Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Generic ring buffer
   4 *
   5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   6 */
   7#include <linux/trace_recursion.h>
   8#include <linux/trace_events.h>
   9#include <linux/ring_buffer.h>
  10#include <linux/trace_clock.h>
  11#include <linux/sched/clock.h>
 
  12#include <linux/trace_seq.h>
  13#include <linux/spinlock.h>
  14#include <linux/irq_work.h>
  15#include <linux/security.h>
  16#include <linux/uaccess.h>
  17#include <linux/hardirq.h>
  18#include <linux/kthread.h>	/* for self test */
  19#include <linux/module.h>
  20#include <linux/percpu.h>
  21#include <linux/mutex.h>
  22#include <linux/delay.h>
  23#include <linux/slab.h>
  24#include <linux/init.h>
  25#include <linux/hash.h>
  26#include <linux/list.h>
  27#include <linux/cpu.h>
  28#include <linux/oom.h>
 
  29
  30#include <asm/local64.h>
  31#include <asm/local.h>
  32
 
 
  33/*
  34 * The "absolute" timestamp in the buffer is only 59 bits.
  35 * If a clock has the 5 MSBs set, it needs to be saved and
  36 * reinserted.
  37 */
  38#define TS_MSB		(0xf8ULL << 56)
  39#define ABS_TS_MASK	(~TS_MSB)
  40
  41static void update_pages_handler(struct work_struct *work);
  42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  43/*
  44 * The ring buffer header is special. We must manually up keep it.
  45 */
  46int ring_buffer_print_entry_header(struct trace_seq *s)
  47{
  48	trace_seq_puts(s, "# compressed entry header\n");
  49	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
  50	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
  51	trace_seq_puts(s, "\tarray       :   32 bits\n");
  52	trace_seq_putc(s, '\n');
  53	trace_seq_printf(s, "\tpadding     : type == %d\n",
  54			 RINGBUF_TYPE_PADDING);
  55	trace_seq_printf(s, "\ttime_extend : type == %d\n",
  56			 RINGBUF_TYPE_TIME_EXTEND);
  57	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
  58			 RINGBUF_TYPE_TIME_STAMP);
  59	trace_seq_printf(s, "\tdata max type_len  == %d\n",
  60			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  61
  62	return !trace_seq_has_overflowed(s);
  63}
  64
  65/*
  66 * The ring buffer is made up of a list of pages. A separate list of pages is
  67 * allocated for each CPU. A writer may only write to a buffer that is
  68 * associated with the CPU it is currently executing on.  A reader may read
  69 * from any per cpu buffer.
  70 *
  71 * The reader is special. For each per cpu buffer, the reader has its own
  72 * reader page. When a reader has read the entire reader page, this reader
  73 * page is swapped with another page in the ring buffer.
  74 *
  75 * Now, as long as the writer is off the reader page, the reader can do what
  76 * ever it wants with that page. The writer will never write to that page
  77 * again (as long as it is out of the ring buffer).
  78 *
  79 * Here's some silly ASCII art.
  80 *
  81 *   +------+
  82 *   |reader|          RING BUFFER
  83 *   |page  |
  84 *   +------+        +---+   +---+   +---+
  85 *                   |   |-->|   |-->|   |
  86 *                   +---+   +---+   +---+
  87 *                     ^               |
  88 *                     |               |
  89 *                     +---------------+
  90 *
  91 *
  92 *   +------+
  93 *   |reader|          RING BUFFER
  94 *   |page  |------------------v
  95 *   +------+        +---+   +---+   +---+
  96 *                   |   |-->|   |-->|   |
  97 *                   +---+   +---+   +---+
  98 *                     ^               |
  99 *                     |               |
 100 *                     +---------------+
 101 *
 102 *
 103 *   +------+
 104 *   |reader|          RING BUFFER
 105 *   |page  |------------------v
 106 *   +------+        +---+   +---+   +---+
 107 *      ^            |   |-->|   |-->|   |
 108 *      |            +---+   +---+   +---+
 109 *      |                              |
 110 *      |                              |
 111 *      +------------------------------+
 112 *
 113 *
 114 *   +------+
 115 *   |buffer|          RING BUFFER
 116 *   |page  |------------------v
 117 *   +------+        +---+   +---+   +---+
 118 *      ^            |   |   |   |-->|   |
 119 *      |   New      +---+   +---+   +---+
 120 *      |  Reader------^               |
 121 *      |   page                       |
 122 *      +------------------------------+
 123 *
 124 *
 125 * After we make this swap, the reader can hand this page off to the splice
 126 * code and be done with it. It can even allocate a new page if it needs to
 127 * and swap that into the ring buffer.
 128 *
 129 * We will be using cmpxchg soon to make all this lockless.
 130 *
 131 */
 132
 133/* Used for individual buffers (after the counter) */
 134#define RB_BUFFER_OFF		(1 << 20)
 135
 136#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 137
 138#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 139#define RB_ALIGNMENT		4U
 140#define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 141#define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
 142
 143#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
 144# define RB_FORCE_8BYTE_ALIGNMENT	0
 145# define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
 146#else
 147# define RB_FORCE_8BYTE_ALIGNMENT	1
 148# define RB_ARCH_ALIGNMENT		8U
 149#endif
 150
 151#define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
 152
 153/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 154#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 155
 156enum {
 157	RB_LEN_TIME_EXTEND = 8,
 158	RB_LEN_TIME_STAMP =  8,
 159};
 160
 161#define skip_time_extend(event) \
 162	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 163
 164#define extended_time(event) \
 165	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
 166
 167static inline bool rb_null_event(struct ring_buffer_event *event)
 168{
 169	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 170}
 171
 172static void rb_event_set_padding(struct ring_buffer_event *event)
 173{
 174	/* padding has a NULL time_delta */
 175	event->type_len = RINGBUF_TYPE_PADDING;
 176	event->time_delta = 0;
 177}
 178
 179static unsigned
 180rb_event_data_length(struct ring_buffer_event *event)
 181{
 182	unsigned length;
 183
 184	if (event->type_len)
 185		length = event->type_len * RB_ALIGNMENT;
 186	else
 187		length = event->array[0];
 188	return length + RB_EVNT_HDR_SIZE;
 189}
 190
 191/*
 192 * Return the length of the given event. Will return
 193 * the length of the time extend if the event is a
 194 * time extend.
 195 */
 196static inline unsigned
 197rb_event_length(struct ring_buffer_event *event)
 198{
 199	switch (event->type_len) {
 200	case RINGBUF_TYPE_PADDING:
 201		if (rb_null_event(event))
 202			/* undefined */
 203			return -1;
 204		return  event->array[0] + RB_EVNT_HDR_SIZE;
 205
 206	case RINGBUF_TYPE_TIME_EXTEND:
 207		return RB_LEN_TIME_EXTEND;
 208
 209	case RINGBUF_TYPE_TIME_STAMP:
 210		return RB_LEN_TIME_STAMP;
 211
 212	case RINGBUF_TYPE_DATA:
 213		return rb_event_data_length(event);
 214	default:
 215		WARN_ON_ONCE(1);
 216	}
 217	/* not hit */
 218	return 0;
 219}
 220
 221/*
 222 * Return total length of time extend and data,
 223 *   or just the event length for all other events.
 224 */
 225static inline unsigned
 226rb_event_ts_length(struct ring_buffer_event *event)
 227{
 228	unsigned len = 0;
 229
 230	if (extended_time(event)) {
 231		/* time extends include the data event after it */
 232		len = RB_LEN_TIME_EXTEND;
 233		event = skip_time_extend(event);
 234	}
 235	return len + rb_event_length(event);
 236}
 237
 238/**
 239 * ring_buffer_event_length - return the length of the event
 240 * @event: the event to get the length of
 241 *
 242 * Returns the size of the data load of a data event.
 243 * If the event is something other than a data event, it
 244 * returns the size of the event itself. With the exception
 245 * of a TIME EXTEND, where it still returns the size of the
 246 * data load of the data event after it.
 247 */
 248unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 249{
 250	unsigned length;
 251
 252	if (extended_time(event))
 253		event = skip_time_extend(event);
 254
 255	length = rb_event_length(event);
 256	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 257		return length;
 258	length -= RB_EVNT_HDR_SIZE;
 259	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 260                length -= sizeof(event->array[0]);
 261	return length;
 262}
 263EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 264
 265/* inline for ring buffer fast paths */
 266static __always_inline void *
 267rb_event_data(struct ring_buffer_event *event)
 268{
 269	if (extended_time(event))
 270		event = skip_time_extend(event);
 271	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 272	/* If length is in len field, then array[0] has the data */
 273	if (event->type_len)
 274		return (void *)&event->array[0];
 275	/* Otherwise length is in array[0] and array[1] has the data */
 276	return (void *)&event->array[1];
 277}
 278
 279/**
 280 * ring_buffer_event_data - return the data of the event
 281 * @event: the event to get the data from
 282 */
 283void *ring_buffer_event_data(struct ring_buffer_event *event)
 284{
 285	return rb_event_data(event);
 286}
 287EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 288
 289#define for_each_buffer_cpu(buffer, cpu)		\
 290	for_each_cpu(cpu, buffer->cpumask)
 291
 292#define for_each_online_buffer_cpu(buffer, cpu)		\
 293	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
 294
 295#define TS_SHIFT	27
 296#define TS_MASK		((1ULL << TS_SHIFT) - 1)
 297#define TS_DELTA_TEST	(~TS_MASK)
 298
 299static u64 rb_event_time_stamp(struct ring_buffer_event *event)
 300{
 301	u64 ts;
 302
 303	ts = event->array[0];
 304	ts <<= TS_SHIFT;
 305	ts += event->time_delta;
 306
 307	return ts;
 308}
 309
 310/* Flag when events were overwritten */
 311#define RB_MISSED_EVENTS	(1 << 31)
 312/* Missed count stored at end */
 313#define RB_MISSED_STORED	(1 << 30)
 314
 
 
 315struct buffer_data_page {
 316	u64		 time_stamp;	/* page time stamp */
 317	local_t		 commit;	/* write committed index */
 318	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
 319};
 320
 321struct buffer_data_read_page {
 322	unsigned		order;	/* order of the page */
 323	struct buffer_data_page	*data;	/* actual data, stored in this page */
 324};
 325
 326/*
 327 * Note, the buffer_page list must be first. The buffer pages
 328 * are allocated in cache lines, which means that each buffer
 329 * page will be at the beginning of a cache line, and thus
 330 * the least significant bits will be zero. We use this to
 331 * add flags in the list struct pointers, to make the ring buffer
 332 * lockless.
 333 */
 334struct buffer_page {
 335	struct list_head list;		/* list of buffer pages */
 336	local_t		 write;		/* index for next write */
 337	unsigned	 read;		/* index for next read */
 338	local_t		 entries;	/* entries on this page */
 339	unsigned long	 real_end;	/* real end of data */
 340	unsigned	 order;		/* order of the page */
 
 
 341	struct buffer_data_page *page;	/* Actual data page */
 342};
 343
 344/*
 345 * The buffer page counters, write and entries, must be reset
 346 * atomically when crossing page boundaries. To synchronize this
 347 * update, two counters are inserted into the number. One is
 348 * the actual counter for the write position or count on the page.
 349 *
 350 * The other is a counter of updaters. Before an update happens
 351 * the update partition of the counter is incremented. This will
 352 * allow the updater to update the counter atomically.
 353 *
 354 * The counter is 20 bits, and the state data is 12.
 355 */
 356#define RB_WRITE_MASK		0xfffff
 357#define RB_WRITE_INTCNT		(1 << 20)
 358
 359static void rb_init_page(struct buffer_data_page *bpage)
 360{
 361	local_set(&bpage->commit, 0);
 362}
 363
 364static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
 365{
 366	return local_read(&bpage->page->commit);
 367}
 368
 369static void free_buffer_page(struct buffer_page *bpage)
 370{
 371	free_pages((unsigned long)bpage->page, bpage->order);
 
 
 372	kfree(bpage);
 373}
 374
 375/*
 376 * We need to fit the time_stamp delta into 27 bits.
 377 */
 378static inline bool test_time_stamp(u64 delta)
 379{
 380	return !!(delta & TS_DELTA_TEST);
 381}
 382
 383struct rb_irq_work {
 384	struct irq_work			work;
 385	wait_queue_head_t		waiters;
 386	wait_queue_head_t		full_waiters;
 
 387	bool				waiters_pending;
 388	bool				full_waiters_pending;
 389	bool				wakeup_full;
 390};
 391
 392/*
 393 * Structure to hold event state and handle nested events.
 394 */
 395struct rb_event_info {
 396	u64			ts;
 397	u64			delta;
 398	u64			before;
 399	u64			after;
 400	unsigned long		length;
 401	struct buffer_page	*tail_page;
 402	int			add_timestamp;
 403};
 404
 405/*
 406 * Used for the add_timestamp
 407 *  NONE
 408 *  EXTEND - wants a time extend
 409 *  ABSOLUTE - the buffer requests all events to have absolute time stamps
 410 *  FORCE - force a full time stamp.
 411 */
 412enum {
 413	RB_ADD_STAMP_NONE		= 0,
 414	RB_ADD_STAMP_EXTEND		= BIT(1),
 415	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
 416	RB_ADD_STAMP_FORCE		= BIT(3)
 417};
 418/*
 419 * Used for which event context the event is in.
 420 *  TRANSITION = 0
 421 *  NMI     = 1
 422 *  IRQ     = 2
 423 *  SOFTIRQ = 3
 424 *  NORMAL  = 4
 425 *
 426 * See trace_recursive_lock() comment below for more details.
 427 */
 428enum {
 429	RB_CTX_TRANSITION,
 430	RB_CTX_NMI,
 431	RB_CTX_IRQ,
 432	RB_CTX_SOFTIRQ,
 433	RB_CTX_NORMAL,
 434	RB_CTX_MAX
 435};
 436
 437struct rb_time_struct {
 438	local64_t	time;
 439};
 440typedef struct rb_time_struct rb_time_t;
 441
 442#define MAX_NEST	5
 443
 444/*
 445 * head_page == tail_page && head == tail then buffer is empty.
 446 */
 447struct ring_buffer_per_cpu {
 448	int				cpu;
 449	atomic_t			record_disabled;
 450	atomic_t			resize_disabled;
 451	struct trace_buffer	*buffer;
 452	raw_spinlock_t			reader_lock;	/* serialize readers */
 453	arch_spinlock_t			lock;
 454	struct lock_class_key		lock_key;
 455	struct buffer_data_page		*free_page;
 456	unsigned long			nr_pages;
 457	unsigned int			current_context;
 458	struct list_head		*pages;
 
 
 459	struct buffer_page		*head_page;	/* read from head */
 460	struct buffer_page		*tail_page;	/* write to tail */
 461	struct buffer_page		*commit_page;	/* committed pages */
 462	struct buffer_page		*reader_page;
 463	unsigned long			lost_events;
 464	unsigned long			last_overrun;
 465	unsigned long			nest;
 466	local_t				entries_bytes;
 467	local_t				entries;
 468	local_t				overrun;
 469	local_t				commit_overrun;
 470	local_t				dropped_events;
 471	local_t				committing;
 472	local_t				commits;
 473	local_t				pages_touched;
 474	local_t				pages_lost;
 475	local_t				pages_read;
 476	long				last_pages_touch;
 477	size_t				shortest_full;
 478	unsigned long			read;
 479	unsigned long			read_bytes;
 480	rb_time_t			write_stamp;
 481	rb_time_t			before_stamp;
 482	u64				event_stamp[MAX_NEST];
 483	u64				read_stamp;
 484	/* pages removed since last reset */
 485	unsigned long			pages_removed;
 
 
 
 
 
 
 
 
 486	/* ring buffer pages to update, > 0 to add, < 0 to remove */
 487	long				nr_pages_to_update;
 488	struct list_head		new_pages; /* new pages to add */
 489	struct work_struct		update_pages_work;
 490	struct completion		update_done;
 491
 492	struct rb_irq_work		irq_work;
 493};
 494
 495struct trace_buffer {
 496	unsigned			flags;
 497	int				cpus;
 498	atomic_t			record_disabled;
 499	atomic_t			resizing;
 500	cpumask_var_t			cpumask;
 501
 502	struct lock_class_key		*reader_lock_key;
 503
 504	struct mutex			mutex;
 505
 506	struct ring_buffer_per_cpu	**buffers;
 507
 508	struct hlist_node		node;
 509	u64				(*clock)(void);
 510
 511	struct rb_irq_work		irq_work;
 512	bool				time_stamp_abs;
 513
 
 
 
 
 
 
 514	unsigned int			subbuf_size;
 515	unsigned int			subbuf_order;
 516	unsigned int			max_data_size;
 517};
 518
 519struct ring_buffer_iter {
 520	struct ring_buffer_per_cpu	*cpu_buffer;
 521	unsigned long			head;
 522	unsigned long			next_event;
 523	struct buffer_page		*head_page;
 524	struct buffer_page		*cache_reader_page;
 525	unsigned long			cache_read;
 526	unsigned long			cache_pages_removed;
 527	u64				read_stamp;
 528	u64				page_stamp;
 529	struct ring_buffer_event	*event;
 530	size_t				event_size;
 531	int				missed_events;
 532};
 533
 534int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
 535{
 536	struct buffer_data_page field;
 537
 538	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 539			 "offset:0;\tsize:%u;\tsigned:%u;\n",
 540			 (unsigned int)sizeof(field.time_stamp),
 541			 (unsigned int)is_signed_type(u64));
 542
 543	trace_seq_printf(s, "\tfield: local_t commit;\t"
 544			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 545			 (unsigned int)offsetof(typeof(field), commit),
 546			 (unsigned int)sizeof(field.commit),
 547			 (unsigned int)is_signed_type(long));
 548
 549	trace_seq_printf(s, "\tfield: int overwrite;\t"
 550			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 551			 (unsigned int)offsetof(typeof(field), commit),
 552			 1,
 553			 (unsigned int)is_signed_type(long));
 554
 555	trace_seq_printf(s, "\tfield: char data;\t"
 556			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 557			 (unsigned int)offsetof(typeof(field), data),
 558			 (unsigned int)buffer->subbuf_size,
 559			 (unsigned int)is_signed_type(char));
 560
 561	return !trace_seq_has_overflowed(s);
 562}
 563
 564static inline void rb_time_read(rb_time_t *t, u64 *ret)
 565{
 566	*ret = local64_read(&t->time);
 567}
 568static void rb_time_set(rb_time_t *t, u64 val)
 569{
 570	local64_set(&t->time, val);
 571}
 572
 573/*
 574 * Enable this to make sure that the event passed to
 575 * ring_buffer_event_time_stamp() is not committed and also
 576 * is on the buffer that it passed in.
 577 */
 578//#define RB_VERIFY_EVENT
 579#ifdef RB_VERIFY_EVENT
 580static struct list_head *rb_list_head(struct list_head *list);
 581static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
 582			 void *event)
 583{
 584	struct buffer_page *page = cpu_buffer->commit_page;
 585	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
 586	struct list_head *next;
 587	long commit, write;
 588	unsigned long addr = (unsigned long)event;
 589	bool done = false;
 590	int stop = 0;
 591
 592	/* Make sure the event exists and is not committed yet */
 593	do {
 594		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
 595			done = true;
 596		commit = local_read(&page->page->commit);
 597		write = local_read(&page->write);
 598		if (addr >= (unsigned long)&page->page->data[commit] &&
 599		    addr < (unsigned long)&page->page->data[write])
 600			return;
 601
 602		next = rb_list_head(page->list.next);
 603		page = list_entry(next, struct buffer_page, list);
 604	} while (!done);
 605	WARN_ON_ONCE(1);
 606}
 607#else
 608static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
 609			 void *event)
 610{
 611}
 612#endif
 613
 614/*
 615 * The absolute time stamp drops the 5 MSBs and some clocks may
 616 * require them. The rb_fix_abs_ts() will take a previous full
 617 * time stamp, and add the 5 MSB of that time stamp on to the
 618 * saved absolute time stamp. Then they are compared in case of
 619 * the unlikely event that the latest time stamp incremented
 620 * the 5 MSB.
 621 */
 622static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
 623{
 624	if (save_ts & TS_MSB) {
 625		abs |= save_ts & TS_MSB;
 626		/* Check for overflow */
 627		if (unlikely(abs < save_ts))
 628			abs += 1ULL << 59;
 629	}
 630	return abs;
 631}
 632
 633static inline u64 rb_time_stamp(struct trace_buffer *buffer);
 634
 635/**
 636 * ring_buffer_event_time_stamp - return the event's current time stamp
 637 * @buffer: The buffer that the event is on
 638 * @event: the event to get the time stamp of
 639 *
 640 * Note, this must be called after @event is reserved, and before it is
 641 * committed to the ring buffer. And must be called from the same
 642 * context where the event was reserved (normal, softirq, irq, etc).
 643 *
 644 * Returns the time stamp associated with the current event.
 645 * If the event has an extended time stamp, then that is used as
 646 * the time stamp to return.
 647 * In the highly unlikely case that the event was nested more than
 648 * the max nesting, then the write_stamp of the buffer is returned,
 649 * otherwise  current time is returned, but that really neither of
 650 * the last two cases should ever happen.
 651 */
 652u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
 653				 struct ring_buffer_event *event)
 654{
 655	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
 656	unsigned int nest;
 657	u64 ts;
 658
 659	/* If the event includes an absolute time, then just use that */
 660	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
 661		ts = rb_event_time_stamp(event);
 662		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
 663	}
 664
 665	nest = local_read(&cpu_buffer->committing);
 666	verify_event(cpu_buffer, event);
 667	if (WARN_ON_ONCE(!nest))
 668		goto fail;
 669
 670	/* Read the current saved nesting level time stamp */
 671	if (likely(--nest < MAX_NEST))
 672		return cpu_buffer->event_stamp[nest];
 673
 674	/* Shouldn't happen, warn if it does */
 675	WARN_ONCE(1, "nest (%d) greater than max", nest);
 676
 677 fail:
 678	rb_time_read(&cpu_buffer->write_stamp, &ts);
 679
 680	return ts;
 681}
 682
 683/**
 684 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
 685 * @buffer: The ring_buffer to get the number of pages from
 686 * @cpu: The cpu of the ring_buffer to get the number of pages from
 687 *
 688 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
 689 */
 690size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
 691{
 692	return buffer->buffers[cpu]->nr_pages;
 693}
 694
 695/**
 696 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
 697 * @buffer: The ring_buffer to get the number of pages from
 698 * @cpu: The cpu of the ring_buffer to get the number of pages from
 699 *
 700 * Returns the number of pages that have content in the ring buffer.
 701 */
 702size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
 703{
 704	size_t read;
 705	size_t lost;
 706	size_t cnt;
 707
 708	read = local_read(&buffer->buffers[cpu]->pages_read);
 709	lost = local_read(&buffer->buffers[cpu]->pages_lost);
 710	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
 711
 712	if (WARN_ON_ONCE(cnt < lost))
 713		return 0;
 714
 715	cnt -= lost;
 716
 717	/* The reader can read an empty page, but not more than that */
 718	if (cnt < read) {
 719		WARN_ON_ONCE(read > cnt + 1);
 720		return 0;
 721	}
 722
 723	return cnt - read;
 724}
 725
 726static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
 727{
 728	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
 729	size_t nr_pages;
 730	size_t dirty;
 731
 732	nr_pages = cpu_buffer->nr_pages;
 733	if (!nr_pages || !full)
 734		return true;
 735
 736	/*
 737	 * Add one as dirty will never equal nr_pages, as the sub-buffer
 738	 * that the writer is on is not counted as dirty.
 739	 * This is needed if "buffer_percent" is set to 100.
 740	 */
 741	dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
 742
 743	return (dirty * 100) >= (full * nr_pages);
 744}
 745
 746/*
 747 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
 748 *
 749 * Schedules a delayed work to wake up any task that is blocked on the
 750 * ring buffer waiters queue.
 751 */
 752static void rb_wake_up_waiters(struct irq_work *work)
 753{
 754	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
 755
 
 
 
 756	wake_up_all(&rbwork->waiters);
 757	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
 758		/* Only cpu_buffer sets the above flags */
 759		struct ring_buffer_per_cpu *cpu_buffer =
 760			container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
 761
 762		/* Called from interrupt context */
 763		raw_spin_lock(&cpu_buffer->reader_lock);
 764		rbwork->wakeup_full = false;
 765		rbwork->full_waiters_pending = false;
 766
 767		/* Waking up all waiters, they will reset the shortest full */
 768		cpu_buffer->shortest_full = 0;
 769		raw_spin_unlock(&cpu_buffer->reader_lock);
 770
 771		wake_up_all(&rbwork->full_waiters);
 772	}
 773}
 774
 775/**
 776 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
 777 * @buffer: The ring buffer to wake waiters on
 778 * @cpu: The CPU buffer to wake waiters on
 779 *
 780 * In the case of a file that represents a ring buffer is closing,
 781 * it is prudent to wake up any waiters that are on this.
 782 */
 783void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
 784{
 785	struct ring_buffer_per_cpu *cpu_buffer;
 786	struct rb_irq_work *rbwork;
 787
 788	if (!buffer)
 789		return;
 790
 791	if (cpu == RING_BUFFER_ALL_CPUS) {
 792
 793		/* Wake up individual ones too. One level recursion */
 794		for_each_buffer_cpu(buffer, cpu)
 795			ring_buffer_wake_waiters(buffer, cpu);
 796
 797		rbwork = &buffer->irq_work;
 798	} else {
 799		if (WARN_ON_ONCE(!buffer->buffers))
 800			return;
 801		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
 802			return;
 803
 804		cpu_buffer = buffer->buffers[cpu];
 805		/* The CPU buffer may not have been initialized yet */
 806		if (!cpu_buffer)
 807			return;
 808		rbwork = &cpu_buffer->irq_work;
 809	}
 810
 811	/* This can be called in any context */
 812	irq_work_queue(&rbwork->work);
 813}
 814
 815static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
 816{
 817	struct ring_buffer_per_cpu *cpu_buffer;
 818	bool ret = false;
 819
 820	/* Reads of all CPUs always waits for any data */
 821	if (cpu == RING_BUFFER_ALL_CPUS)
 822		return !ring_buffer_empty(buffer);
 823
 824	cpu_buffer = buffer->buffers[cpu];
 825
 826	if (!ring_buffer_empty_cpu(buffer, cpu)) {
 827		unsigned long flags;
 828		bool pagebusy;
 829
 830		if (!full)
 831			return true;
 832
 833		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 834		pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
 835		ret = !pagebusy && full_hit(buffer, cpu, full);
 836
 837		if (!cpu_buffer->shortest_full ||
 838		    cpu_buffer->shortest_full > full)
 839			cpu_buffer->shortest_full = full;
 
 840		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
 841	}
 842	return ret;
 843}
 844
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 845/**
 846 * ring_buffer_wait - wait for input to the ring buffer
 847 * @buffer: buffer to wait on
 848 * @cpu: the cpu buffer to wait on
 849 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
 
 
 850 *
 851 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 852 * as data is added to any of the @buffer's cpu buffers. Otherwise
 853 * it will wait for data to be added to a specific cpu buffer.
 854 */
 855int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
 
 856{
 857	struct ring_buffer_per_cpu *cpu_buffer;
 858	DEFINE_WAIT(wait);
 859	struct rb_irq_work *work;
 
 860	int ret = 0;
 861
 862	/*
 863	 * Depending on what the caller is waiting for, either any
 864	 * data in any cpu buffer, or a specific buffer, put the
 865	 * caller on the appropriate wait queue.
 866	 */
 867	if (cpu == RING_BUFFER_ALL_CPUS) {
 868		work = &buffer->irq_work;
 869		/* Full only makes sense on per cpu reads */
 870		full = 0;
 871	} else {
 872		if (!cpumask_test_cpu(cpu, buffer->cpumask))
 873			return -ENODEV;
 874		cpu_buffer = buffer->buffers[cpu];
 875		work = &cpu_buffer->irq_work;
 876	}
 877
 878	if (full)
 879		prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
 880	else
 881		prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
 882
 883	/*
 884	 * The events can happen in critical sections where
 885	 * checking a work queue can cause deadlocks.
 886	 * After adding a task to the queue, this flag is set
 887	 * only to notify events to try to wake up the queue
 888	 * using irq_work.
 889	 *
 890	 * We don't clear it even if the buffer is no longer
 891	 * empty. The flag only causes the next event to run
 892	 * irq_work to do the work queue wake up. The worse
 893	 * that can happen if we race with !trace_empty() is that
 894	 * an event will cause an irq_work to try to wake up
 895	 * an empty queue.
 896	 *
 897	 * There's no reason to protect this flag either, as
 898	 * the work queue and irq_work logic will do the necessary
 899	 * synchronization for the wake ups. The only thing
 900	 * that is necessary is that the wake up happens after
 901	 * a task has been queued. It's OK for spurious wake ups.
 902	 */
 903	if (full)
 904		work->full_waiters_pending = true;
 905	else
 906		work->waiters_pending = true;
 907
 908	if (rb_watermark_hit(buffer, cpu, full))
 909		goto out;
 910
 911	if (signal_pending(current)) {
 912		ret = -EINTR;
 913		goto out;
 914	}
 915
 916	schedule();
 917 out:
 918	if (full)
 919		finish_wait(&work->full_waiters, &wait);
 920	else
 921		finish_wait(&work->waiters, &wait);
 922
 923	if (!ret && !rb_watermark_hit(buffer, cpu, full) && signal_pending(current))
 924		ret = -EINTR;
 925
 926	return ret;
 927}
 928
 929/**
 930 * ring_buffer_poll_wait - poll on buffer input
 931 * @buffer: buffer to wait on
 932 * @cpu: the cpu buffer to wait on
 933 * @filp: the file descriptor
 934 * @poll_table: The poll descriptor
 935 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
 936 *
 937 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 938 * as data is added to any of the @buffer's cpu buffers. Otherwise
 939 * it will wait for data to be added to a specific cpu buffer.
 940 *
 941 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
 942 * zero otherwise.
 943 */
 944__poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
 945			  struct file *filp, poll_table *poll_table, int full)
 946{
 947	struct ring_buffer_per_cpu *cpu_buffer;
 948	struct rb_irq_work *rbwork;
 949
 950	if (cpu == RING_BUFFER_ALL_CPUS) {
 951		rbwork = &buffer->irq_work;
 952		full = 0;
 953	} else {
 954		if (!cpumask_test_cpu(cpu, buffer->cpumask))
 955			return EPOLLERR;
 956
 957		cpu_buffer = buffer->buffers[cpu];
 958		rbwork = &cpu_buffer->irq_work;
 959	}
 960
 961	if (full) {
 962		unsigned long flags;
 963
 964		poll_wait(filp, &rbwork->full_waiters, poll_table);
 965
 966		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 967		rbwork->full_waiters_pending = true;
 968		if (!cpu_buffer->shortest_full ||
 969		    cpu_buffer->shortest_full > full)
 970			cpu_buffer->shortest_full = full;
 971		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
 972	} else {
 973		poll_wait(filp, &rbwork->waiters, poll_table);
 974		rbwork->waiters_pending = true;
 975	}
 976
 
 
 
 977	/*
 978	 * There's a tight race between setting the waiters_pending and
 979	 * checking if the ring buffer is empty.  Once the waiters_pending bit
 980	 * is set, the next event will wake the task up, but we can get stuck
 981	 * if there's only a single event in.
 982	 *
 983	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
 984	 * but adding a memory barrier to all events will cause too much of a
 985	 * performance hit in the fast path.  We only need a memory barrier when
 986	 * the buffer goes from empty to having content.  But as this race is
 987	 * extremely small, and it's not a problem if another event comes in, we
 988	 * will fix it later.
 989	 */
 990	smp_mb();
 991
 992	if (full)
 993		return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
 994
 995	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
 996	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
 997		return EPOLLIN | EPOLLRDNORM;
 998	return 0;
 999}
1000
1001/* buffer may be either ring_buffer or ring_buffer_per_cpu */
1002#define RB_WARN_ON(b, cond)						\
1003	({								\
1004		int _____ret = unlikely(cond);				\
1005		if (_____ret) {						\
1006			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1007				struct ring_buffer_per_cpu *__b =	\
1008					(void *)b;			\
1009				atomic_inc(&__b->buffer->record_disabled); \
1010			} else						\
1011				atomic_inc(&b->record_disabled);	\
1012			WARN_ON(1);					\
1013		}							\
1014		_____ret;						\
1015	})
1016
1017/* Up this if you want to test the TIME_EXTENTS and normalization */
1018#define DEBUG_SHIFT 0
1019
1020static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1021{
1022	u64 ts;
1023
1024	/* Skip retpolines :-( */
1025	if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1026		ts = trace_clock_local();
1027	else
1028		ts = buffer->clock();
1029
1030	/* shift to debug/test normalization and TIME_EXTENTS */
1031	return ts << DEBUG_SHIFT;
1032}
1033
1034u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1035{
1036	u64 time;
1037
1038	preempt_disable_notrace();
1039	time = rb_time_stamp(buffer);
1040	preempt_enable_notrace();
1041
1042	return time;
1043}
1044EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1045
1046void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1047				      int cpu, u64 *ts)
1048{
1049	/* Just stupid testing the normalize function and deltas */
1050	*ts >>= DEBUG_SHIFT;
1051}
1052EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1053
1054/*
1055 * Making the ring buffer lockless makes things tricky.
1056 * Although writes only happen on the CPU that they are on,
1057 * and they only need to worry about interrupts. Reads can
1058 * happen on any CPU.
1059 *
1060 * The reader page is always off the ring buffer, but when the
1061 * reader finishes with a page, it needs to swap its page with
1062 * a new one from the buffer. The reader needs to take from
1063 * the head (writes go to the tail). But if a writer is in overwrite
1064 * mode and wraps, it must push the head page forward.
1065 *
1066 * Here lies the problem.
1067 *
1068 * The reader must be careful to replace only the head page, and
1069 * not another one. As described at the top of the file in the
1070 * ASCII art, the reader sets its old page to point to the next
1071 * page after head. It then sets the page after head to point to
1072 * the old reader page. But if the writer moves the head page
1073 * during this operation, the reader could end up with the tail.
1074 *
1075 * We use cmpxchg to help prevent this race. We also do something
1076 * special with the page before head. We set the LSB to 1.
1077 *
1078 * When the writer must push the page forward, it will clear the
1079 * bit that points to the head page, move the head, and then set
1080 * the bit that points to the new head page.
1081 *
1082 * We also don't want an interrupt coming in and moving the head
1083 * page on another writer. Thus we use the second LSB to catch
1084 * that too. Thus:
1085 *
1086 * head->list->prev->next        bit 1          bit 0
1087 *                              -------        -------
1088 * Normal page                     0              0
1089 * Points to head page             0              1
1090 * New head page                   1              0
1091 *
1092 * Note we can not trust the prev pointer of the head page, because:
1093 *
1094 * +----+       +-----+        +-----+
1095 * |    |------>|  T  |---X--->|  N  |
1096 * |    |<------|     |        |     |
1097 * +----+       +-----+        +-----+
1098 *   ^                           ^ |
1099 *   |          +-----+          | |
1100 *   +----------|  R  |----------+ |
1101 *              |     |<-----------+
1102 *              +-----+
1103 *
1104 * Key:  ---X-->  HEAD flag set in pointer
1105 *         T      Tail page
1106 *         R      Reader page
1107 *         N      Next page
1108 *
1109 * (see __rb_reserve_next() to see where this happens)
1110 *
1111 *  What the above shows is that the reader just swapped out
1112 *  the reader page with a page in the buffer, but before it
1113 *  could make the new header point back to the new page added
1114 *  it was preempted by a writer. The writer moved forward onto
1115 *  the new page added by the reader and is about to move forward
1116 *  again.
1117 *
1118 *  You can see, it is legitimate for the previous pointer of
1119 *  the head (or any page) not to point back to itself. But only
1120 *  temporarily.
1121 */
1122
1123#define RB_PAGE_NORMAL		0UL
1124#define RB_PAGE_HEAD		1UL
1125#define RB_PAGE_UPDATE		2UL
1126
1127
1128#define RB_FLAG_MASK		3UL
1129
1130/* PAGE_MOVED is not part of the mask */
1131#define RB_PAGE_MOVED		4UL
1132
1133/*
1134 * rb_list_head - remove any bit
1135 */
1136static struct list_head *rb_list_head(struct list_head *list)
1137{
1138	unsigned long val = (unsigned long)list;
1139
1140	return (struct list_head *)(val & ~RB_FLAG_MASK);
1141}
1142
1143/*
1144 * rb_is_head_page - test if the given page is the head page
1145 *
1146 * Because the reader may move the head_page pointer, we can
1147 * not trust what the head page is (it may be pointing to
1148 * the reader page). But if the next page is a header page,
1149 * its flags will be non zero.
1150 */
1151static inline int
1152rb_is_head_page(struct buffer_page *page, struct list_head *list)
1153{
1154	unsigned long val;
1155
1156	val = (unsigned long)list->next;
1157
1158	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1159		return RB_PAGE_MOVED;
1160
1161	return val & RB_FLAG_MASK;
1162}
1163
1164/*
1165 * rb_is_reader_page
1166 *
1167 * The unique thing about the reader page, is that, if the
1168 * writer is ever on it, the previous pointer never points
1169 * back to the reader page.
1170 */
1171static bool rb_is_reader_page(struct buffer_page *page)
1172{
1173	struct list_head *list = page->list.prev;
1174
1175	return rb_list_head(list->next) != &page->list;
1176}
1177
1178/*
1179 * rb_set_list_to_head - set a list_head to be pointing to head.
1180 */
1181static void rb_set_list_to_head(struct list_head *list)
1182{
1183	unsigned long *ptr;
1184
1185	ptr = (unsigned long *)&list->next;
1186	*ptr |= RB_PAGE_HEAD;
1187	*ptr &= ~RB_PAGE_UPDATE;
1188}
1189
1190/*
1191 * rb_head_page_activate - sets up head page
1192 */
1193static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1194{
1195	struct buffer_page *head;
1196
1197	head = cpu_buffer->head_page;
1198	if (!head)
1199		return;
1200
1201	/*
1202	 * Set the previous list pointer to have the HEAD flag.
1203	 */
1204	rb_set_list_to_head(head->list.prev);
 
 
 
 
 
1205}
1206
1207static void rb_list_head_clear(struct list_head *list)
1208{
1209	unsigned long *ptr = (unsigned long *)&list->next;
1210
1211	*ptr &= ~RB_FLAG_MASK;
1212}
1213
1214/*
1215 * rb_head_page_deactivate - clears head page ptr (for free list)
1216 */
1217static void
1218rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1219{
1220	struct list_head *hd;
1221
1222	/* Go through the whole list and clear any pointers found. */
1223	rb_list_head_clear(cpu_buffer->pages);
1224
1225	list_for_each(hd, cpu_buffer->pages)
1226		rb_list_head_clear(hd);
1227}
1228
1229static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1230			    struct buffer_page *head,
1231			    struct buffer_page *prev,
1232			    int old_flag, int new_flag)
1233{
1234	struct list_head *list;
1235	unsigned long val = (unsigned long)&head->list;
1236	unsigned long ret;
1237
1238	list = &prev->list;
1239
1240	val &= ~RB_FLAG_MASK;
1241
1242	ret = cmpxchg((unsigned long *)&list->next,
1243		      val | old_flag, val | new_flag);
1244
1245	/* check if the reader took the page */
1246	if ((ret & ~RB_FLAG_MASK) != val)
1247		return RB_PAGE_MOVED;
1248
1249	return ret & RB_FLAG_MASK;
1250}
1251
1252static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1253				   struct buffer_page *head,
1254				   struct buffer_page *prev,
1255				   int old_flag)
1256{
1257	return rb_head_page_set(cpu_buffer, head, prev,
1258				old_flag, RB_PAGE_UPDATE);
1259}
1260
1261static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1262				 struct buffer_page *head,
1263				 struct buffer_page *prev,
1264				 int old_flag)
1265{
1266	return rb_head_page_set(cpu_buffer, head, prev,
1267				old_flag, RB_PAGE_HEAD);
1268}
1269
1270static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1271				   struct buffer_page *head,
1272				   struct buffer_page *prev,
1273				   int old_flag)
1274{
1275	return rb_head_page_set(cpu_buffer, head, prev,
1276				old_flag, RB_PAGE_NORMAL);
1277}
1278
1279static inline void rb_inc_page(struct buffer_page **bpage)
1280{
1281	struct list_head *p = rb_list_head((*bpage)->list.next);
1282
1283	*bpage = list_entry(p, struct buffer_page, list);
1284}
1285
1286static struct buffer_page *
1287rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1288{
1289	struct buffer_page *head;
1290	struct buffer_page *page;
1291	struct list_head *list;
1292	int i;
1293
1294	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1295		return NULL;
1296
1297	/* sanity check */
1298	list = cpu_buffer->pages;
1299	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1300		return NULL;
1301
1302	page = head = cpu_buffer->head_page;
1303	/*
1304	 * It is possible that the writer moves the header behind
1305	 * where we started, and we miss in one loop.
1306	 * A second loop should grab the header, but we'll do
1307	 * three loops just because I'm paranoid.
1308	 */
1309	for (i = 0; i < 3; i++) {
1310		do {
1311			if (rb_is_head_page(page, page->list.prev)) {
1312				cpu_buffer->head_page = page;
1313				return page;
1314			}
1315			rb_inc_page(&page);
1316		} while (page != head);
1317	}
1318
1319	RB_WARN_ON(cpu_buffer, 1);
1320
1321	return NULL;
1322}
1323
1324static bool rb_head_page_replace(struct buffer_page *old,
1325				struct buffer_page *new)
1326{
1327	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1328	unsigned long val;
1329
1330	val = *ptr & ~RB_FLAG_MASK;
1331	val |= RB_PAGE_HEAD;
1332
1333	return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1334}
1335
1336/*
1337 * rb_tail_page_update - move the tail page forward
1338 */
1339static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1340			       struct buffer_page *tail_page,
1341			       struct buffer_page *next_page)
1342{
1343	unsigned long old_entries;
1344	unsigned long old_write;
1345
1346	/*
1347	 * The tail page now needs to be moved forward.
1348	 *
1349	 * We need to reset the tail page, but without messing
1350	 * with possible erasing of data brought in by interrupts
1351	 * that have moved the tail page and are currently on it.
1352	 *
1353	 * We add a counter to the write field to denote this.
1354	 */
1355	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1356	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1357
1358	local_inc(&cpu_buffer->pages_touched);
1359	/*
1360	 * Just make sure we have seen our old_write and synchronize
1361	 * with any interrupts that come in.
1362	 */
1363	barrier();
1364
1365	/*
1366	 * If the tail page is still the same as what we think
1367	 * it is, then it is up to us to update the tail
1368	 * pointer.
1369	 */
1370	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1371		/* Zero the write counter */
1372		unsigned long val = old_write & ~RB_WRITE_MASK;
1373		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1374
1375		/*
1376		 * This will only succeed if an interrupt did
1377		 * not come in and change it. In which case, we
1378		 * do not want to modify it.
1379		 *
1380		 * We add (void) to let the compiler know that we do not care
1381		 * about the return value of these functions. We use the
1382		 * cmpxchg to only update if an interrupt did not already
1383		 * do it for us. If the cmpxchg fails, we don't care.
1384		 */
1385		(void)local_cmpxchg(&next_page->write, old_write, val);
1386		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1387
1388		/*
1389		 * No need to worry about races with clearing out the commit.
1390		 * it only can increment when a commit takes place. But that
1391		 * only happens in the outer most nested commit.
1392		 */
1393		local_set(&next_page->page->commit, 0);
1394
1395		/* Again, either we update tail_page or an interrupt does */
1396		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
 
1397	}
1398}
1399
1400static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1401			  struct buffer_page *bpage)
1402{
1403	unsigned long val = (unsigned long)bpage;
1404
1405	RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1406}
1407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1408/**
1409 * rb_check_pages - integrity check of buffer pages
1410 * @cpu_buffer: CPU buffer with pages to test
1411 *
1412 * As a safety measure we check to make sure the data pages have not
1413 * been corrupted.
1414 */
1415static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1416{
1417	struct list_head *head = rb_list_head(cpu_buffer->pages);
1418	struct list_head *tmp;
 
 
1419
1420	if (RB_WARN_ON(cpu_buffer,
1421			rb_list_head(rb_list_head(head->next)->prev) != head))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1422		return;
1423
1424	if (RB_WARN_ON(cpu_buffer,
1425			rb_list_head(rb_list_head(head->prev)->next) != head))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1426		return;
1427
1428	for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1429		if (RB_WARN_ON(cpu_buffer,
1430				rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1431			return;
 
 
 
 
 
1432
1433		if (RB_WARN_ON(cpu_buffer,
1434				rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1435			return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1436	}
1437}
1438
1439static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1440		long nr_pages, struct list_head *pages)
1441{
 
 
1442	struct buffer_page *bpage, *tmp;
1443	bool user_thread = current->mm != NULL;
1444	gfp_t mflags;
1445	long i;
1446
1447	/*
1448	 * Check if the available memory is there first.
1449	 * Note, si_mem_available() only gives us a rough estimate of available
1450	 * memory. It may not be accurate. But we don't care, we just want
1451	 * to prevent doing any allocation when it is obvious that it is
1452	 * not going to succeed.
1453	 */
1454	i = si_mem_available();
1455	if (i < nr_pages)
1456		return -ENOMEM;
1457
1458	/*
1459	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1460	 * gracefully without invoking oom-killer and the system is not
1461	 * destabilized.
1462	 */
1463	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1464
1465	/*
1466	 * If a user thread allocates too much, and si_mem_available()
1467	 * reports there's enough memory, even though there is not.
1468	 * Make sure the OOM killer kills this thread. This can happen
1469	 * even with RETRY_MAYFAIL because another task may be doing
1470	 * an allocation after this task has taken all memory.
1471	 * This is the task the OOM killer needs to take out during this
1472	 * loop, even if it was triggered by an allocation somewhere else.
1473	 */
1474	if (user_thread)
1475		set_current_oom_origin();
 
 
 
 
1476	for (i = 0; i < nr_pages; i++) {
1477		struct page *page;
1478
1479		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1480				    mflags, cpu_to_node(cpu_buffer->cpu));
1481		if (!bpage)
1482			goto free_pages;
1483
1484		rb_check_bpage(cpu_buffer, bpage);
1485
1486		list_add(&bpage->list, pages);
 
 
 
 
1487
1488		page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags,
1489					cpu_buffer->buffer->subbuf_order);
1490		if (!page)
1491			goto free_pages;
1492		bpage->page = page_address(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1493		bpage->order = cpu_buffer->buffer->subbuf_order;
1494		rb_init_page(bpage->page);
1495
1496		if (user_thread && fatal_signal_pending(current))
1497			goto free_pages;
1498	}
1499	if (user_thread)
1500		clear_current_oom_origin();
1501
1502	return 0;
1503
1504free_pages:
1505	list_for_each_entry_safe(bpage, tmp, pages, list) {
1506		list_del_init(&bpage->list);
1507		free_buffer_page(bpage);
1508	}
1509	if (user_thread)
1510		clear_current_oom_origin();
1511
1512	return -ENOMEM;
1513}
1514
1515static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1516			     unsigned long nr_pages)
1517{
1518	LIST_HEAD(pages);
1519
1520	WARN_ON(!nr_pages);
1521
1522	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1523		return -ENOMEM;
1524
1525	/*
1526	 * The ring buffer page list is a circular list that does not
1527	 * start and end with a list head. All page list items point to
1528	 * other pages.
1529	 */
1530	cpu_buffer->pages = pages.next;
1531	list_del(&pages);
1532
1533	cpu_buffer->nr_pages = nr_pages;
1534
1535	rb_check_pages(cpu_buffer);
1536
1537	return 0;
1538}
1539
1540static struct ring_buffer_per_cpu *
1541rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1542{
1543	struct ring_buffer_per_cpu *cpu_buffer;
 
1544	struct buffer_page *bpage;
1545	struct page *page;
1546	int ret;
1547
1548	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1549				  GFP_KERNEL, cpu_to_node(cpu));
1550	if (!cpu_buffer)
1551		return NULL;
1552
1553	cpu_buffer->cpu = cpu;
1554	cpu_buffer->buffer = buffer;
1555	raw_spin_lock_init(&cpu_buffer->reader_lock);
1556	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1557	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1558	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1559	init_completion(&cpu_buffer->update_done);
1560	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1561	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1562	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
 
1563
1564	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1565			    GFP_KERNEL, cpu_to_node(cpu));
1566	if (!bpage)
1567		goto fail_free_buffer;
1568
1569	rb_check_bpage(cpu_buffer, bpage);
1570
1571	cpu_buffer->reader_page = bpage;
1572
1573	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, cpu_buffer->buffer->subbuf_order);
1574	if (!page)
1575		goto fail_free_reader;
1576	bpage->page = page_address(page);
1577	rb_init_page(bpage->page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1578
1579	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1580	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1581
1582	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1583	if (ret < 0)
1584		goto fail_free_reader;
1585
1586	cpu_buffer->head_page
1587		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1588	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1589
1590	rb_head_page_activate(cpu_buffer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1591
1592	return cpu_buffer;
1593
1594 fail_free_reader:
1595	free_buffer_page(cpu_buffer->reader_page);
1596
1597 fail_free_buffer:
1598	kfree(cpu_buffer);
1599	return NULL;
1600}
1601
1602static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1603{
1604	struct list_head *head = cpu_buffer->pages;
1605	struct buffer_page *bpage, *tmp;
1606
1607	irq_work_sync(&cpu_buffer->irq_work.work);
1608
1609	free_buffer_page(cpu_buffer->reader_page);
1610
1611	if (head) {
1612		rb_head_page_deactivate(cpu_buffer);
1613
1614		list_for_each_entry_safe(bpage, tmp, head, list) {
1615			list_del_init(&bpage->list);
1616			free_buffer_page(bpage);
1617		}
1618		bpage = list_entry(head, struct buffer_page, list);
1619		free_buffer_page(bpage);
1620	}
1621
1622	free_page((unsigned long)cpu_buffer->free_page);
1623
1624	kfree(cpu_buffer);
1625}
1626
1627/**
1628 * __ring_buffer_alloc - allocate a new ring_buffer
1629 * @size: the size in bytes per cpu that is needed.
1630 * @flags: attributes to set for the ring buffer.
1631 * @key: ring buffer reader_lock_key.
1632 *
1633 * Currently the only flag that is available is the RB_FL_OVERWRITE
1634 * flag. This flag means that the buffer will overwrite old data
1635 * when the buffer wraps. If this flag is not set, the buffer will
1636 * drop data when the tail hits the head.
1637 */
1638struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1639					struct lock_class_key *key)
1640{
1641	struct trace_buffer *buffer;
1642	long nr_pages;
 
1643	int bsize;
1644	int cpu;
1645	int ret;
1646
1647	/* keep it in its own cache line */
1648	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1649			 GFP_KERNEL);
1650	if (!buffer)
1651		return NULL;
1652
1653	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1654		goto fail_free_buffer;
1655
1656	/* Default buffer page size - one system page */
1657	buffer->subbuf_order = 0;
1658	buffer->subbuf_size = PAGE_SIZE - BUF_PAGE_HDR_SIZE;
1659
1660	/* Max payload is buffer page size - header (8bytes) */
1661	buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
1662
1663	nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
1664	buffer->flags = flags;
1665	buffer->clock = trace_clock_local;
1666	buffer->reader_lock_key = key;
1667
1668	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1669	init_waitqueue_head(&buffer->irq_work.waiters);
1670
1671	/* need at least two pages */
1672	if (nr_pages < 2)
1673		nr_pages = 2;
1674
1675	buffer->cpus = nr_cpu_ids;
1676
1677	bsize = sizeof(void *) * nr_cpu_ids;
1678	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1679				  GFP_KERNEL);
1680	if (!buffer->buffers)
1681		goto fail_free_cpumask;
1682
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1683	cpu = raw_smp_processor_id();
1684	cpumask_set_cpu(cpu, buffer->cpumask);
1685	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1686	if (!buffer->buffers[cpu])
1687		goto fail_free_buffers;
1688
1689	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1690	if (ret < 0)
1691		goto fail_free_buffers;
1692
1693	mutex_init(&buffer->mutex);
1694
1695	return buffer;
1696
1697 fail_free_buffers:
1698	for_each_buffer_cpu(buffer, cpu) {
1699		if (buffer->buffers[cpu])
1700			rb_free_cpu_buffer(buffer->buffers[cpu]);
1701	}
1702	kfree(buffer->buffers);
1703
1704 fail_free_cpumask:
1705	free_cpumask_var(buffer->cpumask);
1706
1707 fail_free_buffer:
1708	kfree(buffer);
1709	return NULL;
1710}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1711EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1712
1713/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1714 * ring_buffer_free - free a ring buffer.
1715 * @buffer: the buffer to free.
1716 */
1717void
1718ring_buffer_free(struct trace_buffer *buffer)
1719{
1720	int cpu;
1721
1722	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1723
1724	irq_work_sync(&buffer->irq_work.work);
1725
1726	for_each_buffer_cpu(buffer, cpu)
1727		rb_free_cpu_buffer(buffer->buffers[cpu]);
1728
1729	kfree(buffer->buffers);
1730	free_cpumask_var(buffer->cpumask);
1731
1732	kfree(buffer);
1733}
1734EXPORT_SYMBOL_GPL(ring_buffer_free);
1735
1736void ring_buffer_set_clock(struct trace_buffer *buffer,
1737			   u64 (*clock)(void))
1738{
1739	buffer->clock = clock;
1740}
1741
1742void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1743{
1744	buffer->time_stamp_abs = abs;
1745}
1746
1747bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1748{
1749	return buffer->time_stamp_abs;
1750}
1751
1752static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1753
1754static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1755{
1756	return local_read(&bpage->entries) & RB_WRITE_MASK;
1757}
1758
1759static inline unsigned long rb_page_write(struct buffer_page *bpage)
1760{
1761	return local_read(&bpage->write) & RB_WRITE_MASK;
1762}
1763
1764static bool
1765rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1766{
1767	struct list_head *tail_page, *to_remove, *next_page;
1768	struct buffer_page *to_remove_page, *tmp_iter_page;
1769	struct buffer_page *last_page, *first_page;
1770	unsigned long nr_removed;
1771	unsigned long head_bit;
1772	int page_entries;
1773
1774	head_bit = 0;
1775
1776	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1777	atomic_inc(&cpu_buffer->record_disabled);
1778	/*
1779	 * We don't race with the readers since we have acquired the reader
1780	 * lock. We also don't race with writers after disabling recording.
1781	 * This makes it easy to figure out the first and the last page to be
1782	 * removed from the list. We unlink all the pages in between including
1783	 * the first and last pages. This is done in a busy loop so that we
1784	 * lose the least number of traces.
1785	 * The pages are freed after we restart recording and unlock readers.
1786	 */
1787	tail_page = &cpu_buffer->tail_page->list;
1788
1789	/*
1790	 * tail page might be on reader page, we remove the next page
1791	 * from the ring buffer
1792	 */
1793	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1794		tail_page = rb_list_head(tail_page->next);
1795	to_remove = tail_page;
1796
1797	/* start of pages to remove */
1798	first_page = list_entry(rb_list_head(to_remove->next),
1799				struct buffer_page, list);
1800
1801	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1802		to_remove = rb_list_head(to_remove)->next;
1803		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1804	}
1805	/* Read iterators need to reset themselves when some pages removed */
1806	cpu_buffer->pages_removed += nr_removed;
1807
1808	next_page = rb_list_head(to_remove)->next;
1809
1810	/*
1811	 * Now we remove all pages between tail_page and next_page.
1812	 * Make sure that we have head_bit value preserved for the
1813	 * next page
1814	 */
1815	tail_page->next = (struct list_head *)((unsigned long)next_page |
1816						head_bit);
1817	next_page = rb_list_head(next_page);
1818	next_page->prev = tail_page;
1819
1820	/* make sure pages points to a valid page in the ring buffer */
1821	cpu_buffer->pages = next_page;
 
