Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Generic ring buffer
4 *
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 */
7#include <linux/trace_recursion.h>
8#include <linux/trace_events.h>
9#include <linux/ring_buffer.h>
10#include <linux/trace_clock.h>
11#include <linux/sched/clock.h>
12#include <linux/trace_seq.h>
13#include <linux/spinlock.h>
14#include <linux/irq_work.h>
15#include <linux/security.h>
16#include <linux/uaccess.h>
17#include <linux/hardirq.h>
18#include <linux/kthread.h> /* for self test */
19#include <linux/module.h>
20#include <linux/percpu.h>
21#include <linux/mutex.h>
22#include <linux/delay.h>
23#include <linux/slab.h>
24#include <linux/init.h>
25#include <linux/hash.h>
26#include <linux/list.h>
27#include <linux/cpu.h>
28#include <linux/oom.h>
29
30#include <asm/local64.h>
31#include <asm/local.h>
32
33/*
34 * The "absolute" timestamp in the buffer is only 59 bits.
35 * If a clock has the 5 MSBs set, it needs to be saved and
36 * reinserted.
37 */
38#define TS_MSB (0xf8ULL << 56)
39#define ABS_TS_MASK (~TS_MSB)
40
41static void update_pages_handler(struct work_struct *work);
42
43/*
44 * The ring buffer header is special. We must manually up keep it.
45 */
46int ring_buffer_print_entry_header(struct trace_seq *s)
47{
48 trace_seq_puts(s, "# compressed entry header\n");
49 trace_seq_puts(s, "\ttype_len : 5 bits\n");
50 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
51 trace_seq_puts(s, "\tarray : 32 bits\n");
52 trace_seq_putc(s, '\n');
53 trace_seq_printf(s, "\tpadding : type == %d\n",
54 RINGBUF_TYPE_PADDING);
55 trace_seq_printf(s, "\ttime_extend : type == %d\n",
56 RINGBUF_TYPE_TIME_EXTEND);
57 trace_seq_printf(s, "\ttime_stamp : type == %d\n",
58 RINGBUF_TYPE_TIME_STAMP);
59 trace_seq_printf(s, "\tdata max type_len == %d\n",
60 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
61
62 return !trace_seq_has_overflowed(s);
63}
64
65/*
66 * The ring buffer is made up of a list of pages. A separate list of pages is
67 * allocated for each CPU. A writer may only write to a buffer that is
68 * associated with the CPU it is currently executing on. A reader may read
69 * from any per cpu buffer.
70 *
71 * The reader is special. For each per cpu buffer, the reader has its own
72 * reader page. When a reader has read the entire reader page, this reader
73 * page is swapped with another page in the ring buffer.
74 *
75 * Now, as long as the writer is off the reader page, the reader can do what
76 * ever it wants with that page. The writer will never write to that page
77 * again (as long as it is out of the ring buffer).
78 *
79 * Here's some silly ASCII art.
80 *
81 * +------+
82 * |reader| RING BUFFER
83 * |page |
84 * +------+ +---+ +---+ +---+
85 * | |-->| |-->| |
86 * +---+ +---+ +---+
87 * ^ |
88 * | |
89 * +---------------+
90 *
91 *
92 * +------+
93 * |reader| RING BUFFER
94 * |page |------------------v
95 * +------+ +---+ +---+ +---+
96 * | |-->| |-->| |
97 * +---+ +---+ +---+
98 * ^ |
99 * | |
100 * +---------------+
101 *
102 *
103 * +------+
104 * |reader| RING BUFFER
105 * |page |------------------v
106 * +------+ +---+ +---+ +---+
107 * ^ | |-->| |-->| |
108 * | +---+ +---+ +---+
109 * | |
110 * | |
111 * +------------------------------+
112 *
113 *
114 * +------+
115 * |buffer| RING BUFFER
116 * |page |------------------v
117 * +------+ +---+ +---+ +---+
118 * ^ | | | |-->| |
119 * | New +---+ +---+ +---+
120 * | Reader------^ |
121 * | page |
122 * +------------------------------+
123 *
124 *
125 * After we make this swap, the reader can hand this page off to the splice
126 * code and be done with it. It can even allocate a new page if it needs to
127 * and swap that into the ring buffer.
128 *
129 * We will be using cmpxchg soon to make all this lockless.
130 *
131 */
132
133/* Used for individual buffers (after the counter) */
134#define RB_BUFFER_OFF (1 << 20)
135
136#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
137
138#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
139#define RB_ALIGNMENT 4U
140#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
141#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
142
143#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
144# define RB_FORCE_8BYTE_ALIGNMENT 0
145# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
146#else
147# define RB_FORCE_8BYTE_ALIGNMENT 1
148# define RB_ARCH_ALIGNMENT 8U
149#endif
150
151#define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
152
153/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
154#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
155
156enum {
157 RB_LEN_TIME_EXTEND = 8,
158 RB_LEN_TIME_STAMP = 8,
159};
160
161#define skip_time_extend(event) \
162 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
163
164#define extended_time(event) \
165 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
166
167static inline bool rb_null_event(struct ring_buffer_event *event)
168{
169 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
170}
171
172static void rb_event_set_padding(struct ring_buffer_event *event)
173{
174 /* padding has a NULL time_delta */
175 event->type_len = RINGBUF_TYPE_PADDING;
176 event->time_delta = 0;
177}
178
179static unsigned
180rb_event_data_length(struct ring_buffer_event *event)
181{
182 unsigned length;
183
184 if (event->type_len)
185 length = event->type_len * RB_ALIGNMENT;
186 else
187 length = event->array[0];
188 return length + RB_EVNT_HDR_SIZE;
189}
190
191/*
192 * Return the length of the given event. Will return
193 * the length of the time extend if the event is a
194 * time extend.
195 */
196static inline unsigned
197rb_event_length(struct ring_buffer_event *event)
198{
199 switch (event->type_len) {
200 case RINGBUF_TYPE_PADDING:
201 if (rb_null_event(event))
202 /* undefined */
203 return -1;
204 return event->array[0] + RB_EVNT_HDR_SIZE;
205
206 case RINGBUF_TYPE_TIME_EXTEND:
207 return RB_LEN_TIME_EXTEND;
208
209 case RINGBUF_TYPE_TIME_STAMP:
210 return RB_LEN_TIME_STAMP;
211
212 case RINGBUF_TYPE_DATA:
213 return rb_event_data_length(event);
214 default:
215 WARN_ON_ONCE(1);
216 }
217 /* not hit */
218 return 0;
219}
220
221/*
222 * Return total length of time extend and data,
223 * or just the event length for all other events.
224 */
225static inline unsigned
226rb_event_ts_length(struct ring_buffer_event *event)
227{
228 unsigned len = 0;
229
230 if (extended_time(event)) {
231 /* time extends include the data event after it */
232 len = RB_LEN_TIME_EXTEND;
233 event = skip_time_extend(event);
234 }
235 return len + rb_event_length(event);
236}
237
238/**
239 * ring_buffer_event_length - return the length of the event
240 * @event: the event to get the length of
241 *
242 * Returns the size of the data load of a data event.
243 * If the event is something other than a data event, it
244 * returns the size of the event itself. With the exception
245 * of a TIME EXTEND, where it still returns the size of the
246 * data load of the data event after it.
247 */
248unsigned ring_buffer_event_length(struct ring_buffer_event *event)
249{
250 unsigned length;
251
252 if (extended_time(event))
253 event = skip_time_extend(event);
254
255 length = rb_event_length(event);
256 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
257 return length;
258 length -= RB_EVNT_HDR_SIZE;
259 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
260 length -= sizeof(event->array[0]);
261 return length;
262}
263EXPORT_SYMBOL_GPL(ring_buffer_event_length);
264
265/* inline for ring buffer fast paths */
266static __always_inline void *
267rb_event_data(struct ring_buffer_event *event)
268{
269 if (extended_time(event))
270 event = skip_time_extend(event);
271 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
272 /* If length is in len field, then array[0] has the data */
273 if (event->type_len)
274 return (void *)&event->array[0];
275 /* Otherwise length is in array[0] and array[1] has the data */
276 return (void *)&event->array[1];
277}
278
279/**
280 * ring_buffer_event_data - return the data of the event
281 * @event: the event to get the data from
282 */
283void *ring_buffer_event_data(struct ring_buffer_event *event)
284{
285 return rb_event_data(event);
286}
287EXPORT_SYMBOL_GPL(ring_buffer_event_data);
288
289#define for_each_buffer_cpu(buffer, cpu) \
290 for_each_cpu(cpu, buffer->cpumask)
291
292#define for_each_online_buffer_cpu(buffer, cpu) \
293 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
294
295#define TS_SHIFT 27
296#define TS_MASK ((1ULL << TS_SHIFT) - 1)
297#define TS_DELTA_TEST (~TS_MASK)
298
299static u64 rb_event_time_stamp(struct ring_buffer_event *event)
300{
301 u64 ts;
302
303 ts = event->array[0];
304 ts <<= TS_SHIFT;
305 ts += event->time_delta;
306
307 return ts;
308}
309
310/* Flag when events were overwritten */
311#define RB_MISSED_EVENTS (1 << 31)
312/* Missed count stored at end */
313#define RB_MISSED_STORED (1 << 30)
314
315struct buffer_data_page {
316 u64 time_stamp; /* page time stamp */
317 local_t commit; /* write committed index */
318 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
319};
320
321struct buffer_data_read_page {
322 unsigned order; /* order of the page */
323 struct buffer_data_page *data; /* actual data, stored in this page */
324};
325
326/*
327 * Note, the buffer_page list must be first. The buffer pages
328 * are allocated in cache lines, which means that each buffer
329 * page will be at the beginning of a cache line, and thus
330 * the least significant bits will be zero. We use this to
331 * add flags in the list struct pointers, to make the ring buffer
332 * lockless.
333 */
334struct buffer_page {
335 struct list_head list; /* list of buffer pages */
336 local_t write; /* index for next write */
337 unsigned read; /* index for next read */
338 local_t entries; /* entries on this page */
339 unsigned long real_end; /* real end of data */
340 unsigned order; /* order of the page */
341 struct buffer_data_page *page; /* Actual data page */
342};
343
344/*
345 * The buffer page counters, write and entries, must be reset
346 * atomically when crossing page boundaries. To synchronize this
347 * update, two counters are inserted into the number. One is
348 * the actual counter for the write position or count on the page.
349 *
350 * The other is a counter of updaters. Before an update happens
351 * the update partition of the counter is incremented. This will
352 * allow the updater to update the counter atomically.
353 *
354 * The counter is 20 bits, and the state data is 12.
355 */
356#define RB_WRITE_MASK 0xfffff
357#define RB_WRITE_INTCNT (1 << 20)
358
359static void rb_init_page(struct buffer_data_page *bpage)
360{
361 local_set(&bpage->commit, 0);
362}
363
364static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
365{
366 return local_read(&bpage->page->commit);
367}
368
369static void free_buffer_page(struct buffer_page *bpage)
370{
371 free_pages((unsigned long)bpage->page, bpage->order);
372 kfree(bpage);
373}
374
375/*
376 * We need to fit the time_stamp delta into 27 bits.
377 */
378static inline bool test_time_stamp(u64 delta)
379{
380 return !!(delta & TS_DELTA_TEST);
381}
382
383struct rb_irq_work {
384 struct irq_work work;
385 wait_queue_head_t waiters;
386 wait_queue_head_t full_waiters;
387 bool waiters_pending;
388 bool full_waiters_pending;
389 bool wakeup_full;
390};
391
392/*
393 * Structure to hold event state and handle nested events.
394 */
395struct rb_event_info {
396 u64 ts;
397 u64 delta;
398 u64 before;
399 u64 after;
400 unsigned long length;
401 struct buffer_page *tail_page;
402 int add_timestamp;
403};
404
405/*
406 * Used for the add_timestamp
407 * NONE
408 * EXTEND - wants a time extend
409 * ABSOLUTE - the buffer requests all events to have absolute time stamps
410 * FORCE - force a full time stamp.
411 */
412enum {
413 RB_ADD_STAMP_NONE = 0,
414 RB_ADD_STAMP_EXTEND = BIT(1),
415 RB_ADD_STAMP_ABSOLUTE = BIT(2),
416 RB_ADD_STAMP_FORCE = BIT(3)
417};
418/*
419 * Used for which event context the event is in.
420 * TRANSITION = 0
421 * NMI = 1
422 * IRQ = 2
423 * SOFTIRQ = 3
424 * NORMAL = 4
425 *
426 * See trace_recursive_lock() comment below for more details.
427 */
428enum {
429 RB_CTX_TRANSITION,
430 RB_CTX_NMI,
431 RB_CTX_IRQ,
432 RB_CTX_SOFTIRQ,
433 RB_CTX_NORMAL,
434 RB_CTX_MAX
435};
436
437struct rb_time_struct {
438 local64_t time;
439};
440typedef struct rb_time_struct rb_time_t;
441
442#define MAX_NEST 5
443
444/*
445 * head_page == tail_page && head == tail then buffer is empty.
446 */
447struct ring_buffer_per_cpu {
448 int cpu;
449 atomic_t record_disabled;
450 atomic_t resize_disabled;
451 struct trace_buffer *buffer;
452 raw_spinlock_t reader_lock; /* serialize readers */
453 arch_spinlock_t lock;
454 struct lock_class_key lock_key;
455 struct buffer_data_page *free_page;
456 unsigned long nr_pages;
457 unsigned int current_context;
458 struct list_head *pages;
459 struct buffer_page *head_page; /* read from head */
460 struct buffer_page *tail_page; /* write to tail */
461 struct buffer_page *commit_page; /* committed pages */
462 struct buffer_page *reader_page;
463 unsigned long lost_events;
464 unsigned long last_overrun;
465 unsigned long nest;
466 local_t entries_bytes;
467 local_t entries;
468 local_t overrun;
469 local_t commit_overrun;
470 local_t dropped_events;
471 local_t committing;
472 local_t commits;
473 local_t pages_touched;
474 local_t pages_lost;
475 local_t pages_read;
476 long last_pages_touch;
477 size_t shortest_full;
478 unsigned long read;
479 unsigned long read_bytes;
480 rb_time_t write_stamp;
481 rb_time_t before_stamp;
482 u64 event_stamp[MAX_NEST];
483 u64 read_stamp;
484 /* pages removed since last reset */
485 unsigned long pages_removed;
486 /* ring buffer pages to update, > 0 to add, < 0 to remove */
487 long nr_pages_to_update;
488 struct list_head new_pages; /* new pages to add */
489 struct work_struct update_pages_work;
490 struct completion update_done;
491
492 struct rb_irq_work irq_work;
493};
494
495struct trace_buffer {
496 unsigned flags;
497 int cpus;
498 atomic_t record_disabled;
499 atomic_t resizing;
500 cpumask_var_t cpumask;
501
502 struct lock_class_key *reader_lock_key;
503
504 struct mutex mutex;
505
506 struct ring_buffer_per_cpu **buffers;
507
508 struct hlist_node node;
509 u64 (*clock)(void);
510
511 struct rb_irq_work irq_work;
512 bool time_stamp_abs;
513
514 unsigned int subbuf_size;
515 unsigned int subbuf_order;
516 unsigned int max_data_size;
517};
518
519struct ring_buffer_iter {
520 struct ring_buffer_per_cpu *cpu_buffer;
521 unsigned long head;
522 unsigned long next_event;
523 struct buffer_page *head_page;
524 struct buffer_page *cache_reader_page;
525 unsigned long cache_read;
526 unsigned long cache_pages_removed;
527 u64 read_stamp;
528 u64 page_stamp;
529 struct ring_buffer_event *event;
530 size_t event_size;
531 int missed_events;
532};
533
534int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
535{
536 struct buffer_data_page field;
537
538 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
539 "offset:0;\tsize:%u;\tsigned:%u;\n",
540 (unsigned int)sizeof(field.time_stamp),
541 (unsigned int)is_signed_type(u64));
542
543 trace_seq_printf(s, "\tfield: local_t commit;\t"
544 "offset:%u;\tsize:%u;\tsigned:%u;\n",
545 (unsigned int)offsetof(typeof(field), commit),
546 (unsigned int)sizeof(field.commit),
547 (unsigned int)is_signed_type(long));
548
549 trace_seq_printf(s, "\tfield: int overwrite;\t"
550 "offset:%u;\tsize:%u;\tsigned:%u;\n",
551 (unsigned int)offsetof(typeof(field), commit),
552 1,
553 (unsigned int)is_signed_type(long));
554
555 trace_seq_printf(s, "\tfield: char data;\t"
556 "offset:%u;\tsize:%u;\tsigned:%u;\n",
557 (unsigned int)offsetof(typeof(field), data),
558 (unsigned int)buffer->subbuf_size,
559 (unsigned int)is_signed_type(char));
560
561 return !trace_seq_has_overflowed(s);
562}
563
564static inline void rb_time_read(rb_time_t *t, u64 *ret)
565{
566 *ret = local64_read(&t->time);
567}
568static void rb_time_set(rb_time_t *t, u64 val)
569{
570 local64_set(&t->time, val);
571}
572
573/*
574 * Enable this to make sure that the event passed to
575 * ring_buffer_event_time_stamp() is not committed and also
576 * is on the buffer that it passed in.
577 */
578//#define RB_VERIFY_EVENT
579#ifdef RB_VERIFY_EVENT
580static struct list_head *rb_list_head(struct list_head *list);
581static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
582 void *event)
583{
584 struct buffer_page *page = cpu_buffer->commit_page;
585 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
586 struct list_head *next;
587 long commit, write;
588 unsigned long addr = (unsigned long)event;
589 bool done = false;
590 int stop = 0;
591
592 /* Make sure the event exists and is not committed yet */
593 do {
594 if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
595 done = true;
596 commit = local_read(&page->page->commit);
597 write = local_read(&page->write);
598 if (addr >= (unsigned long)&page->page->data[commit] &&
599 addr < (unsigned long)&page->page->data[write])
600 return;
601
602 next = rb_list_head(page->list.next);
603 page = list_entry(next, struct buffer_page, list);
604 } while (!done);
605 WARN_ON_ONCE(1);
606}
607#else
608static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
609 void *event)
610{
611}
612#endif
613
614/*
615 * The absolute time stamp drops the 5 MSBs and some clocks may
616 * require them. The rb_fix_abs_ts() will take a previous full
617 * time stamp, and add the 5 MSB of that time stamp on to the
618 * saved absolute time stamp. Then they are compared in case of
619 * the unlikely event that the latest time stamp incremented
620 * the 5 MSB.
621 */
622static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
623{
624 if (save_ts & TS_MSB) {
625 abs |= save_ts & TS_MSB;
626 /* Check for overflow */
627 if (unlikely(abs < save_ts))
628 abs += 1ULL << 59;
629 }
630 return abs;
631}
632
633static inline u64 rb_time_stamp(struct trace_buffer *buffer);
634
635/**
636 * ring_buffer_event_time_stamp - return the event's current time stamp
637 * @buffer: The buffer that the event is on
638 * @event: the event to get the time stamp of
639 *
640 * Note, this must be called after @event is reserved, and before it is
641 * committed to the ring buffer. And must be called from the same
642 * context where the event was reserved (normal, softirq, irq, etc).
643 *
644 * Returns the time stamp associated with the current event.
645 * If the event has an extended time stamp, then that is used as
646 * the time stamp to return.
647 * In the highly unlikely case that the event was nested more than
648 * the max nesting, then the write_stamp of the buffer is returned,
649 * otherwise current time is returned, but that really neither of
650 * the last two cases should ever happen.
651 */
652u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
653 struct ring_buffer_event *event)
654{
655 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
656 unsigned int nest;
657 u64 ts;
658
659 /* If the event includes an absolute time, then just use that */
660 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
661 ts = rb_event_time_stamp(event);
662 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
663 }
664
665 nest = local_read(&cpu_buffer->committing);
666 verify_event(cpu_buffer, event);
667 if (WARN_ON_ONCE(!nest))
668 goto fail;
669
670 /* Read the current saved nesting level time stamp */
671 if (likely(--nest < MAX_NEST))
672 return cpu_buffer->event_stamp[nest];
673
674 /* Shouldn't happen, warn if it does */
675 WARN_ONCE(1, "nest (%d) greater than max", nest);
676
677 fail:
678 rb_time_read(&cpu_buffer->write_stamp, &ts);
679
680 return ts;
681}
682
683/**
684 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
685 * @buffer: The ring_buffer to get the number of pages from
686 * @cpu: The cpu of the ring_buffer to get the number of pages from
687 *
688 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
689 */
690size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
691{
692 return buffer->buffers[cpu]->nr_pages;
693}
694
695/**
696 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
697 * @buffer: The ring_buffer to get the number of pages from
698 * @cpu: The cpu of the ring_buffer to get the number of pages from
699 *
700 * Returns the number of pages that have content in the ring buffer.
701 */
702size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
703{
704 size_t read;
705 size_t lost;
706 size_t cnt;
707
708 read = local_read(&buffer->buffers[cpu]->pages_read);
709 lost = local_read(&buffer->buffers[cpu]->pages_lost);
710 cnt = local_read(&buffer->buffers[cpu]->pages_touched);
711
712 if (WARN_ON_ONCE(cnt < lost))
713 return 0;
714
715 cnt -= lost;
716
717 /* The reader can read an empty page, but not more than that */
718 if (cnt < read) {
719 WARN_ON_ONCE(read > cnt + 1);
720 return 0;
721 }
722
723 return cnt - read;
724}
725
726static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
727{
728 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
729 size_t nr_pages;
730 size_t dirty;
731
732 nr_pages = cpu_buffer->nr_pages;
733 if (!nr_pages || !full)
734 return true;
735
736 /*
737 * Add one as dirty will never equal nr_pages, as the sub-buffer
738 * that the writer is on is not counted as dirty.
739 * This is needed if "buffer_percent" is set to 100.
740 */
741 dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
742
743 return (dirty * 100) >= (full * nr_pages);
744}
745
746/*
747 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
748 *
749 * Schedules a delayed work to wake up any task that is blocked on the
750 * ring buffer waiters queue.
751 */
752static void rb_wake_up_waiters(struct irq_work *work)
753{
754 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
755
756 wake_up_all(&rbwork->waiters);
757 if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
758 /* Only cpu_buffer sets the above flags */
759 struct ring_buffer_per_cpu *cpu_buffer =
760 container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
761
762 /* Called from interrupt context */
763 raw_spin_lock(&cpu_buffer->reader_lock);
764 rbwork->wakeup_full = false;
765 rbwork->full_waiters_pending = false;
766
767 /* Waking up all waiters, they will reset the shortest full */
768 cpu_buffer->shortest_full = 0;
769 raw_spin_unlock(&cpu_buffer->reader_lock);
770
771 wake_up_all(&rbwork->full_waiters);
772 }
773}
774
775/**
776 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
777 * @buffer: The ring buffer to wake waiters on
778 * @cpu: The CPU buffer to wake waiters on
779 *
780 * In the case of a file that represents a ring buffer is closing,
781 * it is prudent to wake up any waiters that are on this.
782 */
783void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
784{
785 struct ring_buffer_per_cpu *cpu_buffer;
786 struct rb_irq_work *rbwork;
787
788 if (!buffer)
789 return;
790
791 if (cpu == RING_BUFFER_ALL_CPUS) {
792
793 /* Wake up individual ones too. One level recursion */
794 for_each_buffer_cpu(buffer, cpu)
795 ring_buffer_wake_waiters(buffer, cpu);
796
797 rbwork = &buffer->irq_work;
798 } else {
799 if (WARN_ON_ONCE(!buffer->buffers))
800 return;
801 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
802 return;
803
804 cpu_buffer = buffer->buffers[cpu];
805 /* The CPU buffer may not have been initialized yet */
806 if (!cpu_buffer)
807 return;
808 rbwork = &cpu_buffer->irq_work;
809 }
810
811 /* This can be called in any context */
812 irq_work_queue(&rbwork->work);
813}
814
815static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
816{
817 struct ring_buffer_per_cpu *cpu_buffer;
818 bool ret = false;
819
820 /* Reads of all CPUs always waits for any data */
821 if (cpu == RING_BUFFER_ALL_CPUS)
822 return !ring_buffer_empty(buffer);
823
824 cpu_buffer = buffer->buffers[cpu];
825
826 if (!ring_buffer_empty_cpu(buffer, cpu)) {
827 unsigned long flags;
828 bool pagebusy;
829
830 if (!full)
831 return true;
832
833 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
834 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
835 ret = !pagebusy && full_hit(buffer, cpu, full);
836
837 if (!cpu_buffer->shortest_full ||
838 cpu_buffer->shortest_full > full)
839 cpu_buffer->shortest_full = full;
840 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
841 }
842 return ret;
843}
844
845/**
846 * ring_buffer_wait - wait for input to the ring buffer
847 * @buffer: buffer to wait on
848 * @cpu: the cpu buffer to wait on
849 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
850 *
851 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
852 * as data is added to any of the @buffer's cpu buffers. Otherwise
853 * it will wait for data to be added to a specific cpu buffer.
854 */
855int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
856{
857 struct ring_buffer_per_cpu *cpu_buffer;
858 DEFINE_WAIT(wait);
859 struct rb_irq_work *work;
860 int ret = 0;
861
862 /*
863 * Depending on what the caller is waiting for, either any
864 * data in any cpu buffer, or a specific buffer, put the
865 * caller on the appropriate wait queue.
866 */
867 if (cpu == RING_BUFFER_ALL_CPUS) {
868 work = &buffer->irq_work;
869 /* Full only makes sense on per cpu reads */
870 full = 0;
871 } else {
872 if (!cpumask_test_cpu(cpu, buffer->cpumask))
873 return -ENODEV;
874 cpu_buffer = buffer->buffers[cpu];
875 work = &cpu_buffer->irq_work;
876 }
877
878 if (full)
879 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
880 else
881 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
882
883 /*
884 * The events can happen in critical sections where
885 * checking a work queue can cause deadlocks.
886 * After adding a task to the queue, this flag is set
887 * only to notify events to try to wake up the queue
888 * using irq_work.
889 *
890 * We don't clear it even if the buffer is no longer
891 * empty. The flag only causes the next event to run
892 * irq_work to do the work queue wake up. The worse
893 * that can happen if we race with !trace_empty() is that
894 * an event will cause an irq_work to try to wake up
895 * an empty queue.
896 *
897 * There's no reason to protect this flag either, as
898 * the work queue and irq_work logic will do the necessary
899 * synchronization for the wake ups. The only thing
900 * that is necessary is that the wake up happens after
901 * a task has been queued. It's OK for spurious wake ups.
902 */
903 if (full)
904 work->full_waiters_pending = true;
905 else
906 work->waiters_pending = true;
907
908 if (rb_watermark_hit(buffer, cpu, full))
909 goto out;
910
911 if (signal_pending(current)) {
912 ret = -EINTR;
913 goto out;
914 }
915
916 schedule();
917 out:
918 if (full)
919 finish_wait(&work->full_waiters, &wait);
920 else
921 finish_wait(&work->waiters, &wait);
922
923 if (!ret && !rb_watermark_hit(buffer, cpu, full) && signal_pending(current))
924 ret = -EINTR;
925
926 return ret;
927}
928
929/**
930 * ring_buffer_poll_wait - poll on buffer input
931 * @buffer: buffer to wait on
932 * @cpu: the cpu buffer to wait on
933 * @filp: the file descriptor
934 * @poll_table: The poll descriptor
935 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
936 *
937 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
938 * as data is added to any of the @buffer's cpu buffers. Otherwise
939 * it will wait for data to be added to a specific cpu buffer.
940 *
941 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
942 * zero otherwise.
943 */
944__poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
945 struct file *filp, poll_table *poll_table, int full)
946{
947 struct ring_buffer_per_cpu *cpu_buffer;
948 struct rb_irq_work *rbwork;
949
950 if (cpu == RING_BUFFER_ALL_CPUS) {
951 rbwork = &buffer->irq_work;
952 full = 0;
953 } else {
954 if (!cpumask_test_cpu(cpu, buffer->cpumask))
955 return EPOLLERR;
956
957 cpu_buffer = buffer->buffers[cpu];
958 rbwork = &cpu_buffer->irq_work;
959 }
960
961 if (full) {
962 unsigned long flags;
963
964 poll_wait(filp, &rbwork->full_waiters, poll_table);
965
966 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
967 rbwork->full_waiters_pending = true;
968 if (!cpu_buffer->shortest_full ||
969 cpu_buffer->shortest_full > full)
970 cpu_buffer->shortest_full = full;
971 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
972 } else {
973 poll_wait(filp, &rbwork->waiters, poll_table);
974 rbwork->waiters_pending = true;
975 }
976
977 /*
978 * There's a tight race between setting the waiters_pending and
979 * checking if the ring buffer is empty. Once the waiters_pending bit
980 * is set, the next event will wake the task up, but we can get stuck
981 * if there's only a single event in.
982 *
983 * FIXME: Ideally, we need a memory barrier on the writer side as well,
984 * but adding a memory barrier to all events will cause too much of a
985 * performance hit in the fast path. We only need a memory barrier when
986 * the buffer goes from empty to having content. But as this race is
987 * extremely small, and it's not a problem if another event comes in, we
988 * will fix it later.
989 */
990 smp_mb();
991
992 if (full)
993 return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
994
995 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
996 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
997 return EPOLLIN | EPOLLRDNORM;
998 return 0;
999}
1000
1001/* buffer may be either ring_buffer or ring_buffer_per_cpu */
1002#define RB_WARN_ON(b, cond) \
1003 ({ \
1004 int _____ret = unlikely(cond); \
1005 if (_____ret) { \
1006 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1007 struct ring_buffer_per_cpu *__b = \
1008 (void *)b; \
1009 atomic_inc(&__b->buffer->record_disabled); \
1010 } else \
1011 atomic_inc(&b->record_disabled); \
1012 WARN_ON(1); \
1013 } \
1014 _____ret; \
1015 })
1016
1017/* Up this if you want to test the TIME_EXTENTS and normalization */
1018#define DEBUG_SHIFT 0
1019
1020static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1021{
1022 u64 ts;
1023
1024 /* Skip retpolines :-( */
1025 if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1026 ts = trace_clock_local();
1027 else
1028 ts = buffer->clock();
1029
1030 /* shift to debug/test normalization and TIME_EXTENTS */
1031 return ts << DEBUG_SHIFT;
1032}
1033
1034u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1035{
1036 u64 time;
1037
1038 preempt_disable_notrace();
1039 time = rb_time_stamp(buffer);
1040 preempt_enable_notrace();
1041
1042 return time;
1043}
1044EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1045
1046void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1047 int cpu, u64 *ts)
1048{
1049 /* Just stupid testing the normalize function and deltas */
1050 *ts >>= DEBUG_SHIFT;
1051}
1052EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1053
1054/*
1055 * Making the ring buffer lockless makes things tricky.
1056 * Although writes only happen on the CPU that they are on,
1057 * and they only need to worry about interrupts. Reads can
1058 * happen on any CPU.
1059 *
1060 * The reader page is always off the ring buffer, but when the
1061 * reader finishes with a page, it needs to swap its page with
1062 * a new one from the buffer. The reader needs to take from
1063 * the head (writes go to the tail). But if a writer is in overwrite
1064 * mode and wraps, it must push the head page forward.
1065 *
1066 * Here lies the problem.
1067 *
1068 * The reader must be careful to replace only the head page, and
1069 * not another one. As described at the top of the file in the
1070 * ASCII art, the reader sets its old page to point to the next
1071 * page after head. It then sets the page after head to point to
1072 * the old reader page. But if the writer moves the head page
1073 * during this operation, the reader could end up with the tail.
1074 *
1075 * We use cmpxchg to help prevent this race. We also do something
1076 * special with the page before head. We set the LSB to 1.
1077 *
1078 * When the writer must push the page forward, it will clear the
1079 * bit that points to the head page, move the head, and then set
1080 * the bit that points to the new head page.
1081 *
1082 * We also don't want an interrupt coming in and moving the head
1083 * page on another writer. Thus we use the second LSB to catch
1084 * that too. Thus:
1085 *
1086 * head->list->prev->next bit 1 bit 0
1087 * ------- -------
1088 * Normal page 0 0
1089 * Points to head page 0 1
1090 * New head page 1 0
1091 *
1092 * Note we can not trust the prev pointer of the head page, because:
1093 *
1094 * +----+ +-----+ +-----+
1095 * | |------>| T |---X--->| N |
1096 * | |<------| | | |
1097 * +----+ +-----+ +-----+
1098 * ^ ^ |
1099 * | +-----+ | |
1100 * +----------| R |----------+ |
1101 * | |<-----------+
1102 * +-----+
1103 *
1104 * Key: ---X--> HEAD flag set in pointer
1105 * T Tail page
1106 * R Reader page
1107 * N Next page
1108 *
1109 * (see __rb_reserve_next() to see where this happens)
1110 *
1111 * What the above shows is that the reader just swapped out
1112 * the reader page with a page in the buffer, but before it
1113 * could make the new header point back to the new page added
1114 * it was preempted by a writer. The writer moved forward onto
1115 * the new page added by the reader and is about to move forward
1116 * again.
1117 *
1118 * You can see, it is legitimate for the previous pointer of
1119 * the head (or any page) not to point back to itself. But only
1120 * temporarily.
1121 */
1122
1123#define RB_PAGE_NORMAL 0UL
1124#define RB_PAGE_HEAD 1UL
1125#define RB_PAGE_UPDATE 2UL
1126
1127
1128#define RB_FLAG_MASK 3UL
1129
1130/* PAGE_MOVED is not part of the mask */
1131#define RB_PAGE_MOVED 4UL
1132
1133/*
1134 * rb_list_head - remove any bit
1135 */
1136static struct list_head *rb_list_head(struct list_head *list)
1137{
1138 unsigned long val = (unsigned long)list;
1139
1140 return (struct list_head *)(val & ~RB_FLAG_MASK);
1141}
1142
1143/*
1144 * rb_is_head_page - test if the given page is the head page
1145 *
1146 * Because the reader may move the head_page pointer, we can
1147 * not trust what the head page is (it may be pointing to
1148 * the reader page). But if the next page is a header page,
1149 * its flags will be non zero.
1150 */
1151static inline int
1152rb_is_head_page(struct buffer_page *page, struct list_head *list)
1153{
1154 unsigned long val;
1155
1156 val = (unsigned long)list->next;
1157
1158 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1159 return RB_PAGE_MOVED;
1160
1161 return val & RB_FLAG_MASK;
1162}
1163
1164/*
1165 * rb_is_reader_page
1166 *
1167 * The unique thing about the reader page, is that, if the
1168 * writer is ever on it, the previous pointer never points
1169 * back to the reader page.
1170 */
1171static bool rb_is_reader_page(struct buffer_page *page)
1172{
1173 struct list_head *list = page->list.prev;
1174
1175 return rb_list_head(list->next) != &page->list;
1176}
1177
1178/*
1179 * rb_set_list_to_head - set a list_head to be pointing to head.
1180 */
1181static void rb_set_list_to_head(struct list_head *list)
1182{
1183 unsigned long *ptr;
1184
1185 ptr = (unsigned long *)&list->next;
1186 *ptr |= RB_PAGE_HEAD;
1187 *ptr &= ~RB_PAGE_UPDATE;
1188}
1189
1190/*
1191 * rb_head_page_activate - sets up head page
1192 */
1193static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1194{
1195 struct buffer_page *head;
1196
1197 head = cpu_buffer->head_page;
1198 if (!head)
1199 return;
1200
1201 /*
1202 * Set the previous list pointer to have the HEAD flag.
1203 */
1204 rb_set_list_to_head(head->list.prev);
1205}
1206
1207static void rb_list_head_clear(struct list_head *list)
1208{
1209 unsigned long *ptr = (unsigned long *)&list->next;
1210
1211 *ptr &= ~RB_FLAG_MASK;
1212}
1213
1214/*
1215 * rb_head_page_deactivate - clears head page ptr (for free list)
1216 */
1217static void
1218rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1219{
1220 struct list_head *hd;
1221
1222 /* Go through the whole list and clear any pointers found. */
1223 rb_list_head_clear(cpu_buffer->pages);
1224
1225 list_for_each(hd, cpu_buffer->pages)
1226 rb_list_head_clear(hd);
1227}
1228
1229static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1230 struct buffer_page *head,
1231 struct buffer_page *prev,
1232 int old_flag, int new_flag)
1233{
1234 struct list_head *list;
1235 unsigned long val = (unsigned long)&head->list;
1236 unsigned long ret;
1237
1238 list = &prev->list;
1239
1240 val &= ~RB_FLAG_MASK;
1241
1242 ret = cmpxchg((unsigned long *)&list->next,
1243 val | old_flag, val | new_flag);
1244
1245 /* check if the reader took the page */
1246 if ((ret & ~RB_FLAG_MASK) != val)
1247 return RB_PAGE_MOVED;
1248
1249 return ret & RB_FLAG_MASK;
1250}
1251
1252static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1253 struct buffer_page *head,
1254 struct buffer_page *prev,
1255 int old_flag)
1256{
1257 return rb_head_page_set(cpu_buffer, head, prev,
1258 old_flag, RB_PAGE_UPDATE);
1259}
1260
1261static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1262 struct buffer_page *head,
1263 struct buffer_page *prev,
1264 int old_flag)
1265{
1266 return rb_head_page_set(cpu_buffer, head, prev,
1267 old_flag, RB_PAGE_HEAD);
1268}
1269
1270static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1271 struct buffer_page *head,
1272 struct buffer_page *prev,
1273 int old_flag)
1274{
1275 return rb_head_page_set(cpu_buffer, head, prev,
1276 old_flag, RB_PAGE_NORMAL);
1277}
1278
1279static inline void rb_inc_page(struct buffer_page **bpage)
1280{
1281 struct list_head *p = rb_list_head((*bpage)->list.next);
1282
1283 *bpage = list_entry(p, struct buffer_page, list);
1284}
1285
1286static struct buffer_page *
1287rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1288{
1289 struct buffer_page *head;
1290 struct buffer_page *page;
1291 struct list_head *list;
1292 int i;
1293
1294 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1295 return NULL;
1296
1297 /* sanity check */
1298 list = cpu_buffer->pages;
1299 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1300 return NULL;
1301
1302 page = head = cpu_buffer->head_page;
1303 /*
1304 * It is possible that the writer moves the header behind
1305 * where we started, and we miss in one loop.
1306 * A second loop should grab the header, but we'll do
1307 * three loops just because I'm paranoid.
1308 */
1309 for (i = 0; i < 3; i++) {
1310 do {
1311 if (rb_is_head_page(page, page->list.prev)) {
1312 cpu_buffer->head_page = page;
1313 return page;
1314 }
1315 rb_inc_page(&page);
1316 } while (page != head);
1317 }
1318
1319 RB_WARN_ON(cpu_buffer, 1);
1320
1321 return NULL;
1322}
1323
1324static bool rb_head_page_replace(struct buffer_page *old,
1325 struct buffer_page *new)
1326{
1327 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1328 unsigned long val;
1329
1330 val = *ptr & ~RB_FLAG_MASK;
1331 val |= RB_PAGE_HEAD;
1332
1333 return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1334}
1335
1336/*
1337 * rb_tail_page_update - move the tail page forward
1338 */
1339static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1340 struct buffer_page *tail_page,
1341 struct buffer_page *next_page)
1342{
1343 unsigned long old_entries;
1344 unsigned long old_write;
1345
1346 /*
1347 * The tail page now needs to be moved forward.
1348 *
1349 * We need to reset the tail page, but without messing
1350 * with possible erasing of data brought in by interrupts
1351 * that have moved the tail page and are currently on it.
1352 *
1353 * We add a counter to the write field to denote this.
1354 */
1355 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1356 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1357
1358 local_inc(&cpu_buffer->pages_touched);
1359 /*
1360 * Just make sure we have seen our old_write and synchronize
1361 * with any interrupts that come in.
1362 */
1363 barrier();
1364
1365 /*
1366 * If the tail page is still the same as what we think
1367 * it is, then it is up to us to update the tail
1368 * pointer.
1369 */
1370 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1371 /* Zero the write counter */
1372 unsigned long val = old_write & ~RB_WRITE_MASK;
1373 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1374
1375 /*
1376 * This will only succeed if an interrupt did
1377 * not come in and change it. In which case, we
1378 * do not want to modify it.
1379 *
1380 * We add (void) to let the compiler know that we do not care
1381 * about the return value of these functions. We use the
1382 * cmpxchg to only update if an interrupt did not already
1383 * do it for us. If the cmpxchg fails, we don't care.
1384 */
1385 (void)local_cmpxchg(&next_page->write, old_write, val);
1386 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1387
1388 /*
1389 * No need to worry about races with clearing out the commit.
1390 * it only can increment when a commit takes place. But that
1391 * only happens in the outer most nested commit.
1392 */
1393 local_set(&next_page->page->commit, 0);
1394
1395 /* Again, either we update tail_page or an interrupt does */
1396 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1397 }
1398}
1399
1400static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1401 struct buffer_page *bpage)
1402{
1403 unsigned long val = (unsigned long)bpage;
1404
1405 RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1406}
1407
1408/**
1409 * rb_check_pages - integrity check of buffer pages
1410 * @cpu_buffer: CPU buffer with pages to test
1411 *
1412 * As a safety measure we check to make sure the data pages have not
1413 * been corrupted.
1414 */
1415static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1416{
1417 struct list_head *head = rb_list_head(cpu_buffer->pages);
1418 struct list_head *tmp;
1419
1420 if (RB_WARN_ON(cpu_buffer,
1421 rb_list_head(rb_list_head(head->next)->prev) != head))
1422 return;
1423
1424 if (RB_WARN_ON(cpu_buffer,
1425 rb_list_head(rb_list_head(head->prev)->next) != head))
1426 return;
1427
1428 for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1429 if (RB_WARN_ON(cpu_buffer,
1430 rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1431 return;
1432
1433 if (RB_WARN_ON(cpu_buffer,
1434 rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1435 return;
1436 }
1437}
1438
1439static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1440 long nr_pages, struct list_head *pages)
1441{
1442 struct buffer_page *bpage, *tmp;
1443 bool user_thread = current->mm != NULL;
1444 gfp_t mflags;
1445 long i;
1446
1447 /*
1448 * Check if the available memory is there first.
1449 * Note, si_mem_available() only gives us a rough estimate of available
1450 * memory. It may not be accurate. But we don't care, we just want
1451 * to prevent doing any allocation when it is obvious that it is
1452 * not going to succeed.
1453 */
1454 i = si_mem_available();
1455 if (i < nr_pages)
1456 return -ENOMEM;
1457
1458 /*
1459 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1460 * gracefully without invoking oom-killer and the system is not
1461 * destabilized.
1462 */
1463 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1464
1465 /*
1466 * If a user thread allocates too much, and si_mem_available()
1467 * reports there's enough memory, even though there is not.
1468 * Make sure the OOM killer kills this thread. This can happen
1469 * even with RETRY_MAYFAIL because another task may be doing
1470 * an allocation after this task has taken all memory.
1471 * This is the task the OOM killer needs to take out during this
1472 * loop, even if it was triggered by an allocation somewhere else.
1473 */
1474 if (user_thread)
1475 set_current_oom_origin();
1476 for (i = 0; i < nr_pages; i++) {
1477 struct page *page;
1478
1479 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1480 mflags, cpu_to_node(cpu_buffer->cpu));
1481 if (!bpage)
1482 goto free_pages;
1483
1484 rb_check_bpage(cpu_buffer, bpage);
1485
1486 list_add(&bpage->list, pages);
1487
1488 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags,
1489 cpu_buffer->buffer->subbuf_order);
1490 if (!page)
1491 goto free_pages;
1492 bpage->page = page_address(page);
1493 bpage->order = cpu_buffer->buffer->subbuf_order;
1494 rb_init_page(bpage->page);
1495
1496 if (user_thread && fatal_signal_pending(current))
1497 goto free_pages;
1498 }
1499 if (user_thread)
1500 clear_current_oom_origin();
1501
1502 return 0;
1503
1504free_pages:
1505 list_for_each_entry_safe(bpage, tmp, pages, list) {
1506 list_del_init(&bpage->list);
1507 free_buffer_page(bpage);
1508 }
1509 if (user_thread)
1510 clear_current_oom_origin();
1511
1512 return -ENOMEM;
1513}
1514
1515static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1516 unsigned long nr_pages)
1517{
1518 LIST_HEAD(pages);
1519
1520 WARN_ON(!nr_pages);
1521
1522 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1523 return -ENOMEM;
1524
1525 /*
1526 * The ring buffer page list is a circular list that does not
1527 * start and end with a list head. All page list items point to
1528 * other pages.
1529 */
1530 cpu_buffer->pages = pages.next;
1531 list_del(&pages);
1532
1533 cpu_buffer->nr_pages = nr_pages;
1534
1535 rb_check_pages(cpu_buffer);
1536
1537 return 0;
1538}
1539
1540static struct ring_buffer_per_cpu *
1541rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1542{
1543 struct ring_buffer_per_cpu *cpu_buffer;
1544 struct buffer_page *bpage;
1545 struct page *page;
1546 int ret;
1547
1548 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1549 GFP_KERNEL, cpu_to_node(cpu));
1550 if (!cpu_buffer)
1551 return NULL;
1552
1553 cpu_buffer->cpu = cpu;
1554 cpu_buffer->buffer = buffer;
1555 raw_spin_lock_init(&cpu_buffer->reader_lock);
1556 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1557 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1558 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1559 init_completion(&cpu_buffer->update_done);
1560 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1561 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1562 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1563
1564 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1565 GFP_KERNEL, cpu_to_node(cpu));
1566 if (!bpage)
1567 goto fail_free_buffer;
1568
1569 rb_check_bpage(cpu_buffer, bpage);
1570
1571 cpu_buffer->reader_page = bpage;
1572
1573 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, cpu_buffer->buffer->subbuf_order);
1574 if (!page)
1575 goto fail_free_reader;
1576 bpage->page = page_address(page);
1577 rb_init_page(bpage->page);
1578
1579 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1580 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1581
1582 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1583 if (ret < 0)
1584 goto fail_free_reader;
1585
1586 cpu_buffer->head_page
1587 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1588 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1589
1590 rb_head_page_activate(cpu_buffer);
1591
1592 return cpu_buffer;
1593
1594 fail_free_reader:
1595 free_buffer_page(cpu_buffer->reader_page);
1596
1597 fail_free_buffer:
1598 kfree(cpu_buffer);
1599 return NULL;
1600}
1601
1602static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1603{
1604 struct list_head *head = cpu_buffer->pages;
1605 struct buffer_page *bpage, *tmp;
1606
1607 irq_work_sync(&cpu_buffer->irq_work.work);
1608
1609 free_buffer_page(cpu_buffer->reader_page);
1610
1611 if (head) {
1612 rb_head_page_deactivate(cpu_buffer);
1613
1614 list_for_each_entry_safe(bpage, tmp, head, list) {
1615 list_del_init(&bpage->list);
1616 free_buffer_page(bpage);
1617 }
1618 bpage = list_entry(head, struct buffer_page, list);
1619 free_buffer_page(bpage);
1620 }
1621
1622 free_page((unsigned long)cpu_buffer->free_page);
1623
1624 kfree(cpu_buffer);
1625}
1626
1627/**
1628 * __ring_buffer_alloc - allocate a new ring_buffer
1629 * @size: the size in bytes per cpu that is needed.
1630 * @flags: attributes to set for the ring buffer.
1631 * @key: ring buffer reader_lock_key.
1632 *
1633 * Currently the only flag that is available is the RB_FL_OVERWRITE
1634 * flag. This flag means that the buffer will overwrite old data
1635 * when the buffer wraps. If this flag is not set, the buffer will
1636 * drop data when the tail hits the head.
1637 */
1638struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1639 struct lock_class_key *key)
1640{
1641 struct trace_buffer *buffer;
1642 long nr_pages;
1643 int bsize;
1644 int cpu;
1645 int ret;
1646
1647 /* keep it in its own cache line */
1648 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1649 GFP_KERNEL);
1650 if (!buffer)
1651 return NULL;
1652
1653 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1654 goto fail_free_buffer;
1655
1656 /* Default buffer page size - one system page */
1657 buffer->subbuf_order = 0;
1658 buffer->subbuf_size = PAGE_SIZE - BUF_PAGE_HDR_SIZE;
1659
1660 /* Max payload is buffer page size - header (8bytes) */
1661 buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
1662
1663 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
1664 buffer->flags = flags;
1665 buffer->clock = trace_clock_local;
1666 buffer->reader_lock_key = key;
1667
1668 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1669 init_waitqueue_head(&buffer->irq_work.waiters);
1670
1671 /* need at least two pages */
1672 if (nr_pages < 2)
1673 nr_pages = 2;
1674
1675 buffer->cpus = nr_cpu_ids;
1676
1677 bsize = sizeof(void *) * nr_cpu_ids;
1678 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1679 GFP_KERNEL);
1680 if (!buffer->buffers)
1681 goto fail_free_cpumask;
1682
1683 cpu = raw_smp_processor_id();
1684 cpumask_set_cpu(cpu, buffer->cpumask);
1685 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1686 if (!buffer->buffers[cpu])
1687 goto fail_free_buffers;
1688
1689 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1690 if (ret < 0)
1691 goto fail_free_buffers;
1692
1693 mutex_init(&buffer->mutex);
1694
1695 return buffer;
1696
1697 fail_free_buffers:
1698 for_each_buffer_cpu(buffer, cpu) {
1699 if (buffer->buffers[cpu])
1700 rb_free_cpu_buffer(buffer->buffers[cpu]);
1701 }
1702 kfree(buffer->buffers);
1703
1704 fail_free_cpumask:
1705 free_cpumask_var(buffer->cpumask);
1706
1707 fail_free_buffer:
1708 kfree(buffer);
1709 return NULL;
1710}
1711EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1712
1713/**
1714 * ring_buffer_free - free a ring buffer.
1715 * @buffer: the buffer to free.
1716 */
1717void
1718ring_buffer_free(struct trace_buffer *buffer)
1719{
1720 int cpu;
1721
1722 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1723
1724 irq_work_sync(&buffer->irq_work.work);
1725
1726 for_each_buffer_cpu(buffer, cpu)
1727 rb_free_cpu_buffer(buffer->buffers[cpu]);
1728
1729 kfree(buffer->buffers);
1730 free_cpumask_var(buffer->cpumask);
1731
1732 kfree(buffer);
1733}
1734EXPORT_SYMBOL_GPL(ring_buffer_free);
1735
1736void ring_buffer_set_clock(struct trace_buffer *buffer,
1737 u64 (*clock)(void))
1738{
1739 buffer->clock = clock;
1740}
1741
1742void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1743{
1744 buffer->time_stamp_abs = abs;
1745}
1746
1747bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1748{
1749 return buffer->time_stamp_abs;
1750}
1751
1752static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1753
1754static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1755{
1756 return local_read(&bpage->entries) & RB_WRITE_MASK;
1757}
1758
1759static inline unsigned long rb_page_write(struct buffer_page *bpage)
1760{
1761 return local_read(&bpage->write) & RB_WRITE_MASK;
1762}
1763
1764static bool
1765rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1766{
1767 struct list_head *tail_page, *to_remove, *next_page;
1768 struct buffer_page *to_remove_page, *tmp_iter_page;
1769 struct buffer_page *last_page, *first_page;
1770 unsigned long nr_removed;
1771 unsigned long head_bit;
1772 int page_entries;
1773
1774 head_bit = 0;
1775
1776 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1777 atomic_inc(&cpu_buffer->record_disabled);
1778 /*
1779 * We don't race with the readers since we have acquired the reader
1780 * lock. We also don't race with writers after disabling recording.
1781 * This makes it easy to figure out the first and the last page to be
1782 * removed from the list. We unlink all the pages in between including
1783 * the first and last pages. This is done in a busy loop so that we
1784 * lose the least number of traces.
1785 * The pages are freed after we restart recording and unlock readers.
1786 */
1787 tail_page = &cpu_buffer->tail_page->list;
1788
1789 /*
1790 * tail page might be on reader page, we remove the next page
1791 * from the ring buffer
1792 */
1793 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1794 tail_page = rb_list_head(tail_page->next);
1795 to_remove = tail_page;
1796
1797 /* start of pages to remove */
1798 first_page = list_entry(rb_list_head(to_remove->next),
1799 struct buffer_page, list);
1800
1801 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1802 to_remove = rb_list_head(to_remove)->next;
1803 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1804 }
1805 /* Read iterators need to reset themselves when some pages removed */
1806 cpu_buffer->pages_removed += nr_removed;
1807
1808 next_page = rb_list_head(to_remove)->next;
1809
1810 /*
1811 * Now we remove all pages between tail_page and next_page.
