Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2011 STRATO AG
  4 * written by Arne Jansen <sensille@gmx.net>
  5 */
  6
  7#include <linux/slab.h>
  8#include "messages.h"
  9#include "ulist.h"
 10#include "ctree.h"
 11
 12/*
 13 * ulist is a generic data structure to hold a collection of unique u64
 14 * values. The only operations it supports is adding to the list and
 15 * enumerating it.
 16 * It is possible to store an auxiliary value along with the key.
 17 *
 18 * A sample usage for ulists is the enumeration of directed graphs without
 19 * visiting a node twice. The pseudo-code could look like this:
 20 *
 21 * ulist = ulist_alloc();
 22 * ulist_add(ulist, root);
 23 * ULIST_ITER_INIT(&uiter);
 24 *
 25 * while ((elem = ulist_next(ulist, &uiter)) {
 26 * 	for (all child nodes n in elem)
 27 *		ulist_add(ulist, n);
 28 *	do something useful with the node;
 29 * }
 30 * ulist_free(ulist);
 31 *
 32 * This assumes the graph nodes are addressable by u64. This stems from the
 33 * usage for tree enumeration in btrfs, where the logical addresses are
 34 * 64 bit.
 35 *
 36 * It is also useful for tree enumeration which could be done elegantly
 37 * recursively, but is not possible due to kernel stack limitations. The
 38 * loop would be similar to the above.
 39 */
 40
 41/*
 42 * Freshly initialize a ulist.
 43 *
 44 * @ulist:	the ulist to initialize
 45 *
 46 * Note: don't use this function to init an already used ulist, use
 47 * ulist_reinit instead.
 48 */
 49void ulist_init(struct ulist *ulist)
 50{
 51	INIT_LIST_HEAD(&ulist->nodes);
 52	ulist->root = RB_ROOT;
 53	ulist->nnodes = 0;
 
 54}
 55
 56/*
 57 * Free up additionally allocated memory for the ulist.
 58 *
 59 * @ulist:	the ulist from which to free the additional memory
 60 *
 61 * This is useful in cases where the base 'struct ulist' has been statically
 62 * allocated.
 63 */
 64void ulist_release(struct ulist *ulist)
 65{
 66	struct ulist_node *node;
 67	struct ulist_node *next;
 68
 69	list_for_each_entry_safe(node, next, &ulist->nodes, list) {
 70		kfree(node);
 71	}
 
 
 72	ulist->root = RB_ROOT;
 73	INIT_LIST_HEAD(&ulist->nodes);
 74}
 75
 76/*
 77 * Prepare a ulist for reuse.
 78 *
 79 * @ulist:	ulist to be reused
 80 *
 81 * Free up all additional memory allocated for the list elements and reinit
 82 * the ulist.
 83 */
 84void ulist_reinit(struct ulist *ulist)
 85{
 86	ulist_release(ulist);
 87	ulist_init(ulist);
 88}
 89
 90/*
 91 * Dynamically allocate a ulist.
 92 *
 93 * @gfp_mask:	allocation flags to for base allocation
 94 *
 95 * The allocated ulist will be returned in an initialized state.
 96 */
 97struct ulist *ulist_alloc(gfp_t gfp_mask)
 98{
 99	struct ulist *ulist = kmalloc(sizeof(*ulist), gfp_mask);
100
101	if (!ulist)
102		return NULL;
103
104	ulist_init(ulist);
105
106	return ulist;
107}
108
 
 
 
 
 
