_bo_move()
415 */
416static bool amdgpu_mem_visible(struct amdgpu_device *adev,
417 struct ttm_resource *mem)
418{
419 u64 mem_size = (u64)mem->size;
420 struct amdgpu_res_cursor cursor;
421 u64 end;
422
423 if (mem->mem_type == TTM_PL_SYSTEM ||
424 mem->mem_type == TTM_PL_TT)
425 return true;
426 if (mem->mem_type != TTM_PL_VRAM)
427 return false;
428
429 amdgpu_res_first(mem, 0, mem_size, &cursor);
430 end = cursor.start + cursor.size;
431 while (cursor.remaining) {
432 amdgpu_res_next(&cursor, cursor.size);
433
434 if (!cursor.remaining)
435 break;
436
437 /* ttm_resource_ioremap only supports contiguous memory */
438 if (end != cursor.start)
439 return false;
440
441 end = cursor.start + cursor.size;
442 }
443
444 return end <= adev->gmc.visible_vram_size;
445}
446
447/*
448 * amdgpu_bo_move - Move a buffer object to a new memory location
449 *
450 * Called by ttm_bo_handle_move_mem()
451 */
452static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
453 struct ttm_operation_ctx *ctx,
454 struct ttm_resource *new_mem,
455 struct ttm_place *hop)
456{
457 struct amdgpu_device *adev;
458 struct amdgpu_bo *abo;
459 struct ttm_resource *old_mem = bo->resource;
460 int r;
461
462 if (new_mem->mem_type == TTM_PL_TT ||
463 new_mem->mem_type == AMDGPU_PL_PREEMPT) {
464 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
465 if (r)
466 return r;
467 }
468
469 abo = ttm_to_amdgpu_bo(bo);
470 adev = amdgpu_ttm_adev(bo->bdev);
471
472 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
473 bo->ttm == NULL)) {
474 ttm_bo_move_null(bo, new_mem);
475 goto out;
476 }
477 if (old_mem->mem_type == TTM_PL_SYSTEM &&
478 (new_mem->mem_type == TTM_PL_TT ||
479 new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
480 ttm_bo_move_null(bo, new_mem);
481 goto out;
482 }
483 if ((old_mem->mem_type == TTM_PL_TT ||
484 old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
485 new_mem->mem_type == TTM_PL_SYSTEM) {
486 r = ttm_bo_wait_ctx(bo, ctx);
487 if (r)
488 return r;
489
490 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
491 ttm_resource_free(bo, &bo->resource);
492 ttm_bo_assign_mem(bo, new_mem);
493 goto out;
494 }
495
496 if (old_mem->mem_type == AMDGPU_PL_GDS ||
497 old_mem->mem_type == AMDGPU_PL_GWS ||
498 old_mem->mem_type == AMDGPU_PL_OA ||
499 old_mem->mem_type == AMDGPU_PL_DOORBELL ||
500 new_mem->mem_type == AMDGPU_PL_GDS ||
501 new_mem->mem_type == AMDGPU_PL_GWS ||
502 new_mem->mem_type == AMDGPU_PL_OA ||
503 new_mem->mem_type == AMDGPU_PL_DOORBELL) {
504 /* Nothing to save here */
505 ttm_bo_move_null(bo, new_mem);
506 goto out;
507 }
508
509 if (bo->type == ttm_bo_type_device &&
510 new_mem->mem_type == TTM_PL_VRAM &&
511 old_mem->mem_type != TTM_PL_VRAM) {
512 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
513 * accesses the BO after it's moved.
514 */
515 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
516 }
517
518 if (adev->mman.buffer_funcs_enabled) {
519 if (((old_mem->mem_type == TTM_PL_SYSTEM &&
520 new_mem->mem_type == TTM_PL_VRAM) ||
521 (old_mem->mem_type == TTM_PL_VRAM &&
522 new_mem->mem_type == TTM_PL_SYSTEM))) {
523 hop->fpfn = 0;
524 hop->lpfn = 0;
525 hop->mem_type = TTM_PL_TT;
526 hop->flags = TTM_PL_FLAG_TEMPORARY;
527 return -EMULTIHOP;
528 }
529
530 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
531 } else {
532 r = -ENODEV;
533 }
534
535 if (r) {
536 /* Check that all memory is CPU accessible */
537 if (!amdgpu_mem_visible(adev, old_mem) ||
538 !amdgpu_mem_visible(adev, new_mem)) {
539 pr_err("Move buffer fallback to memcpy unavailable\n");
540 return r;
541 }
542
543 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
544 if (r)
545 return r;
546 }
547
548 trace_amdgpu_bo_move(abo, new_mem->mem_type, old_mem->mem_type);
549out:
550 /* update statistics */
551 atomic64_add(bo->base.size, &adev->num_bytes_moved);
552 amdgpu_bo_move_notify(bo, evict);
553 return 0;
554}
555
556/*
557 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
558 *
559 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
560 */
561static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
562 struct ttm_resource *mem)
563{
564 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
565 size_t bus_size = (size_t)mem->size;
566
567 switch (mem->mem_type) {
568 case TTM_PL_SYSTEM:
569 /* system memory */
570 return 0;
571 case TTM_PL_TT:
572 case AMDGPU_PL_PREEMPT:
573 break;
574 case TTM_PL_VRAM:
575 mem->bus.offset = mem->start << PAGE_SHIFT;
576 /* check if it's visible */
577 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
578 return -EINVAL;
579
580 if (adev->mman.aper_base_kaddr &&
581 mem->placement & TTM_PL_FLAG_CONTIGUOUS)
582 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
583 mem->bus.offset;
584
585 mem->bus.offset += adev->gmc.aper_base;
586 mem->bus.is_iomem = true;
587 break;
588 case AMDGPU_PL_DOORBELL:
589 mem->bus.offset = mem->start << PAGE_SHIFT;
590 mem->bus.offset += adev->doorbell.base;
591 mem->bus.is_iomem = true;
592 mem->bus.caching = ttm_uncached;
593 break;
594 default:
595 return -EINVAL;
596 }
597 return 0;
598}
599
600static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
601 unsigned long page_offset)
602{
603 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
604 struct amdgpu_res_cursor cursor;
605
606 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
607 &cursor);
608
609 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
610 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
611
612 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
613}
614
615/**
616 * amdgpu_ttm_domain_start - Returns GPU start address
617 * @adev: amdgpu device object
618 * @type: type of the memory
619 *
620 * Returns:
621 * GPU start address of a memory domain
622 */
623
624uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
625{
626 switch (type) {
627 case TTM_PL_TT:
628 return adev->gmc.gart_start;
629 case TTM_PL_VRAM:
630 return adev->gmc.vram_start;
631 }
632
633 return 0;
634}
635
636/*
637 * TTM backend functions.
638 */
639struct amdgpu_ttm_tt {
640 struct ttm_tt ttm;
641 struct drm_gem_object *gobj;
642 u64 offset;
643 uint64_t userptr;
644 struct task_struct *usertask;
645 uint32_t userflags;
646 bool bound;
647 int32_t pool_id;
648};
649
650#define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm)
651
652#ifdef CONFIG_DRM_AMDGPU_USERPTR
653/*
654 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
655 * memory and start HMM tracking CPU page table update
656 *
657 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
658 * once afterwards to stop HMM tracking
659 */
660int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
661 struct hmm_range **range)
662{
663 struct ttm_tt *ttm = bo->tbo.ttm;
664 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
665 unsigned long start = gtt->userptr;
666 struct vm_area_struct *vma;
667 struct mm_struct *mm;
668 bool readonly;
669 int r = 0;
670
671 /* Make sure get_user_pages_done() can cleanup gracefully */
672 *range = NULL;
673
674 mm = bo->notifier.mm;
675 if (unlikely(!mm)) {
676 DRM_DEBUG_DRIVER("BO is not registered?\n");
677 return -EFAULT;
678 }
679
680 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
681 return -ESRCH;
682
683 mmap_read_lock(mm);
684 vma = vma_lookup(mm, start);
685 if (unlikely(!vma)) {
686 r = -EFAULT;
687 goto out_unlock;
688 }
689 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
690 vma->vm_file)) {
691 r = -EPERM;
692 goto out_unlock;
693 }
694
695 readonly = amdgpu_ttm_tt_is_readonly(ttm);
696 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
697 readonly, NULL, pages, range);
698out_unlock:
699 mmap_read_unlock(mm);
700 if (r)
701 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
702
703 mmput(mm);
704
705 return r;
706}
707
708/* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
709 */
710void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
711 struct hmm_range *range)
712{
713 struct amdgpu_ttm_tt *gtt = (void *)ttm;
714
715 if (gtt && gtt->userptr && range)
716 amdgpu_hmm_range_get_pages_done(range);
717}
718
719/*
720 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
721 * Check if the pages backing this ttm range have been invalidated
722 *
723 * Returns: true if pages are still valid
724 */
725bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
726 struct hmm_range *range)
727{
728 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
729
730 if (!gtt || !gtt->userptr || !range)
731 return false;
732
733 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
734 gtt->userptr, ttm->num_pages);
735
736 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
737
738 return !amdgpu_hmm_range_get_pages_done(range);
739}
740#endif
741
742/*
743 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
744 *
745 * Called by amdgpu_cs_list_validate(). This creates the page list
746 * that backs user memory and will ultimately be mapped into the device
747 * address space.
748 */
749void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
750{
751 unsigned long i;
752
753 for (i = 0; i < ttm->num_pages; ++i)
754 ttm->pages[i] = pages ? pages[i] : NULL;
755}
756
757/*
758 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
759 *
760 * Called by amdgpu_ttm_backend_bind()
761 **/
762static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
763 struct ttm_tt *ttm)
764{
765 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
766 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
767 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
768 enum dma_data_direction direction = write ?
769 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
770 int r;
771
772 /* Allocate an SG array and squash pages into it */
773 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
774 (u64)ttm->num_pages << PAGE_SHIFT,
775 GFP_KERNEL);
776 if (r)
777 goto release_sg;
778
779 /* Map SG to device */
780 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
781 if (r)
782 goto release_sg;
783
784 /* convert SG to linear array of pages and dma addresses */
785 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
786 ttm->num_pages);
787
788 return 0;
789
790release_sg:
791 kfree(ttm->sg);
792 ttm->sg = NULL;
793 return r;
794}
795
796/*
797 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
798 */
799static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
800 struct ttm_tt *ttm)
801{
802 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
803 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
804 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
805 enum dma_data_direction direction = write ?
806 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
807
808 /* double check that we don't free the table twice */
809 if (!ttm->sg || !ttm->sg->sgl)
810 return;
811
812 /* unmap the pages mapped to the device */
813 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
814 sg_free_table(ttm->sg);
815}
816
817/*
818 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
819 * MQDn+CtrlStackn where n is the number of XCCs per partition.
820 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
821 * and uses memory type default, UC. The rest of pages_per_xcc are
822 * Ctrl stack and modify their memory type to NC.
823 */
824static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
825 struct ttm_tt *ttm, uint64_t flags)
826{
827 struct amdgpu_ttm_tt *gtt = (void *)ttm;
828 uint64_t total_pages = ttm->num_pages;
829 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
830 uint64_t page_idx, pages_per_xcc;
831 int i;
832 uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
833 AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
834
835 pages_per_xcc = total_pages;
836 do_div(pages_per_xcc, num_xcc);
837
838 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
839 /* MQD page: use default flags */
840 amdgpu_gart_bind(adev,
841 gtt->offset + (page_idx << PAGE_SHIFT),
842 1, >t->ttm.dma_address[page_idx], flags);
843 /*
844 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
845 * the second page of the BO onward.
846 */
847 amdgpu_gart_bind(adev,
848 gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
849 pages_per_xcc - 1,
850 >t->ttm.dma_address[page_idx + 1],
851 ctrl_flags);
852 }
853}
854
855static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
856 struct ttm_buffer_object *tbo,
857 uint64_t flags)
858{
859 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
860 struct ttm_tt *ttm = tbo->ttm;
861 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
862
863 if (amdgpu_bo_encrypted(abo))
864 flags |= AMDGPU_PTE_TMZ;
865
866 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
867 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
868 } else {
869 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
870 gtt->ttm.dma_address, flags);
871 }
872}
873
874/*
875 * amdgpu_ttm_backend_bind - Bind GTT memory
876 *
877 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
878 * This handles binding GTT memory to the device address space.
879 */
880static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
881 struct ttm_tt *ttm,
882 struct ttm_resource *bo_mem)
883{
884 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
885 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
886 uint64_t flags;
887 int r;
888
889 if (!bo_mem)
890 return -EINVAL;
891
892 if (gtt->bound)
893 return 0;
894
895 if (gtt->userptr) {
896 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
897 if (r) {
898 DRM_ERROR("failed to pin userptr\n");
899 return r;
900 }
901 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
902 if (!ttm->sg) {
903 struct dma_buf_attachment *attach;
904 struct sg_table *sgt;
905
906 attach = gtt->gobj->import_attach;
907 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
908 if (IS_ERR(sgt))
909 return PTR_ERR(sgt);
910
911 ttm->sg = sgt;
912 }
913
914 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
915 ttm->num_pages);
916 }
917
918 if (!ttm->num_pages) {
919 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
920 ttm->num_pages, bo_mem, ttm);
921 }
922
923 if (bo_mem->mem_type != TTM_PL_TT ||
924 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
925 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
926 return 0;
927 }
928
929 /* compute PTE flags relevant to this BO memory */
930 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
931
932 /* bind pages into GART page tables */
933 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
934 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
935 gtt->ttm.dma_address, flags);
936 gtt->bound = true;
937 return 0;
938}
939
940/*
941 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
942 * through AGP or GART aperture.
943 *
944 * If bo is accessible through AGP aperture, then use AGP aperture
945 * to access bo; otherwise allocate logical space in GART aperture
946 * and map bo to GART aperture.
947 */
948int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
949{
950 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
951 struct ttm_operation_ctx ctx = { false, false };
952 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
953 struct ttm_placement placement;
954 struct ttm_place placements;
955 struct ttm_resource *tmp;
956 uint64_t addr, flags;
957 int r;
958
959 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
960 return 0;
961
962 addr = amdgpu_gmc_agp_addr(bo);
963 if (addr != AMDGPU_BO_INVALID_OFFSET)
964 return 0;
965
966 /* allocate GART space */
967 placement.num_placement = 1;
968 placement.placement = &placements;
969 placement.num_busy_placement = 1;
970 placement.busy_placement = &placements;
971 placements.fpfn = 0;
972 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
973 placements.mem_type = TTM_PL_TT;
974 placements.flags = bo->resource->placement;
975
976 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
977 if (unlikely(r))
978 return r;
979
980 /* compute PTE flags for this buffer object */
981 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
982
983 /* Bind pages */
984 gtt->offset = (u64)tmp->start << PAGE_SHIFT;
985 amdgpu_ttm_gart_bind(adev, bo, flags);
986 amdgpu_gart_invalidate_tlb(adev);
987 ttm_resource_free(bo, &bo->resource);
988 ttm_bo_assign_mem(bo, tmp);
989
990 return 0;
991}
992
993/*
994 * amdgpu_ttm_recover_gart - Rebind GTT pages
995 *
996 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
997 * rebind GTT pages during a GPU reset.
998 */
999void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1000{
1001 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1002 uint64_t flags;
1003
1004 if (!tbo->ttm)
1005 return;
1006
1007 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1008 amdgpu_ttm_gart_bind(adev, tbo, flags);
1009}
1010
1011/*
1012 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1013 *
1014 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1015 * ttm_tt_destroy().
