Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 * Utility functions for x86 operand and address decoding
   3 *
   4 * Copyright (C) Intel Corporation 2017
   5 */
   6#include <linux/kernel.h>
   7#include <linux/string.h>
   8#include <linux/ratelimit.h>
   9#include <linux/mmu_context.h>
  10#include <asm/desc_defs.h>
  11#include <asm/desc.h>
  12#include <asm/inat.h>
  13#include <asm/insn.h>
  14#include <asm/insn-eval.h>
  15#include <asm/ldt.h>
  16#include <asm/vm86.h>
  17
  18#undef pr_fmt
  19#define pr_fmt(fmt) "insn: " fmt
  20
  21enum reg_type {
  22	REG_TYPE_RM = 0,
  23	REG_TYPE_REG,
  24	REG_TYPE_INDEX,
  25	REG_TYPE_BASE,
  26};
  27
  28/**
  29 * is_string_insn() - Determine if instruction is a string instruction
  30 * @insn:	Instruction containing the opcode to inspect
  31 *
  32 * Returns:
  33 *
  34 * true if the instruction, determined by the opcode, is any of the
  35 * string instructions as defined in the Intel Software Development manual.
  36 * False otherwise.
  37 */
  38static bool is_string_insn(struct insn *insn)
  39{
  40	/* All string instructions have a 1-byte opcode. */
  41	if (insn->opcode.nbytes != 1)
  42		return false;
  43
  44	switch (insn->opcode.bytes[0]) {
  45	case 0x6c ... 0x6f:	/* INS, OUTS */
  46	case 0xa4 ... 0xa7:	/* MOVS, CMPS */
  47	case 0xaa ... 0xaf:	/* STOS, LODS, SCAS */
  48		return true;
  49	default:
  50		return false;
  51	}
  52}
  53
  54/**
  55 * insn_has_rep_prefix() - Determine if instruction has a REP prefix
  56 * @insn:	Instruction containing the prefix to inspect
  57 *
  58 * Returns:
  59 *
  60 * true if the instruction has a REP prefix, false if not.
  61 */
  62bool insn_has_rep_prefix(struct insn *insn)
  63{
  64	insn_byte_t p;
  65	int i;
  66
  67	insn_get_prefixes(insn);
  68
  69	for_each_insn_prefix(insn, i, p) {
  70		if (p == 0xf2 || p == 0xf3)
  71			return true;
  72	}
  73
  74	return false;
  75}
  76
  77/**
  78 * get_seg_reg_override_idx() - obtain segment register override index
  79 * @insn:	Valid instruction with segment override prefixes
  80 *
  81 * Inspect the instruction prefixes in @insn and find segment overrides, if any.
  82 *
  83 * Returns:
  84 *
  85 * A constant identifying the segment register to use, among CS, SS, DS,
  86 * ES, FS, or GS. INAT_SEG_REG_DEFAULT is returned if no segment override
  87 * prefixes were found.
  88 *
  89 * -EINVAL in case of error.
  90 */
  91static int get_seg_reg_override_idx(struct insn *insn)
  92{
  93	int idx = INAT_SEG_REG_DEFAULT;
  94	int num_overrides = 0, i;
  95	insn_byte_t p;
  96
  97	insn_get_prefixes(insn);
  98
  99	/* Look for any segment override prefixes. */
 100	for_each_insn_prefix(insn, i, p) {
 101		insn_attr_t attr;
 102
 103		attr = inat_get_opcode_attribute(p);
 104		switch (attr) {
 105		case INAT_MAKE_PREFIX(INAT_PFX_CS):
 106			idx = INAT_SEG_REG_CS;
 107			num_overrides++;
 108			break;
 109		case INAT_MAKE_PREFIX(INAT_PFX_SS):
 110			idx = INAT_SEG_REG_SS;
 111			num_overrides++;
 112			break;
 113		case INAT_MAKE_PREFIX(INAT_PFX_DS):
 114			idx = INAT_SEG_REG_DS;
 115			num_overrides++;
 116			break;
 117		case INAT_MAKE_PREFIX(INAT_PFX_ES):
 118			idx = INAT_SEG_REG_ES;
 119			num_overrides++;
 120			break;
 121		case INAT_MAKE_PREFIX(INAT_PFX_FS):
 122			idx = INAT_SEG_REG_FS;
 123			num_overrides++;
 124			break;
 125		case INAT_MAKE_PREFIX(INAT_PFX_GS):
 126			idx = INAT_SEG_REG_GS;
 127			num_overrides++;
 128			break;
 129		/* No default action needed. */
 130		}
 131	}
 132
 133	/* More than one segment override prefix leads to undefined behavior. */
 134	if (num_overrides > 1)
 135		return -EINVAL;
 136
 137	return idx;
 138}
 139
 140/**
 141 * check_seg_overrides() - check if segment override prefixes are allowed
 142 * @insn:	Valid instruction with segment override prefixes
 143 * @regoff:	Operand offset, in pt_regs, for which the check is performed
 144 *
 145 * For a particular register used in register-indirect addressing, determine if
 146 * segment override prefixes can be used. Specifically, no overrides are allowed
 147 * for rDI if used with a string instruction.
 148 *
 149 * Returns:
 150 *
 151 * True if segment override prefixes can be used with the register indicated
 152 * in @regoff. False if otherwise.
 153 */
 154static bool check_seg_overrides(struct insn *insn, int regoff)
 155{
 156	if (regoff == offsetof(struct pt_regs, di) && is_string_insn(insn))
 157		return false;
 158
 159	return true;
 160}
 161
 162/**
 163 * resolve_default_seg() - resolve default segment register index for an operand
 164 * @insn:	Instruction with opcode and address size. Must be valid.
 165 * @regs:	Register values as seen when entering kernel mode
 166 * @off:	Operand offset, in pt_regs, for which resolution is needed
 167 *
 168 * Resolve the default segment register index associated with the instruction
 169 * operand register indicated by @off. Such index is resolved based on defaults
 170 * described in the Intel Software Development Manual.
 171 *
 172 * Returns:
 173 *
 174 * If in protected mode, a constant identifying the segment register to use,
 175 * among CS, SS, ES or DS. If in long mode, INAT_SEG_REG_IGNORE.
 176 *
 177 * -EINVAL in case of error.
 178 */
 179static int resolve_default_seg(struct insn *insn, struct pt_regs *regs, int off)
 180{
 181	if (any_64bit_mode(regs))
 182		return INAT_SEG_REG_IGNORE;
 183	/*
 184	 * Resolve the default segment register as described in Section 3.7.4
 185	 * of the Intel Software Development Manual Vol. 1:
 186	 *
 187	 *  + DS for all references involving r[ABCD]X, and rSI.
 188	 *  + If used in a string instruction, ES for rDI. Otherwise, DS.
 189	 *  + AX, CX and DX are not valid register operands in 16-bit address
 190	 *    encodings but are valid for 32-bit and 64-bit encodings.
 191	 *  + -EDOM is reserved to identify for cases in which no register
 192	 *    is used (i.e., displacement-only addressing). Use DS.
 193	 *  + SS for rSP or rBP.
 194	 *  + CS for rIP.
 195	 */
 196
 197	switch (off) {
 198	case offsetof(struct pt_regs, ax):
 199	case offsetof(struct pt_regs, cx):
 200	case offsetof(struct pt_regs, dx):
 201		/* Need insn to verify address size. */
 202		if (insn->addr_bytes == 2)
 203			return -EINVAL;
 204
 205		fallthrough;
 206
 207	case -EDOM:
 208	case offsetof(struct pt_regs, bx):
 209	case offsetof(struct pt_regs, si):
 210		return INAT_SEG_REG_DS;
 211
 212	case offsetof(struct pt_regs, di):
 213		if (is_string_insn(insn))
 214			return INAT_SEG_REG_ES;
 215		return INAT_SEG_REG_DS;
 216
 217	case offsetof(struct pt_regs, bp):
 218	case offsetof(struct pt_regs, sp):
 219		return INAT_SEG_REG_SS;
 220
 221	case offsetof(struct pt_regs, ip):
 222		return INAT_SEG_REG_CS;
 223
 224	default:
 225		return -EINVAL;
 226	}
 227}
 228
 229/**
 230 * resolve_seg_reg() - obtain segment register index
 231 * @insn:	Instruction with operands
 232 * @regs:	Register values as seen when entering kernel mode
 233 * @regoff:	Operand offset, in pt_regs, used to determine segment register
 234 *
 235 * Determine the segment register associated with the operands and, if
 236 * applicable, prefixes and the instruction pointed by @insn.
 237 *
 238 * The segment register associated to an operand used in register-indirect
 239 * addressing depends on:
 240 *
 241 * a) Whether running in long mode (in such a case segments are ignored, except
 242 * if FS or GS are used).
 243 *
 244 * b) Whether segment override prefixes can be used. Certain instructions and
 245 *    registers do not allow override prefixes.
 246 *
 247 * c) Whether segment overrides prefixes are found in the instruction prefixes.
 248 *
 249 * d) If there are not segment override prefixes or they cannot be used, the
 250 *    default segment register associated with the operand register is used.
 251 *
 252 * The function checks first if segment override prefixes can be used with the
 253 * operand indicated by @regoff. If allowed, obtain such overridden segment
 254 * register index. Lastly, if not prefixes were found or cannot be used, resolve
 255 * the segment register index to use based on the defaults described in the
 256 * Intel documentation. In long mode, all segment register indexes will be
 257 * ignored, except if overrides were found for FS or GS. All these operations
 258 * are done using helper functions.
 259 *
 260 * The operand register, @regoff, is represented as the offset from the base of
 261 * pt_regs.
 262 *
 263 * As stated, the main use of this function is to determine the segment register
 264 * index based on the instruction, its operands and prefixes. Hence, @insn
 265 * must be valid. However, if @regoff indicates rIP, we don't need to inspect
 266 * @insn at all as in this case CS is used in all cases. This case is checked
 267 * before proceeding further.
 268 *
 269 * Please note that this function does not return the value in the segment
 270 * register (i.e., the segment selector) but our defined index. The segment
 271 * selector needs to be obtained using get_segment_selector() and passing the
 272 * segment register index resolved by this function.
 273 *
 274 * Returns:
 275 *
 276 * An index identifying the segment register to use, among CS, SS, DS,
 277 * ES, FS, or GS. INAT_SEG_REG_IGNORE is returned if running in long mode.
 278 *
 279 * -EINVAL in case of error.
 280 */
 281static int resolve_seg_reg(struct insn *insn, struct pt_regs *regs, int regoff)
 282{
 283	int idx;
 284
 285	/*
 286	 * In the unlikely event of having to resolve the segment register
 287	 * index for rIP, do it first. Segment override prefixes should not
 288	 * be used. Hence, it is not necessary to inspect the instruction,
 289	 * which may be invalid at this point.
 290	 */
 291	if (regoff == offsetof(struct pt_regs, ip)) {
 292		if (any_64bit_mode(regs))
 293			return INAT_SEG_REG_IGNORE;
 294		else
 295			return INAT_SEG_REG_CS;
 296	}
 297
 298	if (!insn)
 299		return -EINVAL;
 300
 301	if (!check_seg_overrides(insn, regoff))
 302		return resolve_default_seg(insn, regs, regoff);
 303
 304	idx = get_seg_reg_override_idx(insn);
 305	if (idx < 0)
 306		return idx;
 307
 308	if (idx == INAT_SEG_REG_DEFAULT)
 309		return resolve_default_seg(insn, regs, regoff);
 310
 311	/*
 312	 * In long mode, segment override prefixes are ignored, except for
 313	 * overrides for FS and GS.
 314	 */
 315	if (any_64bit_mode(regs)) {
 316		if (idx != INAT_SEG_REG_FS &&
 317		    idx != INAT_SEG_REG_GS)
 318			idx = INAT_SEG_REG_IGNORE;
 319	}
 320
 321	return idx;
 322}
 323
 324/**
 325 * get_segment_selector() - obtain segment selector
 326 * @regs:		Register values as seen when entering kernel mode
 327 * @seg_reg_idx:	Segment register index to use
 328 *
 329 * Obtain the segment selector from any of the CS, SS, DS, ES, FS, GS segment
 330 * registers. In CONFIG_X86_32, the segment is obtained from either pt_regs or
 331 * kernel_vm86_regs as applicable. In CONFIG_X86_64, CS and SS are obtained
 332 * from pt_regs. DS, ES, FS and GS are obtained by reading the actual CPU
 333 * registers. This done for only for completeness as in CONFIG_X86_64 segment
 334 * registers are ignored.
 335 *
 336 * Returns:
 337 *
 338 * Value of the segment selector, including null when running in
 339 * long mode.
 340 *
 341 * -EINVAL on error.
 342 */
 343static short get_segment_selector(struct pt_regs *regs, int seg_reg_idx)
 344{
 345	unsigned short sel;
 346
 347#ifdef CONFIG_X86_64
 348	switch (seg_reg_idx) {
 349	case INAT_SEG_REG_IGNORE:
 350		return 0;
 351	case INAT_SEG_REG_CS:
 352		return (unsigned short)(regs->cs & 0xffff);
 353	case INAT_SEG_REG_SS:
 354		return (unsigned short)(regs->ss & 0xffff);
 355	case INAT_SEG_REG_DS:
 356		savesegment(ds, sel);
 357		return sel;
 358	case INAT_SEG_REG_ES:
 359		savesegment(es, sel);
 360		return sel;
 361	case INAT_SEG_REG_FS:
 362		savesegment(fs, sel);
 363		return sel;
 364	case INAT_SEG_REG_GS:
 365		savesegment(gs, sel);
 366		return sel;
 367	default:
 368		return -EINVAL;
 369	}
 370#else /* CONFIG_X86_32 */
 371	struct kernel_vm86_regs *vm86regs = (struct kernel_vm86_regs *)regs;
 372
 373	if (v8086_mode(regs)) {
 374		switch (seg_reg_idx) {
 375		case INAT_SEG_REG_CS:
 376			return (unsigned short)(regs->cs & 0xffff);
 377		case INAT_SEG_REG_SS:
 378			return (unsigned short)(regs->ss & 0xffff);
 379		case INAT_SEG_REG_DS:
 380			return vm86regs->ds;
 381		case INAT_SEG_REG_ES:
 382			return vm86regs->es;
 383		case INAT_SEG_REG_FS:
 384			return vm86regs->fs;
 385		case INAT_SEG_REG_GS:
 386			return vm86regs->gs;
 387		case INAT_SEG_REG_IGNORE:
 388		default:
 389			return -EINVAL;
 390		}
 391	}
 392
 393	switch (seg_reg_idx) {
 394	case INAT_SEG_REG_CS:
 395		return (unsigned short)(regs->cs & 0xffff);
 396	case INAT_SEG_REG_SS:
 397		return (unsigned short)(regs->ss & 0xffff);
 398	case INAT_SEG_REG_DS:
 399		return (unsigned short)(regs->ds & 0xffff);
 400	case INAT_SEG_REG_ES:
 401		return (unsigned short)(regs->es & 0xffff);
 402	case INAT_SEG_REG_FS:
 403		return (unsigned short)(regs->fs & 0xffff);
 404	case INAT_SEG_REG_GS:
 405		savesegment(gs, sel);
 406		return sel;
 407	case INAT_SEG_REG_IGNORE:
 408	default:
 409		return -EINVAL;
 410	}
 411#endif /* CONFIG_X86_64 */
 412}
 413
 414static const int pt_regoff[] = {
 415	offsetof(struct pt_regs, ax),
 416	offsetof(struct pt_regs, cx),
 417	offsetof(struct pt_regs, dx),
 418	offsetof(struct pt_regs, bx),
 419	offsetof(struct pt_regs, sp),
 420	offsetof(struct pt_regs, bp),
 421	offsetof(struct pt_regs, si),
 422	offsetof(struct pt_regs, di),
 423#ifdef CONFIG_X86_64
 424	offsetof(struct pt_regs, r8),
 425	offsetof(struct pt_regs, r9),
 426	offsetof(struct pt_regs, r10),
 427	offsetof(struct pt_regs, r11),
 428	offsetof(struct pt_regs, r12),
 429	offsetof(struct pt_regs, r13),
 430	offsetof(struct pt_regs, r14),
 431	offsetof(struct pt_regs, r15),
 432#else
 433	offsetof(struct pt_regs, ds),
 434	offsetof(struct pt_regs, es),
 435	offsetof(struct pt_regs, fs),
 436	offsetof(struct pt_regs, gs),
 437#endif
 438};
 439
 440int pt_regs_offset(struct pt_regs *regs, int regno)
 441{
 442	if ((unsigned)regno < ARRAY_SIZE(pt_regoff))
 443		return pt_regoff[regno];
 444	return -EDOM;
 445}
 446
 447static int get_regno(struct insn *insn, enum reg_type type)
 448{
 449	int nr_registers = ARRAY_SIZE(pt_regoff);
 450	int regno = 0;
 451
 452	/*
 453	 * Don't possibly decode a 32-bit instructions as
 454	 * reading a 64-bit-only register.
