Loading...
1/*
2 * Copyright (c) 2013, Kenneth MacKay
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
15 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
16 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
17 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
18 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
20 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26#ifndef _CRYPTO_ECC_H
27#define _CRYPTO_ECC_H
28
29#include <crypto/ecc_curve.h>
30#include <asm/unaligned.h>
31
32/* One digit is u64 qword. */
33#define ECC_CURVE_NIST_P192_DIGITS 3
34#define ECC_CURVE_NIST_P256_DIGITS 4
35#define ECC_CURVE_NIST_P384_DIGITS 6
36#define ECC_MAX_DIGITS (512 / 64) /* due to ecrdsa */
37
38#define ECC_DIGITS_TO_BYTES_SHIFT 3
39
40#define ECC_MAX_BYTES (ECC_MAX_DIGITS << ECC_DIGITS_TO_BYTES_SHIFT)
41
42#define ECC_POINT_INIT(x, y, ndigits) (struct ecc_point) { x, y, ndigits }
43
44/**
45 * ecc_swap_digits() - Copy ndigits from big endian array to native array
46 * @in: Input array
47 * @out: Output array
48 * @ndigits: Number of digits to copy
49 */
50static inline void ecc_swap_digits(const void *in, u64 *out, unsigned int ndigits)
51{
52 const __be64 *src = (__force __be64 *)in;
53 int i;
54
55 for (i = 0; i < ndigits; i++)
56 out[i] = get_unaligned_be64(&src[ndigits - 1 - i]);
57}
58
59/**
60 * ecc_is_key_valid() - Validate a given ECDH private key
61 *
62 * @curve_id: id representing the curve to use
63 * @ndigits: curve's number of digits
64 * @private_key: private key to be used for the given curve
65 * @private_key_len: private key length
66 *
67 * Returns 0 if the key is acceptable, a negative value otherwise
68 */
69int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
70 const u64 *private_key, unsigned int private_key_len);
71
72/**
73 * ecc_gen_privkey() - Generates an ECC private key.
74 * The private key is a random integer in the range 0 < random < n, where n is a
75 * prime that is the order of the cyclic subgroup generated by the distinguished
76 * point G.
77 * @curve_id: id representing the curve to use
78 * @ndigits: curve number of digits
79 * @private_key: buffer for storing the generated private key
80 *
81 * Returns 0 if the private key was generated successfully, a negative value
82 * if an error occurred.
83 */
84int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey);
85
86/**
87 * ecc_make_pub_key() - Compute an ECC public key
88 *
89 * @curve_id: id representing the curve to use
90 * @ndigits: curve's number of digits
91 * @private_key: pregenerated private key for the given curve
92 * @public_key: buffer for storing the generated public key
93 *
94 * Returns 0 if the public key was generated successfully, a negative value
95 * if an error occurred.
96 */
97int ecc_make_pub_key(const unsigned int curve_id, unsigned int ndigits,
98 const u64 *private_key, u64 *public_key);
99
100/**
101 * crypto_ecdh_shared_secret() - Compute a shared secret
102 *
103 * @curve_id: id representing the curve to use
104 * @ndigits: curve's number of digits
105 * @private_key: private key of part A
106 * @public_key: public key of counterpart B
107 * @secret: buffer for storing the calculated shared secret
108 *
109 * Note: It is recommended that you hash the result of crypto_ecdh_shared_secret
110 * before using it for symmetric encryption or HMAC.
111 *
112 * Returns 0 if the shared secret was generated successfully, a negative value
113 * if an error occurred.
114 */
115int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
116 const u64 *private_key, const u64 *public_key,
117 u64 *secret);
118
119/**
120 * ecc_is_pubkey_valid_partial() - Partial public key validation
121 *
122 * @curve: elliptic curve domain parameters
123 * @pk: public key as a point
124 *
125 * Valdiate public key according to SP800-56A section 5.6.2.3.4 ECC Partial
126 * Public-Key Validation Routine.
127 *
128 * Note: There is no check that the public key is in the correct elliptic curve
129 * subgroup.
130 *
131 * Return: 0 if validation is successful, -EINVAL if validation is failed.
132 */
133int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
134 struct ecc_point *pk);
135
136/**
137 * ecc_is_pubkey_valid_full() - Full public key validation
138 *
139 * @curve: elliptic curve domain parameters
140 * @pk: public key as a point
141 *
142 * Valdiate public key according to SP800-56A section 5.6.2.3.3 ECC Full
143 * Public-Key Validation Routine.