1016 */
1017static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1018 struct ttm_tt *ttm)
1019{
1020 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1021 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1022
1023 /* if the pages have userptr pinning then clear that first */
1024 if (gtt->userptr) {
1025 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1026 } else if (ttm->sg && gtt->gobj->import_attach) {
1027 struct dma_buf_attachment *attach;
1028
1029 attach = gtt->gobj->import_attach;
1030 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1031 ttm->sg = NULL;
1032 }
1033
1034 if (!gtt->bound)
1035 return;
1036
1037 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1038 return;
1039
1040 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1041 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1042 gtt->bound = false;
1043}
1044
1045static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1046 struct ttm_tt *ttm)
1047{
1048 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1049
1050 if (gtt->usertask)
1051 put_task_struct(gtt->usertask);
1052
1053 ttm_tt_fini(>t->ttm);
1054 kfree(gtt);
1055}
1056
1057/**
1058 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1059 *
1060 * @bo: The buffer object to create a GTT ttm_tt object around
1061 * @page_flags: Page flags to be added to the ttm_tt object
1062 *
1063 * Called by ttm_tt_create().
1064 */
1065static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1066 uint32_t page_flags)
1067{
1068 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1069 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1070 struct amdgpu_ttm_tt *gtt;
1071 enum ttm_caching caching;
1072
1073 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1074 if (!gtt)
1075 return NULL;
1076
1077 gtt->gobj = &bo->base;
1078 if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1079 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1080 else
1081 gtt->pool_id = abo->xcp_id;
1082
1083 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1084 caching = ttm_write_combined;
1085 else
1086 caching = ttm_cached;
1087
1088 /* allocate space for the uninitialized page entries */
1089 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) {
1090 kfree(gtt);
1091 return NULL;
1092 }
1093 return >t->ttm;
1094}
1095
1096/*
1097 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1098 *
1099 * Map the pages of a ttm_tt object to an address space visible
1100 * to the underlying device.
1101 */
1102static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1103 struct ttm_tt *ttm,
1104 struct ttm_operation_ctx *ctx)
1105{
1106 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1107 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1108 struct ttm_pool *pool;
1109 pgoff_t i;
1110 int ret;
1111
1112 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1113 if (gtt->userptr) {
1114 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1115 if (!ttm->sg)
1116 return -ENOMEM;
1117 return 0;
1118 }
1119
1120 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1121 return 0;
1122
1123 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1124 pool = &adev->mman.ttm_pools[gtt->pool_id];
1125 else
1126 pool = &adev->mman.bdev.pool;
1127 ret = ttm_pool_alloc(pool, ttm, ctx);
1128 if (ret)
1129 return ret;
1130
1131 for (i = 0; i < ttm->num_pages; ++i)
1132 ttm->pages[i]->mapping = bdev->dev_mapping;
1133
1134 return 0;
1135}
1136
1137/*
1138 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1139 *
1140 * Unmaps pages of a ttm_tt object from the device address space and
1141 * unpopulates the page array backing it.
1142 */
1143static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1144 struct ttm_tt *ttm)
1145{
1146 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1147 struct amdgpu_device *adev;
1148 struct ttm_pool *pool;
1149 pgoff_t i;
1150
1151 amdgpu_ttm_backend_unbind(bdev, ttm);
1152
1153 if (gtt->userptr) {
1154 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1155 kfree(ttm->sg);
1156 ttm->sg = NULL;
1157 return;
1158 }
1159
1160 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1161 return;
1162
1163 for (i = 0; i < ttm->num_pages; ++i)
1164 ttm->pages[i]->mapping = NULL;
1165
1166 adev = amdgpu_ttm_adev(bdev);
1167
1168 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1169 pool = &adev->mman.ttm_pools[gtt->pool_id];
1170 else
1171 pool = &adev->mman.bdev.pool;
1172
1173 return ttm_pool_free(pool, ttm);
1174}
1175
1176/**
1177 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1178 * task
1179 *
1180 * @tbo: The ttm_buffer_object that contains the userptr
1181 * @user_addr: The returned value
1182 */
1183int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1184 uint64_t *user_addr)
1185{
1186 struct amdgpu_ttm_tt *gtt;
1187
1188 if (!tbo->ttm)
1189 return -EINVAL;
1190
1191 gtt = (void *)tbo->ttm;
1192 *user_addr = gtt->userptr;
1193 return 0;
1194}
1195
1196/**
1197 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1198 * task
1199 *
1200 * @bo: The ttm_buffer_object to bind this userptr to
1201 * @addr: The address in the current tasks VM space to use
1202 * @flags: Requirements of userptr object.
1203 *
1204 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1205 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1206 * initialize GPU VM for a KFD process.
1207 */
1208int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1209 uint64_t addr, uint32_t flags)
1210{
1211 struct amdgpu_ttm_tt *gtt;
1212
1213 if (!bo->ttm) {
1214 /* TODO: We want a separate TTM object type for userptrs */
1215 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1216 if (bo->ttm == NULL)
1217 return -ENOMEM;
1218 }
1219
1220 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1221 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1222
1223 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1224 gtt->userptr = addr;
1225 gtt->userflags = flags;
1226
1227 if (gtt->usertask)
1228 put_task_struct(gtt->usertask);
1229 gtt->usertask = current->group_leader;
1230 get_task_struct(gtt->usertask);
1231
1232 return 0;
1233}
1234
1235/*
1236 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1237 */
1238struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1239{
1240 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1241
1242 if (gtt == NULL)
1243 return NULL;
1244
1245 if (gtt->usertask == NULL)
1246 return NULL;
1247
1248 return gtt->usertask->mm;
1249}
1250
1251/*
1252 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1253 * address range for the current task.
1254 *
1255 */
1256bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1257 unsigned long end, unsigned long *userptr)
1258{
1259 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1260 unsigned long size;
1261
1262 if (gtt == NULL || !gtt->userptr)
1263 return false;
1264
1265 /* Return false if no part of the ttm_tt object lies within
1266 * the range
1267 */
1268 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1269 if (gtt->userptr > end || gtt->userptr + size <= start)
1270 return false;
1271
1272 if (userptr)
1273 *userptr = gtt->userptr;
1274 return true;
1275}
1276
1277/*
1278 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1279 */
1280bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1281{
1282 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1283
1284 if (gtt == NULL || !gtt->userptr)
1285 return false;
1286
1287 return true;
1288}
1289
1290/*
1291 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1292 */
1293bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1294{
1295 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1296
1297 if (gtt == NULL)
1298 return false;
1299
1300 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1301}
1302
1303/**
1304 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1305 *
1306 * @ttm: The ttm_tt object to compute the flags for
1307 * @mem: The memory registry backing this ttm_tt object
1308 *
1309 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1310 */
1311uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1312{
1313 uint64_t flags = 0;
1314
1315 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1316 flags |= AMDGPU_PTE_VALID;
1317
1318 if (mem && (mem->mem_type == TTM_PL_TT ||
1319 mem->mem_type == AMDGPU_PL_DOORBELL ||
1320 mem->mem_type == AMDGPU_PL_PREEMPT)) {
1321 flags |= AMDGPU_PTE_SYSTEM;
1322
1323 if (ttm->caching == ttm_cached)
1324 flags |= AMDGPU_PTE_SNOOPED;
1325 }
1326
1327 if (mem && mem->mem_type == TTM_PL_VRAM &&
1328 mem->bus.caching == ttm_cached)
1329 flags |= AMDGPU_PTE_SNOOPED;
1330
1331 return flags;
1332}
1333
1334/**
1335 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1336 *
1337 * @adev: amdgpu_device pointer
1338 * @ttm: The ttm_tt object to compute the flags for
1339 * @mem: The memory registry backing this ttm_tt object
1340 *
1341 * Figure out the flags to use for a VM PTE (Page Table Entry).
1342 */
1343uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1344 struct ttm_resource *mem)
1345{
1346 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1347
1348 flags |= adev->gart.gart_pte_flags;
1349 flags |= AMDGPU_PTE_READABLE;
1350
1351 if (!amdgpu_ttm_tt_is_readonly(ttm))
1352 flags |= AMDGPU_PTE_WRITEABLE;
1353
1354 return flags;
1355}
1356
1357/*
1358 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1359 * object.
1360 *
1361 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1362 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1363 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1364 * used to clean out a memory space.
1365 */
1366static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1367 const struct ttm_place *place)
1368{
1369 struct dma_resv_iter resv_cursor;
1370 struct dma_fence *f;
1371
1372 if (!amdgpu_bo_is_amdgpu_bo(bo))
1373 return ttm_bo_eviction_valuable(bo, place);
1374
1375 /* Swapout? */
1376 if (bo->resource->mem_type == TTM_PL_SYSTEM)
1377 return true;
1378
1379 if (bo->type == ttm_bo_type_kernel &&
1380 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1381 return false;
1382
1383 /* If bo is a KFD BO, check if the bo belongs to the current process.
1384 * If true, then return false as any KFD process needs all its BOs to
1385 * be resident to run successfully
1386 */
1387 dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1388 DMA_RESV_USAGE_BOOKKEEP, f) {
1389 if (amdkfd_fence_check_mm(f, current->mm))
1390 return false;
1391 }
1392
1393 /* Preemptible BOs don't own system resources managed by the
1394 * driver (pages, VRAM, GART space). They point to resources
1395 * owned by someone else (e.g. pageable memory in user mode
1396 * or a DMABuf). They are used in a preemptible context so we
1397 * can guarantee no deadlocks and good QoS in case of MMU
1398 * notifiers or DMABuf move notifiers from the resource owner.
1399 */
1400 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1401 return false;
1402
1403 if (bo->resource->mem_type == TTM_PL_TT &&
1404 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1405 return false;
1406
1407 return ttm_bo_eviction_valuable(bo, place);
1408}
1409
1410static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1411 void *buf, size_t size, bool write)
1412{
1413 while (size) {
1414 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1415 uint64_t bytes = 4 - (pos & 0x3);
1416 uint32_t shift = (pos & 0x3) * 8;
1417 uint32_t mask = 0xffffffff << shift;
1418 uint32_t value = 0;
1419
1420 if (size < bytes) {
1421 mask &= 0xffffffff >> (bytes - size) * 8;
1422 bytes = size;
1423 }
1424
1425 if (mask != 0xffffffff) {
1426 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1427 if (write) {
1428 value &= ~mask;
1429 value |= (*(uint32_t *)buf << shift) & mask;
1430 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1431 } else {
1432 value = (value & mask) >> shift;
1433 memcpy(buf, &value, bytes);
1434 }
1435 } else {
1436 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1437 }
1438
1439 pos += bytes;
1440 buf += bytes;
1441 size -= bytes;
1442 }
1443}
1444
1445static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1446 unsigned long offset, void *buf,
1447 int len, int write)
1448{
1449 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1450 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1451 struct amdgpu_res_cursor src_mm;
1452 struct amdgpu_job *job;
1453 struct dma_fence *fence;
1454 uint64_t src_addr, dst_addr;
1455 unsigned int num_dw;
1456 int r, idx;
1457
1458 if (len != PAGE_SIZE)
1459 return -EINVAL;
1460
1461 if (!adev->mman.sdma_access_ptr)
1462 return -EACCES;
1463
1464 if (!drm_dev_enter(adev_to_drm(adev), &idx))
1465 return -ENODEV;
1466
1467 if (write)
1468 memcpy(adev->mman.sdma_access_ptr, buf, len);
1469
1470 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1471 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1472 AMDGPU_FENCE_OWNER_UNDEFINED,
1473 num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1474 &job);
1475 if (r)
1476 goto out;
1477
1478 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1479 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1480 src_mm.start;
1481 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1482 if (write)
1483 swap(src_addr, dst_addr);
1484
1485 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1486 PAGE_SIZE, false);
1487
1488 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1489 WARN_ON(job->ibs[0].length_dw > num_dw);
1490
1491 fence = amdgpu_job_submit(job);
1492
1493 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1494 r = -ETIMEDOUT;
1495 dma_fence_put(fence);
1496
1497 if (!(r || write))
1498 memcpy(buf, adev->mman.sdma_access_ptr, len);
1499out:
1500 drm_dev_exit(idx);
1501 return r;
1502}
1503
1504/**
1505 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1506 *
1507 * @bo: The buffer object to read/write
1508 * @offset: Offset into buffer object
1509 * @buf: Secondary buffer to write/read from
1510 * @len: Length in bytes of access
1511 * @write: true if writing
1512 *
1513 * This is used to access VRAM that backs a buffer object via MMIO
1514 * access for debugging purposes.
1515 */
1516static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1517 unsigned long offset, void *buf, int len,
1518 int write)
1519{
1520 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1521 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1522 struct amdgpu_res_cursor cursor;
1523 int ret = 0;
1524
1525 if (bo->resource->mem_type != TTM_PL_VRAM)
1526 return -EIO;
1527
1528 if (amdgpu_device_has_timeouts_enabled(adev) &&
1529 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1530 return len;
1531
1532 amdgpu_res_first(bo->resource, offset, len, &cursor);
1533 while (cursor.remaining) {
1534 size_t count, size = cursor.size;
1535 loff_t pos = cursor.start;
1536
1537 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1538 size -= count;
1539 if (size) {
1540 /* using MM to access rest vram and handle un-aligned address */
1541 pos += count;
1542 buf += count;
1543 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1544 }
1545
1546 ret += cursor.size;
1547 buf += cursor.size;
1548 amdgpu_res_next(&cursor, cursor.size);
1549 }
1550
1551 return ret;
1552}
1553
1554static void
1555amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1556{
1557 amdgpu_bo_move_notify(bo, false);
1558}
1559
1560static struct ttm_device_funcs amdgpu_bo_driver = {
1561 .ttm_tt_create = &amdgpu_ttm_tt_create,
1562 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1563 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1564 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1565 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1566 .evict_flags = &amdgpu_evict_flags,
1567 .move = &amdgpu_bo_move,
1568 .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1569 .release_notify = &amdgpu_bo_release_notify,
1570 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1571 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1572 .access_memory = &amdgpu_ttm_access_memory,
1573};
1574
1575/*
1576 * Firmware Reservation functions
1577 */
1578/**
1579 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1580 *
1581 * @adev: amdgpu_device pointer
1582 *
1583 * free fw reserved vram if it has been reserved.
1584 */
1585static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1586{
1587 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1588 NULL, &adev->mman.fw_vram_usage_va);
1589}
1590
1591/*
1592 * Driver Reservation functions
1593 */
1594/**
1595 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1596 *
1597 * @adev: amdgpu_device pointer
1598 *
1599 * free drv reserved vram if it has been reserved.
1600 */
1601static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1602{
1603 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1604 NULL,
1605 &adev->mman.drv_vram_usage_va);
1606}
1607
1608/**
1609 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1610 *
1611 * @adev: amdgpu_device pointer
1612 *
1613 * create bo vram reservation from fw.
1614 */
1615static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1616{
1617 uint64_t vram_size = adev->gmc.visible_vram_size;
1618
1619 adev->mman.fw_vram_usage_va = NULL;
1620 adev->mman.fw_vram_usage_reserved_bo = NULL;
1621
1622 if (adev->mman.fw_vram_usage_size == 0 ||
1623 adev->mman.fw_vram_usage_size > vram_size)
1624 return 0;
1625
1626 return amdgpu_bo_create_kernel_at(adev,
1627 adev->mman.fw_vram_usage_start_offset,
1628 adev->mman.fw_vram_usage_size,
1629 &adev->mman.fw_vram_usage_reserved_bo,
1630 &adev->mman.fw_vram_usage_va);
1631}
1632
1633/**
1634 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1635 *
1636 * @adev: amdgpu_device pointer
1637 *
1638 * create bo vram reservation from drv.
1639 */
1640static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1641{
1642 u64 vram_size = adev->gmc.visible_vram_size;
1643
1644 adev->mman.drv_vram_usage_va = NULL;
1645 adev->mman.drv_vram_usage_reserved_bo = NULL;
1646
1647 if (adev->mman.drv_vram_usage_size == 0 ||
1648 adev->mman.drv_vram_usage_size > vram_size)
1649 return 0;
1650
1651 return amdgpu_bo_create_kernel_at(adev,
1652 adev->mman.drv_vram_usage_start_offset,
1653 adev->mman.drv_vram_usage_size,
1654 &adev->mman.drv_vram_usage_reserved_bo,
1655 &adev->mman.drv_vram_usage_va);
1656}
1657
1658/*
1659 * Memoy training reservation functions
1660 */
1661
1662/**
1663 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1664 *
1665 * @adev: amdgpu_device pointer
1666 *
1667 * free memory training reserved vram if it has been reserved.