1812 * Make sure that we have head_bit value preserved for the
1813 * next page
1814 */
1815 tail_page->next = (struct list_head *)((unsigned long)next_page |
1816 head_bit);
1817 next_page = rb_list_head(next_page);
1818 next_page->prev = tail_page;
1819
1820 /* make sure pages points to a valid page in the ring buffer */
1821 cpu_buffer->pages = next_page;
1822
1823 /* update head page */
1824 if (head_bit)
1825 cpu_buffer->head_page = list_entry(next_page,
1826 struct buffer_page, list);
1827
1828 /* pages are removed, resume tracing and then free the pages */
1829 atomic_dec(&cpu_buffer->record_disabled);
1830 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1831
1832 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1833
1834 /* last buffer page to remove */
1835 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1836 list);
1837 tmp_iter_page = first_page;
1838
1839 do {
1840 cond_resched();
1841
1842 to_remove_page = tmp_iter_page;
1843 rb_inc_page(&tmp_iter_page);
1844
1845 /* update the counters */
1846 page_entries = rb_page_entries(to_remove_page);
1847 if (page_entries) {
1848 /*
1849 * If something was added to this page, it was full
1850 * since it is not the tail page. So we deduct the
1851 * bytes consumed in ring buffer from here.
1852 * Increment overrun to account for the lost events.
1853 */
1854 local_add(page_entries, &cpu_buffer->overrun);
1855 local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
1856 local_inc(&cpu_buffer->pages_lost);
1857 }
1858
1859 /*
1860 * We have already removed references to this list item, just
1861 * free up the buffer_page and its page
1862 */
1863 free_buffer_page(to_remove_page);
1864 nr_removed--;
1865
1866 } while (to_remove_page != last_page);
1867
1868 RB_WARN_ON(cpu_buffer, nr_removed);
1869
1870 return nr_removed == 0;
1871}
1872
1873static bool
1874rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1875{
1876 struct list_head *pages = &cpu_buffer->new_pages;
1877 unsigned long flags;
1878 bool success;
1879 int retries;
1880
1881 /* Can be called at early boot up, where interrupts must not been enabled */
1882 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1883 /*
1884 * We are holding the reader lock, so the reader page won't be swapped
1885 * in the ring buffer. Now we are racing with the writer trying to
1886 * move head page and the tail page.
1887 * We are going to adapt the reader page update process where:
1888 * 1. We first splice the start and end of list of new pages between
1889 * the head page and its previous page.
1890 * 2. We cmpxchg the prev_page->next to point from head page to the
1891 * start of new pages list.
1892 * 3. Finally, we update the head->prev to the end of new list.
1893 *
1894 * We will try this process 10 times, to make sure that we don't keep
1895 * spinning.
1896 */
1897 retries = 10;
1898 success = false;
1899 while (retries--) {
1900 struct list_head *head_page, *prev_page;
1901 struct list_head *last_page, *first_page;
1902 struct list_head *head_page_with_bit;
1903 struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
1904
1905 if (!hpage)
1906 break;
1907 head_page = &hpage->list;
1908 prev_page = head_page->prev;
1909
1910 first_page = pages->next;
1911 last_page = pages->prev;
1912
1913 head_page_with_bit = (struct list_head *)
1914 ((unsigned long)head_page | RB_PAGE_HEAD);
1915
1916 last_page->next = head_page_with_bit;
1917 first_page->prev = prev_page;
1918
1919 /* caution: head_page_with_bit gets updated on cmpxchg failure */
1920 if (try_cmpxchg(&prev_page->next,
1921 &head_page_with_bit, first_page)) {
1922 /*
1923 * yay, we replaced the page pointer to our new list,
1924 * now, we just have to update to head page's prev
1925 * pointer to point to end of list
1926 */
1927 head_page->prev = last_page;
1928 success = true;
1929 break;
1930 }
1931 }
1932
1933 if (success)
1934 INIT_LIST_HEAD(pages);
1935 /*
1936 * If we weren't successful in adding in new pages, warn and stop
1937 * tracing
1938 */
1939 RB_WARN_ON(cpu_buffer, !success);
1940 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1941
1942 /* free pages if they weren't inserted */
1943 if (!success) {
1944 struct buffer_page *bpage, *tmp;
1945 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1946 list) {
1947 list_del_init(&bpage->list);
1948 free_buffer_page(bpage);
1949 }
1950 }
1951 return success;
1952}
1953
1954static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1955{
1956 bool success;
1957
1958 if (cpu_buffer->nr_pages_to_update > 0)
1959 success = rb_insert_pages(cpu_buffer);
1960 else
1961 success = rb_remove_pages(cpu_buffer,
1962 -cpu_buffer->nr_pages_to_update);
1963
1964 if (success)
1965 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1966}
1967
1968static void update_pages_handler(struct work_struct *work)
1969{
1970 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1971 struct ring_buffer_per_cpu, update_pages_work);
1972 rb_update_pages(cpu_buffer);
1973 complete(&cpu_buffer->update_done);
1974}
1975
1976/**
1977 * ring_buffer_resize - resize the ring buffer
1978 * @buffer: the buffer to resize.
1979 * @size: the new size.
1980 * @cpu_id: the cpu buffer to resize
1981 *
1982 * Minimum size is 2 * buffer->subbuf_size.
1983 *
1984 * Returns 0 on success and < 0 on failure.
1985 */
1986int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
1987 int cpu_id)
1988{
1989 struct ring_buffer_per_cpu *cpu_buffer;
1990 unsigned long nr_pages;
1991 int cpu, err;
1992
1993 /*
1994 * Always succeed at resizing a non-existent buffer:
1995 */
1996 if (!buffer)
1997 return 0;
1998
1999 /* Make sure the requested buffer exists */
2000 if (cpu_id != RING_BUFFER_ALL_CPUS &&
2001 !cpumask_test_cpu(cpu_id, buffer->cpumask))
2002 return 0;
2003
2004 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2005
2006 /* we need a minimum of two pages */
2007 if (nr_pages < 2)
2008 nr_pages = 2;
2009
2010 /* prevent another thread from changing buffer sizes */
2011 mutex_lock(&buffer->mutex);
2012 atomic_inc(&buffer->resizing);
2013
2014 if (cpu_id == RING_BUFFER_ALL_CPUS) {
2015 /*
2016 * Don't succeed if resizing is disabled, as a reader might be
2017 * manipulating the ring buffer and is expecting a sane state while
2018 * this is true.
2019 */
2020 for_each_buffer_cpu(buffer, cpu) {
2021 cpu_buffer = buffer->buffers[cpu];
2022 if (atomic_read(&cpu_buffer->resize_disabled)) {
2023 err = -EBUSY;
2024 goto out_err_unlock;
2025 }
2026 }
2027
2028 /* calculate the pages to update */
2029 for_each_buffer_cpu(buffer, cpu) {
2030 cpu_buffer = buffer->buffers[cpu];
2031
2032 cpu_buffer->nr_pages_to_update = nr_pages -
2033 cpu_buffer->nr_pages;
2034 /*
2035 * nothing more to do for removing pages or no update
2036 */
2037 if (cpu_buffer->nr_pages_to_update <= 0)
2038 continue;
2039 /*
2040 * to add pages, make sure all new pages can be
2041 * allocated without receiving ENOMEM
2042 */
2043 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2044 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2045 &cpu_buffer->new_pages)) {
2046 /* not enough memory for new pages */
2047 err = -ENOMEM;
2048 goto out_err;
2049 }
2050
2051 cond_resched();
2052 }
2053
2054 cpus_read_lock();
2055 /*
2056 * Fire off all the required work handlers
2057 * We can't schedule on offline CPUs, but it's not necessary
2058 * since we can change their buffer sizes without any race.
2059 */
2060 for_each_buffer_cpu(buffer, cpu) {
2061 cpu_buffer = buffer->buffers[cpu];
2062 if (!cpu_buffer->nr_pages_to_update)
2063 continue;
2064
2065 /* Can't run something on an offline CPU. */
2066 if (!cpu_online(cpu)) {
2067 rb_update_pages(cpu_buffer);
2068 cpu_buffer->nr_pages_to_update = 0;
2069 } else {
2070 /* Run directly if possible. */
2071 migrate_disable();
2072 if (cpu != smp_processor_id()) {
2073 migrate_enable();
2074 schedule_work_on(cpu,
2075 &cpu_buffer->update_pages_work);
2076 } else {
2077 update_pages_handler(&cpu_buffer->update_pages_work);
2078 migrate_enable();
2079 }
2080 }
2081 }
2082
2083 /* wait for all the updates to complete */
2084 for_each_buffer_cpu(buffer, cpu) {
2085 cpu_buffer = buffer->buffers[cpu];
2086 if (!cpu_buffer->nr_pages_to_update)
2087 continue;
2088
2089 if (cpu_online(cpu))
2090 wait_for_completion(&cpu_buffer->update_done);
2091 cpu_buffer->nr_pages_to_update = 0;
2092 }
2093
2094 cpus_read_unlock();
2095 } else {
2096 cpu_buffer = buffer->buffers[cpu_id];
2097
2098 if (nr_pages == cpu_buffer->nr_pages)
2099 goto out;
2100
2101 /*
2102 * Don't succeed if resizing is disabled, as a reader might be
2103 * manipulating the ring buffer and is expecting a sane state while
2104 * this is true.
2105 */
2106 if (atomic_read(&cpu_buffer->resize_disabled)) {
2107 err = -EBUSY;
2108 goto out_err_unlock;
2109 }
2110
2111 cpu_buffer->nr_pages_to_update = nr_pages -
2112 cpu_buffer->nr_pages;
2113
2114 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2115 if (cpu_buffer->nr_pages_to_update > 0 &&
2116 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2117 &cpu_buffer->new_pages)) {
2118 err = -ENOMEM;
2119 goto out_err;
2120 }
2121
2122 cpus_read_lock();
2123
2124 /* Can't run something on an offline CPU. */
2125 if (!cpu_online(cpu_id))
2126 rb_update_pages(cpu_buffer);
2127 else {
2128 /* Run directly if possible. */
2129 migrate_disable();
2130 if (cpu_id == smp_processor_id()) {
2131 rb_update_pages(cpu_buffer);
2132 migrate_enable();
2133 } else {
2134 migrate_enable();
2135 schedule_work_on(cpu_id,
2136 &cpu_buffer->update_pages_work);
2137 wait_for_completion(&cpu_buffer->update_done);
2138 }
2139 }
2140
2141 cpu_buffer->nr_pages_to_update = 0;
2142 cpus_read_unlock();
2143 }
2144
2145 out:
2146 /*
2147 * The ring buffer resize can happen with the ring buffer
2148 * enabled, so that the update disturbs the tracing as little
2149 * as possible. But if the buffer is disabled, we do not need
2150 * to worry about that, and we can take the time to verify
2151 * that the buffer is not corrupt.
2152 */
2153 if (atomic_read(&buffer->record_disabled)) {
2154 atomic_inc(&buffer->record_disabled);
2155 /*
2156 * Even though the buffer was disabled, we must make sure
2157 * that it is truly disabled before calling rb_check_pages.
2158 * There could have been a race between checking
2159 * record_disable and incrementing it.
2160 */
2161 synchronize_rcu();
2162 for_each_buffer_cpu(buffer, cpu) {
2163 cpu_buffer = buffer->buffers[cpu];
2164 rb_check_pages(cpu_buffer);
2165 }
2166 atomic_dec(&buffer->record_disabled);
2167 }
2168
2169 atomic_dec(&buffer->resizing);
2170 mutex_unlock(&buffer->mutex);
2171 return 0;
2172
2173 out_err:
2174 for_each_buffer_cpu(buffer, cpu) {
2175 struct buffer_page *bpage, *tmp;
2176
2177 cpu_buffer = buffer->buffers[cpu];
2178 cpu_buffer->nr_pages_to_update = 0;
2179
2180 if (list_empty(&cpu_buffer->new_pages))
2181 continue;
2182
2183 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2184 list) {
2185 list_del_init(&bpage->list);
2186 free_buffer_page(bpage);
2187 }
2188 }
2189 out_err_unlock:
2190 atomic_dec(&buffer->resizing);
2191 mutex_unlock(&buffer->mutex);
2192 return err;
2193}
2194EXPORT_SYMBOL_GPL(ring_buffer_resize);
2195
2196void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2197{
2198 mutex_lock(&buffer->mutex);
2199 if (val)
2200 buffer->flags |= RB_FL_OVERWRITE;
2201 else
2202 buffer->flags &= ~RB_FL_OVERWRITE;
2203 mutex_unlock(&buffer->mutex);
2204}
2205EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2206
2207static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2208{
2209 return bpage->page->data + index;
2210}
2211
2212static __always_inline struct ring_buffer_event *
2213rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2214{
2215 return __rb_page_index(cpu_buffer->reader_page,
2216 cpu_buffer->reader_page->read);
2217}
2218
2219static struct ring_buffer_event *
2220rb_iter_head_event(struct ring_buffer_iter *iter)
2221{
2222 struct ring_buffer_event *event;
2223 struct buffer_page *iter_head_page = iter->head_page;
2224 unsigned long commit;
2225 unsigned length;
2226
2227 if (iter->head != iter->next_event)
2228 return iter->event;
2229
2230 /*
2231 * When the writer goes across pages, it issues a cmpxchg which
2232 * is a mb(), which will synchronize with the rmb here.
2233 * (see rb_tail_page_update() and __rb_reserve_next())
2234 */
2235 commit = rb_page_commit(iter_head_page);
2236 smp_rmb();
2237
2238 /* An event needs to be at least 8 bytes in size */
2239 if (iter->head > commit - 8)
2240 goto reset;
2241
2242 event = __rb_page_index(iter_head_page, iter->head);
2243 length = rb_event_length(event);
2244
2245 /*
2246 * READ_ONCE() doesn't work on functions and we don't want the
2247 * compiler doing any crazy optimizations with length.
2248 */
2249 barrier();
2250
2251 if ((iter->head + length) > commit || length > iter->event_size)
2252 /* Writer corrupted the read? */
2253 goto reset;
2254
2255 memcpy(iter->event, event, length);
2256 /*
2257 * If the page stamp is still the same after this rmb() then the
2258 * event was safely copied without the writer entering the page.
2259 */
2260 smp_rmb();
2261
2262 /* Make sure the page didn't change since we read this */
2263 if (iter->page_stamp != iter_head_page->page->time_stamp ||
2264 commit > rb_page_commit(iter_head_page))
2265 goto reset;
2266
2267 iter->next_event = iter->head + length;
2268 return iter->event;
2269 reset:
2270 /* Reset to the beginning */
2271 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2272 iter->head = 0;
2273 iter->next_event = 0;
2274 iter->missed_events = 1;
2275 return NULL;
2276}
2277
2278/* Size is determined by what has been committed */
2279static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2280{
2281 return rb_page_commit(bpage);
2282}
2283
2284static __always_inline unsigned
2285rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2286{
2287 return rb_page_commit(cpu_buffer->commit_page);
2288}
2289
2290static __always_inline unsigned
2291rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
2292{
2293 unsigned long addr = (unsigned long)event;
2294
2295 addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
2296
2297 return addr - BUF_PAGE_HDR_SIZE;
2298}
2299
2300static void rb_inc_iter(struct ring_buffer_iter *iter)
2301{
2302 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2303
2304 /*
2305 * The iterator could be on the reader page (it starts there).
2306 * But the head could have moved, since the reader was
2307 * found. Check for this case and assign the iterator
2308 * to the head page instead of next.
2309 */
2310 if (iter->head_page == cpu_buffer->reader_page)
2311 iter->head_page = rb_set_head_page(cpu_buffer);
2312 else
2313 rb_inc_page(&iter->head_page);
2314
2315 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2316 iter->head = 0;
2317 iter->next_event = 0;
2318}
2319
2320/*
2321 * rb_handle_head_page - writer hit the head page
2322 *
2323 * Returns: +1 to retry page
2324 * 0 to continue
2325 * -1 on error
2326 */
2327static int
2328rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2329 struct buffer_page *tail_page,
2330 struct buffer_page *next_page)
2331{
2332 struct buffer_page *new_head;
2333 int entries;
2334 int type;
2335 int ret;
2336
2337 entries = rb_page_entries(next_page);
2338
2339 /*
2340 * The hard part is here. We need to move the head
2341 * forward, and protect against both readers on
2342 * other CPUs and writers coming in via interrupts.
2343 */
2344 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2345 RB_PAGE_HEAD);
2346
2347 /*
2348 * type can be one of four:
2349 * NORMAL - an interrupt already moved it for us
2350 * HEAD - we are the first to get here.
2351 * UPDATE - we are the interrupt interrupting
2352 * a current move.
2353 * MOVED - a reader on another CPU moved the next
2354 * pointer to its reader page. Give up
2355 * and try again.
2356 */
2357
2358 switch (type) {
2359 case RB_PAGE_HEAD:
2360 /*
2361 * We changed the head to UPDATE, thus
2362 * it is our responsibility to update
2363 * the counters.
2364 */
2365 local_add(entries, &cpu_buffer->overrun);
2366 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
2367 local_inc(&cpu_buffer->pages_lost);
2368
2369 /*
2370 * The entries will be zeroed out when we move the
2371 * tail page.
2372 */
2373
2374 /* still more to do */
2375 break;
2376
2377 case RB_PAGE_UPDATE:
2378 /*
2379 * This is an interrupt that interrupt the
2380 * previous update. Still more to do.
2381 */
2382 break;
2383 case RB_PAGE_NORMAL:
2384 /*
2385 * An interrupt came in before the update
2386 * and processed this for us.
2387 * Nothing left to do.
2388 */
2389 return 1;
2390 case RB_PAGE_MOVED:
2391 /*
2392 * The reader is on another CPU and just did
2393 * a swap with our next_page.
2394 * Try again.
2395 */
2396 return 1;
2397 default:
2398 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2399 return -1;
2400 }
2401
2402 /*
2403 * Now that we are here, the old head pointer is
2404 * set to UPDATE. This will keep the reader from
2405 * swapping the head page with the reader page.
2406 * The reader (on another CPU) will spin till
2407 * we are finished.
2408 *
2409 * We just need to protect against interrupts
2410 * doing the job. We will set the next pointer
2411 * to HEAD. After that, we set the old pointer
2412 * to NORMAL, but only if it was HEAD before.
2413 * otherwise we are an interrupt, and only
2414 * want the outer most commit to reset it.
2415 */
2416 new_head = next_page;
2417 rb_inc_page(&new_head);
2418
2419 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2420 RB_PAGE_NORMAL);
2421
2422 /*
2423 * Valid returns are:
2424 * HEAD - an interrupt came in and already set it.
2425 * NORMAL - One of two things:
2426 * 1) We really set it.
2427 * 2) A bunch of interrupts came in and moved
2428 * the page forward again.
2429 */
2430 switch (ret) {
2431 case RB_PAGE_HEAD:
2432 case RB_PAGE_NORMAL:
2433 /* OK */
2434 break;
2435 default:
2436 RB_WARN_ON(cpu_buffer, 1);
2437 return -1;
2438 }
2439
2440 /*
2441 * It is possible that an interrupt came in,
2442 * set the head up, then more interrupts came in
2443 * and moved it again. When we get back here,
2444 * the page would have been set to NORMAL but we
2445 * just set it back to HEAD.
2446 *
2447 * How do you detect this? Well, if that happened
2448 * the tail page would have moved.
2449 */
2450 if (ret == RB_PAGE_NORMAL) {
2451 struct buffer_page *buffer_tail_page;
2452
2453 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2454 /*
2455 * If the tail had moved passed next, then we need
2456 * to reset the pointer.
2457 */
2458 if (buffer_tail_page != tail_page &&
2459 buffer_tail_page != next_page)
2460 rb_head_page_set_normal(cpu_buffer, new_head,
2461 next_page,
2462 RB_PAGE_HEAD);
2463 }
2464
2465 /*
2466 * If this was the outer most commit (the one that
2467 * changed the original pointer from HEAD to UPDATE),
2468 * then it is up to us to reset it to NORMAL.
2469 */
2470 if (type == RB_PAGE_HEAD) {
2471 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2472 tail_page,
2473 RB_PAGE_UPDATE);
2474 if (RB_WARN_ON(cpu_buffer,
2475 ret != RB_PAGE_UPDATE))
2476 return -1;
2477 }
2478
2479 return 0;
2480}
2481
2482static inline void
2483rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2484 unsigned long tail, struct rb_event_info *info)
2485{
2486 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
2487 struct buffer_page *tail_page = info->tail_page;
2488 struct ring_buffer_event *event;
2489 unsigned long length = info->length;
2490
2491 /*
2492 * Only the event that crossed the page boundary
2493 * must fill the old tail_page with padding.
2494 */
2495 if (tail >= bsize) {
2496 /*
2497 * If the page was filled, then we still need
2498 * to update the real_end. Reset it to zero
2499 * and the reader will ignore it.
2500 */
2501 if (tail == bsize)
2502 tail_page->real_end = 0;
2503
2504 local_sub(length, &tail_page->write);
2505 return;
2506 }
2507
2508 event = __rb_page_index(tail_page, tail);
2509
2510 /*
2511 * Save the original length to the meta data.
2512 * This will be used by the reader to add lost event
2513 * counter.
2514 */
2515 tail_page->real_end = tail;
2516
2517 /*
2518 * If this event is bigger than the minimum size, then
2519 * we need to be careful that we don't subtract the
2520 * write counter enough to allow another writer to slip
2521 * in on this page.
2522 * We put in a discarded commit instead, to make sure
2523 * that this space is not used again, and this space will
2524 * not be accounted into 'entries_bytes'.
2525 *
2526 * If we are less than the minimum size, we don't need to
2527 * worry about it.
2528 */
2529 if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
2530 /* No room for any events */
2531
2532 /* Mark the rest of the page with padding */
2533 rb_event_set_padding(event);
2534
2535 /* Make sure the padding is visible before the write update */
2536 smp_wmb();
2537
2538 /* Set the write back to the previous setting */
2539 local_sub(length, &tail_page->write);
2540 return;
2541 }
2542
2543 /* Put in a discarded event */
2544 event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
2545 event->type_len = RINGBUF_TYPE_PADDING;
2546 /* time delta must be non zero */
2547 event->time_delta = 1;
2548
2549 /* account for padding bytes */
2550 local_add(bsize - tail, &cpu_buffer->entries_bytes);
2551
2552 /* Make sure the padding is visible before the tail_page->write update */
2553 smp_wmb();
2554
2555 /* Set write to end of buffer */
2556 length = (tail + length) - bsize;
2557 local_sub(length, &tail_page->write);
2558}
2559
2560static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2561
2562/*
2563 * This is the slow path, force gcc not to inline it.
2564 */
2565static noinline struct ring_buffer_event *
2566rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2567 unsigned long tail, struct rb_event_info *info)
2568{
2569 struct buffer_page *tail_page = info->tail_page;
2570 struct buffer_page *commit_page = cpu_buffer->commit_page;
2571 struct trace_buffer *buffer = cpu_buffer->buffer;
2572 struct buffer_page *next_page;
2573 int ret;
2574
2575 next_page = tail_page;
2576
2577 rb_inc_page(&next_page);
2578
2579 /*
2580 * If for some reason, we had an interrupt storm that made
2581 * it all the way around the buffer, bail, and warn
2582 * about it.
2583 */
2584 if (unlikely(next_page == commit_page)) {
2585 local_inc(&cpu_buffer->commit_overrun);
2586 goto out_reset;
2587 }
2588
2589 /*
2590 * This is where the fun begins!
2591 *
2592 * We are fighting against races between a reader that
2593 * could be on another CPU trying to swap its reader
2594 * page with the buffer head.
2595 *
2596 * We are also fighting against interrupts coming in and
2597 * moving the head or tail on us as well.
2598 *
2599 * If the next page is the head page then we have filled
2600 * the buffer, unless the commit page is still on the
2601 * reader page.
2602 */
2603 if (rb_is_head_page(next_page, &tail_page->list)) {
2604
2605 /*
2606 * If the commit is not on the reader page, then
2607 * move the header page.
2608 */
2609 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2610 /*
2611 * If we are not in overwrite mode,
2612 * this is easy, just stop here.
2613 */
2614 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2615 local_inc(&cpu_buffer->dropped_events);
2616 goto out_reset;
2617 }
2618
2619 ret = rb_handle_head_page(cpu_buffer,
2620 tail_page,
2621 next_page);
2622 if (ret < 0)
2623 goto out_reset;
2624 if (ret)
2625 goto out_again;
2626 } else {
2627 /*
2628 * We need to be careful here too. The
2629 * commit page could still be on the reader
2630 * page. We could have a small buffer, and
2631 * have filled up the buffer with events
2632 * from interrupts and such, and wrapped.
2633 *
2634 * Note, if the tail page is also on the
2635 * reader_page, we let it move out.
2636 */
2637 if (unlikely((cpu_buffer->commit_page !=
2638 cpu_buffer->tail_page) &&
2639 (cpu_buffer->commit_page ==
2640 cpu_buffer->reader_page))) {
2641 local_inc(&cpu_buffer->commit_overrun);
2642 goto out_reset;
2643 }
2644 }
2645 }
2646
2647 rb_tail_page_update(cpu_buffer, tail_page, next_page);
2648
2649 out_again:
2650
2651 rb_reset_tail(cpu_buffer, tail, info);
2652
2653 /* Commit what we have for now. */
2654 rb_end_commit(cpu_buffer);
2655 /* rb_end_commit() decs committing */
2656 local_inc(&cpu_buffer->committing);
2657
2658 /* fail and let the caller try again */
2659 return ERR_PTR(-EAGAIN);
2660
2661 out_reset:
2662 /* reset write */
2663 rb_reset_tail(cpu_buffer, tail, info);
2664
2665 return NULL;
2666}
2667
2668/* Slow path */
2669static struct ring_buffer_event *
2670rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2671 struct ring_buffer_event *event, u64 delta, bool abs)
2672{
2673 if (abs)
2674 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2675 else
2676 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2677
2678 /* Not the first event on the page, or not delta? */
2679 if (abs || rb_event_index(cpu_buffer, event)) {
2680 event->time_delta = delta & TS_MASK;
2681 event->array[0] = delta >> TS_SHIFT;
2682 } else {
2683 /* nope, just zero it */
2684 event->time_delta = 0;
2685 event->array[0] = 0;
2686 }
2687
2688 return skip_time_extend(event);
2689}
2690
2691#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2692static inline bool sched_clock_stable(void)
2693{
2694 return true;
2695}
2696#endif
2697
2698static void
2699rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2700 struct rb_event_info *info)
2701{
2702 u64 write_stamp;
2703
2704 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2705 (unsigned long long)info->delta,
2706 (unsigned long long)info->ts,
2707 (unsigned long long)info->before,
2708 (unsigned long long)info->after,
2709 (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
2710 sched_clock_stable() ? "" :
2711 "If you just came from a suspend/resume,\n"
2712 "please switch to the trace global clock:\n"
2713 " echo global > /sys/kernel/tracing/trace_clock\n"
2714 "or add trace_clock=global to the kernel command line\n");
2715}
2716
2717static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2718 struct ring_buffer_event **event,
2719 struct rb_event_info *info,
2720 u64 *delta,
2721 unsigned int *length)
2722{
2723 bool abs = info->add_timestamp &
2724 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2725
2726 if (unlikely(info->delta > (1ULL << 59))) {
2727 /*
2728 * Some timers can use more than 59 bits, and when a timestamp
2729 * is added to the buffer, it will lose those bits.
2730 */
2731 if (abs && (info->ts & TS_MSB)) {
2732 info->delta &= ABS_TS_MASK;
2733
2734 /* did the clock go backwards */
2735 } else if (info->before == info->after && info->before > info->ts) {
2736 /* not interrupted */
2737 static int once;
2738
2739 /*
2740 * This is possible with a recalibrating of the TSC.
2741 * Do not produce a call stack, but just report it.
2742 */
2743 if (!once) {
2744 once++;
2745 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2746 info->before, info->ts);
2747 }
2748 } else
2749 rb_check_timestamp(cpu_buffer, info);
2750 if (!abs)
2751 info->delta = 0;
2752 }
2753 *event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
2754 *length -= RB_LEN_TIME_EXTEND;
2755 *delta = 0;
2756}
2757
2758/**
2759 * rb_update_event - update event type and data
2760 * @cpu_buffer: The per cpu buffer of the @event
2761 * @event: the event to update
2762 * @info: The info to update the @event with (contains length and delta)
2763 *
2764 * Update the type and data fields of the @event. The length
2765 * is the actual size that is written to the ring buffer,
2766 * and with this, we can determine what to place into the
2767 * data field.
2768 */
2769static void
2770rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2771 struct ring_buffer_event *event,
2772 struct rb_event_info *info)
2773{
2774 unsigned length = info->length;
2775 u64 delta = info->delta;
2776 unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2777
2778 if (!WARN_ON_ONCE(nest >= MAX_NEST))
2779 cpu_buffer->event_stamp[nest] = info->ts;
2780
2781 /*
2782 * If we need to add a timestamp, then we
2783 * add it to the start of the reserved space.
2784 */
2785 if (unlikely(info->add_timestamp))
2786 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2787
2788 event->time_delta = delta;
2789 length -= RB_EVNT_HDR_SIZE;
2790 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2791 event->type_len = 0;
2792 event->array[0] = length;
2793 } else
2794 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2795}
2796
2797static unsigned rb_calculate_event_length(unsigned length)
2798{
2799 struct ring_buffer_event event; /* Used only for sizeof array */
2800
2801 /* zero length can cause confusions */
2802 if (!length)
2803 length++;
2804
2805 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2806 length += sizeof(event.array[0]);
2807
2808 length += RB_EVNT_HDR_SIZE;
2809 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2810
2811 /*
2812 * In case the time delta is larger than the 27 bits for it
2813 * in the header, we need to add a timestamp. If another
2814 * event comes in when trying to discard this one to increase
2815 * the length, then the timestamp will be added in the allocated
2816 * space of this event. If length is bigger than the size needed
2817 * for the TIME_EXTEND, then padding has to be used. The events
2818 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2819 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2820 * As length is a multiple of 4, we only need to worry if it
2821 * is 12 (RB_LEN_TIME_EXTEND + 4).
2822 */
2823 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2824 length += RB_ALIGNMENT;
2825
2826 return length;
2827}
2828
2829static inline bool
2830rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2831 struct ring_buffer_event *event)
2832{
2833 unsigned long new_index, old_index;
2834 struct buffer_page *bpage;
2835 unsigned long addr;
2836
2837 new_index = rb_event_index(cpu_buffer, event);
2838 old_index = new_index + rb_event_ts_length(event);
2839 addr = (unsigned long)event;
2840 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
2841
2842 bpage = READ_ONCE(cpu_buffer->tail_page);
2843
2844 /*
2845 * Make sure the tail_page is still the same and
2846 * the next write location is the end of this event
2847 */
2848 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2849 unsigned long write_mask =
2850 local_read(&bpage->write) & ~RB_WRITE_MASK;
2851 unsigned long event_length = rb_event_length(event);
2852
2853 /*
2854 * For the before_stamp to be different than the write_stamp
2855 * to make sure that the next event adds an absolute
2856 * value and does not rely on the saved write stamp, which
2857 * is now going to be bogus.
2858 *
2859 * By setting the before_stamp to zero, the next event
2860 * is not going to use the write_stamp and will instead
2861 * create an absolute timestamp. This means there's no
2862 * reason to update the wirte_stamp!
2863 */
2864 rb_time_set(&cpu_buffer->before_stamp, 0);
2865
2866 /*
2867 * If an event were to come in now, it would see that the
2868 * write_stamp and the before_stamp are different, and assume
2869 * that this event just added itself before updating
2870 * the write stamp. The interrupting event will fix the
2871 * write stamp for us, and use an absolute timestamp.
2872 */
2873
2874 /*
2875 * This is on the tail page. It is possible that
2876 * a write could come in and move the tail page
2877 * and write to the next page. That is fine
2878 * because we just shorten what is on this page.
2879 */
2880 old_index += write_mask;
2881 new_index += write_mask;
2882
2883 /* caution: old_index gets updated on cmpxchg failure */
2884 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
2885 /* update counters */
2886 local_sub(event_length, &cpu_buffer->entries_bytes);
2887 return true;
2888 }
2889 }
2890
2891 /* could not discard */
2892 return false;
2893}
2894
2895static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2896{
2897 local_inc(&cpu_buffer->committing);
2898 local_inc(&cpu_buffer->commits);
2899}
2900
2901static __always_inline void
2902rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2903{
2904 unsigned long max_count;
2905
2906 /*
2907 * We only race with interrupts and NMIs on this CPU.
2908 * If we own the commit event, then we can commit
2909 * all others that interrupted us, since the interruptions
2910 * are in stack format (they finish before they come
2911 * back to us). This allows us to do a simple loop to
2912 * assign the commit to the tail.
2913 */
2914 again:
2915 max_count = cpu_buffer->nr_pages * 100;
2916
2917 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2918 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2919 return;
2920 if (RB_WARN_ON(cpu_buffer,
2921 rb_is_reader_page(cpu_buffer->tail_page)))
2922 return;
2923 /*
2924 * No need for a memory barrier here, as the update
2925 * of the tail_page did it for this page.
2926 */
2927 local_set(&cpu_buffer->commit_page->page->commit,
2928 rb_page_write(cpu_buffer->commit_page));
2929 rb_inc_page(&cpu_buffer->commit_page);
2930 /* add barrier to keep gcc from optimizing too much */
2931 barrier();
2932 }
2933 while (rb_commit_index(cpu_buffer) !=
2934 rb_page_write(cpu_buffer->commit_page)) {
2935
2936 /* Make sure the readers see the content of what is committed. */
2937 smp_wmb();
2938 local_set(&cpu_buffer->commit_page->page->commit,
2939 rb_page_write(cpu_buffer->commit_page));
2940 RB_WARN_ON(cpu_buffer,
2941 local_read(&cpu_buffer->commit_page->page->commit) &
2942 ~RB_WRITE_MASK);
2943 barrier();
2944 }
2945
2946 /* again, keep gcc from optimizing */
2947 barrier();
2948
2949 /*
2950 * If an interrupt came in just after the first while loop
2951 * and pushed the tail page forward, we will be left with
2952 * a dangling commit that will never go forward.
2953 */
2954 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2955 goto again;
2956}
2957
2958static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2959{
2960 unsigned long commits;
2961
2962 if (RB_WARN_ON(cpu_buffer,
2963 !local_read(&cpu_buffer->committing)))
2964 return;
2965
2966 again:
2967 commits = local_read(&cpu_buffer->commits);
2968 /* synchronize with interrupts */
2969 barrier();
2970 if (local_read(&cpu_buffer->committing) == 1)
2971 rb_set_commit_to_write(cpu_buffer);
2972
2973 local_dec(&cpu_buffer->committing);
2974
2975 /* synchronize with interrupts */
2976 barrier();
2977
2978 /*
2979 * Need to account for interrupts coming in between the
2980 * updating of the commit page and the clearing of the
2981 * committing counter.
2982 */
2983 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2984 !local_read(&cpu_buffer->committing)) {
2985 local_inc(&cpu_buffer->committing);
2986 goto again;
2987 }
2988}
2989
2990static inline void rb_event_discard(struct ring_buffer_event *event)
2991{
2992 if (extended_time(event))
2993 event = skip_time_extend(event);
2994
2995 /* array[0] holds the actual length for the discarded event */
2996 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2997 event->type_len = RINGBUF_TYPE_PADDING;
2998 /* time delta must be non zero */
2999 if (!event->time_delta)
3000 event->time_delta = 1;
3001}
3002
3003static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3004{
3005 local_inc(&cpu_buffer->entries);
3006 rb_end_commit(cpu_buffer);
3007}
3008
3009static __always_inline void
3010rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3011{
3012 if (buffer->irq_work.waiters_pending) {
3013 buffer->irq_work.waiters_pending = false;
3014 /* irq_work_queue() supplies it's own memory barriers */
3015 irq_work_queue(&buffer->irq_work.work);
3016 }
3017
3018 if (cpu_buffer->irq_work.waiters_pending) {
3019 cpu_buffer->irq_work.waiters_pending = false;
3020 /* irq_work_queue() supplies it's own memory barriers */
3021 irq_work_queue(&cpu_buffer->irq_work.work);
3022 }
3023
3024 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3025 return;
3026
3027 if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3028 return;
3029
3030 if (!cpu_buffer->irq_work.full_waiters_pending)
3031 return;
3032
3033 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3034
3035 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3036 return;
3037
3038 cpu_buffer->irq_work.wakeup_full = true;
3039 cpu_buffer->irq_work.full_waiters_pending = false;
3040 /* irq_work_queue() supplies it's own memory barriers */
3041 irq_work_queue(&cpu_buffer->irq_work.work);
3042}
3043
3044#ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3045# define do_ring_buffer_record_recursion() \
3046 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3047#else
3048# define do_ring_buffer_record_recursion() do { } while (0)
3049#endif
3050
3051/*
3052 * The lock and unlock are done within a preempt disable section.
3053 * The current_context per_cpu variable can only be modified
3054 * by the current task between lock and unlock. But it can
3055 * be modified more than once via an interrupt. To pass this
3056 * information from the lock to the unlock without having to
3057 * access the 'in_interrupt()' functions again (which do show
3058 * a bit of overhead in something as critical as function tracing,
3059 * we use a bitmask trick.
3060 *
3061 * bit 1 = NMI context
3062 * bit 2 = IRQ context
3063 * bit 3 = SoftIRQ context
3064 * bit 4 = normal context.
3065 *
3066 * This works because this is the order of contexts that can
3067 * preempt other contexts. A SoftIRQ never preempts an IRQ
3068 * context.
3069 *
3070 * When the context is determined, the corresponding bit is
3071 * checked and set (if it was set, then a recursion of that context
3072 * happened).
3073 *
3074 * On unlock, we need to clear this bit. To do so, just subtract
3075 * 1 from the current_context and AND it to itself.
3076 *
3077 * (binary)
3078 * 101 - 1 = 100
3079 * 101 & 100 = 100 (clearing bit zero)
3080 *
3081 * 1010 - 1 = 1001
3082 * 1010 & 1001 = 1000 (clearing bit 1)
3083 *
3084 * The least significant bit can be cleared this way, and it
3085 * just so happens that it is the same bit corresponding to
3086 * the current context.
3087 *
3088 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3089 * is set when a recursion is detected at the current context, and if
3090 * the TRANSITION bit is already set, it will fail the recursion.
3091 * This is needed because there's a lag between the changing of
3092 * interrupt context and updating the preempt count. In this case,
3093 * a false positive will be found. To handle this, one extra recursion
3094 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3095 * bit is already set, then it is considered a recursion and the function
3096 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3097 *
3098 * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3099 * to be cleared. Even if it wasn't the context that set it. That is,
3100 * if an interrupt comes in while NORMAL bit is set and the ring buffer
3101 * is called before preempt_count() is updated, since the check will
3102 * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3103 * NMI then comes in, it will set the NMI bit, but when the NMI code
3104 * does the trace_recursive_unlock() it will clear the TRANSITION bit
3105 * and leave the NMI bit set. But this is fine, because the interrupt
3106 * code that set the TRANSITION bit will then clear the NMI bit when it
3107 * calls trace_recursive_unlock(). If another NMI comes in, it will
3108 * set the TRANSITION bit and continue.
3109 *
3110 * Note: The TRANSITION bit only handles a single transition between context.
3111 */
3112
3113static __always_inline bool
3114trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3115{
3116 unsigned int val = cpu_buffer->current_context;
3117 int bit = interrupt_context_level();
3118
3119 bit = RB_CTX_NORMAL - bit;
3120
3121 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3122 /*
3123 * It is possible that this was called by transitioning
3124 * between interrupt context, and preempt_count() has not
3125 * been updated yet. In this case, use the TRANSITION bit.
3126 */
3127 bit = RB_CTX_TRANSITION;
3128 if (val & (1 << (bit + cpu_buffer->nest))) {
3129 do_ring_buffer_record_recursion();
3130 return true;
3131 }
3132 }
3133
3134 val |= (1 << (bit + cpu_buffer->nest));
3135 cpu_buffer->current_context = val;
3136
3137 return false;
3138}
3139
3140static __always_inline void
3141trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3142{
3143 cpu_buffer->current_context &=
3144 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3145}
3146
3147/* The recursive locking above uses 5 bits */
3148#define NESTED_BITS 5
3149
3150/**
3151 * ring_buffer_nest_start - Allow to trace while nested
3152 * @buffer: The ring buffer to modify
3153 *
3154 * The ring buffer has a safety mechanism to prevent recursion.
3155 * But there may be a case where a trace needs to be done while
3156 * tracing something else. In this case, calling this function
3157 * will allow this function to nest within a currently active
3158 * ring_buffer_lock_reserve().
3159 *
3160 * Call this function before calling another ring_buffer_lock_reserve() and
3161 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3162 */
3163void ring_buffer_nest_start(struct trace_buffer *buffer)
3164{
3165 struct ring_buffer_per_cpu *cpu_buffer;
3166 int cpu;
3167
3168 /* Enabled by ring_buffer_nest_end() */
3169 preempt_disable_notrace();
3170 cpu = raw_smp_processor_id();
3171 cpu_buffer = buffer->buffers[cpu];
3172 /* This is the shift value for the above recursive locking */
3173 cpu_buffer->nest += NESTED_BITS;
3174}
3175
3176/**
3177 * ring_buffer_nest_end - Allow to trace while nested
3178 * @buffer: The ring buffer to modify
3179 *
3180 * Must be called after ring_buffer_nest_start() and after the
3181 * ring_buffer_unlock_commit().
3182 */
3183void ring_buffer_nest_end(struct trace_buffer *buffer)
3184{
3185 struct ring_buffer_per_cpu *cpu_buffer;
3186 int cpu;
3187
3188 /* disabled by ring_buffer_nest_start() */
3189 cpu = raw_smp_processor_id();
3190 cpu_buffer = buffer->buffers[cpu];
3191 /* This is the shift value for the above recursive locking */
3192 cpu_buffer->nest -= NESTED_BITS;
3193 preempt_enable_notrace();
3194}
3195
3196/**
3197 * ring_buffer_unlock_commit - commit a reserved
3198 * @buffer: The buffer to commit to
3199 *
3200 * This commits the data to the ring buffer, and releases any locks held.
3201 *
3202 * Must be paired with ring_buffer_lock_reserve.
3203 */
3204int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3205{
3206 struct ring_buffer_per_cpu *cpu_buffer;
3207 int cpu = raw_smp_processor_id();
3208
3209 cpu_buffer = buffer->buffers[cpu];
3210
3211 rb_commit(cpu_buffer);
3212
3213 rb_wakeups(buffer, cpu_buffer);
3214
3215 trace_recursive_unlock(cpu_buffer);
3216
3217 preempt_enable_notrace();
3218
3219 return 0;
3220}
3221EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3222
3223/* Special value to validate all deltas on a page. */
3224#define CHECK_FULL_PAGE 1L
3225
3226#ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3227
3228static const char *show_irq_str(int bits)
3229{
3230 const char *type[] = {
3231 ".", // 0
3232 "s", // 1
3233 "h", // 2
3234 "Hs", // 3
3235 "n", // 4
3236 "Ns", // 5
3237 "Nh", // 6
3238 "NHs", // 7
3239 };
3240
3241 return type[bits];
3242}
3243
3244/* Assume this is an trace event */
3245static const char *show_flags(struct ring_buffer_event *event)
3246{
3247 struct trace_entry *entry;
3248 int bits = 0;
3249
3250 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
3251 return "X";
3252
3253 entry = ring_buffer_event_data(event);
3254
3255 if (entry->flags & TRACE_FLAG_SOFTIRQ)
3256 bits |= 1;
3257
3258 if (entry->flags & TRACE_FLAG_HARDIRQ)
3259 bits |= 2;
3260
3261 if (entry->flags & TRACE_FLAG_NMI)
3262 bits |= 4;
3263
3264 return show_irq_str(bits);
3265}
3266
3267static const char *show_irq(struct ring_buffer_event *event)
3268{
3269 struct trace_entry *entry;
3270
3271 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
3272 return "";
3273
3274 entry = ring_buffer_event_data(event);
3275 if (entry->flags & TRACE_FLAG_IRQS_OFF)
3276 return "d";
3277 return "";
3278}
3279
3280static const char *show_interrupt_level(void)
3281{
3282 unsigned long pc = preempt_count();
3283 unsigned char level = 0;
3284
3285 if (pc & SOFTIRQ_OFFSET)
3286 level |= 1;
3287
3288 if (pc & HARDIRQ_MASK)
3289 level |= 2;
3290
3291 if (pc & NMI_MASK)
3292 level |= 4;
3293
3294 return show_irq_str(level);
3295}
3296
3297static void dump_buffer_page(struct buffer_data_page *bpage,
3298 struct rb_event_info *info,
3299 unsigned long tail)
3300{
3301 struct ring_buffer_event *event;
3302 u64 ts, delta;
3303 int e;
3304
3305 ts = bpage->time_stamp;
3306 pr_warn(" [%lld] PAGE TIME STAMP\n", ts);
3307
3308 for (e = 0; e < tail; e += rb_event_length(event)) {
3309
3310 event = (struct ring_buffer_event *)(bpage->data + e);
3311
3312 switch (event->type_len) {
3313
3314 case RINGBUF_TYPE_TIME_EXTEND:
3315 delta = rb_event_time_stamp(event);
3316 ts += delta;
3317 pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
3318 e, ts, delta);
3319 break;
3320
3321 case RINGBUF_TYPE_TIME_STAMP:
3322 delta = rb_event_time_stamp(event);
3323 ts = rb_fix_abs_ts(delta, ts);
3324 pr_warn(" 0x%x: [%lld] absolute:%lld TIME STAMP\n",
3325 e, ts, delta);
3326 break;
3327
3328 case RINGBUF_TYPE_PADDING:
3329 ts += event->time_delta;
3330 pr_warn(" 0x%x: [%lld] delta:%d PADDING\n",
3331 e, ts, event->time_delta);
3332 break;
3333
3334 case RINGBUF_TYPE_DATA:
3335 ts += event->time_delta;
3336 pr_warn(" 0x%x: [%lld] delta:%d %s%s\n",
3337 e, ts, event->time_delta,
3338 show_flags(event), show_irq(event));
3339 break;
3340
3341 default:
3342 break;
3343 }
3344 }
3345 pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
3346}
3347
3348static DEFINE_PER_CPU(atomic_t, checking);
3349static atomic_t ts_dump;
3350
3351#define buffer_warn_return(fmt, ...) \
3352 do { \
3353 /* If another report is happening, ignore this one */ \
3354 if (atomic_inc_return(&ts_dump) != 1) { \
3355 atomic_dec(&ts_dump); \
3356 goto out; \
3357 } \
3358 atomic_inc(&cpu_buffer->record_disabled); \
3359 pr_warn(fmt, ##__VA_ARGS__); \
3360 dump_buffer_page(bpage, info, tail); \
3361 atomic_dec(&ts_dump); \
3362 /* There's some cases in boot up that this can happen */ \
3363 if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING)) \
3364 /* Do not re-enable checking */ \
3365 return; \
3366 } while (0)
3367
3368/*
3369 * Check if the current event time stamp matches the deltas on
3370 * the buffer page.
3371 */
3372static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3373 struct rb_event_info *info,
3374 unsigned long tail)
3375{
3376 struct ring_buffer_event *event;
3377 struct buffer_data_page *bpage;
3378 u64 ts, delta;
3379 bool full = false;
3380 int e;
3381
3382 bpage = info->tail_page->page;
3383
3384 if (tail == CHECK_FULL_PAGE) {
3385 full = true;
3386 tail = local_read(&bpage->commit);
3387 } else if (info->add_timestamp &
3388 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3389 /* Ignore events with absolute time stamps */
3390 return;
3391 }
3392
3393 /*
3394 * Do not check the first event (skip possible extends too).
3395 * Also do not check if previous events have not been committed.
3396 */
3397 if (tail <= 8 || tail > local_read(&bpage->commit))
3398 return;
3399
3400 /*
3401 * If this interrupted another event,
3402 */
3403 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3404 goto out;
3405
3406 ts = bpage->time_stamp;
3407
3408 for (e = 0; e < tail; e += rb_event_length(event)) {
3409
3410 event = (struct ring_buffer_event *)(bpage->data + e);
3411
3412 switch (event->type_len) {
3413
3414 case RINGBUF_TYPE_TIME_EXTEND:
3415 delta = rb_event_time_stamp(event);
3416 ts += delta;
3417 break;
3418
3419 case RINGBUF_TYPE_TIME_STAMP:
3420 delta = rb_event_time_stamp(event);
3421 delta = rb_fix_abs_ts(delta, ts);
3422 if (delta < ts) {
3423 buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
3424 cpu_buffer->cpu, ts, delta);
3425 }
3426 ts = delta;
3427 break;
3428
3429 case RINGBUF_TYPE_PADDING:
3430 if (event->time_delta == 1)
3431 break;
3432 fallthrough;
3433 case RINGBUF_TYPE_DATA:
3434 ts += event->time_delta;
3435 break;
3436
3437 default:
3438 RB_WARN_ON(cpu_buffer, 1);
3439 }
3440 }
3441 if ((full && ts > info->ts) ||
3442 (!full && ts + info->delta != info->ts)) {
3443 buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
3444 cpu_buffer->cpu,
3445 ts + info->delta, info->ts, info->delta,
3446 info->before, info->after,
3447 full ? " (full)" : "", show_interrupt_level());
3448 }
3449out:
3450 atomic_dec(this_cpu_ptr(&checking));
3451}
3452#else
3453static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3454 struct rb_event_info *info,
3455 unsigned long tail)
3456{
3457}
3458#endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3459
3460static struct ring_buffer_event *
3461__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3462 struct rb_event_info *info)
3463{
3464 struct ring_buffer_event *event;
3465 struct buffer_page *tail_page;
3466 unsigned long tail, write, w;
3467
3468 /* Don't let the compiler play games with cpu_buffer->tail_page */
3469 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3470
3471 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK;
3472 barrier();
3473 rb_time_read(&cpu_buffer->before_stamp, &info->before);
3474 rb_time_read(&cpu_buffer->write_stamp, &info->after);
3475 barrier();
3476 info->ts = rb_time_stamp(cpu_buffer->buffer);
3477
3478 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3479 info->delta = info->ts;
3480 } else {
3481 /*
3482 * If interrupting an event time update, we may need an
3483 * absolute timestamp.
3484 * Don't bother if this is the start of a new page (w == 0).
3485 */
3486 if (!w) {
3487 /* Use the sub-buffer timestamp */
3488 info->delta = 0;
3489 } else if (unlikely(info->before != info->after)) {
3490 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3491 info->length += RB_LEN_TIME_EXTEND;
3492 } else {
3493 info->delta = info->ts - info->after;
3494 if (unlikely(test_time_stamp(info->delta))) {
3495 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3496 info->length += RB_LEN_TIME_EXTEND;
3497 }
3498 }
3499 }
3500
3501 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts);
3502
3503 /*C*/ write = local_add_return(info->length, &tail_page->write);
3504
3505 /* set write to only the index of the write */
3506 write &= RB_WRITE_MASK;
3507
3508 tail = write - info->length;
3509
3510 /* See if we shot pass the end of this buffer page */
3511 if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
3512 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3513 return rb_move_tail(cpu_buffer, tail, info);
3514 }
3515
3516 if (likely(tail == w)) {
3517 /* Nothing interrupted us between A and C */
3518 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts);
3519 /*
3520 * If something came in between C and D, the write stamp
3521 * may now not be in sync. But that's fine as the before_stamp
3522 * will be different and then next event will just be forced
3523 * to use an absolute timestamp.
3524 */
3525 if (likely(!(info->add_timestamp &
3526 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3527 /* This did not interrupt any time update */
3528 info->delta = info->ts - info->after;
3529 else
3530 /* Just use full timestamp for interrupting event */
3531 info->delta = info->ts;
3532 check_buffer(cpu_buffer, info, tail);
3533 } else {
3534 u64 ts;
3535 /* SLOW PATH - Interrupted between A and C */
3536
3537 /* Save the old before_stamp */
3538 rb_time_read(&cpu_buffer->before_stamp, &info->before);
3539
3540 /*
3541 * Read a new timestamp and update the before_stamp to make
3542 * the next event after this one force using an absolute
3543 * timestamp. This is in case an interrupt were to come in
3544 * between E and F.
3545 */
3546 ts = rb_time_stamp(cpu_buffer->buffer);
3547 rb_time_set(&cpu_buffer->before_stamp, ts);
3548
3549 barrier();
3550 /*E*/ rb_time_read(&cpu_buffer->write_stamp, &info->after);
3551 barrier();
3552 /*F*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3553 info->after == info->before && info->after < ts) {
3554 /*
3555 * Nothing came after this event between C and F, it is
3556 * safe to use info->after for the delta as it
3557 * matched info->before and is still valid.