 455	 */
 456	if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
 457		nr_registers -= 8;
 458
 459	switch (type) {
 460	case REG_TYPE_RM:
 461		regno = X86_MODRM_RM(insn->modrm.value);
 462
 463		/*
 464		 * ModRM.mod == 0 and ModRM.rm == 5 means a 32-bit displacement
 465		 * follows the ModRM byte.
 466		 */
 467		if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
 468			return -EDOM;
 469
 470		if (X86_REX_B(insn->rex_prefix.value))
 471			regno += 8;
 472		break;
 473
 474	case REG_TYPE_REG:
 475		regno = X86_MODRM_REG(insn->modrm.value);
 476
 477		if (X86_REX_R(insn->rex_prefix.value))
 478			regno += 8;
 479		break;
 480
 481	case REG_TYPE_INDEX:
 482		regno = X86_SIB_INDEX(insn->sib.value);
 483		if (X86_REX_X(insn->rex_prefix.value))
 484			regno += 8;
 485
 486		/*
 487		 * If ModRM.mod != 3 and SIB.index = 4 the scale*index
 488		 * portion of the address computation is null. This is
 489		 * true only if REX.X is 0. In such a case, the SIB index
 490		 * is used in the address computation.
 491		 */
 492		if (X86_MODRM_MOD(insn->modrm.value) != 3 && regno == 4)
 493			return -EDOM;
 494		break;
 495
 496	case REG_TYPE_BASE:
 497		regno = X86_SIB_BASE(insn->sib.value);
 498		/*
 499		 * If ModRM.mod is 0 and SIB.base == 5, the base of the
 500		 * register-indirect addressing is 0. In this case, a
 501		 * 32-bit displacement follows the SIB byte.
 502		 */
 503		if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
 504			return -EDOM;
 505
 506		if (X86_REX_B(insn->rex_prefix.value))
 507			regno += 8;
 508		break;
 509
 510	default:
 511		pr_err_ratelimited("invalid register type: %d\n", type);
 512		return -EINVAL;
 513	}
 514
 515	if (regno >= nr_registers) {
 516		WARN_ONCE(1, "decoded an instruction with an invalid register");
 517		return -EINVAL;
 518	}
 519	return regno;
 520}
 521
 522static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
 523			  enum reg_type type)
 524{
 525	int regno = get_regno(insn, type);
 526
 527	if (regno < 0)
 528		return regno;
 529
 530	return pt_regs_offset(regs, regno);
 531}
 532
 533/**
 534 * get_reg_offset_16() - Obtain offset of register indicated by instruction
 535 * @insn:	Instruction containing ModRM byte
 536 * @regs:	Register values as seen when entering kernel mode
 537 * @offs1:	Offset of the first operand register
 538 * @offs2:	Offset of the second operand register, if applicable
 539 *
 540 * Obtain the offset, in pt_regs, of the registers indicated by the ModRM byte
 541 * in @insn. This function is to be used with 16-bit address encodings. The
 542 * @offs1 and @offs2 will be written with the offset of the two registers
 543 * indicated by the instruction. In cases where any of the registers is not
 544 * referenced by the instruction, the value will be set to -EDOM.
 545 *
 546 * Returns:
 547 *
 548 * 0 on success, -EINVAL on error.
 549 */
 550static int get_reg_offset_16(struct insn *insn, struct pt_regs *regs,
 551			     int *offs1, int *offs2)
 552{
 553	/*
 554	 * 16-bit addressing can use one or two registers. Specifics of
 555	 * encodings are given in Table 2-1. "16-Bit Addressing Forms with the
 556	 * ModR/M Byte" of the Intel Software Development Manual.
 557	 */
 558	static const int regoff1[] = {
 559		offsetof(struct pt_regs, bx),
 560		offsetof(struct pt_regs, bx),
 561		offsetof(struct pt_regs, bp),
 562		offsetof(struct pt_regs, bp),
 563		offsetof(struct pt_regs, si),
 564		offsetof(struct pt_regs, di),
 565		offsetof(struct pt_regs, bp),
 566		offsetof(struct pt_regs, bx),
 567	};
 568
 569	static const int regoff2[] = {
 570		offsetof(struct pt_regs, si),
 571		offsetof(struct pt_regs, di),
 572		offsetof(struct pt_regs, si),
 573		offsetof(struct pt_regs, di),
 574		-EDOM,
 575		-EDOM,
 576		-EDOM,
 577		-EDOM,
 578	};
 579
 580	if (!offs1 || !offs2)
 581		return -EINVAL;
 582
 583	/* Operand is a register, use the generic function. */
 584	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
 585		*offs1 = insn_get_modrm_rm_off(insn, regs);
 586		*offs2 = -EDOM;
 587		return 0;
 588	}
 589
 590	*offs1 = regoff1[X86_MODRM_RM(insn->modrm.value)];
 591	*offs2 = regoff2[X86_MODRM_RM(insn->modrm.value)];
 592
 593	/*
 594	 * If ModRM.mod is 0 and ModRM.rm is 110b, then we use displacement-
 595	 * only addressing. This means that no registers are involved in
 596	 * computing the effective address. Thus, ensure that the first
 597	 * register offset is invalid. The second register offset is already
 598	 * invalid under the aforementioned conditions.
 599	 */
 600	if ((X86_MODRM_MOD(insn->modrm.value) == 0) &&
 601	    (X86_MODRM_RM(insn->modrm.value) == 6))
 602		*offs1 = -EDOM;
 603
 604	return 0;
 605}
 606
 607/**
 608 * get_desc() - Obtain contents of a segment descriptor
 609 * @out:	Segment descriptor contents on success
 610 * @sel:	Segment selector
 611 *
 612 * Given a segment selector, obtain a pointer to the segment descriptor.
 613 * Both global and local descriptor tables are supported.
 614 *
 615 * Returns:
 616 *
 617 * True on success, false on failure.
 618 *
 619 * NULL on error.
 620 */
 621static bool get_desc(struct desc_struct *out, unsigned short sel)
 622{
 623	struct desc_ptr gdt_desc = {0, 0};
 624	unsigned long desc_base;
 625
 626#ifdef CONFIG_MODIFY_LDT_SYSCALL
 627	if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) {
 628		bool success = false;
 629		struct ldt_struct *ldt;
 630
 631		/* Bits [15:3] contain the index of the desired entry. */
 632		sel >>= 3;
 633
 634		mutex_lock(&current->active_mm->context.lock);
 635		ldt = current->active_mm->context.ldt;
 636		if (ldt && sel < ldt->nr_entries) {
 637			*out = ldt->entries[sel];
 638			success = true;
 639		}
 640
 641		mutex_unlock(&current->active_mm->context.lock);
 642
 643		return success;
 644	}
 645#endif
 646	native_store_gdt(&gdt_desc);
 647
 648	/*
 649	 * Segment descriptors have a size of 8 bytes. Thus, the index is
 650	 * multiplied by 8 to obtain the memory offset of the desired descriptor
 651	 * from the base of the GDT. As bits [15:3] of the segment selector
 652	 * contain the index, it can be regarded as multiplied by 8 already.
 653	 * All that remains is to clear bits [2:0].
 654	 */
 655	desc_base = sel & ~(SEGMENT_RPL_MASK | SEGMENT_TI_MASK);
 656
 657	if (desc_base > gdt_desc.size)
 658		return false;
 659
 660	*out = *(struct desc_struct *)(gdt_desc.address + desc_base);
 661	return true;
 662}
 663
 664/**
 665 * insn_get_seg_base() - Obtain base address of segment descriptor.
 666 * @regs:		Register values as seen when entering kernel mode
 667 * @seg_reg_idx:	Index of the segment register pointing to seg descriptor
 668 *
 669 * Obtain the base address of the segment as indicated by the segment descriptor
 670 * pointed by the segment selector. The segment selector is obtained from the
 671 * input segment register index @seg_reg_idx.
 672 *
 673 * Returns:
 674 *
 675 * In protected mode, base address of the segment. Zero in long mode,
 676 * except when FS or GS are used. In virtual-8086 mode, the segment
 677 * selector shifted 4 bits to the right.
 678 *
 679 * -1L in case of error.
 680 */
 681unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx)
 682{
 683	struct desc_struct desc;
 684	short sel;
 685
 686	sel = get_segment_selector(regs, seg_reg_idx);
 687	if (sel < 0)
 688		return -1L;
 689
 690	if (v8086_mode(regs))
 691		/*
 692		 * Base is simply the segment selector shifted 4
 693		 * bits to the right.
 694		 */
 695		return (unsigned long)(sel << 4);
 696
 697	if (any_64bit_mode(regs)) {
 698		/*
 699		 * Only FS or GS will have a base address, the rest of
 700		 * the segments' bases are forced to 0.
 701		 */
 702		unsigned long base;
 703
 704		if (seg_reg_idx == INAT_SEG_REG_FS) {
 705			rdmsrl(MSR_FS_BASE, base);
 706		} else if (seg_reg_idx == INAT_SEG_REG_GS) {
 707			/*
 708			 * swapgs was called at the kernel entry point. Thus,
 709			 * MSR_KERNEL_GS_BASE will have the user-space GS base.
 710			 */
 711			if (user_mode(regs))
 712				rdmsrl(MSR_KERNEL_GS_BASE, base);
 713			else
 714				rdmsrl(MSR_GS_BASE, base);
 715		} else {
 716			base = 0;
 717		}
 718		return base;
 719	}
 720
 721	/* In protected mode the segment selector cannot be null. */
 722	if (!sel)
 723		return -1L;
 724
 725	if (!get_desc(&desc, sel))
 726		return -1L;
 727
 728	return get_desc_base(&desc);
 729}
 730
 731/**
 732 * get_seg_limit() - Obtain the limit of a segment descriptor
 733 * @regs:		Register values as seen when entering kernel mode
 734 * @seg_reg_idx:	Index of the segment register pointing to seg descriptor
 735 *
 736 * Obtain the limit of the segment as indicated by the segment descriptor
 737 * pointed by the segment selector. The segment selector is obtained from the
 738 * input segment register index @seg_reg_idx.
 739 *
 740 * Returns:
 741 *
 742 * In protected mode, the limit of the segment descriptor in bytes.
 743 * In long mode and virtual-8086 mode, segment limits are not enforced. Thus,
 744 * limit is returned as -1L to imply a limit-less segment.
 745 *
 746 * Zero is returned on error.
 747 */
 748static unsigned long get_seg_limit(struct pt_regs *regs, int seg_reg_idx)
 749{
 750	struct desc_struct desc;
 751	unsigned long limit;
 752	short sel;
 753
 754	sel = get_segment_selector(regs, seg_reg_idx);
 755	if (sel < 0)
 756		return 0;
 757
 758	if (any_64bit_mode(regs) || v8086_mode(regs))
 759		return -1L;
 760
 761	if (!sel)
 762		return 0;
 763
 764	if (!get_desc(&desc, sel))
 765		return 0;
 766
 767	/*
 768	 * If the granularity bit is set, the limit is given in multiples
 769	 * of 4096. This also means that the 12 least significant bits are
 770	 * not tested when checking the segment limits. In practice,
 771	 * this means that the segment ends in (limit << 12) + 0xfff.
 772	 */
 773	limit = get_desc_limit(&desc);
 774	if (desc.g)
 775		limit = (limit << 12) + 0xfff;
 776
 777	return limit;
 778}
 779
 780/**
 781 * insn_get_code_seg_params() - Obtain code segment parameters
 782 * @regs:	Structure with register values as seen when entering kernel mode
 783 *
 784 * Obtain address and operand sizes of the code segment. It is obtained from the
 785 * selector contained in the CS register in regs. In protected mode, the default
 786 * address is determined by inspecting the L and D bits of the segment
 787 * descriptor. In virtual-8086 mode, the default is always two bytes for both
 788 * address and operand sizes.
 789 *
 790 * Returns:
 791 *
 792 * An int containing ORed-in default parameters on success.
 793 *
 794 * -EINVAL on error.
 795 */
 796int insn_get_code_seg_params(struct pt_regs *regs)
 797{
 798	struct desc_struct desc;
 799	short sel;
 800
 801	if (v8086_mode(regs))
 802		/* Address and operand size are both 16-bit. */
 803		return INSN_CODE_SEG_PARAMS(2, 2);
 804
 805	sel = get_segment_selector(regs, INAT_SEG_REG_CS);
 806	if (sel < 0)
 807		return sel;
 808
 809	if (!get_desc(&desc, sel))
 810		return -EINVAL;
 811
 812	/*
 813	 * The most significant byte of the Type field of the segment descriptor
 814	 * determines whether a segment contains data or code. If this is a data
 815	 * segment, return error.
 816	 */
 817	if (!(desc.type & BIT(3)))
 818		return -EINVAL;
 819
 820	switch ((desc.l << 1) | desc.d) {
 821	case 0: /*
 822		 * Legacy mode. CS.L=0, CS.D=0. Address and operand size are
 823		 * both 16-bit.
 824		 */
 825		return INSN_CODE_SEG_PARAMS(2, 2);
 826	case 1: /*
 827		 * Legacy mode. CS.L=0, CS.D=1. Address and operand size are
 828		 * both 32-bit.