144 *
145 * Return: 0 if validation is successful, -EINVAL if validation is failed.
146 */
147int ecc_is_pubkey_valid_full(const struct ecc_curve *curve,
148 struct ecc_point *pk);
149
150/**
151 * vli_is_zero() - Determine is vli is zero
152 *
153 * @vli: vli to check.
154 * @ndigits: length of the @vli
155 */
156bool vli_is_zero(const u64 *vli, unsigned int ndigits);
157
158/**
159 * vli_cmp() - compare left and right vlis
160 *
161 * @left: vli
162 * @right: vli
163 * @ndigits: length of both vlis
164 *
165 * Returns sign of @left - @right, i.e. -1 if @left < @right,
166 * 0 if @left == @right, 1 if @left > @right.
167 */
168int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits);
169
170/**
171 * vli_sub() - Subtracts right from left
172 *
173 * @result: where to write result
174 * @left: vli
175 * @right vli
176 * @ndigits: length of all vlis
177 *
178 * Note: can modify in-place.
179 *
180 * Return: carry bit.
181 */
182u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
183 unsigned int ndigits);
184
185/**
186 * vli_from_be64() - Load vli from big-endian u64 array
187 *
188 * @dest: destination vli
189 * @src: source array of u64 BE values
190 * @ndigits: length of both vli and array
191 */
192void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits);
193
194/**
195 * vli_from_le64() - Load vli from little-endian u64 array
196 *
197 * @dest: destination vli
198 * @src: source array of u64 LE values
199 * @ndigits: length of both vli and array
200 */
201void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits);
202
203/**
204 * vli_mod_inv() - Modular inversion
205 *
206 * @result: where to write vli number
207 * @input: vli value to operate on
208 * @mod: modulus
209 * @ndigits: length of all vlis
210 */
211void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
212 unsigned int ndigits);
213
214/**
215 * vli_mod_mult_slow() - Modular multiplication
216 *
217 * @result: where to write result value
218 * @left: vli number to multiply with @right
219 * @right: vli number to multiply with @left
220 * @mod: modulus
221 * @ndigits: length of all vlis
222 *
223 * Note: Assumes that mod is big enough curve order.
224 */
225void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
226 const u64 *mod, unsigned int ndigits);
227
228/**
229 * vli_num_bits() - Counts the number of bits required for vli.
230 *
231 * @vli: vli to check.
232 * @ndigits: Length of the @vli
233 *
234 * Return: The number of bits required to represent @vli.
235 */
236unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits);
237
238/**
239 * ecc_aloc_point() - Allocate ECC point.
240 *
241 * @ndigits: Length of vlis in u64 qwords.
242 *
243 * Return: Pointer to the allocated point or NULL if allocation failed.
244 */
245struct ecc_point *ecc_alloc_point(unsigned int ndigits);
246
247/**
248 * ecc_free_point() - Free ECC point.
249 *
250 * @p: The point to free.
251 */
252void ecc_free_point(struct ecc_point *p);
253
254/**
255 * ecc_point_is_zero() - Check if point is zero.
256 *
257 * @p: Point to check for zero.
258 *
259 * Return: true if point is the point at infinity, false otherwise.
260 */
261bool ecc_point_is_zero(const struct ecc_point *point);
262
263/**
264 * ecc_point_mult_shamir() - Add two points multiplied by scalars
265 *
266 * @result: resulting point
267 * @x: scalar to multiply with @p
268 * @p: point to multiply with @x
269 * @y: scalar to multiply with @q
270 * @q: point to multiply with @y
271 * @curve: curve
272 *
273 * Returns result = x * p + x * q over the curve.
274 * This works faster than two multiplications and addition.
275 */
276void ecc_point_mult_shamir(const struct ecc_point *result,
277 const u64 *x, const struct ecc_point *p,
278 const u64 *y, const struct ecc_point *q,
279 const struct ecc_curve *curve);
280
281#endif
1/*
2 * Copyright (c) 2013, Kenneth MacKay
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
15 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
16 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
17 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
18 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
20 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26#ifndef _CRYPTO_ECC_H
27#define _CRYPTO_ECC_H
28
29#include <crypto/ecc_curve.h>
30#include <linux/unaligned.h>
31
32/* One digit is u64 qword. */
33#define ECC_CURVE_NIST_P192_DIGITS 3
34#define ECC_CURVE_NIST_P256_DIGITS 4
35#define ECC_CURVE_NIST_P384_DIGITS 6
36#define ECC_CURVE_NIST_P521_DIGITS 9
37#define ECC_MAX_DIGITS DIV_ROUND_UP(521, 64) /* NIST P521 */
38
39#define ECC_DIGITS_TO_BYTES_SHIFT 3
40
41#define ECC_MAX_BYTES (ECC_MAX_DIGITS << ECC_DIGITS_TO_BYTES_SHIFT)
42
43#define ECC_POINT_INIT(x, y, ndigits) (struct ecc_point) { x, y, ndigits }
44
45/*
46 * The integers r and s making up the signature are expected to be
47 * formatted as two consecutive u64 arrays of size ECC_MAX_BYTES.
