Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v6.8
   1/*
   2 * Copyright 2009 Jerome Glisse.
   3 * All Rights Reserved.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the
   7 * "Software"), to deal in the Software without restriction, including
   8 * without limitation the rights to use, copy, modify, merge, publish,
   9 * distribute, sub license, and/or sell copies of the Software, and to
  10 * permit persons to whom the Software is furnished to do so, subject to
  11 * the following conditions:
  12 *
  13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  20 *
  21 * The above copyright notice and this permission notice (including the
  22 * next paragraph) shall be included in all copies or substantial portions
  23 * of the Software.
  24 *
  25 */
  26/*
  27 * Authors:
  28 *    Jerome Glisse <glisse@freedesktop.org>
  29 *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
  30 *    Dave Airlie
  31 */
  32
  33#include <linux/dma-mapping.h>
  34#include <linux/iommu.h>
  35#include <linux/pagemap.h>
  36#include <linux/sched/task.h>
  37#include <linux/sched/mm.h>
  38#include <linux/seq_file.h>
  39#include <linux/slab.h>
  40#include <linux/swap.h>
  41#include <linux/dma-buf.h>
  42#include <linux/sizes.h>
  43#include <linux/module.h>
  44
  45#include <drm/drm_drv.h>
  46#include <drm/ttm/ttm_bo.h>
  47#include <drm/ttm/ttm_placement.h>
  48#include <drm/ttm/ttm_range_manager.h>
  49#include <drm/ttm/ttm_tt.h>
  50
  51#include <drm/amdgpu_drm.h>
  52
  53#include "amdgpu.h"
  54#include "amdgpu_object.h"
  55#include "amdgpu_trace.h"
  56#include "amdgpu_amdkfd.h"
  57#include "amdgpu_sdma.h"
  58#include "amdgpu_ras.h"
  59#include "amdgpu_hmm.h"
  60#include "amdgpu_atomfirmware.h"
  61#include "amdgpu_res_cursor.h"
  62#include "bif/bif_4_1_d.h"
  63
  64MODULE_IMPORT_NS(DMA_BUF);
  65
  66#define AMDGPU_TTM_VRAM_MAX_DW_READ	((size_t)128)
  67
  68static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
  69				   struct ttm_tt *ttm,
  70				   struct ttm_resource *bo_mem);
  71static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
  72				      struct ttm_tt *ttm);
  73
  74static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
  75				    unsigned int type,
  76				    uint64_t size_in_page)
  77{
  78	return ttm_range_man_init(&adev->mman.bdev, type,
  79				  false, size_in_page);
  80}
  81
  82/**
  83 * amdgpu_evict_flags - Compute placement flags
  84 *
  85 * @bo: The buffer object to evict
  86 * @placement: Possible destination(s) for evicted BO
  87 *
  88 * Fill in placement data when ttm_bo_evict() is called
  89 */
  90static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
  91				struct ttm_placement *placement)
  92{
  93	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
  94	struct amdgpu_bo *abo;
  95	static const struct ttm_place placements = {
  96		.fpfn = 0,
  97		.lpfn = 0,
  98		.mem_type = TTM_PL_SYSTEM,
  99		.flags = 0
 100	};
 101
 102	/* Don't handle scatter gather BOs */
 103	if (bo->type == ttm_bo_type_sg) {
 104		placement->num_placement = 0;
 105		placement->num_busy_placement = 0;
 106		return;
 107	}
 108
 109	/* Object isn't an AMDGPU object so ignore */
 110	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
 111		placement->placement = &placements;
 112		placement->busy_placement = &placements;
 113		placement->num_placement = 1;
 114		placement->num_busy_placement = 1;
 115		return;
 116	}
 117
 118	abo = ttm_to_amdgpu_bo(bo);
 119	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
 120		placement->num_placement = 0;
 121		placement->num_busy_placement = 0;
 122		return;
 123	}
 124
 125	switch (bo->resource->mem_type) {
 126	case AMDGPU_PL_GDS:
 127	case AMDGPU_PL_GWS:
 128	case AMDGPU_PL_OA:
 129	case AMDGPU_PL_DOORBELL:
 130		placement->num_placement = 0;
 131		placement->num_busy_placement = 0;
 132		return;
 133
 134	case TTM_PL_VRAM:
 135		if (!adev->mman.buffer_funcs_enabled) {
 136			/* Move to system memory */
 137			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
 
 138		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
 139			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
 140			   amdgpu_bo_in_cpu_visible_vram(abo)) {
 141
 142			/* Try evicting to the CPU inaccessible part of VRAM
 143			 * first, but only set GTT as busy placement, so this
 144			 * BO will be evicted to GTT rather than causing other
 145			 * BOs to be evicted from VRAM
 146			 */
 147			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
 148							AMDGPU_GEM_DOMAIN_GTT |
 149							AMDGPU_GEM_DOMAIN_CPU);
 150			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
 151			abo->placements[0].lpfn = 0;
 152			abo->placement.busy_placement = &abo->placements[1];
 153			abo->placement.num_busy_placement = 1;
 154		} else {
 155			/* Move to GTT memory */
 156			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
 157							AMDGPU_GEM_DOMAIN_CPU);
 158		}
 159		break;
 160	case TTM_PL_TT:
 161	case AMDGPU_PL_PREEMPT:
 162	default:
 163		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
 164		break;
 165	}
 166	*placement = abo->placement;
 167}
 168
 169/**
 170 * amdgpu_ttm_map_buffer - Map memory into the GART windows
 171 * @bo: buffer object to map
 172 * @mem: memory object to map
 173 * @mm_cur: range to map
 174 * @window: which GART window to use
 175 * @ring: DMA ring to use for the copy
 176 * @tmz: if we should setup a TMZ enabled mapping
 177 * @size: in number of bytes to map, out number of bytes mapped
 178 * @addr: resulting address inside the MC address space
 179 *
 180 * Setup one of the GART windows to access a specific piece of memory or return
 181 * the physical address for local memory.
 182 */
 183static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
 184				 struct ttm_resource *mem,
 185				 struct amdgpu_res_cursor *mm_cur,
 186				 unsigned int window, struct amdgpu_ring *ring,
 187				 bool tmz, uint64_t *size, uint64_t *addr)
 188{
 189	struct amdgpu_device *adev = ring->adev;
 190	unsigned int offset, num_pages, num_dw, num_bytes;
 191	uint64_t src_addr, dst_addr;
 192	struct amdgpu_job *job;
 193	void *cpu_addr;
 194	uint64_t flags;
 195	unsigned int i;
 196	int r;
 197
 198	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
 199	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
 200
 201	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
 202		return -EINVAL;
 203
 204	/* Map only what can't be accessed directly */
 205	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
 206		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
 207			mm_cur->start;
 208		return 0;
 209	}
 210
 211
 212	/*
 213	 * If start begins at an offset inside the page, then adjust the size
 214	 * and addr accordingly
 215	 */
 216	offset = mm_cur->start & ~PAGE_MASK;
 217
 218	num_pages = PFN_UP(*size + offset);
 219	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
 220
 221	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
 222
 223	*addr = adev->gmc.gart_start;
 224	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
 225		AMDGPU_GPU_PAGE_SIZE;
 226	*addr += offset;
 227
 228	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
 229	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
 230
 231	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
 232				     AMDGPU_FENCE_OWNER_UNDEFINED,
 233				     num_dw * 4 + num_bytes,
 234				     AMDGPU_IB_POOL_DELAYED, &job);
 235	if (r)
 236		return r;
 237
 238	src_addr = num_dw * 4;
 239	src_addr += job->ibs[0].gpu_addr;
 240
 241	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
 242	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
 243	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
 244				dst_addr, num_bytes, false);
 245
 246	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
 247	WARN_ON(job->ibs[0].length_dw > num_dw);
 248
 249	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
 250	if (tmz)
 251		flags |= AMDGPU_PTE_TMZ;
 252
 253	cpu_addr = &job->ibs[0].ptr[num_dw];
 254
 255	if (mem->mem_type == TTM_PL_TT) {
 256		dma_addr_t *dma_addr;
 257
 258		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
 259		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
 260	} else {
 261		dma_addr_t dma_address;
 262
 263		dma_address = mm_cur->start;
 264		dma_address += adev->vm_manager.vram_base_offset;
 265
 266		for (i = 0; i < num_pages; ++i) {
 267			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
 268					flags, cpu_addr);
 269			dma_address += PAGE_SIZE;
 270		}
 271	}
 272
 273	dma_fence_put(amdgpu_job_submit(job));
 274	return 0;
 275}
 276
 277/**
 278 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
 279 * @adev: amdgpu device
 280 * @src: buffer/address where to read from
 281 * @dst: buffer/address where to write to
 282 * @size: number of bytes to copy
 283 * @tmz: if a secure copy should be used
 284 * @resv: resv object to sync to
 285 * @f: Returns the last fence if multiple jobs are submitted.
 286 *
 287 * The function copies @size bytes from {src->mem + src->offset} to
 288 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
 289 * move and different for a BO to BO copy.
 290 *
 291 */
 292int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
 293			       const struct amdgpu_copy_mem *src,
 294			       const struct amdgpu_copy_mem *dst,
 295			       uint64_t size, bool tmz,
 296			       struct dma_resv *resv,
 297			       struct dma_fence **f)
 298{
 299	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
 300	struct amdgpu_res_cursor src_mm, dst_mm;
 301	struct dma_fence *fence = NULL;
 302	int r = 0;
 
 
 303
 304	if (!adev->mman.buffer_funcs_enabled) {
 305		DRM_ERROR("Trying to move memory with ring turned off.\n");
 306		return -EINVAL;
 307	}
 308
 309	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
 310	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
 311
 312	mutex_lock(&adev->mman.gtt_window_lock);
 313	while (src_mm.remaining) {
 314		uint64_t from, to, cur_size;
 
 315		struct dma_fence *next;
 316
 317		/* Never copy more than 256MiB at once to avoid a timeout */
 318		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
 319
 320		/* Map src to window 0 and dst to window 1. */
 321		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
 322					  0, ring, tmz, &cur_size, &from);
 323		if (r)
 324			goto error;
 325
 326		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
 327					  1, ring, tmz, &cur_size, &to);
 328		if (r)
 329			goto error;
 330
 331		r = amdgpu_copy_buffer(ring, from, to, cur_size,
 332				       resv, &next, false, true, tmz);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 333		if (r)
 334			goto error;
 335
 336		dma_fence_put(fence);
 337		fence = next;
 338
 339		amdgpu_res_next(&src_mm, cur_size);
 340		amdgpu_res_next(&dst_mm, cur_size);
 341	}
 342error:
 343	mutex_unlock(&adev->mman.gtt_window_lock);
 344	if (f)
 345		*f = dma_fence_get(fence);
 346	dma_fence_put(fence);
 347	return r;
 348}
 349
 350/*
 351 * amdgpu_move_blit - Copy an entire buffer to another buffer
 352 *
 353 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
 354 * help move buffers to and from VRAM.
 355 */
 356static int amdgpu_move_blit(struct ttm_buffer_object *bo,
 357			    bool evict,
 358			    struct ttm_resource *new_mem,
 359			    struct ttm_resource *old_mem)
 360{
 361	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 362	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
 363	struct amdgpu_copy_mem src, dst;
 364	struct dma_fence *fence = NULL;
 365	int r;
 366
 367	src.bo = bo;
 368	dst.bo = bo;
 369	src.mem = old_mem;
 370	dst.mem = new_mem;
 371	src.offset = 0;
 372	dst.offset = 0;
 373
 374	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
 375				       new_mem->size,
 376				       amdgpu_bo_encrypted(abo),
 377				       bo->base.resv, &fence);
 378	if (r)
 379		goto error;
 380
 381	/* clear the space being freed */
 382	if (old_mem->mem_type == TTM_PL_VRAM &&
 383	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
 384		struct dma_fence *wipe_fence = NULL;
 385
 386		r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
 387					false);
 388		if (r) {
 389			goto error;
 390		} else if (wipe_fence) {
 
 391			dma_fence_put(fence);
 392			fence = wipe_fence;
 393		}
 394	}
 395
 396	/* Always block for VM page tables before committing the new location */
 397	if (bo->type == ttm_bo_type_kernel)
 398		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
 399	else
 400		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
 401	dma_fence_put(fence);
 402	return r;
 403
 404error:
 405	if (fence)
 406		dma_fence_wait(fence, false);
 407	dma_fence_put(fence);
 408	return r;
 409}
 410
 411/*
 412 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
 
 
 413 *
 414 * Called by amdgpu_bo_move()
 415 */
 416static bool amdgpu_mem_visible(struct amdgpu_device *adev,
 417			       struct ttm_resource *mem)
 418{
 419	u64 mem_size = (u64)mem->size;
 420	struct amdgpu_res_cursor cursor;
 421	u64 end;
 422
 423	if (mem->mem_type == TTM_PL_SYSTEM ||
 424	    mem->mem_type == TTM_PL_TT)
 
 
 
 425		return true;
 426	if (mem->mem_type != TTM_PL_VRAM)
 
 427		return false;
 428
 429	amdgpu_res_first(mem, 0, mem_size, &cursor);
 430	end = cursor.start + cursor.size;
 431	while (cursor.remaining) {
 
 
 432		amdgpu_res_next(&cursor, cursor.size);
 
 433
 434		if (!cursor.remaining)
 435			break;
 436
 437		/* ttm_resource_ioremap only supports contiguous memory */
 438		if (end != cursor.start)
 439			return false;
 
 
 
 
 
 
 
 440
 441		end = cursor.start + cursor.size;
 442	}
 
 
 443
 444	return end <= adev->gmc.visible_vram_size;
 445}
 446
 447/*
 448 * amdgpu_bo_move - Move a buffer object to a new memory location
 449 *
 450 * Called by ttm_bo_handle_move_mem()
 451 */
 452static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
 453			  struct ttm_operation_ctx *ctx,
 454			  struct ttm_resource *new_mem,
 455			  struct ttm_place *hop)
 456{
 457	struct amdgpu_device *adev;
 458	struct amdgpu_bo *abo;
 459	struct ttm_resource *old_mem = bo->resource;
 460	int r;
 461
 462	if (new_mem->mem_type == TTM_PL_TT ||
 463	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
 464		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
 465		if (r)
 466			return r;
 467	}
 468
 469	abo = ttm_to_amdgpu_bo(bo);
 470	adev = amdgpu_ttm_adev(bo->bdev);
 471
 472	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
 473			 bo->ttm == NULL)) {
 
 474		ttm_bo_move_null(bo, new_mem);
 475		goto out;
 476	}
 477	if (old_mem->mem_type == TTM_PL_SYSTEM &&
 478	    (new_mem->mem_type == TTM_PL_TT ||
 479	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
 
 480		ttm_bo_move_null(bo, new_mem);
 481		goto out;
 482	}
 483	if ((old_mem->mem_type == TTM_PL_TT ||
 484	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
 485	    new_mem->mem_type == TTM_PL_SYSTEM) {
 486		r = ttm_bo_wait_ctx(bo, ctx);
 487		if (r)
 488			return r;
 489
 490		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
 
 491		ttm_resource_free(bo, &bo->resource);
 492		ttm_bo_assign_mem(bo, new_mem);
 493		goto out;
 494	}
 495
 496	if (old_mem->mem_type == AMDGPU_PL_GDS ||
 497	    old_mem->mem_type == AMDGPU_PL_GWS ||
 498	    old_mem->mem_type == AMDGPU_PL_OA ||
 499	    old_mem->mem_type == AMDGPU_PL_DOORBELL ||
 500	    new_mem->mem_type == AMDGPU_PL_GDS ||
 501	    new_mem->mem_type == AMDGPU_PL_GWS ||
 502	    new_mem->mem_type == AMDGPU_PL_OA ||
 503	    new_mem->mem_type == AMDGPU_PL_DOORBELL) {
 504		/* Nothing to save here */
 
 505		ttm_bo_move_null(bo, new_mem);
 506		goto out;
 507	}
 508
 509	if (bo->type == ttm_bo_type_device &&
 510	    new_mem->mem_type == TTM_PL_VRAM &&
 511	    old_mem->mem_type != TTM_PL_VRAM) {
 512		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
 513		 * accesses the BO after it's moved.
 514		 */
 515		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
 516	}
 517
 518	if (adev->mman.buffer_funcs_enabled) {
 519		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
 520		      new_mem->mem_type == TTM_PL_VRAM) ||
 521		     (old_mem->mem_type == TTM_PL_VRAM &&
 522		      new_mem->mem_type == TTM_PL_SYSTEM))) {
 523			hop->fpfn = 0;
 524			hop->lpfn = 0;
 525			hop->mem_type = TTM_PL_TT;
 526			hop->flags = TTM_PL_FLAG_TEMPORARY;
 527			return -EMULTIHOP;
 528		}
 529
 