 829		 */
 830		return INSN_CODE_SEG_PARAMS(4, 4);
 831	case 2: /*
 832		 * IA-32e 64-bit mode. CS.L=1, CS.D=0. Address size is 64-bit;
 833		 * operand size is 32-bit.
 834		 */
 835		return INSN_CODE_SEG_PARAMS(4, 8);
 836	case 3: /* Invalid setting. CS.L=1, CS.D=1 */
 837		fallthrough;
 838	default:
 839		return -EINVAL;
 840	}
 841}
 842
 843/**
 844 * insn_get_modrm_rm_off() - Obtain register in r/m part of the ModRM byte
 845 * @insn:	Instruction containing the ModRM byte
 846 * @regs:	Register values as seen when entering kernel mode
 847 *
 848 * Returns:
 849 *
 850 * The register indicated by the r/m part of the ModRM byte. The
 851 * register is obtained as an offset from the base of pt_regs. In specific
 852 * cases, the returned value can be -EDOM to indicate that the particular value
 853 * of ModRM does not refer to a register and shall be ignored.
 854 */
 855int insn_get_modrm_rm_off(struct insn *insn, struct pt_regs *regs)
 856{
 857	return get_reg_offset(insn, regs, REG_TYPE_RM);
 858}
 859
 860/**
 861 * insn_get_modrm_reg_off() - Obtain register in reg part of the ModRM byte
 862 * @insn:	Instruction containing the ModRM byte
 863 * @regs:	Register values as seen when entering kernel mode
 864 *
 865 * Returns:
 866 *
 867 * The register indicated by the reg part of the ModRM byte. The
 868 * register is obtained as an offset from the base of pt_regs.
 869 */
 870int insn_get_modrm_reg_off(struct insn *insn, struct pt_regs *regs)
 871{
 872	return get_reg_offset(insn, regs, REG_TYPE_REG);
 873}
 874
 875/**
 876 * insn_get_modrm_reg_ptr() - Obtain register pointer based on ModRM byte
 877 * @insn:	Instruction containing the ModRM byte
 878 * @regs:	Register values as seen when entering kernel mode
 879 *
 880 * Returns:
 881 *
 882 * The register indicated by the reg part of the ModRM byte.
 883 * The register is obtained as a pointer within pt_regs.
 884 */
 885unsigned long *insn_get_modrm_reg_ptr(struct insn *insn, struct pt_regs *regs)
 886{
 887	int offset;
 888
 889	offset = insn_get_modrm_reg_off(insn, regs);
 890	if (offset < 0)
 891		return NULL;
 892	return (void *)regs + offset;
 893}
 894
 895/**
 896 * get_seg_base_limit() - obtain base address and limit of a segment
 897 * @insn:	Instruction. Must be valid.
 898 * @regs:	Register values as seen when entering kernel mode
 899 * @regoff:	Operand offset, in pt_regs, used to resolve segment descriptor
 900 * @base:	Obtained segment base
 901 * @limit:	Obtained segment limit
 902 *
 903 * Obtain the base address and limit of the segment associated with the operand
 904 * @regoff and, if any or allowed, override prefixes in @insn. This function is
 905 * different from insn_get_seg_base() as the latter does not resolve the segment
 906 * associated with the instruction operand. If a limit is not needed (e.g.,
 907 * when running in long mode), @limit can be NULL.
 908 *
 909 * Returns:
 910 *
 911 * 0 on success. @base and @limit will contain the base address and of the
 912 * resolved segment, respectively.
 913 *
 914 * -EINVAL on error.
 915 */
 916static int get_seg_base_limit(struct insn *insn, struct pt_regs *regs,
 917			      int regoff, unsigned long *base,
 918			      unsigned long *limit)
 919{
 920	int seg_reg_idx;
 921
 922	if (!base)
 923		return -EINVAL;
 924
 925	seg_reg_idx = resolve_seg_reg(insn, regs, regoff);
 926	if (seg_reg_idx < 0)
 927		return seg_reg_idx;
 928
 929	*base = insn_get_seg_base(regs, seg_reg_idx);
 930	if (*base == -1L)
 931		return -EINVAL;
 932
 933	if (!limit)
 934		return 0;
 935
 936	*limit = get_seg_limit(regs, seg_reg_idx);
 937	if (!(*limit))
 938		return -EINVAL;
 939
 940	return 0;
 941}
 942
 943/**
 944 * get_eff_addr_reg() - Obtain effective address from register operand
 945 * @insn:	Instruction. Must be valid.
 946 * @regs:	Register values as seen when entering kernel mode
 947 * @regoff:	Obtained operand offset, in pt_regs, with the effective address
 948 * @eff_addr:	Obtained effective address
 949 *
 950 * Obtain the effective address stored in the register operand as indicated by
 951 * the ModRM byte. This function is to be used only with register addressing
 952 * (i.e.,  ModRM.mod is 3). The effective address is saved in @eff_addr. The
 953 * register operand, as an offset from the base of pt_regs, is saved in @regoff;
 954 * such offset can then be used to resolve the segment associated with the
 955 * operand. This function can be used with any of the supported address sizes
 956 * in x86.
 957 *
 958 * Returns:
 959 *
 960 * 0 on success. @eff_addr will have the effective address stored in the
 961 * operand indicated by ModRM. @regoff will have such operand as an offset from
 962 * the base of pt_regs.
 963 *
 964 * -EINVAL on error.
 965 */
 966static int get_eff_addr_reg(struct insn *insn, struct pt_regs *regs,
 967			    int *regoff, long *eff_addr)
 968{
 969	int ret;
 970
 971	ret = insn_get_modrm(insn);
 972	if (ret)
 973		return ret;
 974
 975	if (X86_MODRM_MOD(insn->modrm.value) != 3)
 976		return -EINVAL;
 977
 978	*regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
 979	if (*regoff < 0)
 980		return -EINVAL;
 981
 982	/* Ignore bytes that are outside the address size. */
 983	if (insn->addr_bytes == 2)
 984		*eff_addr = regs_get_register(regs, *regoff) & 0xffff;
 985	else if (insn->addr_bytes == 4)
 986		*eff_addr = regs_get_register(regs, *regoff) & 0xffffffff;
 987	else /* 64-bit address */
 988		*eff_addr = regs_get_register(regs, *regoff);
 989
 990	return 0;
 991}
 992
 993/**
 994 * get_eff_addr_modrm() - Obtain referenced effective address via ModRM
 995 * @insn:	Instruction. Must be valid.
 996 * @regs:	Register values as seen when entering kernel mode
 997 * @regoff:	Obtained operand offset, in pt_regs, associated with segment
 998 * @eff_addr:	Obtained effective address
 999 *
1000 * Obtain the effective address referenced by the ModRM byte of @insn. After
1001 * identifying the registers involved in the register-indirect memory reference,
1002 * its value is obtained from the operands in @regs. The computed address is
1003 * stored @eff_addr. Also, the register operand that indicates the associated
1004 * segment is stored in @regoff, this parameter can later be used to determine
1005 * such segment.
1006 *
1007 * Returns:
1008 *
1009 * 0 on success. @eff_addr will have the referenced effective address. @regoff
1010 * will have a register, as an offset from the base of pt_regs, that can be used
1011 * to resolve the associated segment.
1012 *
1013 * -EINVAL on error.
1014 */
1015static int get_eff_addr_modrm(struct insn *insn, struct pt_regs *regs,
1016			      int *regoff, long *eff_addr)
1017{
1018	long tmp;
1019	int ret;
1020
1021	if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
1022		return -EINVAL;
1023
1024	ret = insn_get_modrm(insn);
1025	if (ret)
1026		return ret;
1027
1028	if (X86_MODRM_MOD(insn->modrm.value) > 2)
1029		return -EINVAL;
1030
1031	*regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
1032
1033	/*
1034	 * -EDOM means that we must ignore the address_offset. In such a case,
1035	 * in 64-bit mode the effective address relative to the rIP of the
1036	 * following instruction.
1037	 */
1038	if (*regoff == -EDOM) {
1039		if (any_64bit_mode(regs))
1040			tmp = regs->ip + insn->length;
1041		else
1042			tmp = 0;
1043	} else if (*regoff < 0) {
1044		return -EINVAL;
1045	} else {
1046		tmp = regs_get_register(regs, *regoff);
1047	}
1048
1049	if (insn->addr_bytes == 4) {
1050		int addr32 = (int)(tmp & 0xffffffff) + insn->displacement.value;
1051
1052		*eff_addr = addr32 & 0xffffffff;
1053	} else {
1054		*eff_addr = tmp + insn->displacement.value;
1055	}
1056
1057	return 0;
1058}
1059
1060/**
1061 * get_eff_addr_modrm_16() - Obtain referenced effective address via ModRM
1062 * @insn:	Instruction. Must be valid.
1063 * @regs:	Register values as seen when entering kernel mode
1064 * @regoff:	Obtained operand offset, in pt_regs, associated with segment
1065 * @eff_addr:	Obtained effective address
1066 *
1067 * Obtain the 16-bit effective address referenced by the ModRM byte of @insn.
1068 * After identifying the registers involved in the register-indirect memory
1069 * reference, its value is obtained from the operands in @regs. The computed
1070 * address is stored @eff_addr. Also, the register operand that indicates
1071 * the associated segment is stored in @regoff, this parameter can later be used
1072 * to determine such segment.
1073 *
1074 * Returns:
1075 *
1076 * 0 on success. @eff_addr will have the referenced effective address. @regoff
1077 * will have a register, as an offset from the base of pt_regs, that can be used
1078 * to resolve the associated segment.
1079 *
1080 * -EINVAL on error.
1081 */
1082static int get_eff_addr_modrm_16(struct insn *insn, struct pt_regs *regs,
1083				 int *regoff, short *eff_addr)
1084{
1085	int addr_offset1, addr_offset2, ret;
1086	short addr1 = 0, addr2 = 0, displacement;
1087
1088	if (insn->addr_bytes != 2)
1089		return -EINVAL;
1090
1091	insn_get_modrm(insn);
1092
1093	if (!insn->modrm.nbytes)
1094		return -EINVAL;
1095
1096	if (X86_MODRM_MOD(insn->modrm.value) > 2)
1097		return -EINVAL;
1098
1099	ret = get_reg_offset_16(insn, regs, &addr_offset1, &addr_offset2);
1100	if (ret < 0)
1101		return -EINVAL;
1102
1103	/*
1104	 * Don't fail on invalid offset values. They might be invalid because
1105	 * they cannot be used for this particular value of ModRM. Instead, use
1106	 * them in the computation only if they contain a valid value.
1107	 */
1108	if (addr_offset1 != -EDOM)
1109		addr1 = regs_get_register(regs, addr_offset1) & 0xffff;
1110
1111	if (addr_offset2 != -EDOM)
1112		addr2 = regs_get_register(regs, addr_offset2) & 0xffff;
1113
1114	displacement = insn->displacement.value & 0xffff;
1115	*eff_addr = addr1 + addr2 + displacement;
1116
1117	/*
1118	 * The first operand register could indicate to use of either SS or DS
1119	 * registers to obtain the segment selector.  The second operand
1120	 * register can only indicate the use of DS. Thus, the first operand
1121	 * will be used to obtain the segment selector.
1122	 */
1123	*regoff = addr_offset1;
1124
1125	return 0;
1126}
1127
1128/**
1129 * get_eff_addr_sib() - Obtain referenced effective address via SIB
1130 * @insn:	Instruction. Must be valid.
1131 * @regs:	Register values as seen when entering kernel mode
1132 * @regoff:	Obtained operand offset, in pt_regs, associated with segment
1133 * @eff_addr:	Obtained effective address
1134 *
1135 * Obtain the effective address referenced by the SIB byte of @insn. After
1136 * identifying the registers involved in the indexed, register-indirect memory
1137 * reference, its value is obtained from the operands in @regs. The computed
1138 * address is stored @eff_addr. Also, the register operand that indicates the
1139 * associated segment is stored in @regoff, this parameter can later be used to
1140 * determine such segment.
1141 *
1142 * Returns:
1143 *
1144 * 0 on success. @eff_addr will have the referenced effective address.
1145 * @base_offset will have a register, as an offset from the base of pt_regs,
1146 * that can be used to resolve the associated segment.
1147 *
1148 * Negative value on error.
1149 */
1150static int get_eff_addr_sib(struct insn *insn, struct pt_regs *regs,
1151			    int *base_offset, long *eff_addr)
1152{
1153	long base, indx;
1154	int indx_offset;
1155	int ret;
1156
1157	if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
1158		return -EINVAL;
1159
1160	ret = insn_get_modrm(insn);
1161	if (ret)
1162		return ret;
1163
1164	if (!insn->modrm.nbytes)
1165		return -EINVAL;
1166
1167	if (X86_MODRM_MOD(insn->modrm.value) > 2)
1168		return -EINVAL;
1169
1170	ret = insn_get_sib(insn);
1171	if (ret)
1172		return ret;
1173
1174	if (!insn->sib.nbytes)
1175		return -EINVAL;
1176
1177	*base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
1178	indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
1179
1180	/*
1181	 * Negative values in the base and index offset means an error when
1182	 * decoding the SIB byte. Except -EDOM, which means that the registers
1183	 * should not be used in the address computation.
1184	 */
1185	if (*base_offset == -EDOM)
1186		base = 0;
1187	else if (*base_offset < 0)
1188		return -EINVAL;
1189	else
1190		base = regs_get_register(regs, *base_offset);
1191
1192	if (indx_offset == -EDOM)
1193		indx = 0;
1194	else if (indx_offset < 0)
1195		return -EINVAL;
1196	else
1197		indx = regs_get_register(regs, indx_offset);
1198
1199	if (insn->addr_bytes == 4) {
1200		int addr32, base32, idx32;
1201
1202		base32 = base & 0xffffffff;
1203		idx32 = indx & 0xffffffff;
1204
1205		addr32 = base32 + idx32 * (1 << X86_SIB_SCALE(insn->sib.value));
1206		addr32 += insn->displacement.value;
1207
1208		*eff_addr = addr32 & 0xffffffff;
1209	} else {
1210		*eff_addr = base + indx * (1 << X86_SIB_SCALE(insn->sib.value));
1211		*eff_addr += insn->displacement.value;
1212	}
1213
1214	return 0;
1215}
1216
1217/**
1218 * get_addr_ref_16() - Obtain the 16-bit address referred by instruction
1219 * @insn:	Instruction containing ModRM byte and displacement
1220 * @regs:	Register values as seen when entering kernel mode
1221 *
1222 * This function is to be used with 16-bit address encodings. Obtain the memory
1223 * address referred by the instruction's ModRM and displacement bytes. Also, the
1224 * segment used as base is determined by either any segment override prefixes in
1225 * @insn or the default segment of the registers involved in the address
1226 * computation. In protected mode, segment limits are enforced.
1227 *
1228 * Returns:
1229 *
1230 * Linear address referenced by the instruction operands on success.
1231 *
1232 * -1L on error.
1233 */
1234static void __user *get_addr_ref_16(struct insn *insn, struct pt_regs *regs)
1235{
1236	unsigned long linear_addr = -1L, seg_base, seg_limit;
1237	int ret, regoff;
1238	short eff_addr;
1239	long tmp;
1240
1241	if (insn_get_displacement(insn))
1242		goto out;
1243
1244	if (insn->addr_bytes != 2)
1245		goto out;
1246
1247	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1248		ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1249		if (ret)
1250			goto out;
1251
1252		eff_addr = tmp;
1253	} else {
1254		ret = get_eff_addr_modrm_16(insn, regs, &regoff, &eff_addr);
1255		if (ret)
1256			goto out;
1257	}
1258
1259	ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1260	if (ret)
1261		goto out;
1262
1263	/*
1264	 * Before computing the linear address, make sure the effective address
1265	 * is within the limits of the segment. In virtual-8086 mode, segment
1266	 * limits are not enforced. In such a case, the segment limit is -1L to
1267	 * reflect this fact.
1268	 */
1269	if ((unsigned long)(eff_addr & 0xffff) > seg_limit)
1270		goto out;
1271
1272	linear_addr = (unsigned long)(eff_addr & 0xffff) + seg_base;
1273
1274	/* Limit linear address to 20 bits */
1275	if (v8086_mode(regs))
1276		linear_addr &= 0xfffff;
1277
1278out:
1279	return (void __user *)linear_addr;
1280}
1281
1282/**
1283 * get_addr_ref_32() - Obtain a 32-bit linear address
1284 * @insn:	Instruction with ModRM, SIB bytes and displacement
1285 * @regs:	Register values as seen when entering kernel mode
1286 *
1287 * This function is to be used with 32-bit address encodings to obtain the
1288 * linear memory address referred by the instruction's ModRM, SIB,
1289 * displacement bytes and segment base address, as applicable. If in protected
1290 * mode, segment limits are enforced.
1291 *
1292 * Returns:
1293 *
1294 * Linear address referenced by instruction and registers on success.
1295 *
1296 * -1L on error.
1297 */
1298static void __user *get_addr_ref_32(struct insn *insn, struct pt_regs *regs)
1299{
1300	unsigned long linear_addr = -1L, seg_base, seg_limit;
1301	int eff_addr, regoff;
1302	long tmp;
1303	int ret;
1304
1305	if (insn->addr_bytes != 4)
1306		goto out;
1307
1308	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1309		ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1310		if (ret)
1311			goto out;
1312
1313		eff_addr = tmp;
1314
1315	} else {
1316		if (insn->sib.nbytes) {
1317			ret = get_eff_addr_sib(insn, regs, &regoff, &tmp);
1318			if (ret)
1319				goto out;
1320
1321			eff_addr = tmp;
1322		} else {
1323			ret = get_eff_addr_modrm(insn, regs, &regoff, &tmp);
1324			if (ret)
1325				goto out;
1326
1327			eff_addr = tmp;
1328		}
1329	}
1330
1331	ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1332	if (ret)
1333		goto out;
1334
1335	/*
1336	 * In protected mode, before computing the linear address, make sure
1337	 * the effective address is within the limits of the segment.
1338	 * 32-bit addresses can be used in long and virtual-8086 modes if an
1339	 * address override prefix is used. In such cases, segment limits are
1340	 * not enforced. When in virtual-8086 mode, the segment limit is -1L
1341	 * to reflect this situation.
1342	 *
1343	 * After computed, the effective address is treated as an unsigned
1344	 * quantity.
1345	 */
1346	if (!any_64bit_mode(regs) && ((unsigned int)eff_addr > seg_limit))
1347		goto out;
1348
1349	/*
1350	 * Even though 32-bit address encodings are allowed in virtual-8086
1351	 * mode, the address range is still limited to [0x-0xffff].
1352	 */
1353	if (v8086_mode(regs) && (eff_addr & ~0xffff))
1354		goto out;
1355
1356	/*
1357	 * Data type long could be 64 bits in size. Ensure that our 32-bit
1358	 * effective address is not sign-extended when computing the linear
1359	 * address.
1360	 */
1361	linear_addr = (unsigned long)(eff_addr & 0xffffffff) + seg_base;
1362
1363	/* Limit linear address to 20 bits */
1364	if (v8086_mode(regs))
1365		linear_addr &= 0xfffff;
1366
1367out:
1368	return (void __user *)linear_addr;
1369}
1370
1371/**
1372 * get_addr_ref_64() - Obtain a 64-bit linear address
1373 * @insn:	Instruction struct with ModRM and SIB bytes and displacement
1374 * @regs:	Structure with register values as seen when entering kernel mode
1375 *
1376 * This function is to be used with 64-bit address encodings to obtain the
1377 * linear memory address referred by the instruction's ModRM, SIB,
1378 * displacement bytes and segment base address, as applicable.
1379 *
1380 * Returns:
1381 *
1382 * Linear address referenced by instruction and registers on success.
1383 *
1384 * -1L on error.
1385 */
1386#ifndef CONFIG_X86_64
1387static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1388{
1389	return (void __user *)-1L;
1390}
1391#else
1392static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1393{
1394	unsigned long linear_addr = -1L, seg_base;
1395	int regoff, ret;
1396	long eff_addr;
1397
1398	if (insn->addr_bytes != 8)
1399		goto out;
1400
1401	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1402		ret = get_eff_addr_reg(insn, regs, &regoff, &eff_addr);
1403		if (ret)
1404			goto out;
1405
1406	} else {
1407		if (insn->sib.nbytes) {
1408			ret = get_eff_addr_sib(insn, regs, &regoff, &eff_addr);
1409			if (ret)
1410				goto out;
1411		} else {
1412			ret = get_eff_addr_modrm(insn, regs, &regoff, &eff_addr);
1413			if (ret)
1414				goto out;
1415		}
1416
1417	}
1418
1419	ret = get_seg_base_limit(insn, regs, regoff, &seg_base, NULL);
1420	if (ret)
1421		goto out;
1422
1423	linear_addr = (unsigned long)eff_addr + seg_base;
1424
1425out:
1426	return (void __user *)linear_addr;
1427}
1428#endif /* CONFIG_X86_64 */
1429
1430/**
1431 * insn_get_addr_ref() - Obtain the linear address referred by instruction
1432 * @insn:	Instruction structure containing ModRM byte and displacement
1433 * @regs:	Structure with register values as seen when entering kernel mode
1434 *
1435 * Obtain the linear address referred by the instruction's ModRM, SIB and
1436 * displacement bytes, and segment base, as applicable. In protected mode,
1437 * segment limits are enforced.
1438 *
1439 * Returns:
1440 *
1441 * Linear address referenced by instruction and registers on success.
1442 *
1443 * -1L on error.
1444 */
1445void __user *insn_get_addr_ref(struct insn *insn, struct pt_regs *regs)
1446{
1447	if (!insn || !regs)
1448		return (void __user *)-1L;
1449
1450	if (insn_get_opcode(insn))
1451		return (void __user *)-1L;
1452
1453	switch (insn->addr_bytes) {
1454	case 2:
1455		return get_addr_ref_16(insn, regs);
1456	case 4:
1457		return get_addr_ref_32(insn, regs);
1458	case 8:
1459		return get_addr_ref_64(insn, regs);
1460	default:
1461		return (void __user *)-1L;
1462	}
1463}
1464
1465int insn_get_effective_ip(struct pt_regs *regs, unsigned long *ip)
1466{
1467	unsigned long seg_base = 0;
1468
1469	/*
1470	 * If not in user-space long mode, a custom code segment could be in
1471	 * use. This is true in protected mode (if the process defined a local
1472	 * descriptor table), or virtual-8086 mode. In most of the cases
1473	 * seg_base will be zero as in USER_CS.
1474	 */
1475	if (!user_64bit_mode(regs)) {
1476		seg_base = insn_get_seg_base(regs, INAT_SEG_REG_CS);
1477		if (seg_base == -1L)
1478			return -EINVAL;
1479	}
1480
1481	*ip = seg_base + regs->ip;
1482
1483	return 0;
1484}
1485
1486/**
1487 * insn_fetch_from_user() - Copy instruction bytes from user-space memory
1488 * @regs:	Structure with register values as seen when entering kernel mode
1489 * @buf:	Array to store the fetched instruction
1490 *
1491 * Gets the linear address of the instruction and copies the instruction bytes
1492 * to the buf.
1493 *
1494 * Returns:
1495 *
1496 * - number of instruction bytes copied.
1497 * - 0 if nothing was copied.
1498 * - -EINVAL if the linear address of the instruction could not be calculated
1499 */
1500int insn_fetch_from_user(struct pt_regs *regs, unsigned char buf[MAX_INSN_SIZE])
1501{
1502	unsigned long ip;
1503	int not_copied;
1504
1505	if (insn_get_effective_ip(regs, &ip))
1506		return -EINVAL;
1507
1508	not_copied = copy_from_user(buf, (void __user *)ip, MAX_INSN_SIZE);
1509
1510	return MAX_INSN_SIZE - not_copied;
1511}
1512
1513/**
1514 * insn_fetch_from_user_inatomic() - Copy instruction bytes from user-space memory
1515 *                                   while in atomic code
1516 * @regs:	Structure with register values as seen when entering kernel mode
1517 * @buf:	Array to store the fetched instruction
1518 *
1519 * Gets the linear address of the instruction and copies the instruction bytes
1520 * to the buf. This function must be used in atomic context.
1521 *
1522 * Returns:
1523 *
1524 *  - number of instruction bytes copied.
1525 *  - 0 if nothing was copied.
1526 *  - -EINVAL if the linear address of the instruction could not be calculated.
1527 */
1528int insn_fetch_from_user_inatomic(struct pt_regs *regs, unsigned char buf[MAX_INSN_SIZE])
1529{
1530	unsigned long ip;
1531	int not_copied;
1532
1533	if (insn_get_effective_ip(regs, &ip))
1534		return -EINVAL;
1535
1536	not_copied = __copy_from_user_inatomic(buf, (void __user *)ip, MAX_INSN_SIZE);
1537
1538	return MAX_INSN_SIZE - not_copied;
1539}
1540
1541/**
1542 * insn_decode_from_regs() - Decode an instruction
1543 * @insn:	Structure to store decoded instruction
1544 * @regs:	Structure with register values as seen when entering kernel mode
1545 * @buf:	Buffer containing the instruction bytes
1546 * @buf_size:   Number of instruction bytes available in buf
1547 *
1548 * Decodes the instruction provided in buf and stores the decoding results in
1549 * insn. Also determines the correct address and operand sizes.
1550 *
1551 * Returns:
1552 *
1553 * True if instruction was decoded, False otherwise.
1554 */
1555bool insn_decode_from_regs(struct insn *insn, struct pt_regs *regs,
1556			   unsigned char buf[MAX_INSN_SIZE], int buf_size)
1557{
1558	int seg_defs;
1559
1560	insn_init(insn, buf, buf_size, user_64bit_mode(regs));
1561
1562	/*
1563	 * Override the default operand and address sizes with what is specified
1564	 * in the code segment descriptor. The instruction decoder only sets
1565	 * the address size it to either 4 or 8 address bytes and does nothing
1566	 * for the operand bytes. This OK for most of the cases, but we could
1567	 * have special cases where, for instance, a 16-bit code segment
1568	 * descriptor is used.
1569	 * If there is an address override prefix, the instruction decoder
1570	 * correctly updates these values, even for 16-bit defaults.
1571	 */
1572	seg_defs = insn_get_code_seg_params(regs);
1573	if (seg_defs == -EINVAL)
1574		return false;
1575
1576	insn->addr_bytes = INSN_CODE_SEG_ADDR_SZ(seg_defs);
1577	insn->opnd_bytes = INSN_CODE_SEG_OPND_SZ(seg_defs);
1578
1579	if (insn_get_length(insn))
1580		return false;
1581
1582	if (buf_size < insn->length)
1583		return false;
1584
1585	return true;
1586}
1587
1588/**
1589 * insn_decode_mmio() - Decode a MMIO instruction
1590 * @insn:	Structure to store decoded instruction
1591 * @bytes:	Returns size of memory operand
1592 *
1593 * Decodes instruction that used for Memory-mapped I/O.
1594 *
1595 * Returns:
1596 *
1597 * Type of the instruction. Size of the memory operand is stored in
1598 * @bytes. If decode failed, INSN_MMIO_DECODE_FAILED returned.
1599 */
1600enum insn_mmio_type insn_decode_mmio(struct insn *insn, int *bytes)
1601{
1602	enum insn_mmio_type type = INSN_MMIO_DECODE_FAILED;
1603
1604	*bytes = 0;
1605
1606	if (insn_get_opcode(insn))
1607		return INSN_MMIO_DECODE_FAILED;
1608
1609	switch (insn->opcode.bytes[0]) {
1610	case 0x88: /* MOV m8,r8 */
1611		*bytes = 1;
1612		fallthrough;
1613	case 0x89: /* MOV m16/m32/m64, r16/m32/m64 */
1614		if (!*bytes)
1615			*bytes = insn->opnd_bytes;
1616		type = INSN_MMIO_WRITE;
1617		break;
1618
1619	case 0xc6: /* MOV m8, imm8 */
1620		*bytes = 1;
1621		fallthrough;
1622	case 0xc7: /* MOV m16/m32/m64, imm16/imm32/imm64 */
1623		if (!*bytes)
1624			*bytes = insn->opnd_bytes;
1625		type = INSN_MMIO_WRITE_IMM;
1626		break;
1627
1628	case 0x8a: /* MOV r8, m8 */
1629		*bytes = 1;
1630		fallthrough;
1631	case 0x8b: /* MOV r16/r32/r64, m16/m32/m64 */
1632		if (!*bytes)
1633			*bytes = insn->opnd_bytes;
1634		type = INSN_MMIO_READ;
1635		break;
1636
1637	case 0xa4: /* MOVS m8, m8 */
1638		*bytes = 1;
1639		fallthrough;
1640	case 0xa5: /* MOVS m16/m32/m64, m16/m32/m64 */
1641		if (!*bytes)
1642			*bytes = insn->opnd_bytes;
1643		type = INSN_MMIO_MOVS;
1644		break;
1645
1646	case 0x0f: /* Two-byte instruction */
1647		switch (insn->opcode.bytes[1]) {
1648		case 0xb6: /* MOVZX r16/r32/r64, m8 */
1649			*bytes = 1;
1650			fallthrough;
1651		case 0xb7: /* MOVZX r32/r64, m16 */
1652			if (!*bytes)
1653				*bytes = 2;
1654			type = INSN_MMIO_READ_ZERO_EXTEND;
1655			break;
1656
1657		case 0xbe: /* MOVSX r16/r32/r64, m8 */
1658			*bytes = 1;
1659			fallthrough;
1660		case 0xbf: /* MOVSX r32/r64, m16 */
1661			if (!*bytes)
1662				*bytes = 2;
1663			type = INSN_MMIO_READ_SIGN_EXTEND;
1664			break;
1665		}
1666		break;
1667	}
1668
1669	return type;
1670}
v6.13.7
   1/*
   2 * Utility functions for x86 operand and address decoding
   3 *
   4 * Copyright (C) Intel Corporation 2017
   5 */
   6#include <linux/kernel.h>
   7#include <linux/string.h>
   8#include <linux/ratelimit.h>
   9#include <linux/mmu_context.h>
  10#include <asm/desc_defs.h>
  11#include <asm/desc.h>
  12#include <asm/inat.h>
  13#include <asm/insn.h>
  14#include <asm/insn-eval.h>
  15#include <asm/ldt.h>
  16#include <asm/vm86.h>
  17
  18#undef pr_fmt
  19#define pr_fmt(fmt) "insn: " fmt
  20
  21enum reg_type {
  22	REG_TYPE_RM = 0,
  23	REG_TYPE_REG,
  24	REG_TYPE_INDEX,
  25	REG_TYPE_BASE,
  26};
  27
  28/**
  29 * is_string_insn() - Determine if instruction is a string instruction
  30 * @insn:	Instruction containing the opcode to inspect
  31 *
  32 * Returns:
  33 *
  34 * true if the instruction, determined by the opcode, is any of the
  35 * string instructions as defined in the Intel Software Development manual.
  36 * False otherwise.
  37 */
  38static bool is_string_insn(struct insn *insn)
  39{
  40	/* All string instructions have a 1-byte opcode. */
  41	if (insn->opcode.nbytes != 1)
  42		return false;
  43
  44	switch (insn->opcode.bytes[0]) {
  45	case 0x6c ... 0x6f:	/* INS, OUTS */
  46	case 0xa4 ... 0xa7:	/* MOVS, CMPS */
  47	case 0xaa ... 0xaf:	/* STOS, LODS, SCAS */
  48		return true;
  49	default:
  50		return false;
  51	}
  52}
  53
  54/**
  55 * insn_has_rep_prefix() - Determine if instruction has a REP prefix
  56 * @insn:	Instruction containing the prefix to inspect
  57 *
  58 * Returns:
  59 *
  60 * true if the instruction has a REP prefix, false if not.
  61 */
  62bool insn_has_rep_prefix(struct insn *insn)
  63{
  64	insn_byte_t p;
  65	int i;
  66
  67	insn_get_prefixes(insn);
  68
  69	for_each_insn_prefix(insn, i, p) {
  70		if (p == 0xf2 || p == 0xf3)
  71			return true;
  72	}
  73
  74	return false;
  75}
  76
  77/**
  78 * get_seg_reg_override_idx() - obtain segment register override index
  79 * @insn:	Valid instruction with segment override prefixes
  80 *
  81 * Inspect the instruction prefixes in @insn and find segment overrides, if any.
  82 *
  83 * Returns:
  84 *
  85 * A constant identifying the segment register to use, among CS, SS, DS,
  86 * ES, FS, or GS. INAT_SEG_REG_DEFAULT is returned if no segment override
  87 * prefixes were found.
  88 *
  89 * -EINVAL in case of error.
  90 */
  91static int get_seg_reg_override_idx(struct insn *insn)
  92{
  93	int idx = INAT_SEG_REG_DEFAULT;
  94	int num_overrides = 0, i;
  95	insn_byte_t p;
  96
  97	insn_get_prefixes(insn);
  98
  99	/* Look for any segment override prefixes. */
 100	for_each_insn_prefix(insn, i, p) {
 101		insn_attr_t attr;
 102
 103		attr = inat_get_opcode_attribute(p);
 104		switch (attr) {
 105		case INAT_MAKE_PREFIX(INAT_PFX_CS):
 106			idx = INAT_SEG_REG_CS;
 107			num_overrides++;
 108			break;
 109		case INAT_MAKE_PREFIX(INAT_PFX_SS):
 110			idx = INAT_SEG_REG_SS;
 111			num_overrides++;
 112			break;
 113		case INAT_MAKE_PREFIX(INAT_PFX_DS):
 114			idx = INAT_SEG_REG_DS;
 115			num_overrides++;
 116			break;
 117		case INAT_MAKE_PREFIX(INAT_PFX_ES):
 118			idx = INAT_SEG_REG_ES;
 119			num_overrides++;
 120			break;
 121		case INAT_MAKE_PREFIX(INAT_PFX_FS):
 122			idx = INAT_SEG_REG_FS;
 123			num_overrides++;
 124			break;
 125		case INAT_MAKE_PREFIX(INAT_PFX_GS):
 126			idx = INAT_SEG_REG_GS;
 127			num_overrides++;
 128			break;
 129		/* No default action needed. */
 130		}
 131	}
 132
 133	/* More than one segment override prefix leads to undefined behavior. */
 134	if (num_overrides > 1)
 135		return -EINVAL;
 136
 137	return idx;
 138}
 139
 140/**
 141 * check_seg_overrides() - check if segment override prefixes are allowed
 142 * @insn:	Valid instruction with segment override prefixes
 143 * @regoff:	Operand offset, in pt_regs, for which the check is performed
 144 *
 145 * For a particular register used in register-indirect addressing, determine if
 146 * segment override prefixes can be used. Specifically, no overrides are allowed
 147 * for rDI if used with a string instruction.
 148 *
 149 * Returns:
 150 *
 151 * True if segment override prefixes can be used with the register indicated
 152 * in @regoff. False if otherwise.
 153 */
 154static bool check_seg_overrides(struct insn *insn, int regoff)
 155{
 156	if (regoff == offsetof(struct pt_regs, di) && is_string_insn(insn))
 157		return false;
 158
 159	return true;
 160}
 161
 162/**
 163 * resolve_default_seg() - resolve default segment register index for an operand
 164 * @insn:	Instruction with opcode and address size. Must be valid.
 165 * @regs:	Register values as seen when entering kernel mode
 166 * @off:	Operand offset, in pt_regs, for which resolution is needed
 167 *
 168 * Resolve the default segment register index associated with the instruction
 169 * operand register indicated by @off. Such index is resolved based on defaults
 170 * described in the Intel Software Development Manual.
 171 *
 172 * Returns:
 173 *
 174 * If in protected mode, a constant identifying the segment register to use,
 175 * among CS, SS, ES or DS. If in long mode, INAT_SEG_REG_IGNORE.
 176 *
 177 * -EINVAL in case of error.
 178 */
 179static int resolve_default_seg(struct insn *insn, struct pt_regs *regs, int off)
 180{
 181	if (any_64bit_mode(regs))
 182		return INAT_SEG_REG_IGNORE;
 183	/*
 184	 * Resolve the default segment register as described in Section 3.7.4
 185	 * of the Intel Software Development Manual Vol. 1:
 186	 *
 187	 *  + DS for all references involving r[ABCD]X, and rSI.
 188	 *  + If used in a string instruction, ES for rDI. Otherwise, DS.
 189	 *  + AX, CX and DX are not valid register operands in 16-bit address
 190	 *    encodings but are valid for 32-bit and 64-bit encodings.
 191	 *  + -EDOM is reserved to identify for cases in which no register
 192	 *    is used (i.e., displacement-only addressing). Use DS.
 193	 *  + SS for rSP or rBP.
 194	 *  + CS for rIP.
 195	 */
 196
 197	switch (off) {
 198	case offsetof(struct pt_regs, ax):
 199	case offsetof(struct pt_regs, cx):
 200	case offsetof(struct pt_regs, dx):
 201		/* Need insn to verify address size. */
 202		if (insn->addr_bytes == 2)
 203			return -EINVAL;
 204
 205		fallthrough;
 206
 207	case -EDOM:
 208	case offsetof(struct pt_regs, bx):
 209	case offsetof(struct pt_regs, si):
 210		return INAT_SEG_REG_DS;
 211
 212	case offsetof(struct pt_regs, di):
 213		if (is_string_insn(insn))
 214			return INAT_SEG_REG_ES;
 215		return INAT_SEG_REG_DS;
 216
 217	case offsetof(struct pt_regs, bp):
 218	case offsetof(struct pt_regs, sp):
 219		return INAT_SEG_REG_SS;
 220
 221	case offsetof(struct pt_regs, ip):
 222		return INAT_SEG_REG_CS;
 223
 224	default:
 225		return -EINVAL;
 226	}
 227}
 228
 229/**
 230 * resolve_seg_reg() - obtain segment register index
 231 * @insn:	Instruction with operands
 232 * @regs:	Register values as seen when entering kernel mode
 233 * @regoff:	Operand offset, in pt_regs, used to determine segment register
 234 *
 235 * Determine the segment register associated with the operands and, if
 236 * applicable, prefixes and the instruction pointed by @insn.
 237 *
 238 * The segment register associated to an operand used in register-indirect
 239 * addressing depends on:
 240 *
 241 * a) Whether running in long mode (in such a case segments are ignored, except
 242 * if FS or GS are used).
 243 *
 244 * b) Whether segment override prefixes can be used. Certain instructions and
 245 *    registers do not allow override prefixes.
 246 *
 247 * c) Whether segment overrides prefixes are found in the instruction prefixes.
 248 *
 249 * d) If there are not segment override prefixes or they cannot be used, the
 250 *    default segment register associated with the operand register is used.
 251 *
 252 * The function checks first if segment override prefixes can be used with the
 253 * operand indicated by @regoff. If allowed, obtain such overridden segment
 254 * register index. Lastly, if not prefixes were found or cannot be used, resolve
 255 * the segment register index to use based on the defaults described in the
 256 * Intel documentation. In long mode, all segment register indexes will be
 257 * ignored, except if overrides were found for FS or GS. All these operations
 258 * are done using helper functions.
 259 *
 260 * The operand register, @regoff, is represented as the offset from the base of
 261 * pt_regs.
 262 *
 263 * As stated, the main use of this function is to determine the segment register
 264 * index based on the instruction, its operands and prefixes. Hence, @insn
 265 * must be valid. However, if @regoff indicates rIP, we don't need to inspect
 266 * @insn at all as in this case CS is used in all cases. This case is checked
 267 * before proceeding further.
 268 *
 269 * Please note that this function does not return the value in the segment
 270 * register (i.e., the segment selector) but our defined index. The segment
 271 * selector needs to be obtained using get_segment_selector() and passing the
 272 * segment register index resolved by this function.
 273 *
 274 * Returns:
 275 *
 276 * An index identifying the segment register to use, among CS, SS, DS,
 277 * ES, FS, or GS. INAT_SEG_REG_IGNORE is returned if running in long mode.
 278 *
 279 * -EINVAL in case of error.
 280 */
 281static int resolve_seg_reg(struct insn *insn, struct pt_regs *regs, int regoff)
 282{
 283	int idx;
 284
 285	/*
 286	 * In the unlikely event of having to resolve the segment register
 287	 * index for rIP, do it first. Segment override prefixes should not
 288	 * be used. Hence, it is not necessary to inspect the instruction,
 289	 * which may be invalid at this point.
 290	 */
 291	if (regoff == offsetof(struct pt_regs, ip)) {
 292		if (any_64bit_mode(regs))
 293			return INAT_SEG_REG_IGNORE;
 294		else
 295			return INAT_SEG_REG_CS;
 296	}
 297
 298	if (!insn)
 299		return -EINVAL;
 300
 301	if (!check_seg_overrides(insn, regoff))
 302		return resolve_default_seg(insn, regs, regoff);
 303
 304	idx = get_seg_reg_override_idx(insn);
 305	if (idx < 0)
 306		return idx;
 307
 308	if (idx == INAT_SEG_REG_DEFAULT)
 309		return resolve_default_seg(insn, regs, regoff);
 310
 311	/*
 312	 * In long mode, segment override prefixes are ignored, except for
 313	 * overrides for FS and GS.
 314	 */
 315	if (any_64bit_mode(regs)) {
 316		if (idx != INAT_SEG_REG_FS &&
 317		    idx != INAT_SEG_REG_GS)
 318			idx = INAT_SEG_REG_IGNORE;
 319	}
 320
 321	return idx;
 322}
 323
 324/**
 325 * get_segment_selector() - obtain segment selector
 326 * @regs:		Register values as seen when entering kernel mode
 327 * @seg_reg_idx:	Segment register index to use
 328 *
 329 * Obtain the segment selector from any of the CS, SS, DS, ES, FS, GS segment
 330 * registers. In CONFIG_X86_32, the segment is obtained from either pt_regs or
 331 * kernel_vm86_regs as applicable. In CONFIG_X86_64, CS and SS are obtained
 332 * from pt_regs. DS, ES, FS and GS are obtained by reading the actual CPU
 333 * registers. This done for only for completeness as in CONFIG_X86_64 segment
 334 * registers are ignored.
 335 *
 336 * Returns:
 337 *
 338 * Value of the segment selector, including null when running in
 339 * long mode.
 340 *
 341 * -EINVAL on error.
 342 */
 343static short get_segment_selector(struct pt_regs *regs, int seg_reg_idx)
 344{
 345	unsigned short sel;
 346
 347#ifdef CONFIG_X86_64
 348	switch (seg_reg_idx) {
 349	case INAT_SEG_REG_IGNORE:
 350		return 0;
 351	case INAT_SEG_REG_CS:
 352		return (unsigned short)(regs->cs & 0xffff);
 353	case INAT_SEG_REG_SS:
 354		return (unsigned short)(regs->ss & 0xffff);
 355	case INAT_SEG_REG_DS:
 356		savesegment(ds, sel);
 357		return sel;
 358	case INAT_SEG_REG_ES:
 359		savesegment(es, sel);
 360		return sel;
 361	case INAT_SEG_REG_FS:
 362		savesegment(fs, sel);
 363		return sel;
 364	case INAT_SEG_REG_GS:
 365		savesegment(gs, sel);
 366		return sel;
 367	default:
 368		return -EINVAL;
 369	}
 370#else /* CONFIG_X86_32 */
 371	struct kernel_vm86_regs *vm86regs = (struct kernel_vm86_regs *)regs;
 372
 373	if (v8086_mode(regs)) {
 374		switch (seg_reg_idx) {
 375		case INAT_SEG_REG_CS:
 376			return (unsigned short)(regs->cs & 0xffff);
 377		case INAT_SEG_REG_SS:
 378			return (unsigned short)(regs->ss & 0xffff);
 379		case INAT_SEG_REG_DS:
 380			return vm86regs->ds;
 381		case INAT_SEG_REG_ES:
 382			return vm86regs->es;
 383		case INAT_SEG_REG_FS:
 384			return vm86regs->fs;
 385		case INAT_SEG_REG_GS:
 386			return vm86regs->gs;
 387		case INAT_SEG_REG_IGNORE:
 388		default:
 389			return -EINVAL;
 390		}
 391	}
 392
 393	switch (seg_reg_idx) {
 394	case INAT_SEG_REG_CS:
 395		return (unsigned short)(regs->cs & 0xffff);
 396	case INAT_SEG_REG_SS:
 397		return (unsigned short)(regs->ss & 0xffff);
 398	case INAT_SEG_REG_DS:
 399		return (unsigned short)(regs->ds & 0xffff);
 400	case INAT_SEG_REG_ES:
 401		return (unsigned short)(regs->es & 0xffff);
 402	case INAT_SEG_REG_FS:
 403		return (unsigned short)(regs->fs & 0xffff);
 404	case INAT_SEG_REG_GS:
 405		savesegment(gs, sel);
 406		return sel;
 407	case INAT_SEG_REG_IGNORE:
 408	default:
 409		return -EINVAL;
 410	}
 411#endif /* CONFIG_X86_64 */
 412}
 413
 414static const int pt_regoff[] = {
 415	offsetof(struct pt_regs, ax),
 416	offsetof(struct pt_regs, cx),
 417	offsetof(struct pt_regs, dx),
 418	offsetof(struct pt_regs, bx),
 419	offsetof(struct pt_regs, sp),
 420	offsetof(struct pt_regs, bp),
 421	offsetof(struct pt_regs, si),
 422	offsetof(struct pt_regs, di),
 423#ifdef CONFIG_X86_64
 424	offsetof(struct pt_regs, r8),
 425	offsetof(struct pt_regs, r9),
 426	offsetof(struct pt_regs, r10),
 427	offsetof(struct pt_regs, r11),
 428	offsetof(struct pt_regs, r12),
 429	offsetof(struct pt_regs, r13),
 430	offsetof(struct pt_regs, r14),
 431	offsetof(struct pt_regs, r15),
 432#else
 433	offsetof(struct pt_regs, ds),
 434	offsetof(struct pt_regs, es),
 435	offsetof(struct pt_regs, fs),
 436	offsetof(struct pt_regs, gs),
 437#endif
 438};
 439
 440int pt_regs_offset(struct pt_regs *regs, int regno)
 441{
 442	if ((unsigned)regno < ARRAY_SIZE(pt_regoff))
 443		return pt_regoff[regno];
 444	return -EDOM;
 445}
 446
 447static int get_regno(struct insn *insn, enum reg_type type)
 448{
 449	int nr_registers = ARRAY_SIZE(pt_regoff);
 450	int regno = 0;
 451
 452	/*
 453	 * Don't possibly decode a 32-bit instructions as
 454	 * reading a 64-bit-only register.
 455	 */
 456	if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
 457		nr_registers -= 8;
 458
 459	switch (type) {
 460	case REG_TYPE_RM:
 461		regno = X86_MODRM_RM(insn->modrm.value);
 462
 463		/*
 464		 * ModRM.mod == 0 and ModRM.rm == 5 means a 32-bit displacement
 465		 * follows the ModRM byte.
 466		 */
 467		if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
 468			return -EDOM;
 469
 470		if (X86_REX_B(insn->rex_prefix.value))
 471			regno += 8;
 472		break;
 473
 474	case REG_TYPE_REG:
 475		regno = X86_MODRM_REG(insn->modrm.value);
 476
 477		if (X86_REX_R(insn->rex_prefix.value))
 478			regno += 8;
 479		break;
 480
 481	case REG_TYPE_INDEX:
 482		regno = X86_SIB_INDEX(insn->sib.value);
 483		if (X86_REX_X(insn->rex_prefix.value))
 484			regno += 8;
 485
 486		/*
 487		 * If ModRM.mod != 3 and SIB.index = 4 the scale*index
 488		 * portion of the address computation is null. This is
 489		 * true only if REX.X is 0. In such a case, the SIB index
 490		 * is used in the address computation.
 491		 */
 492		if (X86_MODRM_MOD(insn->modrm.value) != 3 && regno == 4)
 493			return -EDOM;
 494		break;
 495
 496	case REG_TYPE_BASE:
 497		regno = X86_SIB_BASE(insn->sib.value);
 498		/*
 499		 * If ModRM.mod is 0 and SIB.base == 5, the base of the
 500		 * register-indirect addressing is 0. In this case, a
 501		 * 32-bit displacement follows the SIB byte.
 502		 */
 503		if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
 504			return -EDOM;
 505
 506		if (X86_REX_B(insn->rex_prefix.value))
 507			regno += 8;
 508		break;
 509
 510	default:
 511		pr_err_ratelimited("invalid register type: %d\n", type);
 512		return -EINVAL;
 513	}
 514
 515	if (regno >= nr_registers) {
 516		WARN_ONCE(1, "decoded an instruction with an invalid register");
 517		return -EINVAL;
 518	}
 519	return regno;
 520}
 521
 522static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
 523			  enum reg_type type)
 524{
 525	int regno = get_regno(insn, type);
 526
 527	if (regno < 0)
 528		return regno;
 529
 530	return pt_regs_offset(regs, regno);
 531}
 532
 533/**
 534 * get_reg_offset_16() - Obtain offset of register indicated by instruction
 535 * @insn:	Instruction containing ModRM byte
 536 * @regs:	Register values as seen when entering kernel mode
 537 * @offs1:	Offset of the first operand register
 538 * @offs2:	Offset of the second operand register, if applicable
 539 *
 540 * Obtain the offset, in pt_regs, of the registers indicated by the ModRM byte
 541 * in @insn. This function is to be used with 16-bit address encodings. The
 542 * @offs1 and @offs2 will be written with the offset of the two registers
 543 * indicated by the instruction. In cases where any of the registers is not
 544 * referenced by the instruction, the value will be set to -EDOM.
 545 *
 546 * Returns:
 547 *
 548 * 0 on success, -EINVAL on error.
 549 */
 550static int get_reg_offset_16(struct insn *insn, struct pt_regs *regs,
 551			     int *offs1, int *offs2)
 552{
 553	/*
 554	 * 16-bit addressing can use one or two registers. Specifics of
 555	 * encodings are given in Table 2-1. "16-Bit Addressing Forms with the
 556	 * ModR/M Byte" of the Intel Software Development Manual.
 557	 */
 558	static const int regoff1[] = {
 559		offsetof(struct pt_regs, bx),
 560		offsetof(struct pt_regs, bx),
 561		offsetof(struct pt_regs, bp),
 562		offsetof(struct pt_regs, bp),
 563		offsetof(struct pt_regs, si),
 564		offsetof(struct pt_regs, di),
 565		offsetof(struct pt_regs, bp),
 566		offsetof(struct pt_regs, bx),
 567	};
 568
 569	static const int regoff2[] = {
 570		offsetof(struct pt_regs, si),
 571		offsetof(struct pt_regs, di),
 572		offsetof(struct pt_regs, si),
 573		offsetof(struct pt_regs, di),
 574		-EDOM,
 575		-EDOM,
 576		-EDOM,
 577		-EDOM,
 578	};
 579
 580	if (!offs1 || !offs2)
 581		return -EINVAL;
 582
 583	/* Operand is a register, use the generic function. */
 584	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
 585		*offs1 = insn_get_modrm_rm_off(insn, regs);
 586		*offs2 = -EDOM;
 587		return 0;
 588	}
 589
 590	*offs1 = regoff1[X86_MODRM_RM(insn->modrm.value)];
 591	*offs2 = regoff2[X86_MODRM_RM(insn->modrm.value)];
 592
 593	/*
 594	 * If ModRM.mod is 0 and ModRM.rm is 110b, then we use displacement-
 595	 * only addressing. This means that no registers are involved in
 596	 * computing the effective address. Thus, ensure that the first
 597	 * register offset is invalid. The second register offset is already
 598	 * invalid under the aforementioned conditions.
 599	 */
 600	if ((X86_MODRM_MOD(insn->modrm.value) == 0) &&
 601	    (X86_MODRM_RM(insn->modrm.value) == 6))
 602		*offs1 = -EDOM;
 603
 604	return 0;
 605}
 606
 607/**
 608 * get_desc() - Obtain contents of a segment descriptor
 609 * @out:	Segment descriptor contents on success
 610 * @sel:	Segment selector
 611 *
 612 * Given a segment selector, obtain a pointer to the segment descriptor.
 613 * Both global and local descriptor tables are supported.
 614 *
 615 * Returns:
 616 *
 617 * True on success, false on failure.
 618 *
 619 * NULL on error.
 620 */
 621static bool get_desc(struct desc_struct *out, unsigned short sel)
 622{
 623	struct desc_ptr gdt_desc = {0, 0};
 624	unsigned long desc_base;
 625
 626#ifdef CONFIG_MODIFY_LDT_SYSCALL
 627	if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) {
 628		bool success = false;
 629		struct ldt_struct *ldt;
 630
 631		/* Bits [15:3] contain the index of the desired entry. */
 632		sel >>= 3;
 633
 634		mutex_lock(&current->active_mm->context.lock);
 635		ldt = current->active_mm->context.ldt;
 636		if (ldt && sel < ldt->nr_entries) {
 637			*out = ldt->entries[sel];
 638			success = true;
 639		}
 640
 641		mutex_unlock(&current->active_mm->context.lock);
 642
 643		return success;
 644	}
 645#endif
 646	native_store_gdt(&gdt_desc);
 647
 648	/*
 649	 * Segment descriptors have a size of 8 bytes. Thus, the index is
 650	 * multiplied by 8 to obtain the memory offset of the desired descriptor
 651	 * from the base of the GDT. As bits [15:3] of the segment selector
 652	 * contain the index, it can be regarded as multiplied by 8 already.
 653	 * All that remains is to clear bits [2:0].
 654	 */
 655	desc_base = sel & ~(SEGMENT_RPL_MASK | SEGMENT_TI_MASK);
 656
 657	if (desc_base > gdt_desc.size)
 658		return false;
 659
 660	*out = *(struct desc_struct *)(gdt_desc.address + desc_base);
 661	return true;
 662}
 663
 664/**
 665 * insn_get_seg_base() - Obtain base address of segment descriptor.
 666 * @regs:		Register values as seen when entering kernel mode
 667 * @seg_reg_idx:	Index of the segment register pointing to seg descriptor
 668 *
 669 * Obtain the base address of the segment as indicated by the segment descriptor
 670 * pointed by the segment selector. The segment selector is obtained from the
 671 * input segment register index @seg_reg_idx.
 672 *
 673 * Returns:
 674 *
 675 * In protected mode, base address of the segment. Zero in long mode,
 676 * except when FS or GS are used. In virtual-8086 mode, the segment
 677 * selector shifted 4 bits to the right.
 678 *
 679 * -1L in case of error.
 680 */
 681unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx)
 682{
 683	struct desc_struct desc;
 684	short sel;
 685
 686	sel = get_segment_selector(regs, seg_reg_idx);
 687	if (sel < 0)
 688		return -1L;
 689
 690	if (v8086_mode(regs))
 691		/*
 692		 * Base is simply the segment selector shifted 4
 693		 * bits to the right.
 694		 */
 695		return (unsigned long)(sel << 4);
 696
 697	if (any_64bit_mode(regs)) {
 698		/*
 699		 * Only FS or GS will have a base address, the rest of
 700		 * the segments' bases are forced to 0.
 701		 */
 702		unsigned long base;
 703
 704		if (seg_reg_idx == INAT_SEG_REG_FS) {
 705			rdmsrl(MSR_FS_BASE, base);
 706		} else if (seg_reg_idx == INAT_SEG_REG_GS) {
 707			/*
 708			 * swapgs was called at the kernel entry point. Thus,
 709			 * MSR_KERNEL_GS_BASE will have the user-space GS base.
 710			 */
 711			if (user_mode(regs))
 712				rdmsrl(MSR_KERNEL_GS_BASE, base);
 713			else
 714				rdmsrl(MSR_GS_BASE, base);
 715		} else {
 716			base = 0;
 717		}
 718		return base;
 719	}
 720
 721	/* In protected mode the segment selector cannot be null. */
 722	if (!sel)
 723		return -1L;
 724
 725	if (!get_desc(&desc, sel))
 726		return -1L;
 727
 728	return get_desc_base(&desc);
 729}
 730
 731/**
 732 * get_seg_limit() - Obtain the limit of a segment descriptor
 733 * @regs:		Register values as seen when entering kernel mode
 734 * @seg_reg_idx:	Index of the segment register pointing to seg descriptor
 735 *
 736 * Obtain the limit of the segment as indicated by the segment descriptor
 737 * pointed by the segment selector. The segment selector is obtained from the
 738 * input segment register index @seg_reg_idx.
 739 *
 740 * Returns:
 741 *
 742 * In protected mode, the limit of the segment descriptor in bytes.
 743 * In long mode and virtual-8086 mode, segment limits are not enforced. Thus,
 744 * limit is returned as -1L to imply a limit-less segment.
 745 *
 746 * Zero is returned on error.
 747 */
 748static unsigned long get_seg_limit(struct pt_regs *regs, int seg_reg_idx)
 749{
 750	struct desc_struct desc;
 751	unsigned long limit;
 752	short sel;
 753
 754	sel = get_segment_selector(regs, seg_reg_idx);
 755	if (sel < 0)
 756		return 0;
 757
 758	if (any_64bit_mode(regs) || v8086_mode(regs))
 759		return -1L;
 760
 761	if (!sel)
 762		return 0;
 763
 764	if (!get_desc(&desc, sel))
 765		return 0;
 766
 767	/*
 768	 * If the granularity bit is set, the limit is given in multiples
 769	 * of 4096. This also means that the 12 least significant bits are
 770	 * not tested when checking the segment limits. In practice,
 771	 * this means that the segment ends in (limit << 12) + 0xfff.
 772	 */
 773	limit = get_desc_limit(&desc);
 774	if (desc.g)
 775		limit = (limit << 12) + 0xfff;
 776
 777	return limit;
 778}
 779
 780/**
 781 * insn_get_code_seg_params() - Obtain code segment parameters
 782 * @regs:	Structure with register values as seen when entering kernel mode
 783 *
 784 * Obtain address and operand sizes of the code segment. It is obtained from the
 785 * selector contained in the CS register in regs. In protected mode, the default
 786 * address is determined by inspecting the L and D bits of the segment
 787 * descriptor. In virtual-8086 mode, the default is always two bytes for both
 788 * address and operand sizes.
 789 *
 790 * Returns:
 791 *
 792 * An int containing ORed-in default parameters on success.
 793 *
 794 * -EINVAL on error.
 795 */
 796int insn_get_code_seg_params(struct pt_regs *regs)
 797{
 798	struct desc_struct desc;
 799	short sel;
 800
 801	if (v8086_mode(regs))
 802		/* Address and operand size are both 16-bit. */
 803		return INSN_CODE_SEG_PARAMS(2, 2);
 804
 805	sel = get_segment_selector(regs, INAT_SEG_REG_CS);
 806	if (sel < 0)
 807		return sel;
 808
 809	if (!get_desc(&desc, sel))
 810		return -EINVAL;
 811
 812	/*
 813	 * The most significant byte of the Type field of the segment descriptor
 814	 * determines whether a segment contains data or code. If this is a data
 815	 * segment, return error.
 816	 */
 817	if (!(desc.type & BIT(3)))
 818		return -EINVAL;
 819
 820	switch ((desc.l << 1) | desc.d) {
 821	case 0: /*
 822		 * Legacy mode. CS.L=0, CS.D=0. Address and operand size are
 823		 * both 16-bit.
 824		 */
 825		return INSN_CODE_SEG_PARAMS(2, 2);
 826	case 1: /*
 827		 * Legacy mode. CS.L=0, CS.D=1. Address and operand size are
 828		 * both 32-bit.
 829		 */
 830		return INSN_CODE_SEG_PARAMS(4, 4);
 831	case 2: /*
 832		 * IA-32e 64-bit mode. CS.L=1, CS.D=0. Address size is 64-bit;
 833		 * operand size is 32-bit.
 834		 */
 835		return INSN_CODE_SEG_PARAMS(4, 8);
 836	case 3: /* Invalid setting. CS.L=1, CS.D=1 */
 837		fallthrough;
 838	default:
 839		return -EINVAL;
 840	}
 841}
 842
 843/**
 844 * insn_get_modrm_rm_off() - Obtain register in r/m part of the ModRM byte
 845 * @insn:	Instruction containing the ModRM byte
 846 * @regs:	Register values as seen when entering kernel mode
 847 *
 848 * Returns:
 849 *
 850 * The register indicated by the r/m part of the ModRM byte. The
 851 * register is obtained as an offset from the base of pt_regs. In specific
 852 * cases, the returned value can be -EDOM to indicate that the particular value
 853 * of ModRM does not refer to a register and shall be ignored.
 854 */
 855int insn_get_modrm_rm_off(struct insn *insn, struct pt_regs *regs)
 856{
 857	return get_reg_offset(insn, regs, REG_TYPE_RM);
 858}
 859
 860/**
 861 * insn_get_modrm_reg_off() - Obtain register in reg part of the ModRM byte
 862 * @insn:	Instruction containing the ModRM byte
 863 * @regs:	Register values as seen when entering kernel mode
 864 *
 865 * Returns:
 866 *
 867 * The register indicated by the reg part of the ModRM byte. The
 868 * register is obtained as an offset from the base of pt_regs.
 869 */
 870int insn_get_modrm_reg_off(struct insn *insn, struct pt_regs *regs)
 871{
 872	return get_reg_offset(insn, regs, REG_TYPE_REG);
 873}
 874
 875/**
 876 * insn_get_modrm_reg_ptr() - Obtain register pointer based on ModRM byte
 877 * @insn:	Instruction containing the ModRM byte
 878 * @regs:	Register values as seen when entering kernel mode
 879 *
 880 * Returns:
 881 *
 882 * The register indicated by the reg part of the ModRM byte.
 883 * The register is obtained as a pointer within pt_regs.
 884 */
 885unsigned long *insn_get_modrm_reg_ptr(struct insn *insn, struct pt_regs *regs)
 886{
 887	int offset;
 888
 889	offset = insn_get_modrm_reg_off(insn, regs);
 890	if (offset < 0)
 891		return NULL;
 892	return (void *)regs + offset;
 893}
 894
 895/**
 896 * get_seg_base_limit() - obtain base address and limit of a segment
 897 * @insn:	Instruction. Must be valid.
 898 * @regs:	Register values as seen when entering kernel mode
 899 * @regoff:	Operand offset, in pt_regs, used to resolve segment descriptor
 900 * @base:	Obtained segment base
 901 * @limit:	Obtained segment limit
 902 *
 903 * Obtain the base address and limit of the segment associated with the operand
 904 * @regoff and, if any or allowed, override prefixes in @insn. This function is
 905 * different from insn_get_seg_base() as the latter does not resolve the segment
 906 * associated with the instruction operand. If a limit is not needed (e.g.,
 907 * when running in long mode), @limit can be NULL.
 908 *
 909 * Returns:
 910 *
 911 * 0 on success. @base and @limit will contain the base address and of the
 912 * resolved segment, respectively.
 913 *
 914 * -EINVAL on error.
 915 */
 916static int get_seg_base_limit(struct insn *insn, struct pt_regs *regs,
 917			      int regoff, unsigned long *base,
 918			      unsigned long *limit)
 919{
 920	int seg_reg_idx;
 921
 922	if (!base)
 923		return -EINVAL;
 924
 925	seg_reg_idx = resolve_seg_reg(insn, regs, regoff);
 926	if (seg_reg_idx < 0)
 927		return seg_reg_idx;
 928
 929	*base = insn_get_seg_base(regs, seg_reg_idx);
 930	if (*base == -1L)
 931		return -EINVAL;
 932
 933	if (!limit)
 934		return 0;
 935
 936	*limit = get_seg_limit(regs, seg_reg_idx);
 937	if (!(*limit))
 938		return -EINVAL;
 939
 940	return 0;
 941}
 942
 943/**
 944 * get_eff_addr_reg() - Obtain effective address from register operand
 945 * @insn:	Instruction. Must be valid.
 946 * @regs:	Register values as seen when entering kernel mode
 947 * @regoff:	Obtained operand offset, in pt_regs, with the effective address
 948 * @eff_addr:	Obtained effective address
 949 *
 950 * Obtain the effective address stored in the register operand as indicated by
 951 * the ModRM byte. This function is to be used only with register addressing
 952 * (i.e.,  ModRM.mod is 3). The effective address is saved in @eff_addr. The
 953 * register operand, as an offset from the base of pt_regs, is saved in @regoff;
 954 * such offset can then be used to resolve the segment associated with the
 955 * operand. This function can be used with any of the supported address sizes
 956 * in x86.
 957 *
 958 * Returns:
 959 *
 960 * 0 on success. @eff_addr will have the effective address stored in the
 961 * operand indicated by ModRM. @regoff will have such operand as an offset from
 962 * the base of pt_regs.
 963 *
 964 * -EINVAL on error.
 965 */
 966static int get_eff_addr_reg(struct insn *insn, struct pt_regs *regs,
 967			    int *regoff, long *eff_addr)
 968{
 969	int ret;
 970
 971	ret = insn_get_modrm(insn);
 972	if (ret)
 973		return ret;
 974
 975	if (X86_MODRM_MOD(insn->modrm.value) != 3)
 976		return -EINVAL;
 977
 978	*regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
 979	if (*regoff < 0)
 980		return -EINVAL;
 981
 982	/* Ignore bytes that are outside the address size. */
 983	if (insn->addr_bytes == 2)
 984		*eff_addr = regs_get_register(regs, *regoff) & 0xffff;
 985	else if (insn->addr_bytes == 4)
 986		*eff_addr = regs_get_register(regs, *regoff) & 0xffffffff;
 987	else /* 64-bit address */
 988		*eff_addr = regs_get_register(regs, *regoff);
 989
 990	return 0;
 991}
 992
 993/**
 994 * get_eff_addr_modrm() - Obtain referenced effective address via ModRM
 995 * @insn:	Instruction. Must be valid.
 996 * @regs:	Register values as seen when entering kernel mode
 997 * @regoff:	Obtained operand offset, in pt_regs, associated with segment
 998 * @eff_addr:	Obtained effective address
 999 *
1000 * Obtain the effective address referenced by the ModRM byte of @insn. After
1001 * identifying the registers involved in the register-indirect memory reference,
1002 * its value is obtained from the operands in @regs. The computed address is
1003 * stored @eff_addr. Also, the register operand that indicates the associated
1004 * segment is stored in @regoff, this parameter can later be used to determine
1005 * such segment.
1006 *
1007 * Returns:
1008 *
1009 * 0 on success. @eff_addr will have the referenced effective address. @regoff
1010 * will have a register, as an offset from the base of pt_regs, that can be used
1011 * to resolve the associated segment.
1012 *
1013 * -EINVAL on error.
1014 */
1015static int get_eff_addr_modrm(struct insn *insn, struct pt_regs *regs,
1016			      int *regoff, long *eff_addr)
1017{
1018	long tmp;
1019	int ret;
1020
1021	if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
1022		return -EINVAL;
1023
1024	ret = insn_get_modrm(insn);
1025	if (ret)
1026		return ret;
1027
1028	if (X86_MODRM_MOD(insn->modrm.value) > 2)
1029		return -EINVAL;
1030
1031	*regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
1032
1033	/*
1034	 * -EDOM means that we must ignore the address_offset. In such a case,
1035	 * in 64-bit mode the effective address relative to the rIP of the
1036	 * following instruction.
1037	 */
1038	if (*regoff == -EDOM) {
1039		if (any_64bit_mode(regs))
1040			tmp = regs->ip + insn->length;
1041		else
1042			tmp = 0;
1043	} else if (*regoff < 0) {
1044		return -EINVAL;
1045	} else {
1046		tmp = regs_get_register(regs, *regoff);
1047	}
1048
1049	if (insn->addr_bytes == 4) {
1050		int addr32 = (int)(tmp & 0xffffffff) + insn->displacement.value;
1051
1052		*eff_addr = addr32 & 0xffffffff;
1053	} else {
1054		*eff_addr = tmp + insn->displacement.value;
1055	}
1056
1057	return 0;
1058}
1059
1060/**
1061 * get_eff_addr_modrm_16() - Obtain referenced effective address via ModRM
1062 * @insn:	Instruction. Must be valid.
1063 * @regs:	Register values as seen when entering kernel mode
1064 * @regoff:	Obtained operand offset, in pt_regs, associated with segment
1065 * @eff_addr:	Obtained effective address
1066 *
1067 * Obtain the 16-bit effective address referenced by the ModRM byte of @insn.
1068 * After identifying the registers involved in the register-indirect memory
1069 * reference, its value is obtained from the operands in @regs. The computed
1070 * address is stored @eff_addr. Also, the register operand that indicates
1071 * the associated segment is stored in @regoff, this parameter can later be used
1072 * to determine such segment.
1073 *
1074 * Returns:
1075 *
1076 * 0 on success. @eff_addr will have the referenced effective address. @regoff
1077 * will have a register, as an offset from the base of pt_regs, that can be used
1078 * to resolve the associated segment.
1079 *
1080 * -EINVAL on error.
1081 */
1082static int get_eff_addr_modrm_16(struct insn *insn, struct pt_regs *regs,
1083				 int *regoff, short *eff_addr)
1084{
1085	int addr_offset1, addr_offset2, ret;
1086	short addr1 = 0, addr2 = 0, displacement;
1087
1088	if (insn->addr_bytes != 2)
1089		return -EINVAL;
1090
1091	insn_get_modrm(insn);
1092
1093	if (!insn->modrm.nbytes)
1094		return -EINVAL;
1095
1096	if (X86_MODRM_MOD(insn->modrm.value) > 2)
1097		return -EINVAL;
1098
1099	ret = get_reg_offset_16(insn, regs, &addr_offset1, &addr_offset2);
1100	if (ret < 0)
1101		return -EINVAL;
1102
1103	/*
1104	 * Don't fail on invalid offset values. They might be invalid because
1105	 * they cannot be used for this particular value of ModRM. Instead, use
1106	 * them in the computation only if they contain a valid value.
1107	 */
1108	if (addr_offset1 != -EDOM)
1109		addr1 = regs_get_register(regs, addr_offset1) & 0xffff;
1110
1111	if (addr_offset2 != -EDOM)
1112		addr2 = regs_get_register(regs, addr_offset2) & 0xffff;
1113
1114	displacement = insn->displacement.value & 0xffff;
1115	*eff_addr = addr1 + addr2 + displacement;
1116
1117	/*
1118	 * The first operand register could indicate to use of either SS or DS
1119	 * registers to obtain the segment selector.  The second operand
1120	 * register can only indicate the use of DS. Thus, the first operand
1121	 * will be used to obtain the segment selector.
1122	 */
1123	*regoff = addr_offset1;
1124
1125	return 0;
1126}
1127
1128/**
1129 * get_eff_addr_sib() - Obtain referenced effective address via SIB
1130 * @insn:	Instruction. Must be valid.
1131 * @regs:	Register values as seen when entering kernel mode
1132 * @base_offset: Obtained operand offset, in pt_regs, associated with segment
1133 * @eff_addr:	Obtained effective address
1134 *
1135 * Obtain the effective address referenced by the SIB byte of @insn. After
1136 * identifying the registers involved in the indexed, register-indirect memory
1137 * reference, its value is obtained from the operands in @regs. The computed
1138 * address is stored @eff_addr. Also, the register operand that indicates the
1139 * associated segment is stored in @base_offset; this parameter can later be
1140 * used to determine such segment.
1141 *
1142 * Returns:
1143 *
1144 * 0 on success. @eff_addr will have the referenced effective address.
1145 * @base_offset will have a register, as an offset from the base of pt_regs,
1146 * that can be used to resolve the associated segment.
1147 *
1148 * Negative value on error.
1149 */
1150static int get_eff_addr_sib(struct insn *insn, struct pt_regs *regs,
1151			    int *base_offset, long *eff_addr)
1152{
1153	long base, indx;
1154	int indx_offset;
1155	int ret;
1156
1157	if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
1158		return -EINVAL;
1159
1160	ret = insn_get_modrm(insn);
1161	if (ret)
1162		return ret;
1163
1164	if (!insn->modrm.nbytes)
1165		return -EINVAL;
1166
1167	if (X86_MODRM_MOD(insn->modrm.value) > 2)
1168		return -EINVAL;
1169
1170	ret = insn_get_sib(insn);
1171	if (ret)
1172		return ret;
1173
1174	if (!insn->sib.nbytes)
1175		return -EINVAL;
1176
1177	*base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
1178	indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
1179
1180	/*
1181	 * Negative values in the base and index offset means an error when
1182	 * decoding the SIB byte. Except -EDOM, which means that the registers
1183	 * should not be used in the address computation.
1184	 */
1185	if (*base_offset == -EDOM)
1186		base = 0;
1187	else if (*base_offset < 0)
1188		return -EINVAL;
1189	else
1190		base = regs_get_register(regs, *base_offset);
1191
1192	if (indx_offset == -EDOM)
1193		indx = 0;
1194	else if (indx_offset < 0)
1195		return -EINVAL;
1196	else
1197		indx = regs_get_register(regs, indx_offset);
1198
1199	if (insn->addr_bytes == 4) {
1200		int addr32, base32, idx32;
1201
1202		base32 = base & 0xffffffff;
1203		idx32 = indx & 0xffffffff;
1204
1205		addr32 = base32 + idx32 * (1 << X86_SIB_SCALE(insn->sib.value));
1206		addr32 += insn->displacement.value;
1207
1208		*eff_addr = addr32 & 0xffffffff;
1209	} else {
1210		*eff_addr = base + indx * (1 << X86_SIB_SCALE(insn->sib.value));
1211		*eff_addr += insn->displacement.value;
1212	}
1213
1214	return 0;
1215}
1216
1217/**
1218 * get_addr_ref_16() - Obtain the 16-bit address referred by instruction
1219 * @insn:	Instruction containing ModRM byte and displacement
1220 * @regs:	Register values as seen when entering kernel mode
1221 *
1222 * This function is to be used with 16-bit address encodings. Obtain the memory
1223 * address referred by the instruction's ModRM and displacement bytes. Also, the
1224 * segment used as base is determined by either any segment override prefixes in
1225 * @insn or the default segment of the registers involved in the address
1226 * computation. In protected mode, segment limits are enforced.
1227 *
1228 * Returns:
1229 *
1230 * Linear address referenced by the instruction operands on success.
1231 *
1232 * -1L on error.
1233 */
1234static void __user *get_addr_ref_16(struct insn *insn, struct pt_regs *regs)
1235{
1236	unsigned long linear_addr = -1L, seg_base, seg_limit;
1237	int ret, regoff;
1238	short eff_addr;
1239	long tmp;
1240
1241	if (insn_get_displacement(insn))
1242		goto out;
1243
1244	if (insn->addr_bytes != 2)
1245		goto out;
1246
1247	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1248		ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1249		if (ret)
1250			goto out;
1251
1252		eff_addr = tmp;
1253	} else {
1254		ret = get_eff_addr_modrm_16(insn, regs, &regoff, &eff_addr);
1255		if (ret)
1256			goto out;
1257	}
1258
1259	ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1260	if (ret)
1261		goto out;
1262
1263	/*
1264	 * Before computing the linear address, make sure the effective address
1265	 * is within the limits of the segment. In virtual-8086 mode, segment
1266	 * limits are not enforced. In such a case, the segment limit is -1L to
1267	 * reflect this fact.
1268	 */
1269	if ((unsigned long)(eff_addr & 0xffff) > seg_limit)
1270		goto out;
1271
1272	linear_addr = (unsigned long)(eff_addr & 0xffff) + seg_base;
1273
1274	/* Limit linear address to 20 bits */
1275	if (v8086_mode(regs))
1276		linear_addr &= 0xfffff;
1277
1278out:
1279	return (void __user *)linear_addr;
1280}
1281
1282/**
1283 * get_addr_ref_32() - Obtain a 32-bit linear address
1284 * @insn:	Instruction with ModRM, SIB bytes and displacement
1285 * @regs:	Register values as seen when entering kernel mode
1286 *
1287 * This function is to be used with 32-bit address encodings to obtain the
1288 * linear memory address referred by the instruction's ModRM, SIB,
1289 * displacement bytes and segment base address, as applicable. If in protected
1290 * mode, segment limits are enforced.
1291 *
1292 * Returns:
1293 *
1294 * Linear address referenced by instruction and registers on success.
1295 *
1296 * -1L on error.
1297 */
1298static void __user *get_addr_ref_32(struct insn *insn, struct pt_regs *regs)
1299{
1300	unsigned long linear_addr = -1L, seg_base, seg_limit;
1301	int eff_addr, regoff;
1302	long tmp;
1303	int ret;
1304
1305	if (insn->addr_bytes != 4)
1306		goto out;
1307
1308	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1309		ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1310		if (ret)
1311			goto out;
1312
1313		eff_addr = tmp;
1314
1315	} else {
1316		if (insn->sib.nbytes) {
1317			ret = get_eff_addr_sib(insn, regs, &regoff, &tmp);
1318			if (ret)
1319				goto out;
1320
1321			eff_addr = tmp;
1322		} else {
1323			ret = get_eff_addr_modrm(insn, regs, &regoff, &tmp);
1324			if (ret)
1325				goto out;
1326
1327			eff_addr = tmp;
1328		}
1329	}
1330
1331	ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1332	if (ret)
1333		goto out;
1334
1335	/*
1336	 * In protected mode, before computing the linear address, make sure
1337	 * the effective address is within the limits of the segment.
1338	 * 32-bit addresses can be used in long and virtual-8086 modes if an
1339	 * address override prefix is used. In such cases, segment limits are
1340	 * not enforced. When in virtual-8086 mode, the segment limit is -1L
1341	 * to reflect this situation.
1342	 *
1343	 * After computed, the effective address is treated as an unsigned
1344	 * quantity.
1345	 */
1346	if (!any_64bit_mode(regs) && ((unsigned int)eff_addr > seg_limit))
1347		goto out;
1348
1349	/*
1350	 * Even though 32-bit address encodings are allowed in virtual-8086
1351	 * mode, the address range is still limited to [0x-0xffff].
1352	 */
1353	if (v8086_mode(regs) && (eff_addr & ~0xffff))
1354		goto out;
1355
1356	/*
1357	 * Data type long could be 64 bits in size. Ensure that our 32-bit
1358	 * effective address is not sign-extended when computing the linear
1359	 * address.
1360	 */
1361	linear_addr = (unsigned long)(eff_addr & 0xffffffff) + seg_base;
1362
1363	/* Limit linear address to 20 bits */
1364	if (v8086_mode(regs))
1365		linear_addr &= 0xfffff;
1366
1367out:
1368	return (void __user *)linear_addr;
1369}
1370
1371/**
1372 * get_addr_ref_64() - Obtain a 64-bit linear address
1373 * @insn:	Instruction struct with ModRM and SIB bytes and displacement
1374 * @regs:	Structure with register values as seen when entering kernel mode
1375 *
1376 * This function is to be used with 64-bit address encodings to obtain the
1377 * linear memory address referred by the instruction's ModRM, SIB,
1378 * displacement bytes and segment base address, as applicable.
1379 *
1380 * Returns:
1381 *
1382 * Linear address referenced by instruction and registers on success.
1383 *
1384 * -1L on error.
1385 */
1386#ifndef CONFIG_X86_64
1387static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1388{
1389	return (void __user *)-1L;
1390}
1391#else
1392static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1393{
1394	unsigned long linear_addr = -1L, seg_base;
1395	int regoff, ret;
1396	long eff_addr;
1397
1398	if (insn->addr_bytes != 8)
1399		goto out;
1400
1401	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1402		ret = get_eff_addr_reg(insn, regs, &regoff, &eff_addr);
1403		if (ret)
1404			goto out;
1405
1406	} else {
1407		if (insn->sib.nbytes) {
1408			ret = get_eff_addr_sib(insn, regs, &regoff, &eff_addr);
1409			if (ret)
1410				goto out;
1411		} else {
1412			ret = get_eff_addr_modrm(insn, regs, &regoff, &eff_addr);
1413			if (ret)
1414				goto out;
1415		}
1416
1417	}
1418
1419	ret = get_seg_base_limit(insn, regs, regoff, &seg_base, NULL);
1420	if (ret)
1421		goto out;
1422
1423	linear_addr = (unsigned long)eff_addr + seg_base;
1424
1425out:
1426	return (void __user *)linear_addr;
1427}
1428#endif /* CONFIG_X86_64 */
1429
1430/**
1431 * insn_get_addr_ref() - Obtain the linear address referred by instruction
1432 * @insn:	Instruction structure containing ModRM byte and displacement
1433 * @regs:	Structure with register values as seen when entering kernel mode
1434 *
1435 * Obtain the linear address referred by the instruction's ModRM, SIB and
1436 * displacement bytes, and segment base, as applicable. In protected mode,
1437 * segment limits are enforced.
1438 *
1439 * Returns:
1440 *
1441 * Linear address referenced by instruction and registers on success.
1442 *
1443 * -1L on error.
1444 */
1445void __user *insn_get_addr_ref(struct insn *insn, struct pt_regs *regs)
1446{
1447	if (!insn || !regs)
1448		return (void __user *)-1L;
1449
1450	if (insn_get_opcode(insn))
1451		return (void __user *)-1L;
1452
1453	switch (insn->addr_bytes) {
1454	case 2:
1455		return get_addr_ref_16(insn, regs);
1456	case 4:
1457		return get_addr_ref_32(insn, regs);
1458	case 8:
1459		return get_addr_ref_64(insn, regs);
1460	default:
1461		return (void __user *)-1L;
1462	}
1463}
1464
1465int insn_get_effective_ip(struct pt_regs *regs, unsigned long *ip)
1466{
1467	unsigned long seg_base = 0;
1468
1469	/*
1470	 * If not in user-space long mode, a custom code segment could be in
1471	 * use. This is true in protected mode (if the process defined a local
1472	 * descriptor table), or virtual-8086 mode. In most of the cases
1473	 * seg_base will be zero as in USER_CS.
1474	 */
1475	if (!user_64bit_mode(regs)) {
1476		seg_base = insn_get_seg_base(regs, INAT_SEG_REG_CS);
1477		if (seg_base == -1L)
1478			return -EINVAL;
1479	}
1480
1481	*ip = seg_base + regs->ip;
1482
1483	return 0;
1484}
1485
1486/**
1487 * insn_fetch_from_user() - Copy instruction bytes from user-space memory
1488 * @regs:	Structure with register values as seen when entering kernel mode
1489 * @buf:	Array to store the fetched instruction
1490 *
1491 * Gets the linear address of the instruction and copies the instruction bytes
1492 * to the buf.
1493 *
1494 * Returns:
1495 *
1496 * - number of instruction bytes copied.
1497 * - 0 if nothing was copied.
1498 * - -EINVAL if the linear address of the instruction could not be calculated
1499 */
1500int insn_fetch_from_user(struct pt_regs *regs, unsigned char buf[MAX_INSN_SIZE])
1501{
1502	unsigned long ip;
1503	int not_copied;
1504
1505	if (insn_get_effective_ip(regs, &ip))
1506		return -EINVAL;
1507
1508	not_copied = copy_from_user(buf, (void __user *)ip, MAX_INSN_SIZE);
1509
1510	return MAX_INSN_SIZE - not_copied;
1511}
1512
1513/**
1514 * insn_fetch_from_user_inatomic() - Copy instruction bytes from user-space memory
1515 *                                   while in atomic code
1516 * @regs:	Structure with register values as seen when entering kernel mode
1517 * @buf:	Array to store the fetched instruction
1518 *
1519 * Gets the linear address of the instruction and copies the instruction bytes
1520 * to the buf. This function must be used in atomic context.
1521 *
1522 * Returns:
1523 *
1524 *  - number of instruction bytes copied.
1525 *  - 0 if nothing was copied.
1526 *  - -EINVAL if the linear address of the instruction could not be calculated.
1527 */
1528int insn_fetch_from_user_inatomic(struct pt_regs *regs, unsigned char buf[MAX_INSN_SIZE])
1529{
1530	unsigned long ip;
1531	int not_copied;
1532
1533	if (insn_get_effective_ip(regs, &ip))
1534		return -EINVAL;
1535
1536	not_copied = __copy_from_user_inatomic(buf, (void __user *)ip, MAX_INSN_SIZE);
1537
1538	return MAX_INSN_SIZE - not_copied;
1539}
1540
1541/**
1542 * insn_decode_from_regs() - Decode an instruction
1543 * @insn:	Structure to store decoded instruction
1544 * @regs:	Structure with register values as seen when entering kernel mode
1545 * @buf:	Buffer containing the instruction bytes
1546 * @buf_size:   Number of instruction bytes available in buf
1547 *
1548 * Decodes the instruction provided in buf and stores the decoding results in
1549 * insn. Also determines the correct address and operand sizes.
1550 *
1551 * Returns:
1552 *
1553 * True if instruction was decoded, False otherwise.
1554 */
1555bool insn_decode_from_regs(struct insn *insn, struct pt_regs *regs,
1556			   unsigned char buf[MAX_INSN_SIZE], int buf_size)
1557{
1558	int seg_defs;
1559
1560	insn_init(insn, buf, buf_size, user_64bit_mode(regs));
1561
1562	/*
1563	 * Override the default operand and address sizes with what is specified
1564	 * in the code segment descriptor. The instruction decoder only sets
1565	 * the address size it to either 4 or 8 address bytes and does nothing
1566	 * for the operand bytes. This OK for most of the cases, but we could
1567	 * have special cases where, for instance, a 16-bit code segment
1568	 * descriptor is used.
1569	 * If there is an address override prefix, the instruction decoder
1570	 * correctly updates these values, even for 16-bit defaults.
1571	 */
1572	seg_defs = insn_get_code_seg_params(regs);
1573	if (seg_defs == -EINVAL)
1574		return false;
1575
1576	insn->addr_bytes = INSN_CODE_SEG_ADDR_SZ(seg_defs);
1577	insn->opnd_bytes = INSN_CODE_SEG_OPND_SZ(seg_defs);
1578
1579	if (insn_get_length(insn))
1580		return false;
1581
1582	if (buf_size < insn->length)
1583		return false;
1584
1585	return true;
1586}
1587
1588/**
1589 * insn_decode_mmio() - Decode a MMIO instruction
1590 * @insn:	Structure to store decoded instruction
1591 * @bytes:	Returns size of memory operand
1592 *
1593 * Decodes instruction that used for Memory-mapped I/O.
1594 *
1595 * Returns:
1596 *
1597 * Type of the instruction. Size of the memory operand is stored in
1598 * @bytes. If decode failed, INSN_MMIO_DECODE_FAILED returned.
1599 */
1600enum insn_mmio_type insn_decode_mmio(struct insn *insn, int *bytes)
1601{
1602	enum insn_mmio_type type = INSN_MMIO_DECODE_FAILED;
1603
1604	*bytes = 0;
1605
1606	if (insn_get_opcode(insn))
1607		return INSN_MMIO_DECODE_FAILED;
1608
1609	switch (insn->opcode.bytes[0]) {
1610	case 0x88: /* MOV m8,r8 */
1611		*bytes = 1;
1612		fallthrough;
1613	case 0x89: /* MOV m16/m32/m64, r16/m32/m64 */
1614		if (!*bytes)
1615			*bytes = insn->opnd_bytes;
1616		type = INSN_MMIO_WRITE;
1617		break;
1618
1619	case 0xc6: /* MOV m8, imm8 */
1620		*bytes = 1;
1621		fallthrough;
1622	case 0xc7: /* MOV m16/m32/m64, imm16/imm32/imm64 */
1623		if (!*bytes)
1624			*bytes = insn->opnd_bytes;
1625		type = INSN_MMIO_WRITE_IMM;
1626		break;
1627
1628	case 0x8a: /* MOV r8, m8 */
1629		*bytes = 1;
1630		fallthrough;
1631	case 0x8b: /* MOV r16/r32/r64, m16/m32/m64 */
1632		if (!*bytes)
1633			*bytes = insn->opnd_bytes;
1634		type = INSN_MMIO_READ;
1635		break;
1636
1637	case 0xa4: /* MOVS m8, m8 */
1638		*bytes = 1;
1639		fallthrough;
1640	case 0xa5: /* MOVS m16/m32/m64, m16/m32/m64 */
1641		if (!*bytes)
1642			*bytes = insn->opnd_bytes;
1643		type = INSN_MMIO_MOVS;
1644		break;
1645
1646	case 0x0f: /* Two-byte instruction */
1647		switch (insn->opcode.bytes[1]) {
1648		case 0xb6: /* MOVZX r16/r32/r64, m8 */
1649			*bytes = 1;
1650			fallthrough;
1651		case 0xb7: /* MOVZX r32/r64, m16 */
1652			if (!*bytes)
1653				*bytes = 2;
1654			type = INSN_MMIO_READ_ZERO_EXTEND;
1655			break;
1656
1657		case 0xbe: /* MOVSX r16/r32/r64, m8 */
1658			*bytes = 1;
1659			fallthrough;
1660		case 0xbf: /* MOVSX r32/r64, m16 */
1661			if (!*bytes)
1662				*bytes = 2;
1663			type = INSN_MMIO_READ_SIGN_EXTEND;
1664			break;
1665		}
1666		break;
1667	}
1668
1669	return type;
1670}