Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
  4 * All Rights Reserved.
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 12#include "xfs_bit.h"
 13#include "xfs_mount.h"
 14#include "xfs_btree.h"
 15#include "xfs_btree_staging.h"
 16#include "xfs_ialloc.h"
 17#include "xfs_ialloc_btree.h"
 18#include "xfs_alloc.h"
 19#include "xfs_error.h"
 
 20#include "xfs_trace.h"
 21#include "xfs_trans.h"
 22#include "xfs_rmap.h"
 23#include "xfs_ag.h"
 24
 25static struct kmem_cache	*xfs_inobt_cur_cache;
 26
 27STATIC int
 28xfs_inobt_get_minrecs(
 29	struct xfs_btree_cur	*cur,
 30	int			level)
 31{
 32	return M_IGEO(cur->bc_mp)->inobt_mnr[level != 0];
 33}
 34
 35STATIC struct xfs_btree_cur *
 36xfs_inobt_dup_cursor(
 37	struct xfs_btree_cur	*cur)
 38{
 39	return xfs_inobt_init_cursor(cur->bc_ag.pag, cur->bc_tp,
 40			cur->bc_ag.agbp, cur->bc_btnum);
 
 
 
 
 
 
 
 
 41}
 42
 43STATIC void
 44xfs_inobt_set_root(
 45	struct xfs_btree_cur		*cur,
 46	const union xfs_btree_ptr	*nptr,
 47	int				inc)	/* level change */
 48{
 49	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 50	struct xfs_agi		*agi = agbp->b_addr;
 51
 52	agi->agi_root = nptr->s;
 53	be32_add_cpu(&agi->agi_level, inc);
 54	xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
 55}
 56
 57STATIC void
 58xfs_finobt_set_root(
 59	struct xfs_btree_cur		*cur,
 60	const union xfs_btree_ptr	*nptr,
 61	int				inc)	/* level change */
 62{
 63	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 64	struct xfs_agi		*agi = agbp->b_addr;
 65
 66	agi->agi_free_root = nptr->s;
 67	be32_add_cpu(&agi->agi_free_level, inc);
 68	xfs_ialloc_log_agi(cur->bc_tp, agbp,
 69			   XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
 70}
 71
 72/* Update the inode btree block counter for this btree. */
 73static inline void
 74xfs_inobt_mod_blockcount(
 75	struct xfs_btree_cur	*cur,
 76	int			howmuch)
 77{
 78	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 79	struct xfs_agi		*agi = agbp->b_addr;
 80
 81	if (!xfs_has_inobtcounts(cur->bc_mp))
 82		return;
 83
 84	if (cur->bc_btnum == XFS_BTNUM_FINO)
 85		be32_add_cpu(&agi->agi_fblocks, howmuch);
 86	else if (cur->bc_btnum == XFS_BTNUM_INO)
 87		be32_add_cpu(&agi->agi_iblocks, howmuch);
 88	xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_IBLOCKS);
 89}
 90
 91STATIC int
 92__xfs_inobt_alloc_block(
 93	struct xfs_btree_cur		*cur,
 94	const union xfs_btree_ptr	*start,
 95	union xfs_btree_ptr		*new,
 96	int				*stat,
 97	enum xfs_ag_resv_type		resv)
 98{
 99	xfs_alloc_arg_t		args;		/* block allocation args */
100	int			error;		/* error return value */
101	xfs_agblock_t		sbno = be32_to_cpu(start->s);
102
103	memset(&args, 0, sizeof(args));
104	args.tp = cur->bc_tp;
105	args.mp = cur->bc_mp;
106	args.pag = cur->bc_ag.pag;
107	args.oinfo = XFS_RMAP_OINFO_INOBT;
108	args.minlen = 1;
109	args.maxlen = 1;
110	args.prod = 1;
111	args.resv = resv;
112
113	error = xfs_alloc_vextent_near_bno(&args,
114			XFS_AGB_TO_FSB(args.mp, args.pag->pag_agno, sbno));
115	if (error)
116		return error;
117
118	if (args.fsbno == NULLFSBLOCK) {
119		*stat = 0;
120		return 0;
121	}
122	ASSERT(args.len == 1);
123
124	new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
125	*stat = 1;
126	xfs_inobt_mod_blockcount(cur, 1);
127	return 0;
128}
129
130STATIC int
131xfs_inobt_alloc_block(
132	struct xfs_btree_cur		*cur,
133	const union xfs_btree_ptr	*start,
134	union xfs_btree_ptr		*new,
135	int				*stat)
136{
137	return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_NONE);
138}
139
140STATIC int
141xfs_finobt_alloc_block(
142	struct xfs_btree_cur		*cur,
143	const union xfs_btree_ptr	*start,
144	union xfs_btree_ptr		*new,
145	int				*stat)
146{
147	if (cur->bc_mp->m_finobt_nores)
148		return xfs_inobt_alloc_block(cur, start, new, stat);
149	return __xfs_inobt_alloc_block(cur, start, new, stat,
150			XFS_AG_RESV_METADATA);
151}
152
153STATIC int
154__xfs_inobt_free_block(
155	struct xfs_btree_cur	*cur,
156	struct xfs_buf		*bp,
157	enum xfs_ag_resv_type	resv)
158{
159	xfs_fsblock_t		fsbno;
160
161	xfs_inobt_mod_blockcount(cur, -1);
162	fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp));
163	return xfs_free_extent_later(cur->bc_tp, fsbno, 1,
164			&XFS_RMAP_OINFO_INOBT, resv, false);
165}
166
167STATIC int
168xfs_inobt_free_block(
169	struct xfs_btree_cur	*cur,
170	struct xfs_buf		*bp)
171{
172	return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_NONE);
173}
174
175STATIC int
176xfs_finobt_free_block(
177	struct xfs_btree_cur	*cur,
178	struct xfs_buf		*bp)
179{
180	if (cur->bc_mp->m_finobt_nores)
181		return xfs_inobt_free_block(cur, bp);
182	return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_METADATA);
183}
184
185STATIC int
186xfs_inobt_get_maxrecs(
187	struct xfs_btree_cur	*cur,
188	int			level)
189{
190	return M_IGEO(cur->bc_mp)->inobt_mxr[level != 0];
191}
192
193STATIC void
194xfs_inobt_init_key_from_rec(
195	union xfs_btree_key		*key,
196	const union xfs_btree_rec	*rec)
197{
198	key->inobt.ir_startino = rec->inobt.ir_startino;
199}
200
201STATIC void
202xfs_inobt_init_high_key_from_rec(
203	union xfs_btree_key		*key,
204	const union xfs_btree_rec	*rec)
205{
206	__u32				x;
207
208	x = be32_to_cpu(rec->inobt.ir_startino);
209	x += XFS_INODES_PER_CHUNK - 1;
210	key->inobt.ir_startino = cpu_to_be32(x);
211}
212
213STATIC void
214xfs_inobt_init_rec_from_cur(
215	struct xfs_btree_cur	*cur,
216	union xfs_btree_rec	*rec)
217{
218	rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
219	if (xfs_has_sparseinodes(cur->bc_mp)) {
220		rec->inobt.ir_u.sp.ir_holemask =
221					cpu_to_be16(cur->bc_rec.i.ir_holemask);
222		rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
223		rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
224	} else {
225		/* ir_holemask/ir_count not supported on-disk */
226		rec->inobt.ir_u.f.ir_freecount =
227					cpu_to_be32(cur->bc_rec.i.ir_freecount);
228	}
229	rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
230}
231
232/*
233 * initial value of ptr for lookup
234 */
235STATIC void
236xfs_inobt_init_ptr_from_cur(
237	struct xfs_btree_cur	*cur,
238	union xfs_btree_ptr	*ptr)
239{
240	struct xfs_agi		*agi = cur->bc_ag.agbp->b_addr;
241
242	ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno));
243
244	ptr->s = agi->agi_root;
245}
246
247STATIC void
248xfs_finobt_init_ptr_from_cur(
249	struct xfs_btree_cur	*cur,
250	union xfs_btree_ptr	*ptr)
251{
252	struct xfs_agi		*agi = cur->bc_ag.agbp->b_addr;
253
254	ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno));
 