3558 */
3559 info->delta = ts - info->after;
3560 } else {
3561 /*
3562 * Interrupted between C and F:
3563 * Lost the previous events time stamp. Just set the
3564 * delta to zero, and this will be the same time as
3565 * the event this event interrupted. And the events that
3566 * came after this will still be correct (as they would
3567 * have built their delta on the previous event.
3568 */
3569 info->delta = 0;
3570 }
3571 info->ts = ts;
3572 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3573 }
3574
3575 /*
3576 * If this is the first commit on the page, then it has the same
3577 * timestamp as the page itself.
3578 */
3579 if (unlikely(!tail && !(info->add_timestamp &
3580 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3581 info->delta = 0;
3582
3583 /* We reserved something on the buffer */
3584
3585 event = __rb_page_index(tail_page, tail);
3586 rb_update_event(cpu_buffer, event, info);
3587
3588 local_inc(&tail_page->entries);
3589
3590 /*
3591 * If this is the first commit on the page, then update
3592 * its timestamp.
3593 */
3594 if (unlikely(!tail))
3595 tail_page->page->time_stamp = info->ts;
3596
3597 /* account for these added bytes */
3598 local_add(info->length, &cpu_buffer->entries_bytes);
3599
3600 return event;
3601}
3602
3603static __always_inline struct ring_buffer_event *
3604rb_reserve_next_event(struct trace_buffer *buffer,
3605 struct ring_buffer_per_cpu *cpu_buffer,
3606 unsigned long length)
3607{
3608 struct ring_buffer_event *event;
3609 struct rb_event_info info;
3610 int nr_loops = 0;
3611 int add_ts_default;
3612
3613 /* ring buffer does cmpxchg, make sure it is safe in NMI context */
3614 if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) &&
3615 (unlikely(in_nmi()))) {
3616 return NULL;
3617 }
3618
3619 rb_start_commit(cpu_buffer);
3620 /* The commit page can not change after this */
3621
3622#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3623 /*
3624 * Due to the ability to swap a cpu buffer from a buffer
3625 * it is possible it was swapped before we committed.
3626 * (committing stops a swap). We check for it here and
3627 * if it happened, we have to fail the write.
3628 */
3629 barrier();
3630 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3631 local_dec(&cpu_buffer->committing);
3632 local_dec(&cpu_buffer->commits);
3633 return NULL;
3634 }
3635#endif
3636
3637 info.length = rb_calculate_event_length(length);
3638
3639 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3640 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3641 info.length += RB_LEN_TIME_EXTEND;
3642 if (info.length > cpu_buffer->buffer->max_data_size)
3643 goto out_fail;
3644 } else {
3645 add_ts_default = RB_ADD_STAMP_NONE;
3646 }
3647
3648 again:
3649 info.add_timestamp = add_ts_default;
3650 info.delta = 0;
3651
3652 /*
3653 * We allow for interrupts to reenter here and do a trace.
3654 * If one does, it will cause this original code to loop
3655 * back here. Even with heavy interrupts happening, this
3656 * should only happen a few times in a row. If this happens
3657 * 1000 times in a row, there must be either an interrupt
3658 * storm or we have something buggy.
3659 * Bail!
3660 */
3661 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3662 goto out_fail;
3663
3664 event = __rb_reserve_next(cpu_buffer, &info);
3665
3666 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3667 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3668 info.length -= RB_LEN_TIME_EXTEND;
3669 goto again;
3670 }
3671
3672 if (likely(event))
3673 return event;
3674 out_fail:
3675 rb_end_commit(cpu_buffer);
3676 return NULL;
3677}
3678
3679/**
3680 * ring_buffer_lock_reserve - reserve a part of the buffer
3681 * @buffer: the ring buffer to reserve from
3682 * @length: the length of the data to reserve (excluding event header)
3683 *
3684 * Returns a reserved event on the ring buffer to copy directly to.
3685 * The user of this interface will need to get the body to write into
3686 * and can use the ring_buffer_event_data() interface.
3687 *
3688 * The length is the length of the data needed, not the event length
3689 * which also includes the event header.
3690 *
3691 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3692 * If NULL is returned, then nothing has been allocated or locked.
3693 */
3694struct ring_buffer_event *
3695ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3696{
3697 struct ring_buffer_per_cpu *cpu_buffer;
3698 struct ring_buffer_event *event;
3699 int cpu;
3700
3701 /* If we are tracing schedule, we don't want to recurse */
3702 preempt_disable_notrace();
3703
3704 if (unlikely(atomic_read(&buffer->record_disabled)))
3705 goto out;
3706
3707 cpu = raw_smp_processor_id();
3708
3709 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3710 goto out;
3711
3712 cpu_buffer = buffer->buffers[cpu];
3713
3714 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3715 goto out;
3716
3717 if (unlikely(length > buffer->max_data_size))
3718 goto out;
3719
3720 if (unlikely(trace_recursive_lock(cpu_buffer)))
3721 goto out;
3722
3723 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3724 if (!event)
3725 goto out_unlock;
3726
3727 return event;
3728
3729 out_unlock:
3730 trace_recursive_unlock(cpu_buffer);
3731 out:
3732 preempt_enable_notrace();
3733 return NULL;
3734}
3735EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3736
3737/*
3738 * Decrement the entries to the page that an event is on.
3739 * The event does not even need to exist, only the pointer
3740 * to the page it is on. This may only be called before the commit
3741 * takes place.
3742 */
3743static inline void
3744rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3745 struct ring_buffer_event *event)
3746{
3747 unsigned long addr = (unsigned long)event;
3748 struct buffer_page *bpage = cpu_buffer->commit_page;
3749 struct buffer_page *start;
3750
3751 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3752
3753 /* Do the likely case first */
3754 if (likely(bpage->page == (void *)addr)) {
3755 local_dec(&bpage->entries);
3756 return;
3757 }
3758
3759 /*
3760 * Because the commit page may be on the reader page we
3761 * start with the next page and check the end loop there.
3762 */
3763 rb_inc_page(&bpage);
3764 start = bpage;
3765 do {
3766 if (bpage->page == (void *)addr) {
3767 local_dec(&bpage->entries);
3768 return;
3769 }
3770 rb_inc_page(&bpage);
3771 } while (bpage != start);
3772
3773 /* commit not part of this buffer?? */
3774 RB_WARN_ON(cpu_buffer, 1);
3775}
3776
3777/**
3778 * ring_buffer_discard_commit - discard an event that has not been committed
3779 * @buffer: the ring buffer
3780 * @event: non committed event to discard
3781 *
3782 * Sometimes an event that is in the ring buffer needs to be ignored.
3783 * This function lets the user discard an event in the ring buffer
3784 * and then that event will not be read later.
3785 *
3786 * This function only works if it is called before the item has been
3787 * committed. It will try to free the event from the ring buffer
3788 * if another event has not been added behind it.
3789 *
3790 * If another event has been added behind it, it will set the event
3791 * up as discarded, and perform the commit.
3792 *
3793 * If this function is called, do not call ring_buffer_unlock_commit on
3794 * the event.
3795 */
3796void ring_buffer_discard_commit(struct trace_buffer *buffer,
3797 struct ring_buffer_event *event)
3798{
3799 struct ring_buffer_per_cpu *cpu_buffer;
3800 int cpu;
3801
3802 /* The event is discarded regardless */
3803 rb_event_discard(event);
3804
3805 cpu = smp_processor_id();
3806 cpu_buffer = buffer->buffers[cpu];
3807
3808 /*
3809 * This must only be called if the event has not been
3810 * committed yet. Thus we can assume that preemption
3811 * is still disabled.
3812 */
3813 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3814
3815 rb_decrement_entry(cpu_buffer, event);
3816 if (rb_try_to_discard(cpu_buffer, event))
3817 goto out;
3818
3819 out:
3820 rb_end_commit(cpu_buffer);
3821
3822 trace_recursive_unlock(cpu_buffer);
3823
3824 preempt_enable_notrace();
3825
3826}
3827EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3828
3829/**
3830 * ring_buffer_write - write data to the buffer without reserving
3831 * @buffer: The ring buffer to write to.
3832 * @length: The length of the data being written (excluding the event header)
3833 * @data: The data to write to the buffer.
3834 *
3835 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3836 * one function. If you already have the data to write to the buffer, it
3837 * may be easier to simply call this function.
3838 *
3839 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3840 * and not the length of the event which would hold the header.
3841 */
3842int ring_buffer_write(struct trace_buffer *buffer,
3843 unsigned long length,
3844 void *data)
3845{
3846 struct ring_buffer_per_cpu *cpu_buffer;
3847 struct ring_buffer_event *event;
3848 void *body;
3849 int ret = -EBUSY;
3850 int cpu;
3851
3852 preempt_disable_notrace();
3853
3854 if (atomic_read(&buffer->record_disabled))
3855 goto out;
3856
3857 cpu = raw_smp_processor_id();
3858
3859 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3860 goto out;
3861
3862 cpu_buffer = buffer->buffers[cpu];
3863
3864 if (atomic_read(&cpu_buffer->record_disabled))
3865 goto out;
3866
3867 if (length > buffer->max_data_size)
3868 goto out;
3869
3870 if (unlikely(trace_recursive_lock(cpu_buffer)))
3871 goto out;
3872
3873 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3874 if (!event)
3875 goto out_unlock;
3876
3877 body = rb_event_data(event);
3878
3879 memcpy(body, data, length);
3880
3881 rb_commit(cpu_buffer);
3882
3883 rb_wakeups(buffer, cpu_buffer);
3884
3885 ret = 0;
3886
3887 out_unlock:
3888 trace_recursive_unlock(cpu_buffer);
3889
3890 out:
3891 preempt_enable_notrace();
3892
3893 return ret;
3894}
3895EXPORT_SYMBOL_GPL(ring_buffer_write);
3896
3897static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3898{
3899 struct buffer_page *reader = cpu_buffer->reader_page;
3900 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3901 struct buffer_page *commit = cpu_buffer->commit_page;
3902
3903 /* In case of error, head will be NULL */
3904 if (unlikely(!head))
3905 return true;
3906
3907 /* Reader should exhaust content in reader page */
3908 if (reader->read != rb_page_commit(reader))
3909 return false;
3910
3911 /*
3912 * If writers are committing on the reader page, knowing all
3913 * committed content has been read, the ring buffer is empty.
3914 */
3915 if (commit == reader)
3916 return true;
3917
3918 /*
3919 * If writers are committing on a page other than reader page
3920 * and head page, there should always be content to read.
3921 */
3922 if (commit != head)
3923 return false;
3924
3925 /*
3926 * Writers are committing on the head page, we just need
3927 * to care about there're committed data, and the reader will
3928 * swap reader page with head page when it is to read data.
3929 */
3930 return rb_page_commit(commit) == 0;
3931}
3932
3933/**
3934 * ring_buffer_record_disable - stop all writes into the buffer
3935 * @buffer: The ring buffer to stop writes to.
3936 *
3937 * This prevents all writes to the buffer. Any attempt to write
3938 * to the buffer after this will fail and return NULL.
3939 *
3940 * The caller should call synchronize_rcu() after this.
3941 */
3942void ring_buffer_record_disable(struct trace_buffer *buffer)
3943{
3944 atomic_inc(&buffer->record_disabled);
3945}
3946EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3947
3948/**
3949 * ring_buffer_record_enable - enable writes to the buffer
3950 * @buffer: The ring buffer to enable writes
3951 *
3952 * Note, multiple disables will need the same number of enables
3953 * to truly enable the writing (much like preempt_disable).
3954 */
3955void ring_buffer_record_enable(struct trace_buffer *buffer)
3956{
3957 atomic_dec(&buffer->record_disabled);
3958}
3959EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3960
3961/**
3962 * ring_buffer_record_off - stop all writes into the buffer
3963 * @buffer: The ring buffer to stop writes to.
3964 *
3965 * This prevents all writes to the buffer. Any attempt to write
3966 * to the buffer after this will fail and return NULL.
3967 *
3968 * This is different than ring_buffer_record_disable() as
3969 * it works like an on/off switch, where as the disable() version
3970 * must be paired with a enable().
3971 */
3972void ring_buffer_record_off(struct trace_buffer *buffer)
3973{
3974 unsigned int rd;
3975 unsigned int new_rd;
3976
3977 rd = atomic_read(&buffer->record_disabled);
3978 do {
3979 new_rd = rd | RB_BUFFER_OFF;
3980 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
3981}
3982EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3983
3984/**
3985 * ring_buffer_record_on - restart writes into the buffer
3986 * @buffer: The ring buffer to start writes to.
3987 *
3988 * This enables all writes to the buffer that was disabled by
3989 * ring_buffer_record_off().
3990 *
3991 * This is different than ring_buffer_record_enable() as
3992 * it works like an on/off switch, where as the enable() version
3993 * must be paired with a disable().
3994 */
3995void ring_buffer_record_on(struct trace_buffer *buffer)
3996{
3997 unsigned int rd;
3998 unsigned int new_rd;
3999
4000 rd = atomic_read(&buffer->record_disabled);
4001 do {
4002 new_rd = rd & ~RB_BUFFER_OFF;
4003 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4004}
4005EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4006
4007/**
4008 * ring_buffer_record_is_on - return true if the ring buffer can write
4009 * @buffer: The ring buffer to see if write is enabled
4010 *
4011 * Returns true if the ring buffer is in a state that it accepts writes.
4012 */
4013bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4014{
4015 return !atomic_read(&buffer->record_disabled);
4016}
4017
4018/**
4019 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4020 * @buffer: The ring buffer to see if write is set enabled
4021 *
4022 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4023 * Note that this does NOT mean it is in a writable state.
4024 *
4025 * It may return true when the ring buffer has been disabled by
4026 * ring_buffer_record_disable(), as that is a temporary disabling of
4027 * the ring buffer.
4028 */
4029bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4030{
4031 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4032}
4033
4034/**
4035 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4036 * @buffer: The ring buffer to stop writes to.
4037 * @cpu: The CPU buffer to stop
4038 *
4039 * This prevents all writes to the buffer. Any attempt to write
4040 * to the buffer after this will fail and return NULL.
4041 *
4042 * The caller should call synchronize_rcu() after this.
4043 */
4044void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4045{
4046 struct ring_buffer_per_cpu *cpu_buffer;
4047
4048 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4049 return;
4050
4051 cpu_buffer = buffer->buffers[cpu];
4052 atomic_inc(&cpu_buffer->record_disabled);
4053}
4054EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4055
4056/**
4057 * ring_buffer_record_enable_cpu - enable writes to the buffer
4058 * @buffer: The ring buffer to enable writes
4059 * @cpu: The CPU to enable.
4060 *
4061 * Note, multiple disables will need the same number of enables
4062 * to truly enable the writing (much like preempt_disable).
4063 */
4064void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4065{
4066 struct ring_buffer_per_cpu *cpu_buffer;
4067
4068 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4069 return;
4070
4071 cpu_buffer = buffer->buffers[cpu];
4072 atomic_dec(&cpu_buffer->record_disabled);
4073}
4074EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4075
4076/*
4077 * The total entries in the ring buffer is the running counter
4078 * of entries entered into the ring buffer, minus the sum of
4079 * the entries read from the ring buffer and the number of
4080 * entries that were overwritten.
4081 */
4082static inline unsigned long
4083rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4084{
4085 return local_read(&cpu_buffer->entries) -
4086 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4087}
4088
4089/**
4090 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4091 * @buffer: The ring buffer
4092 * @cpu: The per CPU buffer to read from.
4093 */
4094u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4095{
4096 unsigned long flags;
4097 struct ring_buffer_per_cpu *cpu_buffer;
4098 struct buffer_page *bpage;
4099 u64 ret = 0;
4100
4101 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4102 return 0;
4103
4104 cpu_buffer = buffer->buffers[cpu];
4105 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4106 /*
4107 * if the tail is on reader_page, oldest time stamp is on the reader
4108 * page
4109 */
4110 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4111 bpage = cpu_buffer->reader_page;
4112 else
4113 bpage = rb_set_head_page(cpu_buffer);
4114 if (bpage)
4115 ret = bpage->page->time_stamp;
4116 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4117
4118 return ret;
4119}
4120EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4121
4122/**
4123 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4124 * @buffer: The ring buffer
4125 * @cpu: The per CPU buffer to read from.
4126 */
4127unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4128{
4129 struct ring_buffer_per_cpu *cpu_buffer;
4130 unsigned long ret;
4131
4132 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4133 return 0;
4134
4135 cpu_buffer = buffer->buffers[cpu];
4136 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4137
4138 return ret;
4139}
4140EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4141
4142/**
4143 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4144 * @buffer: The ring buffer
4145 * @cpu: The per CPU buffer to get the entries from.
4146 */
4147unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4148{
4149 struct ring_buffer_per_cpu *cpu_buffer;
4150
4151 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4152 return 0;
4153
4154 cpu_buffer = buffer->buffers[cpu];
4155
4156 return rb_num_of_entries(cpu_buffer);
4157}
4158EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4159
4160/**
4161 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4162 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4163 * @buffer: The ring buffer
4164 * @cpu: The per CPU buffer to get the number of overruns from
4165 */
4166unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4167{
4168 struct ring_buffer_per_cpu *cpu_buffer;
4169 unsigned long ret;
4170
4171 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4172 return 0;
4173
4174 cpu_buffer = buffer->buffers[cpu];
4175 ret = local_read(&cpu_buffer->overrun);
4176
4177 return ret;
4178}
4179EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4180
4181/**
4182 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4183 * commits failing due to the buffer wrapping around while there are uncommitted
4184 * events, such as during an interrupt storm.
4185 * @buffer: The ring buffer
4186 * @cpu: The per CPU buffer to get the number of overruns from
4187 */
4188unsigned long
4189ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4190{
4191 struct ring_buffer_per_cpu *cpu_buffer;
4192 unsigned long ret;
4193
4194 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4195 return 0;
4196
4197 cpu_buffer = buffer->buffers[cpu];
4198 ret = local_read(&cpu_buffer->commit_overrun);
4199
4200 return ret;
4201}
4202EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4203
4204/**
4205 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4206 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4207 * @buffer: The ring buffer
4208 * @cpu: The per CPU buffer to get the number of overruns from
4209 */
4210unsigned long
4211ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4212{
4213 struct ring_buffer_per_cpu *cpu_buffer;
4214 unsigned long ret;
4215
4216 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4217 return 0;
4218
4219 cpu_buffer = buffer->buffers[cpu];
4220 ret = local_read(&cpu_buffer->dropped_events);
4221
4222 return ret;
4223}
4224EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4225
4226/**
4227 * ring_buffer_read_events_cpu - get the number of events successfully read
4228 * @buffer: The ring buffer
4229 * @cpu: The per CPU buffer to get the number of events read
4230 */
4231unsigned long
4232ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4233{
4234 struct ring_buffer_per_cpu *cpu_buffer;
4235
4236 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4237 return 0;
4238
4239 cpu_buffer = buffer->buffers[cpu];
4240 return cpu_buffer->read;
4241}
4242EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4243
4244/**
4245 * ring_buffer_entries - get the number of entries in a buffer
4246 * @buffer: The ring buffer
4247 *
4248 * Returns the total number of entries in the ring buffer
4249 * (all CPU entries)
4250 */
4251unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4252{
4253 struct ring_buffer_per_cpu *cpu_buffer;
4254 unsigned long entries = 0;
4255 int cpu;
4256
4257 /* if you care about this being correct, lock the buffer */
4258 for_each_buffer_cpu(buffer, cpu) {
4259 cpu_buffer = buffer->buffers[cpu];
4260 entries += rb_num_of_entries(cpu_buffer);
4261 }
4262
4263 return entries;
4264}
4265EXPORT_SYMBOL_GPL(ring_buffer_entries);
4266
4267/**
4268 * ring_buffer_overruns - get the number of overruns in buffer
4269 * @buffer: The ring buffer
4270 *
4271 * Returns the total number of overruns in the ring buffer
4272 * (all CPU entries)
4273 */
4274unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4275{
4276 struct ring_buffer_per_cpu *cpu_buffer;
4277 unsigned long overruns = 0;
4278 int cpu;
4279
4280 /* if you care about this being correct, lock the buffer */
4281 for_each_buffer_cpu(buffer, cpu) {
4282 cpu_buffer = buffer->buffers[cpu];
4283 overruns += local_read(&cpu_buffer->overrun);
4284 }
4285
4286 return overruns;
4287}
4288EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4289
4290static void rb_iter_reset(struct ring_buffer_iter *iter)
4291{
4292 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4293
4294 /* Iterator usage is expected to have record disabled */
4295 iter->head_page = cpu_buffer->reader_page;
4296 iter->head = cpu_buffer->reader_page->read;
4297 iter->next_event = iter->head;
4298
4299 iter->cache_reader_page = iter->head_page;
4300 iter->cache_read = cpu_buffer->read;
4301 iter->cache_pages_removed = cpu_buffer->pages_removed;
4302
4303 if (iter->head) {
4304 iter->read_stamp = cpu_buffer->read_stamp;
4305 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4306 } else {
4307 iter->read_stamp = iter->head_page->page->time_stamp;
4308 iter->page_stamp = iter->read_stamp;
4309 }
4310}
4311
4312/**
4313 * ring_buffer_iter_reset - reset an iterator
4314 * @iter: The iterator to reset
4315 *
4316 * Resets the iterator, so that it will start from the beginning
4317 * again.
4318 */
4319void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4320{
4321 struct ring_buffer_per_cpu *cpu_buffer;
4322 unsigned long flags;
4323
4324 if (!iter)
4325 return;
4326
4327 cpu_buffer = iter->cpu_buffer;
4328
4329 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4330 rb_iter_reset(iter);
4331 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4332}
4333EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4334
4335/**
4336 * ring_buffer_iter_empty - check if an iterator has no more to read
4337 * @iter: The iterator to check
4338 */
4339int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4340{
4341 struct ring_buffer_per_cpu *cpu_buffer;
4342 struct buffer_page *reader;
4343 struct buffer_page *head_page;
4344 struct buffer_page *commit_page;
4345 struct buffer_page *curr_commit_page;
4346 unsigned commit;
4347 u64 curr_commit_ts;
4348 u64 commit_ts;
4349
4350 cpu_buffer = iter->cpu_buffer;
4351 reader = cpu_buffer->reader_page;
4352 head_page = cpu_buffer->head_page;
4353 commit_page = cpu_buffer->commit_page;
4354 commit_ts = commit_page->page->time_stamp;
4355
4356 /*
4357 * When the writer goes across pages, it issues a cmpxchg which
4358 * is a mb(), which will synchronize with the rmb here.
4359 * (see rb_tail_page_update())
4360 */
4361 smp_rmb();
4362 commit = rb_page_commit(commit_page);
4363 /* We want to make sure that the commit page doesn't change */
4364 smp_rmb();
4365
4366 /* Make sure commit page didn't change */
4367 curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4368 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4369
4370 /* If the commit page changed, then there's more data */
4371 if (curr_commit_page != commit_page ||
4372 curr_commit_ts != commit_ts)
4373 return 0;
4374
4375 /* Still racy, as it may return a false positive, but that's OK */
4376 return ((iter->head_page == commit_page && iter->head >= commit) ||
4377 (iter->head_page == reader && commit_page == head_page &&
4378 head_page->read == commit &&
4379 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4380}
4381EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4382
4383static void
4384rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4385 struct ring_buffer_event *event)
4386{
4387 u64 delta;
4388
4389 switch (event->type_len) {
4390 case RINGBUF_TYPE_PADDING:
4391 return;
4392
4393 case RINGBUF_TYPE_TIME_EXTEND:
4394 delta = rb_event_time_stamp(event);
4395 cpu_buffer->read_stamp += delta;
4396 return;
4397
4398 case RINGBUF_TYPE_TIME_STAMP:
4399 delta = rb_event_time_stamp(event);
4400 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4401 cpu_buffer->read_stamp = delta;
4402 return;
4403
4404 case RINGBUF_TYPE_DATA:
4405 cpu_buffer->read_stamp += event->time_delta;
4406 return;
4407
4408 default:
4409 RB_WARN_ON(cpu_buffer, 1);
4410 }
4411}
4412
4413static void
4414rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4415 struct ring_buffer_event *event)
4416{
4417 u64 delta;
4418
4419 switch (event->type_len) {
4420 case RINGBUF_TYPE_PADDING:
4421 return;
4422
4423 case RINGBUF_TYPE_TIME_EXTEND:
4424 delta = rb_event_time_stamp(event);
4425 iter->read_stamp += delta;
4426 return;
4427
4428 case RINGBUF_TYPE_TIME_STAMP:
4429 delta = rb_event_time_stamp(event);
4430 delta = rb_fix_abs_ts(delta, iter->read_stamp);
4431 iter->read_stamp = delta;
4432 return;
4433
4434 case RINGBUF_TYPE_DATA:
4435 iter->read_stamp += event->time_delta;
4436 return;
4437
4438 default:
4439 RB_WARN_ON(iter->cpu_buffer, 1);
4440 }
4441}
4442
4443static struct buffer_page *
4444rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4445{
4446 struct buffer_page *reader = NULL;
4447 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
4448 unsigned long overwrite;
4449 unsigned long flags;
4450 int nr_loops = 0;
4451 bool ret;
4452
4453 local_irq_save(flags);
4454 arch_spin_lock(&cpu_buffer->lock);
4455
4456 again:
4457 /*
4458 * This should normally only loop twice. But because the
4459 * start of the reader inserts an empty page, it causes
4460 * a case where we will loop three times. There should be no
4461 * reason to loop four times (that I know of).
4462 */
4463 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4464 reader = NULL;
4465 goto out;
4466 }
4467
4468 reader = cpu_buffer->reader_page;
4469
4470 /* If there's more to read, return this page */
4471 if (cpu_buffer->reader_page->read < rb_page_size(reader))
4472 goto out;
4473
4474 /* Never should we have an index greater than the size */
4475 if (RB_WARN_ON(cpu_buffer,
4476 cpu_buffer->reader_page->read > rb_page_size(reader)))
4477 goto out;
4478
4479 /* check if we caught up to the tail */
4480 reader = NULL;
4481 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4482 goto out;
4483
4484 /* Don't bother swapping if the ring buffer is empty */
4485 if (rb_num_of_entries(cpu_buffer) == 0)
4486 goto out;
4487
4488 /*
4489 * Reset the reader page to size zero.
4490 */
4491 local_set(&cpu_buffer->reader_page->write, 0);
4492 local_set(&cpu_buffer->reader_page->entries, 0);
4493 local_set(&cpu_buffer->reader_page->page->commit, 0);
4494 cpu_buffer->reader_page->real_end = 0;
4495
4496 spin:
4497 /*
4498 * Splice the empty reader page into the list around the head.
4499 */
4500 reader = rb_set_head_page(cpu_buffer);
4501 if (!reader)
4502 goto out;
4503 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4504 cpu_buffer->reader_page->list.prev = reader->list.prev;
4505
4506 /*
4507 * cpu_buffer->pages just needs to point to the buffer, it
4508 * has no specific buffer page to point to. Lets move it out
4509 * of our way so we don't accidentally swap it.
4510 */
4511 cpu_buffer->pages = reader->list.prev;
4512
4513 /* The reader page will be pointing to the new head */
4514 rb_set_list_to_head(&cpu_buffer->reader_page->list);
4515
4516 /*
4517 * We want to make sure we read the overruns after we set up our
4518 * pointers to the next object. The writer side does a
4519 * cmpxchg to cross pages which acts as the mb on the writer
4520 * side. Note, the reader will constantly fail the swap
4521 * while the writer is updating the pointers, so this
4522 * guarantees that the overwrite recorded here is the one we
4523 * want to compare with the last_overrun.
4524 */
4525 smp_mb();
4526 overwrite = local_read(&(cpu_buffer->overrun));
4527
4528 /*
4529 * Here's the tricky part.
4530 *
4531 * We need to move the pointer past the header page.
4532 * But we can only do that if a writer is not currently
4533 * moving it. The page before the header page has the
4534 * flag bit '1' set if it is pointing to the page we want.
4535 * but if the writer is in the process of moving it
4536 * than it will be '2' or already moved '0'.
4537 */
4538
4539 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4540
4541 /*
4542 * If we did not convert it, then we must try again.
4543 */
4544 if (!ret)
4545 goto spin;
4546
4547 /*
4548 * Yay! We succeeded in replacing the page.
4549 *
4550 * Now make the new head point back to the reader page.
4551 */
4552 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4553 rb_inc_page(&cpu_buffer->head_page);
4554
4555 local_inc(&cpu_buffer->pages_read);
4556
4557 /* Finally update the reader page to the new head */
4558 cpu_buffer->reader_page = reader;
4559 cpu_buffer->reader_page->read = 0;
4560
4561 if (overwrite != cpu_buffer->last_overrun) {
4562 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4563 cpu_buffer->last_overrun = overwrite;
4564 }
4565
4566 goto again;
4567
4568 out:
4569 /* Update the read_stamp on the first event */
4570 if (reader && reader->read == 0)
4571 cpu_buffer->read_stamp = reader->page->time_stamp;
4572
4573 arch_spin_unlock(&cpu_buffer->lock);
4574 local_irq_restore(flags);
4575
4576 /*
4577 * The writer has preempt disable, wait for it. But not forever
4578 * Although, 1 second is pretty much "forever"
4579 */
4580#define USECS_WAIT 1000000
4581 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4582 /* If the write is past the end of page, a writer is still updating it */
4583 if (likely(!reader || rb_page_write(reader) <= bsize))
4584 break;
4585
4586 udelay(1);
4587
4588 /* Get the latest version of the reader write value */
4589 smp_rmb();
4590 }
4591
4592 /* The writer is not moving forward? Something is wrong */
4593 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4594 reader = NULL;
4595
4596 /*
4597 * Make sure we see any padding after the write update
4598 * (see rb_reset_tail()).
4599 *
4600 * In addition, a writer may be writing on the reader page
4601 * if the page has not been fully filled, so the read barrier
4602 * is also needed to make sure we see the content of what is
4603 * committed by the writer (see rb_set_commit_to_write()).
4604 */
4605 smp_rmb();
4606
4607
4608 return reader;
4609}
4610
4611static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4612{
4613 struct ring_buffer_event *event;
4614 struct buffer_page *reader;
4615 unsigned length;
4616
4617 reader = rb_get_reader_page(cpu_buffer);
4618
4619 /* This function should not be called when buffer is empty */
4620 if (RB_WARN_ON(cpu_buffer, !reader))
4621 return;
4622
4623 event = rb_reader_event(cpu_buffer);
4624
4625 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4626 cpu_buffer->read++;
4627
4628 rb_update_read_stamp(cpu_buffer, event);
4629
4630 length = rb_event_length(event);
4631 cpu_buffer->reader_page->read += length;
4632 cpu_buffer->read_bytes += length;
4633}
4634
4635static void rb_advance_iter(struct ring_buffer_iter *iter)
4636{
4637 struct ring_buffer_per_cpu *cpu_buffer;
4638
4639 cpu_buffer = iter->cpu_buffer;
4640
4641 /* If head == next_event then we need to jump to the next event */
4642 if (iter->head == iter->next_event) {
4643 /* If the event gets overwritten again, there's nothing to do */
4644 if (rb_iter_head_event(iter) == NULL)
4645 return;
4646 }
4647
4648 iter->head = iter->next_event;
4649
4650 /*
4651 * Check if we are at the end of the buffer.
4652 */
4653 if (iter->next_event >= rb_page_size(iter->head_page)) {
4654 /* discarded commits can make the page empty */
4655 if (iter->head_page == cpu_buffer->commit_page)
4656 return;
4657 rb_inc_iter(iter);
4658 return;
4659 }
4660
4661 rb_update_iter_read_stamp(iter, iter->event);
4662}
4663
4664static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4665{
4666 return cpu_buffer->lost_events;
4667}
4668
4669static struct ring_buffer_event *
4670rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4671 unsigned long *lost_events)
4672{
4673 struct ring_buffer_event *event;
4674 struct buffer_page *reader;
4675 int nr_loops = 0;
4676
4677 if (ts)
4678 *ts = 0;
4679 again:
4680 /*
4681 * We repeat when a time extend is encountered.
4682 * Since the time extend is always attached to a data event,
4683 * we should never loop more than once.
4684 * (We never hit the following condition more than twice).
4685 */
4686 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4687 return NULL;
4688
4689 reader = rb_get_reader_page(cpu_buffer);
4690 if (!reader)
4691 return NULL;
4692
4693 event = rb_reader_event(cpu_buffer);
4694
4695 switch (event->type_len) {
4696 case RINGBUF_TYPE_PADDING:
4697 if (rb_null_event(event))
4698 RB_WARN_ON(cpu_buffer, 1);
4699 /*
4700 * Because the writer could be discarding every
4701 * event it creates (which would probably be bad)
4702 * if we were to go back to "again" then we may never
4703 * catch up, and will trigger the warn on, or lock
4704 * the box. Return the padding, and we will release
4705 * the current locks, and try again.
4706 */
4707 return event;
4708
4709 case RINGBUF_TYPE_TIME_EXTEND:
4710 /* Internal data, OK to advance */
4711 rb_advance_reader(cpu_buffer);
4712 goto again;
4713
4714 case RINGBUF_TYPE_TIME_STAMP:
4715 if (ts) {
4716 *ts = rb_event_time_stamp(event);
4717 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4718 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4719 cpu_buffer->cpu, ts);
4720 }
4721 /* Internal data, OK to advance */
4722 rb_advance_reader(cpu_buffer);
4723 goto again;
4724
4725 case RINGBUF_TYPE_DATA:
4726 if (ts && !(*ts)) {
4727 *ts = cpu_buffer->read_stamp + event->time_delta;
4728 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4729 cpu_buffer->cpu, ts);
4730 }
4731 if (lost_events)
4732 *lost_events = rb_lost_events(cpu_buffer);
4733 return event;
4734
4735 default:
4736 RB_WARN_ON(cpu_buffer, 1);
4737 }
4738
4739 return NULL;
4740}
4741EXPORT_SYMBOL_GPL(ring_buffer_peek);
4742
4743static struct ring_buffer_event *
4744rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4745{
4746 struct trace_buffer *buffer;
4747 struct ring_buffer_per_cpu *cpu_buffer;
4748 struct ring_buffer_event *event;
4749 int nr_loops = 0;
4750
4751 if (ts)
4752 *ts = 0;
4753
4754 cpu_buffer = iter->cpu_buffer;
4755 buffer = cpu_buffer->buffer;
4756
4757 /*
4758 * Check if someone performed a consuming read to the buffer
4759 * or removed some pages from the buffer. In these cases,
4760 * iterator was invalidated and we need to reset it.
4761 */
4762 if (unlikely(iter->cache_read != cpu_buffer->read ||
4763 iter->cache_reader_page != cpu_buffer->reader_page ||
4764 iter->cache_pages_removed != cpu_buffer->pages_removed))
4765 rb_iter_reset(iter);
4766
4767 again:
4768 if (ring_buffer_iter_empty(iter))
4769 return NULL;
4770
4771 /*
4772 * As the writer can mess with what the iterator is trying
4773 * to read, just give up if we fail to get an event after
4774 * three tries. The iterator is not as reliable when reading
4775 * the ring buffer with an active write as the consumer is.
4776 * Do not warn if the three failures is reached.
4777 */
4778 if (++nr_loops > 3)
4779 return NULL;
4780
4781 if (rb_per_cpu_empty(cpu_buffer))
4782 return NULL;
4783
4784 if (iter->head >= rb_page_size(iter->head_page)) {
4785 rb_inc_iter(iter);
4786 goto again;
4787 }
4788
4789 event = rb_iter_head_event(iter);
4790 if (!event)
4791 goto again;
4792
4793 switch (event->type_len) {
4794 case RINGBUF_TYPE_PADDING:
4795 if (rb_null_event(event)) {
4796 rb_inc_iter(iter);
4797 goto again;
4798 }
4799 rb_advance_iter(iter);
4800 return event;
4801
4802 case RINGBUF_TYPE_TIME_EXTEND:
4803 /* Internal data, OK to advance */
4804 rb_advance_iter(iter);
4805 goto again;
4806
4807 case RINGBUF_TYPE_TIME_STAMP:
4808 if (ts) {
4809 *ts = rb_event_time_stamp(event);
4810 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4811 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4812 cpu_buffer->cpu, ts);
4813 }
4814 /* Internal data, OK to advance */
4815 rb_advance_iter(iter);
4816 goto again;
4817
4818 case RINGBUF_TYPE_DATA:
4819 if (ts && !(*ts)) {
4820 *ts = iter->read_stamp + event->time_delta;
4821 ring_buffer_normalize_time_stamp(buffer,
4822 cpu_buffer->cpu, ts);
4823 }
4824 return event;
4825
4826 default:
4827 RB_WARN_ON(cpu_buffer, 1);
4828 }
4829
4830 return NULL;
4831}
4832EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4833
4834static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4835{
4836 if (likely(!in_nmi())) {
4837 raw_spin_lock(&cpu_buffer->reader_lock);
4838 return true;
4839 }
4840
4841 /*
4842 * If an NMI die dumps out the content of the ring buffer
4843 * trylock must be used to prevent a deadlock if the NMI
4844 * preempted a task that holds the ring buffer locks. If
4845 * we get the lock then all is fine, if not, then continue
4846 * to do the read, but this can corrupt the ring buffer,
4847 * so it must be permanently disabled from future writes.
4848 * Reading from NMI is a oneshot deal.
4849 */
4850 if (raw_spin_trylock(&cpu_buffer->reader_lock))
4851 return true;
4852
4853 /* Continue without locking, but disable the ring buffer */
4854 atomic_inc(&cpu_buffer->record_disabled);
4855 return false;
4856}
4857
4858static inline void
4859rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4860{
4861 if (likely(locked))
4862 raw_spin_unlock(&cpu_buffer->reader_lock);
4863}
4864
4865/**
4866 * ring_buffer_peek - peek at the next event to be read
4867 * @buffer: The ring buffer to read
4868 * @cpu: The cpu to peak at
4869 * @ts: The timestamp counter of this event.
4870 * @lost_events: a variable to store if events were lost (may be NULL)
4871 *
4872 * This will return the event that will be read next, but does
4873 * not consume the data.
4874 */
4875struct ring_buffer_event *
4876ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4877 unsigned long *lost_events)
4878{
4879 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4880 struct ring_buffer_event *event;
4881 unsigned long flags;
4882 bool dolock;
4883
4884 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4885 return NULL;
4886
4887 again:
4888 local_irq_save(flags);
4889 dolock = rb_reader_lock(cpu_buffer);
4890 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4891 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4892 rb_advance_reader(cpu_buffer);
4893 rb_reader_unlock(cpu_buffer, dolock);
4894 local_irq_restore(flags);
4895
4896 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4897 goto again;
4898
4899 return event;
4900}
4901
4902/** ring_buffer_iter_dropped - report if there are dropped events
4903 * @iter: The ring buffer iterator
4904 *
4905 * Returns true if there was dropped events since the last peek.
4906 */
4907bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4908{
4909 bool ret = iter->missed_events != 0;
4910
4911 iter->missed_events = 0;
4912 return ret;
4913}
4914EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4915
4916/**
4917 * ring_buffer_iter_peek - peek at the next event to be read
4918 * @iter: The ring buffer iterator
4919 * @ts: The timestamp counter of this event.
4920 *
4921 * This will return the event that will be read next, but does
4922 * not increment the iterator.
4923 */
4924struct ring_buffer_event *
4925ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4926{
4927 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4928 struct ring_buffer_event *event;
4929 unsigned long flags;
4930
4931 again:
4932 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4933 event = rb_iter_peek(iter, ts);
4934 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4935
4936 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4937 goto again;
4938
4939 return event;
4940}
4941
4942/**
4943 * ring_buffer_consume - return an event and consume it
4944 * @buffer: The ring buffer to get the next event from
4945 * @cpu: the cpu to read the buffer from
4946 * @ts: a variable to store the timestamp (may be NULL)
4947 * @lost_events: a variable to store if events were lost (may be NULL)
4948 *
4949 * Returns the next event in the ring buffer, and that event is consumed.
4950 * Meaning, that sequential reads will keep returning a different event,
4951 * and eventually empty the ring buffer if the producer is slower.
4952 */
4953struct ring_buffer_event *
4954ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4955 unsigned long *lost_events)
4956{
4957 struct ring_buffer_per_cpu *cpu_buffer;
4958 struct ring_buffer_event *event = NULL;
4959 unsigned long flags;
4960 bool dolock;
4961
4962 again:
4963 /* might be called in atomic */
4964 preempt_disable();
4965
4966 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4967 goto out;
4968
4969 cpu_buffer = buffer->buffers[cpu];
4970 local_irq_save(flags);
4971 dolock = rb_reader_lock(cpu_buffer);
4972
4973 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4974 if (event) {
4975 cpu_buffer->lost_events = 0;
4976 rb_advance_reader(cpu_buffer);
4977 }
4978
4979 rb_reader_unlock(cpu_buffer, dolock);
4980 local_irq_restore(flags);
4981
4982 out:
4983 preempt_enable();
4984
4985 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4986 goto again;
4987
4988 return event;
4989}
4990EXPORT_SYMBOL_GPL(ring_buffer_consume);
4991
4992/**
4993 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4994 * @buffer: The ring buffer to read from
4995 * @cpu: The cpu buffer to iterate over
4996 * @flags: gfp flags to use for memory allocation
4997 *
4998 * This performs the initial preparations necessary to iterate
4999 * through the buffer. Memory is allocated, buffer recording
5000 * is disabled, and the iterator pointer is returned to the caller.
5001 *
5002 * Disabling buffer recording prevents the reading from being
5003 * corrupted. This is not a consuming read, so a producer is not
5004 * expected.
5005 *
5006 * After a sequence of ring_buffer_read_prepare calls, the user is
5007 * expected to make at least one call to ring_buffer_read_prepare_sync.
5008 * Afterwards, ring_buffer_read_start is invoked to get things going
5009 * for real.
5010 *
5011 * This overall must be paired with ring_buffer_read_finish.
5012 */
5013struct ring_buffer_iter *
5014ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5015{
5016 struct ring_buffer_per_cpu *cpu_buffer;
5017 struct ring_buffer_iter *iter;
5018
5019 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5020 return NULL;
5021
5022 iter = kzalloc(sizeof(*iter), flags);
5023 if (!iter)
5024 return NULL;
5025
5026 /* Holds the entire event: data and meta data */
5027 iter->event_size = buffer->subbuf_size;
5028 iter->event = kmalloc(iter->event_size, flags);
5029 if (!iter->event) {
5030 kfree(iter);
5031 return NULL;
5032 }
5033
5034 cpu_buffer = buffer->buffers[cpu];
5035
5036 iter->cpu_buffer = cpu_buffer;
5037
5038 atomic_inc(&cpu_buffer->resize_disabled);
5039
5040 return iter;
5041}
5042EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5043
5044/**
5045 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5046 *
5047 * All previously invoked ring_buffer_read_prepare calls to prepare
5048 * iterators will be synchronized. Afterwards, read_buffer_read_start
5049 * calls on those iterators are allowed.
5050 */
5051void
5052ring_buffer_read_prepare_sync(void)
5053{
5054 synchronize_rcu();
5055}
5056EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5057
5058/**
5059 * ring_buffer_read_start - start a non consuming read of the buffer
5060 * @iter: The iterator returned by ring_buffer_read_prepare
5061 *
5062 * This finalizes the startup of an iteration through the buffer.
5063 * The iterator comes from a call to ring_buffer_read_prepare and
5064 * an intervening ring_buffer_read_prepare_sync must have been
5065 * performed.
5066 *
5067 * Must be paired with ring_buffer_read_finish.
5068 */
5069void
5070ring_buffer_read_start(struct ring_buffer_iter *iter)
5071{
5072 struct ring_buffer_per_cpu *cpu_buffer;
5073 unsigned long flags;
5074
5075 if (!iter)
5076 return;
5077
5078 cpu_buffer = iter->cpu_buffer;
5079
5080 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5081 arch_spin_lock(&cpu_buffer->lock);
5082 rb_iter_reset(iter);
5083 arch_spin_unlock(&cpu_buffer->lock);
5084 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5085}
5086EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5087
5088/**
5089 * ring_buffer_read_finish - finish reading the iterator of the buffer
5090 * @iter: The iterator retrieved by ring_buffer_start
5091 *
5092 * This re-enables the recording to the buffer, and frees the
5093 * iterator.
5094 */
5095void
5096ring_buffer_read_finish(struct ring_buffer_iter *iter)
5097{
5098 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5099 unsigned long flags;
5100
5101 /*
5102 * Ring buffer is disabled from recording, here's a good place
5103 * to check the integrity of the ring buffer.
5104 * Must prevent readers from trying to read, as the check
5105 * clears the HEAD page and readers require it.
5106 */
5107 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5108 rb_check_pages(cpu_buffer);
5109 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5110
5111 atomic_dec(&cpu_buffer->resize_disabled);
5112 kfree(iter->event);
5113 kfree(iter);
5114}
5115EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5116
5117/**
5118 * ring_buffer_iter_advance - advance the iterator to the next location
5119 * @iter: The ring buffer iterator
5120 *
5121 * Move the location of the iterator such that the next read will
5122 * be the next location of the iterator.
5123 */
5124void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5125{
5126 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5127 unsigned long flags;
5128
5129 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5130
5131 rb_advance_iter(iter);
5132
5133 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5134}
5135EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5136
5137/**
5138 * ring_buffer_size - return the size of the ring buffer (in bytes)
5139 * @buffer: The ring buffer.
5140 * @cpu: The CPU to get ring buffer size from.
5141 */
5142unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5143{
5144 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5145 return 0;
5146
5147 return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5148}
5149EXPORT_SYMBOL_GPL(ring_buffer_size);
5150
5151/**
5152 * ring_buffer_max_event_size - return the max data size of an event
5153 * @buffer: The ring buffer.
5154 *
5155 * Returns the maximum size an event can be.
5156 */
5157unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
5158{
5159 /* If abs timestamp is requested, events have a timestamp too */
5160 if (ring_buffer_time_stamp_abs(buffer))
5161 return buffer->max_data_size - RB_LEN_TIME_EXTEND;
5162 return buffer->max_data_size;
5163}
5164EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
5165
5166static void rb_clear_buffer_page(struct buffer_page *page)
5167{
5168 local_set(&page->write, 0);
5169 local_set(&page->entries, 0);
5170 rb_init_page(page->page);
5171 page->read = 0;
5172}
5173
5174static void
5175rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5176{
5177 struct buffer_page *page;
5178
5179 rb_head_page_deactivate(cpu_buffer);
5180
5181 cpu_buffer->head_page
5182 = list_entry(cpu_buffer->pages, struct buffer_page, list);
5183 rb_clear_buffer_page(cpu_buffer->head_page);
5184 list_for_each_entry(page, cpu_buffer->pages, list) {
5185 rb_clear_buffer_page(page);
5186 }
5187
5188 cpu_buffer->tail_page = cpu_buffer->head_page;
5189 cpu_buffer->commit_page = cpu_buffer->head_page;
5190
5191 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5192 INIT_LIST_HEAD(&cpu_buffer->new_pages);
5193 rb_clear_buffer_page(cpu_buffer->reader_page);
5194
5195 local_set(&cpu_buffer->entries_bytes, 0);
5196 local_set(&cpu_buffer->overrun, 0);
5197 local_set(&cpu_buffer->commit_overrun, 0);
5198 local_set(&cpu_buffer->dropped_events, 0);
5199 local_set(&cpu_buffer->entries, 0);
5200 local_set(&cpu_buffer->committing, 0);
5201 local_set(&cpu_buffer->commits, 0);
5202 local_set(&cpu_buffer->pages_touched, 0);
5203 local_set(&cpu_buffer->pages_lost, 0);
5204 local_set(&cpu_buffer->pages_read, 0);
5205 cpu_buffer->last_pages_touch = 0;
5206 cpu_buffer->shortest_full = 0;
5207 cpu_buffer->read = 0;
5208 cpu_buffer->read_bytes = 0;
5209
5210 rb_time_set(&cpu_buffer->write_stamp, 0);
5211 rb_time_set(&cpu_buffer->before_stamp, 0);
5212
5213 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5214
5215 cpu_buffer->lost_events = 0;
5216 cpu_buffer->last_overrun = 0;
5217
5218 rb_head_page_activate(cpu_buffer);
5219 cpu_buffer->pages_removed = 0;
5220}
5221
5222/* Must have disabled the cpu buffer then done a synchronize_rcu */
5223static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5224{
5225 unsigned long flags;
5226
5227 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5228
5229 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5230 goto out;
5231
5232 arch_spin_lock(&cpu_buffer->lock);
5233
5234 rb_reset_cpu(cpu_buffer);
5235
5236 arch_spin_unlock(&cpu_buffer->lock);
5237
5238 out:
5239 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5240}
5241
5242/**
5243 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5244 * @buffer: The ring buffer to reset a per cpu buffer of
5245 * @cpu: The CPU buffer to be reset
5246 */
5247void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5248{
5249 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5250
5251 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5252 return;
5253
5254 /* prevent another thread from changing buffer sizes */
5255 mutex_lock(&buffer->mutex);
5256
5257 atomic_inc(&cpu_buffer->resize_disabled);
5258 atomic_inc(&cpu_buffer->record_disabled);
5259
5260 /* Make sure all commits have finished */
5261 synchronize_rcu();
5262
5263 reset_disabled_cpu_buffer(cpu_buffer);
5264
5265 atomic_dec(&cpu_buffer->record_disabled);
5266 atomic_dec(&cpu_buffer->resize_disabled);
5267
5268 mutex_unlock(&buffer->mutex);
5269}
5270EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5271
5272/* Flag to ensure proper resetting of atomic variables */
5273#define RESET_BIT (1 << 30)
5274
5275/**
5276 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5277 * @buffer: The ring buffer to reset a per cpu buffer of
5278 */
5279void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5280{
5281 struct ring_buffer_per_cpu *cpu_buffer;
5282 int cpu;
5283
5284 /* prevent another thread from changing buffer sizes */
5285 mutex_lock(&buffer->mutex);
5286
5287 for_each_online_buffer_cpu(buffer, cpu) {
5288 cpu_buffer = buffer->buffers[cpu];
5289
5290 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
5291 atomic_inc(&cpu_buffer->record_disabled);
5292 }
5293
5294 /* Make sure all commits have finished */
5295 synchronize_rcu();
5296
5297 for_each_buffer_cpu(buffer, cpu) {
5298 cpu_buffer = buffer->buffers[cpu];
5299
5300 /*
5301 * If a CPU came online during the synchronize_rcu(), then
5302 * ignore it.
5303 */
5304 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
5305 continue;
5306
5307 reset_disabled_cpu_buffer(cpu_buffer);
5308
5309 atomic_dec(&cpu_buffer->record_disabled);
5310 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
5311 }
5312
5313 mutex_unlock(&buffer->mutex);
5314}
5315
5316/**
5317 * ring_buffer_reset - reset a ring buffer
5318 * @buffer: The ring buffer to reset all cpu buffers
5319 */
5320void ring_buffer_reset(struct trace_buffer *buffer)
5321{
5322 struct ring_buffer_per_cpu *cpu_buffer;
5323 int cpu;
5324
5325 /* prevent another thread from changing buffer sizes */
5326 mutex_lock(&buffer->mutex);
5327
5328 for_each_buffer_cpu(buffer, cpu) {
5329 cpu_buffer = buffer->buffers[cpu];
5330
5331 atomic_inc(&cpu_buffer->resize_disabled);
5332 atomic_inc(&cpu_buffer->record_disabled);
5333 }
5334
5335 /* Make sure all commits have finished */
5336 synchronize_rcu();
5337
5338 for_each_buffer_cpu(buffer, cpu) {
5339 cpu_buffer = buffer->buffers[cpu];
5340
5341 reset_disabled_cpu_buffer(cpu_buffer);
5342
5343 atomic_dec(&cpu_buffer->record_disabled);
5344 atomic_dec(&cpu_buffer->resize_disabled);
5345 }
5346
5347 mutex_unlock(&buffer->mutex);
5348}
5349EXPORT_SYMBOL_GPL(ring_buffer_reset);
5350
5351/**
5352 * ring_buffer_empty - is the ring buffer empty?