1822
1823	/* update head page */
1824	if (head_bit)
1825		cpu_buffer->head_page = list_entry(next_page,
1826						struct buffer_page, list);
1827
1828	/* pages are removed, resume tracing and then free the pages */
1829	atomic_dec(&cpu_buffer->record_disabled);
1830	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1831
1832	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1833
1834	/* last buffer page to remove */
1835	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1836				list);
1837	tmp_iter_page = first_page;
1838
1839	do {
1840		cond_resched();
1841
1842		to_remove_page = tmp_iter_page;
1843		rb_inc_page(&tmp_iter_page);
1844
1845		/* update the counters */
1846		page_entries = rb_page_entries(to_remove_page);
1847		if (page_entries) {
1848			/*
1849			 * If something was added to this page, it was full
1850			 * since it is not the tail page. So we deduct the
1851			 * bytes consumed in ring buffer from here.
1852			 * Increment overrun to account for the lost events.
1853			 */
1854			local_add(page_entries, &cpu_buffer->overrun);
1855			local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
1856			local_inc(&cpu_buffer->pages_lost);
1857		}
1858
1859		/*
1860		 * We have already removed references to this list item, just
1861		 * free up the buffer_page and its page
1862		 */
1863		free_buffer_page(to_remove_page);
1864		nr_removed--;
1865
1866	} while (to_remove_page != last_page);
1867
1868	RB_WARN_ON(cpu_buffer, nr_removed);
1869
1870	return nr_removed == 0;
1871}
1872
1873static bool
1874rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1875{
1876	struct list_head *pages = &cpu_buffer->new_pages;
1877	unsigned long flags;
1878	bool success;
1879	int retries;
1880
1881	/* Can be called at early boot up, where interrupts must not been enabled */
1882	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1883	/*
1884	 * We are holding the reader lock, so the reader page won't be swapped
1885	 * in the ring buffer. Now we are racing with the writer trying to
1886	 * move head page and the tail page.
1887	 * We are going to adapt the reader page update process where:
1888	 * 1. We first splice the start and end of list of new pages between
1889	 *    the head page and its previous page.
1890	 * 2. We cmpxchg the prev_page->next to point from head page to the
1891	 *    start of new pages list.
1892	 * 3. Finally, we update the head->prev to the end of new list.
1893	 *
1894	 * We will try this process 10 times, to make sure that we don't keep
1895	 * spinning.
1896	 */
1897	retries = 10;
1898	success = false;
1899	while (retries--) {
1900		struct list_head *head_page, *prev_page;
1901		struct list_head *last_page, *first_page;
1902		struct list_head *head_page_with_bit;
1903		struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
1904
1905		if (!hpage)
1906			break;
1907		head_page = &hpage->list;
1908		prev_page = head_page->prev;
1909
1910		first_page = pages->next;
1911		last_page  = pages->prev;
1912
1913		head_page_with_bit = (struct list_head *)
1914				     ((unsigned long)head_page | RB_PAGE_HEAD);
1915
1916		last_page->next = head_page_with_bit;
1917		first_page->prev = prev_page;
1918
1919		/* caution: head_page_with_bit gets updated on cmpxchg failure */
1920		if (try_cmpxchg(&prev_page->next,
1921				&head_page_with_bit, first_page)) {
1922			/*
1923			 * yay, we replaced the page pointer to our new list,
1924			 * now, we just have to update to head page's prev
1925			 * pointer to point to end of list
1926			 */
1927			head_page->prev = last_page;
 
1928			success = true;
1929			break;
1930		}
1931	}
1932
1933	if (success)
1934		INIT_LIST_HEAD(pages);
1935	/*
1936	 * If we weren't successful in adding in new pages, warn and stop
1937	 * tracing
1938	 */
1939	RB_WARN_ON(cpu_buffer, !success);
1940	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1941
1942	/* free pages if they weren't inserted */
1943	if (!success) {
1944		struct buffer_page *bpage, *tmp;
1945		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1946					 list) {
1947			list_del_init(&bpage->list);
1948			free_buffer_page(bpage);
1949		}
1950	}
1951	return success;
1952}
1953
1954static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1955{
1956	bool success;
1957
1958	if (cpu_buffer->nr_pages_to_update > 0)
1959		success = rb_insert_pages(cpu_buffer);
1960	else
1961		success = rb_remove_pages(cpu_buffer,
1962					-cpu_buffer->nr_pages_to_update);
1963
1964	if (success)
1965		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1966}
1967
1968static void update_pages_handler(struct work_struct *work)
1969{
1970	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1971			struct ring_buffer_per_cpu, update_pages_work);
1972	rb_update_pages(cpu_buffer);
1973	complete(&cpu_buffer->update_done);
1974}
1975
1976/**
1977 * ring_buffer_resize - resize the ring buffer
1978 * @buffer: the buffer to resize.
1979 * @size: the new size.
1980 * @cpu_id: the cpu buffer to resize
1981 *
1982 * Minimum size is 2 * buffer->subbuf_size.
1983 *
1984 * Returns 0 on success and < 0 on failure.
1985 */
1986int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
1987			int cpu_id)
1988{
1989	struct ring_buffer_per_cpu *cpu_buffer;
1990	unsigned long nr_pages;
1991	int cpu, err;
1992
1993	/*
1994	 * Always succeed at resizing a non-existent buffer:
1995	 */
1996	if (!buffer)
1997		return 0;
1998
1999	/* Make sure the requested buffer exists */
2000	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2001	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2002		return 0;
2003
2004	nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2005
2006	/* we need a minimum of two pages */
2007	if (nr_pages < 2)
2008		nr_pages = 2;
2009
2010	/* prevent another thread from changing buffer sizes */
2011	mutex_lock(&buffer->mutex);
2012	atomic_inc(&buffer->resizing);
2013
2014	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2015		/*
2016		 * Don't succeed if resizing is disabled, as a reader might be
2017		 * manipulating the ring buffer and is expecting a sane state while
2018		 * this is true.
2019		 */
2020		for_each_buffer_cpu(buffer, cpu) {
2021			cpu_buffer = buffer->buffers[cpu];
2022			if (atomic_read(&cpu_buffer->resize_disabled)) {
2023				err = -EBUSY;
2024				goto out_err_unlock;
2025			}
2026		}
2027
2028		/* calculate the pages to update */
2029		for_each_buffer_cpu(buffer, cpu) {
2030			cpu_buffer = buffer->buffers[cpu];
2031
2032			cpu_buffer->nr_pages_to_update = nr_pages -
2033							cpu_buffer->nr_pages;
2034			/*
2035			 * nothing more to do for removing pages or no update
2036			 */
2037			if (cpu_buffer->nr_pages_to_update <= 0)
2038				continue;
2039			/*
2040			 * to add pages, make sure all new pages can be
2041			 * allocated without receiving ENOMEM
2042			 */
2043			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2044			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2045						&cpu_buffer->new_pages)) {
2046				/* not enough memory for new pages */
2047				err = -ENOMEM;
2048				goto out_err;
2049			}
2050
2051			cond_resched();
2052		}
2053
2054		cpus_read_lock();
2055		/*
2056		 * Fire off all the required work handlers
2057		 * We can't schedule on offline CPUs, but it's not necessary
2058		 * since we can change their buffer sizes without any race.
2059		 */
2060		for_each_buffer_cpu(buffer, cpu) {
2061			cpu_buffer = buffer->buffers[cpu];
2062			if (!cpu_buffer->nr_pages_to_update)
2063				continue;
2064
2065			/* Can't run something on an offline CPU. */
2066			if (!cpu_online(cpu)) {
2067				rb_update_pages(cpu_buffer);
2068				cpu_buffer->nr_pages_to_update = 0;
2069			} else {
2070				/* Run directly if possible. */
2071				migrate_disable();
2072				if (cpu != smp_processor_id()) {
2073					migrate_enable();
2074					schedule_work_on(cpu,
2075							 &cpu_buffer->update_pages_work);
2076				} else {
2077					update_pages_handler(&cpu_buffer->update_pages_work);
2078					migrate_enable();
2079				}
2080			}
2081		}
2082
2083		/* wait for all the updates to complete */
2084		for_each_buffer_cpu(buffer, cpu) {
2085			cpu_buffer = buffer->buffers[cpu];
2086			if (!cpu_buffer->nr_pages_to_update)
2087				continue;
2088
2089			if (cpu_online(cpu))
2090				wait_for_completion(&cpu_buffer->update_done);
2091			cpu_buffer->nr_pages_to_update = 0;
2092		}
2093
2094		cpus_read_unlock();
2095	} else {
2096		cpu_buffer = buffer->buffers[cpu_id];
2097
2098		if (nr_pages == cpu_buffer->nr_pages)
2099			goto out;
2100
2101		/*
2102		 * Don't succeed if resizing is disabled, as a reader might be
2103		 * manipulating the ring buffer and is expecting a sane state while
2104		 * this is true.
2105		 */
2106		if (atomic_read(&cpu_buffer->resize_disabled)) {
2107			err = -EBUSY;
2108			goto out_err_unlock;
2109		}
2110
2111		cpu_buffer->nr_pages_to_update = nr_pages -
2112						cpu_buffer->nr_pages;
2113
2114		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2115		if (cpu_buffer->nr_pages_to_update > 0 &&
2116			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2117					    &cpu_buffer->new_pages)) {
2118			err = -ENOMEM;
2119			goto out_err;
2120		}
2121
2122		cpus_read_lock();
2123
2124		/* Can't run something on an offline CPU. */
2125		if (!cpu_online(cpu_id))
2126			rb_update_pages(cpu_buffer);
2127		else {
2128			/* Run directly if possible. */
2129			migrate_disable();
2130			if (cpu_id == smp_processor_id()) {
2131				rb_update_pages(cpu_buffer);
2132				migrate_enable();
2133			} else {
2134				migrate_enable();
2135				schedule_work_on(cpu_id,
2136						 &cpu_buffer->update_pages_work);
2137				wait_for_completion(&cpu_buffer->update_done);
2138			}
2139		}
2140
2141		cpu_buffer->nr_pages_to_update = 0;
2142		cpus_read_unlock();
2143	}
2144
2145 out:
2146	/*
2147	 * The ring buffer resize can happen with the ring buffer
2148	 * enabled, so that the update disturbs the tracing as little
2149	 * as possible. But if the buffer is disabled, we do not need
2150	 * to worry about that, and we can take the time to verify
2151	 * that the buffer is not corrupt.
2152	 */
2153	if (atomic_read(&buffer->record_disabled)) {
2154		atomic_inc(&buffer->record_disabled);
2155		/*
2156		 * Even though the buffer was disabled, we must make sure
2157		 * that it is truly disabled before calling rb_check_pages.
2158		 * There could have been a race between checking
2159		 * record_disable and incrementing it.
2160		 */
2161		synchronize_rcu();
2162		for_each_buffer_cpu(buffer, cpu) {
2163			cpu_buffer = buffer->buffers[cpu];
2164			rb_check_pages(cpu_buffer);
2165		}
2166		atomic_dec(&buffer->record_disabled);
2167	}
2168
2169	atomic_dec(&buffer->resizing);
2170	mutex_unlock(&buffer->mutex);
2171	return 0;
2172
2173 out_err:
2174	for_each_buffer_cpu(buffer, cpu) {
2175		struct buffer_page *bpage, *tmp;
2176
2177		cpu_buffer = buffer->buffers[cpu];
2178		cpu_buffer->nr_pages_to_update = 0;
2179
2180		if (list_empty(&cpu_buffer->new_pages))
2181			continue;
2182
2183		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2184					list) {
2185			list_del_init(&bpage->list);
2186			free_buffer_page(bpage);
2187		}
2188	}
2189 out_err_unlock:
2190	atomic_dec(&buffer->resizing);
2191	mutex_unlock(&buffer->mutex);
2192	return err;
2193}
2194EXPORT_SYMBOL_GPL(ring_buffer_resize);
2195
2196void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2197{
2198	mutex_lock(&buffer->mutex);
2199	if (val)
2200		buffer->flags |= RB_FL_OVERWRITE;
2201	else
2202		buffer->flags &= ~RB_FL_OVERWRITE;
2203	mutex_unlock(&buffer->mutex);
2204}
2205EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2206
2207static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2208{
2209	return bpage->page->data + index;
2210}
2211
2212static __always_inline struct ring_buffer_event *
2213rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2214{
2215	return __rb_page_index(cpu_buffer->reader_page,
2216			       cpu_buffer->reader_page->read);
2217}
2218
2219static struct ring_buffer_event *
2220rb_iter_head_event(struct ring_buffer_iter *iter)
2221{
2222	struct ring_buffer_event *event;
2223	struct buffer_page *iter_head_page = iter->head_page;
2224	unsigned long commit;
2225	unsigned length;
2226
2227	if (iter->head != iter->next_event)
2228		return iter->event;
2229
2230	/*
2231	 * When the writer goes across pages, it issues a cmpxchg which
2232	 * is a mb(), which will synchronize with the rmb here.
2233	 * (see rb_tail_page_update() and __rb_reserve_next())
2234	 */
2235	commit = rb_page_commit(iter_head_page);
2236	smp_rmb();
2237
2238	/* An event needs to be at least 8 bytes in size */
2239	if (iter->head > commit - 8)
2240		goto reset;
2241
2242	event = __rb_page_index(iter_head_page, iter->head);
2243	length = rb_event_length(event);
2244
2245	/*
2246	 * READ_ONCE() doesn't work on functions and we don't want the
2247	 * compiler doing any crazy optimizations with length.
2248	 */
2249	barrier();
2250
2251	if ((iter->head + length) > commit || length > iter->event_size)
2252		/* Writer corrupted the read? */
2253		goto reset;
2254
2255	memcpy(iter->event, event, length);
2256	/*
2257	 * If the page stamp is still the same after this rmb() then the
2258	 * event was safely copied without the writer entering the page.
2259	 */
2260	smp_rmb();
2261
2262	/* Make sure the page didn't change since we read this */
2263	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2264	    commit > rb_page_commit(iter_head_page))
2265		goto reset;
2266
2267	iter->next_event = iter->head + length;
2268	return iter->event;
2269 reset:
2270	/* Reset to the beginning */
2271	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2272	iter->head = 0;
2273	iter->next_event = 0;
2274	iter->missed_events = 1;
2275	return NULL;
2276}
2277
2278/* Size is determined by what has been committed */
2279static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2280{
2281	return rb_page_commit(bpage);
2282}
2283
2284static __always_inline unsigned
2285rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2286{
2287	return rb_page_commit(cpu_buffer->commit_page);
2288}
2289
2290static __always_inline unsigned
2291rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
2292{
2293	unsigned long addr = (unsigned long)event;
2294
2295	addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
2296
2297	return addr - BUF_PAGE_HDR_SIZE;
2298}
2299
2300static void rb_inc_iter(struct ring_buffer_iter *iter)
2301{
2302	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2303
2304	/*
2305	 * The iterator could be on the reader page (it starts there).
2306	 * But the head could have moved, since the reader was
2307	 * found. Check for this case and assign the iterator
2308	 * to the head page instead of next.
2309	 */
2310	if (iter->head_page == cpu_buffer->reader_page)
2311		iter->head_page = rb_set_head_page(cpu_buffer);
2312	else
2313		rb_inc_page(&iter->head_page);
2314
2315	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2316	iter->head = 0;
2317	iter->next_event = 0;
2318}
2319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2320/*
2321 * rb_handle_head_page - writer hit the head page
2322 *
2323 * Returns: +1 to retry page
2324 *           0 to continue
2325 *          -1 on error
2326 */
2327static int
2328rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2329		    struct buffer_page *tail_page,
2330		    struct buffer_page *next_page)
2331{
2332	struct buffer_page *new_head;
2333	int entries;
2334	int type;
2335	int ret;
2336
2337	entries = rb_page_entries(next_page);
2338
2339	/*
2340	 * The hard part is here. We need to move the head
2341	 * forward, and protect against both readers on
2342	 * other CPUs and writers coming in via interrupts.
2343	 */
2344	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2345				       RB_PAGE_HEAD);
2346
2347	/*
2348	 * type can be one of four:
2349	 *  NORMAL - an interrupt already moved it for us
2350	 *  HEAD   - we are the first to get here.
2351	 *  UPDATE - we are the interrupt interrupting
2352	 *           a current move.
2353	 *  MOVED  - a reader on another CPU moved the next
2354	 *           pointer to its reader page. Give up
2355	 *           and try again.
2356	 */
2357
2358	switch (type) {
2359	case RB_PAGE_HEAD:
2360		/*
2361		 * We changed the head to UPDATE, thus
2362		 * it is our responsibility to update
2363		 * the counters.
2364		 */
2365		local_add(entries, &cpu_buffer->overrun);
2366		local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
2367		local_inc(&cpu_buffer->pages_lost);
2368
 
 
2369		/*
2370		 * The entries will be zeroed out when we move the
2371		 * tail page.
2372		 */
2373
2374		/* still more to do */
2375		break;
2376
2377	case RB_PAGE_UPDATE:
2378		/*
2379		 * This is an interrupt that interrupt the
2380		 * previous update. Still more to do.
2381		 */
2382		break;
2383	case RB_PAGE_NORMAL:
2384		/*
2385		 * An interrupt came in before the update
2386		 * and processed this for us.
2387		 * Nothing left to do.
2388		 */
2389		return 1;
2390	case RB_PAGE_MOVED:
2391		/*
2392		 * The reader is on another CPU and just did
2393		 * a swap with our next_page.
2394		 * Try again.
2395		 */
2396		return 1;
2397	default:
2398		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2399		return -1;
2400	}
2401
2402	/*
2403	 * Now that we are here, the old head pointer is
2404	 * set to UPDATE. This will keep the reader from
2405	 * swapping the head page with the reader page.
2406	 * The reader (on another CPU) will spin till
2407	 * we are finished.
2408	 *
2409	 * We just need to protect against interrupts
2410	 * doing the job. We will set the next pointer
2411	 * to HEAD. After that, we set the old pointer
2412	 * to NORMAL, but only if it was HEAD before.
2413	 * otherwise we are an interrupt, and only
2414	 * want the outer most commit to reset it.
2415	 */
2416	new_head = next_page;
2417	rb_inc_page(&new_head);
2418
2419	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2420				    RB_PAGE_NORMAL);
2421
2422	/*
2423	 * Valid returns are:
2424	 *  HEAD   - an interrupt came in and already set it.
2425	 *  NORMAL - One of two things:
2426	 *            1) We really set it.
2427	 *            2) A bunch of interrupts came in and moved
2428	 *               the page forward again.
2429	 */
2430	switch (ret) {
2431	case RB_PAGE_HEAD:
2432	case RB_PAGE_NORMAL:
2433		/* OK */
2434		break;
2435	default:
2436		RB_WARN_ON(cpu_buffer, 1);
2437		return -1;
2438	}
2439
2440	/*
2441	 * It is possible that an interrupt came in,
2442	 * set the head up, then more interrupts came in
2443	 * and moved it again. When we get back here,
2444	 * the page would have been set to NORMAL but we
2445	 * just set it back to HEAD.
2446	 *
2447	 * How do you detect this? Well, if that happened
2448	 * the tail page would have moved.
2449	 */
2450	if (ret == RB_PAGE_NORMAL) {
2451		struct buffer_page *buffer_tail_page;
2452
2453		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2454		/*
2455		 * If the tail had moved passed next, then we need
2456		 * to reset the pointer.
2457		 */
2458		if (buffer_tail_page != tail_page &&
2459		    buffer_tail_page != next_page)
2460			rb_head_page_set_normal(cpu_buffer, new_head,
2461						next_page,
2462						RB_PAGE_HEAD);
2463	}
2464
2465	/*
2466	 * If this was the outer most commit (the one that
2467	 * changed the original pointer from HEAD to UPDATE),
2468	 * then it is up to us to reset it to NORMAL.
2469	 */
2470	if (type == RB_PAGE_HEAD) {
2471		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2472					      tail_page,
2473					      RB_PAGE_UPDATE);
2474		if (RB_WARN_ON(cpu_buffer,
2475			       ret != RB_PAGE_UPDATE))
2476			return -1;
2477	}
2478
2479	return 0;
2480}
2481
2482static inline void
2483rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2484	      unsigned long tail, struct rb_event_info *info)
2485{
2486	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
2487	struct buffer_page *tail_page = info->tail_page;
2488	struct ring_buffer_event *event;
2489	unsigned long length = info->length;
2490
2491	/*
2492	 * Only the event that crossed the page boundary
2493	 * must fill the old tail_page with padding.
2494	 */
2495	if (tail >= bsize) {
2496		/*
2497		 * If the page was filled, then we still need
2498		 * to update the real_end. Reset it to zero
2499		 * and the reader will ignore it.
2500		 */
2501		if (tail == bsize)
2502			tail_page->real_end = 0;
2503
2504		local_sub(length, &tail_page->write);
2505		return;
2506	}
2507
2508	event = __rb_page_index(tail_page, tail);
2509
2510	/*
2511	 * Save the original length to the meta data.
2512	 * This will be used by the reader to add lost event
2513	 * counter.
2514	 */
2515	tail_page->real_end = tail;
2516
2517	/*
2518	 * If this event is bigger than the minimum size, then
2519	 * we need to be careful that we don't subtract the
2520	 * write counter enough to allow another writer to slip
2521	 * in on this page.
2522	 * We put in a discarded commit instead, to make sure
2523	 * that this space is not used again, and this space will
2524	 * not be accounted into 'entries_bytes'.
2525	 *
2526	 * If we are less than the minimum size, we don't need to
2527	 * worry about it.
2528	 */
2529	if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
2530		/* No room for any events */
2531
2532		/* Mark the rest of the page with padding */
2533		rb_event_set_padding(event);
2534
2535		/* Make sure the padding is visible before the write update */
2536		smp_wmb();
2537
2538		/* Set the write back to the previous setting */
2539		local_sub(length, &tail_page->write);
2540		return;
2541	}
2542
2543	/* Put in a discarded event */
2544	event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
2545	event->type_len = RINGBUF_TYPE_PADDING;
2546	/* time delta must be non zero */
2547	event->time_delta = 1;
2548
2549	/* account for padding bytes */
2550	local_add(bsize - tail, &cpu_buffer->entries_bytes);
2551
2552	/* Make sure the padding is visible before the tail_page->write update */
2553	smp_wmb();
2554
2555	/* Set write to end of buffer */
2556	length = (tail + length) - bsize;
2557	local_sub(length, &tail_page->write);
2558}
2559
2560static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2561
2562/*
2563 * This is the slow path, force gcc not to inline it.
2564 */
2565static noinline struct ring_buffer_event *
2566rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2567	     unsigned long tail, struct rb_event_info *info)
2568{
2569	struct buffer_page *tail_page = info->tail_page;
2570	struct buffer_page *commit_page = cpu_buffer->commit_page;
2571	struct trace_buffer *buffer = cpu_buffer->buffer;
2572	struct buffer_page *next_page;
2573	int ret;
2574
2575	next_page = tail_page;
2576
2577	rb_inc_page(&next_page);
2578
2579	/*
2580	 * If for some reason, we had an interrupt storm that made
2581	 * it all the way around the buffer, bail, and warn
2582	 * about it.
2583	 */
2584	if (unlikely(next_page == commit_page)) {
2585		local_inc(&cpu_buffer->commit_overrun);
2586		goto out_reset;
2587	}
2588
2589	/*
2590	 * This is where the fun begins!
2591	 *
2592	 * We are fighting against races between a reader that
2593	 * could be on another CPU trying to swap its reader
2594	 * page with the buffer head.
2595	 *
2596	 * We are also fighting against interrupts coming in and
2597	 * moving the head or tail on us as well.
2598	 *
2599	 * If the next page is the head page then we have filled
2600	 * the buffer, unless the commit page is still on the
2601	 * reader page.
2602	 */
2603	if (rb_is_head_page(next_page, &tail_page->list)) {
2604
2605		/*
2606		 * If the commit is not on the reader page, then
2607		 * move the header page.
2608		 */
2609		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2610			/*
2611			 * If we are not in overwrite mode,
2612			 * this is easy, just stop here.
2613			 */
2614			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2615				local_inc(&cpu_buffer->dropped_events);
2616				goto out_reset;
2617			}
2618
2619			ret = rb_handle_head_page(cpu_buffer,
2620						  tail_page,
2621						  next_page);
2622			if (ret < 0)
2623				goto out_reset;
2624			if (ret)
2625				goto out_again;
2626		} else {
2627			/*
2628			 * We need to be careful here too. The
2629			 * commit page could still be on the reader
2630			 * page. We could have a small buffer, and
2631			 * have filled up the buffer with events
2632			 * from interrupts and such, and wrapped.
2633			 *
2634			 * Note, if the tail page is also on the
2635			 * reader_page, we let it move out.
2636			 */
2637			if (unlikely((cpu_buffer->commit_page !=
2638				      cpu_buffer->tail_page) &&
2639				     (cpu_buffer->commit_page ==
2640				      cpu_buffer->reader_page))) {
2641				local_inc(&cpu_buffer->commit_overrun);
2642				goto out_reset;
2643			}
2644		}
2645	}
2646
2647	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2648
2649 out_again:
2650
2651	rb_reset_tail(cpu_buffer, tail, info);
2652
2653	/* Commit what we have for now. */
2654	rb_end_commit(cpu_buffer);
2655	/* rb_end_commit() decs committing */
2656	local_inc(&cpu_buffer->committing);
2657
2658	/* fail and let the caller try again */
2659	return ERR_PTR(-EAGAIN);
2660
2661 out_reset:
2662	/* reset write */
2663	rb_reset_tail(cpu_buffer, tail, info);
2664
2665	return NULL;
2666}
2667
2668/* Slow path */
2669static struct ring_buffer_event *
2670rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2671		  struct ring_buffer_event *event, u64 delta, bool abs)
2672{
2673	if (abs)
2674		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2675	else
2676		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2677
2678	/* Not the first event on the page, or not delta? */
2679	if (abs || rb_event_index(cpu_buffer, event)) {
2680		event->time_delta = delta & TS_MASK;
2681		event->array[0] = delta >> TS_SHIFT;
2682	} else {
2683		/* nope, just zero it */
2684		event->time_delta = 0;
2685		event->array[0] = 0;
2686	}
2687
2688	return skip_time_extend(event);
2689}
2690
2691#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2692static inline bool sched_clock_stable(void)
2693{
2694	return true;
2695}
2696#endif
2697
2698static void
2699rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2700		   struct rb_event_info *info)
2701{
2702	u64 write_stamp;
2703
2704	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2705		  (unsigned long long)info->delta,
2706		  (unsigned long long)info->ts,
2707		  (unsigned long long)info->before,
2708		  (unsigned long long)info->after,
2709		  (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
2710		  sched_clock_stable() ? "" :
2711		  "If you just came from a suspend/resume,\n"
2712		  "please switch to the trace global clock:\n"
2713		  "  echo global > /sys/kernel/tracing/trace_clock\n"
2714		  "or add trace_clock=global to the kernel command line\n");
2715}
2716
2717static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2718				      struct ring_buffer_event **event,
2719				      struct rb_event_info *info,
2720				      u64 *delta,
2721				      unsigned int *length)
2722{
2723	bool abs = info->add_timestamp &
2724		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2725
2726	if (unlikely(info->delta > (1ULL << 59))) {
2727		/*
2728		 * Some timers can use more than 59 bits, and when a timestamp
2729		 * is added to the buffer, it will lose those bits.
2730		 */
2731		if (abs && (info->ts & TS_MSB)) {
2732			info->delta &= ABS_TS_MASK;
2733
2734		/* did the clock go backwards */
2735		} else if (info->before == info->after && info->before > info->ts) {
2736			/* not interrupted */
2737			static int once;
2738
2739			/*
2740			 * This is possible with a recalibrating of the TSC.
2741			 * Do not produce a call stack, but just report it.
2742			 */
2743			if (!once) {
2744				once++;
2745				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2746					info->before, info->ts);
2747			}
2748		} else
2749			rb_check_timestamp(cpu_buffer, info);
2750		if (!abs)
2751			info->delta = 0;
2752	}
2753	*event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
2754	*length -= RB_LEN_TIME_EXTEND;
2755	*delta = 0;
2756}
2757
2758/**
2759 * rb_update_event - update event type and data
2760 * @cpu_buffer: The per cpu buffer of the @event
2761 * @event: the event to update
2762 * @info: The info to update the @event with (contains length and delta)
2763 *
2764 * Update the type and data fields of the @event. The length
2765 * is the actual size that is written to the ring buffer,
2766 * and with this, we can determine what to place into the
2767 * data field.
2768 */
2769static void
2770rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2771		struct ring_buffer_event *event,
2772		struct rb_event_info *info)
2773{
2774	unsigned length = info->length;
2775	u64 delta = info->delta;
2776	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2777
2778	if (!WARN_ON_ONCE(nest >= MAX_NEST))
2779		cpu_buffer->event_stamp[nest] = info->ts;
2780
2781	/*
2782	 * If we need to add a timestamp, then we
2783	 * add it to the start of the reserved space.
2784	 */
2785	if (unlikely(info->add_timestamp))
2786		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2787
2788	event->time_delta = delta;
2789	length -= RB_EVNT_HDR_SIZE;
2790	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2791		event->type_len = 0;
2792		event->array[0] = length;
2793	} else
2794		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2795}
2796
2797static unsigned rb_calculate_event_length(unsigned length)
2798{
2799	struct ring_buffer_event event; /* Used only for sizeof array */
2800
2801	/* zero length can cause confusions */
2802	if (!length)
2803		length++;
2804
2805	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2806		length += sizeof(event.array[0]);
2807
2808	length += RB_EVNT_HDR_SIZE;
2809	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2810
2811	/*
2812	 * In case the time delta is larger than the 27 bits for it
2813	 * in the header, we need to add a timestamp. If another
2814	 * event comes in when trying to discard this one to increase
2815	 * the length, then the timestamp will be added in the allocated
2816	 * space of this event. If length is bigger than the size needed
2817	 * for the TIME_EXTEND, then padding has to be used. The events
2818	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2819	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2820	 * As length is a multiple of 4, we only need to worry if it
2821	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2822	 */
2823	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2824		length += RB_ALIGNMENT;
2825
2826	return length;
2827}
2828
2829static inline bool
2830rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2831		  struct ring_buffer_event *event)
2832{
2833	unsigned long new_index, old_index;
2834	struct buffer_page *bpage;
2835	unsigned long addr;
2836
2837	new_index = rb_event_index(cpu_buffer, event);
2838	old_index = new_index + rb_event_ts_length(event);
2839	addr = (unsigned long)event;
2840	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
2841
2842	bpage = READ_ONCE(cpu_buffer->tail_page);
2843
2844	/*
2845	 * Make sure the tail_page is still the same and
2846	 * the next write location is the end of this event
2847	 */
2848	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2849		unsigned long write_mask =
2850			local_read(&bpage->write) & ~RB_WRITE_MASK;
2851		unsigned long event_length = rb_event_length(event);
2852
2853		/*
2854		 * For the before_stamp to be different than the write_stamp
2855		 * to make sure that the next event adds an absolute
2856		 * value and does not rely on the saved write stamp, which
2857		 * is now going to be bogus.
2858		 *
2859		 * By setting the before_stamp to zero, the next event
2860		 * is not going to use the write_stamp and will instead
2861		 * create an absolute timestamp. This means there's no
2862		 * reason to update the wirte_stamp!
2863		 */
2864		rb_time_set(&cpu_buffer->before_stamp, 0);
2865
2866		/*
2867		 * If an event were to come in now, it would see that the
2868		 * write_stamp and the before_stamp are different, and assume
2869		 * that this event just added itself before updating
2870		 * the write stamp. The interrupting event will fix the
2871		 * write stamp for us, and use an absolute timestamp.
2872		 */
2873
2874		/*
2875		 * This is on the tail page. It is possible that
2876		 * a write could come in and move the tail page
2877		 * and write to the next page. That is fine
2878		 * because we just shorten what is on this page.
2879		 */
2880		old_index += write_mask;
2881		new_index += write_mask;
2882
2883		/* caution: old_index gets updated on cmpxchg failure */
2884		if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
2885			/* update counters */
2886			local_sub(event_length, &cpu_buffer->entries_bytes);
2887			return true;
2888		}
2889	}
2890
2891	/* could not discard */
2892	return false;
2893}
2894
2895static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2896{
2897	local_inc(&cpu_buffer->committing);
2898	local_inc(&cpu_buffer->commits);
2899}
2900
2901static __always_inline void
2902rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2903{
2904	unsigned long max_count;
2905
2906	/*
2907	 * We only race with interrupts and NMIs on this CPU.
2908	 * If we own the commit event, then we can commit
2909	 * all others that interrupted us, since the interruptions
2910	 * are in stack format (they finish before they come
2911	 * back to us). This allows us to do a simple loop to
2912	 * assign the commit to the tail.
2913	 */
2914 again:
2915	max_count = cpu_buffer->nr_pages * 100;
2916
2917	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2918		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2919			return;
2920		if (RB_WARN_ON(cpu_buffer,
2921			       rb_is_reader_page(cpu_buffer->tail_page)))
2922			return;
2923		/*
2924		 * No need for a memory barrier here, as the update
2925		 * of the tail_page did it for this page.
2926		 */
2927		local_set(&cpu_buffer->commit_page->page->commit,
2928			  rb_page_write(cpu_buffer->commit_page));
2929		rb_inc_page(&cpu_buffer->commit_page);
 
 
 
 
2930		/* add barrier to keep gcc from optimizing too much */
2931		barrier();
2932	}
2933	while (rb_commit_index(cpu_buffer) !=
2934	       rb_page_write(cpu_buffer->commit_page)) {
2935
2936		/* Make sure the readers see the content of what is committed. */
2937		smp_wmb();
2938		local_set(&cpu_buffer->commit_page->page->commit,
2939			  rb_page_write(cpu_buffer->commit_page));
2940		RB_WARN_ON(cpu_buffer,
2941			   local_read(&cpu_buffer->commit_page->page->commit) &
2942			   ~RB_WRITE_MASK);
2943		barrier();
2944	}
2945
2946	/* again, keep gcc from optimizing */
2947	barrier();
2948
2949	/*
2950	 * If an interrupt came in just after the first while loop
2951	 * and pushed the tail page forward, we will be left with
2952	 * a dangling commit that will never go forward.
2953	 */
2954	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2955		goto again;
2956}
2957
2958static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2959{
2960	unsigned long commits;
2961
2962	if (RB_WARN_ON(cpu_buffer,
2963		       !local_read(&cpu_buffer->committing)))
2964		return;
2965
2966 again:
2967	commits = local_read(&cpu_buffer->commits);
2968	/* synchronize with interrupts */
2969	barrier();
2970	if (local_read(&cpu_buffer->committing) == 1)
2971		rb_set_commit_to_write(cpu_buffer);
2972
2973	local_dec(&cpu_buffer->committing);
2974
2975	/* synchronize with interrupts */
2976	barrier();
2977
2978	/*
2979	 * Need to account for interrupts coming in between the
2980	 * updating of the commit page and the clearing of the
2981	 * committing counter.
2982	 */
2983	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2984	    !local_read(&cpu_buffer->committing)) {
2985		local_inc(&cpu_buffer->committing);
2986		goto again;
2987	}
2988}
2989
2990static inline void rb_event_discard(struct ring_buffer_event *event)
2991{
2992	if (extended_time(event))
2993		event = skip_time_extend(event);
2994
2995	/* array[0] holds the actual length for the discarded event */
2996	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2997	event->type_len = RINGBUF_TYPE_PADDING;
2998	/* time delta must be non zero */
2999	if (!event->time_delta)
3000		event->time_delta = 1;
3001}
3002
3003static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3004{
3005	local_inc(&cpu_buffer->entries);
3006	rb_end_commit(cpu_buffer);
3007}
3008
3009static __always_inline void
3010rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3011{
3012	if (buffer->irq_work.waiters_pending) {
3013		buffer->irq_work.waiters_pending = false;
3014		/* irq_work_queue() supplies it's own memory barriers */
3015		irq_work_queue(&buffer->irq_work.work);
3016	}
3017
3018	if (cpu_buffer->irq_work.waiters_pending) {
3019		cpu_buffer->irq_work.waiters_pending = false;
3020		/* irq_work_queue() supplies it's own memory barriers */
3021		irq_work_queue(&cpu_buffer->irq_work.work);
3022	}
3023
3024	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3025		return;
3026
3027	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3028		return;
3029
3030	if (!cpu_buffer->irq_work.full_waiters_pending)
3031		return;
3032
3033	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3034
3035	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3036		return;
3037
3038	cpu_buffer->irq_work.wakeup_full = true;
3039	cpu_buffer->irq_work.full_waiters_pending = false;
3040	/* irq_work_queue() supplies it's own memory barriers */
3041	irq_work_queue(&cpu_buffer->irq_work.work);
3042}
3043
3044#ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3045# define do_ring_buffer_record_recursion()	\
3046	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3047#else
3048# define do_ring_buffer_record_recursion() do { } while (0)
3049#endif
3050
3051/*
3052 * The lock and unlock are done within a preempt disable section.
3053 * The current_context per_cpu variable can only be modified
3054 * by the current task between lock and unlock. But it can
3055 * be modified more than once via an interrupt. To pass this
3056 * information from the lock to the unlock without having to
3057 * access the 'in_interrupt()' functions again (which do show
3058 * a bit of overhead in something as critical as function tracing,
3059 * we use a bitmask trick.
3060 *
3061 *  bit 1 =  NMI context
3062 *  bit 2 =  IRQ context
3063 *  bit 3 =  SoftIRQ context
3064 *  bit 4 =  normal context.
3065 *
3066 * This works because this is the order of contexts that can
3067 * preempt other contexts. A SoftIRQ never preempts an IRQ
3068 * context.
3069 *
3070 * When the context is determined, the corresponding bit is
3071 * checked and set (if it was set, then a recursion of that context
3072 * happened).
3073 *
3074 * On unlock, we need to clear this bit. To do so, just subtract
3075 * 1 from the current_context and AND it to itself.
3076 *
3077 * (binary)
3078 *  101 - 1 = 100
3079 *  101 & 100 = 100 (clearing bit zero)
3080 *
3081 *  1010 - 1 = 1001
3082 *  1010 & 1001 = 1000 (clearing bit 1)
3083 *
3084 * The least significant bit can be cleared this way, and it
3085 * just so happens that it is the same bit corresponding to
3086 * the current context.
3087 *
3088 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3089 * is set when a recursion is detected at the current context, and if
3090 * the TRANSITION bit is already set, it will fail the recursion.
3091 * This is needed because there's a lag between the changing of
3092 * interrupt context and updating the preempt count. In this case,
3093 * a false positive will be found. To handle this, one extra recursion
3094 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3095 * bit is already set, then it is considered a recursion and the function
3096 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3097 *
3098 * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3099 * to be cleared. Even if it wasn't the context that set it. That is,
3100 * if an interrupt comes in while NORMAL bit is set and the ring buffer
3101 * is called before preempt_count() is updated, since the check will
3102 * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3103 * NMI then comes in, it will set the NMI bit, but when the NMI code
3104 * does the trace_recursive_unlock() it will clear the TRANSITION bit
3105 * and leave the NMI bit set. But this is fine, because the interrupt
3106 * code that set the TRANSITION bit will then clear the NMI bit when it
3107 * calls trace_recursive_unlock(). If another NMI comes in, it will
3108 * set the TRANSITION bit and continue.
3109 *
3110 * Note: The TRANSITION bit only handles a single transition between context.
3111 */
3112
3113static __always_inline bool
3114trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3115{
3116	unsigned int val = cpu_buffer->current_context;
3117	int bit = interrupt_context_level();
3118
3119	bit = RB_CTX_NORMAL - bit;
3120
3121	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3122		/*
3123		 * It is possible that this was called by transitioning
3124		 * between interrupt context, and preempt_count() has not
3125		 * been updated yet. In this case, use the TRANSITION bit.
3126		 */
3127		bit = RB_CTX_TRANSITION;
3128		if (val & (1 << (bit + cpu_buffer->nest))) {
3129			do_ring_buffer_record_recursion();
3130			return true;
3131		}
3132	}
3133
3134	val |= (1 << (bit + cpu_buffer->nest));
3135	cpu_buffer->current_context = val;
3136
3137	return false;
3138}
3139
3140static __always_inline void
3141trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3142{
3143	cpu_buffer->current_context &=
3144		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3145}
3146
3147/* The recursive locking above uses 5 bits */
3148#define NESTED_BITS 5
3149
3150/**
3151 * ring_buffer_nest_start - Allow to trace while nested
3152 * @buffer: The ring buffer to modify
3153 *
3154 * The ring buffer has a safety mechanism to prevent recursion.
3155 * But there may be a case where a trace needs to be done while
3156 * tracing something else. In this case, calling this function
3157 * will allow this function to nest within a currently active
3158 * ring_buffer_lock_reserve().
3159 *
3160 * Call this function before calling another ring_buffer_lock_reserve() and
3161 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3162 */
3163void ring_buffer_nest_start(struct trace_buffer *buffer)
3164{
3165	struct ring_buffer_per_cpu *cpu_buffer;
3166	int cpu;
3167
3168	/* Enabled by ring_buffer_nest_end() */
3169	preempt_disable_notrace();
3170	cpu = raw_smp_processor_id();
3171	cpu_buffer = buffer->buffers[cpu];
3172	/* This is the shift value for the above recursive locking */
3173	cpu_buffer->nest += NESTED_BITS;
3174}
3175
3176/**
3177 * ring_buffer_nest_end - Allow to trace while nested
3178 * @buffer: The ring buffer to modify
3179 *
3180 * Must be called after ring_buffer_nest_start() and after the
3181 * ring_buffer_unlock_commit().
3182 */
3183void ring_buffer_nest_end(struct trace_buffer *buffer)
3184{
3185	struct ring_buffer_per_cpu *cpu_buffer;
3186	int cpu;
3187
3188	/* disabled by ring_buffer_nest_start() */
3189	cpu = raw_smp_processor_id();
3190	cpu_buffer = buffer->buffers[cpu];
3191	/* This is the shift value for the above recursive locking */
3192	cpu_buffer->nest -= NESTED_BITS;
3193	preempt_enable_notrace();
3194}
3195
3196/**
3197 * ring_buffer_unlock_commit - commit a reserved
3198 * @buffer: The buffer to commit to
3199 *
3200 * This commits the data to the ring buffer, and releases any locks held.
3201 *
3202 * Must be paired with ring_buffer_lock_reserve.
3203 */
3204int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3205{
3206	struct ring_buffer_per_cpu *cpu_buffer;
3207	int cpu = raw_smp_processor_id();
3208
3209	cpu_buffer = buffer->buffers[cpu];
3210
3211	rb_commit(cpu_buffer);
3212
3213	rb_wakeups(buffer, cpu_buffer);
3214
3215	trace_recursive_unlock(cpu_buffer);
3216
3217	preempt_enable_notrace();
3218
3219	return 0;
3220}
3221EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3222
3223/* Special value to validate all deltas on a page. */
3224#define CHECK_FULL_PAGE		1L
3225
3226#ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3227
3228static const char *show_irq_str(int bits)
3229{
3230	const char *type[] = {
3231		".",	// 0
3232		"s",	// 1
3233		"h",	// 2
3234		"Hs",	// 3
3235		"n",	// 4
3236		"Ns",	// 5
3237		"Nh",	// 6
3238		"NHs",	// 7
3239	};
3240
3241	return type[bits];
3242}
3243
3244/* Assume this is an trace event */
3245static const char *show_flags(struct ring_buffer_event *event)
3246{
3247	struct trace_entry *entry;
3248	int bits = 0;
3249
3250	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
3251		return "X";
3252
3253	entry = ring_buffer_event_data(event);
3254
3255	if (entry->flags & TRACE_FLAG_SOFTIRQ)
3256		bits |= 1;
3257
3258	if (entry->flags & TRACE_FLAG_HARDIRQ)
3259		bits |= 2;
3260
3261	if (entry->flags & TRACE_FLAG_NMI)
3262		bits |= 4;
3263
3264	return show_irq_str(bits);
3265}
3266
3267static const char *show_irq(struct ring_buffer_event *event)
3268{
3269	struct trace_entry *entry;
3270
3271	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
3272		return "";
3273
3274	entry = ring_buffer_event_data(event);
3275	if (entry->flags & TRACE_FLAG_IRQS_OFF)
3276		return "d";
3277	return "";
3278}
3279
3280static const char *show_interrupt_level(void)
3281{
3282	unsigned long pc = preempt_count();
3283	unsigned char level = 0;
3284
3285	if (pc & SOFTIRQ_OFFSET)
3286		level |= 1;
3287
3288	if (pc & HARDIRQ_MASK)
3289		level |= 2;
3290
3291	if (pc & NMI_MASK)
3292		level |= 4;
3293
3294	return show_irq_str(level);
3295}
3296
3297static void dump_buffer_page(struct buffer_data_page *bpage,
3298			     struct rb_event_info *info,
3299			     unsigned long tail)
3300{
3301	struct ring_buffer_event *event;
3302	u64 ts, delta;
3303	int e;
3304
3305	ts = bpage->time_stamp;
3306	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3307
3308	for (e = 0; e < tail; e += rb_event_length(event)) {
3309
3310		event = (struct ring_buffer_event *)(bpage->data + e);
3311
3312		switch (event->type_len) {
3313
3314		case RINGBUF_TYPE_TIME_EXTEND:
3315			delta = rb_event_time_stamp(event);
3316			ts += delta;
3317			pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
3318				e, ts, delta);
3319			break;
3320
3321		case RINGBUF_TYPE_TIME_STAMP:
3322			delta = rb_event_time_stamp(event);
3323			ts = rb_fix_abs_ts(delta, ts);
3324			pr_warn(" 0x%x:  [%lld] absolute:%lld TIME STAMP\n",
3325				e, ts, delta);
3326			break;
3327
3328		case RINGBUF_TYPE_PADDING:
3329			ts += event->time_delta;
3330			pr_warn(" 0x%x:  [%lld] delta:%d PADDING\n",
3331				e, ts, event->time_delta);
3332			break;
3333
3334		case RINGBUF_TYPE_DATA:
3335			ts += event->time_delta;
3336			pr_warn(" 0x%x:  [%lld] delta:%d %s%s\n",
3337				e, ts, event->time_delta,
3338				show_flags(event), show_irq(event));
3339			break;
3340
3341		default:
3342			break;
3343		}
3344	}
3345	pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
3346}
3347
3348static DEFINE_PER_CPU(atomic_t, checking);
3349static atomic_t ts_dump;
3350
3351#define buffer_warn_return(fmt, ...)					\
3352	do {								\
3353		/* If another report is happening, ignore this one */	\
3354		if (atomic_inc_return(&ts_dump) != 1) {			\
3355			atomic_dec(&ts_dump);				\
3356			goto out;					\
3357		}							\
3358		atomic_inc(&cpu_buffer->record_disabled);		\
3359		pr_warn(fmt, ##__VA_ARGS__);				\
3360		dump_buffer_page(bpage, info, tail);			\
3361		atomic_dec(&ts_dump);					\
3362		/* There's some cases in boot up that this can happen */ \
3363		if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING))	\
3364			/* Do not re-enable checking */			\
3365			return;						\
3366	} while (0)
3367
3368/*
3369 * Check if the current event time stamp matches the deltas on
3370 * the buffer page.
3371 */
3372static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3373			 struct rb_event_info *info,
3374			 unsigned long tail)
3375{
3376	struct ring_buffer_event *event;
3377	struct buffer_data_page *bpage;
3378	u64 ts, delta;
3379	bool full = false;
3380	int e;
3381
3382	bpage = info->tail_page->page;
3383
3384	if (tail == CHECK_FULL_PAGE) {
3385		full = true;
3386		tail = local_read(&bpage->commit);
3387	} else if (info->add_timestamp &
3388		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3389		/* Ignore events with absolute time stamps */
3390		return;
3391	}
3392
3393	/*
3394	 * Do not check the first event (skip possible extends too).
3395	 * Also do not check if previous events have not been committed.
3396	 */
3397	if (tail <= 8 || tail > local_read(&bpage->commit))
3398		return;
3399
3400	/*
3401	 * If this interrupted another event,
3402	 */
3403	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3404		goto out;
3405
3406	ts = bpage->time_stamp;
3407
3408	for (e = 0; e < tail; e += rb_event_length(event)) {
3409
3410		event = (struct ring_buffer_event *)(bpage->data + e);
3411
3412		switch (event->type_len) {
3413
3414		case RINGBUF_TYPE_TIME_EXTEND:
3415			delta = rb_event_time_stamp(event);
3416			ts += delta;
3417			break;
3418
3419		case RINGBUF_TYPE_TIME_STAMP:
3420			delta = rb_event_time_stamp(event);
3421			delta = rb_fix_abs_ts(delta, ts);
3422			if (delta < ts) {
3423				buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
3424						   cpu_buffer->cpu, ts, delta);
3425			}
3426			ts = delta;
3427			break;
3428
3429		case RINGBUF_TYPE_PADDING:
3430			if (event->time_delta == 1)
3431				break;
3432			fallthrough;
3433		case RINGBUF_TYPE_DATA:
3434			ts += event->time_delta;
3435			break;
3436
3437		default:
3438			RB_WARN_ON(cpu_buffer, 1);
3439		}
3440	}
3441	if ((full && ts > info->ts) ||
3442	    (!full && ts + info->delta != info->ts)) {
3443		buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
3444				   cpu_buffer->cpu,
3445				   ts + info->delta, info->ts, info->delta,
3446				   info->before, info->after,
3447				   full ? " (full)" : "", show_interrupt_level());
3448	}
3449out:
3450	atomic_dec(this_cpu_ptr(&checking));
3451}
3452#else
3453static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3454			 struct rb_event_info *info,
3455			 unsigned long tail)
3456{
3457}
3458#endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3459
3460static struct ring_buffer_event *
3461__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3462		  struct rb_event_info *info)
3463{
3464	struct ring_buffer_event *event;
3465	struct buffer_page *tail_page;
3466	unsigned long tail, write, w;
3467
3468	/* Don't let the compiler play games with cpu_buffer->tail_page */
3469	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3470
3471 /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
3472	barrier();
3473	rb_time_read(&cpu_buffer->before_stamp, &info->before);
3474	rb_time_read(&cpu_buffer->write_stamp, &info->after);
3475	barrier();
3476	info->ts = rb_time_stamp(cpu_buffer->buffer);
3477
3478	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3479		info->delta = info->ts;
3480	} else {
3481		/*
3482		 * If interrupting an event time update, we may need an
3483		 * absolute timestamp.
3484		 * Don't bother if this is the start of a new page (w == 0).
3485		 */
3486		if (!w) {
3487			/* Use the sub-buffer timestamp */
3488			info->delta = 0;
3489		} else if (unlikely(info->before != info->after)) {
3490			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3491			info->length += RB_LEN_TIME_EXTEND;
3492		} else {
3493			info->delta = info->ts - info->after;
3494			if (unlikely(test_time_stamp(info->delta))) {
3495				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3496				info->length += RB_LEN_TIME_EXTEND;
3497			}
3498		}
3499	}
3500
3501 /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
3502
3503 /*C*/	write = local_add_return(info->length, &tail_page->write);
3504
3505	/* set write to only the index of the write */
3506	write &= RB_WRITE_MASK;
3507
3508	tail = write - info->length;
3509
3510	/* See if we shot pass the end of this buffer page */
3511	if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
3512		check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3513		return rb_move_tail(cpu_buffer, tail, info);
3514	}
3515
3516	if (likely(tail == w)) {
3517		/* Nothing interrupted us between A and C */
3518 /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
3519		/*
3520		 * If something came in between C and D, the write stamp
3521		 * may now not be in sync. But that's fine as the before_stamp
3522		 * will be different and then next event will just be forced
3523		 * to use an absolute timestamp.
3524		 */
3525		if (likely(!(info->add_timestamp &
3526			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3527			/* This did not interrupt any time update */
3528			info->delta = info->ts - info->after;
3529		else
3530			/* Just use full timestamp for interrupting event */
3531			info->delta = info->ts;
3532		check_buffer(cpu_buffer, info, tail);
3533	} else {
3534		u64 ts;
3535		/* SLOW PATH - Interrupted between A and C */
3536
3537		/* Save the old before_stamp */
3538		rb_time_read(&cpu_buffer->before_stamp, &info->before);
3539
3540		/*
3541		 * Read a new timestamp and update the before_stamp to make
3542		 * the next event after this one force using an absolute
3543		 * timestamp. This is in case an interrupt were to come in
3544		 * between E and F.
3545		 */
3546		ts = rb_time_stamp(cpu_buffer->buffer);
3547		rb_time_set(&cpu_buffer->before_stamp, ts);
3548
3549		barrier();
3550 /*E*/		rb_time_read(&cpu_buffer->write_stamp, &info->after);
3551		barrier();
3552 /*F*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3553		    info->after == info->before && info->after < ts) {
3554			/*
3555			 * Nothing came after this event between C and F, it is
3556			 * safe to use info->after for the delta as it
3557			 * matched info->before and is still valid.
3558			 */
3559			info->delta = ts - info->after;
3560		} else {
3561			/*
3562			 * Interrupted between C and F:
3563			 * Lost the previous events time stamp. Just set the
3564			 * delta to zero, and this will be the same time as
3565			 * the event this event interrupted. And the events that
3566			 * came after this will still be correct (as they would
3567			 * have built their delta on the previous event.
3568			 */
3569			info->delta = 0;
3570		}
3571		info->ts = ts;
3572		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3573	}
3574
3575	/*
3576	 * If this is the first commit on the page, then it has the same
3577	 * timestamp as the page itself.
3578	 */
3579	if (unlikely(!tail && !(info->add_timestamp &
3580				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3581		info->delta = 0;
3582
3583	/* We reserved something on the buffer */
3584
3585	event = __rb_page_index(tail_page, tail);
3586	rb_update_event(cpu_buffer, event, info);
3587
3588	local_inc(&tail_page->entries);
3589
3590	/*
3591	 * If this is the first commit on the page, then update
3592	 * its timestamp.
3593	 */
3594	if (unlikely(!tail))
3595		tail_page->page->time_stamp = info->ts;
3596
3597	/* account for these added bytes */
3598	local_add(info->length, &cpu_buffer->entries_bytes);
3599
3600	return event;
3601}
3602
3603static __always_inline struct ring_buffer_event *
3604rb_reserve_next_event(struct trace_buffer *buffer,
3605		      struct ring_buffer_per_cpu *cpu_buffer,
3606		      unsigned long length)
3607{
3608	struct ring_buffer_event *event;
3609	struct rb_event_info info;
3610	int nr_loops = 0;
3611	int add_ts_default;
3612
3613	/* ring buffer does cmpxchg, make sure it is safe in NMI context */
3614	if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) &&
 