48 * The bytes within each u64 digit are in native endianness,
49 * but the order of the u64 digits themselves is little endian.
50 * This format allows direct use by internal vli_*() functions.
51 */
52struct ecdsa_raw_sig {
53 u64 r[ECC_MAX_DIGITS];
54 u64 s[ECC_MAX_DIGITS];
55};
56
57/**
58 * ecc_swap_digits() - Copy ndigits from big endian array to native array
59 * @in: Input array
60 * @out: Output array
61 * @ndigits: Number of digits to copy
62 */
63static inline void ecc_swap_digits(const void *in, u64 *out, unsigned int ndigits)
64{
65 const __be64 *src = (__force __be64 *)in;
66 int i;
67
68 for (i = 0; i < ndigits; i++)
69 out[i] = get_unaligned_be64(&src[ndigits - 1 - i]);
70}
71
72/**
73 * ecc_digits_from_bytes() - Create ndigits-sized digits array from byte array
74 * @in: Input byte array
75 * @nbytes Size of input byte array
76 * @out Output digits array
77 * @ndigits: Number of digits to create from byte array
78 *
79 * The first byte in the input byte array is expected to hold the most
80 * significant bits of the large integer.
81 */
82void ecc_digits_from_bytes(const u8 *in, unsigned int nbytes,
83 u64 *out, unsigned int ndigits);
84
85/**
86 * ecc_is_key_valid() - Validate a given ECDH private key
87 *
88 * @curve_id: id representing the curve to use
89 * @ndigits: curve's number of digits
90 * @private_key: private key to be used for the given curve
91 * @private_key_len: private key length
92 *
93 * Returns 0 if the key is acceptable, a negative value otherwise
94 */
95int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
96 const u64 *private_key, unsigned int private_key_len);
97
98/**
99 * ecc_gen_privkey() - Generates an ECC private key.
100 * The private key is a random integer in the range 0 < random < n, where n is a
101 * prime that is the order of the cyclic subgroup generated by the distinguished
102 * point G.
103 * @curve_id: id representing the curve to use
104 * @ndigits: curve number of digits
105 * @private_key: buffer for storing the generated private key
106 *
107 * Returns 0 if the private key was generated successfully, a negative value
108 * if an error occurred.
109 */
110int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits,
111 u64 *private_key);
112
113/**
114 * ecc_make_pub_key() - Compute an ECC public key
115 *
116 * @curve_id: id representing the curve to use
117 * @ndigits: curve's number of digits
118 * @private_key: pregenerated private key for the given curve
119 * @public_key: buffer for storing the generated public key
120 *
121 * Returns 0 if the public key was generated successfully, a negative value
122 * if an error occurred.
123 */
124int ecc_make_pub_key(const unsigned int curve_id, unsigned int ndigits,
125 const u64 *private_key, u64 *public_key);
126
127/**
128 * crypto_ecdh_shared_secret() - Compute a shared secret
129 *
130 * @curve_id: id representing the curve to use
131 * @ndigits: curve's number of digits
132 * @private_key: private key of part A
133 * @public_key: public key of counterpart B
134 * @secret: buffer for storing the calculated shared secret
135 *
136 * Note: It is recommended that you hash the result of crypto_ecdh_shared_secret
137 * before using it for symmetric encryption or HMAC.
138 *
139 * Returns 0 if the shared secret was generated successfully, a negative value
140 * if an error occurred.
141 */
142int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
143 const u64 *private_key, const u64 *public_key,
144 u64 *secret);
145
146/**
147 * ecc_is_pubkey_valid_partial() - Partial public key validation
148 *
149 * @curve: elliptic curve domain parameters
150 * @pk: public key as a point
151 *
152 * Valdiate public key according to SP800-56A section 5.6.2.3.4 ECC Partial
153 * Public-Key Validation Routine.
154 *
155 * Note: There is no check that the public key is in the correct elliptic curve
156 * subgroup.