5353 * @buffer: The ring buffer to test
5354 */
5355bool ring_buffer_empty(struct trace_buffer *buffer)
5356{
5357 struct ring_buffer_per_cpu *cpu_buffer;
5358 unsigned long flags;
5359 bool dolock;
5360 bool ret;
5361 int cpu;
5362
5363 /* yes this is racy, but if you don't like the race, lock the buffer */
5364 for_each_buffer_cpu(buffer, cpu) {
5365 cpu_buffer = buffer->buffers[cpu];
5366 local_irq_save(flags);
5367 dolock = rb_reader_lock(cpu_buffer);
5368 ret = rb_per_cpu_empty(cpu_buffer);
5369 rb_reader_unlock(cpu_buffer, dolock);
5370 local_irq_restore(flags);
5371
5372 if (!ret)
5373 return false;
5374 }
5375
5376 return true;
5377}
5378EXPORT_SYMBOL_GPL(ring_buffer_empty);
5379
5380/**
5381 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5382 * @buffer: The ring buffer
5383 * @cpu: The CPU buffer to test
5384 */
5385bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5386{
5387 struct ring_buffer_per_cpu *cpu_buffer;
5388 unsigned long flags;
5389 bool dolock;
5390 bool ret;
5391
5392 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5393 return true;
5394
5395 cpu_buffer = buffer->buffers[cpu];
5396 local_irq_save(flags);
5397 dolock = rb_reader_lock(cpu_buffer);
5398 ret = rb_per_cpu_empty(cpu_buffer);
5399 rb_reader_unlock(cpu_buffer, dolock);
5400 local_irq_restore(flags);
5401
5402 return ret;
5403}
5404EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5405
5406#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5407/**
5408 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5409 * @buffer_a: One buffer to swap with
5410 * @buffer_b: The other buffer to swap with
5411 * @cpu: the CPU of the buffers to swap
5412 *
5413 * This function is useful for tracers that want to take a "snapshot"
5414 * of a CPU buffer and has another back up buffer lying around.
5415 * it is expected that the tracer handles the cpu buffer not being
5416 * used at the moment.
5417 */
5418int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5419 struct trace_buffer *buffer_b, int cpu)
5420{
5421 struct ring_buffer_per_cpu *cpu_buffer_a;
5422 struct ring_buffer_per_cpu *cpu_buffer_b;
5423 int ret = -EINVAL;
5424
5425 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5426 !cpumask_test_cpu(cpu, buffer_b->cpumask))
5427 goto out;
5428
5429 cpu_buffer_a = buffer_a->buffers[cpu];
5430 cpu_buffer_b = buffer_b->buffers[cpu];
5431
5432 /* At least make sure the two buffers are somewhat the same */
5433 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5434 goto out;
5435
5436 if (buffer_a->subbuf_order != buffer_b->subbuf_order)
5437 goto out;
5438
5439 ret = -EAGAIN;
5440
5441 if (atomic_read(&buffer_a->record_disabled))
5442 goto out;
5443
5444 if (atomic_read(&buffer_b->record_disabled))
5445 goto out;
5446
5447 if (atomic_read(&cpu_buffer_a->record_disabled))
5448 goto out;
5449
5450 if (atomic_read(&cpu_buffer_b->record_disabled))
5451 goto out;
5452
5453 /*
5454 * We can't do a synchronize_rcu here because this
5455 * function can be called in atomic context.
5456 * Normally this will be called from the same CPU as cpu.
5457 * If not it's up to the caller to protect this.
5458 */
5459 atomic_inc(&cpu_buffer_a->record_disabled);
5460 atomic_inc(&cpu_buffer_b->record_disabled);
5461
5462 ret = -EBUSY;
5463 if (local_read(&cpu_buffer_a->committing))
5464 goto out_dec;
5465 if (local_read(&cpu_buffer_b->committing))
5466 goto out_dec;
5467
5468 /*
5469 * When resize is in progress, we cannot swap it because
5470 * it will mess the state of the cpu buffer.
5471 */
5472 if (atomic_read(&buffer_a->resizing))
5473 goto out_dec;
5474 if (atomic_read(&buffer_b->resizing))
5475 goto out_dec;
5476
5477 buffer_a->buffers[cpu] = cpu_buffer_b;
5478 buffer_b->buffers[cpu] = cpu_buffer_a;
5479
5480 cpu_buffer_b->buffer = buffer_a;
5481 cpu_buffer_a->buffer = buffer_b;
5482
5483 ret = 0;
5484
5485out_dec:
5486 atomic_dec(&cpu_buffer_a->record_disabled);
5487 atomic_dec(&cpu_buffer_b->record_disabled);
5488out:
5489 return ret;
5490}
5491EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5492#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5493
5494/**
5495 * ring_buffer_alloc_read_page - allocate a page to read from buffer
5496 * @buffer: the buffer to allocate for.
5497 * @cpu: the cpu buffer to allocate.
5498 *
5499 * This function is used in conjunction with ring_buffer_read_page.
5500 * When reading a full page from the ring buffer, these functions
5501 * can be used to speed up the process. The calling function should
5502 * allocate a few pages first with this function. Then when it
5503 * needs to get pages from the ring buffer, it passes the result
5504 * of this function into ring_buffer_read_page, which will swap
5505 * the page that was allocated, with the read page of the buffer.
5506 *
5507 * Returns:
5508 * The page allocated, or ERR_PTR
5509 */
5510struct buffer_data_read_page *
5511ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5512{
5513 struct ring_buffer_per_cpu *cpu_buffer;
5514 struct buffer_data_read_page *bpage = NULL;
5515 unsigned long flags;
5516 struct page *page;
5517
5518 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5519 return ERR_PTR(-ENODEV);
5520
5521 bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
5522 if (!bpage)
5523 return ERR_PTR(-ENOMEM);
5524
5525 bpage->order = buffer->subbuf_order;
5526 cpu_buffer = buffer->buffers[cpu];
5527 local_irq_save(flags);
5528 arch_spin_lock(&cpu_buffer->lock);
5529
5530 if (cpu_buffer->free_page) {
5531 bpage->data = cpu_buffer->free_page;
5532 cpu_buffer->free_page = NULL;
5533 }
5534
5535 arch_spin_unlock(&cpu_buffer->lock);
5536 local_irq_restore(flags);
5537
5538 if (bpage->data)
5539 goto out;
5540
5541 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL | __GFP_NORETRY,
5542 cpu_buffer->buffer->subbuf_order);
5543 if (!page) {
5544 kfree(bpage);
5545 return ERR_PTR(-ENOMEM);
5546 }
5547
5548 bpage->data = page_address(page);
5549
5550 out:
5551 rb_init_page(bpage->data);
5552
5553 return bpage;
5554}
5555EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5556
5557/**
5558 * ring_buffer_free_read_page - free an allocated read page
5559 * @buffer: the buffer the page was allocate for
5560 * @cpu: the cpu buffer the page came from
5561 * @data_page: the page to free
5562 *
5563 * Free a page allocated from ring_buffer_alloc_read_page.
5564 */
5565void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
5566 struct buffer_data_read_page *data_page)
5567{
5568 struct ring_buffer_per_cpu *cpu_buffer;
5569 struct buffer_data_page *bpage = data_page->data;
5570 struct page *page = virt_to_page(bpage);
5571 unsigned long flags;
5572
5573 if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5574 return;
5575
5576 cpu_buffer = buffer->buffers[cpu];
5577
5578 /*
5579 * If the page is still in use someplace else, or order of the page
5580 * is different from the subbuffer order of the buffer -
5581 * we can't reuse it
5582 */
5583 if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
5584 goto out;
5585
5586 local_irq_save(flags);
5587 arch_spin_lock(&cpu_buffer->lock);
5588
5589 if (!cpu_buffer->free_page) {
5590 cpu_buffer->free_page = bpage;
5591 bpage = NULL;
5592 }
5593
5594 arch_spin_unlock(&cpu_buffer->lock);
5595 local_irq_restore(flags);
5596
5597 out:
5598 free_pages((unsigned long)bpage, data_page->order);
5599 kfree(data_page);
5600}
5601EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5602
5603/**
5604 * ring_buffer_read_page - extract a page from the ring buffer
5605 * @buffer: buffer to extract from
5606 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5607 * @len: amount to extract
5608 * @cpu: the cpu of the buffer to extract
5609 * @full: should the extraction only happen when the page is full.
5610 *
5611 * This function will pull out a page from the ring buffer and consume it.
5612 * @data_page must be the address of the variable that was returned
5613 * from ring_buffer_alloc_read_page. This is because the page might be used
5614 * to swap with a page in the ring buffer.
5615 *
5616 * for example:
5617 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
5618 * if (IS_ERR(rpage))
5619 * return PTR_ERR(rpage);
5620 * ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
5621 * if (ret >= 0)
5622 * process_page(ring_buffer_read_page_data(rpage), ret);
5623 * ring_buffer_free_read_page(buffer, cpu, rpage);
5624 *
5625 * When @full is set, the function will not return true unless
5626 * the writer is off the reader page.
5627 *
5628 * Note: it is up to the calling functions to handle sleeps and wakeups.
5629 * The ring buffer can be used anywhere in the kernel and can not
5630 * blindly call wake_up. The layer that uses the ring buffer must be
5631 * responsible for that.
5632 *
5633 * Returns:
5634 * >=0 if data has been transferred, returns the offset of consumed data.
5635 * <0 if no data has been transferred.
5636 */
5637int ring_buffer_read_page(struct trace_buffer *buffer,
5638 struct buffer_data_read_page *data_page,
5639 size_t len, int cpu, int full)
5640{
5641 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5642 struct ring_buffer_event *event;
5643 struct buffer_data_page *bpage;
5644 struct buffer_page *reader;
5645 unsigned long missed_events;
5646 unsigned long flags;
5647 unsigned int commit;
5648 unsigned int read;
5649 u64 save_timestamp;
5650 int ret = -1;
5651
5652 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5653 goto out;
5654
5655 /*
5656 * If len is not big enough to hold the page header, then
5657 * we can not copy anything.
5658 */
5659 if (len <= BUF_PAGE_HDR_SIZE)
5660 goto out;
5661
5662 len -= BUF_PAGE_HDR_SIZE;
5663
5664 if (!data_page || !data_page->data)
5665 goto out;
5666 if (data_page->order != buffer->subbuf_order)
5667 goto out;
5668
5669 bpage = data_page->data;
5670 if (!bpage)
5671 goto out;
5672
5673 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5674
5675 reader = rb_get_reader_page(cpu_buffer);
5676 if (!reader)
5677 goto out_unlock;
5678
5679 event = rb_reader_event(cpu_buffer);
5680
5681 read = reader->read;
5682 commit = rb_page_commit(reader);
5683
5684 /* Check if any events were dropped */
5685 missed_events = cpu_buffer->lost_events;
5686
5687 /*
5688 * If this page has been partially read or
5689 * if len is not big enough to read the rest of the page or
5690 * a writer is still on the page, then
5691 * we must copy the data from the page to the buffer.
5692 * Otherwise, we can simply swap the page with the one passed in.
5693 */
5694 if (read || (len < (commit - read)) ||
5695 cpu_buffer->reader_page == cpu_buffer->commit_page) {
5696 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5697 unsigned int rpos = read;
5698 unsigned int pos = 0;
5699 unsigned int size;
5700
5701 /*
5702 * If a full page is expected, this can still be returned
5703 * if there's been a previous partial read and the
5704 * rest of the page can be read and the commit page is off
5705 * the reader page.
5706 */
5707 if (full &&
5708 (!read || (len < (commit - read)) ||
5709 cpu_buffer->reader_page == cpu_buffer->commit_page))
5710 goto out_unlock;
5711
5712 if (len > (commit - read))
5713 len = (commit - read);
5714
5715 /* Always keep the time extend and data together */
5716 size = rb_event_ts_length(event);
5717
5718 if (len < size)
5719 goto out_unlock;
5720
5721 /* save the current timestamp, since the user will need it */
5722 save_timestamp = cpu_buffer->read_stamp;
5723
5724 /* Need to copy one event at a time */
5725 do {
5726 /* We need the size of one event, because
5727 * rb_advance_reader only advances by one event,
5728 * whereas rb_event_ts_length may include the size of
5729 * one or two events.
5730 * We have already ensured there's enough space if this
5731 * is a time extend. */
5732 size = rb_event_length(event);
5733 memcpy(bpage->data + pos, rpage->data + rpos, size);
5734
5735 len -= size;
5736
5737 rb_advance_reader(cpu_buffer);
5738 rpos = reader->read;
5739 pos += size;
5740
5741 if (rpos >= commit)
5742 break;
5743
5744 event = rb_reader_event(cpu_buffer);
5745 /* Always keep the time extend and data together */
5746 size = rb_event_ts_length(event);
5747 } while (len >= size);
5748
5749 /* update bpage */
5750 local_set(&bpage->commit, pos);
5751 bpage->time_stamp = save_timestamp;
5752
5753 /* we copied everything to the beginning */
5754 read = 0;
5755 } else {
5756 /* update the entry counter */
5757 cpu_buffer->read += rb_page_entries(reader);
5758 cpu_buffer->read_bytes += rb_page_commit(reader);
5759
5760 /* swap the pages */
5761 rb_init_page(bpage);
5762 bpage = reader->page;
5763 reader->page = data_page->data;
5764 local_set(&reader->write, 0);
5765 local_set(&reader->entries, 0);
5766 reader->read = 0;
5767 data_page->data = bpage;
5768
5769 /*
5770 * Use the real_end for the data size,
5771 * This gives us a chance to store the lost events
5772 * on the page.
5773 */
5774 if (reader->real_end)
5775 local_set(&bpage->commit, reader->real_end);
5776 }
5777 ret = read;
5778
5779 cpu_buffer->lost_events = 0;
5780
5781 commit = local_read(&bpage->commit);
5782 /*
5783 * Set a flag in the commit field if we lost events
5784 */
5785 if (missed_events) {
5786 /* If there is room at the end of the page to save the
5787 * missed events, then record it there.
5788 */
5789 if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
5790 memcpy(&bpage->data[commit], &missed_events,
5791 sizeof(missed_events));
5792 local_add(RB_MISSED_STORED, &bpage->commit);
5793 commit += sizeof(missed_events);
5794 }
5795 local_add(RB_MISSED_EVENTS, &bpage->commit);
5796 }
5797
5798 /*
5799 * This page may be off to user land. Zero it out here.
5800 */
5801 if (commit < buffer->subbuf_size)
5802 memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
5803
5804 out_unlock:
5805 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5806
5807 out:
5808 return ret;
5809}
5810EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5811
5812/**
5813 * ring_buffer_read_page_data - get pointer to the data in the page.
5814 * @page: the page to get the data from
5815 *
5816 * Returns pointer to the actual data in this page.
5817 */
5818void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
5819{
5820 return page->data;
5821}
5822EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
5823
5824/**
5825 * ring_buffer_subbuf_size_get - get size of the sub buffer.
5826 * @buffer: the buffer to get the sub buffer size from
5827 *
5828 * Returns size of the sub buffer, in bytes.
5829 */
5830int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
5831{
5832 return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
5833}
5834EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
5835
5836/**
5837 * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
5838 * @buffer: The ring_buffer to get the system sub page order from
5839 *
5840 * By default, one ring buffer sub page equals to one system page. This parameter
5841 * is configurable, per ring buffer. The size of the ring buffer sub page can be
5842 * extended, but must be an order of system page size.
5843 *
5844 * Returns the order of buffer sub page size, in system pages:
5845 * 0 means the sub buffer size is 1 system page and so forth.
5846 * In case of an error < 0 is returned.
5847 */
5848int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
5849{
5850 if (!buffer)
5851 return -EINVAL;
5852
5853 return buffer->subbuf_order;
5854}
5855EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
5856
5857/**
5858 * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
5859 * @buffer: The ring_buffer to set the new page size.
5860 * @order: Order of the system pages in one sub buffer page
5861 *
5862 * By default, one ring buffer pages equals to one system page. This API can be
5863 * used to set new size of the ring buffer page. The size must be order of
5864 * system page size, that's why the input parameter @order is the order of
5865 * system pages that are allocated for one ring buffer page:
5866 * 0 - 1 system page
5867 * 1 - 2 system pages
5868 * 3 - 4 system pages
5869 * ...
5870 *
5871 * Returns 0 on success or < 0 in case of an error.
5872 */
5873int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
5874{
5875 struct ring_buffer_per_cpu *cpu_buffer;
5876 struct buffer_page *bpage, *tmp;
5877 int old_order, old_size;
5878 int nr_pages;
5879 int psize;
5880 int err;
5881 int cpu;
5882
5883 if (!buffer || order < 0)
5884 return -EINVAL;
5885
5886 if (buffer->subbuf_order == order)
5887 return 0;
5888
5889 psize = (1 << order) * PAGE_SIZE;
5890 if (psize <= BUF_PAGE_HDR_SIZE)
5891 return -EINVAL;
5892
5893 /* Size of a subbuf cannot be greater than the write counter */
5894 if (psize > RB_WRITE_MASK + 1)
5895 return -EINVAL;
5896
5897 old_order = buffer->subbuf_order;
5898 old_size = buffer->subbuf_size;
5899
5900 /* prevent another thread from changing buffer sizes */
5901 mutex_lock(&buffer->mutex);
5902 atomic_inc(&buffer->record_disabled);
5903
5904 /* Make sure all commits have finished */
5905 synchronize_rcu();
5906
5907 buffer->subbuf_order = order;
5908 buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
5909
5910 /* Make sure all new buffers are allocated, before deleting the old ones */
5911 for_each_buffer_cpu(buffer, cpu) {
5912
5913 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5914 continue;
5915
5916 cpu_buffer = buffer->buffers[cpu];
5917
5918 /* Update the number of pages to match the new size */
5919 nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
5920 nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
5921
5922 /* we need a minimum of two pages */
5923 if (nr_pages < 2)
5924 nr_pages = 2;
5925
5926 cpu_buffer->nr_pages_to_update = nr_pages;
5927
5928 /* Include the reader page */
5929 nr_pages++;
5930
5931 /* Allocate the new size buffer */
5932 INIT_LIST_HEAD(&cpu_buffer->new_pages);
5933 if (__rb_allocate_pages(cpu_buffer, nr_pages,
5934 &cpu_buffer->new_pages)) {
5935 /* not enough memory for new pages */
5936 err = -ENOMEM;
5937 goto error;
5938 }
5939 }
5940
5941 for_each_buffer_cpu(buffer, cpu) {
5942
5943 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5944 continue;
5945
5946 cpu_buffer = buffer->buffers[cpu];
5947
5948 /* Clear the head bit to make the link list normal to read */
5949 rb_head_page_deactivate(cpu_buffer);
5950
5951 /* Now walk the list and free all the old sub buffers */
5952 list_for_each_entry_safe(bpage, tmp, cpu_buffer->pages, list) {
5953 list_del_init(&bpage->list);
5954 free_buffer_page(bpage);
5955 }
5956 /* The above loop stopped an the last page needing to be freed */
5957 bpage = list_entry(cpu_buffer->pages, struct buffer_page, list);
5958 free_buffer_page(bpage);
5959
5960 /* Free the current reader page */
5961 free_buffer_page(cpu_buffer->reader_page);
5962
5963 /* One page was allocated for the reader page */
5964 cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
5965 struct buffer_page, list);
5966 list_del_init(&cpu_buffer->reader_page->list);
5967
5968 /* The cpu_buffer pages are a link list with no head */
5969 cpu_buffer->pages = cpu_buffer->new_pages.next;
5970 cpu_buffer->new_pages.next->prev = cpu_buffer->new_pages.prev;
5971 cpu_buffer->new_pages.prev->next = cpu_buffer->new_pages.next;
5972
5973 /* Clear the new_pages list */
5974 INIT_LIST_HEAD(&cpu_buffer->new_pages);
5975
5976 cpu_buffer->head_page
5977 = list_entry(cpu_buffer->pages, struct buffer_page, list);
5978 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
5979
5980 cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
5981 cpu_buffer->nr_pages_to_update = 0;
5982
5983 free_pages((unsigned long)cpu_buffer->free_page, old_order);
5984 cpu_buffer->free_page = NULL;
5985
5986 rb_head_page_activate(cpu_buffer);
5987
5988 rb_check_pages(cpu_buffer);
5989 }
5990
5991 atomic_dec(&buffer->record_disabled);
5992 mutex_unlock(&buffer->mutex);
5993
5994 return 0;
5995
5996error:
5997 buffer->subbuf_order = old_order;
5998 buffer->subbuf_size = old_size;
5999
6000 atomic_dec(&buffer->record_disabled);
6001 mutex_unlock(&buffer->mutex);
6002
6003 for_each_buffer_cpu(buffer, cpu) {
6004 cpu_buffer = buffer->buffers[cpu];
6005
6006 if (!cpu_buffer->nr_pages_to_update)
6007 continue;
6008
6009 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6010 list_del_init(&bpage->list);
6011 free_buffer_page(bpage);
6012 }
6013 }
6014
6015 return err;
6016}
6017EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6018
6019/*
6020 * We only allocate new buffers, never free them if the CPU goes down.
6021 * If we were to free the buffer, then the user would lose any trace that was in
6022 * the buffer.
6023 */
6024int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
6025{
6026 struct trace_buffer *buffer;
6027 long nr_pages_same;
6028 int cpu_i;
6029 unsigned long nr_pages;
6030
6031 buffer = container_of(node, struct trace_buffer, node);
6032 if (cpumask_test_cpu(cpu, buffer->cpumask))
6033 return 0;
6034
6035 nr_pages = 0;
6036 nr_pages_same = 1;
6037 /* check if all cpu sizes are same */
6038 for_each_buffer_cpu(buffer, cpu_i) {
6039 /* fill in the size from first enabled cpu */
6040 if (nr_pages == 0)
6041 nr_pages = buffer->buffers[cpu_i]->nr_pages;
6042 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
6043 nr_pages_same = 0;
6044 break;
6045 }
6046 }
6047 /* allocate minimum pages, user can later expand it */
6048 if (!nr_pages_same)
6049 nr_pages = 2;
6050 buffer->buffers[cpu] =
6051 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
6052 if (!buffer->buffers[cpu]) {
6053 WARN(1, "failed to allocate ring buffer on CPU %u\n",
6054 cpu);
6055 return -ENOMEM;
6056 }
6057 smp_wmb();
6058 cpumask_set_cpu(cpu, buffer->cpumask);
6059 return 0;
6060}
6061
6062#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
6063/*
6064 * This is a basic integrity check of the ring buffer.
6065 * Late in the boot cycle this test will run when configured in.
6066 * It will kick off a thread per CPU that will go into a loop
6067 * writing to the per cpu ring buffer various sizes of data.
6068 * Some of the data will be large items, some small.
6069 *
6070 * Another thread is created that goes into a spin, sending out
6071 * IPIs to the other CPUs to also write into the ring buffer.
6072 * this is to test the nesting ability of the buffer.
6073 *
6074 * Basic stats are recorded and reported. If something in the
6075 * ring buffer should happen that's not expected, a big warning
6076 * is displayed and all ring buffers are disabled.
6077 */
6078static struct task_struct *rb_threads[NR_CPUS] __initdata;
6079
6080struct rb_test_data {
6081 struct trace_buffer *buffer;
6082 unsigned long events;
6083 unsigned long bytes_written;
6084 unsigned long bytes_alloc;
6085 unsigned long bytes_dropped;
6086 unsigned long events_nested;
6087 unsigned long bytes_written_nested;
6088 unsigned long bytes_alloc_nested;
6089 unsigned long bytes_dropped_nested;
6090 int min_size_nested;
6091 int max_size_nested;
6092 int max_size;
6093 int min_size;
6094 int cpu;
6095 int cnt;
6096};
6097
6098static struct rb_test_data rb_data[NR_CPUS] __initdata;
6099
6100/* 1 meg per cpu */
6101#define RB_TEST_BUFFER_SIZE 1048576
6102
6103static char rb_string[] __initdata =
6104 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
6105 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
6106 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
6107
6108static bool rb_test_started __initdata;
6109
6110struct rb_item {
6111 int size;
6112 char str[];
6113};
6114
6115static __init int rb_write_something(struct rb_test_data *data, bool nested)
6116{
6117 struct ring_buffer_event *event;
6118 struct rb_item *item;
6119 bool started;
6120 int event_len;
6121 int size;
6122 int len;
6123 int cnt;
6124
6125 /* Have nested writes different that what is written */
6126 cnt = data->cnt + (nested ? 27 : 0);
6127
6128 /* Multiply cnt by ~e, to make some unique increment */
6129 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
6130
6131 len = size + sizeof(struct rb_item);
6132
6133 started = rb_test_started;
6134 /* read rb_test_started before checking buffer enabled */
6135 smp_rmb();
6136
6137 event = ring_buffer_lock_reserve(data->buffer, len);
6138 if (!event) {
6139 /* Ignore dropped events before test starts. */
6140 if (started) {
6141 if (nested)
6142 data->bytes_dropped += len;
6143 else
6144 data->bytes_dropped_nested += len;
6145 }
6146 return len;
6147 }
6148
6149 event_len = ring_buffer_event_length(event);
6150
6151 if (RB_WARN_ON(data->buffer, event_len < len))
6152 goto out;
6153
6154 item = ring_buffer_event_data(event);
6155 item->size = size;
6156 memcpy(item->str, rb_string, size);
6157
6158 if (nested) {
6159 data->bytes_alloc_nested += event_len;
6160 data->bytes_written_nested += len;
6161 data->events_nested++;
6162 if (!data->min_size_nested || len < data->min_size_nested)
6163 data->min_size_nested = len;
6164 if (len > data->max_size_nested)
6165 data->max_size_nested = len;
6166 } else {
6167 data->bytes_alloc += event_len;
6168 data->bytes_written += len;
6169 data->events++;
6170 if (!data->min_size || len < data->min_size)
6171 data->max_size = len;
6172 if (len > data->max_size)
6173 data->max_size = len;
6174 }
6175
6176 out:
6177 ring_buffer_unlock_commit(data->buffer);
6178
6179 return 0;
6180}
6181
6182static __init int rb_test(void *arg)
6183{
6184 struct rb_test_data *data = arg;
6185
6186 while (!kthread_should_stop()) {
6187 rb_write_something(data, false);
6188 data->cnt++;
6189
6190 set_current_state(TASK_INTERRUPTIBLE);
6191 /* Now sleep between a min of 100-300us and a max of 1ms */
6192 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
6193 }
6194
6195 return 0;
6196}
6197
6198static __init void rb_ipi(void *ignore)
6199{
6200 struct rb_test_data *data;
6201 int cpu = smp_processor_id();
6202
6203 data = &rb_data[cpu];
6204 rb_write_something(data, true);
6205}
6206
6207static __init int rb_hammer_test(void *arg)
6208{
6209 while (!kthread_should_stop()) {
6210
6211 /* Send an IPI to all cpus to write data! */
6212 smp_call_function(rb_ipi, NULL, 1);
6213 /* No sleep, but for non preempt, let others run */
6214 schedule();
6215 }
6216
6217 return 0;
6218}
6219
6220static __init int test_ringbuffer(void)
6221{
6222 struct task_struct *rb_hammer;
6223 struct trace_buffer *buffer;
6224 int cpu;
6225 int ret = 0;
6226
6227 if (security_locked_down(LOCKDOWN_TRACEFS)) {
6228 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6229 return 0;
6230 }
6231
6232 pr_info("Running ring buffer tests...\n");
6233
6234 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6235 if (WARN_ON(!buffer))
6236 return 0;
6237
6238 /* Disable buffer so that threads can't write to it yet */
6239 ring_buffer_record_off(buffer);
6240
6241 for_each_online_cpu(cpu) {
6242 rb_data[cpu].buffer = buffer;
6243 rb_data[cpu].cpu = cpu;
6244 rb_data[cpu].cnt = cpu;
6245 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6246 cpu, "rbtester/%u");
6247 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6248 pr_cont("FAILED\n");
6249 ret = PTR_ERR(rb_threads[cpu]);
6250 goto out_free;
6251 }
6252 }
6253
6254 /* Now create the rb hammer! */
6255 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6256 if (WARN_ON(IS_ERR(rb_hammer))) {
6257 pr_cont("FAILED\n");
6258 ret = PTR_ERR(rb_hammer);
6259 goto out_free;
6260 }
6261
6262 ring_buffer_record_on(buffer);
6263 /*
6264 * Show buffer is enabled before setting rb_test_started.
6265 * Yes there's a small race window where events could be
6266 * dropped and the thread wont catch it. But when a ring
6267 * buffer gets enabled, there will always be some kind of
6268 * delay before other CPUs see it. Thus, we don't care about
6269 * those dropped events. We care about events dropped after
6270 * the threads see that the buffer is active.
6271 */
6272 smp_wmb();
6273 rb_test_started = true;
6274
6275 set_current_state(TASK_INTERRUPTIBLE);
6276 /* Just run for 10 seconds */;
6277 schedule_timeout(10 * HZ);
6278
6279 kthread_stop(rb_hammer);
6280
6281 out_free:
6282 for_each_online_cpu(cpu) {
6283 if (!rb_threads[cpu])
6284 break;
6285 kthread_stop(rb_threads[cpu]);
6286 }
6287 if (ret) {
6288 ring_buffer_free(buffer);
6289 return ret;
6290 }
6291
6292 /* Report! */
6293 pr_info("finished\n");
6294 for_each_online_cpu(cpu) {
6295 struct ring_buffer_event *event;
6296 struct rb_test_data *data = &rb_data[cpu];
6297 struct rb_item *item;
6298 unsigned long total_events;
6299 unsigned long total_dropped;
6300 unsigned long total_written;
6301 unsigned long total_alloc;
6302 unsigned long total_read = 0;
6303 unsigned long total_size = 0;
6304 unsigned long total_len = 0;
6305 unsigned long total_lost = 0;
6306 unsigned long lost;
6307 int big_event_size;
6308 int small_event_size;
6309
6310 ret = -1;
6311
6312 total_events = data->events + data->events_nested;
6313 total_written = data->bytes_written + data->bytes_written_nested;
6314 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6315 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6316
6317 big_event_size = data->max_size + data->max_size_nested;
6318 small_event_size = data->min_size + data->min_size_nested;
6319
6320 pr_info("CPU %d:\n", cpu);
6321 pr_info(" events: %ld\n", total_events);
6322 pr_info(" dropped bytes: %ld\n", total_dropped);
6323 pr_info(" alloced bytes: %ld\n", total_alloc);
6324 pr_info(" written bytes: %ld\n", total_written);
6325 pr_info(" biggest event: %d\n", big_event_size);
6326 pr_info(" smallest event: %d\n", small_event_size);
6327
6328 if (RB_WARN_ON(buffer, total_dropped))
6329 break;
6330
6331 ret = 0;
6332
6333 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6334 total_lost += lost;
6335 item = ring_buffer_event_data(event);
6336 total_len += ring_buffer_event_length(event);
6337 total_size += item->size + sizeof(struct rb_item);
6338 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6339 pr_info("FAILED!\n");
6340 pr_info("buffer had: %.*s\n", item->size, item->str);
6341 pr_info("expected: %.*s\n", item->size, rb_string);
6342 RB_WARN_ON(buffer, 1);
6343 ret = -1;
6344 break;
6345 }
6346 total_read++;
6347 }
6348 if (ret)
6349 break;
6350
6351 ret = -1;
6352
6353 pr_info(" read events: %ld\n", total_read);
6354 pr_info(" lost events: %ld\n", total_lost);
6355 pr_info(" total events: %ld\n", total_lost + total_read);
6356 pr_info(" recorded len bytes: %ld\n", total_len);
6357 pr_info(" recorded size bytes: %ld\n", total_size);
6358 if (total_lost) {
6359 pr_info(" With dropped events, record len and size may not match\n"
6360 " alloced and written from above\n");
6361 } else {
6362 if (RB_WARN_ON(buffer, total_len != total_alloc ||
6363 total_size != total_written))
6364 break;
6365 }
6366 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6367 break;
6368
6369 ret = 0;
6370 }
6371 if (!ret)
6372 pr_info("Ring buffer PASSED!\n");
6373
6374 ring_buffer_free(buffer);
6375 return 0;
6376}
6377
6378late_initcall(test_ringbuffer);
6379#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Generic ring buffer
4 *
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 */
7#include <linux/trace_recursion.h>
8#include <linux/trace_events.h>
9#include <linux/ring_buffer.h>
10#include <linux/trace_clock.h>
11#include <linux/sched/clock.h>
12#include <linux/cacheflush.h>
13#include <linux/trace_seq.h>
14#include <linux/spinlock.h>
15#include <linux/irq_work.h>
16#include <linux/security.h>
17#include <linux/uaccess.h>
18#include <linux/hardirq.h>
19#include <linux/kthread.h> /* for self test */
20#include <linux/module.h>
21#include <linux/percpu.h>
22#include <linux/mutex.h>
23#include <linux/delay.h>
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/hash.h>
27#include <linux/list.h>
28#include <linux/cpu.h>
29#include <linux/oom.h>
30#include <linux/mm.h>
31
32#include <asm/local64.h>
33#include <asm/local.h>
34
35#include "trace.h"
36
37/*
38 * The "absolute" timestamp in the buffer is only 59 bits.
39 * If a clock has the 5 MSBs set, it needs to be saved and
40 * reinserted.
41 */
42#define TS_MSB (0xf8ULL << 56)
43#define ABS_TS_MASK (~TS_MSB)
44
45static void update_pages_handler(struct work_struct *work);
46
47#define RING_BUFFER_META_MAGIC 0xBADFEED
48
49struct ring_buffer_meta {
50 int magic;
51 int struct_size;
52 unsigned long text_addr;
53 unsigned long data_addr;
54 unsigned long first_buffer;
55 unsigned long head_buffer;
56 unsigned long commit_buffer;
57 __u32 subbuf_size;
58 __u32 nr_subbufs;
59 int buffers[];
60};
61
62/*
63 * The ring buffer header is special. We must manually up keep it.
64 */
65int ring_buffer_print_entry_header(struct trace_seq *s)
66{
67 trace_seq_puts(s, "# compressed entry header\n");
68 trace_seq_puts(s, "\ttype_len : 5 bits\n");
69 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
70 trace_seq_puts(s, "\tarray : 32 bits\n");
71 trace_seq_putc(s, '\n');
72 trace_seq_printf(s, "\tpadding : type == %d\n",
73 RINGBUF_TYPE_PADDING);
74 trace_seq_printf(s, "\ttime_extend : type == %d\n",
75 RINGBUF_TYPE_TIME_EXTEND);
76 trace_seq_printf(s, "\ttime_stamp : type == %d\n",
77 RINGBUF_TYPE_TIME_STAMP);
78 trace_seq_printf(s, "\tdata max type_len == %d\n",
79 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
80
81 return !trace_seq_has_overflowed(s);
82}
83
84/*
85 * The ring buffer is made up of a list of pages. A separate list of pages is
86 * allocated for each CPU. A writer may only write to a buffer that is
87 * associated with the CPU it is currently executing on. A reader may read
88 * from any per cpu buffer.
89 *
90 * The reader is special. For each per cpu buffer, the reader has its own
91 * reader page. When a reader has read the entire reader page, this reader
92 * page is swapped with another page in the ring buffer.
93 *
94 * Now, as long as the writer is off the reader page, the reader can do what
95 * ever it wants with that page. The writer will never write to that page
96 * again (as long as it is out of the ring buffer).
97 *
98 * Here's some silly ASCII art.
99 *
100 * +------+
101 * |reader| RING BUFFER
102 * |page |
103 * +------+ +---+ +---+ +---+
104 * | |-->| |-->| |
105 * +---+ +---+ +---+
106 * ^ |
107 * | |
108 * +---------------+
109 *
110 *
111 * +------+
112 * |reader| RING BUFFER
113 * |page |------------------v
114 * +------+ +---+ +---+ +---+
115 * | |-->| |-->| |
116 * +---+ +---+ +---+
117 * ^ |
118 * | |
119 * +---------------+
120 *
121 *
122 * +------+
123 * |reader| RING BUFFER
124 * |page |------------------v
125 * +------+ +---+ +---+ +---+
126 * ^ | |-->| |-->| |
127 * | +---+ +---+ +---+
128 * | |
129 * | |
130 * +------------------------------+
131 *
132 *
133 * +------+
134 * |buffer| RING BUFFER
135 * |page |------------------v
136 * +------+ +---+ +---+ +---+
137 * ^ | | | |-->| |
138 * | New +---+ +---+ +---+
139 * | Reader------^ |
140 * | page |
141 * +------------------------------+
142 *
143 *
144 * After we make this swap, the reader can hand this page off to the splice
145 * code and be done with it. It can even allocate a new page if it needs to
146 * and swap that into the ring buffer.
147 *
148 * We will be using cmpxchg soon to make all this lockless.
149 *
150 */
151
152/* Used for individual buffers (after the counter) */
153#define RB_BUFFER_OFF (1 << 20)
154
155#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
156
157#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
158#define RB_ALIGNMENT 4U
159#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
160#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
161
162#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
163# define RB_FORCE_8BYTE_ALIGNMENT 0
164# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
165#else
166# define RB_FORCE_8BYTE_ALIGNMENT 1
167# define RB_ARCH_ALIGNMENT 8U
168#endif
169
170#define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
171
172/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
173#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
174
175enum {
176 RB_LEN_TIME_EXTEND = 8,
177 RB_LEN_TIME_STAMP = 8,
178};
179
180#define skip_time_extend(event) \
181 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
182
183#define extended_time(event) \
184 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
185
186static inline bool rb_null_event(struct ring_buffer_event *event)
187{
188 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
189}
190
191static void rb_event_set_padding(struct ring_buffer_event *event)
192{
193 /* padding has a NULL time_delta */
194 event->type_len = RINGBUF_TYPE_PADDING;
195 event->time_delta = 0;
196}
197
198static unsigned
199rb_event_data_length(struct ring_buffer_event *event)
200{
201 unsigned length;
202
203 if (event->type_len)
204 length = event->type_len * RB_ALIGNMENT;
205 else
206 length = event->array[0];
207 return length + RB_EVNT_HDR_SIZE;
208}
209
210/*
211 * Return the length of the given event. Will return
212 * the length of the time extend if the event is a
213 * time extend.
214 */
215static inline unsigned
216rb_event_length(struct ring_buffer_event *event)
217{
218 switch (event->type_len) {
219 case RINGBUF_TYPE_PADDING:
220 if (rb_null_event(event))
221 /* undefined */
222 return -1;
223 return event->array[0] + RB_EVNT_HDR_SIZE;
224
225 case RINGBUF_TYPE_TIME_EXTEND:
226 return RB_LEN_TIME_EXTEND;
227
228 case RINGBUF_TYPE_TIME_STAMP:
229 return RB_LEN_TIME_STAMP;
230
231 case RINGBUF_TYPE_DATA:
232 return rb_event_data_length(event);
233 default:
234 WARN_ON_ONCE(1);
235 }
236 /* not hit */
237 return 0;
238}
239
240/*
241 * Return total length of time extend and data,
242 * or just the event length for all other events.
243 */
244static inline unsigned
245rb_event_ts_length(struct ring_buffer_event *event)
246{
247 unsigned len = 0;
248
249 if (extended_time(event)) {
250 /* time extends include the data event after it */
251 len = RB_LEN_TIME_EXTEND;
252 event = skip_time_extend(event);
253 }
254 return len + rb_event_length(event);
255}
256
257/**
258 * ring_buffer_event_length - return the length of the event
259 * @event: the event to get the length of
260 *
261 * Returns the size of the data load of a data event.
262 * If the event is something other than a data event, it
263 * returns the size of the event itself. With the exception
264 * of a TIME EXTEND, where it still returns the size of the
265 * data load of the data event after it.
266 */
267unsigned ring_buffer_event_length(struct ring_buffer_event *event)
268{
269 unsigned length;
270
271 if (extended_time(event))
272 event = skip_time_extend(event);
273
274 length = rb_event_length(event);
275 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
276 return length;
277 length -= RB_EVNT_HDR_SIZE;
278 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
279 length -= sizeof(event->array[0]);
280 return length;
281}
282EXPORT_SYMBOL_GPL(ring_buffer_event_length);
283
284/* inline for ring buffer fast paths */
285static __always_inline void *
286rb_event_data(struct ring_buffer_event *event)
287{
288 if (extended_time(event))
289 event = skip_time_extend(event);
290 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
291 /* If length is in len field, then array[0] has the data */
292 if (event->type_len)
293 return (void *)&event->array[0];
294 /* Otherwise length is in array[0] and array[1] has the data */
295 return (void *)&event->array[1];
296}
297
298/**
299 * ring_buffer_event_data - return the data of the event
300 * @event: the event to get the data from
301 */
302void *ring_buffer_event_data(struct ring_buffer_event *event)
303{
304 return rb_event_data(event);
305}
306EXPORT_SYMBOL_GPL(ring_buffer_event_data);
307
308#define for_each_buffer_cpu(buffer, cpu) \
309 for_each_cpu(cpu, buffer->cpumask)
310
311#define for_each_online_buffer_cpu(buffer, cpu) \
312 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
313
314#define TS_SHIFT 27
315#define TS_MASK ((1ULL << TS_SHIFT) - 1)
316#define TS_DELTA_TEST (~TS_MASK)
317
318static u64 rb_event_time_stamp(struct ring_buffer_event *event)
319{
320 u64 ts;
321
322 ts = event->array[0];
323 ts <<= TS_SHIFT;
324 ts += event->time_delta;
325
326 return ts;
327}
328
329/* Flag when events were overwritten */
330#define RB_MISSED_EVENTS (1 << 31)
331/* Missed count stored at end */
332#define RB_MISSED_STORED (1 << 30)
333
334#define RB_MISSED_MASK (3 << 30)
335
336struct buffer_data_page {
337 u64 time_stamp; /* page time stamp */
338 local_t commit; /* write committed index */
339 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
340};
341
342struct buffer_data_read_page {
343 unsigned order; /* order of the page */
344 struct buffer_data_page *data; /* actual data, stored in this page */
345};
346
347/*
348 * Note, the buffer_page list must be first. The buffer pages
349 * are allocated in cache lines, which means that each buffer
350 * page will be at the beginning of a cache line, and thus
351 * the least significant bits will be zero. We use this to
352 * add flags in the list struct pointers, to make the ring buffer
353 * lockless.
354 */
355struct buffer_page {
356 struct list_head list; /* list of buffer pages */
357 local_t write; /* index for next write */
358 unsigned read; /* index for next read */
359 local_t entries; /* entries on this page */
360 unsigned long real_end; /* real end of data */
361 unsigned order; /* order of the page */
362 u32 id:30; /* ID for external mapping */
363 u32 range:1; /* Mapped via a range */
364 struct buffer_data_page *page; /* Actual data page */
365};
366
367/*
368 * The buffer page counters, write and entries, must be reset
369 * atomically when crossing page boundaries. To synchronize this
370 * update, two counters are inserted into the number. One is
371 * the actual counter for the write position or count on the page.
372 *
373 * The other is a counter of updaters. Before an update happens
374 * the update partition of the counter is incremented. This will
375 * allow the updater to update the counter atomically.
376 *
377 * The counter is 20 bits, and the state data is 12.
378 */
379#define RB_WRITE_MASK 0xfffff
380#define RB_WRITE_INTCNT (1 << 20)
381
382static void rb_init_page(struct buffer_data_page *bpage)
383{
384 local_set(&bpage->commit, 0);
385}
386
387static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
388{
389 return local_read(&bpage->page->commit);
390}
391
392static void free_buffer_page(struct buffer_page *bpage)
393{
394 /* Range pages are not to be freed */
395 if (!bpage->range)
396 free_pages((unsigned long)bpage->page, bpage->order);
397 kfree(bpage);
398}
399
400/*
401 * We need to fit the time_stamp delta into 27 bits.
402 */
403static inline bool test_time_stamp(u64 delta)
404{
405 return !!(delta & TS_DELTA_TEST);
406}
407
408struct rb_irq_work {
409 struct irq_work work;
410 wait_queue_head_t waiters;
411 wait_queue_head_t full_waiters;
412 atomic_t seq;
413 bool waiters_pending;
414 bool full_waiters_pending;
415 bool wakeup_full;
416};
417
418/*
419 * Structure to hold event state and handle nested events.
420 */
421struct rb_event_info {
422 u64 ts;
423 u64 delta;
424 u64 before;
425 u64 after;
426 unsigned long length;
427 struct buffer_page *tail_page;
428 int add_timestamp;
429};
430
431/*
432 * Used for the add_timestamp
433 * NONE
434 * EXTEND - wants a time extend
435 * ABSOLUTE - the buffer requests all events to have absolute time stamps
436 * FORCE - force a full time stamp.
437 */
438enum {
439 RB_ADD_STAMP_NONE = 0,
440 RB_ADD_STAMP_EXTEND = BIT(1),
441 RB_ADD_STAMP_ABSOLUTE = BIT(2),
442 RB_ADD_STAMP_FORCE = BIT(3)
443};
444/*
445 * Used for which event context the event is in.
446 * TRANSITION = 0
447 * NMI = 1
448 * IRQ = 2
449 * SOFTIRQ = 3
450 * NORMAL = 4
451 *
452 * See trace_recursive_lock() comment below for more details.
453 */
454enum {
455 RB_CTX_TRANSITION,
456 RB_CTX_NMI,
457 RB_CTX_IRQ,
458 RB_CTX_SOFTIRQ,
459 RB_CTX_NORMAL,
460 RB_CTX_MAX
461};
462
463struct rb_time_struct {
464 local64_t time;
465};
466typedef struct rb_time_struct rb_time_t;
467
468#define MAX_NEST 5
469
470/*
471 * head_page == tail_page && head == tail then buffer is empty.
472 */
473struct ring_buffer_per_cpu {
474 int cpu;
475 atomic_t record_disabled;
476 atomic_t resize_disabled;
477 struct trace_buffer *buffer;
478 raw_spinlock_t reader_lock; /* serialize readers */
479 arch_spinlock_t lock;
480 struct lock_class_key lock_key;
481 struct buffer_data_page *free_page;
482 unsigned long nr_pages;
483 unsigned int current_context;
484 struct list_head *pages;
485 /* pages generation counter, incremented when the list changes */
486 unsigned long cnt;
487 struct buffer_page *head_page; /* read from head */
488 struct buffer_page *tail_page; /* write to tail */
489 struct buffer_page *commit_page; /* committed pages */
490 struct buffer_page *reader_page;
491 unsigned long lost_events;
492 unsigned long last_overrun;
493 unsigned long nest;
494 local_t entries_bytes;
495 local_t entries;
496 local_t overrun;
497 local_t commit_overrun;
498 local_t dropped_events;
499 local_t committing;
500 local_t commits;
501 local_t pages_touched;
502 local_t pages_lost;
503 local_t pages_read;
504 long last_pages_touch;
505 size_t shortest_full;
506 unsigned long read;
507 unsigned long read_bytes;
508 rb_time_t write_stamp;
509 rb_time_t before_stamp;
510 u64 event_stamp[MAX_NEST];
511 u64 read_stamp;
512 /* pages removed since last reset */
513 unsigned long pages_removed;
514
515 unsigned int mapped;
516 unsigned int user_mapped; /* user space mapping */
517 struct mutex mapping_lock;
518 unsigned long *subbuf_ids; /* ID to subbuf VA */
519 struct trace_buffer_meta *meta_page;
520 struct ring_buffer_meta *ring_meta;
521
522 /* ring buffer pages to update, > 0 to add, < 0 to remove */
523 long nr_pages_to_update;
524 struct list_head new_pages; /* new pages to add */
525 struct work_struct update_pages_work;
526 struct completion update_done;
527
528 struct rb_irq_work irq_work;
529};
530
531struct trace_buffer {
532 unsigned flags;
533 int cpus;
534 atomic_t record_disabled;
535 atomic_t resizing;
536 cpumask_var_t cpumask;
537
538 struct lock_class_key *reader_lock_key;
539
540 struct mutex mutex;
541
542 struct ring_buffer_per_cpu **buffers;
543
544 struct hlist_node node;
545 u64 (*clock)(void);
546
547 struct rb_irq_work irq_work;
548 bool time_stamp_abs;
549
550 unsigned long range_addr_start;
551 unsigned long range_addr_end;
552
553 long last_text_delta;
554 long last_data_delta;
555
556 unsigned int subbuf_size;
557 unsigned int subbuf_order;
558 unsigned int max_data_size;
559};
560
561struct ring_buffer_iter {
562 struct ring_buffer_per_cpu *cpu_buffer;
563 unsigned long head;
564 unsigned long next_event;
565 struct buffer_page *head_page;
566 struct buffer_page *cache_reader_page;
567 unsigned long cache_read;
568 unsigned long cache_pages_removed;
569 u64 read_stamp;
570 u64 page_stamp;
571 struct ring_buffer_event *event;
572 size_t event_size;
573 int missed_events;
574};
575
576int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
577{
578 struct buffer_data_page field;
579
580 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
581 "offset:0;\tsize:%u;\tsigned:%u;\n",
582 (unsigned int)sizeof(field.time_stamp),
583 (unsigned int)is_signed_type(u64));
584
585 trace_seq_printf(s, "\tfield: local_t commit;\t"
586 "offset:%u;\tsize:%u;\tsigned:%u;\n",
587 (unsigned int)offsetof(typeof(field), commit),
588 (unsigned int)sizeof(field.commit),
589 (unsigned int)is_signed_type(long));
590
591 trace_seq_printf(s, "\tfield: int overwrite;\t"
592 "offset:%u;\tsize:%u;\tsigned:%u;\n",
593 (unsigned int)offsetof(typeof(field), commit),
594 1,
595 (unsigned int)is_signed_type(long));
596
597 trace_seq_printf(s, "\tfield: char data;\t"
598 "offset:%u;\tsize:%u;\tsigned:%u;\n",
599 (unsigned int)offsetof(typeof(field), data),
600 (unsigned int)buffer->subbuf_size,
601 (unsigned int)is_signed_type(char));
602
603 return !trace_seq_has_overflowed(s);
604}
605
606static inline void rb_time_read(rb_time_t *t, u64 *ret)
607{
608 *ret = local64_read(&t->time);
609}
610static void rb_time_set(rb_time_t *t, u64 val)
611{
612 local64_set(&t->time, val);
613}
614
615/*
616 * Enable this to make sure that the event passed to
617 * ring_buffer_event_time_stamp() is not committed and also
618 * is on the buffer that it passed in.
619 */
620//#define RB_VERIFY_EVENT
621#ifdef RB_VERIFY_EVENT
622static struct list_head *rb_list_head(struct list_head *list);
623static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
624 void *event)
625{
626 struct buffer_page *page = cpu_buffer->commit_page;
627 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
628 struct list_head *next;
629 long commit, write;
630 unsigned long addr = (unsigned long)event;
631 bool done = false;
632 int stop = 0;
633
634 /* Make sure the event exists and is not committed yet */
635 do {
636 if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
637 done = true;
638 commit = local_read(&page->page->commit);
639 write = local_read(&page->write);
640 if (addr >= (unsigned long)&page->page->data[commit] &&
641 addr < (unsigned long)&page->page->data[write])
642 return;
643
644 next = rb_list_head(page->list.next);
645 page = list_entry(next, struct buffer_page, list);
646 } while (!done);
647 WARN_ON_ONCE(1);
648}
649#else
650static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
651 void *event)
652{
653}
654#endif
655
656/*
657 * The absolute time stamp drops the 5 MSBs and some clocks may
658 * require them. The rb_fix_abs_ts() will take a previous full
659 * time stamp, and add the 5 MSB of that time stamp on to the
660 * saved absolute time stamp. Then they are compared in case of
661 * the unlikely event that the latest time stamp incremented
662 * the 5 MSB.
663 */
664static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
665{
666 if (save_ts & TS_MSB) {
667 abs |= save_ts & TS_MSB;
668 /* Check for overflow */
669 if (unlikely(abs < save_ts))
670 abs += 1ULL << 59;
671 }
672 return abs;
673}
674
675static inline u64 rb_time_stamp(struct trace_buffer *buffer);
676
677/**
678 * ring_buffer_event_time_stamp - return the event's current time stamp
679 * @buffer: The buffer that the event is on
680 * @event: the event to get the time stamp of
681 *
682 * Note, this must be called after @event is reserved, and before it is
683 * committed to the ring buffer. And must be called from the same
684 * context where the event was reserved (normal, softirq, irq, etc).
685 *
686 * Returns the time stamp associated with the current event.
687 * If the event has an extended time stamp, then that is used as
688 * the time stamp to return.
689 * In the highly unlikely case that the event was nested more than
690 * the max nesting, then the write_stamp of the buffer is returned,
691 * otherwise current time is returned, but that really neither of
692 * the last two cases should ever happen.
693 */
694u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
695 struct ring_buffer_event *event)
696{
697 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
698 unsigned int nest;
699 u64 ts;
700
701 /* If the event includes an absolute time, then just use that */
702 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
703 ts = rb_event_time_stamp(event);
704 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
705 }
706
707 nest = local_read(&cpu_buffer->committing);
708 verify_event(cpu_buffer, event);
709 if (WARN_ON_ONCE(!nest))
710 goto fail;
711
712 /* Read the current saved nesting level time stamp */
713 if (likely(--nest < MAX_NEST))
714 return cpu_buffer->event_stamp[nest];
715
716 /* Shouldn't happen, warn if it does */
717 WARN_ONCE(1, "nest (%d) greater than max", nest);
718
719 fail:
720 rb_time_read(&cpu_buffer->write_stamp, &ts);
721
722 return ts;
723}
724
725/**
726 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
727 * @buffer: The ring_buffer to get the number of pages from
728 * @cpu: The cpu of the ring_buffer to get the number of pages from
729 *
730 * Returns the number of pages that have content in the ring buffer.
