Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *    Virtual cpu timer based timer functions.
  4 *
  5 *    Copyright IBM Corp. 2004, 2012
  6 *    Author(s): Jan Glauber <jan.glauber@de.ibm.com>
  7 */
  8
  9#include <linux/kernel_stat.h>
 10#include <linux/export.h>
 11#include <linux/kernel.h>
 12#include <linux/timex.h>
 13#include <linux/types.h>
 14#include <linux/time.h>
 15#include <asm/alternative.h>
 16#include <asm/cputime.h>
 17#include <asm/vtimer.h>
 18#include <asm/vtime.h>
 19#include <asm/cpu_mf.h>
 20#include <asm/smp.h>
 21
 22#include "entry.h"
 23
 24static void virt_timer_expire(void);
 25
 26static LIST_HEAD(virt_timer_list);
 27static DEFINE_SPINLOCK(virt_timer_lock);
 28static atomic64_t virt_timer_current;
 29static atomic64_t virt_timer_elapsed;
 30
 31DEFINE_PER_CPU(u64, mt_cycles[8]);
 32static DEFINE_PER_CPU(u64, mt_scaling_mult) = { 1 };
 33static DEFINE_PER_CPU(u64, mt_scaling_div) = { 1 };
 34static DEFINE_PER_CPU(u64, mt_scaling_jiffies);
 35
 36static inline u64 get_vtimer(void)
 37{
 38	u64 timer;
 39
 40	asm volatile("stpt %0" : "=Q" (timer));
 41	return timer;
 42}
 43
 44static inline void set_vtimer(u64 expires)
 45{
 
 46	u64 timer;
 47
 48	asm volatile(
 49		"	stpt	%0\n"	/* Store current cpu timer value */
 50		"	spt	%1"	/* Set new value imm. afterwards */
 51		: "=Q" (timer) : "Q" (expires));
 52	S390_lowcore.system_timer += S390_lowcore.last_update_timer - timer;
 53	S390_lowcore.last_update_timer = expires;
 54}
 55
 56static inline int virt_timer_forward(u64 elapsed)
 57{
 58	BUG_ON(!irqs_disabled());
 59
 60	if (list_empty(&virt_timer_list))
 61		return 0;
 62	elapsed = atomic64_add_return(elapsed, &virt_timer_elapsed);
 63	return elapsed >= atomic64_read(&virt_timer_current);
 64}
 65
 66static void update_mt_scaling(void)
 67{
 68	u64 cycles_new[8], *cycles_old;
 69	u64 delta, fac, mult, div;
 70	int i;
 71
 72	stcctm(MT_DIAG, smp_cpu_mtid + 1, cycles_new);
 73	cycles_old = this_cpu_ptr(mt_cycles);
 74	fac = 1;
 75	mult = div = 0;
 76	for (i = 0; i <= smp_cpu_mtid; i++) {
 77		delta = cycles_new[i] - cycles_old[i];
 78		div += delta;
 79		mult *= i + 1;
 80		mult += delta * fac;
 81		fac *= i + 1;
 82	}
 83	div *= fac;
 84	if (div > 0) {
 85		/* Update scaling factor */
 86		__this_cpu_write(mt_scaling_mult, mult);
 87		__this_cpu_write(mt_scaling_div, div);
 88		memcpy(cycles_old, cycles_new,
 89		       sizeof(u64) * (smp_cpu_mtid + 1));
 90	}
 91	__this_cpu_write(mt_scaling_jiffies, jiffies_64);
 92}
 93
 94static inline u64 update_tsk_timer(unsigned long *tsk_vtime, u64 new)
 95{
 96	u64 delta;
 97
 98	delta = new - *tsk_vtime;
 99	*tsk_vtime = new;
100	return delta;
101}
102
103
104static inline u64 scale_vtime(u64 vtime)
105{
106	u64 mult = __this_cpu_read(mt_scaling_mult);
107	u64 div = __this_cpu_read(mt_scaling_div);
108
109	if (smp_cpu_mtid)
110		return vtime * mult / div;
111	return vtime;
112}
113
114static void account_system_index_scaled(struct task_struct *p, u64 cputime,
115					enum cpu_usage_stat index)
116{
117	p->stimescaled += cputime_to_nsecs(scale_vtime(cputime));
118	account_system_index_time(p, cputime_to_nsecs(cputime), index);
119}
120
121/*
122 * Update process times based on virtual cpu times stored by entry.S
123 * to the lowcore fields user_timer, system_timer & steal_clock.
124 */
125static int do_account_vtime(struct task_struct *tsk)
126{
127	u64 timer, clock, user, guest, system, hardirq, softirq;
 
128
129	timer = S390_lowcore.last_update_timer;
130	clock = S390_lowcore.last_update_clock;
131	asm volatile(
132		"	stpt	%0\n"	/* Store current cpu timer value */
133		"	stckf	%1"	/* Store current tod clock value */
134		: "=Q" (S390_lowcore.last_update_timer),
135		  "=Q" (S390_lowcore.last_update_clock)
136		: : "cc");
137	clock = S390_lowcore.last_update_clock - clock;
138	timer -= S390_lowcore.last_update_timer;
139
140	if (hardirq_count())
141		S390_lowcore.hardirq_timer += timer;
142	else
143		S390_lowcore.system_timer += timer;
144
145	/* Update MT utilization calculation */
146	if (smp_cpu_mtid &&
147	    time_after64(jiffies_64, this_cpu_read(mt_scaling_jiffies)))
148		update_mt_scaling();
149
150	/* Calculate cputime delta */
151	user = update_tsk_timer(&tsk->thread.user_timer,
152				READ_ONCE(S390_lowcore.user_timer));
153	guest = update_tsk_timer(&tsk->thread.guest_timer,
154				 READ_ONCE(S390_lowcore.guest_timer));
155	system = update_tsk_timer(&tsk->thread.system_timer,
156				  READ_ONCE(S390_lowcore.system_timer));
157	hardirq = update_tsk_timer(&tsk->thread.hardirq_timer,
158				   READ_ONCE(S390_lowcore.hardirq_timer));
159	softirq = update_tsk_timer(&tsk->thread.softirq_timer,
160				   READ_ONCE(S390_lowcore.softirq_timer));
161	S390_lowcore.steal_timer +=
162		clock - user - guest - system - hardirq - softirq;
163
164	/* Push account value */
165	if (user) {
166		account_user_time(tsk, cputime_to_nsecs(user));
167		tsk->utimescaled += cputime_to_nsecs(scale_vtime(user));
168	}
169
170	if (guest) {
171		account_guest_time(tsk, cputime_to_nsecs(guest));
172		tsk->utimescaled += cputime_to_nsecs(scale_vtime(guest));
173	}
174
175	if (system)
176		account_system_index_scaled(tsk, system, CPUTIME_SYSTEM);
177	if (hardirq)
178		account_system_index_scaled(tsk, hardirq, CPUTIME_IRQ);
179	if (softirq)
180		account_system_index_scaled(tsk, softirq, CPUTIME_SOFTIRQ);
181
182	return virt_timer_forward(user + guest + system + hardirq + softirq);
183}
184
185void vtime_task_switch(struct task_struct *prev)
186{
 
 
187	do_account_vtime(prev);
188	prev->thread.user_timer = S390_lowcore.user_timer;
189	prev->thread.guest_timer = S390_lowcore.guest_timer;
190	prev->thread.system_timer = S390_lowcore.system_timer;
191	prev->thread.hardirq_timer = S390_lowcore.hardirq_timer;
192	prev->thread.softirq_timer = S390_lowcore.softirq_timer;
193	S390_lowcore.user_timer = current->thread.user_timer;
194	S390_lowcore.guest_timer = current->thread.guest_timer;
195	S390_lowcore.system_timer = current->thread.system_timer;
196	S390_lowcore.hardirq_timer = current->thread.hardirq_timer;
197	S390_lowcore.softirq_timer = current->thread.softirq_timer;
198}
199
200/*
201 * In s390, accounting pending user time also implies
202 * accounting system time in order to correctly compute
203 * the stolen time accounting.
204 */
205void vtime_flush(struct task_struct *tsk)
206{
 
207	u64 steal, avg_steal;
208
209	if (do_account_vtime(tsk))
210		virt_timer_expire();
211
212	steal = S390_lowcore.steal_timer;
213	avg_steal = S390_lowcore.avg_steal_timer / 2;
214	if ((s64) steal > 0) {
215		S390_lowcore.steal_timer = 0;
216		account_steal_time(cputime_to_nsecs(steal));
217		avg_steal += steal;
218	}
219	S390_lowcore.avg_steal_timer = avg_steal;
220}
221
222static u64 vtime_delta(void)
223{
224	u64 timer = S390_lowcore.last_update_timer;
225
226	S390_lowcore.last_update_timer = get_vtimer();
227
228	return timer - S390_lowcore.last_update_timer;
 
229}
230
231/*
232 * Update process times based on virtual cpu times stored by entry.S
233 * to the lowcore fields user_timer, system_timer & steal_clock.
234 */
235void vtime_account_kernel(struct task_struct *tsk)
236{
 
237	u64 delta = vtime_delta();
238
239	if (tsk->flags & PF_VCPU)
240		S390_lowcore.guest_timer += delta;
241	else
242		S390_lowcore.system_timer += delta;
243
244	virt_timer_forward(delta);
245}
246EXPORT_SYMBOL_GPL(vtime_account_kernel);
247
248void vtime_account_softirq(struct task_struct *tsk)
249{
250	u64 delta = vtime_delta();
251
252	S390_lowcore.softirq_timer += delta;
253
254	virt_timer_forward(delta);
255}
256
257void vtime_account_hardirq(struct task_struct *tsk)
258{
259	u64 delta = vtime_delta();
260
261	S390_lowcore.hardirq_timer += delta;
262
263	virt_timer_forward(delta);
264}
265
266/*
267 * Sorted add to a list. List is linear searched until first bigger
268 * element is found.
269 */
270static void list_add_sorted(struct vtimer_list *timer, struct list_head *head)
271{
272	struct vtimer_list *tmp;
273
274	list_for_each_entry(tmp, head, entry) {
275		if (tmp->expires > timer->expires) {
276			list_add_tail(&timer->entry, &tmp->entry);
277			return;
278		}
279	}
280	list_add_tail(&timer->entry, head);
281}
282
283/*
284 * Handler for expired virtual CPU timer.
285 */
286static void virt_timer_expire(void)
287{
288	struct vtimer_list *timer, *tmp;
289	unsigned long elapsed;
290	LIST_HEAD(cb_list);
291
292	/* walk timer list, fire all expired timers */
293	spin_lock(&virt_timer_lock);
294	elapsed = atomic64_read(&virt_timer_elapsed);
295	list_for_each_entry_safe(timer, tmp, &virt_timer_list, entry) {
296		if (timer->expires < elapsed)
297			/* move expired timer to the callback queue */
298			list_move_tail(&timer->entry, &cb_list);
299		else
300			timer->expires -= elapsed;
301	}
302	if (!list_empty(&virt_timer_list)) {
303		timer = list_first_entry(&virt_timer_list,
304					 struct vtimer_list, entry);
305		atomic64_set(&virt_timer_current, timer->expires);
306	}
307	atomic64_sub(elapsed, &virt_timer_elapsed);
308	spin_unlock(&virt_timer_lock);
309
310	/* Do callbacks and recharge periodic timers */
311	list_for_each_entry_safe(timer, tmp, &cb_list, entry) {
312		list_del_init(&timer->entry);
313		timer->function(timer->data);
314		if (timer->interval) {
315			/* Recharge interval timer */
316			timer->expires = timer->interval +
317				atomic64_read(&virt_timer_elapsed);
318			spin_lock(&virt_timer_lock);
319			list_add_sorted(timer, &virt_timer_list);
320			spin_unlock(&virt_timer_lock);
321		}
322	}
323}
324
325void init_virt_timer(struct vtimer_list *timer)
326{
327	timer->function = NULL;
328	INIT_LIST_HEAD(&timer->entry);
329}
330EXPORT_SYMBOL(init_virt_timer);
331
332static inline int vtimer_pending(struct vtimer_list *timer)
333{
334	return !list_empty(&timer->entry);
335}
336
337static void internal_add_vtimer(struct vtimer_list *timer)
338{
339	if (list_empty(&virt_timer_list)) {
340		/* First timer, just program it. */
341		atomic64_set(&virt_timer_current, timer->expires);
342		atomic64_set(&virt_timer_elapsed, 0);
343		list_add(&timer->entry, &virt_timer_list);
344	} else {
345		/* Update timer against current base. */
346		timer->expires += atomic64_read(&virt_timer_elapsed);
347		if (likely((s64) timer->expires <
348			   (s64) atomic64_read(&virt_timer_current)))
349			/* The new timer expires before the current timer. */
350			atomic64_set(&virt_timer_current, timer->expires);
351		/* Insert new timer into the list. */
352		list_add_sorted(timer, &virt_timer_list);
353	}
354}
355
356static void __add_vtimer(struct vtimer_list *timer, int periodic)
357{
358	unsigned long flags;
359
360	timer->interval = periodic ? timer->expires : 0;
361	spin_lock_irqsave(&virt_timer_lock, flags);
362	internal_add_vtimer(timer);
363	spin_unlock_irqrestore(&virt_timer_lock, flags);
364}
365
366/*
367 * add_virt_timer - add a oneshot virtual CPU timer
368 */
369void add_virt_timer(struct vtimer_list *timer)
370{
371	__add_vtimer(timer, 0);
372}
373EXPORT_SYMBOL(add_virt_timer);
374
375/*
376 * add_virt_timer_int - add an interval virtual CPU timer
377 */
378void add_virt_timer_periodic(struct vtimer_list *timer)
379{
380	__add_vtimer(timer, 1);
381}
382EXPORT_SYMBOL(add_virt_timer_periodic);
383
384static int __mod_vtimer(struct vtimer_list *timer, u64 expires, int periodic)
385{
386	unsigned long flags;
387	int rc;
388
389	BUG_ON(!timer->function);
390
391	if (timer->expires == expires && vtimer_pending(timer))
392		return 1;
393	spin_lock_irqsave(&virt_timer_lock, flags);
394	rc = vtimer_pending(timer);
395	if (rc)
396		list_del_init(&timer->entry);
397	timer->interval = periodic ? expires : 0;
398	timer->expires = expires;
399	internal_add_vtimer(timer);
400	spin_unlock_irqrestore(&virt_timer_lock, flags);
401	return rc;
402}
403
404/*
405 * returns whether it has modified a pending timer (1) or not (0)
406 */
407int mod_virt_timer(struct vtimer_list *timer, u64 expires)
408{
409	return __mod_vtimer(timer, expires, 0);
410}
411EXPORT_SYMBOL(mod_virt_timer);
412
413/*
414 * returns whether it has modified a pending timer (1) or not (0)
415 */
416int mod_virt_timer_periodic(struct vtimer_list *timer, u64 expires)
417{
418	return __mod_vtimer(timer, expires, 1);
419}
420EXPORT_SYMBOL(mod_virt_timer_periodic);
421
422/*
423 * Delete a virtual timer.
424 *
425 * returns whether the deleted timer was pending (1) or not (0)
426 */
427int del_virt_timer(struct vtimer_list *timer)
428{
429	unsigned long flags;
430
431	if (!vtimer_pending(timer))
432		return 0;
433	spin_lock_irqsave(&virt_timer_lock, flags);
434	list_del_init(&timer->entry);
435	spin_unlock_irqrestore(&virt_timer_lock, flags);
436	return 1;
437}
438EXPORT_SYMBOL(del_virt_timer);
439
440/*
441 * Start the virtual CPU timer on the current CPU.
442 */
443void vtime_init(void)
444{
445	/* set initial cpu timer */
446	set_vtimer(VTIMER_MAX_SLICE);
447	/* Setup initial MT scaling values */
448	if (smp_cpu_mtid) {
449		__this_cpu_write(mt_scaling_jiffies, jiffies);
450		__this_cpu_write(mt_scaling_mult, 1);
451		__this_cpu_write(mt_scaling_div, 1);
452		stcctm(MT_DIAG, smp_cpu_mtid + 1, this_cpu_ptr(mt_cycles));
453	}
454}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *    Virtual cpu timer based timer functions.
  4 *
  5 *    Copyright IBM Corp. 2004, 2012
  6 *    Author(s): Jan Glauber <jan.glauber@de.ibm.com>
  7 */
  8
  9#include <linux/kernel_stat.h>
 10#include <linux/export.h>
 11#include <linux/kernel.h>
 12#include <linux/timex.h>
 13#include <linux/types.h>
 14#include <linux/time.h>
 15#include <asm/alternative.h>
 16#include <asm/cputime.h>
 17#include <asm/vtimer.h>
 18#include <asm/vtime.h>
 19#include <asm/cpu_mf.h>
 20#include <asm/smp.h>
 21
 22#include "entry.h"
 23
 24static void virt_timer_expire(void);
 25
 26static LIST_HEAD(virt_timer_list);
 27static DEFINE_SPINLOCK(virt_timer_lock);
 28static atomic64_t virt_timer_current;
 29static atomic64_t virt_timer_elapsed;
 30
 31DEFINE_PER_CPU(u64, mt_cycles[8]);
 32static DEFINE_PER_CPU(u64, mt_scaling_mult) = { 1 };
 33static DEFINE_PER_CPU(u64, mt_scaling_div) = { 1 };
 34static DEFINE_PER_CPU(u64, mt_scaling_jiffies);
 35
 
 
 
 
 
 
 
 
 36static inline void set_vtimer(u64 expires)
 37{
 38	struct lowcore *lc = get_lowcore();
 39	u64 timer;
 40
 41	asm volatile(
 42		"	stpt	%0\n"	/* Store current cpu timer value */
 43		"	spt	%1"	/* Set new value imm. afterwards */
 44		: "=Q" (timer) : "Q" (expires));
 45	lc->system_timer += lc->last_update_timer - timer;
 46	lc->last_update_timer = expires;
 47}
 48
 49static inline int virt_timer_forward(u64 elapsed)
 50{
 51	BUG_ON(!irqs_disabled());
 52
 53	if (list_empty(&virt_timer_list))
 54		return 0;
 55	elapsed = atomic64_add_return(elapsed, &virt_timer_elapsed);
 56	return elapsed >= atomic64_read(&virt_timer_current);
 57}
 58
 59static void update_mt_scaling(void)
 60{
 61	u64 cycles_new[8], *cycles_old;
 62	u64 delta, fac, mult, div;
 63	int i;
 64
 65	stcctm(MT_DIAG, smp_cpu_mtid + 1, cycles_new);
 66	cycles_old = this_cpu_ptr(mt_cycles);
 67	fac = 1;
 68	mult = div = 0;
 69	for (i = 0; i <= smp_cpu_mtid; i++) {
 70		delta = cycles_new[i] - cycles_old[i];
 71		div += delta;
 72		mult *= i + 1;
 73		mult += delta * fac;
 74		fac *= i + 1;
 75	}
 76	div *= fac;
 77	if (div > 0) {
 78		/* Update scaling factor */
 79		__this_cpu_write(mt_scaling_mult, mult);
 80		__this_cpu_write(mt_scaling_div, div);
 81		memcpy(cycles_old, cycles_new,
 82		       sizeof(u64) * (smp_cpu_mtid + 1));
 83	}
 84	__this_cpu_write(mt_scaling_jiffies, jiffies_64);
 85}
 86
 87static inline u64 update_tsk_timer(unsigned long *tsk_vtime, u64 new)
 88{
 89	u64 delta;
 90
 91	delta = new - *tsk_vtime;
 92	*tsk_vtime = new;
 93	return delta;
 94}
 95
 96
 97static inline u64 scale_vtime(u64 vtime)
 98{
 99	u64 mult = __this_cpu_read(mt_scaling_mult);
100	u64 div = __this_cpu_read(mt_scaling_div);
101
102	if (smp_cpu_mtid)
103		return vtime * mult / div;
104	return vtime;
105}
106
107static void account_system_index_scaled(struct task_struct *p, u64 cputime,
108					enum cpu_usage_stat index)
109{
110	p->stimescaled += cputime_to_nsecs(scale_vtime(cputime));
111	account_system_index_time(p, cputime_to_nsecs(cputime), index);
112}
113
114/*
115 * Update process times based on virtual cpu times stored by entry.S
116 * to the lowcore fields user_timer, system_timer & steal_clock.
117 */
118static int do_account_vtime(struct task_struct *tsk)
119{
120	u64 timer, clock, user, guest, system, hardirq, softirq;
121	struct lowcore *lc = get_lowcore();
122
123	timer = lc->last_update_timer;
124	clock = lc->last_update_clock;
125	asm volatile(
126		"	stpt	%0\n"	/* Store current cpu timer value */
127		"	stckf	%1"	/* Store current tod clock value */
128		: "=Q" (lc->last_update_timer),
129		  "=Q" (lc->last_update_clock)
130		: : "cc");
131	clock = lc->last_update_clock - clock;
132	timer -= lc->last_update_timer;
133
134	if (hardirq_count())
135		lc->hardirq_timer += timer;
136	else
137		lc->system_timer += timer;
138
139	/* Update MT utilization calculation */
140	if (smp_cpu_mtid &&
141	    time_after64(jiffies_64, this_cpu_read(mt_scaling_jiffies)))
142		update_mt_scaling();
143
144	/* Calculate cputime delta */
145	user = update_tsk_timer(&tsk->thread.user_timer,
146				READ_ONCE(lc->user_timer));
147	guest = update_tsk_timer(&tsk->thread.guest_timer,
148				 READ_ONCE(lc->guest_timer));
149	system = update_tsk_timer(&tsk->thread.system_timer,
150				  READ_ONCE(lc->system_timer));
151	hardirq = update_tsk_timer(&tsk->thread.hardirq_timer,
152				   READ_ONCE(lc->hardirq_timer));
153	softirq = update_tsk_timer(&tsk->thread.softirq_timer,
154				   READ_ONCE(lc->softirq_timer));
155	lc->steal_timer +=
156		clock - user - guest - system - hardirq - softirq;
157
158	/* Push account value */
159	if (user) {
160		account_user_time(tsk, cputime_to_nsecs(user));
161		tsk->utimescaled += cputime_to_nsecs(scale_vtime(user));
162	}
163
164	if (guest) {
165		account_guest_time(tsk, cputime_to_nsecs(guest));
166		tsk->utimescaled += cputime_to_nsecs(scale_vtime(guest));
167	}
168
169	if (system)
170		account_system_index_scaled(tsk, system, CPUTIME_SYSTEM);
171	if (hardirq)
172		account_system_index_scaled(tsk, hardirq, CPUTIME_IRQ);
173	if (softirq)
174		account_system_index_scaled(tsk, softirq, CPUTIME_SOFTIRQ);
175
176	return virt_timer_forward(user + guest + system + hardirq + softirq);
177}
178
179void vtime_task_switch(struct task_struct *prev)
180{
181	struct lowcore *lc = get_lowcore();
182
183	do_account_vtime(prev);
184	prev->thread.user_timer = lc->user_timer;
185	prev->thread.guest_timer = lc->guest_timer;
186	prev->thread.system_timer = lc->system_timer;
187	prev->thread.hardirq_timer = lc->hardirq_timer;
188	prev->thread.softirq_timer = lc->softirq_timer;
189	lc->user_timer = current->thread.user_timer;
190	lc->guest_timer = current->thread.guest_timer;
191	lc->system_timer = current->thread.system_timer;
192	lc->hardirq_timer = current->thread.hardirq_timer;
193	lc->softirq_timer = current->thread.softirq_timer;
194}
195
196/*
197 * In s390, accounting pending user time also implies
198 * accounting system time in order to correctly compute
199 * the stolen time accounting.
200 */
201void vtime_flush(struct task_struct *tsk)
202{
203	struct lowcore *lc = get_lowcore();
204	u64 steal, avg_steal;
205
206	if (do_account_vtime(tsk))
207		virt_timer_expire();
208
209	steal = lc->steal_timer;
210	avg_steal = lc->avg_steal_timer;
211	if ((s64) steal > 0) {
212		lc->steal_timer = 0;
213		account_steal_time(cputime_to_nsecs(steal));
214		avg_steal += steal;
215	}
216	lc->avg_steal_timer = avg_steal / 2;
217}
218
219static u64 vtime_delta(void)
220{
221	struct lowcore *lc = get_lowcore();
222	u64 timer = lc->last_update_timer;
 
223
224	lc->last_update_timer = get_cpu_timer();
225	return timer - lc->last_update_timer;
226}
227
228/*
229 * Update process times based on virtual cpu times stored by entry.S
230 * to the lowcore fields user_timer, system_timer & steal_clock.
231 */
232void vtime_account_kernel(struct task_struct *tsk)
233{
234	struct lowcore *lc = get_lowcore();
235	u64 delta = vtime_delta();
236
237	if (tsk->flags & PF_VCPU)
238		lc->guest_timer += delta;
239	else
240		lc->system_timer += delta;
241
242	virt_timer_forward(delta);
243}
244EXPORT_SYMBOL_GPL(vtime_account_kernel);
245
246void vtime_account_softirq(struct task_struct *tsk)
247{
248	u64 delta = vtime_delta();
249
250	get_lowcore()->softirq_timer += delta;
251
252	virt_timer_forward(delta);
253}
254
255void vtime_account_hardirq(struct task_struct *tsk)
256{
257	u64 delta = vtime_delta();
258
259	get_lowcore()->hardirq_timer += delta;
260
261	virt_timer_forward(delta);
262}
263
264/*
265 * Sorted add to a list. List is linear searched until first bigger
266 * element is found.
267 */
268static void list_add_sorted(struct vtimer_list *timer, struct list_head *head)
269{
270	struct vtimer_list *tmp;
271
272	list_for_each_entry(tmp, head, entry) {
273		if (tmp->expires > timer->expires) {
274			list_add_tail(&timer->entry, &tmp->entry);
275			return;
276		}
277	}
278	list_add_tail(&timer->entry, head);
279}
280
281/*
282 * Handler for expired virtual CPU timer.
283 */
284static void virt_timer_expire(void)
285{
286	struct vtimer_list *timer, *tmp;
287	unsigned long elapsed;
288	LIST_HEAD(cb_list);
289
290	/* walk timer list, fire all expired timers */
291	spin_lock(&virt_timer_lock);
292	elapsed = atomic64_read(&virt_timer_elapsed);
293	list_for_each_entry_safe(timer, tmp, &virt_timer_list, entry) {
294		if (timer->expires < elapsed)
295			/* move expired timer to the callback queue */
296			list_move_tail(&timer->entry, &cb_list);
297		else
298			timer->expires -= elapsed;
299	}
300	if (!list_empty(&virt_timer_list)) {
301		timer = list_first_entry(&virt_timer_list,
302					 struct vtimer_list, entry);
303		atomic64_set(&virt_timer_current, timer->expires);
304	}
305	atomic64_sub(elapsed, &virt_timer_elapsed);
306	spin_unlock(&virt_timer_lock);
307
308	/* Do callbacks and recharge periodic timers */
309	list_for_each_entry_safe(timer, tmp, &cb_list, entry) {
310		list_del_init(&timer->entry);
311		timer->function(timer->data);
312		if (timer->interval) {
313			/* Recharge interval timer */
314			timer->expires = timer->interval +
315				atomic64_read(&virt_timer_elapsed);
316			spin_lock(&virt_timer_lock);
317			list_add_sorted(timer, &virt_timer_list);
318			spin_unlock(&virt_timer_lock);
319		}
320	}
321}
322
323void init_virt_timer(struct vtimer_list *timer)
324{
325	timer->function = NULL;
326	INIT_LIST_HEAD(&timer->entry);
327}
328EXPORT_SYMBOL(init_virt_timer);
329
330static inline int vtimer_pending(struct vtimer_list *timer)
331{
332	return !list_empty(&timer->entry);
333}
334
335static void internal_add_vtimer(struct vtimer_list *timer)
336{
337	if (list_empty(&virt_timer_list)) {
338		/* First timer, just program it. */
339		atomic64_set(&virt_timer_current, timer->expires);
340		atomic64_set(&virt_timer_elapsed, 0);
341		list_add(&timer->entry, &virt_timer_list);
342	} else {
343		/* Update timer against current base. */
344		timer->expires += atomic64_read(&virt_timer_elapsed);
345		if (likely((s64) timer->expires <
346			   (s64) atomic64_read(&virt_timer_current)))
347			/* The new timer expires before the current timer. */
348			atomic64_set(&virt_timer_current, timer->expires);
349		/* Insert new timer into the list. */
350		list_add_sorted(timer, &virt_timer_list);
351	}
352}
353
354static void __add_vtimer(struct vtimer_list *timer, int periodic)
355{
356	unsigned long flags;
357
358	timer->interval = periodic ? timer->expires : 0;
359	spin_lock_irqsave(&virt_timer_lock, flags);
360	internal_add_vtimer(timer);
361	spin_unlock_irqrestore(&virt_timer_lock, flags);
362}
363
364/*
365 * add_virt_timer - add a oneshot virtual CPU timer
366 */
367void add_virt_timer(struct vtimer_list *timer)
368{
369	__add_vtimer(timer, 0);
370}
371EXPORT_SYMBOL(add_virt_timer);
372
373/*
374 * add_virt_timer_int - add an interval virtual CPU timer
375 */
376void add_virt_timer_periodic(struct vtimer_list *timer)
377{
378	__add_vtimer(timer, 1);
379}
380EXPORT_SYMBOL(add_virt_timer_periodic);
381
382static int __mod_vtimer(struct vtimer_list *timer, u64 expires, int periodic)
383{
384	unsigned long flags;
385	int rc;
386
387	BUG_ON(!timer->function);
388
389	if (timer->expires == expires && vtimer_pending(timer))
390		return 1;
391	spin_lock_irqsave(&virt_timer_lock, flags);
392	rc = vtimer_pending(timer);
393	if (rc)
394		list_del_init(&timer->entry);
395	timer->interval = periodic ? expires : 0;
396	timer->expires = expires;
397	internal_add_vtimer(timer);
398	spin_unlock_irqrestore(&virt_timer_lock, flags);
399	return rc;
400}
401
402/*
403 * returns whether it has modified a pending timer (1) or not (0)
404 */
405int mod_virt_timer(struct vtimer_list *timer, u64 expires)
406{
407	return __mod_vtimer(timer, expires, 0);
408}
409EXPORT_SYMBOL(mod_virt_timer);
410
411/*
412 * returns whether it has modified a pending timer (1) or not (0)
413 */
414int mod_virt_timer_periodic(struct vtimer_list *timer, u64 expires)
415{
416	return __mod_vtimer(timer, expires, 1);
417}
418EXPORT_SYMBOL(mod_virt_timer_periodic);
419
420/*
421 * Delete a virtual timer.
422 *
423 * returns whether the deleted timer was pending (1) or not (0)
424 */
425int del_virt_timer(struct vtimer_list *timer)
426{
427	unsigned long flags;
428
429	if (!vtimer_pending(timer))
430		return 0;
431	spin_lock_irqsave(&virt_timer_lock, flags);
432	list_del_init(&timer->entry);
433	spin_unlock_irqrestore(&virt_timer_lock, flags);
434	return 1;
435}
436EXPORT_SYMBOL(del_virt_timer);
437
438/*
439 * Start the virtual CPU timer on the current CPU.
440 */
441void vtime_init(void)
442{
443	/* set initial cpu timer */
444	set_vtimer(VTIMER_MAX_SLICE);
445	/* Setup initial MT scaling values */
446	if (smp_cpu_mtid) {
447		__this_cpu_write(mt_scaling_jiffies, jiffies);
448		__this_cpu_write(mt_scaling_mult, 1);
449		__this_cpu_write(mt_scaling_div, 1);
450		stcctm(MT_DIAG, smp_cpu_mtid + 1, this_cpu_ptr(mt_cycles));
451	}
452}