157 *
158 * Return: 0 if validation is successful, -EINVAL if validation is failed.
159 */
160int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
161 struct ecc_point *pk);
162
163/**
164 * ecc_is_pubkey_valid_full() - Full public key validation
165 *
166 * @curve: elliptic curve domain parameters
167 * @pk: public key as a point
168 *
169 * Valdiate public key according to SP800-56A section 5.6.2.3.3 ECC Full
170 * Public-Key Validation Routine.
171 *
172 * Return: 0 if validation is successful, -EINVAL if validation is failed.
173 */
174int ecc_is_pubkey_valid_full(const struct ecc_curve *curve,
175 struct ecc_point *pk);
176
177/**
178 * vli_is_zero() - Determine is vli is zero
179 *
180 * @vli: vli to check.
181 * @ndigits: length of the @vli
182 */
183bool vli_is_zero(const u64 *vli, unsigned int ndigits);
184
185/**
186 * vli_cmp() - compare left and right vlis
187 *
188 * @left: vli
189 * @right: vli
190 * @ndigits: length of both vlis
191 *
192 * Returns sign of @left - @right, i.e. -1 if @left < @right,
193 * 0 if @left == @right, 1 if @left > @right.
194 */
195int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits);
196
197/**
198 * vli_sub() - Subtracts right from left
199 *
200 * @result: where to write result
201 * @left: vli
202 * @right vli
203 * @ndigits: length of all vlis
204 *
205 * Note: can modify in-place.
206 *
207 * Return: carry bit.
208 */
209u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
210 unsigned int ndigits);
211
212/**
213 * vli_from_be64() - Load vli from big-endian u64 array
214 *
215 * @dest: destination vli
216 * @src: source array of u64 BE values
217 * @ndigits: length of both vli and array
218 */
219void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits);
220
221/**
222 * vli_from_le64() - Load vli from little-endian u64 array
223 *
224 * @dest: destination vli
225 * @src: source array of u64 LE values
226 * @ndigits: length of both vli and array
227 */
228void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits);
229
230/**
231 * vli_mod_inv() - Modular inversion
232 *
233 * @result: where to write vli number
234 * @input: vli value to operate on
235 * @mod: modulus
236 * @ndigits: length of all vlis
237 */
238void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
239 unsigned int ndigits);
240
241/**
242 * vli_mod_mult_slow() - Modular multiplication
243 *
244 * @result: where to write result value
245 * @left: vli number to multiply with @right
246 * @right: vli number to multiply with @left
247 * @mod: modulus
248 * @ndigits: length of all vlis
249 *
250 * Note: Assumes that mod is big enough curve order.
251 */
252void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
253 const u64 *mod, unsigned int ndigits);
254
255/**
256 * vli_num_bits() - Counts the number of bits required for vli.
257 *
258 * @vli: vli to check.
259 * @ndigits: Length of the @vli
260 *
261 * Return: The number of bits required to represent @vli.
262 */
263unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits);
264
265/**
266 * ecc_aloc_point() - Allocate ECC point.
267 *
268 * @ndigits: Length of vlis in u64 qwords.
269 *
270 * Return: Pointer to the allocated point or NULL if allocation failed.
271 */
272struct ecc_point *ecc_alloc_point(unsigned int ndigits);
273
274/**
275 * ecc_free_point() - Free ECC point.
276 *
277 * @p: The point to free.
278 */
279void ecc_free_point(struct ecc_point *p);
280
281/**
282 * ecc_point_is_zero() - Check if point is zero.
283 *
284 * @p: Point to check for zero.
285 *
286 * Return: true if point is the point at infinity, false otherwise.
287 */
288bool ecc_point_is_zero(const struct ecc_point *point);
289
290/**
291 * ecc_point_mult_shamir() - Add two points multiplied by scalars
292 *
293 * @result: resulting point
294 * @x: scalar to multiply with @p
295 * @p: point to multiply with @x
296 * @y: scalar to multiply with @q
297 * @q: point to multiply with @y
298 * @curve: curve
299 *
300 * Returns result = x * p + x * q over the curve.
301 * This works faster than two multiplications and addition.
302 */
303void ecc_point_mult_shamir(const struct ecc_point *result,
304 const u64 *x, const struct ecc_point *p,
305 const u64 *y, const struct ecc_point *q,
306 const struct ecc_curve *curve);
307
308extern struct crypto_template ecdsa_x962_tmpl;
309extern struct crypto_template ecdsa_p1363_tmpl;
310#endif