 
 
 
 
3615	    (unlikely(in_nmi()))) {
3616		return NULL;
3617	}
3618
3619	rb_start_commit(cpu_buffer);
3620	/* The commit page can not change after this */
3621
3622#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3623	/*
3624	 * Due to the ability to swap a cpu buffer from a buffer
3625	 * it is possible it was swapped before we committed.
3626	 * (committing stops a swap). We check for it here and
3627	 * if it happened, we have to fail the write.
3628	 */
3629	barrier();
3630	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3631		local_dec(&cpu_buffer->committing);
3632		local_dec(&cpu_buffer->commits);
3633		return NULL;
3634	}
3635#endif
3636
3637	info.length = rb_calculate_event_length(length);
3638
3639	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3640		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3641		info.length += RB_LEN_TIME_EXTEND;
3642		if (info.length > cpu_buffer->buffer->max_data_size)
3643			goto out_fail;
3644	} else {
3645		add_ts_default = RB_ADD_STAMP_NONE;
3646	}
3647
3648 again:
3649	info.add_timestamp = add_ts_default;
3650	info.delta = 0;
3651
3652	/*
3653	 * We allow for interrupts to reenter here and do a trace.
3654	 * If one does, it will cause this original code to loop
3655	 * back here. Even with heavy interrupts happening, this
3656	 * should only happen a few times in a row. If this happens
3657	 * 1000 times in a row, there must be either an interrupt
3658	 * storm or we have something buggy.
3659	 * Bail!
3660	 */
3661	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3662		goto out_fail;
3663
3664	event = __rb_reserve_next(cpu_buffer, &info);
3665
3666	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3667		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3668			info.length -= RB_LEN_TIME_EXTEND;
3669		goto again;
3670	}
3671
3672	if (likely(event))
3673		return event;
3674 out_fail:
3675	rb_end_commit(cpu_buffer);
3676	return NULL;
3677}
3678
3679/**
3680 * ring_buffer_lock_reserve - reserve a part of the buffer
3681 * @buffer: the ring buffer to reserve from
3682 * @length: the length of the data to reserve (excluding event header)
3683 *
3684 * Returns a reserved event on the ring buffer to copy directly to.
3685 * The user of this interface will need to get the body to write into
3686 * and can use the ring_buffer_event_data() interface.
3687 *
3688 * The length is the length of the data needed, not the event length
3689 * which also includes the event header.
3690 *
3691 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3692 * If NULL is returned, then nothing has been allocated or locked.
3693 */
3694struct ring_buffer_event *
3695ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3696{
3697	struct ring_buffer_per_cpu *cpu_buffer;
3698	struct ring_buffer_event *event;
3699	int cpu;
3700
3701	/* If we are tracing schedule, we don't want to recurse */
3702	preempt_disable_notrace();
3703
3704	if (unlikely(atomic_read(&buffer->record_disabled)))
3705		goto out;
3706
3707	cpu = raw_smp_processor_id();
3708
3709	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3710		goto out;
3711
3712	cpu_buffer = buffer->buffers[cpu];
3713
3714	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3715		goto out;
3716
3717	if (unlikely(length > buffer->max_data_size))
3718		goto out;
3719
3720	if (unlikely(trace_recursive_lock(cpu_buffer)))
3721		goto out;
3722
3723	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3724	if (!event)
3725		goto out_unlock;
3726
3727	return event;
3728
3729 out_unlock:
3730	trace_recursive_unlock(cpu_buffer);
3731 out:
3732	preempt_enable_notrace();
3733	return NULL;
3734}
3735EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3736
3737/*
3738 * Decrement the entries to the page that an event is on.
3739 * The event does not even need to exist, only the pointer
3740 * to the page it is on. This may only be called before the commit
3741 * takes place.
3742 */
3743static inline void
3744rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3745		   struct ring_buffer_event *event)
3746{
3747	unsigned long addr = (unsigned long)event;
3748	struct buffer_page *bpage = cpu_buffer->commit_page;
3749	struct buffer_page *start;
3750
3751	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3752
3753	/* Do the likely case first */
3754	if (likely(bpage->page == (void *)addr)) {
3755		local_dec(&bpage->entries);
3756		return;
3757	}
3758
3759	/*
3760	 * Because the commit page may be on the reader page we
3761	 * start with the next page and check the end loop there.
3762	 */
3763	rb_inc_page(&bpage);
3764	start = bpage;
3765	do {
3766		if (bpage->page == (void *)addr) {
3767			local_dec(&bpage->entries);
3768			return;
3769		}
3770		rb_inc_page(&bpage);
3771	} while (bpage != start);
3772
3773	/* commit not part of this buffer?? */
3774	RB_WARN_ON(cpu_buffer, 1);
3775}
3776
3777/**
3778 * ring_buffer_discard_commit - discard an event that has not been committed
3779 * @buffer: the ring buffer
3780 * @event: non committed event to discard
3781 *
3782 * Sometimes an event that is in the ring buffer needs to be ignored.
3783 * This function lets the user discard an event in the ring buffer
3784 * and then that event will not be read later.
3785 *
3786 * This function only works if it is called before the item has been
3787 * committed. It will try to free the event from the ring buffer
3788 * if another event has not been added behind it.
3789 *
3790 * If another event has been added behind it, it will set the event
3791 * up as discarded, and perform the commit.
3792 *
3793 * If this function is called, do not call ring_buffer_unlock_commit on
3794 * the event.
3795 */
3796void ring_buffer_discard_commit(struct trace_buffer *buffer,
3797				struct ring_buffer_event *event)
3798{
3799	struct ring_buffer_per_cpu *cpu_buffer;
3800	int cpu;
3801
3802	/* The event is discarded regardless */
3803	rb_event_discard(event);
3804
3805	cpu = smp_processor_id();
3806	cpu_buffer = buffer->buffers[cpu];
3807
3808	/*
3809	 * This must only be called if the event has not been
3810	 * committed yet. Thus we can assume that preemption
3811	 * is still disabled.
3812	 */
3813	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3814
3815	rb_decrement_entry(cpu_buffer, event);
3816	if (rb_try_to_discard(cpu_buffer, event))
3817		goto out;
3818
3819 out:
3820	rb_end_commit(cpu_buffer);
3821
3822	trace_recursive_unlock(cpu_buffer);
3823
3824	preempt_enable_notrace();
3825
3826}
3827EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3828
3829/**
3830 * ring_buffer_write - write data to the buffer without reserving
3831 * @buffer: The ring buffer to write to.
3832 * @length: The length of the data being written (excluding the event header)
3833 * @data: The data to write to the buffer.
3834 *
3835 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3836 * one function. If you already have the data to write to the buffer, it
3837 * may be easier to simply call this function.
3838 *
3839 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3840 * and not the length of the event which would hold the header.
3841 */
3842int ring_buffer_write(struct trace_buffer *buffer,
3843		      unsigned long length,
3844		      void *data)
3845{
3846	struct ring_buffer_per_cpu *cpu_buffer;
3847	struct ring_buffer_event *event;
3848	void *body;
3849	int ret = -EBUSY;
3850	int cpu;
3851
3852	preempt_disable_notrace();
3853
3854	if (atomic_read(&buffer->record_disabled))
3855		goto out;
3856
3857	cpu = raw_smp_processor_id();
3858
3859	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3860		goto out;
3861
3862	cpu_buffer = buffer->buffers[cpu];
3863
3864	if (atomic_read(&cpu_buffer->record_disabled))
3865		goto out;
3866
3867	if (length > buffer->max_data_size)
3868		goto out;
3869
3870	if (unlikely(trace_recursive_lock(cpu_buffer)))
3871		goto out;
3872
3873	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3874	if (!event)
3875		goto out_unlock;
3876
3877	body = rb_event_data(event);
3878
3879	memcpy(body, data, length);
3880
3881	rb_commit(cpu_buffer);
3882
3883	rb_wakeups(buffer, cpu_buffer);
3884
3885	ret = 0;
3886
3887 out_unlock:
3888	trace_recursive_unlock(cpu_buffer);
3889
3890 out:
3891	preempt_enable_notrace();
3892
3893	return ret;
3894}
3895EXPORT_SYMBOL_GPL(ring_buffer_write);
3896
3897static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3898{
3899	struct buffer_page *reader = cpu_buffer->reader_page;
3900	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3901	struct buffer_page *commit = cpu_buffer->commit_page;
3902
3903	/* In case of error, head will be NULL */
3904	if (unlikely(!head))
3905		return true;
3906
3907	/* Reader should exhaust content in reader page */
3908	if (reader->read != rb_page_commit(reader))
3909		return false;
3910
3911	/*
3912	 * If writers are committing on the reader page, knowing all
3913	 * committed content has been read, the ring buffer is empty.
3914	 */
3915	if (commit == reader)
3916		return true;
3917
3918	/*
3919	 * If writers are committing on a page other than reader page
3920	 * and head page, there should always be content to read.
3921	 */
3922	if (commit != head)
3923		return false;
3924
3925	/*
3926	 * Writers are committing on the head page, we just need
3927	 * to care about there're committed data, and the reader will
3928	 * swap reader page with head page when it is to read data.
3929	 */
3930	return rb_page_commit(commit) == 0;
3931}
3932
3933/**
3934 * ring_buffer_record_disable - stop all writes into the buffer
3935 * @buffer: The ring buffer to stop writes to.
3936 *
3937 * This prevents all writes to the buffer. Any attempt to write
3938 * to the buffer after this will fail and return NULL.
3939 *
3940 * The caller should call synchronize_rcu() after this.
3941 */
3942void ring_buffer_record_disable(struct trace_buffer *buffer)
3943{
3944	atomic_inc(&buffer->record_disabled);
3945}
3946EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3947
3948/**
3949 * ring_buffer_record_enable - enable writes to the buffer
3950 * @buffer: The ring buffer to enable writes
3951 *
3952 * Note, multiple disables will need the same number of enables
3953 * to truly enable the writing (much like preempt_disable).
3954 */
3955void ring_buffer_record_enable(struct trace_buffer *buffer)
3956{
3957	atomic_dec(&buffer->record_disabled);
3958}
3959EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3960
3961/**
3962 * ring_buffer_record_off - stop all writes into the buffer
3963 * @buffer: The ring buffer to stop writes to.
3964 *
3965 * This prevents all writes to the buffer. Any attempt to write
3966 * to the buffer after this will fail and return NULL.
3967 *
3968 * This is different than ring_buffer_record_disable() as
3969 * it works like an on/off switch, where as the disable() version
3970 * must be paired with a enable().
3971 */
3972void ring_buffer_record_off(struct trace_buffer *buffer)
3973{
3974	unsigned int rd;
3975	unsigned int new_rd;
3976
3977	rd = atomic_read(&buffer->record_disabled);
3978	do {
3979		new_rd = rd | RB_BUFFER_OFF;
3980	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
3981}
3982EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3983
3984/**
3985 * ring_buffer_record_on - restart writes into the buffer
3986 * @buffer: The ring buffer to start writes to.
3987 *
3988 * This enables all writes to the buffer that was disabled by
3989 * ring_buffer_record_off().
3990 *
3991 * This is different than ring_buffer_record_enable() as
3992 * it works like an on/off switch, where as the enable() version
3993 * must be paired with a disable().
3994 */
3995void ring_buffer_record_on(struct trace_buffer *buffer)
3996{
3997	unsigned int rd;
3998	unsigned int new_rd;
3999
4000	rd = atomic_read(&buffer->record_disabled);
4001	do {
4002		new_rd = rd & ~RB_BUFFER_OFF;
4003	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4004}
4005EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4006
4007/**
4008 * ring_buffer_record_is_on - return true if the ring buffer can write
4009 * @buffer: The ring buffer to see if write is enabled
4010 *
4011 * Returns true if the ring buffer is in a state that it accepts writes.
4012 */
4013bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4014{
4015	return !atomic_read(&buffer->record_disabled);
4016}
4017
4018/**
4019 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4020 * @buffer: The ring buffer to see if write is set enabled
4021 *
4022 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4023 * Note that this does NOT mean it is in a writable state.
4024 *
4025 * It may return true when the ring buffer has been disabled by
4026 * ring_buffer_record_disable(), as that is a temporary disabling of
4027 * the ring buffer.
4028 */
4029bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4030{
4031	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4032}
4033
4034/**
4035 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4036 * @buffer: The ring buffer to stop writes to.
4037 * @cpu: The CPU buffer to stop
4038 *
4039 * This prevents all writes to the buffer. Any attempt to write
4040 * to the buffer after this will fail and return NULL.
4041 *
4042 * The caller should call synchronize_rcu() after this.
4043 */
4044void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4045{
4046	struct ring_buffer_per_cpu *cpu_buffer;
4047
4048	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4049		return;
4050
4051	cpu_buffer = buffer->buffers[cpu];
4052	atomic_inc(&cpu_buffer->record_disabled);
4053}
4054EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4055
4056/**
4057 * ring_buffer_record_enable_cpu - enable writes to the buffer
4058 * @buffer: The ring buffer to enable writes
4059 * @cpu: The CPU to enable.
4060 *
4061 * Note, multiple disables will need the same number of enables
4062 * to truly enable the writing (much like preempt_disable).
4063 */
4064void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4065{
4066	struct ring_buffer_per_cpu *cpu_buffer;
4067
4068	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4069		return;
4070
4071	cpu_buffer = buffer->buffers[cpu];
4072	atomic_dec(&cpu_buffer->record_disabled);
4073}
4074EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4075
4076/*
4077 * The total entries in the ring buffer is the running counter
4078 * of entries entered into the ring buffer, minus the sum of
4079 * the entries read from the ring buffer and the number of
4080 * entries that were overwritten.
4081 */
4082static inline unsigned long
4083rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4084{
4085	return local_read(&cpu_buffer->entries) -
4086		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4087}
4088
4089/**
4090 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4091 * @buffer: The ring buffer
4092 * @cpu: The per CPU buffer to read from.
4093 */
4094u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4095{
4096	unsigned long flags;
4097	struct ring_buffer_per_cpu *cpu_buffer;
4098	struct buffer_page *bpage;
4099	u64 ret = 0;
4100
4101	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4102		return 0;
4103
4104	cpu_buffer = buffer->buffers[cpu];
4105	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4106	/*
4107	 * if the tail is on reader_page, oldest time stamp is on the reader
4108	 * page
4109	 */
4110	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4111		bpage = cpu_buffer->reader_page;
4112	else
4113		bpage = rb_set_head_page(cpu_buffer);
4114	if (bpage)
4115		ret = bpage->page->time_stamp;
4116	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4117
4118	return ret;
4119}
4120EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4121
4122/**
4123 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4124 * @buffer: The ring buffer
4125 * @cpu: The per CPU buffer to read from.
4126 */
4127unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4128{
4129	struct ring_buffer_per_cpu *cpu_buffer;
4130	unsigned long ret;
4131
4132	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4133		return 0;
4134
4135	cpu_buffer = buffer->buffers[cpu];
4136	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4137
4138	return ret;
4139}
4140EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4141
4142/**
4143 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4144 * @buffer: The ring buffer
4145 * @cpu: The per CPU buffer to get the entries from.
4146 */
4147unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4148{
4149	struct ring_buffer_per_cpu *cpu_buffer;
4150
4151	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4152		return 0;
4153
4154	cpu_buffer = buffer->buffers[cpu];
4155
4156	return rb_num_of_entries(cpu_buffer);
4157}
4158EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4159
4160/**
4161 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4162 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4163 * @buffer: The ring buffer
4164 * @cpu: The per CPU buffer to get the number of overruns from
4165 */
4166unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4167{
4168	struct ring_buffer_per_cpu *cpu_buffer;
4169	unsigned long ret;
4170
4171	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4172		return 0;
4173
4174	cpu_buffer = buffer->buffers[cpu];
4175	ret = local_read(&cpu_buffer->overrun);
4176
4177	return ret;
4178}
4179EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4180
4181/**
4182 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4183 * commits failing due to the buffer wrapping around while there are uncommitted
4184 * events, such as during an interrupt storm.
4185 * @buffer: The ring buffer
4186 * @cpu: The per CPU buffer to get the number of overruns from
4187 */
4188unsigned long
4189ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4190{
4191	struct ring_buffer_per_cpu *cpu_buffer;
4192	unsigned long ret;
4193
4194	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4195		return 0;
4196
4197	cpu_buffer = buffer->buffers[cpu];
4198	ret = local_read(&cpu_buffer->commit_overrun);
4199
4200	return ret;
4201}
4202EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4203
4204/**
4205 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4206 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4207 * @buffer: The ring buffer
4208 * @cpu: The per CPU buffer to get the number of overruns from
4209 */
4210unsigned long
4211ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4212{
4213	struct ring_buffer_per_cpu *cpu_buffer;
4214	unsigned long ret;
4215
4216	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4217		return 0;
4218
4219	cpu_buffer = buffer->buffers[cpu];
4220	ret = local_read(&cpu_buffer->dropped_events);
4221
4222	return ret;
4223}
4224EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4225
4226/**
4227 * ring_buffer_read_events_cpu - get the number of events successfully read
4228 * @buffer: The ring buffer
4229 * @cpu: The per CPU buffer to get the number of events read
4230 */
4231unsigned long
4232ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4233{
4234	struct ring_buffer_per_cpu *cpu_buffer;
4235
4236	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4237		return 0;
4238
4239	cpu_buffer = buffer->buffers[cpu];
4240	return cpu_buffer->read;
4241}
4242EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4243
4244/**
4245 * ring_buffer_entries - get the number of entries in a buffer
4246 * @buffer: The ring buffer
4247 *
4248 * Returns the total number of entries in the ring buffer
4249 * (all CPU entries)
4250 */
4251unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4252{
4253	struct ring_buffer_per_cpu *cpu_buffer;
4254	unsigned long entries = 0;
4255	int cpu;
4256
4257	/* if you care about this being correct, lock the buffer */
4258	for_each_buffer_cpu(buffer, cpu) {
4259		cpu_buffer = buffer->buffers[cpu];
4260		entries += rb_num_of_entries(cpu_buffer);
4261	}
4262
4263	return entries;
4264}
4265EXPORT_SYMBOL_GPL(ring_buffer_entries);
4266
4267/**
4268 * ring_buffer_overruns - get the number of overruns in buffer
4269 * @buffer: The ring buffer
4270 *
4271 * Returns the total number of overruns in the ring buffer
4272 * (all CPU entries)
4273 */
4274unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4275{
4276	struct ring_buffer_per_cpu *cpu_buffer;
4277	unsigned long overruns = 0;
4278	int cpu;
4279
4280	/* if you care about this being correct, lock the buffer */
4281	for_each_buffer_cpu(buffer, cpu) {
4282		cpu_buffer = buffer->buffers[cpu];
4283		overruns += local_read(&cpu_buffer->overrun);
4284	}
4285
4286	return overruns;
4287}
4288EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4289
4290static void rb_iter_reset(struct ring_buffer_iter *iter)
4291{
4292	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4293
4294	/* Iterator usage is expected to have record disabled */
4295	iter->head_page = cpu_buffer->reader_page;
4296	iter->head = cpu_buffer->reader_page->read;
4297	iter->next_event = iter->head;
4298
4299	iter->cache_reader_page = iter->head_page;
4300	iter->cache_read = cpu_buffer->read;
4301	iter->cache_pages_removed = cpu_buffer->pages_removed;
4302
4303	if (iter->head) {
4304		iter->read_stamp = cpu_buffer->read_stamp;
4305		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4306	} else {
4307		iter->read_stamp = iter->head_page->page->time_stamp;
4308		iter->page_stamp = iter->read_stamp;
4309	}
4310}
4311
4312/**
4313 * ring_buffer_iter_reset - reset an iterator
4314 * @iter: The iterator to reset
4315 *
4316 * Resets the iterator, so that it will start from the beginning
4317 * again.
4318 */
4319void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4320{
4321	struct ring_buffer_per_cpu *cpu_buffer;
4322	unsigned long flags;
4323
4324	if (!iter)
4325		return;
4326
4327	cpu_buffer = iter->cpu_buffer;
4328
4329	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4330	rb_iter_reset(iter);
4331	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4332}
4333EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4334
4335/**
4336 * ring_buffer_iter_empty - check if an iterator has no more to read
4337 * @iter: The iterator to check
4338 */
4339int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4340{
4341	struct ring_buffer_per_cpu *cpu_buffer;
4342	struct buffer_page *reader;
4343	struct buffer_page *head_page;
4344	struct buffer_page *commit_page;
4345	struct buffer_page *curr_commit_page;
4346	unsigned commit;
4347	u64 curr_commit_ts;
4348	u64 commit_ts;
4349
4350	cpu_buffer = iter->cpu_buffer;
4351	reader = cpu_buffer->reader_page;
4352	head_page = cpu_buffer->head_page;
4353	commit_page = cpu_buffer->commit_page;
4354	commit_ts = commit_page->page->time_stamp;
4355
4356	/*
4357	 * When the writer goes across pages, it issues a cmpxchg which
4358	 * is a mb(), which will synchronize with the rmb here.
4359	 * (see rb_tail_page_update())
4360	 */
4361	smp_rmb();
4362	commit = rb_page_commit(commit_page);
4363	/* We want to make sure that the commit page doesn't change */
4364	smp_rmb();
4365
4366	/* Make sure commit page didn't change */
4367	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4368	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4369
4370	/* If the commit page changed, then there's more data */
4371	if (curr_commit_page != commit_page ||
4372	    curr_commit_ts != commit_ts)
4373		return 0;
4374
4375	/* Still racy, as it may return a false positive, but that's OK */
4376	return ((iter->head_page == commit_page && iter->head >= commit) ||
4377		(iter->head_page == reader && commit_page == head_page &&
4378		 head_page->read == commit &&
4379		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4380}
4381EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4382
4383static void
4384rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4385		     struct ring_buffer_event *event)
4386{
4387	u64 delta;
4388
4389	switch (event->type_len) {
4390	case RINGBUF_TYPE_PADDING:
4391		return;
4392
4393	case RINGBUF_TYPE_TIME_EXTEND:
4394		delta = rb_event_time_stamp(event);
4395		cpu_buffer->read_stamp += delta;
4396		return;
4397
4398	case RINGBUF_TYPE_TIME_STAMP:
4399		delta = rb_event_time_stamp(event);
4400		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4401		cpu_buffer->read_stamp = delta;
4402		return;
4403
4404	case RINGBUF_TYPE_DATA:
4405		cpu_buffer->read_stamp += event->time_delta;
4406		return;
4407
4408	default:
4409		RB_WARN_ON(cpu_buffer, 1);
4410	}
4411}
4412
4413static void
4414rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4415			  struct ring_buffer_event *event)
4416{
4417	u64 delta;
4418
4419	switch (event->type_len) {
4420	case RINGBUF_TYPE_PADDING:
4421		return;
4422
4423	case RINGBUF_TYPE_TIME_EXTEND:
4424		delta = rb_event_time_stamp(event);
4425		iter->read_stamp += delta;
4426		return;
4427
4428	case RINGBUF_TYPE_TIME_STAMP:
4429		delta = rb_event_time_stamp(event);
4430		delta = rb_fix_abs_ts(delta, iter->read_stamp);
4431		iter->read_stamp = delta;
4432		return;
4433
4434	case RINGBUF_TYPE_DATA:
4435		iter->read_stamp += event->time_delta;
4436		return;
4437
4438	default:
4439		RB_WARN_ON(iter->cpu_buffer, 1);
4440	}
4441}
4442
4443static struct buffer_page *
4444rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4445{
4446	struct buffer_page *reader = NULL;
4447	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
4448	unsigned long overwrite;
4449	unsigned long flags;
4450	int nr_loops = 0;
4451	bool ret;
4452
4453	local_irq_save(flags);
4454	arch_spin_lock(&cpu_buffer->lock);
4455
4456 again:
4457	/*
4458	 * This should normally only loop twice. But because the
4459	 * start of the reader inserts an empty page, it causes
4460	 * a case where we will loop three times. There should be no
4461	 * reason to loop four times (that I know of).
4462	 */
4463	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4464		reader = NULL;
4465		goto out;
4466	}
4467
4468	reader = cpu_buffer->reader_page;
4469
4470	/* If there's more to read, return this page */
4471	if (cpu_buffer->reader_page->read < rb_page_size(reader))
4472		goto out;
4473
4474	/* Never should we have an index greater than the size */
4475	if (RB_WARN_ON(cpu_buffer,
4476		       cpu_buffer->reader_page->read > rb_page_size(reader)))
4477		goto out;
4478
4479	/* check if we caught up to the tail */
4480	reader = NULL;
4481	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4482		goto out;
4483
4484	/* Don't bother swapping if the ring buffer is empty */
4485	if (rb_num_of_entries(cpu_buffer) == 0)
4486		goto out;
4487
4488	/*
4489	 * Reset the reader page to size zero.
4490	 */
4491	local_set(&cpu_buffer->reader_page->write, 0);
4492	local_set(&cpu_buffer->reader_page->entries, 0);
4493	local_set(&cpu_buffer->reader_page->page->commit, 0);
4494	cpu_buffer->reader_page->real_end = 0;
4495
4496 spin:
4497	/*
4498	 * Splice the empty reader page into the list around the head.
4499	 */
4500	reader = rb_set_head_page(cpu_buffer);
4501	if (!reader)
4502		goto out;
4503	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4504	cpu_buffer->reader_page->list.prev = reader->list.prev;
4505
4506	/*
4507	 * cpu_buffer->pages just needs to point to the buffer, it
4508	 *  has no specific buffer page to point to. Lets move it out
4509	 *  of our way so we don't accidentally swap it.
4510	 */
4511	cpu_buffer->pages = reader->list.prev;
4512
4513	/* The reader page will be pointing to the new head */
4514	rb_set_list_to_head(&cpu_buffer->reader_page->list);
4515
4516	/*
4517	 * We want to make sure we read the overruns after we set up our
4518	 * pointers to the next object. The writer side does a
4519	 * cmpxchg to cross pages which acts as the mb on the writer
4520	 * side. Note, the reader will constantly fail the swap
4521	 * while the writer is updating the pointers, so this
4522	 * guarantees that the overwrite recorded here is the one we
4523	 * want to compare with the last_overrun.
4524	 */
4525	smp_mb();
4526	overwrite = local_read(&(cpu_buffer->overrun));
4527
4528	/*
4529	 * Here's the tricky part.
4530	 *
4531	 * We need to move the pointer past the header page.
4532	 * But we can only do that if a writer is not currently
4533	 * moving it. The page before the header page has the
4534	 * flag bit '1' set if it is pointing to the page we want.
4535	 * but if the writer is in the process of moving it
4536	 * than it will be '2' or already moved '0'.
4537	 */
4538
4539	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4540
4541	/*
4542	 * If we did not convert it, then we must try again.
4543	 */
4544	if (!ret)
4545		goto spin;
4546
 
 
 
4547	/*
4548	 * Yay! We succeeded in replacing the page.
4549	 *
4550	 * Now make the new head point back to the reader page.
4551	 */
4552	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4553	rb_inc_page(&cpu_buffer->head_page);
4554
 
4555	local_inc(&cpu_buffer->pages_read);
4556
4557	/* Finally update the reader page to the new head */
4558	cpu_buffer->reader_page = reader;
4559	cpu_buffer->reader_page->read = 0;
4560
4561	if (overwrite != cpu_buffer->last_overrun) {
4562		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4563		cpu_buffer->last_overrun = overwrite;
4564	}
4565
4566	goto again;
4567
4568 out:
4569	/* Update the read_stamp on the first event */
4570	if (reader && reader->read == 0)
4571		cpu_buffer->read_stamp = reader->page->time_stamp;
4572
4573	arch_spin_unlock(&cpu_buffer->lock);
4574	local_irq_restore(flags);
4575
4576	/*
4577	 * The writer has preempt disable, wait for it. But not forever
4578	 * Although, 1 second is pretty much "forever"
4579	 */
4580#define USECS_WAIT	1000000
4581        for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4582		/* If the write is past the end of page, a writer is still updating it */
4583		if (likely(!reader || rb_page_write(reader) <= bsize))
4584			break;
4585
4586		udelay(1);
4587
4588		/* Get the latest version of the reader write value */
4589		smp_rmb();
4590	}
4591
4592	/* The writer is not moving forward? Something is wrong */
4593	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4594		reader = NULL;
4595
4596	/*
4597	 * Make sure we see any padding after the write update
4598	 * (see rb_reset_tail()).
4599	 *
4600	 * In addition, a writer may be writing on the reader page
4601	 * if the page has not been fully filled, so the read barrier
4602	 * is also needed to make sure we see the content of what is
4603	 * committed by the writer (see rb_set_commit_to_write()).
4604	 */
4605	smp_rmb();
4606
4607
4608	return reader;
4609}
4610
4611static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4612{
4613	struct ring_buffer_event *event;
4614	struct buffer_page *reader;
4615	unsigned length;
4616
4617	reader = rb_get_reader_page(cpu_buffer);
4618
4619	/* This function should not be called when buffer is empty */
4620	if (RB_WARN_ON(cpu_buffer, !reader))
4621		return;
4622
4623	event = rb_reader_event(cpu_buffer);
4624
4625	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4626		cpu_buffer->read++;
4627
4628	rb_update_read_stamp(cpu_buffer, event);
4629
4630	length = rb_event_length(event);
4631	cpu_buffer->reader_page->read += length;
4632	cpu_buffer->read_bytes += length;
4633}
4634
4635static void rb_advance_iter(struct ring_buffer_iter *iter)
4636{
4637	struct ring_buffer_per_cpu *cpu_buffer;
4638
4639	cpu_buffer = iter->cpu_buffer;
4640
4641	/* If head == next_event then we need to jump to the next event */
4642	if (iter->head == iter->next_event) {
4643		/* If the event gets overwritten again, there's nothing to do */
4644		if (rb_iter_head_event(iter) == NULL)
4645			return;
4646	}
4647
4648	iter->head = iter->next_event;
4649
4650	/*
4651	 * Check if we are at the end of the buffer.
4652	 */
4653	if (iter->next_event >= rb_page_size(iter->head_page)) {
4654		/* discarded commits can make the page empty */
4655		if (iter->head_page == cpu_buffer->commit_page)
4656			return;
4657		rb_inc_iter(iter);
4658		return;
4659	}
4660
4661	rb_update_iter_read_stamp(iter, iter->event);
4662}
4663
4664static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4665{
4666	return cpu_buffer->lost_events;
4667}
4668
4669static struct ring_buffer_event *
4670rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4671	       unsigned long *lost_events)
4672{
4673	struct ring_buffer_event *event;
4674	struct buffer_page *reader;
4675	int nr_loops = 0;
4676
4677	if (ts)
4678		*ts = 0;
4679 again:
4680	/*
4681	 * We repeat when a time extend is encountered.
4682	 * Since the time extend is always attached to a data event,
4683	 * we should never loop more than once.
4684	 * (We never hit the following condition more than twice).
4685	 */
4686	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4687		return NULL;
4688
4689	reader = rb_get_reader_page(cpu_buffer);
4690	if (!reader)
4691		return NULL;
4692
4693	event = rb_reader_event(cpu_buffer);
4694
4695	switch (event->type_len) {
4696	case RINGBUF_TYPE_PADDING:
4697		if (rb_null_event(event))
4698			RB_WARN_ON(cpu_buffer, 1);
4699		/*
4700		 * Because the writer could be discarding every
4701		 * event it creates (which would probably be bad)
4702		 * if we were to go back to "again" then we may never
4703		 * catch up, and will trigger the warn on, or lock
4704		 * the box. Return the padding, and we will release
4705		 * the current locks, and try again.
4706		 */
4707		return event;
4708
4709	case RINGBUF_TYPE_TIME_EXTEND:
4710		/* Internal data, OK to advance */
4711		rb_advance_reader(cpu_buffer);
4712		goto again;
4713
4714	case RINGBUF_TYPE_TIME_STAMP:
4715		if (ts) {
4716			*ts = rb_event_time_stamp(event);
4717			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4718			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4719							 cpu_buffer->cpu, ts);
4720		}
4721		/* Internal data, OK to advance */
4722		rb_advance_reader(cpu_buffer);
4723		goto again;
4724
4725	case RINGBUF_TYPE_DATA:
4726		if (ts && !(*ts)) {
4727			*ts = cpu_buffer->read_stamp + event->time_delta;
4728			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4729							 cpu_buffer->cpu, ts);
4730		}
4731		if (lost_events)
4732			*lost_events = rb_lost_events(cpu_buffer);
4733		return event;
4734
4735	default:
4736		RB_WARN_ON(cpu_buffer, 1);
4737	}
4738
4739	return NULL;
4740}
4741EXPORT_SYMBOL_GPL(ring_buffer_peek);
4742
4743static struct ring_buffer_event *
4744rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4745{
4746	struct trace_buffer *buffer;
4747	struct ring_buffer_per_cpu *cpu_buffer;
4748	struct ring_buffer_event *event;
4749	int nr_loops = 0;
4750
4751	if (ts)
4752		*ts = 0;
4753
4754	cpu_buffer = iter->cpu_buffer;
4755	buffer = cpu_buffer->buffer;
4756
4757	/*
4758	 * Check if someone performed a consuming read to the buffer
4759	 * or removed some pages from the buffer. In these cases,
4760	 * iterator was invalidated and we need to reset it.
4761	 */
4762	if (unlikely(iter->cache_read != cpu_buffer->read ||
4763		     iter->cache_reader_page != cpu_buffer->reader_page ||
4764		     iter->cache_pages_removed != cpu_buffer->pages_removed))
4765		rb_iter_reset(iter);
4766
4767 again:
4768	if (ring_buffer_iter_empty(iter))
4769		return NULL;
4770
4771	/*
4772	 * As the writer can mess with what the iterator is trying
4773	 * to read, just give up if we fail to get an event after
4774	 * three tries. The iterator is not as reliable when reading
4775	 * the ring buffer with an active write as the consumer is.
4776	 * Do not warn if the three failures is reached.
4777	 */
4778	if (++nr_loops > 3)
4779		return NULL;
4780
4781	if (rb_per_cpu_empty(cpu_buffer))
4782		return NULL;
4783
4784	if (iter->head >= rb_page_size(iter->head_page)) {
4785		rb_inc_iter(iter);
4786		goto again;
4787	}
4788
4789	event = rb_iter_head_event(iter);
4790	if (!event)
4791		goto again;
4792
4793	switch (event->type_len) {
4794	case RINGBUF_TYPE_PADDING:
4795		if (rb_null_event(event)) {
4796			rb_inc_iter(iter);
4797			goto again;
4798		}
4799		rb_advance_iter(iter);
4800		return event;
4801
4802	case RINGBUF_TYPE_TIME_EXTEND:
4803		/* Internal data, OK to advance */
4804		rb_advance_iter(iter);
4805		goto again;
4806
4807	case RINGBUF_TYPE_TIME_STAMP:
4808		if (ts) {
4809			*ts = rb_event_time_stamp(event);
4810			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4811			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4812							 cpu_buffer->cpu, ts);
4813		}
4814		/* Internal data, OK to advance */
4815		rb_advance_iter(iter);
4816		goto again;
4817
4818	case RINGBUF_TYPE_DATA:
4819		if (ts && !(*ts)) {
4820			*ts = iter->read_stamp + event->time_delta;
4821			ring_buffer_normalize_time_stamp(buffer,
4822							 cpu_buffer->cpu, ts);
4823		}
4824		return event;
4825
4826	default:
4827		RB_WARN_ON(cpu_buffer, 1);
4828	}
4829
4830	return NULL;
4831}
4832EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4833
4834static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4835{
4836	if (likely(!in_nmi())) {
4837		raw_spin_lock(&cpu_buffer->reader_lock);
4838		return true;
4839	}
4840
4841	/*
4842	 * If an NMI die dumps out the content of the ring buffer
4843	 * trylock must be used to prevent a deadlock if the NMI
4844	 * preempted a task that holds the ring buffer locks. If
4845	 * we get the lock then all is fine, if not, then continue
4846	 * to do the read, but this can corrupt the ring buffer,
4847	 * so it must be permanently disabled from future writes.
4848	 * Reading from NMI is a oneshot deal.
4849	 */
4850	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4851		return true;
4852
4853	/* Continue without locking, but disable the ring buffer */
4854	atomic_inc(&cpu_buffer->record_disabled);
4855	return false;
4856}
4857
4858static inline void
4859rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4860{
4861	if (likely(locked))
4862		raw_spin_unlock(&cpu_buffer->reader_lock);
4863}
4864
4865/**
4866 * ring_buffer_peek - peek at the next event to be read
4867 * @buffer: The ring buffer to read
4868 * @cpu: The cpu to peak at
4869 * @ts: The timestamp counter of this event.
4870 * @lost_events: a variable to store if events were lost (may be NULL)
4871 *
4872 * This will return the event that will be read next, but does
4873 * not consume the data.
4874 */
4875struct ring_buffer_event *
4876ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4877		 unsigned long *lost_events)
4878{
4879	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4880	struct ring_buffer_event *event;
4881	unsigned long flags;
4882	bool dolock;
4883
4884	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4885		return NULL;
4886
4887 again:
4888	local_irq_save(flags);
4889	dolock = rb_reader_lock(cpu_buffer);
4890	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4891	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4892		rb_advance_reader(cpu_buffer);
4893	rb_reader_unlock(cpu_buffer, dolock);
4894	local_irq_restore(flags);
4895
4896	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4897		goto again;
4898
4899	return event;
4900}
4901
4902/** ring_buffer_iter_dropped - report if there are dropped events
4903 * @iter: The ring buffer iterator
4904 *
4905 * Returns true if there was dropped events since the last peek.
4906 */
4907bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4908{
4909	bool ret = iter->missed_events != 0;
4910
4911	iter->missed_events = 0;
4912	return ret;
4913}
4914EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4915
4916/**
4917 * ring_buffer_iter_peek - peek at the next event to be read
4918 * @iter: The ring buffer iterator
4919 * @ts: The timestamp counter of this event.
4920 *
4921 * This will return the event that will be read next, but does
4922 * not increment the iterator.
4923 */
4924struct ring_buffer_event *
4925ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4926{
4927	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4928	struct ring_buffer_event *event;
4929	unsigned long flags;
4930
4931 again:
4932	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4933	event = rb_iter_peek(iter, ts);
4934	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4935
4936	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4937		goto again;
4938
4939	return event;
4940}
4941
4942/**
4943 * ring_buffer_consume - return an event and consume it
4944 * @buffer: The ring buffer to get the next event from
4945 * @cpu: the cpu to read the buffer from
4946 * @ts: a variable to store the timestamp (may be NULL)
4947 * @lost_events: a variable to store if events were lost (may be NULL)
4948 *
4949 * Returns the next event in the ring buffer, and that event is consumed.
4950 * Meaning, that sequential reads will keep returning a different event,
4951 * and eventually empty the ring buffer if the producer is slower.
4952 */
4953struct ring_buffer_event *
4954ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4955		    unsigned long *lost_events)
4956{
4957	struct ring_buffer_per_cpu *cpu_buffer;
4958	struct ring_buffer_event *event = NULL;
4959	unsigned long flags;
4960	bool dolock;
4961
4962 again:
4963	/* might be called in atomic */
4964	preempt_disable();
4965
4966	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4967		goto out;
4968
4969	cpu_buffer = buffer->buffers[cpu];
4970	local_irq_save(flags);
4971	dolock = rb_reader_lock(cpu_buffer);
4972
4973	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4974	if (event) {
4975		cpu_buffer->lost_events = 0;
4976		rb_advance_reader(cpu_buffer);
4977	}
4978
4979	rb_reader_unlock(cpu_buffer, dolock);
4980	local_irq_restore(flags);
4981
4982 out:
4983	preempt_enable();
4984
4985	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4986		goto again;
4987
4988	return event;
4989}
4990EXPORT_SYMBOL_GPL(ring_buffer_consume);
4991
4992/**
4993 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4994 * @buffer: The ring buffer to read from
4995 * @cpu: The cpu buffer to iterate over
4996 * @flags: gfp flags to use for memory allocation
4997 *
4998 * This performs the initial preparations necessary to iterate
4999 * through the buffer.  Memory is allocated, buffer recording
5000 * is disabled, and the iterator pointer is returned to the caller.
5001 *
5002 * Disabling buffer recording prevents the reading from being
5003 * corrupted. This is not a consuming read, so a producer is not
5004 * expected.
5005 *
5006 * After a sequence of ring_buffer_read_prepare calls, the user is
5007 * expected to make at least one call to ring_buffer_read_prepare_sync.
5008 * Afterwards, ring_buffer_read_start is invoked to get things going
5009 * for real.
5010 *
5011 * This overall must be paired with ring_buffer_read_finish.
5012 */
5013struct ring_buffer_iter *
5014ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5015{
5016	struct ring_buffer_per_cpu *cpu_buffer;
5017	struct ring_buffer_iter *iter;
5018
5019	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5020		return NULL;
5021
5022	iter = kzalloc(sizeof(*iter), flags);
5023	if (!iter)
5024		return NULL;
5025
5026	/* Holds the entire event: data and meta data */
5027	iter->event_size = buffer->subbuf_size;
5028	iter->event = kmalloc(iter->event_size, flags);
5029	if (!iter->event) {
5030		kfree(iter);
5031		return NULL;
5032	}
5033
5034	cpu_buffer = buffer->buffers[cpu];
5035
5036	iter->cpu_buffer = cpu_buffer;
5037
5038	atomic_inc(&cpu_buffer->resize_disabled);
5039
5040	return iter;
5041}
5042EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5043
5044/**
5045 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5046 *
5047 * All previously invoked ring_buffer_read_prepare calls to prepare
5048 * iterators will be synchronized.  Afterwards, read_buffer_read_start
5049 * calls on those iterators are allowed.
5050 */
5051void
5052ring_buffer_read_prepare_sync(void)
5053{
5054	synchronize_rcu();
5055}
5056EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5057
5058/**
5059 * ring_buffer_read_start - start a non consuming read of the buffer
5060 * @iter: The iterator returned by ring_buffer_read_prepare
5061 *
5062 * This finalizes the startup of an iteration through the buffer.
5063 * The iterator comes from a call to ring_buffer_read_prepare and
5064 * an intervening ring_buffer_read_prepare_sync must have been
5065 * performed.
5066 *
5067 * Must be paired with ring_buffer_read_finish.
5068 */
5069void
5070ring_buffer_read_start(struct ring_buffer_iter *iter)
5071{
5072	struct ring_buffer_per_cpu *cpu_buffer;
5073	unsigned long flags;
5074
5075	if (!iter)
5076		return;
5077
5078	cpu_buffer = iter->cpu_buffer;
5079
5080	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5081	arch_spin_lock(&cpu_buffer->lock);
5082	rb_iter_reset(iter);
5083	arch_spin_unlock(&cpu_buffer->lock);
5084	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5085}
5086EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5087
5088/**
5089 * ring_buffer_read_finish - finish reading the iterator of the buffer
5090 * @iter: The iterator retrieved by ring_buffer_start
5091 *
5092 * This re-enables the recording to the buffer, and frees the
5093 * iterator.
5094 */
5095void
5096ring_buffer_read_finish(struct ring_buffer_iter *iter)
5097{
5098	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5099	unsigned long flags;
5100
5101	/*
5102	 * Ring buffer is disabled from recording, here's a good place
5103	 * to check the integrity of the ring buffer.
5104	 * Must prevent readers from trying to read, as the check
5105	 * clears the HEAD page and readers require it.
5106	 */
5107	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5108	rb_check_pages(cpu_buffer);
5109	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5110
5111	atomic_dec(&cpu_buffer->resize_disabled);
5112	kfree(iter->event);
5113	kfree(iter);
5114}
5115EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5116
5117/**
5118 * ring_buffer_iter_advance - advance the iterator to the next location
5119 * @iter: The ring buffer iterator
5120 *
5121 * Move the location of the iterator such that the next read will
5122 * be the next location of the iterator.
5123 */
5124void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5125{
5126	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5127	unsigned long flags;
5128
5129	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5130
5131	rb_advance_iter(iter);
5132
5133	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5134}
5135EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5136
5137/**
5138 * ring_buffer_size - return the size of the ring buffer (in bytes)
5139 * @buffer: The ring buffer.
5140 * @cpu: The CPU to get ring buffer size from.
5141 */
5142unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5143{
5144	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5145		return 0;
5146
5147	return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5148}
5149EXPORT_SYMBOL_GPL(ring_buffer_size);
5150
5151/**
5152 * ring_buffer_max_event_size - return the max data size of an event
5153 * @buffer: The ring buffer.
5154 *
5155 * Returns the maximum size an event can be.
5156 */
5157unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
5158{
5159	/* If abs timestamp is requested, events have a timestamp too */
5160	if (ring_buffer_time_stamp_abs(buffer))
5161		return buffer->max_data_size - RB_LEN_TIME_EXTEND;
5162	return buffer->max_data_size;
5163}
5164EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
5165
5166static void rb_clear_buffer_page(struct buffer_page *page)
5167{
5168	local_set(&page->write, 0);
5169	local_set(&page->entries, 0);
5170	rb_init_page(page->page);
5171	page->read = 0;
5172}
5173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5174static void
5175rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5176{
5177	struct buffer_page *page;
5178
5179	rb_head_page_deactivate(cpu_buffer);
5180
5181	cpu_buffer->head_page
5182		= list_entry(cpu_buffer->pages, struct buffer_page, list);
5183	rb_clear_buffer_page(cpu_buffer->head_page);
5184	list_for_each_entry(page, cpu_buffer->pages, list) {
5185		rb_clear_buffer_page(page);
5186	}
5187
5188	cpu_buffer->tail_page = cpu_buffer->head_page;
5189	cpu_buffer->commit_page = cpu_buffer->head_page;
5190
5191	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5192	INIT_LIST_HEAD(&cpu_buffer->new_pages);
5193	rb_clear_buffer_page(cpu_buffer->reader_page);
5194
5195	local_set(&cpu_buffer->entries_bytes, 0);
5196	local_set(&cpu_buffer->overrun, 0);
5197	local_set(&cpu_buffer->commit_overrun, 0);
5198	local_set(&cpu_buffer->dropped_events, 0);
5199	local_set(&cpu_buffer->entries, 0);
5200	local_set(&cpu_buffer->committing, 0);
5201	local_set(&cpu_buffer->commits, 0);
5202	local_set(&cpu_buffer->pages_touched, 0);
5203	local_set(&cpu_buffer->pages_lost, 0);
5204	local_set(&cpu_buffer->pages_read, 0);
5205	cpu_buffer->last_pages_touch = 0;
5206	cpu_buffer->shortest_full = 0;
5207	cpu_buffer->read = 0;
5208	cpu_buffer->read_bytes = 0;
5209
5210	rb_time_set(&cpu_buffer->write_stamp, 0);
5211	rb_time_set(&cpu_buffer->before_stamp, 0);
5212
5213	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5214
5215	cpu_buffer->lost_events = 0;
5216	cpu_buffer->last_overrun = 0;
5217
5218	rb_head_page_activate(cpu_buffer);
5219	cpu_buffer->pages_removed = 0;
 
 
 
 
 
 
 
 
5220}
5221
5222/* Must have disabled the cpu buffer then done a synchronize_rcu */
5223static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5224{
5225	unsigned long flags;
5226
5227	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5228
5229	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5230		goto out;
5231
5232	arch_spin_lock(&cpu_buffer->lock);
5233
5234	rb_reset_cpu(cpu_buffer);
5235
5236	arch_spin_unlock(&cpu_buffer->lock);
5237
5238 out:
5239	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5240}
5241
5242/**
5243 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5244 * @buffer: The ring buffer to reset a per cpu buffer of
5245 * @cpu: The CPU buffer to be reset
5246 */
5247void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5248{
5249	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
 
5250
5251	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5252		return;
5253
5254	/* prevent another thread from changing buffer sizes */
5255	mutex_lock(&buffer->mutex);
5256
5257	atomic_inc(&cpu_buffer->resize_disabled);
5258	atomic_inc(&cpu_buffer->record_disabled);
5259
5260	/* Make sure all commits have finished */
5261	synchronize_rcu();
5262
5263	reset_disabled_cpu_buffer(cpu_buffer);
5264
5265	atomic_dec(&cpu_buffer->record_disabled);
5266	atomic_dec(&cpu_buffer->resize_disabled);
5267
 
 
 
 
 
5268	mutex_unlock(&buffer->mutex);
5269}
5270EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5271
5272/* Flag to ensure proper resetting of atomic variables */
5273#define RESET_BIT	(1 << 30)
5274
5275/**
5276 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5277 * @buffer: The ring buffer to reset a per cpu buffer of
5278 */
5279void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5280{
5281	struct ring_buffer_per_cpu *cpu_buffer;
 
5282	int cpu;
5283
5284	/* prevent another thread from changing buffer sizes */
5285	mutex_lock(&buffer->mutex);
5286
5287	for_each_online_buffer_cpu(buffer, cpu) {
5288		cpu_buffer = buffer->buffers[cpu];
5289
5290		atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
5291		atomic_inc(&cpu_buffer->record_disabled);
5292	}
5293
5294	/* Make sure all commits have finished */
5295	synchronize_rcu();
5296
5297	for_each_buffer_cpu(buffer, cpu) {
5298		cpu_buffer = buffer->buffers[cpu];
5299
5300		/*
5301		 * If a CPU came online during the synchronize_rcu(), then
5302		 * ignore it.
5303		 */
5304		if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
5305			continue;
5306
5307		reset_disabled_cpu_buffer(cpu_buffer);
5308
 
 
 
 
 
5309		atomic_dec(&cpu_buffer->record_disabled);
5310		atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
5311	}
5312
5313	mutex_unlock(&buffer->mutex);
5314}
5315
5316/**
5317 * ring_buffer_reset - reset a ring buffer
5318 * @buffer: The ring buffer to reset all cpu buffers
5319 */
5320void ring_buffer_reset(struct trace_buffer *buffer)
5321{
5322	struct ring_buffer_per_cpu *cpu_buffer;
5323	int cpu;
5324
5325	/* prevent another thread from changing buffer sizes */
5326	mutex_lock(&buffer->mutex);
5327
5328	for_each_buffer_cpu(buffer, cpu) {
5329		cpu_buffer = buffer->buffers[cpu];
5330
5331		atomic_inc(&cpu_buffer->resize_disabled);
5332		atomic_inc(&cpu_buffer->record_disabled);
5333	}
5334
5335	/* Make sure all commits have finished */
5336	synchronize_rcu();
5337
5338	for_each_buffer_cpu(buffer, cpu) {
5339		cpu_buffer = buffer->buffers[cpu];
5340
5341		reset_disabled_cpu_buffer(cpu_buffer);
5342
5343		atomic_dec(&cpu_buffer->record_disabled);
5344		atomic_dec(&cpu_buffer->resize_disabled);
5345	}
5346
5347	mutex_unlock(&buffer->mutex);
5348}
5349EXPORT_SYMBOL_GPL(ring_buffer_reset);
5350
5351/**
5352 * ring_buffer_empty - is the ring buffer empty?
5353 * @buffer: The ring buffer to test
5354 */
5355bool ring_buffer_empty(struct trace_buffer *buffer)
5356{
5357	struct ring_buffer_per_cpu *cpu_buffer;
5358	unsigned long flags;
5359	bool dolock;
5360	bool ret;
5361	int cpu;
5362
5363	/* yes this is racy, but if you don't like the race, lock the buffer */
5364	for_each_buffer_cpu(buffer, cpu) {
5365		cpu_buffer = buffer->buffers[cpu];
5366		local_irq_save(flags);
5367		dolock = rb_reader_lock(cpu_buffer);
5368		ret = rb_per_cpu_empty(cpu_buffer);
5369		rb_reader_unlock(cpu_buffer, dolock);
5370		local_irq_restore(flags);
5371
5372		if (!ret)
5373			return false;
5374	}
5375
5376	return true;
5377}
5378EXPORT_SYMBOL_GPL(ring_buffer_empty);
5379
5380/**
5381 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5382 * @buffer: The ring buffer
5383 * @cpu: The CPU buffer to test
5384 */
5385bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5386{
5387	struct ring_buffer_per_cpu *cpu_buffer;
5388	unsigned long flags;
5389	bool dolock;
5390	bool ret;
5391
5392	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5393		return true;
5394
5395	cpu_buffer = buffer->buffers[cpu];
5396	local_irq_save(flags);
5397	dolock = rb_reader_lock(cpu_buffer);
5398	ret = rb_per_cpu_empty(cpu_buffer);
5399	rb_reader_unlock(cpu_buffer, dolock);
5400	local_irq_restore(flags);
5401
5402	return ret;
5403}
5404EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5405
5406#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5407/**
5408 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5409 * @buffer_a: One buffer to swap with
5410 * @buffer_b: The other buffer to swap with
5411 * @cpu: the CPU of the buffers to swap
5412 *
5413 * This function is useful for tracers that want to take a "snapshot"
5414 * of a CPU buffer and has another back up buffer lying around.
5415 * it is expected that the tracer handles the cpu buffer not being
5416 * used at the moment.
5417 */
5418int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5419			 struct trace_buffer *buffer_b, int cpu)
5420{
5421	struct ring_buffer_per_cpu *cpu_buffer_a;
5422	struct ring_buffer_per_cpu *cpu_buffer_b;
5423	int ret = -EINVAL;
5424
5425	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5426	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
5427		goto out;
5428
5429	cpu_buffer_a = buffer_a->buffers[cpu];
5430	cpu_buffer_b = buffer_b->buffers[cpu];
5431
 
 
 
 
 
 
5432	/* At least make sure the two buffers are somewhat the same */
5433	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5434		goto out;
5435
5436	if (buffer_a->subbuf_order != buffer_b->subbuf_order)
5437		goto out;
5438
5439	ret = -EAGAIN;
5440
5441	if (atomic_read(&buffer_a->record_disabled))
5442		goto out;
5443
5444	if (atomic_read(&buffer_b->record_disabled))
5445		goto out;
5446
5447	if (atomic_read(&cpu_buffer_a->record_disabled))
5448		goto out;
5449
5450	if (atomic_read(&cpu_buffer_b->record_disabled))
5451		goto out;
5452
5453	/*
5454	 * We can't do a synchronize_rcu here because this
5455	 * function can be called in atomic context.
5456	 * Normally this will be called from the same CPU as cpu.
5457	 * If not it's up to the caller to protect this.
5458	 */
5459	atomic_inc(&cpu_buffer_a->record_disabled);
5460	atomic_inc(&cpu_buffer_b->record_disabled);
5461
5462	ret = -EBUSY;
5463	if (local_read(&cpu_buffer_a->committing))
5464		goto out_dec;
5465	if (local_read(&cpu_buffer_b->committing))
5466		goto out_dec;
5467
5468	/*
5469	 * When resize is in progress, we cannot swap it because
5470	 * it will mess the state of the cpu buffer.
5471	 */
5472	if (atomic_read(&buffer_a->resizing))
5473		goto out_dec;
5474	if (atomic_read(&buffer_b->resizing))
5475		goto out_dec;
5476
5477	buffer_a->buffers[cpu] = cpu_buffer_b;
5478	buffer_b->buffers[cpu] = cpu_buffer_a;
5479
5480	cpu_buffer_b->buffer = buffer_a;
5481	cpu_buffer_a->buffer = buffer_b;
5482
5483	ret = 0;
5484
5485out_dec:
5486	atomic_dec(&cpu_buffer_a->record_disabled);
5487	atomic_dec(&cpu_buffer_b->record_disabled);
5488out:
5489	return ret;
5490}
5491EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5492#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5493
5494/**
5495 * ring_buffer_alloc_read_page - allocate a page to read from buffer
5496 * @buffer: the buffer to allocate for.
5497 * @cpu: the cpu buffer to allocate.
5498 *
5499 * This function is used in conjunction with ring_buffer_read_page.
5500 * When reading a full page from the ring buffer, these functions
5501 * can be used to speed up the process. The calling function should
5502 * allocate a few pages first with this function. Then when it
5503 * needs to get pages from the ring buffer, it passes the result
5504 * of this function into ring_buffer_read_page, which will swap
5505 * the page that was allocated, with the read page of the buffer.
5506 *
5507 * Returns:
5508 *  The page allocated, or ERR_PTR
5509 */
5510struct buffer_data_read_page *
5511ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5512{
5513	struct ring_buffer_per_cpu *cpu_buffer;
5514	struct buffer_data_read_page *bpage = NULL;
5515	unsigned long flags;
5516	struct page *page;
5517
5518	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5519		return ERR_PTR(-ENODEV);
5520
5521	bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
5522	if (!bpage)
5523		return ERR_PTR(-ENOMEM);
5524
5525	bpage->order = buffer->subbuf_order;
5526	cpu_buffer = buffer->buffers[cpu];
5527	local_irq_save(flags);
5528	arch_spin_lock(&cpu_buffer->lock);
5529
5530	if (cpu_buffer->free_page) {
5531		bpage->data = cpu_buffer->free_page;
5532		cpu_buffer->free_page = NULL;
5533	}
5534
5535	arch_spin_unlock(&cpu_buffer->lock);
5536	local_irq_restore(flags);
5537
5538	if (bpage->data)
5539		goto out;
5540
5541	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL | __GFP_NORETRY,
 
5542				cpu_buffer->buffer->subbuf_order);
5543	if (!page) {
5544		kfree(bpage);
5545		return ERR_PTR(-ENOMEM);
5546	}
5547
5548	bpage->data = page_address(page);
5549
5550 out:
5551	rb_init_page(bpage->data);
5552
5553	return bpage;
5554}
5555EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5556
5557/**
5558 * ring_buffer_free_read_page - free an allocated read page
5559 * @buffer: the buffer the page was allocate for
5560 * @cpu: the cpu buffer the page came from
5561 * @data_page: the page to free
5562 *
5563 * Free a page allocated from ring_buffer_alloc_read_page.
5564 */
5565void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
5566				struct buffer_data_read_page *data_page)
5567{
5568	struct ring_buffer_per_cpu *cpu_buffer;
5569	struct buffer_data_page *bpage = data_page->data;
5570	struct page *page = virt_to_page(bpage);
5571	unsigned long flags;
5572
5573	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5574		return;
5575
5576	cpu_buffer = buffer->buffers[cpu];
5577
5578	/*
5579	 * If the page is still in use someplace else, or order of the page
5580	 * is different from the subbuffer order of the buffer -
5581	 * we can't reuse it
5582	 */
5583	if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
5584		goto out;
5585
5586	local_irq_save(flags);
5587	arch_spin_lock(&cpu_buffer->lock);
5588
5589	if (!cpu_buffer->free_page) {
5590		cpu_buffer->free_page = bpage;
5591		bpage = NULL;
5592	}
5593
5594	arch_spin_unlock(&cpu_buffer->lock);
5595	local_irq_restore(flags);
5596
5597 out:
5598	free_pages((unsigned long)bpage, data_page->order);
5599	kfree(data_page);
5600}
5601EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5602
5603/**
5604 * ring_buffer_read_page - extract a page from the ring buffer
5605 * @buffer: buffer to extract from
5606 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5607 * @len: amount to extract
5608 * @cpu: the cpu of the buffer to extract
5609 * @full: should the extraction only happen when the page is full.
5610 *
5611 * This function will pull out a page from the ring buffer and consume it.
5612 * @data_page must be the address of the variable that was returned
5613 * from ring_buffer_alloc_read_page. This is because the page might be used
5614 * to swap with a page in the ring buffer.
5615 *
5616 * for example:
5617 *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
5618 *	if (IS_ERR(rpage))
5619 *		return PTR_ERR(rpage);
5620 *	ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
5621 *	if (ret >= 0)
5622 *		process_page(ring_buffer_read_page_data(rpage), ret);
5623 *	ring_buffer_free_read_page(buffer, cpu, rpage);
5624 *
5625 * When @full is set, the function will not return true unless
5626 * the writer is off the reader page.
5627 *
5628 * Note: it is up to the calling functions to handle sleeps and wakeups.
5629 *  The ring buffer can be used anywhere in the kernel and can not
5630 *  blindly call wake_up. The layer that uses the ring buffer must be
5631 *  responsible for that.
5632 *
5633 * Returns:
5634 *  >=0 if data has been transferred, returns the offset of consumed data.
5635 *  <0 if no data has been transferred.
5636 */
5637int ring_buffer_read_page(struct trace_buffer *buffer,
5638			  struct buffer_data_read_page *data_page,
5639			  size_t len, int cpu, int full)
5640{
5641	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5642	struct ring_buffer_event *event;
5643	struct buffer_data_page *bpage;
5644	struct buffer_page *reader;
5645	unsigned long missed_events;
5646	unsigned long flags;
5647	unsigned int commit;
5648	unsigned int read;
5649	u64 save_timestamp;
5650	int ret = -1;
5651
5652	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5653		goto out;
5654
5655	/*
5656	 * If len is not big enough to hold the page header, then
5657	 * we can not copy anything.
5658	 */
5659	if (len <= BUF_PAGE_HDR_SIZE)
5660		goto out;
5661
5662	len -= BUF_PAGE_HDR_SIZE;
5663
5664	if (!data_page || !data_page->data)
5665		goto out;
5666	if (data_page->order != buffer->subbuf_order)
5667		goto out;
5668
5669	bpage = data_page->data;
5670	if (!bpage)
5671		goto out;
5672
5673	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5674
5675	reader = rb_get_reader_page(cpu_buffer);
5676	if (!reader)
5677		goto out_unlock;
5678
5679	event = rb_reader_event(cpu_buffer);
5680
5681	read = reader->read;
5682	commit = rb_page_commit(reader);
5683
5684	/* Check if any events were dropped */
5685	missed_events = cpu_buffer->lost_events;
5686
5687	/*
5688	 * If this page has been partially read or
5689	 * if len is not big enough to read the rest of the page or
5690	 * a writer is still on the page, then
5691	 * we must copy the data from the page to the buffer.
5692	 * Otherwise, we can simply swap the page with the one passed in.
5693	 */
5694	if (read || (len < (commit - read)) ||
5695	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
 
5696		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5697		unsigned int rpos = read;
5698		unsigned int pos = 0;
5699		unsigned int size;
5700
5701		/*
5702		 * If a full page is expected, this can still be returned
5703		 * if there's been a previous partial read and the
5704		 * rest of the page can be read and the commit page is off
5705		 * the reader page.
5706		 */
5707		if (full &&
5708		    (!read || (len < (commit - read)) ||
5709		     cpu_buffer->reader_page == cpu_buffer->commit_page))
5710			goto out_unlock;
5711
5712		if (len > (commit - read))
5713			len = (commit - read);
5714
5715		/* Always keep the time extend and data together */
5716		size = rb_event_ts_length(event);
5717
5718		if (len < size)
5719			goto out_unlock;
5720
5721		/* save the current timestamp, since the user will need it */
5722		save_timestamp = cpu_buffer->read_stamp;
5723
5724		/* Need to copy one event at a time */
5725		do {
5726			/* We need the size of one event, because
5727			 * rb_advance_reader only advances by one event,
5728			 * whereas rb_event_ts_length may include the size of
5729			 * one or two events.
5730			 * We have already ensured there's enough space if this
5731			 * is a time extend. */
5732			size = rb_event_length(event);
5733			memcpy(bpage->data + pos, rpage->data + rpos, size);
5734
5735			len -= size;
5736
5737			rb_advance_reader(cpu_buffer);
5738			rpos = reader->read;
5739			pos += size;
5740
5741			if (rpos >= commit)
5742				break;
5743
5744			event = rb_reader_event(cpu_buffer);
5745			/* Always keep the time extend and data together */
5746			size = rb_event_ts_length(event);
5747		} while (len >= size);
5748
5749		/* update bpage */
5750		local_set(&bpage->commit, pos);
5751		bpage->time_stamp = save_timestamp;
5752
5753		/* we copied everything to the beginning */
5754		read = 0;
5755	} else {
5756		/* update the entry counter */
5757		cpu_buffer->read += rb_page_entries(reader);
5758		cpu_buffer->read_bytes += rb_page_commit(reader);
5759
5760		/* swap the pages */
5761		rb_init_page(bpage);
5762		bpage = reader->page;
5763		reader->page = data_page->data;
5764		local_set(&reader->write, 0);
5765		local_set(&reader->entries, 0);
5766		reader->read = 0;
5767		data_page->data = bpage;
5768
5769		/*
5770		 * Use the real_end for the data size,
5771		 * This gives us a chance to store the lost events
5772		 * on the page.
5773		 */
5774		if (reader->real_end)
5775			local_set(&bpage->commit, reader->real_end);
5776	}
5777	ret = read;
5778
5779	cpu_buffer->lost_events = 0;
5780
5781	commit = local_read(&bpage->commit);
5782	/*
5783	 * Set a flag in the commit field if we lost events
5784	 */
5785	if (missed_events) {
5786		/* If there is room at the end of the page to save the
5787		 * missed events, then record it there.
5788		 */
5789		if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
5790			memcpy(&bpage->data[commit], &missed_events,
5791			       sizeof(missed_events));
5792			local_add(RB_MISSED_STORED, &bpage->commit);
5793			commit += sizeof(missed_events);
5794		}
5795		local_add(RB_MISSED_EVENTS, &bpage->commit);
5796	}
5797
5798	/*
5799	 * This page may be off to user land. Zero it out here.
5800	 */
5801	if (commit < buffer->subbuf_size)
5802		memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
5803
5804 out_unlock:
5805	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5806
5807 out:
5808	return ret;
5809}
5810EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5811
5812/**
5813 * ring_buffer_read_page_data - get pointer to the data in the page.
5814 * @page:  the page to get the data from
5815 *
5816 * Returns pointer to the actual data in this page.
5817 */
5818void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
5819{
5820	return page->data;
5821}
5822EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
5823
5824/**
5825 * ring_buffer_subbuf_size_get - get size of the sub buffer.
5826 * @buffer: the buffer to get the sub buffer size from
5827 *
5828 * Returns size of the sub buffer, in bytes.
5829 */
5830int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
5831{
5832	return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
5833}
5834EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
5835
5836/**
5837 * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
5838 * @buffer: The ring_buffer to get the system sub page order from
5839 *
5840 * By default, one ring buffer sub page equals to one system page. This parameter
5841 * is configurable, per ring buffer. The size of the ring buffer sub page can be
5842 * extended, but must be an order of system page size.
5843 *
5844 * Returns the order of buffer sub page size, in system pages:
5845 * 0 means the sub buffer size is 1 system page and so forth.
5846 * In case of an error < 0 is returned.
5847 */
5848int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
5849{
5850	if (!buffer)
5851		return -EINVAL;
5852
5853	return buffer->subbuf_order;
5854}
5855EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
5856
5857/**
5858 * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
5859 * @buffer: The ring_buffer to set the new page size.
5860 * @order: Order of the system pages in one sub buffer page
5861 *
5862 * By default, one ring buffer pages equals to one system page. This API can be
5863 * used to set new size of the ring buffer page. The size must be order of
5864 * system page size, that's why the input parameter @order is the order of
5865 * system pages that are allocated for one ring buffer page:
5866 *  0 - 1 system page
5867 *  1 - 2 system pages
5868 *  3 - 4 system pages
5869 *  ...
5870 *
5871 * Returns 0 on success or < 0 in case of an error.
5872 */
5873int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
5874{
5875	struct ring_buffer_per_cpu *cpu_buffer;
5876	struct buffer_page *bpage, *tmp;
5877	int old_order, old_size;
5878	int nr_pages;
5879	int psize;
5880	int err;
5881	int cpu;
5882
5883	if (!buffer || order < 0)
5884		return -EINVAL;
5885
5886	if (buffer->subbuf_order == order)
5887		return 0;
5888
5889	psize = (1 << order) * PAGE_SIZE;
5890	if (psize <= BUF_PAGE_HDR_SIZE)
5891		return -EINVAL;
5892
5893	/* Size of a subbuf cannot be greater than the write counter */
5894	if (psize > RB_WRITE_MASK + 1)
5895		return -EINVAL;
5896
5897	old_order = buffer->subbuf_order;
5898	old_size = buffer->subbuf_size;
5899
5900	/* prevent another thread from changing buffer sizes */
5901	mutex_lock(&buffer->mutex);
5902	atomic_inc(&buffer->record_disabled);
5903
5904	/* Make sure all commits have finished */
5905	synchronize_rcu();
5906
5907	buffer->subbuf_order = order;
5908	buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
5909
5910	/* Make sure all new buffers are allocated, before deleting the old ones */
5911	for_each_buffer_cpu(buffer, cpu) {
5912
5913		if (!cpumask_test_cpu(cpu, buffer->cpumask))
5914			continue;
5915
5916		cpu_buffer = buffer->buffers[cpu];
5917
 
 
 
 
 
5918		/* Update the number of pages to match the new size */
5919		nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
5920		nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
5921
5922		/* we need a minimum of two pages */
5923		if (nr_pages < 2)
5924			nr_pages = 2;
5925
5926		cpu_buffer->nr_pages_to_update = nr_pages;
5927
5928		/* Include the reader page */
5929		nr_pages++;
5930
5931		/* Allocate the new size buffer */
5932		INIT_LIST_HEAD(&cpu_buffer->new_pages);
5933		if (__rb_allocate_pages(cpu_buffer, nr_pages,
5934					&cpu_buffer->new_pages)) {
5935			/* not enough memory for new pages */
5936			err = -ENOMEM;
5937			goto error;
5938		}
5939	}
5940
5941	for_each_buffer_cpu(buffer, cpu) {
 
 
 
5942
5943		if (!cpumask_test_cpu(cpu, buffer->cpumask))
5944			continue;
5945
5946		cpu_buffer = buffer->buffers[cpu];
5947
 
 
5948		/* Clear the head bit to make the link list normal to read */
5949		rb_head_page_deactivate(cpu_buffer);
5950
5951		/* Now walk the list and free all the old sub buffers */
5952		list_for_each_entry_safe(bpage, tmp, cpu_buffer->pages, list) {
5953			list_del_init(&bpage->list);
5954			free_buffer_page(bpage);
5955		}
5956		/* The above loop stopped an the last page needing to be freed */
5957		bpage = list_entry(cpu_buffer->pages, struct buffer_page, list);
5958		free_buffer_page(bpage);
5959
5960		/* Free the current reader page */
5961		free_buffer_page(cpu_buffer->reader_page);
5962
5963		/* One page was allocated for the reader page */
5964		cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
5965						     struct buffer_page, list);
5966		list_del_init(&cpu_buffer->reader_page->list);
5967
5968		/* The cpu_buffer pages are a link list with no head */
5969		cpu_buffer->pages = cpu_buffer->new_pages.next;
5970		cpu_buffer->new_pages.next->prev = cpu_buffer->new_pages.prev;
5971		cpu_buffer->new_pages.prev->next = cpu_buffer->new_pages.next;
5972
5973		/* Clear the new_pages list */
5974		INIT_LIST_HEAD(&cpu_buffer->new_pages);
5975
5976		cpu_buffer->head_page
5977			= list_entry(cpu_buffer->pages, struct buffer_page, list);
5978		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
5979
5980		cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
5981		cpu_buffer->nr_pages_to_update = 0;
5982
5983		free_pages((unsigned long)cpu_buffer->free_page, old_order);
5984		cpu_buffer->free_page = NULL;
5985
5986		rb_head_page_activate(cpu_buffer);
5987
 
 
 
 
 
 
 
 
 
5988		rb_check_pages(cpu_buffer);
5989	}
5990
5991	atomic_dec(&buffer->record_disabled);
5992	mutex_unlock(&buffer->mutex);
5993
5994	return 0;
5995
5996error:
5997	buffer->subbuf_order = old_order;
5998	buffer->subbuf_size = old_size;
5999
6000	atomic_dec(&buffer->record_disabled);
6001	mutex_unlock(&buffer->mutex);
6002
6003	for_each_buffer_cpu(buffer, cpu) {
6004		cpu_buffer = buffer->buffers[cpu];
6005
6006		if (!cpu_buffer->nr_pages_to_update)
6007			continue;
6008
6009		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6010			list_del_init(&bpage->list);
6011			free_buffer_page(bpage);
6012		}
6013	}
6014
6015	return err;
6016}
6017EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6018
6019/*
6020 * We only allocate new buffers, never free them if the CPU goes down.
6021 * If we were to free the buffer, then the user would lose any trace that was in
6022 * the buffer.
6023 */
6024int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
6025{
6026	struct trace_buffer *buffer;
6027	long nr_pages_same;
6028	int cpu_i;
6029	unsigned long nr_pages;
6030
6031	buffer = container_of(node, struct trace_buffer, node);
6032	if (cpumask_test_cpu(cpu, buffer->cpumask))
6033		return 0;
6034
6035	nr_pages = 0;
6036	nr_pages_same = 1;
6037	/* check if all cpu sizes are same */
6038	for_each_buffer_cpu(buffer, cpu_i) {
6039		/* fill in the size from first enabled cpu */
6040		if (nr_pages == 0)
6041			nr_pages = buffer->buffers[cpu_i]->nr_pages;
6042		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
6043			nr_pages_same = 0;
6044			break;
6045		}
6046	}
6047	/* allocate minimum pages, user can later expand it */
6048	if (!nr_pages_same)
6049		nr_pages = 2;
6050	buffer->buffers[cpu] =
6051		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
6052	if (!buffer->buffers[cpu]) {
6053		WARN(1, "failed to allocate ring buffer on CPU %u\n",
6054		     cpu);
6055		return -ENOMEM;
6056	}
6057	smp_wmb();
6058	cpumask_set_cpu(cpu, buffer->cpumask);
6059	return 0;
6060}
6061
6062#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
6063/*
6064 * This is a basic integrity check of the ring buffer.
6065 * Late in the boot cycle this test will run when configured in.
6066 * It will kick off a thread per CPU that will go into a loop
6067 * writing to the per cpu ring buffer various sizes of data.
6068 * Some of the data will be large items, some small.
6069 *
6070 * Another thread is created that goes into a spin, sending out
6071 * IPIs to the other CPUs to also write into the ring buffer.
6072 * this is to test the nesting ability of the buffer.
6073 *
6074 * Basic stats are recorded and reported. If something in the
6075 * ring buffer should happen that's not expected, a big warning
6076 * is displayed and all ring buffers are disabled.
6077 */
6078static struct task_struct *rb_threads[NR_CPUS] __initdata;
6079
6080struct rb_test_data {
6081	struct trace_buffer *buffer;
6082	unsigned long		events;
6083	unsigned long		bytes_written;
6084	unsigned long		bytes_alloc;
6085	unsigned long		bytes_dropped;
6086	unsigned long		events_nested;
6087	unsigned long		bytes_written_nested;
6088	unsigned long		bytes_alloc_nested;
6089	unsigned long		bytes_dropped_nested;
6090	int			min_size_nested;
6091	int			max_size_nested;
6092	int			max_size;
6093	int			min_size;
6094	int			cpu;
6095	int			cnt;
6096};
6097
6098static struct rb_test_data rb_data[NR_CPUS] __initdata;
6099
6100/* 1 meg per cpu */
6101#define RB_TEST_BUFFER_SIZE	1048576
6102
6103static char rb_string[] __initdata =
6104	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
6105	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
6106	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
6107
6108static bool rb_test_started __initdata;
6109
6110struct rb_item {
6111	int size;
6112	char str[];
6113};
6114
6115static __init int rb_write_something(struct rb_test_data *data, bool nested)
6116{
6117	struct ring_buffer_event *event;
6118	struct rb_item *item;
6119	bool started;
6120	int event_len;
6121	int size;
6122	int len;
6123	int cnt;
6124
6125	/* Have nested writes different that what is written */
6126	cnt = data->cnt + (nested ? 27 : 0);
6127
6128	/* Multiply cnt by ~e, to make some unique increment */
6129	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
6130
6131	len = size + sizeof(struct rb_item);
6132
6133	started = rb_test_started;
6134	/* read rb_test_started before checking buffer enabled */
6135	smp_rmb();
6136
6137	event = ring_buffer_lock_reserve(data->buffer, len);
6138	if (!event) {
6139		/* Ignore dropped events before test starts. */
6140		if (started) {
6141			if (nested)
6142				data->bytes_dropped += len;
6143			else
6144				data->bytes_dropped_nested += len;
6145		}
6146		return len;
6147	}
6148
6149	event_len = ring_buffer_event_length(event);
6150
6151	if (RB_WARN_ON(data->buffer, event_len < len))
6152		goto out;
6153
6154	item = ring_buffer_event_data(event);
6155	item->size = size;
6156	memcpy(item->str, rb_string, size);
6157
6158	if (nested) {
6159		data->bytes_alloc_nested += event_len;
6160		data->bytes_written_nested += len;
6161		data->events_nested++;
6162		if (!data->min_size_nested || len < data->min_size_nested)
6163			data->min_size_nested = len;
6164		if (len > data->max_size_nested)
6165			data->max_size_nested = len;
6166	} else {
6167		data->bytes_alloc += event_len;
6168		data->bytes_written += len;
6169		data->events++;
6170		if (!data->min_size || len < data->min_size)
6171			data->max_size = len;
6172		if (len > data->max_size)
6173			data->max_size = len;
6174	}
6175
6176 out:
6177	ring_buffer_unlock_commit(data->buffer);
6178
6179	return 0;
6180}
6181
6182static __init int rb_test(void *arg)
6183{
6184	struct rb_test_data *data = arg;
6185
6186	while (!kthread_should_stop()) {
6187		rb_write_something(data, false);
6188		data->cnt++;
6189
6190		set_current_state(TASK_INTERRUPTIBLE);
6191		/* Now sleep between a min of 100-300us and a max of 1ms */
6192		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
6193	}
6194
6195	return 0;
6196}
6197
6198static __init void rb_ipi(void *ignore)
6199{
6200	struct rb_test_data *data;
6201	int cpu = smp_processor_id();
6202
6203	data = &rb_data[cpu];
6204	rb_write_something(data, true);
6205}
6206
6207static __init int rb_hammer_test(void *arg)
6208{
6209	while (!kthread_should_stop()) {
6210
6211		/* Send an IPI to all cpus to write data! */
6212		smp_call_function(rb_ipi, NULL, 1);
6213		/* No sleep, but for non preempt, let others run */
6214		schedule();
6215	}
6216
6217	return 0;
6218}
6219
6220static __init int test_ringbuffer(void)
6221{
6222	struct task_struct *rb_hammer;
6223	struct trace_buffer *buffer;
6224	int cpu;
6225	int ret = 0;
6226
6227	if (security_locked_down(LOCKDOWN_TRACEFS)) {
6228		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6229		return 0;
6230	}
6231
6232	pr_info("Running ring buffer tests...\n");
6233
6234	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6235	if (WARN_ON(!buffer))
6236		return 0;
6237
6238	/* Disable buffer so that threads can't write to it yet */
6239	ring_buffer_record_off(buffer);
6240
6241	for_each_online_cpu(cpu) {
6242		rb_data[cpu].buffer = buffer;
6243		rb_data[cpu].cpu = cpu;
6244		rb_data[cpu].cnt = cpu;
6245		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6246						     cpu, "rbtester/%u");
6247		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6248			pr_cont("FAILED\n");
6249			ret = PTR_ERR(rb_threads[cpu]);
6250			goto out_free;
6251		}
6252	}
6253
6254	/* Now create the rb hammer! */
6255	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6256	if (WARN_ON(IS_ERR(rb_hammer))) {
6257		pr_cont("FAILED\n");
6258		ret = PTR_ERR(rb_hammer);
6259		goto out_free;
6260	}
6261
6262	ring_buffer_record_on(buffer);
6263	/*
6264	 * Show buffer is enabled before setting rb_test_started.
6265	 * Yes there's a small race window where events could be
6266	 * dropped and the thread wont catch it. But when a ring
6267	 * buffer gets enabled, there will always be some kind of
6268	 * delay before other CPUs see it. Thus, we don't care about
6269	 * those dropped events. We care about events dropped after
6270	 * the threads see that the buffer is active.
6271	 */
6272	smp_wmb();
6273	rb_test_started = true;
6274
6275	set_current_state(TASK_INTERRUPTIBLE);
6276	/* Just run for 10 seconds */;
6277	schedule_timeout(10 * HZ);
6278
6279	kthread_stop(rb_hammer);
6280
6281 out_free:
6282	for_each_online_cpu(cpu) {
6283		if (!rb_threads[cpu])
6284			break;
6285		kthread_stop(rb_threads[cpu]);
6286	}
6287	if (ret) {
6288		ring_buffer_free(buffer);
6289		return ret;
6290	}
6291
6292	/* Report! */
6293	pr_info("finished\n");
6294	for_each_online_cpu(cpu) {
6295		struct ring_buffer_event *event;
6296		struct rb_test_data *data = &rb_data[cpu];
6297		struct rb_item *item;
6298		unsigned long total_events;
6299		unsigned long total_dropped;
6300		unsigned long total_written;
6301		unsigned long total_alloc;
6302		unsigned long total_read = 0;
6303		unsigned long total_size = 0;
6304		unsigned long total_len = 0;
6305		unsigned long total_lost = 0;
6306		unsigned long lost;
6307		int big_event_size;
6308		int small_event_size;
6309
6310		ret = -1;
6311
6312		total_events = data->events + data->events_nested;
6313		total_written = data->bytes_written + data->bytes_written_nested;
6314		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6315		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6316
6317		big_event_size = data->max_size + data->max_size_nested;
6318		small_event_size = data->min_size + data->min_size_nested;
6319
6320		pr_info("CPU %d:\n", cpu);
6321		pr_info("              events:    %ld\n", total_events);
6322		pr_info("       dropped bytes:    %ld\n", total_dropped);
6323		pr_info("       alloced bytes:    %ld\n", total_alloc);
6324		pr_info("       written bytes:    %ld\n", total_written);
6325		pr_info("       biggest event:    %d\n", big_event_size);
6326		pr_info("      smallest event:    %d\n", small_event_size);
6327
6328		if (RB_WARN_ON(buffer, total_dropped))
6329			break;
6330
6331		ret = 0;
6332
6333		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6334			total_lost += lost;
6335			item = ring_buffer_event_data(event);
6336			total_len += ring_buffer_event_length(event);
6337			total_size += item->size + sizeof(struct rb_item);
6338			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6339				pr_info("FAILED!\n");
6340				pr_info("buffer had: %.*s\n", item->size, item->str);
6341				pr_info("expected:   %.*s\n", item->size, rb_string);
6342				RB_WARN_ON(buffer, 1);
6343				ret = -1;
6344				break;
6345			}
6346			total_read++;
6347		}
6348		if (ret)
6349			break;
6350
6351		ret = -1;
6352
6353		pr_info("         read events:   %ld\n", total_read);
6354		pr_info("         lost events:   %ld\n", total_lost);
6355		pr_info("        total events:   %ld\n", total_lost + total_read);
6356		pr_info("  recorded len bytes:   %ld\n", total_len);
6357		pr_info(" recorded size bytes:   %ld\n", total_size);
6358		if (total_lost) {
6359			pr_info(" With dropped events, record len and size may not match\n"
6360				" alloced and written from above\n");
6361		} else {
6362			if (RB_WARN_ON(buffer, total_len != total_alloc ||
6363				       total_size != total_written))
6364				break;
6365		}
6366		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6367			break;
6368
6369		ret = 0;
6370	}
6371	if (!ret)
6372		pr_info("Ring buffer PASSED!\n");
6373
6374	ring_buffer_free(buffer);
6375	return 0;
6376}
6377
6378late_initcall(test_ringbuffer);
6379#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Generic ring buffer
   4 *
   5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   6 */
   7#include <linux/trace_recursion.h>
   8#include <linux/trace_events.h>
   9#include <linux/ring_buffer.h>
  10#include <linux/trace_clock.h>
  11#include <linux/sched/clock.h>
  12#include <linux/cacheflush.h>
  13#include <linux/trace_seq.h>
  14#include <linux/spinlock.h>
  15#include <linux/irq_work.h>
  16#include <linux/security.h>
  17#include <linux/uaccess.h>
  18#include <linux/hardirq.h>
  19#include <linux/kthread.h>	/* for self test */
  20#include <linux/module.h>
  21#include <linux/percpu.h>
  22#include <linux/mutex.h>
  23#include <linux/delay.h>
  24#include <linux/slab.h>
  25#include <linux/init.h>
  26#include <linux/hash.h>
  27#include <linux/list.h>
  28#include <linux/cpu.h>
  29#include <linux/oom.h>
  30#include <linux/mm.h>
  31
  32#include <asm/local64.h>
  33#include <asm/local.h>
  34
  35#include "trace.h"
  36
  37/*
  38 * The "absolute" timestamp in the buffer is only 59 bits.
  39 * If a clock has the 5 MSBs set, it needs to be saved and
  40 * reinserted.
  41 */
  42#define TS_MSB		(0xf8ULL << 56)
  43#define ABS_TS_MASK	(~TS_MSB)
  44
  45static void update_pages_handler(struct work_struct *work);
  46
  47#define RING_BUFFER_META_MAGIC	0xBADFEED
  48
  49struct ring_buffer_meta {
  50	int		magic;
  51	int		struct_size;
  52	unsigned long	text_addr;
  53	unsigned long	data_addr;
  54	unsigned long	first_buffer;
  55	unsigned long	head_buffer;
  56	unsigned long	commit_buffer;
  57	__u32		subbuf_size;
  58	__u32		nr_subbufs;
  59	int		buffers[];
  60};
  61
  62/*
  63 * The ring buffer header is special. We must manually up keep it.
  64 */
  65int ring_buffer_print_entry_header(struct trace_seq *s)
  66{
  67	trace_seq_puts(s, "# compressed entry header\n");
  68	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
  69	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
  70	trace_seq_puts(s, "\tarray       :   32 bits\n");
  71	trace_seq_putc(s, '\n');
  72	trace_seq_printf(s, "\tpadding     : type == %d\n",
  73			 RINGBUF_TYPE_PADDING);
  74	trace_seq_printf(s, "\ttime_extend : type == %d\n",
  75			 RINGBUF_TYPE_TIME_EXTEND);
  76	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
  77			 RINGBUF_TYPE_TIME_STAMP);
  78	trace_seq_printf(s, "\tdata max type_len  == %d\n",
  79			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  80
  81	return !trace_seq_has_overflowed(s);
  82}
  83
  84/*
  85 * The ring buffer is made up of a list of pages. A separate list of pages is
  86 * allocated for each CPU. A writer may only write to a buffer that is
  87 * associated with the CPU it is currently executing on.  A reader may read
  88 * from any per cpu buffer.
  89 *
  90 * The reader is special. For each per cpu buffer, the reader has its own
  91 * reader page. When a reader has read the entire reader page, this reader
  92 * page is swapped with another page in the ring buffer.
  93 *
  94 * Now, as long as the writer is off the reader page, the reader can do what
  95 * ever it wants with that page. The writer will never write to that page
  96 * again (as long as it is out of the ring buffer).
  97 *
  98 * Here's some silly ASCII art.
  99 *
 100 *   +------+
 101 *   |reader|          RING BUFFER
 102 *   |page  |
 103 *   +------+        +---+   +---+   +---+
 104 *                   |   |-->|   |-->|   |
 105 *                   +---+   +---+   +---+
 106 *                     ^               |
 107 *                     |               |
 108 *                     +---------------+
 109 *
 110 *
 111 *   +------+
 112 *   |reader|          RING BUFFER
 113 *   |page  |------------------v
 114 *   +------+        +---+   +---+   +---+
 115 *                   |   |-->|   |-->|   |
 116 *                   +---+   +---+   +---+
 117 *                     ^               |
 118 *                     |               |
 119 *                     +---------------+
 120 *
 121 *
 122 *   +------+
 123 *   |reader|          RING BUFFER
 124 *   |page  |------------------v
 125 *   +------+        +---+   +---+   +---+
 126 *      ^            |   |-->|   |-->|   |
 127 *      |            +---+   +---+   +---+
 128 *      |                              |
 129 *      |                              |
 130 *      +------------------------------+
 131 *
 132 *
 133 *   +------+
 134 *   |buffer|          RING BUFFER
 135 *   |page  |------------------v
 136 *   +------+        +---+   +---+   +---+
 137 *      ^            |   |   |   |-->|   |
 138 *      |   New      +---+   +---+   +---+
 139 *      |  Reader------^               |
 140 *      |   page                       |
 141 *      +------------------------------+
 142 *
 143 *
 144 * After we make this swap, the reader can hand this page off to the splice
 145 * code and be done with it. It can even allocate a new page if it needs to
 146 * and swap that into the ring buffer.
 147 *
 148 * We will be using cmpxchg soon to make all this lockless.
 149 *
 150 */
 151
 152/* Used for individual buffers (after the counter) */
 153#define RB_BUFFER_OFF		(1 << 20)
 154
 155#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 156
 157#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 158#define RB_ALIGNMENT		4U
 159#define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 160#define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
 161
 162#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
 163# define RB_FORCE_8BYTE_ALIGNMENT	0
 164# define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
 165#else
 166# define RB_FORCE_8BYTE_ALIGNMENT	1
 167# define RB_ARCH_ALIGNMENT		8U
 168#endif
 169
 170#define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
 171
 172/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 173#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 174
 175enum {
 176	RB_LEN_TIME_EXTEND = 8,
 177	RB_LEN_TIME_STAMP =  8,
 178};
 179
 180#define skip_time_extend(event) \
 181	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 182
 183#define extended_time(event) \
 184	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
 185
 186static inline bool rb_null_event(struct ring_buffer_event *event)
 187{
 188	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 189}
 190
 191static void rb_event_set_padding(struct ring_buffer_event *event)
 192{
 193	/* padding has a NULL time_delta */
 194	event->type_len = RINGBUF_TYPE_PADDING;
 195	event->time_delta = 0;
 196}
 197
 198static unsigned
 199rb_event_data_length(struct ring_buffer_event *event)
 200{
 201	unsigned length;
 202
 203	if (event->type_len)
 204		length = event->type_len * RB_ALIGNMENT;
 205	else
 206		length = event->array[0];
 207	return length + RB_EVNT_HDR_SIZE;
 208}
 209
 210/*
 211 * Return the length of the given event. Will return
 212 * the length of the time extend if the event is a
 213 * time extend.
 214 */
 215static inline unsigned
 216rb_event_length(struct ring_buffer_event *event)
 217{
 218	switch (event->type_len) {
 219	case RINGBUF_TYPE_PADDING:
 220		if (rb_null_event(event))
 221			/* undefined */
 222			return -1;
 223		return  event->array[0] + RB_EVNT_HDR_SIZE;
 224
 225	case RINGBUF_TYPE_TIME_EXTEND:
 226		return RB_LEN_TIME_EXTEND;
 227
 228	case RINGBUF_TYPE_TIME_STAMP:
 229		return RB_LEN_TIME_STAMP;
 230
 231	case RINGBUF_TYPE_DATA:
 232		return rb_event_data_length(event);
 233	default:
 234		WARN_ON_ONCE(1);
 235	}
 236	/* not hit */
 237	return 0;
 238}
 239
 240/*
 241 * Return total length of time extend and data,
 242 *   or just the event length for all other events.
 243 */
 244static inline unsigned
 245rb_event_ts_length(struct ring_buffer_event *event)
 246{
 247	unsigned len = 0;
 248
 249	if (extended_time(event)) {
 250		/* time extends include the data event after it */
 251		len = RB_LEN_TIME_EXTEND;
 252		event = skip_time_extend(event);
 253	}
 254	return len + rb_event_length(event);
 255}
 256
 257/**
 258 * ring_buffer_event_length - return the length of the event
 259 * @event: the event to get the length of
 260 *
 261 * Returns the size of the data load of a data event.
 262 * If the event is something other than a data event, it
 263 * returns the size of the event itself. With the exception
 264 * of a TIME EXTEND, where it still returns the size of the
 265 * data load of the data event after it.
 266 */
 267unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 268{
 269	unsigned length;
 270
 271	if (extended_time(event))
 272		event = skip_time_extend(event);
 273
 274	length = rb_event_length(event);
 275	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 276		return length;
 277	length -= RB_EVNT_HDR_SIZE;
 278	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 279                length -= sizeof(event->array[0]);
 280	return length;
 281}
 282EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 283
 284/* inline for ring buffer fast paths */
 285static __always_inline void *
 286rb_event_data(struct ring_buffer_event *event)
 287{
 288	if (extended_time(event))
 289		event = skip_time_extend(event);
 290	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 291	/* If length is in len field, then array[0] has the data */
 292	if (event->type_len)
 293		return (void *)&event->array[0];
 294	/* Otherwise length is in array[0] and array[1] has the data */
 295	return (void *)&event->array[1];
 296}
 297
 298/**
 299 * ring_buffer_event_data - return the data of the event
 300 * @event: the event to get the data from
 301 */
 302void *ring_buffer_event_data(struct ring_buffer_event *event)
 303{
 304	return rb_event_data(event);
 305}
 306EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 307
 308#define for_each_buffer_cpu(buffer, cpu)		\
 309	for_each_cpu(cpu, buffer->cpumask)
 310
 311#define for_each_online_buffer_cpu(buffer, cpu)		\
 312	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
 313
 314#define TS_SHIFT	27
 315#define TS_MASK		((1ULL << TS_SHIFT) - 1)
 316#define TS_DELTA_TEST	(~TS_MASK)
 317
 318static u64 rb_event_time_stamp(struct ring_buffer_event *event)
 319{
 320	u64 ts;
 321
 322	ts = event->array[0];
 323	ts <<= TS_SHIFT;
 324	ts += event->time_delta;
 325
 326	return ts;
 327}
 328
 329/* Flag when events were overwritten */
 330#define RB_MISSED_EVENTS	(1 << 31)
 331/* Missed count stored at end */
 332#define RB_MISSED_STORED	(1 << 30)
 333
 334#define RB_MISSED_MASK		(3 << 30)
 335
 336struct buffer_data_page {
 337	u64		 time_stamp;	/* page time stamp */
 338	local_t		 commit;	/* write committed index */
 339	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
 340};
 341
 342struct buffer_data_read_page {
 343	unsigned		order;	/* order of the page */
 344	struct buffer_data_page	*data;	/* actual data, stored in this page */
 345};
 346
 347/*
 348 * Note, the buffer_page list must be first. The buffer pages
 349 * are allocated in cache lines, which means that each buffer
 350 * page will be at the beginning of a cache line, and thus
 351 * the least significant bits will be zero. We use this to
 352 * add flags in the list struct pointers, to make the ring buffer
 353 * lockless.
 354 */
 355struct buffer_page {
 356	struct list_head list;		/* list of buffer pages */
 357	local_t		 write;		/* index for next write */
 358	unsigned	 read;		/* index for next read */
 359	local_t		 entries;	/* entries on this page */
 360	unsigned long	 real_end;	/* real end of data */
 361	unsigned	 order;		/* order of the page */
 362	u32		 id:30;		/* ID for external mapping */
 363	u32		 range:1;	/* Mapped via a range */
 364	struct buffer_data_page *page;	/* Actual data page */
 365};
 366
 367/*
 368 * The buffer page counters, write and entries, must be reset
 369 * atomically when crossing page boundaries. To synchronize this
 370 * update, two counters are inserted into the number. One is
 371 * the actual counter for the write position or count on the page.
 372 *
 373 * The other is a counter of updaters. Before an update happens
 374 * the update partition of the counter is incremented. This will
 375 * allow the updater to update the counter atomically.
 376 *
 377 * The counter is 20 bits, and the state data is 12.
 378 */
 379#define RB_WRITE_MASK		0xfffff
 380#define RB_WRITE_INTCNT		(1 << 20)
 381
 382static void rb_init_page(struct buffer_data_page *bpage)
 383{
 384	local_set(&bpage->commit, 0);
 385}
 386
 387static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
 388{
 389	return local_read(&bpage->page->commit);
 390}
 391
 392static void free_buffer_page(struct buffer_page *bpage)
 393{
 394	/* Range pages are not to be freed */
 395	if (!bpage->range)
 396		free_pages((unsigned long)bpage->page, bpage->order);
 397	kfree(bpage);
 398}
 399
 400/*
 401 * We need to fit the time_stamp delta into 27 bits.
 402 */
 403static inline bool test_time_stamp(u64 delta)
 404{
 405	return !!(delta & TS_DELTA_TEST);
 406}
 407
 408struct rb_irq_work {
 409	struct irq_work			work;
 410	wait_queue_head_t		waiters;
 411	wait_queue_head_t		full_waiters;
 412	atomic_t			seq;
 413	bool				waiters_pending;
 414	bool				full_waiters_pending;
 415	bool				wakeup_full;
 416};
 417
 418/*
 419 * Structure to hold event state and handle nested events.
 420 */
 421struct rb_event_info {
 422	u64			ts;
 423	u64			delta;
 424	u64			before;
 425	u64			after;
 426	unsigned long		length;
 427	struct buffer_page	*tail_page;
 428	int			add_timestamp;
 429};
 430
 431/*
 432 * Used for the add_timestamp
 433 *  NONE
 434 *  EXTEND - wants a time extend
 435 *  ABSOLUTE - the buffer requests all events to have absolute time stamps
 436 *  FORCE - force a full time stamp.
 437 */
 438enum {
 439	RB_ADD_STAMP_NONE		= 0,
 440	RB_ADD_STAMP_EXTEND		= BIT(1),
 441	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
 442	RB_ADD_STAMP_FORCE		= BIT(3)
 443};
 444/*
 445 * Used for which event context the event is in.
 446 *  TRANSITION = 0
 447 *  NMI     = 1
 448 *  IRQ     = 2
 449 *  SOFTIRQ = 3
 450 *  NORMAL  = 4
 451 *
 452 * See trace_recursive_lock() comment below for more details.
 453 */
 454enum {
 455	RB_CTX_TRANSITION,
 456	RB_CTX_NMI,
 457	RB_CTX_IRQ,
 458	RB_CTX_SOFTIRQ,
 459	RB_CTX_NORMAL,
 460	RB_CTX_MAX
 461};
 462
 463struct rb_time_struct {
 464	local64_t	time;
 465};
 466typedef struct rb_time_struct rb_time_t;
 467
 468#define MAX_NEST	5
 469
 470/*
 471 * head_page == tail_page && head == tail then buffer is empty.
 472 */
 473struct ring_buffer_per_cpu {
 474	int				cpu;
 475	atomic_t			record_disabled;
 476	atomic_t			resize_disabled;
 477	struct trace_buffer	*buffer;
 478	raw_spinlock_t			reader_lock;	/* serialize readers */
 479	arch_spinlock_t			lock;
 480	struct lock_class_key		lock_key;
 481	struct buffer_data_page		*free_page;
 482	unsigned long			nr_pages;
 483	unsigned int			current_context;
 484	struct list_head		*pages;
 485	/* pages generation counter, incremented when the list changes */
 486	unsigned long			cnt;
 487	struct buffer_page		*head_page;	/* read from head */
 488	struct buffer_page		*tail_page;	/* write to tail */
 489	struct buffer_page		*commit_page;	/* committed pages */
 490	struct buffer_page		*reader_page;
 491	unsigned long			lost_events;
 492	unsigned long			last_overrun;
 493	unsigned long			nest;
 494	local_t				entries_bytes;
 495	local_t				entries;
 496	local_t				overrun;
 497	local_t				commit_overrun;
 498	local_t				dropped_events;
 499	local_t				committing;
 500	local_t				commits;
 501	local_t				pages_touched;
 502	local_t				pages_lost;
 503	local_t				pages_read;
 504	long				last_pages_touch;
 505	size_t				shortest_full;
 506	unsigned long			read;
 507	unsigned long			read_bytes;
 508	rb_time_t			write_stamp;
 509	rb_time_t			before_stamp;
 510	u64				event_stamp[MAX_NEST];
 511	u64				read_stamp;
 512	/* pages removed since last reset */
 513	unsigned long			pages_removed;
 514
 515	unsigned int			mapped;
 516	unsigned int			user_mapped;	/* user space mapping */
 517	struct mutex			mapping_lock;
 518	unsigned long			*subbuf_ids;	/* ID to subbuf VA */
 519	struct trace_buffer_meta	*meta_page;
 520	struct ring_buffer_meta		*ring_meta;
 521
 522	/* ring buffer pages to update, > 0 to add, < 0 to remove */
 523	long				nr_pages_to_update;
 524	struct list_head		new_pages; /* new pages to add */
 525	struct work_struct		update_pages_work;
 526	struct completion		update_done;
 527
 528	struct rb_irq_work		irq_work;
 529};
 530
 531struct trace_buffer {
 532	unsigned			flags;
 533	int				cpus;
 534	atomic_t			record_disabled;
 535	atomic_t			resizing;
 536	cpumask_var_t			cpumask;
 537
 538	struct lock_class_key		*reader_lock_key;
 539
 540	struct mutex			mutex;
 541
 542	struct ring_buffer_per_cpu	**buffers;
 543
 544	struct hlist_node		node;
 545	u64				(*clock)(void);
 546
 547	struct rb_irq_work		irq_work;
 548	bool				time_stamp_abs;
 549
 550	unsigned long			range_addr_start;
 551	unsigned long			range_addr_end;
 552
 553	long				last_text_delta;
 554	long				last_data_delta;
 555
 556	unsigned int			subbuf_size;
 557	unsigned int			subbuf_order;
 558	unsigned int			max_data_size;
 559};
 560
 561struct ring_buffer_iter {
 562	struct ring_buffer_per_cpu	*cpu_buffer;
 563	unsigned long			head;
 564	unsigned long			next_event;
 565	struct buffer_page		*head_page;
 566	struct buffer_page		*cache_reader_page;
 567	unsigned long			cache_read;
 568	unsigned long			cache_pages_removed;
 569	u64				read_stamp;
 570	u64				page_stamp;
 571	struct ring_buffer_event	*event;
 572	size_t				event_size;
 573	int				missed_events;
 574};
 575
 576int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
 577{
 578	struct buffer_data_page field;
 579
 580	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 581			 "offset:0;\tsize:%u;\tsigned:%u;\n",
 582			 (unsigned int)sizeof(field.time_stamp),
 583			 (unsigned int)is_signed_type(u64));
 584
 585	trace_seq_printf(s, "\tfield: local_t commit;\t"
 586			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 587			 (unsigned int)offsetof(typeof(field), commit),
 588			 (unsigned int)sizeof(field.commit),
 589			 (unsigned int)is_signed_type(long));
 590
 591	trace_seq_printf(s, "\tfield: int overwrite;\t"
 592			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 593			 (unsigned int)offsetof(typeof(field), commit),
 594			 1,
 595			 (unsigned int)is_signed_type(long));
 596
 597	trace_seq_printf(s, "\tfield: char data;\t"
 598			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 599			 (unsigned int)offsetof(typeof(field), data),
 600			 (unsigned int)buffer->subbuf_size,
 601			 (unsigned int)is_signed_type(char));
 602
 603	return !trace_seq_has_overflowed(s);
 604}
 605
 606static inline void rb_time_read(rb_time_t *t, u64 *ret)
 607{
 608	*ret = local64_read(&t->time);
 609}
 610static void rb_time_set(rb_time_t *t, u64 val)
 611{
 612	local64_set(&t->time, val);
 613}
 614
 615/*
 616 * Enable this to make sure that the event passed to
 617 * ring_buffer_event_time_stamp() is not committed and also
 618 * is on the buffer that it passed in.
 619 */
 620//#define RB_VERIFY_EVENT
 621#ifdef RB_VERIFY_EVENT
 622static struct list_head *rb_list_head(struct list_head *list);
 623static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
 624			 void *event)
 625{
 626	struct buffer_page *page = cpu_buffer->commit_page;
 627	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
 628	struct list_head *next;
 629	long commit, write;
 630	unsigned long addr = (unsigned long)event;
 631	bool done = false;
 632	int stop = 0;
 633
 634	/* Make sure the event exists and is not committed yet */
 635	do {
 636		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
 637			done = true;
 638		commit = local_read(&page->page->commit);
 639		write = local_read(&page->write);
 640		if (addr >= (unsigned long)&page->page->data[commit] &&
 641		    addr < (unsigned long)&page->page->data[write])
 642			return;
 643
 644		next = rb_list_head(page->list.next);
 645		page = list_entry(next, struct buffer_page, list);
 646	} while (!done);
 647	WARN_ON_ONCE(1);
 648}
 649#else
 650static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
 651			 void *event)
 652{
 653}
 654#endif
 655
 656/*
 657 * The absolute time stamp drops the 5 MSBs and some clocks may
 658 * require them. The rb_fix_abs_ts() will take a previous full
 659 * time stamp, and add the 5 MSB of that time stamp on to the
 660 * saved absolute time stamp. Then they are compared in case of
 661 * the unlikely event that the latest time stamp incremented
 662 * the 5 MSB.
 663 */
 664static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
 665{
 666	if (save_ts & TS_MSB) {
 667		abs |= save_ts & TS_MSB;
 668		/* Check for overflow */
 669		if (unlikely(abs < save_ts))
 670			abs += 1ULL << 59;
 671	}
 672	return abs;
 673}
 674
 675static inline u64 rb_time_stamp(struct trace_buffer *buffer);
 676
 677/**
 678 * ring_buffer_event_time_stamp - return the event's current time stamp
 679 * @buffer: The buffer that the event is on
 680 * @event: the event to get the time stamp of
 681 *
 682 * Note, this must be called after @event is reserved, and before it is
 683 * committed to the ring buffer. And must be called from the same
 684 * context where the event was reserved (normal, softirq, irq, etc).
 685 *
 686 * Returns the time stamp associated with the current event.
 687 * If the event has an extended time stamp, then that is used as
 688 * the time stamp to return.
 689 * In the highly unlikely case that the event was nested more than
 690 * the max nesting, then the write_stamp of the buffer is returned,
 691 * otherwise  current time is returned, but that really neither of
 692 * the last two cases should ever happen.
 693 */
 694u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
 695				 struct ring_buffer_event *event)
 696{
 697	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
 698	unsigned int nest;
 699	u64 ts;
 700
 701	/* If the event includes an absolute time, then just use that */
 702	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
 703		ts = rb_event_time_stamp(event);
 704		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
 705	}
 706
 707	nest = local_read(&cpu_buffer->committing);
 708	verify_event(cpu_buffer, event);
 709	if (WARN_ON_ONCE(!nest))
 710		goto fail;
 711
 712	/* Read the current saved nesting level time stamp */
 713	if (likely(--nest < MAX_NEST))
 714		return cpu_buffer->event_stamp[nest];
 715
 716	/* Shouldn't happen, warn if it does */
 717	WARN_ONCE(1, "nest (%d) greater than max", nest);
 718
 719 fail:
 720	rb_time_read(&cpu_buffer->write_stamp, &ts);
 721
 722	return ts;
 723}
 724
 725/**
 
 
 
 
 
 
 
 
 
 
 
 
 726 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
 727 * @buffer: The ring_buffer to get the number of pages from
 728 * @cpu: The cpu of the ring_buffer to get the number of pages from
 729 *
 730 * Returns the number of pages that have content in the ring buffer.
 731 */
 732size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
 733{
 734	size_t read;
 735	size_t lost;
 736	size_t cnt;
 737
 738	read = local_read(&buffer->buffers[cpu]->pages_read);
 739	lost = local_read(&buffer->buffers[cpu]->pages_lost);
 740	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
 741
 742	if (WARN_ON_ONCE(cnt < lost))
 743		return 0;
 744
 745	cnt -= lost;
 746
 747	/* The reader can read an empty page, but not more than that */
 748	if (cnt < read) {
 749		WARN_ON_ONCE(read > cnt + 1);
 750		return 0;
 751	}
 752
 753	return cnt - read;
 754}
 755
 756static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
 757{
 758	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
 759	size_t nr_pages;
 760	size_t dirty;
 761
 762	nr_pages = cpu_buffer->nr_pages;
 763	if (!nr_pages || !full)
 764		return true;
 765
 766	/*
 767	 * Add one as dirty will never equal nr_pages, as the sub-buffer
 768	 * that the writer is on is not counted as dirty.
 769	 * This is needed if "buffer_percent" is set to 100.
 770	 */
 771	dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
 772
 773	return (dirty * 100) >= (full * nr_pages);
 774}
 775
 776/*
 777 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
 778 *
 779 * Schedules a delayed work to wake up any task that is blocked on the
 780 * ring buffer waiters queue.
 781 */
 782static void rb_wake_up_waiters(struct irq_work *work)
 783{
 784	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
 785
 786	/* For waiters waiting for the first wake up */
 787	(void)atomic_fetch_inc_release(&rbwork->seq);
 788
 789	wake_up_all(&rbwork->waiters);
 790	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
 791		/* Only cpu_buffer sets the above flags */
 792		struct ring_buffer_per_cpu *cpu_buffer =
 793			container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
 794
 795		/* Called from interrupt context */
 796		raw_spin_lock(&cpu_buffer->reader_lock);
 797		rbwork->wakeup_full = false;
 798		rbwork->full_waiters_pending = false;
 799
 800		/* Waking up all waiters, they will reset the shortest full */
 801		cpu_buffer->shortest_full = 0;
 802		raw_spin_unlock(&cpu_buffer->reader_lock);
 803
 804		wake_up_all(&rbwork->full_waiters);
 805	}
 806}
 807
 808/**
 809 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
 810 * @buffer: The ring buffer to wake waiters on
 811 * @cpu: The CPU buffer to wake waiters on
 812 *
 813 * In the case of a file that represents a ring buffer is closing,
 814 * it is prudent to wake up any waiters that are on this.
 815 */
 816void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
 817{
 818	struct ring_buffer_per_cpu *cpu_buffer;
 819	struct rb_irq_work *rbwork;
 820
 821	if (!buffer)
 822		return;
 823
 824	if (cpu == RING_BUFFER_ALL_CPUS) {
 825
 826		/* Wake up individual ones too. One level recursion */
 827		for_each_buffer_cpu(buffer, cpu)
 828			ring_buffer_wake_waiters(buffer, cpu);
 829
 830		rbwork = &buffer->irq_work;
 831	} else {
 832		if (WARN_ON_ONCE(!buffer->buffers))
 833			return;
 834		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
 835			return;
 836
 837		cpu_buffer = buffer->buffers[cpu];
 838		/* The CPU buffer may not have been initialized yet */
 839		if (!cpu_buffer)
 840			return;
 841		rbwork = &cpu_buffer->irq_work;
 842	}
 843
 844	/* This can be called in any context */
 845	irq_work_queue(&rbwork->work);
 846}
 847
 848static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
 849{
 850	struct ring_buffer_per_cpu *cpu_buffer;
 851	bool ret = false;
 852
 853	/* Reads of all CPUs always waits for any data */
 854	if (cpu == RING_BUFFER_ALL_CPUS)
 855		return !ring_buffer_empty(buffer);
 856
 857	cpu_buffer = buffer->buffers[cpu];
 858
 859	if (!ring_buffer_empty_cpu(buffer, cpu)) {
 860		unsigned long flags;
 861		bool pagebusy;
 862
 863		if (!full)
 864			return true;
 865
 866		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 867		pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
 868		ret = !pagebusy && full_hit(buffer, cpu, full);
 869
 870		if (!ret && (!cpu_buffer->shortest_full ||
 871			     cpu_buffer->shortest_full > full)) {
 872		    cpu_buffer->shortest_full = full;
 873		}
 874		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
 875	}
 876	return ret;
 877}
 878
 879static inline bool
 880rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
 881	     int cpu, int full, ring_buffer_cond_fn cond, void *data)
 882{
 883	if (rb_watermark_hit(buffer, cpu, full))
 884		return true;
 885
 886	if (cond(data))
 887		return true;
 888
 889	/*
 890	 * The events can happen in critical sections where
 891	 * checking a work queue can cause deadlocks.
 892	 * After adding a task to the queue, this flag is set
 893	 * only to notify events to try to wake up the queue
 894	 * using irq_work.
 895	 *
 896	 * We don't clear it even if the buffer is no longer
 897	 * empty. The flag only causes the next event to run
 898	 * irq_work to do the work queue wake up. The worse
 899	 * that can happen if we race with !trace_empty() is that
 900	 * an event will cause an irq_work to try to wake up
 901	 * an empty queue.
 902	 *
 903	 * There's no reason to protect this flag either, as
 904	 * the work queue and irq_work logic will do the necessary
 905	 * synchronization for the wake ups. The only thing
 906	 * that is necessary is that the wake up happens after
 907	 * a task has been queued. It's OK for spurious wake ups.
 908	 */
 909	if (full)
 910		rbwork->full_waiters_pending = true;
 911	else
 912		rbwork->waiters_pending = true;
 913
 914	return false;
 915}
 916
 917struct rb_wait_data {
 918	struct rb_irq_work		*irq_work;
 919	int				seq;
 920};
 921
 922/*
 923 * The default wait condition for ring_buffer_wait() is to just to exit the
 924 * wait loop the first time it is woken up.
 925 */
 926static bool rb_wait_once(void *data)
 927{
 928	struct rb_wait_data *rdata = data;
 929	struct rb_irq_work *rbwork = rdata->irq_work;
 930
 931	return atomic_read_acquire(&rbwork->seq) != rdata->seq;
 932}
 933
 934/**
 935 * ring_buffer_wait - wait for input to the ring buffer
 936 * @buffer: buffer to wait on
 937 * @cpu: the cpu buffer to wait on
 938 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
 939 * @cond: condition function to break out of wait (NULL to run once)
 940 * @data: the data to pass to @cond.
 941 *
 942 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 943 * as data is added to any of the @buffer's cpu buffers. Otherwise
 944 * it will wait for data to be added to a specific cpu buffer.
 945 */
 946int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full,
 947		     ring_buffer_cond_fn cond, void *data)
 948{
 949	struct ring_buffer_per_cpu *cpu_buffer;
 950	struct wait_queue_head *waitq;
 951	struct rb_irq_work *rbwork;
 952	struct rb_wait_data rdata;
 953	int ret = 0;
 954
 955	/*
 956	 * Depending on what the caller is waiting for, either any
 957	 * data in any cpu buffer, or a specific buffer, put the
 958	 * caller on the appropriate wait queue.
 959	 */
 960	if (cpu == RING_BUFFER_ALL_CPUS) {
 961		rbwork = &buffer->irq_work;
 962		/* Full only makes sense on per cpu reads */
 963		full = 0;
 964	} else {
 965		if (!cpumask_test_cpu(cpu, buffer->cpumask))
 966			return -ENODEV;
 967		cpu_buffer = buffer->buffers[cpu];
 968		rbwork = &cpu_buffer->irq_work;
 969	}
 970
 971	if (full)
 972		waitq = &rbwork->full_waiters;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 973	else
 974		waitq = &rbwork->waiters;
 975
 976	/* Set up to exit loop as soon as it is woken */
 977	if (!cond) {
 978		cond = rb_wait_once;
 979		rdata.irq_work = rbwork;
 980		rdata.seq = atomic_read_acquire(&rbwork->seq);
 981		data = &rdata;
 982	}
 983
 984	ret = wait_event_interruptible((*waitq),
 985				rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
 
 
 
 
 
 
 
 986
 987	return ret;
 988}
 989
 990/**
 991 * ring_buffer_poll_wait - poll on buffer input
 992 * @buffer: buffer to wait on
 993 * @cpu: the cpu buffer to wait on
 994 * @filp: the file descriptor
 995 * @poll_table: The poll descriptor
 996 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
 997 *
 998 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 999 * as data is added to any of the @buffer's cpu buffers. Otherwise
1000 * it will wait for data to be added to a specific cpu buffer.
1001 *
1002 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1003 * zero otherwise.
1004 */
1005__poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1006			  struct file *filp, poll_table *poll_table, int full)
1007{
1008	struct ring_buffer_per_cpu *cpu_buffer;
1009	struct rb_irq_work *rbwork;
1010
1011	if (cpu == RING_BUFFER_ALL_CPUS) {
1012		rbwork = &buffer->irq_work;
1013		full = 0;
1014	} else {
1015		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1016			return EPOLLERR;
1017
1018		cpu_buffer = buffer->buffers[cpu];
1019		rbwork = &cpu_buffer->irq_work;
1020	}
1021
1022	if (full) {
 
 
1023		poll_wait(filp, &rbwork->full_waiters, poll_table);
1024
1025		if (rb_watermark_hit(buffer, cpu, full))
1026			return EPOLLIN | EPOLLRDNORM;
1027		/*
1028		 * Only allow full_waiters_pending update to be seen after
1029		 * the shortest_full is set (in rb_watermark_hit). If the
1030		 * writer sees the full_waiters_pending flag set, it will
1031		 * compare the amount in the ring buffer to shortest_full.
1032		 * If the amount in the ring buffer is greater than the
1033		 * shortest_full percent, it will call the irq_work handler
1034		 * to wake up this list. The irq_handler will reset shortest_full
1035		 * back to zero. That's done under the reader_lock, but
1036		 * the below smp_mb() makes sure that the update to
1037		 * full_waiters_pending doesn't leak up into the above.
1038		 */
1039		smp_mb();
1040		rbwork->full_waiters_pending = true;
1041		return 0;
 
 
 
 
 
 
1042	}
1043
1044	poll_wait(filp, &rbwork->waiters, poll_table);
1045	rbwork->waiters_pending = true;
1046
1047	/*
1048	 * There's a tight race between setting the waiters_pending and
1049	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1050	 * is set, the next event will wake the task up, but we can get stuck
1051	 * if there's only a single event in.
1052	 *
1053	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1054	 * but adding a memory barrier to all events will cause too much of a
1055	 * performance hit in the fast path.  We only need a memory barrier when
1056	 * the buffer goes from empty to having content.  But as this race is
1057	 * extremely small, and it's not a problem if another event comes in, we
1058	 * will fix it later.
1059	 */
1060	smp_mb();
1061
 
 
 
1062	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1063	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1064		return EPOLLIN | EPOLLRDNORM;
1065	return 0;
1066}
1067
1068/* buffer may be either ring_buffer or ring_buffer_per_cpu */
1069#define RB_WARN_ON(b, cond)						\
1070	({								\
1071		int _____ret = unlikely(cond);				\
1072		if (_____ret) {						\
1073			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1074				struct ring_buffer_per_cpu *__b =	\
1075					(void *)b;			\
1076				atomic_inc(&__b->buffer->record_disabled); \
1077			} else						\
1078				atomic_inc(&b->record_disabled);	\
1079			WARN_ON(1);					\
1080		}							\
1081		_____ret;						\
1082	})
1083
1084/* Up this if you want to test the TIME_EXTENTS and normalization */
1085#define DEBUG_SHIFT 0
1086
1087static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1088{
1089	u64 ts;
1090
1091	/* Skip retpolines :-( */
1092	if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1093		ts = trace_clock_local();
1094	else
1095		ts = buffer->clock();
1096
1097	/* shift to debug/test normalization and TIME_EXTENTS */
1098	return ts << DEBUG_SHIFT;
1099}
1100
1101u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1102{
1103	u64 time;
1104
1105	preempt_disable_notrace();
1106	time = rb_time_stamp(buffer);
1107	preempt_enable_notrace();
1108
1109	return time;
1110}
1111EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1112
1113void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1114				      int cpu, u64 *ts)
1115{
1116	/* Just stupid testing the normalize function and deltas */
1117	*ts >>= DEBUG_SHIFT;
1118}
1119EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1120
1121/*
1122 * Making the ring buffer lockless makes things tricky.
1123 * Although writes only happen on the CPU that they are on,
1124 * and they only need to worry about interrupts. Reads can
1125 * happen on any CPU.
1126 *
1127 * The reader page is always off the ring buffer, but when the
1128 * reader finishes with a page, it needs to swap its page with
1129 * a new one from the buffer. The reader needs to take from
1130 * the head (writes go to the tail). But if a writer is in overwrite
1131 * mode and wraps, it must push the head page forward.
1132 *
1133 * Here lies the problem.
1134 *
1135 * The reader must be careful to replace only the head page, and
1136 * not another one. As described at the top of the file in the
1137 * ASCII art, the reader sets its old page to point to the next
1138 * page after head. It then sets the page after head to point to
1139 * the old reader page. But if the writer moves the head page
1140 * during this operation, the reader could end up with the tail.
1141 *
1142 * We use cmpxchg to help prevent this race. We also do something
1143 * special with the page before head. We set the LSB to 1.
1144 *
1145 * When the writer must push the page forward, it will clear the
1146 * bit that points to the head page, move the head, and then set
1147 * the bit that points to the new head page.
1148 *
1149 * We also don't want an interrupt coming in and moving the head
1150 * page on another writer. Thus we use the second LSB to catch
1151 * that too. Thus:
1152 *
1153 * head->list->prev->next        bit 1          bit 0
1154 *                              -------        -------
1155 * Normal page                     0              0
1156 * Points to head page             0              1
1157 * New head page                   1              0
1158 *
1159 * Note we can not trust the prev pointer of the head page, because:
1160 *
1161 * +----+       +-----+        +-----+
1162 * |    |------>|  T  |---X--->|  N  |
1163 * |    |<------|     |        |     |
1164 * +----+       +-----+        +-----+
1165 *   ^                           ^ |
1166 *   |          +-----+          | |
1167 *   +----------|  R  |----------+ |
1168 *              |     |<-----------+
1169 *              +-----+
1170 *
1171 * Key:  ---X-->  HEAD flag set in pointer
1172 *         T      Tail page
1173 *         R      Reader page
1174 *         N      Next page
1175 *
1176 * (see __rb_reserve_next() to see where this happens)
1177 *
1178 *  What the above shows is that the reader just swapped out
1179 *  the reader page with a page in the buffer, but before it
1180 *  could make the new header point back to the new page added
1181 *  it was preempted by a writer. The writer moved forward onto
1182 *  the new page added by the reader and is about to move forward
1183 *  again.
1184 *
1185 *  You can see, it is legitimate for the previous pointer of
1186 *  the head (or any page) not to point back to itself. But only
1187 *  temporarily.
1188 */
1189
1190#define RB_PAGE_NORMAL		0UL
1191#define RB_PAGE_HEAD		1UL
1192#define RB_PAGE_UPDATE		2UL
1193
1194
1195#define RB_FLAG_MASK		3UL
1196
1197/* PAGE_MOVED is not part of the mask */
1198#define RB_PAGE_MOVED		4UL
1199
1200/*
1201 * rb_list_head - remove any bit
1202 */
1203static struct list_head *rb_list_head(struct list_head *list)
1204{
1205	unsigned long val = (unsigned long)list;
1206
1207	return (struct list_head *)(val & ~RB_FLAG_MASK);
1208}
1209
1210/*
1211 * rb_is_head_page - test if the given page is the head page
1212 *
1213 * Because the reader may move the head_page pointer, we can
1214 * not trust what the head page is (it may be pointing to
1215 * the reader page). But if the next page is a header page,
1216 * its flags will be non zero.
1217 */
1218static inline int
1219rb_is_head_page(struct buffer_page *page, struct list_head *list)
1220{
1221	unsigned long val;
1222
1223	val = (unsigned long)list->next;
1224
1225	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1226		return RB_PAGE_MOVED;
1227
1228	return val & RB_FLAG_MASK;
1229}
1230
1231/*
1232 * rb_is_reader_page
1233 *
1234 * The unique thing about the reader page, is that, if the
1235 * writer is ever on it, the previous pointer never points
1236 * back to the reader page.
1237 */
1238static bool rb_is_reader_page(struct buffer_page *page)
1239{
1240	struct list_head *list = page->list.prev;
1241
1242	return rb_list_head(list->next) != &page->list;
1243}
1244
1245/*
1246 * rb_set_list_to_head - set a list_head to be pointing to head.
1247 */
1248static void rb_set_list_to_head(struct list_head *list)
1249{
1250	unsigned long *ptr;
1251
1252	ptr = (unsigned long *)&list->next;
1253	*ptr |= RB_PAGE_HEAD;
1254	*ptr &= ~RB_PAGE_UPDATE;
1255}
1256
1257/*
1258 * rb_head_page_activate - sets up head page
1259 */
1260static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1261{
1262	struct buffer_page *head;
1263
1264	head = cpu_buffer->head_page;
1265	if (!head)
1266		return;
1267
1268	/*
1269	 * Set the previous list pointer to have the HEAD flag.
1270	 */
1271	rb_set_list_to_head(head->list.prev);
1272
1273	if (cpu_buffer->ring_meta) {
1274		struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1275		meta->head_buffer = (unsigned long)head->page;
1276	}
1277}
1278
1279static void rb_list_head_clear(struct list_head *list)
1280{
1281	unsigned long *ptr = (unsigned long *)&list->next;
1282
1283	*ptr &= ~RB_FLAG_MASK;
1284}
1285
1286/*
1287 * rb_head_page_deactivate - clears head page ptr (for free list)
1288 */
1289static void
1290rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1291{
1292	struct list_head *hd;
1293
1294	/* Go through the whole list and clear any pointers found. */
1295	rb_list_head_clear(cpu_buffer->pages);
1296
1297	list_for_each(hd, cpu_buffer->pages)
1298		rb_list_head_clear(hd);
1299}
1300
1301static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1302			    struct buffer_page *head,
1303			    struct buffer_page *prev,
1304			    int old_flag, int new_flag)
1305{
1306	struct list_head *list;
1307	unsigned long val = (unsigned long)&head->list;
1308	unsigned long ret;
1309
1310	list = &prev->list;
1311
1312	val &= ~RB_FLAG_MASK;
1313
1314	ret = cmpxchg((unsigned long *)&list->next,
1315		      val | old_flag, val | new_flag);
1316
1317	/* check if the reader took the page */
1318	if ((ret & ~RB_FLAG_MASK) != val)
1319		return RB_PAGE_MOVED;
1320
1321	return ret & RB_FLAG_MASK;
1322}
1323
1324static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1325				   struct buffer_page *head,
1326				   struct buffer_page *prev,
1327				   int old_flag)
1328{
1329	return rb_head_page_set(cpu_buffer, head, prev,
1330				old_flag, RB_PAGE_UPDATE);
1331}
1332
1333static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1334				 struct buffer_page *head,
1335				 struct buffer_page *prev,
1336				 int old_flag)
1337{
1338	return rb_head_page_set(cpu_buffer, head, prev,
1339				old_flag, RB_PAGE_HEAD);
1340}
1341
1342static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1343				   struct buffer_page *head,
1344				   struct buffer_page *prev,
1345				   int old_flag)
1346{
1347	return rb_head_page_set(cpu_buffer, head, prev,
1348				old_flag, RB_PAGE_NORMAL);
1349}
1350
1351static inline void rb_inc_page(struct buffer_page **bpage)
1352{
1353	struct list_head *p = rb_list_head((*bpage)->list.next);
1354
1355	*bpage = list_entry(p, struct buffer_page, list);
1356}
1357
1358static struct buffer_page *
1359rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1360{
1361	struct buffer_page *head;
1362	struct buffer_page *page;
1363	struct list_head *list;
1364	int i;
1365
1366	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1367		return NULL;
1368
1369	/* sanity check */
1370	list = cpu_buffer->pages;
1371	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1372		return NULL;
1373
1374	page = head = cpu_buffer->head_page;
1375	/*
1376	 * It is possible that the writer moves the header behind
1377	 * where we started, and we miss in one loop.
1378	 * A second loop should grab the header, but we'll do
1379	 * three loops just because I'm paranoid.
1380	 */
1381	for (i = 0; i < 3; i++) {
1382		do {
1383			if (rb_is_head_page(page, page->list.prev)) {
1384				cpu_buffer->head_page = page;
1385				return page;
1386			}
1387			rb_inc_page(&page);
1388		} while (page != head);
1389	}
1390
1391	RB_WARN_ON(cpu_buffer, 1);
1392
1393	return NULL;
1394}
1395
1396static bool rb_head_page_replace(struct buffer_page *old,
1397				struct buffer_page *new)
1398{
1399	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1400	unsigned long val;
1401
1402	val = *ptr & ~RB_FLAG_MASK;
1403	val |= RB_PAGE_HEAD;
1404
1405	return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1406}
1407
1408/*
1409 * rb_tail_page_update - move the tail page forward
1410 */
1411static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1412			       struct buffer_page *tail_page,
1413			       struct buffer_page *next_page)
1414{
1415	unsigned long old_entries;
1416	unsigned long old_write;
1417
1418	/*
1419	 * The tail page now needs to be moved forward.
1420	 *
1421	 * We need to reset the tail page, but without messing
1422	 * with possible erasing of data brought in by interrupts
1423	 * that have moved the tail page and are currently on it.
1424	 *
1425	 * We add a counter to the write field to denote this.
1426	 */
1427	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1428	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1429
 
1430	/*
1431	 * Just make sure we have seen our old_write and synchronize
1432	 * with any interrupts that come in.
1433	 */
1434	barrier();
1435
1436	/*
1437	 * If the tail page is still the same as what we think
1438	 * it is, then it is up to us to update the tail
1439	 * pointer.
1440	 */
1441	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1442		/* Zero the write counter */
1443		unsigned long val = old_write & ~RB_WRITE_MASK;
1444		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1445
1446		/*
1447		 * This will only succeed if an interrupt did
1448		 * not come in and change it. In which case, we
1449		 * do not want to modify it.
1450		 *
1451		 * We add (void) to let the compiler know that we do not care
1452		 * about the return value of these functions. We use the
1453		 * cmpxchg to only update if an interrupt did not already
1454		 * do it for us. If the cmpxchg fails, we don't care.
1455		 */
1456		(void)local_cmpxchg(&next_page->write, old_write, val);
1457		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1458
1459		/*
1460		 * No need to worry about races with clearing out the commit.
1461		 * it only can increment when a commit takes place. But that
1462		 * only happens in the outer most nested commit.
1463		 */
1464		local_set(&next_page->page->commit, 0);
1465
1466		/* Either we update tail_page or an interrupt does */
1467		if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page))
1468			local_inc(&cpu_buffer->pages_touched);
1469	}
1470}
1471
1472static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1473			  struct buffer_page *bpage)
1474{
1475	unsigned long val = (unsigned long)bpage;
1476
1477	RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1478}
1479
1480static bool rb_check_links(struct ring_buffer_per_cpu *cpu_buffer,
1481			   struct list_head *list)
1482{
1483	if (RB_WARN_ON(cpu_buffer,
1484		       rb_list_head(rb_list_head(list->next)->prev) != list))
1485		return false;
1486
1487	if (RB_WARN_ON(cpu_buffer,
1488		       rb_list_head(rb_list_head(list->prev)->next) != list))
1489		return false;
1490
1491	return true;
1492}
1493
1494/**
1495 * rb_check_pages - integrity check of buffer pages
1496 * @cpu_buffer: CPU buffer with pages to test
1497 *
1498 * As a safety measure we check to make sure the data pages have not
1499 * been corrupted.
1500 */
1501static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1502{
1503	struct list_head *head, *tmp;
1504	unsigned long buffer_cnt;
1505	unsigned long flags;
1506	int nr_loops = 0;
1507
1508	/*
1509	 * Walk the linked list underpinning the ring buffer and validate all
1510	 * its next and prev links.
1511	 *
1512	 * The check acquires the reader_lock to avoid concurrent processing
1513	 * with code that could be modifying the list. However, the lock cannot
1514	 * be held for the entire duration of the walk, as this would make the
1515	 * time when interrupts are disabled non-deterministic, dependent on the
1516	 * ring buffer size. Therefore, the code releases and re-acquires the
1517	 * lock after checking each page. The ring_buffer_per_cpu.cnt variable
1518	 * is then used to detect if the list was modified while the lock was
1519	 * not held, in which case the check needs to be restarted.
1520	 *
1521	 * The code attempts to perform the check at most three times before
1522	 * giving up. This is acceptable because this is only a self-validation
1523	 * to detect problems early on. In practice, the list modification
1524	 * operations are fairly spaced, and so this check typically succeeds at
1525	 * most on the second try.
1526	 */
1527again:
1528	if (++nr_loops > 3)
1529		return;
1530
1531	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1532	head = rb_list_head(cpu_buffer->pages);
1533	if (!rb_check_links(cpu_buffer, head))
1534		goto out_locked;
1535	buffer_cnt = cpu_buffer->cnt;
1536	tmp = head;
1537	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1538
1539	while (true) {
1540		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1541
1542		if (buffer_cnt != cpu_buffer->cnt) {
1543			/* The list was updated, try again. */
1544			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1545			goto again;
1546		}
1547
1548		tmp = rb_list_head(tmp->next);
1549		if (tmp == head)
1550			/* The iteration circled back, all is done. */
1551			goto out_locked;
1552
1553		if (!rb_check_links(cpu_buffer, tmp))
1554			goto out_locked;
1555
1556		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1557	}
1558
1559out_locked:
1560	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1561}
1562
1563/*
1564 * Take an address, add the meta data size as well as the array of
1565 * array subbuffer indexes, then align it to a subbuffer size.
1566 *
1567 * This is used to help find the next per cpu subbuffer within a mapped range.
1568 */
1569static unsigned long
1570rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs)
1571{
1572	addr += sizeof(struct ring_buffer_meta) +
1573		sizeof(int) * nr_subbufs;
1574	return ALIGN(addr, subbuf_size);
1575}
1576
1577/*
1578 * Return the ring_buffer_meta for a given @cpu.
1579 */
1580static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu)
1581{
1582	int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
1583	unsigned long ptr = buffer->range_addr_start;
1584	struct ring_buffer_meta *meta;
1585	int nr_subbufs;
1586
1587	if (!ptr)
1588		return NULL;
1589
1590	/* When nr_pages passed in is zero, the first meta has already been initialized */
1591	if (!nr_pages) {
1592		meta = (struct ring_buffer_meta *)ptr;
1593		nr_subbufs = meta->nr_subbufs;
1594	} else {
1595		meta = NULL;
1596		/* Include the reader page */
1597		nr_subbufs = nr_pages + 1;
1598	}
1599
1600	/*
1601	 * The first chunk may not be subbuffer aligned, where as
1602	 * the rest of the chunks are.
1603	 */
1604	if (cpu) {
1605		ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1606		ptr += subbuf_size * nr_subbufs;
1607
1608		/* We can use multiplication to find chunks greater than 1 */
1609		if (cpu > 1) {
1610			unsigned long size;
1611			unsigned long p;
1612
1613			/* Save the beginning of this CPU chunk */
1614			p = ptr;
1615			ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1616			ptr += subbuf_size * nr_subbufs;
1617
1618			/* Now all chunks after this are the same size */
1619			size = ptr - p;
1620			ptr += size * (cpu - 2);
1621		}
1622	}
1623	return (void *)ptr;
1624}
1625
1626/* Return the start of subbufs given the meta pointer */
1627static void *rb_subbufs_from_meta(struct ring_buffer_meta *meta)
1628{
1629	int subbuf_size = meta->subbuf_size;
1630	unsigned long ptr;
1631
1632	ptr = (unsigned long)meta;
1633	ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs);
1634
1635	return (void *)ptr;
1636}
1637
1638/*
1639 * Return a specific sub-buffer for a given @cpu defined by @idx.
1640 */
1641static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx)
1642{
1643	struct ring_buffer_meta *meta;
1644	unsigned long ptr;
1645	int subbuf_size;
1646
1647	meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu);
1648	if (!meta)
1649		return NULL;
1650
1651	if (WARN_ON_ONCE(idx >= meta->nr_subbufs))
1652		return NULL;
1653
1654	subbuf_size = meta->subbuf_size;
1655
1656	/* Map this buffer to the order that's in meta->buffers[] */
1657	idx = meta->buffers[idx];
1658
1659	ptr = (unsigned long)rb_subbufs_from_meta(meta);
1660
1661	ptr += subbuf_size * idx;
1662	if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end)
1663		return NULL;
1664
1665	return (void *)ptr;
1666}
1667
1668/*
1669 * See if the existing memory contains valid ring buffer data.
1670 * As the previous kernel must be the same as this kernel, all
1671 * the calculations (size of buffers and number of buffers)
1672 * must be the same.
1673 */
1674static bool rb_meta_valid(struct ring_buffer_meta *meta, int cpu,
1675			  struct trace_buffer *buffer, int nr_pages,
1676			  unsigned long *subbuf_mask)
1677{
1678	int subbuf_size = PAGE_SIZE;
1679	struct buffer_data_page *subbuf;
1680	unsigned long buffers_start;
1681	unsigned long buffers_end;
1682	int i;
1683
1684	if (!subbuf_mask)
1685		return false;
1686
1687	/* Check the meta magic and meta struct size */
1688	if (meta->magic != RING_BUFFER_META_MAGIC ||
1689	    meta->struct_size != sizeof(*meta)) {
1690		pr_info("Ring buffer boot meta[%d] mismatch of magic or struct size\n", cpu);
1691		return false;
1692	}
1693
1694	/* The subbuffer's size and number of subbuffers must match */
1695	if (meta->subbuf_size != subbuf_size ||
1696	    meta->nr_subbufs != nr_pages + 1) {
1697		pr_info("Ring buffer boot meta [%d] mismatch of subbuf_size/nr_pages\n", cpu);
1698		return false;
1699	}
1700
1701	buffers_start = meta->first_buffer;
1702	buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs);
1703
1704	/* Is the head and commit buffers within the range of buffers? */
1705	if (meta->head_buffer < buffers_start ||
1706	    meta->head_buffer >= buffers_end) {
1707		pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu);
1708		return false;
1709	}
1710
1711	if (meta->commit_buffer < buffers_start ||
1712	    meta->commit_buffer >= buffers_end) {
1713		pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu);
1714		return false;
1715	}
1716
1717	subbuf = rb_subbufs_from_meta(meta);
1718
1719	bitmap_clear(subbuf_mask, 0, meta->nr_subbufs);
1720
1721	/* Is the meta buffers and the subbufs themselves have correct data? */
1722	for (i = 0; i < meta->nr_subbufs; i++) {
1723		if (meta->buffers[i] < 0 ||
1724		    meta->buffers[i] >= meta->nr_subbufs) {
1725			pr_info("Ring buffer boot meta [%d] array out of range\n", cpu);
1726			return false;
1727		}
1728
1729		if ((unsigned)local_read(&subbuf->commit) > subbuf_size) {
1730			pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu);
1731			return false;
1732		}
1733
1734		if (test_bit(meta->buffers[i], subbuf_mask)) {
1735			pr_info("Ring buffer boot meta [%d] array has duplicates\n", cpu);
1736			return false;
1737		}
1738
1739		set_bit(meta->buffers[i], subbuf_mask);
1740		subbuf = (void *)subbuf + subbuf_size;
1741	}
1742
1743	return true;
1744}
1745
1746static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf);
1747
1748static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu,
1749			       unsigned long long *timestamp, u64 *delta_ptr)
1750{
1751	struct ring_buffer_event *event;
1752	u64 ts, delta;
1753	int events = 0;
1754	int e;
1755
1756	*delta_ptr = 0;
1757	*timestamp = 0;
1758
1759	ts = dpage->time_stamp;
1760
1761	for (e = 0; e < tail; e += rb_event_length(event)) {
1762
1763		event = (struct ring_buffer_event *)(dpage->data + e);
1764
1765		switch (event->type_len) {
1766
1767		case RINGBUF_TYPE_TIME_EXTEND:
1768			delta = rb_event_time_stamp(event);
1769			ts += delta;
1770			break;
1771
1772		case RINGBUF_TYPE_TIME_STAMP:
1773			delta = rb_event_time_stamp(event);
1774			delta = rb_fix_abs_ts(delta, ts);
1775			if (delta < ts) {
1776				*delta_ptr = delta;
1777				*timestamp = ts;
1778				return -1;
1779			}
1780			ts = delta;
1781			break;
1782
1783		case RINGBUF_TYPE_PADDING:
1784			if (event->time_delta == 1)
1785				break;
1786			fallthrough;
1787		case RINGBUF_TYPE_DATA:
1788			events++;
1789			ts += event->time_delta;
1790			break;
1791
1792		default:
1793			return -1;
1794		}
1795	}
1796	*timestamp = ts;
1797	return events;
1798}
1799
1800static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu)
1801{
1802	unsigned long long ts;
1803	u64 delta;
1804	int tail;
1805
1806	tail = local_read(&dpage->commit);
1807	return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta);
1808}
1809
1810/* If the meta data has been validated, now validate the events */
1811static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer)
1812{
1813	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1814	struct buffer_page *head_page;
1815	unsigned long entry_bytes = 0;
1816	unsigned long entries = 0;
1817	int ret;
1818	int i;
1819
1820	if (!meta || !meta->head_buffer)
1821		return;
1822
1823	/* Do the reader page first */
1824	ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu);
1825	if (ret < 0) {
1826		pr_info("Ring buffer reader page is invalid\n");
1827		goto invalid;
1828	}
1829	entries += ret;
1830	entry_bytes += local_read(&cpu_buffer->reader_page->page->commit);
1831	local_set(&cpu_buffer->reader_page->entries, ret);
1832
1833	head_page = cpu_buffer->head_page;
1834
1835	/* If both the head and commit are on the reader_page then we are done. */
1836	if (head_page == cpu_buffer->reader_page &&
1837	    head_page == cpu_buffer->commit_page)
1838		goto done;
1839
1840	/* Iterate until finding the commit page */
1841	for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) {
1842
1843		/* Reader page has already been done */
1844		if (head_page == cpu_buffer->reader_page)
1845			continue;
1846
1847		ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu);
1848		if (ret < 0) {
1849			pr_info("Ring buffer meta [%d] invalid buffer page\n",
1850				cpu_buffer->cpu);
1851			goto invalid;
1852		}
1853
1854		/* If the buffer has content, update pages_touched */
1855		if (ret)
1856			local_inc(&cpu_buffer->pages_touched);
1857
1858		entries += ret;
1859		entry_bytes += local_read(&head_page->page->commit);
1860		local_set(&cpu_buffer->head_page->entries, ret);
1861
1862		if (head_page == cpu_buffer->commit_page)
1863			break;
1864	}
1865
1866	if (head_page != cpu_buffer->commit_page) {
1867		pr_info("Ring buffer meta [%d] commit page not found\n",
1868			cpu_buffer->cpu);
1869		goto invalid;
1870	}
1871 done:
1872	local_set(&cpu_buffer->entries, entries);
1873	local_set(&cpu_buffer->entries_bytes, entry_bytes);
1874
1875	pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu);
1876	return;
1877
1878 invalid:
1879	/* The content of the buffers are invalid, reset the meta data */
1880	meta->head_buffer = 0;
1881	meta->commit_buffer = 0;
1882
1883	/* Reset the reader page */
1884	local_set(&cpu_buffer->reader_page->entries, 0);
1885	local_set(&cpu_buffer->reader_page->page->commit, 0);
1886
1887	/* Reset all the subbuffers */
1888	for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) {
1889		local_set(&head_page->entries, 0);
1890		local_set(&head_page->page->commit, 0);
1891	}
1892}
1893
1894/* Used to calculate data delta */
1895static char rb_data_ptr[] = "";
1896
1897#define THIS_TEXT_PTR		((unsigned long)rb_meta_init_text_addr)
1898#define THIS_DATA_PTR		((unsigned long)rb_data_ptr)
1899
1900static void rb_meta_init_text_addr(struct ring_buffer_meta *meta)
1901{
1902	meta->text_addr = THIS_TEXT_PTR;
1903	meta->data_addr = THIS_DATA_PTR;
1904}
1905
1906static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages)
1907{
1908	struct ring_buffer_meta *meta;
1909	unsigned long *subbuf_mask;
1910	unsigned long delta;
1911	void *subbuf;
1912	int cpu;
1913	int i;
1914
1915	/* Create a mask to test the subbuf array */
1916	subbuf_mask = bitmap_alloc(nr_pages + 1, GFP_KERNEL);
1917	/* If subbuf_mask fails to allocate, then rb_meta_valid() will return false */
1918
1919	for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1920		void *next_meta;
1921
1922		meta = rb_range_meta(buffer, nr_pages, cpu);
1923
1924		if (rb_meta_valid(meta, cpu, buffer, nr_pages, subbuf_mask)) {
1925			/* Make the mappings match the current address */
1926			subbuf = rb_subbufs_from_meta(meta);
1927			delta = (unsigned long)subbuf - meta->first_buffer;
1928			meta->first_buffer += delta;
1929			meta->head_buffer += delta;
1930			meta->commit_buffer += delta;
1931			buffer->last_text_delta = THIS_TEXT_PTR - meta->text_addr;
1932			buffer->last_data_delta = THIS_DATA_PTR - meta->data_addr;
1933			continue;
1934		}
1935
1936		if (cpu < nr_cpu_ids - 1)
1937			next_meta = rb_range_meta(buffer, nr_pages, cpu + 1);
1938		else
1939			next_meta = (void *)buffer->range_addr_end;
1940
1941		memset(meta, 0, next_meta - (void *)meta);
1942
1943		meta->magic = RING_BUFFER_META_MAGIC;
1944		meta->struct_size = sizeof(*meta);
1945
1946		meta->nr_subbufs = nr_pages + 1;
1947		meta->subbuf_size = PAGE_SIZE;
1948
1949		subbuf = rb_subbufs_from_meta(meta);
1950
1951		meta->first_buffer = (unsigned long)subbuf;
1952		rb_meta_init_text_addr(meta);
1953
1954		/*
1955		 * The buffers[] array holds the order of the sub-buffers
1956		 * that are after the meta data. The sub-buffers may
1957		 * be swapped out when read and inserted into a different
1958		 * location of the ring buffer. Although their addresses
1959		 * remain the same, the buffers[] array contains the
1960		 * index into the sub-buffers holding their actual order.
1961		 */
1962		for (i = 0; i < meta->nr_subbufs; i++) {
1963			meta->buffers[i] = i;
1964			rb_init_page(subbuf);
1965			subbuf += meta->subbuf_size;
1966		}
1967	}
1968	bitmap_free(subbuf_mask);
1969}
1970
1971static void *rbm_start(struct seq_file *m, loff_t *pos)
1972{
1973	struct ring_buffer_per_cpu *cpu_buffer = m->private;
1974	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1975	unsigned long val;
1976
1977	if (!meta)
1978		return NULL;
1979
1980	if (*pos > meta->nr_subbufs)
1981		return NULL;
1982
1983	val = *pos;
1984	val++;
1985
1986	return (void *)val;
1987}
1988
1989static void *rbm_next(struct seq_file *m, void *v, loff_t *pos)
1990{
1991	(*pos)++;
1992
1993	return rbm_start(m, pos);
1994}
1995
1996static int rbm_show(struct seq_file *m, void *v)
1997{
1998	struct ring_buffer_per_cpu *cpu_buffer = m->private;
1999	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
2000	unsigned long val = (unsigned long)v;
2001
2002	if (val == 1) {
2003		seq_printf(m, "head_buffer:   %d\n",
2004			   rb_meta_subbuf_idx(meta, (void *)meta->head_buffer));
2005		seq_printf(m, "commit_buffer: %d\n",
2006			   rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer));
2007		seq_printf(m, "subbuf_size:   %d\n", meta->subbuf_size);
2008		seq_printf(m, "nr_subbufs:    %d\n", meta->nr_subbufs);
2009		return 0;
2010	}
2011
2012	val -= 2;
2013	seq_printf(m, "buffer[%ld]:    %d\n", val, meta->buffers[val]);
2014
2015	return 0;
2016}
2017
2018static void rbm_stop(struct seq_file *m, void *p)
2019{
2020}
2021
2022static const struct seq_operations rb_meta_seq_ops = {
2023	.start		= rbm_start,
2024	.next		= rbm_next,
2025	.show		= rbm_show,
2026	.stop		= rbm_stop,
2027};
2028
2029int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu)
2030{
2031	struct seq_file *m;
2032	int ret;
2033
2034	ret = seq_open(file, &rb_meta_seq_ops);
2035	if (ret)
2036		return ret;
2037
2038	m = file->private_data;
2039	m->private = buffer->buffers[cpu];
2040
2041	return 0;
2042}
2043
2044/* Map the buffer_pages to the previous head and commit pages */
2045static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer,
2046				  struct buffer_page *bpage)
2047{
2048	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
2049
2050	if (meta->head_buffer == (unsigned long)bpage->page)
2051		cpu_buffer->head_page = bpage;
2052
2053	if (meta->commit_buffer == (unsigned long)bpage->page) {
2054		cpu_buffer->commit_page = bpage;
2055		cpu_buffer->tail_page = bpage;
2056	}
2057}
2058
2059static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2060		long nr_pages, struct list_head *pages)
2061{
2062	struct trace_buffer *buffer = cpu_buffer->buffer;
2063	struct ring_buffer_meta *meta = NULL;
2064	struct buffer_page *bpage, *tmp;
2065	bool user_thread = current->mm != NULL;
2066	gfp_t mflags;
2067	long i;
2068
2069	/*
2070	 * Check if the available memory is there first.
2071	 * Note, si_mem_available() only gives us a rough estimate of available
2072	 * memory. It may not be accurate. But we don't care, we just want
2073	 * to prevent doing any allocation when it is obvious that it is
2074	 * not going to succeed.
2075	 */
2076	i = si_mem_available();
2077	if (i < nr_pages)
2078		return -ENOMEM;
2079
2080	/*
2081	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
2082	 * gracefully without invoking oom-killer and the system is not
2083	 * destabilized.
2084	 */
2085	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
2086
2087	/*
2088	 * If a user thread allocates too much, and si_mem_available()
2089	 * reports there's enough memory, even though there is not.
2090	 * Make sure the OOM killer kills this thread. This can happen
2091	 * even with RETRY_MAYFAIL because another task may be doing
2092	 * an allocation after this task has taken all memory.
2093	 * This is the task the OOM killer needs to take out during this
2094	 * loop, even if it was triggered by an allocation somewhere else.
2095	 */
2096	if (user_thread)
2097		set_current_oom_origin();
2098
2099	if (buffer->range_addr_start)
2100		meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu);
2101
2102	for (i = 0; i < nr_pages; i++) {
2103		struct page *page;
2104
2105		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2106				    mflags, cpu_to_node(cpu_buffer->cpu));
2107		if (!bpage)
2108			goto free_pages;
2109
2110		rb_check_bpage(cpu_buffer, bpage);
2111
2112		/*
2113		 * Append the pages as for mapped buffers we want to keep
2114		 * the order
2115		 */
2116		list_add_tail(&bpage->list, pages);
2117
2118		if (meta) {
2119			/* A range was given. Use that for the buffer page */
2120			bpage->page = rb_range_buffer(cpu_buffer, i + 1);
2121			if (!bpage->page)
2122				goto free_pages;
2123			/* If this is valid from a previous boot */
2124			if (meta->head_buffer)
2125				rb_meta_buffer_update(cpu_buffer, bpage);
2126			bpage->range = 1;
2127			bpage->id = i + 1;
2128		} else {
2129			page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
2130						mflags | __GFP_COMP | __GFP_ZERO,
2131						cpu_buffer->buffer->subbuf_order);
2132			if (!page)
2133				goto free_pages;
2134			bpage->page = page_address(page);
2135			rb_init_page(bpage->page);
2136		}
2137		bpage->order = cpu_buffer->buffer->subbuf_order;
 
2138
2139		if (user_thread && fatal_signal_pending(current))
2140			goto free_pages;
2141	}
2142	if (user_thread)
2143		clear_current_oom_origin();
2144
2145	return 0;
2146
2147free_pages:
2148	list_for_each_entry_safe(bpage, tmp, pages, list) {
2149		list_del_init(&bpage->list);
2150		free_buffer_page(bpage);
2151	}
2152	if (user_thread)
2153		clear_current_oom_origin();
2154
2155	return -ENOMEM;
2156}
2157
2158static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2159			     unsigned long nr_pages)
2160{
2161	LIST_HEAD(pages);
2162
2163	WARN_ON(!nr_pages);
2164
2165	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
2166		return -ENOMEM;
2167
2168	/*
2169	 * The ring buffer page list is a circular list that does not
2170	 * start and end with a list head. All page list items point to
2171	 * other pages.
2172	 */
2173	cpu_buffer->pages = pages.next;
2174	list_del(&pages);
2175
2176	cpu_buffer->nr_pages = nr_pages;
2177
2178	rb_check_pages(cpu_buffer);
2179
2180	return 0;
2181}
2182
2183static struct ring_buffer_per_cpu *
2184rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
2185{
2186	struct ring_buffer_per_cpu *cpu_buffer;
2187	struct ring_buffer_meta *meta;
2188	struct buffer_page *bpage;
2189	struct page *page;
2190	int ret;
2191
2192	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
2193				  GFP_KERNEL, cpu_to_node(cpu));
2194	if (!cpu_buffer)
2195		return NULL;
2196
2197	cpu_buffer->cpu = cpu;
2198	cpu_buffer->buffer = buffer;
2199	raw_spin_lock_init(&cpu_buffer->reader_lock);
2200	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
2201	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
2202	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
2203	init_completion(&cpu_buffer->update_done);
2204	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
2205	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
2206	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
2207	mutex_init(&cpu_buffer->mapping_lock);
2208
2209	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2210			    GFP_KERNEL, cpu_to_node(cpu));
2211	if (!bpage)
2212		goto fail_free_buffer;
2213
2214	rb_check_bpage(cpu_buffer, bpage);
2215
2216	cpu_buffer->reader_page = bpage;
2217
2218	if (buffer->range_addr_start) {
2219		/*
2220		 * Range mapped buffers have the same restrictions as memory
2221		 * mapped ones do.
2222		 */
2223		cpu_buffer->mapped = 1;
2224		cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu);
2225		bpage->page = rb_range_buffer(cpu_buffer, 0);
2226		if (!bpage->page)
2227			goto fail_free_reader;
2228		if (cpu_buffer->ring_meta->head_buffer)
2229			rb_meta_buffer_update(cpu_buffer, bpage);
2230		bpage->range = 1;
2231	} else {
2232		page = alloc_pages_node(cpu_to_node(cpu),
2233					GFP_KERNEL | __GFP_COMP | __GFP_ZERO,
2234					cpu_buffer->buffer->subbuf_order);
2235		if (!page)
2236			goto fail_free_reader;
2237		bpage->page = page_address(page);
2238		rb_init_page(bpage->page);
2239	}
2240
2241	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2242	INIT_LIST_HEAD(&cpu_buffer->new_pages);
2243
2244	ret = rb_allocate_pages(cpu_buffer, nr_pages);
2245	if (ret < 0)
2246		goto fail_free_reader;
2247
2248	rb_meta_validate_events(cpu_buffer);
 
 
2249
2250	/* If the boot meta was valid then this has already been updated */
2251	meta = cpu_buffer->ring_meta;
2252	if (!meta || !meta->head_buffer ||
2253	    !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) {
2254		if (meta && meta->head_buffer &&
2255		    (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) {
2256			pr_warn("Ring buffer meta buffers not all mapped\n");
2257			if (!cpu_buffer->head_page)
2258				pr_warn("   Missing head_page\n");
2259			if (!cpu_buffer->commit_page)
2260				pr_warn("   Missing commit_page\n");
2261			if (!cpu_buffer->tail_page)
2262				pr_warn("   Missing tail_page\n");
2263		}
2264
2265		cpu_buffer->head_page
2266			= list_entry(cpu_buffer->pages, struct buffer_page, list);
2267		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
2268
2269		rb_head_page_activate(cpu_buffer);
2270
2271		if (cpu_buffer->ring_meta)
2272			meta->commit_buffer = meta->head_buffer;
2273	} else {
2274		/* The valid meta buffer still needs to activate the head page */
2275		rb_head_page_activate(cpu_buffer);
2276	}
2277
2278	return cpu_buffer;
2279
2280 fail_free_reader:
2281	free_buffer_page(cpu_buffer->reader_page);
2282
2283 fail_free_buffer:
2284	kfree(cpu_buffer);
2285	return NULL;
2286}
2287
2288static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
2289{
2290	struct list_head *head = cpu_buffer->pages;
2291	struct buffer_page *bpage, *tmp;
2292
2293	irq_work_sync(&cpu_buffer->irq_work.work);
2294
2295	free_buffer_page(cpu_buffer->reader_page);
2296
2297	if (head) {
2298		rb_head_page_deactivate(cpu_buffer);
2299
2300		list_for_each_entry_safe(bpage, tmp, head, list) {
2301			list_del_init(&bpage->list);
2302			free_buffer_page(bpage);
2303		}
2304		bpage = list_entry(head, struct buffer_page, list);
2305		free_buffer_page(bpage);
2306	}
2307
2308	free_page((unsigned long)cpu_buffer->free_page);
2309
2310	kfree(cpu_buffer);
2311}
2312
2313static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags,
2314					 int order, unsigned long start,
2315					 unsigned long end,
2316					 struct lock_class_key *key)
 
 
 
 
 
 
 
 
 
2317{
2318	struct trace_buffer *buffer;
2319	long nr_pages;
2320	int subbuf_size;
2321	int bsize;
2322	int cpu;
2323	int ret;
2324
2325	/* keep it in its own cache line */
2326	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
2327			 GFP_KERNEL);
2328	if (!buffer)
2329		return NULL;
2330
2331	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
2332		goto fail_free_buffer;
2333
2334	buffer->subbuf_order = order;
2335	subbuf_size = (PAGE_SIZE << order);
2336	buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE;
2337
2338	/* Max payload is buffer page size - header (8bytes) */
2339	buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
2340
 
2341	buffer->flags = flags;
2342	buffer->clock = trace_clock_local;
2343	buffer->reader_lock_key = key;
2344
2345	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
2346	init_waitqueue_head(&buffer->irq_work.waiters);
2347
 
 
 