 
 530		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
 531	} else {
 532		r = -ENODEV;
 533	}
 534
 535	if (r) {
 536		/* Check that all memory is CPU accessible */
 537		if (!amdgpu_mem_visible(adev, old_mem) ||
 538		    !amdgpu_mem_visible(adev, new_mem)) {
 539			pr_err("Move buffer fallback to memcpy unavailable\n");
 540			return r;
 541		}
 542
 543		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
 544		if (r)
 545			return r;
 546	}
 547
 548	trace_amdgpu_bo_move(abo, new_mem->mem_type, old_mem->mem_type);
 549out:
 550	/* update statistics */
 551	atomic64_add(bo->base.size, &adev->num_bytes_moved);
 552	amdgpu_bo_move_notify(bo, evict);
 553	return 0;
 554}
 555
 556/*
 557 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
 558 *
 559 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
 560 */
 561static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
 562				     struct ttm_resource *mem)
 563{
 564	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 565	size_t bus_size = (size_t)mem->size;
 566
 567	switch (mem->mem_type) {
 568	case TTM_PL_SYSTEM:
 569		/* system memory */
 570		return 0;
 571	case TTM_PL_TT:
 572	case AMDGPU_PL_PREEMPT:
 573		break;
 574	case TTM_PL_VRAM:
 575		mem->bus.offset = mem->start << PAGE_SHIFT;
 576		/* check if it's visible */
 577		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
 578			return -EINVAL;
 579
 580		if (adev->mman.aper_base_kaddr &&
 581		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
 582			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
 583					mem->bus.offset;
 584
 585		mem->bus.offset += adev->gmc.aper_base;
 586		mem->bus.is_iomem = true;
 587		break;
 588	case AMDGPU_PL_DOORBELL:
 589		mem->bus.offset = mem->start << PAGE_SHIFT;
 590		mem->bus.offset += adev->doorbell.base;
 591		mem->bus.is_iomem = true;
 592		mem->bus.caching = ttm_uncached;
 593		break;
 594	default:
 595		return -EINVAL;
 596	}
 597	return 0;
 598}
 599
 600static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
 601					   unsigned long page_offset)
 602{
 603	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 604	struct amdgpu_res_cursor cursor;
 605
 606	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
 607			 &cursor);
 608
 609	if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
 610		return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
 611
 612	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
 613}
 614
 615/**
 616 * amdgpu_ttm_domain_start - Returns GPU start address
 617 * @adev: amdgpu device object
 618 * @type: type of the memory
 619 *
 620 * Returns:
 621 * GPU start address of a memory domain
 622 */
 623
 624uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
 625{
 626	switch (type) {
 627	case TTM_PL_TT:
 628		return adev->gmc.gart_start;
 629	case TTM_PL_VRAM:
 630		return adev->gmc.vram_start;
 631	}
 632
 633	return 0;
 634}
 635
 636/*
 637 * TTM backend functions.
 638 */
 639struct amdgpu_ttm_tt {
 640	struct ttm_tt	ttm;
 641	struct drm_gem_object	*gobj;
 642	u64			offset;
 643	uint64_t		userptr;
 644	struct task_struct	*usertask;
 645	uint32_t		userflags;
 646	bool			bound;
 647	int32_t			pool_id;
 648};
 649
 650#define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
 651
 652#ifdef CONFIG_DRM_AMDGPU_USERPTR
 653/*
 654 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
 655 * memory and start HMM tracking CPU page table update
 656 *
 657 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
 658 * once afterwards to stop HMM tracking
 659 */
 660int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
 661				 struct hmm_range **range)
 662{
 663	struct ttm_tt *ttm = bo->tbo.ttm;
 664	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 665	unsigned long start = gtt->userptr;
 666	struct vm_area_struct *vma;
 667	struct mm_struct *mm;
 668	bool readonly;
 669	int r = 0;
 670
 671	/* Make sure get_user_pages_done() can cleanup gracefully */
 672	*range = NULL;
 673
 674	mm = bo->notifier.mm;
 675	if (unlikely(!mm)) {
 676		DRM_DEBUG_DRIVER("BO is not registered?\n");
 677		return -EFAULT;
 678	}
 679
 680	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
 681		return -ESRCH;
 682
 683	mmap_read_lock(mm);
 684	vma = vma_lookup(mm, start);
 685	if (unlikely(!vma)) {
 686		r = -EFAULT;
 687		goto out_unlock;
 688	}
 689	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
 690		vma->vm_file)) {
 691		r = -EPERM;
 692		goto out_unlock;
 693	}
 694
 695	readonly = amdgpu_ttm_tt_is_readonly(ttm);
 696	r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
 697				       readonly, NULL, pages, range);
 698out_unlock:
 699	mmap_read_unlock(mm);
 700	if (r)
 701		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
 702
 703	mmput(mm);
 704
 705	return r;
 706}
 707
 708/* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
 709 */
 710void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
 711				      struct hmm_range *range)
 712{
 713	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 714
 715	if (gtt && gtt->userptr && range)
 716		amdgpu_hmm_range_get_pages_done(range);
 717}
 718
 719/*
 720 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
 721 * Check if the pages backing this ttm range have been invalidated
 722 *
 723 * Returns: true if pages are still valid
 724 */
 725bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
 726				       struct hmm_range *range)
 727{
 728	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 729
 730	if (!gtt || !gtt->userptr || !range)
 731		return false;
 732
 733	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
 734		gtt->userptr, ttm->num_pages);
 735
 736	WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
 737
 738	return !amdgpu_hmm_range_get_pages_done(range);
 739}
 740#endif
 741
 742/*
 743 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
 744 *
 745 * Called by amdgpu_cs_list_validate(). This creates the page list
 746 * that backs user memory and will ultimately be mapped into the device
 747 * address space.
 748 */
 749void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
 750{
 751	unsigned long i;
 752
 753	for (i = 0; i < ttm->num_pages; ++i)
 754		ttm->pages[i] = pages ? pages[i] : NULL;
 755}
 756
 757/*
 758 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
 759 *
 760 * Called by amdgpu_ttm_backend_bind()
 761 **/
 762static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
 763				     struct ttm_tt *ttm)
 764{
 765	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 766	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 767	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
 768	enum dma_data_direction direction = write ?
 769		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
 770	int r;
 771
 772	/* Allocate an SG array and squash pages into it */
 773	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
 774				      (u64)ttm->num_pages << PAGE_SHIFT,
 775				      GFP_KERNEL);
 776	if (r)
 777		goto release_sg;
 778
 779	/* Map SG to device */
 780	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
 781	if (r)
 782		goto release_sg;
 783
 784	/* convert SG to linear array of pages and dma addresses */
 785	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
 786				       ttm->num_pages);
 787
 788	return 0;
 789
 
 
 790release_sg:
 791	kfree(ttm->sg);
 792	ttm->sg = NULL;
 793	return r;
 794}
 795
 796/*
 797 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
 798 */
 799static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
 800					struct ttm_tt *ttm)
 801{
 802	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 803	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 804	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
 805	enum dma_data_direction direction = write ?
 806		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
 807
 808	/* double check that we don't free the table twice */
 809	if (!ttm->sg || !ttm->sg->sgl)
 810		return;
 811
 812	/* unmap the pages mapped to the device */
 813	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
 814	sg_free_table(ttm->sg);
 815}
 816
 817/*
 818 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
 819 * MQDn+CtrlStackn where n is the number of XCCs per partition.
 820 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
 821 * and uses memory type default, UC. The rest of pages_per_xcc are
 822 * Ctrl stack and modify their memory type to NC.
 823 */
 824static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
 825				struct ttm_tt *ttm, uint64_t flags)
 826{
 827	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 828	uint64_t total_pages = ttm->num_pages;
 829	int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
 830	uint64_t page_idx, pages_per_xcc;
 831	int i;
 832	uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
 833			AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
 834
 835	pages_per_xcc = total_pages;
 836	do_div(pages_per_xcc, num_xcc);
 837
 838	for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
 839		/* MQD page: use default flags */
 840		amdgpu_gart_bind(adev,
 841				gtt->offset + (page_idx << PAGE_SHIFT),
 842				1, &gtt->ttm.dma_address[page_idx], flags);
 843		/*
 844		 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
 845		 * the second page of the BO onward.
 846		 */
 847		amdgpu_gart_bind(adev,
 848				gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
 849				pages_per_xcc - 1,
 850				&gtt->ttm.dma_address[page_idx + 1],
 851				ctrl_flags);
 852	}
 853}
 854
 855static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
 856				 struct ttm_buffer_object *tbo,
 857				 uint64_t flags)
 858{
 859	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
 860	struct ttm_tt *ttm = tbo->ttm;
 861	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 862
 863	if (amdgpu_bo_encrypted(abo))
 864		flags |= AMDGPU_PTE_TMZ;
 865
 866	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
 867		amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
 868	} else {
 869		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
 870				 gtt->ttm.dma_address, flags);
 871	}
 
 872}
 873
 874/*
 875 * amdgpu_ttm_backend_bind - Bind GTT memory
 876 *
 877 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
 878 * This handles binding GTT memory to the device address space.
 879 */
 880static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
 881				   struct ttm_tt *ttm,
 882				   struct ttm_resource *bo_mem)
 883{
 884	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 885	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 886	uint64_t flags;
 887	int r;
 888
 889	if (!bo_mem)
 890		return -EINVAL;
 891
 892	if (gtt->bound)
 893		return 0;
 894
 895	if (gtt->userptr) {
 896		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
 897		if (r) {
 898			DRM_ERROR("failed to pin userptr\n");
 899			return r;
 900		}
 901	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
 902		if (!ttm->sg) {
 903			struct dma_buf_attachment *attach;
 904			struct sg_table *sgt;
 905
 906			attach = gtt->gobj->import_attach;
 907			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
 908			if (IS_ERR(sgt))
 909				return PTR_ERR(sgt);
 910
 911			ttm->sg = sgt;
 912		}
 913
 914		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
 915					       ttm->num_pages);
 916	}
 917
 918	if (!ttm->num_pages) {
 919		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
 920		     ttm->num_pages, bo_mem, ttm);
 921	}
 922
 923	if (bo_mem->mem_type != TTM_PL_TT ||
 924	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
 925		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
 926		return 0;
 927	}
 928
 929	/* compute PTE flags relevant to this BO memory */
 930	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
 931
 932	/* bind pages into GART page tables */
 933	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
 934	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
 935			 gtt->ttm.dma_address, flags);
 936	gtt->bound = true;
 937	return 0;
 938}
 939
 940/*
 941 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
 942 * through AGP or GART aperture.
 943 *
 944 * If bo is accessible through AGP aperture, then use AGP aperture
 945 * to access bo; otherwise allocate logical space in GART aperture
 946 * and map bo to GART aperture.
 947 */
 948int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
 949{
 950	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 951	struct ttm_operation_ctx ctx = { false, false };
 952	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
 953	struct ttm_placement placement;
 954	struct ttm_place placements;
 955	struct ttm_resource *tmp;
 956	uint64_t addr, flags;
 957	int r;
 958
 959	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
 960		return 0;
 961
 962	addr = amdgpu_gmc_agp_addr(bo);
 963	if (addr != AMDGPU_BO_INVALID_OFFSET)
 964		return 0;
 965
 966	/* allocate GART space */
 967	placement.num_placement = 1;
 968	placement.placement = &placements;
 969	placement.num_busy_placement = 1;
 970	placement.busy_placement = &placements;
 971	placements.fpfn = 0;
 972	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
 973	placements.mem_type = TTM_PL_TT;
 974	placements.flags = bo->resource->placement;
 975
 976	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
 977	if (unlikely(r))
 978		return r;
 979
 980	/* compute PTE flags for this buffer object */
 981	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
 982
 983	/* Bind pages */
 984	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
 985	amdgpu_ttm_gart_bind(adev, bo, flags);
 986	amdgpu_gart_invalidate_tlb(adev);
 987	ttm_resource_free(bo, &bo->resource);
 988	ttm_bo_assign_mem(bo, tmp);
 989
 990	return 0;
 991}
 992
 993/*
 994 * amdgpu_ttm_recover_gart - Rebind GTT pages
 995 *
 996 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
 997 * rebind GTT pages during a GPU reset.
 998 */
 999void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1000{
1001	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1002	uint64_t flags;
1003
1004	if (!tbo->ttm)
1005		return;
1006
1007	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1008	amdgpu_ttm_gart_bind(adev, tbo, flags);
1009}
1010
1011/*
1012 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1013 *
1014 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1015 * ttm_tt_destroy().
1016 */
1017static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1018				      struct ttm_tt *ttm)
1019{
1020	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1021	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1022
1023	/* if the pages have userptr pinning then clear that first */
1024	if (gtt->userptr) {
1025		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1026	} else if (ttm->sg && gtt->gobj->import_attach) {
1027		struct dma_buf_attachment *attach;
1028
1029		attach = gtt->gobj->import_attach;
1030		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1031		ttm->sg = NULL;
1032	}
1033
1034	if (!gtt->bound)
1035		return;
1036
1037	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1038		return;
1039
1040	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1041	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1042	gtt->bound = false;
1043}
1044
1045static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1046				       struct ttm_tt *ttm)
1047{
1048	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1049
1050	if (gtt->usertask)
1051		put_task_struct(gtt->usertask);
1052
1053	ttm_tt_fini(&gtt->ttm);
1054	kfree(gtt);
1055}
1056
1057/**
1058 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1059 *
1060 * @bo: The buffer object to create a GTT ttm_tt object around
1061 * @page_flags: Page flags to be added to the ttm_tt object
1062 *
1063 * Called by ttm_tt_create().
1064 */
1065static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1066					   uint32_t page_flags)
1067{
1068	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1069	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1070	struct amdgpu_ttm_tt *gtt;
1071	enum ttm_caching caching;
1072
1073	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1074	if (!gtt)
1075		return NULL;
1076
1077	gtt->gobj = &bo->base;
1078	if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1079		gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1080	else
1081		gtt->pool_id = abo->xcp_id;
1082
1083	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1084		caching = ttm_write_combined;
1085	else
1086		caching = ttm_cached;
1087
1088	/* allocate space for the uninitialized page entries */
1089	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1090		kfree(gtt);
1091		return NULL;
1092	}
1093	return &gtt->ttm;
1094}
1095
1096/*
1097 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1098 *
1099 * Map the pages of a ttm_tt object to an address space visible
1100 * to the underlying device.
1101 */
1102static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1103				  struct ttm_tt *ttm,
1104				  struct ttm_operation_ctx *ctx)
1105{
1106	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1107	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1108	struct ttm_pool *pool;
1109	pgoff_t i;
1110	int ret;
1111
1112	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1113	if (gtt->userptr) {
1114		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1115		if (!ttm->sg)
1116			return -ENOMEM;
1117		return 0;
1118	}
1119
1120	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1121		return 0;
1122
1123	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1124		pool = &adev->mman.ttm_pools[gtt->pool_id];
1125	else
1126		pool = &adev->mman.bdev.pool;
1127	ret = ttm_pool_alloc(pool, ttm, ctx);
1128	if (ret)
1129		return ret;
1130
1131	for (i = 0; i < ttm->num_pages; ++i)
1132		ttm->pages[i]->mapping = bdev->dev_mapping;
1133
1134	return 0;
1135}
1136
1137/*
1138 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1139 *
1140 * Unmaps pages of a ttm_tt object from the device address space and
1141 * unpopulates the page array backing it.
1142 */
1143static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1144				     struct ttm_tt *ttm)
1145{
1146	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1147	struct amdgpu_device *adev;
1148	struct ttm_pool *pool;
1149	pgoff_t i;
1150
1151	amdgpu_ttm_backend_unbind(bdev, ttm);
1152
1153	if (gtt->userptr) {
1154		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1155		kfree(ttm->sg);
1156		ttm->sg = NULL;
1157		return;
1158	}
1159
1160	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1161		return;
1162
1163	for (i = 0; i < ttm->num_pages; ++i)
1164		ttm->pages[i]->mapping = NULL;
1165
1166	adev = amdgpu_ttm_adev(bdev);
1167
1168	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1169		pool = &adev->mman.ttm_pools[gtt->pool_id];
1170	else
1171		pool = &adev->mman.bdev.pool;
1172
1173	return ttm_pool_free(pool, ttm);
1174}
1175
1176/**
1177 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1178 * task
1179 *
1180 * @tbo: The ttm_buffer_object that contains the userptr
1181 * @user_addr:  The returned value
1182 */
1183int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1184			      uint64_t *user_addr)
1185{
1186	struct amdgpu_ttm_tt *gtt;
1187
1188	if (!tbo->ttm)
1189		return -EINVAL;
1190
1191	gtt = (void *)tbo->ttm;
1192	*user_addr = gtt->userptr;
1193	return 0;
1194}
1195
1196/**
1197 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1198 * task
1199 *
1200 * @bo: The ttm_buffer_object to bind this userptr to
1201 * @addr:  The address in the current tasks VM space to use
1202 * @flags: Requirements of userptr object.
1203 *
1204 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1205 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1206 * initialize GPU VM for a KFD process.
1207 */
1208int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1209			      uint64_t addr, uint32_t flags)
1210{
1211	struct amdgpu_ttm_tt *gtt;
1212
1213	if (!bo->ttm) {
1214		/* TODO: We want a separate TTM object type for userptrs */
1215		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1216		if (bo->ttm == NULL)
1217			return -ENOMEM;
1218	}
1219
1220	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1221	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1222
1223	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1224	gtt->userptr = addr;
1225	gtt->userflags = flags;
1226
1227	if (gtt->usertask)
1228		put_task_struct(gtt->usertask);
1229	gtt->usertask = current->group_leader;
1230	get_task_struct(gtt->usertask);
1231
1232	return 0;
1233}
1234
1235/*
1236 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1237 */
1238struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1239{
1240	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1241
1242	if (gtt == NULL)
1243		return NULL;
1244
1245	if (gtt->usertask == NULL)
1246		return NULL;
1247
1248	return gtt->usertask->mm;
1249}
1250
1251/*
1252 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1253 * address range for the current task.
1254 *
1255 */
1256bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1257				  unsigned long end, unsigned long *userptr)
1258{
1259	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1260	unsigned long size;
1261
1262	if (gtt == NULL || !gtt->userptr)
1263		return false;
1264
1265	/* Return false if no part of the ttm_tt object lies within
1266	 * the range
1267	 */
1268	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1269	if (gtt->userptr > end || gtt->userptr + size <= start)
1270		return false;
1271
1272	if (userptr)
1273		*userptr = gtt->userptr;
1274	return true;
1275}
1276
1277/*
1278 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1279 */
1280bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1281{
1282	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1283
1284	if (gtt == NULL || !gtt->userptr)
1285		return false;
1286
1287	return true;
1288}
1289
1290/*
1291 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1292 */
1293bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1294{
1295	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1296
1297	if (gtt == NULL)
1298		return false;
1299
1300	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1301}
1302
1303/**
1304 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1305 *
1306 * @ttm: The ttm_tt object to compute the flags for
1307 * @mem: The memory registry backing this ttm_tt object
1308 *
1309 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1310 */
1311uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1312{
1313	uint64_t flags = 0;
1314
1315	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1316		flags |= AMDGPU_PTE_VALID;
1317
1318	if (mem && (mem->mem_type == TTM_PL_TT ||
1319		    mem->mem_type == AMDGPU_PL_DOORBELL ||
1320		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1321		flags |= AMDGPU_PTE_SYSTEM;
1322
1323		if (ttm->caching == ttm_cached)
1324			flags |= AMDGPU_PTE_SNOOPED;
1325	}
1326
1327	if (mem && mem->mem_type == TTM_PL_VRAM &&
1328			mem->bus.caching == ttm_cached)
1329		flags |= AMDGPU_PTE_SNOOPED;
1330
1331	return flags;
1332}
1333
1334/**
1335 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1336 *
1337 * @adev: amdgpu_device pointer
1338 * @ttm: The ttm_tt object to compute the flags for
1339 * @mem: The memory registry backing this ttm_tt object
1340 *
1341 * Figure out the flags to use for a VM PTE (Page Table Entry).
1342 */
1343uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1344				 struct ttm_resource *mem)
1345{
1346	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1347
1348	flags |= adev->gart.gart_pte_flags;
1349	flags |= AMDGPU_PTE_READABLE;
1350
1351	if (!amdgpu_ttm_tt_is_readonly(ttm))
1352		flags |= AMDGPU_PTE_WRITEABLE;
1353
1354	return flags;
1355}
1356
1357/*
1358 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1359 * object.
1360 *
1361 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1362 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1363 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1364 * used to clean out a memory space.
1365 */
1366static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1367					    const struct ttm_place *place)
1368{
1369	struct dma_resv_iter resv_cursor;
1370	struct dma_fence *f;
1371
1372	if (!amdgpu_bo_is_amdgpu_bo(bo))
1373		return ttm_bo_eviction_valuable(bo, place);
1374
1375	/* Swapout? */
1376	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1377		return true;
1378
1379	if (bo->type == ttm_bo_type_kernel &&
1380	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1381		return false;
1382
1383	/* If bo is a KFD BO, check if the bo belongs to the current process.
1384	 * If true, then return false as any KFD process needs all its BOs to
1385	 * be resident to run successfully
1386	 */
1387	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1388				DMA_RESV_USAGE_BOOKKEEP, f) {
1389		if (amdkfd_fence_check_mm(f, current->mm))
 
1390			return false;
1391	}
1392
1393	/* Preemptible BOs don't own system resources managed by the
1394	 * driver (pages, VRAM, GART space). They point to resources
1395	 * owned by someone else (e.g. pageable memory in user mode
1396	 * or a DMABuf). They are used in a preemptible context so we
1397	 * can guarantee no deadlocks and good QoS in case of MMU
1398	 * notifiers or DMABuf move notifiers from the resource owner.
1399	 */
1400	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1401		return false;
1402
1403	if (bo->resource->mem_type == TTM_PL_TT &&
1404	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1405		return false;
1406
1407	return ttm_bo_eviction_valuable(bo, place);
1408}
1409
1410static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1411				      void *buf, size_t size, bool write)
1412{
1413	while (size) {
1414		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1415		uint64_t bytes = 4 - (pos & 0x3);
1416		uint32_t shift = (pos & 0x3) * 8;
1417		uint32_t mask = 0xffffffff << shift;
1418		uint32_t value = 0;
1419
1420		if (size < bytes) {
1421			mask &= 0xffffffff >> (bytes - size) * 8;
1422			bytes = size;
1423		}
1424
1425		if (mask != 0xffffffff) {
1426			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1427			if (write) {
1428				value &= ~mask;
1429				value |= (*(uint32_t *)buf << shift) & mask;
1430				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1431			} else {
1432				value = (value & mask) >> shift;
1433				memcpy(buf, &value, bytes);
1434			}
1435		} else {
1436			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1437		}
1438
1439		pos += bytes;
1440		buf += bytes;
1441		size -= bytes;
1442	}
1443}
1444
1445static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1446					unsigned long offset, void *buf,
1447					int len, int write)
1448{
1449	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1450	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1451	struct amdgpu_res_cursor src_mm;
1452	struct amdgpu_job *job;
1453	struct dma_fence *fence;
1454	uint64_t src_addr, dst_addr;
1455	unsigned int num_dw;
1456	int r, idx;
1457
1458	if (len != PAGE_SIZE)
1459		return -EINVAL;
1460
1461	if (!adev->mman.sdma_access_ptr)
1462		return -EACCES;
1463
1464	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1465		return -ENODEV;
1466
1467	if (write)
1468		memcpy(adev->mman.sdma_access_ptr, buf, len);
1469
1470	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1471	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1472				     AMDGPU_FENCE_OWNER_UNDEFINED,
1473				     num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1474				     &job);
1475	if (r)
1476		goto out;
1477
1478	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1479	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1480		src_mm.start;
1481	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1482	if (write)
1483		swap(src_addr, dst_addr);
1484
1485	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1486				PAGE_SIZE, false);
1487
1488	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1489	WARN_ON(job->ibs[0].length_dw > num_dw);
1490
1491	fence = amdgpu_job_submit(job);
1492
1493	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1494		r = -ETIMEDOUT;
1495	dma_fence_put(fence);
1496
1497	if (!(r || write))
1498		memcpy(buf, adev->mman.sdma_access_ptr, len);
1499out:
1500	drm_dev_exit(idx);
1501	return r;
1502}
1503
1504/**
1505 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1506 *
1507 * @bo:  The buffer object to read/write
1508 * @offset:  Offset into buffer object
1509 * @buf:  Secondary buffer to write/read from
1510 * @len: Length in bytes of access
1511 * @write:  true if writing
1512 *
1513 * This is used to access VRAM that backs a buffer object via MMIO
1514 * access for debugging purposes.
1515 */
1516static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1517				    unsigned long offset, void *buf, int len,
1518				    int write)
1519{
1520	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1521	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1522	struct amdgpu_res_cursor cursor;
1523	int ret = 0;
1524
1525	if (bo->resource->mem_type != TTM_PL_VRAM)
1526		return -EIO;
1527
1528	if (amdgpu_device_has_timeouts_enabled(adev) &&
1529			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1530		return len;
1531
1532	amdgpu_res_first(bo->resource, offset, len, &cursor);
1533	while (cursor.remaining) {
1534		size_t count, size = cursor.size;
1535		loff_t pos = cursor.start;
1536
1537		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1538		size -= count;
1539		if (size) {
1540			/* using MM to access rest vram and handle un-aligned address */
1541			pos += count;
1542			buf += count;
1543			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1544		}
1545
1546		ret += cursor.size;
1547		buf += cursor.size;
1548		amdgpu_res_next(&cursor, cursor.size);
1549	}
1550
1551	return ret;
1552}
1553
1554static void
1555amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1556{
1557	amdgpu_bo_move_notify(bo, false);
1558}
1559
1560static struct ttm_device_funcs amdgpu_bo_driver = {
1561	.ttm_tt_create = &amdgpu_ttm_tt_create,
1562	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1563	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1564	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1565	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1566	.evict_flags = &amdgpu_evict_flags,
1567	.move = &amdgpu_bo_move,
1568	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1569	.release_notify = &amdgpu_bo_release_notify,
1570	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1571	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1572	.access_memory = &amdgpu_ttm_access_memory,
1573};
1574
1575/*
1576 * Firmware Reservation functions
1577 */
1578/**
1579 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1580 *
1581 * @adev: amdgpu_device pointer
1582 *
1583 * free fw reserved vram if it has been reserved.
1584 */
1585static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1586{
1587	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1588		NULL, &adev->mman.fw_vram_usage_va);
1589}
1590
1591/*
1592 * Driver Reservation functions
1593 */
1594/**
1595 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1596 *
1597 * @adev: amdgpu_device pointer
1598 *
1599 * free drv reserved vram if it has been reserved.
1600 */
1601static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1602{
1603	amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1604						  NULL,
1605						  &adev->mman.drv_vram_usage_va);
1606}
1607
1608/**
1609 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1610 *
1611 * @adev: amdgpu_device pointer
1612 *
1613 * create bo vram reservation from fw.
1614 */
1615static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1616{
1617	uint64_t vram_size = adev->gmc.visible_vram_size;
1618
1619	adev->mman.fw_vram_usage_va = NULL;
1620	adev->mman.fw_vram_usage_reserved_bo = NULL;
1621
1622	if (adev->mman.fw_vram_usage_size == 0 ||
1623	    adev->mman.fw_vram_usage_size > vram_size)
1624		return 0;
1625
1626	return amdgpu_bo_create_kernel_at(adev,
1627					  adev->mman.fw_vram_usage_start_offset,
1628					  adev->mman.fw_vram_usage_size,
1629					  &adev->mman.fw_vram_usage_reserved_bo,
1630					  &adev->mman.fw_vram_usage_va);
1631}
1632
1633/**
1634 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1635 *
1636 * @adev: amdgpu_device pointer
1637 *
1638 * create bo vram reservation from drv.
1639 */
1640static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1641{
1642	u64 vram_size = adev->gmc.visible_vram_size;
1643
1644	adev->mman.drv_vram_usage_va = NULL;
1645	adev->mman.drv_vram_usage_reserved_bo = NULL;
1646
1647	if (adev->mman.drv_vram_usage_size == 0 ||
1648	    adev->mman.drv_vram_usage_size > vram_size)
1649		return 0;
1650
1651	return amdgpu_bo_create_kernel_at(adev,
1652					  adev->mman.drv_vram_usage_start_offset,
1653					  adev->mman.drv_vram_usage_size,
1654					  &adev->mman.drv_vram_usage_reserved_bo,
1655					  &adev->mman.drv_vram_usage_va);
1656}
1657
1658/*
1659 * Memoy training reservation functions
1660 */
1661
1662/**
1663 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1664 *
1665 * @adev: amdgpu_device pointer
1666 *
1667 * free memory training reserved vram if it has been reserved.
1668 */
1669static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1670{
1671	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1672
1673	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1674	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1675	ctx->c2p_bo = NULL;
1676
1677	return 0;
1678}
1679
1680static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1681						uint32_t reserve_size)
1682{
1683	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1684
1685	memset(ctx, 0, sizeof(*ctx));
1686
1687	ctx->c2p_train_data_offset =
1688		ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1689	ctx->p2c_train_data_offset =
1690		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1691	ctx->train_data_size =
1692		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1693
1694	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1695			ctx->train_data_size,
1696			ctx->p2c_train_data_offset,
1697			ctx->c2p_train_data_offset);
1698}
1699
1700/*
1701 * reserve TMR memory at the top of VRAM which holds
1702 * IP Discovery data and is protected by PSP.
1703 */
1704static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1705{
1706	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1707	bool mem_train_support = false;
1708	uint32_t reserve_size = 0;
1709	int ret;
1710
1711	if (adev->bios && !amdgpu_sriov_vf(adev)) {
1712		if (amdgpu_atomfirmware_mem_training_supported(adev))
1713			mem_train_support = true;
1714		else
1715			DRM_DEBUG("memory training does not support!\n");
1716	}
1717
1718	/*
1719	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1720	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1721	 *
1722	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1723	 * discovery data and G6 memory training data respectively
1724	 */
1725	if (adev->bios)
1726		reserve_size =
1727			amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1728
1729	if (!adev->bios &&
1730	    amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3))
 
1731		reserve_size = max(reserve_size, (uint32_t)280 << 20);
1732	else if (!reserve_size)
1733		reserve_size = DISCOVERY_TMR_OFFSET;
1734
1735	if (mem_train_support) {
1736		/* reserve vram for mem train according to TMR location */
1737		amdgpu_ttm_training_data_block_init(adev, reserve_size);
1738		ret = amdgpu_bo_create_kernel_at(adev,
1739						 ctx->c2p_train_data_offset,
1740						 ctx->train_data_size,
1741						 &ctx->c2p_bo,
1742						 NULL);
1743		if (ret) {
1744			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1745			amdgpu_ttm_training_reserve_vram_fini(adev);
1746			return ret;
1747		}
1748		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1749	}
1750
1751	if (!adev->gmc.is_app_apu) {
1752		ret = amdgpu_bo_create_kernel_at(
1753			adev, adev->gmc.real_vram_size - reserve_size,
1754			reserve_size, &adev->mman.fw_reserved_memory, NULL);
1755		if (ret) {
1756			DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1757			amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1758					      NULL, NULL);
1759			return ret;
1760		}
1761	} else {
1762		DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1763	}
1764
1765	return 0;
1766}
1767
1768static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1769{
1770	int i;
1771
1772	if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1773		return 0;
1774
1775	adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1776				       sizeof(*adev->mman.ttm_pools),
1777				       GFP_KERNEL);
1778	if (!adev->mman.ttm_pools)
1779		return -ENOMEM;
1780
1781	for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1782		ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1783			      adev->gmc.mem_partitions[i].numa.node,
1784			      false, false);
1785	}
1786	return 0;
1787}
1788
1789static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1790{
1791	int i;
1792
1793	if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1794		return;
1795
1796	for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1797		ttm_pool_fini(&adev->mman.ttm_pools[i]);
1798
1799	kfree(adev->mman.ttm_pools);
1800	adev->mman.ttm_pools = NULL;
1801}
1802
1803/*
1804 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1805 * gtt/vram related fields.
1806 *
1807 * This initializes all of the memory space pools that the TTM layer
1808 * will need such as the GTT space (system memory mapped to the device),
1809 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1810 * can be mapped per VMID.
1811 */
1812int amdgpu_ttm_init(struct amdgpu_device *adev)
1813{
1814	uint64_t gtt_size;
1815	int r;
1816
1817	mutex_init(&adev->mman.gtt_window_lock);
1818
 
1819	/* No others user of address space so set it to 0 */
1820	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1821			       adev_to_drm(adev)->anon_inode->i_mapping,
1822			       adev_to_drm(adev)->vma_offset_manager,
1823			       adev->need_swiotlb,
1824			       dma_addressing_limited(adev->dev));
1825	if (r) {
1826		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1827		return r;
1828	}
1829
1830	r = amdgpu_ttm_pools_init(adev);
1831	if (r) {
1832		DRM_ERROR("failed to init ttm pools(%d).\n", r);
1833		return r;
1834	}
1835	adev->mman.initialized = true;
1836
1837	/* Initialize VRAM pool with all of VRAM divided into pages */
1838	r = amdgpu_vram_mgr_init(adev);
1839	if (r) {
1840		DRM_ERROR("Failed initializing VRAM heap.\n");
1841		return r;
1842	}
1843
1844	/* Change the size here instead of the init above so only lpfn is affected */
1845	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1846#ifdef CONFIG_64BIT
1847#ifdef CONFIG_X86
1848	if (adev->gmc.xgmi.connected_to_cpu)
1849		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1850				adev->gmc.visible_vram_size);
1851
1852	else if (adev->gmc.is_app_apu)
1853		DRM_DEBUG_DRIVER(
1854			"No need to ioremap when real vram size is 0\n");
1855	else
1856#endif
1857		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1858				adev->gmc.visible_vram_size);
1859#endif
1860
1861	/*
1862	 *The reserved vram for firmware must be pinned to the specified
1863	 *place on the VRAM, so reserve it early.
1864	 */
1865	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1866	if (r)
1867		return r;
1868
1869	/*
1870	 *The reserved vram for driver must be pinned to the specified
1871	 *place on the VRAM, so reserve it early.
1872	 */
1873	r = amdgpu_ttm_drv_reserve_vram_init(adev);
1874	if (r)
1875		return r;
1876
1877	/*
1878	 * only NAVI10 and onwards ASIC support for IP discovery.
1879	 * If IP discovery enabled, a block of memory should be
1880	 * reserved for IP discovey.
1881	 */
1882	if (adev->mman.discovery_bin) {
1883		r = amdgpu_ttm_reserve_tmr(adev);
1884		if (r)
1885			return r;
1886	}
1887
1888	/* allocate memory as required for VGA
1889	 * This is used for VGA emulation and pre-OS scanout buffers to
1890	 * avoid display artifacts while transitioning between pre-OS
1891	 * and driver.
1892	 */
1893	if (!adev->gmc.is_app_apu) {
1894		r = amdgpu_bo_create_kernel_at(adev, 0,
1895					       adev->mman.stolen_vga_size,
1896					       &adev->mman.stolen_vga_memory,
1897					       NULL);
1898		if (r)
1899			return r;
1900
1901		r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1902					       adev->mman.stolen_extended_size,
1903					       &adev->mman.stolen_extended_memory,
1904					       NULL);
1905
1906		if (r)
1907			return r;
1908
1909		r = amdgpu_bo_create_kernel_at(adev,
1910					       adev->mman.stolen_reserved_offset,
1911					       adev->mman.stolen_reserved_size,
1912					       &adev->mman.stolen_reserved_memory,
1913					       NULL);
1914		if (r)
1915			return r;
1916	} else {
1917		DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1918	}
1919
1920	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1921		 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1922
1923	/* Compute GTT size, either based on TTM limit
1924	 * or whatever the user passed on module init.
1925	 */
1926	if (amdgpu_gtt_size == -1)
1927		gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1928	else
1929		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1930
1931	/* Initialize GTT memory pool */
1932	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1933	if (r) {
1934		DRM_ERROR("Failed initializing GTT heap.\n");
1935		return r;
1936	}
1937	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1938		 (unsigned int)(gtt_size / (1024 * 1024)));
1939
1940	/* Initiailize doorbell pool on PCI BAR */
1941	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1942	if (r) {
1943		DRM_ERROR("Failed initializing doorbell heap.\n");
1944		return r;
1945	}
1946
1947	/* Create a boorbell page for kernel usages */
1948	r = amdgpu_doorbell_create_kernel_doorbells(adev);
1949	if (r) {
1950		DRM_ERROR("Failed to initialize kernel doorbells.\n");
1951		return r;
1952	}
1953
1954	/* Initialize preemptible memory pool */
1955	r = amdgpu_preempt_mgr_init(adev);
1956	if (r) {
1957		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1958		return r;
1959	}
1960
1961	/* Initialize various on-chip memory pools */
1962	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1963	if (r) {
1964		DRM_ERROR("Failed initializing GDS heap.\n");
1965		return r;
1966	}
1967
1968	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1969	if (r) {
1970		DRM_ERROR("Failed initializing gws heap.\n");
1971		return r;
1972	}
1973
1974	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1975	if (r) {
1976		DRM_ERROR("Failed initializing oa heap.\n");
1977		return r;
1978	}
1979	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1980				AMDGPU_GEM_DOMAIN_GTT,
1981				&adev->mman.sdma_access_bo, NULL,
1982				&adev->mman.sdma_access_ptr))
1983		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1984
1985	return 0;
1986}
1987
1988/*
1989 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1990 */
1991void amdgpu_ttm_fini(struct amdgpu_device *adev)
1992{
1993	int idx;
1994
1995	if (!adev->mman.initialized)
1996		return;
1997
1998	amdgpu_ttm_pools_fini(adev);
1999
2000	amdgpu_ttm_training_reserve_vram_fini(adev);
2001	/* return the stolen vga memory back to VRAM */
2002	if (!adev->gmc.is_app_apu) {
2003		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2004		amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2005		/* return the FW reserved memory back to VRAM */
2006		amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2007				      NULL);
2008		if (adev->mman.stolen_reserved_size)
2009			amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2010					      NULL, NULL);
2011	}
2012	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2013					&adev->mman.sdma_access_ptr);
2014	amdgpu_ttm_fw_reserve_vram_fini(adev);
2015	amdgpu_ttm_drv_reserve_vram_fini(adev);
2016
2017	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2018
2019		if (adev->mman.aper_base_kaddr)
2020			iounmap(adev->mman.aper_base_kaddr);
2021		adev->mman.aper_base_kaddr = NULL;
2022
2023		drm_dev_exit(idx);
2024	}
2025
2026	amdgpu_vram_mgr_fini(adev);
2027	amdgpu_gtt_mgr_fini(adev);
2028	amdgpu_preempt_mgr_fini(adev);
2029	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2030	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2031	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
 
2032	ttm_device_fini(&adev->mman.bdev);
2033	adev->mman.initialized = false;
2034	DRM_INFO("amdgpu: ttm finalized\n");
2035}
2036
2037/**
2038 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2039 *
2040 * @adev: amdgpu_device pointer
2041 * @enable: true when we can use buffer functions.
2042 *
2043 * Enable/disable use of buffer functions during suspend/resume. This should
2044 * only be called at bootup or when userspace isn't running.
2045 */
2046void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2047{
2048	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2049	uint64_t size;
2050	int r;
2051
2052	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2053	    adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2054		return;
2055
2056	if (enable) {
2057		struct amdgpu_ring *ring;
2058		struct drm_gpu_scheduler *sched;
2059
2060		ring = adev->mman.buffer_funcs_ring;
2061		sched = &ring->sched;
2062		r = drm_sched_entity_init(&adev->mman.high_pr,
2063					  DRM_SCHED_PRIORITY_KERNEL, &sched,
2064					  1, NULL);
2065		if (r) {
2066			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2067				  r);
2068			return;
2069		}
2070
2071		r = drm_sched_entity_init(&adev->mman.low_pr,
2072					  DRM_SCHED_PRIORITY_NORMAL, &sched,
2073					  1, NULL);
2074		if (r) {
2075			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2076				  r);
2077			goto error_free_entity;
2078		}
2079	} else {
2080		drm_sched_entity_destroy(&adev->mman.high_pr);
2081		drm_sched_entity_destroy(&adev->mman.low_pr);
2082		dma_fence_put(man->move);
2083		man->move = NULL;
2084	}
2085
2086	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2087	if (enable)
2088		size = adev->gmc.real_vram_size;
2089	else
2090		size = adev->gmc.visible_vram_size;
2091	man->size = size;
2092	adev->mman.buffer_funcs_enabled = enable;
2093
2094	return;
2095
2096error_free_entity:
2097	drm_sched_entity_destroy(&adev->mman.high_pr);
2098}
2099
2100static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2101				  bool direct_submit,
2102				  unsigned int num_dw,
2103				  struct dma_resv *resv,
2104				  bool vm_needs_flush,
2105				  struct amdgpu_job **job,
2106				  bool delayed)
2107{
2108	enum amdgpu_ib_pool_type pool = direct_submit ?
2109		AMDGPU_IB_POOL_DIRECT :
2110		AMDGPU_IB_POOL_DELAYED;
2111	int r;
2112	struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2113						    &adev->mman.high_pr;
2114	r = amdgpu_job_alloc_with_ib(adev, entity,
2115				     AMDGPU_FENCE_OWNER_UNDEFINED,
2116				     num_dw * 4, pool, job);
2117	if (r)
2118		return r;
2119
2120	if (vm_needs_flush) {
2121		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2122							adev->gmc.pdb0_bo :
2123							adev->gart.bo);
2124		(*job)->vm_needs_flush = true;
2125	}
2126	if (!resv)
2127		return 0;
2128
2129	return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2130						   DMA_RESV_USAGE_BOOKKEEP);
2131}
2132
2133int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2134		       uint64_t dst_offset, uint32_t byte_count,
2135		       struct dma_resv *resv,
2136		       struct dma_fence **fence, bool direct_submit,
2137		       bool vm_needs_flush, bool tmz)
2138{
2139	struct amdgpu_device *adev = ring->adev;
2140	unsigned int num_loops, num_dw;
2141	struct amdgpu_job *job;
2142	uint32_t max_bytes;
2143	unsigned int i;
2144	int r;
2145
2146	if (!direct_submit && !ring->sched.ready) {
2147		DRM_ERROR("Trying to move memory with ring turned off.\n");
2148		return -EINVAL;
2149	}
2150
2151	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2152	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2153	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2154	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2155				   resv, vm_needs_flush, &job, false);
2156	if (r)
2157		return r;
2158
2159	for (i = 0; i < num_loops; i++) {
2160		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2161
2162		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2163					dst_offset, cur_size_in_bytes, tmz);
2164
2165		src_offset += cur_size_in_bytes;
2166		dst_offset += cur_size_in_bytes;
2167		byte_count -= cur_size_in_bytes;
2168	}
2169
2170	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2171	WARN_ON(job->ibs[0].length_dw > num_dw);
2172	if (direct_submit)
2173		r = amdgpu_job_submit_direct(job, ring, fence);
2174	else
2175		*fence = amdgpu_job_submit(job);
2176	if (r)
2177		goto error_free;
2178
2179	return r;
2180
2181error_free:
2182	amdgpu_job_free(job);
2183	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2184	return r;
2185}
2186
2187static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2188			       uint64_t dst_addr, uint32_t byte_count,
2189			       struct dma_resv *resv,
2190			       struct dma_fence **fence,
2191			       bool vm_needs_flush, bool delayed)
2192{
2193	struct amdgpu_device *adev = ring->adev;
2194	unsigned int num_loops, num_dw;
2195	struct amdgpu_job *job;
2196	uint32_t max_bytes;
2197	unsigned int i;
2198	int r;
2199
2200	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2201	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2202	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2203	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2204				   &job, delayed);
2205	if (r)
2206		return r;
2207
2208	for (i = 0; i < num_loops; i++) {
2209		uint32_t cur_size = min(byte_count, max_bytes);
2210
2211		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2212					cur_size);
2213
2214		dst_addr += cur_size;
2215		byte_count -= cur_size;
2216	}
2217
2218	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2219	WARN_ON(job->ibs[0].length_dw > num_dw);
2220	*fence = amdgpu_job_submit(job);
2221	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2222}
2223
2224int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2225			uint32_t src_data,
2226			struct dma_resv *resv,
2227			struct dma_fence **f,
2228			bool delayed)
2229{
2230	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2231	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2232	struct dma_fence *fence = NULL;
2233	struct amdgpu_res_cursor dst;
2234	int r;
2235
2236	if (!adev->mman.buffer_funcs_enabled) {
2237		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2238		return -EINVAL;
2239	}
2240
2241	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2242
2243	mutex_lock(&adev->mman.gtt_window_lock);
2244	while (dst.remaining) {
2245		struct dma_fence *next;
2246		uint64_t cur_size, to;
2247
2248		/* Never fill more than 256MiB at once to avoid timeouts */
2249		cur_size = min(dst.size, 256ULL << 20);
2250
2251		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2252					  1, ring, false, &cur_size, &to);
2253		if (r)
2254			goto error;
2255
2256		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2257					&next, true, delayed);
2258		if (r)
2259			goto error;
2260
2261		dma_fence_put(fence);
2262		fence = next;
2263
2264		amdgpu_res_next(&dst, cur_size);
2265	}
2266error:
2267	mutex_unlock(&adev->mman.gtt_window_lock);
2268	if (f)
2269		*f = dma_fence_get(fence);
2270	dma_fence_put(fence);
2271	return r;
2272}
2273
2274/**
2275 * amdgpu_ttm_evict_resources - evict memory buffers
2276 * @adev: amdgpu device object
2277 * @mem_type: evicted BO's memory type
2278 *
2279 * Evicts all @mem_type buffers on the lru list of the memory type.
2280 *
2281 * Returns:
2282 * 0 for success or a negative error code on failure.
2283 */
2284int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2285{
2286	struct ttm_resource_manager *man;
2287
2288	switch (mem_type) {
2289	case TTM_PL_VRAM:
2290	case TTM_PL_TT:
2291	case AMDGPU_PL_GWS:
2292	case AMDGPU_PL_GDS:
2293	case AMDGPU_PL_OA:
2294		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2295		break;
2296	default:
2297		DRM_ERROR("Trying to evict invalid memory type\n");
2298		return -EINVAL;
2299	}
2300
2301	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2302}
2303
2304#if defined(CONFIG_DEBUG_FS)
2305
2306static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2307{
2308	struct amdgpu_device *adev = m->private;
2309
2310	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2311}
2312
2313DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2314
2315/*
2316 * amdgpu_ttm_vram_read - Linear read access to VRAM
2317 *
2318 * Accesses VRAM via MMIO for debugging purposes.
2319 */
2320static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2321				    size_t size, loff_t *pos)
2322{
2323	struct amdgpu_device *adev = file_inode(f)->i_private;
2324	ssize_t result = 0;
2325
2326	if (size & 0x3 || *pos & 0x3)
2327		return -EINVAL;
2328
2329	if (*pos >= adev->gmc.mc_vram_size)
2330		return -ENXIO;
2331
2332	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2333	while (size) {
2334		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2335		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2336
2337		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2338		if (copy_to_user(buf, value, bytes))
2339			return -EFAULT;
2340
2341		result += bytes;
2342		buf += bytes;
2343		*pos += bytes;
2344		size -= bytes;
2345	}
2346
2347	return result;
2348}
2349
2350/*
2351 * amdgpu_ttm_vram_write - Linear write access to VRAM
2352 *
2353 * Accesses VRAM via MMIO for debugging purposes.
2354 */
2355static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2356				    size_t size, loff_t *pos)
2357{
2358	struct amdgpu_device *adev = file_inode(f)->i_private;
2359	ssize_t result = 0;
2360	int r;
2361
2362	if (size & 0x3 || *pos & 0x3)
2363		return -EINVAL;
2364
2365	if (*pos >= adev->gmc.mc_vram_size)
2366		return -ENXIO;
2367
2368	while (size) {
2369		uint32_t value;
2370
2371		if (*pos >= adev->gmc.mc_vram_size)
2372			return result;
2373
2374		r = get_user(value, (uint32_t *)buf);
2375		if (r)
2376			return r;
2377
2378		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2379
2380		result += 4;
2381		buf += 4;
2382		*pos += 4;
2383		size -= 4;
2384	}
2385
2386	return result;
2387}
2388
2389static const struct file_operations amdgpu_ttm_vram_fops = {
2390	.owner = THIS_MODULE,
2391	.read = amdgpu_ttm_vram_read,
2392	.write = amdgpu_ttm_vram_write,
2393	.llseek = default_llseek,
2394};
2395
2396/*
2397 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2398 *
2399 * This function is used to read memory that has been mapped to the
2400 * GPU and the known addresses are not physical addresses but instead
2401 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2402 */
2403static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2404				 size_t size, loff_t *pos)
2405{
2406	struct amdgpu_device *adev = file_inode(f)->i_private;
2407	struct iommu_domain *dom;
2408	ssize_t result = 0;
2409	int r;
2410
2411	/* retrieve the IOMMU domain if any for this device */
2412	dom = iommu_get_domain_for_dev(adev->dev);
2413
2414	while (size) {
2415		phys_addr_t addr = *pos & PAGE_MASK;
2416		loff_t off = *pos & ~PAGE_MASK;
2417		size_t bytes = PAGE_SIZE - off;
2418		unsigned long pfn;
2419		struct page *p;
2420		void *ptr;
2421
2422		bytes = min(bytes, size);
2423
2424		/* Translate the bus address to a physical address.  If
2425		 * the domain is NULL it means there is no IOMMU active
2426		 * and the address translation is the identity
2427		 */
2428		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2429
2430		pfn = addr >> PAGE_SHIFT;
2431		if (!pfn_valid(pfn))
2432			return -EPERM;
2433
2434		p = pfn_to_page(pfn);
2435		if (p->mapping != adev->mman.bdev.dev_mapping)
2436			return -EPERM;
2437
2438		ptr = kmap_local_page(p);
2439		r = copy_to_user(buf, ptr + off, bytes);
2440		kunmap_local(ptr);
2441		if (r)
2442			return -EFAULT;
2443
2444		size -= bytes;
2445		*pos += bytes;
2446		result += bytes;
2447	}
2448
2449	return result;
2450}
2451
2452/*
2453 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2454 *
2455 * This function is used to write memory that has been mapped to the
2456 * GPU and the known addresses are not physical addresses but instead
2457 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2458 */
2459static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2460				 size_t size, loff_t *pos)
2461{
2462	struct amdgpu_device *adev = file_inode(f)->i_private;
2463	struct iommu_domain *dom;
2464	ssize_t result = 0;
2465	int r;
2466
2467	dom = iommu_get_domain_for_dev(adev->dev);
2468
2469	while (size) {
2470		phys_addr_t addr = *pos & PAGE_MASK;
2471		loff_t off = *pos & ~PAGE_MASK;
2472		size_t bytes = PAGE_SIZE - off;
2473		unsigned long pfn;
2474		struct page *p;
2475		void *ptr;
2476
2477		bytes = min(bytes, size);
2478
2479		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2480
2481		pfn = addr >> PAGE_SHIFT;
2482		if (!pfn_valid(pfn))
2483			return -EPERM;
2484
2485		p = pfn_to_page(pfn);
2486		if (p->mapping != adev->mman.bdev.dev_mapping)
2487			return -EPERM;
2488
2489		ptr = kmap_local_page(p);
2490		r = copy_from_user(ptr + off, buf, bytes);
2491		kunmap_local(ptr);
2492		if (r)
2493			return -EFAULT;
2494
2495		size -= bytes;
2496		*pos += bytes;
2497		result += bytes;
2498	}
2499
2500	return result;
2501}
2502
2503static const struct file_operations amdgpu_ttm_iomem_fops = {
2504	.owner = THIS_MODULE,
2505	.read = amdgpu_iomem_read,
2506	.write = amdgpu_iomem_write,
2507	.llseek = default_llseek
2508};
2509
2510#endif
2511
2512void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2513{
2514#if defined(CONFIG_DEBUG_FS)
2515	struct drm_minor *minor = adev_to_drm(adev)->primary;
2516	struct dentry *root = minor->debugfs_root;
2517
2518	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2519				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2520	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2521			    &amdgpu_ttm_iomem_fops);
2522	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2523			    &amdgpu_ttm_page_pool_fops);
2524	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2525							     TTM_PL_VRAM),
2526					    root, "amdgpu_vram_mm");
2527	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2528							     TTM_PL_TT),
2529					    root, "amdgpu_gtt_mm");
2530	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2531							     AMDGPU_PL_GDS),
2532					    root, "amdgpu_gds_mm");
2533	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2534							     AMDGPU_PL_GWS),
2535					    root, "amdgpu_gws_mm");
2536	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2537							     AMDGPU_PL_OA),
2538					    root, "amdgpu_oa_mm");
2539
2540#endif
2541}
v6.13.7
   1/*
   2 * Copyright 2009 Jerome Glisse.
   3 * All Rights Reserved.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the
   7 * "Software"), to deal in the Software without restriction, including
   8 * without limitation the rights to use, copy, modify, merge, publish,
   9 * distribute, sub license, and/or sell copies of the Software, and to
  10 * permit persons to whom the Software is furnished to do so, subject to
  11 * the following conditions:
  12 *
  13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  20 *
  21 * The above copyright notice and this permission notice (including the
  22 * next paragraph) shall be included in all copies or substantial portions
  23 * of the Software.
  24 *
  25 */
  26/*
  27 * Authors:
  28 *    Jerome Glisse <glisse@freedesktop.org>
  29 *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
  30 *    Dave Airlie
  31 */
  32
  33#include <linux/dma-mapping.h>
  34#include <linux/iommu.h>
  35#include <linux/pagemap.h>
  36#include <linux/sched/task.h>
  37#include <linux/sched/mm.h>
  38#include <linux/seq_file.h>
  39#include <linux/slab.h>
  40#include <linux/swap.h>
  41#include <linux/dma-buf.h>
  42#include <linux/sizes.h>
  43#include <linux/module.h>
  44
  45#include <drm/drm_drv.h>
  46#include <drm/ttm/ttm_bo.h>
  47#include <drm/ttm/ttm_placement.h>
  48#include <drm/ttm/ttm_range_manager.h>
  49#include <drm/ttm/ttm_tt.h>
  50
  51#include <drm/amdgpu_drm.h>
  52
  53#include "amdgpu.h"
  54#include "amdgpu_object.h"
  55#include "amdgpu_trace.h"
  56#include "amdgpu_amdkfd.h"
  57#include "amdgpu_sdma.h"
  58#include "amdgpu_ras.h"
  59#include "amdgpu_hmm.h"
  60#include "amdgpu_atomfirmware.h"
  61#include "amdgpu_res_cursor.h"
  62#include "bif/bif_4_1_d.h"
  63
  64MODULE_IMPORT_NS("DMA_BUF");
  65
  66#define AMDGPU_TTM_VRAM_MAX_DW_READ	((size_t)128)
  67
  68static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
  69				   struct ttm_tt *ttm,
  70				   struct ttm_resource *bo_mem);
  71static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
  72				      struct ttm_tt *ttm);
  73
  74static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
  75				    unsigned int type,
  76				    uint64_t size_in_page)
  77{
  78	return ttm_range_man_init(&adev->mman.bdev, type,
  79				  false, size_in_page);
  80}
  81
  82/**
  83 * amdgpu_evict_flags - Compute placement flags
  84 *
  85 * @bo: The buffer object to evict
  86 * @placement: Possible destination(s) for evicted BO
  87 *
  88 * Fill in placement data when ttm_bo_evict() is called
  89 */
  90static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
  91				struct ttm_placement *placement)
  92{
  93	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
  94	struct amdgpu_bo *abo;
  95	static const struct ttm_place placements = {
  96		.fpfn = 0,
  97		.lpfn = 0,
  98		.mem_type = TTM_PL_SYSTEM,
  99		.flags = 0
 100	};
 101
 102	/* Don't handle scatter gather BOs */
 103	if (bo->type == ttm_bo_type_sg) {
 104		placement->num_placement = 0;
 
 105		return;
 106	}
 107
 108	/* Object isn't an AMDGPU object so ignore */
 109	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
 110		placement->placement = &placements;
 
 111		placement->num_placement = 1;
 
 112		return;
 113	}
 114
 115	abo = ttm_to_amdgpu_bo(bo);
 116	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
 117		placement->num_placement = 0;
 
 118		return;
 119	}
 120
 121	switch (bo->resource->mem_type) {
 122	case AMDGPU_PL_GDS:
 123	case AMDGPU_PL_GWS:
 124	case AMDGPU_PL_OA:
 125	case AMDGPU_PL_DOORBELL:
 126		placement->num_placement = 0;
 
 127		return;
 128
 129	case TTM_PL_VRAM:
 130		if (!adev->mman.buffer_funcs_enabled) {
 131			/* Move to system memory */
 132			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
 133
 134		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
 135			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
 136			   amdgpu_res_cpu_visible(adev, bo->resource)) {
 137
 138			/* Try evicting to the CPU inaccessible part of VRAM
 139			 * first, but only set GTT as busy placement, so this
 140			 * BO will be evicted to GTT rather than causing other
 141			 * BOs to be evicted from VRAM
 142			 */
 143			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
 144							AMDGPU_GEM_DOMAIN_GTT |
 145							AMDGPU_GEM_DOMAIN_CPU);
 146			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
 147			abo->placements[0].lpfn = 0;
 148			abo->placements[0].flags |= TTM_PL_FLAG_DESIRED;
 
 149		} else {
 150			/* Move to GTT memory */
 151			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
 152							AMDGPU_GEM_DOMAIN_CPU);
 153		}
 154		break;
 155	case TTM_PL_TT:
 156	case AMDGPU_PL_PREEMPT:
 157	default:
 158		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
 159		break;
 160	}
 161	*placement = abo->placement;
 162}
 163
 164/**
 165 * amdgpu_ttm_map_buffer - Map memory into the GART windows
 166 * @bo: buffer object to map
 167 * @mem: memory object to map
 168 * @mm_cur: range to map
 169 * @window: which GART window to use
 170 * @ring: DMA ring to use for the copy
 171 * @tmz: if we should setup a TMZ enabled mapping
 172 * @size: in number of bytes to map, out number of bytes mapped
 173 * @addr: resulting address inside the MC address space
 174 *
 175 * Setup one of the GART windows to access a specific piece of memory or return
 176 * the physical address for local memory.
 177 */
 178static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
 179				 struct ttm_resource *mem,
 180				 struct amdgpu_res_cursor *mm_cur,
 181				 unsigned int window, struct amdgpu_ring *ring,
 182				 bool tmz, uint64_t *size, uint64_t *addr)
 183{
 184	struct amdgpu_device *adev = ring->adev;
 185	unsigned int offset, num_pages, num_dw, num_bytes;
 186	uint64_t src_addr, dst_addr;
 187	struct amdgpu_job *job;
 188	void *cpu_addr;
 189	uint64_t flags;
 190	unsigned int i;
 191	int r;
 192
 193	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
 194	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
 195
 196	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
 197		return -EINVAL;
 198
 199	/* Map only what can't be accessed directly */
 200	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
 201		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
 202			mm_cur->start;
 203		return 0;
 204	}
 205
 206
 207	/*
 208	 * If start begins at an offset inside the page, then adjust the size
 209	 * and addr accordingly
 210	 */
 211	offset = mm_cur->start & ~PAGE_MASK;
 212
 213	num_pages = PFN_UP(*size + offset);
 214	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
 215
 216	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
 217
 218	*addr = adev->gmc.gart_start;
 219	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
 220		AMDGPU_GPU_PAGE_SIZE;
 221	*addr += offset;
 222
 223	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
 224	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
 225
 226	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
 227				     AMDGPU_FENCE_OWNER_UNDEFINED,
 228				     num_dw * 4 + num_bytes,
 229				     AMDGPU_IB_POOL_DELAYED, &job);
 230	if (r)
 231		return r;
 232
 233	src_addr = num_dw * 4;
 234	src_addr += job->ibs[0].gpu_addr;
 235
 236	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
 237	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
 238	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
 239				dst_addr, num_bytes, 0);
 240
 241	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
 242	WARN_ON(job->ibs[0].length_dw > num_dw);
 243
 244	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
 245	if (tmz)
 246		flags |= AMDGPU_PTE_TMZ;
 247
 248	cpu_addr = &job->ibs[0].ptr[num_dw];
 249
 250	if (mem->mem_type == TTM_PL_TT) {
 251		dma_addr_t *dma_addr;
 252
 253		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
 254		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
 255	} else {
 256		dma_addr_t dma_address;
 257
 258		dma_address = mm_cur->start;
 259		dma_address += adev->vm_manager.vram_base_offset;
 260
 261		for (i = 0; i < num_pages; ++i) {
 262			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
 263					flags, cpu_addr);
 264			dma_address += PAGE_SIZE;
 265		}
 266	}
 267
 268	dma_fence_put(amdgpu_job_submit(job));
 269	return 0;
 270}
 271
 272/**
 273 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
 274 * @adev: amdgpu device
 275 * @src: buffer/address where to read from
 276 * @dst: buffer/address where to write to
 277 * @size: number of bytes to copy
 278 * @tmz: if a secure copy should be used
 279 * @resv: resv object to sync to
 280 * @f: Returns the last fence if multiple jobs are submitted.
 281 *
 282 * The function copies @size bytes from {src->mem + src->offset} to
 283 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
 284 * move and different for a BO to BO copy.
 285 *
 286 */
 287int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
 288			       const struct amdgpu_copy_mem *src,
 289			       const struct amdgpu_copy_mem *dst,
 290			       uint64_t size, bool tmz,
 291			       struct dma_resv *resv,
 292			       struct dma_fence **f)
 293{
 294	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
 295	struct amdgpu_res_cursor src_mm, dst_mm;
 296	struct dma_fence *fence = NULL;
 297	int r = 0;
 298	uint32_t copy_flags = 0;
 299	struct amdgpu_bo *abo_src, *abo_dst;
 300
 301	if (!adev->mman.buffer_funcs_enabled) {
 302		DRM_ERROR("Trying to move memory with ring turned off.\n");
 303		return -EINVAL;
 304	}
 305
 306	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
 307	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
 308
 309	mutex_lock(&adev->mman.gtt_window_lock);
 310	while (src_mm.remaining) {
 311		uint64_t from, to, cur_size, tiling_flags;
 312		uint32_t num_type, data_format, max_com, write_compress_disable;
 313		struct dma_fence *next;
 314
 315		/* Never copy more than 256MiB at once to avoid a timeout */
 316		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
 317
 318		/* Map src to window 0 and dst to window 1. */
 319		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
 320					  0, ring, tmz, &cur_size, &from);
 321		if (r)
 322			goto error;
 323
 324		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
 325					  1, ring, tmz, &cur_size, &to);
 326		if (r)
 327			goto error;
 328
 329		abo_src = ttm_to_amdgpu_bo(src->bo);
 330		abo_dst = ttm_to_amdgpu_bo(dst->bo);
 331		if (tmz)
 332			copy_flags |= AMDGPU_COPY_FLAGS_TMZ;
 333		if ((abo_src->flags & AMDGPU_GEM_CREATE_GFX12_DCC) &&
 334		    (abo_src->tbo.resource->mem_type == TTM_PL_VRAM))
 335			copy_flags |= AMDGPU_COPY_FLAGS_READ_DECOMPRESSED;
 336		if ((abo_dst->flags & AMDGPU_GEM_CREATE_GFX12_DCC) &&
 337		    (dst->mem->mem_type == TTM_PL_VRAM)) {
 338			copy_flags |= AMDGPU_COPY_FLAGS_WRITE_COMPRESSED;
 339			amdgpu_bo_get_tiling_flags(abo_dst, &tiling_flags);
 340			max_com = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_MAX_COMPRESSED_BLOCK);
 341			num_type = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_NUMBER_TYPE);
 342			data_format = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_DATA_FORMAT);
 343			write_compress_disable =
 344				AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_WRITE_COMPRESS_DISABLE);
 345			copy_flags |= (AMDGPU_COPY_FLAGS_SET(MAX_COMPRESSED, max_com) |
 346				       AMDGPU_COPY_FLAGS_SET(NUMBER_TYPE, num_type) |
 347				       AMDGPU_COPY_FLAGS_SET(DATA_FORMAT, data_format) |
 348				       AMDGPU_COPY_FLAGS_SET(WRITE_COMPRESS_DISABLE,
 349							     write_compress_disable));
 350		}
 351
 352		r = amdgpu_copy_buffer(ring, from, to, cur_size, resv,
 353				       &next, false, true, copy_flags);
 354		if (r)
 355			goto error;
 356
 357		dma_fence_put(fence);
 358		fence = next;
 359
 360		amdgpu_res_next(&src_mm, cur_size);
 361		amdgpu_res_next(&dst_mm, cur_size);
 362	}
 363error:
 364	mutex_unlock(&adev->mman.gtt_window_lock);
 365	if (f)
 366		*f = dma_fence_get(fence);
 367	dma_fence_put(fence);
 368	return r;
 369}
 370
 371/*
 372 * amdgpu_move_blit - Copy an entire buffer to another buffer
 373 *
 374 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
 375 * help move buffers to and from VRAM.
 376 */
 377static int amdgpu_move_blit(struct ttm_buffer_object *bo,
 378			    bool evict,
 379			    struct ttm_resource *new_mem,
 380			    struct ttm_resource *old_mem)
 381{
 382	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 383	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
 384	struct amdgpu_copy_mem src, dst;
 385	struct dma_fence *fence = NULL;
 386	int r;
 387
 388	src.bo = bo;
 389	dst.bo = bo;
 390	src.mem = old_mem;
 391	dst.mem = new_mem;
 392	src.offset = 0;
 393	dst.offset = 0;
 394
 395	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
 396				       new_mem->size,
 397				       amdgpu_bo_encrypted(abo),
 398				       bo->base.resv, &fence);
 399	if (r)
 400		goto error;
 401
 402	/* clear the space being freed */
 403	if (old_mem->mem_type == TTM_PL_VRAM &&
 404	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
 405		struct dma_fence *wipe_fence = NULL;
 406
 407		r = amdgpu_fill_buffer(abo, 0, NULL, &wipe_fence,
 408				       false);
 409		if (r) {
 410			goto error;
 411		} else if (wipe_fence) {
 412			amdgpu_vram_mgr_set_cleared(bo->resource);
 413			dma_fence_put(fence);
 414			fence = wipe_fence;
 415		}
 416	}
 417
 418	/* Always block for VM page tables before committing the new location */
 419	if (bo->type == ttm_bo_type_kernel)
 420		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
 421	else
 422		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
 423	dma_fence_put(fence);
 424	return r;
 425
 426error:
 427	if (fence)
 428		dma_fence_wait(fence, false);
 429	dma_fence_put(fence);
 430	return r;
 431}
 432
 433/**
 434 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
 435 * @adev: amdgpu device
 436 * @res: the resource to check
 437 *
 438 * Returns: true if the full resource is CPU visible, false otherwise.
 439 */
 440bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
 441			    struct ttm_resource *res)
 442{
 
 443	struct amdgpu_res_cursor cursor;
 
 444
 445	if (!res)
 446		return false;
 447
 448	if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
 449	    res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL)
 450		return true;
 451
 452	if (res->mem_type != TTM_PL_VRAM)
 453		return false;
 454
 455	amdgpu_res_first(res, 0, res->size, &cursor);
 
 456	while (cursor.remaining) {
 457		if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size)
 458			return false;
 459		amdgpu_res_next(&cursor, cursor.size);
 460	}
 461
 462	return true;
 463}
 464
 465/*
 466 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
 467 *
 468 * Called by amdgpu_bo_move()
 469 */
 470static bool amdgpu_res_copyable(struct amdgpu_device *adev,
 471				struct ttm_resource *mem)
 472{
 473	if (!amdgpu_res_cpu_visible(adev, mem))
 474		return false;
 475
 476	/* ttm_resource_ioremap only supports contiguous memory */
 477	if (mem->mem_type == TTM_PL_VRAM &&
 478	    !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
 479		return false;
 480
 481	return true;
 482}
 483
 484/*
 485 * amdgpu_bo_move - Move a buffer object to a new memory location
 486 *
 487 * Called by ttm_bo_handle_move_mem()
 488 */
 489static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
 490			  struct ttm_operation_ctx *ctx,
 491			  struct ttm_resource *new_mem,
 492			  struct ttm_place *hop)
 493{
 494	struct amdgpu_device *adev;
 495	struct amdgpu_bo *abo;
 496	struct ttm_resource *old_mem = bo->resource;
 497	int r;
 498
 499	if (new_mem->mem_type == TTM_PL_TT ||
 500	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
 501		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
 502		if (r)
 503			return r;
 504	}
 505
 506	abo = ttm_to_amdgpu_bo(bo);
 507	adev = amdgpu_ttm_adev(bo->bdev);
 508
 509	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
 510			 bo->ttm == NULL)) {
 511		amdgpu_bo_move_notify(bo, evict, new_mem);
 512		ttm_bo_move_null(bo, new_mem);
 513		return 0;
 514	}
 515	if (old_mem->mem_type == TTM_PL_SYSTEM &&
 516	    (new_mem->mem_type == TTM_PL_TT ||
 517	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
 518		amdgpu_bo_move_notify(bo, evict, new_mem);
 519		ttm_bo_move_null(bo, new_mem);
 520		return 0;
 521	}
 522	if ((old_mem->mem_type == TTM_PL_TT ||
 523	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
 524	    new_mem->mem_type == TTM_PL_SYSTEM) {
 525		r = ttm_bo_wait_ctx(bo, ctx);
 526		if (r)
 527			return r;
 528
 529		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
 530		amdgpu_bo_move_notify(bo, evict, new_mem);
 531		ttm_resource_free(bo, &bo->resource);
 532		ttm_bo_assign_mem(bo, new_mem);
 533		return 0;
 534	}
 535
 536	if (old_mem->mem_type == AMDGPU_PL_GDS ||
 537	    old_mem->mem_type == AMDGPU_PL_GWS ||
 538	    old_mem->mem_type == AMDGPU_PL_OA ||
 539	    old_mem->mem_type == AMDGPU_PL_DOORBELL ||
 540	    new_mem->mem_type == AMDGPU_PL_GDS ||
 541	    new_mem->mem_type == AMDGPU_PL_GWS ||
 542	    new_mem->mem_type == AMDGPU_PL_OA ||
 543	    new_mem->mem_type == AMDGPU_PL_DOORBELL) {
 544		/* Nothing to save here */
 545		amdgpu_bo_move_notify(bo, evict, new_mem);
 546		ttm_bo_move_null(bo, new_mem);
 547		return 0;
 548	}
 549
 550	if (bo->type == ttm_bo_type_device &&
 551	    new_mem->mem_type == TTM_PL_VRAM &&
 552	    old_mem->mem_type != TTM_PL_VRAM) {
 553		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
 554		 * accesses the BO after it's moved.
 555		 */
 556		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
 557	}
 558
 559	if (adev->mman.buffer_funcs_enabled &&
 560	    ((old_mem->mem_type == TTM_PL_SYSTEM &&
 561	      new_mem->mem_type == TTM_PL_VRAM) ||
 562	     (old_mem->mem_type == TTM_PL_VRAM &&
 563	      new_mem->mem_type == TTM_PL_SYSTEM))) {
 564		hop->fpfn = 0;
 565		hop->lpfn = 0;
 566		hop->mem_type = TTM_PL_TT;
 567		hop->flags = TTM_PL_FLAG_TEMPORARY;
 568		return -EMULTIHOP;
 569	}
 570
 571	amdgpu_bo_move_notify(bo, evict, new_mem);
 572	if (adev->mman.buffer_funcs_enabled)
 573		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
 574	else
 575		r = -ENODEV;
 
 576
 577	if (r) {
 578		/* Check that all memory is CPU accessible */
 579		if (!amdgpu_res_copyable(adev, old_mem) ||
 580		    !amdgpu_res_copyable(adev, new_mem)) {
 581			pr_err("Move buffer fallback to memcpy unavailable\n");
 582			return r;
 583		}
 584
 585		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
 586		if (r)
 587			return r;
 588	}
 589
 590	/* update statistics after the move */
 591	if (evict)
 592		atomic64_inc(&adev->num_evictions);
 593	atomic64_add(bo->base.size, &adev->num_bytes_moved);
 
 594	return 0;
 595}
 596
 597/*
 598 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
 599 *
 600 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
 601 */
 602static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
 603				     struct ttm_resource *mem)
 604{
 605	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 
 606
 607	switch (mem->mem_type) {
 608	case TTM_PL_SYSTEM:
 609		/* system memory */
 610		return 0;
 611	case TTM_PL_TT:
 612	case AMDGPU_PL_PREEMPT:
 613		break;
 614	case TTM_PL_VRAM:
 615		mem->bus.offset = mem->start << PAGE_SHIFT;
 
 
 
 616
 617		if (adev->mman.aper_base_kaddr &&
 618		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
 619			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
 620					mem->bus.offset;
 621
 622		mem->bus.offset += adev->gmc.aper_base;
 623		mem->bus.is_iomem = true;
 624		break;
 625	case AMDGPU_PL_DOORBELL:
 626		mem->bus.offset = mem->start << PAGE_SHIFT;
 627		mem->bus.offset += adev->doorbell.base;
 628		mem->bus.is_iomem = true;
 629		mem->bus.caching = ttm_uncached;
 630		break;
 631	default:
 632		return -EINVAL;
 633	}
 634	return 0;
 635}
 636
 637static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
 638					   unsigned long page_offset)
 639{
 640	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 641	struct amdgpu_res_cursor cursor;
 642
 643	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
 644			 &cursor);
 645
 646	if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
 647		return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
 648
 649	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
 650}
 651
 652/**
 653 * amdgpu_ttm_domain_start - Returns GPU start address
 654 * @adev: amdgpu device object
 655 * @type: type of the memory
 656 *
 657 * Returns:
 658 * GPU start address of a memory domain
 659 */
 660
 661uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
 662{
 663	switch (type) {
 664	case TTM_PL_TT:
 665		return adev->gmc.gart_start;
 666	case TTM_PL_VRAM:
 667		return adev->gmc.vram_start;
 668	}
 669
 670	return 0;
 671}
 672
 673/*
 674 * TTM backend functions.
 675 */
 676struct amdgpu_ttm_tt {
 677	struct ttm_tt	ttm;
 678	struct drm_gem_object	*gobj;
 679	u64			offset;
 680	uint64_t		userptr;
 681	struct task_struct	*usertask;
 682	uint32_t		userflags;
 683	bool			bound;
 684	int32_t			pool_id;
 685};
 686
 687#define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
 688
 689#ifdef CONFIG_DRM_AMDGPU_USERPTR
 690/*
 691 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
 692 * memory and start HMM tracking CPU page table update
 693 *
 694 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
 695 * once afterwards to stop HMM tracking
 696 */
 697int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
 698				 struct hmm_range **range)
 699{
 700	struct ttm_tt *ttm = bo->tbo.ttm;
 701	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 702	unsigned long start = gtt->userptr;
 703	struct vm_area_struct *vma;
 704	struct mm_struct *mm;
 705	bool readonly;
 706	int r = 0;
 707
 708	/* Make sure get_user_pages_done() can cleanup gracefully */
 709	*range = NULL;
 710
 711	mm = bo->notifier.mm;
 712	if (unlikely(!mm)) {
 713		DRM_DEBUG_DRIVER("BO is not registered?\n");
 714		return -EFAULT;
 715	}
 716
 717	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
 718		return -ESRCH;
 719
 720	mmap_read_lock(mm);
 721	vma = vma_lookup(mm, start);
 722	if (unlikely(!vma)) {
 723		r = -EFAULT;
 724		goto out_unlock;
 725	}
 726	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
 727		vma->vm_file)) {
 728		r = -EPERM;
 729		goto out_unlock;
 730	}
 731
 732	readonly = amdgpu_ttm_tt_is_readonly(ttm);
 733	r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
 734				       readonly, NULL, pages, range);
 735out_unlock:
 736	mmap_read_unlock(mm);
 737	if (r)
 738		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
 739
 740	mmput(mm);
 741
 742	return r;
 743}
 744
 745/* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
 746 */
 747void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
 748				      struct hmm_range *range)
 749{
 750	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 751
 752	if (gtt && gtt->userptr && range)
 753		amdgpu_hmm_range_get_pages_done(range);
 754}
 755
 756/*
 757 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
 758 * Check if the pages backing this ttm range have been invalidated
 759 *
 760 * Returns: true if pages are still valid
 761 */
 762bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
 763				       struct hmm_range *range)
 764{
 765	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 766
 767	if (!gtt || !gtt->userptr || !range)
 768		return false;
 769
 770	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
 771		gtt->userptr, ttm->num_pages);
 772
 773	WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
 774
 775	return !amdgpu_hmm_range_get_pages_done(range);
 776}
 777#endif
 778
 779/*
 780 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
 781 *
 782 * Called by amdgpu_cs_list_validate(). This creates the page list
 783 * that backs user memory and will ultimately be mapped into the device
 784 * address space.
 785 */
 786void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
 787{
 788	unsigned long i;
 789
 790	for (i = 0; i < ttm->num_pages; ++i)
 791		ttm->pages[i] = pages ? pages[i] : NULL;
 792}
 793
 794/*
 795 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
 796 *
 797 * Called by amdgpu_ttm_backend_bind()
 798 **/
 799static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
 800				     struct ttm_tt *ttm)
 801{
 802	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 803	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 804	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
 805	enum dma_data_direction direction = write ?
 806		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
 807	int r;
 808
 809	/* Allocate an SG array and squash pages into it */
 810	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
 811				      (u64)ttm->num_pages << PAGE_SHIFT,
 812				      GFP_KERNEL);
 813	if (r)
 814		goto release_sg;
 815
 816	/* Map SG to device */
 817	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
 818	if (r)
 819		goto release_sg_table;
 820
 821	/* convert SG to linear array of pages and dma addresses */
 822	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
 823				       ttm->num_pages);
 824
 825	return 0;
 826
 827release_sg_table:
 828	sg_free_table(ttm->sg);
 829release_sg:
 830	kfree(ttm->sg);
 831	ttm->sg = NULL;
 832	return r;
 833}
 834
 835/*
 836 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
 837 */
 838static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
 839					struct ttm_tt *ttm)
 840{
 841	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 842	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 843	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
 844	enum dma_data_direction direction = write ?
 845		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
 846
 847	/* double check that we don't free the table twice */
 848	if (!ttm->sg || !ttm->sg->sgl)
 849		return;
 850
 851	/* unmap the pages mapped to the device */
 852	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
 853	sg_free_table(ttm->sg);
 854}
 855
 856/*
 857 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
 858 * MQDn+CtrlStackn where n is the number of XCCs per partition.
 859 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
 860 * and uses memory type default, UC. The rest of pages_per_xcc are
 861 * Ctrl stack and modify their memory type to NC.
 862 */
 863static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
 864				struct ttm_tt *ttm, uint64_t flags)
 865{
 866	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 867	uint64_t total_pages = ttm->num_pages;
 868	int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
 869	uint64_t page_idx, pages_per_xcc;
 870	int i;
 871	uint64_t ctrl_flags = AMDGPU_PTE_MTYPE_VG10(flags, AMDGPU_MTYPE_NC);
 
 872
 873	pages_per_xcc = total_pages;
 874	do_div(pages_per_xcc, num_xcc);
 875
 876	for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
 877		/* MQD page: use default flags */
 878		amdgpu_gart_bind(adev,
 879				gtt->offset + (page_idx << PAGE_SHIFT),
 880				1, &gtt->ttm.dma_address[page_idx], flags);
 881		/*
 882		 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
 883		 * the second page of the BO onward.
 884		 */
 885		amdgpu_gart_bind(adev,
 886				gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
 887				pages_per_xcc - 1,
 888				&gtt->ttm.dma_address[page_idx + 1],
 889				ctrl_flags);
 890	}
 891}
 892
 893static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
 894				 struct ttm_buffer_object *tbo,
 895				 uint64_t flags)
 896{
 897	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
 898	struct ttm_tt *ttm = tbo->ttm;
 899	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 900
 901	if (amdgpu_bo_encrypted(abo))
 902		flags |= AMDGPU_PTE_TMZ;
 903
 904	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
 905		amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
 906	} else {
 907		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
 908				 gtt->ttm.dma_address, flags);
 909	}
 910	gtt->bound = true;
 911}
 912
 913/*
 914 * amdgpu_ttm_backend_bind - Bind GTT memory
 915 *
 916 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
 917 * This handles binding GTT memory to the device address space.
 918 */
 919static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
 920				   struct ttm_tt *ttm,
 921				   struct ttm_resource *bo_mem)
 922{
 923	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 924	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 925	uint64_t flags;
 926	int r;
 927
 928	if (!bo_mem)
 929		return -EINVAL;
 930
 931	if (gtt->bound)
 932		return 0;
 933
 934	if (gtt->userptr) {
 935		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
 936		if (r) {
 937			DRM_ERROR("failed to pin userptr\n");
 938			return r;
 939		}
 940	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
 941		if (!ttm->sg) {
 942			struct dma_buf_attachment *attach;
 943			struct sg_table *sgt;
 944
 945			attach = gtt->gobj->import_attach;
 946			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
 947			if (IS_ERR(sgt))
 948				return PTR_ERR(sgt);
 949
 950			ttm->sg = sgt;
 951		}
 952
 953		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
 954					       ttm->num_pages);
 955	}
 956
 957	if (!ttm->num_pages) {
 958		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
 959		     ttm->num_pages, bo_mem, ttm);
 960	}
 961
 962	if (bo_mem->mem_type != TTM_PL_TT ||
 963	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
 964		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
 965		return 0;
 966	}
 967
 968	/* compute PTE flags relevant to this BO memory */
 969	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
 970
 971	/* bind pages into GART page tables */
 972	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
 973	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
 974			 gtt->ttm.dma_address, flags);
 975	gtt->bound = true;
 976	return 0;
 977}
 978
 979/*
 980 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
 981 * through AGP or GART aperture.
 982 *
 983 * If bo is accessible through AGP aperture, then use AGP aperture
 984 * to access bo; otherwise allocate logical space in GART aperture
 985 * and map bo to GART aperture.
 986 */
 987int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
 988{
 989	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 990	struct ttm_operation_ctx ctx = { false, false };
 991	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
 992	struct ttm_placement placement;
 993	struct ttm_place placements;
 994	struct ttm_resource *tmp;
 995	uint64_t addr, flags;
 996	int r;
 997
 998	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
 999		return 0;
1000
1001	addr = amdgpu_gmc_agp_addr(bo);
1002	if (addr != AMDGPU_BO_INVALID_OFFSET)
1003		return 0;
1004
1005	/* allocate GART space */
1006	placement.num_placement = 1;
1007	placement.placement = &placements;
 
 
1008	placements.fpfn = 0;
1009	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1010	placements.mem_type = TTM_PL_TT;
1011	placements.flags = bo->resource->placement;
1012
1013	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1014	if (unlikely(r))
1015		return r;
1016
1017	/* compute PTE flags for this buffer object */
1018	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
1019
1020	/* Bind pages */
1021	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
1022	amdgpu_ttm_gart_bind(adev, bo, flags);
1023	amdgpu_gart_invalidate_tlb(adev);
1024	ttm_resource_free(bo, &bo->resource);
1025	ttm_bo_assign_mem(bo, tmp);
1026
1027	return 0;
1028}
1029
1030/*
1031 * amdgpu_ttm_recover_gart - Rebind GTT pages
1032 *
1033 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1034 * rebind GTT pages during a GPU reset.
1035 */
1036void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1037{
1038	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1039	uint64_t flags;
1040
1041	if (!tbo->ttm)
1042		return;
1043
1044	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1045	amdgpu_ttm_gart_bind(adev, tbo, flags);
1046}
1047
1048/*
1049 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1050 *
1051 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1052 * ttm_tt_destroy().
1053 */
1054static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1055				      struct ttm_tt *ttm)
1056{
1057	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1058	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1059
1060	/* if the pages have userptr pinning then clear that first */
1061	if (gtt->userptr) {
1062		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1063	} else if (ttm->sg && gtt->gobj->import_attach) {
1064		struct dma_buf_attachment *attach;
1065
1066		attach = gtt->gobj->import_attach;
1067		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1068		ttm->sg = NULL;
1069	}
1070
1071	if (!gtt->bound)
1072		return;
1073
1074	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1075		return;
1076
1077	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1078	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1079	gtt->bound = false;
1080}
1081
1082static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1083				       struct ttm_tt *ttm)
1084{
1085	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1086
1087	if (gtt->usertask)
1088		put_task_struct(gtt->usertask);
1089
1090	ttm_tt_fini(&gtt->ttm);
1091	kfree(gtt);
1092}
1093
1094/**
1095 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1096 *
1097 * @bo: The buffer object to create a GTT ttm_tt object around
1098 * @page_flags: Page flags to be added to the ttm_tt object
1099 *
1100 * Called by ttm_tt_create().
1101 */
1102static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1103					   uint32_t page_flags)
1104{
1105	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1106	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1107	struct amdgpu_ttm_tt *gtt;
1108	enum ttm_caching caching;
1109
1110	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1111	if (!gtt)
1112		return NULL;
1113
1114	gtt->gobj = &bo->base;
1115	if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1116		gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1117	else
1118		gtt->pool_id = abo->xcp_id;
1119
1120	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1121		caching = ttm_write_combined;
1122	else
1123		caching = ttm_cached;
1124
1125	/* allocate space for the uninitialized page entries */
1126	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1127		kfree(gtt);
1128		return NULL;
1129	}
1130	return &gtt->ttm;
1131}
1132
1133/*
1134 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1135 *
1136 * Map the pages of a ttm_tt object to an address space visible
1137 * to the underlying device.
1138 */
1139static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1140				  struct ttm_tt *ttm,
1141				  struct ttm_operation_ctx *ctx)
1142{
1143	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1144	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1145	struct ttm_pool *pool;
1146	pgoff_t i;
1147	int ret;
1148
1149	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1150	if (gtt->userptr) {
1151		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1152		if (!ttm->sg)
1153			return -ENOMEM;
1154		return 0;
1155	}
1156
1157	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1158		return 0;
1159
1160	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1161		pool = &adev->mman.ttm_pools[gtt->pool_id];
1162	else
1163		pool = &adev->mman.bdev.pool;
1164	ret = ttm_pool_alloc(pool, ttm, ctx);
1165	if (ret)
1166		return ret;
1167
1168	for (i = 0; i < ttm->num_pages; ++i)
1169		ttm->pages[i]->mapping = bdev->dev_mapping;
1170
1171	return 0;
1172}
1173
1174/*
1175 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1176 *
1177 * Unmaps pages of a ttm_tt object from the device address space and
1178 * unpopulates the page array backing it.
1179 */
1180static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1181				     struct ttm_tt *ttm)
1182{
1183	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1184	struct amdgpu_device *adev;
1185	struct ttm_pool *pool;
1186	pgoff_t i;
1187
1188	amdgpu_ttm_backend_unbind(bdev, ttm);
1189
1190	if (gtt->userptr) {
1191		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1192		kfree(ttm->sg);
1193		ttm->sg = NULL;
1194		return;
1195	}
1196
1197	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1198		return;
1199
1200	for (i = 0; i < ttm->num_pages; ++i)
1201		ttm->pages[i]->mapping = NULL;
1202
1203	adev = amdgpu_ttm_adev(bdev);
1204
1205	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1206		pool = &adev->mman.ttm_pools[gtt->pool_id];
1207	else
1208		pool = &adev->mman.bdev.pool;
1209
1210	return ttm_pool_free(pool, ttm);
1211}
1212
1213/**
1214 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1215 * task
1216 *
1217 * @tbo: The ttm_buffer_object that contains the userptr
1218 * @user_addr:  The returned value
1219 */
1220int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1221			      uint64_t *user_addr)
1222{
1223	struct amdgpu_ttm_tt *gtt;
1224
1225	if (!tbo->ttm)
1226		return -EINVAL;
1227
1228	gtt = (void *)tbo->ttm;
1229	*user_addr = gtt->userptr;
1230	return 0;
1231}
1232
1233/**
1234 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1235 * task
1236 *
1237 * @bo: The ttm_buffer_object to bind this userptr to
1238 * @addr:  The address in the current tasks VM space to use
1239 * @flags: Requirements of userptr object.
1240 *
1241 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1242 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1243 * initialize GPU VM for a KFD process.
1244 */
1245int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1246			      uint64_t addr, uint32_t flags)
1247{
1248	struct amdgpu_ttm_tt *gtt;
1249
1250	if (!bo->ttm) {
1251		/* TODO: We want a separate TTM object type for userptrs */
1252		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1253		if (bo->ttm == NULL)
1254			return -ENOMEM;
1255	}
1256
1257	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1258	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1259
1260	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1261	gtt->userptr = addr;
1262	gtt->userflags = flags;
1263
1264	if (gtt->usertask)
1265		put_task_struct(gtt->usertask);
1266	gtt->usertask = current->group_leader;
1267	get_task_struct(gtt->usertask);
1268
1269	return 0;
1270}
1271
1272/*
1273 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1274 */
1275struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1276{
1277	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1278
1279	if (gtt == NULL)
1280		return NULL;
1281
1282	if (gtt->usertask == NULL)
1283		return NULL;
1284
1285	return gtt->usertask->mm;
1286}
1287
1288/*
1289 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1290 * address range for the current task.
1291 *
1292 */
1293bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1294				  unsigned long end, unsigned long *userptr)
1295{
1296	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1297	unsigned long size;
1298
1299	if (gtt == NULL || !gtt->userptr)
1300		return false;
1301
1302	/* Return false if no part of the ttm_tt object lies within
1303	 * the range
1304	 */
1305	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1306	if (gtt->userptr > end || gtt->userptr + size <= start)
1307		return false;
1308
1309	if (userptr)
1310		*userptr = gtt->userptr;
1311	return true;
1312}
1313
1314/*
1315 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1316 */
1317bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1318{
1319	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1320
1321	if (gtt == NULL || !gtt->userptr)
1322		return false;
1323
1324	return true;
1325}
1326
1327/*
1328 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1329 */
1330bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1331{
1332	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1333
1334	if (gtt == NULL)
1335		return false;
1336
1337	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1338}
1339
1340/**
1341 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1342 *
1343 * @ttm: The ttm_tt object to compute the flags for
1344 * @mem: The memory registry backing this ttm_tt object
1345 *
1346 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1347 */
1348uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1349{
1350	uint64_t flags = 0;
1351
1352	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1353		flags |= AMDGPU_PTE_VALID;
1354
1355	if (mem && (mem->mem_type == TTM_PL_TT ||
1356		    mem->mem_type == AMDGPU_PL_DOORBELL ||
1357		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1358		flags |= AMDGPU_PTE_SYSTEM;
1359
1360		if (ttm->caching == ttm_cached)
1361			flags |= AMDGPU_PTE_SNOOPED;
1362	}
1363
1364	if (mem && mem->mem_type == TTM_PL_VRAM &&
1365			mem->bus.caching == ttm_cached)
1366		flags |= AMDGPU_PTE_SNOOPED;
1367
1368	return flags;
1369}
1370
1371/**
1372 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1373 *
1374 * @adev: amdgpu_device pointer
1375 * @ttm: The ttm_tt object to compute the flags for
1376 * @mem: The memory registry backing this ttm_tt object
1377 *
1378 * Figure out the flags to use for a VM PTE (Page Table Entry).
1379 */
1380uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1381				 struct ttm_resource *mem)
1382{
1383	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1384
1385	flags |= adev->gart.gart_pte_flags;
1386	flags |= AMDGPU_PTE_READABLE;
1387
1388	if (!amdgpu_ttm_tt_is_readonly(ttm))
1389		flags |= AMDGPU_PTE_WRITEABLE;
1390
1391	return flags;
1392}
1393
1394/*
1395 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1396 * object.
1397 *
1398 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1399 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1400 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1401 * used to clean out a memory space.
1402 */
1403static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1404					    const struct ttm_place *place)
1405{
1406	struct dma_resv_iter resv_cursor;
1407	struct dma_fence *f;
1408
1409	if (!amdgpu_bo_is_amdgpu_bo(bo))
1410		return ttm_bo_eviction_valuable(bo, place);
1411
1412	/* Swapout? */
1413	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1414		return true;
1415
1416	if (bo->type == ttm_bo_type_kernel &&
1417	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1418		return false;
1419
1420	/* If bo is a KFD BO, check if the bo belongs to the current process.
1421	 * If true, then return false as any KFD process needs all its BOs to
1422	 * be resident to run successfully
1423	 */
1424	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1425				DMA_RESV_USAGE_BOOKKEEP, f) {
1426		if (amdkfd_fence_check_mm(f, current->mm) &&
1427		    !(place->flags & TTM_PL_FLAG_CONTIGUOUS))
1428			return false;
1429	}
1430
1431	/* Preemptible BOs don't own system resources managed by the
1432	 * driver (pages, VRAM, GART space). They point to resources
1433	 * owned by someone else (e.g. pageable memory in user mode
1434	 * or a DMABuf). They are used in a preemptible context so we
1435	 * can guarantee no deadlocks and good QoS in case of MMU
1436	 * notifiers or DMABuf move notifiers from the resource owner.
1437	 */
1438	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1439		return false;
1440
1441	if (bo->resource->mem_type == TTM_PL_TT &&
1442	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1443		return false;
1444
1445	return ttm_bo_eviction_valuable(bo, place);
1446}
1447
1448static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1449				      void *buf, size_t size, bool write)
1450{
1451	while (size) {
1452		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1453		uint64_t bytes = 4 - (pos & 0x3);
1454		uint32_t shift = (pos & 0x3) * 8;
1455		uint32_t mask = 0xffffffff << shift;
1456		uint32_t value = 0;
1457
1458		if (size < bytes) {
1459			mask &= 0xffffffff >> (bytes - size) * 8;
1460			bytes = size;
1461		}
1462
1463		if (mask != 0xffffffff) {
1464			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1465			if (write) {
1466				value &= ~mask;
1467				value |= (*(uint32_t *)buf << shift) & mask;
1468				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1469			} else {
1470				value = (value & mask) >> shift;
1471				memcpy(buf, &value, bytes);
1472			}
1473		} else {
1474			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1475		}
1476
1477		pos += bytes;
1478		buf += bytes;
1479		size -= bytes;
1480	}
1481}
1482
1483static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1484					unsigned long offset, void *buf,
1485					int len, int write)
1486{
1487	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1488	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1489	struct amdgpu_res_cursor src_mm;
1490	struct amdgpu_job *job;
1491	struct dma_fence *fence;
1492	uint64_t src_addr, dst_addr;
1493	unsigned int num_dw;
1494	int r, idx;
1495
1496	if (len != PAGE_SIZE)
1497		return -EINVAL;
1498
1499	if (!adev->mman.sdma_access_ptr)
1500		return -EACCES;
1501
1502	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1503		return -ENODEV;
1504
1505	if (write)
1506		memcpy(adev->mman.sdma_access_ptr, buf, len);
1507
1508	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1509	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1510				     AMDGPU_FENCE_OWNER_UNDEFINED,
1511				     num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1512				     &job);
1513	if (r)
1514		goto out;
1515
1516	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1517	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1518		src_mm.start;
1519	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1520	if (write)
1521		swap(src_addr, dst_addr);
1522
1523	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1524				PAGE_SIZE, 0);
1525
1526	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1527	WARN_ON(job->ibs[0].length_dw > num_dw);
1528
1529	fence = amdgpu_job_submit(job);
1530
1531	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1532		r = -ETIMEDOUT;
1533	dma_fence_put(fence);
1534
1535	if (!(r || write))
1536		memcpy(buf, adev->mman.sdma_access_ptr, len);
1537out:
1538	drm_dev_exit(idx);
1539	return r;
1540}
1541
1542/**
1543 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1544 *
1545 * @bo:  The buffer object to read/write
1546 * @offset:  Offset into buffer object
1547 * @buf:  Secondary buffer to write/read from
1548 * @len: Length in bytes of access
1549 * @write:  true if writing
1550 *
1551 * This is used to access VRAM that backs a buffer object via MMIO
1552 * access for debugging purposes.
1553 */
1554static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1555				    unsigned long offset, void *buf, int len,
1556				    int write)
1557{
1558	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1559	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1560	struct amdgpu_res_cursor cursor;
1561	int ret = 0;
1562
1563	if (bo->resource->mem_type != TTM_PL_VRAM)
1564		return -EIO;
1565
1566	if (amdgpu_device_has_timeouts_enabled(adev) &&
1567			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1568		return len;
1569
1570	amdgpu_res_first(bo->resource, offset, len, &cursor);
1571	while (cursor.remaining) {
1572		size_t count, size = cursor.size;
1573		loff_t pos = cursor.start;
1574
1575		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1576		size -= count;
1577		if (size) {
1578			/* using MM to access rest vram and handle un-aligned address */
1579			pos += count;
1580			buf += count;
1581			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1582		}
1583
1584		ret += cursor.size;
1585		buf += cursor.size;
1586		amdgpu_res_next(&cursor, cursor.size);
1587	}
1588
1589	return ret;
1590}
1591
1592static void
1593amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1594{
1595	amdgpu_bo_move_notify(bo, false, NULL);
1596}
1597
1598static struct ttm_device_funcs amdgpu_bo_driver = {
1599	.ttm_tt_create = &amdgpu_ttm_tt_create,
1600	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1601	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1602	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1603	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1604	.evict_flags = &amdgpu_evict_flags,
1605	.move = &amdgpu_bo_move,
1606	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1607	.release_notify = &amdgpu_bo_release_notify,
1608	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1609	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1610	.access_memory = &amdgpu_ttm_access_memory,
1611};
1612
1613/*
1614 * Firmware Reservation functions
1615 */
1616/**
1617 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1618 *
1619 * @adev: amdgpu_device pointer
1620 *
1621 * free fw reserved vram if it has been reserved.
1622 */
1623static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1624{
1625	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1626		NULL, &adev->mman.fw_vram_usage_va);
1627}
1628
1629/*
1630 * Driver Reservation functions
1631 */
1632/**
1633 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1634 *
1635 * @adev: amdgpu_device pointer
1636 *
1637 * free drv reserved vram if it has been reserved.
1638 */
1639static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1640{
1641	amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1642						  NULL,
1643						  &adev->mman.drv_vram_usage_va);
1644}
1645
1646/**
1647 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1648 *
1649 * @adev: amdgpu_device pointer
1650 *
1651 * create bo vram reservation from fw.
1652 */
1653static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1654{
1655	uint64_t vram_size = adev->gmc.visible_vram_size;
1656
1657	adev->mman.fw_vram_usage_va = NULL;
1658	adev->mman.fw_vram_usage_reserved_bo = NULL;
1659
1660	if (adev->mman.fw_vram_usage_size == 0 ||
1661	    adev->mman.fw_vram_usage_size > vram_size)
1662		return 0;
1663
1664	return amdgpu_bo_create_kernel_at(adev,
1665					  adev->mman.fw_vram_usage_start_offset,
1666					  adev->mman.fw_vram_usage_size,
1667					  &adev->mman.fw_vram_usage_reserved_bo,
1668					  &adev->mman.fw_vram_usage_va);
1669}
1670
1671/**
1672 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1673 *
1674 * @adev: amdgpu_device pointer
1675 *
1676 * create bo vram reservation from drv.
1677 */
1678static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1679{
1680	u64 vram_size = adev->gmc.visible_vram_size;
1681
1682	adev->mman.drv_vram_usage_va = NULL;
1683	adev->mman.drv_vram_usage_reserved_bo = NULL;
1684
1685	if (adev->mman.drv_vram_usage_size == 0 ||
1686	    adev->mman.drv_vram_usage_size > vram_size)
1687		return 0;
1688
1689	return amdgpu_bo_create_kernel_at(adev,
1690					  adev->mman.drv_vram_usage_start_offset,
1691					  adev->mman.drv_vram_usage_size,
1692					  &adev->mman.drv_vram_usage_reserved_bo,
1693					  &adev->mman.drv_vram_usage_va);
1694}
1695
1696/*
1697 * Memoy training reservation functions
1698 */
1699
1700/**
1701 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1702 *
1703 * @adev: amdgpu_device pointer
1704 *
1705 * free memory training reserved vram if it has been reserved.
1706 */
1707static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1708{
1709	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1710
1711	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1712	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1713	ctx->c2p_bo = NULL;
1714
1715	return 0;
1716}
1717
1718static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1719						uint32_t reserve_size)
1720{
1721	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1722
1723	memset(ctx, 0, sizeof(*ctx));
1724
1725	ctx->c2p_train_data_offset =
1726		ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1727	ctx->p2c_train_data_offset =
1728		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1729	ctx->train_data_size =
1730		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1731
1732	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1733			ctx->train_data_size,
1734			ctx->p2c_train_data_offset,
1735			ctx->c2p_train_data_offset);
1736}
1737
1738/*
1739 * reserve TMR memory at the top of VRAM which holds
1740 * IP Discovery data and is protected by PSP.
1741 */
1742static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1743{
1744	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1745	bool mem_train_support = false;
1746	uint32_t reserve_size = 0;
1747	int ret;
1748
1749	if (adev->bios && !amdgpu_sriov_vf(adev)) {
1750		if (amdgpu_atomfirmware_mem_training_supported(adev))
1751			mem_train_support = true;
1752		else
1753			DRM_DEBUG("memory training does not support!\n");
1754	}
1755
1756	/*
1757	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1758	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1759	 *
1760	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1761	 * discovery data and G6 memory training data respectively
1762	 */
1763	if (adev->bios)
1764		reserve_size =
1765			amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1766
1767	if (!adev->bios &&
1768	    (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) ||
1769	     amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4)))
1770		reserve_size = max(reserve_size, (uint32_t)280 << 20);
1771	else if (!reserve_size)
1772		reserve_size = DISCOVERY_TMR_OFFSET;
1773
1774	if (mem_train_support) {
1775		/* reserve vram for mem train according to TMR location */
1776		amdgpu_ttm_training_data_block_init(adev, reserve_size);
1777		ret = amdgpu_bo_create_kernel_at(adev,
1778						 ctx->c2p_train_data_offset,
1779						 ctx->train_data_size,
1780						 &ctx->c2p_bo,
1781						 NULL);
1782		if (ret) {
1783			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1784			amdgpu_ttm_training_reserve_vram_fini(adev);
1785			return ret;
1786		}
1787		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1788	}
1789
1790	if (!adev->gmc.is_app_apu) {
1791		ret = amdgpu_bo_create_kernel_at(
1792			adev, adev->gmc.real_vram_size - reserve_size,
1793			reserve_size, &adev->mman.fw_reserved_memory, NULL);
1794		if (ret) {
1795			DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1796			amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1797					      NULL, NULL);
1798			return ret;
1799		}
1800	} else {
1801		DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1802	}
1803
1804	return 0;
1805}
1806
1807static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1808{
1809	int i;
1810
1811	if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1812		return 0;
1813
1814	adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1815				       sizeof(*adev->mman.ttm_pools),
1816				       GFP_KERNEL);
1817	if (!adev->mman.ttm_pools)
1818		return -ENOMEM;
1819
1820	for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1821		ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1822			      adev->gmc.mem_partitions[i].numa.node,
1823			      false, false);
1824	}
1825	return 0;
1826}
1827
1828static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1829{
1830	int i;
1831
1832	if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1833		return;
1834
1835	for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1836		ttm_pool_fini(&adev->mman.ttm_pools[i]);
1837
1838	kfree(adev->mman.ttm_pools);
1839	adev->mman.ttm_pools = NULL;
1840}
1841
1842/*
1843 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1844 * gtt/vram related fields.
1845 *
1846 * This initializes all of the memory space pools that the TTM layer
1847 * will need such as the GTT space (system memory mapped to the device),
1848 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1849 * can be mapped per VMID.
1850 */
1851int amdgpu_ttm_init(struct amdgpu_device *adev)
1852{
1853	uint64_t gtt_size;
1854	int r;
1855
1856	mutex_init(&adev->mman.gtt_window_lock);
1857
1858	dma_set_max_seg_size(adev->dev, UINT_MAX);
1859	/* No others user of address space so set it to 0 */
1860	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1861			       adev_to_drm(adev)->anon_inode->i_mapping,
1862			       adev_to_drm(adev)->vma_offset_manager,
1863			       adev->need_swiotlb,
1864			       dma_addressing_limited(adev->dev));
1865	if (r) {
1866		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1867		return r;
1868	}
1869
1870	r = amdgpu_ttm_pools_init(adev);
1871	if (r) {
1872		DRM_ERROR("failed to init ttm pools(%d).\n", r);
1873		return r;
1874	}
1875	adev->mman.initialized = true;
1876
1877	/* Initialize VRAM pool with all of VRAM divided into pages */
1878	r = amdgpu_vram_mgr_init(adev);
1879	if (r) {
1880		DRM_ERROR("Failed initializing VRAM heap.\n");
1881		return r;
1882	}
1883
1884	/* Change the size here instead of the init above so only lpfn is affected */
1885	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1886#ifdef CONFIG_64BIT
1887#ifdef CONFIG_X86
1888	if (adev->gmc.xgmi.connected_to_cpu)
1889		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1890				adev->gmc.visible_vram_size);
1891
1892	else if (adev->gmc.is_app_apu)
1893		DRM_DEBUG_DRIVER(
1894			"No need to ioremap when real vram size is 0\n");
1895	else
1896#endif
1897		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1898				adev->gmc.visible_vram_size);
1899#endif
1900
1901	/*
1902	 *The reserved vram for firmware must be pinned to the specified
1903	 *place on the VRAM, so reserve it early.
1904	 */
1905	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1906	if (r)
1907		return r;
1908
1909	/*
1910	 *The reserved vram for driver must be pinned to the specified
1911	 *place on the VRAM, so reserve it early.
1912	 */
1913	r = amdgpu_ttm_drv_reserve_vram_init(adev);
1914	if (r)
1915		return r;
1916
1917	/*
1918	 * only NAVI10 and onwards ASIC support for IP discovery.
1919	 * If IP discovery enabled, a block of memory should be
1920	 * reserved for IP discovey.
1921	 */
1922	if (adev->mman.discovery_bin) {
1923		r = amdgpu_ttm_reserve_tmr(adev);
1924		if (r)
1925			return r;
1926	}
1927
1928	/* allocate memory as required for VGA
1929	 * This is used for VGA emulation and pre-OS scanout buffers to
1930	 * avoid display artifacts while transitioning between pre-OS
1931	 * and driver.
1932	 */
1933	if (!adev->gmc.is_app_apu) {
1934		r = amdgpu_bo_create_kernel_at(adev, 0,
1935					       adev->mman.stolen_vga_size,
1936					       &adev->mman.stolen_vga_memory,
1937					       NULL);
1938		if (r)
1939			return r;
1940
1941		r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1942					       adev->mman.stolen_extended_size,
1943					       &adev->mman.stolen_extended_memory,
1944					       NULL);
1945
1946		if (r)
1947			return r;
1948
1949		r = amdgpu_bo_create_kernel_at(adev,
1950					       adev->mman.stolen_reserved_offset,
1951					       adev->mman.stolen_reserved_size,
1952					       &adev->mman.stolen_reserved_memory,
1953					       NULL);
1954		if (r)
1955			return r;
1956	} else {
1957		DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1958	}
1959
1960	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1961		 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1962
1963	/* Compute GTT size, either based on TTM limit
1964	 * or whatever the user passed on module init.
1965	 */
1966	if (amdgpu_gtt_size == -1)
1967		gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1968	else
1969		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1970
1971	/* Initialize GTT memory pool */
1972	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1973	if (r) {
1974		DRM_ERROR("Failed initializing GTT heap.\n");
1975		return r;
1976	}
1977	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1978		 (unsigned int)(gtt_size / (1024 * 1024)));
1979
1980	/* Initialize doorbell pool on PCI BAR */
1981	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1982	if (r) {
1983		DRM_ERROR("Failed initializing doorbell heap.\n");
1984		return r;
1985	}
1986
1987	/* Create a boorbell page for kernel usages */
1988	r = amdgpu_doorbell_create_kernel_doorbells(adev);
1989	if (r) {
1990		DRM_ERROR("Failed to initialize kernel doorbells.\n");
1991		return r;
1992	}
1993
1994	/* Initialize preemptible memory pool */
1995	r = amdgpu_preempt_mgr_init(adev);
1996	if (r) {
1997		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1998		return r;
1999	}
2000
2001	/* Initialize various on-chip memory pools */
2002	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
2003	if (r) {
2004		DRM_ERROR("Failed initializing GDS heap.\n");
2005		return r;
2006	}
2007
2008	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
2009	if (r) {
2010		DRM_ERROR("Failed initializing gws heap.\n");
2011		return r;
2012	}
2013
2014	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
2015	if (r) {
2016		DRM_ERROR("Failed initializing oa heap.\n");
2017		return r;
2018	}
2019	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
2020				AMDGPU_GEM_DOMAIN_GTT,
2021				&adev->mman.sdma_access_bo, NULL,
2022				&adev->mman.sdma_access_ptr))
2023		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
2024
2025	return 0;
2026}
2027
2028/*
2029 * amdgpu_ttm_fini - De-initialize the TTM memory pools
2030 */
2031void amdgpu_ttm_fini(struct amdgpu_device *adev)
2032{
2033	int idx;
2034
2035	if (!adev->mman.initialized)
2036		return;
2037
2038	amdgpu_ttm_pools_fini(adev);
2039
2040	amdgpu_ttm_training_reserve_vram_fini(adev);
2041	/* return the stolen vga memory back to VRAM */
2042	if (!adev->gmc.is_app_apu) {
2043		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2044		amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2045		/* return the FW reserved memory back to VRAM */
2046		amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2047				      NULL);
2048		if (adev->mman.stolen_reserved_size)
2049			amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2050					      NULL, NULL);
2051	}
2052	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2053					&adev->mman.sdma_access_ptr);
2054	amdgpu_ttm_fw_reserve_vram_fini(adev);
2055	amdgpu_ttm_drv_reserve_vram_fini(adev);
2056
2057	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2058
2059		if (adev->mman.aper_base_kaddr)
2060			iounmap(adev->mman.aper_base_kaddr);
2061		adev->mman.aper_base_kaddr = NULL;
2062
2063		drm_dev_exit(idx);
2064	}
2065
2066	amdgpu_vram_mgr_fini(adev);
2067	amdgpu_gtt_mgr_fini(adev);
2068	amdgpu_preempt_mgr_fini(adev);
2069	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2070	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2071	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2072	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_DOORBELL);
2073	ttm_device_fini(&adev->mman.bdev);
2074	adev->mman.initialized = false;
2075	DRM_INFO("amdgpu: ttm finalized\n");
2076}
2077
2078/**
2079 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2080 *
2081 * @adev: amdgpu_device pointer
2082 * @enable: true when we can use buffer functions.
2083 *
2084 * Enable/disable use of buffer functions during suspend/resume. This should
2085 * only be called at bootup or when userspace isn't running.
2086 */
2087void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2088{
2089	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2090	uint64_t size;
2091	int r;
2092
2093	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2094	    adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2095		return;
2096
2097	if (enable) {
2098		struct amdgpu_ring *ring;
2099		struct drm_gpu_scheduler *sched;
2100
2101		ring = adev->mman.buffer_funcs_ring;
2102		sched = &ring->sched;
2103		r = drm_sched_entity_init(&adev->mman.high_pr,
2104					  DRM_SCHED_PRIORITY_KERNEL, &sched,
2105					  1, NULL);
2106		if (r) {
2107			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2108				  r);
2109			return;
2110		}
2111
2112		r = drm_sched_entity_init(&adev->mman.low_pr,
2113					  DRM_SCHED_PRIORITY_NORMAL, &sched,
2114					  1, NULL);
2115		if (r) {
2116			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2117				  r);
2118			goto error_free_entity;
2119		}
2120	} else {
2121		drm_sched_entity_destroy(&adev->mman.high_pr);
2122		drm_sched_entity_destroy(&adev->mman.low_pr);
2123		dma_fence_put(man->move);
2124		man->move = NULL;
2125	}
2126
2127	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2128	if (enable)
2129		size = adev->gmc.real_vram_size;
2130	else
2131		size = adev->gmc.visible_vram_size;
2132	man->size = size;
2133	adev->mman.buffer_funcs_enabled = enable;
2134
2135	return;
2136
2137error_free_entity:
2138	drm_sched_entity_destroy(&adev->mman.high_pr);
2139}
2140
2141static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2142				  bool direct_submit,
2143				  unsigned int num_dw,
2144				  struct dma_resv *resv,
2145				  bool vm_needs_flush,
2146				  struct amdgpu_job **job,
2147				  bool delayed)
2148{
2149	enum amdgpu_ib_pool_type pool = direct_submit ?
2150		AMDGPU_IB_POOL_DIRECT :
2151		AMDGPU_IB_POOL_DELAYED;
2152	int r;
2153	struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2154						    &adev->mman.high_pr;
2155	r = amdgpu_job_alloc_with_ib(adev, entity,
2156				     AMDGPU_FENCE_OWNER_UNDEFINED,
2157				     num_dw * 4, pool, job);
2158	if (r)
2159		return r;
2160
2161	if (vm_needs_flush) {
2162		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2163							adev->gmc.pdb0_bo :
2164							adev->gart.bo);
2165		(*job)->vm_needs_flush = true;
2166	}
2167	if (!resv)
2168		return 0;
2169
2170	return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2171						   DMA_RESV_USAGE_BOOKKEEP);
2172}
2173
2174int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2175		       uint64_t dst_offset, uint32_t byte_count,
2176		       struct dma_resv *resv,
2177		       struct dma_fence **fence, bool direct_submit,
2178		       bool vm_needs_flush, uint32_t copy_flags)
2179{
2180	struct amdgpu_device *adev = ring->adev;
2181	unsigned int num_loops, num_dw;
2182	struct amdgpu_job *job;
2183	uint32_t max_bytes;
2184	unsigned int i;
2185	int r;
2186
2187	if (!direct_submit && !ring->sched.ready) {
2188		DRM_ERROR("Trying to move memory with ring turned off.\n");
2189		return -EINVAL;
2190	}
2191
2192	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2193	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2194	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2195	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2196				   resv, vm_needs_flush, &job, false);
2197	if (r)
2198		return r;
2199
2200	for (i = 0; i < num_loops; i++) {
2201		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2202
2203		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2204					dst_offset, cur_size_in_bytes, copy_flags);
 
2205		src_offset += cur_size_in_bytes;
2206		dst_offset += cur_size_in_bytes;
2207		byte_count -= cur_size_in_bytes;
2208	}
2209
2210	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2211	WARN_ON(job->ibs[0].length_dw > num_dw);
2212	if (direct_submit)
2213		r = amdgpu_job_submit_direct(job, ring, fence);
2214	else
2215		*fence = amdgpu_job_submit(job);
2216	if (r)
2217		goto error_free;
2218
2219	return r;
2220
2221error_free:
2222	amdgpu_job_free(job);
2223	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2224	return r;
2225}
2226
2227static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2228			       uint64_t dst_addr, uint32_t byte_count,
2229			       struct dma_resv *resv,
2230			       struct dma_fence **fence,
2231			       bool vm_needs_flush, bool delayed)
2232{
2233	struct amdgpu_device *adev = ring->adev;
2234	unsigned int num_loops, num_dw;
2235	struct amdgpu_job *job;
2236	uint32_t max_bytes;
2237	unsigned int i;
2238	int r;
2239
2240	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2241	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2242	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2243	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2244				   &job, delayed);
2245	if (r)
2246		return r;
2247
2248	for (i = 0; i < num_loops; i++) {
2249		uint32_t cur_size = min(byte_count, max_bytes);
2250
2251		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2252					cur_size);
2253
2254		dst_addr += cur_size;
2255		byte_count -= cur_size;
2256	}
2257
2258	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2259	WARN_ON(job->ibs[0].length_dw > num_dw);
2260	*fence = amdgpu_job_submit(job);
2261	return 0;
2262}
2263
2264/**
2265 * amdgpu_ttm_clear_buffer - clear memory buffers
2266 * @bo: amdgpu buffer object
2267 * @resv: reservation object
2268 * @fence: dma_fence associated with the operation
2269 *
2270 * Clear the memory buffer resource.
2271 *
2272 * Returns:
2273 * 0 for success or a negative error code on failure.
2274 */
2275int amdgpu_ttm_clear_buffer(struct amdgpu_bo *bo,
2276			    struct dma_resv *resv,
2277			    struct dma_fence **fence)
2278{
2279	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2280	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2281	struct amdgpu_res_cursor cursor;
2282	u64 addr;
2283	int r = 0;
2284
2285	if (!adev->mman.buffer_funcs_enabled)
2286		return -EINVAL;
2287
2288	if (!fence)
2289		return -EINVAL;
2290
2291	*fence = dma_fence_get_stub();
2292
2293	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &cursor);
2294
2295	mutex_lock(&adev->mman.gtt_window_lock);
2296	while (cursor.remaining) {
2297		struct dma_fence *next = NULL;
2298		u64 size;
2299
2300		if (amdgpu_res_cleared(&cursor)) {
2301			amdgpu_res_next(&cursor, cursor.size);
2302			continue;
2303		}
2304
2305		/* Never clear more than 256MiB at once to avoid timeouts */
2306		size = min(cursor.size, 256ULL << 20);
2307
2308		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &cursor,
2309					  1, ring, false, &size, &addr);
2310		if (r)
2311			goto err;
2312
2313		r = amdgpu_ttm_fill_mem(ring, 0, addr, size, resv,
2314					&next, true, true);
2315		if (r)
2316			goto err;
2317
2318		dma_fence_put(*fence);
2319		*fence = next;
2320
2321		amdgpu_res_next(&cursor, size);
2322	}
2323err:
2324	mutex_unlock(&adev->mman.gtt_window_lock);
2325
2326	return r;
2327}
2328
2329int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2330			uint32_t src_data,
2331			struct dma_resv *resv,
2332			struct dma_fence **f,
2333			bool delayed)
2334{
2335	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2336	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2337	struct dma_fence *fence = NULL;
2338	struct amdgpu_res_cursor dst;
2339	int r;
2340
2341	if (!adev->mman.buffer_funcs_enabled) {
2342		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2343		return -EINVAL;
2344	}
2345
2346	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2347
2348	mutex_lock(&adev->mman.gtt_window_lock);
2349	while (dst.remaining) {
2350		struct dma_fence *next;
2351		uint64_t cur_size, to;
2352
2353		/* Never fill more than 256MiB at once to avoid timeouts */
2354		cur_size = min(dst.size, 256ULL << 20);
2355
2356		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2357					  1, ring, false, &cur_size, &to);
2358		if (r)
2359			goto error;
2360
2361		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2362					&next, true, delayed);
2363		if (r)
2364			goto error;
2365
2366		dma_fence_put(fence);
2367		fence = next;
2368
2369		amdgpu_res_next(&dst, cur_size);
2370	}
2371error:
2372	mutex_unlock(&adev->mman.gtt_window_lock);
2373	if (f)
2374		*f = dma_fence_get(fence);
2375	dma_fence_put(fence);
2376	return r;
2377}
2378
2379/**
2380 * amdgpu_ttm_evict_resources - evict memory buffers
2381 * @adev: amdgpu device object
2382 * @mem_type: evicted BO's memory type
2383 *
2384 * Evicts all @mem_type buffers on the lru list of the memory type.
2385 *
2386 * Returns:
2387 * 0 for success or a negative error code on failure.
2388 */
2389int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2390{
2391	struct ttm_resource_manager *man;
2392
2393	switch (mem_type) {
2394	case TTM_PL_VRAM:
2395	case TTM_PL_TT:
2396	case AMDGPU_PL_GWS:
2397	case AMDGPU_PL_GDS:
2398	case AMDGPU_PL_OA:
2399		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2400		break;
2401	default:
2402		DRM_ERROR("Trying to evict invalid memory type\n");
2403		return -EINVAL;
2404	}
2405
2406	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2407}
2408
2409#if defined(CONFIG_DEBUG_FS)
2410
2411static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2412{
2413	struct amdgpu_device *adev = m->private;
2414
2415	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2416}
2417
2418DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2419
2420/*
2421 * amdgpu_ttm_vram_read - Linear read access to VRAM
2422 *
2423 * Accesses VRAM via MMIO for debugging purposes.
2424 */
2425static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2426				    size_t size, loff_t *pos)
2427{
2428	struct amdgpu_device *adev = file_inode(f)->i_private;
2429	ssize_t result = 0;
2430
2431	if (size & 0x3 || *pos & 0x3)
2432		return -EINVAL;
2433
2434	if (*pos >= adev->gmc.mc_vram_size)
2435		return -ENXIO;
2436
2437	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2438	while (size) {
2439		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2440		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2441
2442		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2443		if (copy_to_user(buf, value, bytes))
2444			return -EFAULT;
2445
2446		result += bytes;
2447		buf += bytes;
2448		*pos += bytes;
2449		size -= bytes;
2450	}
2451
2452	return result;
2453}
2454
2455/*
2456 * amdgpu_ttm_vram_write - Linear write access to VRAM
2457 *
2458 * Accesses VRAM via MMIO for debugging purposes.
2459 */
2460static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2461				    size_t size, loff_t *pos)
2462{
2463	struct amdgpu_device *adev = file_inode(f)->i_private;
2464	ssize_t result = 0;
2465	int r;
2466
2467	if (size & 0x3 || *pos & 0x3)
2468		return -EINVAL;
2469
2470	if (*pos >= adev->gmc.mc_vram_size)
2471		return -ENXIO;
2472
2473	while (size) {
2474		uint32_t value;
2475
2476		if (*pos >= adev->gmc.mc_vram_size)
2477			return result;
2478
2479		r = get_user(value, (uint32_t *)buf);
2480		if (r)
2481			return r;
2482
2483		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2484
2485		result += 4;
2486		buf += 4;
2487		*pos += 4;
2488		size -= 4;
2489	}
2490
2491	return result;
2492}
2493
2494static const struct file_operations amdgpu_ttm_vram_fops = {
2495	.owner = THIS_MODULE,
2496	.read = amdgpu_ttm_vram_read,
2497	.write = amdgpu_ttm_vram_write,
2498	.llseek = default_llseek,
2499};
2500
2501/*
2502 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2503 *
2504 * This function is used to read memory that has been mapped to the
2505 * GPU and the known addresses are not physical addresses but instead
2506 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2507 */
2508static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2509				 size_t size, loff_t *pos)
2510{
2511	struct amdgpu_device *adev = file_inode(f)->i_private;
2512	struct iommu_domain *dom;
2513	ssize_t result = 0;
2514	int r;
2515
2516	/* retrieve the IOMMU domain if any for this device */
2517	dom = iommu_get_domain_for_dev(adev->dev);
2518
2519	while (size) {
2520		phys_addr_t addr = *pos & PAGE_MASK;
2521		loff_t off = *pos & ~PAGE_MASK;
2522		size_t bytes = PAGE_SIZE - off;
2523		unsigned long pfn;
2524		struct page *p;
2525		void *ptr;
2526
2527		bytes = min(bytes, size);
2528
2529		/* Translate the bus address to a physical address.  If
2530		 * the domain is NULL it means there is no IOMMU active
2531		 * and the address translation is the identity
2532		 */
2533		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2534
2535		pfn = addr >> PAGE_SHIFT;
2536		if (!pfn_valid(pfn))
2537			return -EPERM;
2538
2539		p = pfn_to_page(pfn);
2540		if (p->mapping != adev->mman.bdev.dev_mapping)
2541			return -EPERM;
2542
2543		ptr = kmap_local_page(p);
2544		r = copy_to_user(buf, ptr + off, bytes);
2545		kunmap_local(ptr);
2546		if (r)
2547			return -EFAULT;
2548
2549		size -= bytes;
2550		*pos += bytes;
2551		result += bytes;
2552	}
2553
2554	return result;
2555}
2556
2557/*
2558 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2559 *
2560 * This function is used to write memory that has been mapped to the
2561 * GPU and the known addresses are not physical addresses but instead
2562 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2563 */
2564static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2565				 size_t size, loff_t *pos)
2566{
2567	struct amdgpu_device *adev = file_inode(f)->i_private;
2568	struct iommu_domain *dom;
2569	ssize_t result = 0;
2570	int r;
2571
2572	dom = iommu_get_domain_for_dev(adev->dev);
2573
2574	while (size) {
2575		phys_addr_t addr = *pos & PAGE_MASK;
2576		loff_t off = *pos & ~PAGE_MASK;
2577		size_t bytes = PAGE_SIZE - off;
2578		unsigned long pfn;
2579		struct page *p;
2580		void *ptr;
2581
2582		bytes = min(bytes, size);
2583
2584		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2585
2586		pfn = addr >> PAGE_SHIFT;
2587		if (!pfn_valid(pfn))
2588			return -EPERM;
2589
2590		p = pfn_to_page(pfn);
2591		if (p->mapping != adev->mman.bdev.dev_mapping)
2592			return -EPERM;
2593
2594		ptr = kmap_local_page(p);
2595		r = copy_from_user(ptr + off, buf, bytes);
2596		kunmap_local(ptr);
2597		if (r)
2598			return -EFAULT;
2599
2600		size -= bytes;
2601		*pos += bytes;
2602		result += bytes;
2603	}
2604
2605	return result;
2606}
2607
2608static const struct file_operations amdgpu_ttm_iomem_fops = {
2609	.owner = THIS_MODULE,
2610	.read = amdgpu_iomem_read,
2611	.write = amdgpu_iomem_write,
2612	.llseek = default_llseek
2613};
2614
2615#endif
2616
2617void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2618{
2619#if defined(CONFIG_DEBUG_FS)
2620	struct drm_minor *minor = adev_to_drm(adev)->primary;
2621	struct dentry *root = minor->debugfs_root;
2622
2623	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2624				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2625	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2626			    &amdgpu_ttm_iomem_fops);
2627	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2628			    &amdgpu_ttm_page_pool_fops);
2629	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2630							     TTM_PL_VRAM),
2631					    root, "amdgpu_vram_mm");
2632	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2633							     TTM_PL_TT),
2634					    root, "amdgpu_gtt_mm");
2635	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2636							     AMDGPU_PL_GDS),
2637					    root, "amdgpu_gds_mm");
2638	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2639							     AMDGPU_PL_GWS),
2640					    root, "amdgpu_gws_mm");
2641	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2642							     AMDGPU_PL_OA),
2643					    root, "amdgpu_oa_mm");
2644
2645#endif
2646}