731 */
732size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
733{
734 size_t read;
735 size_t lost;
736 size_t cnt;
737
738 read = local_read(&buffer->buffers[cpu]->pages_read);
739 lost = local_read(&buffer->buffers[cpu]->pages_lost);
740 cnt = local_read(&buffer->buffers[cpu]->pages_touched);
741
742 if (WARN_ON_ONCE(cnt < lost))
743 return 0;
744
745 cnt -= lost;
746
747 /* The reader can read an empty page, but not more than that */
748 if (cnt < read) {
749 WARN_ON_ONCE(read > cnt + 1);
750 return 0;
751 }
752
753 return cnt - read;
754}
755
756static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
757{
758 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
759 size_t nr_pages;
760 size_t dirty;
761
762 nr_pages = cpu_buffer->nr_pages;
763 if (!nr_pages || !full)
764 return true;
765
766 /*
767 * Add one as dirty will never equal nr_pages, as the sub-buffer
768 * that the writer is on is not counted as dirty.
769 * This is needed if "buffer_percent" is set to 100.
770 */
771 dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
772
773 return (dirty * 100) >= (full * nr_pages);
774}
775
776/*
777 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
778 *
779 * Schedules a delayed work to wake up any task that is blocked on the
780 * ring buffer waiters queue.
781 */
782static void rb_wake_up_waiters(struct irq_work *work)
783{
784 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
785
786 /* For waiters waiting for the first wake up */
787 (void)atomic_fetch_inc_release(&rbwork->seq);
788
789 wake_up_all(&rbwork->waiters);
790 if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
791 /* Only cpu_buffer sets the above flags */
792 struct ring_buffer_per_cpu *cpu_buffer =
793 container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
794
795 /* Called from interrupt context */
796 raw_spin_lock(&cpu_buffer->reader_lock);
797 rbwork->wakeup_full = false;
798 rbwork->full_waiters_pending = false;
799
800 /* Waking up all waiters, they will reset the shortest full */
801 cpu_buffer->shortest_full = 0;
802 raw_spin_unlock(&cpu_buffer->reader_lock);
803
804 wake_up_all(&rbwork->full_waiters);
805 }
806}
807
808/**
809 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
810 * @buffer: The ring buffer to wake waiters on
811 * @cpu: The CPU buffer to wake waiters on
812 *
813 * In the case of a file that represents a ring buffer is closing,
814 * it is prudent to wake up any waiters that are on this.
815 */
816void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
817{
818 struct ring_buffer_per_cpu *cpu_buffer;
819 struct rb_irq_work *rbwork;
820
821 if (!buffer)
822 return;
823
824 if (cpu == RING_BUFFER_ALL_CPUS) {
825
826 /* Wake up individual ones too. One level recursion */
827 for_each_buffer_cpu(buffer, cpu)
828 ring_buffer_wake_waiters(buffer, cpu);
829
830 rbwork = &buffer->irq_work;
831 } else {
832 if (WARN_ON_ONCE(!buffer->buffers))
833 return;
834 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
835 return;
836
837 cpu_buffer = buffer->buffers[cpu];
838 /* The CPU buffer may not have been initialized yet */
839 if (!cpu_buffer)
840 return;
841 rbwork = &cpu_buffer->irq_work;
842 }
843
844 /* This can be called in any context */
845 irq_work_queue(&rbwork->work);
846}
847
848static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
849{
850 struct ring_buffer_per_cpu *cpu_buffer;
851 bool ret = false;
852
853 /* Reads of all CPUs always waits for any data */
854 if (cpu == RING_BUFFER_ALL_CPUS)
855 return !ring_buffer_empty(buffer);
856
857 cpu_buffer = buffer->buffers[cpu];
858
859 if (!ring_buffer_empty_cpu(buffer, cpu)) {
860 unsigned long flags;
861 bool pagebusy;
862
863 if (!full)
864 return true;
865
866 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
867 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
868 ret = !pagebusy && full_hit(buffer, cpu, full);
869
870 if (!ret && (!cpu_buffer->shortest_full ||
871 cpu_buffer->shortest_full > full)) {
872 cpu_buffer->shortest_full = full;
873 }
874 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
875 }
876 return ret;
877}
878
879static inline bool
880rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
881 int cpu, int full, ring_buffer_cond_fn cond, void *data)
882{
883 if (rb_watermark_hit(buffer, cpu, full))
884 return true;
885
886 if (cond(data))
887 return true;
888
889 /*
890 * The events can happen in critical sections where
891 * checking a work queue can cause deadlocks.
892 * After adding a task to the queue, this flag is set
893 * only to notify events to try to wake up the queue
894 * using irq_work.
895 *
896 * We don't clear it even if the buffer is no longer
897 * empty. The flag only causes the next event to run
898 * irq_work to do the work queue wake up. The worse
899 * that can happen if we race with !trace_empty() is that
900 * an event will cause an irq_work to try to wake up
901 * an empty queue.
902 *
903 * There's no reason to protect this flag either, as
904 * the work queue and irq_work logic will do the necessary
905 * synchronization for the wake ups. The only thing
906 * that is necessary is that the wake up happens after
907 * a task has been queued. It's OK for spurious wake ups.
908 */
909 if (full)
910 rbwork->full_waiters_pending = true;
911 else
912 rbwork->waiters_pending = true;
913
914 return false;
915}
916
917struct rb_wait_data {
918 struct rb_irq_work *irq_work;
919 int seq;
920};
921
922/*
923 * The default wait condition for ring_buffer_wait() is to just to exit the
924 * wait loop the first time it is woken up.
925 */
926static bool rb_wait_once(void *data)
927{
928 struct rb_wait_data *rdata = data;
929 struct rb_irq_work *rbwork = rdata->irq_work;
930
931 return atomic_read_acquire(&rbwork->seq) != rdata->seq;
932}
933
934/**
935 * ring_buffer_wait - wait for input to the ring buffer
936 * @buffer: buffer to wait on
937 * @cpu: the cpu buffer to wait on
938 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
939 * @cond: condition function to break out of wait (NULL to run once)
940 * @data: the data to pass to @cond.
941 *
942 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
943 * as data is added to any of the @buffer's cpu buffers. Otherwise
944 * it will wait for data to be added to a specific cpu buffer.
945 */
946int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full,
947 ring_buffer_cond_fn cond, void *data)
948{
949 struct ring_buffer_per_cpu *cpu_buffer;
950 struct wait_queue_head *waitq;
951 struct rb_irq_work *rbwork;
952 struct rb_wait_data rdata;
953 int ret = 0;
954
955 /*
956 * Depending on what the caller is waiting for, either any
957 * data in any cpu buffer, or a specific buffer, put the
958 * caller on the appropriate wait queue.
959 */
960 if (cpu == RING_BUFFER_ALL_CPUS) {
961 rbwork = &buffer->irq_work;
962 /* Full only makes sense on per cpu reads */
963 full = 0;
964 } else {
965 if (!cpumask_test_cpu(cpu, buffer->cpumask))
966 return -ENODEV;
967 cpu_buffer = buffer->buffers[cpu];
968 rbwork = &cpu_buffer->irq_work;
969 }
970
971 if (full)
972 waitq = &rbwork->full_waiters;
973 else
974 waitq = &rbwork->waiters;
975
976 /* Set up to exit loop as soon as it is woken */
977 if (!cond) {
978 cond = rb_wait_once;
979 rdata.irq_work = rbwork;
980 rdata.seq = atomic_read_acquire(&rbwork->seq);
981 data = &rdata;
982 }
983
984 ret = wait_event_interruptible((*waitq),
985 rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
986
987 return ret;
988}
989
990/**
991 * ring_buffer_poll_wait - poll on buffer input
992 * @buffer: buffer to wait on
993 * @cpu: the cpu buffer to wait on
994 * @filp: the file descriptor
995 * @poll_table: The poll descriptor
996 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
997 *
998 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
999 * as data is added to any of the @buffer's cpu buffers. Otherwise
1000 * it will wait for data to be added to a specific cpu buffer.
1001 *
1002 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1003 * zero otherwise.
1004 */
1005__poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1006 struct file *filp, poll_table *poll_table, int full)
1007{
1008 struct ring_buffer_per_cpu *cpu_buffer;
1009 struct rb_irq_work *rbwork;
1010
1011 if (cpu == RING_BUFFER_ALL_CPUS) {
1012 rbwork = &buffer->irq_work;
1013 full = 0;
1014 } else {
1015 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1016 return EPOLLERR;
1017
1018 cpu_buffer = buffer->buffers[cpu];
1019 rbwork = &cpu_buffer->irq_work;
1020 }
1021
1022 if (full) {
1023 poll_wait(filp, &rbwork->full_waiters, poll_table);
1024
1025 if (rb_watermark_hit(buffer, cpu, full))
1026 return EPOLLIN | EPOLLRDNORM;
1027 /*
1028 * Only allow full_waiters_pending update to be seen after
1029 * the shortest_full is set (in rb_watermark_hit). If the
1030 * writer sees the full_waiters_pending flag set, it will
1031 * compare the amount in the ring buffer to shortest_full.
1032 * If the amount in the ring buffer is greater than the
1033 * shortest_full percent, it will call the irq_work handler
1034 * to wake up this list. The irq_handler will reset shortest_full
1035 * back to zero. That's done under the reader_lock, but
1036 * the below smp_mb() makes sure that the update to
1037 * full_waiters_pending doesn't leak up into the above.
1038 */
1039 smp_mb();
1040 rbwork->full_waiters_pending = true;
1041 return 0;
1042 }
1043
1044 poll_wait(filp, &rbwork->waiters, poll_table);
1045 rbwork->waiters_pending = true;
1046
1047 /*
1048 * There's a tight race between setting the waiters_pending and
1049 * checking if the ring buffer is empty. Once the waiters_pending bit
1050 * is set, the next event will wake the task up, but we can get stuck
1051 * if there's only a single event in.
1052 *
1053 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1054 * but adding a memory barrier to all events will cause too much of a
1055 * performance hit in the fast path. We only need a memory barrier when
1056 * the buffer goes from empty to having content. But as this race is
1057 * extremely small, and it's not a problem if another event comes in, we
1058 * will fix it later.
1059 */
1060 smp_mb();
1061
1062 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1063 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1064 return EPOLLIN | EPOLLRDNORM;
1065 return 0;
1066}
1067
1068/* buffer may be either ring_buffer or ring_buffer_per_cpu */
1069#define RB_WARN_ON(b, cond) \
1070 ({ \
1071 int _____ret = unlikely(cond); \
1072 if (_____ret) { \
1073 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1074 struct ring_buffer_per_cpu *__b = \
1075 (void *)b; \
1076 atomic_inc(&__b->buffer->record_disabled); \
1077 } else \
1078 atomic_inc(&b->record_disabled); \
1079 WARN_ON(1); \
1080 } \
1081 _____ret; \
1082 })
1083
1084/* Up this if you want to test the TIME_EXTENTS and normalization */
1085#define DEBUG_SHIFT 0
1086
1087static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1088{
1089 u64 ts;
1090
1091 /* Skip retpolines :-( */
1092 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1093 ts = trace_clock_local();
1094 else
1095 ts = buffer->clock();
1096
1097 /* shift to debug/test normalization and TIME_EXTENTS */
1098 return ts << DEBUG_SHIFT;
1099}
1100
1101u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1102{
1103 u64 time;
1104
1105 preempt_disable_notrace();
1106 time = rb_time_stamp(buffer);
1107 preempt_enable_notrace();
1108
1109 return time;
1110}
1111EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1112
1113void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1114 int cpu, u64 *ts)
1115{
1116 /* Just stupid testing the normalize function and deltas */
1117 *ts >>= DEBUG_SHIFT;
1118}
1119EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1120
1121/*
1122 * Making the ring buffer lockless makes things tricky.
1123 * Although writes only happen on the CPU that they are on,
1124 * and they only need to worry about interrupts. Reads can
1125 * happen on any CPU.
1126 *
1127 * The reader page is always off the ring buffer, but when the
1128 * reader finishes with a page, it needs to swap its page with
1129 * a new one from the buffer. The reader needs to take from
1130 * the head (writes go to the tail). But if a writer is in overwrite
1131 * mode and wraps, it must push the head page forward.
1132 *
1133 * Here lies the problem.
1134 *
1135 * The reader must be careful to replace only the head page, and
1136 * not another one. As described at the top of the file in the
1137 * ASCII art, the reader sets its old page to point to the next
1138 * page after head. It then sets the page after head to point to
1139 * the old reader page. But if the writer moves the head page
1140 * during this operation, the reader could end up with the tail.
1141 *
1142 * We use cmpxchg to help prevent this race. We also do something
1143 * special with the page before head. We set the LSB to 1.
1144 *
1145 * When the writer must push the page forward, it will clear the
1146 * bit that points to the head page, move the head, and then set
1147 * the bit that points to the new head page.
1148 *
1149 * We also don't want an interrupt coming in and moving the head
1150 * page on another writer. Thus we use the second LSB to catch
1151 * that too. Thus:
1152 *
1153 * head->list->prev->next bit 1 bit 0
1154 * ------- -------
1155 * Normal page 0 0
1156 * Points to head page 0 1
1157 * New head page 1 0
1158 *
1159 * Note we can not trust the prev pointer of the head page, because:
1160 *
1161 * +----+ +-----+ +-----+
1162 * | |------>| T |---X--->| N |
1163 * | |<------| | | |
1164 * +----+ +-----+ +-----+
1165 * ^ ^ |
1166 * | +-----+ | |
1167 * +----------| R |----------+ |
1168 * | |<-----------+
1169 * +-----+
1170 *
1171 * Key: ---X--> HEAD flag set in pointer
1172 * T Tail page
1173 * R Reader page
1174 * N Next page
1175 *
1176 * (see __rb_reserve_next() to see where this happens)
1177 *
1178 * What the above shows is that the reader just swapped out
1179 * the reader page with a page in the buffer, but before it
1180 * could make the new header point back to the new page added
1181 * it was preempted by a writer. The writer moved forward onto
1182 * the new page added by the reader and is about to move forward
1183 * again.
1184 *
1185 * You can see, it is legitimate for the previous pointer of
1186 * the head (or any page) not to point back to itself. But only
1187 * temporarily.
1188 */
1189
1190#define RB_PAGE_NORMAL 0UL
1191#define RB_PAGE_HEAD 1UL
1192#define RB_PAGE_UPDATE 2UL
1193
1194
1195#define RB_FLAG_MASK 3UL
1196
1197/* PAGE_MOVED is not part of the mask */
1198#define RB_PAGE_MOVED 4UL
1199
1200/*
1201 * rb_list_head - remove any bit
1202 */
1203static struct list_head *rb_list_head(struct list_head *list)
1204{
1205 unsigned long val = (unsigned long)list;
1206
1207 return (struct list_head *)(val & ~RB_FLAG_MASK);
1208}
1209
1210/*
1211 * rb_is_head_page - test if the given page is the head page
1212 *
1213 * Because the reader may move the head_page pointer, we can
1214 * not trust what the head page is (it may be pointing to
1215 * the reader page). But if the next page is a header page,
1216 * its flags will be non zero.
1217 */
1218static inline int
1219rb_is_head_page(struct buffer_page *page, struct list_head *list)
1220{
1221 unsigned long val;
1222
1223 val = (unsigned long)list->next;
1224
1225 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1226 return RB_PAGE_MOVED;
1227
1228 return val & RB_FLAG_MASK;
1229}
1230
1231/*
1232 * rb_is_reader_page
1233 *
1234 * The unique thing about the reader page, is that, if the
1235 * writer is ever on it, the previous pointer never points
1236 * back to the reader page.
1237 */
1238static bool rb_is_reader_page(struct buffer_page *page)
1239{
1240 struct list_head *list = page->list.prev;
1241
1242 return rb_list_head(list->next) != &page->list;
1243}
1244
1245/*
1246 * rb_set_list_to_head - set a list_head to be pointing to head.
1247 */
1248static void rb_set_list_to_head(struct list_head *list)
1249{
1250 unsigned long *ptr;
1251
1252 ptr = (unsigned long *)&list->next;
1253 *ptr |= RB_PAGE_HEAD;
1254 *ptr &= ~RB_PAGE_UPDATE;
1255}
1256
1257/*
1258 * rb_head_page_activate - sets up head page
1259 */
1260static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1261{
1262 struct buffer_page *head;
1263
1264 head = cpu_buffer->head_page;
1265 if (!head)
1266 return;
1267
1268 /*
1269 * Set the previous list pointer to have the HEAD flag.
1270 */
1271 rb_set_list_to_head(head->list.prev);
1272
1273 if (cpu_buffer->ring_meta) {
1274 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1275 meta->head_buffer = (unsigned long)head->page;
1276 }
1277}
1278
1279static void rb_list_head_clear(struct list_head *list)
1280{
1281 unsigned long *ptr = (unsigned long *)&list->next;
1282
1283 *ptr &= ~RB_FLAG_MASK;
1284}
1285
1286/*
1287 * rb_head_page_deactivate - clears head page ptr (for free list)
1288 */
1289static void
1290rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1291{
1292 struct list_head *hd;
1293
1294 /* Go through the whole list and clear any pointers found. */
1295 rb_list_head_clear(cpu_buffer->pages);
1296
1297 list_for_each(hd, cpu_buffer->pages)
1298 rb_list_head_clear(hd);
1299}
1300
1301static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1302 struct buffer_page *head,
1303 struct buffer_page *prev,
1304 int old_flag, int new_flag)
1305{
1306 struct list_head *list;
1307 unsigned long val = (unsigned long)&head->list;
1308 unsigned long ret;
1309
1310 list = &prev->list;
1311
1312 val &= ~RB_FLAG_MASK;
1313
1314 ret = cmpxchg((unsigned long *)&list->next,
1315 val | old_flag, val | new_flag);
1316
1317 /* check if the reader took the page */
1318 if ((ret & ~RB_FLAG_MASK) != val)
1319 return RB_PAGE_MOVED;
1320
1321 return ret & RB_FLAG_MASK;
1322}
1323
1324static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1325 struct buffer_page *head,
1326 struct buffer_page *prev,
1327 int old_flag)
1328{
1329 return rb_head_page_set(cpu_buffer, head, prev,
1330 old_flag, RB_PAGE_UPDATE);
1331}
1332
1333static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1334 struct buffer_page *head,
1335 struct buffer_page *prev,
1336 int old_flag)
1337{
1338 return rb_head_page_set(cpu_buffer, head, prev,
1339 old_flag, RB_PAGE_HEAD);
1340}
1341
1342static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1343 struct buffer_page *head,
1344 struct buffer_page *prev,
1345 int old_flag)
1346{
1347 return rb_head_page_set(cpu_buffer, head, prev,
1348 old_flag, RB_PAGE_NORMAL);
1349}
1350
1351static inline void rb_inc_page(struct buffer_page **bpage)
1352{
1353 struct list_head *p = rb_list_head((*bpage)->list.next);
1354
1355 *bpage = list_entry(p, struct buffer_page, list);
1356}
1357
1358static struct buffer_page *
1359rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1360{
1361 struct buffer_page *head;
1362 struct buffer_page *page;
1363 struct list_head *list;
1364 int i;
1365
1366 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1367 return NULL;
1368
1369 /* sanity check */
1370 list = cpu_buffer->pages;
1371 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1372 return NULL;
1373
1374 page = head = cpu_buffer->head_page;
1375 /*
1376 * It is possible that the writer moves the header behind
1377 * where we started, and we miss in one loop.
1378 * A second loop should grab the header, but we'll do
1379 * three loops just because I'm paranoid.
1380 */
1381 for (i = 0; i < 3; i++) {
1382 do {
1383 if (rb_is_head_page(page, page->list.prev)) {
1384 cpu_buffer->head_page = page;
1385 return page;
1386 }
1387 rb_inc_page(&page);
1388 } while (page != head);
1389 }
1390
1391 RB_WARN_ON(cpu_buffer, 1);
1392
1393 return NULL;
1394}
1395
1396static bool rb_head_page_replace(struct buffer_page *old,
1397 struct buffer_page *new)
1398{
1399 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1400 unsigned long val;
1401
1402 val = *ptr & ~RB_FLAG_MASK;
1403 val |= RB_PAGE_HEAD;
1404
1405 return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1406}
1407
1408/*
1409 * rb_tail_page_update - move the tail page forward
1410 */
1411static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1412 struct buffer_page *tail_page,
1413 struct buffer_page *next_page)
1414{
1415 unsigned long old_entries;
1416 unsigned long old_write;
1417
1418 /*
1419 * The tail page now needs to be moved forward.
1420 *
1421 * We need to reset the tail page, but without messing
1422 * with possible erasing of data brought in by interrupts
1423 * that have moved the tail page and are currently on it.
1424 *
1425 * We add a counter to the write field to denote this.
1426 */
1427 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1428 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1429
1430 /*
1431 * Just make sure we have seen our old_write and synchronize
1432 * with any interrupts that come in.
1433 */
1434 barrier();
1435
1436 /*
1437 * If the tail page is still the same as what we think
1438 * it is, then it is up to us to update the tail
1439 * pointer.
1440 */
1441 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1442 /* Zero the write counter */
1443 unsigned long val = old_write & ~RB_WRITE_MASK;
1444 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1445
1446 /*
1447 * This will only succeed if an interrupt did
1448 * not come in and change it. In which case, we
1449 * do not want to modify it.
1450 *
1451 * We add (void) to let the compiler know that we do not care
1452 * about the return value of these functions. We use the
1453 * cmpxchg to only update if an interrupt did not already
1454 * do it for us. If the cmpxchg fails, we don't care.
1455 */
1456 (void)local_cmpxchg(&next_page->write, old_write, val);
1457 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1458
1459 /*
1460 * No need to worry about races with clearing out the commit.
1461 * it only can increment when a commit takes place. But that
1462 * only happens in the outer most nested commit.
1463 */
1464 local_set(&next_page->page->commit, 0);
1465
1466 /* Either we update tail_page or an interrupt does */
1467 if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page))
1468 local_inc(&cpu_buffer->pages_touched);
1469 }
1470}
1471
1472static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1473 struct buffer_page *bpage)
1474{
1475 unsigned long val = (unsigned long)bpage;
1476
1477 RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1478}
1479
1480static bool rb_check_links(struct ring_buffer_per_cpu *cpu_buffer,
1481 struct list_head *list)
1482{
1483 if (RB_WARN_ON(cpu_buffer,
1484 rb_list_head(rb_list_head(list->next)->prev) != list))
1485 return false;
1486
1487 if (RB_WARN_ON(cpu_buffer,
1488 rb_list_head(rb_list_head(list->prev)->next) != list))
1489 return false;
1490
1491 return true;
1492}
1493
1494/**
1495 * rb_check_pages - integrity check of buffer pages
1496 * @cpu_buffer: CPU buffer with pages to test
1497 *
1498 * As a safety measure we check to make sure the data pages have not
1499 * been corrupted.
1500 */
1501static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1502{
1503 struct list_head *head, *tmp;
1504 unsigned long buffer_cnt;
1505 unsigned long flags;
1506 int nr_loops = 0;
1507
1508 /*
1509 * Walk the linked list underpinning the ring buffer and validate all
1510 * its next and prev links.
1511 *
1512 * The check acquires the reader_lock to avoid concurrent processing
1513 * with code that could be modifying the list. However, the lock cannot
1514 * be held for the entire duration of the walk, as this would make the
1515 * time when interrupts are disabled non-deterministic, dependent on the
1516 * ring buffer size. Therefore, the code releases and re-acquires the
1517 * lock after checking each page. The ring_buffer_per_cpu.cnt variable
1518 * is then used to detect if the list was modified while the lock was
1519 * not held, in which case the check needs to be restarted.
1520 *
1521 * The code attempts to perform the check at most three times before
1522 * giving up. This is acceptable because this is only a self-validation
1523 * to detect problems early on. In practice, the list modification
1524 * operations are fairly spaced, and so this check typically succeeds at
1525 * most on the second try.
1526 */
1527again:
1528 if (++nr_loops > 3)
1529 return;
1530
1531 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1532 head = rb_list_head(cpu_buffer->pages);
1533 if (!rb_check_links(cpu_buffer, head))
1534 goto out_locked;
1535 buffer_cnt = cpu_buffer->cnt;
1536 tmp = head;
1537 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1538
1539 while (true) {
1540 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1541
1542 if (buffer_cnt != cpu_buffer->cnt) {
1543 /* The list was updated, try again. */
1544 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1545 goto again;
1546 }
1547
1548 tmp = rb_list_head(tmp->next);
1549 if (tmp == head)
1550 /* The iteration circled back, all is done. */
1551 goto out_locked;
1552
1553 if (!rb_check_links(cpu_buffer, tmp))
1554 goto out_locked;
1555
1556 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1557 }
1558
1559out_locked:
1560 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1561}
1562
1563/*
1564 * Take an address, add the meta data size as well as the array of
1565 * array subbuffer indexes, then align it to a subbuffer size.
1566 *
1567 * This is used to help find the next per cpu subbuffer within a mapped range.
1568 */
1569static unsigned long
1570rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs)
1571{
1572 addr += sizeof(struct ring_buffer_meta) +
1573 sizeof(int) * nr_subbufs;
1574 return ALIGN(addr, subbuf_size);
1575}
1576
1577/*
1578 * Return the ring_buffer_meta for a given @cpu.
1579 */
1580static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu)
1581{
1582 int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
1583 unsigned long ptr = buffer->range_addr_start;
1584 struct ring_buffer_meta *meta;
1585 int nr_subbufs;
1586
1587 if (!ptr)
1588 return NULL;
1589
1590 /* When nr_pages passed in is zero, the first meta has already been initialized */
1591 if (!nr_pages) {
1592 meta = (struct ring_buffer_meta *)ptr;
1593 nr_subbufs = meta->nr_subbufs;
1594 } else {
1595 meta = NULL;
1596 /* Include the reader page */
1597 nr_subbufs = nr_pages + 1;
1598 }
1599
1600 /*
1601 * The first chunk may not be subbuffer aligned, where as
1602 * the rest of the chunks are.
1603 */
1604 if (cpu) {
1605 ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1606 ptr += subbuf_size * nr_subbufs;
1607
1608 /* We can use multiplication to find chunks greater than 1 */
1609 if (cpu > 1) {
1610 unsigned long size;
1611 unsigned long p;
1612
1613 /* Save the beginning of this CPU chunk */
1614 p = ptr;
1615 ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1616 ptr += subbuf_size * nr_subbufs;
1617
1618 /* Now all chunks after this are the same size */
1619 size = ptr - p;
1620 ptr += size * (cpu - 2);
1621 }
1622 }
1623 return (void *)ptr;
1624}
1625
1626/* Return the start of subbufs given the meta pointer */
1627static void *rb_subbufs_from_meta(struct ring_buffer_meta *meta)
1628{
1629 int subbuf_size = meta->subbuf_size;
1630 unsigned long ptr;
1631
1632 ptr = (unsigned long)meta;
1633 ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs);
1634
1635 return (void *)ptr;
1636}
1637
1638/*
1639 * Return a specific sub-buffer for a given @cpu defined by @idx.
1640 */
1641static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx)
1642{
1643 struct ring_buffer_meta *meta;
1644 unsigned long ptr;
1645 int subbuf_size;
1646
1647 meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu);
1648 if (!meta)
1649 return NULL;
1650
1651 if (WARN_ON_ONCE(idx >= meta->nr_subbufs))
1652 return NULL;
1653
1654 subbuf_size = meta->subbuf_size;
1655
1656 /* Map this buffer to the order that's in meta->buffers[] */
1657 idx = meta->buffers[idx];
1658
1659 ptr = (unsigned long)rb_subbufs_from_meta(meta);
1660
1661 ptr += subbuf_size * idx;
1662 if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end)
1663 return NULL;
1664
1665 return (void *)ptr;
1666}
1667
1668/*
1669 * See if the existing memory contains valid ring buffer data.
1670 * As the previous kernel must be the same as this kernel, all
1671 * the calculations (size of buffers and number of buffers)
1672 * must be the same.
1673 */
1674static bool rb_meta_valid(struct ring_buffer_meta *meta, int cpu,
1675 struct trace_buffer *buffer, int nr_pages,
1676 unsigned long *subbuf_mask)
1677{
1678 int subbuf_size = PAGE_SIZE;
1679 struct buffer_data_page *subbuf;
1680 unsigned long buffers_start;
1681 unsigned long buffers_end;
1682 int i;
1683
1684 if (!subbuf_mask)
1685 return false;
1686
1687 /* Check the meta magic and meta struct size */
1688 if (meta->magic != RING_BUFFER_META_MAGIC ||
1689 meta->struct_size != sizeof(*meta)) {
1690 pr_info("Ring buffer boot meta[%d] mismatch of magic or struct size\n", cpu);
1691 return false;
1692 }
1693
1694 /* The subbuffer's size and number of subbuffers must match */
1695 if (meta->subbuf_size != subbuf_size ||
1696 meta->nr_subbufs != nr_pages + 1) {
1697 pr_info("Ring buffer boot meta [%d] mismatch of subbuf_size/nr_pages\n", cpu);
1698 return false;
1699 }
1700
1701 buffers_start = meta->first_buffer;
1702 buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs);
1703
1704 /* Is the head and commit buffers within the range of buffers? */
1705 if (meta->head_buffer < buffers_start ||
1706 meta->head_buffer >= buffers_end) {
1707 pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu);
1708 return false;
1709 }
1710
1711 if (meta->commit_buffer < buffers_start ||
1712 meta->commit_buffer >= buffers_end) {
1713 pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu);
1714 return false;
1715 }
1716
1717 subbuf = rb_subbufs_from_meta(meta);
1718
1719 bitmap_clear(subbuf_mask, 0, meta->nr_subbufs);
1720
1721 /* Is the meta buffers and the subbufs themselves have correct data? */
1722 for (i = 0; i < meta->nr_subbufs; i++) {
1723 if (meta->buffers[i] < 0 ||
1724 meta->buffers[i] >= meta->nr_subbufs) {
1725 pr_info("Ring buffer boot meta [%d] array out of range\n", cpu);
1726 return false;
1727 }
1728
1729 if ((unsigned)local_read(&subbuf->commit) > subbuf_size) {
1730 pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu);
1731 return false;
1732 }
1733
1734 if (test_bit(meta->buffers[i], subbuf_mask)) {
1735 pr_info("Ring buffer boot meta [%d] array has duplicates\n", cpu);
1736 return false;
1737 }
1738
1739 set_bit(meta->buffers[i], subbuf_mask);
1740 subbuf = (void *)subbuf + subbuf_size;
1741 }
1742
1743 return true;
1744}
1745
1746static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf);
1747
1748static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu,
1749 unsigned long long *timestamp, u64 *delta_ptr)
1750{
1751 struct ring_buffer_event *event;
1752 u64 ts, delta;
1753 int events = 0;
1754 int e;
1755
1756 *delta_ptr = 0;
1757 *timestamp = 0;
1758
1759 ts = dpage->time_stamp;
1760
1761 for (e = 0; e < tail; e += rb_event_length(event)) {
1762
1763 event = (struct ring_buffer_event *)(dpage->data + e);
1764
1765 switch (event->type_len) {
1766
1767 case RINGBUF_TYPE_TIME_EXTEND:
1768 delta = rb_event_time_stamp(event);
1769 ts += delta;
1770 break;
1771
1772 case RINGBUF_TYPE_TIME_STAMP:
1773 delta = rb_event_time_stamp(event);
1774 delta = rb_fix_abs_ts(delta, ts);
1775 if (delta < ts) {
1776 *delta_ptr = delta;
1777 *timestamp = ts;
1778 return -1;
1779 }
1780 ts = delta;
1781 break;
1782
1783 case RINGBUF_TYPE_PADDING:
1784 if (event->time_delta == 1)
1785 break;
1786 fallthrough;
1787 case RINGBUF_TYPE_DATA:
1788 events++;
1789 ts += event->time_delta;
1790 break;
1791
1792 default:
1793 return -1;
1794 }
1795 }
1796 *timestamp = ts;
1797 return events;
1798}
1799
1800static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu)
1801{
1802 unsigned long long ts;
1803 u64 delta;
1804 int tail;
1805
1806 tail = local_read(&dpage->commit);
1807 return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta);
1808}
1809
1810/* If the meta data has been validated, now validate the events */
1811static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer)
1812{
1813 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1814 struct buffer_page *head_page;
1815 unsigned long entry_bytes = 0;
1816 unsigned long entries = 0;
1817 int ret;
1818 int i;
1819
1820 if (!meta || !meta->head_buffer)
1821 return;
1822
1823 /* Do the reader page first */
1824 ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu);
1825 if (ret < 0) {
1826 pr_info("Ring buffer reader page is invalid\n");
1827 goto invalid;
1828 }
1829 entries += ret;
1830 entry_bytes += local_read(&cpu_buffer->reader_page->page->commit);
1831 local_set(&cpu_buffer->reader_page->entries, ret);
1832
1833 head_page = cpu_buffer->head_page;
1834
1835 /* If both the head and commit are on the reader_page then we are done. */
1836 if (head_page == cpu_buffer->reader_page &&
1837 head_page == cpu_buffer->commit_page)
1838 goto done;
1839
1840 /* Iterate until finding the commit page */
1841 for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) {
1842
1843 /* Reader page has already been done */
1844 if (head_page == cpu_buffer->reader_page)
1845 continue;
1846
1847 ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu);
1848 if (ret < 0) {
1849 pr_info("Ring buffer meta [%d] invalid buffer page\n",
1850 cpu_buffer->cpu);
1851 goto invalid;
1852 }
1853
1854 /* If the buffer has content, update pages_touched */
1855 if (ret)
1856 local_inc(&cpu_buffer->pages_touched);
1857
1858 entries += ret;
1859 entry_bytes += local_read(&head_page->page->commit);
1860 local_set(&cpu_buffer->head_page->entries, ret);
1861
1862 if (head_page == cpu_buffer->commit_page)
1863 break;
1864 }
1865
1866 if (head_page != cpu_buffer->commit_page) {
1867 pr_info("Ring buffer meta [%d] commit page not found\n",
1868 cpu_buffer->cpu);
1869 goto invalid;
1870 }
1871 done:
1872 local_set(&cpu_buffer->entries, entries);
1873 local_set(&cpu_buffer->entries_bytes, entry_bytes);
1874
1875 pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu);
1876 return;
1877
1878 invalid:
1879 /* The content of the buffers are invalid, reset the meta data */
1880 meta->head_buffer = 0;
1881 meta->commit_buffer = 0;
1882
1883 /* Reset the reader page */
1884 local_set(&cpu_buffer->reader_page->entries, 0);
1885 local_set(&cpu_buffer->reader_page->page->commit, 0);
1886
1887 /* Reset all the subbuffers */
1888 for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) {
1889 local_set(&head_page->entries, 0);
1890 local_set(&head_page->page->commit, 0);
1891 }
1892}
1893
1894/* Used to calculate data delta */
1895static char rb_data_ptr[] = "";
1896
1897#define THIS_TEXT_PTR ((unsigned long)rb_meta_init_text_addr)
1898#define THIS_DATA_PTR ((unsigned long)rb_data_ptr)
1899
1900static void rb_meta_init_text_addr(struct ring_buffer_meta *meta)
1901{
1902 meta->text_addr = THIS_TEXT_PTR;
1903 meta->data_addr = THIS_DATA_PTR;
1904}
1905
1906static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages)
1907{
1908 struct ring_buffer_meta *meta;
1909 unsigned long *subbuf_mask;
1910 unsigned long delta;
1911 void *subbuf;
1912 int cpu;
1913 int i;
1914
1915 /* Create a mask to test the subbuf array */
1916 subbuf_mask = bitmap_alloc(nr_pages + 1, GFP_KERNEL);
1917 /* If subbuf_mask fails to allocate, then rb_meta_valid() will return false */
1918
1919 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1920 void *next_meta;
1921
1922 meta = rb_range_meta(buffer, nr_pages, cpu);
1923
1924 if (rb_meta_valid(meta, cpu, buffer, nr_pages, subbuf_mask)) {
1925 /* Make the mappings match the current address */
1926 subbuf = rb_subbufs_from_meta(meta);
1927 delta = (unsigned long)subbuf - meta->first_buffer;
1928 meta->first_buffer += delta;
1929 meta->head_buffer += delta;
1930 meta->commit_buffer += delta;
1931 buffer->last_text_delta = THIS_TEXT_PTR - meta->text_addr;
1932 buffer->last_data_delta = THIS_DATA_PTR - meta->data_addr;
1933 continue;
1934 }
1935
1936 if (cpu < nr_cpu_ids - 1)
1937 next_meta = rb_range_meta(buffer, nr_pages, cpu + 1);
1938 else
1939 next_meta = (void *)buffer->range_addr_end;
1940
1941 memset(meta, 0, next_meta - (void *)meta);
1942
1943 meta->magic = RING_BUFFER_META_MAGIC;
1944 meta->struct_size = sizeof(*meta);
1945
1946 meta->nr_subbufs = nr_pages + 1;
1947 meta->subbuf_size = PAGE_SIZE;
1948
1949 subbuf = rb_subbufs_from_meta(meta);
1950
1951 meta->first_buffer = (unsigned long)subbuf;
1952 rb_meta_init_text_addr(meta);
1953
1954 /*
1955 * The buffers[] array holds the order of the sub-buffers
1956 * that are after the meta data. The sub-buffers may
1957 * be swapped out when read and inserted into a different
1958 * location of the ring buffer. Although their addresses
1959 * remain the same, the buffers[] array contains the
1960 * index into the sub-buffers holding their actual order.
1961 */
1962 for (i = 0; i < meta->nr_subbufs; i++) {
1963 meta->buffers[i] = i;
1964 rb_init_page(subbuf);
1965 subbuf += meta->subbuf_size;
1966 }
1967 }
1968 bitmap_free(subbuf_mask);
1969}
1970
1971static void *rbm_start(struct seq_file *m, loff_t *pos)
1972{
1973 struct ring_buffer_per_cpu *cpu_buffer = m->private;
1974 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1975 unsigned long val;
1976
1977 if (!meta)
1978 return NULL;
1979
1980 if (*pos > meta->nr_subbufs)
1981 return NULL;
1982
1983 val = *pos;
1984 val++;
1985
1986 return (void *)val;
1987}
1988
1989static void *rbm_next(struct seq_file *m, void *v, loff_t *pos)
1990{
1991 (*pos)++;
1992
1993 return rbm_start(m, pos);
1994}
1995
1996static int rbm_show(struct seq_file *m, void *v)
1997{
1998 struct ring_buffer_per_cpu *cpu_buffer = m->private;
1999 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
2000 unsigned long val = (unsigned long)v;
2001
2002 if (val == 1) {
2003 seq_printf(m, "head_buffer: %d\n",
2004 rb_meta_subbuf_idx(meta, (void *)meta->head_buffer));
2005 seq_printf(m, "commit_buffer: %d\n",
2006 rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer));
2007 seq_printf(m, "subbuf_size: %d\n", meta->subbuf_size);
2008 seq_printf(m, "nr_subbufs: %d\n", meta->nr_subbufs);
2009 return 0;
2010 }
2011
2012 val -= 2;
2013 seq_printf(m, "buffer[%ld]: %d\n", val, meta->buffers[val]);
2014
2015 return 0;
2016}
2017
2018static void rbm_stop(struct seq_file *m, void *p)
2019{
2020}
2021
2022static const struct seq_operations rb_meta_seq_ops = {
2023 .start = rbm_start,
2024 .next = rbm_next,
2025 .show = rbm_show,
2026 .stop = rbm_stop,
2027};
2028
2029int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu)
2030{
2031 struct seq_file *m;
2032 int ret;
2033
2034 ret = seq_open(file, &rb_meta_seq_ops);
2035 if (ret)
2036 return ret;
2037
2038 m = file->private_data;
2039 m->private = buffer->buffers[cpu];
2040
2041 return 0;
2042}
2043
2044/* Map the buffer_pages to the previous head and commit pages */
2045static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer,
2046 struct buffer_page *bpage)
2047{
2048 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
2049
2050 if (meta->head_buffer == (unsigned long)bpage->page)
2051 cpu_buffer->head_page = bpage;
2052
2053 if (meta->commit_buffer == (unsigned long)bpage->page) {
2054 cpu_buffer->commit_page = bpage;
2055 cpu_buffer->tail_page = bpage;
2056 }
2057}
2058
2059static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2060 long nr_pages, struct list_head *pages)
2061{
2062 struct trace_buffer *buffer = cpu_buffer->buffer;
2063 struct ring_buffer_meta *meta = NULL;
2064 struct buffer_page *bpage, *tmp;
2065 bool user_thread = current->mm != NULL;
2066 gfp_t mflags;
2067 long i;
2068
2069 /*
2070 * Check if the available memory is there first.
2071 * Note, si_mem_available() only gives us a rough estimate of available
2072 * memory. It may not be accurate. But we don't care, we just want
2073 * to prevent doing any allocation when it is obvious that it is
2074 * not going to succeed.
2075 */
2076 i = si_mem_available();
2077 if (i < nr_pages)
2078 return -ENOMEM;
2079
2080 /*
2081 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
2082 * gracefully without invoking oom-killer and the system is not
2083 * destabilized.
2084 */
2085 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
2086
2087 /*
2088 * If a user thread allocates too much, and si_mem_available()
2089 * reports there's enough memory, even though there is not.
2090 * Make sure the OOM killer kills this thread. This can happen
2091 * even with RETRY_MAYFAIL because another task may be doing
2092 * an allocation after this task has taken all memory.
2093 * This is the task the OOM killer needs to take out during this
2094 * loop, even if it was triggered by an allocation somewhere else.
2095 */
2096 if (user_thread)
2097 set_current_oom_origin();
2098
2099 if (buffer->range_addr_start)
2100 meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu);
2101
2102 for (i = 0; i < nr_pages; i++) {
2103 struct page *page;
2104
2105 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2106 mflags, cpu_to_node(cpu_buffer->cpu));
2107 if (!bpage)
2108 goto free_pages;
2109
2110 rb_check_bpage(cpu_buffer, bpage);
2111
2112 /*
2113 * Append the pages as for mapped buffers we want to keep
2114 * the order
2115 */
2116 list_add_tail(&bpage->list, pages);
2117
2118 if (meta) {
2119 /* A range was given. Use that for the buffer page */
2120 bpage->page = rb_range_buffer(cpu_buffer, i + 1);
2121 if (!bpage->page)
2122 goto free_pages;
2123 /* If this is valid from a previous boot */
2124 if (meta->head_buffer)
2125 rb_meta_buffer_update(cpu_buffer, bpage);
2126 bpage->range = 1;
2127 bpage->id = i + 1;
2128 } else {
2129 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
2130 mflags | __GFP_COMP | __GFP_ZERO,
2131 cpu_buffer->buffer->subbuf_order);
2132 if (!page)
2133 goto free_pages;
2134 bpage->page = page_address(page);
2135 rb_init_page(bpage->page);
2136 }
2137 bpage->order = cpu_buffer->buffer->subbuf_order;
2138
2139 if (user_thread && fatal_signal_pending(current))
2140 goto free_pages;
2141 }
2142 if (user_thread)
2143 clear_current_oom_origin();
2144
2145 return 0;
2146
2147free_pages:
2148 list_for_each_entry_safe(bpage, tmp, pages, list) {
2149 list_del_init(&bpage->list);
2150 free_buffer_page(bpage);
2151 }
2152 if (user_thread)
2153 clear_current_oom_origin();
2154
2155 return -ENOMEM;
2156}
2157
2158static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2159 unsigned long nr_pages)
2160{
2161 LIST_HEAD(pages);
2162
2163 WARN_ON(!nr_pages);
2164
2165 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
2166 return -ENOMEM;
2167
2168 /*
2169 * The ring buffer page list is a circular list that does not
2170 * start and end with a list head. All page list items point to
2171 * other pages.
2172 */
2173 cpu_buffer->pages = pages.next;
2174 list_del(&pages);
2175
2176 cpu_buffer->nr_pages = nr_pages;
2177
2178 rb_check_pages(cpu_buffer);
2179
2180 return 0;
2181}
2182
2183static struct ring_buffer_per_cpu *
2184rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
2185{
2186 struct ring_buffer_per_cpu *cpu_buffer;
2187 struct ring_buffer_meta *meta;
2188 struct buffer_page *bpage;
2189 struct page *page;
2190 int ret;
2191
2192 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
2193 GFP_KERNEL, cpu_to_node(cpu));
2194 if (!cpu_buffer)
2195 return NULL;
2196
2197 cpu_buffer->cpu = cpu;
2198 cpu_buffer->buffer = buffer;
2199 raw_spin_lock_init(&cpu_buffer->reader_lock);
2200 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
2201 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
2202 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
2203 init_completion(&cpu_buffer->update_done);
2204 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
2205 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
2206 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
2207 mutex_init(&cpu_buffer->mapping_lock);
2208
2209 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2210 GFP_KERNEL, cpu_to_node(cpu));
2211 if (!bpage)
2212 goto fail_free_buffer;
2213
2214 rb_check_bpage(cpu_buffer, bpage);
2215
2216 cpu_buffer->reader_page = bpage;
2217
2218 if (buffer->range_addr_start) {
2219 /*
2220 * Range mapped buffers have the same restrictions as memory
2221 * mapped ones do.
2222 */
2223 cpu_buffer->mapped = 1;
2224 cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu);
2225 bpage->page = rb_range_buffer(cpu_buffer, 0);
2226 if (!bpage->page)
2227 goto fail_free_reader;
2228 if (cpu_buffer->ring_meta->head_buffer)
2229 rb_meta_buffer_update(cpu_buffer, bpage);
2230 bpage->range = 1;
2231 } else {
2232 page = alloc_pages_node(cpu_to_node(cpu),
2233 GFP_KERNEL | __GFP_COMP | __GFP_ZERO,
2234 cpu_buffer->buffer->subbuf_order);
2235 if (!page)
2236 goto fail_free_reader;
2237 bpage->page = page_address(page);
2238 rb_init_page(bpage->page);
2239 }
2240
2241 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2242 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2243
2244 ret = rb_allocate_pages(cpu_buffer, nr_pages);
2245 if (ret < 0)
2246 goto fail_free_reader;
2247
2248 rb_meta_validate_events(cpu_buffer);
2249
2250 /* If the boot meta was valid then this has already been updated */
2251 meta = cpu_buffer->ring_meta;
2252 if (!meta || !meta->head_buffer ||
2253 !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) {
2254 if (meta && meta->head_buffer &&
2255 (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) {
2256 pr_warn("Ring buffer meta buffers not all mapped\n");
2257 if (!cpu_buffer->head_page)
2258 pr_warn(" Missing head_page\n");
2259 if (!cpu_buffer->commit_page)
2260 pr_warn(" Missing commit_page\n");
2261 if (!cpu_buffer->tail_page)
2262 pr_warn(" Missing tail_page\n");
2263 }
2264
2265 cpu_buffer->head_page
2266 = list_entry(cpu_buffer->pages, struct buffer_page, list);
2267 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
2268
2269 rb_head_page_activate(cpu_buffer);
2270
2271 if (cpu_buffer->ring_meta)
2272 meta->commit_buffer = meta->head_buffer;
2273 } else {
2274 /* The valid meta buffer still needs to activate the head page */
2275 rb_head_page_activate(cpu_buffer);
2276 }
2277
2278 return cpu_buffer;
2279
2280 fail_free_reader:
2281 free_buffer_page(cpu_buffer->reader_page);
2282
2283 fail_free_buffer:
2284 kfree(cpu_buffer);
2285 return NULL;
2286}
2287
2288static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
2289{
2290 struct list_head *head = cpu_buffer->pages;
2291 struct buffer_page *bpage, *tmp;
2292
2293 irq_work_sync(&cpu_buffer->irq_work.work);
2294
2295 free_buffer_page(cpu_buffer->reader_page);
2296
2297 if (head) {
2298 rb_head_page_deactivate(cpu_buffer);
2299
2300 list_for_each_entry_safe(bpage, tmp, head, list) {
2301 list_del_init(&bpage->list);
2302 free_buffer_page(bpage);
2303 }
2304 bpage = list_entry(head, struct buffer_page, list);
2305 free_buffer_page(bpage);
2306 }
2307
2308 free_page((unsigned long)cpu_buffer->free_page);
2309
2310 kfree(cpu_buffer);
2311}
2312
2313static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags,
2314 int order, unsigned long start,
2315 unsigned long end,
2316 struct lock_class_key *key)
2317{
2318 struct trace_buffer *buffer;
2319 long nr_pages;
2320 int subbuf_size;
2321 int bsize;
2322 int cpu;
2323 int ret;
2324
2325 /* keep it in its own cache line */
2326 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
2327 GFP_KERNEL);
2328 if (!buffer)
2329 return NULL;
2330
2331 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
2332 goto fail_free_buffer;
2333
2334 buffer->subbuf_order = order;
2335 subbuf_size = (PAGE_SIZE << order);
2336 buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE;
2337
2338 /* Max payload is buffer page size - header (8bytes) */
2339 buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
2340
2341 buffer->flags = flags;
2342 buffer->clock = trace_clock_local;
2343 buffer->reader_lock_key = key;
2344
2345 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
2346 init_waitqueue_head(&buffer->irq_work.waiters);
2347
2348 buffer->cpus = nr_cpu_ids;
2349
2350 bsize = sizeof(void *) * nr_cpu_ids;
2351 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
2352 GFP_KERNEL);
2353 if (!buffer->buffers)
2354 goto fail_free_cpumask;
2355
2356 /* If start/end are specified, then that overrides size */
2357 if (start && end) {
2358 unsigned long ptr;
2359 int n;
2360
2361 size = end - start;
2362 size = size / nr_cpu_ids;
2363
2364 /*
2365 * The number of sub-buffers (nr_pages) is determined by the
2366 * total size allocated minus the meta data size.
2367 * Then that is divided by the number of per CPU buffers
2368 * needed, plus account for the integer array index that
2369 * will be appended to the meta data.
2370 */
2371 nr_pages = (size - sizeof(struct ring_buffer_meta)) /
2372 (subbuf_size + sizeof(int));
2373 /* Need at least two pages plus the reader page */
2374 if (nr_pages < 3)
2375 goto fail_free_buffers;
2376
2377 again:
2378 /* Make sure that the size fits aligned */
2379 for (n = 0, ptr = start; n < nr_cpu_ids; n++) {
2380 ptr += sizeof(struct ring_buffer_meta) +
2381 sizeof(int) * nr_pages;
2382 ptr = ALIGN(ptr, subbuf_size);
2383 ptr += subbuf_size * nr_pages;
2384 }
2385 if (ptr > end) {
2386 if (nr_pages <= 3)
2387 goto fail_free_buffers;
2388 nr_pages--;
2389 goto again;
2390 }
2391
2392 /* nr_pages should not count the reader page */
2393 nr_pages--;
2394 buffer->range_addr_start = start;
2395 buffer->range_addr_end = end;
2396
2397 rb_range_meta_init(buffer, nr_pages);
2398 } else {
2399
2400 /* need at least two pages */
2401 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2402 if (nr_pages < 2)
2403 nr_pages = 2;
2404 }
2405
2406 cpu = raw_smp_processor_id();
2407 cpumask_set_cpu(cpu, buffer->cpumask);
2408 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
2409 if (!buffer->buffers[cpu])
2410 goto fail_free_buffers;
2411
2412 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2413 if (ret < 0)
2414 goto fail_free_buffers;
2415
2416 mutex_init(&buffer->mutex);
2417
2418 return buffer;
2419
2420 fail_free_buffers:
2421 for_each_buffer_cpu(buffer, cpu) {
2422 if (buffer->buffers[cpu])
2423 rb_free_cpu_buffer(buffer->buffers[cpu]);
2424 }
2425 kfree(buffer->buffers);
2426
2427 fail_free_cpumask:
2428 free_cpumask_var(buffer->cpumask);
2429
2430 fail_free_buffer:
2431 kfree(buffer);
2432 return NULL;
2433}
2434
2435/**
2436 * __ring_buffer_alloc - allocate a new ring_buffer
2437 * @size: the size in bytes per cpu that is needed.
2438 * @flags: attributes to set for the ring buffer.
2439 * @key: ring buffer reader_lock_key.
2440 *
2441 * Currently the only flag that is available is the RB_FL_OVERWRITE
2442 * flag. This flag means that the buffer will overwrite old data
2443 * when the buffer wraps. If this flag is not set, the buffer will
2444 * drop data when the tail hits the head.
2445 */
2446struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
2447 struct lock_class_key *key)
2448{
2449 /* Default buffer page size - one system page */
2450 return alloc_buffer(size, flags, 0, 0, 0,key);
2451
2452}
2453EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
2454
2455/**
2456 * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory
2457 * @size: the size in bytes per cpu that is needed.
2458 * @flags: attributes to set for the ring buffer.
2459 * @order: sub-buffer order
2460 * @start: start of allocated range
2461 * @range_size: size of allocated range
2462 * @key: ring buffer reader_lock_key.
2463 *
2464 * Currently the only flag that is available is the RB_FL_OVERWRITE
2465 * flag. This flag means that the buffer will overwrite old data
2466 * when the buffer wraps. If this flag is not set, the buffer will
2467 * drop data when the tail hits the head.
2468 */
2469struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags,
2470 int order, unsigned long start,
2471 unsigned long range_size,
2472 struct lock_class_key *key)
2473{
2474 return alloc_buffer(size, flags, order, start, start + range_size, key);
2475}
2476
2477/**
2478 * ring_buffer_last_boot_delta - return the delta offset from last boot
2479 * @buffer: The buffer to return the delta from
2480 * @text: Return text delta
2481 * @data: Return data delta
2482 *
2483 * Returns: The true if the delta is non zero
2484 */
2485bool ring_buffer_last_boot_delta(struct trace_buffer *buffer, long *text,
2486 long *data)
2487{
2488 if (!buffer)
2489 return false;
2490
2491 if (!buffer->last_text_delta)
2492 return false;
2493
2494 *text = buffer->last_text_delta;
2495 *data = buffer->last_data_delta;
2496
2497 return true;
2498}
2499
2500/**
2501 * ring_buffer_free - free a ring buffer.
2502 * @buffer: the buffer to free.
2503 */
2504void
2505ring_buffer_free(struct trace_buffer *buffer)
2506{
2507 int cpu;
2508
2509 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2510
2511 irq_work_sync(&buffer->irq_work.work);
2512
2513 for_each_buffer_cpu(buffer, cpu)
2514 rb_free_cpu_buffer(buffer->buffers[cpu]);
2515
2516 kfree(buffer->buffers);
2517 free_cpumask_var(buffer->cpumask);
2518
2519 kfree(buffer);
2520}
2521EXPORT_SYMBOL_GPL(ring_buffer_free);
2522
2523void ring_buffer_set_clock(struct trace_buffer *buffer,
2524 u64 (*clock)(void))
2525{
2526 buffer->clock = clock;
2527}
2528
2529void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
2530{
2531 buffer->time_stamp_abs = abs;
2532}
2533
2534bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
2535{
2536 return buffer->time_stamp_abs;
2537}
2538
2539static inline unsigned long rb_page_entries(struct buffer_page *bpage)
2540{
2541 return local_read(&bpage->entries) & RB_WRITE_MASK;
2542}
2543
2544static inline unsigned long rb_page_write(struct buffer_page *bpage)
2545{
2546 return local_read(&bpage->write) & RB_WRITE_MASK;
2547}
2548
2549static bool
2550rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
2551{
2552 struct list_head *tail_page, *to_remove, *next_page;
2553 struct buffer_page *to_remove_page, *tmp_iter_page;
2554 struct buffer_page *last_page, *first_page;
2555 unsigned long nr_removed;
2556 unsigned long head_bit;
2557 int page_entries;
2558
2559 head_bit = 0;
2560
2561 raw_spin_lock_irq(&cpu_buffer->reader_lock);
2562 atomic_inc(&cpu_buffer->record_disabled);
2563 /*
2564 * We don't race with the readers since we have acquired the reader
2565 * lock. We also don't race with writers after disabling recording.
2566 * This makes it easy to figure out the first and the last page to be
2567 * removed from the list. We unlink all the pages in between including
2568 * the first and last pages. This is done in a busy loop so that we
2569 * lose the least number of traces.
2570 * The pages are freed after we restart recording and unlock readers.
2571 */
2572 tail_page = &cpu_buffer->tail_page->list;
2573
2574 /*
2575 * tail page might be on reader page, we remove the next page
2576 * from the ring buffer
2577 */
2578 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2579 tail_page = rb_list_head(tail_page->next);
2580 to_remove = tail_page;
2581
2582 /* start of pages to remove */
2583 first_page = list_entry(rb_list_head(to_remove->next),
2584 struct buffer_page, list);
2585
2586 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
2587 to_remove = rb_list_head(to_remove)->next;
2588 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
2589 }
2590 /* Read iterators need to reset themselves when some pages removed */
2591 cpu_buffer->pages_removed += nr_removed;
2592
2593 next_page = rb_list_head(to_remove)->next;
2594
2595 /*
2596 * Now we remove all pages between tail_page and next_page.
2597 * Make sure that we have head_bit value preserved for the
2598 * next page
2599 */
2600 tail_page->next = (struct list_head *)((unsigned long)next_page |
2601 head_bit);
2602 next_page = rb_list_head(next_page);
2603 next_page->prev = tail_page;
2604
2605 /* make sure pages points to a valid page in the ring buffer */
2606 cpu_buffer->pages = next_page;
2607 cpu_buffer->cnt++;
2608
2609 /* update head page */
2610 if (head_bit)
2611 cpu_buffer->head_page = list_entry(next_page,
2612 struct buffer_page, list);
2613
2614 /* pages are removed, resume tracing and then free the pages */
2615 atomic_dec(&cpu_buffer->record_disabled);
2616 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2617
2618 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2619
2620 /* last buffer page to remove */
2621 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2622 list);
2623 tmp_iter_page = first_page;
2624
2625 do {
2626 cond_resched();
2627
2628 to_remove_page = tmp_iter_page;
2629 rb_inc_page(&tmp_iter_page);
2630
2631 /* update the counters */
2632 page_entries = rb_page_entries(to_remove_page);
2633 if (page_entries) {
2634 /*
2635 * If something was added to this page, it was full
2636 * since it is not the tail page. So we deduct the
2637 * bytes consumed in ring buffer from here.
2638 * Increment overrun to account for the lost events.
2639 */
2640 local_add(page_entries, &cpu_buffer->overrun);
2641 local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2642 local_inc(&cpu_buffer->pages_lost);
2643 }
2644
2645 /*
2646 * We have already removed references to this list item, just
2647 * free up the buffer_page and its page
2648 */
2649 free_buffer_page(to_remove_page);
2650 nr_removed--;
2651
2652 } while (to_remove_page != last_page);
2653
2654 RB_WARN_ON(cpu_buffer, nr_removed);
2655
2656 return nr_removed == 0;
2657}
2658
2659static bool
2660rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2661{
2662 struct list_head *pages = &cpu_buffer->new_pages;
2663 unsigned long flags;
2664 bool success;
2665 int retries;
2666
2667 /* Can be called at early boot up, where interrupts must not been enabled */
2668 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2669 /*
2670 * We are holding the reader lock, so the reader page won't be swapped
2671 * in the ring buffer. Now we are racing with the writer trying to
2672 * move head page and the tail page.
2673 * We are going to adapt the reader page update process where:
2674 * 1. We first splice the start and end of list of new pages between
2675 * the head page and its previous page.
2676 * 2. We cmpxchg the prev_page->next to point from head page to the
2677 * start of new pages list.
2678 * 3. Finally, we update the head->prev to the end of new list.
2679 *
2680 * We will try this process 10 times, to make sure that we don't keep
2681 * spinning.
2682 */
2683 retries = 10;
2684 success = false;
2685 while (retries--) {
2686 struct list_head *head_page, *prev_page;
2687 struct list_head *last_page, *first_page;
2688 struct list_head *head_page_with_bit;
2689 struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2690
2691 if (!hpage)
2692 break;
2693 head_page = &hpage->list;
2694 prev_page = head_page->prev;
2695
2696 first_page = pages->next;
2697 last_page = pages->prev;
2698
2699 head_page_with_bit = (struct list_head *)
2700 ((unsigned long)head_page | RB_PAGE_HEAD);
2701
2702 last_page->next = head_page_with_bit;
2703 first_page->prev = prev_page;
2704
2705 /* caution: head_page_with_bit gets updated on cmpxchg failure */
2706 if (try_cmpxchg(&prev_page->next,
2707 &head_page_with_bit, first_page)) {
2708 /*
2709 * yay, we replaced the page pointer to our new list,
2710 * now, we just have to update to head page's prev
2711 * pointer to point to end of list
2712 */
2713 head_page->prev = last_page;
2714 cpu_buffer->cnt++;
2715 success = true;
2716 break;
2717 }
2718 }
2719
2720 if (success)
2721 INIT_LIST_HEAD(pages);
2722 /*
2723 * If we weren't successful in adding in new pages, warn and stop
2724 * tracing
2725 */
2726 RB_WARN_ON(cpu_buffer, !success);
2727 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2728
2729 /* free pages if they weren't inserted */
2730 if (!success) {
2731 struct buffer_page *bpage, *tmp;
2732 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2733 list) {
2734 list_del_init(&bpage->list);
2735 free_buffer_page(bpage);
2736 }
2737 }
2738 return success;
2739}
2740
2741static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2742{
2743 bool success;
2744
2745 if (cpu_buffer->nr_pages_to_update > 0)
2746 success = rb_insert_pages(cpu_buffer);
2747 else
2748 success = rb_remove_pages(cpu_buffer,
2749 -cpu_buffer->nr_pages_to_update);
2750
2751 if (success)
2752 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2753}
2754
2755static void update_pages_handler(struct work_struct *work)
2756{
2757 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2758 struct ring_buffer_per_cpu, update_pages_work);
2759 rb_update_pages(cpu_buffer);
2760 complete(&cpu_buffer->update_done);
2761}
2762
2763/**
2764 * ring_buffer_resize - resize the ring buffer
2765 * @buffer: the buffer to resize.
2766 * @size: the new size.
2767 * @cpu_id: the cpu buffer to resize
2768 *
2769 * Minimum size is 2 * buffer->subbuf_size.
2770 *
2771 * Returns 0 on success and < 0 on failure.
2772 */
2773int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2774 int cpu_id)
2775{
2776 struct ring_buffer_per_cpu *cpu_buffer;
2777 unsigned long nr_pages;
2778 int cpu, err;
2779
2780 /*
2781 * Always succeed at resizing a non-existent buffer:
2782 */
2783 if (!buffer)
2784 return 0;
2785
2786 /* Make sure the requested buffer exists */
2787 if (cpu_id != RING_BUFFER_ALL_CPUS &&
2788 !cpumask_test_cpu(cpu_id, buffer->cpumask))
2789 return 0;
2790
2791 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2792
2793 /* we need a minimum of two pages */
2794 if (nr_pages < 2)
2795 nr_pages = 2;
2796
2797 /* prevent another thread from changing buffer sizes */
2798 mutex_lock(&buffer->mutex);
2799 atomic_inc(&buffer->resizing);
2800
2801 if (cpu_id == RING_BUFFER_ALL_CPUS) {
2802 /*
2803 * Don't succeed if resizing is disabled, as a reader might be
2804 * manipulating the ring buffer and is expecting a sane state while
2805 * this is true.
2806 */
2807 for_each_buffer_cpu(buffer, cpu) {
2808 cpu_buffer = buffer->buffers[cpu];
2809 if (atomic_read(&cpu_buffer->resize_disabled)) {
2810 err = -EBUSY;
2811 goto out_err_unlock;
2812 }
2813 }
2814
2815 /* calculate the pages to update */
2816 for_each_buffer_cpu(buffer, cpu) {
2817 cpu_buffer = buffer->buffers[cpu];
2818
2819 cpu_buffer->nr_pages_to_update = nr_pages -
2820 cpu_buffer->nr_pages;
2821 /*
2822 * nothing more to do for removing pages or no update
2823 */
2824 if (cpu_buffer->nr_pages_to_update <= 0)
2825 continue;
2826 /*
2827 * to add pages, make sure all new pages can be
2828 * allocated without receiving ENOMEM
2829 */
2830 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2831 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2832 &cpu_buffer->new_pages)) {
2833 /* not enough memory for new pages */
2834 err = -ENOMEM;
2835 goto out_err;
2836 }
2837
2838 cond_resched();
2839 }
2840
2841 cpus_read_lock();
2842 /*
2843 * Fire off all the required work handlers
2844 * We can't schedule on offline CPUs, but it's not necessary
2845 * since we can change their buffer sizes without any race.
2846 */
2847 for_each_buffer_cpu(buffer, cpu) {
2848 cpu_buffer = buffer->buffers[cpu];
2849 if (!cpu_buffer->nr_pages_to_update)
2850 continue;
2851
2852 /* Can't run something on an offline CPU. */
2853 if (!cpu_online(cpu)) {
2854 rb_update_pages(cpu_buffer);
2855 cpu_buffer->nr_pages_to_update = 0;
2856 } else {
2857 /* Run directly if possible. */
2858 migrate_disable();
2859 if (cpu != smp_processor_id()) {
2860 migrate_enable();
2861 schedule_work_on(cpu,
2862 &cpu_buffer->update_pages_work);
2863 } else {
2864 update_pages_handler(&cpu_buffer->update_pages_work);
2865 migrate_enable();
2866 }
2867 }
2868 }
2869
2870 /* wait for all the updates to complete */
2871 for_each_buffer_cpu(buffer, cpu) {
2872 cpu_buffer = buffer->buffers[cpu];
2873 if (!cpu_buffer->nr_pages_to_update)
2874 continue;
2875
2876 if (cpu_online(cpu))
2877 wait_for_completion(&cpu_buffer->update_done);
2878 cpu_buffer->nr_pages_to_update = 0;
2879 }
2880
2881 cpus_read_unlock();
2882 } else {
2883 cpu_buffer = buffer->buffers[cpu_id];
2884
2885 if (nr_pages == cpu_buffer->nr_pages)
2886 goto out;
2887
2888 /*
2889 * Don't succeed if resizing is disabled, as a reader might be
2890 * manipulating the ring buffer and is expecting a sane state while
2891 * this is true.
2892 */
2893 if (atomic_read(&cpu_buffer->resize_disabled)) {
2894 err = -EBUSY;
2895 goto out_err_unlock;
2896 }
2897
2898 cpu_buffer->nr_pages_to_update = nr_pages -
2899 cpu_buffer->nr_pages;
2900
2901 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2902 if (cpu_buffer->nr_pages_to_update > 0 &&
2903 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2904 &cpu_buffer->new_pages)) {
2905 err = -ENOMEM;
2906 goto out_err;
2907 }
2908
2909 cpus_read_lock();
2910
2911 /* Can't run something on an offline CPU. */
2912 if (!cpu_online(cpu_id))
2913 rb_update_pages(cpu_buffer);
2914 else {
2915 /* Run directly if possible. */
2916 migrate_disable();
2917 if (cpu_id == smp_processor_id()) {
2918 rb_update_pages(cpu_buffer);
2919 migrate_enable();
2920 } else {
2921 migrate_enable();
2922 schedule_work_on(cpu_id,
2923 &cpu_buffer->update_pages_work);
2924 wait_for_completion(&cpu_buffer->update_done);
2925 }
2926 }
2927
2928 cpu_buffer->nr_pages_to_update = 0;
2929 cpus_read_unlock();
2930 }
2931
2932 out:
2933 /*
2934 * The ring buffer resize can happen with the ring buffer
2935 * enabled, so that the update disturbs the tracing as little
2936 * as possible. But if the buffer is disabled, we do not need
2937 * to worry about that, and we can take the time to verify
2938 * that the buffer is not corrupt.
2939 */
2940 if (atomic_read(&buffer->record_disabled)) {
2941 atomic_inc(&buffer->record_disabled);
2942 /*
2943 * Even though the buffer was disabled, we must make sure
2944 * that it is truly disabled before calling rb_check_pages.
2945 * There could have been a race between checking
2946 * record_disable and incrementing it.
2947 */
2948 synchronize_rcu();
2949 for_each_buffer_cpu(buffer, cpu) {
2950 cpu_buffer = buffer->buffers[cpu];
2951 rb_check_pages(cpu_buffer);
2952 }
2953 atomic_dec(&buffer->record_disabled);
2954 }
2955
2956 atomic_dec(&buffer->resizing);
2957 mutex_unlock(&buffer->mutex);
2958 return 0;
2959
2960 out_err:
2961 for_each_buffer_cpu(buffer, cpu) {
2962 struct buffer_page *bpage, *tmp;
2963
2964 cpu_buffer = buffer->buffers[cpu];
2965 cpu_buffer->nr_pages_to_update = 0;
2966
2967 if (list_empty(&cpu_buffer->new_pages))
2968 continue;
2969
2970 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2971 list) {
2972 list_del_init(&bpage->list);
2973 free_buffer_page(bpage);
2974 }
2975 }
2976 out_err_unlock:
2977 atomic_dec(&buffer->resizing);
2978 mutex_unlock(&buffer->mutex);
2979 return err;
2980}
2981EXPORT_SYMBOL_GPL(ring_buffer_resize);
2982
2983void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2984{
2985 mutex_lock(&buffer->mutex);
2986 if (val)
2987 buffer->flags |= RB_FL_OVERWRITE;
2988 else
2989 buffer->flags &= ~RB_FL_OVERWRITE;
2990 mutex_unlock(&buffer->mutex);
2991}
2992EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2993
2994static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2995{
2996 return bpage->page->data + index;
2997}
2998
2999static __always_inline struct ring_buffer_event *
3000rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
3001{
3002 return __rb_page_index(cpu_buffer->reader_page,
3003 cpu_buffer->reader_page->read);
3004}
3005
3006static struct ring_buffer_event *
3007rb_iter_head_event(struct ring_buffer_iter *iter)
3008{
3009 struct ring_buffer_event *event;
3010 struct buffer_page *iter_head_page = iter->head_page;
3011 unsigned long commit;
3012 unsigned length;
3013
3014 if (iter->head != iter->next_event)
3015 return iter->event;
3016
3017 /*
3018 * When the writer goes across pages, it issues a cmpxchg which
3019 * is a mb(), which will synchronize with the rmb here.
3020 * (see rb_tail_page_update() and __rb_reserve_next())
3021 */
3022 commit = rb_page_commit(iter_head_page);
3023 smp_rmb();
3024
3025 /* An event needs to be at least 8 bytes in size */
3026 if (iter->head > commit - 8)
3027 goto reset;
3028
3029 event = __rb_page_index(iter_head_page, iter->head);
3030 length = rb_event_length(event);
3031
3032 /*
3033 * READ_ONCE() doesn't work on functions and we don't want the
3034 * compiler doing any crazy optimizations with length.
3035 */
3036 barrier();
3037
3038 if ((iter->head + length) > commit || length > iter->event_size)
3039 /* Writer corrupted the read? */
3040 goto reset;
3041
3042 memcpy(iter->event, event, length);
3043 /*
3044 * If the page stamp is still the same after this rmb() then the
3045 * event was safely copied without the writer entering the page.
3046 */
3047 smp_rmb();
3048
3049 /* Make sure the page didn't change since we read this */
3050 if (iter->page_stamp != iter_head_page->page->time_stamp ||
3051 commit > rb_page_commit(iter_head_page))
3052 goto reset;
3053
3054 iter->next_event = iter->head + length;
3055 return iter->event;
3056 reset:
3057 /* Reset to the beginning */
3058 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3059 iter->head = 0;
3060 iter->next_event = 0;
3061 iter->missed_events = 1;
3062 return NULL;
3063}
3064
3065/* Size is determined by what has been committed */
3066static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
3067{
3068 return rb_page_commit(bpage) & ~RB_MISSED_MASK;
3069}
3070
3071static __always_inline unsigned
3072rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
3073{
3074 return rb_page_commit(cpu_buffer->commit_page);
3075}
3076
3077static __always_inline unsigned
3078rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
3079{
3080 unsigned long addr = (unsigned long)event;
3081
3082 addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
3083
3084 return addr - BUF_PAGE_HDR_SIZE;
3085}
3086
3087static void rb_inc_iter(struct ring_buffer_iter *iter)
3088{
3089 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3090
3091 /*
3092 * The iterator could be on the reader page (it starts there).
3093 * But the head could have moved, since the reader was
3094 * found. Check for this case and assign the iterator
3095 * to the head page instead of next.
3096 */
3097 if (iter->head_page == cpu_buffer->reader_page)
3098 iter->head_page = rb_set_head_page(cpu_buffer);
3099 else
3100 rb_inc_page(&iter->head_page);
3101
3102 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3103 iter->head = 0;
3104 iter->next_event = 0;
3105}
3106
3107/* Return the index into the sub-buffers for a given sub-buffer */
3108static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf)
3109{
3110 void *subbuf_array;
3111
3112 subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs;
3113 subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size);
3114 return (subbuf - subbuf_array) / meta->subbuf_size;
3115}
3116
3117static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer,
3118 struct buffer_page *next_page)
3119{
3120 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3121 unsigned long old_head = (unsigned long)next_page->page;
3122 unsigned long new_head;
3123
3124 rb_inc_page(&next_page);
3125 new_head = (unsigned long)next_page->page;
3126
3127 /*
3128 * Only move it forward once, if something else came in and
3129 * moved it forward, then we don't want to touch it.
3130 */
3131 (void)cmpxchg(&meta->head_buffer, old_head, new_head);
3132}
3133
3134static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer,
3135 struct buffer_page *reader)
3136{
3137 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3138 void *old_reader = cpu_buffer->reader_page->page;
3139 void *new_reader = reader->page;
3140 int id;
3141
3142 id = reader->id;
3143 cpu_buffer->reader_page->id = id;
3144 reader->id = 0;
3145
3146 meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader);
3147 meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader);
3148
3149 /* The head pointer is the one after the reader */
3150 rb_update_meta_head(cpu_buffer, reader);
3151}
3152
3153/*
3154 * rb_handle_head_page - writer hit the head page
3155 *
3156 * Returns: +1 to retry page
3157 * 0 to continue
3158 * -1 on error
3159 */
3160static int
3161rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
3162 struct buffer_page *tail_page,
3163 struct buffer_page *next_page)
3164{
3165 struct buffer_page *new_head;
3166 int entries;
3167 int type;
3168 int ret;
3169
3170 entries = rb_page_entries(next_page);
3171
3172 /*
3173 * The hard part is here. We need to move the head
3174 * forward, and protect against both readers on
3175 * other CPUs and writers coming in via interrupts.
3176 */
3177 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
3178 RB_PAGE_HEAD);
3179
3180 /*
3181 * type can be one of four:
3182 * NORMAL - an interrupt already moved it for us
3183 * HEAD - we are the first to get here.
3184 * UPDATE - we are the interrupt interrupting
3185 * a current move.
3186 * MOVED - a reader on another CPU moved the next
3187 * pointer to its reader page. Give up
3188 * and try again.
3189 */
3190
3191 switch (type) {
3192 case RB_PAGE_HEAD:
3193 /*
3194 * We changed the head to UPDATE, thus
3195 * it is our responsibility to update
3196 * the counters.
3197 */
3198 local_add(entries, &cpu_buffer->overrun);
3199 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
3200 local_inc(&cpu_buffer->pages_lost);
3201
3202 if (cpu_buffer->ring_meta)
3203 rb_update_meta_head(cpu_buffer, next_page);
3204 /*
3205 * The entries will be zeroed out when we move the
3206 * tail page.
3207 */
3208
3209 /* still more to do */
3210 break;
3211
3212 case RB_PAGE_UPDATE:
3213 /*
3214 * This is an interrupt that interrupt the
3215 * previous update. Still more to do.
3216 */
3217 break;
3218 case RB_PAGE_NORMAL:
3219 /*
3220 * An interrupt came in before the update
3221 * and processed this for us.
3222 * Nothing left to do.
3223 */
3224 return 1;
3225 case RB_PAGE_MOVED:
3226 /*
3227 * The reader is on another CPU and just did
3228 * a swap with our next_page.
3229 * Try again.
3230 */
3231 return 1;
3232 default:
3233 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
3234 return -1;
3235 }
3236
3237 /*
3238 * Now that we are here, the old head pointer is
3239 * set to UPDATE. This will keep the reader from
3240 * swapping the head page with the reader page.
3241 * The reader (on another CPU) will spin till
3242 * we are finished.
3243 *
3244 * We just need to protect against interrupts
3245 * doing the job. We will set the next pointer
3246 * to HEAD. After that, we set the old pointer
3247 * to NORMAL, but only if it was HEAD before.
3248 * otherwise we are an interrupt, and only
3249 * want the outer most commit to reset it.
3250 */
3251 new_head = next_page;
3252 rb_inc_page(&new_head);
3253
3254 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
3255 RB_PAGE_NORMAL);
3256
3257 /*
3258 * Valid returns are:
3259 * HEAD - an interrupt came in and already set it.
3260 * NORMAL - One of two things:
3261 * 1) We really set it.
3262 * 2) A bunch of interrupts came in and moved
3263 * the page forward again.
3264 */
3265 switch (ret) {
3266 case RB_PAGE_HEAD:
3267 case RB_PAGE_NORMAL:
3268 /* OK */
3269 break;
3270 default:
3271 RB_WARN_ON(cpu_buffer, 1);
3272 return -1;
3273 }
3274
3275 /*
3276 * It is possible that an interrupt came in,
3277 * set the head up, then more interrupts came in
3278 * and moved it again. When we get back here,
3279 * the page would have been set to NORMAL but we
3280 * just set it back to HEAD.
3281 *
3282 * How do you detect this? Well, if that happened
3283 * the tail page would have moved.
3284 */
3285 if (ret == RB_PAGE_NORMAL) {
3286 struct buffer_page *buffer_tail_page;
3287
3288 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
3289 /*
3290 * If the tail had moved passed next, then we need
3291 * to reset the pointer.
3292 */
3293 if (buffer_tail_page != tail_page &&
3294 buffer_tail_page != next_page)
3295 rb_head_page_set_normal(cpu_buffer, new_head,
3296 next_page,
3297 RB_PAGE_HEAD);
3298 }
3299
3300 /*
3301 * If this was the outer most commit (the one that
3302 * changed the original pointer from HEAD to UPDATE),
3303 * then it is up to us to reset it to NORMAL.
3304 */
3305 if (type == RB_PAGE_HEAD) {
3306 ret = rb_head_page_set_normal(cpu_buffer, next_page,
3307 tail_page,
3308 RB_PAGE_UPDATE);
3309 if (RB_WARN_ON(cpu_buffer,
3310 ret != RB_PAGE_UPDATE))
3311 return -1;
3312 }
3313
3314 return 0;
3315}
3316
3317static inline void
3318rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
3319 unsigned long tail, struct rb_event_info *info)
3320{
3321 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
3322 struct buffer_page *tail_page = info->tail_page;
3323 struct ring_buffer_event *event;
3324 unsigned long length = info->length;
3325
3326 /*
3327 * Only the event that crossed the page boundary
3328 * must fill the old tail_page with padding.
3329 */
3330 if (tail >= bsize) {
3331 /*
3332 * If the page was filled, then we still need
3333 * to update the real_end. Reset it to zero
3334 * and the reader will ignore it.
3335 */
3336 if (tail == bsize)
3337 tail_page->real_end = 0;
3338
3339 local_sub(length, &tail_page->write);
3340 return;
3341 }
3342
3343 event = __rb_page_index(tail_page, tail);
3344
3345 /*
3346 * Save the original length to the meta data.
3347 * This will be used by the reader to add lost event
3348 * counter.
3349 */
3350 tail_page->real_end = tail;
3351
3352 /*
3353 * If this event is bigger than the minimum size, then
3354 * we need to be careful that we don't subtract the
3355 * write counter enough to allow another writer to slip
3356 * in on this page.
3357 * We put in a discarded commit instead, to make sure
3358 * that this space is not used again, and this space will
3359 * not be accounted into 'entries_bytes'.
3360 *
3361 * If we are less than the minimum size, we don't need to
3362 * worry about it.
3363 */
3364 if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
3365 /* No room for any events */
3366
3367 /* Mark the rest of the page with padding */
3368 rb_event_set_padding(event);
3369
3370 /* Make sure the padding is visible before the write update */
3371 smp_wmb();
3372
3373 /* Set the write back to the previous setting */
3374 local_sub(length, &tail_page->write);
3375 return;
3376 }
3377
3378 /* Put in a discarded event */
3379 event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
3380 event->type_len = RINGBUF_TYPE_PADDING;
3381 /* time delta must be non zero */
3382 event->time_delta = 1;
3383
3384 /* account for padding bytes */
3385 local_add(bsize - tail, &cpu_buffer->entries_bytes);
3386
3387 /* Make sure the padding is visible before the tail_page->write update */
3388 smp_wmb();
3389
3390 /* Set write to end of buffer */
3391 length = (tail + length) - bsize;
3392 local_sub(length, &tail_page->write);
3393}
3394
3395static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
3396
3397/*
3398 * This is the slow path, force gcc not to inline it.
3399 */
3400static noinline struct ring_buffer_event *
3401rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
3402 unsigned long tail, struct rb_event_info *info)
3403{
3404 struct buffer_page *tail_page = info->tail_page;
3405 struct buffer_page *commit_page = cpu_buffer->commit_page;
3406 struct trace_buffer *buffer = cpu_buffer->buffer;
3407 struct buffer_page *next_page;
3408 int ret;
3409
3410 next_page = tail_page;
3411
3412 rb_inc_page(&next_page);
3413
3414 /*
3415 * If for some reason, we had an interrupt storm that made
3416 * it all the way around the buffer, bail, and warn
3417 * about it.
3418 */
3419 if (unlikely(next_page == commit_page)) {
3420 local_inc(&cpu_buffer->commit_overrun);
3421 goto out_reset;
3422 }
3423
3424 /*
3425 * This is where the fun begins!
3426 *
3427 * We are fighting against races between a reader that
3428 * could be on another CPU trying to swap its reader
3429 * page with the buffer head.
3430 *
3431 * We are also fighting against interrupts coming in and
3432 * moving the head or tail on us as well.
3433 *
3434 * If the next page is the head page then we have filled
3435 * the buffer, unless the commit page is still on the
3436 * reader page.
3437 */
3438 if (rb_is_head_page(next_page, &tail_page->list)) {
3439
3440 /*
3441 * If the commit is not on the reader page, then
3442 * move the header page.
3443 */
3444 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
3445 /*
3446 * If we are not in overwrite mode,
3447 * this is easy, just stop here.
3448 */
3449 if (!(buffer->flags & RB_FL_OVERWRITE)) {
3450 local_inc(&cpu_buffer->dropped_events);
3451 goto out_reset;
3452 }
3453
3454 ret = rb_handle_head_page(cpu_buffer,
3455 tail_page,
3456 next_page);
3457 if (ret < 0)
3458 goto out_reset;
3459 if (ret)
3460 goto out_again;
3461 } else {
3462 /*
3463 * We need to be careful here too. The
3464 * commit page could still be on the reader
3465 * page. We could have a small buffer, and
3466 * have filled up the buffer with events
3467 * from interrupts and such, and wrapped.
3468 *
3469 * Note, if the tail page is also on the
3470 * reader_page, we let it move out.
3471 */
3472 if (unlikely((cpu_buffer->commit_page !=
3473 cpu_buffer->tail_page) &&
3474 (cpu_buffer->commit_page ==
3475 cpu_buffer->reader_page))) {
3476 local_inc(&cpu_buffer->commit_overrun);
3477 goto out_reset;
3478 }
3479 }
3480 }
3481
3482 rb_tail_page_update(cpu_buffer, tail_page, next_page);
3483
3484 out_again:
3485
3486 rb_reset_tail(cpu_buffer, tail, info);
3487
3488 /* Commit what we have for now. */
3489 rb_end_commit(cpu_buffer);
3490 /* rb_end_commit() decs committing */
3491 local_inc(&cpu_buffer->committing);
3492
3493 /* fail and let the caller try again */
3494 return ERR_PTR(-EAGAIN);
3495
3496 out_reset:
3497 /* reset write */
3498 rb_reset_tail(cpu_buffer, tail, info);
3499
3500 return NULL;
3501}
3502
3503/* Slow path */
3504static struct ring_buffer_event *
3505rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3506 struct ring_buffer_event *event, u64 delta, bool abs)
3507{
3508 if (abs)
3509 event->type_len = RINGBUF_TYPE_TIME_STAMP;
3510 else
3511 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
3512
3513 /* Not the first event on the page, or not delta? */
3514 if (abs || rb_event_index(cpu_buffer, event)) {
3515 event->time_delta = delta & TS_MASK;
3516 event->array[0] = delta >> TS_SHIFT;
3517 } else {
3518 /* nope, just zero it */
3519 event->time_delta = 0;
3520 event->array[0] = 0;
3521 }
3522
3523 return skip_time_extend(event);
3524}
3525
3526#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3527static inline bool sched_clock_stable(void)
3528{
3529 return true;
3530}
3531#endif
3532
3533static void
3534rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3535 struct rb_event_info *info)
3536{
3537 u64 write_stamp;
3538
3539 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
3540 (unsigned long long)info->delta,
3541 (unsigned long long)info->ts,
3542 (unsigned long long)info->before,
3543 (unsigned long long)info->after,
3544 (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
3545 sched_clock_stable() ? "" :
3546 "If you just came from a suspend/resume,\n"
3547 "please switch to the trace global clock:\n"
3548 " echo global > /sys/kernel/tracing/trace_clock\n"
3549 "or add trace_clock=global to the kernel command line\n");
3550}
3551
3552static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3553 struct ring_buffer_event **event,
3554 struct rb_event_info *info,
3555 u64 *delta,
3556 unsigned int *length)
3557{
3558 bool abs = info->add_timestamp &
3559 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
3560
3561 if (unlikely(info->delta > (1ULL << 59))) {
3562 /*
3563 * Some timers can use more than 59 bits, and when a timestamp
3564 * is added to the buffer, it will lose those bits.
3565 */
3566 if (abs && (info->ts & TS_MSB)) {
3567 info->delta &= ABS_TS_MASK;
3568
3569 /* did the clock go backwards */
3570 } else if (info->before == info->after && info->before > info->ts) {
3571 /* not interrupted */
3572 static int once;
3573
3574 /*
3575 * This is possible with a recalibrating of the TSC.
3576 * Do not produce a call stack, but just report it.
3577 */
3578 if (!once) {
3579 once++;
3580 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
3581 info->before, info->ts);
3582 }
3583 } else
3584 rb_check_timestamp(cpu_buffer, info);
3585 if (!abs)
3586 info->delta = 0;
3587 }
3588 *event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
3589 *length -= RB_LEN_TIME_EXTEND;
3590 *delta = 0;
3591}
3592
3593/**
3594 * rb_update_event - update event type and data
3595 * @cpu_buffer: The per cpu buffer of the @event
3596 * @event: the event to update
3597 * @info: The info to update the @event with (contains length and delta)
3598 *
3599 * Update the type and data fields of the @event. The length
3600 * is the actual size that is written to the ring buffer,
3601 * and with this, we can determine what to place into the
3602 * data field.
3603 */
3604static void
3605rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
3606 struct ring_buffer_event *event,
3607 struct rb_event_info *info)
3608{
3609 unsigned length = info->length;
3610 u64 delta = info->delta;
3611 unsigned int nest = local_read(&cpu_buffer->committing) - 1;
3612
3613 if (!WARN_ON_ONCE(nest >= MAX_NEST))
3614 cpu_buffer->event_stamp[nest] = info->ts;
3615
3616 /*
3617 * If we need to add a timestamp, then we
3618 * add it to the start of the reserved space.
3619 */
3620 if (unlikely(info->add_timestamp))
3621 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
3622
3623 event->time_delta = delta;
3624 length -= RB_EVNT_HDR_SIZE;
3625 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
3626 event->type_len = 0;
3627 event->array[0] = length;
3628 } else
3629 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
3630}
3631
3632static unsigned rb_calculate_event_length(unsigned length)
3633{
3634 struct ring_buffer_event event; /* Used only for sizeof array */
3635
3636 /* zero length can cause confusions */
3637 if (!length)
3638 length++;
3639
3640 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
3641 length += sizeof(event.array[0]);
3642
3643 length += RB_EVNT_HDR_SIZE;
3644 length = ALIGN(length, RB_ARCH_ALIGNMENT);
3645
3646 /*
3647 * In case the time delta is larger than the 27 bits for it
3648 * in the header, we need to add a timestamp. If another
3649 * event comes in when trying to discard this one to increase
3650 * the length, then the timestamp will be added in the allocated
3651 * space of this event. If length is bigger than the size needed
3652 * for the TIME_EXTEND, then padding has to be used. The events
3653 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
3654 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
3655 * As length is a multiple of 4, we only need to worry if it
3656 * is 12 (RB_LEN_TIME_EXTEND + 4).
3657 */
3658 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
3659 length += RB_ALIGNMENT;
3660
3661 return length;
3662}
3663
3664static inline bool
3665rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3666 struct ring_buffer_event *event)
3667{
3668 unsigned long new_index, old_index;
3669 struct buffer_page *bpage;
3670 unsigned long addr;
3671
3672 new_index = rb_event_index(cpu_buffer, event);
3673 old_index = new_index + rb_event_ts_length(event);
3674 addr = (unsigned long)event;
3675 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3676
3677 bpage = READ_ONCE(cpu_buffer->tail_page);
3678
3679 /*
3680 * Make sure the tail_page is still the same and
3681 * the next write location is the end of this event
3682 */
3683 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3684 unsigned long write_mask =
3685 local_read(&bpage->write) & ~RB_WRITE_MASK;
3686 unsigned long event_length = rb_event_length(event);
3687
3688 /*
3689 * For the before_stamp to be different than the write_stamp
3690 * to make sure that the next event adds an absolute
3691 * value and does not rely on the saved write stamp, which
3692 * is now going to be bogus.
3693 *
3694 * By setting the before_stamp to zero, the next event
3695 * is not going to use the write_stamp and will instead
3696 * create an absolute timestamp. This means there's no
3697 * reason to update the wirte_stamp!
3698 */
3699 rb_time_set(&cpu_buffer->before_stamp, 0);
3700
3701 /*
3702 * If an event were to come in now, it would see that the
3703 * write_stamp and the before_stamp are different, and assume
3704 * that this event just added itself before updating
3705 * the write stamp. The interrupting event will fix the
3706 * write stamp for us, and use an absolute timestamp.
3707 */
3708
3709 /*
3710 * This is on the tail page. It is possible that
3711 * a write could come in and move the tail page
3712 * and write to the next page. That is fine
3713 * because we just shorten what is on this page.
3714 */
3715 old_index += write_mask;
3716 new_index += write_mask;
3717
3718 /* caution: old_index gets updated on cmpxchg failure */
3719 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3720 /* update counters */
3721 local_sub(event_length, &cpu_buffer->entries_bytes);
3722 return true;
3723 }
3724 }
3725
3726 /* could not discard */
3727 return false;
3728}
3729
3730static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3731{
3732 local_inc(&cpu_buffer->committing);
3733 local_inc(&cpu_buffer->commits);
3734}
3735
3736static __always_inline void
3737rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3738{
3739 unsigned long max_count;
3740
3741 /*
3742 * We only race with interrupts and NMIs on this CPU.
3743 * If we own the commit event, then we can commit
3744 * all others that interrupted us, since the interruptions
3745 * are in stack format (they finish before they come
3746 * back to us). This allows us to do a simple loop to
3747 * assign the commit to the tail.
3748 */
3749 again:
3750 max_count = cpu_buffer->nr_pages * 100;
3751
3752 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3753 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3754 return;
3755 if (RB_WARN_ON(cpu_buffer,
3756 rb_is_reader_page(cpu_buffer->tail_page)))
3757 return;
3758 /*
3759 * No need for a memory barrier here, as the update
3760 * of the tail_page did it for this page.
3761 */
3762 local_set(&cpu_buffer->commit_page->page->commit,
3763 rb_page_write(cpu_buffer->commit_page));
3764 rb_inc_page(&cpu_buffer->commit_page);
3765 if (cpu_buffer->ring_meta) {
3766 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3767 meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page;
3768 }
3769 /* add barrier to keep gcc from optimizing too much */
3770 barrier();
3771 }
3772 while (rb_commit_index(cpu_buffer) !=
3773 rb_page_write(cpu_buffer->commit_page)) {
3774
3775 /* Make sure the readers see the content of what is committed. */
3776 smp_wmb();
3777 local_set(&cpu_buffer->commit_page->page->commit,
3778 rb_page_write(cpu_buffer->commit_page));
3779 RB_WARN_ON(cpu_buffer,
3780 local_read(&cpu_buffer->commit_page->page->commit) &
3781 ~RB_WRITE_MASK);
3782 barrier();
3783 }
3784
3785 /* again, keep gcc from optimizing */
3786 barrier();
3787
3788 /*
3789 * If an interrupt came in just after the first while loop
3790 * and pushed the tail page forward, we will be left with
3791 * a dangling commit that will never go forward.
3792 */
3793 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3794 goto again;
3795}
3796
3797static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3798{
3799 unsigned long commits;
3800
3801 if (RB_WARN_ON(cpu_buffer,
3802 !local_read(&cpu_buffer->committing)))
3803 return;
3804
3805 again:
3806 commits = local_read(&cpu_buffer->commits);
3807 /* synchronize with interrupts */
3808 barrier();
3809 if (local_read(&cpu_buffer->committing) == 1)
3810 rb_set_commit_to_write(cpu_buffer);
3811
3812 local_dec(&cpu_buffer->committing);
3813
3814 /* synchronize with interrupts */
3815 barrier();
3816
3817 /*
3818 * Need to account for interrupts coming in between the
3819 * updating of the commit page and the clearing of the
3820 * committing counter.
3821 */
3822 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3823 !local_read(&cpu_buffer->committing)) {
3824 local_inc(&cpu_buffer->committing);
3825 goto again;
3826 }
3827}
3828
3829static inline void rb_event_discard(struct ring_buffer_event *event)
3830{
3831 if (extended_time(event))
3832 event = skip_time_extend(event);
3833
3834 /* array[0] holds the actual length for the discarded event */
3835 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3836 event->type_len = RINGBUF_TYPE_PADDING;
3837 /* time delta must be non zero */
3838 if (!event->time_delta)
3839 event->time_delta = 1;
3840}
3841
3842static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3843{
3844 local_inc(&cpu_buffer->entries);
3845 rb_end_commit(cpu_buffer);
3846}
3847
3848static __always_inline void
3849rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3850{
3851 if (buffer->irq_work.waiters_pending) {
3852 buffer->irq_work.waiters_pending = false;
3853 /* irq_work_queue() supplies it's own memory barriers */
3854 irq_work_queue(&buffer->irq_work.work);
3855 }
3856
3857 if (cpu_buffer->irq_work.waiters_pending) {
3858 cpu_buffer->irq_work.waiters_pending = false;
3859 /* irq_work_queue() supplies it's own memory barriers */
3860 irq_work_queue(&cpu_buffer->irq_work.work);
3861 }
3862
3863 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3864 return;
3865
3866 if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3867 return;
3868
3869 if (!cpu_buffer->irq_work.full_waiters_pending)
3870 return;
3871
3872 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3873
3874 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3875 return;
3876
3877 cpu_buffer->irq_work.wakeup_full = true;
3878 cpu_buffer->irq_work.full_waiters_pending = false;
3879 /* irq_work_queue() supplies it's own memory barriers */
3880 irq_work_queue(&cpu_buffer->irq_work.work);
3881}
3882
3883#ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3884# define do_ring_buffer_record_recursion() \
3885 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3886#else
3887# define do_ring_buffer_record_recursion() do { } while (0)
3888#endif
3889
3890/*
3891 * The lock and unlock are done within a preempt disable section.
3892 * The current_context per_cpu variable can only be modified
3893 * by the current task between lock and unlock. But it can
3894 * be modified more than once via an interrupt. To pass this
3895 * information from the lock to the unlock without having to
3896 * access the 'in_interrupt()' functions again (which do show
3897 * a bit of overhead in something as critical as function tracing,
3898 * we use a bitmask trick.
3899 *
3900 * bit 1 = NMI context
3901 * bit 2 = IRQ context
3902 * bit 3 = SoftIRQ context
3903 * bit 4 = normal context.
3904 *
3905 * This works because this is the order of contexts that can
3906 * preempt other contexts. A SoftIRQ never preempts an IRQ
3907 * context.
3908 *
3909 * When the context is determined, the corresponding bit is
3910 * checked and set (if it was set, then a recursion of that context
3911 * happened).
3912 *
3913 * On unlock, we need to clear this bit. To do so, just subtract
3914 * 1 from the current_context and AND it to itself.
3915 *
3916 * (binary)
3917 * 101 - 1 = 100
3918 * 101 & 100 = 100 (clearing bit zero)
3919 *
3920 * 1010 - 1 = 1001
3921 * 1010 & 1001 = 1000 (clearing bit 1)
3922 *
3923 * The least significant bit can be cleared this way, and it
3924 * just so happens that it is the same bit corresponding to
3925 * the current context.
3926 *
3927 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3928 * is set when a recursion is detected at the current context, and if
3929 * the TRANSITION bit is already set, it will fail the recursion.
3930 * This is needed because there's a lag between the changing of
3931 * interrupt context and updating the preempt count. In this case,
3932 * a false positive will be found. To handle this, one extra recursion
3933 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3934 * bit is already set, then it is considered a recursion and the function
3935 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3936 *
3937 * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3938 * to be cleared. Even if it wasn't the context that set it. That is,
3939 * if an interrupt comes in while NORMAL bit is set and the ring buffer
3940 * is called before preempt_count() is updated, since the check will
3941 * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3942 * NMI then comes in, it will set the NMI bit, but when the NMI code
3943 * does the trace_recursive_unlock() it will clear the TRANSITION bit
3944 * and leave the NMI bit set. But this is fine, because the interrupt
3945 * code that set the TRANSITION bit will then clear the NMI bit when it
3946 * calls trace_recursive_unlock(). If another NMI comes in, it will
3947 * set the TRANSITION bit and continue.
3948 *
3949 * Note: The TRANSITION bit only handles a single transition between context.
3950 */
3951
3952static __always_inline bool
3953trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3954{
3955 unsigned int val = cpu_buffer->current_context;
3956 int bit = interrupt_context_level();
3957
3958 bit = RB_CTX_NORMAL - bit;
3959
3960 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3961 /*
3962 * It is possible that this was called by transitioning
3963 * between interrupt context, and preempt_count() has not
3964 * been updated yet. In this case, use the TRANSITION bit.
3965 */
3966 bit = RB_CTX_TRANSITION;
3967 if (val & (1 << (bit + cpu_buffer->nest))) {
3968 do_ring_buffer_record_recursion();
3969 return true;
3970 }
3971 }
3972
3973 val |= (1 << (bit + cpu_buffer->nest));
3974 cpu_buffer->current_context = val;
3975
3976 return false;
3977}
3978
3979static __always_inline void
3980trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3981{
3982 cpu_buffer->current_context &=
3983 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3984}
3985
3986/* The recursive locking above uses 5 bits */
3987#define NESTED_BITS 5
3988
3989/**
3990 * ring_buffer_nest_start - Allow to trace while nested
3991 * @buffer: The ring buffer to modify
3992 *
3993 * The ring buffer has a safety mechanism to prevent recursion.
3994 * But there may be a case where a trace needs to be done while
3995 * tracing something else. In this case, calling this function
3996 * will allow this function to nest within a currently active
3997 * ring_buffer_lock_reserve().
3998 *
3999 * Call this function before calling another ring_buffer_lock_reserve() and
4000 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
4001 */
4002void ring_buffer_nest_start(struct trace_buffer *buffer)
4003{
4004 struct ring_buffer_per_cpu *cpu_buffer;
4005 int cpu;
4006
4007 /* Enabled by ring_buffer_nest_end() */
4008 preempt_disable_notrace();
4009 cpu = raw_smp_processor_id();
4010 cpu_buffer = buffer->buffers[cpu];
4011 /* This is the shift value for the above recursive locking */
4012 cpu_buffer->nest += NESTED_BITS;
4013}
4014
4015/**
4016 * ring_buffer_nest_end - Allow to trace while nested
4017 * @buffer: The ring buffer to modify
4018 *
4019 * Must be called after ring_buffer_nest_start() and after the
4020 * ring_buffer_unlock_commit().
4021 */
4022void ring_buffer_nest_end(struct trace_buffer *buffer)
4023{
4024 struct ring_buffer_per_cpu *cpu_buffer;
4025 int cpu;
4026
4027 /* disabled by ring_buffer_nest_start() */
4028 cpu = raw_smp_processor_id();
4029 cpu_buffer = buffer->buffers[cpu];
4030 /* This is the shift value for the above recursive locking */
4031 cpu_buffer->nest -= NESTED_BITS;
4032 preempt_enable_notrace();
4033}
4034
4035/**
4036 * ring_buffer_unlock_commit - commit a reserved
4037 * @buffer: The buffer to commit to
4038 *
4039 * This commits the data to the ring buffer, and releases any locks held.
4040 *
4041 * Must be paired with ring_buffer_lock_reserve.
4042 */
4043int ring_buffer_unlock_commit(struct trace_buffer *buffer)
4044{
4045 struct ring_buffer_per_cpu *cpu_buffer;
4046 int cpu = raw_smp_processor_id();
4047
4048 cpu_buffer = buffer->buffers[cpu];
4049
4050 rb_commit(cpu_buffer);
4051
4052 rb_wakeups(buffer, cpu_buffer);
4053
4054 trace_recursive_unlock(cpu_buffer);
4055
4056 preempt_enable_notrace();
4057
4058 return 0;
4059}
4060EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
4061
4062/* Special value to validate all deltas on a page. */
4063#define CHECK_FULL_PAGE 1L
4064
4065#ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
4066
4067static const char *show_irq_str(int bits)
4068{
4069 const char *type[] = {
4070 ".", // 0
4071 "s", // 1
4072 "h", // 2
4073 "Hs", // 3
4074 "n", // 4
4075 "Ns", // 5
4076 "Nh", // 6
4077 "NHs", // 7
4078 };
4079
4080 return type[bits];
4081}
4082
4083/* Assume this is a trace event */
4084static const char *show_flags(struct ring_buffer_event *event)
4085{
4086 struct trace_entry *entry;
4087 int bits = 0;
4088
4089 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4090 return "X";
4091
4092 entry = ring_buffer_event_data(event);
4093
4094 if (entry->flags & TRACE_FLAG_SOFTIRQ)
4095 bits |= 1;
4096
4097 if (entry->flags & TRACE_FLAG_HARDIRQ)
4098 bits |= 2;
4099
4100 if (entry->flags & TRACE_FLAG_NMI)
4101 bits |= 4;
4102
4103 return show_irq_str(bits);
4104}
4105
4106static const char *show_irq(struct ring_buffer_event *event)
4107{
4108 struct trace_entry *entry;
4109
4110 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4111 return "";
4112
4113 entry = ring_buffer_event_data(event);
4114 if (entry->flags & TRACE_FLAG_IRQS_OFF)
4115 return "d";
4116 return "";
4117}
4118
4119static const char *show_interrupt_level(void)
4120{
4121 unsigned long pc = preempt_count();
4122 unsigned char level = 0;
4123
4124 if (pc & SOFTIRQ_OFFSET)
4125 level |= 1;
4126
4127 if (pc & HARDIRQ_MASK)
4128 level |= 2;
4129
4130 if (pc & NMI_MASK)
4131 level |= 4;
4132
4133 return show_irq_str(level);
4134}
4135
4136static void dump_buffer_page(struct buffer_data_page *bpage,
4137 struct rb_event_info *info,
4138 unsigned long tail)
4139{
4140 struct ring_buffer_event *event;
4141 u64 ts, delta;
4142 int e;
4143
4144 ts = bpage->time_stamp;
4145 pr_warn(" [%lld] PAGE TIME STAMP\n", ts);
4146
4147 for (e = 0; e < tail; e += rb_event_length(event)) {
4148
4149 event = (struct ring_buffer_event *)(bpage->data + e);
4150
4151 switch (event->type_len) {
4152
4153 case RINGBUF_TYPE_TIME_EXTEND:
4154 delta = rb_event_time_stamp(event);
4155 ts += delta;
4156 pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
4157 e, ts, delta);
4158 break;
4159
4160 case RINGBUF_TYPE_TIME_STAMP:
4161 delta = rb_event_time_stamp(event);
4162 ts = rb_fix_abs_ts(delta, ts);
4163 pr_warn(" 0x%x: [%lld] absolute:%lld TIME STAMP\n",
4164 e, ts, delta);
4165 break;
4166
4167 case RINGBUF_TYPE_PADDING:
4168 ts += event->time_delta;
4169 pr_warn(" 0x%x: [%lld] delta:%d PADDING\n",
4170 e, ts, event->time_delta);
4171 break;
4172
4173 case RINGBUF_TYPE_DATA:
4174 ts += event->time_delta;
4175 pr_warn(" 0x%x: [%lld] delta:%d %s%s\n",
4176 e, ts, event->time_delta,
4177 show_flags(event), show_irq(event));
4178 break;
4179
4180 default:
4181 break;
4182 }
4183 }
4184 pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
4185}
4186
4187static DEFINE_PER_CPU(atomic_t, checking);
4188static atomic_t ts_dump;
4189
4190#define buffer_warn_return(fmt, ...) \
4191 do { \
4192 /* If another report is happening, ignore this one */ \
4193 if (atomic_inc_return(&ts_dump) != 1) { \
4194 atomic_dec(&ts_dump); \
4195 goto out; \
4196 } \
4197 atomic_inc(&cpu_buffer->record_disabled); \
4198 pr_warn(fmt, ##__VA_ARGS__); \
4199 dump_buffer_page(bpage, info, tail); \
4200 atomic_dec(&ts_dump); \
4201 /* There's some cases in boot up that this can happen */ \
4202 if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING)) \
4203 /* Do not re-enable checking */ \
4204 return; \
4205 } while (0)
4206
4207/*
4208 * Check if the current event time stamp matches the deltas on
4209 * the buffer page.
4210 */
4211static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4212 struct rb_event_info *info,
4213 unsigned long tail)
4214{
4215 struct buffer_data_page *bpage;
4216 u64 ts, delta;
4217 bool full = false;
4218 int ret;
4219
4220 bpage = info->tail_page->page;
4221
4222 if (tail == CHECK_FULL_PAGE) {
4223 full = true;
4224 tail = local_read(&bpage->commit);
4225 } else if (info->add_timestamp &
4226 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
4227 /* Ignore events with absolute time stamps */
4228 return;
4229 }
4230
4231 /*
4232 * Do not check the first event (skip possible extends too).
4233 * Also do not check if previous events have not been committed.
4234 */
4235 if (tail <= 8 || tail > local_read(&bpage->commit))
4236 return;
4237
4238 /*
4239 * If this interrupted another event,
4240 */
4241 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
4242 goto out;
4243
4244 ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta);
4245 if (ret < 0) {
4246 if (delta < ts) {
4247 buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
4248 cpu_buffer->cpu, ts, delta);
4249 goto out;
4250 }
4251 }
4252 if ((full && ts > info->ts) ||
4253 (!full && ts + info->delta != info->ts)) {
4254 buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
4255 cpu_buffer->cpu,
4256 ts + info->delta, info->ts, info->delta,
4257 info->before, info->after,
4258 full ? " (full)" : "", show_interrupt_level());
4259 }
4260out:
4261 atomic_dec(this_cpu_ptr(&checking));
4262}
4263#else
4264static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4265 struct rb_event_info *info,
4266 unsigned long tail)
4267{
4268}
4269#endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
4270
4271static struct ring_buffer_event *
4272__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
4273 struct rb_event_info *info)
4274{
4275 struct ring_buffer_event *event;
4276 struct buffer_page *tail_page;
4277 unsigned long tail, write, w;
4278
4279 /* Don't let the compiler play games with cpu_buffer->tail_page */
4280 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
4281
4282 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK;
4283 barrier();
4284 rb_time_read(&cpu_buffer->before_stamp, &info->before);
4285 rb_time_read(&cpu_buffer->write_stamp, &info->after);
4286 barrier();
4287 info->ts = rb_time_stamp(cpu_buffer->buffer);
4288
4289 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
4290 info->delta = info->ts;
4291 } else {
4292 /*
4293 * If interrupting an event time update, we may need an
4294 * absolute timestamp.
4295 * Don't bother if this is the start of a new page (w == 0).
4296 */
4297 if (!w) {
4298 /* Use the sub-buffer timestamp */
4299 info->delta = 0;
4300 } else if (unlikely(info->before != info->after)) {
4301 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
4302 info->length += RB_LEN_TIME_EXTEND;
4303 } else {
4304 info->delta = info->ts - info->after;
4305 if (unlikely(test_time_stamp(info->delta))) {
4306 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
4307 info->length += RB_LEN_TIME_EXTEND;
4308 }
4309 }
4310 }
4311
4312 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts);
4313
4314 /*C*/ write = local_add_return(info->length, &tail_page->write);
4315
4316 /* set write to only the index of the write */
4317 write &= RB_WRITE_MASK;
4318
4319 tail = write - info->length;
4320
4321 /* See if we shot pass the end of this buffer page */
4322 if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
4323 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
4324 return rb_move_tail(cpu_buffer, tail, info);
4325 }
4326
4327 if (likely(tail == w)) {
4328 /* Nothing interrupted us between A and C */
4329 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts);
4330 /*
4331 * If something came in between C and D, the write stamp
4332 * may now not be in sync. But that's fine as the before_stamp
4333 * will be different and then next event will just be forced
4334 * to use an absolute timestamp.
4335 */
4336 if (likely(!(info->add_timestamp &
4337 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4338 /* This did not interrupt any time update */
4339 info->delta = info->ts - info->after;
4340 else
4341 /* Just use full timestamp for interrupting event */
4342 info->delta = info->ts;
4343 check_buffer(cpu_buffer, info, tail);
4344 } else {
4345 u64 ts;
4346 /* SLOW PATH - Interrupted between A and C */
4347
4348 /* Save the old before_stamp */
4349 rb_time_read(&cpu_buffer->before_stamp, &info->before);
4350
4351 /*
4352 * Read a new timestamp and update the before_stamp to make
4353 * the next event after this one force using an absolute
4354 * timestamp. This is in case an interrupt were to come in
4355 * between E and F.
4356 */
4357 ts = rb_time_stamp(cpu_buffer->buffer);
4358 rb_time_set(&cpu_buffer->before_stamp, ts);
4359
4360 barrier();
4361 /*E*/ rb_time_read(&cpu_buffer->write_stamp, &info->after);
4362 barrier();
4363 /*F*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
4364 info->after == info->before && info->after < ts) {
4365 /*
4366 * Nothing came after this event between C and F, it is
4367 * safe to use info->after for the delta as it
4368 * matched info->before and is still valid.
4369 */
4370 info->delta = ts - info->after;
4371 } else {
4372 /*
4373 * Interrupted between C and F:
4374 * Lost the previous events time stamp. Just set the
4375 * delta to zero, and this will be the same time as
4376 * the event this event interrupted. And the events that
4377 * came after this will still be correct (as they would
4378 * have built their delta on the previous event.
4379 */
4380 info->delta = 0;
4381 }
4382 info->ts = ts;
4383 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
4384 }
4385
4386 /*
4387 * If this is the first commit on the page, then it has the same
4388 * timestamp as the page itself.
4389 */
4390 if (unlikely(!tail && !(info->add_timestamp &
4391 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4392 info->delta = 0;
4393
4394 /* We reserved something on the buffer */
4395
4396 event = __rb_page_index(tail_page, tail);
4397 rb_update_event(cpu_buffer, event, info);
4398
4399 local_inc(&tail_page->entries);
4400
4401 /*
4402 * If this is the first commit on the page, then update
4403 * its timestamp.
4404 */
4405 if (unlikely(!tail))
4406 tail_page->page->time_stamp = info->ts;
4407
4408 /* account for these added bytes */
4409 local_add(info->length, &cpu_buffer->entries_bytes);
4410
4411 return event;
4412}
4413
4414static __always_inline struct ring_buffer_event *
4415rb_reserve_next_event(struct trace_buffer *buffer,
4416 struct ring_buffer_per_cpu *cpu_buffer,
4417 unsigned long length)
4418{
4419 struct ring_buffer_event *event;
4420 struct rb_event_info info;
4421 int nr_loops = 0;
4422 int add_ts_default;
4423
4424 /*
4425 * ring buffer does cmpxchg as well as atomic64 operations
4426 * (which some archs use locking for atomic64), make sure this
4427 * is safe in NMI context
4428 */
4429 if ((!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) ||
4430 IS_ENABLED(CONFIG_GENERIC_ATOMIC64)) &&
4431 (unlikely(in_nmi()))) {
4432 return NULL;
4433 }
4434
4435 rb_start_commit(cpu_buffer);
4436 /* The commit page can not change after this */
4437
4438#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4439 /*
4440 * Due to the ability to swap a cpu buffer from a buffer
4441 * it is possible it was swapped before we committed.
4442 * (committing stops a swap). We check for it here and
4443 * if it happened, we have to fail the write.
4444 */
4445 barrier();
4446 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
4447 local_dec(&cpu_buffer->committing);
4448 local_dec(&cpu_buffer->commits);
4449 return NULL;
4450 }
4451#endif
4452
4453 info.length = rb_calculate_event_length(length);
4454
4455 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
4456 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
4457 info.length += RB_LEN_TIME_EXTEND;
4458 if (info.length > cpu_buffer->buffer->max_data_size)
4459 goto out_fail;
4460 } else {
4461 add_ts_default = RB_ADD_STAMP_NONE;
4462 }
4463
4464 again:
4465 info.add_timestamp = add_ts_default;
4466 info.delta = 0;
4467
4468 /*
4469 * We allow for interrupts to reenter here and do a trace.
4470 * If one does, it will cause this original code to loop
4471 * back here. Even with heavy interrupts happening, this
4472 * should only happen a few times in a row. If this happens
4473 * 1000 times in a row, there must be either an interrupt
4474 * storm or we have something buggy.
4475 * Bail!
4476 */
4477 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
4478 goto out_fail;
4479
4480 event = __rb_reserve_next(cpu_buffer, &info);
4481
4482 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
4483 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
4484 info.length -= RB_LEN_TIME_EXTEND;
4485 goto again;
4486 }
4487
4488 if (likely(event))
4489 return event;
4490 out_fail:
4491 rb_end_commit(cpu_buffer);
4492 return NULL;
4493}
4494
4495/**
4496 * ring_buffer_lock_reserve - reserve a part of the buffer
4497 * @buffer: the ring buffer to reserve from
4498 * @length: the length of the data to reserve (excluding event header)
4499 *
4500 * Returns a reserved event on the ring buffer to copy directly to.
4501 * The user of this interface will need to get the body to write into
4502 * and can use the ring_buffer_event_data() interface.
4503 *
4504 * The length is the length of the data needed, not the event length
4505 * which also includes the event header.
4506 *
4507 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
4508 * If NULL is returned, then nothing has been allocated or locked.
4509 */
4510struct ring_buffer_event *
4511ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
4512{
4513 struct ring_buffer_per_cpu *cpu_buffer;
4514 struct ring_buffer_event *event;
4515 int cpu;
4516
4517 /* If we are tracing schedule, we don't want to recurse */
4518 preempt_disable_notrace();
4519
4520 if (unlikely(atomic_read(&buffer->record_disabled)))
4521 goto out;
4522
4523 cpu = raw_smp_processor_id();
4524
4525 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
4526 goto out;
4527
4528 cpu_buffer = buffer->buffers[cpu];
4529
4530 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
4531 goto out;
4532
4533 if (unlikely(length > buffer->max_data_size))
4534 goto out;
4535
4536 if (unlikely(trace_recursive_lock(cpu_buffer)))
4537 goto out;
4538
4539 event = rb_reserve_next_event(buffer, cpu_buffer, length);
4540 if (!event)
4541 goto out_unlock;
4542
4543 return event;
4544
4545 out_unlock:
4546 trace_recursive_unlock(cpu_buffer);
4547 out:
4548 preempt_enable_notrace();
4549 return NULL;
4550}
4551EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
4552
4553/*
4554 * Decrement the entries to the page that an event is on.
4555 * The event does not even need to exist, only the pointer
4556 * to the page it is on. This may only be called before the commit
4557 * takes place.
4558 */
4559static inline void
4560rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
4561 struct ring_buffer_event *event)
4562{
4563 unsigned long addr = (unsigned long)event;
4564 struct buffer_page *bpage = cpu_buffer->commit_page;
4565 struct buffer_page *start;
4566
4567 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
4568
4569 /* Do the likely case first */
4570 if (likely(bpage->page == (void *)addr)) {
4571 local_dec(&bpage->entries);
4572 return;
4573 }
4574
4575 /*
4576 * Because the commit page may be on the reader page we
4577 * start with the next page and check the end loop there.
4578 */
4579 rb_inc_page(&bpage);
4580 start = bpage;
4581 do {
4582 if (bpage->page == (void *)addr) {
4583 local_dec(&bpage->entries);
4584 return;
4585 }
4586 rb_inc_page(&bpage);
4587 } while (bpage != start);
4588
4589 /* commit not part of this buffer?? */
4590 RB_WARN_ON(cpu_buffer, 1);
4591}
4592
4593/**
4594 * ring_buffer_discard_commit - discard an event that has not been committed
4595 * @buffer: the ring buffer
4596 * @event: non committed event to discard
4597 *
4598 * Sometimes an event that is in the ring buffer needs to be ignored.
4599 * This function lets the user discard an event in the ring buffer
4600 * and then that event will not be read later.
4601 *
4602 * This function only works if it is called before the item has been
4603 * committed. It will try to free the event from the ring buffer
4604 * if another event has not been added behind it.
4605 *
4606 * If another event has been added behind it, it will set the event
4607 * up as discarded, and perform the commit.
4608 *
4609 * If this function is called, do not call ring_buffer_unlock_commit on
4610 * the event.
4611 */
4612void ring_buffer_discard_commit(struct trace_buffer *buffer,
4613 struct ring_buffer_event *event)
4614{
4615 struct ring_buffer_per_cpu *cpu_buffer;
4616 int cpu;
4617
4618 /* The event is discarded regardless */
4619 rb_event_discard(event);
4620
4621 cpu = smp_processor_id();
4622 cpu_buffer = buffer->buffers[cpu];
4623
4624 /*
4625 * This must only be called if the event has not been
4626 * committed yet. Thus we can assume that preemption
4627 * is still disabled.
4628 */
4629 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
4630
4631 rb_decrement_entry(cpu_buffer, event);
4632 if (rb_try_to_discard(cpu_buffer, event))
4633 goto out;
4634
4635 out:
4636 rb_end_commit(cpu_buffer);
4637
4638 trace_recursive_unlock(cpu_buffer);
4639
4640 preempt_enable_notrace();
4641
4642}
4643EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
4644
4645/**
4646 * ring_buffer_write - write data to the buffer without reserving
4647 * @buffer: The ring buffer to write to.
4648 * @length: The length of the data being written (excluding the event header)
4649 * @data: The data to write to the buffer.
4650 *
4651 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
4652 * one function. If you already have the data to write to the buffer, it
4653 * may be easier to simply call this function.
4654 *
4655 * Note, like ring_buffer_lock_reserve, the length is the length of the data
4656 * and not the length of the event which would hold the header.
4657 */
4658int ring_buffer_write(struct trace_buffer *buffer,
4659 unsigned long length,
4660 void *data)
4661{
4662 struct ring_buffer_per_cpu *cpu_buffer;
4663 struct ring_buffer_event *event;
4664 void *body;
4665 int ret = -EBUSY;
4666 int cpu;
4667
4668 preempt_disable_notrace();
4669
4670 if (atomic_read(&buffer->record_disabled))
4671 goto out;
4672
4673 cpu = raw_smp_processor_id();
4674
4675 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4676 goto out;
4677
4678 cpu_buffer = buffer->buffers[cpu];
4679
4680 if (atomic_read(&cpu_buffer->record_disabled))
4681 goto out;
4682
4683 if (length > buffer->max_data_size)
4684 goto out;
4685
4686 if (unlikely(trace_recursive_lock(cpu_buffer)))
4687 goto out;
4688
4689 event = rb_reserve_next_event(buffer, cpu_buffer, length);
4690 if (!event)
4691 goto out_unlock;
4692
4693 body = rb_event_data(event);
4694
4695 memcpy(body, data, length);
4696
4697 rb_commit(cpu_buffer);
4698
4699 rb_wakeups(buffer, cpu_buffer);
4700
4701 ret = 0;
4702
4703 out_unlock:
4704 trace_recursive_unlock(cpu_buffer);
4705
4706 out:
4707 preempt_enable_notrace();
4708
4709 return ret;
4710}
4711EXPORT_SYMBOL_GPL(ring_buffer_write);
4712
4713static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
4714{
4715 struct buffer_page *reader = cpu_buffer->reader_page;
4716 struct buffer_page *head = rb_set_head_page(cpu_buffer);
4717 struct buffer_page *commit = cpu_buffer->commit_page;
4718
4719 /* In case of error, head will be NULL */
4720 if (unlikely(!head))
4721 return true;
4722
4723 /* Reader should exhaust content in reader page */
4724 if (reader->read != rb_page_size(reader))
4725 return false;
4726
4727 /*
4728 * If writers are committing on the reader page, knowing all
4729 * committed content has been read, the ring buffer is empty.
4730 */
4731 if (commit == reader)
4732 return true;
4733
4734 /*
4735 * If writers are committing on a page other than reader page
4736 * and head page, there should always be content to read.
4737 */
4738 if (commit != head)
4739 return false;
4740
4741 /*
4742 * Writers are committing on the head page, we just need
4743 * to care about there're committed data, and the reader will
4744 * swap reader page with head page when it is to read data.
4745 */
4746 return rb_page_commit(commit) == 0;
4747}
4748
4749/**
4750 * ring_buffer_record_disable - stop all writes into the buffer
4751 * @buffer: The ring buffer to stop writes to.
4752 *
4753 * This prevents all writes to the buffer. Any attempt to write
4754 * to the buffer after this will fail and return NULL.
4755 *
4756 * The caller should call synchronize_rcu() after this.
4757 */
4758void ring_buffer_record_disable(struct trace_buffer *buffer)
4759{
4760 atomic_inc(&buffer->record_disabled);
4761}
4762EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4763
4764/**
4765 * ring_buffer_record_enable - enable writes to the buffer
4766 * @buffer: The ring buffer to enable writes
4767 *
4768 * Note, multiple disables will need the same number of enables
4769 * to truly enable the writing (much like preempt_disable).
4770 */
4771void ring_buffer_record_enable(struct trace_buffer *buffer)
4772{
4773 atomic_dec(&buffer->record_disabled);
4774}
4775EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4776
4777/**
4778 * ring_buffer_record_off - stop all writes into the buffer
4779 * @buffer: The ring buffer to stop writes to.
4780 *
4781 * This prevents all writes to the buffer. Any attempt to write
4782 * to the buffer after this will fail and return NULL.
4783 *
4784 * This is different than ring_buffer_record_disable() as
4785 * it works like an on/off switch, where as the disable() version
4786 * must be paired with a enable().
4787 */
4788void ring_buffer_record_off(struct trace_buffer *buffer)
4789{
4790 unsigned int rd;
4791 unsigned int new_rd;
4792
4793 rd = atomic_read(&buffer->record_disabled);
4794 do {
4795 new_rd = rd | RB_BUFFER_OFF;
4796 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4797}
4798EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4799
4800/**
4801 * ring_buffer_record_on - restart writes into the buffer
4802 * @buffer: The ring buffer to start writes to.
4803 *
4804 * This enables all writes to the buffer that was disabled by
4805 * ring_buffer_record_off().
4806 *
4807 * This is different than ring_buffer_record_enable() as
4808 * it works like an on/off switch, where as the enable() version
4809 * must be paired with a disable().
4810 */
4811void ring_buffer_record_on(struct trace_buffer *buffer)
4812{
4813 unsigned int rd;
4814 unsigned int new_rd;
4815
4816 rd = atomic_read(&buffer->record_disabled);
4817 do {
4818 new_rd = rd & ~RB_BUFFER_OFF;
4819 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4820}
4821EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4822
4823/**
4824 * ring_buffer_record_is_on - return true if the ring buffer can write
4825 * @buffer: The ring buffer to see if write is enabled
4826 *
4827 * Returns true if the ring buffer is in a state that it accepts writes.
4828 */
4829bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4830{
4831 return !atomic_read(&buffer->record_disabled);
4832}
4833
4834/**
4835 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4836 * @buffer: The ring buffer to see if write is set enabled
4837 *
4838 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4839 * Note that this does NOT mean it is in a writable state.
4840 *
4841 * It may return true when the ring buffer has been disabled by
4842 * ring_buffer_record_disable(), as that is a temporary disabling of
4843 * the ring buffer.
4844 */
4845bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4846{
4847 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4848}
4849
4850/**
4851 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4852 * @buffer: The ring buffer to stop writes to.
4853 * @cpu: The CPU buffer to stop
4854 *
4855 * This prevents all writes to the buffer. Any attempt to write
4856 * to the buffer after this will fail and return NULL.
4857 *
4858 * The caller should call synchronize_rcu() after this.
4859 */
4860void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4861{
4862 struct ring_buffer_per_cpu *cpu_buffer;
4863
4864 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4865 return;
4866
4867 cpu_buffer = buffer->buffers[cpu];
4868 atomic_inc(&cpu_buffer->record_disabled);
4869}
4870EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4871
4872/**
4873 * ring_buffer_record_enable_cpu - enable writes to the buffer
4874 * @buffer: The ring buffer to enable writes
4875 * @cpu: The CPU to enable.
4876 *
4877 * Note, multiple disables will need the same number of enables
4878 * to truly enable the writing (much like preempt_disable).
4879 */
4880void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4881{
4882 struct ring_buffer_per_cpu *cpu_buffer;
4883
4884 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4885 return;
4886
4887 cpu_buffer = buffer->buffers[cpu];
4888 atomic_dec(&cpu_buffer->record_disabled);
4889}
4890EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4891
4892/*
4893 * The total entries in the ring buffer is the running counter
4894 * of entries entered into the ring buffer, minus the sum of
4895 * the entries read from the ring buffer and the number of
4896 * entries that were overwritten.
4897 */
4898static inline unsigned long
4899rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4900{
4901 return local_read(&cpu_buffer->entries) -
4902 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4903}
4904
4905/**
4906 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4907 * @buffer: The ring buffer
4908 * @cpu: The per CPU buffer to read from.
4909 */
4910u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4911{
4912 unsigned long flags;
4913 struct ring_buffer_per_cpu *cpu_buffer;
4914 struct buffer_page *bpage;
4915 u64 ret = 0;
4916
4917 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4918 return 0;
4919
4920 cpu_buffer = buffer->buffers[cpu];
4921 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4922 /*
4923 * if the tail is on reader_page, oldest time stamp is on the reader
4924 * page
4925 */
4926 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4927 bpage = cpu_buffer->reader_page;
4928 else
4929 bpage = rb_set_head_page(cpu_buffer);
4930 if (bpage)
4931 ret = bpage->page->time_stamp;
4932 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4933
4934 return ret;
4935}
4936EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4937
4938/**
4939 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4940 * @buffer: The ring buffer
4941 * @cpu: The per CPU buffer to read from.
4942 */
4943unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4944{
4945 struct ring_buffer_per_cpu *cpu_buffer;
4946 unsigned long ret;
4947
4948 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4949 return 0;
4950
4951 cpu_buffer = buffer->buffers[cpu];
4952 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4953
4954 return ret;
4955}
4956EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4957
4958/**
4959 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4960 * @buffer: The ring buffer
4961 * @cpu: The per CPU buffer to get the entries from.
4962 */
4963unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4964{
4965 struct ring_buffer_per_cpu *cpu_buffer;
4966
4967 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4968 return 0;
4969
4970 cpu_buffer = buffer->buffers[cpu];
4971
4972 return rb_num_of_entries(cpu_buffer);
4973}
4974EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4975
4976/**
4977 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4978 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4979 * @buffer: The ring buffer
4980 * @cpu: The per CPU buffer to get the number of overruns from
4981 */
4982unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4983{
4984 struct ring_buffer_per_cpu *cpu_buffer;
4985 unsigned long ret;
4986
4987 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4988 return 0;
4989
4990 cpu_buffer = buffer->buffers[cpu];
4991 ret = local_read(&cpu_buffer->overrun);
4992
4993 return ret;
4994}
4995EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4996
4997/**
4998 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4999 * commits failing due to the buffer wrapping around while there are uncommitted
5000 * events, such as during an interrupt storm.
5001 * @buffer: The ring buffer
5002 * @cpu: The per CPU buffer to get the number of overruns from
5003 */
5004unsigned long
5005ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
5006{
5007 struct ring_buffer_per_cpu *cpu_buffer;
5008 unsigned long ret;
5009
5010 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5011 return 0;
5012
5013 cpu_buffer = buffer->buffers[cpu];
5014 ret = local_read(&cpu_buffer->commit_overrun);
5015
5016 return ret;
5017}
5018EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
5019
5020/**
5021 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
5022 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
5023 * @buffer: The ring buffer
5024 * @cpu: The per CPU buffer to get the number of overruns from
5025 */
5026unsigned long
5027ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
5028{
5029 struct ring_buffer_per_cpu *cpu_buffer;
5030 unsigned long ret;
5031
5032 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5033 return 0;
5034
5035 cpu_buffer = buffer->buffers[cpu];
5036 ret = local_read(&cpu_buffer->dropped_events);
5037
5038 return ret;
5039}
5040EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
5041
5042/**
5043 * ring_buffer_read_events_cpu - get the number of events successfully read
5044 * @buffer: The ring buffer
5045 * @cpu: The per CPU buffer to get the number of events read
5046 */
5047unsigned long
5048ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
5049{
5050 struct ring_buffer_per_cpu *cpu_buffer;
5051
5052 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5053 return 0;
5054
5055 cpu_buffer = buffer->buffers[cpu];
5056 return cpu_buffer->read;
5057}
5058EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
5059
5060/**
5061 * ring_buffer_entries - get the number of entries in a buffer
5062 * @buffer: The ring buffer
5063 *
5064 * Returns the total number of entries in the ring buffer
5065 * (all CPU entries)
5066 */
5067unsigned long ring_buffer_entries(struct trace_buffer *buffer)
5068{
5069 struct ring_buffer_per_cpu *cpu_buffer;
5070 unsigned long entries = 0;
5071 int cpu;
5072
5073 /* if you care about this being correct, lock the buffer */
5074 for_each_buffer_cpu(buffer, cpu) {
5075 cpu_buffer = buffer->buffers[cpu];
5076 entries += rb_num_of_entries(cpu_buffer);
5077 }
5078
5079 return entries;
5080}
5081EXPORT_SYMBOL_GPL(ring_buffer_entries);
5082
5083/**
5084 * ring_buffer_overruns - get the number of overruns in buffer
5085 * @buffer: The ring buffer
5086 *
5087 * Returns the total number of overruns in the ring buffer
5088 * (all CPU entries)
5089 */
5090unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
5091{
5092 struct ring_buffer_per_cpu *cpu_buffer;
5093 unsigned long overruns = 0;
5094 int cpu;
5095
5096 /* if you care about this being correct, lock the buffer */
5097 for_each_buffer_cpu(buffer, cpu) {
5098 cpu_buffer = buffer->buffers[cpu];
5099 overruns += local_read(&cpu_buffer->overrun);
5100 }
5101
5102 return overruns;
5103}
5104EXPORT_SYMBOL_GPL(ring_buffer_overruns);
5105
5106static void rb_iter_reset(struct ring_buffer_iter *iter)
5107{
5108 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5109
5110 /* Iterator usage is expected to have record disabled */
5111 iter->head_page = cpu_buffer->reader_page;
5112 iter->head = cpu_buffer->reader_page->read;
5113 iter->next_event = iter->head;
5114
5115 iter->cache_reader_page = iter->head_page;
5116 iter->cache_read = cpu_buffer->read;
5117 iter->cache_pages_removed = cpu_buffer->pages_removed;
5118
5119 if (iter->head) {
5120 iter->read_stamp = cpu_buffer->read_stamp;
5121 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
5122 } else {
5123 iter->read_stamp = iter->head_page->page->time_stamp;
5124 iter->page_stamp = iter->read_stamp;
5125 }
5126}
5127
5128/**
5129 * ring_buffer_iter_reset - reset an iterator
5130 * @iter: The iterator to reset
5131 *
5132 * Resets the iterator, so that it will start from the beginning
5133 * again.
5134 */
5135void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
5136{
5137 struct ring_buffer_per_cpu *cpu_buffer;
5138 unsigned long flags;
5139
5140 if (!iter)
5141 return;
5142
5143 cpu_buffer = iter->cpu_buffer;
5144
5145 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5146 rb_iter_reset(iter);
5147 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5148}
5149EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
5150
5151/**
5152 * ring_buffer_iter_empty - check if an iterator has no more to read
5153 * @iter: The iterator to check
5154 */
5155int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
5156{
5157 struct ring_buffer_per_cpu *cpu_buffer;
5158 struct buffer_page *reader;
5159 struct buffer_page *head_page;
5160 struct buffer_page *commit_page;
5161 struct buffer_page *curr_commit_page;
5162 unsigned commit;
5163 u64 curr_commit_ts;
5164 u64 commit_ts;
5165
5166 cpu_buffer = iter->cpu_buffer;
5167 reader = cpu_buffer->reader_page;
5168 head_page = cpu_buffer->head_page;
5169 commit_page = READ_ONCE(cpu_buffer->commit_page);
5170 commit_ts = commit_page->page->time_stamp;
5171
5172 /*
5173 * When the writer goes across pages, it issues a cmpxchg which
5174 * is a mb(), which will synchronize with the rmb here.
5175 * (see rb_tail_page_update())
5176 */
5177 smp_rmb();
5178 commit = rb_page_commit(commit_page);
5179 /* We want to make sure that the commit page doesn't change */
5180 smp_rmb();
5181
5182 /* Make sure commit page didn't change */
5183 curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
5184 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
5185
5186 /* If the commit page changed, then there's more data */
5187 if (curr_commit_page != commit_page ||
5188 curr_commit_ts != commit_ts)
5189 return 0;
5190
5191 /* Still racy, as it may return a false positive, but that's OK */
5192 return ((iter->head_page == commit_page && iter->head >= commit) ||
5193 (iter->head_page == reader && commit_page == head_page &&
5194 head_page->read == commit &&
5195 iter->head == rb_page_size(cpu_buffer->reader_page)));
5196}
5197EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
5198
5199static void
5200rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
5201 struct ring_buffer_event *event)
5202{
5203 u64 delta;
5204
5205 switch (event->type_len) {
5206 case RINGBUF_TYPE_PADDING:
5207 return;
5208
5209 case RINGBUF_TYPE_TIME_EXTEND:
5210 delta = rb_event_time_stamp(event);
5211 cpu_buffer->read_stamp += delta;
5212 return;
5213
5214 case RINGBUF_TYPE_TIME_STAMP:
5215 delta = rb_event_time_stamp(event);
5216 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
5217 cpu_buffer->read_stamp = delta;
5218 return;
5219
5220 case RINGBUF_TYPE_DATA:
5221 cpu_buffer->read_stamp += event->time_delta;
5222 return;
5223
5224 default:
5225 RB_WARN_ON(cpu_buffer, 1);
5226 }
5227}
5228
5229static void
5230rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
5231 struct ring_buffer_event *event)
5232{
5233 u64 delta;
5234
5235 switch (event->type_len) {
5236 case RINGBUF_TYPE_PADDING:
5237 return;
5238
5239 case RINGBUF_TYPE_TIME_EXTEND:
5240 delta = rb_event_time_stamp(event);
5241 iter->read_stamp += delta;
5242 return;
5243
5244 case RINGBUF_TYPE_TIME_STAMP:
5245 delta = rb_event_time_stamp(event);
5246 delta = rb_fix_abs_ts(delta, iter->read_stamp);
5247 iter->read_stamp = delta;
5248 return;
5249
5250 case RINGBUF_TYPE_DATA:
5251 iter->read_stamp += event->time_delta;
5252 return;
5253
5254 default:
5255 RB_WARN_ON(iter->cpu_buffer, 1);
5256 }
5257}
5258
5259static struct buffer_page *
5260rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
5261{
5262 struct buffer_page *reader = NULL;
5263 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
5264 unsigned long overwrite;
5265 unsigned long flags;
5266 int nr_loops = 0;
5267 bool ret;
5268
5269 local_irq_save(flags);
5270 arch_spin_lock(&cpu_buffer->lock);
5271
5272 again:
5273 /*
5274 * This should normally only loop twice. But because the
5275 * start of the reader inserts an empty page, it causes
5276 * a case where we will loop three times. There should be no
5277 * reason to loop four times (that I know of).
5278 */
5279 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
5280 reader = NULL;
5281 goto out;
5282 }
5283
5284 reader = cpu_buffer->reader_page;
5285
5286 /* If there's more to read, return this page */
5287 if (cpu_buffer->reader_page->read < rb_page_size(reader))
5288 goto out;
5289
5290 /* Never should we have an index greater than the size */
5291 if (RB_WARN_ON(cpu_buffer,
5292 cpu_buffer->reader_page->read > rb_page_size(reader)))
5293 goto out;
5294
5295 /* check if we caught up to the tail */
5296 reader = NULL;
5297 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
5298 goto out;
5299
5300 /* Don't bother swapping if the ring buffer is empty */
5301 if (rb_num_of_entries(cpu_buffer) == 0)
5302 goto out;
5303
5304 /*
5305 * Reset the reader page to size zero.
5306 */
5307 local_set(&cpu_buffer->reader_page->write, 0);
5308 local_set(&cpu_buffer->reader_page->entries, 0);
5309 local_set(&cpu_buffer->reader_page->page->commit, 0);
5310 cpu_buffer->reader_page->real_end = 0;
5311
5312 spin:
5313 /*
5314 * Splice the empty reader page into the list around the head.
5315 */
5316 reader = rb_set_head_page(cpu_buffer);
5317 if (!reader)
5318 goto out;
5319 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
5320 cpu_buffer->reader_page->list.prev = reader->list.prev;
5321
5322 /*
5323 * cpu_buffer->pages just needs to point to the buffer, it
5324 * has no specific buffer page to point to. Lets move it out
5325 * of our way so we don't accidentally swap it.
5326 */
5327 cpu_buffer->pages = reader->list.prev;
5328
5329 /* The reader page will be pointing to the new head */
5330 rb_set_list_to_head(&cpu_buffer->reader_page->list);
5331
5332 /*
5333 * We want to make sure we read the overruns after we set up our
5334 * pointers to the next object. The writer side does a
5335 * cmpxchg to cross pages which acts as the mb on the writer
5336 * side. Note, the reader will constantly fail the swap
5337 * while the writer is updating the pointers, so this
5338 * guarantees that the overwrite recorded here is the one we
5339 * want to compare with the last_overrun.
5340 */
5341 smp_mb();
5342 overwrite = local_read(&(cpu_buffer->overrun));
5343
5344 /*
5345 * Here's the tricky part.
5346 *
5347 * We need to move the pointer past the header page.
5348 * But we can only do that if a writer is not currently
5349 * moving it. The page before the header page has the
5350 * flag bit '1' set if it is pointing to the page we want.
5351 * but if the writer is in the process of moving it
5352 * than it will be '2' or already moved '0'.
5353 */
5354
5355 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
5356
5357 /*
5358 * If we did not convert it, then we must try again.
5359 */
5360 if (!ret)
5361 goto spin;
5362
5363 if (cpu_buffer->ring_meta)
5364 rb_update_meta_reader(cpu_buffer, reader);
5365
5366 /*
5367 * Yay! We succeeded in replacing the page.
5368 *
5369 * Now make the new head point back to the reader page.
5370 */
5371 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
5372 rb_inc_page(&cpu_buffer->head_page);
5373
5374 cpu_buffer->cnt++;
5375 local_inc(&cpu_buffer->pages_read);
5376
5377 /* Finally update the reader page to the new head */
5378 cpu_buffer->reader_page = reader;
5379 cpu_buffer->reader_page->read = 0;
5380
5381 if (overwrite != cpu_buffer->last_overrun) {
5382 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
5383 cpu_buffer->last_overrun = overwrite;
5384 }
5385
5386 goto again;
5387
5388 out:
5389 /* Update the read_stamp on the first event */
5390 if (reader && reader->read == 0)
5391 cpu_buffer->read_stamp = reader->page->time_stamp;
5392
5393 arch_spin_unlock(&cpu_buffer->lock);
5394 local_irq_restore(flags);
5395
5396 /*
5397 * The writer has preempt disable, wait for it. But not forever
5398 * Although, 1 second is pretty much "forever"
5399 */
5400#define USECS_WAIT 1000000
5401 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
5402 /* If the write is past the end of page, a writer is still updating it */
5403 if (likely(!reader || rb_page_write(reader) <= bsize))
5404 break;
5405
5406 udelay(1);
5407
5408 /* Get the latest version of the reader write value */
5409 smp_rmb();
5410 }
5411
5412 /* The writer is not moving forward? Something is wrong */
5413 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
5414 reader = NULL;
5415
5416 /*
5417 * Make sure we see any padding after the write update
5418 * (see rb_reset_tail()).
5419 *
5420 * In addition, a writer may be writing on the reader page
5421 * if the page has not been fully filled, so the read barrier
5422 * is also needed to make sure we see the content of what is
5423 * committed by the writer (see rb_set_commit_to_write()).
5424 */
5425 smp_rmb();
5426
5427
5428 return reader;
5429}
5430
5431static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
5432{
5433 struct ring_buffer_event *event;
5434 struct buffer_page *reader;
5435 unsigned length;
5436
5437 reader = rb_get_reader_page(cpu_buffer);
5438
5439 /* This function should not be called when buffer is empty */
5440 if (RB_WARN_ON(cpu_buffer, !reader))
5441 return;
5442
5443 event = rb_reader_event(cpu_buffer);
5444
5445 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
5446 cpu_buffer->read++;
5447
5448 rb_update_read_stamp(cpu_buffer, event);
5449
5450 length = rb_event_length(event);
5451 cpu_buffer->reader_page->read += length;
5452 cpu_buffer->read_bytes += length;
5453}
5454
5455static void rb_advance_iter(struct ring_buffer_iter *iter)
5456{
5457 struct ring_buffer_per_cpu *cpu_buffer;
5458
5459 cpu_buffer = iter->cpu_buffer;
5460
5461 /* If head == next_event then we need to jump to the next event */
5462 if (iter->head == iter->next_event) {
5463 /* If the event gets overwritten again, there's nothing to do */
5464 if (rb_iter_head_event(iter) == NULL)
5465 return;
5466 }
5467
5468 iter->head = iter->next_event;
5469
5470 /*
5471 * Check if we are at the end of the buffer.
5472 */
5473 if (iter->next_event >= rb_page_size(iter->head_page)) {
5474 /* discarded commits can make the page empty */
5475 if (iter->head_page == cpu_buffer->commit_page)
5476 return;
5477 rb_inc_iter(iter);
5478 return;
5479 }
5480
5481 rb_update_iter_read_stamp(iter, iter->event);
5482}
5483
5484static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
5485{
5486 return cpu_buffer->lost_events;
5487}
5488
5489static struct ring_buffer_event *
5490rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
5491 unsigned long *lost_events)
5492{
5493 struct ring_buffer_event *event;
5494 struct buffer_page *reader;
5495 int nr_loops = 0;
5496
5497 if (ts)
5498 *ts = 0;
5499 again:
5500 /*
5501 * We repeat when a time extend is encountered.
5502 * Since the time extend is always attached to a data event,
5503 * we should never loop more than once.
5504 * (We never hit the following condition more than twice).
5505 */
5506 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
5507 return NULL;
5508
5509 reader = rb_get_reader_page(cpu_buffer);
5510 if (!reader)
5511 return NULL;
5512
5513 event = rb_reader_event(cpu_buffer);
5514
5515 switch (event->type_len) {
5516 case RINGBUF_TYPE_PADDING:
5517 if (rb_null_event(event))
5518 RB_WARN_ON(cpu_buffer, 1);
5519 /*
5520 * Because the writer could be discarding every
5521 * event it creates (which would probably be bad)
5522 * if we were to go back to "again" then we may never
5523 * catch up, and will trigger the warn on, or lock
5524 * the box. Return the padding, and we will release
5525 * the current locks, and try again.
5526 */
5527 return event;
5528
5529 case RINGBUF_TYPE_TIME_EXTEND:
5530 /* Internal data, OK to advance */
5531 rb_advance_reader(cpu_buffer);
5532 goto again;
5533
5534 case RINGBUF_TYPE_TIME_STAMP:
5535 if (ts) {
5536 *ts = rb_event_time_stamp(event);
5537 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
5538 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5539 cpu_buffer->cpu, ts);
5540 }
5541 /* Internal data, OK to advance */
5542 rb_advance_reader(cpu_buffer);
5543 goto again;
5544
5545 case RINGBUF_TYPE_DATA:
5546 if (ts && !(*ts)) {
5547 *ts = cpu_buffer->read_stamp + event->time_delta;
5548 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5549 cpu_buffer->cpu, ts);
5550 }
5551 if (lost_events)
5552 *lost_events = rb_lost_events(cpu_buffer);
5553 return event;
5554
5555 default:
5556 RB_WARN_ON(cpu_buffer, 1);
5557 }
5558
5559 return NULL;
5560}
5561EXPORT_SYMBOL_GPL(ring_buffer_peek);
5562
5563static struct ring_buffer_event *
5564rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5565{
5566 struct trace_buffer *buffer;
5567 struct ring_buffer_per_cpu *cpu_buffer;
5568 struct ring_buffer_event *event;
5569 int nr_loops = 0;
5570
5571 if (ts)
5572 *ts = 0;
5573
5574 cpu_buffer = iter->cpu_buffer;
5575 buffer = cpu_buffer->buffer;
5576
5577 /*
5578 * Check if someone performed a consuming read to the buffer
5579 * or removed some pages from the buffer. In these cases,
5580 * iterator was invalidated and we need to reset it.
5581 */
5582 if (unlikely(iter->cache_read != cpu_buffer->read ||
5583 iter->cache_reader_page != cpu_buffer->reader_page ||
5584 iter->cache_pages_removed != cpu_buffer->pages_removed))
5585 rb_iter_reset(iter);
5586
5587 again:
5588 if (ring_buffer_iter_empty(iter))
5589 return NULL;
5590
5591 /*
5592 * As the writer can mess with what the iterator is trying
5593 * to read, just give up if we fail to get an event after
5594 * three tries. The iterator is not as reliable when reading
5595 * the ring buffer with an active write as the consumer is.
5596 * Do not warn if the three failures is reached.
5597 */
5598 if (++nr_loops > 3)
5599 return NULL;
5600
5601 if (rb_per_cpu_empty(cpu_buffer))
5602 return NULL;
5603
5604 if (iter->head >= rb_page_size(iter->head_page)) {
5605 rb_inc_iter(iter);
5606 goto again;
5607 }
5608
5609 event = rb_iter_head_event(iter);
5610 if (!event)
5611 goto again;
5612
5613 switch (event->type_len) {
5614 case RINGBUF_TYPE_PADDING:
5615 if (rb_null_event(event)) {
5616 rb_inc_iter(iter);
5617 goto again;
5618 }
5619 rb_advance_iter(iter);
5620 return event;
5621
5622 case RINGBUF_TYPE_TIME_EXTEND:
5623 /* Internal data, OK to advance */
5624 rb_advance_iter(iter);
5625 goto again;
5626
5627 case RINGBUF_TYPE_TIME_STAMP:
5628 if (ts) {
5629 *ts = rb_event_time_stamp(event);
5630 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
5631 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5632 cpu_buffer->cpu, ts);
5633 }
5634 /* Internal data, OK to advance */
5635 rb_advance_iter(iter);
5636 goto again;
5637
5638 case RINGBUF_TYPE_DATA:
5639 if (ts && !(*ts)) {
5640 *ts = iter->read_stamp + event->time_delta;
5641 ring_buffer_normalize_time_stamp(buffer,
5642 cpu_buffer->cpu, ts);
5643 }
5644 return event;
5645
5646 default:
5647 RB_WARN_ON(cpu_buffer, 1);
5648 }
5649
5650 return NULL;
5651}
5652EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
5653
5654static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
5655{
5656 if (likely(!in_nmi())) {
5657 raw_spin_lock(&cpu_buffer->reader_lock);
5658 return true;
5659 }
5660
5661 /*
5662 * If an NMI die dumps out the content of the ring buffer
5663 * trylock must be used to prevent a deadlock if the NMI
5664 * preempted a task that holds the ring buffer locks. If
5665 * we get the lock then all is fine, if not, then continue
5666 * to do the read, but this can corrupt the ring buffer,
5667 * so it must be permanently disabled from future writes.
5668 * Reading from NMI is a oneshot deal.
5669 */
5670 if (raw_spin_trylock(&cpu_buffer->reader_lock))
5671 return true;
5672
5673 /* Continue without locking, but disable the ring buffer */
5674 atomic_inc(&cpu_buffer->record_disabled);
5675 return false;
5676}
5677
5678static inline void
5679rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
5680{
5681 if (likely(locked))
5682 raw_spin_unlock(&cpu_buffer->reader_lock);
5683}
5684
5685/**
5686 * ring_buffer_peek - peek at the next event to be read
5687 * @buffer: The ring buffer to read
5688 * @cpu: The cpu to peak at
5689 * @ts: The timestamp counter of this event.
5690 * @lost_events: a variable to store if events were lost (may be NULL)
5691 *
5692 * This will return the event that will be read next, but does
5693 * not consume the data.
5694 */
5695struct ring_buffer_event *
5696ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
5697 unsigned long *lost_events)
5698{
5699 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5700 struct ring_buffer_event *event;
5701 unsigned long flags;
5702 bool dolock;
5703
5704 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5705 return NULL;
5706
5707 again:
5708 local_irq_save(flags);
5709 dolock = rb_reader_lock(cpu_buffer);
5710 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5711 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5712 rb_advance_reader(cpu_buffer);
5713 rb_reader_unlock(cpu_buffer, dolock);
5714 local_irq_restore(flags);
5715
5716 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5717 goto again;
5718
5719 return event;
5720}
5721
5722/** ring_buffer_iter_dropped - report if there are dropped events
5723 * @iter: The ring buffer iterator
5724 *
5725 * Returns true if there was dropped events since the last peek.
5726 */
5727bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5728{
5729 bool ret = iter->missed_events != 0;
5730
5731 iter->missed_events = 0;
5732 return ret;
5733}
5734EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5735
5736/**
5737 * ring_buffer_iter_peek - peek at the next event to be read
5738 * @iter: The ring buffer iterator
5739 * @ts: The timestamp counter of this event.
5740 *
5741 * This will return the event that will be read next, but does
5742 * not increment the iterator.
5743 */
5744struct ring_buffer_event *
5745ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5746{
5747 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5748 struct ring_buffer_event *event;
5749 unsigned long flags;
5750
5751 again:
5752 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5753 event = rb_iter_peek(iter, ts);
5754 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5755
5756 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5757 goto again;
5758
5759 return event;
5760}
5761
5762/**
5763 * ring_buffer_consume - return an event and consume it
5764 * @buffer: The ring buffer to get the next event from
5765 * @cpu: the cpu to read the buffer from
5766 * @ts: a variable to store the timestamp (may be NULL)
5767 * @lost_events: a variable to store if events were lost (may be NULL)
5768 *
5769 * Returns the next event in the ring buffer, and that event is consumed.
5770 * Meaning, that sequential reads will keep returning a different event,
5771 * and eventually empty the ring buffer if the producer is slower.
5772 */
5773struct ring_buffer_event *
5774ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5775 unsigned long *lost_events)
5776{
5777 struct ring_buffer_per_cpu *cpu_buffer;
5778 struct ring_buffer_event *event = NULL;
5779 unsigned long flags;
5780 bool dolock;
5781
5782 again:
5783 /* might be called in atomic */
5784 preempt_disable();
5785
5786 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5787 goto out;
5788
5789 cpu_buffer = buffer->buffers[cpu];
5790 local_irq_save(flags);
5791 dolock = rb_reader_lock(cpu_buffer);
5792
5793 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5794 if (event) {
5795 cpu_buffer->lost_events = 0;
5796 rb_advance_reader(cpu_buffer);
5797 }
5798
5799 rb_reader_unlock(cpu_buffer, dolock);
5800 local_irq_restore(flags);
5801
5802 out:
5803 preempt_enable();
5804
5805 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5806 goto again;
5807
5808 return event;
5809}
5810EXPORT_SYMBOL_GPL(ring_buffer_consume);
5811
5812/**
5813 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5814 * @buffer: The ring buffer to read from
5815 * @cpu: The cpu buffer to iterate over
5816 * @flags: gfp flags to use for memory allocation
5817 *
5818 * This performs the initial preparations necessary to iterate
5819 * through the buffer. Memory is allocated, buffer resizing
5820 * is disabled, and the iterator pointer is returned to the caller.
5821 *
5822 * After a sequence of ring_buffer_read_prepare calls, the user is
5823 * expected to make at least one call to ring_buffer_read_prepare_sync.
5824 * Afterwards, ring_buffer_read_start is invoked to get things going
5825 * for real.
5826 *
5827 * This overall must be paired with ring_buffer_read_finish.
5828 */
5829struct ring_buffer_iter *
5830ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5831{
5832 struct ring_buffer_per_cpu *cpu_buffer;
5833 struct ring_buffer_iter *iter;
5834
5835 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5836 return NULL;
5837
5838 iter = kzalloc(sizeof(*iter), flags);
5839 if (!iter)
5840 return NULL;
5841
5842 /* Holds the entire event: data and meta data */
5843 iter->event_size = buffer->subbuf_size;
5844 iter->event = kmalloc(iter->event_size, flags);
5845 if (!iter->event) {
5846 kfree(iter);
5847 return NULL;
5848 }
5849
5850 cpu_buffer = buffer->buffers[cpu];
5851
5852 iter->cpu_buffer = cpu_buffer;
5853
5854 atomic_inc(&cpu_buffer->resize_disabled);
5855
5856 return iter;
5857}
5858EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5859
5860/**
5861 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5862 *
5863 * All previously invoked ring_buffer_read_prepare calls to prepare
5864 * iterators will be synchronized. Afterwards, read_buffer_read_start
5865 * calls on those iterators are allowed.
5866 */
5867void
5868ring_buffer_read_prepare_sync(void)
5869{
5870 synchronize_rcu();
5871}
5872EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5873
5874/**
5875 * ring_buffer_read_start - start a non consuming read of the buffer
5876 * @iter: The iterator returned by ring_buffer_read_prepare
5877 *
5878 * This finalizes the startup of an iteration through the buffer.
5879 * The iterator comes from a call to ring_buffer_read_prepare and
5880 * an intervening ring_buffer_read_prepare_sync must have been
5881 * performed.
5882 *
5883 * Must be paired with ring_buffer_read_finish.
5884 */
5885void
5886ring_buffer_read_start(struct ring_buffer_iter *iter)
5887{
5888 struct ring_buffer_per_cpu *cpu_buffer;
5889 unsigned long flags;
5890
5891 if (!iter)
5892 return;
5893
5894 cpu_buffer = iter->cpu_buffer;
5895
5896 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5897 arch_spin_lock(&cpu_buffer->lock);
5898 rb_iter_reset(iter);
5899 arch_spin_unlock(&cpu_buffer->lock);
5900 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5901}
5902EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5903
5904/**
5905 * ring_buffer_read_finish - finish reading the iterator of the buffer
5906 * @iter: The iterator retrieved by ring_buffer_start
5907 *
5908 * This re-enables resizing of the buffer, and frees the iterator.
5909 */
5910void
5911ring_buffer_read_finish(struct ring_buffer_iter *iter)
5912{
5913 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5914
5915 /* Use this opportunity to check the integrity of the ring buffer. */
5916 rb_check_pages(cpu_buffer);
5917
5918 atomic_dec(&cpu_buffer->resize_disabled);
5919 kfree(iter->event);
5920 kfree(iter);
5921}
5922EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5923
5924/**
5925 * ring_buffer_iter_advance - advance the iterator to the next location
5926 * @iter: The ring buffer iterator
5927 *
5928 * Move the location of the iterator such that the next read will
5929 * be the next location of the iterator.
5930 */
5931void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5932{
5933 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5934 unsigned long flags;
5935
5936 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5937
5938 rb_advance_iter(iter);
5939
5940 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5941}
5942EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5943
5944/**
5945 * ring_buffer_size - return the size of the ring buffer (in bytes)
5946 * @buffer: The ring buffer.
5947 * @cpu: The CPU to get ring buffer size from.
5948 */
5949unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5950{
5951 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5952 return 0;
5953
5954 return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5955}
5956EXPORT_SYMBOL_GPL(ring_buffer_size);
5957
5958/**
5959 * ring_buffer_max_event_size - return the max data size of an event
5960 * @buffer: The ring buffer.
5961 *
5962 * Returns the maximum size an event can be.
5963 */
5964unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
5965{
5966 /* If abs timestamp is requested, events have a timestamp too */
5967 if (ring_buffer_time_stamp_abs(buffer))
5968 return buffer->max_data_size - RB_LEN_TIME_EXTEND;
5969 return buffer->max_data_size;
5970}
5971EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
5972
5973static void rb_clear_buffer_page(struct buffer_page *page)
5974{
5975 local_set(&page->write, 0);
5976 local_set(&page->entries, 0);
5977 rb_init_page(page->page);
5978 page->read = 0;
5979}
5980
5981static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
5982{
5983 struct trace_buffer_meta *meta = cpu_buffer->meta_page;
5984
5985 if (!meta)
5986 return;
5987
5988 meta->reader.read = cpu_buffer->reader_page->read;
5989 meta->reader.id = cpu_buffer->reader_page->id;
5990 meta->reader.lost_events = cpu_buffer->lost_events;
5991
5992 meta->entries = local_read(&cpu_buffer->entries);
5993 meta->overrun = local_read(&cpu_buffer->overrun);
5994 meta->read = cpu_buffer->read;
5995
5996 /* Some archs do not have data cache coherency between kernel and user-space */
5997 flush_dcache_folio(virt_to_folio(cpu_buffer->meta_page));
5998}
5999
6000static void
6001rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
6002{
6003 struct buffer_page *page;
6004
6005 rb_head_page_deactivate(cpu_buffer);
6006
6007 cpu_buffer->head_page
6008 = list_entry(cpu_buffer->pages, struct buffer_page, list);
6009 rb_clear_buffer_page(cpu_buffer->head_page);
6010 list_for_each_entry(page, cpu_buffer->pages, list) {
6011 rb_clear_buffer_page(page);
6012 }
6013
6014 cpu_buffer->tail_page = cpu_buffer->head_page;
6015 cpu_buffer->commit_page = cpu_buffer->head_page;
6016
6017 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
6018 INIT_LIST_HEAD(&cpu_buffer->new_pages);
6019 rb_clear_buffer_page(cpu_buffer->reader_page);
6020
6021 local_set(&cpu_buffer->entries_bytes, 0);
6022 local_set(&cpu_buffer->overrun, 0);
6023 local_set(&cpu_buffer->commit_overrun, 0);
6024 local_set(&cpu_buffer->dropped_events, 0);
6025 local_set(&cpu_buffer->entries, 0);
6026 local_set(&cpu_buffer->committing, 0);
6027 local_set(&cpu_buffer->commits, 0);
6028 local_set(&cpu_buffer->pages_touched, 0);
6029 local_set(&cpu_buffer->pages_lost, 0);
6030 local_set(&cpu_buffer->pages_read, 0);
6031 cpu_buffer->last_pages_touch = 0;
6032 cpu_buffer->shortest_full = 0;
6033 cpu_buffer->read = 0;
6034 cpu_buffer->read_bytes = 0;
6035
6036 rb_time_set(&cpu_buffer->write_stamp, 0);
6037 rb_time_set(&cpu_buffer->before_stamp, 0);
6038
6039 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
6040
6041 cpu_buffer->lost_events = 0;
6042 cpu_buffer->last_overrun = 0;
6043
6044 rb_head_page_activate(cpu_buffer);
6045 cpu_buffer->pages_removed = 0;
6046
6047 if (cpu_buffer->mapped) {
6048 rb_update_meta_page(cpu_buffer);
6049 if (cpu_buffer->ring_meta) {
6050 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
6051 meta->commit_buffer = meta->head_buffer;
6052 }
6053 }
6054}
6055
6056/* Must have disabled the cpu buffer then done a synchronize_rcu */
6057static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6058{
6059 unsigned long flags;
6060
6061 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6062
6063 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
6064 goto out;
6065
6066 arch_spin_lock(&cpu_buffer->lock);
6067
6068 rb_reset_cpu(cpu_buffer);
6069
6070 arch_spin_unlock(&cpu_buffer->lock);
6071
6072 out:
6073 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6074}
6075
6076/**
6077 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
6078 * @buffer: The ring buffer to reset a per cpu buffer of
6079 * @cpu: The CPU buffer to be reset
6080 */
6081void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
6082{
6083 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6084 struct ring_buffer_meta *meta;
6085
6086 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6087 return;
6088
6089 /* prevent another thread from changing buffer sizes */
6090 mutex_lock(&buffer->mutex);
6091
6092 atomic_inc(&cpu_buffer->resize_disabled);
6093 atomic_inc(&cpu_buffer->record_disabled);
6094
6095 /* Make sure all commits have finished */
6096 synchronize_rcu();
6097
6098 reset_disabled_cpu_buffer(cpu_buffer);
6099
6100 atomic_dec(&cpu_buffer->record_disabled);
6101 atomic_dec(&cpu_buffer->resize_disabled);
6102
6103 /* Make sure persistent meta now uses this buffer's addresses */
6104 meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6105 if (meta)
6106 rb_meta_init_text_addr(meta);
6107
6108 mutex_unlock(&buffer->mutex);
6109}
6110EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
6111
6112/* Flag to ensure proper resetting of atomic variables */
6113#define RESET_BIT (1 << 30)
6114
6115/**
6116 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
6117 * @buffer: The ring buffer to reset a per cpu buffer of
6118 */
6119void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
6120{
6121 struct ring_buffer_per_cpu *cpu_buffer;
6122 struct ring_buffer_meta *meta;
6123 int cpu;
6124
6125 /* prevent another thread from changing buffer sizes */
6126 mutex_lock(&buffer->mutex);
6127
6128 for_each_online_buffer_cpu(buffer, cpu) {
6129 cpu_buffer = buffer->buffers[cpu];
6130
6131 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
6132 atomic_inc(&cpu_buffer->record_disabled);
6133 }
6134
6135 /* Make sure all commits have finished */
6136 synchronize_rcu();
6137
6138 for_each_buffer_cpu(buffer, cpu) {
6139 cpu_buffer = buffer->buffers[cpu];
6140
6141 /*
6142 * If a CPU came online during the synchronize_rcu(), then
6143 * ignore it.
6144 */
6145 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
6146 continue;
6147
6148 reset_disabled_cpu_buffer(cpu_buffer);
6149
6150 /* Make sure persistent meta now uses this buffer's addresses */
6151 meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6152 if (meta)
6153 rb_meta_init_text_addr(meta);
6154
6155 atomic_dec(&cpu_buffer->record_disabled);
6156 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
6157 }
6158
6159 mutex_unlock(&buffer->mutex);
6160}
6161
6162/**
6163 * ring_buffer_reset - reset a ring buffer
6164 * @buffer: The ring buffer to reset all cpu buffers
6165 */
6166void ring_buffer_reset(struct trace_buffer *buffer)
6167{
6168 struct ring_buffer_per_cpu *cpu_buffer;
6169 int cpu;
6170
6171 /* prevent another thread from changing buffer sizes */
6172 mutex_lock(&buffer->mutex);
6173
6174 for_each_buffer_cpu(buffer, cpu) {
6175 cpu_buffer = buffer->buffers[cpu];
6176
6177 atomic_inc(&cpu_buffer->resize_disabled);
6178 atomic_inc(&cpu_buffer->record_disabled);
6179 }
6180
6181 /* Make sure all commits have finished */
6182 synchronize_rcu();
6183
6184 for_each_buffer_cpu(buffer, cpu) {
6185 cpu_buffer = buffer->buffers[cpu];
6186
6187 reset_disabled_cpu_buffer(cpu_buffer);
6188
6189 atomic_dec(&cpu_buffer->record_disabled);
6190 atomic_dec(&cpu_buffer->resize_disabled);
6191 }
6192
6193 mutex_unlock(&buffer->mutex);
6194}
6195EXPORT_SYMBOL_GPL(ring_buffer_reset);
6196
6197/**
6198 * ring_buffer_empty - is the ring buffer empty?
6199 * @buffer: The ring buffer to test
6200 */
6201bool ring_buffer_empty(struct trace_buffer *buffer)
6202{
6203 struct ring_buffer_per_cpu *cpu_buffer;
6204 unsigned long flags;
6205 bool dolock;
6206 bool ret;
6207 int cpu;
6208
6209 /* yes this is racy, but if you don't like the race, lock the buffer */
6210 for_each_buffer_cpu(buffer, cpu) {
6211 cpu_buffer = buffer->buffers[cpu];
6212 local_irq_save(flags);
6213 dolock = rb_reader_lock(cpu_buffer);
6214 ret = rb_per_cpu_empty(cpu_buffer);
6215 rb_reader_unlock(cpu_buffer, dolock);
6216 local_irq_restore(flags);
6217
6218 if (!ret)
6219 return false;
6220 }
6221
6222 return true;
6223}
6224EXPORT_SYMBOL_GPL(ring_buffer_empty);
6225
6226/**
6227 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
6228 * @buffer: The ring buffer
6229 * @cpu: The CPU buffer to test
6230 */
6231bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
6232{
6233 struct ring_buffer_per_cpu *cpu_buffer;
6234 unsigned long flags;
6235 bool dolock;
6236 bool ret;
6237
6238 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6239 return true;
6240
6241 cpu_buffer = buffer->buffers[cpu];
6242 local_irq_save(flags);
6243 dolock = rb_reader_lock(cpu_buffer);
6244 ret = rb_per_cpu_empty(cpu_buffer);
6245 rb_reader_unlock(cpu_buffer, dolock);
6246 local_irq_restore(flags);
6247
6248 return ret;
6249}
6250EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
6251
6252#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
6253/**
6254 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
6255 * @buffer_a: One buffer to swap with
6256 * @buffer_b: The other buffer to swap with
6257 * @cpu: the CPU of the buffers to swap
6258 *
6259 * This function is useful for tracers that want to take a "snapshot"
6260 * of a CPU buffer and has another back up buffer lying around.
6261 * it is expected that the tracer handles the cpu buffer not being
6262 * used at the moment.
6263 */
6264int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
6265 struct trace_buffer *buffer_b, int cpu)
6266{
6267 struct ring_buffer_per_cpu *cpu_buffer_a;
6268 struct ring_buffer_per_cpu *cpu_buffer_b;
6269 int ret = -EINVAL;
6270
6271 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
6272 !cpumask_test_cpu(cpu, buffer_b->cpumask))
6273 goto out;
6274
6275 cpu_buffer_a = buffer_a->buffers[cpu];
6276 cpu_buffer_b = buffer_b->buffers[cpu];
6277
6278 /* It's up to the callers to not try to swap mapped buffers */
6279 if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped)) {
6280 ret = -EBUSY;
6281 goto out;
6282 }
6283
6284 /* At least make sure the two buffers are somewhat the same */
6285 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
6286 goto out;
6287
6288 if (buffer_a->subbuf_order != buffer_b->subbuf_order)
6289 goto out;
6290
6291 ret = -EAGAIN;
6292
6293 if (atomic_read(&buffer_a->record_disabled))
6294 goto out;
6295
6296 if (atomic_read(&buffer_b->record_disabled))
6297 goto out;
6298
6299 if (atomic_read(&cpu_buffer_a->record_disabled))
6300 goto out;
6301
6302 if (atomic_read(&cpu_buffer_b->record_disabled))
6303 goto out;
6304
6305 /*
6306 * We can't do a synchronize_rcu here because this
6307 * function can be called in atomic context.
6308 * Normally this will be called from the same CPU as cpu.
6309 * If not it's up to the caller to protect this.
6310 */
6311 atomic_inc(&cpu_buffer_a->record_disabled);
6312 atomic_inc(&cpu_buffer_b->record_disabled);
6313
6314 ret = -EBUSY;
6315 if (local_read(&cpu_buffer_a->committing))
6316 goto out_dec;
6317 if (local_read(&cpu_buffer_b->committing))
6318 goto out_dec;
6319
6320 /*
6321 * When resize is in progress, we cannot swap it because
6322 * it will mess the state of the cpu buffer.
6323 */
6324 if (atomic_read(&buffer_a->resizing))
6325 goto out_dec;
6326 if (atomic_read(&buffer_b->resizing))
6327 goto out_dec;
6328
6329 buffer_a->buffers[cpu] = cpu_buffer_b;
6330 buffer_b->buffers[cpu] = cpu_buffer_a;
6331
6332 cpu_buffer_b->buffer = buffer_a;
6333 cpu_buffer_a->buffer = buffer_b;
6334
6335 ret = 0;
6336
6337out_dec:
6338 atomic_dec(&cpu_buffer_a->record_disabled);
6339 atomic_dec(&cpu_buffer_b->record_disabled);
6340out:
6341 return ret;
6342}
6343EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
6344#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
6345
6346/**
6347 * ring_buffer_alloc_read_page - allocate a page to read from buffer
6348 * @buffer: the buffer to allocate for.
6349 * @cpu: the cpu buffer to allocate.
6350 *
6351 * This function is used in conjunction with ring_buffer_read_page.
6352 * When reading a full page from the ring buffer, these functions
6353 * can be used to speed up the process. The calling function should
6354 * allocate a few pages first with this function. Then when it
6355 * needs to get pages from the ring buffer, it passes the result
6356 * of this function into ring_buffer_read_page, which will swap
6357 * the page that was allocated, with the read page of the buffer.
6358 *
6359 * Returns:
6360 * The page allocated, or ERR_PTR
6361 */
6362struct buffer_data_read_page *
6363ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
6364{
6365 struct ring_buffer_per_cpu *cpu_buffer;
6366 struct buffer_data_read_page *bpage = NULL;
6367 unsigned long flags;
6368 struct page *page;
6369
6370 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6371 return ERR_PTR(-ENODEV);
6372
6373 bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
6374 if (!bpage)
6375 return ERR_PTR(-ENOMEM);
6376
6377 bpage->order = buffer->subbuf_order;
6378 cpu_buffer = buffer->buffers[cpu];
6379 local_irq_save(flags);
6380 arch_spin_lock(&cpu_buffer->lock);
6381
6382 if (cpu_buffer->free_page) {
6383 bpage->data = cpu_buffer->free_page;
6384 cpu_buffer->free_page = NULL;
6385 }
6386
6387 arch_spin_unlock(&cpu_buffer->lock);
6388 local_irq_restore(flags);
6389
6390 if (bpage->data)
6391 goto out;
6392
6393 page = alloc_pages_node(cpu_to_node(cpu),
6394 GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO,
6395 cpu_buffer->buffer->subbuf_order);
6396 if (!page) {
6397 kfree(bpage);
6398 return ERR_PTR(-ENOMEM);
6399 }
6400
6401 bpage->data = page_address(page);
6402
6403 out:
6404 rb_init_page(bpage->data);
6405
6406 return bpage;
6407}
6408EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
6409
6410/**
6411 * ring_buffer_free_read_page - free an allocated read page
6412 * @buffer: the buffer the page was allocate for
6413 * @cpu: the cpu buffer the page came from
6414 * @data_page: the page to free
6415 *
6416 * Free a page allocated from ring_buffer_alloc_read_page.
6417 */
6418void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
6419 struct buffer_data_read_page *data_page)
6420{
6421 struct ring_buffer_per_cpu *cpu_buffer;
6422 struct buffer_data_page *bpage = data_page->data;
6423 struct page *page = virt_to_page(bpage);
6424 unsigned long flags;
6425
6426 if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
6427 return;
6428
6429 cpu_buffer = buffer->buffers[cpu];
6430
6431 /*
6432 * If the page is still in use someplace else, or order of the page
6433 * is different from the subbuffer order of the buffer -
6434 * we can't reuse it
6435 */
6436 if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
6437 goto out;
6438
6439 local_irq_save(flags);
6440 arch_spin_lock(&cpu_buffer->lock);
6441
6442 if (!cpu_buffer->free_page) {
6443 cpu_buffer->free_page = bpage;
6444 bpage = NULL;
6445 }
6446
6447 arch_spin_unlock(&cpu_buffer->lock);
6448 local_irq_restore(flags);
6449
6450 out:
6451 free_pages((unsigned long)bpage, data_page->order);
6452 kfree(data_page);
6453}
6454EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
6455
6456/**
6457 * ring_buffer_read_page - extract a page from the ring buffer
6458 * @buffer: buffer to extract from
6459 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
6460 * @len: amount to extract
6461 * @cpu: the cpu of the buffer to extract
6462 * @full: should the extraction only happen when the page is full.
6463 *
6464 * This function will pull out a page from the ring buffer and consume it.
6465 * @data_page must be the address of the variable that was returned
6466 * from ring_buffer_alloc_read_page. This is because the page might be used
6467 * to swap with a page in the ring buffer.
6468 *
6469 * for example:
6470 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
6471 * if (IS_ERR(rpage))
6472 * return PTR_ERR(rpage);
6473 * ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
6474 * if (ret >= 0)
6475 * process_page(ring_buffer_read_page_data(rpage), ret);
6476 * ring_buffer_free_read_page(buffer, cpu, rpage);
6477 *
6478 * When @full is set, the function will not return true unless
6479 * the writer is off the reader page.
6480 *
6481 * Note: it is up to the calling functions to handle sleeps and wakeups.
6482 * The ring buffer can be used anywhere in the kernel and can not
6483 * blindly call wake_up. The layer that uses the ring buffer must be
6484 * responsible for that.
6485 *
6486 * Returns:
6487 * >=0 if data has been transferred, returns the offset of consumed data.
6488 * <0 if no data has been transferred.
6489 */
6490int ring_buffer_read_page(struct trace_buffer *buffer,
6491 struct buffer_data_read_page *data_page,
6492 size_t len, int cpu, int full)
6493{
6494 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6495 struct ring_buffer_event *event;
6496 struct buffer_data_page *bpage;
6497 struct buffer_page *reader;
6498 unsigned long missed_events;
6499 unsigned long flags;
6500 unsigned int commit;
6501 unsigned int read;
6502 u64 save_timestamp;
6503 int ret = -1;
6504
6505 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6506 goto out;
6507
6508 /*
6509 * If len is not big enough to hold the page header, then
6510 * we can not copy anything.
6511 */
6512 if (len <= BUF_PAGE_HDR_SIZE)
6513 goto out;
6514
6515 len -= BUF_PAGE_HDR_SIZE;
6516
6517 if (!data_page || !data_page->data)
6518 goto out;
6519 if (data_page->order != buffer->subbuf_order)
6520 goto out;
6521
6522 bpage = data_page->data;
6523 if (!bpage)
6524 goto out;
6525
6526 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6527
6528 reader = rb_get_reader_page(cpu_buffer);
6529 if (!reader)
6530 goto out_unlock;
6531
6532 event = rb_reader_event(cpu_buffer);
6533
6534 read = reader->read;
6535 commit = rb_page_size(reader);
6536
6537 /* Check if any events were dropped */
6538 missed_events = cpu_buffer->lost_events;
6539
6540 /*
6541 * If this page has been partially read or
6542 * if len is not big enough to read the rest of the page or
6543 * a writer is still on the page, then
6544 * we must copy the data from the page to the buffer.
6545 * Otherwise, we can simply swap the page with the one passed in.
6546 */
6547 if (read || (len < (commit - read)) ||
6548 cpu_buffer->reader_page == cpu_buffer->commit_page ||
6549 cpu_buffer->mapped) {
6550 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
6551 unsigned int rpos = read;
6552 unsigned int pos = 0;
6553 unsigned int size;
6554
6555 /*
6556 * If a full page is expected, this can still be returned
6557 * if there's been a previous partial read and the
6558 * rest of the page can be read and the commit page is off
6559 * the reader page.
6560 */
6561 if (full &&
6562 (!read || (len < (commit - read)) ||
6563 cpu_buffer->reader_page == cpu_buffer->commit_page))
6564 goto out_unlock;
6565
6566 if (len > (commit - read))
6567 len = (commit - read);
6568
6569 /* Always keep the time extend and data together */
6570 size = rb_event_ts_length(event);
6571
6572 if (len < size)
6573 goto out_unlock;
6574
6575 /* save the current timestamp, since the user will need it */
6576 save_timestamp = cpu_buffer->read_stamp;
6577
6578 /* Need to copy one event at a time */
6579 do {
6580 /* We need the size of one event, because
6581 * rb_advance_reader only advances by one event,
6582 * whereas rb_event_ts_length may include the size of
6583 * one or two events.
6584 * We have already ensured there's enough space if this
6585 * is a time extend. */
6586 size = rb_event_length(event);
6587 memcpy(bpage->data + pos, rpage->data + rpos, size);
6588
6589 len -= size;
6590
6591 rb_advance_reader(cpu_buffer);
6592 rpos = reader->read;
6593 pos += size;
6594
6595 if (rpos >= commit)
6596 break;
6597
6598 event = rb_reader_event(cpu_buffer);
6599 /* Always keep the time extend and data together */
6600 size = rb_event_ts_length(event);
6601 } while (len >= size);
6602
6603 /* update bpage */
6604 local_set(&bpage->commit, pos);
6605 bpage->time_stamp = save_timestamp;
6606
6607 /* we copied everything to the beginning */
6608 read = 0;
6609 } else {
6610 /* update the entry counter */
6611 cpu_buffer->read += rb_page_entries(reader);
6612 cpu_buffer->read_bytes += rb_page_size(reader);
6613
6614 /* swap the pages */
6615 rb_init_page(bpage);
6616 bpage = reader->page;
6617 reader->page = data_page->data;
6618 local_set(&reader->write, 0);
6619 local_set(&reader->entries, 0);
6620 reader->read = 0;
6621 data_page->data = bpage;
6622
6623 /*
6624 * Use the real_end for the data size,
6625 * This gives us a chance to store the lost events
6626 * on the page.
6627 */
6628 if (reader->real_end)
6629 local_set(&bpage->commit, reader->real_end);
6630 }
6631 ret = read;
6632
6633 cpu_buffer->lost_events = 0;
6634
6635 commit = local_read(&bpage->commit);
6636 /*
6637 * Set a flag in the commit field if we lost events
6638 */
6639 if (missed_events) {
6640 /* If there is room at the end of the page to save the
6641 * missed events, then record it there.
6642 */
6643 if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
6644 memcpy(&bpage->data[commit], &missed_events,
6645 sizeof(missed_events));
6646 local_add(RB_MISSED_STORED, &bpage->commit);
6647 commit += sizeof(missed_events);
6648 }
6649 local_add(RB_MISSED_EVENTS, &bpage->commit);
6650 }
6651
6652 /*
6653 * This page may be off to user land. Zero it out here.
6654 */
6655 if (commit < buffer->subbuf_size)
6656 memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
6657
6658 out_unlock:
6659 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6660
6661 out:
6662 return ret;
6663}
6664EXPORT_SYMBOL_GPL(ring_buffer_read_page);
6665
6666/**
6667 * ring_buffer_read_page_data - get pointer to the data in the page.
6668 * @page: the page to get the data from
6669 *
6670 * Returns pointer to the actual data in this page.
6671 */
6672void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
6673{
6674 return page->data;
6675}
6676EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
6677
6678/**
6679 * ring_buffer_subbuf_size_get - get size of the sub buffer.
6680 * @buffer: the buffer to get the sub buffer size from
6681 *
6682 * Returns size of the sub buffer, in bytes.
6683 */
6684int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
6685{
6686 return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6687}
6688EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
6689
6690/**
6691 * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
6692 * @buffer: The ring_buffer to get the system sub page order from
6693 *
6694 * By default, one ring buffer sub page equals to one system page. This parameter
6695 * is configurable, per ring buffer. The size of the ring buffer sub page can be
6696 * extended, but must be an order of system page size.
6697 *
6698 * Returns the order of buffer sub page size, in system pages:
6699 * 0 means the sub buffer size is 1 system page and so forth.
6700 * In case of an error < 0 is returned.
6701 */
6702int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
6703{
6704 if (!buffer)
6705 return -EINVAL;
6706
6707 return buffer->subbuf_order;
6708}
6709EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
6710
6711/**
6712 * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
6713 * @buffer: The ring_buffer to set the new page size.
6714 * @order: Order of the system pages in one sub buffer page
6715 *
6716 * By default, one ring buffer pages equals to one system page. This API can be
6717 * used to set new size of the ring buffer page. The size must be order of
6718 * system page size, that's why the input parameter @order is the order of
6719 * system pages that are allocated for one ring buffer page:
6720 * 0 - 1 system page
6721 * 1 - 2 system pages
6722 * 3 - 4 system pages
6723 * ...
6724 *
6725 * Returns 0 on success or < 0 in case of an error.
6726 */
6727int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
6728{
6729 struct ring_buffer_per_cpu *cpu_buffer;
6730 struct buffer_page *bpage, *tmp;
6731 int old_order, old_size;
6732 int nr_pages;
6733 int psize;
6734 int err;
6735 int cpu;
6736
6737 if (!buffer || order < 0)
6738 return -EINVAL;
6739
6740 if (buffer->subbuf_order == order)
6741 return 0;
6742
6743 psize = (1 << order) * PAGE_SIZE;
6744 if (psize <= BUF_PAGE_HDR_SIZE)
6745 return -EINVAL;
6746
6747 /* Size of a subbuf cannot be greater than the write counter */
6748 if (psize > RB_WRITE_MASK + 1)
6749 return -EINVAL;
6750
6751 old_order = buffer->subbuf_order;
6752 old_size = buffer->subbuf_size;
6753
6754 /* prevent another thread from changing buffer sizes */
6755 mutex_lock(&buffer->mutex);
6756 atomic_inc(&buffer->record_disabled);
6757
6758 /* Make sure all commits have finished */
6759 synchronize_rcu();
6760
6761 buffer->subbuf_order = order;
6762 buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
6763
6764 /* Make sure all new buffers are allocated, before deleting the old ones */
6765 for_each_buffer_cpu(buffer, cpu) {
6766
6767 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6768 continue;
6769
6770 cpu_buffer = buffer->buffers[cpu];
6771
6772 if (cpu_buffer->mapped) {
6773 err = -EBUSY;
6774 goto error;
6775 }
6776
6777 /* Update the number of pages to match the new size */
6778 nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
6779 nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
6780
6781 /* we need a minimum of two pages */
6782 if (nr_pages < 2)
6783 nr_pages = 2;
6784
6785 cpu_buffer->nr_pages_to_update = nr_pages;
6786
6787 /* Include the reader page */
6788 nr_pages++;
6789
6790 /* Allocate the new size buffer */
6791 INIT_LIST_HEAD(&cpu_buffer->new_pages);
6792 if (__rb_allocate_pages(cpu_buffer, nr_pages,
6793 &cpu_buffer->new_pages)) {
6794 /* not enough memory for new pages */
6795 err = -ENOMEM;
6796 goto error;
6797 }
6798 }
6799
6800 for_each_buffer_cpu(buffer, cpu) {
6801 struct buffer_data_page *old_free_data_page;
6802 struct list_head old_pages;
6803 unsigned long flags;
6804
6805 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6806 continue;
6807
6808 cpu_buffer = buffer->buffers[cpu];
6809
6810 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6811
6812 /* Clear the head bit to make the link list normal to read */
6813 rb_head_page_deactivate(cpu_buffer);
6814
6815 /*
6816 * Collect buffers from the cpu_buffer pages list and the
6817 * reader_page on old_pages, so they can be freed later when not
6818 * under a spinlock. The pages list is a linked list with no
6819 * head, adding old_pages turns it into a regular list with
6820 * old_pages being the head.
6821 */
6822 list_add(&old_pages, cpu_buffer->pages);
6823 list_add(&cpu_buffer->reader_page->list, &old_pages);
6824
6825 /* One page was allocated for the reader page */
6826 cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
6827 struct buffer_page, list);
6828 list_del_init(&cpu_buffer->reader_page->list);
6829
6830 /* Install the new pages, remove the head from the list */
6831 cpu_buffer->pages = cpu_buffer->new_pages.next;
6832 list_del_init(&cpu_buffer->new_pages);
6833 cpu_buffer->cnt++;
6834
6835 cpu_buffer->head_page
6836 = list_entry(cpu_buffer->pages, struct buffer_page, list);
6837 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
6838
6839 cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
6840 cpu_buffer->nr_pages_to_update = 0;
6841
6842 old_free_data_page = cpu_buffer->free_page;
6843 cpu_buffer->free_page = NULL;
6844
6845 rb_head_page_activate(cpu_buffer);
6846
6847 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6848
6849 /* Free old sub buffers */
6850 list_for_each_entry_safe(bpage, tmp, &old_pages, list) {
6851 list_del_init(&bpage->list);
6852 free_buffer_page(bpage);
6853 }
6854 free_pages((unsigned long)old_free_data_page, old_order);
6855
6856 rb_check_pages(cpu_buffer);
6857 }
6858
6859 atomic_dec(&buffer->record_disabled);
6860 mutex_unlock(&buffer->mutex);
6861
6862 return 0;
6863
6864error:
6865 buffer->subbuf_order = old_order;
6866 buffer->subbuf_size = old_size;
6867
6868 atomic_dec(&buffer->record_disabled);
6869 mutex_unlock(&buffer->mutex);
6870
6871 for_each_buffer_cpu(buffer, cpu) {
6872 cpu_buffer = buffer->buffers[cpu];
6873
6874 if (!cpu_buffer->nr_pages_to_update)
6875 continue;
6876
6877 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6878 list_del_init(&bpage->list);
6879 free_buffer_page(bpage);
6880 }
6881 }
6882
6883 return err;
6884}
6885EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6886
6887static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6888{
6889 struct page *page;
6890
6891 if (cpu_buffer->meta_page)
6892 return 0;
6893
6894 page = alloc_page(GFP_USER | __GFP_ZERO);
6895 if (!page)
6896 return -ENOMEM;
6897
6898 cpu_buffer->meta_page = page_to_virt(page);
6899
6900 return 0;
6901}
6902
6903static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6904{
6905 unsigned long addr = (unsigned long)cpu_buffer->meta_page;
6906
6907 free_page(addr);
6908 cpu_buffer->meta_page = NULL;
6909}
6910
6911static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer,
6912 unsigned long *subbuf_ids)
6913{
6914 struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6915 unsigned int nr_subbufs = cpu_buffer->nr_pages + 1;
6916 struct buffer_page *first_subbuf, *subbuf;
6917 int id = 0;
6918
6919 subbuf_ids[id] = (unsigned long)cpu_buffer->reader_page->page;
6920 cpu_buffer->reader_page->id = id++;
6921
6922 first_subbuf = subbuf = rb_set_head_page(cpu_buffer);
6923 do {
6924 if (WARN_ON(id >= nr_subbufs))
6925 break;
6926
6927 subbuf_ids[id] = (unsigned long)subbuf->page;
6928 subbuf->id = id;
6929
6930 rb_inc_page(&subbuf);
6931 id++;
6932 } while (subbuf != first_subbuf);
6933
6934 /* install subbuf ID to kern VA translation */
6935 cpu_buffer->subbuf_ids = subbuf_ids;
6936
6937 meta->meta_struct_len = sizeof(*meta);
6938 meta->nr_subbufs = nr_subbufs;
6939 meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6940 meta->meta_page_size = meta->subbuf_size;
6941
6942 rb_update_meta_page(cpu_buffer);
6943}
6944
6945static struct ring_buffer_per_cpu *
6946rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu)
6947{
6948 struct ring_buffer_per_cpu *cpu_buffer;
6949
6950 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6951 return ERR_PTR(-EINVAL);
6952
6953 cpu_buffer = buffer->buffers[cpu];
6954
6955 mutex_lock(&cpu_buffer->mapping_lock);
6956
6957 if (!cpu_buffer->user_mapped) {
6958 mutex_unlock(&cpu_buffer->mapping_lock);
6959 return ERR_PTR(-ENODEV);
6960 }
6961
6962 return cpu_buffer;
6963}
6964
6965static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6966{
6967 mutex_unlock(&cpu_buffer->mapping_lock);
6968}
6969
6970/*
6971 * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need
6972 * to be set-up or torn-down.
6973 */
6974static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer,
6975 bool inc)
6976{
6977 unsigned long flags;
6978
6979 lockdep_assert_held(&cpu_buffer->mapping_lock);
6980
6981 /* mapped is always greater or equal to user_mapped */
6982 if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped))
6983 return -EINVAL;
6984
6985 if (inc && cpu_buffer->mapped == UINT_MAX)
6986 return -EBUSY;
6987
6988 if (WARN_ON(!inc && cpu_buffer->user_mapped == 0))
6989 return -EINVAL;
6990
6991 mutex_lock(&cpu_buffer->buffer->mutex);
6992 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6993
6994 if (inc) {
6995 cpu_buffer->user_mapped++;
6996 cpu_buffer->mapped++;
6997 } else {
6998 cpu_buffer->user_mapped--;
6999 cpu_buffer->mapped--;
7000 }
7001
7002 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7003 mutex_unlock(&cpu_buffer->buffer->mutex);
7004
7005 return 0;
7006}
7007
7008/*
7009 * +--------------+ pgoff == 0
7010 * | meta page |
7011 * +--------------+ pgoff == 1
7012 * | subbuffer 0 |
7013 * | |
7014 * +--------------+ pgoff == (1 + (1 << subbuf_order))
7015 * | subbuffer 1 |
7016 * | |
7017 * ...
7018 */
7019#ifdef CONFIG_MMU
7020static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7021 struct vm_area_struct *vma)
7022{
7023 unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff;
7024 unsigned int subbuf_pages, subbuf_order;
7025 struct page **pages;
7026 int p = 0, s = 0;
7027 int err;
7028
7029 /* Refuse MP_PRIVATE or writable mappings */
7030 if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC ||
7031 !(vma->vm_flags & VM_MAYSHARE))
7032 return -EPERM;
7033
7034 subbuf_order = cpu_buffer->buffer->subbuf_order;
7035 subbuf_pages = 1 << subbuf_order;
7036
7037 if (subbuf_order && pgoff % subbuf_pages)
7038 return -EINVAL;
7039
7040 /*
7041 * Make sure the mapping cannot become writable later. Also tell the VM
7042 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND).
7043 */
7044 vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP,
7045 VM_MAYWRITE);
7046
7047 lockdep_assert_held(&cpu_buffer->mapping_lock);
7048
7049 nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */
7050 nr_pages = ((nr_subbufs + 1) << subbuf_order); /* + meta-page */
7051 if (nr_pages <= pgoff)
7052 return -EINVAL;
7053
7054 nr_pages -= pgoff;
7055
7056 nr_vma_pages = vma_pages(vma);
7057 if (!nr_vma_pages || nr_vma_pages > nr_pages)
7058 return -EINVAL;
7059
7060 nr_pages = nr_vma_pages;
7061
7062 pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL);
7063 if (!pages)
7064 return -ENOMEM;
7065
7066 if (!pgoff) {
7067 unsigned long meta_page_padding;
7068
7069 pages[p++] = virt_to_page(cpu_buffer->meta_page);
7070
7071 /*
7072 * Pad with the zero-page to align the meta-page with the
7073 * sub-buffers.
7074 */
7075 meta_page_padding = subbuf_pages - 1;
7076 while (meta_page_padding-- && p < nr_pages) {
7077 unsigned long __maybe_unused zero_addr =
7078 vma->vm_start + (PAGE_SIZE * p);
7079
7080 pages[p++] = ZERO_PAGE(zero_addr);
7081 }
7082 } else {
7083 /* Skip the meta-page */
7084 pgoff -= subbuf_pages;
7085
7086 s += pgoff / subbuf_pages;
7087 }
7088
7089 while (p < nr_pages) {
7090 struct page *page;
7091 int off = 0;
7092
7093 if (WARN_ON_ONCE(s >= nr_subbufs)) {
7094 err = -EINVAL;
7095 goto out;
7096 }
7097
7098 page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
7099
7100 for (; off < (1 << (subbuf_order)); off++, page++) {
7101 if (p >= nr_pages)
7102 break;
7103
7104 pages[p++] = page;
7105 }
7106 s++;
7107 }
7108
7109 err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
7110
7111out:
7112 kfree(pages);
7113
7114 return err;
7115}
7116#else
7117static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7118 struct vm_area_struct *vma)
7119{
7120 return -EOPNOTSUPP;
7121}
7122#endif
7123
7124int ring_buffer_map(struct trace_buffer *buffer, int cpu,
7125 struct vm_area_struct *vma)
7126{
7127 struct ring_buffer_per_cpu *cpu_buffer;
7128 unsigned long flags, *subbuf_ids;
7129 int err = 0;
7130
7131 if (!cpumask_test_cpu(cpu, buffer->cpumask))
7132 return -EINVAL;
7133
7134 cpu_buffer = buffer->buffers[cpu];
7135
7136 mutex_lock(&cpu_buffer->mapping_lock);
7137
7138 if (cpu_buffer->user_mapped) {
7139 err = __rb_map_vma(cpu_buffer, vma);
7140 if (!err)
7141 err = __rb_inc_dec_mapped(cpu_buffer, true);
7142 mutex_unlock(&cpu_buffer->mapping_lock);
7143 return err;
7144 }
7145
7146 /* prevent another thread from changing buffer/sub-buffer sizes */
7147 mutex_lock(&buffer->mutex);
7148
7149 err = rb_alloc_meta_page(cpu_buffer);
7150 if (err)
7151 goto unlock;
7152
7153 /* subbuf_ids include the reader while nr_pages does not */
7154 subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL);
7155 if (!subbuf_ids) {
7156 rb_free_meta_page(cpu_buffer);
7157 err = -ENOMEM;
7158 goto unlock;
7159 }
7160
7161 atomic_inc(&cpu_buffer->resize_disabled);
7162
7163 /*
7164 * Lock all readers to block any subbuf swap until the subbuf IDs are
7165 * assigned.
7166 */
7167 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7168 rb_setup_ids_meta_page(cpu_buffer, subbuf_ids);
7169
7170 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7171
7172 err = __rb_map_vma(cpu_buffer, vma);
7173 if (!err) {
7174 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7175 /* This is the first time it is mapped by user */
7176 cpu_buffer->mapped++;
7177 cpu_buffer->user_mapped = 1;
7178 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7179 } else {
7180 kfree(cpu_buffer->subbuf_ids);
7181 cpu_buffer->subbuf_ids = NULL;
7182 rb_free_meta_page(cpu_buffer);
7183 atomic_dec(&cpu_buffer->resize_disabled);
7184 }
7185
7186unlock:
7187 mutex_unlock(&buffer->mutex);
7188 mutex_unlock(&cpu_buffer->mapping_lock);
7189
7190 return err;
7191}
7192
7193int ring_buffer_unmap(struct trace_buffer *buffer, int cpu)
7194{
7195 struct ring_buffer_per_cpu *cpu_buffer;
7196 unsigned long flags;
7197 int err = 0;
7198
7199 if (!cpumask_test_cpu(cpu, buffer->cpumask))
7200 return -EINVAL;
7201
7202 cpu_buffer = buffer->buffers[cpu];
7203
7204 mutex_lock(&cpu_buffer->mapping_lock);
7205
7206 if (!cpu_buffer->user_mapped) {
7207 err = -ENODEV;
7208 goto out;
7209 } else if (cpu_buffer->user_mapped > 1) {
7210 __rb_inc_dec_mapped(cpu_buffer, false);
7211 goto out;
7212 }
7213
7214 mutex_lock(&buffer->mutex);
7215 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7216
7217 /* This is the last user space mapping */
7218 if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped))
7219 cpu_buffer->mapped--;
7220 cpu_buffer->user_mapped = 0;
7221
7222 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7223
7224 kfree(cpu_buffer->subbuf_ids);
7225 cpu_buffer->subbuf_ids = NULL;
7226 rb_free_meta_page(cpu_buffer);
7227 atomic_dec(&cpu_buffer->resize_disabled);
7228
7229 mutex_unlock(&buffer->mutex);
7230
7231out:
7232 mutex_unlock(&cpu_buffer->mapping_lock);
7233
7234 return err;
7235}
7236
7237int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu)
7238{
7239 struct ring_buffer_per_cpu *cpu_buffer;
7240 struct buffer_page *reader;
7241 unsigned long missed_events;
7242 unsigned long reader_size;
7243 unsigned long flags;
7244
7245 cpu_buffer = rb_get_mapped_buffer(buffer, cpu);
7246 if (IS_ERR(cpu_buffer))
7247 return (int)PTR_ERR(cpu_buffer);
7248
7249 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7250
7251consume:
7252 if (rb_per_cpu_empty(cpu_buffer))
7253 goto out;
7254
7255 reader_size = rb_page_size(cpu_buffer->reader_page);
7256
7257 /*
7258 * There are data to be read on the current reader page, we can
7259 * return to the caller. But before that, we assume the latter will read
7260 * everything. Let's update the kernel reader accordingly.
7261 */
7262 if (cpu_buffer->reader_page->read < reader_size) {
7263 while (cpu_buffer->reader_page->read < reader_size)
7264 rb_advance_reader(cpu_buffer);
7265 goto out;
7266 }
7267
7268 reader = rb_get_reader_page(cpu_buffer);
7269 if (WARN_ON(!reader))
7270 goto out;
7271
7272 /* Check if any events were dropped */
7273 missed_events = cpu_buffer->lost_events;
7274
7275 if (cpu_buffer->reader_page != cpu_buffer->commit_page) {
7276 if (missed_events) {
7277 struct buffer_data_page *bpage = reader->page;
7278 unsigned int commit;
7279 /*
7280 * Use the real_end for the data size,
7281 * This gives us a chance to store the lost events
7282 * on the page.
7283 */
7284 if (reader->real_end)
7285 local_set(&bpage->commit, reader->real_end);
7286 /*
7287 * If there is room at the end of the page to save the
7288 * missed events, then record it there.
7289 */
7290 commit = rb_page_size(reader);
7291 if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
7292 memcpy(&bpage->data[commit], &missed_events,
7293 sizeof(missed_events));
7294 local_add(RB_MISSED_STORED, &bpage->commit);
7295 }
7296 local_add(RB_MISSED_EVENTS, &bpage->commit);
7297 }
7298 } else {
7299 /*
7300 * There really shouldn't be any missed events if the commit
7301 * is on the reader page.
7302 */
7303 WARN_ON_ONCE(missed_events);
7304 }
7305
7306 cpu_buffer->lost_events = 0;
7307
7308 goto consume;
7309
7310out:
7311 /* Some archs do not have data cache coherency between kernel and user-space */
7312 flush_dcache_folio(virt_to_folio(cpu_buffer->reader_page->page));
7313
7314 rb_update_meta_page(cpu_buffer);
7315
7316 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7317 rb_put_mapped_buffer(cpu_buffer);
7318
7319 return 0;
7320}
7321
7322/*
7323 * We only allocate new buffers, never free them if the CPU goes down.
7324 * If we were to free the buffer, then the user would lose any trace that was in
7325 * the buffer.
7326 */
7327int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
7328{
7329 struct trace_buffer *buffer;
7330 long nr_pages_same;
7331 int cpu_i;
7332 unsigned long nr_pages;
7333
7334 buffer = container_of(node, struct trace_buffer, node);
7335 if (cpumask_test_cpu(cpu, buffer->cpumask))
7336 return 0;
7337
7338 nr_pages = 0;
7339 nr_pages_same = 1;
7340 /* check if all cpu sizes are same */
7341 for_each_buffer_cpu(buffer, cpu_i) {
7342 /* fill in the size from first enabled cpu */
7343 if (nr_pages == 0)
7344 nr_pages = buffer->buffers[cpu_i]->nr_pages;
7345 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
7346 nr_pages_same = 0;
7347 break;
7348 }
7349 }
7350 /* allocate minimum pages, user can later expand it */
7351 if (!nr_pages_same)
7352 nr_pages = 2;
7353 buffer->buffers[cpu] =
7354 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7355 if (!buffer->buffers[cpu]) {
7356 WARN(1, "failed to allocate ring buffer on CPU %u\n",
7357 cpu);
7358 return -ENOMEM;
7359 }
7360 smp_wmb();
7361 cpumask_set_cpu(cpu, buffer->cpumask);
7362 return 0;
7363}
7364
7365#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
7366/*
7367 * This is a basic integrity check of the ring buffer.
7368 * Late in the boot cycle this test will run when configured in.
7369 * It will kick off a thread per CPU that will go into a loop
7370 * writing to the per cpu ring buffer various sizes of data.
7371 * Some of the data will be large items, some small.
7372 *
7373 * Another thread is created that goes into a spin, sending out
7374 * IPIs to the other CPUs to also write into the ring buffer.
7375 * this is to test the nesting ability of the buffer.
7376 *
7377 * Basic stats are recorded and reported. If something in the
7378 * ring buffer should happen that's not expected, a big warning
7379 * is displayed and all ring buffers are disabled.
7380 */
7381static struct task_struct *rb_threads[NR_CPUS] __initdata;
7382
7383struct rb_test_data {
7384 struct trace_buffer *buffer;
7385 unsigned long events;
7386 unsigned long bytes_written;
7387 unsigned long bytes_alloc;
7388 unsigned long bytes_dropped;
7389 unsigned long events_nested;
7390 unsigned long bytes_written_nested;
7391 unsigned long bytes_alloc_nested;
7392 unsigned long bytes_dropped_nested;
7393 int min_size_nested;
7394 int max_size_nested;
7395 int max_size;
7396 int min_size;
7397 int cpu;
7398 int cnt;
7399};
7400
7401static struct rb_test_data rb_data[NR_CPUS] __initdata;
7402
7403/* 1 meg per cpu */
7404#define RB_TEST_BUFFER_SIZE 1048576
7405
7406static char rb_string[] __initdata =
7407 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
7408 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
7409 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
7410
7411static bool rb_test_started __initdata;
7412
7413struct rb_item {
7414 int size;
7415 char str[];
7416};
7417
7418static __init int rb_write_something(struct rb_test_data *data, bool nested)
7419{
7420 struct ring_buffer_event *event;
7421 struct rb_item *item;
7422 bool started;
7423 int event_len;
7424 int size;
7425 int len;
7426 int cnt;
7427
7428 /* Have nested writes different that what is written */
7429 cnt = data->cnt + (nested ? 27 : 0);
7430
7431 /* Multiply cnt by ~e, to make some unique increment */
7432 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
7433
7434 len = size + sizeof(struct rb_item);
7435
7436 started = rb_test_started;
7437 /* read rb_test_started before checking buffer enabled */
7438 smp_rmb();
7439
7440 event = ring_buffer_lock_reserve(data->buffer, len);
7441 if (!event) {
7442 /* Ignore dropped events before test starts. */
7443 if (started) {
7444 if (nested)
7445 data->bytes_dropped += len;
7446 else
7447 data->bytes_dropped_nested += len;
7448 }
7449 return len;
7450 }
7451
7452 event_len = ring_buffer_event_length(event);
7453
7454 if (RB_WARN_ON(data->buffer, event_len < len))
7455 goto out;
7456
7457 item = ring_buffer_event_data(event);
7458 item->size = size;
7459 memcpy(item->str, rb_string, size);
7460
7461 if (nested) {
7462 data->bytes_alloc_nested += event_len;
7463 data->bytes_written_nested += len;
7464 data->events_nested++;
7465 if (!data->min_size_nested || len < data->min_size_nested)
7466 data->min_size_nested = len;
7467 if (len > data->max_size_nested)
7468 data->max_size_nested = len;
7469 } else {
7470 data->bytes_alloc += event_len;
7471 data->bytes_written += len;
7472 data->events++;
7473 if (!data->min_size || len < data->min_size)
7474 data->max_size = len;
7475 if (len > data->max_size)
7476 data->max_size = len;
7477 }
7478
7479 out:
7480 ring_buffer_unlock_commit(data->buffer);
7481
7482 return 0;
7483}
7484
7485static __init int rb_test(void *arg)
7486{
7487 struct rb_test_data *data = arg;
7488
7489 while (!kthread_should_stop()) {
7490 rb_write_something(data, false);
7491 data->cnt++;
7492
7493 set_current_state(TASK_INTERRUPTIBLE);
7494 /* Now sleep between a min of 100-300us and a max of 1ms */
7495 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
7496 }
7497
7498 return 0;
7499}
7500
7501static __init void rb_ipi(void *ignore)
7502{
7503 struct rb_test_data *data;
7504 int cpu = smp_processor_id();
7505
7506 data = &rb_data[cpu];
7507 rb_write_something(data, true);
7508}
7509
7510static __init int rb_hammer_test(void *arg)
7511{
7512 while (!kthread_should_stop()) {
7513
7514 /* Send an IPI to all cpus to write data! */
7515 smp_call_function(rb_ipi, NULL, 1);
7516 /* No sleep, but for non preempt, let others run */
7517 schedule();
7518 }
7519
7520 return 0;
7521}
7522
7523static __init int test_ringbuffer(void)
7524{
7525 struct task_struct *rb_hammer;
7526 struct trace_buffer *buffer;
7527 int cpu;
7528 int ret = 0;
7529
7530 if (security_locked_down(LOCKDOWN_TRACEFS)) {
7531 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
7532 return 0;
7533 }
7534
7535 pr_info("Running ring buffer tests...\n");
7536
7537 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
7538 if (WARN_ON(!buffer))
7539 return 0;
7540
7541 /* Disable buffer so that threads can't write to it yet */
7542 ring_buffer_record_off(buffer);
7543
7544 for_each_online_cpu(cpu) {
7545 rb_data[cpu].buffer = buffer;
7546 rb_data[cpu].cpu = cpu;
7547 rb_data[cpu].cnt = cpu;
7548 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
7549 cpu, "rbtester/%u");
7550 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
7551 pr_cont("FAILED\n");
7552 ret = PTR_ERR(rb_threads[cpu]);
7553 goto out_free;
7554 }
7555 }
7556
7557 /* Now create the rb hammer! */
7558 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
7559 if (WARN_ON(IS_ERR(rb_hammer))) {
7560 pr_cont("FAILED\n");
7561 ret = PTR_ERR(rb_hammer);
7562 goto out_free;
7563 }
7564
7565 ring_buffer_record_on(buffer);
7566 /*
7567 * Show buffer is enabled before setting rb_test_started.
7568 * Yes there's a small race window where events could be
7569 * dropped and the thread wont catch it. But when a ring
7570 * buffer gets enabled, there will always be some kind of
7571 * delay before other CPUs see it. Thus, we don't care about
7572 * those dropped events. We care about events dropped after
7573 * the threads see that the buffer is active.
7574 */
7575 smp_wmb();
7576 rb_test_started = true;
7577
7578 set_current_state(TASK_INTERRUPTIBLE);
7579 /* Just run for 10 seconds */;
7580 schedule_timeout(10 * HZ);
7581
7582 kthread_stop(rb_hammer);
7583
7584 out_free:
7585 for_each_online_cpu(cpu) {
7586 if (!rb_threads[cpu])
7587 break;
7588 kthread_stop(rb_threads[cpu]);
7589 }
7590 if (ret) {
7591 ring_buffer_free(buffer);
7592 return ret;
7593 }
7594
7595 /* Report! */
7596 pr_info("finished\n");
7597 for_each_online_cpu(cpu) {
7598 struct ring_buffer_event *event;
7599 struct rb_test_data *data = &rb_data[cpu];
7600 struct rb_item *item;
7601 unsigned long total_events;
7602 unsigned long total_dropped;
7603 unsigned long total_written;
7604 unsigned long total_alloc;
7605 unsigned long total_read = 0;
7606 unsigned long total_size = 0;
7607 unsigned long total_len = 0;
7608 unsigned long total_lost = 0;
7609 unsigned long lost;
7610 int big_event_size;
7611 int small_event_size;
7612
7613 ret = -1;
7614
7615 total_events = data->events + data->events_nested;
7616 total_written = data->bytes_written + data->bytes_written_nested;
7617 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
7618 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
7619
7620 big_event_size = data->max_size + data->max_size_nested;
7621 small_event_size = data->min_size + data->min_size_nested;
7622
7623 pr_info("CPU %d:\n", cpu);
7624 pr_info(" events: %ld\n", total_events);
7625 pr_info(" dropped bytes: %ld\n", total_dropped);
7626 pr_info(" alloced bytes: %ld\n", total_alloc);
7627 pr_info(" written bytes: %ld\n", total_written);
7628 pr_info(" biggest event: %d\n", big_event_size);
7629 pr_info(" smallest event: %d\n", small_event_size);
7630
7631 if (RB_WARN_ON(buffer, total_dropped))
7632 break;
7633
7634 ret = 0;
7635
7636 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
7637 total_lost += lost;
7638 item = ring_buffer_event_data(event);
7639 total_len += ring_buffer_event_length(event);
7640 total_size += item->size + sizeof(struct rb_item);
7641 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
7642 pr_info("FAILED!\n");
7643 pr_info("buffer had: %.*s\n", item->size, item->str);
7644 pr_info("expected: %.*s\n", item->size, rb_string);
7645 RB_WARN_ON(buffer, 1);
7646 ret = -1;
7647 break;
7648 }
7649 total_read++;
7650 }
7651 if (ret)
7652 break;
7653
7654 ret = -1;
7655
7656 pr_info(" read events: %ld\n", total_read);
7657 pr_info(" lost events: %ld\n", total_lost);
7658 pr_info(" total events: %ld\n", total_lost + total_read);
7659 pr_info(" recorded len bytes: %ld\n", total_len);
7660 pr_info(" recorded size bytes: %ld\n", total_size);
7661 if (total_lost) {
7662 pr_info(" With dropped events, record len and size may not match\n"
7663 " alloced and written from above\n");
7664 } else {
7665 if (RB_WARN_ON(buffer, total_len != total_alloc ||
7666 total_size != total_written))
7667 break;
7668 }
7669 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
7670 break;
7671
7672 ret = 0;
7673 }
7674 if (!ret)
7675 pr_info("Ring buffer PASSED!\n");
7676
7677 ring_buffer_free(buffer);
7678 return 0;
7679}
7680
7681late_initcall(test_ringbuffer);
7682#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */