Linux Audio

Check our new training course

Loading...
v6.8
  1#include <linux/gfp.h>
  2#include <linux/highmem.h>
  3#include <linux/kernel.h>
  4#include <linux/mmdebug.h>
  5#include <linux/mm_types.h>
  6#include <linux/mm_inline.h>
  7#include <linux/pagemap.h>
  8#include <linux/rcupdate.h>
  9#include <linux/smp.h>
 10#include <linux/swap.h>
 11#include <linux/rmap.h>
 12
 13#include <asm/pgalloc.h>
 14#include <asm/tlb.h>
 15
 16#ifndef CONFIG_MMU_GATHER_NO_GATHER
 17
 18static bool tlb_next_batch(struct mmu_gather *tlb)
 19{
 20	struct mmu_gather_batch *batch;
 21
 22	/* Limit batching if we have delayed rmaps pending */
 23	if (tlb->delayed_rmap && tlb->active != &tlb->local)
 24		return false;
 25
 26	batch = tlb->active;
 27	if (batch->next) {
 28		tlb->active = batch->next;
 29		return true;
 30	}
 31
 32	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
 33		return false;
 34
 35	batch = (void *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
 36	if (!batch)
 37		return false;
 38
 39	tlb->batch_count++;
 40	batch->next = NULL;
 41	batch->nr   = 0;
 42	batch->max  = MAX_GATHER_BATCH;
 43
 44	tlb->active->next = batch;
 45	tlb->active = batch;
 46
 47	return true;
 48}
 49
 50#ifdef CONFIG_SMP
 51static void tlb_flush_rmap_batch(struct mmu_gather_batch *batch, struct vm_area_struct *vma)
 52{
 
 
 53	for (int i = 0; i < batch->nr; i++) {
 54		struct encoded_page *enc = batch->encoded_pages[i];
 55
 56		if (encoded_page_flags(enc)) {
 57			struct page *page = encoded_page_ptr(enc);
 58			folio_remove_rmap_pte(page_folio(page), page, vma);
 
 
 
 
 
 
 
 59		}
 60	}
 61}
 62
 63/**
 64 * tlb_flush_rmaps - do pending rmap removals after we have flushed the TLB
 65 * @tlb: the current mmu_gather
 66 * @vma: The memory area from which the pages are being removed.
 67 *
 68 * Note that because of how tlb_next_batch() above works, we will
 69 * never start multiple new batches with pending delayed rmaps, so
 70 * we only need to walk through the current active batch and the
 71 * original local one.
 72 */
 73void tlb_flush_rmaps(struct mmu_gather *tlb, struct vm_area_struct *vma)
 74{
 75	if (!tlb->delayed_rmap)
 76		return;
 77
 78	tlb_flush_rmap_batch(&tlb->local, vma);
 79	if (tlb->active != &tlb->local)
 80		tlb_flush_rmap_batch(tlb->active, vma);
 81	tlb->delayed_rmap = 0;
 82}
 83#endif
 84
 85static void tlb_batch_pages_flush(struct mmu_gather *tlb)
 
 
 
 
 
 
 
 86{
 87	struct mmu_gather_batch *batch;
 
 88
 89	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
 90		struct encoded_page **pages = batch->encoded_pages;
 
 91
 92		do {
 93			/*
 94			 * limit free batch count when PAGE_SIZE > 4K
 
 95			 */
 96			unsigned int nr = min(512U, batch->nr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 97
 98			free_pages_and_swap_cache(pages, nr);
 99			pages += nr;
100			batch->nr -= nr;
101
102			cond_resched();
103		} while (batch->nr);
104	}
 
 
 
 
 
 
 
 
105	tlb->active = &tlb->local;
106}
107
108static void tlb_batch_list_free(struct mmu_gather *tlb)
109{
110	struct mmu_gather_batch *batch, *next;
111
112	for (batch = tlb->local.next; batch; batch = next) {
113		next = batch->next;
114		free_pages((unsigned long)batch, 0);
115	}
116	tlb->local.next = NULL;
117}
118
119bool __tlb_remove_page_size(struct mmu_gather *tlb, struct encoded_page *page, int page_size)
 
 
120{
 
121	struct mmu_gather_batch *batch;
122
123	VM_BUG_ON(!tlb->end);
124
125#ifdef CONFIG_MMU_GATHER_PAGE_SIZE
126	VM_WARN_ON(tlb->page_size != page_size);
 
 
127#endif
128
129	batch = tlb->active;
130	/*
131	 * Add the page and check if we are full. If so
132	 * force a flush.
133	 */
134	batch->encoded_pages[batch->nr++] = page;
135	if (batch->nr == batch->max) {
 
 
 
 
 
 
 
 
 
 
136		if (!tlb_next_batch(tlb))
137			return true;
138		batch = tlb->active;
139	}
140	VM_BUG_ON_PAGE(batch->nr > batch->max, encoded_page_ptr(page));
141
142	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
143}
144
145#endif /* MMU_GATHER_NO_GATHER */
146
147#ifdef CONFIG_MMU_GATHER_TABLE_FREE
148
149static void __tlb_remove_table_free(struct mmu_table_batch *batch)
150{
151	int i;
152
153	for (i = 0; i < batch->nr; i++)
154		__tlb_remove_table(batch->tables[i]);
155
156	free_page((unsigned long)batch);
157}
158
159#ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
160
161/*
162 * Semi RCU freeing of the page directories.
163 *
164 * This is needed by some architectures to implement software pagetable walkers.
165 *
166 * gup_fast() and other software pagetable walkers do a lockless page-table
167 * walk and therefore needs some synchronization with the freeing of the page
168 * directories. The chosen means to accomplish that is by disabling IRQs over
169 * the walk.
170 *
171 * Architectures that use IPIs to flush TLBs will then automagically DTRT,
172 * since we unlink the page, flush TLBs, free the page. Since the disabling of
173 * IRQs delays the completion of the TLB flush we can never observe an already
174 * freed page.
175 *
176 * Architectures that do not have this (PPC) need to delay the freeing by some
177 * other means, this is that means.
178 *
179 * What we do is batch the freed directory pages (tables) and RCU free them.
180 * We use the sched RCU variant, as that guarantees that IRQ/preempt disabling
181 * holds off grace periods.
182 *
183 * However, in order to batch these pages we need to allocate storage, this
184 * allocation is deep inside the MM code and can thus easily fail on memory
185 * pressure. To guarantee progress we fall back to single table freeing, see
186 * the implementation of tlb_remove_table_one().
187 *
188 */
189
190static void tlb_remove_table_smp_sync(void *arg)
191{
192	/* Simply deliver the interrupt */
193}
194
195void tlb_remove_table_sync_one(void)
196{
197	/*
198	 * This isn't an RCU grace period and hence the page-tables cannot be
199	 * assumed to be actually RCU-freed.
200	 *
201	 * It is however sufficient for software page-table walkers that rely on
202	 * IRQ disabling.
203	 */
204	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
205}
206
207static void tlb_remove_table_rcu(struct rcu_head *head)
208{
209	__tlb_remove_table_free(container_of(head, struct mmu_table_batch, rcu));
210}
211
212static void tlb_remove_table_free(struct mmu_table_batch *batch)
213{
214	call_rcu(&batch->rcu, tlb_remove_table_rcu);
215}
216
217#else /* !CONFIG_MMU_GATHER_RCU_TABLE_FREE */
218
219static void tlb_remove_table_free(struct mmu_table_batch *batch)
220{
221	__tlb_remove_table_free(batch);
222}
223
224#endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */
225
226/*
227 * If we want tlb_remove_table() to imply TLB invalidates.
228 */
229static inline void tlb_table_invalidate(struct mmu_gather *tlb)
230{
231	if (tlb_needs_table_invalidate()) {
232		/*
233		 * Invalidate page-table caches used by hardware walkers. Then
234		 * we still need to RCU-sched wait while freeing the pages
235		 * because software walkers can still be in-flight.
236		 */
237		tlb_flush_mmu_tlbonly(tlb);
238	}
239}
240
241static void tlb_remove_table_one(void *table)
242{
243	tlb_remove_table_sync_one();
244	__tlb_remove_table(table);
245}
246
247static void tlb_table_flush(struct mmu_gather *tlb)
248{
249	struct mmu_table_batch **batch = &tlb->batch;
250
251	if (*batch) {
252		tlb_table_invalidate(tlb);
253		tlb_remove_table_free(*batch);
254		*batch = NULL;
255	}
256}
257
258void tlb_remove_table(struct mmu_gather *tlb, void *table)
259{
260	struct mmu_table_batch **batch = &tlb->batch;
261
262	if (*batch == NULL) {
263		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
264		if (*batch == NULL) {
265			tlb_table_invalidate(tlb);
266			tlb_remove_table_one(table);
267			return;
268		}
269		(*batch)->nr = 0;
270	}
271
272	(*batch)->tables[(*batch)->nr++] = table;
273	if ((*batch)->nr == MAX_TABLE_BATCH)
274		tlb_table_flush(tlb);
275}
276
277static inline void tlb_table_init(struct mmu_gather *tlb)
278{
279	tlb->batch = NULL;
280}
281
282#else /* !CONFIG_MMU_GATHER_TABLE_FREE */
283
284static inline void tlb_table_flush(struct mmu_gather *tlb) { }
285static inline void tlb_table_init(struct mmu_gather *tlb) { }
286
287#endif /* CONFIG_MMU_GATHER_TABLE_FREE */
288
289static void tlb_flush_mmu_free(struct mmu_gather *tlb)
290{
291	tlb_table_flush(tlb);
292#ifndef CONFIG_MMU_GATHER_NO_GATHER
293	tlb_batch_pages_flush(tlb);
294#endif
295}
296
297void tlb_flush_mmu(struct mmu_gather *tlb)
298{
299	tlb_flush_mmu_tlbonly(tlb);
300	tlb_flush_mmu_free(tlb);
301}
302
303static void __tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
304			     bool fullmm)
305{
306	tlb->mm = mm;
307	tlb->fullmm = fullmm;
308
309#ifndef CONFIG_MMU_GATHER_NO_GATHER
310	tlb->need_flush_all = 0;
311	tlb->local.next = NULL;
312	tlb->local.nr   = 0;
313	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
314	tlb->active     = &tlb->local;
315	tlb->batch_count = 0;
316#endif
317	tlb->delayed_rmap = 0;
318
319	tlb_table_init(tlb);
320#ifdef CONFIG_MMU_GATHER_PAGE_SIZE
321	tlb->page_size = 0;
322#endif
323
324	__tlb_reset_range(tlb);
325	inc_tlb_flush_pending(tlb->mm);
326}
327
328/**
329 * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
330 * @tlb: the mmu_gather structure to initialize
331 * @mm: the mm_struct of the target address space
332 *
333 * Called to initialize an (on-stack) mmu_gather structure for page-table
334 * tear-down from @mm.
335 */
336void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm)
337{
338	__tlb_gather_mmu(tlb, mm, false);
339}
340
341/**
342 * tlb_gather_mmu_fullmm - initialize an mmu_gather structure for page-table tear-down
343 * @tlb: the mmu_gather structure to initialize
344 * @mm: the mm_struct of the target address space
345 *
346 * In this case, @mm is without users and we're going to destroy the
347 * full address space (exit/execve).
348 *
349 * Called to initialize an (on-stack) mmu_gather structure for page-table
350 * tear-down from @mm.
351 */
352void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm)
353{
354	__tlb_gather_mmu(tlb, mm, true);
355}
356
357/**
358 * tlb_finish_mmu - finish an mmu_gather structure
359 * @tlb: the mmu_gather structure to finish
360 *
361 * Called at the end of the shootdown operation to free up any resources that
362 * were required.
363 */
364void tlb_finish_mmu(struct mmu_gather *tlb)
365{
366	/*
367	 * If there are parallel threads are doing PTE changes on same range
368	 * under non-exclusive lock (e.g., mmap_lock read-side) but defer TLB
369	 * flush by batching, one thread may end up seeing inconsistent PTEs
370	 * and result in having stale TLB entries.  So flush TLB forcefully
371	 * if we detect parallel PTE batching threads.
372	 *
373	 * However, some syscalls, e.g. munmap(), may free page tables, this
374	 * needs force flush everything in the given range. Otherwise this
375	 * may result in having stale TLB entries for some architectures,
376	 * e.g. aarch64, that could specify flush what level TLB.
377	 */
378	if (mm_tlb_flush_nested(tlb->mm)) {
379		/*
380		 * The aarch64 yields better performance with fullmm by
381		 * avoiding multiple CPUs spamming TLBI messages at the
382		 * same time.
383		 *
384		 * On x86 non-fullmm doesn't yield significant difference
385		 * against fullmm.
386		 */
387		tlb->fullmm = 1;
388		__tlb_reset_range(tlb);
389		tlb->freed_tables = 1;
390	}
391
392	tlb_flush_mmu(tlb);
393
394#ifndef CONFIG_MMU_GATHER_NO_GATHER
395	tlb_batch_list_free(tlb);
396#endif
397	dec_tlb_flush_pending(tlb->mm);
398}
v6.13.7
  1#include <linux/gfp.h>
  2#include <linux/highmem.h>
  3#include <linux/kernel.h>
  4#include <linux/mmdebug.h>
  5#include <linux/mm_types.h>
  6#include <linux/mm_inline.h>
  7#include <linux/pagemap.h>
  8#include <linux/rcupdate.h>
  9#include <linux/smp.h>
 10#include <linux/swap.h>
 11#include <linux/rmap.h>
 12
 13#include <asm/pgalloc.h>
 14#include <asm/tlb.h>
 15
 16#ifndef CONFIG_MMU_GATHER_NO_GATHER
 17
 18static bool tlb_next_batch(struct mmu_gather *tlb)
 19{
 20	struct mmu_gather_batch *batch;
 21
 22	/* Limit batching if we have delayed rmaps pending */
 23	if (tlb->delayed_rmap && tlb->active != &tlb->local)
 24		return false;
 25
 26	batch = tlb->active;
 27	if (batch->next) {
 28		tlb->active = batch->next;
 29		return true;
 30	}
 31
 32	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
 33		return false;
 34
 35	batch = (void *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
 36	if (!batch)
 37		return false;
 38
 39	tlb->batch_count++;
 40	batch->next = NULL;
 41	batch->nr   = 0;
 42	batch->max  = MAX_GATHER_BATCH;
 43
 44	tlb->active->next = batch;
 45	tlb->active = batch;
 46
 47	return true;
 48}
 49
 50#ifdef CONFIG_SMP
 51static void tlb_flush_rmap_batch(struct mmu_gather_batch *batch, struct vm_area_struct *vma)
 52{
 53	struct encoded_page **pages = batch->encoded_pages;
 54
 55	for (int i = 0; i < batch->nr; i++) {
 56		struct encoded_page *enc = pages[i];
 57
 58		if (encoded_page_flags(enc) & ENCODED_PAGE_BIT_DELAY_RMAP) {
 59			struct page *page = encoded_page_ptr(enc);
 60			unsigned int nr_pages = 1;
 61
 62			if (unlikely(encoded_page_flags(enc) &
 63				     ENCODED_PAGE_BIT_NR_PAGES_NEXT))
 64				nr_pages = encoded_nr_pages(pages[++i]);
 65
 66			folio_remove_rmap_ptes(page_folio(page), page, nr_pages,
 67					       vma);
 68		}
 69	}
 70}
 71
 72/**
 73 * tlb_flush_rmaps - do pending rmap removals after we have flushed the TLB
 74 * @tlb: the current mmu_gather
 75 * @vma: The memory area from which the pages are being removed.
 76 *
 77 * Note that because of how tlb_next_batch() above works, we will
 78 * never start multiple new batches with pending delayed rmaps, so
 79 * we only need to walk through the current active batch and the
 80 * original local one.
 81 */
 82void tlb_flush_rmaps(struct mmu_gather *tlb, struct vm_area_struct *vma)
 83{
 84	if (!tlb->delayed_rmap)
 85		return;
 86
 87	tlb_flush_rmap_batch(&tlb->local, vma);
 88	if (tlb->active != &tlb->local)
 89		tlb_flush_rmap_batch(tlb->active, vma);
 90	tlb->delayed_rmap = 0;
 91}
 92#endif
 93
 94/*
 95 * We might end up freeing a lot of pages. Reschedule on a regular
 96 * basis to avoid soft lockups in configurations without full
 97 * preemption enabled. The magic number of 512 folios seems to work.
 98 */
 99#define MAX_NR_FOLIOS_PER_FREE		512
100
101static void __tlb_batch_free_encoded_pages(struct mmu_gather_batch *batch)
102{
103	struct encoded_page **pages = batch->encoded_pages;
104	unsigned int nr, nr_pages;
105
106	while (batch->nr) {
107		if (!page_poisoning_enabled_static() && !want_init_on_free()) {
108			nr = min(MAX_NR_FOLIOS_PER_FREE, batch->nr);
109
 
110			/*
111			 * Make sure we cover page + nr_pages, and don't leave
112			 * nr_pages behind when capping the number of entries.
113			 */
114			if (unlikely(encoded_page_flags(pages[nr - 1]) &
115				     ENCODED_PAGE_BIT_NR_PAGES_NEXT))
116				nr++;
117		} else {
118			/*
119			 * With page poisoning and init_on_free, the time it
120			 * takes to free memory grows proportionally with the
121			 * actual memory size. Therefore, limit based on the
122			 * actual memory size and not the number of involved
123			 * folios.
124			 */
125			for (nr = 0, nr_pages = 0;
126			     nr < batch->nr && nr_pages < MAX_NR_FOLIOS_PER_FREE;
127			     nr++) {
128				if (unlikely(encoded_page_flags(pages[nr]) &
129					     ENCODED_PAGE_BIT_NR_PAGES_NEXT))
130					nr_pages += encoded_nr_pages(pages[++nr]);
131				else
132					nr_pages++;
133			}
134		}
135
136		free_pages_and_swap_cache(pages, nr);
137		pages += nr;
138		batch->nr -= nr;
139
140		cond_resched();
 
141	}
142}
143
144static void tlb_batch_pages_flush(struct mmu_gather *tlb)
145{
146	struct mmu_gather_batch *batch;
147
148	for (batch = &tlb->local; batch && batch->nr; batch = batch->next)
149		__tlb_batch_free_encoded_pages(batch);
150	tlb->active = &tlb->local;
151}
152
153static void tlb_batch_list_free(struct mmu_gather *tlb)
154{
155	struct mmu_gather_batch *batch, *next;
156
157	for (batch = tlb->local.next; batch; batch = next) {
158		next = batch->next;
159		free_pages((unsigned long)batch, 0);
160	}
161	tlb->local.next = NULL;
162}
163
164static bool __tlb_remove_folio_pages_size(struct mmu_gather *tlb,
165		struct page *page, unsigned int nr_pages, bool delay_rmap,
166		int page_size)
167{
168	int flags = delay_rmap ? ENCODED_PAGE_BIT_DELAY_RMAP : 0;
169	struct mmu_gather_batch *batch;
170
171	VM_BUG_ON(!tlb->end);
172
173#ifdef CONFIG_MMU_GATHER_PAGE_SIZE
174	VM_WARN_ON(tlb->page_size != page_size);
175	VM_WARN_ON_ONCE(nr_pages != 1 && page_size != PAGE_SIZE);
176	VM_WARN_ON_ONCE(page_folio(page) != page_folio(page + nr_pages - 1));
177#endif
178
179	batch = tlb->active;
180	/*
181	 * Add the page and check if we are full. If so
182	 * force a flush.
183	 */
184	if (likely(nr_pages == 1)) {
185		batch->encoded_pages[batch->nr++] = encode_page(page, flags);
186	} else {
187		flags |= ENCODED_PAGE_BIT_NR_PAGES_NEXT;
188		batch->encoded_pages[batch->nr++] = encode_page(page, flags);
189		batch->encoded_pages[batch->nr++] = encode_nr_pages(nr_pages);
190	}
191	/*
192	 * Make sure that we can always add another "page" + "nr_pages",
193	 * requiring two entries instead of only a single one.
194	 */
195	if (batch->nr >= batch->max - 1) {
196		if (!tlb_next_batch(tlb))
197			return true;
198		batch = tlb->active;
199	}
200	VM_BUG_ON_PAGE(batch->nr > batch->max - 1, page);
201
202	return false;
203}
204
205bool __tlb_remove_folio_pages(struct mmu_gather *tlb, struct page *page,
206		unsigned int nr_pages, bool delay_rmap)
207{
208	return __tlb_remove_folio_pages_size(tlb, page, nr_pages, delay_rmap,
209					     PAGE_SIZE);
210}
211
212bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page,
213		bool delay_rmap, int page_size)
214{
215	return __tlb_remove_folio_pages_size(tlb, page, 1, delay_rmap, page_size);
216}
217
218#endif /* MMU_GATHER_NO_GATHER */
219
220#ifdef CONFIG_MMU_GATHER_TABLE_FREE
221
222static void __tlb_remove_table_free(struct mmu_table_batch *batch)
223{
224	int i;
225
226	for (i = 0; i < batch->nr; i++)
227		__tlb_remove_table(batch->tables[i]);
228
229	free_page((unsigned long)batch);
230}
231
232#ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
233
234/*
235 * Semi RCU freeing of the page directories.
236 *
237 * This is needed by some architectures to implement software pagetable walkers.
238 *
239 * gup_fast() and other software pagetable walkers do a lockless page-table
240 * walk and therefore needs some synchronization with the freeing of the page
241 * directories. The chosen means to accomplish that is by disabling IRQs over
242 * the walk.
243 *
244 * Architectures that use IPIs to flush TLBs will then automagically DTRT,
245 * since we unlink the page, flush TLBs, free the page. Since the disabling of
246 * IRQs delays the completion of the TLB flush we can never observe an already
247 * freed page.
248 *
249 * Architectures that do not have this (PPC) need to delay the freeing by some
250 * other means, this is that means.
251 *
252 * What we do is batch the freed directory pages (tables) and RCU free them.
253 * We use the sched RCU variant, as that guarantees that IRQ/preempt disabling
254 * holds off grace periods.
255 *
256 * However, in order to batch these pages we need to allocate storage, this
257 * allocation is deep inside the MM code and can thus easily fail on memory
258 * pressure. To guarantee progress we fall back to single table freeing, see
259 * the implementation of tlb_remove_table_one().
260 *
261 */
262
263static void tlb_remove_table_smp_sync(void *arg)
264{
265	/* Simply deliver the interrupt */
266}
267
268void tlb_remove_table_sync_one(void)
269{
270	/*
271	 * This isn't an RCU grace period and hence the page-tables cannot be
272	 * assumed to be actually RCU-freed.
273	 *
274	 * It is however sufficient for software page-table walkers that rely on
275	 * IRQ disabling.
276	 */
277	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
278}
279
280static void tlb_remove_table_rcu(struct rcu_head *head)
281{
282	__tlb_remove_table_free(container_of(head, struct mmu_table_batch, rcu));
283}
284
285static void tlb_remove_table_free(struct mmu_table_batch *batch)
286{
287	call_rcu(&batch->rcu, tlb_remove_table_rcu);
288}
289
290#else /* !CONFIG_MMU_GATHER_RCU_TABLE_FREE */
291
292static void tlb_remove_table_free(struct mmu_table_batch *batch)
293{
294	__tlb_remove_table_free(batch);
295}
296
297#endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */
298
299/*
300 * If we want tlb_remove_table() to imply TLB invalidates.
301 */
302static inline void tlb_table_invalidate(struct mmu_gather *tlb)
303{
304	if (tlb_needs_table_invalidate()) {
305		/*
306		 * Invalidate page-table caches used by hardware walkers. Then
307		 * we still need to RCU-sched wait while freeing the pages
308		 * because software walkers can still be in-flight.
309		 */
310		tlb_flush_mmu_tlbonly(tlb);
311	}
312}
313
314static void tlb_remove_table_one(void *table)
315{
316	tlb_remove_table_sync_one();
317	__tlb_remove_table(table);
318}
319
320static void tlb_table_flush(struct mmu_gather *tlb)
321{
322	struct mmu_table_batch **batch = &tlb->batch;
323
324	if (*batch) {
325		tlb_table_invalidate(tlb);
326		tlb_remove_table_free(*batch);
327		*batch = NULL;
328	}
329}
330
331void tlb_remove_table(struct mmu_gather *tlb, void *table)
332{
333	struct mmu_table_batch **batch = &tlb->batch;
334
335	if (*batch == NULL) {
336		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
337		if (*batch == NULL) {
338			tlb_table_invalidate(tlb);
339			tlb_remove_table_one(table);
340			return;
341		}
342		(*batch)->nr = 0;
343	}
344
345	(*batch)->tables[(*batch)->nr++] = table;
346	if ((*batch)->nr == MAX_TABLE_BATCH)
347		tlb_table_flush(tlb);
348}
349
350static inline void tlb_table_init(struct mmu_gather *tlb)
351{
352	tlb->batch = NULL;
353}
354
355#else /* !CONFIG_MMU_GATHER_TABLE_FREE */
356
357static inline void tlb_table_flush(struct mmu_gather *tlb) { }
358static inline void tlb_table_init(struct mmu_gather *tlb) { }
359
360#endif /* CONFIG_MMU_GATHER_TABLE_FREE */
361
362static void tlb_flush_mmu_free(struct mmu_gather *tlb)
363{
364	tlb_table_flush(tlb);
365#ifndef CONFIG_MMU_GATHER_NO_GATHER
366	tlb_batch_pages_flush(tlb);
367#endif
368}
369
370void tlb_flush_mmu(struct mmu_gather *tlb)
371{
372	tlb_flush_mmu_tlbonly(tlb);
373	tlb_flush_mmu_free(tlb);
374}
375
376static void __tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
377			     bool fullmm)
378{
379	tlb->mm = mm;
380	tlb->fullmm = fullmm;
381
382#ifndef CONFIG_MMU_GATHER_NO_GATHER
383	tlb->need_flush_all = 0;
384	tlb->local.next = NULL;
385	tlb->local.nr   = 0;
386	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
387	tlb->active     = &tlb->local;
388	tlb->batch_count = 0;
389#endif
390	tlb->delayed_rmap = 0;
391
392	tlb_table_init(tlb);
393#ifdef CONFIG_MMU_GATHER_PAGE_SIZE
394	tlb->page_size = 0;
395#endif
396
397	__tlb_reset_range(tlb);
398	inc_tlb_flush_pending(tlb->mm);
399}
400
401/**
402 * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
403 * @tlb: the mmu_gather structure to initialize
404 * @mm: the mm_struct of the target address space
405 *
406 * Called to initialize an (on-stack) mmu_gather structure for page-table
407 * tear-down from @mm.
408 */
409void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm)
410{
411	__tlb_gather_mmu(tlb, mm, false);
412}
413
414/**
415 * tlb_gather_mmu_fullmm - initialize an mmu_gather structure for page-table tear-down
416 * @tlb: the mmu_gather structure to initialize
417 * @mm: the mm_struct of the target address space
418 *
419 * In this case, @mm is without users and we're going to destroy the
420 * full address space (exit/execve).
421 *
422 * Called to initialize an (on-stack) mmu_gather structure for page-table
423 * tear-down from @mm.
424 */
425void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm)
426{
427	__tlb_gather_mmu(tlb, mm, true);
428}
429
430/**
431 * tlb_finish_mmu - finish an mmu_gather structure
432 * @tlb: the mmu_gather structure to finish
433 *
434 * Called at the end of the shootdown operation to free up any resources that
435 * were required.
436 */
437void tlb_finish_mmu(struct mmu_gather *tlb)
438{
439	/*
440	 * If there are parallel threads are doing PTE changes on same range
441	 * under non-exclusive lock (e.g., mmap_lock read-side) but defer TLB
442	 * flush by batching, one thread may end up seeing inconsistent PTEs
443	 * and result in having stale TLB entries.  So flush TLB forcefully
444	 * if we detect parallel PTE batching threads.
445	 *
446	 * However, some syscalls, e.g. munmap(), may free page tables, this
447	 * needs force flush everything in the given range. Otherwise this
448	 * may result in having stale TLB entries for some architectures,
449	 * e.g. aarch64, that could specify flush what level TLB.
450	 */
451	if (mm_tlb_flush_nested(tlb->mm)) {
452		/*
453		 * The aarch64 yields better performance with fullmm by
454		 * avoiding multiple CPUs spamming TLBI messages at the
455		 * same time.
456		 *
457		 * On x86 non-fullmm doesn't yield significant difference
458		 * against fullmm.
459		 */
460		tlb->fullmm = 1;
461		__tlb_reset_range(tlb);
462		tlb->freed_tables = 1;
463	}
464
465	tlb_flush_mmu(tlb);
466
467#ifndef CONFIG_MMU_GATHER_NO_GATHER
468	tlb_batch_list_free(tlb);
469#endif
470	dec_tlb_flush_pending(tlb->mm);
471}