 
109/*
110 * Free dynamically allocated ulist.
111 *
112 * @ulist:	ulist to free
113 *
114 * It is not necessary to call ulist_release before.
115 */
116void ulist_free(struct ulist *ulist)
117{
118	if (!ulist)
119		return;
120	ulist_release(ulist);
121	kfree(ulist);
122}
123
124static struct ulist_node *ulist_rbtree_search(struct ulist *ulist, u64 val)
125{
126	struct rb_node *n = ulist->root.rb_node;
127	struct ulist_node *u = NULL;
128
129	while (n) {
130		u = rb_entry(n, struct ulist_node, rb_node);
131		if (u->val < val)
132			n = n->rb_right;
133		else if (u->val > val)
134			n = n->rb_left;
135		else
136			return u;
137	}
138	return NULL;
139}
140
141static void ulist_rbtree_erase(struct ulist *ulist, struct ulist_node *node)
142{
143	rb_erase(&node->rb_node, &ulist->root);
144	list_del(&node->list);
145	kfree(node);
146	BUG_ON(ulist->nnodes == 0);
147	ulist->nnodes--;
148}
149
150static int ulist_rbtree_insert(struct ulist *ulist, struct ulist_node *ins)
151{
152	struct rb_node **p = &ulist->root.rb_node;
153	struct rb_node *parent = NULL;
154	struct ulist_node *cur = NULL;
155
156	while (*p) {
157		parent = *p;
158		cur = rb_entry(parent, struct ulist_node, rb_node);
159
160		if (cur->val < ins->val)
161			p = &(*p)->rb_right;
162		else if (cur->val > ins->val)
163			p = &(*p)->rb_left;
164		else
165			return -EEXIST;
166	}
167	rb_link_node(&ins->rb_node, parent, p);
168	rb_insert_color(&ins->rb_node, &ulist->root);
169	return 0;
170}
171
172/*
173 * Add an element to the ulist.
174 *
175 * @ulist:	ulist to add the element to
176 * @val:	value to add to ulist
177 * @aux:	auxiliary value to store along with val
178 * @gfp_mask:	flags to use for allocation
179 *
180 * Note: locking must be provided by the caller. In case of rwlocks write
181 *       locking is needed
182 *
183 * Add an element to a ulist. The @val will only be added if it doesn't
184 * already exist. If it is added, the auxiliary value @aux is stored along with
185 * it. In case @val already exists in the ulist, @aux is ignored, even if
186 * it differs from the already stored value.
187 *
188 * ulist_add returns 0 if @val already exists in ulist and 1 if @val has been
189 * inserted.
190 * In case of allocation failure -ENOMEM is returned and the ulist stays
191 * unaltered.
192 */
193int ulist_add(struct ulist *ulist, u64 val, u64 aux, gfp_t gfp_mask)
194{
195	return ulist_add_merge(ulist, val, aux, NULL, gfp_mask);
196}
197
198int ulist_add_merge(struct ulist *ulist, u64 val, u64 aux,
199		    u64 *old_aux, gfp_t gfp_mask)
200{
201	int ret;
202	struct ulist_node *node;
203
204	node = ulist_rbtree_search(ulist, val);
205	if (node) {
206		if (old_aux)
207			*old_aux = node->aux;
208		return 0;
209	}
210	node = kmalloc(sizeof(*node), gfp_mask);
211	if (!node)
212		return -ENOMEM;
 
 
 
 
 
 
213
214	node->val = val;
215	node->aux = aux;
216
217	ret = ulist_rbtree_insert(ulist, node);
218	ASSERT(!ret);
219	list_add_tail(&node->list, &ulist->nodes);
220	ulist->nnodes++;
221
222	return 1;
223}
224
225/*
226 * Delete one node from ulist.
227 *
228 * @ulist:	ulist to remove node from
229 * @val:	value to delete
230 * @aux:	aux to delete
231 *
232 * The deletion will only be done when *BOTH* val and aux matches.
233 * Return 0 for successful delete.
234 * Return > 0 for not found.
235 */
236int ulist_del(struct ulist *ulist, u64 val, u64 aux)
237{
238	struct ulist_node *node;
239
240	node = ulist_rbtree_search(ulist, val);
241	/* Not found */
242	if (!node)
243		return 1;
244
245	if (node->aux != aux)
246		return 1;
247
248	/* Found and delete */
249	ulist_rbtree_erase(ulist, node);
250	return 0;
251}
252
253/*
254 * Iterate ulist.
255 *
256 * @ulist:	ulist to iterate
257 * @uiter:	iterator variable, initialized with ULIST_ITER_INIT(&iterator)
258 *
259 * Note: locking must be provided by the caller. In case of rwlocks only read
260 *       locking is needed
261 *
262 * This function is used to iterate an ulist.
263 * It returns the next element from the ulist or %NULL when the
264 * end is reached. No guarantee is made with respect to the order in which
265 * the elements are returned. They might neither be returned in order of
266 * addition nor in ascending order.
267 * It is allowed to call ulist_add during an enumeration. Newly added items
268 * are guaranteed to show up in the running enumeration.
269 */
270struct ulist_node *ulist_next(const struct ulist *ulist, struct ulist_iterator *uiter)
271{
272	struct ulist_node *node;
273
274	if (list_empty(&ulist->nodes))
275		return NULL;
276	if (uiter->cur_list && uiter->cur_list->next == &ulist->nodes)
277		return NULL;
278	if (uiter->cur_list) {
279		uiter->cur_list = uiter->cur_list->next;
280	} else {
281		uiter->cur_list = ulist->nodes.next;
282	}
283	node = list_entry(uiter->cur_list, struct ulist_node, list);
284	return node;
285}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2011 STRATO AG
  4 * written by Arne Jansen <sensille@gmx.net>
  5 */
  6
  7#include <linux/slab.h>
  8#include "messages.h"
  9#include "ulist.h"
 
 10
 11/*
 12 * ulist is a generic data structure to hold a collection of unique u64
 13 * values. The only operations it supports is adding to the list and
 14 * enumerating it.
 15 * It is possible to store an auxiliary value along with the key.
 16 *
 17 * A sample usage for ulists is the enumeration of directed graphs without
 18 * visiting a node twice. The pseudo-code could look like this:
 19 *
 20 * ulist = ulist_alloc();
 21 * ulist_add(ulist, root);
 22 * ULIST_ITER_INIT(&uiter);
 23 *
 24 * while ((elem = ulist_next(ulist, &uiter)) {
 25 * 	for (all child nodes n in elem)
 26 *		ulist_add(ulist, n);
 27 *	do something useful with the node;
 28 * }
 29 * ulist_free(ulist);
 30 *
 31 * This assumes the graph nodes are addressable by u64. This stems from the
 32 * usage for tree enumeration in btrfs, where the logical addresses are
 33 * 64 bit.
 34 *
 35 * It is also useful for tree enumeration which could be done elegantly
 36 * recursively, but is not possible due to kernel stack limitations. The
 37 * loop would be similar to the above.
 38 */
 39
 40/*
 41 * Freshly initialize a ulist.
 42 *
 43 * @ulist:	the ulist to initialize
 44 *
 45 * Note: don't use this function to init an already used ulist, use
 46 * ulist_reinit instead.
 47 */
 48void ulist_init(struct ulist *ulist)
 49{
 50	INIT_LIST_HEAD(&ulist->nodes);
 51	ulist->root = RB_ROOT;
 52	ulist->nnodes = 0;
 53	ulist->prealloc = NULL;
 54}
 55
 56/*
 57 * Free up additionally allocated memory for the ulist.
 58 *
 59 * @ulist:	the ulist from which to free the additional memory
 60 *
 61 * This is useful in cases where the base 'struct ulist' has been statically
 62 * allocated.
 63 */
 64void ulist_release(struct ulist *ulist)
 65{
 66	struct ulist_node *node;
 67	struct ulist_node *next;
 68
 69	list_for_each_entry_safe(node, next, &ulist->nodes, list) {
 70		kfree(node);
 71	}
 72	kfree(ulist->prealloc);
 73	ulist->prealloc = NULL;
 74	ulist->root = RB_ROOT;
 75	INIT_LIST_HEAD(&ulist->nodes);
 76}
 77
 78/*
 79 * Prepare a ulist for reuse.
 80 *
 81 * @ulist:	ulist to be reused
 82 *
 83 * Free up all additional memory allocated for the list elements and reinit
 84 * the ulist.
 85 */
 86void ulist_reinit(struct ulist *ulist)
 87{
 88	ulist_release(ulist);
 89	ulist_init(ulist);
 90}
 91
 92/*
 93 * Dynamically allocate a ulist.
 94 *
 95 * @gfp_mask:	allocation flags to for base allocation
 96 *
 97 * The allocated ulist will be returned in an initialized state.
 98 */
 99struct ulist *ulist_alloc(gfp_t gfp_mask)
100{
101	struct ulist *ulist = kmalloc(sizeof(*ulist), gfp_mask);
102
103	if (!ulist)
104		return NULL;
105
106	ulist_init(ulist);
107
108	return ulist;
109}
110
111void ulist_prealloc(struct ulist *ulist, gfp_t gfp_mask)
112{
113	if (!ulist->prealloc)
114		ulist->prealloc = kzalloc(sizeof(*ulist->prealloc), gfp_mask);
115}
116
117/*
118 * Free dynamically allocated ulist.
119 *
120 * @ulist:	ulist to free
121 *
122 * It is not necessary to call ulist_release before.
123 */
124void ulist_free(struct ulist *ulist)
125{
126	if (!ulist)
127		return;
128	ulist_release(ulist);
129	kfree(ulist);
130}
131
132static struct ulist_node *ulist_rbtree_search(struct ulist *ulist, u64 val)
133{
134	struct rb_node *n = ulist->root.rb_node;
135	struct ulist_node *u = NULL;
136
137	while (n) {
138		u = rb_entry(n, struct ulist_node, rb_node);
139		if (u->val < val)
140			n = n->rb_right;
141		else if (u->val > val)
142			n = n->rb_left;
143		else
144			return u;
145	}
146	return NULL;
147}
148
149static void ulist_rbtree_erase(struct ulist *ulist, struct ulist_node *node)
150{
151	rb_erase(&node->rb_node, &ulist->root);
152	list_del(&node->list);
153	kfree(node);
154	BUG_ON(ulist->nnodes == 0);
155	ulist->nnodes--;
156}
157
158static int ulist_rbtree_insert(struct ulist *ulist, struct ulist_node *ins)
159{
160	struct rb_node **p = &ulist->root.rb_node;