1668 */
1669static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1670{
1671 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1672
1673 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1674 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1675 ctx->c2p_bo = NULL;
1676
1677 return 0;
1678}
1679
1680static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1681 uint32_t reserve_size)
1682{
1683 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1684
1685 memset(ctx, 0, sizeof(*ctx));
1686
1687 ctx->c2p_train_data_offset =
1688 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1689 ctx->p2c_train_data_offset =
1690 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1691 ctx->train_data_size =
1692 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1693
1694 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1695 ctx->train_data_size,
1696 ctx->p2c_train_data_offset,
1697 ctx->c2p_train_data_offset);
1698}
1699
1700/*
1701 * reserve TMR memory at the top of VRAM which holds
1702 * IP Discovery data and is protected by PSP.
1703 */
1704static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1705{
1706 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1707 bool mem_train_support = false;
1708 uint32_t reserve_size = 0;
1709 int ret;
1710
1711 if (adev->bios && !amdgpu_sriov_vf(adev)) {
1712 if (amdgpu_atomfirmware_mem_training_supported(adev))
1713 mem_train_support = true;
1714 else
1715 DRM_DEBUG("memory training does not support!\n");
1716 }
1717
1718 /*
1719 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1720 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1721 *
1722 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1723 * discovery data and G6 memory training data respectively
1724 */
1725 if (adev->bios)
1726 reserve_size =
1727 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1728
1729 if (!adev->bios &&
1730 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3))
1731 reserve_size = max(reserve_size, (uint32_t)280 << 20);
1732 else if (!reserve_size)
1733 reserve_size = DISCOVERY_TMR_OFFSET;
1734
1735 if (mem_train_support) {
1736 /* reserve vram for mem train according to TMR location */
1737 amdgpu_ttm_training_data_block_init(adev, reserve_size);
1738 ret = amdgpu_bo_create_kernel_at(adev,
1739 ctx->c2p_train_data_offset,
1740 ctx->train_data_size,
1741 &ctx->c2p_bo,
1742 NULL);
1743 if (ret) {
1744 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1745 amdgpu_ttm_training_reserve_vram_fini(adev);
1746 return ret;
1747 }
1748 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1749 }
1750
1751 if (!adev->gmc.is_app_apu) {
1752 ret = amdgpu_bo_create_kernel_at(
1753 adev, adev->gmc.real_vram_size - reserve_size,
1754 reserve_size, &adev->mman.fw_reserved_memory, NULL);
1755 if (ret) {
1756 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1757 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1758 NULL, NULL);
1759 return ret;
1760 }
1761 } else {
1762 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1763 }
1764
1765 return 0;
1766}
1767
1768static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1769{
1770 int i;
1771
1772 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1773 return 0;
1774
1775 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1776 sizeof(*adev->mman.ttm_pools),
1777 GFP_KERNEL);
1778 if (!adev->mman.ttm_pools)
1779 return -ENOMEM;
1780
1781 for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1782 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1783 adev->gmc.mem_partitions[i].numa.node,
1784 false, false);
1785 }
1786 return 0;
1787}
1788
1789static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1790{
1791 int i;
1792
1793 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1794 return;
1795
1796 for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1797 ttm_pool_fini(&adev->mman.ttm_pools[i]);
1798
1799 kfree(adev->mman.ttm_pools);
1800 adev->mman.ttm_pools = NULL;
1801}
1802
1803/*
1804 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1805 * gtt/vram related fields.
1806 *
1807 * This initializes all of the memory space pools that the TTM layer
1808 * will need such as the GTT space (system memory mapped to the device),
1809 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1810 * can be mapped per VMID.
1811 */
1812int amdgpu_ttm_init(struct amdgpu_device *adev)
1813{
1814 uint64_t gtt_size;
1815 int r;
1816
1817 mutex_init(&adev->mman.gtt_window_lock);
1818
1819 /* No others user of address space so set it to 0 */
1820 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1821 adev_to_drm(adev)->anon_inode->i_mapping,
1822 adev_to_drm(adev)->vma_offset_manager,
1823 adev->need_swiotlb,
1824 dma_addressing_limited(adev->dev));
1825 if (r) {
1826 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1827 return r;
1828 }
1829
1830 r = amdgpu_ttm_pools_init(adev);
1831 if (r) {
1832 DRM_ERROR("failed to init ttm pools(%d).\n", r);
1833 return r;
1834 }
1835 adev->mman.initialized = true;
1836
1837 /* Initialize VRAM pool with all of VRAM divided into pages */
1838 r = amdgpu_vram_mgr_init(adev);
1839 if (r) {
1840 DRM_ERROR("Failed initializing VRAM heap.\n");
1841 return r;
1842 }
1843
1844 /* Change the size here instead of the init above so only lpfn is affected */
1845 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1846#ifdef CONFIG_64BIT
1847#ifdef CONFIG_X86
1848 if (adev->gmc.xgmi.connected_to_cpu)
1849 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1850 adev->gmc.visible_vram_size);
1851
1852 else if (adev->gmc.is_app_apu)
1853 DRM_DEBUG_DRIVER(
1854 "No need to ioremap when real vram size is 0\n");
1855 else
1856#endif
1857 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1858 adev->gmc.visible_vram_size);
1859#endif
1860
1861 /*
1862 *The reserved vram for firmware must be pinned to the specified
1863 *place on the VRAM, so reserve it early.
1864 */
1865 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1866 if (r)
1867 return r;
1868
1869 /*
1870 *The reserved vram for driver must be pinned to the specified
1871 *place on the VRAM, so reserve it early.
1872 */
1873 r = amdgpu_ttm_drv_reserve_vram_init(adev);
1874 if (r)
1875 return r;
1876
1877 /*
1878 * only NAVI10 and onwards ASIC support for IP discovery.
1879 * If IP discovery enabled, a block of memory should be
1880 * reserved for IP discovey.
1881 */
1882 if (adev->mman.discovery_bin) {
1883 r = amdgpu_ttm_reserve_tmr(adev);
1884 if (r)
1885 return r;
1886 }
1887
1888 /* allocate memory as required for VGA
1889 * This is used for VGA emulation and pre-OS scanout buffers to
1890 * avoid display artifacts while transitioning between pre-OS
1891 * and driver.
1892 */
1893 if (!adev->gmc.is_app_apu) {
1894 r = amdgpu_bo_create_kernel_at(adev, 0,
1895 adev->mman.stolen_vga_size,
1896 &adev->mman.stolen_vga_memory,
1897 NULL);
1898 if (r)
1899 return r;
1900
1901 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1902 adev->mman.stolen_extended_size,
1903 &adev->mman.stolen_extended_memory,
1904 NULL);
1905
1906 if (r)
1907 return r;
1908
1909 r = amdgpu_bo_create_kernel_at(adev,
1910 adev->mman.stolen_reserved_offset,
1911 adev->mman.stolen_reserved_size,
1912 &adev->mman.stolen_reserved_memory,
1913 NULL);
1914 if (r)
1915 return r;
1916 } else {
1917 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1918 }
1919
1920 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1921 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1922
1923 /* Compute GTT size, either based on TTM limit
1924 * or whatever the user passed on module init.
1925 */
1926 if (amdgpu_gtt_size == -1)
1927 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1928 else
1929 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1930
1931 /* Initialize GTT memory pool */
1932 r = amdgpu_gtt_mgr_init(adev, gtt_size);
1933 if (r) {
1934 DRM_ERROR("Failed initializing GTT heap.\n");
1935 return r;
1936 }
1937 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1938 (unsigned int)(gtt_size / (1024 * 1024)));
1939
1940 /* Initiailize doorbell pool on PCI BAR */
1941 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1942 if (r) {
1943 DRM_ERROR("Failed initializing doorbell heap.\n");
1944 return r;
1945 }
1946
1947 /* Create a boorbell page for kernel usages */
1948 r = amdgpu_doorbell_create_kernel_doorbells(adev);
1949 if (r) {
1950 DRM_ERROR("Failed to initialize kernel doorbells.\n");
1951 return r;
1952 }
1953
1954 /* Initialize preemptible memory pool */
1955 r = amdgpu_preempt_mgr_init(adev);
1956 if (r) {
1957 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1958 return r;
1959 }
1960
1961 /* Initialize various on-chip memory pools */
1962 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1963 if (r) {
1964 DRM_ERROR("Failed initializing GDS heap.\n");
1965 return r;
1966 }
1967
1968 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1969 if (r) {
1970 DRM_ERROR("Failed initializing gws heap.\n");
1971 return r;
1972 }
1973
1974 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1975 if (r) {
1976 DRM_ERROR("Failed initializing oa heap.\n");
1977 return r;
1978 }
1979 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1980 AMDGPU_GEM_DOMAIN_GTT,
1981 &adev->mman.sdma_access_bo, NULL,
1982 &adev->mman.sdma_access_ptr))
1983 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1984
1985 return 0;
1986}
1987
1988/*
1989 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1990 */
1991void amdgpu_ttm_fini(struct amdgpu_device *adev)
1992{
1993 int idx;
1994
1995 if (!adev->mman.initialized)
1996 return;
1997
1998 amdgpu_ttm_pools_fini(adev);
1999
2000 amdgpu_ttm_training_reserve_vram_fini(adev);
2001 /* return the stolen vga memory back to VRAM */
2002 if (!adev->gmc.is_app_apu) {
2003 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2004 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2005 /* return the FW reserved memory back to VRAM */
2006 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2007 NULL);
2008 if (adev->mman.stolen_reserved_size)
2009 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2010 NULL, NULL);
2011 }
2012 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2013 &adev->mman.sdma_access_ptr);
2014 amdgpu_ttm_fw_reserve_vram_fini(adev);
2015 amdgpu_ttm_drv_reserve_vram_fini(adev);
2016
2017 if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2018
2019 if (adev->mman.aper_base_kaddr)
2020 iounmap(adev->mman.aper_base_kaddr);
2021 adev->mman.aper_base_kaddr = NULL;
2022
2023 drm_dev_exit(idx);
2024 }
2025
2026 amdgpu_vram_mgr_fini(adev);
2027 amdgpu_gtt_mgr_fini(adev);
2028 amdgpu_preempt_mgr_fini(adev);
2029 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2030 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2031 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2032 ttm_device_fini(&adev->mman.bdev);
2033 adev->mman.initialized = false;
2034 DRM_INFO("amdgpu: ttm finalized\n");
2035}
2036
2037/**
2038 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2039 *
2040 * @adev: amdgpu_device pointer
2041 * @enable: true when we can use buffer functions.
2042 *
2043 * Enable/disable use of buffer functions during suspend/resume. This should
2044 * only be called at bootup or when userspace isn't running.
2045 */
2046void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2047{
2048 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2049 uint64_t size;
2050 int r;
2051
2052 if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2053 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2054 return;
2055
2056 if (enable) {
2057 struct amdgpu_ring *ring;
2058 struct drm_gpu_scheduler *sched;
2059
2060 ring = adev->mman.buffer_funcs_ring;
2061 sched = &ring->sched;
2062 r = drm_sched_entity_init(&adev->mman.high_pr,
2063 DRM_SCHED_PRIORITY_KERNEL, &sched,
2064 1, NULL);
2065 if (r) {
2066 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2067 r);
2068 return;
2069 }
2070
2071 r = drm_sched_entity_init(&adev->mman.low_pr,
2072 DRM_SCHED_PRIORITY_NORMAL, &sched,
2073 1, NULL);
2074 if (r) {
2075 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2076 r);
2077 goto error_free_entity;
2078 }
2079 } else {
2080 drm_sched_entity_destroy(&adev->mman.high_pr);
2081 drm_sched_entity_destroy(&adev->mman.low_pr);
2082 dma_fence_put(man->move);
2083 man->move = NULL;
2084 }
2085
2086 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2087 if (enable)
2088 size = adev->gmc.real_vram_size;
2089 else
2090 size = adev->gmc.visible_vram_size;
2091 man->size = size;
2092 adev->mman.buffer_funcs_enabled = enable;
2093
2094 return;
2095
2096error_free_entity:
2097 drm_sched_entity_destroy(&adev->mman.high_pr);
2098}
2099
2100static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2101 bool direct_submit,
2102 unsigned int num_dw,
2103 struct dma_resv *resv,
2104 bool vm_needs_flush,
2105 struct amdgpu_job **job,
2106 bool delayed)
2107{
2108 enum amdgpu_ib_pool_type pool = direct_submit ?
2109 AMDGPU_IB_POOL_DIRECT :
2110 AMDGPU_IB_POOL_DELAYED;
2111 int r;
2112 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2113 &adev->mman.high_pr;
2114 r = amdgpu_job_alloc_with_ib(adev, entity,
2115 AMDGPU_FENCE_OWNER_UNDEFINED,
2116 num_dw * 4, pool, job);
2117 if (r)
2118 return r;
2119
2120 if (vm_needs_flush) {
2121 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2122 adev->gmc.pdb0_bo :
2123 adev->gart.bo);
2124 (*job)->vm_needs_flush = true;
2125 }
2126 if (!resv)
2127 return 0;
2128
2129 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2130 DMA_RESV_USAGE_BOOKKEEP);
2131}
2132
2133int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2134 uint64_t dst_offset, uint32_t byte_count,
2135 struct dma_resv *resv,
2136 struct dma_fence **fence, bool direct_submit,
2137 bool vm_needs_flush, bool tmz)
2138{
2139 struct amdgpu_device *adev = ring->adev;
2140 unsigned int num_loops, num_dw;
2141 struct amdgpu_job *job;
2142 uint32_t max_bytes;
2143 unsigned int i;
2144 int r;
2145
2146 if (!direct_submit && !ring->sched.ready) {
2147 DRM_ERROR("Trying to move memory with ring turned off.\n");
2148 return -EINVAL;
2149 }
2150
2151 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2152 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2153 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2154 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2155 resv, vm_needs_flush, &job, false);
2156 if (r)
2157 return r;
2158
2159 for (i = 0; i < num_loops; i++) {
2160 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2161
2162 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2163 dst_offset, cur_size_in_bytes, tmz);
2164
2165 src_offset += cur_size_in_bytes;
2166 dst_offset += cur_size_in_bytes;
2167 byte_count -= cur_size_in_bytes;
2168 }
2169
2170 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2171 WARN_ON(job->ibs[0].length_dw > num_dw);
2172 if (direct_submit)
2173 r = amdgpu_job_submit_direct(job, ring, fence);
2174 else
2175 *fence = amdgpu_job_submit(job);
2176 if (r)
2177 goto error_free;
2178
2179 return r;
2180
2181error_free:
2182 amdgpu_job_free(job);
2183 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2184 return r;
2185}
2186
2187static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2188 uint64_t dst_addr, uint32_t byte_count,
2189 struct dma_resv *resv,
2190 struct dma_fence **fence,
2191 bool vm_needs_flush, bool delayed)
2192{
2193 struct amdgpu_device *adev = ring->adev;
2194 unsigned int num_loops, num_dw;
2195 struct amdgpu_job *job;
2196 uint32_t max_bytes;
2197 unsigned int i;
2198 int r;
2199
2200 max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2201 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2202 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2203 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2204 &job, delayed);
2205 if (r)
2206 return r;
2207
2208 for (i = 0; i < num_loops; i++) {
2209 uint32_t cur_size = min(byte_count, max_bytes);
2210
2211 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2212 cur_size);
2213
2214 dst_addr += cur_size;
2215 byte_count -= cur_size;
2216 }
2217
2218 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2219 WARN_ON(job->ibs[0].length_dw > num_dw);
2220 *fence = amdgpu_job_submit(job);
2221 return 0;
2222}
2223
2224int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2225 uint32_t src_data,
2226 struct dma_resv *resv,
2227 struct dma_fence **f,
2228 bool delayed)
2229{
2230 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2231 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2232 struct dma_fence *fence = NULL;
2233 struct amdgpu_res_cursor dst;
2234 int r;
2235
2236 if (!adev->mman.buffer_funcs_enabled) {
2237 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2238 return -EINVAL;
2239 }
2240
2241 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2242
2243 mutex_lock(&adev->mman.gtt_window_lock);
2244 while (dst.remaining) {
2245 struct dma_fence *next;
2246 uint64_t cur_size, to;
2247
2248 /* Never fill more than 256MiB at once to avoid timeouts */
2249 cur_size = min(dst.size, 256ULL << 20);
2250
2251 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2252 1, ring, false, &cur_size, &to);
2253 if (r)
2254 goto error;
2255
2256 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2257 &next, true, delayed);
2258 if (r)
2259 goto error;
2260
2261 dma_fence_put(fence);
2262 fence = next;
2263
2264 amdgpu_res_next(&dst, cur_size);
2265 }
2266error:
2267 mutex_unlock(&adev->mman.gtt_window_lock);
2268 if (f)
2269 *f = dma_fence_get(fence);
2270 dma_fence_put(fence);
2271 return r;
2272}
2273
2274/**
2275 * amdgpu_ttm_evict_resources - evict memory buffers
2276 * @adev: amdgpu device object
2277 * @mem_type: evicted BO's memory type
2278 *
2279 * Evicts all @mem_type buffers on the lru list of the memory type.
2280 *
2281 * Returns:
2282 * 0 for success or a negative error code on failure.
2283 */
2284int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2285{
2286 struct ttm_resource_manager *man;
2287
2288 switch (mem_type) {
2289 case TTM_PL_VRAM:
2290 case TTM_PL_TT:
2291 case AMDGPU_PL_GWS:
2292 case AMDGPU_PL_GDS:
2293 case AMDGPU_PL_OA:
2294 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2295 break;
2296 default:
2297 DRM_ERROR("Trying to evict invalid memory type\n");
2298 return -EINVAL;
2299 }
2300
2301 return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2302}
2303
2304#if defined(CONFIG_DEBUG_FS)
2305
2306static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2307{
2308 struct amdgpu_device *adev = m->private;
2309
2310 return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2311}
2312
2313DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2314
2315/*
2316 * amdgpu_ttm_vram_read - Linear read access to VRAM
2317 *
2318 * Accesses VRAM via MMIO for debugging purposes.
2319 */
2320static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2321 size_t size, loff_t *pos)
2322{
2323 struct amdgpu_device *adev = file_inode(f)->i_private;
2324 ssize_t result = 0;
2325
2326 if (size & 0x3 || *pos & 0x3)
2327 return -EINVAL;
2328
2329 if (*pos >= adev->gmc.mc_vram_size)
2330 return -ENXIO;
2331
2332 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2333 while (size) {
2334 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2335 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2336
2337 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2338 if (copy_to_user(buf, value, bytes))
2339 return -EFAULT;
2340
2341 result += bytes;
2342 buf += bytes;
2343 *pos += bytes;
2344 size -= bytes;
2345 }
2346
2347 return result;
2348}
2349
2350/*
2351 * amdgpu_ttm_vram_write - Linear write access to VRAM
2352 *
2353 * Accesses VRAM via MMIO for debugging purposes.
2354 */
2355static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2356 size_t size, loff_t *pos)
2357{
2358 struct amdgpu_device *adev = file_inode(f)->i_private;
2359 ssize_t result = 0;
2360 int r;
2361
2362 if (size & 0x3 || *pos & 0x3)
2363 return -EINVAL;
2364
2365 if (*pos >= adev->gmc.mc_vram_size)
2366 return -ENXIO;
2367
2368 while (size) {
2369 uint32_t value;
2370
2371 if (*pos >= adev->gmc.mc_vram_size)
2372 return result;
2373
2374 r = get_user(value, (uint32_t *)buf);
2375 if (r)
2376 return r;
2377
2378 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2379
2380 result += 4;
2381 buf += 4;
2382 *pos += 4;
2383 size -= 4;
2384 }
2385
2386 return result;
2387}
2388
2389static const struct file_operations amdgpu_ttm_vram_fops = {
2390 .owner = THIS_MODULE,
2391 .read = amdgpu_ttm_vram_read,
2392 .write = amdgpu_ttm_vram_write,
2393 .llseek = default_llseek,
2394};
2395
2396/*
2397 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2398 *
2399 * This function is used to read memory that has been mapped to the
2400 * GPU and the known addresses are not physical addresses but instead
2401 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2402 */
2403static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2404 size_t size, loff_t *pos)
2405{
2406 struct amdgpu_device *adev = file_inode(f)->i_private;
2407 struct iommu_domain *dom;
2408 ssize_t result = 0;
2409 int r;
2410
2411 /* retrieve the IOMMU domain if any for this device */
2412 dom = iommu_get_domain_for_dev(adev->dev);
2413
2414 while (size) {
2415 phys_addr_t addr = *pos & PAGE_MASK;
2416 loff_t off = *pos & ~PAGE_MASK;
2417 size_t bytes = PAGE_SIZE - off;
2418 unsigned long pfn;
2419 struct page *p;
2420 void *ptr;
2421
2422 bytes = min(bytes, size);
2423
2424 /* Translate the bus address to a physical address. If
2425 * the domain is NULL it means there is no IOMMU active
2426 * and the address translation is the identity
2427 */
2428 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2429
2430 pfn = addr >> PAGE_SHIFT;
2431 if (!pfn_valid(pfn))
2432 return -EPERM;
2433
2434 p = pfn_to_page(pfn);
2435 if (p->mapping != adev->mman.bdev.dev_mapping)
2436 return -EPERM;
2437
2438 ptr = kmap_local_page(p);
2439 r = copy_to_user(buf, ptr + off, bytes);
2440 kunmap_local(ptr);
2441 if (r)
2442 return -EFAULT;
2443
2444 size -= bytes;
2445 *pos += bytes;
2446 result += bytes;
2447 }
2448
2449 return result;
2450}
2451
2452/*
2453 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2454 *
2455 * This function is used to write memory that has been mapped to the
2456 * GPU and the known addresses are not physical addresses but instead
2457 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2458 */
2459static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2460 size_t size, loff_t *pos)
2461{
2462 struct amdgpu_device *adev = file_inode(f)->i_private;
2463 struct iommu_domain *dom;
2464 ssize_t result = 0;
2465 int r;
2466
2467 dom = iommu_get_domain_for_dev(adev->dev);
2468
2469 while (size) {
2470 phys_addr_t addr = *pos & PAGE_MASK;
2471 loff_t off = *pos & ~PAGE_MASK;
2472 size_t bytes = PAGE_SIZE - off;
2473 unsigned long pfn;
2474 struct page *p;
2475 void *ptr;
2476
2477 bytes = min(bytes, size);
2478
2479 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2480
2481 pfn = addr >> PAGE_SHIFT;
2482 if (!pfn_valid(pfn))
2483 return -EPERM;
2484
2485 p = pfn_to_page(pfn);
2486 if (p->mapping != adev->mman.bdev.dev_mapping)
2487 return -EPERM;
2488
2489 ptr = kmap_local_page(p);
2490 r = copy_from_user(ptr + off, buf, bytes);
2491 kunmap_local(ptr);
2492 if (r)
2493 return -EFAULT;
2494
2495 size -= bytes;
2496 *pos += bytes;
2497 result += bytes;
2498 }
2499
2500 return result;
2501}
2502
2503static const struct file_operations amdgpu_ttm_iomem_fops = {
2504 .owner = THIS_MODULE,
2505 .read = amdgpu_iomem_read,
2506 .write = amdgpu_iomem_write,
2507 .llseek = default_llseek
2508};
2509
2510#endif
2511
2512void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2513{
2514#if defined(CONFIG_DEBUG_FS)
2515 struct drm_minor *minor = adev_to_drm(adev)->primary;
2516 struct dentry *root = minor->debugfs_root;
2517
2518 debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2519 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2520 debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2521 &amdgpu_ttm_iomem_fops);
2522 debugfs_create_file("ttm_page_pool", 0444, root, adev,
2523 &amdgpu_ttm_page_pool_fops);
2524 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2525 TTM_PL_VRAM),
2526 root, "amdgpu_vram_mm");
2527 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2528 TTM_PL_TT),
2529 root, "amdgpu_gtt_mm");
2530 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2531 AMDGPU_PL_GDS),
2532 root, "amdgpu_gds_mm");
2533 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2534 AMDGPU_PL_GWS),
2535 root, "amdgpu_gws_mm");
2536 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2537 AMDGPU_PL_OA),
2538 root, "amdgpu_oa_mm");
2539
2540#endif
2541}
1/*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26/*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32
33#include <linux/dma-mapping.h>
34#include <linux/iommu.h>
35#include <linux/pagemap.h>
36#include <linux/sched/task.h>
37#include <linux/sched/mm.h>
38#include <linux/seq_file.h>
39#include <linux/slab.h>
40#include <linux/swap.h>
41#include <linux/dma-buf.h>
42#include <linux/sizes.h>
43#include <linux/module.h>
44
45#include <drm/drm_drv.h>
46#include <drm/ttm/ttm_bo.h>
47#include <drm/ttm/ttm_placement.h>
48#include <drm/ttm/ttm_range_manager.h>
49#include <drm/ttm/ttm_tt.h>
50
51#include <drm/amdgpu_drm.h>
52
53#include "amdgpu.h"
54#include "amdgpu_object.h"
55#include "amdgpu_trace.h"
56#include "amdgpu_amdkfd.h"
57#include "amdgpu_sdma.h"
58#include "amdgpu_ras.h"
59#include "amdgpu_hmm.h"
60#include "amdgpu_atomfirmware.h"
61#include "amdgpu_res_cursor.h"
62#include "bif/bif_4_1_d.h"
63
64MODULE_IMPORT_NS("DMA_BUF");
65
66#define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128)
67
68static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 struct ttm_tt *ttm,
70 struct ttm_resource *bo_mem);
71static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 struct ttm_tt *ttm);
73
74static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 unsigned int type,
76 uint64_t size_in_page)
77{
78 return ttm_range_man_init(&adev->mman.bdev, type,
79 false, size_in_page);
80}
81
82/**
83 * amdgpu_evict_flags - Compute placement flags
84 *
85 * @bo: The buffer object to evict
86 * @placement: Possible destination(s) for evicted BO
87 *
88 * Fill in placement data when ttm_bo_evict() is called
89 */
90static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 struct ttm_placement *placement)
92{
93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 struct amdgpu_bo *abo;
95 static const struct ttm_place placements = {
96 .fpfn = 0,
97 .lpfn = 0,
98 .mem_type = TTM_PL_SYSTEM,
99 .flags = 0
100 };
101
102 /* Don't handle scatter gather BOs */
103 if (bo->type == ttm_bo_type_sg) {
104 placement->num_placement = 0;
105 return;
106 }
107
108 /* Object isn't an AMDGPU object so ignore */
109 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
110 placement->placement = &placements;
111 placement->num_placement = 1;
112 return;
113 }
114
115 abo = ttm_to_amdgpu_bo(bo);
116 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
117 placement->num_placement = 0;
118 return;
119 }
120
121 switch (bo->resource->mem_type) {
122 case AMDGPU_PL_GDS:
123 case AMDGPU_PL_GWS:
124 case AMDGPU_PL_OA:
125 case AMDGPU_PL_DOORBELL:
126 placement->num_placement = 0;
127 return;
128
129 case TTM_PL_VRAM:
130 if (!adev->mman.buffer_funcs_enabled) {
131 /* Move to system memory */
132 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
133
134 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
135 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
136 amdgpu_res_cpu_visible(adev, bo->resource)) {
137
138 /* Try evicting to the CPU inaccessible part of VRAM
139 * first, but only set GTT as busy placement, so this
140 * BO will be evicted to GTT rather than causing other
141 * BOs to be evicted from VRAM
142 */
143 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
144 AMDGPU_GEM_DOMAIN_GTT |
145 AMDGPU_GEM_DOMAIN_CPU);
146 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
147 abo->placements[0].lpfn = 0;
148 abo->placements[0].flags |= TTM_PL_FLAG_DESIRED;
149 } else {
150 /* Move to GTT memory */
151 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
152 AMDGPU_GEM_DOMAIN_CPU);
153 }
154 break;
155 case TTM_PL_TT:
156 case AMDGPU_PL_PREEMPT:
157 default:
158 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
159 break;
160 }
161 *placement = abo->placement;
162}
163
164/**
165 * amdgpu_ttm_map_buffer - Map memory into the GART windows
166 * @bo: buffer object to map
167 * @mem: memory object to map
168 * @mm_cur: range to map
169 * @window: which GART window to use
170 * @ring: DMA ring to use for the copy
171 * @tmz: if we should setup a TMZ enabled mapping
172 * @size: in number of bytes to map, out number of bytes mapped
173 * @addr: resulting address inside the MC address space
174 *
175 * Setup one of the GART windows to access a specific piece of memory or return
176 * the physical address for local memory.
177 */
178static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
179 struct ttm_resource *mem,
180 struct amdgpu_res_cursor *mm_cur,
181 unsigned int window, struct amdgpu_ring *ring,
182 bool tmz, uint64_t *size, uint64_t *addr)
183{
184 struct amdgpu_device *adev = ring->adev;
185 unsigned int offset, num_pages, num_dw, num_bytes;
186 uint64_t src_addr, dst_addr;
187 struct amdgpu_job *job;
188 void *cpu_addr;
189 uint64_t flags;
190 unsigned int i;
191 int r;
192
193 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
194 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
195
196 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
197 return -EINVAL;
198
199 /* Map only what can't be accessed directly */
200 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
201 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
202 mm_cur->start;
203 return 0;
204 }
205
206
207 /*
208 * If start begins at an offset inside the page, then adjust the size
209 * and addr accordingly
210 */
211 offset = mm_cur->start & ~PAGE_MASK;
212
213 num_pages = PFN_UP(*size + offset);
214 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
215
216 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
217
218 *addr = adev->gmc.gart_start;
219 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
220 AMDGPU_GPU_PAGE_SIZE;
221 *addr += offset;
222
223 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
224 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
225
226 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
227 AMDGPU_FENCE_OWNER_UNDEFINED,
228 num_dw * 4 + num_bytes,
229 AMDGPU_IB_POOL_DELAYED, &job);
230 if (r)
231 return r;
232
233 src_addr = num_dw * 4;
234 src_addr += job->ibs[0].gpu_addr;
235
236 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
237 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
238 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
239 dst_addr, num_bytes, 0);
240
241 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
242 WARN_ON(job->ibs[0].length_dw > num_dw);
243
244 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
245 if (tmz)
246 flags |= AMDGPU_PTE_TMZ;
247
248 cpu_addr = &job->ibs[0].ptr[num_dw];
249
250 if (mem->mem_type == TTM_PL_TT) {
251 dma_addr_t *dma_addr;
252
253 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
254 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
255 } else {
256 dma_addr_t dma_address;
257
258 dma_address = mm_cur->start;
259 dma_address += adev->vm_manager.vram_base_offset;
260
261 for (i = 0; i < num_pages; ++i) {
262 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
263 flags, cpu_addr);
264 dma_address += PAGE_SIZE;
265 }
266 }
267
268 dma_fence_put(amdgpu_job_submit(job));
269 return 0;
270}
271
272/**
273 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
274 * @adev: amdgpu device
275 * @src: buffer/address where to read from
276 * @dst: buffer/address where to write to
277 * @size: number of bytes to copy
278 * @tmz: if a secure copy should be used
279 * @resv: resv object to sync to
280 * @f: Returns the last fence if multiple jobs are submitted.
281 *
282 * The function copies @size bytes from {src->mem + src->offset} to
283 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
284 * move and different for a BO to BO copy.
285 *
286 */
287int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
288 const struct amdgpu_copy_mem *src,
289 const struct amdgpu_copy_mem *dst,
290 uint64_t size, bool tmz,
291 struct dma_resv *resv,
292 struct dma_fence **f)
293{
294 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
295 struct amdgpu_res_cursor src_mm, dst_mm;
296 struct dma_fence *fence = NULL;
297 int r = 0;
298 uint32_t copy_flags = 0;
299 struct amdgpu_bo *abo_src, *abo_dst;
300
301 if (!adev->mman.buffer_funcs_enabled) {
302 DRM_ERROR("Trying to move memory with ring turned off.\n");
303 return -EINVAL;
304 }
305
306 amdgpu_res_first(src->mem, src->offset, size, &src_mm);
307 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
308
309 mutex_lock(&adev->mman.gtt_window_lock);
310 while (src_mm.remaining) {
311 uint64_t from, to, cur_size, tiling_flags;
312 uint32_t num_type, data_format, max_com, write_compress_disable;
313 struct dma_fence *next;
314
315 /* Never copy more than 256MiB at once to avoid a timeout */
316 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
317
318 /* Map src to window 0 and dst to window 1. */
319 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
320 0, ring, tmz, &cur_size, &from);
321 if (r)
322 goto error;
323
324 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
325 1, ring, tmz, &cur_size, &to);
326 if (r)
327 goto error;
328
329 abo_src = ttm_to_amdgpu_bo(src->bo);
330 abo_dst = ttm_to_amdgpu_bo(dst->bo);
331 if (tmz)
332 copy_flags |= AMDGPU_COPY_FLAGS_TMZ;
333 if ((abo_src->flags & AMDGPU_GEM_CREATE_GFX12_DCC) &&
334 (abo_src->tbo.resource->mem_type == TTM_PL_VRAM))
335 copy_flags |= AMDGPU_COPY_FLAGS_READ_DECOMPRESSED;
336 if ((abo_dst->flags & AMDGPU_GEM_CREATE_GFX12_DCC) &&
337 (dst->mem->mem_type == TTM_PL_VRAM)) {
338 copy_flags |= AMDGPU_COPY_FLAGS_WRITE_COMPRESSED;
339 amdgpu_bo_get_tiling_flags(abo_dst, &tiling_flags);
340 max_com = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_MAX_COMPRESSED_BLOCK);
341 num_type = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_NUMBER_TYPE);
342 data_format = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_DATA_FORMAT);
343 write_compress_disable =
344 AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_WRITE_COMPRESS_DISABLE);
345 copy_flags |= (AMDGPU_COPY_FLAGS_SET(MAX_COMPRESSED, max_com) |
346 AMDGPU_COPY_FLAGS_SET(NUMBER_TYPE, num_type) |
347 AMDGPU_COPY_FLAGS_SET(DATA_FORMAT, data_format) |
348 AMDGPU_COPY_FLAGS_SET(WRITE_COMPRESS_DISABLE,
349 write_compress_disable));
350 }
351
352 r = amdgpu_copy_buffer(ring, from, to, cur_size, resv,
353 &next, false, true, copy_flags);
354 if (r)
355 goto error;
356
357 dma_fence_put(fence);
358 fence = next;
359
360 amdgpu_res_next(&src_mm, cur_size);
361 amdgpu_res_next(&dst_mm, cur_size);
362 }
363error:
364 mutex_unlock(&adev->mman.gtt_window_lock);
365 if (f)
366 *f = dma_fence_get(fence);
367 dma_fence_put(fence);
368 return r;
369}
370
371/*
372 * amdgpu_move_blit - Copy an entire buffer to another buffer
373 *
374 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
375 * help move buffers to and from VRAM.
376 */
377static int amdgpu_move_blit(struct ttm_buffer_object *bo,
378 bool evict,
379 struct ttm_resource *new_mem,
380 struct ttm_resource *old_mem)
381{
382 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
383 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
384 struct amdgpu_copy_mem src, dst;
385 struct dma_fence *fence = NULL;
386 int r;
387
388 src.bo = bo;
389 dst.bo = bo;
390 src.mem = old_mem;
391 dst.mem = new_mem;
392 src.offset = 0;
393 dst.offset = 0;
394
395 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
396 new_mem->size,
397 amdgpu_bo_encrypted(abo),
398 bo->base.resv, &fence);
399 if (r)
400 goto error;
401
402 /* clear the space being freed */
403 if (old_mem->mem_type == TTM_PL_VRAM &&
404 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
405 struct dma_fence *wipe_fence = NULL;
406
407 r = amdgpu_fill_buffer(abo, 0, NULL, &wipe_fence,
408 false);
409 if (r) {
410 goto error;
411 } else if (wipe_fence) {
412 amdgpu_vram_mgr_set_cleared(bo->resource);
413 dma_fence_put(fence);
414 fence = wipe_fence;
415 }
416 }
417
418 /* Always block for VM page tables before committing the new location */
419 if (bo->type == ttm_bo_type_kernel)
420 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
421 else
422 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
423 dma_fence_put(fence);
424 return r;
425
426error:
427 if (fence)
428 dma_fence_wait(fence, false);
429 dma_fence_put(fence);
430 return r;
431}
432
433/**
434 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
435 * @adev: amdgpu device
436 * @res: the resource to check
437 *
438 * Returns: true if the full resource is CPU visible, false otherwise.
439 */
440bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
441 struct ttm_resource *res)
442{
443 struct amdgpu_res_cursor cursor;
444
445 if (!res)
446 return false;
447
448 if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
449 res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL)
450 return true;
451
452 if (res->mem_type != TTM_PL_VRAM)
453 return false;
454
455 amdgpu_res_first(res, 0, res->size, &cursor);
456 while (cursor.remaining) {
457 if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size)
458 return false;
459 amdgpu_res_next(&cursor, cursor.size);
460 }
461
462 return true;
463}
464
465/*
466 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
467 *
468 * Called by amdgpu_bo_move()
469 */
470static bool amdgpu_res_copyable(struct amdgpu_device *adev,
471 struct ttm_resource *mem)
472{
473 if (!amdgpu_res_cpu_visible(adev, mem))
474 return false;
475
476 /* ttm_resource_ioremap only supports contiguous memory */
477 if (mem->mem_type == TTM_PL_VRAM &&
478 !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
479 return false;
480
481 return true;
482}
483
484/*
485 * amdgpu_bo_move - Move a buffer object to a new memory location
486 *
487 * Called by ttm_bo_handle_move_mem()
488 */
489static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
490 struct ttm_operation_ctx *ctx,
491 struct ttm_resource *new_mem,
492 struct ttm_place *hop)
493{
494 struct amdgpu_device *adev;
495 struct amdgpu_bo *abo;
496 struct ttm_resource *old_mem = bo->resource;
497 int r;
498
499 if (new_mem->mem_type == TTM_PL_TT ||
500 new_mem->mem_type == AMDGPU_PL_PREEMPT) {
501 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
502 if (r)
503 return r;
504 }
505
506 abo = ttm_to_amdgpu_bo(bo);
507 adev = amdgpu_ttm_adev(bo->bdev);
508
509 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
510 bo->ttm == NULL)) {
511 amdgpu_bo_move_notify(bo, evict, new_mem);
512 ttm_bo_move_null(bo, new_mem);
513 return 0;
514 }
515 if (old_mem->mem_type == TTM_PL_SYSTEM &&
516 (new_mem->mem_type == TTM_PL_TT ||
517 new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
518 amdgpu_bo_move_notify(bo, evict, new_mem);
519 ttm_bo_move_null(bo, new_mem);
520 return 0;
521 }
522 if ((old_mem->mem_type == TTM_PL_TT ||
523 old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
524 new_mem->mem_type == TTM_PL_SYSTEM) {
525 r = ttm_bo_wait_ctx(bo, ctx);
526 if (r)
527 return r;
528
529 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
530 amdgpu_bo_move_notify(bo, evict, new_mem);
531 ttm_resource_free(bo, &bo->resource);
532 ttm_bo_assign_mem(bo, new_mem);
533 return 0;
534 }
535
536 if (old_mem->mem_type == AMDGPU_PL_GDS ||
537 old_mem->mem_type == AMDGPU_PL_GWS ||
538 old_mem->mem_type == AMDGPU_PL_OA ||
539 old_mem->mem_type == AMDGPU_PL_DOORBELL ||
540 new_mem->mem_type == AMDGPU_PL_GDS ||
541 new_mem->mem_type == AMDGPU_PL_GWS ||
542 new_mem->mem_type == AMDGPU_PL_OA ||
543 new_mem->mem_type == AMDGPU_PL_DOORBELL) {
544 /* Nothing to save here */
545 amdgpu_bo_move_notify(bo, evict, new_mem);
546 ttm_bo_move_null(bo, new_mem);
547 return 0;
548 }
549
550 if (bo->type == ttm_bo_type_device &&
551 new_mem->mem_type == TTM_PL_VRAM &&
552 old_mem->mem_type != TTM_PL_VRAM) {
553 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
554 * accesses the BO after it's moved.
555 */
556 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
557 }
558
559 if (adev->mman.buffer_funcs_enabled &&
560 ((old_mem->mem_type == TTM_PL_SYSTEM &&
561 new_mem->mem_type == TTM_PL_VRAM) ||
562 (old_mem->mem_type == TTM_PL_VRAM &&
563 new_mem->mem_type == TTM_PL_SYSTEM))) {
564 hop->fpfn = 0;
565 hop->lpfn = 0;
566 hop->mem_type = TTM_PL_TT;
567 hop->flags = TTM_PL_FLAG_TEMPORARY;
568 return -EMULTIHOP;
569 }
570
571 amdgpu_bo_move_notify(bo, evict, new_mem);
572 if (adev->mman.buffer_funcs_enabled)
573 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
574 else
575 r = -ENODEV;
576
577 if (r) {
578 /* Check that all memory is CPU accessible */
579 if (!amdgpu_res_copyable(adev, old_mem) ||
580 !amdgpu_res_copyable(adev, new_mem)) {
581 pr_err("Move buffer fallback to memcpy unavailable\n");
582 return r;
583 }
584
585 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
586 if (r)
587 return r;
588 }
589
590 /* update statistics after the move */
591 if (evict)
592 atomic64_inc(&adev->num_evictions);
593 atomic64_add(bo->base.size, &adev->num_bytes_moved);
594 return 0;
595}
596
597/*
598 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
599 *
600 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
601 */
602static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
603 struct ttm_resource *mem)
604{
605 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
606
607 switch (mem->mem_type) {
608 case TTM_PL_SYSTEM:
609 /* system memory */
610 return 0;
611 case TTM_PL_TT:
612 case AMDGPU_PL_PREEMPT:
613 break;
614 case TTM_PL_VRAM:
615 mem->bus.offset = mem->start << PAGE_SHIFT;
616
617 if (adev->mman.aper_base_kaddr &&
618 mem->placement & TTM_PL_FLAG_CONTIGUOUS)
619 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
620 mem->bus.offset;
621
622 mem->bus.offset += adev->gmc.aper_base;
623 mem->bus.is_iomem = true;
624 break;
625 case AMDGPU_PL_DOORBELL:
626 mem->bus.offset = mem->start << PAGE_SHIFT;
627 mem->bus.offset += adev->doorbell.base;
628 mem->bus.is_iomem = true;
629 mem->bus.caching = ttm_uncached;
630 break;
631 default:
632 return -EINVAL;
633 }
634 return 0;
635}
636
637static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
638 unsigned long page_offset)
639{
640 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
641 struct amdgpu_res_cursor cursor;
642
643 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
644 &cursor);
645
646 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
647 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
648
649 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
650}
651
652/**
653 * amdgpu_ttm_domain_start - Returns GPU start address
654 * @adev: amdgpu device object
655 * @type: type of the memory
656 *
657 * Returns:
658 * GPU start address of a memory domain
659 */
660
661uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
662{
663 switch (type) {
664 case TTM_PL_TT:
665 return adev->gmc.gart_start;
666 case TTM_PL_VRAM:
667 return adev->gmc.vram_start;
668 }
669
670 return 0;
671}
672
673/*
674 * TTM backend functions.
675 */
676struct amdgpu_ttm_tt {
677 struct ttm_tt ttm;
678 struct drm_gem_object *gobj;
679 u64 offset;
680 uint64_t userptr;
681 struct task_struct *usertask;
682 uint32_t userflags;
683 bool bound;
684 int32_t pool_id;
685};
686
687#define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm)
688
689#ifdef CONFIG_DRM_AMDGPU_USERPTR
690/*
691 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
692 * memory and start HMM tracking CPU page table update
693 *
694 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
695 * once afterwards to stop HMM tracking
696 */
697int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
698 struct hmm_range **range)
699{
700 struct ttm_tt *ttm = bo->tbo.ttm;
701 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
702 unsigned long start = gtt->userptr;
703 struct vm_area_struct *vma;
704 struct mm_struct *mm;
705 bool readonly;
706 int r = 0;
707
708 /* Make sure get_user_pages_done() can cleanup gracefully */
709 *range = NULL;
710
711 mm = bo->notifier.mm;
712 if (unlikely(!mm)) {
713 DRM_DEBUG_DRIVER("BO is not registered?\n");
714 return -EFAULT;
715 }
716
717 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
718 return -ESRCH;
719
720 mmap_read_lock(mm);
721 vma = vma_lookup(mm, start);
722 if (unlikely(!vma)) {
723 r = -EFAULT;
724 goto out_unlock;
725 }
726 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
727 vma->vm_file)) {
728 r = -EPERM;
729 goto out_unlock;
730 }
731
732 readonly = amdgpu_ttm_tt_is_readonly(ttm);
733 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
734 readonly, NULL, pages, range);
735out_unlock:
736 mmap_read_unlock(mm);
737 if (r)
738 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
739
740 mmput(mm);
741
742 return r;
743}
744
745/* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
746 */
747void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
748 struct hmm_range *range)
749{
750 struct amdgpu_ttm_tt *gtt = (void *)ttm;
751
752 if (gtt && gtt->userptr && range)
753 amdgpu_hmm_range_get_pages_done(range);
754}
755
756/*
757 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
758 * Check if the pages backing this ttm range have been invalidated
759 *
760 * Returns: true if pages are still valid
761 */
762bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
763 struct hmm_range *range)
764{
765 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
766
767 if (!gtt || !gtt->userptr || !range)
768 return false;
769
770 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
771 gtt->userptr, ttm->num_pages);
772
773 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
774
775 return !amdgpu_hmm_range_get_pages_done(range);
776}
777#endif
778
779/*
780 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
781 *
782 * Called by amdgpu_cs_list_validate(). This creates the page list
783 * that backs user memory and will ultimately be mapped into the device
784 * address space.
785 */
786void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
787{
788 unsigned long i;
789
790 for (i = 0; i < ttm->num_pages; ++i)
791 ttm->pages[i] = pages ? pages[i] : NULL;
792}
793
794/*
795 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
796 *
797 * Called by amdgpu_ttm_backend_bind()
798 **/
799static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
800 struct ttm_tt *ttm)
801{
802 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
803 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
804 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
805 enum dma_data_direction direction = write ?
806 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
807 int r;
808
809 /* Allocate an SG array and squash pages into it */
810 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
811 (u64)ttm->num_pages << PAGE_SHIFT,
812 GFP_KERNEL);
813 if (r)
814 goto release_sg;
815
816 /* Map SG to device */
817 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
818 if (r)
819 goto release_sg_table;
820
821 /* convert SG to linear array of pages and dma addresses */
822 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
823 ttm->num_pages);
824
825 return 0;
826
827release_sg_table:
828 sg_free_table(ttm->sg);
829release_sg:
830 kfree(ttm->sg);
831 ttm->sg = NULL;
832 return r;
833}
834
835/*
836 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
837 */
838static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
839 struct ttm_tt *ttm)
840{
841 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
842 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
843 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
844 enum dma_data_direction direction = write ?
845 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
846
847 /* double check that we don't free the table twice */
848 if (!ttm->sg || !ttm->sg->sgl)
849 return;
850
851 /* unmap the pages mapped to the device */
852 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
853 sg_free_table(ttm->sg);
854}
855
856/*
857 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
858 * MQDn+CtrlStackn where n is the number of XCCs per partition.
859 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
860 * and uses memory type default, UC. The rest of pages_per_xcc are
861 * Ctrl stack and modify their memory type to NC.
862 */
863static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
864 struct ttm_tt *ttm, uint64_t flags)
865{
866 struct amdgpu_ttm_tt *gtt = (void *)ttm;
867 uint64_t total_pages = ttm->num_pages;
868 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
869 uint64_t page_idx, pages_per_xcc;
870 int i;
871 uint64_t ctrl_flags = AMDGPU_PTE_MTYPE_VG10(flags, AMDGPU_MTYPE_NC);
872
873 pages_per_xcc = total_pages;
874 do_div(pages_per_xcc, num_xcc);
875
876 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
877 /* MQD page: use default flags */
878 amdgpu_gart_bind(adev,
879 gtt->offset + (page_idx << PAGE_SHIFT),
880 1, >t->ttm.dma_address[page_idx], flags);
881 /*
882 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
883 * the second page of the BO onward.
884 */
885 amdgpu_gart_bind(adev,
886 gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
887 pages_per_xcc - 1,
888 >t->ttm.dma_address[page_idx + 1],
889 ctrl_flags);
890 }
891}
892
893static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
894 struct ttm_buffer_object *tbo,
895 uint64_t flags)
896{
897 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
898 struct ttm_tt *ttm = tbo->ttm;
899 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
900
901 if (amdgpu_bo_encrypted(abo))
902 flags |= AMDGPU_PTE_TMZ;
903
904 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
905 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
906 } else {
907 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
908 gtt->ttm.dma_address, flags);
909 }
910 gtt->bound = true;
911}
912
913/*
914 * amdgpu_ttm_backend_bind - Bind GTT memory
915 *
916 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
917 * This handles binding GTT memory to the device address space.
918 */
919static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
920 struct ttm_tt *ttm,
921 struct ttm_resource *bo_mem)
922{
923 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
924 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
925 uint64_t flags;
926 int r;
927
928 if (!bo_mem)
929 return -EINVAL;
930
931 if (gtt->bound)
932 return 0;
933
934 if (gtt->userptr) {
935 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
936 if (r) {
937 DRM_ERROR("failed to pin userptr\n");
938 return r;
939 }
940 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
941 if (!ttm->sg) {
942 struct dma_buf_attachment *attach;
943 struct sg_table *sgt;
944
945 attach = gtt->gobj->import_attach;
946 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
947 if (IS_ERR(sgt))
948 return PTR_ERR(sgt);
949
950 ttm->sg = sgt;
951 }
952
953 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
954 ttm->num_pages);
955 }
956
957 if (!ttm->num_pages) {
958 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
959 ttm->num_pages, bo_mem, ttm);
960 }
961
962 if (bo_mem->mem_type != TTM_PL_TT ||
963 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
964 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
965 return 0;
966 }
967
968 /* compute PTE flags relevant to this BO memory */
969 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
970
971 /* bind pages into GART page tables */
972 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
973 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
974 gtt->ttm.dma_address, flags);
975 gtt->bound = true;
976 return 0;
977}
978
979/*
980 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
981 * through AGP or GART aperture.
982 *
983 * If bo is accessible through AGP aperture, then use AGP aperture
984 * to access bo; otherwise allocate logical space in GART aperture
985 * and map bo to GART aperture.
986 */
987int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
988{
989 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
990 struct ttm_operation_ctx ctx = { false, false };
991 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
992 struct ttm_placement placement;
993 struct ttm_place placements;
994 struct ttm_resource *tmp;
995 uint64_t addr, flags;
996 int r;
997
998 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
999 return 0;
1000
1001 addr = amdgpu_gmc_agp_addr(bo);
1002 if (addr != AMDGPU_BO_INVALID_OFFSET)
1003 return 0;
1004
1005 /* allocate GART space */
1006 placement.num_placement = 1;
1007 placement.placement = &placements;
1008 placements.fpfn = 0;
1009 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1010 placements.mem_type = TTM_PL_TT;
1011 placements.flags = bo->resource->placement;
1012
1013 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1014 if (unlikely(r))
1015 return r;
1016
1017 /* compute PTE flags for this buffer object */
1018 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
1019
1020 /* Bind pages */
1021 gtt->offset = (u64)tmp->start << PAGE_SHIFT;
1022 amdgpu_ttm_gart_bind(adev, bo, flags);
1023 amdgpu_gart_invalidate_tlb(adev);
1024 ttm_resource_free(bo, &bo->resource);
1025 ttm_bo_assign_mem(bo, tmp);
1026
1027 return 0;
1028}
1029
1030/*
1031 * amdgpu_ttm_recover_gart - Rebind GTT pages
1032 *
1033 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1034 * rebind GTT pages during a GPU reset.
1035 */
1036void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1037{
1038 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1039 uint64_t flags;
1040
1041 if (!tbo->ttm)
1042 return;
1043
1044 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1045 amdgpu_ttm_gart_bind(adev, tbo, flags);
1046}
1047
1048/*
1049 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1050 *
1051 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1052 * ttm_tt_destroy().
1053 */
1054static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1055 struct ttm_tt *ttm)
1056{
1057 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1058 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1059
1060 /* if the pages have userptr pinning then clear that first */
1061 if (gtt->userptr) {
1062 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1063 } else if (ttm->sg && gtt->gobj->import_attach) {
1064 struct dma_buf_attachment *attach;
1065
1066 attach = gtt->gobj->import_attach;
1067 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1068 ttm->sg = NULL;
1069 }
1070
1071 if (!gtt->bound)
1072 return;
1073
1074 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1075 return;
1076
1077 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1078 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1079 gtt->bound = false;
1080}
1081
1082static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1083 struct ttm_tt *ttm)
1084{
1085 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1086
1087 if (gtt->usertask)
1088 put_task_struct(gtt->usertask);
1089
1090 ttm_tt_fini(>t->ttm);
1091 kfree(gtt);
1092}
1093
1094/**
1095 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1096 *
1097 * @bo: The buffer object to create a GTT ttm_tt object around
1098 * @page_flags: Page flags to be added to the ttm_tt object
1099 *
1100 * Called by ttm_tt_create().
1101 */
1102static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1103 uint32_t page_flags)
1104{
1105 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1106 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1107 struct amdgpu_ttm_tt *gtt;
1108 enum ttm_caching caching;
1109
1110 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1111 if (!gtt)
1112 return NULL;
1113
1114 gtt->gobj = &bo->base;
1115 if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1116 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1117 else
1118 gtt->pool_id = abo->xcp_id;
1119
1120 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1121 caching = ttm_write_combined;
1122 else
1123 caching = ttm_cached;
1124
1125 /* allocate space for the uninitialized page entries */
1126 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) {
1127 kfree(gtt);
1128 return NULL;
1129 }
1130 return >t->ttm;
1131}
1132
1133/*
1134 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1135 *
1136 * Map the pages of a ttm_tt object to an address space visible
1137 * to the underlying device.
1138 */
1139static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1140 struct ttm_tt *ttm,
1141 struct ttm_operation_ctx *ctx)
1142{
1143 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1144 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1145 struct ttm_pool *pool;
1146 pgoff_t i;
1147 int ret;
1148
1149 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1150 if (gtt->userptr) {
1151 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1152 if (!ttm->sg)
1153 return -ENOMEM;
1154 return 0;
1155 }
1156
1157 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1158 return 0;
1159
1160 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1161 pool = &adev->mman.ttm_pools[gtt->pool_id];
1162 else
1163 pool = &adev->mman.bdev.pool;
1164 ret = ttm_pool_alloc(pool, ttm, ctx);
1165 if (ret)
1166 return ret;
1167
1168 for (i = 0; i < ttm->num_pages; ++i)
1169 ttm->pages[i]->mapping = bdev->dev_mapping;
1170
1171 return 0;
1172}
1173
1174/*
1175 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1176 *
1177 * Unmaps pages of a ttm_tt object from the device address space and
1178 * unpopulates the page array backing it.
1179 */
1180static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1181 struct ttm_tt *ttm)
1182{
1183 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1184 struct amdgpu_device *adev;
1185 struct ttm_pool *pool;
1186 pgoff_t i;
1187
1188 amdgpu_ttm_backend_unbind(bdev, ttm);
1189
1190 if (gtt->userptr) {
1191 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1192 kfree(ttm->sg);
1193 ttm->sg = NULL;
1194 return;
1195 }
1196
1197 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1198 return;
1199
1200 for (i = 0; i < ttm->num_pages; ++i)
1201 ttm->pages[i]->mapping = NULL;
1202
1203 adev = amdgpu_ttm_adev(bdev);
1204
1205 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1206 pool = &adev->mman.ttm_pools[gtt->pool_id];
1207 else
1208 pool = &adev->mman.bdev.pool;
1209
1210 return ttm_pool_free(pool, ttm);
1211}
1212
1213/**
1214 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1215 * task
1216 *
1217 * @tbo: The ttm_buffer_object that contains the userptr
1218 * @user_addr: The returned value
1219 */
1220int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1221 uint64_t *user_addr)
1222{
1223 struct amdgpu_ttm_tt *gtt;
1224
1225 if (!tbo->ttm)
1226 return -EINVAL;
1227
1228 gtt = (void *)tbo->ttm;
1229 *user_addr = gtt->userptr;
1230 return 0;
1231}
1232
1233/**
1234 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1235 * task
1236 *
1237 * @bo: The ttm_buffer_object to bind this userptr to
1238 * @addr: The address in the current tasks VM space to use
1239 * @flags: Requirements of userptr object.
1240 *
1241 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1242 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1243 * initialize GPU VM for a KFD process.
1244 */
1245int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1246 uint64_t addr, uint32_t flags)
1247{
1248 struct amdgpu_ttm_tt *gtt;
1249
1250 if (!bo->ttm) {
1251 /* TODO: We want a separate TTM object type for userptrs */
1252 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1253 if (bo->ttm == NULL)
1254 return -ENOMEM;
1255 }
1256
1257 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1258 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1259
1260 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1261 gtt->userptr = addr;
1262 gtt->userflags = flags;
1263
1264 if (gtt->usertask)
1265 put_task_struct(gtt->usertask);
1266 gtt->usertask = current->group_leader;
1267 get_task_struct(gtt->usertask);
1268
1269 return 0;
1270}
1271
1272/*
1273 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1274 */
1275struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1276{
1277 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1278
1279 if (gtt == NULL)
1280 return NULL;
1281
1282 if (gtt->usertask == NULL)
1283 return NULL;
1284
1285 return gtt->usertask->mm;
1286}
1287
1288/*
1289 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1290 * address range for the current task.
1291 *
1292 */
1293bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1294 unsigned long end, unsigned long *userptr)
1295{
1296 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1297 unsigned long size;
1298
1299 if (gtt == NULL || !gtt->userptr)
1300 return false;
1301
1302 /* Return false if no part of the ttm_tt object lies within
1303 * the range
1304 */
1305 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1306 if (gtt->userptr > end || gtt->userptr + size <= start)
1307 return false;
1308
1309 if (userptr)
1310 *userptr = gtt->userptr;
1311 return true;
1312}
1313
1314/*
1315 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1316 */
1317bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1318{
1319 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1320
1321 if (gtt == NULL || !gtt->userptr)
1322 return false;
1323
1324 return true;
1325}
1326
1327/*
1328 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1329 */
1330bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1331{
1332 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1333
1334 if (gtt == NULL)
1335 return false;
1336
1337 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1338}
1339
1340/**
1341 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1342 *
1343 * @ttm: The ttm_tt object to compute the flags for
1344 * @mem: The memory registry backing this ttm_tt object
1345 *
1346 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1347 */
1348uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1349{
1350 uint64_t flags = 0;
1351
1352 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1353 flags |= AMDGPU_PTE_VALID;
1354
1355 if (mem && (mem->mem_type == TTM_PL_TT ||
1356 mem->mem_type == AMDGPU_PL_DOORBELL ||
1357 mem->mem_type == AMDGPU_PL_PREEMPT)) {
1358 flags |= AMDGPU_PTE_SYSTEM;
1359
1360 if (ttm->caching == ttm_cached)
1361 flags |= AMDGPU_PTE_SNOOPED;
1362 }
1363
1364 if (mem && mem->mem_type == TTM_PL_VRAM &&
1365 mem->bus.caching == ttm_cached)
1366 flags |= AMDGPU_PTE_SNOOPED;
1367
1368 return flags;
1369}
1370
1371/**
1372 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1373 *
1374 * @adev: amdgpu_device pointer
1375 * @ttm: The ttm_tt object to compute the flags for
1376 * @mem: The memory registry backing this ttm_tt object
1377 *
1378 * Figure out the flags to use for a VM PTE (Page Table Entry).
1379 */
1380uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1381 struct ttm_resource *mem)
1382{
1383 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1384
1385 flags |= adev->gart.gart_pte_flags;
1386 flags |= AMDGPU_PTE_READABLE;
1387
1388 if (!amdgpu_ttm_tt_is_readonly(ttm))
1389 flags |= AMDGPU_PTE_WRITEABLE;
1390
1391 return flags;
1392}
1393
1394/*
1395 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1396 * object.
1397 *
1398 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1399 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1400 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1401 * used to clean out a memory space.
1402 */
1403static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1404 const struct ttm_place *place)
1405{
1406 struct dma_resv_iter resv_cursor;
1407 struct dma_fence *f;
1408
1409 if (!amdgpu_bo_is_amdgpu_bo(bo))
1410 return ttm_bo_eviction_valuable(bo, place);
1411
1412 /* Swapout? */
1413 if (bo->resource->mem_type == TTM_PL_SYSTEM)
1414 return true;
1415
1416 if (bo->type == ttm_bo_type_kernel &&
1417 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1418 return false;
1419
1420 /* If bo is a KFD BO, check if the bo belongs to the current process.
1421 * If true, then return false as any KFD process needs all its BOs to
1422 * be resident to run successfully
1423 */
1424 dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1425 DMA_RESV_USAGE_BOOKKEEP, f) {
1426 if (amdkfd_fence_check_mm(f, current->mm) &&
1427 !(place->flags & TTM_PL_FLAG_CONTIGUOUS))
1428 return false;
1429 }
1430
1431 /* Preemptible BOs don't own system resources managed by the
1432 * driver (pages, VRAM, GART space). They point to resources
1433 * owned by someone else (e.g. pageable memory in user mode
1434 * or a DMABuf). They are used in a preemptible context so we
1435 * can guarantee no deadlocks and good QoS in case of MMU
1436 * notifiers or DMABuf move notifiers from the resource owner.
1437 */
1438 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1439 return false;
1440
1441 if (bo->resource->mem_type == TTM_PL_TT &&
1442 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1443 return false;
1444
1445 return ttm_bo_eviction_valuable(bo, place);
1446}
1447
1448static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1449 void *buf, size_t size, bool write)
1450{
1451 while (size) {
1452 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1453 uint64_t bytes = 4 - (pos & 0x3);
1454 uint32_t shift = (pos & 0x3) * 8;
1455 uint32_t mask = 0xffffffff << shift;
1456 uint32_t value = 0;
1457
1458 if (size < bytes) {
1459 mask &= 0xffffffff >> (bytes - size) * 8;
1460 bytes = size;
1461 }
1462
1463 if (mask != 0xffffffff) {
1464 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1465 if (write) {
1466 value &= ~mask;
1467 value |= (*(uint32_t *)buf << shift) & mask;
1468 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1469 } else {
1470 value = (value & mask) >> shift;
1471 memcpy(buf, &value, bytes);
1472 }
1473 } else {
1474 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1475 }
1476
1477 pos += bytes;
1478 buf += bytes;
1479 size -= bytes;
1480 }
1481}
1482
1483static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1484 unsigned long offset, void *buf,
1485 int len, int write)
1486{
1487 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1488 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1489 struct amdgpu_res_cursor src_mm;
1490 struct amdgpu_job *job;
1491 struct dma_fence *fence;
1492 uint64_t src_addr, dst_addr;
1493 unsigned int num_dw;
1494 int r, idx;
1495
1496 if (len != PAGE_SIZE)
1497 return -EINVAL;
1498
1499 if (!adev->mman.sdma_access_ptr)
1500 return -EACCES;
1501
1502 if (!drm_dev_enter(adev_to_drm(adev), &idx))
1503 return -ENODEV;
1504
1505 if (write)
1506 memcpy(adev->mman.sdma_access_ptr, buf, len);
1507
1508 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1509 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1510 AMDGPU_FENCE_OWNER_UNDEFINED,
1511 num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1512 &job);
1513 if (r)
1514 goto out;
1515
1516 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1517 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1518 src_mm.start;
1519 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1520 if (write)
1521 swap(src_addr, dst_addr);
1522
1523 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1524 PAGE_SIZE, 0);
1525
1526 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1527 WARN_ON(job->ibs[0].length_dw > num_dw);
1528
1529 fence = amdgpu_job_submit(job);
1530
1531 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1532 r = -ETIMEDOUT;
1533 dma_fence_put(fence);
1534
1535 if (!(r || write))
1536 memcpy(buf, adev->mman.sdma_access_ptr, len);
1537out:
1538 drm_dev_exit(idx);
1539 return r;
1540}
1541
1542/**
1543 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1544 *
1545 * @bo: The buffer object to read/write
1546 * @offset: Offset into buffer object
1547 * @buf: Secondary buffer to write/read from
1548 * @len: Length in bytes of access
1549 * @write: true if writing
1550 *
1551 * This is used to access VRAM that backs a buffer object via MMIO
1552 * access for debugging purposes.
1553 */
1554static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1555 unsigned long offset, void *buf, int len,
1556 int write)
1557{
1558 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1559 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1560 struct amdgpu_res_cursor cursor;
1561 int ret = 0;
1562
1563 if (bo->resource->mem_type != TTM_PL_VRAM)
1564 return -EIO;
1565
1566 if (amdgpu_device_has_timeouts_enabled(adev) &&
1567 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1568 return len;
1569
1570 amdgpu_res_first(bo->resource, offset, len, &cursor);
1571 while (cursor.remaining) {
1572 size_t count, size = cursor.size;
1573 loff_t pos = cursor.start;
1574
1575 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1576 size -= count;
1577 if (size) {
1578 /* using MM to access rest vram and handle un-aligned address */
1579 pos += count;
1580 buf += count;
1581 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1582 }
1583
1584 ret += cursor.size;
1585 buf += cursor.size;
1586 amdgpu_res_next(&cursor, cursor.size);
1587 }
1588
1589 return ret;
1590}
1591
1592static void
1593amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1594{
1595 amdgpu_bo_move_notify(bo, false, NULL);
1596}
1597
1598static struct ttm_device_funcs amdgpu_bo_driver = {
1599 .ttm_tt_create = &amdgpu_ttm_tt_create,
1600 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1601 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1602 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1603 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1604 .evict_flags = &amdgpu_evict_flags,
1605 .move = &amdgpu_bo_move,
1606 .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1607 .release_notify = &amdgpu_bo_release_notify,
1608 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1609 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1610 .access_memory = &amdgpu_ttm_access_memory,
1611};
1612
1613/*
1614 * Firmware Reservation functions
1615 */
1616/**
1617 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1618 *
1619 * @adev: amdgpu_device pointer
1620 *
1621 * free fw reserved vram if it has been reserved.
1622 */
1623static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1624{
1625 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1626 NULL, &adev->mman.fw_vram_usage_va);
1627}
1628
1629/*
1630 * Driver Reservation functions
1631 */
1632/**
1633 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1634 *
1635 * @adev: amdgpu_device pointer
1636 *
1637 * free drv reserved vram if it has been reserved.
1638 */
1639static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1640{
1641 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1642 NULL,
1643 &adev->mman.drv_vram_usage_va);
1644}
1645
1646/**
1647 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1648 *
1649 * @adev: amdgpu_device pointer
1650 *
1651 * create bo vram reservation from fw.
1652 */
1653static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1654{
1655 uint64_t vram_size = adev->gmc.visible_vram_size;
1656
1657 adev->mman.fw_vram_usage_va = NULL;
1658 adev->mman.fw_vram_usage_reserved_bo = NULL;
1659
1660 if (adev->mman.fw_vram_usage_size == 0 ||
1661 adev->mman.fw_vram_usage_size > vram_size)
1662 return 0;
1663
1664 return amdgpu_bo_create_kernel_at(adev,
1665 adev->mman.fw_vram_usage_start_offset,
1666 adev->mman.fw_vram_usage_size,
1667 &adev->mman.fw_vram_usage_reserved_bo,
1668 &adev->mman.fw_vram_usage_va);
1669}
1670
1671/**
1672 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1673 *
1674 * @adev: amdgpu_device pointer
1675 *
1676 * create bo vram reservation from drv.
1677 */
1678static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1679{
1680 u64 vram_size = adev->gmc.visible_vram_size;
1681
1682 adev->mman.drv_vram_usage_va = NULL;
1683 adev->mman.drv_vram_usage_reserved_bo = NULL;
1684
1685 if (adev->mman.drv_vram_usage_size == 0 ||
1686 adev->mman.drv_vram_usage_size > vram_size)
1687 return 0;
1688
1689 return amdgpu_bo_create_kernel_at(adev,
1690 adev->mman.drv_vram_usage_start_offset,
1691 adev->mman.drv_vram_usage_size,
1692 &adev->mman.drv_vram_usage_reserved_bo,
1693 &adev->mman.drv_vram_usage_va);
1694}
1695
1696/*
1697 * Memoy training reservation functions
1698 */
1699
1700/**
1701 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1702 *
1703 * @adev: amdgpu_device pointer
1704 *
1705 * free memory training reserved vram if it has been reserved.
1706 */
1707static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1708{
1709 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1710
1711 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1712 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1713 ctx->c2p_bo = NULL;
1714
1715 return 0;
1716}
1717
1718static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1719 uint32_t reserve_size)
1720{
1721 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1722
1723 memset(ctx, 0, sizeof(*ctx));
1724
1725 ctx->c2p_train_data_offset =
1726 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1727 ctx->p2c_train_data_offset =
1728 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1729 ctx->train_data_size =
1730 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1731
1732 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1733 ctx->train_data_size,
1734 ctx->p2c_train_data_offset,
1735 ctx->c2p_train_data_offset);
1736}
1737
1738/*
1739 * reserve TMR memory at the top of VRAM which holds
1740 * IP Discovery data and is protected by PSP.
1741 */
1742static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1743{
1744 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1745 bool mem_train_support = false;
1746 uint32_t reserve_size = 0;
1747 int ret;
1748
1749 if (adev->bios && !amdgpu_sriov_vf(adev)) {
1750 if (amdgpu_atomfirmware_mem_training_supported(adev))
1751 mem_train_support = true;
1752 else
1753 DRM_DEBUG("memory training does not support!\n");
1754 }
1755
1756 /*
1757 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1758 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1759 *
1760 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1761 * discovery data and G6 memory training data respectively
1762 */
1763 if (adev->bios)
1764 reserve_size =
1765 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1766
1767 if (!adev->bios &&
1768 (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) ||
1769 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4)))
1770 reserve_size = max(reserve_size, (uint32_t)280 << 20);
1771 else if (!reserve_size)
1772 reserve_size = DISCOVERY_TMR_OFFSET;
1773
1774 if (mem_train_support) {
1775 /* reserve vram for mem train according to TMR location */
1776 amdgpu_ttm_training_data_block_init(adev, reserve_size);
1777 ret = amdgpu_bo_create_kernel_at(adev,
1778 ctx->c2p_train_data_offset,
1779 ctx->train_data_size,
1780 &ctx->c2p_bo,
1781 NULL);
1782 if (ret) {
1783 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1784 amdgpu_ttm_training_reserve_vram_fini(adev);
1785 return ret;
1786 }
1787 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1788 }
1789
1790 if (!adev->gmc.is_app_apu) {
1791 ret = amdgpu_bo_create_kernel_at(
1792 adev, adev->gmc.real_vram_size - reserve_size,
1793 reserve_size, &adev->mman.fw_reserved_memory, NULL);
1794 if (ret) {
1795 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1796 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1797 NULL, NULL);
1798 return ret;
1799 }
1800 } else {
1801 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1802 }
1803
1804 return 0;
1805}
1806
1807static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1808{
1809 int i;
1810
1811 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1812 return 0;
1813
1814 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1815 sizeof(*adev->mman.ttm_pools),
1816 GFP_KERNEL);
1817 if (!adev->mman.ttm_pools)
1818 return -ENOMEM;
1819
1820 for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1821 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1822 adev->gmc.mem_partitions[i].numa.node,
1823 false, false);
1824 }
1825 return 0;
1826}
1827
1828static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1829{
1830 int i;
1831
1832 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1833 return;
1834
1835 for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1836 ttm_pool_fini(&adev->mman.ttm_pools[i]);
1837
1838 kfree(adev->mman.ttm_pools);
1839 adev->mman.ttm_pools = NULL;
1840}
1841
1842/*
1843 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1844 * gtt/vram related fields.
1845 *
1846 * This initializes all of the memory space pools that the TTM layer
1847 * will need such as the GTT space (system memory mapped to the device),
1848 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1849 * can be mapped per VMID.
1850 */
1851int amdgpu_ttm_init(struct amdgpu_device *adev)
1852{
1853 uint64_t gtt_size;
1854 int r;
1855
1856 mutex_init(&adev->mman.gtt_window_lock);
1857
1858 dma_set_max_seg_size(adev->dev, UINT_MAX);
1859 /* No others user of address space so set it to 0 */
1860 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1861 adev_to_drm(adev)->anon_inode->i_mapping,
1862 adev_to_drm(adev)->vma_offset_manager,
1863 adev->need_swiotlb,
1864 dma_addressing_limited(adev->dev));
1865 if (r) {
1866 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1867 return r;
1868 }
1869
1870 r = amdgpu_ttm_pools_init(adev);
1871 if (r) {
1872 DRM_ERROR("failed to init ttm pools(%d).\n", r);
1873 return r;
1874 }
1875 adev->mman.initialized = true;
1876
1877 /* Initialize VRAM pool with all of VRAM divided into pages */
1878 r = amdgpu_vram_mgr_init(adev);
1879 if (r) {
1880 DRM_ERROR("Failed initializing VRAM heap.\n");
1881 return r;
1882 }
1883
1884 /* Change the size here instead of the init above so only lpfn is affected */
1885 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1886#ifdef CONFIG_64BIT
1887#ifdef CONFIG_X86
1888 if (adev->gmc.xgmi.connected_to_cpu)
1889 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1890 adev->gmc.visible_vram_size);
1891
1892 else if (adev->gmc.is_app_apu)
1893 DRM_DEBUG_DRIVER(
1894 "No need to ioremap when real vram size is 0\n");
1895 else
1896#endif
1897 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1898 adev->gmc.visible_vram_size);
1899#endif
1900
1901 /*
1902 *The reserved vram for firmware must be pinned to the specified
1903 *place on the VRAM, so reserve it early.
1904 */
1905 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1906 if (r)
1907 return r;
1908
1909 /*
1910 *The reserved vram for driver must be pinned to the specified
1911 *place on the VRAM, so reserve it early.
1912 */
1913 r = amdgpu_ttm_drv_reserve_vram_init(adev);
1914 if (r)
1915 return r;
1916
1917 /*
1918 * only NAVI10 and onwards ASIC support for IP discovery.
1919 * If IP discovery enabled, a block of memory should be
1920 * reserved for IP discovey.
1921 */
1922 if (adev->mman.discovery_bin) {
1923 r = amdgpu_ttm_reserve_tmr(adev);
1924 if (r)
1925 return r;
1926 }
1927
1928 /* allocate memory as required for VGA
1929 * This is used for VGA emulation and pre-OS scanout buffers to
1930 * avoid display artifacts while transitioning between pre-OS
1931 * and driver.
1932 */
1933 if (!adev->gmc.is_app_apu) {
1934 r = amdgpu_bo_create_kernel_at(adev, 0,
1935 adev->mman.stolen_vga_size,
1936 &adev->mman.stolen_vga_memory,
1937 NULL);
1938 if (r)
1939 return r;
1940
1941 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1942 adev->mman.stolen_extended_size,
1943 &adev->mman.stolen_extended_memory,
1944 NULL);
1945
1946 if (r)
1947 return r;
1948
1949 r = amdgpu_bo_create_kernel_at(adev,
1950 adev->mman.stolen_reserved_offset,
1951 adev->mman.stolen_reserved_size,
1952 &adev->mman.stolen_reserved_memory,
1953 NULL);
1954 if (r)
1955 return r;
1956 } else {
1957 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1958 }
1959
1960 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1961 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1962
1963 /* Compute GTT size, either based on TTM limit
1964 * or whatever the user passed on module init.
1965 */
1966 if (amdgpu_gtt_size == -1)
1967 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1968 else
1969 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1970
1971 /* Initialize GTT memory pool */
1972 r = amdgpu_gtt_mgr_init(adev, gtt_size);
1973 if (r) {
1974 DRM_ERROR("Failed initializing GTT heap.\n");
1975 return r;
1976 }
1977 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1978 (unsigned int)(gtt_size / (1024 * 1024)));
1979
1980 /* Initialize doorbell pool on PCI BAR */
1981 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1982 if (r) {
1983 DRM_ERROR("Failed initializing doorbell heap.\n");
1984 return r;
1985 }
1986
1987 /* Create a boorbell page for kernel usages */
1988 r = amdgpu_doorbell_create_kernel_doorbells(adev);
1989 if (r) {
1990 DRM_ERROR("Failed to initialize kernel doorbells.\n");
1991 return r;
1992 }
1993
1994 /* Initialize preemptible memory pool */
1995 r = amdgpu_preempt_mgr_init(adev);
1996 if (r) {
1997 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1998 return r;
1999 }
2000
2001 /* Initialize various on-chip memory pools */
2002 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
2003 if (r) {
2004 DRM_ERROR("Failed initializing GDS heap.\n");
2005 return r;
2006 }
2007
2008 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
2009 if (r) {
2010 DRM_ERROR("Failed initializing gws heap.\n");
2011 return r;
2012 }
2013
2014 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
2015 if (r) {
2016 DRM_ERROR("Failed initializing oa heap.\n");
2017 return r;
2018 }
2019 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
2020 AMDGPU_GEM_DOMAIN_GTT,
2021 &adev->mman.sdma_access_bo, NULL,
2022 &adev->mman.sdma_access_ptr))
2023 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
2024
2025 return 0;
2026}
2027
2028/*
2029 * amdgpu_ttm_fini - De-initialize the TTM memory pools
2030 */
2031void amdgpu_ttm_fini(struct amdgpu_device *adev)
2032{
2033 int idx;
2034
2035 if (!adev->mman.initialized)
2036 return;
2037
2038 amdgpu_ttm_pools_fini(adev);
2039
2040 amdgpu_ttm_training_reserve_vram_fini(adev);
2041 /* return the stolen vga memory back to VRAM */
2042 if (!adev->gmc.is_app_apu) {
2043 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2044 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2045 /* return the FW reserved memory back to VRAM */
2046 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2047 NULL);
2048 if (adev->mman.stolen_reserved_size)
2049 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2050 NULL, NULL);
2051 }
2052 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2053 &adev->mman.sdma_access_ptr);
2054 amdgpu_ttm_fw_reserve_vram_fini(adev);
2055 amdgpu_ttm_drv_reserve_vram_fini(adev);
2056
2057 if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2058
2059 if (adev->mman.aper_base_kaddr)
2060 iounmap(adev->mman.aper_base_kaddr);
2061 adev->mman.aper_base_kaddr = NULL;
2062
2063 drm_dev_exit(idx);
2064 }
2065
2066 amdgpu_vram_mgr_fini(adev);
2067 amdgpu_gtt_mgr_fini(adev);
2068 amdgpu_preempt_mgr_fini(adev);
2069 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2070 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2071 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2072 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_DOORBELL);
2073 ttm_device_fini(&adev->mman.bdev);
2074 adev->mman.initialized = false;
2075 DRM_INFO("amdgpu: ttm finalized\n");
2076}
2077
2078/**
2079 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2080 *
2081 * @adev: amdgpu_device pointer
2082 * @enable: true when we can use buffer functions.
2083 *
2084 * Enable/disable use of buffer functions during suspend/resume. This should
2085 * only be called at bootup or when userspace isn't running.
2086 */
2087void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2088{
2089 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2090 uint64_t size;
2091 int r;
2092
2093 if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2094 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2095 return;
2096
2097 if (enable) {
2098 struct amdgpu_ring *ring;
2099 struct drm_gpu_scheduler *sched;
2100
2101 ring = adev->mman.buffer_funcs_ring;
2102 sched = &ring->sched;
2103 r = drm_sched_entity_init(&adev->mman.high_pr,
2104 DRM_SCHED_PRIORITY_KERNEL, &sched,
2105 1, NULL);
2106 if (r) {
2107 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2108 r);
2109 return;
2110 }
2111
2112 r = drm_sched_entity_init(&adev->mman.low_pr,
2113 DRM_SCHED_PRIORITY_NORMAL, &sched,
2114 1, NULL);
2115 if (r) {
2116 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2117 r);
2118 goto error_free_entity;
2119 }
2120 } else {
2121 drm_sched_entity_destroy(&adev->mman.high_pr);
2122 drm_sched_entity_destroy(&adev->mman.low_pr);
2123 dma_fence_put(man->move);
2124 man->move = NULL;
2125 }
2126
2127 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2128 if (enable)
2129 size = adev->gmc.real_vram_size;
2130 else
2131 size = adev->gmc.visible_vram_size;
2132 man->size = size;
2133 adev->mman.buffer_funcs_enabled = enable;
2134
2135 return;
2136
2137error_free_entity:
2138 drm_sched_entity_destroy(&adev->mman.high_pr);
2139}
2140
2141static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2142 bool direct_submit,
2143 unsigned int num_dw,
2144 struct dma_resv *resv,
2145 bool vm_needs_flush,
2146 struct amdgpu_job **job,
2147 bool delayed)
2148{
2149 enum amdgpu_ib_pool_type pool = direct_submit ?
2150 AMDGPU_IB_POOL_DIRECT :
2151 AMDGPU_IB_POOL_DELAYED;
2152 int r;
2153 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2154 &adev->mman.high_pr;
2155 r = amdgpu_job_alloc_with_ib(adev, entity,
2156 AMDGPU_FENCE_OWNER_UNDEFINED,
2157 num_dw * 4, pool, job);
2158 if (r)
2159 return r;
2160
2161 if (vm_needs_flush) {
2162 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2163 adev->gmc.pdb0_bo :
2164 adev->gart.bo);
2165 (*job)->vm_needs_flush = true;
2166 }
2167 if (!resv)
2168 return 0;
2169
2170 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2171 DMA_RESV_USAGE_BOOKKEEP);
2172}
2173
2174int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2175 uint64_t dst_offset, uint32_t byte_count,
2176 struct dma_resv *resv,
2177 struct dma_fence **fence, bool direct_submit,
2178 bool vm_needs_flush, uint32_t copy_flags)
2179{
2180 struct amdgpu_device *adev = ring->adev;
2181 unsigned int num_loops, num_dw;
2182 struct amdgpu_job *job;
2183 uint32_t max_bytes;
2184 unsigned int i;
2185 int r;
2186
2187 if (!direct_submit && !ring->sched.ready) {
2188 DRM_ERROR("Trying to move memory with ring turned off.\n");
2189 return -EINVAL;
2190 }
2191
2192 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2193 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2194 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2195 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2196 resv, vm_needs_flush, &job, false);
2197 if (r)
2198 return r;
2199
2200 for (i = 0; i < num_loops; i++) {
2201 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2202
2203 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2204 dst_offset, cur_size_in_bytes, copy_flags);
2205 src_offset += cur_size_in_bytes;
2206 dst_offset += cur_size_in_bytes;
2207 byte_count -= cur_size_in_bytes;
2208 }
2209
2210 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2211 WARN_ON(job->ibs[0].length_dw > num_dw);
2212 if (direct_submit)
2213 r = amdgpu_job_submit_direct(job, ring, fence);
2214 else
2215 *fence = amdgpu_job_submit(job);
2216 if (r)
2217 goto error_free;
2218
2219 return r;
2220
2221error_free:
2222 amdgpu_job_free(job);
2223 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2224 return r;
2225}
2226
2227static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2228 uint64_t dst_addr, uint32_t byte_count,
2229 struct dma_resv *resv,
2230 struct dma_fence **fence,
2231 bool vm_needs_flush, bool delayed)
2232{
2233 struct amdgpu_device *adev = ring->adev;
2234 unsigned int num_loops, num_dw;
2235 struct amdgpu_job *job;
2236 uint32_t max_bytes;
2237 unsigned int i;
2238 int r;
2239
2240 max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2241 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2242 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2243 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2244 &job, delayed);
2245 if (r)
2246 return r;
2247
2248 for (i = 0; i < num_loops; i++) {
2249 uint32_t cur_size = min(byte_count, max_bytes);
2250
2251 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2252 cur_size);
2253
2254 dst_addr += cur_size;
2255 byte_count -= cur_size;
2256 }
2257
2258 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2259 WARN_ON(job->ibs[0].length_dw > num_dw);
2260 *fence = amdgpu_job_submit(job);
2261 return 0;
2262}
2263
2264/**
2265 * amdgpu_ttm_clear_buffer - clear memory buffers
2266 * @bo: amdgpu buffer object
2267 * @resv: reservation object
2268 * @fence: dma_fence associated with the operation
2269 *
2270 * Clear the memory buffer resource.
2271 *
2272 * Returns:
2273 * 0 for success or a negative error code on failure.
2274 */
2275int amdgpu_ttm_clear_buffer(struct amdgpu_bo *bo,
2276 struct dma_resv *resv,
2277 struct dma_fence **fence)
2278{
2279 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2280 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2281 struct amdgpu_res_cursor cursor;
2282 u64 addr;
2283 int r = 0;
2284
2285 if (!adev->mman.buffer_funcs_enabled)
2286 return -EINVAL;
2287
2288 if (!fence)
2289 return -EINVAL;
2290
2291 *fence = dma_fence_get_stub();
2292
2293 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &cursor);
2294
2295 mutex_lock(&adev->mman.gtt_window_lock);
2296 while (cursor.remaining) {
2297 struct dma_fence *next = NULL;
2298 u64 size;
2299
2300 if (amdgpu_res_cleared(&cursor)) {
2301 amdgpu_res_next(&cursor, cursor.size);
2302 continue;
2303 }
2304
2305 /* Never clear more than 256MiB at once to avoid timeouts */
2306 size = min(cursor.size, 256ULL << 20);
2307
2308 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &cursor,
2309 1, ring, false, &size, &addr);
2310 if (r)
2311 goto err;
2312
2313 r = amdgpu_ttm_fill_mem(ring, 0, addr, size, resv,
2314 &next, true, true);
2315 if (r)
2316 goto err;
2317
2318 dma_fence_put(*fence);
2319 *fence = next;
2320
2321 amdgpu_res_next(&cursor, size);
2322 }
2323err:
2324 mutex_unlock(&adev->mman.gtt_window_lock);
2325
2326 return r;
2327}
2328
2329int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2330 uint32_t src_data,
2331 struct dma_resv *resv,
2332 struct dma_fence **f,
2333 bool delayed)
2334{
2335 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2336 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2337 struct dma_fence *fence = NULL;
2338 struct amdgpu_res_cursor dst;
2339 int r;
2340
2341 if (!adev->mman.buffer_funcs_enabled) {
2342 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2343 return -EINVAL;
2344 }
2345
2346 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2347
2348 mutex_lock(&adev->mman.gtt_window_lock);
2349 while (dst.remaining) {
2350 struct dma_fence *next;
2351 uint64_t cur_size, to;
2352
2353 /* Never fill more than 256MiB at once to avoid timeouts */
2354 cur_size = min(dst.size, 256ULL << 20);
2355
2356 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2357 1, ring, false, &cur_size, &to);
2358 if (r)
2359 goto error;
2360
2361 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2362 &next, true, delayed);
2363 if (r)
2364 goto error;
2365
2366 dma_fence_put(fence);
2367 fence = next;
2368
2369 amdgpu_res_next(&dst, cur_size);
2370 }
2371error:
2372 mutex_unlock(&adev->mman.gtt_window_lock);
2373 if (f)
2374 *f = dma_fence_get(fence);
2375 dma_fence_put(fence);
2376 return r;
2377}
2378
2379/**
2380 * amdgpu_ttm_evict_resources - evict memory buffers
2381 * @adev: amdgpu device object
2382 * @mem_type: evicted BO's memory type
2383 *
2384 * Evicts all @mem_type buffers on the lru list of the memory type.
2385 *
2386 * Returns:
2387 * 0 for success or a negative error code on failure.
2388 */
2389int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2390{
2391 struct ttm_resource_manager *man;
2392
2393 switch (mem_type) {
2394 case TTM_PL_VRAM:
2395 case TTM_PL_TT:
2396 case AMDGPU_PL_GWS:
2397 case AMDGPU_PL_GDS:
2398 case AMDGPU_PL_OA:
2399 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2400 break;
2401 default:
2402 DRM_ERROR("Trying to evict invalid memory type\n");
2403 return -EINVAL;
2404 }
2405
2406 return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2407}
2408
2409#if defined(CONFIG_DEBUG_FS)
2410
2411static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2412{
2413 struct amdgpu_device *adev = m->private;
2414
2415 return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2416}
2417
2418DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2419
2420/*
2421 * amdgpu_ttm_vram_read - Linear read access to VRAM
2422 *
2423 * Accesses VRAM via MMIO for debugging purposes.
2424 */
2425static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2426 size_t size, loff_t *pos)
2427{
2428 struct amdgpu_device *adev = file_inode(f)->i_private;
2429 ssize_t result = 0;
2430
2431 if (size & 0x3 || *pos & 0x3)
2432 return -EINVAL;
2433
2434 if (*pos >= adev->gmc.mc_vram_size)
2435 return -ENXIO;
2436
2437 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2438 while (size) {
2439 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2440 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2441
2442 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2443 if (copy_to_user(buf, value, bytes))
2444 return -EFAULT;
2445
2446 result += bytes;
2447 buf += bytes;
2448 *pos += bytes;
2449 size -= bytes;
2450 }
2451
2452 return result;
2453}
2454
2455/*
2456 * amdgpu_ttm_vram_write - Linear write access to VRAM
2457 *
2458 * Accesses VRAM via MMIO for debugging purposes.
2459 */
2460static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2461 size_t size, loff_t *pos)
2462{
2463 struct amdgpu_device *adev = file_inode(f)->i_private;
2464 ssize_t result = 0;
2465 int r;
2466
2467 if (size & 0x3 || *pos & 0x3)
2468 return -EINVAL;
2469
2470 if (*pos >= adev->gmc.mc_vram_size)
2471 return -ENXIO;
2472
2473 while (size) {
2474 uint32_t value;
2475
2476 if (*pos >= adev->gmc.mc_vram_size)
2477 return result;
2478
2479 r = get_user(value, (uint32_t *)buf);
2480 if (r)
2481 return r;
2482
2483 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2484
2485 result += 4;
2486 buf += 4;
2487 *pos += 4;
2488 size -= 4;
2489 }
2490
2491 return result;
2492}
2493
2494static const struct file_operations amdgpu_ttm_vram_fops = {
2495 .owner = THIS_MODULE,
2496 .read = amdgpu_ttm_vram_read,
2497 .write = amdgpu_ttm_vram_write,
2498 .llseek = default_llseek,
2499};
2500
2501/*
2502 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2503 *
2504 * This function is used to read memory that has been mapped to the
2505 * GPU and the known addresses are not physical addresses but instead
2506 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2507 */
2508static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2509 size_t size, loff_t *pos)
2510{
2511 struct amdgpu_device *adev = file_inode(f)->i_private;
2512 struct iommu_domain *dom;
2513 ssize_t result = 0;
2514 int r;
2515
2516 /* retrieve the IOMMU domain if any for this device */
2517 dom = iommu_get_domain_for_dev(adev->dev);
2518
2519 while (size) {
2520 phys_addr_t addr = *pos & PAGE_MASK;
2521 loff_t off = *pos & ~PAGE_MASK;
2522 size_t bytes = PAGE_SIZE - off;
2523 unsigned long pfn;
2524 struct page *p;
2525 void *ptr;
2526
2527 bytes = min(bytes, size);
2528
2529 /* Translate the bus address to a physical address. If
2530 * the domain is NULL it means there is no IOMMU active
2531 * and the address translation is the identity
2532 */
2533 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2534
2535 pfn = addr >> PAGE_SHIFT;
2536 if (!pfn_valid(pfn))
2537 return -EPERM;
2538
2539 p = pfn_to_page(pfn);
2540 if (p->mapping != adev->mman.bdev.dev_mapping)
2541 return -EPERM;
2542
2543 ptr = kmap_local_page(p);
2544 r = copy_to_user(buf, ptr + off, bytes);
2545 kunmap_local(ptr);
2546 if (r)
2547 return -EFAULT;
2548
2549 size -= bytes;
2550 *pos += bytes;
2551 result += bytes;
2552 }
2553
2554 return result;
2555}
2556
2557/*
2558 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2559 *
2560 * This function is used to write memory that has been mapped to the
2561 * GPU and the known addresses are not physical addresses but instead
2562 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2563 */
2564static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2565 size_t size, loff_t *pos)
2566{
2567 struct amdgpu_device *adev = file_inode(f)->i_private;
2568 struct iommu_domain *dom;
2569 ssize_t result = 0;
2570 int r;
2571
2572 dom = iommu_get_domain_for_dev(adev->dev);
2573
2574 while (size) {
2575 phys_addr_t addr = *pos & PAGE_MASK;
2576 loff_t off = *pos & ~PAGE_MASK;
2577 size_t bytes = PAGE_SIZE - off;
2578 unsigned long pfn;
2579 struct page *p;
2580 void *ptr;
2581
2582 bytes = min(bytes, size);
2583
2584 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2585
2586 pfn = addr >> PAGE_SHIFT;
2587 if (!pfn_valid(pfn))
2588 return -EPERM;
2589
2590 p = pfn_to_page(pfn);
2591 if (p->mapping != adev->mman.bdev.dev_mapping)
2592 return -EPERM;
2593
2594 ptr = kmap_local_page(p);
2595 r = copy_from_user(ptr + off, buf, bytes);
2596 kunmap_local(ptr);
2597 if (r)
2598 return -EFAULT;
2599
2600 size -= bytes;
2601 *pos += bytes;
2602 result += bytes;
2603 }
2604
2605 return result;
2606}
2607
2608static const struct file_operations amdgpu_ttm_iomem_fops = {
2609 .owner = THIS_MODULE,
2610 .read = amdgpu_iomem_read,
2611 .write = amdgpu_iomem_write,
2612 .llseek = default_llseek
2613};
2614
2615#endif
2616
2617void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2618{
2619#if defined(CONFIG_DEBUG_FS)
2620 struct drm_minor *minor = adev_to_drm(adev)->primary;
2621 struct dentry *root = minor->debugfs_root;
2622
2623 debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2624 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2625 debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2626 &amdgpu_ttm_iomem_fops);
2627 debugfs_create_file("ttm_page_pool", 0444, root, adev,
2628 &amdgpu_ttm_page_pool_fops);
2629 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2630 TTM_PL_VRAM),
2631 root, "amdgpu_vram_mm");
2632 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2633 TTM_PL_TT),
2634 root, "amdgpu_gtt_mm");
2635 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2636 AMDGPU_PL_GDS),
2637 root, "amdgpu_gds_mm");
2638 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2639 AMDGPU_PL_GWS),
2640 root, "amdgpu_gws_mm");
2641 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2642 AMDGPU_PL_OA),
2643 root, "amdgpu_oa_mm");
2644
2645#endif
2646}