255	ptr->s = agi->agi_free_root;
256}
257
258STATIC int64_t
259xfs_inobt_key_diff(
260	struct xfs_btree_cur		*cur,
261	const union xfs_btree_key	*key)
262{
263	return (int64_t)be32_to_cpu(key->inobt.ir_startino) -
264			  cur->bc_rec.i.ir_startino;
265}
266
267STATIC int64_t
268xfs_inobt_diff_two_keys(
269	struct xfs_btree_cur		*cur,
270	const union xfs_btree_key	*k1,
271	const union xfs_btree_key	*k2,
272	const union xfs_btree_key	*mask)
273{
274	ASSERT(!mask || mask->inobt.ir_startino);
275
276	return (int64_t)be32_to_cpu(k1->inobt.ir_startino) -
277			be32_to_cpu(k2->inobt.ir_startino);
278}
279
280static xfs_failaddr_t
281xfs_inobt_verify(
282	struct xfs_buf		*bp)
283{
284	struct xfs_mount	*mp = bp->b_mount;
285	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
286	xfs_failaddr_t		fa;
287	unsigned int		level;
288
289	if (!xfs_verify_magic(bp, block->bb_magic))
290		return __this_address;
291
292	/*
293	 * During growfs operations, we can't verify the exact owner as the
294	 * perag is not fully initialised and hence not attached to the buffer.
295	 *
296	 * Similarly, during log recovery we will have a perag structure
297	 * attached, but the agi information will not yet have been initialised
298	 * from the on disk AGI. We don't currently use any of this information,
299	 * but beware of the landmine (i.e. need to check
300	 * xfs_perag_initialised_agi(pag)) if we ever do.
301	 */
302	if (xfs_has_crc(mp)) {
303		fa = xfs_btree_sblock_v5hdr_verify(bp);
304		if (fa)
305			return fa;
306	}
307
308	/* level verification */
309	level = be16_to_cpu(block->bb_level);
310	if (level >= M_IGEO(mp)->inobt_maxlevels)
311		return __this_address;
312
313	return xfs_btree_sblock_verify(bp,
314			M_IGEO(mp)->inobt_mxr[level != 0]);
315}
316
317static void
318xfs_inobt_read_verify(
319	struct xfs_buf	*bp)
320{
321	xfs_failaddr_t	fa;
322
323	if (!xfs_btree_sblock_verify_crc(bp))
324		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
325	else {
326		fa = xfs_inobt_verify(bp);
327		if (fa)
328			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
329	}
330
331	if (bp->b_error)
332		trace_xfs_btree_corrupt(bp, _RET_IP_);
333}
334
335static void
336xfs_inobt_write_verify(
337	struct xfs_buf	*bp)
338{
339	xfs_failaddr_t	fa;
340
341	fa = xfs_inobt_verify(bp);
342	if (fa) {
343		trace_xfs_btree_corrupt(bp, _RET_IP_);
344		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
345		return;
346	}
347	xfs_btree_sblock_calc_crc(bp);
348
349}
350
351const struct xfs_buf_ops xfs_inobt_buf_ops = {
352	.name = "xfs_inobt",
353	.magic = { cpu_to_be32(XFS_IBT_MAGIC), cpu_to_be32(XFS_IBT_CRC_MAGIC) },
354	.verify_read = xfs_inobt_read_verify,
355	.verify_write = xfs_inobt_write_verify,
356	.verify_struct = xfs_inobt_verify,
357};
358
359const struct xfs_buf_ops xfs_finobt_buf_ops = {
360	.name = "xfs_finobt",
361	.magic = { cpu_to_be32(XFS_FIBT_MAGIC),
362		   cpu_to_be32(XFS_FIBT_CRC_MAGIC) },
363	.verify_read = xfs_inobt_read_verify,
364	.verify_write = xfs_inobt_write_verify,
365	.verify_struct = xfs_inobt_verify,
366};
367
368STATIC int
369xfs_inobt_keys_inorder(
370	struct xfs_btree_cur		*cur,
371	const union xfs_btree_key	*k1,
372	const union xfs_btree_key	*k2)
373{
374	return be32_to_cpu(k1->inobt.ir_startino) <
375		be32_to_cpu(k2->inobt.ir_startino);
376}
377
378STATIC int
379xfs_inobt_recs_inorder(
380	struct xfs_btree_cur		*cur,
381	const union xfs_btree_rec	*r1,
382	const union xfs_btree_rec	*r2)
383{
384	return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
385		be32_to_cpu(r2->inobt.ir_startino);
386}
387
388STATIC enum xbtree_key_contig
389xfs_inobt_keys_contiguous(
390	struct xfs_btree_cur		*cur,
391	const union xfs_btree_key	*key1,
392	const union xfs_btree_key	*key2,
393	const union xfs_btree_key	*mask)
394{
395	ASSERT(!mask || mask->inobt.ir_startino);
396
397	return xbtree_key_contig(be32_to_cpu(key1->inobt.ir_startino),
398				 be32_to_cpu(key2->inobt.ir_startino));
399}
400
401static const struct xfs_btree_ops xfs_inobt_ops = {
 
 
 
402	.rec_len		= sizeof(xfs_inobt_rec_t),
403	.key_len		= sizeof(xfs_inobt_key_t),
 
 
 
 
 
404
405	.dup_cursor		= xfs_inobt_dup_cursor,
406	.set_root		= xfs_inobt_set_root,
407	.alloc_block		= xfs_inobt_alloc_block,
408	.free_block		= xfs_inobt_free_block,
409	.get_minrecs		= xfs_inobt_get_minrecs,
410	.get_maxrecs		= xfs_inobt_get_maxrecs,
411	.init_key_from_rec	= xfs_inobt_init_key_from_rec,
412	.init_high_key_from_rec	= xfs_inobt_init_high_key_from_rec,
413	.init_rec_from_cur	= xfs_inobt_init_rec_from_cur,
414	.init_ptr_from_cur	= xfs_inobt_init_ptr_from_cur,
415	.key_diff		= xfs_inobt_key_diff,
416	.buf_ops		= &xfs_inobt_buf_ops,
417	.diff_two_keys		= xfs_inobt_diff_two_keys,
418	.keys_inorder		= xfs_inobt_keys_inorder,
419	.recs_inorder		= xfs_inobt_recs_inorder,
420	.keys_contiguous	= xfs_inobt_keys_contiguous,
421};
422
423static const struct xfs_btree_ops xfs_finobt_ops = {
 
 
 
424	.rec_len		= sizeof(xfs_inobt_rec_t),
425	.key_len		= sizeof(xfs_inobt_key_t),
 
426
427	.dup_cursor		= xfs_inobt_dup_cursor,
 
 
 
 
428	.set_root		= xfs_finobt_set_root,
429	.alloc_block		= xfs_finobt_alloc_block,
430	.free_block		= xfs_finobt_free_block,
431	.get_minrecs		= xfs_inobt_get_minrecs,
432	.get_maxrecs		= xfs_inobt_get_maxrecs,
433	.init_key_from_rec	= xfs_inobt_init_key_from_rec,
434	.init_high_key_from_rec	= xfs_inobt_init_high_key_from_rec,
435	.init_rec_from_cur	= xfs_inobt_init_rec_from_cur,
436	.init_ptr_from_cur	= xfs_finobt_init_ptr_from_cur,
437	.key_diff		= xfs_inobt_key_diff,
438	.buf_ops		= &xfs_finobt_buf_ops,
439	.diff_two_keys		= xfs_inobt_diff_two_keys,
440	.keys_inorder		= xfs_inobt_keys_inorder,
441	.recs_inorder		= xfs_inobt_recs_inorder,
442	.keys_contiguous	= xfs_inobt_keys_contiguous,
443};
444
445/*
446 * Initialize a new inode btree cursor.
 
 
447 */
448static struct xfs_btree_cur *
449xfs_inobt_init_common(
450	struct xfs_perag	*pag,
451	struct xfs_trans	*tp,		/* transaction pointer */
452	xfs_btnum_t		btnum)		/* ialloc or free ino btree */
453{
454	struct xfs_mount	*mp = pag->pag_mount;
455	struct xfs_btree_cur	*cur;
456
457	cur = xfs_btree_alloc_cursor(mp, tp, btnum,
458			M_IGEO(mp)->inobt_maxlevels, xfs_inobt_cur_cache);
459	if (btnum == XFS_BTNUM_INO) {
460		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_ibt_2);
461		cur->bc_ops = &xfs_inobt_ops;
462	} else {
463		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_fibt_2);
464		cur->bc_ops = &xfs_finobt_ops;
465	}
466
467	if (xfs_has_crc(mp))
468		cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
469
470	cur->bc_ag.pag = xfs_perag_hold(pag);
 
471	return cur;
472}
473
474/* Create an inode btree cursor. */
 
 
 
 
475struct xfs_btree_cur *
476xfs_inobt_init_cursor(
477	struct xfs_perag	*pag,
478	struct xfs_trans	*tp,
479	struct xfs_buf		*agbp,
480	xfs_btnum_t		btnum)
481{
 
482	struct xfs_btree_cur	*cur;
483	struct xfs_agi		*agi = agbp->b_addr;
484
485	cur = xfs_inobt_init_common(pag, tp, btnum);
486	if (btnum == XFS_BTNUM_INO)
487		cur->bc_nlevels = be32_to_cpu(agi->agi_level);
488	else
489		cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
490	cur->bc_ag.agbp = agbp;
491	return cur;
492}
493
494/* Create an inode btree cursor with a fake root for staging. */
495struct xfs_btree_cur *
496xfs_inobt_stage_cursor(
497	struct xfs_perag	*pag,
498	struct xbtree_afakeroot	*afake,
499	xfs_btnum_t		btnum)
500{
501	struct xfs_btree_cur	*cur;
502
503	cur = xfs_inobt_init_common(pag, NULL, btnum);
504	xfs_btree_stage_afakeroot(cur, afake);
505	return cur;
506}
507
508/*
509 * Install a new inobt btree root.  Caller is responsible for invalidating
510 * and freeing the old btree blocks.
511 */
512void
513xfs_inobt_commit_staged_btree(
514	struct xfs_btree_cur	*cur,
515	struct xfs_trans	*tp,
516	struct xfs_buf		*agbp)
517{
518	struct xfs_agi		*agi = agbp->b_addr;
519	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
520	int			fields;
521
522	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
523
524	if (cur->bc_btnum == XFS_BTNUM_INO) {
525		fields = XFS_AGI_ROOT | XFS_AGI_LEVEL;
526		agi->agi_root = cpu_to_be32(afake->af_root);
527		agi->agi_level = cpu_to_be32(afake->af_levels);
528		if (xfs_has_inobtcounts(cur->bc_mp)) {
529			agi->agi_iblocks = cpu_to_be32(afake->af_blocks);
530			fields |= XFS_AGI_IBLOCKS;
531		}
532		xfs_ialloc_log_agi(tp, agbp, fields);
533		xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_inobt_ops);
534	} else {
535		fields = XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL;
536		agi->agi_free_root = cpu_to_be32(afake->af_root);
537		agi->agi_free_level = cpu_to_be32(afake->af_levels);
538		if (xfs_has_inobtcounts(cur->bc_mp)) {
539			agi->agi_fblocks = cpu_to_be32(afake->af_blocks);
540			fields |= XFS_AGI_IBLOCKS;
541		}
542		xfs_ialloc_log_agi(tp, agbp, fields);
543		xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_finobt_ops);
544	}
545}
546
547/* Calculate number of records in an inode btree block. */
548static inline unsigned int
549xfs_inobt_block_maxrecs(
550	unsigned int		blocklen,
551	bool			leaf)
552{
553	if (leaf)
554		return blocklen / sizeof(xfs_inobt_rec_t);
555	return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
556}
557
558/*
559 * Calculate number of records in an inobt btree block.
560 */
561int
562xfs_inobt_maxrecs(
563	struct xfs_mount	*mp,
564	int			blocklen,
565	int			leaf)
566{
567	blocklen -= XFS_INOBT_BLOCK_LEN(mp);
568	return xfs_inobt_block_maxrecs(blocklen, leaf);
569}
570
571/*
572 * Maximum number of inode btree records per AG.  Pretend that we can fill an
573 * entire AG completely full of inodes except for the AG headers.
574 */
575#define XFS_MAX_INODE_RECORDS \
576	((XFS_MAX_AG_BYTES - (4 * BBSIZE)) / XFS_DINODE_MIN_SIZE) / \
577			XFS_INODES_PER_CHUNK
578
579/* Compute the max possible height for the inode btree. */
580static inline unsigned int
581xfs_inobt_maxlevels_ondisk(void)
582{
583	unsigned int		minrecs[2];
584	unsigned int		blocklen;
585
586	blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
587		       XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
588
589	minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
590	minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
591
592	return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
593}
594
595/* Compute the max possible height for the free inode btree. */
596static inline unsigned int
597xfs_finobt_maxlevels_ondisk(void)
598{
599	unsigned int		minrecs[2];
600	unsigned int		blocklen;
601
602	blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN;
603
604	minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
605	minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
606
607	return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
608}
609
610/* Compute the max possible height for either inode btree. */
611unsigned int
612xfs_iallocbt_maxlevels_ondisk(void)
613{
614	return max(xfs_inobt_maxlevels_ondisk(),
615		   xfs_finobt_maxlevels_ondisk());
616}
617
618/*
619 * Convert the inode record holemask to an inode allocation bitmap. The inode
620 * allocation bitmap is inode granularity and specifies whether an inode is
621 * physically allocated on disk (not whether the inode is considered allocated
622 * or free by the fs).
623 *
624 * A bit value of 1 means the inode is allocated, a value of 0 means it is free.
625 */
626uint64_t
627xfs_inobt_irec_to_allocmask(
628	const struct xfs_inobt_rec_incore	*rec)
629{
630	uint64_t			bitmap = 0;
631	uint64_t			inodespbit;
632	int				nextbit;
633	uint				allocbitmap;
634
635	/*
636	 * The holemask has 16-bits for a 64 inode record. Therefore each
637	 * holemask bit represents multiple inodes. Create a mask of bits to set
638	 * in the allocmask for each holemask bit.
639	 */
640	inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
641
642	/*
643	 * Allocated inodes are represented by 0 bits in holemask. Invert the 0
644	 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
645	 * anything beyond the 16 holemask bits since this casts to a larger
646	 * type.
647	 */
648	allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
649
650	/*
651	 * allocbitmap is the inverted holemask so every set bit represents
652	 * allocated inodes. To expand from 16-bit holemask granularity to
653	 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
654	 * bitmap for every holemask bit.
655	 */
656	nextbit = xfs_next_bit(&allocbitmap, 1, 0);
657	while (nextbit != -1) {
658		ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
659
660		bitmap |= (inodespbit <<
661			   (nextbit * XFS_INODES_PER_HOLEMASK_BIT));
662
663		nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
664	}
665
666	return bitmap;
667}
668
669#if defined(DEBUG) || defined(XFS_WARN)
670/*
671 * Verify that an in-core inode record has a valid inode count.
672 */
673int
674xfs_inobt_rec_check_count(
675	struct xfs_mount		*mp,
676	struct xfs_inobt_rec_incore	*rec)
677{
678	int				inocount = 0;
679	int				nextbit = 0;
680	uint64_t			allocbmap;
681	int				wordsz;
682
683	wordsz = sizeof(allocbmap) / sizeof(unsigned int);
684	allocbmap = xfs_inobt_irec_to_allocmask(rec);
685
686	nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
687	while (nextbit != -1) {
688		inocount++;
689		nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
690				       nextbit + 1);
691	}
692
693	if (inocount != rec->ir_count)
694		return -EFSCORRUPTED;
695
696	return 0;
697}
698#endif	/* DEBUG */
699
700static xfs_extlen_t
701xfs_inobt_max_size(
702	struct xfs_perag	*pag)
703{
704	struct xfs_mount	*mp = pag->pag_mount;
705	xfs_agblock_t		agblocks = pag->block_count;
706
707	/* Bail out if we're uninitialized, which can happen in mkfs. */
708	if (M_IGEO(mp)->inobt_mxr[0] == 0)
709		return 0;
710
711	/*
712	 * The log is permanently allocated, so the space it occupies will
713	 * never be available for the kinds of things that would require btree
714	 * expansion.  We therefore can pretend the space isn't there.
715	 */
716	if (xfs_ag_contains_log(mp, pag->pag_agno))
717		agblocks -= mp->m_sb.sb_logblocks;
718
719	return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr,
720				(uint64_t)agblocks * mp->m_sb.sb_inopblock /
721					XFS_INODES_PER_CHUNK);
722}
723
724/* Read AGI and create inobt cursor. */
725int
726xfs_inobt_cur(
727	struct xfs_perag	*pag,
728	struct xfs_trans	*tp,
729	xfs_btnum_t		which,
730	struct xfs_btree_cur	**curpp,
731	struct xfs_buf		**agi_bpp)
732{
733	struct xfs_btree_cur	*cur;
734	int			error;
735
736	ASSERT(*agi_bpp == NULL);
737	ASSERT(*curpp == NULL);
738
739	error = xfs_ialloc_read_agi(pag, tp, agi_bpp);
740	if (error)
741		return error;
742
743	cur = xfs_inobt_init_cursor(pag, tp, *agi_bpp, which);
744	*curpp = cur;
745	return 0;
746}
747
748static int
749xfs_inobt_count_blocks(
750	struct xfs_perag	*pag,
751	struct xfs_trans	*tp,
752	xfs_btnum_t		btnum,
753	xfs_extlen_t		*tree_blocks)
754{
755	struct xfs_buf		*agbp = NULL;
756	struct xfs_btree_cur	*cur = NULL;
 
757	int			error;
758
759	error = xfs_inobt_cur(pag, tp, btnum, &cur, &agbp);
760	if (error)
761		return error;
762
763	error = xfs_btree_count_blocks(cur, tree_blocks);
 
764	xfs_btree_del_cursor(cur, error);
765	xfs_trans_brelse(tp, agbp);
 
766
767	return error;
768}
769
770/* Read finobt block count from AGI header. */
771static int
772xfs_finobt_read_blocks(
773	struct xfs_perag	*pag,
774	struct xfs_trans	*tp,
775	xfs_extlen_t		*tree_blocks)
776{
777	struct xfs_buf		*agbp;
778	struct xfs_agi		*agi;
779	int			error;
780
781	error = xfs_ialloc_read_agi(pag, tp, &agbp);
782	if (error)
783		return error;
784
785	agi = agbp->b_addr;
786	*tree_blocks = be32_to_cpu(agi->agi_fblocks);
787	xfs_trans_brelse(tp, agbp);
788	return 0;
789}
790
791/*
792 * Figure out how many blocks to reserve and how many are used by this btree.
793 */
794int
795xfs_finobt_calc_reserves(
796	struct xfs_perag	*pag,
797	struct xfs_trans	*tp,
798	xfs_extlen_t		*ask,
799	xfs_extlen_t		*used)
800{
801	xfs_extlen_t		tree_len = 0;
802	int			error;
803
804	if (!xfs_has_finobt(pag->pag_mount))
805		return 0;
806
807	if (xfs_has_inobtcounts(pag->pag_mount))
808		error = xfs_finobt_read_blocks(pag, tp, &tree_len);
809	else
810		error = xfs_inobt_count_blocks(pag, tp, XFS_BTNUM_FINO,
811				&tree_len);
812	if (error)
813		return error;
814
815	*ask += xfs_inobt_max_size(pag);
816	*used += tree_len;
817	return 0;
818}
819
820/* Calculate the inobt btree size for some records. */
821xfs_extlen_t
822xfs_iallocbt_calc_size(
823	struct xfs_mount	*mp,
824	unsigned long long	len)
825{
826	return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr, len);
827}
828
829int __init
830xfs_inobt_init_cur_cache(void)
831{
832	xfs_inobt_cur_cache = kmem_cache_create("xfs_inobt_cur",
833			xfs_btree_cur_sizeof(xfs_inobt_maxlevels_ondisk()),
834			0, 0, NULL);
835
836	if (!xfs_inobt_cur_cache)
837		return -ENOMEM;
838	return 0;
839}
840
841void
842xfs_inobt_destroy_cur_cache(void)
843{
844	kmem_cache_destroy(xfs_inobt_cur_cache);
845	xfs_inobt_cur_cache = NULL;
846}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
  4 * All Rights Reserved.
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 12#include "xfs_bit.h"
 13#include "xfs_mount.h"
 14#include "xfs_btree.h"
 15#include "xfs_btree_staging.h"
 16#include "xfs_ialloc.h"
 17#include "xfs_ialloc_btree.h"
 18#include "xfs_alloc.h"
 19#include "xfs_error.h"
 20#include "xfs_health.h"
 21#include "xfs_trace.h"
 22#include "xfs_trans.h"
 23#include "xfs_rmap.h"
 24#include "xfs_ag.h"
 25
 26static struct kmem_cache	*xfs_inobt_cur_cache;
 27
 28STATIC int
 29xfs_inobt_get_minrecs(
 30	struct xfs_btree_cur	*cur,
 31	int			level)
 32{
 33	return M_IGEO(cur->bc_mp)->inobt_mnr[level != 0];
 34}
 35
 36STATIC struct xfs_btree_cur *
 37xfs_inobt_dup_cursor(
 38	struct xfs_btree_cur	*cur)
 39{
 40	return xfs_inobt_init_cursor(to_perag(cur->bc_group), cur->bc_tp,
 41			cur->bc_ag.agbp);
 42}
 43
 44STATIC struct xfs_btree_cur *
 45xfs_finobt_dup_cursor(
 46	struct xfs_btree_cur	*cur)
 47{
 48	return xfs_finobt_init_cursor(to_perag(cur->bc_group), cur->bc_tp,
 49			cur->bc_ag.agbp);
 50}
 51
 52STATIC void
 53xfs_inobt_set_root(
 54	struct xfs_btree_cur		*cur,
 55	const union xfs_btree_ptr	*nptr,
 56	int				inc)	/* level change */
 57{
 58	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 59	struct xfs_agi		*agi = agbp->b_addr;
 60
 61	agi->agi_root = nptr->s;
 62	be32_add_cpu(&agi->agi_level, inc);
 63	xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
 64}
 65
 66STATIC void
 67xfs_finobt_set_root(
 68	struct xfs_btree_cur		*cur,
 69	const union xfs_btree_ptr	*nptr,
 70	int				inc)	/* level change */
 71{
 72	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 73	struct xfs_agi		*agi = agbp->b_addr;
 74
 75	agi->agi_free_root = nptr->s;
 76	be32_add_cpu(&agi->agi_free_level, inc);
 77	xfs_ialloc_log_agi(cur->bc_tp, agbp,
 78			   XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
 79}
 80
 81/* Update the inode btree block counter for this btree. */
 82static inline void
 83xfs_inobt_mod_blockcount(
 84	struct xfs_btree_cur	*cur,
 85	int			howmuch)
 86{
 87	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 88	struct xfs_agi		*agi = agbp->b_addr;
 89
 90	if (!xfs_has_inobtcounts(cur->bc_mp))
 91		return;
 92
 93	if (xfs_btree_is_fino(cur->bc_ops))
 94		be32_add_cpu(&agi->agi_fblocks, howmuch);
 95	else
 96		be32_add_cpu(&agi->agi_iblocks, howmuch);
 97	xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_IBLOCKS);
 98}
 99
100STATIC int
101__xfs_inobt_alloc_block(
102	struct xfs_btree_cur		*cur,
103	const union xfs_btree_ptr	*start,
104	union xfs_btree_ptr		*new,
105	int				*stat,
106	enum xfs_ag_resv_type		resv)
107{
108	xfs_alloc_arg_t		args;		/* block allocation args */
109	int			error;		/* error return value */
110	xfs_agblock_t		sbno = be32_to_cpu(start->s);
111
112	memset(&args, 0, sizeof(args));
113	args.tp = cur->bc_tp;
114	args.mp = cur->bc_mp;
115	args.pag = to_perag(cur->bc_group);
116	args.oinfo = XFS_RMAP_OINFO_INOBT;
117	args.minlen = 1;
118	args.maxlen = 1;
119	args.prod = 1;
120	args.resv = resv;
121
122	error = xfs_alloc_vextent_near_bno(&args,
123			xfs_agbno_to_fsb(args.pag, sbno));
124	if (error)
125		return error;
126
127	if (args.fsbno == NULLFSBLOCK) {
128		*stat = 0;
129		return 0;
130	}
131	ASSERT(args.len == 1);
132
133	new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
134	*stat = 1;
135	xfs_inobt_mod_blockcount(cur, 1);
136	return 0;
137}
138
139STATIC int
140xfs_inobt_alloc_block(
141	struct xfs_btree_cur		*cur,
142	const union xfs_btree_ptr	*start,
143	union xfs_btree_ptr		*new,
144	int				*stat)
145{
146	return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_NONE);
147}
148
149STATIC int
150xfs_finobt_alloc_block(
151	struct xfs_btree_cur		*cur,
152	const union xfs_btree_ptr	*start,
153	union xfs_btree_ptr		*new,
154	int				*stat)
155{
156	if (cur->bc_mp->m_finobt_nores)
157		return xfs_inobt_alloc_block(cur, start, new, stat);
158	return __xfs_inobt_alloc_block(cur, start, new, stat,
159			XFS_AG_RESV_METADATA);
160}
161
162STATIC int
163__xfs_inobt_free_block(
164	struct xfs_btree_cur	*cur,
165	struct xfs_buf		*bp,
166	enum xfs_ag_resv_type	resv)
167{
168	xfs_fsblock_t		fsbno;
169
170	xfs_inobt_mod_blockcount(cur, -1);
171	fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp));
172	return xfs_free_extent_later(cur->bc_tp, fsbno, 1,
173			&XFS_RMAP_OINFO_INOBT, resv, 0);
174}
175
176STATIC int
177xfs_inobt_free_block(
178	struct xfs_btree_cur	*cur,
179	struct xfs_buf		*bp)
180{
181	return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_NONE);
182}
183
184STATIC int
185xfs_finobt_free_block(
186	struct xfs_btree_cur	*cur,
187	struct xfs_buf		*bp)
188{
189	if (cur->bc_mp->m_finobt_nores)
190		return xfs_inobt_free_block(cur, bp);
191	return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_METADATA);
192}
193
194STATIC int
195xfs_inobt_get_maxrecs(
196	struct xfs_btree_cur	*cur,
197	int			level)
198{
199	return M_IGEO(cur->bc_mp)->inobt_mxr[level != 0];
200}
201
202STATIC void
203xfs_inobt_init_key_from_rec(
204	union xfs_btree_key		*key,
205	const union xfs_btree_rec	*rec)
206{
207	key->inobt.ir_startino = rec->inobt.ir_startino;
208}
209
210STATIC void
211xfs_inobt_init_high_key_from_rec(
212	union xfs_btree_key		*key,
213	const union xfs_btree_rec	*rec)
214{
215	__u32				x;
216
217	x = be32_to_cpu(rec->inobt.ir_startino);
218	x += XFS_INODES_PER_CHUNK - 1;
219	key->inobt.ir_startino = cpu_to_be32(x);
220}
221
222STATIC void
223xfs_inobt_init_rec_from_cur(
224	struct xfs_btree_cur	*cur,
225	union xfs_btree_rec	*rec)
226{
227	rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
228	if (xfs_has_sparseinodes(cur->bc_mp)) {
229		rec->inobt.ir_u.sp.ir_holemask =
230					cpu_to_be16(cur->bc_rec.i.ir_holemask);
231		rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
232		rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
233	} else {
234		/* ir_holemask/ir_count not supported on-disk */
235		rec->inobt.ir_u.f.ir_freecount =
236					cpu_to_be32(cur->bc_rec.i.ir_freecount);
237	}
238	rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
239}
240
241/*
242 * initial value of ptr for lookup
243 */
244STATIC void
245xfs_inobt_init_ptr_from_cur(
246	struct xfs_btree_cur	*cur,
247	union xfs_btree_ptr	*ptr)
248{
249	struct xfs_agi		*agi = cur->bc_ag.agbp->b_addr;
250
251	ASSERT(cur->bc_group->xg_gno == be32_to_cpu(agi->agi_seqno));
252
253	ptr->s = agi->agi_root;
254}
255
256STATIC void
257xfs_finobt_init_ptr_from_cur(
258	struct xfs_btree_cur	*cur,
259	union xfs_btree_ptr	*ptr)
260{
261	struct xfs_agi		*agi = cur->bc_ag.agbp->b_addr;
262
263	ASSERT(cur->bc_group->xg_gno == be32_to_cpu(agi->agi_seqno));
264
265	ptr->s = agi->agi_free_root;
266}
267
268STATIC int64_t
269xfs_inobt_key_diff(
270	struct xfs_btree_cur		*cur,
271	const union xfs_btree_key	*key)
272{
273	return (int64_t)be32_to_cpu(key->inobt.ir_startino) -
274			  cur->bc_rec.i.ir_startino;
275}
276
277STATIC int64_t
278xfs_inobt_diff_two_keys(
279	struct xfs_btree_cur		*cur,
280	const union xfs_btree_key	*k1,
281	const union xfs_btree_key	*k2,
282	const union xfs_btree_key	*mask)
283{
284	ASSERT(!mask || mask->inobt.ir_startino);
285
286	return (int64_t)be32_to_cpu(k1->inobt.ir_startino) -
287			be32_to_cpu(k2->inobt.ir_startino);
288}
289
290static xfs_failaddr_t
291xfs_inobt_verify(
292	struct xfs_buf		*bp)
293{
294	struct xfs_mount	*mp = bp->b_mount;
295	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
296	xfs_failaddr_t		fa;
297	unsigned int		level;
298
299	if (!xfs_verify_magic(bp, block->bb_magic))
300		return __this_address;
301
302	/*
303	 * During growfs operations, we can't verify the exact owner as the
304	 * perag is not fully initialised and hence not attached to the buffer.
305	 *
306	 * Similarly, during log recovery we will have a perag structure
307	 * attached, but the agi information will not yet have been initialised
308	 * from the on disk AGI. We don't currently use any of this information,
309	 * but beware of the landmine (i.e. need to check
310	 * xfs_perag_initialised_agi(pag)) if we ever do.
311	 */
312	if (xfs_has_crc(mp)) {
313		fa = xfs_btree_agblock_v5hdr_verify(bp);
314		if (fa)
315			return fa;
316	}
317
318	/* level verification */
319	level = be16_to_cpu(block->bb_level);
320	if (level >= M_IGEO(mp)->inobt_maxlevels)
321		return __this_address;
322
323	return xfs_btree_agblock_verify(bp,
324			M_IGEO(mp)->inobt_mxr[level != 0]);
325}
326
327static void
328xfs_inobt_read_verify(
329	struct xfs_buf	*bp)
330{
331	xfs_failaddr_t	fa;
332
333	if (!xfs_btree_agblock_verify_crc(bp))
334		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
335	else {
336		fa = xfs_inobt_verify(bp);
337		if (fa)
338			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
339	}
340
341	if (bp->b_error)
342		trace_xfs_btree_corrupt(bp, _RET_IP_);
343}
344
345static void
346xfs_inobt_write_verify(
347	struct xfs_buf	*bp)
348{
349	xfs_failaddr_t	fa;
350
351	fa = xfs_inobt_verify(bp);
352	if (fa) {
353		trace_xfs_btree_corrupt(bp, _RET_IP_);
354		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
355		return;
356	}
357	xfs_btree_agblock_calc_crc(bp);
358
359}
360
361const struct xfs_buf_ops xfs_inobt_buf_ops = {
362	.name = "xfs_inobt",
363	.magic = { cpu_to_be32(XFS_IBT_MAGIC), cpu_to_be32(XFS_IBT_CRC_MAGIC) },
364	.verify_read = xfs_inobt_read_verify,
365	.verify_write = xfs_inobt_write_verify,
366	.verify_struct = xfs_inobt_verify,
367};
368
369const struct xfs_buf_ops xfs_finobt_buf_ops = {
370	.name = "xfs_finobt",
371	.magic = { cpu_to_be32(XFS_FIBT_MAGIC),
372		   cpu_to_be32(XFS_FIBT_CRC_MAGIC) },
373	.verify_read = xfs_inobt_read_verify,
374	.verify_write = xfs_inobt_write_verify,
375	.verify_struct = xfs_inobt_verify,
376};
377
378STATIC int
379xfs_inobt_keys_inorder(
380	struct xfs_btree_cur		*cur,
381	const union xfs_btree_key	*k1,
382	const union xfs_btree_key	*k2)
383{
384	return be32_to_cpu(k1->inobt.ir_startino) <
385		be32_to_cpu(k2->inobt.ir_startino);
386}
387
388STATIC int
389xfs_inobt_recs_inorder(
390	struct xfs_btree_cur		*cur,
391	const union xfs_btree_rec	*r1,
392	const union xfs_btree_rec	*r2)
393{
394	return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
395		be32_to_cpu(r2->inobt.ir_startino);
396}
397
398STATIC enum xbtree_key_contig
399xfs_inobt_keys_contiguous(
400	struct xfs_btree_cur		*cur,
401	const union xfs_btree_key	*key1,
402	const union xfs_btree_key	*key2,
403	const union xfs_btree_key	*mask)
404{
405	ASSERT(!mask || mask->inobt.ir_startino);
406
407	return xbtree_key_contig(be32_to_cpu(key1->inobt.ir_startino),
408				 be32_to_cpu(key2->inobt.ir_startino));
409}
410
411const struct xfs_btree_ops xfs_inobt_ops = {
412	.name			= "ino",
413	.type			= XFS_BTREE_TYPE_AG,
414
415	.rec_len		= sizeof(xfs_inobt_rec_t),
416	.key_len		= sizeof(xfs_inobt_key_t),
417	.ptr_len		= XFS_BTREE_SHORT_PTR_LEN,
418
419	.lru_refs		= XFS_INO_BTREE_REF,
420	.statoff		= XFS_STATS_CALC_INDEX(xs_ibt_2),
421	.sick_mask		= XFS_SICK_AG_INOBT,
422
423	.dup_cursor		= xfs_inobt_dup_cursor,
424	.set_root		= xfs_inobt_set_root,
425	.alloc_block		= xfs_inobt_alloc_block,
426	.free_block		= xfs_inobt_free_block,
427	.get_minrecs		= xfs_inobt_get_minrecs,
428	.get_maxrecs		= xfs_inobt_get_maxrecs,
429	.init_key_from_rec	= xfs_inobt_init_key_from_rec,
430	.init_high_key_from_rec	= xfs_inobt_init_high_key_from_rec,
431	.init_rec_from_cur	= xfs_inobt_init_rec_from_cur,
432	.init_ptr_from_cur	= xfs_inobt_init_ptr_from_cur,
433	.key_diff		= xfs_inobt_key_diff,
434	.buf_ops		= &xfs_inobt_buf_ops,
435	.diff_two_keys		= xfs_inobt_diff_two_keys,
436	.keys_inorder		= xfs_inobt_keys_inorder,
437	.recs_inorder		= xfs_inobt_recs_inorder,
438	.keys_contiguous	= xfs_inobt_keys_contiguous,
439};
440
441const struct xfs_btree_ops xfs_finobt_ops = {
442	.name			= "fino",
443	.type			= XFS_BTREE_TYPE_AG,
444
445	.rec_len		= sizeof(xfs_inobt_rec_t),
446	.key_len		= sizeof(xfs_inobt_key_t),
447	.ptr_len		= XFS_BTREE_SHORT_PTR_LEN,
448
449	.lru_refs		= XFS_INO_BTREE_REF,
450	.statoff		= XFS_STATS_CALC_INDEX(xs_fibt_2),
451	.sick_mask		= XFS_SICK_AG_FINOBT,
452
453	.dup_cursor		= xfs_finobt_dup_cursor,
454	.set_root		= xfs_finobt_set_root,
455	.alloc_block		= xfs_finobt_alloc_block,
456	.free_block		= xfs_finobt_free_block,
457	.get_minrecs		= xfs_inobt_get_minrecs,
458	.get_maxrecs		= xfs_inobt_get_maxrecs,
459	.init_key_from_rec	= xfs_inobt_init_key_from_rec,
460	.init_high_key_from_rec	= xfs_inobt_init_high_key_from_rec,
461	.init_rec_from_cur	= xfs_inobt_init_rec_from_cur,
462	.init_ptr_from_cur	= xfs_finobt_init_ptr_from_cur,
463	.key_diff		= xfs_inobt_key_diff,
464	.buf_ops		= &xfs_finobt_buf_ops,
465	.diff_two_keys		= xfs_inobt_diff_two_keys,
466	.keys_inorder		= xfs_inobt_keys_inorder,
467	.recs_inorder		= xfs_inobt_recs_inorder,
468	.keys_contiguous	= xfs_inobt_keys_contiguous,
469};
470
471/*
472 * Create an inode btree cursor.
473 *
474 * For staging cursors tp and agbp are NULL.
475 */
476struct xfs_btree_cur *
477xfs_inobt_init_cursor(
478	struct xfs_perag	*pag,
479	struct xfs_trans	*tp,
480	struct xfs_buf		*agbp)
481{
482	struct xfs_mount	*mp = pag_mount(pag);
483	struct xfs_btree_cur	*cur;
484
485	cur = xfs_btree_alloc_cursor(mp, tp, &xfs_inobt_ops,
486			M_IGEO(mp)->inobt_maxlevels, xfs_inobt_cur_cache);
487	cur->bc_group = xfs_group_hold(pag_group(pag));
488	cur->bc_ag.agbp = agbp;
489	if (agbp) {
490		struct xfs_agi		*agi = agbp->b_addr;
 
 
 
 
 
 
491
492		cur->bc_nlevels = be32_to_cpu(agi->agi_level);
493	}
494	return cur;
495}
496
497/*
498 * Create a free inode btree cursor.
499 *
500 * For staging cursors tp and agbp are NULL.
501 */
502struct xfs_btree_cur *
503xfs_finobt_init_cursor(
504	struct xfs_perag	*pag,
505	struct xfs_trans	*tp,
506	struct xfs_buf		*agbp)
 
507{
508	struct xfs_mount	*mp = pag_mount(pag);
509	struct xfs_btree_cur	*cur;
 
510
511	cur = xfs_btree_alloc_cursor(mp, tp, &xfs_finobt_ops,
512			M_IGEO(mp)->inobt_maxlevels, xfs_inobt_cur_cache);
513	cur->bc_group = xfs_group_hold(pag_group(pag));
 
 
514	cur->bc_ag.agbp = agbp;
515	if (agbp) {
516		struct xfs_agi		*agi = agbp->b_addr;
517
518		cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
519	}
 
 
 
 
 
 
 
 
 
520	return cur;
521}
522
523/*
524 * Install a new inobt btree root.  Caller is responsible for invalidating
525 * and freeing the old btree blocks.
526 */
527void
528xfs_inobt_commit_staged_btree(
529	struct xfs_btree_cur	*cur,
530	struct xfs_trans	*tp,
531	struct xfs_buf		*agbp)
532{
533	struct xfs_agi		*agi = agbp->b_addr;
534	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
535	int			fields;
536
537	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
538
539	if (xfs_btree_is_ino(cur->bc_ops)) {
540		fields = XFS_AGI_ROOT | XFS_AGI_LEVEL;
541		agi->agi_root = cpu_to_be32(afake->af_root);
542		agi->agi_level = cpu_to_be32(afake->af_levels);
543		if (xfs_has_inobtcounts(cur->bc_mp)) {
544			agi->agi_iblocks = cpu_to_be32(afake->af_blocks);
545			fields |= XFS_AGI_IBLOCKS;
546		}
547		xfs_ialloc_log_agi(tp, agbp, fields);
548		xfs_btree_commit_afakeroot(cur, tp, agbp);
549	} else {
550		fields = XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL;
551		agi->agi_free_root = cpu_to_be32(afake->af_root);
552		agi->agi_free_level = cpu_to_be32(afake->af_levels);
553		if (xfs_has_inobtcounts(cur->bc_mp)) {
554			agi->agi_fblocks = cpu_to_be32(afake->af_blocks);
555			fields |= XFS_AGI_IBLOCKS;
556		}
557		xfs_ialloc_log_agi(tp, agbp, fields);
558		xfs_btree_commit_afakeroot(cur, tp, agbp);
559	}
560}
561
562/* Calculate number of records in an inode btree block. */
563static inline unsigned int
564xfs_inobt_block_maxrecs(
565	unsigned int		blocklen,
566	bool			leaf)
567{
568	if (leaf)
569		return blocklen / sizeof(xfs_inobt_rec_t);
570	return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
571}
572
573/*
574 * Calculate number of records in an inobt btree block.
575 */
576unsigned int
577xfs_inobt_maxrecs(
578	struct xfs_mount	*mp,
579	unsigned int		blocklen,
580	bool			leaf)
581{
582	blocklen -= XFS_INOBT_BLOCK_LEN(mp);
583	return xfs_inobt_block_maxrecs(blocklen, leaf);
584}
585
586/*
587 * Maximum number of inode btree records per AG.  Pretend that we can fill an
588 * entire AG completely full of inodes except for the AG headers.
589 */
590#define XFS_MAX_INODE_RECORDS \
591	((XFS_MAX_AG_BYTES - (4 * BBSIZE)) / XFS_DINODE_MIN_SIZE) / \
592			XFS_INODES_PER_CHUNK
593
594/* Compute the max possible height for the inode btree. */
595static inline unsigned int
596xfs_inobt_maxlevels_ondisk(void)
597{
598	unsigned int		minrecs[2];
599	unsigned int		blocklen;
600
601	blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
602		       XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
603
604	minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
605	minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
606
607	return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
608}
609
610/* Compute the max possible height for the free inode btree. */
611static inline unsigned int
612xfs_finobt_maxlevels_ondisk(void)
613{
614	unsigned int		minrecs[2];
615	unsigned int		blocklen;
616
617	blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN;
618
619	minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
620	minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
621
622	return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
623}
624
625/* Compute the max possible height for either inode btree. */
626unsigned int
627xfs_iallocbt_maxlevels_ondisk(void)
628{
629	return max(xfs_inobt_maxlevels_ondisk(),
630		   xfs_finobt_maxlevels_ondisk());
631}
632
633/*
634 * Convert the inode record holemask to an inode allocation bitmap. The inode
635 * allocation bitmap is inode granularity and specifies whether an inode is
636 * physically allocated on disk (not whether the inode is considered allocated
637 * or free by the fs).
638 *
639 * A bit value of 1 means the inode is allocated, a value of 0 means it is free.
640 */
641uint64_t
642xfs_inobt_irec_to_allocmask(
643	const struct xfs_inobt_rec_incore	*rec)
644{
645	uint64_t			bitmap = 0;
646	uint64_t			inodespbit;
647	int				nextbit;
648	uint				allocbitmap;
649
650	/*
651	 * The holemask has 16-bits for a 64 inode record. Therefore each
652	 * holemask bit represents multiple inodes. Create a mask of bits to set
653	 * in the allocmask for each holemask bit.
654	 */
655	inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
656
657	/*
658	 * Allocated inodes are represented by 0 bits in holemask. Invert the 0
659	 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
660	 * anything beyond the 16 holemask bits since this casts to a larger
661	 * type.
662	 */
663	allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
664
665	/*
666	 * allocbitmap is the inverted holemask so every set bit represents
667	 * allocated inodes. To expand from 16-bit holemask granularity to
668	 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
669	 * bitmap for every holemask bit.
670	 */
671	nextbit = xfs_next_bit(&allocbitmap, 1, 0);
672	while (nextbit != -1) {
673		ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
674
675		bitmap |= (inodespbit <<
676			   (nextbit * XFS_INODES_PER_HOLEMASK_BIT));
677
678		nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
679	}
680
681	return bitmap;
682}
683
684#if defined(DEBUG) || defined(XFS_WARN)
685/*
686 * Verify that an in-core inode record has a valid inode count.
687 */
688int
689xfs_inobt_rec_check_count(
690	struct xfs_mount		*mp,
691	struct xfs_inobt_rec_incore	*rec)
692{
693	int				inocount = 0;
694	int				nextbit = 0;
695	uint64_t			allocbmap;
696	int				wordsz;
697
698	wordsz = sizeof(allocbmap) / sizeof(unsigned int);
699	allocbmap = xfs_inobt_irec_to_allocmask(rec);
700
701	nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
702	while (nextbit != -1) {
703		inocount++;
704		nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
705				       nextbit + 1);
706	}
707
708	if (inocount != rec->ir_count)
709		return -EFSCORRUPTED;
710
711	return 0;
712}
713#endif	/* DEBUG */
714
715static xfs_extlen_t
716xfs_inobt_max_size(
717	struct xfs_perag	*pag)
718{
719	struct xfs_mount	*mp = pag_mount(pag);
720	xfs_agblock_t		agblocks = pag_group(pag)->xg_block_count;
721
722	/* Bail out if we're uninitialized, which can happen in mkfs. */
723	if (M_IGEO(mp)->inobt_mxr[0] == 0)
724		return 0;
725
726	/*
727	 * The log is permanently allocated, so the space it occupies will
728	 * never be available for the kinds of things that would require btree
729	 * expansion.  We therefore can pretend the space isn't there.
730	 */
731	if (xfs_ag_contains_log(mp, pag_agno(pag)))
732		agblocks -= mp->m_sb.sb_logblocks;
733
734	return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr,
735				(uint64_t)agblocks * mp->m_sb.sb_inopblock /
736					XFS_INODES_PER_CHUNK);
737}
738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
739static int
740xfs_finobt_count_blocks(
741	struct xfs_perag	*pag,
742	struct xfs_trans	*tp,
 
743	xfs_extlen_t		*tree_blocks)
744{
745	struct xfs_buf		*agbp = NULL;
746	struct xfs_btree_cur	*cur;
747	xfs_filblks_t		blocks;
748	int			error;
749
750	error = xfs_ialloc_read_agi(pag, tp, 0, &agbp);
751	if (error)
752		return error;
753
754	cur = xfs_finobt_init_cursor(pag, tp, agbp);
755	error = xfs_btree_count_blocks(cur, &blocks);
756	xfs_btree_del_cursor(cur, error);
757	xfs_trans_brelse(tp, agbp);
758	*tree_blocks = blocks;
759
760	return error;
761}
762
763/* Read finobt block count from AGI header. */
764static int
765xfs_finobt_read_blocks(
766	struct xfs_perag	*pag,
767	struct xfs_trans	*tp,
768	xfs_extlen_t		*tree_blocks)
769{
770	struct xfs_buf		*agbp;
771	struct xfs_agi		*agi;
772	int			error;
773
774	error = xfs_ialloc_read_agi(pag, tp, 0, &agbp);
775	if (error)
776		return error;
777
778	agi = agbp->b_addr;
779	*tree_blocks = be32_to_cpu(agi->agi_fblocks);
780	xfs_trans_brelse(tp, agbp);
781	return 0;
782}
783
784/*
785 * Figure out how many blocks to reserve and how many are used by this btree.
786 */
787int
788xfs_finobt_calc_reserves(
789	struct xfs_perag	*pag,
790	struct xfs_trans	*tp,
791	xfs_extlen_t		*ask,
792	xfs_extlen_t		*used)
793{
794	xfs_extlen_t		tree_len = 0;
795	int			error;
796
797	if (!xfs_has_finobt(pag_mount(pag)))
798		return 0;
799
800	if (xfs_has_inobtcounts(pag_mount(pag)))
801		error = xfs_finobt_read_blocks(pag, tp, &tree_len);
802	else
803		error = xfs_finobt_count_blocks(pag, tp, &tree_len);
 
804	if (error)
805		return error;
806
807	*ask += xfs_inobt_max_size(pag);
808	*used += tree_len;
809	return 0;
810}
811
812/* Calculate the inobt btree size for some records. */
813xfs_extlen_t
814xfs_iallocbt_calc_size(
815	struct xfs_mount	*mp,
816	unsigned long long	len)
817{
818	return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr, len);
819}
820
821int __init
822xfs_inobt_init_cur_cache(void)
823{
824	xfs_inobt_cur_cache = kmem_cache_create("xfs_inobt_cur",
825			xfs_btree_cur_sizeof(xfs_inobt_maxlevels_ondisk()),
826			0, 0, NULL);
827
828	if (!xfs_inobt_cur_cache)
829		return -ENOMEM;
830	return 0;
831}
832
833void
834xfs_inobt_destroy_cur_cache(void)
835{
836	kmem_cache_destroy(xfs_inobt_cur_cache);
837	xfs_inobt_cur_cache = NULL;
838}