161	struct rb_node *parent = NULL;
162	struct ulist_node *cur = NULL;
163
164	while (*p) {
165		parent = *p;
166		cur = rb_entry(parent, struct ulist_node, rb_node);
167
168		if (cur->val < ins->val)
169			p = &(*p)->rb_right;
170		else if (cur->val > ins->val)
171			p = &(*p)->rb_left;
172		else
173			return -EEXIST;
174	}
175	rb_link_node(&ins->rb_node, parent, p);
176	rb_insert_color(&ins->rb_node, &ulist->root);
177	return 0;
178}
179
180/*
181 * Add an element to the ulist.
182 *
183 * @ulist:	ulist to add the element to
184 * @val:	value to add to ulist
185 * @aux:	auxiliary value to store along with val
186 * @gfp_mask:	flags to use for allocation
187 *
188 * Note: locking must be provided by the caller. In case of rwlocks write
189 *       locking is needed
190 *
191 * Add an element to a ulist. The @val will only be added if it doesn't
192 * already exist. If it is added, the auxiliary value @aux is stored along with
193 * it. In case @val already exists in the ulist, @aux is ignored, even if
194 * it differs from the already stored value.
195 *
196 * ulist_add returns 0 if @val already exists in ulist and 1 if @val has been
197 * inserted.
198 * In case of allocation failure -ENOMEM is returned and the ulist stays
199 * unaltered.
200 */
201int ulist_add(struct ulist *ulist, u64 val, u64 aux, gfp_t gfp_mask)
202{
203	return ulist_add_merge(ulist, val, aux, NULL, gfp_mask);
204}
205
206int ulist_add_merge(struct ulist *ulist, u64 val, u64 aux,
207		    u64 *old_aux, gfp_t gfp_mask)
208{
209	int ret;
210	struct ulist_node *node;
211
212	node = ulist_rbtree_search(ulist, val);
213	if (node) {
214		if (old_aux)
215			*old_aux = node->aux;
216		return 0;
217	}
218
219	if (ulist->prealloc) {
220		node = ulist->prealloc;
221		ulist->prealloc = NULL;
222	} else {
223		node = kmalloc(sizeof(*node), gfp_mask);
224		if (!node)
225			return -ENOMEM;
226	}
227
228	node->val = val;
229	node->aux = aux;
230
231	ret = ulist_rbtree_insert(ulist, node);
232	ASSERT(!ret);
233	list_add_tail(&node->list, &ulist->nodes);
234	ulist->nnodes++;
235
236	return 1;
237}
238
239/*
240 * Delete one node from ulist.
241 *
242 * @ulist:	ulist to remove node from
243 * @val:	value to delete
244 * @aux:	aux to delete
245 *
246 * The deletion will only be done when *BOTH* val and aux matches.
247 * Return 0 for successful delete.
248 * Return > 0 for not found.
249 */
250int ulist_del(struct ulist *ulist, u64 val, u64 aux)
251{
252	struct ulist_node *node;
253
254	node = ulist_rbtree_search(ulist, val);
255	/* Not found */
256	if (!node)
257		return 1;
258
259	if (node->aux != aux)
260		return 1;
261
262	/* Found and delete */
263	ulist_rbtree_erase(ulist, node);
264	return 0;
265}
266
267/*
268 * Iterate ulist.
269 *
270 * @ulist:	ulist to iterate
271 * @uiter:	iterator variable, initialized with ULIST_ITER_INIT(&iterator)
272 *
273 * Note: locking must be provided by the caller. In case of rwlocks only read
274 *       locking is needed
275 *
276 * This function is used to iterate an ulist.
277 * It returns the next element from the ulist or %NULL when the
278 * end is reached. No guarantee is made with respect to the order in which
279 * the elements are returned. They might neither be returned in order of
280 * addition nor in ascending order.
281 * It is allowed to call ulist_add during an enumeration. Newly added items
282 * are guaranteed to show up in the running enumeration.
283 */
284struct ulist_node *ulist_next(const struct ulist *ulist, struct ulist_iterator *uiter)
285{
286	struct ulist_node *node;
287
288	if (list_empty(&ulist->nodes))
289		return NULL;
290	if (uiter->cur_list && uiter->cur_list->next == &ulist->nodes)
291		return NULL;
292	if (uiter->cur_list) {
293		uiter->cur_list = uiter->cur_list->next;
294	} else {
295		uiter->cur_list = ulist->nodes.next;
296	}
297	node = list_entry(uiter->cur_list, struct ulist_node, list);
298	return node;
299}