 
2348	buffer->cpus = nr_cpu_ids;
2349
2350	bsize = sizeof(void *) * nr_cpu_ids;
2351	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
2352				  GFP_KERNEL);
2353	if (!buffer->buffers)
2354		goto fail_free_cpumask;
2355
2356	/* If start/end are specified, then that overrides size */
2357	if (start && end) {
2358		unsigned long ptr;
2359		int n;
2360
2361		size = end - start;
2362		size = size / nr_cpu_ids;
2363
2364		/*
2365		 * The number of sub-buffers (nr_pages) is determined by the
2366		 * total size allocated minus the meta data size.
2367		 * Then that is divided by the number of per CPU buffers
2368		 * needed, plus account for the integer array index that
2369		 * will be appended to the meta data.
2370		 */
2371		nr_pages = (size - sizeof(struct ring_buffer_meta)) /
2372			(subbuf_size + sizeof(int));
2373		/* Need at least two pages plus the reader page */
2374		if (nr_pages < 3)
2375			goto fail_free_buffers;
2376
2377 again:
2378		/* Make sure that the size fits aligned */
2379		for (n = 0, ptr = start; n < nr_cpu_ids; n++) {
2380			ptr += sizeof(struct ring_buffer_meta) +
2381				sizeof(int) * nr_pages;
2382			ptr = ALIGN(ptr, subbuf_size);
2383			ptr += subbuf_size * nr_pages;
2384		}
2385		if (ptr > end) {
2386			if (nr_pages <= 3)
2387				goto fail_free_buffers;
2388			nr_pages--;
2389			goto again;
2390		}
2391
2392		/* nr_pages should not count the reader page */
2393		nr_pages--;
2394		buffer->range_addr_start = start;
2395		buffer->range_addr_end = end;
2396
2397		rb_range_meta_init(buffer, nr_pages);
2398	} else {
2399
2400		/* need at least two pages */
2401		nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2402		if (nr_pages < 2)
2403			nr_pages = 2;
2404	}
2405
2406	cpu = raw_smp_processor_id();
2407	cpumask_set_cpu(cpu, buffer->cpumask);
2408	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
2409	if (!buffer->buffers[cpu])
2410		goto fail_free_buffers;
2411
2412	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2413	if (ret < 0)
2414		goto fail_free_buffers;
2415
2416	mutex_init(&buffer->mutex);
2417
2418	return buffer;
2419
2420 fail_free_buffers:
2421	for_each_buffer_cpu(buffer, cpu) {
2422		if (buffer->buffers[cpu])
2423			rb_free_cpu_buffer(buffer->buffers[cpu]);
2424	}
2425	kfree(buffer->buffers);
2426
2427 fail_free_cpumask:
2428	free_cpumask_var(buffer->cpumask);
2429
2430 fail_free_buffer:
2431	kfree(buffer);
2432	return NULL;
2433}
2434
2435/**
2436 * __ring_buffer_alloc - allocate a new ring_buffer
2437 * @size: the size in bytes per cpu that is needed.
2438 * @flags: attributes to set for the ring buffer.
2439 * @key: ring buffer reader_lock_key.
2440 *
2441 * Currently the only flag that is available is the RB_FL_OVERWRITE
2442 * flag. This flag means that the buffer will overwrite old data
2443 * when the buffer wraps. If this flag is not set, the buffer will
2444 * drop data when the tail hits the head.
2445 */
2446struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
2447					struct lock_class_key *key)
2448{
2449	/* Default buffer page size - one system page */
2450	return alloc_buffer(size, flags, 0, 0, 0,key);
2451
2452}
2453EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
2454
2455/**
2456 * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory
2457 * @size: the size in bytes per cpu that is needed.
2458 * @flags: attributes to set for the ring buffer.
2459 * @order: sub-buffer order
2460 * @start: start of allocated range
2461 * @range_size: size of allocated range
2462 * @key: ring buffer reader_lock_key.
2463 *
2464 * Currently the only flag that is available is the RB_FL_OVERWRITE
2465 * flag. This flag means that the buffer will overwrite old data
2466 * when the buffer wraps. If this flag is not set, the buffer will
2467 * drop data when the tail hits the head.
2468 */
2469struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags,
2470					       int order, unsigned long start,
2471					       unsigned long range_size,
2472					       struct lock_class_key *key)
2473{
2474	return alloc_buffer(size, flags, order, start, start + range_size, key);
2475}
2476
2477/**
2478 * ring_buffer_last_boot_delta - return the delta offset from last boot
2479 * @buffer: The buffer to return the delta from
2480 * @text: Return text delta
2481 * @data: Return data delta
2482 *
2483 * Returns: The true if the delta is non zero
2484 */
2485bool ring_buffer_last_boot_delta(struct trace_buffer *buffer, long *text,
2486				 long *data)
2487{
2488	if (!buffer)
2489		return false;
2490
2491	if (!buffer->last_text_delta)
2492		return false;
2493
2494	*text = buffer->last_text_delta;
2495	*data = buffer->last_data_delta;
2496
2497	return true;
2498}
2499
2500/**
2501 * ring_buffer_free - free a ring buffer.
2502 * @buffer: the buffer to free.
2503 */
2504void
2505ring_buffer_free(struct trace_buffer *buffer)
2506{
2507	int cpu;
2508
2509	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2510
2511	irq_work_sync(&buffer->irq_work.work);
2512
2513	for_each_buffer_cpu(buffer, cpu)
2514		rb_free_cpu_buffer(buffer->buffers[cpu]);
2515
2516	kfree(buffer->buffers);
2517	free_cpumask_var(buffer->cpumask);
2518
2519	kfree(buffer);
2520}
2521EXPORT_SYMBOL_GPL(ring_buffer_free);
2522
2523void ring_buffer_set_clock(struct trace_buffer *buffer,
2524			   u64 (*clock)(void))
2525{
2526	buffer->clock = clock;
2527}
2528
2529void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
2530{
2531	buffer->time_stamp_abs = abs;
2532}
2533
2534bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
2535{
2536	return buffer->time_stamp_abs;
2537}
2538
 
 
2539static inline unsigned long rb_page_entries(struct buffer_page *bpage)
2540{
2541	return local_read(&bpage->entries) & RB_WRITE_MASK;
2542}
2543
2544static inline unsigned long rb_page_write(struct buffer_page *bpage)
2545{
2546	return local_read(&bpage->write) & RB_WRITE_MASK;
2547}
2548
2549static bool
2550rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
2551{
2552	struct list_head *tail_page, *to_remove, *next_page;
2553	struct buffer_page *to_remove_page, *tmp_iter_page;
2554	struct buffer_page *last_page, *first_page;
2555	unsigned long nr_removed;
2556	unsigned long head_bit;
2557	int page_entries;
2558
2559	head_bit = 0;
2560
2561	raw_spin_lock_irq(&cpu_buffer->reader_lock);
2562	atomic_inc(&cpu_buffer->record_disabled);
2563	/*
2564	 * We don't race with the readers since we have acquired the reader
2565	 * lock. We also don't race with writers after disabling recording.
2566	 * This makes it easy to figure out the first and the last page to be
2567	 * removed from the list. We unlink all the pages in between including
2568	 * the first and last pages. This is done in a busy loop so that we
2569	 * lose the least number of traces.
2570	 * The pages are freed after we restart recording and unlock readers.
2571	 */
2572	tail_page = &cpu_buffer->tail_page->list;
2573
2574	/*
2575	 * tail page might be on reader page, we remove the next page
2576	 * from the ring buffer
2577	 */
2578	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2579		tail_page = rb_list_head(tail_page->next);
2580	to_remove = tail_page;
2581
2582	/* start of pages to remove */
2583	first_page = list_entry(rb_list_head(to_remove->next),
2584				struct buffer_page, list);
2585
2586	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
2587		to_remove = rb_list_head(to_remove)->next;
2588		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
2589	}
2590	/* Read iterators need to reset themselves when some pages removed */
2591	cpu_buffer->pages_removed += nr_removed;
2592
2593	next_page = rb_list_head(to_remove)->next;
2594
2595	/*
2596	 * Now we remove all pages between tail_page and next_page.
2597	 * Make sure that we have head_bit value preserved for the
2598	 * next page
2599	 */
2600	tail_page->next = (struct list_head *)((unsigned long)next_page |
2601						head_bit);
2602	next_page = rb_list_head(next_page);
2603	next_page->prev = tail_page;
2604
2605	/* make sure pages points to a valid page in the ring buffer */
2606	cpu_buffer->pages = next_page;
2607	cpu_buffer->cnt++;
2608
2609	/* update head page */
2610	if (head_bit)
2611		cpu_buffer->head_page = list_entry(next_page,
2612						struct buffer_page, list);
2613
2614	/* pages are removed, resume tracing and then free the pages */
2615	atomic_dec(&cpu_buffer->record_disabled);
2616	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2617
2618	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2619
2620	/* last buffer page to remove */
2621	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2622				list);
2623	tmp_iter_page = first_page;
2624
2625	do {
2626		cond_resched();
2627
2628		to_remove_page = tmp_iter_page;
2629		rb_inc_page(&tmp_iter_page);
2630
2631		/* update the counters */
2632		page_entries = rb_page_entries(to_remove_page);
2633		if (page_entries) {
2634			/*
2635			 * If something was added to this page, it was full
2636			 * since it is not the tail page. So we deduct the
2637			 * bytes consumed in ring buffer from here.
2638			 * Increment overrun to account for the lost events.
2639			 */
2640			local_add(page_entries, &cpu_buffer->overrun);
2641			local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2642			local_inc(&cpu_buffer->pages_lost);
2643		}
2644
2645		/*
2646		 * We have already removed references to this list item, just
2647		 * free up the buffer_page and its page
2648		 */
2649		free_buffer_page(to_remove_page);
2650		nr_removed--;
2651
2652	} while (to_remove_page != last_page);
2653
2654	RB_WARN_ON(cpu_buffer, nr_removed);
2655
2656	return nr_removed == 0;
2657}
2658
2659static bool
2660rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2661{
2662	struct list_head *pages = &cpu_buffer->new_pages;
2663	unsigned long flags;
2664	bool success;
2665	int retries;
2666
2667	/* Can be called at early boot up, where interrupts must not been enabled */
2668	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2669	/*
2670	 * We are holding the reader lock, so the reader page won't be swapped
2671	 * in the ring buffer. Now we are racing with the writer trying to
2672	 * move head page and the tail page.
2673	 * We are going to adapt the reader page update process where:
2674	 * 1. We first splice the start and end of list of new pages between
2675	 *    the head page and its previous page.
2676	 * 2. We cmpxchg the prev_page->next to point from head page to the
2677	 *    start of new pages list.
2678	 * 3. Finally, we update the head->prev to the end of new list.
2679	 *
2680	 * We will try this process 10 times, to make sure that we don't keep
2681	 * spinning.
2682	 */
2683	retries = 10;
2684	success = false;
2685	while (retries--) {
2686		struct list_head *head_page, *prev_page;
2687		struct list_head *last_page, *first_page;
2688		struct list_head *head_page_with_bit;
2689		struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2690
2691		if (!hpage)
2692			break;
2693		head_page = &hpage->list;
2694		prev_page = head_page->prev;
2695
2696		first_page = pages->next;
2697		last_page  = pages->prev;
2698
2699		head_page_with_bit = (struct list_head *)
2700				     ((unsigned long)head_page | RB_PAGE_HEAD);
2701
2702		last_page->next = head_page_with_bit;
2703		first_page->prev = prev_page;
2704
2705		/* caution: head_page_with_bit gets updated on cmpxchg failure */
2706		if (try_cmpxchg(&prev_page->next,
2707				&head_page_with_bit, first_page)) {
2708			/*
2709			 * yay, we replaced the page pointer to our new list,
2710			 * now, we just have to update to head page's prev
2711			 * pointer to point to end of list
2712			 */
2713			head_page->prev = last_page;
2714			cpu_buffer->cnt++;
2715			success = true;
2716			break;
2717		}
2718	}
2719
2720	if (success)
2721		INIT_LIST_HEAD(pages);
2722	/*
2723	 * If we weren't successful in adding in new pages, warn and stop
2724	 * tracing
2725	 */
2726	RB_WARN_ON(cpu_buffer, !success);
2727	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2728
2729	/* free pages if they weren't inserted */
2730	if (!success) {
2731		struct buffer_page *bpage, *tmp;
2732		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2733					 list) {
2734			list_del_init(&bpage->list);
2735			free_buffer_page(bpage);
2736		}
2737	}
2738	return success;
2739}
2740
2741static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2742{
2743	bool success;
2744
2745	if (cpu_buffer->nr_pages_to_update > 0)
2746		success = rb_insert_pages(cpu_buffer);
2747	else
2748		success = rb_remove_pages(cpu_buffer,
2749					-cpu_buffer->nr_pages_to_update);
2750
2751	if (success)
2752		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2753}
2754
2755static void update_pages_handler(struct work_struct *work)
2756{
2757	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2758			struct ring_buffer_per_cpu, update_pages_work);
2759	rb_update_pages(cpu_buffer);
2760	complete(&cpu_buffer->update_done);
2761}
2762
2763/**
2764 * ring_buffer_resize - resize the ring buffer
2765 * @buffer: the buffer to resize.
2766 * @size: the new size.
2767 * @cpu_id: the cpu buffer to resize
2768 *
2769 * Minimum size is 2 * buffer->subbuf_size.
2770 *
2771 * Returns 0 on success and < 0 on failure.
2772 */
2773int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2774			int cpu_id)
2775{
2776	struct ring_buffer_per_cpu *cpu_buffer;
2777	unsigned long nr_pages;
2778	int cpu, err;
2779
2780	/*
2781	 * Always succeed at resizing a non-existent buffer:
2782	 */
2783	if (!buffer)
2784		return 0;
2785
2786	/* Make sure the requested buffer exists */
2787	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2788	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2789		return 0;
2790
2791	nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2792
2793	/* we need a minimum of two pages */
2794	if (nr_pages < 2)
2795		nr_pages = 2;
2796
2797	/* prevent another thread from changing buffer sizes */
2798	mutex_lock(&buffer->mutex);
2799	atomic_inc(&buffer->resizing);
2800
2801	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2802		/*
2803		 * Don't succeed if resizing is disabled, as a reader might be
2804		 * manipulating the ring buffer and is expecting a sane state while
2805		 * this is true.
2806		 */
2807		for_each_buffer_cpu(buffer, cpu) {
2808			cpu_buffer = buffer->buffers[cpu];
2809			if (atomic_read(&cpu_buffer->resize_disabled)) {
2810				err = -EBUSY;
2811				goto out_err_unlock;
2812			}
2813		}
2814
2815		/* calculate the pages to update */
2816		for_each_buffer_cpu(buffer, cpu) {
2817			cpu_buffer = buffer->buffers[cpu];
2818
2819			cpu_buffer->nr_pages_to_update = nr_pages -
2820							cpu_buffer->nr_pages;
2821			/*
2822			 * nothing more to do for removing pages or no update
2823			 */
2824			if (cpu_buffer->nr_pages_to_update <= 0)
2825				continue;
2826			/*
2827			 * to add pages, make sure all new pages can be
2828			 * allocated without receiving ENOMEM
2829			 */
2830			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2831			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2832						&cpu_buffer->new_pages)) {
2833				/* not enough memory for new pages */
2834				err = -ENOMEM;
2835				goto out_err;
2836			}
2837
2838			cond_resched();
2839		}
2840
2841		cpus_read_lock();
2842		/*
2843		 * Fire off all the required work handlers
2844		 * We can't schedule on offline CPUs, but it's not necessary
2845		 * since we can change their buffer sizes without any race.
2846		 */
2847		for_each_buffer_cpu(buffer, cpu) {
2848			cpu_buffer = buffer->buffers[cpu];
2849			if (!cpu_buffer->nr_pages_to_update)
2850				continue;
2851
2852			/* Can't run something on an offline CPU. */
2853			if (!cpu_online(cpu)) {
2854				rb_update_pages(cpu_buffer);
2855				cpu_buffer->nr_pages_to_update = 0;
2856			} else {
2857				/* Run directly if possible. */
2858				migrate_disable();
2859				if (cpu != smp_processor_id()) {
2860					migrate_enable();
2861					schedule_work_on(cpu,
2862							 &cpu_buffer->update_pages_work);
2863				} else {
2864					update_pages_handler(&cpu_buffer->update_pages_work);
2865					migrate_enable();
2866				}
2867			}
2868		}
2869
2870		/* wait for all the updates to complete */
2871		for_each_buffer_cpu(buffer, cpu) {
2872			cpu_buffer = buffer->buffers[cpu];
2873			if (!cpu_buffer->nr_pages_to_update)
2874				continue;
2875
2876			if (cpu_online(cpu))
2877				wait_for_completion(&cpu_buffer->update_done);
2878			cpu_buffer->nr_pages_to_update = 0;
2879		}
2880
2881		cpus_read_unlock();
2882	} else {
2883		cpu_buffer = buffer->buffers[cpu_id];
2884
2885		if (nr_pages == cpu_buffer->nr_pages)
2886			goto out;
2887
2888		/*
2889		 * Don't succeed if resizing is disabled, as a reader might be
2890		 * manipulating the ring buffer and is expecting a sane state while
2891		 * this is true.
2892		 */
2893		if (atomic_read(&cpu_buffer->resize_disabled)) {
2894			err = -EBUSY;
2895			goto out_err_unlock;
2896		}
2897
2898		cpu_buffer->nr_pages_to_update = nr_pages -
2899						cpu_buffer->nr_pages;
2900
2901		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2902		if (cpu_buffer->nr_pages_to_update > 0 &&
2903			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2904					    &cpu_buffer->new_pages)) {
2905			err = -ENOMEM;
2906			goto out_err;
2907		}
2908
2909		cpus_read_lock();
2910
2911		/* Can't run something on an offline CPU. */
2912		if (!cpu_online(cpu_id))
2913			rb_update_pages(cpu_buffer);
2914		else {
2915			/* Run directly if possible. */
2916			migrate_disable();
2917			if (cpu_id == smp_processor_id()) {
2918				rb_update_pages(cpu_buffer);
2919				migrate_enable();
2920			} else {
2921				migrate_enable();
2922				schedule_work_on(cpu_id,
2923						 &cpu_buffer->update_pages_work);
2924				wait_for_completion(&cpu_buffer->update_done);
2925			}
2926		}
2927
2928		cpu_buffer->nr_pages_to_update = 0;
2929		cpus_read_unlock();
2930	}
2931
2932 out:
2933	/*
2934	 * The ring buffer resize can happen with the ring buffer
2935	 * enabled, so that the update disturbs the tracing as little
2936	 * as possible. But if the buffer is disabled, we do not need
2937	 * to worry about that, and we can take the time to verify
2938	 * that the buffer is not corrupt.
2939	 */
2940	if (atomic_read(&buffer->record_disabled)) {
2941		atomic_inc(&buffer->record_disabled);
2942		/*
2943		 * Even though the buffer was disabled, we must make sure
2944		 * that it is truly disabled before calling rb_check_pages.
2945		 * There could have been a race between checking
2946		 * record_disable and incrementing it.
2947		 */
2948		synchronize_rcu();
2949		for_each_buffer_cpu(buffer, cpu) {
2950			cpu_buffer = buffer->buffers[cpu];
2951			rb_check_pages(cpu_buffer);
2952		}
2953		atomic_dec(&buffer->record_disabled);
2954	}
2955
2956	atomic_dec(&buffer->resizing);
2957	mutex_unlock(&buffer->mutex);
2958	return 0;
2959
2960 out_err:
2961	for_each_buffer_cpu(buffer, cpu) {
2962		struct buffer_page *bpage, *tmp;
2963
2964		cpu_buffer = buffer->buffers[cpu];
2965		cpu_buffer->nr_pages_to_update = 0;
2966
2967		if (list_empty(&cpu_buffer->new_pages))
2968			continue;
2969
2970		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2971					list) {
2972			list_del_init(&bpage->list);
2973			free_buffer_page(bpage);
2974		}
2975	}
2976 out_err_unlock:
2977	atomic_dec(&buffer->resizing);
2978	mutex_unlock(&buffer->mutex);
2979	return err;
2980}
2981EXPORT_SYMBOL_GPL(ring_buffer_resize);
2982
2983void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2984{
2985	mutex_lock(&buffer->mutex);
2986	if (val)
2987		buffer->flags |= RB_FL_OVERWRITE;
2988	else
2989		buffer->flags &= ~RB_FL_OVERWRITE;
2990	mutex_unlock(&buffer->mutex);
2991}
2992EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2993
2994static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2995{
2996	return bpage->page->data + index;
2997}
2998
2999static __always_inline struct ring_buffer_event *
3000rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
3001{
3002	return __rb_page_index(cpu_buffer->reader_page,
3003			       cpu_buffer->reader_page->read);
3004}
3005
3006static struct ring_buffer_event *
3007rb_iter_head_event(struct ring_buffer_iter *iter)
3008{
3009	struct ring_buffer_event *event;
3010	struct buffer_page *iter_head_page = iter->head_page;
3011	unsigned long commit;
3012	unsigned length;
3013
3014	if (iter->head != iter->next_event)
3015		return iter->event;
3016
3017	/*
3018	 * When the writer goes across pages, it issues a cmpxchg which
3019	 * is a mb(), which will synchronize with the rmb here.
3020	 * (see rb_tail_page_update() and __rb_reserve_next())
3021	 */
3022	commit = rb_page_commit(iter_head_page);
3023	smp_rmb();
3024
3025	/* An event needs to be at least 8 bytes in size */
3026	if (iter->head > commit - 8)
3027		goto reset;
3028
3029	event = __rb_page_index(iter_head_page, iter->head);
3030	length = rb_event_length(event);
3031
3032	/*
3033	 * READ_ONCE() doesn't work on functions and we don't want the
3034	 * compiler doing any crazy optimizations with length.
3035	 */
3036	barrier();
3037
3038	if ((iter->head + length) > commit || length > iter->event_size)
3039		/* Writer corrupted the read? */
3040		goto reset;
3041
3042	memcpy(iter->event, event, length);
3043	/*
3044	 * If the page stamp is still the same after this rmb() then the
3045	 * event was safely copied without the writer entering the page.
3046	 */
3047	smp_rmb();
3048
3049	/* Make sure the page didn't change since we read this */
3050	if (iter->page_stamp != iter_head_page->page->time_stamp ||
3051	    commit > rb_page_commit(iter_head_page))
3052		goto reset;
3053
3054	iter->next_event = iter->head + length;
3055	return iter->event;
3056 reset:
3057	/* Reset to the beginning */
3058	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3059	iter->head = 0;
3060	iter->next_event = 0;
3061	iter->missed_events = 1;
3062	return NULL;
3063}
3064
3065/* Size is determined by what has been committed */
3066static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
3067{
3068	return rb_page_commit(bpage) & ~RB_MISSED_MASK;
3069}
3070
3071static __always_inline unsigned
3072rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
3073{
3074	return rb_page_commit(cpu_buffer->commit_page);
3075}
3076
3077static __always_inline unsigned
3078rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
3079{
3080	unsigned long addr = (unsigned long)event;
3081
3082	addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
3083
3084	return addr - BUF_PAGE_HDR_SIZE;
3085}
3086
3087static void rb_inc_iter(struct ring_buffer_iter *iter)
3088{
3089	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3090
3091	/*
3092	 * The iterator could be on the reader page (it starts there).
3093	 * But the head could have moved, since the reader was
3094	 * found. Check for this case and assign the iterator
3095	 * to the head page instead of next.
3096	 */
3097	if (iter->head_page == cpu_buffer->reader_page)
3098		iter->head_page = rb_set_head_page(cpu_buffer);
3099	else
3100		rb_inc_page(&iter->head_page);
3101
3102	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3103	iter->head = 0;
3104	iter->next_event = 0;
3105}
3106
3107/* Return the index into the sub-buffers for a given sub-buffer */
3108static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf)
3109{
3110	void *subbuf_array;
3111
3112	subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs;
3113	subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size);
3114	return (subbuf - subbuf_array) / meta->subbuf_size;
3115}
3116
3117static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer,
3118				struct buffer_page *next_page)
3119{
3120	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3121	unsigned long old_head = (unsigned long)next_page->page;
3122	unsigned long new_head;
3123
3124	rb_inc_page(&next_page);
3125	new_head = (unsigned long)next_page->page;
3126
3127	/*
3128	 * Only move it forward once, if something else came in and
3129	 * moved it forward, then we don't want to touch it.
3130	 */
3131	(void)cmpxchg(&meta->head_buffer, old_head, new_head);
3132}
3133
3134static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer,
3135				  struct buffer_page *reader)
3136{
3137	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3138	void *old_reader = cpu_buffer->reader_page->page;
3139	void *new_reader = reader->page;
3140	int id;
3141
3142	id = reader->id;
3143	cpu_buffer->reader_page->id = id;
3144	reader->id = 0;
3145
3146	meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader);
3147	meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader);
3148
3149	/* The head pointer is the one after the reader */
3150	rb_update_meta_head(cpu_buffer, reader);
3151}
3152
3153/*
3154 * rb_handle_head_page - writer hit the head page
3155 *
3156 * Returns: +1 to retry page
3157 *           0 to continue
3158 *          -1 on error
3159 */
3160static int
3161rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
3162		    struct buffer_page *tail_page,
3163		    struct buffer_page *next_page)
3164{
3165	struct buffer_page *new_head;
3166	int entries;
3167	int type;
3168	int ret;
3169
3170	entries = rb_page_entries(next_page);
3171
3172	/*
3173	 * The hard part is here. We need to move the head
3174	 * forward, and protect against both readers on
3175	 * other CPUs and writers coming in via interrupts.
3176	 */
3177	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
3178				       RB_PAGE_HEAD);
3179
3180	/*
3181	 * type can be one of four:
3182	 *  NORMAL - an interrupt already moved it for us
3183	 *  HEAD   - we are the first to get here.
3184	 *  UPDATE - we are the interrupt interrupting
3185	 *           a current move.
3186	 *  MOVED  - a reader on another CPU moved the next
3187	 *           pointer to its reader page. Give up
3188	 *           and try again.
3189	 */
3190
3191	switch (type) {
3192	case RB_PAGE_HEAD:
3193		/*
3194		 * We changed the head to UPDATE, thus
3195		 * it is our responsibility to update
3196		 * the counters.
3197		 */
3198		local_add(entries, &cpu_buffer->overrun);
3199		local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
3200		local_inc(&cpu_buffer->pages_lost);
3201
3202		if (cpu_buffer->ring_meta)
3203			rb_update_meta_head(cpu_buffer, next_page);
3204		/*
3205		 * The entries will be zeroed out when we move the
3206		 * tail page.
3207		 */
3208
3209		/* still more to do */
3210		break;
3211
3212	case RB_PAGE_UPDATE:
3213		/*
3214		 * This is an interrupt that interrupt the
3215		 * previous update. Still more to do.
3216		 */
3217		break;
3218	case RB_PAGE_NORMAL:
3219		/*
3220		 * An interrupt came in before the update
3221		 * and processed this for us.
3222		 * Nothing left to do.
3223		 */
3224		return 1;
3225	case RB_PAGE_MOVED:
3226		/*
3227		 * The reader is on another CPU and just did
3228		 * a swap with our next_page.
3229		 * Try again.
3230		 */
3231		return 1;
3232	default:
3233		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
3234		return -1;
3235	}
3236
3237	/*
3238	 * Now that we are here, the old head pointer is
3239	 * set to UPDATE. This will keep the reader from
3240	 * swapping the head page with the reader page.
3241	 * The reader (on another CPU) will spin till
3242	 * we are finished.
3243	 *
3244	 * We just need to protect against interrupts
3245	 * doing the job. We will set the next pointer
3246	 * to HEAD. After that, we set the old pointer
3247	 * to NORMAL, but only if it was HEAD before.
3248	 * otherwise we are an interrupt, and only
3249	 * want the outer most commit to reset it.
3250	 */
3251	new_head = next_page;
3252	rb_inc_page(&new_head);
3253
3254	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
3255				    RB_PAGE_NORMAL);
3256
3257	/*
3258	 * Valid returns are:
3259	 *  HEAD   - an interrupt came in and already set it.
3260	 *  NORMAL - One of two things:
3261	 *            1) We really set it.
3262	 *            2) A bunch of interrupts came in and moved
3263	 *               the page forward again.
3264	 */
3265	switch (ret) {
3266	case RB_PAGE_HEAD:
3267	case RB_PAGE_NORMAL:
3268		/* OK */
3269		break;
3270	default:
3271		RB_WARN_ON(cpu_buffer, 1);
3272		return -1;
3273	}
3274
3275	/*
3276	 * It is possible that an interrupt came in,
3277	 * set the head up, then more interrupts came in
3278	 * and moved it again. When we get back here,
3279	 * the page would have been set to NORMAL but we
3280	 * just set it back to HEAD.
3281	 *
3282	 * How do you detect this? Well, if that happened
3283	 * the tail page would have moved.
3284	 */
3285	if (ret == RB_PAGE_NORMAL) {
3286		struct buffer_page *buffer_tail_page;
3287
3288		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
3289		/*
3290		 * If the tail had moved passed next, then we need
3291		 * to reset the pointer.
3292		 */
3293		if (buffer_tail_page != tail_page &&
3294		    buffer_tail_page != next_page)
3295			rb_head_page_set_normal(cpu_buffer, new_head,
3296						next_page,
3297						RB_PAGE_HEAD);
3298	}
3299
3300	/*
3301	 * If this was the outer most commit (the one that
3302	 * changed the original pointer from HEAD to UPDATE),
3303	 * then it is up to us to reset it to NORMAL.
3304	 */
3305	if (type == RB_PAGE_HEAD) {
3306		ret = rb_head_page_set_normal(cpu_buffer, next_page,
3307					      tail_page,
3308					      RB_PAGE_UPDATE);
3309		if (RB_WARN_ON(cpu_buffer,
3310			       ret != RB_PAGE_UPDATE))
3311			return -1;
3312	}
3313
3314	return 0;
3315}
3316
3317static inline void
3318rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
3319	      unsigned long tail, struct rb_event_info *info)
3320{
3321	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
3322	struct buffer_page *tail_page = info->tail_page;
3323	struct ring_buffer_event *event;
3324	unsigned long length = info->length;
3325
3326	/*
3327	 * Only the event that crossed the page boundary
3328	 * must fill the old tail_page with padding.
3329	 */
3330	if (tail >= bsize) {
3331		/*
3332		 * If the page was filled, then we still need
3333		 * to update the real_end. Reset it to zero
3334		 * and the reader will ignore it.
3335		 */
3336		if (tail == bsize)
3337			tail_page->real_end = 0;
3338
3339		local_sub(length, &tail_page->write);
3340		return;
3341	}
3342
3343	event = __rb_page_index(tail_page, tail);
3344
3345	/*
3346	 * Save the original length to the meta data.
3347	 * This will be used by the reader to add lost event
3348	 * counter.
3349	 */
3350	tail_page->real_end = tail;
3351
3352	/*
3353	 * If this event is bigger than the minimum size, then
3354	 * we need to be careful that we don't subtract the
3355	 * write counter enough to allow another writer to slip
3356	 * in on this page.
3357	 * We put in a discarded commit instead, to make sure
3358	 * that this space is not used again, and this space will
3359	 * not be accounted into 'entries_bytes'.
3360	 *
3361	 * If we are less than the minimum size, we don't need to
3362	 * worry about it.
3363	 */
3364	if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
3365		/* No room for any events */
3366
3367		/* Mark the rest of the page with padding */
3368		rb_event_set_padding(event);
3369
3370		/* Make sure the padding is visible before the write update */
3371		smp_wmb();
3372
3373		/* Set the write back to the previous setting */
3374		local_sub(length, &tail_page->write);
3375		return;
3376	}
3377
3378	/* Put in a discarded event */
3379	event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
3380	event->type_len = RINGBUF_TYPE_PADDING;
3381	/* time delta must be non zero */
3382	event->time_delta = 1;
3383
3384	/* account for padding bytes */
3385	local_add(bsize - tail, &cpu_buffer->entries_bytes);
3386
3387	/* Make sure the padding is visible before the tail_page->write update */
3388	smp_wmb();
3389
3390	/* Set write to end of buffer */
3391	length = (tail + length) - bsize;
3392	local_sub(length, &tail_page->write);
3393}
3394
3395static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
3396
3397/*
3398 * This is the slow path, force gcc not to inline it.
3399 */
3400static noinline struct ring_buffer_event *
3401rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
3402	     unsigned long tail, struct rb_event_info *info)
3403{
3404	struct buffer_page *tail_page = info->tail_page;
3405	struct buffer_page *commit_page = cpu_buffer->commit_page;
3406	struct trace_buffer *buffer = cpu_buffer->buffer;
3407	struct buffer_page *next_page;
3408	int ret;
3409
3410	next_page = tail_page;
3411
3412	rb_inc_page(&next_page);
3413
3414	/*
3415	 * If for some reason, we had an interrupt storm that made
3416	 * it all the way around the buffer, bail, and warn
3417	 * about it.
3418	 */
3419	if (unlikely(next_page == commit_page)) {
3420		local_inc(&cpu_buffer->commit_overrun);
3421		goto out_reset;
3422	}
3423
3424	/*
3425	 * This is where the fun begins!
3426	 *
3427	 * We are fighting against races between a reader that
3428	 * could be on another CPU trying to swap its reader
3429	 * page with the buffer head.
3430	 *
3431	 * We are also fighting against interrupts coming in and
3432	 * moving the head or tail on us as well.
3433	 *
3434	 * If the next page is the head page then we have filled
3435	 * the buffer, unless the commit page is still on the
3436	 * reader page.
3437	 */
3438	if (rb_is_head_page(next_page, &tail_page->list)) {
3439
3440		/*
3441		 * If the commit is not on the reader page, then
3442		 * move the header page.
3443		 */
3444		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
3445			/*
3446			 * If we are not in overwrite mode,
3447			 * this is easy, just stop here.
3448			 */
3449			if (!(buffer->flags & RB_FL_OVERWRITE)) {
3450				local_inc(&cpu_buffer->dropped_events);
3451				goto out_reset;
3452			}
3453
3454			ret = rb_handle_head_page(cpu_buffer,
3455						  tail_page,
3456						  next_page);
3457			if (ret < 0)
3458				goto out_reset;
3459			if (ret)
3460				goto out_again;
3461		} else {
3462			/*
3463			 * We need to be careful here too. The
3464			 * commit page could still be on the reader
3465			 * page. We could have a small buffer, and
3466			 * have filled up the buffer with events
3467			 * from interrupts and such, and wrapped.
3468			 *
3469			 * Note, if the tail page is also on the
3470			 * reader_page, we let it move out.
3471			 */
3472			if (unlikely((cpu_buffer->commit_page !=
3473				      cpu_buffer->tail_page) &&
3474				     (cpu_buffer->commit_page ==
3475				      cpu_buffer->reader_page))) {
3476				local_inc(&cpu_buffer->commit_overrun);
3477				goto out_reset;
3478			}
3479		}
3480	}
3481
3482	rb_tail_page_update(cpu_buffer, tail_page, next_page);
3483
3484 out_again:
3485
3486	rb_reset_tail(cpu_buffer, tail, info);
3487
3488	/* Commit what we have for now. */
3489	rb_end_commit(cpu_buffer);
3490	/* rb_end_commit() decs committing */
3491	local_inc(&cpu_buffer->committing);
3492
3493	/* fail and let the caller try again */
3494	return ERR_PTR(-EAGAIN);
3495
3496 out_reset:
3497	/* reset write */
3498	rb_reset_tail(cpu_buffer, tail, info);
3499
3500	return NULL;
3501}
3502
3503/* Slow path */
3504static struct ring_buffer_event *
3505rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3506		  struct ring_buffer_event *event, u64 delta, bool abs)
3507{
3508	if (abs)
3509		event->type_len = RINGBUF_TYPE_TIME_STAMP;
3510	else
3511		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
3512
3513	/* Not the first event on the page, or not delta? */
3514	if (abs || rb_event_index(cpu_buffer, event)) {
3515		event->time_delta = delta & TS_MASK;
3516		event->array[0] = delta >> TS_SHIFT;
3517	} else {
3518		/* nope, just zero it */
3519		event->time_delta = 0;
3520		event->array[0] = 0;
3521	}
3522
3523	return skip_time_extend(event);
3524}
3525
3526#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3527static inline bool sched_clock_stable(void)
3528{
3529	return true;
3530}
3531#endif
3532
3533static void
3534rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3535		   struct rb_event_info *info)
3536{
3537	u64 write_stamp;
3538
3539	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
3540		  (unsigned long long)info->delta,
3541		  (unsigned long long)info->ts,
3542		  (unsigned long long)info->before,
3543		  (unsigned long long)info->after,
3544		  (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
3545		  sched_clock_stable() ? "" :
3546		  "If you just came from a suspend/resume,\n"
3547		  "please switch to the trace global clock:\n"
3548		  "  echo global > /sys/kernel/tracing/trace_clock\n"
3549		  "or add trace_clock=global to the kernel command line\n");
3550}
3551
3552static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3553				      struct ring_buffer_event **event,
3554				      struct rb_event_info *info,
3555				      u64 *delta,
3556				      unsigned int *length)
3557{
3558	bool abs = info->add_timestamp &
3559		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
3560
3561	if (unlikely(info->delta > (1ULL << 59))) {
3562		/*
3563		 * Some timers can use more than 59 bits, and when a timestamp
3564		 * is added to the buffer, it will lose those bits.
3565		 */
3566		if (abs && (info->ts & TS_MSB)) {
3567			info->delta &= ABS_TS_MASK;
3568
3569		/* did the clock go backwards */
3570		} else if (info->before == info->after && info->before > info->ts) {
3571			/* not interrupted */
3572			static int once;
3573
3574			/*
3575			 * This is possible with a recalibrating of the TSC.
3576			 * Do not produce a call stack, but just report it.
3577			 */
3578			if (!once) {
3579				once++;
3580				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
3581					info->before, info->ts);
3582			}
3583		} else
3584			rb_check_timestamp(cpu_buffer, info);
3585		if (!abs)
3586			info->delta = 0;
3587	}
3588	*event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
3589	*length -= RB_LEN_TIME_EXTEND;
3590	*delta = 0;
3591}
3592
3593/**
3594 * rb_update_event - update event type and data
3595 * @cpu_buffer: The per cpu buffer of the @event
3596 * @event: the event to update
3597 * @info: The info to update the @event with (contains length and delta)
3598 *
3599 * Update the type and data fields of the @event. The length
3600 * is the actual size that is written to the ring buffer,
3601 * and with this, we can determine what to place into the
3602 * data field.
3603 */
3604static void
3605rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
3606		struct ring_buffer_event *event,
3607		struct rb_event_info *info)
3608{
3609	unsigned length = info->length;
3610	u64 delta = info->delta;
3611	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
3612
3613	if (!WARN_ON_ONCE(nest >= MAX_NEST))
3614		cpu_buffer->event_stamp[nest] = info->ts;
3615
3616	/*
3617	 * If we need to add a timestamp, then we
3618	 * add it to the start of the reserved space.
3619	 */
3620	if (unlikely(info->add_timestamp))
3621		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
3622
3623	event->time_delta = delta;
3624	length -= RB_EVNT_HDR_SIZE;
3625	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
3626		event->type_len = 0;
3627		event->array[0] = length;
3628	} else
3629		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
3630}
3631
3632static unsigned rb_calculate_event_length(unsigned length)
3633{
3634	struct ring_buffer_event event; /* Used only for sizeof array */
3635
3636	/* zero length can cause confusions */
3637	if (!length)
3638		length++;
3639
3640	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
3641		length += sizeof(event.array[0]);
3642
3643	length += RB_EVNT_HDR_SIZE;
3644	length = ALIGN(length, RB_ARCH_ALIGNMENT);
3645
3646	/*
3647	 * In case the time delta is larger than the 27 bits for it
3648	 * in the header, we need to add a timestamp. If another
3649	 * event comes in when trying to discard this one to increase
3650	 * the length, then the timestamp will be added in the allocated
3651	 * space of this event. If length is bigger than the size needed
3652	 * for the TIME_EXTEND, then padding has to be used. The events
3653	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
3654	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
3655	 * As length is a multiple of 4, we only need to worry if it
3656	 * is 12 (RB_LEN_TIME_EXTEND + 4).
3657	 */
3658	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
3659		length += RB_ALIGNMENT;
3660
3661	return length;
3662}
3663
3664static inline bool
3665rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3666		  struct ring_buffer_event *event)
3667{
3668	unsigned long new_index, old_index;
3669	struct buffer_page *bpage;
3670	unsigned long addr;
3671
3672	new_index = rb_event_index(cpu_buffer, event);
3673	old_index = new_index + rb_event_ts_length(event);
3674	addr = (unsigned long)event;
3675	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3676
3677	bpage = READ_ONCE(cpu_buffer->tail_page);
3678
3679	/*
3680	 * Make sure the tail_page is still the same and
3681	 * the next write location is the end of this event
3682	 */
3683	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3684		unsigned long write_mask =
3685			local_read(&bpage->write) & ~RB_WRITE_MASK;
3686		unsigned long event_length = rb_event_length(event);
3687
3688		/*
3689		 * For the before_stamp to be different than the write_stamp
3690		 * to make sure that the next event adds an absolute
3691		 * value and does not rely on the saved write stamp, which
3692		 * is now going to be bogus.
3693		 *
3694		 * By setting the before_stamp to zero, the next event
3695		 * is not going to use the write_stamp and will instead
3696		 * create an absolute timestamp. This means there's no
3697		 * reason to update the wirte_stamp!
3698		 */
3699		rb_time_set(&cpu_buffer->before_stamp, 0);
3700
3701		/*
3702		 * If an event were to come in now, it would see that the
3703		 * write_stamp and the before_stamp are different, and assume
3704		 * that this event just added itself before updating
3705		 * the write stamp. The interrupting event will fix the
3706		 * write stamp for us, and use an absolute timestamp.
3707		 */
3708
3709		/*
3710		 * This is on the tail page. It is possible that
3711		 * a write could come in and move the tail page
3712		 * and write to the next page. That is fine
3713		 * because we just shorten what is on this page.
3714		 */
3715		old_index += write_mask;
3716		new_index += write_mask;
3717
3718		/* caution: old_index gets updated on cmpxchg failure */
3719		if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3720			/* update counters */
3721			local_sub(event_length, &cpu_buffer->entries_bytes);
3722			return true;
3723		}
3724	}
3725
3726	/* could not discard */
3727	return false;
3728}
3729
3730static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3731{
3732	local_inc(&cpu_buffer->committing);
3733	local_inc(&cpu_buffer->commits);
3734}
3735
3736static __always_inline void
3737rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3738{
3739	unsigned long max_count;
3740
3741	/*
3742	 * We only race with interrupts and NMIs on this CPU.
3743	 * If we own the commit event, then we can commit
3744	 * all others that interrupted us, since the interruptions
3745	 * are in stack format (they finish before they come
3746	 * back to us). This allows us to do a simple loop to
3747	 * assign the commit to the tail.
3748	 */
3749 again:
3750	max_count = cpu_buffer->nr_pages * 100;
3751
3752	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3753		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3754			return;
3755		if (RB_WARN_ON(cpu_buffer,
3756			       rb_is_reader_page(cpu_buffer->tail_page)))
3757			return;
3758		/*
3759		 * No need for a memory barrier here, as the update
3760		 * of the tail_page did it for this page.
3761		 */
3762		local_set(&cpu_buffer->commit_page->page->commit,
3763			  rb_page_write(cpu_buffer->commit_page));
3764		rb_inc_page(&cpu_buffer->commit_page);
3765		if (cpu_buffer->ring_meta) {
3766			struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3767			meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page;
3768		}
3769		/* add barrier to keep gcc from optimizing too much */
3770		barrier();
3771	}
3772	while (rb_commit_index(cpu_buffer) !=
3773	       rb_page_write(cpu_buffer->commit_page)) {
3774
3775		/* Make sure the readers see the content of what is committed. */
3776		smp_wmb();
3777		local_set(&cpu_buffer->commit_page->page->commit,
3778			  rb_page_write(cpu_buffer->commit_page));
3779		RB_WARN_ON(cpu_buffer,
3780			   local_read(&cpu_buffer->commit_page->page->commit) &
3781			   ~RB_WRITE_MASK);
3782		barrier();
3783	}
3784
3785	/* again, keep gcc from optimizing */
3786	barrier();
3787
3788	/*
3789	 * If an interrupt came in just after the first while loop
3790	 * and pushed the tail page forward, we will be left with
3791	 * a dangling commit that will never go forward.
3792	 */
3793	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3794		goto again;
3795}
3796
3797static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3798{
3799	unsigned long commits;
3800
3801	if (RB_WARN_ON(cpu_buffer,
3802		       !local_read(&cpu_buffer->committing)))
3803		return;
3804
3805 again:
3806	commits = local_read(&cpu_buffer->commits);
3807	/* synchronize with interrupts */
3808	barrier();
3809	if (local_read(&cpu_buffer->committing) == 1)
3810		rb_set_commit_to_write(cpu_buffer);
3811
3812	local_dec(&cpu_buffer->committing);
3813
3814	/* synchronize with interrupts */
3815	barrier();
3816
3817	/*
3818	 * Need to account for interrupts coming in between the
3819	 * updating of the commit page and the clearing of the
3820	 * committing counter.
3821	 */
3822	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3823	    !local_read(&cpu_buffer->committing)) {
3824		local_inc(&cpu_buffer->committing);
3825		goto again;
3826	}
3827}
3828
3829static inline void rb_event_discard(struct ring_buffer_event *event)
3830{
3831	if (extended_time(event))
3832		event = skip_time_extend(event);
3833
3834	/* array[0] holds the actual length for the discarded event */
3835	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3836	event->type_len = RINGBUF_TYPE_PADDING;
3837	/* time delta must be non zero */
3838	if (!event->time_delta)
3839		event->time_delta = 1;
3840}
3841
3842static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3843{
3844	local_inc(&cpu_buffer->entries);
3845	rb_end_commit(cpu_buffer);
3846}
3847
3848static __always_inline void
3849rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3850{
3851	if (buffer->irq_work.waiters_pending) {
3852		buffer->irq_work.waiters_pending = false;
3853		/* irq_work_queue() supplies it's own memory barriers */
3854		irq_work_queue(&buffer->irq_work.work);
3855	}
3856
3857	if (cpu_buffer->irq_work.waiters_pending) {
3858		cpu_buffer->irq_work.waiters_pending = false;
3859		/* irq_work_queue() supplies it's own memory barriers */
3860		irq_work_queue(&cpu_buffer->irq_work.work);
3861	}
3862
3863	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3864		return;
3865
3866	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3867		return;
3868
3869	if (!cpu_buffer->irq_work.full_waiters_pending)
3870		return;
3871
3872	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3873
3874	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3875		return;
3876
3877	cpu_buffer->irq_work.wakeup_full = true;
3878	cpu_buffer->irq_work.full_waiters_pending = false;
3879	/* irq_work_queue() supplies it's own memory barriers */
3880	irq_work_queue(&cpu_buffer->irq_work.work);
3881}
3882
3883#ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3884# define do_ring_buffer_record_recursion()	\
3885	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3886#else
3887# define do_ring_buffer_record_recursion() do { } while (0)
3888#endif
3889
3890/*
3891 * The lock and unlock are done within a preempt disable section.
3892 * The current_context per_cpu variable can only be modified
3893 * by the current task between lock and unlock. But it can
3894 * be modified more than once via an interrupt. To pass this
3895 * information from the lock to the unlock without having to
3896 * access the 'in_interrupt()' functions again (which do show
3897 * a bit of overhead in something as critical as function tracing,
3898 * we use a bitmask trick.
3899 *
3900 *  bit 1 =  NMI context
3901 *  bit 2 =  IRQ context
3902 *  bit 3 =  SoftIRQ context
3903 *  bit 4 =  normal context.
3904 *
3905 * This works because this is the order of contexts that can
3906 * preempt other contexts. A SoftIRQ never preempts an IRQ
3907 * context.
3908 *
3909 * When the context is determined, the corresponding bit is
3910 * checked and set (if it was set, then a recursion of that context
3911 * happened).
3912 *
3913 * On unlock, we need to clear this bit. To do so, just subtract
3914 * 1 from the current_context and AND it to itself.
3915 *
3916 * (binary)
3917 *  101 - 1 = 100
3918 *  101 & 100 = 100 (clearing bit zero)
3919 *
3920 *  1010 - 1 = 1001
3921 *  1010 & 1001 = 1000 (clearing bit 1)
3922 *
3923 * The least significant bit can be cleared this way, and it
3924 * just so happens that it is the same bit corresponding to
3925 * the current context.
3926 *
3927 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3928 * is set when a recursion is detected at the current context, and if
3929 * the TRANSITION bit is already set, it will fail the recursion.
3930 * This is needed because there's a lag between the changing of
3931 * interrupt context and updating the preempt count. In this case,
3932 * a false positive will be found. To handle this, one extra recursion
3933 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3934 * bit is already set, then it is considered a recursion and the function
3935 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3936 *
3937 * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3938 * to be cleared. Even if it wasn't the context that set it. That is,
3939 * if an interrupt comes in while NORMAL bit is set and the ring buffer
3940 * is called before preempt_count() is updated, since the check will
3941 * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3942 * NMI then comes in, it will set the NMI bit, but when the NMI code
3943 * does the trace_recursive_unlock() it will clear the TRANSITION bit
3944 * and leave the NMI bit set. But this is fine, because the interrupt
3945 * code that set the TRANSITION bit will then clear the NMI bit when it
3946 * calls trace_recursive_unlock(). If another NMI comes in, it will
3947 * set the TRANSITION bit and continue.
3948 *
3949 * Note: The TRANSITION bit only handles a single transition between context.
3950 */
3951
3952static __always_inline bool
3953trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3954{
3955	unsigned int val = cpu_buffer->current_context;
3956	int bit = interrupt_context_level();
3957
3958	bit = RB_CTX_NORMAL - bit;
3959
3960	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3961		/*
3962		 * It is possible that this was called by transitioning
3963		 * between interrupt context, and preempt_count() has not
3964		 * been updated yet. In this case, use the TRANSITION bit.
3965		 */
3966		bit = RB_CTX_TRANSITION;
3967		if (val & (1 << (bit + cpu_buffer->nest))) {
3968			do_ring_buffer_record_recursion();
3969			return true;
3970		}
3971	}
3972
3973	val |= (1 << (bit + cpu_buffer->nest));
3974	cpu_buffer->current_context = val;
3975
3976	return false;
3977}
3978
3979static __always_inline void
3980trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3981{
3982	cpu_buffer->current_context &=
3983		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3984}
3985
3986/* The recursive locking above uses 5 bits */
3987#define NESTED_BITS 5
3988
3989/**
3990 * ring_buffer_nest_start - Allow to trace while nested
3991 * @buffer: The ring buffer to modify
3992 *
3993 * The ring buffer has a safety mechanism to prevent recursion.
3994 * But there may be a case where a trace needs to be done while
3995 * tracing something else. In this case, calling this function
3996 * will allow this function to nest within a currently active
3997 * ring_buffer_lock_reserve().
3998 *
3999 * Call this function before calling another ring_buffer_lock_reserve() and
4000 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
4001 */
4002void ring_buffer_nest_start(struct trace_buffer *buffer)
4003{
4004	struct ring_buffer_per_cpu *cpu_buffer;
4005	int cpu;
4006
4007	/* Enabled by ring_buffer_nest_end() */
4008	preempt_disable_notrace();
4009	cpu = raw_smp_processor_id();
4010	cpu_buffer = buffer->buffers[cpu];
4011	/* This is the shift value for the above recursive locking */
4012	cpu_buffer->nest += NESTED_BITS;
4013}
4014
4015/**
4016 * ring_buffer_nest_end - Allow to trace while nested
4017 * @buffer: The ring buffer to modify
4018 *
4019 * Must be called after ring_buffer_nest_start() and after the
4020 * ring_buffer_unlock_commit().
4021 */
4022void ring_buffer_nest_end(struct trace_buffer *buffer)
4023{
4024	struct ring_buffer_per_cpu *cpu_buffer;
4025	int cpu;
4026
4027	/* disabled by ring_buffer_nest_start() */
4028	cpu = raw_smp_processor_id();
4029	cpu_buffer = buffer->buffers[cpu];
4030	/* This is the shift value for the above recursive locking */
4031	cpu_buffer->nest -= NESTED_BITS;
4032	preempt_enable_notrace();
4033}
4034
4035/**
4036 * ring_buffer_unlock_commit - commit a reserved
4037 * @buffer: The buffer to commit to
4038 *
4039 * This commits the data to the ring buffer, and releases any locks held.
4040 *
4041 * Must be paired with ring_buffer_lock_reserve.
4042 */
4043int ring_buffer_unlock_commit(struct trace_buffer *buffer)
4044{
4045	struct ring_buffer_per_cpu *cpu_buffer;
4046	int cpu = raw_smp_processor_id();
4047
4048	cpu_buffer = buffer->buffers[cpu];
4049
4050	rb_commit(cpu_buffer);
4051
4052	rb_wakeups(buffer, cpu_buffer);
4053
4054	trace_recursive_unlock(cpu_buffer);
4055
4056	preempt_enable_notrace();
4057
4058	return 0;
4059}
4060EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
4061
4062/* Special value to validate all deltas on a page. */
4063#define CHECK_FULL_PAGE		1L
4064
4065#ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
4066
4067static const char *show_irq_str(int bits)
4068{
4069	const char *type[] = {
4070		".",	// 0
4071		"s",	// 1
4072		"h",	// 2
4073		"Hs",	// 3
4074		"n",	// 4
4075		"Ns",	// 5
4076		"Nh",	// 6
4077		"NHs",	// 7
4078	};
4079
4080	return type[bits];
4081}
4082
4083/* Assume this is a trace event */
4084static const char *show_flags(struct ring_buffer_event *event)
4085{
4086	struct trace_entry *entry;
4087	int bits = 0;
4088
4089	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4090		return "X";
4091
4092	entry = ring_buffer_event_data(event);
4093
4094	if (entry->flags & TRACE_FLAG_SOFTIRQ)
4095		bits |= 1;
4096
4097	if (entry->flags & TRACE_FLAG_HARDIRQ)
4098		bits |= 2;
4099
4100	if (entry->flags & TRACE_FLAG_NMI)
4101		bits |= 4;
4102
4103	return show_irq_str(bits);
4104}
4105
4106static const char *show_irq(struct ring_buffer_event *event)
4107{
4108	struct trace_entry *entry;
4109
4110	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4111		return "";
4112
4113	entry = ring_buffer_event_data(event);
4114	if (entry->flags & TRACE_FLAG_IRQS_OFF)
4115		return "d";
4116	return "";
4117}
4118
4119static const char *show_interrupt_level(void)
4120{
4121	unsigned long pc = preempt_count();
4122	unsigned char level = 0;
4123
4124	if (pc & SOFTIRQ_OFFSET)
4125		level |= 1;
4126
4127	if (pc & HARDIRQ_MASK)
4128		level |= 2;
4129
4130	if (pc & NMI_MASK)
4131		level |= 4;
4132
4133	return show_irq_str(level);
4134}
4135
4136static void dump_buffer_page(struct buffer_data_page *bpage,
4137			     struct rb_event_info *info,
4138			     unsigned long tail)
4139{
4140	struct ring_buffer_event *event;
4141	u64 ts, delta;
4142	int e;
4143
4144	ts = bpage->time_stamp;
4145	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
4146
4147	for (e = 0; e < tail; e += rb_event_length(event)) {
4148
4149		event = (struct ring_buffer_event *)(bpage->data + e);
4150
4151		switch (event->type_len) {
4152
4153		case RINGBUF_TYPE_TIME_EXTEND:
4154			delta = rb_event_time_stamp(event);
4155			ts += delta;
4156			pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
4157				e, ts, delta);
4158			break;
4159
4160		case RINGBUF_TYPE_TIME_STAMP:
4161			delta = rb_event_time_stamp(event);
4162			ts = rb_fix_abs_ts(delta, ts);
4163			pr_warn(" 0x%x:  [%lld] absolute:%lld TIME STAMP\n",
4164				e, ts, delta);
4165			break;
4166
4167		case RINGBUF_TYPE_PADDING:
4168			ts += event->time_delta;
4169			pr_warn(" 0x%x:  [%lld] delta:%d PADDING\n",
4170				e, ts, event->time_delta);
4171			break;
4172
4173		case RINGBUF_TYPE_DATA:
4174			ts += event->time_delta;
4175			pr_warn(" 0x%x:  [%lld] delta:%d %s%s\n",
4176				e, ts, event->time_delta,
4177				show_flags(event), show_irq(event));
4178			break;
4179
4180		default:
4181			break;
4182		}
4183	}
4184	pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
4185}
4186
4187static DEFINE_PER_CPU(atomic_t, checking);
4188static atomic_t ts_dump;
4189
4190#define buffer_warn_return(fmt, ...)					\
4191	do {								\
4192		/* If another report is happening, ignore this one */	\
4193		if (atomic_inc_return(&ts_dump) != 1) {			\
4194			atomic_dec(&ts_dump);				\
4195			goto out;					\
4196		}							\
4197		atomic_inc(&cpu_buffer->record_disabled);		\
4198		pr_warn(fmt, ##__VA_ARGS__);				\
4199		dump_buffer_page(bpage, info, tail);			\
4200		atomic_dec(&ts_dump);					\
4201		/* There's some cases in boot up that this can happen */ \
4202		if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING))	\
4203			/* Do not re-enable checking */			\
4204			return;						\
4205	} while (0)
4206
4207/*
4208 * Check if the current event time stamp matches the deltas on
4209 * the buffer page.
4210 */
4211static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4212			 struct rb_event_info *info,
4213			 unsigned long tail)
4214{
 
4215	struct buffer_data_page *bpage;
4216	u64 ts, delta;
4217	bool full = false;
4218	int ret;
4219
4220	bpage = info->tail_page->page;
4221
4222	if (tail == CHECK_FULL_PAGE) {
4223		full = true;
4224		tail = local_read(&bpage->commit);
4225	} else if (info->add_timestamp &
4226		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
4227		/* Ignore events with absolute time stamps */
4228		return;
4229	}
4230
4231	/*
4232	 * Do not check the first event (skip possible extends too).
4233	 * Also do not check if previous events have not been committed.
4234	 */
4235	if (tail <= 8 || tail > local_read(&bpage->commit))
4236		return;
4237
4238	/*
4239	 * If this interrupted another event,
4240	 */
4241	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
4242		goto out;
4243
4244	ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta);
4245	if (ret < 0) {
4246		if (delta < ts) {
4247			buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
4248					   cpu_buffer->cpu, ts, delta);
4249			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4250		}
4251	}
4252	if ((full && ts > info->ts) ||
4253	    (!full && ts + info->delta != info->ts)) {
4254		buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
4255				   cpu_buffer->cpu,
4256				   ts + info->delta, info->ts, info->delta,
4257				   info->before, info->after,
4258				   full ? " (full)" : "", show_interrupt_level());
4259	}
4260out:
4261	atomic_dec(this_cpu_ptr(&checking));
4262}
4263#else
4264static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4265			 struct rb_event_info *info,
4266			 unsigned long tail)
4267{
4268}
4269#endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
4270
4271static struct ring_buffer_event *
4272__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
4273		  struct rb_event_info *info)
4274{
4275	struct ring_buffer_event *event;
4276	struct buffer_page *tail_page;
4277	unsigned long tail, write, w;
4278
4279	/* Don't let the compiler play games with cpu_buffer->tail_page */
4280	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
4281
4282 /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
4283	barrier();
4284	rb_time_read(&cpu_buffer->before_stamp, &info->before);
4285	rb_time_read(&cpu_buffer->write_stamp, &info->after);
4286	barrier();
4287	info->ts = rb_time_stamp(cpu_buffer->buffer);
4288
4289	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
4290		info->delta = info->ts;
4291	} else {
4292		/*
4293		 * If interrupting an event time update, we may need an
4294		 * absolute timestamp.
4295		 * Don't bother if this is the start of a new page (w == 0).
4296		 */
4297		if (!w) {
4298			/* Use the sub-buffer timestamp */
4299			info->delta = 0;
4300		} else if (unlikely(info->before != info->after)) {
4301			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
4302			info->length += RB_LEN_TIME_EXTEND;
4303		} else {
4304			info->delta = info->ts - info->after;
4305			if (unlikely(test_time_stamp(info->delta))) {
4306				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
4307				info->length += RB_LEN_TIME_EXTEND;
4308			}
4309		}
4310	}
4311
4312 /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
4313
4314 /*C*/	write = local_add_return(info->length, &tail_page->write);
4315
4316	/* set write to only the index of the write */
4317	write &= RB_WRITE_MASK;
4318
4319	tail = write - info->length;
4320
4321	/* See if we shot pass the end of this buffer page */
4322	if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
4323		check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
4324		return rb_move_tail(cpu_buffer, tail, info);
4325	}
4326
4327	if (likely(tail == w)) {
4328		/* Nothing interrupted us between A and C */
4329 /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
4330		/*
4331		 * If something came in between C and D, the write stamp
4332		 * may now not be in sync. But that's fine as the before_stamp
4333		 * will be different and then next event will just be forced
4334		 * to use an absolute timestamp.
4335		 */
4336		if (likely(!(info->add_timestamp &
4337			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4338			/* This did not interrupt any time update */
4339			info->delta = info->ts - info->after;
4340		else
4341			/* Just use full timestamp for interrupting event */
4342			info->delta = info->ts;
4343		check_buffer(cpu_buffer, info, tail);
4344	} else {
4345		u64 ts;
4346		/* SLOW PATH - Interrupted between A and C */
4347
4348		/* Save the old before_stamp */
4349		rb_time_read(&cpu_buffer->before_stamp, &info->before);
4350
4351		/*
4352		 * Read a new timestamp and update the before_stamp to make
4353		 * the next event after this one force using an absolute
4354		 * timestamp. This is in case an interrupt were to come in
4355		 * between E and F.
4356		 */
4357		ts = rb_time_stamp(cpu_buffer->buffer);
4358		rb_time_set(&cpu_buffer->before_stamp, ts);
4359
4360		barrier();
4361 /*E*/		rb_time_read(&cpu_buffer->write_stamp, &info->after);
4362		barrier();
4363 /*F*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
4364		    info->after == info->before && info->after < ts) {
4365			/*
4366			 * Nothing came after this event between C and F, it is
4367			 * safe to use info->after for the delta as it
4368			 * matched info->before and is still valid.
4369			 */
4370			info->delta = ts - info->after;
4371		} else {
4372			/*
4373			 * Interrupted between C and F:
4374			 * Lost the previous events time stamp. Just set the
4375			 * delta to zero, and this will be the same time as
4376			 * the event this event interrupted. And the events that
4377			 * came after this will still be correct (as they would
4378			 * have built their delta on the previous event.
4379			 */
4380			info->delta = 0;
4381		}
4382		info->ts = ts;
4383		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
4384	}
4385
4386	/*
4387	 * If this is the first commit on the page, then it has the same
4388	 * timestamp as the page itself.
4389	 */
4390	if (unlikely(!tail && !(info->add_timestamp &
4391				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4392		info->delta = 0;
4393
4394	/* We reserved something on the buffer */
4395
4396	event = __rb_page_index(tail_page, tail);
4397	rb_update_event(cpu_buffer, event, info);
4398
4399	local_inc(&tail_page->entries);
4400
4401	/*
4402	 * If this is the first commit on the page, then update
4403	 * its timestamp.
4404	 */
4405	if (unlikely(!tail))
4406		tail_page->page->time_stamp = info->ts;
4407
4408	/* account for these added bytes */
4409	local_add(info->length, &cpu_buffer->entries_bytes);
4410
4411	return event;
4412}
4413
4414static __always_inline struct ring_buffer_event *
4415rb_reserve_next_event(struct trace_buffer *buffer,
4416		      struct ring_buffer_per_cpu *cpu_buffer,
4417		      unsigned long length)
4418{
4419	struct ring_buffer_event *event;
4420	struct rb_event_info info;
4421	int nr_loops = 0;
4422	int add_ts_default;
4423
4424	/*
4425	 * ring buffer does cmpxchg as well as atomic64 operations
4426	 * (which some archs use locking for atomic64), make sure this
4427	 * is safe in NMI context
4428	 */
4429	if ((!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) ||
4430	     IS_ENABLED(CONFIG_GENERIC_ATOMIC64)) &&
4431	    (unlikely(in_nmi()))) {
4432		return NULL;
4433	}
4434
4435	rb_start_commit(cpu_buffer);
4436	/* The commit page can not change after this */
4437
4438#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4439	/*
4440	 * Due to the ability to swap a cpu buffer from a buffer
4441	 * it is possible it was swapped before we committed.
4442	 * (committing stops a swap). We check for it here and
4443	 * if it happened, we have to fail the write.
4444	 */
4445	barrier();
4446	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
4447		local_dec(&cpu_buffer->committing);
4448		local_dec(&cpu_buffer->commits);
4449		return NULL;
4450	}
4451#endif
4452
4453	info.length = rb_calculate_event_length(length);
4454
4455	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
4456		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
4457		info.length += RB_LEN_TIME_EXTEND;
4458		if (info.length > cpu_buffer->buffer->max_data_size)
4459			goto out_fail;
4460	} else {
4461		add_ts_default = RB_ADD_STAMP_NONE;
4462	}
4463
4464 again:
4465	info.add_timestamp = add_ts_default;
4466	info.delta = 0;
4467
4468	/*
4469	 * We allow for interrupts to reenter here and do a trace.
4470	 * If one does, it will cause this original code to loop
4471	 * back here. Even with heavy interrupts happening, this
4472	 * should only happen a few times in a row. If this happens
4473	 * 1000 times in a row, there must be either an interrupt
4474	 * storm or we have something buggy.
4475	 * Bail!
4476	 */
4477	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
4478		goto out_fail;
4479
4480	event = __rb_reserve_next(cpu_buffer, &info);
4481
4482	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
4483		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
4484			info.length -= RB_LEN_TIME_EXTEND;
4485		goto again;
4486	}
4487
4488	if (likely(event))
4489		return event;
4490 out_fail:
4491	rb_end_commit(cpu_buffer);
4492	return NULL;
4493}
4494
4495/**
4496 * ring_buffer_lock_reserve - reserve a part of the buffer
4497 * @buffer: the ring buffer to reserve from
4498 * @length: the length of the data to reserve (excluding event header)
4499 *
4500 * Returns a reserved event on the ring buffer to copy directly to.
4501 * The user of this interface will need to get the body to write into
4502 * and can use the ring_buffer_event_data() interface.
4503 *
4504 * The length is the length of the data needed, not the event length
4505 * which also includes the event header.
4506 *
4507 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
4508 * If NULL is returned, then nothing has been allocated or locked.
4509 */
4510struct ring_buffer_event *
4511ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
4512{
4513	struct ring_buffer_per_cpu *cpu_buffer;
4514	struct ring_buffer_event *event;
4515	int cpu;
4516
4517	/* If we are tracing schedule, we don't want to recurse */
4518	preempt_disable_notrace();
4519
4520	if (unlikely(atomic_read(&buffer->record_disabled)))
4521		goto out;
4522
4523	cpu = raw_smp_processor_id();
4524
4525	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
4526		goto out;
4527
4528	cpu_buffer = buffer->buffers[cpu];
4529
4530	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
4531		goto out;
4532
4533	if (unlikely(length > buffer->max_data_size))
4534		goto out;
4535
4536	if (unlikely(trace_recursive_lock(cpu_buffer)))
4537		goto out;
4538
4539	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4540	if (!event)
4541		goto out_unlock;
4542
4543	return event;
4544
4545 out_unlock:
4546	trace_recursive_unlock(cpu_buffer);
4547 out:
4548	preempt_enable_notrace();
4549	return NULL;
4550}
4551EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
4552
4553/*
4554 * Decrement the entries to the page that an event is on.
4555 * The event does not even need to exist, only the pointer
4556 * to the page it is on. This may only be called before the commit
4557 * takes place.
4558 */
4559static inline void
4560rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
4561		   struct ring_buffer_event *event)
4562{
4563	unsigned long addr = (unsigned long)event;
4564	struct buffer_page *bpage = cpu_buffer->commit_page;
4565	struct buffer_page *start;
4566
4567	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
4568
4569	/* Do the likely case first */
4570	if (likely(bpage->page == (void *)addr)) {
4571		local_dec(&bpage->entries);
4572		return;
4573	}
4574
4575	/*
4576	 * Because the commit page may be on the reader page we
4577	 * start with the next page and check the end loop there.
4578	 */
4579	rb_inc_page(&bpage);
4580	start = bpage;
4581	do {
4582		if (bpage->page == (void *)addr) {
4583			local_dec(&bpage->entries);
4584			return;
4585		}
4586		rb_inc_page(&bpage);
4587	} while (bpage != start);
4588
4589	/* commit not part of this buffer?? */
4590	RB_WARN_ON(cpu_buffer, 1);
4591}
4592
4593/**
4594 * ring_buffer_discard_commit - discard an event that has not been committed
4595 * @buffer: the ring buffer
4596 * @event: non committed event to discard
4597 *
4598 * Sometimes an event that is in the ring buffer needs to be ignored.
4599 * This function lets the user discard an event in the ring buffer
4600 * and then that event will not be read later.
4601 *
4602 * This function only works if it is called before the item has been
4603 * committed. It will try to free the event from the ring buffer
4604 * if another event has not been added behind it.
4605 *
4606 * If another event has been added behind it, it will set the event
4607 * up as discarded, and perform the commit.
4608 *
4609 * If this function is called, do not call ring_buffer_unlock_commit on
4610 * the event.
4611 */
4612void ring_buffer_discard_commit(struct trace_buffer *buffer,
4613				struct ring_buffer_event *event)
4614{
4615	struct ring_buffer_per_cpu *cpu_buffer;
4616	int cpu;
4617
4618	/* The event is discarded regardless */
4619	rb_event_discard(event);
4620
4621	cpu = smp_processor_id();
4622	cpu_buffer = buffer->buffers[cpu];
4623
4624	/*
4625	 * This must only be called if the event has not been
4626	 * committed yet. Thus we can assume that preemption
4627	 * is still disabled.
4628	 */
4629	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
4630
4631	rb_decrement_entry(cpu_buffer, event);
4632	if (rb_try_to_discard(cpu_buffer, event))
4633		goto out;
4634
4635 out:
4636	rb_end_commit(cpu_buffer);
4637
4638	trace_recursive_unlock(cpu_buffer);
4639
4640	preempt_enable_notrace();
4641
4642}
4643EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
4644
4645/**
4646 * ring_buffer_write - write data to the buffer without reserving
4647 * @buffer: The ring buffer to write to.
4648 * @length: The length of the data being written (excluding the event header)
4649 * @data: The data to write to the buffer.
4650 *
4651 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
4652 * one function. If you already have the data to write to the buffer, it
4653 * may be easier to simply call this function.
4654 *
4655 * Note, like ring_buffer_lock_reserve, the length is the length of the data
4656 * and not the length of the event which would hold the header.
4657 */
4658int ring_buffer_write(struct trace_buffer *buffer,
4659		      unsigned long length,
4660		      void *data)
4661{
4662	struct ring_buffer_per_cpu *cpu_buffer;
4663	struct ring_buffer_event *event;
4664	void *body;
4665	int ret = -EBUSY;
4666	int cpu;
4667
4668	preempt_disable_notrace();
4669
4670	if (atomic_read(&buffer->record_disabled))
4671		goto out;
4672
4673	cpu = raw_smp_processor_id();
4674
4675	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4676		goto out;
4677
4678	cpu_buffer = buffer->buffers[cpu];
4679
4680	if (atomic_read(&cpu_buffer->record_disabled))
4681		goto out;
4682
4683	if (length > buffer->max_data_size)
4684		goto out;
4685
4686	if (unlikely(trace_recursive_lock(cpu_buffer)))
4687		goto out;
4688
4689	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4690	if (!event)
4691		goto out_unlock;
4692
4693	body = rb_event_data(event);
4694
4695	memcpy(body, data, length);
4696
4697	rb_commit(cpu_buffer);
4698
4699	rb_wakeups(buffer, cpu_buffer);
4700
4701	ret = 0;
4702
4703 out_unlock:
4704	trace_recursive_unlock(cpu_buffer);
4705
4706 out:
4707	preempt_enable_notrace();
4708
4709	return ret;
4710}
4711EXPORT_SYMBOL_GPL(ring_buffer_write);
4712
4713static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
4714{
4715	struct buffer_page *reader = cpu_buffer->reader_page;
4716	struct buffer_page *head = rb_set_head_page(cpu_buffer);
4717	struct buffer_page *commit = cpu_buffer->commit_page;
4718
4719	/* In case of error, head will be NULL */
4720	if (unlikely(!head))
4721		return true;
4722
4723	/* Reader should exhaust content in reader page */
4724	if (reader->read != rb_page_size(reader))
4725		return false;
4726
4727	/*
4728	 * If writers are committing on the reader page, knowing all
4729	 * committed content has been read, the ring buffer is empty.
4730	 */
4731	if (commit == reader)
4732		return true;
4733
4734	/*
4735	 * If writers are committing on a page other than reader page
4736	 * and head page, there should always be content to read.
4737	 */
4738	if (commit != head)
4739		return false;
4740
4741	/*
4742	 * Writers are committing on the head page, we just need
4743	 * to care about there're committed data, and the reader will
4744	 * swap reader page with head page when it is to read data.
4745	 */
4746	return rb_page_commit(commit) == 0;
4747}
4748
4749/**
4750 * ring_buffer_record_disable - stop all writes into the buffer
4751 * @buffer: The ring buffer to stop writes to.
4752 *
4753 * This prevents all writes to the buffer. Any attempt to write
4754 * to the buffer after this will fail and return NULL.
4755 *
4756 * The caller should call synchronize_rcu() after this.
4757 */
4758void ring_buffer_record_disable(struct trace_buffer *buffer)
4759{
4760	atomic_inc(&buffer->record_disabled);
4761}
4762EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4763
4764/**
4765 * ring_buffer_record_enable - enable writes to the buffer
4766 * @buffer: The ring buffer to enable writes
4767 *
4768 * Note, multiple disables will need the same number of enables
4769 * to truly enable the writing (much like preempt_disable).
4770 */
4771void ring_buffer_record_enable(struct trace_buffer *buffer)
4772{
4773	atomic_dec(&buffer->record_disabled);
4774}
4775EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4776
4777/**
4778 * ring_buffer_record_off - stop all writes into the buffer
4779 * @buffer: The ring buffer to stop writes to.
4780 *
4781 * This prevents all writes to the buffer. Any attempt to write
4782 * to the buffer after this will fail and return NULL.
4783 *
4784 * This is different than ring_buffer_record_disable() as
4785 * it works like an on/off switch, where as the disable() version
4786 * must be paired with a enable().
4787 */
4788void ring_buffer_record_off(struct trace_buffer *buffer)
4789{
4790	unsigned int rd;
4791	unsigned int new_rd;
4792
4793	rd = atomic_read(&buffer->record_disabled);
4794	do {
4795		new_rd = rd | RB_BUFFER_OFF;
4796	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4797}
4798EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4799
4800/**
4801 * ring_buffer_record_on - restart writes into the buffer
4802 * @buffer: The ring buffer to start writes to.
4803 *
4804 * This enables all writes to the buffer that was disabled by
4805 * ring_buffer_record_off().
4806 *
4807 * This is different than ring_buffer_record_enable() as
4808 * it works like an on/off switch, where as the enable() version
4809 * must be paired with a disable().
4810 */
4811void ring_buffer_record_on(struct trace_buffer *buffer)
4812{
4813	unsigned int rd;
4814	unsigned int new_rd;
4815
4816	rd = atomic_read(&buffer->record_disabled);
4817	do {
4818		new_rd = rd & ~RB_BUFFER_OFF;
4819	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4820}
4821EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4822
4823/**
4824 * ring_buffer_record_is_on - return true if the ring buffer can write
4825 * @buffer: The ring buffer to see if write is enabled
4826 *
4827 * Returns true if the ring buffer is in a state that it accepts writes.
4828 */
4829bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4830{
4831	return !atomic_read(&buffer->record_disabled);
4832}
4833
4834/**
4835 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4836 * @buffer: The ring buffer to see if write is set enabled
4837 *
4838 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4839 * Note that this does NOT mean it is in a writable state.
4840 *
4841 * It may return true when the ring buffer has been disabled by
4842 * ring_buffer_record_disable(), as that is a temporary disabling of
4843 * the ring buffer.
4844 */
4845bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4846{
4847	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4848}
4849
4850/**
4851 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4852 * @buffer: The ring buffer to stop writes to.
4853 * @cpu: The CPU buffer to stop
4854 *
4855 * This prevents all writes to the buffer. Any attempt to write
4856 * to the buffer after this will fail and return NULL.
4857 *
4858 * The caller should call synchronize_rcu() after this.
4859 */
4860void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4861{
4862	struct ring_buffer_per_cpu *cpu_buffer;
4863
4864	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4865		return;
4866
4867	cpu_buffer = buffer->buffers[cpu];
4868	atomic_inc(&cpu_buffer->record_disabled);
4869}
4870EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4871
4872/**
4873 * ring_buffer_record_enable_cpu - enable writes to the buffer
4874 * @buffer: The ring buffer to enable writes
4875 * @cpu: The CPU to enable.
4876 *
4877 * Note, multiple disables will need the same number of enables
4878 * to truly enable the writing (much like preempt_disable).
4879 */
4880void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4881{
4882	struct ring_buffer_per_cpu *cpu_buffer;
4883
4884	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4885		return;
4886
4887	cpu_buffer = buffer->buffers[cpu];
4888	atomic_dec(&cpu_buffer->record_disabled);
4889}
4890EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4891
4892/*
4893 * The total entries in the ring buffer is the running counter
4894 * of entries entered into the ring buffer, minus the sum of
4895 * the entries read from the ring buffer and the number of
4896 * entries that were overwritten.
4897 */
4898static inline unsigned long
4899rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4900{
4901	return local_read(&cpu_buffer->entries) -
4902		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4903}
4904
4905/**
4906 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4907 * @buffer: The ring buffer
4908 * @cpu: The per CPU buffer to read from.
4909 */
4910u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4911{
4912	unsigned long flags;
4913	struct ring_buffer_per_cpu *cpu_buffer;
4914	struct buffer_page *bpage;
4915	u64 ret = 0;
4916
4917	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4918		return 0;
4919
4920	cpu_buffer = buffer->buffers[cpu];
4921	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4922	/*
4923	 * if the tail is on reader_page, oldest time stamp is on the reader
4924	 * page
4925	 */
4926	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4927		bpage = cpu_buffer->reader_page;
4928	else
4929		bpage = rb_set_head_page(cpu_buffer);
4930	if (bpage)
4931		ret = bpage->page->time_stamp;
4932	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4933
4934	return ret;
4935}
4936EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4937
4938/**
4939 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4940 * @buffer: The ring buffer
4941 * @cpu: The per CPU buffer to read from.
4942 */
4943unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4944{
4945	struct ring_buffer_per_cpu *cpu_buffer;
4946	unsigned long ret;
4947
4948	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4949		return 0;
4950
4951	cpu_buffer = buffer->buffers[cpu];
4952	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4953
4954	return ret;
4955}
4956EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4957
4958/**
4959 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4960 * @buffer: The ring buffer
4961 * @cpu: The per CPU buffer to get the entries from.
4962 */
4963unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4964{
4965	struct ring_buffer_per_cpu *cpu_buffer;
4966
4967	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4968		return 0;
4969
4970	cpu_buffer = buffer->buffers[cpu];
4971
4972	return rb_num_of_entries(cpu_buffer);
4973}
4974EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4975
4976/**
4977 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4978 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4979 * @buffer: The ring buffer
4980 * @cpu: The per CPU buffer to get the number of overruns from
4981 */
4982unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4983{
4984	struct ring_buffer_per_cpu *cpu_buffer;
4985	unsigned long ret;
4986
4987	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4988		return 0;
4989
4990	cpu_buffer = buffer->buffers[cpu];
4991	ret = local_read(&cpu_buffer->overrun);
4992
4993	return ret;
4994}
4995EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4996
4997/**
4998 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4999 * commits failing due to the buffer wrapping around while there are uncommitted
5000 * events, such as during an interrupt storm.
5001 * @buffer: The ring buffer
5002 * @cpu: The per CPU buffer to get the number of overruns from
5003 */
5004unsigned long
5005ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
5006{
5007	struct ring_buffer_per_cpu *cpu_buffer;
5008	unsigned long ret;
5009
5010	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5011		return 0;
5012
5013	cpu_buffer = buffer->buffers[cpu];
5014	ret = local_read(&cpu_buffer->commit_overrun);
5015
5016	return ret;
5017}
5018EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
5019
5020/**
5021 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
5022 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
5023 * @buffer: The ring buffer
5024 * @cpu: The per CPU buffer to get the number of overruns from
5025 */
5026unsigned long
5027ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
5028{
5029	struct ring_buffer_per_cpu *cpu_buffer;
5030	unsigned long ret;
5031
5032	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5033		return 0;
5034
5035	cpu_buffer = buffer->buffers[cpu];
5036	ret = local_read(&cpu_buffer->dropped_events);
5037
5038	return ret;
5039}
5040EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
5041
5042/**
5043 * ring_buffer_read_events_cpu - get the number of events successfully read
5044 * @buffer: The ring buffer
5045 * @cpu: The per CPU buffer to get the number of events read
5046 */
5047unsigned long
5048ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
5049{
5050	struct ring_buffer_per_cpu *cpu_buffer;
5051
5052	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5053		return 0;
5054
5055	cpu_buffer = buffer->buffers[cpu];
5056	return cpu_buffer->read;
5057}
5058EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
5059
5060/**
5061 * ring_buffer_entries - get the number of entries in a buffer
5062 * @buffer: The ring buffer
5063 *
5064 * Returns the total number of entries in the ring buffer
5065 * (all CPU entries)
5066 */
5067unsigned long ring_buffer_entries(struct trace_buffer *buffer)
5068{
5069	struct ring_buffer_per_cpu *cpu_buffer;
5070	unsigned long entries = 0;
5071	int cpu;
5072
5073	/* if you care about this being correct, lock the buffer */
5074	for_each_buffer_cpu(buffer, cpu) {
5075		cpu_buffer = buffer->buffers[cpu];
5076		entries += rb_num_of_entries(cpu_buffer);
5077	}
5078
5079	return entries;
5080}
5081EXPORT_SYMBOL_GPL(ring_buffer_entries);
5082
5083/**
5084 * ring_buffer_overruns - get the number of overruns in buffer
5085 * @buffer: The ring buffer
5086 *
5087 * Returns the total number of overruns in the ring buffer
5088 * (all CPU entries)
5089 */
5090unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
5091{
5092	struct ring_buffer_per_cpu *cpu_buffer;
5093	unsigned long overruns = 0;
5094	int cpu;
5095
5096	/* if you care about this being correct, lock the buffer */
5097	for_each_buffer_cpu(buffer, cpu) {
5098		cpu_buffer = buffer->buffers[cpu];
5099		overruns += local_read(&cpu_buffer->overrun);
5100	}
5101
5102	return overruns;
5103}
5104EXPORT_SYMBOL_GPL(ring_buffer_overruns);
5105
5106static void rb_iter_reset(struct ring_buffer_iter *iter)
5107{
5108	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5109
5110	/* Iterator usage is expected to have record disabled */
5111	iter->head_page = cpu_buffer->reader_page;
5112	iter->head = cpu_buffer->reader_page->read;
5113	iter->next_event = iter->head;
5114
5115	iter->cache_reader_page = iter->head_page;
5116	iter->cache_read = cpu_buffer->read;
5117	iter->cache_pages_removed = cpu_buffer->pages_removed;
5118
5119	if (iter->head) {
5120		iter->read_stamp = cpu_buffer->read_stamp;
5121		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
5122	} else {
5123		iter->read_stamp = iter->head_page->page->time_stamp;
5124		iter->page_stamp = iter->read_stamp;
5125	}
5126}
5127
5128/**
5129 * ring_buffer_iter_reset - reset an iterator
5130 * @iter: The iterator to reset
5131 *
5132 * Resets the iterator, so that it will start from the beginning
5133 * again.
5134 */
5135void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
5136{
5137	struct ring_buffer_per_cpu *cpu_buffer;
5138	unsigned long flags;
5139
5140	if (!iter)
5141		return;
5142
5143	cpu_buffer = iter->cpu_buffer;
5144
5145	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5146	rb_iter_reset(iter);
5147	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5148}
5149EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
5150
5151/**
5152 * ring_buffer_iter_empty - check if an iterator has no more to read
5153 * @iter: The iterator to check
5154 */
5155int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
5156{
5157	struct ring_buffer_per_cpu *cpu_buffer;
5158	struct buffer_page *reader;
5159	struct buffer_page *head_page;
5160	struct buffer_page *commit_page;
5161	struct buffer_page *curr_commit_page;
5162	unsigned commit;
5163	u64 curr_commit_ts;
5164	u64 commit_ts;
5165
5166	cpu_buffer = iter->cpu_buffer;
5167	reader = cpu_buffer->reader_page;
5168	head_page = cpu_buffer->head_page;
5169	commit_page = READ_ONCE(cpu_buffer->commit_page);
5170	commit_ts = commit_page->page->time_stamp;
5171
5172	/*
5173	 * When the writer goes across pages, it issues a cmpxchg which
5174	 * is a mb(), which will synchronize with the rmb here.
5175	 * (see rb_tail_page_update())
5176	 */
5177	smp_rmb();
5178	commit = rb_page_commit(commit_page);
5179	/* We want to make sure that the commit page doesn't change */
5180	smp_rmb();
5181
5182	/* Make sure commit page didn't change */
5183	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
5184	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
5185
5186	/* If the commit page changed, then there's more data */
5187	if (curr_commit_page != commit_page ||
5188	    curr_commit_ts != commit_ts)
5189		return 0;
5190
5191	/* Still racy, as it may return a false positive, but that's OK */
5192	return ((iter->head_page == commit_page && iter->head >= commit) ||
5193		(iter->head_page == reader && commit_page == head_page &&
5194		 head_page->read == commit &&
5195		 iter->head == rb_page_size(cpu_buffer->reader_page)));
5196}
5197EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
5198
5199static void
5200rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
5201		     struct ring_buffer_event *event)
5202{
5203	u64 delta;
5204
5205	switch (event->type_len) {
5206	case RINGBUF_TYPE_PADDING:
5207		return;
5208
5209	case RINGBUF_TYPE_TIME_EXTEND:
5210		delta = rb_event_time_stamp(event);
5211		cpu_buffer->read_stamp += delta;
5212		return;
5213
5214	case RINGBUF_TYPE_TIME_STAMP:
5215		delta = rb_event_time_stamp(event);
5216		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
5217		cpu_buffer->read_stamp = delta;
5218		return;
5219
5220	case RINGBUF_TYPE_DATA:
5221		cpu_buffer->read_stamp += event->time_delta;
5222		return;
5223
5224	default:
5225		RB_WARN_ON(cpu_buffer, 1);
5226	}
5227}
5228
5229static void
5230rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
5231			  struct ring_buffer_event *event)
5232{
5233	u64 delta;
5234
5235	switch (event->type_len) {
5236	case RINGBUF_TYPE_PADDING:
5237		return;
5238
5239	case RINGBUF_TYPE_TIME_EXTEND:
5240		delta = rb_event_time_stamp(event);
5241		iter->read_stamp += delta;
5242		return;
5243
5244	case RINGBUF_TYPE_TIME_STAMP:
5245		delta = rb_event_time_stamp(event);
5246		delta = rb_fix_abs_ts(delta, iter->read_stamp);
5247		iter->read_stamp = delta;
5248		return;
5249
5250	case RINGBUF_TYPE_DATA:
5251		iter->read_stamp += event->time_delta;
5252		return;
5253
5254	default:
5255		RB_WARN_ON(iter->cpu_buffer, 1);
5256	}
5257}
5258
5259static struct buffer_page *
5260rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
5261{
5262	struct buffer_page *reader = NULL;
5263	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
5264	unsigned long overwrite;
5265	unsigned long flags;
5266	int nr_loops = 0;
5267	bool ret;
5268
5269	local_irq_save(flags);
5270	arch_spin_lock(&cpu_buffer->lock);
5271
5272 again:
5273	/*
5274	 * This should normally only loop twice. But because the
5275	 * start of the reader inserts an empty page, it causes
5276	 * a case where we will loop three times. There should be no
5277	 * reason to loop four times (that I know of).
5278	 */
5279	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
5280		reader = NULL;
5281		goto out;
5282	}
5283
5284	reader = cpu_buffer->reader_page;
5285
5286	/* If there's more to read, return this page */
5287	if (cpu_buffer->reader_page->read < rb_page_size(reader))
5288		goto out;
5289
5290	/* Never should we have an index greater than the size */
5291	if (RB_WARN_ON(cpu_buffer,
5292		       cpu_buffer->reader_page->read > rb_page_size(reader)))
5293		goto out;
5294
5295	/* check if we caught up to the tail */
5296	reader = NULL;
5297	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
5298		goto out;
5299
5300	/* Don't bother swapping if the ring buffer is empty */
5301	if (rb_num_of_entries(cpu_buffer) == 0)
5302		goto out;
5303
5304	/*
5305	 * Reset the reader page to size zero.
5306	 */
5307	local_set(&cpu_buffer->reader_page->write, 0);
5308	local_set(&cpu_buffer->reader_page->entries, 0);
5309	local_set(&cpu_buffer->reader_page->page->commit, 0);
5310	cpu_buffer->reader_page->real_end = 0;
5311
5312 spin:
5313	/*
5314	 * Splice the empty reader page into the list around the head.
5315	 */
5316	reader = rb_set_head_page(cpu_buffer);
5317	if (!reader)
5318		goto out;
5319	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
5320	cpu_buffer->reader_page->list.prev = reader->list.prev;
5321
5322	/*
5323	 * cpu_buffer->pages just needs to point to the buffer, it
5324	 *  has no specific buffer page to point to. Lets move it out
5325	 *  of our way so we don't accidentally swap it.
5326	 */
5327	cpu_buffer->pages = reader->list.prev;
5328
5329	/* The reader page will be pointing to the new head */
5330	rb_set_list_to_head(&cpu_buffer->reader_page->list);
5331
5332	/*
5333	 * We want to make sure we read the overruns after we set up our
5334	 * pointers to the next object. The writer side does a
5335	 * cmpxchg to cross pages which acts as the mb on the writer
5336	 * side. Note, the reader will constantly fail the swap
5337	 * while the writer is updating the pointers, so this
5338	 * guarantees that the overwrite recorded here is the one we
5339	 * want to compare with the last_overrun.
5340	 */
5341	smp_mb();
5342	overwrite = local_read(&(cpu_buffer->overrun));
5343
5344	/*
5345	 * Here's the tricky part.
5346	 *
5347	 * We need to move the pointer past the header page.
5348	 * But we can only do that if a writer is not currently
5349	 * moving it. The page before the header page has the
5350	 * flag bit '1' set if it is pointing to the page we want.
5351	 * but if the writer is in the process of moving it
5352	 * than it will be '2' or already moved '0'.
5353	 */
5354
5355	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
5356
5357	/*
5358	 * If we did not convert it, then we must try again.
5359	 */
5360	if (!ret)
5361		goto spin;
5362
5363	if (cpu_buffer->ring_meta)
5364		rb_update_meta_reader(cpu_buffer, reader);
5365
5366	/*
5367	 * Yay! We succeeded in replacing the page.
5368	 *
5369	 * Now make the new head point back to the reader page.
5370	 */
5371	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
5372	rb_inc_page(&cpu_buffer->head_page);
5373
5374	cpu_buffer->cnt++;
5375	local_inc(&cpu_buffer->pages_read);
5376
5377	/* Finally update the reader page to the new head */
5378	cpu_buffer->reader_page = reader;
5379	cpu_buffer->reader_page->read = 0;
5380
5381	if (overwrite != cpu_buffer->last_overrun) {
5382		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
5383		cpu_buffer->last_overrun = overwrite;
5384	}
5385
5386	goto again;
5387
5388 out:
5389	/* Update the read_stamp on the first event */
5390	if (reader && reader->read == 0)
5391		cpu_buffer->read_stamp = reader->page->time_stamp;
5392
5393	arch_spin_unlock(&cpu_buffer->lock);
5394	local_irq_restore(flags);
5395
5396	/*
5397	 * The writer has preempt disable, wait for it. But not forever
5398	 * Although, 1 second is pretty much "forever"
5399	 */
5400#define USECS_WAIT	1000000
5401        for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
5402		/* If the write is past the end of page, a writer is still updating it */
5403		if (likely(!reader || rb_page_write(reader) <= bsize))
5404			break;
5405
5406		udelay(1);
5407
5408		/* Get the latest version of the reader write value */
5409		smp_rmb();
5410	}
5411
5412	/* The writer is not moving forward? Something is wrong */
5413	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
5414		reader = NULL;
5415
5416	/*
5417	 * Make sure we see any padding after the write update
5418	 * (see rb_reset_tail()).
5419	 *
5420	 * In addition, a writer may be writing on the reader page
5421	 * if the page has not been fully filled, so the read barrier
5422	 * is also needed to make sure we see the content of what is
5423	 * committed by the writer (see rb_set_commit_to_write()).
5424	 */
5425	smp_rmb();
5426
5427
5428	return reader;
5429}
5430
5431static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
5432{
5433	struct ring_buffer_event *event;
5434	struct buffer_page *reader;
5435	unsigned length;
5436
5437	reader = rb_get_reader_page(cpu_buffer);
5438
5439	/* This function should not be called when buffer is empty */
5440	if (RB_WARN_ON(cpu_buffer, !reader))
5441		return;
5442
5443	event = rb_reader_event(cpu_buffer);
5444
5445	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
5446		cpu_buffer->read++;
5447
5448	rb_update_read_stamp(cpu_buffer, event);
5449
5450	length = rb_event_length(event);
5451	cpu_buffer->reader_page->read += length;
5452	cpu_buffer->read_bytes += length;
5453}
5454
5455static void rb_advance_iter(struct ring_buffer_iter *iter)
5456{
5457	struct ring_buffer_per_cpu *cpu_buffer;
5458
5459	cpu_buffer = iter->cpu_buffer;
5460
5461	/* If head == next_event then we need to jump to the next event */
5462	if (iter->head == iter->next_event) {
5463		/* If the event gets overwritten again, there's nothing to do */
5464		if (rb_iter_head_event(iter) == NULL)
5465			return;
5466	}
5467
5468	iter->head = iter->next_event;
5469
5470	/*
5471	 * Check if we are at the end of the buffer.
5472	 */
5473	if (iter->next_event >= rb_page_size(iter->head_page)) {
5474		/* discarded commits can make the page empty */
5475		if (iter->head_page == cpu_buffer->commit_page)
5476			return;
5477		rb_inc_iter(iter);
5478		return;
5479	}
5480
5481	rb_update_iter_read_stamp(iter, iter->event);
5482}
5483
5484static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
5485{
5486	return cpu_buffer->lost_events;
5487}
5488
5489static struct ring_buffer_event *
5490rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
5491	       unsigned long *lost_events)
5492{
5493	struct ring_buffer_event *event;
5494	struct buffer_page *reader;
5495	int nr_loops = 0;
5496
5497	if (ts)
5498		*ts = 0;
5499 again:
5500	/*
5501	 * We repeat when a time extend is encountered.
5502	 * Since the time extend is always attached to a data event,
5503	 * we should never loop more than once.
5504	 * (We never hit the following condition more than twice).
5505	 */
5506	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
5507		return NULL;
5508
5509	reader = rb_get_reader_page(cpu_buffer);
5510	if (!reader)
5511		return NULL;
5512
5513	event = rb_reader_event(cpu_buffer);
5514
5515	switch (event->type_len) {
5516	case RINGBUF_TYPE_PADDING:
5517		if (rb_null_event(event))
5518			RB_WARN_ON(cpu_buffer, 1);
5519		/*
5520		 * Because the writer could be discarding every
5521		 * event it creates (which would probably be bad)
5522		 * if we were to go back to "again" then we may never
5523		 * catch up, and will trigger the warn on, or lock
5524		 * the box. Return the padding, and we will release
5525		 * the current locks, and try again.
5526		 */
5527		return event;
5528
5529	case RINGBUF_TYPE_TIME_EXTEND:
5530		/* Internal data, OK to advance */
5531		rb_advance_reader(cpu_buffer);
5532		goto again;
5533
5534	case RINGBUF_TYPE_TIME_STAMP:
5535		if (ts) {
5536			*ts = rb_event_time_stamp(event);
5537			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
5538			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5539							 cpu_buffer->cpu, ts);
5540		}
5541		/* Internal data, OK to advance */
5542		rb_advance_reader(cpu_buffer);
5543		goto again;
5544
5545	case RINGBUF_TYPE_DATA:
5546		if (ts && !(*ts)) {
5547			*ts = cpu_buffer->read_stamp + event->time_delta;
5548			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5549							 cpu_buffer->cpu, ts);
5550		}
5551		if (lost_events)
5552			*lost_events = rb_lost_events(cpu_buffer);
5553		return event;
5554
5555	default:
5556		RB_WARN_ON(cpu_buffer, 1);
5557	}
5558
5559	return NULL;
5560}
5561EXPORT_SYMBOL_GPL(ring_buffer_peek);
5562
5563static struct ring_buffer_event *
5564rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5565{
5566	struct trace_buffer *buffer;
5567	struct ring_buffer_per_cpu *cpu_buffer;
5568	struct ring_buffer_event *event;
5569	int nr_loops = 0;
5570
5571	if (ts)
5572		*ts = 0;
5573
5574	cpu_buffer = iter->cpu_buffer;
5575	buffer = cpu_buffer->buffer;
5576
5577	/*
5578	 * Check if someone performed a consuming read to the buffer
5579	 * or removed some pages from the buffer. In these cases,
5580	 * iterator was invalidated and we need to reset it.
5581	 */
5582	if (unlikely(iter->cache_read != cpu_buffer->read ||
5583		     iter->cache_reader_page != cpu_buffer->reader_page ||
5584		     iter->cache_pages_removed != cpu_buffer->pages_removed))
5585		rb_iter_reset(iter);
5586
5587 again:
5588	if (ring_buffer_iter_empty(iter))
5589		return NULL;
5590
5591	/*
5592	 * As the writer can mess with what the iterator is trying
5593	 * to read, just give up if we fail to get an event after
5594	 * three tries. The iterator is not as reliable when reading
5595	 * the ring buffer with an active write as the consumer is.
5596	 * Do not warn if the three failures is reached.
5597	 */
5598	if (++nr_loops > 3)
5599		return NULL;
5600
5601	if (rb_per_cpu_empty(cpu_buffer))
5602		return NULL;
5603
5604	if (iter->head >= rb_page_size(iter->head_page)) {
5605		rb_inc_iter(iter);
5606		goto again;
5607	}
5608
5609	event = rb_iter_head_event(iter);
5610	if (!event)
5611		goto again;
5612
5613	switch (event->type_len) {
5614	case RINGBUF_TYPE_PADDING:
5615		if (rb_null_event(event)) {
5616			rb_inc_iter(iter);
5617			goto again;
5618		}
5619		rb_advance_iter(iter);
5620		return event;
5621
5622	case RINGBUF_TYPE_TIME_EXTEND:
5623		/* Internal data, OK to advance */
5624		rb_advance_iter(iter);
5625		goto again;
5626
5627	case RINGBUF_TYPE_TIME_STAMP:
5628		if (ts) {
5629			*ts = rb_event_time_stamp(event);
5630			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
5631			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5632							 cpu_buffer->cpu, ts);
5633		}
5634		/* Internal data, OK to advance */
5635		rb_advance_iter(iter);
5636		goto again;
5637
5638	case RINGBUF_TYPE_DATA:
5639		if (ts && !(*ts)) {
5640			*ts = iter->read_stamp + event->time_delta;
5641			ring_buffer_normalize_time_stamp(buffer,
5642							 cpu_buffer->cpu, ts);
5643		}
5644		return event;
5645
5646	default:
5647		RB_WARN_ON(cpu_buffer, 1);
5648	}
5649
5650	return NULL;
5651}
5652EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
5653
5654static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
5655{
5656	if (likely(!in_nmi())) {
5657		raw_spin_lock(&cpu_buffer->reader_lock);
5658		return true;
5659	}
5660
5661	/*
5662	 * If an NMI die dumps out the content of the ring buffer
5663	 * trylock must be used to prevent a deadlock if the NMI
5664	 * preempted a task that holds the ring buffer locks. If
5665	 * we get the lock then all is fine, if not, then continue
5666	 * to do the read, but this can corrupt the ring buffer,
5667	 * so it must be permanently disabled from future writes.
5668	 * Reading from NMI is a oneshot deal.
5669	 */
5670	if (raw_spin_trylock(&cpu_buffer->reader_lock))
5671		return true;
5672
5673	/* Continue without locking, but disable the ring buffer */
5674	atomic_inc(&cpu_buffer->record_disabled);
5675	return false;
5676}
5677
5678static inline void
5679rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
5680{
5681	if (likely(locked))
5682		raw_spin_unlock(&cpu_buffer->reader_lock);
5683}
5684
5685/**
5686 * ring_buffer_peek - peek at the next event to be read
5687 * @buffer: The ring buffer to read
5688 * @cpu: The cpu to peak at
5689 * @ts: The timestamp counter of this event.
5690 * @lost_events: a variable to store if events were lost (may be NULL)
5691 *
5692 * This will return the event that will be read next, but does
5693 * not consume the data.
5694 */
5695struct ring_buffer_event *
5696ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
5697		 unsigned long *lost_events)
5698{
5699	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5700	struct ring_buffer_event *event;
5701	unsigned long flags;
5702	bool dolock;
5703
5704	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5705		return NULL;
5706
5707 again:
5708	local_irq_save(flags);
5709	dolock = rb_reader_lock(cpu_buffer);
5710	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5711	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5712		rb_advance_reader(cpu_buffer);
5713	rb_reader_unlock(cpu_buffer, dolock);
5714	local_irq_restore(flags);
5715
5716	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5717		goto again;
5718
5719	return event;
5720}
5721
5722/** ring_buffer_iter_dropped - report if there are dropped events
5723 * @iter: The ring buffer iterator
5724 *
5725 * Returns true if there was dropped events since the last peek.
5726 */
5727bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5728{
5729	bool ret = iter->missed_events != 0;
5730
5731	iter->missed_events = 0;
5732	return ret;
5733}
5734EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5735
5736/**
5737 * ring_buffer_iter_peek - peek at the next event to be read
5738 * @iter: The ring buffer iterator
5739 * @ts: The timestamp counter of this event.
5740 *
5741 * This will return the event that will be read next, but does
5742 * not increment the iterator.
5743 */
5744struct ring_buffer_event *
5745ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5746{
5747	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5748	struct ring_buffer_event *event;
5749	unsigned long flags;
5750
5751 again:
5752	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5753	event = rb_iter_peek(iter, ts);
5754	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5755
5756	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5757		goto again;
5758
5759	return event;
5760}
5761
5762/**
5763 * ring_buffer_consume - return an event and consume it
5764 * @buffer: The ring buffer to get the next event from
5765 * @cpu: the cpu to read the buffer from
5766 * @ts: a variable to store the timestamp (may be NULL)
5767 * @lost_events: a variable to store if events were lost (may be NULL)
5768 *
5769 * Returns the next event in the ring buffer, and that event is consumed.
5770 * Meaning, that sequential reads will keep returning a different event,
5771 * and eventually empty the ring buffer if the producer is slower.
5772 */
5773struct ring_buffer_event *
5774ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5775		    unsigned long *lost_events)
5776{
5777	struct ring_buffer_per_cpu *cpu_buffer;
5778	struct ring_buffer_event *event = NULL;
5779	unsigned long flags;
5780	bool dolock;
5781
5782 again:
5783	/* might be called in atomic */
5784	preempt_disable();
5785
5786	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5787		goto out;
5788
5789	cpu_buffer = buffer->buffers[cpu];
5790	local_irq_save(flags);
5791	dolock = rb_reader_lock(cpu_buffer);
5792
5793	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5794	if (event) {
5795		cpu_buffer->lost_events = 0;
5796		rb_advance_reader(cpu_buffer);
5797	}
5798
5799	rb_reader_unlock(cpu_buffer, dolock);
5800	local_irq_restore(flags);
5801
5802 out:
5803	preempt_enable();
5804
5805	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5806		goto again;
5807
5808	return event;
5809}
5810EXPORT_SYMBOL_GPL(ring_buffer_consume);
5811
5812/**
5813 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5814 * @buffer: The ring buffer to read from
5815 * @cpu: The cpu buffer to iterate over
5816 * @flags: gfp flags to use for memory allocation
5817 *
5818 * This performs the initial preparations necessary to iterate
5819 * through the buffer.  Memory is allocated, buffer resizing
5820 * is disabled, and the iterator pointer is returned to the caller.
5821 *
 
 
 
 
5822 * After a sequence of ring_buffer_read_prepare calls, the user is
5823 * expected to make at least one call to ring_buffer_read_prepare_sync.
5824 * Afterwards, ring_buffer_read_start is invoked to get things going
5825 * for real.
5826 *
5827 * This overall must be paired with ring_buffer_read_finish.
5828 */
5829struct ring_buffer_iter *
5830ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5831{
5832	struct ring_buffer_per_cpu *cpu_buffer;
5833	struct ring_buffer_iter *iter;
5834
5835	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5836		return NULL;
5837
5838	iter = kzalloc(sizeof(*iter), flags);
5839	if (!iter)
5840		return NULL;
5841
5842	/* Holds the entire event: data and meta data */
5843	iter->event_size = buffer->subbuf_size;
5844	iter->event = kmalloc(iter->event_size, flags);
5845	if (!iter->event) {
5846		kfree(iter);
5847		return NULL;
5848	}
5849
5850	cpu_buffer = buffer->buffers[cpu];
5851
5852	iter->cpu_buffer = cpu_buffer;
5853
5854	atomic_inc(&cpu_buffer->resize_disabled);
5855
5856	return iter;
5857}
5858EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5859
5860/**
5861 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5862 *
5863 * All previously invoked ring_buffer_read_prepare calls to prepare
5864 * iterators will be synchronized.  Afterwards, read_buffer_read_start
5865 * calls on those iterators are allowed.
5866 */
5867void
5868ring_buffer_read_prepare_sync(void)
5869{
5870	synchronize_rcu();
5871}
5872EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5873
5874/**
5875 * ring_buffer_read_start - start a non consuming read of the buffer
5876 * @iter: The iterator returned by ring_buffer_read_prepare
5877 *
5878 * This finalizes the startup of an iteration through the buffer.
5879 * The iterator comes from a call to ring_buffer_read_prepare and
5880 * an intervening ring_buffer_read_prepare_sync must have been
5881 * performed.
5882 *
5883 * Must be paired with ring_buffer_read_finish.
5884 */
5885void
5886ring_buffer_read_start(struct ring_buffer_iter *iter)
5887{
5888	struct ring_buffer_per_cpu *cpu_buffer;
5889	unsigned long flags;
5890
5891	if (!iter)
5892		return;
5893
5894	cpu_buffer = iter->cpu_buffer;
5895
5896	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5897	arch_spin_lock(&cpu_buffer->lock);
5898	rb_iter_reset(iter);
5899	arch_spin_unlock(&cpu_buffer->lock);
5900	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5901}
5902EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5903
5904/**
5905 * ring_buffer_read_finish - finish reading the iterator of the buffer
5906 * @iter: The iterator retrieved by ring_buffer_start
5907 *
5908 * This re-enables resizing of the buffer, and frees the iterator.
 
5909 */
5910void
5911ring_buffer_read_finish(struct ring_buffer_iter *iter)
5912{
5913	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
 
5914
5915	/* Use this opportunity to check the integrity of the ring buffer. */
 
 
 
 
 
 
5916	rb_check_pages(cpu_buffer);
 
5917
5918	atomic_dec(&cpu_buffer->resize_disabled);
5919	kfree(iter->event);
5920	kfree(iter);
5921}
5922EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5923
5924/**
5925 * ring_buffer_iter_advance - advance the iterator to the next location
5926 * @iter: The ring buffer iterator
5927 *
5928 * Move the location of the iterator such that the next read will
5929 * be the next location of the iterator.
5930 */
5931void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5932{
5933	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5934	unsigned long flags;
5935
5936	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5937
5938	rb_advance_iter(iter);
5939
5940	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5941}
5942EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5943
5944/**
5945 * ring_buffer_size - return the size of the ring buffer (in bytes)
5946 * @buffer: The ring buffer.
5947 * @cpu: The CPU to get ring buffer size from.
5948 */
5949unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5950{
5951	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5952		return 0;
5953
5954	return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5955}
5956EXPORT_SYMBOL_GPL(ring_buffer_size);
5957
5958/**
5959 * ring_buffer_max_event_size - return the max data size of an event
5960 * @buffer: The ring buffer.
5961 *
5962 * Returns the maximum size an event can be.
5963 */
5964unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
5965{
5966	/* If abs timestamp is requested, events have a timestamp too */
5967	if (ring_buffer_time_stamp_abs(buffer))
5968		return buffer->max_data_size - RB_LEN_TIME_EXTEND;
5969	return buffer->max_data_size;
5970}
5971EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
5972
5973static void rb_clear_buffer_page(struct buffer_page *page)
5974{
5975	local_set(&page->write, 0);
5976	local_set(&page->entries, 0);
5977	rb_init_page(page->page);
5978	page->read = 0;
5979}
5980
5981static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
5982{
5983	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
5984
5985	if (!meta)
5986		return;
5987
5988	meta->reader.read = cpu_buffer->reader_page->read;
5989	meta->reader.id = cpu_buffer->reader_page->id;
5990	meta->reader.lost_events = cpu_buffer->lost_events;
5991
5992	meta->entries = local_read(&cpu_buffer->entries);
5993	meta->overrun = local_read(&cpu_buffer->overrun);
5994	meta->read = cpu_buffer->read;
5995
5996	/* Some archs do not have data cache coherency between kernel and user-space */
5997	flush_dcache_folio(virt_to_folio(cpu_buffer->meta_page));
5998}
5999
6000static void
6001rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
6002{
6003	struct buffer_page *page;
6004
6005	rb_head_page_deactivate(cpu_buffer);
6006
6007	cpu_buffer->head_page
6008		= list_entry(cpu_buffer->pages, struct buffer_page, list);
6009	rb_clear_buffer_page(cpu_buffer->head_page);
6010	list_for_each_entry(page, cpu_buffer->pages, list) {
6011		rb_clear_buffer_page(page);
6012	}
6013
6014	cpu_buffer->tail_page = cpu_buffer->head_page;
6015	cpu_buffer->commit_page = cpu_buffer->head_page;
6016
6017	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
6018	INIT_LIST_HEAD(&cpu_buffer->new_pages);
6019	rb_clear_buffer_page(cpu_buffer->reader_page);
6020
6021	local_set(&cpu_buffer->entries_bytes, 0);
6022	local_set(&cpu_buffer->overrun, 0);
6023	local_set(&cpu_buffer->commit_overrun, 0);
6024	local_set(&cpu_buffer->dropped_events, 0);
6025	local_set(&cpu_buffer->entries, 0);
6026	local_set(&cpu_buffer->committing, 0);
6027	local_set(&cpu_buffer->commits, 0);
6028	local_set(&cpu_buffer->pages_touched, 0);
6029	local_set(&cpu_buffer->pages_lost, 0);
6030	local_set(&cpu_buffer->pages_read, 0);
6031	cpu_buffer->last_pages_touch = 0;
6032	cpu_buffer->shortest_full = 0;
6033	cpu_buffer->read = 0;
6034	cpu_buffer->read_bytes = 0;
6035
6036	rb_time_set(&cpu_buffer->write_stamp, 0);
6037	rb_time_set(&cpu_buffer->before_stamp, 0);
6038
6039	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
6040
6041	cpu_buffer->lost_events = 0;
6042	cpu_buffer->last_overrun = 0;
6043
6044	rb_head_page_activate(cpu_buffer);
6045	cpu_buffer->pages_removed = 0;
6046
6047	if (cpu_buffer->mapped) {
6048		rb_update_meta_page(cpu_buffer);
6049		if (cpu_buffer->ring_meta) {
6050			struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
6051			meta->commit_buffer = meta->head_buffer;
6052		}
6053	}
6054}
6055
6056/* Must have disabled the cpu buffer then done a synchronize_rcu */
6057static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6058{
6059	unsigned long flags;
6060
6061	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6062
6063	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
6064		goto out;
6065
6066	arch_spin_lock(&cpu_buffer->lock);
6067
6068	rb_reset_cpu(cpu_buffer);
6069
6070	arch_spin_unlock(&cpu_buffer->lock);
6071
6072 out:
6073	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6074}
6075
6076/**
6077 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
6078 * @buffer: The ring buffer to reset a per cpu buffer of
6079 * @cpu: The CPU buffer to be reset
6080 */
6081void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
6082{
6083	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6084	struct ring_buffer_meta *meta;
6085
6086	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6087		return;
6088
6089	/* prevent another thread from changing buffer sizes */
6090	mutex_lock(&buffer->mutex);
6091
6092	atomic_inc(&cpu_buffer->resize_disabled);
6093	atomic_inc(&cpu_buffer->record_disabled);
6094
6095	/* Make sure all commits have finished */
6096	synchronize_rcu();
6097
6098	reset_disabled_cpu_buffer(cpu_buffer);
6099
6100	atomic_dec(&cpu_buffer->record_disabled);
6101	atomic_dec(&cpu_buffer->resize_disabled);
6102
6103	/* Make sure persistent meta now uses this buffer's addresses */
6104	meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6105	if (meta)
6106		rb_meta_init_text_addr(meta);
6107
6108	mutex_unlock(&buffer->mutex);
6109}
6110EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
6111
6112/* Flag to ensure proper resetting of atomic variables */
6113#define RESET_BIT	(1 << 30)
6114
6115/**
6116 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
6117 * @buffer: The ring buffer to reset a per cpu buffer of
6118 */
6119void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
6120{
6121	struct ring_buffer_per_cpu *cpu_buffer;
6122	struct ring_buffer_meta *meta;
6123	int cpu;
6124
6125	/* prevent another thread from changing buffer sizes */
6126	mutex_lock(&buffer->mutex);
6127
6128	for_each_online_buffer_cpu(buffer, cpu) {
6129		cpu_buffer = buffer->buffers[cpu];
6130
6131		atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
6132		atomic_inc(&cpu_buffer->record_disabled);
6133	}
6134
6135	/* Make sure all commits have finished */
6136	synchronize_rcu();
6137
6138	for_each_buffer_cpu(buffer, cpu) {
6139		cpu_buffer = buffer->buffers[cpu];
6140
6141		/*
6142		 * If a CPU came online during the synchronize_rcu(), then
6143		 * ignore it.
6144		 */
6145		if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
6146			continue;
6147
6148		reset_disabled_cpu_buffer(cpu_buffer);
6149
6150		/* Make sure persistent meta now uses this buffer's addresses */
6151		meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6152		if (meta)
6153			rb_meta_init_text_addr(meta);
6154
6155		atomic_dec(&cpu_buffer->record_disabled);
6156		atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
6157	}
6158
6159	mutex_unlock(&buffer->mutex);
6160}
6161
6162/**
6163 * ring_buffer_reset - reset a ring buffer
6164 * @buffer: The ring buffer to reset all cpu buffers
6165 */
6166void ring_buffer_reset(struct trace_buffer *buffer)
6167{
6168	struct ring_buffer_per_cpu *cpu_buffer;
6169	int cpu;
6170
6171	/* prevent another thread from changing buffer sizes */
6172	mutex_lock(&buffer->mutex);
6173
6174	for_each_buffer_cpu(buffer, cpu) {
6175		cpu_buffer = buffer->buffers[cpu];
6176
6177		atomic_inc(&cpu_buffer->resize_disabled);
6178		atomic_inc(&cpu_buffer->record_disabled);
6179	}
6180
6181	/* Make sure all commits have finished */
6182	synchronize_rcu();
6183
6184	for_each_buffer_cpu(buffer, cpu) {
6185		cpu_buffer = buffer->buffers[cpu];
6186
6187		reset_disabled_cpu_buffer(cpu_buffer);
6188
6189		atomic_dec(&cpu_buffer->record_disabled);
6190		atomic_dec(&cpu_buffer->resize_disabled);
6191	}
6192
6193	mutex_unlock(&buffer->mutex);
6194}
6195EXPORT_SYMBOL_GPL(ring_buffer_reset);
6196
6197/**
6198 * ring_buffer_empty - is the ring buffer empty?
6199 * @buffer: The ring buffer to test
6200 */
6201bool ring_buffer_empty(struct trace_buffer *buffer)
6202{
6203	struct ring_buffer_per_cpu *cpu_buffer;
6204	unsigned long flags;
6205	bool dolock;
6206	bool ret;
6207	int cpu;
6208
6209	/* yes this is racy, but if you don't like the race, lock the buffer */
6210	for_each_buffer_cpu(buffer, cpu) {
6211		cpu_buffer = buffer->buffers[cpu];
6212		local_irq_save(flags);
6213		dolock = rb_reader_lock(cpu_buffer);
6214		ret = rb_per_cpu_empty(cpu_buffer);
6215		rb_reader_unlock(cpu_buffer, dolock);
6216		local_irq_restore(flags);
6217
6218		if (!ret)
6219			return false;
6220	}
6221
6222	return true;
6223}
6224EXPORT_SYMBOL_GPL(ring_buffer_empty);
6225
6226/**
6227 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
6228 * @buffer: The ring buffer
6229 * @cpu: The CPU buffer to test
6230 */
6231bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
6232{
6233	struct ring_buffer_per_cpu *cpu_buffer;
6234	unsigned long flags;
6235	bool dolock;
6236	bool ret;
6237
6238	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6239		return true;
6240
6241	cpu_buffer = buffer->buffers[cpu];
6242	local_irq_save(flags);
6243	dolock = rb_reader_lock(cpu_buffer);
6244	ret = rb_per_cpu_empty(cpu_buffer);
6245	rb_reader_unlock(cpu_buffer, dolock);
6246	local_irq_restore(flags);
6247
6248	return ret;
6249}
6250EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
6251
6252#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
6253/**
6254 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
6255 * @buffer_a: One buffer to swap with
6256 * @buffer_b: The other buffer to swap with
6257 * @cpu: the CPU of the buffers to swap
6258 *
6259 * This function is useful for tracers that want to take a "snapshot"
6260 * of a CPU buffer and has another back up buffer lying around.
6261 * it is expected that the tracer handles the cpu buffer not being
6262 * used at the moment.
6263 */
6264int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
6265			 struct trace_buffer *buffer_b, int cpu)
6266{
6267	struct ring_buffer_per_cpu *cpu_buffer_a;
6268	struct ring_buffer_per_cpu *cpu_buffer_b;
6269	int ret = -EINVAL;
6270
6271	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
6272	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
6273		goto out;
6274
6275	cpu_buffer_a = buffer_a->buffers[cpu];
6276	cpu_buffer_b = buffer_b->buffers[cpu];
6277
6278	/* It's up to the callers to not try to swap mapped buffers */
6279	if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped)) {
6280		ret = -EBUSY;
6281		goto out;
6282	}
6283
6284	/* At least make sure the two buffers are somewhat the same */
6285	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
6286		goto out;
6287
6288	if (buffer_a->subbuf_order != buffer_b->subbuf_order)
6289		goto out;
6290
6291	ret = -EAGAIN;
6292
6293	if (atomic_read(&buffer_a->record_disabled))
6294		goto out;
6295
6296	if (atomic_read(&buffer_b->record_disabled))
6297		goto out;
6298
6299	if (atomic_read(&cpu_buffer_a->record_disabled))
6300		goto out;
6301
6302	if (atomic_read(&cpu_buffer_b->record_disabled))
6303		goto out;
6304
6305	/*
6306	 * We can't do a synchronize_rcu here because this
6307	 * function can be called in atomic context.
6308	 * Normally this will be called from the same CPU as cpu.
6309	 * If not it's up to the caller to protect this.
6310	 */
6311	atomic_inc(&cpu_buffer_a->record_disabled);
6312	atomic_inc(&cpu_buffer_b->record_disabled);
6313
6314	ret = -EBUSY;
6315	if (local_read(&cpu_buffer_a->committing))
6316		goto out_dec;
6317	if (local_read(&cpu_buffer_b->committing))
6318		goto out_dec;
6319
6320	/*
6321	 * When resize is in progress, we cannot swap it because
6322	 * it will mess the state of the cpu buffer.
6323	 */
6324	if (atomic_read(&buffer_a->resizing))
6325		goto out_dec;
6326	if (atomic_read(&buffer_b->resizing))
6327		goto out_dec;
6328
6329	buffer_a->buffers[cpu] = cpu_buffer_b;
6330	buffer_b->buffers[cpu] = cpu_buffer_a;
6331
6332	cpu_buffer_b->buffer = buffer_a;
6333	cpu_buffer_a->buffer = buffer_b;
6334
6335	ret = 0;
6336
6337out_dec:
6338	atomic_dec(&cpu_buffer_a->record_disabled);
6339	atomic_dec(&cpu_buffer_b->record_disabled);
6340out:
6341	return ret;
6342}
6343EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
6344#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
6345
6346/**
6347 * ring_buffer_alloc_read_page - allocate a page to read from buffer
6348 * @buffer: the buffer to allocate for.
6349 * @cpu: the cpu buffer to allocate.
6350 *
6351 * This function is used in conjunction with ring_buffer_read_page.
6352 * When reading a full page from the ring buffer, these functions
6353 * can be used to speed up the process. The calling function should
6354 * allocate a few pages first with this function. Then when it
6355 * needs to get pages from the ring buffer, it passes the result
6356 * of this function into ring_buffer_read_page, which will swap
6357 * the page that was allocated, with the read page of the buffer.
6358 *
6359 * Returns:
6360 *  The page allocated, or ERR_PTR
6361 */
6362struct buffer_data_read_page *
6363ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
6364{
6365	struct ring_buffer_per_cpu *cpu_buffer;
6366	struct buffer_data_read_page *bpage = NULL;
6367	unsigned long flags;
6368	struct page *page;
6369
6370	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6371		return ERR_PTR(-ENODEV);
6372
6373	bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
6374	if (!bpage)
6375		return ERR_PTR(-ENOMEM);
6376
6377	bpage->order = buffer->subbuf_order;
6378	cpu_buffer = buffer->buffers[cpu];
6379	local_irq_save(flags);
6380	arch_spin_lock(&cpu_buffer->lock);
6381
6382	if (cpu_buffer->free_page) {
6383		bpage->data = cpu_buffer->free_page;
6384		cpu_buffer->free_page = NULL;
6385	}
6386
6387	arch_spin_unlock(&cpu_buffer->lock);
6388	local_irq_restore(flags);
6389
6390	if (bpage->data)
6391		goto out;
6392
6393	page = alloc_pages_node(cpu_to_node(cpu),
6394				GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO,
6395				cpu_buffer->buffer->subbuf_order);
6396	if (!page) {
6397		kfree(bpage);
6398		return ERR_PTR(-ENOMEM);
6399	}
6400
6401	bpage->data = page_address(page);
6402
6403 out:
6404	rb_init_page(bpage->data);
6405
6406	return bpage;
6407}
6408EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
6409
6410/**
6411 * ring_buffer_free_read_page - free an allocated read page
6412 * @buffer: the buffer the page was allocate for
6413 * @cpu: the cpu buffer the page came from
6414 * @data_page: the page to free
6415 *
6416 * Free a page allocated from ring_buffer_alloc_read_page.
6417 */
6418void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
6419				struct buffer_data_read_page *data_page)
6420{
6421	struct ring_buffer_per_cpu *cpu_buffer;
6422	struct buffer_data_page *bpage = data_page->data;
6423	struct page *page = virt_to_page(bpage);
6424	unsigned long flags;
6425
6426	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
6427		return;
6428
6429	cpu_buffer = buffer->buffers[cpu];
6430
6431	/*
6432	 * If the page is still in use someplace else, or order of the page
6433	 * is different from the subbuffer order of the buffer -
6434	 * we can't reuse it
6435	 */
6436	if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
6437		goto out;
6438
6439	local_irq_save(flags);
6440	arch_spin_lock(&cpu_buffer->lock);
6441
6442	if (!cpu_buffer->free_page) {
6443		cpu_buffer->free_page = bpage;
6444		bpage = NULL;
6445	}
6446
6447	arch_spin_unlock(&cpu_buffer->lock);
6448	local_irq_restore(flags);
6449
6450 out:
6451	free_pages((unsigned long)bpage, data_page->order);
6452	kfree(data_page);
6453}
6454EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
6455
6456/**
6457 * ring_buffer_read_page - extract a page from the ring buffer
6458 * @buffer: buffer to extract from
6459 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
6460 * @len: amount to extract
6461 * @cpu: the cpu of the buffer to extract
6462 * @full: should the extraction only happen when the page is full.
6463 *
6464 * This function will pull out a page from the ring buffer and consume it.
6465 * @data_page must be the address of the variable that was returned
6466 * from ring_buffer_alloc_read_page. This is because the page might be used
6467 * to swap with a page in the ring buffer.
6468 *
6469 * for example:
6470 *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
6471 *	if (IS_ERR(rpage))
6472 *		return PTR_ERR(rpage);
6473 *	ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
6474 *	if (ret >= 0)
6475 *		process_page(ring_buffer_read_page_data(rpage), ret);
6476 *	ring_buffer_free_read_page(buffer, cpu, rpage);
6477 *
6478 * When @full is set, the function will not return true unless
6479 * the writer is off the reader page.
6480 *
6481 * Note: it is up to the calling functions to handle sleeps and wakeups.
6482 *  The ring buffer can be used anywhere in the kernel and can not
6483 *  blindly call wake_up. The layer that uses the ring buffer must be
6484 *  responsible for that.
6485 *
6486 * Returns:
6487 *  >=0 if data has been transferred, returns the offset of consumed data.
6488 *  <0 if no data has been transferred.
6489 */
6490int ring_buffer_read_page(struct trace_buffer *buffer,
6491			  struct buffer_data_read_page *data_page,
6492			  size_t len, int cpu, int full)
6493{
6494	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6495	struct ring_buffer_event *event;
6496	struct buffer_data_page *bpage;
6497	struct buffer_page *reader;
6498	unsigned long missed_events;
6499	unsigned long flags;
6500	unsigned int commit;
6501	unsigned int read;
6502	u64 save_timestamp;
6503	int ret = -1;
6504
6505	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6506		goto out;
6507
6508	/*
6509	 * If len is not big enough to hold the page header, then
6510	 * we can not copy anything.
6511	 */
6512	if (len <= BUF_PAGE_HDR_SIZE)
6513		goto out;
6514
6515	len -= BUF_PAGE_HDR_SIZE;
6516
6517	if (!data_page || !data_page->data)
6518		goto out;
6519	if (data_page->order != buffer->subbuf_order)
6520		goto out;
6521
6522	bpage = data_page->data;
6523	if (!bpage)
6524		goto out;
6525
6526	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6527
6528	reader = rb_get_reader_page(cpu_buffer);
6529	if (!reader)
6530		goto out_unlock;
6531
6532	event = rb_reader_event(cpu_buffer);
6533
6534	read = reader->read;
6535	commit = rb_page_size(reader);
6536
6537	/* Check if any events were dropped */
6538	missed_events = cpu_buffer->lost_events;
6539
6540	/*
6541	 * If this page has been partially read or
6542	 * if len is not big enough to read the rest of the page or
6543	 * a writer is still on the page, then
6544	 * we must copy the data from the page to the buffer.
6545	 * Otherwise, we can simply swap the page with the one passed in.
6546	 */
6547	if (read || (len < (commit - read)) ||
6548	    cpu_buffer->reader_page == cpu_buffer->commit_page ||
6549	    cpu_buffer->mapped) {
6550		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
6551		unsigned int rpos = read;
6552		unsigned int pos = 0;
6553		unsigned int size;
6554
6555		/*
6556		 * If a full page is expected, this can still be returned
6557		 * if there's been a previous partial read and the
6558		 * rest of the page can be read and the commit page is off
6559		 * the reader page.
6560		 */
6561		if (full &&
6562		    (!read || (len < (commit - read)) ||
6563		     cpu_buffer->reader_page == cpu_buffer->commit_page))
6564			goto out_unlock;
6565
6566		if (len > (commit - read))
6567			len = (commit - read);
6568
6569		/* Always keep the time extend and data together */
6570		size = rb_event_ts_length(event);
6571
6572		if (len < size)
6573			goto out_unlock;
6574
6575		/* save the current timestamp, since the user will need it */
6576		save_timestamp = cpu_buffer->read_stamp;
6577
6578		/* Need to copy one event at a time */
6579		do {
6580			/* We need the size of one event, because
6581			 * rb_advance_reader only advances by one event,
6582			 * whereas rb_event_ts_length may include the size of
6583			 * one or two events.
6584			 * We have already ensured there's enough space if this
6585			 * is a time extend. */
6586			size = rb_event_length(event);
6587			memcpy(bpage->data + pos, rpage->data + rpos, size);
6588
6589			len -= size;
6590
6591			rb_advance_reader(cpu_buffer);
6592			rpos = reader->read;
6593			pos += size;
6594
6595			if (rpos >= commit)
6596				break;
6597
6598			event = rb_reader_event(cpu_buffer);
6599			/* Always keep the time extend and data together */
6600			size = rb_event_ts_length(event);
6601		} while (len >= size);
6602
6603		/* update bpage */
6604		local_set(&bpage->commit, pos);
6605		bpage->time_stamp = save_timestamp;
6606
6607		/* we copied everything to the beginning */
6608		read = 0;
6609	} else {
6610		/* update the entry counter */
6611		cpu_buffer->read += rb_page_entries(reader);
6612		cpu_buffer->read_bytes += rb_page_size(reader);
6613
6614		/* swap the pages */
6615		rb_init_page(bpage);
6616		bpage = reader->page;
6617		reader->page = data_page->data;
6618		local_set(&reader->write, 0);
6619		local_set(&reader->entries, 0);
6620		reader->read = 0;
6621		data_page->data = bpage;
6622
6623		/*
6624		 * Use the real_end for the data size,
6625		 * This gives us a chance to store the lost events
6626		 * on the page.
6627		 */
6628		if (reader->real_end)
6629			local_set(&bpage->commit, reader->real_end);
6630	}
6631	ret = read;
6632
6633	cpu_buffer->lost_events = 0;
6634
6635	commit = local_read(&bpage->commit);
6636	/*
6637	 * Set a flag in the commit field if we lost events
6638	 */
6639	if (missed_events) {
6640		/* If there is room at the end of the page to save the
6641		 * missed events, then record it there.
6642		 */
6643		if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
6644			memcpy(&bpage->data[commit], &missed_events,
6645			       sizeof(missed_events));
6646			local_add(RB_MISSED_STORED, &bpage->commit);
6647			commit += sizeof(missed_events);
6648		}
6649		local_add(RB_MISSED_EVENTS, &bpage->commit);
6650	}
6651
6652	/*
6653	 * This page may be off to user land. Zero it out here.
6654	 */
6655	if (commit < buffer->subbuf_size)
6656		memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
6657
6658 out_unlock:
6659	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6660
6661 out:
6662	return ret;
6663}
6664EXPORT_SYMBOL_GPL(ring_buffer_read_page);
6665
6666/**
6667 * ring_buffer_read_page_data - get pointer to the data in the page.
6668 * @page:  the page to get the data from
6669 *
6670 * Returns pointer to the actual data in this page.
6671 */
6672void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
6673{
6674	return page->data;
6675}
6676EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
6677
6678/**
6679 * ring_buffer_subbuf_size_get - get size of the sub buffer.
6680 * @buffer: the buffer to get the sub buffer size from
6681 *
6682 * Returns size of the sub buffer, in bytes.
6683 */
6684int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
6685{
6686	return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6687}
6688EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
6689
6690/**
6691 * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
6692 * @buffer: The ring_buffer to get the system sub page order from
6693 *
6694 * By default, one ring buffer sub page equals to one system page. This parameter
6695 * is configurable, per ring buffer. The size of the ring buffer sub page can be
6696 * extended, but must be an order of system page size.
6697 *
6698 * Returns the order of buffer sub page size, in system pages:
6699 * 0 means the sub buffer size is 1 system page and so forth.
6700 * In case of an error < 0 is returned.
6701 */
6702int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
6703{
6704	if (!buffer)
6705		return -EINVAL;
6706
6707	return buffer->subbuf_order;
6708}
6709EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
6710
6711/**
6712 * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
6713 * @buffer: The ring_buffer to set the new page size.
6714 * @order: Order of the system pages in one sub buffer page
6715 *
6716 * By default, one ring buffer pages equals to one system page. This API can be
6717 * used to set new size of the ring buffer page. The size must be order of
6718 * system page size, that's why the input parameter @order is the order of
6719 * system pages that are allocated for one ring buffer page:
6720 *  0 - 1 system page
6721 *  1 - 2 system pages
6722 *  3 - 4 system pages
6723 *  ...
6724 *
6725 * Returns 0 on success or < 0 in case of an error.
6726 */
6727int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
6728{
6729	struct ring_buffer_per_cpu *cpu_buffer;
6730	struct buffer_page *bpage, *tmp;
6731	int old_order, old_size;
6732	int nr_pages;
6733	int psize;
6734	int err;
6735	int cpu;
6736
6737	if (!buffer || order < 0)
6738		return -EINVAL;
6739
6740	if (buffer->subbuf_order == order)
6741		return 0;
6742
6743	psize = (1 << order) * PAGE_SIZE;
6744	if (psize <= BUF_PAGE_HDR_SIZE)
6745		return -EINVAL;
6746
6747	/* Size of a subbuf cannot be greater than the write counter */
6748	if (psize > RB_WRITE_MASK + 1)
6749		return -EINVAL;
6750
6751	old_order = buffer->subbuf_order;
6752	old_size = buffer->subbuf_size;
6753
6754	/* prevent another thread from changing buffer sizes */
6755	mutex_lock(&buffer->mutex);
6756	atomic_inc(&buffer->record_disabled);
6757
6758	/* Make sure all commits have finished */
6759	synchronize_rcu();
6760
6761	buffer->subbuf_order = order;
6762	buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
6763
6764	/* Make sure all new buffers are allocated, before deleting the old ones */
6765	for_each_buffer_cpu(buffer, cpu) {
6766
6767		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6768			continue;
6769
6770		cpu_buffer = buffer->buffers[cpu];
6771
6772		if (cpu_buffer->mapped) {
6773			err = -EBUSY;
6774			goto error;
6775		}
6776
6777		/* Update the number of pages to match the new size */
6778		nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
6779		nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
6780
6781		/* we need a minimum of two pages */
6782		if (nr_pages < 2)
6783			nr_pages = 2;
6784
6785		cpu_buffer->nr_pages_to_update = nr_pages;
6786
6787		/* Include the reader page */
6788		nr_pages++;
6789
6790		/* Allocate the new size buffer */
6791		INIT_LIST_HEAD(&cpu_buffer->new_pages);
6792		if (__rb_allocate_pages(cpu_buffer, nr_pages,
6793					&cpu_buffer->new_pages)) {
6794			/* not enough memory for new pages */
6795			err = -ENOMEM;
6796			goto error;
6797		}
6798	}
6799
6800	for_each_buffer_cpu(buffer, cpu) {
6801		struct buffer_data_page *old_free_data_page;
6802		struct list_head old_pages;
6803		unsigned long flags;
6804
6805		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6806			continue;
6807
6808		cpu_buffer = buffer->buffers[cpu];
6809
6810		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6811
6812		/* Clear the head bit to make the link list normal to read */
6813		rb_head_page_deactivate(cpu_buffer);
6814
6815		/*
6816		 * Collect buffers from the cpu_buffer pages list and the
6817		 * reader_page on old_pages, so they can be freed later when not
6818		 * under a spinlock. The pages list is a linked list with no
6819		 * head, adding old_pages turns it into a regular list with
6820		 * old_pages being the head.
6821		 */
6822		list_add(&old_pages, cpu_buffer->pages);
6823		list_add(&cpu_buffer->reader_page->list, &old_pages);
 
 
6824
6825		/* One page was allocated for the reader page */
6826		cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
6827						     struct buffer_page, list);
6828		list_del_init(&cpu_buffer->reader_page->list);
6829
6830		/* Install the new pages, remove the head from the list */
6831		cpu_buffer->pages = cpu_buffer->new_pages.next;
6832		list_del_init(&cpu_buffer->new_pages);
6833		cpu_buffer->cnt++;
 
 
 
6834
6835		cpu_buffer->head_page
6836			= list_entry(cpu_buffer->pages, struct buffer_page, list);
6837		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
6838
6839		cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
6840		cpu_buffer->nr_pages_to_update = 0;
6841
6842		old_free_data_page = cpu_buffer->free_page;
6843		cpu_buffer->free_page = NULL;
6844
6845		rb_head_page_activate(cpu_buffer);
6846
6847		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6848
6849		/* Free old sub buffers */
6850		list_for_each_entry_safe(bpage, tmp, &old_pages, list) {
6851			list_del_init(&bpage->list);
6852			free_buffer_page(bpage);
6853		}
6854		free_pages((unsigned long)old_free_data_page, old_order);
6855
6856		rb_check_pages(cpu_buffer);
6857	}
6858
6859	atomic_dec(&buffer->record_disabled);
6860	mutex_unlock(&buffer->mutex);
6861
6862	return 0;
6863
6864error:
6865	buffer->subbuf_order = old_order;
6866	buffer->subbuf_size = old_size;
6867
6868	atomic_dec(&buffer->record_disabled);
6869	mutex_unlock(&buffer->mutex);
6870
6871	for_each_buffer_cpu(buffer, cpu) {
6872		cpu_buffer = buffer->buffers[cpu];
6873
6874		if (!cpu_buffer->nr_pages_to_update)
6875			continue;
6876
6877		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6878			list_del_init(&bpage->list);
6879			free_buffer_page(bpage);
6880		}
6881	}
6882
6883	return err;
6884}
6885EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6886
6887static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6888{
6889	struct page *page;
6890
6891	if (cpu_buffer->meta_page)
6892		return 0;
6893
6894	page = alloc_page(GFP_USER | __GFP_ZERO);
6895	if (!page)
6896		return -ENOMEM;
6897
6898	cpu_buffer->meta_page = page_to_virt(page);
6899
6900	return 0;
6901}
6902
6903static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6904{
6905	unsigned long addr = (unsigned long)cpu_buffer->meta_page;
6906
6907	free_page(addr);
6908	cpu_buffer->meta_page = NULL;
6909}
6910
6911static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer,
6912				   unsigned long *subbuf_ids)
6913{
6914	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6915	unsigned int nr_subbufs = cpu_buffer->nr_pages + 1;
6916	struct buffer_page *first_subbuf, *subbuf;
6917	int id = 0;
6918
6919	subbuf_ids[id] = (unsigned long)cpu_buffer->reader_page->page;
6920	cpu_buffer->reader_page->id = id++;
6921
6922	first_subbuf = subbuf = rb_set_head_page(cpu_buffer);
6923	do {
6924		if (WARN_ON(id >= nr_subbufs))
6925			break;
6926
6927		subbuf_ids[id] = (unsigned long)subbuf->page;
6928		subbuf->id = id;
6929
6930		rb_inc_page(&subbuf);
6931		id++;
6932	} while (subbuf != first_subbuf);
6933
6934	/* install subbuf ID to kern VA translation */
6935	cpu_buffer->subbuf_ids = subbuf_ids;
6936
6937	meta->meta_struct_len = sizeof(*meta);
6938	meta->nr_subbufs = nr_subbufs;
6939	meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6940	meta->meta_page_size = meta->subbuf_size;
6941
6942	rb_update_meta_page(cpu_buffer);
6943}
6944
6945static struct ring_buffer_per_cpu *
6946rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu)
6947{
6948	struct ring_buffer_per_cpu *cpu_buffer;
6949
6950	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6951		return ERR_PTR(-EINVAL);
6952
6953	cpu_buffer = buffer->buffers[cpu];
6954
6955	mutex_lock(&cpu_buffer->mapping_lock);
6956
6957	if (!cpu_buffer->user_mapped) {
6958		mutex_unlock(&cpu_buffer->mapping_lock);
6959		return ERR_PTR(-ENODEV);
6960	}
6961
6962	return cpu_buffer;
6963}
6964
6965static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6966{
6967	mutex_unlock(&cpu_buffer->mapping_lock);
6968}
6969
6970/*
6971 * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need
6972 * to be set-up or torn-down.
6973 */
6974static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer,
6975			       bool inc)
6976{
6977	unsigned long flags;
6978
6979	lockdep_assert_held(&cpu_buffer->mapping_lock);
6980
6981	/* mapped is always greater or equal to user_mapped */
6982	if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped))
6983		return -EINVAL;
6984
6985	if (inc && cpu_buffer->mapped == UINT_MAX)
6986		return -EBUSY;
6987
6988	if (WARN_ON(!inc && cpu_buffer->user_mapped == 0))
6989		return -EINVAL;
6990
6991	mutex_lock(&cpu_buffer->buffer->mutex);
6992	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6993
6994	if (inc) {
6995		cpu_buffer->user_mapped++;
6996		cpu_buffer->mapped++;
6997	} else {
6998		cpu_buffer->user_mapped--;
6999		cpu_buffer->mapped--;
7000	}
7001
7002	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7003	mutex_unlock(&cpu_buffer->buffer->mutex);
7004
7005	return 0;
7006}
7007
7008/*
7009 *   +--------------+  pgoff == 0
7010 *   |   meta page  |
7011 *   +--------------+  pgoff == 1
7012 *   | subbuffer 0  |
7013 *   |              |
7014 *   +--------------+  pgoff == (1 + (1 << subbuf_order))
7015 *   | subbuffer 1  |
7016 *   |              |
7017 *         ...
7018 */
7019#ifdef CONFIG_MMU
7020static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7021			struct vm_area_struct *vma)
7022{
7023	unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff;
7024	unsigned int subbuf_pages, subbuf_order;
7025	struct page **pages;
7026	int p = 0, s = 0;
7027	int err;
7028
7029	/* Refuse MP_PRIVATE or writable mappings */
7030	if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC ||
7031	    !(vma->vm_flags & VM_MAYSHARE))
7032		return -EPERM;
7033
7034	subbuf_order = cpu_buffer->buffer->subbuf_order;
7035	subbuf_pages = 1 << subbuf_order;
7036
7037	if (subbuf_order && pgoff % subbuf_pages)
7038		return -EINVAL;
7039
7040	/*
7041	 * Make sure the mapping cannot become writable later. Also tell the VM
7042	 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND).
7043	 */
7044	vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP,
7045		     VM_MAYWRITE);
7046
7047	lockdep_assert_held(&cpu_buffer->mapping_lock);
7048
7049	nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */
7050	nr_pages = ((nr_subbufs + 1) << subbuf_order); /* + meta-page */
7051	if (nr_pages <= pgoff)
7052		return -EINVAL;
7053
7054	nr_pages -= pgoff;
7055
7056	nr_vma_pages = vma_pages(vma);
7057	if (!nr_vma_pages || nr_vma_pages > nr_pages)
7058		return -EINVAL;
7059
7060	nr_pages = nr_vma_pages;
7061
7062	pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL);
7063	if (!pages)
7064		return -ENOMEM;
7065
7066	if (!pgoff) {
7067		unsigned long meta_page_padding;
7068
7069		pages[p++] = virt_to_page(cpu_buffer->meta_page);
7070
7071		/*
7072		 * Pad with the zero-page to align the meta-page with the
7073		 * sub-buffers.
7074		 */
7075		meta_page_padding = subbuf_pages - 1;
7076		while (meta_page_padding-- && p < nr_pages) {
7077			unsigned long __maybe_unused zero_addr =
7078				vma->vm_start + (PAGE_SIZE * p);
7079
7080			pages[p++] = ZERO_PAGE(zero_addr);
7081		}
7082	} else {
7083		/* Skip the meta-page */
7084		pgoff -= subbuf_pages;
7085
7086		s += pgoff / subbuf_pages;
7087	}
7088
7089	while (p < nr_pages) {
7090		struct page *page;
7091		int off = 0;
7092
7093		if (WARN_ON_ONCE(s >= nr_subbufs)) {
7094			err = -EINVAL;
7095			goto out;
7096		}
7097
7098		page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
7099
7100		for (; off < (1 << (subbuf_order)); off++, page++) {
7101			if (p >= nr_pages)
7102				break;
7103
7104			pages[p++] = page;
7105		}
7106		s++;
7107	}
7108
7109	err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
7110
7111out:
7112	kfree(pages);
7113
7114	return err;
7115}
7116#else
7117static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7118			struct vm_area_struct *vma)
7119{
7120	return -EOPNOTSUPP;
7121}
7122#endif
7123
7124int ring_buffer_map(struct trace_buffer *buffer, int cpu,
7125		    struct vm_area_struct *vma)
7126{
7127	struct ring_buffer_per_cpu *cpu_buffer;
7128	unsigned long flags, *subbuf_ids;
7129	int err = 0;
7130
7131	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7132		return -EINVAL;
7133
7134	cpu_buffer = buffer->buffers[cpu];
7135
7136	mutex_lock(&cpu_buffer->mapping_lock);
7137
7138	if (cpu_buffer->user_mapped) {
7139		err = __rb_map_vma(cpu_buffer, vma);
7140		if (!err)
7141			err = __rb_inc_dec_mapped(cpu_buffer, true);
7142		mutex_unlock(&cpu_buffer->mapping_lock);
7143		return err;
7144	}
7145
7146	/* prevent another thread from changing buffer/sub-buffer sizes */
7147	mutex_lock(&buffer->mutex);
7148
7149	err = rb_alloc_meta_page(cpu_buffer);
7150	if (err)
7151		goto unlock;
7152
7153	/* subbuf_ids include the reader while nr_pages does not */
7154	subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL);
7155	if (!subbuf_ids) {
7156		rb_free_meta_page(cpu_buffer);
7157		err = -ENOMEM;
7158		goto unlock;
7159	}
7160
7161	atomic_inc(&cpu_buffer->resize_disabled);
7162
7163	/*
7164	 * Lock all readers to block any subbuf swap until the subbuf IDs are
7165	 * assigned.
7166	 */
7167	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7168	rb_setup_ids_meta_page(cpu_buffer, subbuf_ids);
7169
7170	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7171
7172	err = __rb_map_vma(cpu_buffer, vma);
7173	if (!err) {
7174		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7175		/* This is the first time it is mapped by user */
7176		cpu_buffer->mapped++;
7177		cpu_buffer->user_mapped = 1;
7178		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7179	} else {
7180		kfree(cpu_buffer->subbuf_ids);
7181		cpu_buffer->subbuf_ids = NULL;
7182		rb_free_meta_page(cpu_buffer);
7183		atomic_dec(&cpu_buffer->resize_disabled);
7184	}
7185
7186unlock:
7187	mutex_unlock(&buffer->mutex);
7188	mutex_unlock(&cpu_buffer->mapping_lock);
7189
7190	return err;
7191}
7192
7193int ring_buffer_unmap(struct trace_buffer *buffer, int cpu)
7194{
7195	struct ring_buffer_per_cpu *cpu_buffer;
7196	unsigned long flags;
7197	int err = 0;
7198
7199	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7200		return -EINVAL;
7201
7202	cpu_buffer = buffer->buffers[cpu];
7203
7204	mutex_lock(&cpu_buffer->mapping_lock);
7205
7206	if (!cpu_buffer->user_mapped) {
7207		err = -ENODEV;
7208		goto out;
7209	} else if (cpu_buffer->user_mapped > 1) {
7210		__rb_inc_dec_mapped(cpu_buffer, false);
7211		goto out;
7212	}
7213
7214	mutex_lock(&buffer->mutex);
7215	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7216
7217	/* This is the last user space mapping */
7218	if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped))
7219		cpu_buffer->mapped--;
7220	cpu_buffer->user_mapped = 0;
7221
7222	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7223
7224	kfree(cpu_buffer->subbuf_ids);
7225	cpu_buffer->subbuf_ids = NULL;
7226	rb_free_meta_page(cpu_buffer);
7227	atomic_dec(&cpu_buffer->resize_disabled);
7228
7229	mutex_unlock(&buffer->mutex);
7230
7231out:
7232	mutex_unlock(&cpu_buffer->mapping_lock);
7233
7234	return err;
7235}
7236
7237int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu)
7238{
7239	struct ring_buffer_per_cpu *cpu_buffer;
7240	struct buffer_page *reader;
7241	unsigned long missed_events;
7242	unsigned long reader_size;
7243	unsigned long flags;
7244
7245	cpu_buffer = rb_get_mapped_buffer(buffer, cpu);
7246	if (IS_ERR(cpu_buffer))
7247		return (int)PTR_ERR(cpu_buffer);
7248
7249	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7250
7251consume:
7252	if (rb_per_cpu_empty(cpu_buffer))
7253		goto out;
7254
7255	reader_size = rb_page_size(cpu_buffer->reader_page);
7256
7257	/*
7258	 * There are data to be read on the current reader page, we can
7259	 * return to the caller. But before that, we assume the latter will read
7260	 * everything. Let's update the kernel reader accordingly.
7261	 */
7262	if (cpu_buffer->reader_page->read < reader_size) {
7263		while (cpu_buffer->reader_page->read < reader_size)
7264			rb_advance_reader(cpu_buffer);
7265		goto out;
7266	}
7267
7268	reader = rb_get_reader_page(cpu_buffer);
7269	if (WARN_ON(!reader))
7270		goto out;
7271
7272	/* Check if any events were dropped */
7273	missed_events = cpu_buffer->lost_events;
7274
7275	if (cpu_buffer->reader_page != cpu_buffer->commit_page) {
7276		if (missed_events) {
7277			struct buffer_data_page *bpage = reader->page;
7278			unsigned int commit;
7279			/*
7280			 * Use the real_end for the data size,
7281			 * This gives us a chance to store the lost events
7282			 * on the page.
7283			 */
7284			if (reader->real_end)
7285				local_set(&bpage->commit, reader->real_end);
7286			/*
7287			 * If there is room at the end of the page to save the
7288			 * missed events, then record it there.
7289			 */
7290			commit = rb_page_size(reader);
7291			if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
7292				memcpy(&bpage->data[commit], &missed_events,
7293				       sizeof(missed_events));
7294				local_add(RB_MISSED_STORED, &bpage->commit);
7295			}
7296			local_add(RB_MISSED_EVENTS, &bpage->commit);
7297		}
7298	} else {
7299		/*
7300		 * There really shouldn't be any missed events if the commit
7301		 * is on the reader page.
7302		 */
7303		WARN_ON_ONCE(missed_events);
7304	}
7305
7306	cpu_buffer->lost_events = 0;
7307
7308	goto consume;
7309
7310out:
7311	/* Some archs do not have data cache coherency between kernel and user-space */
7312	flush_dcache_folio(virt_to_folio(cpu_buffer->reader_page->page));
7313
7314	rb_update_meta_page(cpu_buffer);
7315
7316	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7317	rb_put_mapped_buffer(cpu_buffer);
7318
7319	return 0;
7320}
7321
7322/*
7323 * We only allocate new buffers, never free them if the CPU goes down.
7324 * If we were to free the buffer, then the user would lose any trace that was in
7325 * the buffer.
7326 */
7327int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
7328{
7329	struct trace_buffer *buffer;
7330	long nr_pages_same;
7331	int cpu_i;
7332	unsigned long nr_pages;
7333
7334	buffer = container_of(node, struct trace_buffer, node);
7335	if (cpumask_test_cpu(cpu, buffer->cpumask))
7336		return 0;
7337
7338	nr_pages = 0;
7339	nr_pages_same = 1;
7340	/* check if all cpu sizes are same */
7341	for_each_buffer_cpu(buffer, cpu_i) {
7342		/* fill in the size from first enabled cpu */
7343		if (nr_pages == 0)
7344			nr_pages = buffer->buffers[cpu_i]->nr_pages;
7345		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
7346			nr_pages_same = 0;
7347			break;
7348		}
7349	}
7350	/* allocate minimum pages, user can later expand it */
7351	if (!nr_pages_same)
7352		nr_pages = 2;
7353	buffer->buffers[cpu] =
7354		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7355	if (!buffer->buffers[cpu]) {
7356		WARN(1, "failed to allocate ring buffer on CPU %u\n",
7357		     cpu);
7358		return -ENOMEM;
7359	}
7360	smp_wmb();
7361	cpumask_set_cpu(cpu, buffer->cpumask);
7362	return 0;
7363}
7364
7365#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
7366/*
7367 * This is a basic integrity check of the ring buffer.
7368 * Late in the boot cycle this test will run when configured in.
7369 * It will kick off a thread per CPU that will go into a loop
7370 * writing to the per cpu ring buffer various sizes of data.
7371 * Some of the data will be large items, some small.
7372 *
7373 * Another thread is created that goes into a spin, sending out
7374 * IPIs to the other CPUs to also write into the ring buffer.
7375 * this is to test the nesting ability of the buffer.
7376 *
7377 * Basic stats are recorded and reported. If something in the
7378 * ring buffer should happen that's not expected, a big warning
7379 * is displayed and all ring buffers are disabled.
7380 */
7381static struct task_struct *rb_threads[NR_CPUS] __initdata;
7382
7383struct rb_test_data {
7384	struct trace_buffer *buffer;
7385	unsigned long		events;
7386	unsigned long		bytes_written;
7387	unsigned long		bytes_alloc;
7388	unsigned long		bytes_dropped;
7389	unsigned long		events_nested;
7390	unsigned long		bytes_written_nested;
7391	unsigned long		bytes_alloc_nested;
7392	unsigned long		bytes_dropped_nested;
7393	int			min_size_nested;
7394	int			max_size_nested;
7395	int			max_size;
7396	int			min_size;
7397	int			cpu;
7398	int			cnt;
7399};
7400
7401static struct rb_test_data rb_data[NR_CPUS] __initdata;
7402
7403/* 1 meg per cpu */
7404#define RB_TEST_BUFFER_SIZE	1048576
7405
7406static char rb_string[] __initdata =
7407	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
7408	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
7409	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
7410
7411static bool rb_test_started __initdata;
7412
7413struct rb_item {
7414	int size;
7415	char str[];
7416};
7417
7418static __init int rb_write_something(struct rb_test_data *data, bool nested)
7419{
7420	struct ring_buffer_event *event;
7421	struct rb_item *item;
7422	bool started;
7423	int event_len;
7424	int size;
7425	int len;
7426	int cnt;
7427
7428	/* Have nested writes different that what is written */
7429	cnt = data->cnt + (nested ? 27 : 0);
7430
7431	/* Multiply cnt by ~e, to make some unique increment */
7432	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
7433
7434	len = size + sizeof(struct rb_item);
7435
7436	started = rb_test_started;
7437	/* read rb_test_started before checking buffer enabled */
7438	smp_rmb();
7439
7440	event = ring_buffer_lock_reserve(data->buffer, len);
7441	if (!event) {
7442		/* Ignore dropped events before test starts. */
7443		if (started) {
7444			if (nested)
7445				data->bytes_dropped += len;
7446			else
7447				data->bytes_dropped_nested += len;
7448		}
7449		return len;
7450	}
7451
7452	event_len = ring_buffer_event_length(event);
7453
7454	if (RB_WARN_ON(data->buffer, event_len < len))
7455		goto out;
7456
7457	item = ring_buffer_event_data(event);
7458	item->size = size;
7459	memcpy(item->str, rb_string, size);
7460
7461	if (nested) {
7462		data->bytes_alloc_nested += event_len;
7463		data->bytes_written_nested += len;
7464		data->events_nested++;
7465		if (!data->min_size_nested || len < data->min_size_nested)
7466			data->min_size_nested = len;
7467		if (len > data->max_size_nested)
7468			data->max_size_nested = len;
7469	} else {
7470		data->bytes_alloc += event_len;
7471		data->bytes_written += len;
7472		data->events++;
7473		if (!data->min_size || len < data->min_size)
7474			data->max_size = len;
7475		if (len > data->max_size)
7476			data->max_size = len;
7477	}
7478
7479 out:
7480	ring_buffer_unlock_commit(data->buffer);
7481
7482	return 0;
7483}
7484
7485static __init int rb_test(void *arg)
7486{
7487	struct rb_test_data *data = arg;
7488
7489	while (!kthread_should_stop()) {
7490		rb_write_something(data, false);
7491		data->cnt++;
7492
7493		set_current_state(TASK_INTERRUPTIBLE);
7494		/* Now sleep between a min of 100-300us and a max of 1ms */
7495		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
7496	}
7497
7498	return 0;
7499}
7500
7501static __init void rb_ipi(void *ignore)
7502{
7503	struct rb_test_data *data;
7504	int cpu = smp_processor_id();
7505
7506	data = &rb_data[cpu];
7507	rb_write_something(data, true);
7508}
7509
7510static __init int rb_hammer_test(void *arg)
7511{
7512	while (!kthread_should_stop()) {
7513
7514		/* Send an IPI to all cpus to write data! */
7515		smp_call_function(rb_ipi, NULL, 1);
7516		/* No sleep, but for non preempt, let others run */
7517		schedule();
7518	}
7519
7520	return 0;
7521}
7522
7523static __init int test_ringbuffer(void)
7524{
7525	struct task_struct *rb_hammer;
7526	struct trace_buffer *buffer;
7527	int cpu;
7528	int ret = 0;
7529
7530	if (security_locked_down(LOCKDOWN_TRACEFS)) {
7531		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
7532		return 0;
7533	}
7534
7535	pr_info("Running ring buffer tests...\n");
7536
7537	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
7538	if (WARN_ON(!buffer))
7539		return 0;
7540
7541	/* Disable buffer so that threads can't write to it yet */
7542	ring_buffer_record_off(buffer);
7543
7544	for_each_online_cpu(cpu) {
7545		rb_data[cpu].buffer = buffer;
7546		rb_data[cpu].cpu = cpu;
7547		rb_data[cpu].cnt = cpu;
7548		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
7549						     cpu, "rbtester/%u");
7550		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
7551			pr_cont("FAILED\n");
7552			ret = PTR_ERR(rb_threads[cpu]);
7553			goto out_free;
7554		}
7555	}
7556
7557	/* Now create the rb hammer! */
7558	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
7559	if (WARN_ON(IS_ERR(rb_hammer))) {
7560		pr_cont("FAILED\n");
7561		ret = PTR_ERR(rb_hammer);
7562		goto out_free;
7563	}
7564
7565	ring_buffer_record_on(buffer);
7566	/*
7567	 * Show buffer is enabled before setting rb_test_started.
7568	 * Yes there's a small race window where events could be
7569	 * dropped and the thread wont catch it. But when a ring
7570	 * buffer gets enabled, there will always be some kind of
7571	 * delay before other CPUs see it. Thus, we don't care about
7572	 * those dropped events. We care about events dropped after
7573	 * the threads see that the buffer is active.
7574	 */
7575	smp_wmb();
7576	rb_test_started = true;
7577
7578	set_current_state(TASK_INTERRUPTIBLE);
7579	/* Just run for 10 seconds */;
7580	schedule_timeout(10 * HZ);
7581
7582	kthread_stop(rb_hammer);
7583
7584 out_free:
7585	for_each_online_cpu(cpu) {
7586		if (!rb_threads[cpu])
7587			break;
7588		kthread_stop(rb_threads[cpu]);
7589	}
7590	if (ret) {
7591		ring_buffer_free(buffer);
7592		return ret;
7593	}
7594
7595	/* Report! */
7596	pr_info("finished\n");
7597	for_each_online_cpu(cpu) {
7598		struct ring_buffer_event *event;
7599		struct rb_test_data *data = &rb_data[cpu];
7600		struct rb_item *item;
7601		unsigned long total_events;
7602		unsigned long total_dropped;
7603		unsigned long total_written;
7604		unsigned long total_alloc;
7605		unsigned long total_read = 0;
7606		unsigned long total_size = 0;
7607		unsigned long total_len = 0;
7608		unsigned long total_lost = 0;
7609		unsigned long lost;
7610		int big_event_size;
7611		int small_event_size;
7612
7613		ret = -1;
7614
7615		total_events = data->events + data->events_nested;
7616		total_written = data->bytes_written + data->bytes_written_nested;
7617		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
7618		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
7619
7620		big_event_size = data->max_size + data->max_size_nested;
7621		small_event_size = data->min_size + data->min_size_nested;
7622
7623		pr_info("CPU %d:\n", cpu);
7624		pr_info("              events:    %ld\n", total_events);
7625		pr_info("       dropped bytes:    %ld\n", total_dropped);
7626		pr_info("       alloced bytes:    %ld\n", total_alloc);
7627		pr_info("       written bytes:    %ld\n", total_written);
7628		pr_info("       biggest event:    %d\n", big_event_size);
7629		pr_info("      smallest event:    %d\n", small_event_size);
7630
7631		if (RB_WARN_ON(buffer, total_dropped))
7632			break;
7633
7634		ret = 0;
7635
7636		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
7637			total_lost += lost;
7638			item = ring_buffer_event_data(event);
7639			total_len += ring_buffer_event_length(event);
7640			total_size += item->size + sizeof(struct rb_item);
7641			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
7642				pr_info("FAILED!\n");
7643				pr_info("buffer had: %.*s\n", item->size, item->str);
7644				pr_info("expected:   %.*s\n", item->size, rb_string);
7645				RB_WARN_ON(buffer, 1);
7646				ret = -1;
7647				break;
7648			}
7649			total_read++;
7650		}
7651		if (ret)
7652			break;
7653
7654		ret = -1;
7655
7656		pr_info("         read events:   %ld\n", total_read);
7657		pr_info("         lost events:   %ld\n", total_lost);
7658		pr_info("        total events:   %ld\n", total_lost + total_read);
7659		pr_info("  recorded len bytes:   %ld\n", total_len);
7660		pr_info(" recorded size bytes:   %ld\n", total_size);
7661		if (total_lost) {
7662			pr_info(" With dropped events, record len and size may not match\n"
7663				" alloced and written from above\n");
7664		} else {
7665			if (RB_WARN_ON(buffer, total_len != total_alloc ||
7666				       total_size != total_written))
7667				break;
7668		}
7669		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
7670			break;
7671
7672		ret = 0;
7673	}
7674	if (!ret)
7675		pr_info("Ring buffer PASSED!\n");
7676
7677	ring_buffer_free(buffer);
7678	return 0;
7679}
7680
7681late_initcall(test_ringbuffer);
7682#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */