Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Reset Controller framework
   4 *
   5 * Copyright 2013 Philipp Zabel, Pengutronix
   6 */
   7#include <linux/atomic.h>
 
   8#include <linux/device.h>
   9#include <linux/err.h>
  10#include <linux/export.h>
  11#include <linux/kernel.h>
  12#include <linux/kref.h>
 
 
 
  13#include <linux/module.h>
  14#include <linux/of.h>
  15#include <linux/acpi.h>
 
  16#include <linux/reset.h>
  17#include <linux/reset-controller.h>
  18#include <linux/slab.h>
  19
  20static DEFINE_MUTEX(reset_list_mutex);
  21static LIST_HEAD(reset_controller_list);
  22
  23static DEFINE_MUTEX(reset_lookup_mutex);
  24static LIST_HEAD(reset_lookup_list);
  25
 
 
 
 
 
  26/**
  27 * struct reset_control - a reset control
  28 * @rcdev: a pointer to the reset controller device
  29 *         this reset control belongs to
  30 * @list: list entry for the rcdev's reset controller list
  31 * @id: ID of the reset controller in the reset
  32 *      controller device
  33 * @refcnt: Number of gets of this reset_control
  34 * @acquired: Only one reset_control may be acquired for a given rcdev and id.
  35 * @shared: Is this a shared (1), or an exclusive (0) reset_control?
  36 * @array: Is this an array of reset controls (1)?
  37 * @deassert_count: Number of times this reset line has been deasserted
  38 * @triggered_count: Number of times this reset line has been reset. Currently
  39 *                   only used for shared resets, which means that the value
  40 *                   will be either 0 or 1.
  41 */
  42struct reset_control {
  43	struct reset_controller_dev *rcdev;
  44	struct list_head list;
  45	unsigned int id;
  46	struct kref refcnt;
  47	bool acquired;
  48	bool shared;
  49	bool array;
  50	atomic_t deassert_count;
  51	atomic_t triggered_count;
  52};
  53
  54/**
  55 * struct reset_control_array - an array of reset controls
  56 * @base: reset control for compatibility with reset control API functions
  57 * @num_rstcs: number of reset controls
  58 * @rstc: array of reset controls
  59 */
  60struct reset_control_array {
  61	struct reset_control base;
  62	unsigned int num_rstcs;
  63	struct reset_control *rstc[] __counted_by(num_rstcs);
  64};
  65
 
 
 
 
 
 
 
 
 
 
  66static const char *rcdev_name(struct reset_controller_dev *rcdev)
  67{
  68	if (rcdev->dev)
  69		return dev_name(rcdev->dev);
  70
  71	if (rcdev->of_node)
  72		return rcdev->of_node->full_name;
  73
 
 
 
  74	return NULL;
  75}
  76
  77/**
  78 * of_reset_simple_xlate - translate reset_spec to the reset line number
  79 * @rcdev: a pointer to the reset controller device
  80 * @reset_spec: reset line specifier as found in the device tree
  81 *
  82 * This static translation function is used by default if of_xlate in
  83 * :c:type:`reset_controller_dev` is not set. It is useful for all reset
  84 * controllers with 1:1 mapping, where reset lines can be indexed by number
  85 * without gaps.
  86 */
  87static int of_reset_simple_xlate(struct reset_controller_dev *rcdev,
  88				 const struct of_phandle_args *reset_spec)
  89{
  90	if (reset_spec->args[0] >= rcdev->nr_resets)
  91		return -EINVAL;
  92
  93	return reset_spec->args[0];
  94}
  95
  96/**
  97 * reset_controller_register - register a reset controller device
  98 * @rcdev: a pointer to the initialized reset controller device
  99 */
 100int reset_controller_register(struct reset_controller_dev *rcdev)
 101{
 
 
 
 102	if (!rcdev->of_xlate) {
 103		rcdev->of_reset_n_cells = 1;
 104		rcdev->of_xlate = of_reset_simple_xlate;
 105	}
 106
 107	INIT_LIST_HEAD(&rcdev->reset_control_head);
 108
 109	mutex_lock(&reset_list_mutex);
 110	list_add(&rcdev->list, &reset_controller_list);
 111	mutex_unlock(&reset_list_mutex);
 112
 113	return 0;
 114}
 115EXPORT_SYMBOL_GPL(reset_controller_register);
 116
 117/**
 118 * reset_controller_unregister - unregister a reset controller device
 119 * @rcdev: a pointer to the reset controller device
 120 */
 121void reset_controller_unregister(struct reset_controller_dev *rcdev)
 122{
 123	mutex_lock(&reset_list_mutex);
 124	list_del(&rcdev->list);
 125	mutex_unlock(&reset_list_mutex);
 126}
 127EXPORT_SYMBOL_GPL(reset_controller_unregister);
 128
 129static void devm_reset_controller_release(struct device *dev, void *res)
 130{
 131	reset_controller_unregister(*(struct reset_controller_dev **)res);
 132}
 133
 134/**
 135 * devm_reset_controller_register - resource managed reset_controller_register()
 136 * @dev: device that is registering this reset controller
 137 * @rcdev: a pointer to the initialized reset controller device
 138 *
 139 * Managed reset_controller_register(). For reset controllers registered by
 140 * this function, reset_controller_unregister() is automatically called on
 141 * driver detach. See reset_controller_register() for more information.
 142 */
 143int devm_reset_controller_register(struct device *dev,
 144				   struct reset_controller_dev *rcdev)
 145{
 146	struct reset_controller_dev **rcdevp;
 147	int ret;
 148
 149	rcdevp = devres_alloc(devm_reset_controller_release, sizeof(*rcdevp),
 150			      GFP_KERNEL);
 151	if (!rcdevp)
 152		return -ENOMEM;
 153
 154	ret = reset_controller_register(rcdev);
 155	if (ret) {
 156		devres_free(rcdevp);
 157		return ret;
 158	}
 159
 160	*rcdevp = rcdev;
 161	devres_add(dev, rcdevp);
 162
 163	return ret;
 164}
 165EXPORT_SYMBOL_GPL(devm_reset_controller_register);
 166
 167/**
 168 * reset_controller_add_lookup - register a set of lookup entries
 169 * @lookup: array of reset lookup entries
 170 * @num_entries: number of entries in the lookup array
 171 */
 172void reset_controller_add_lookup(struct reset_control_lookup *lookup,
 173				 unsigned int num_entries)
 174{
 175	struct reset_control_lookup *entry;
 176	unsigned int i;
 177
 178	mutex_lock(&reset_lookup_mutex);
 179	for (i = 0; i < num_entries; i++) {
 180		entry = &lookup[i];
 181
 182		if (!entry->dev_id || !entry->provider) {
 183			pr_warn("%s(): reset lookup entry badly specified, skipping\n",
 184				__func__);
 185			continue;
 186		}
 187
 188		list_add_tail(&entry->list, &reset_lookup_list);
 189	}
 190	mutex_unlock(&reset_lookup_mutex);
 191}
 192EXPORT_SYMBOL_GPL(reset_controller_add_lookup);
 193
 194static inline struct reset_control_array *
 195rstc_to_array(struct reset_control *rstc) {
 196	return container_of(rstc, struct reset_control_array, base);
 197}
 198
 199static int reset_control_array_reset(struct reset_control_array *resets)
 200{
 201	int ret, i;
 202
 203	for (i = 0; i < resets->num_rstcs; i++) {
 204		ret = reset_control_reset(resets->rstc[i]);
 205		if (ret)
 206			return ret;
 207	}
 208
 209	return 0;
 210}
 211
 212static int reset_control_array_rearm(struct reset_control_array *resets)
 213{
 214	struct reset_control *rstc;
 215	int i;
 216
 217	for (i = 0; i < resets->num_rstcs; i++) {
 218		rstc = resets->rstc[i];
 219
 220		if (!rstc)
 221			continue;
 222
 223		if (WARN_ON(IS_ERR(rstc)))
 224			return -EINVAL;
 225
 226		if (rstc->shared) {
 227			if (WARN_ON(atomic_read(&rstc->deassert_count) != 0))
 228				return -EINVAL;
 229		} else {
 230			if (!rstc->acquired)
 231				return -EPERM;
 232		}
 233	}
 234
 235	for (i = 0; i < resets->num_rstcs; i++) {
 236		rstc = resets->rstc[i];
 237
 238		if (rstc && rstc->shared)
 239			WARN_ON(atomic_dec_return(&rstc->triggered_count) < 0);
 240	}
 241
 242	return 0;
 243}
 244
 245static int reset_control_array_assert(struct reset_control_array *resets)
 246{
 247	int ret, i;
 248
 249	for (i = 0; i < resets->num_rstcs; i++) {
 250		ret = reset_control_assert(resets->rstc[i]);
 251		if (ret)
 252			goto err;
 253	}
 254
 255	return 0;
 256
 257err:
 258	while (i--)
 259		reset_control_deassert(resets->rstc[i]);
 260	return ret;
 261}
 262
 263static int reset_control_array_deassert(struct reset_control_array *resets)
 264{
 265	int ret, i;
 266
 267	for (i = 0; i < resets->num_rstcs; i++) {
 268		ret = reset_control_deassert(resets->rstc[i]);
 269		if (ret)
 270			goto err;
 271	}
 272
 273	return 0;
 274
 275err:
 276	while (i--)
 277		reset_control_assert(resets->rstc[i]);
 278	return ret;
 279}
 280
 281static int reset_control_array_acquire(struct reset_control_array *resets)
 282{
 283	unsigned int i;
 284	int err;
 285
 286	for (i = 0; i < resets->num_rstcs; i++) {
 287		err = reset_control_acquire(resets->rstc[i]);
 288		if (err < 0)
 289			goto release;
 290	}
 291
 292	return 0;
 293
 294release:
 295	while (i--)
 296		reset_control_release(resets->rstc[i]);
 297
 298	return err;
 299}
 300
 301static void reset_control_array_release(struct reset_control_array *resets)
 302{
 303	unsigned int i;
 304
 305	for (i = 0; i < resets->num_rstcs; i++)
 306		reset_control_release(resets->rstc[i]);
 307}
 308
 309static inline bool reset_control_is_array(struct reset_control *rstc)
 310{
 311	return rstc->array;
 312}
 313
 314/**
 315 * reset_control_reset - reset the controlled device
 316 * @rstc: reset controller
 317 *
 318 * On a shared reset line the actual reset pulse is only triggered once for the
 319 * lifetime of the reset_control instance: for all but the first caller this is
 320 * a no-op.
 321 * Consumers must not use reset_control_(de)assert on shared reset lines when
 322 * reset_control_reset has been used.
 323 *
 324 * If rstc is NULL it is an optional reset and the function will just
 325 * return 0.
 326 */
 327int reset_control_reset(struct reset_control *rstc)
 328{
 329	int ret;
 330
 331	if (!rstc)
 332		return 0;
 333
 334	if (WARN_ON(IS_ERR(rstc)))
 335		return -EINVAL;
 336
 337	if (reset_control_is_array(rstc))
 338		return reset_control_array_reset(rstc_to_array(rstc));
 339
 340	if (!rstc->rcdev->ops->reset)
 341		return -ENOTSUPP;
 342
 343	if (rstc->shared) {
 344		if (WARN_ON(atomic_read(&rstc->deassert_count) != 0))
 345			return -EINVAL;
 346
 347		if (atomic_inc_return(&rstc->triggered_count) != 1)
 348			return 0;
 349	} else {
 350		if (!rstc->acquired)
 351			return -EPERM;
 352	}
 353
 354	ret = rstc->rcdev->ops->reset(rstc->rcdev, rstc->id);
 355	if (rstc->shared && ret)
 356		atomic_dec(&rstc->triggered_count);
 357
 358	return ret;
 359}
 360EXPORT_SYMBOL_GPL(reset_control_reset);
 361
 362/**
 363 * reset_control_bulk_reset - reset the controlled devices in order
 364 * @num_rstcs: number of entries in rstcs array
 365 * @rstcs: array of struct reset_control_bulk_data with reset controls set
 366 *
 367 * Issue a reset on all provided reset controls, in order.
 368 *
 369 * See also: reset_control_reset()
 370 */
 371int reset_control_bulk_reset(int num_rstcs,
 372			     struct reset_control_bulk_data *rstcs)
 373{
 374	int ret, i;
 375
 376	for (i = 0; i < num_rstcs; i++) {
 377		ret = reset_control_reset(rstcs[i].rstc);
 378		if (ret)
 379			return ret;
 380	}
 381
 382	return 0;
 383}
 384EXPORT_SYMBOL_GPL(reset_control_bulk_reset);
 385
 386/**
 387 * reset_control_rearm - allow shared reset line to be re-triggered"
 388 * @rstc: reset controller
 389 *
 390 * On a shared reset line the actual reset pulse is only triggered once for the
 391 * lifetime of the reset_control instance, except if this call is used.
 392 *
 393 * Calls to this function must be balanced with calls to reset_control_reset,
 394 * a warning is thrown in case triggered_count ever dips below 0.
 395 *
 396 * Consumers must not use reset_control_(de)assert on shared reset lines when
 397 * reset_control_reset or reset_control_rearm have been used.
 398 *
 399 * If rstc is NULL the function will just return 0.
 400 */
 401int reset_control_rearm(struct reset_control *rstc)
 402{
 403	if (!rstc)
 404		return 0;
 405
 406	if (WARN_ON(IS_ERR(rstc)))
 407		return -EINVAL;
 408
 409	if (reset_control_is_array(rstc))
 410		return reset_control_array_rearm(rstc_to_array(rstc));
 411
 412	if (rstc->shared) {
 413		if (WARN_ON(atomic_read(&rstc->deassert_count) != 0))
 414			return -EINVAL;
 415
 416		WARN_ON(atomic_dec_return(&rstc->triggered_count) < 0);
 417	} else {
 418		if (!rstc->acquired)
 419			return -EPERM;
 420	}
 421
 422	return 0;
 423}
 424EXPORT_SYMBOL_GPL(reset_control_rearm);
 425
 426/**
 427 * reset_control_assert - asserts the reset line
 428 * @rstc: reset controller
 429 *
 430 * Calling this on an exclusive reset controller guarantees that the reset
 431 * will be asserted. When called on a shared reset controller the line may
 432 * still be deasserted, as long as other users keep it so.
 433 *
 434 * For shared reset controls a driver cannot expect the hw's registers and
 435 * internal state to be reset, but must be prepared for this to happen.
 436 * Consumers must not use reset_control_reset on shared reset lines when
 437 * reset_control_(de)assert has been used.
 438 *
 439 * If rstc is NULL it is an optional reset and the function will just
 440 * return 0.
 441 */
 442int reset_control_assert(struct reset_control *rstc)
 443{
 444	if (!rstc)
 445		return 0;
 446
 447	if (WARN_ON(IS_ERR(rstc)))
 448		return -EINVAL;
 449
 450	if (reset_control_is_array(rstc))
 451		return reset_control_array_assert(rstc_to_array(rstc));
 452
 453	if (rstc->shared) {
 454		if (WARN_ON(atomic_read(&rstc->triggered_count) != 0))
 455			return -EINVAL;
 456
 457		if (WARN_ON(atomic_read(&rstc->deassert_count) == 0))
 458			return -EINVAL;
 459
 460		if (atomic_dec_return(&rstc->deassert_count) != 0)
 461			return 0;
 462
 463		/*
 464		 * Shared reset controls allow the reset line to be in any state
 465		 * after this call, so doing nothing is a valid option.
 466		 */
 467		if (!rstc->rcdev->ops->assert)
 468			return 0;
 469	} else {
 470		/*
 471		 * If the reset controller does not implement .assert(), there
 472		 * is no way to guarantee that the reset line is asserted after
 473		 * this call.
 474		 */
 475		if (!rstc->rcdev->ops->assert)
 476			return -ENOTSUPP;
 477
 478		if (!rstc->acquired) {
 479			WARN(1, "reset %s (ID: %u) is not acquired\n",
 480			     rcdev_name(rstc->rcdev), rstc->id);
 481			return -EPERM;
 482		}
 483	}
 484
 485	return rstc->rcdev->ops->assert(rstc->rcdev, rstc->id);
 486}
 487EXPORT_SYMBOL_GPL(reset_control_assert);
 488
 489/**
 490 * reset_control_bulk_assert - asserts the reset lines in order
 491 * @num_rstcs: number of entries in rstcs array
 492 * @rstcs: array of struct reset_control_bulk_data with reset controls set
 493 *
 494 * Assert the reset lines for all provided reset controls, in order.
 495 * If an assertion fails, already asserted resets are deasserted again.
 496 *
 497 * See also: reset_control_assert()
 498 */
 499int reset_control_bulk_assert(int num_rstcs,
 500			      struct reset_control_bulk_data *rstcs)
 501{
 502	int ret, i;
 503
 504	for (i = 0; i < num_rstcs; i++) {
 505		ret = reset_control_assert(rstcs[i].rstc);
 506		if (ret)
 507			goto err;
 508	}
 509
 510	return 0;
 511
 512err:
 513	while (i--)
 514		reset_control_deassert(rstcs[i].rstc);
 515	return ret;
 516}
 517EXPORT_SYMBOL_GPL(reset_control_bulk_assert);
 518
 519/**
 520 * reset_control_deassert - deasserts the reset line
 521 * @rstc: reset controller
 522 *
 523 * After calling this function, the reset is guaranteed to be deasserted.
 524 * Consumers must not use reset_control_reset on shared reset lines when
 525 * reset_control_(de)assert has been used.
 526 *
 527 * If rstc is NULL it is an optional reset and the function will just
 528 * return 0.
 529 */
 530int reset_control_deassert(struct reset_control *rstc)
 531{
 532	if (!rstc)
 533		return 0;
 534
 535	if (WARN_ON(IS_ERR(rstc)))
 536		return -EINVAL;
 537
 538	if (reset_control_is_array(rstc))
 539		return reset_control_array_deassert(rstc_to_array(rstc));
 540
 541	if (rstc->shared) {
 542		if (WARN_ON(atomic_read(&rstc->triggered_count) != 0))
 543			return -EINVAL;
 544
 545		if (atomic_inc_return(&rstc->deassert_count) != 1)
 546			return 0;
 547	} else {
 548		if (!rstc->acquired) {
 549			WARN(1, "reset %s (ID: %u) is not acquired\n",
 550			     rcdev_name(rstc->rcdev), rstc->id);
 551			return -EPERM;
 552		}
 553	}
 554
 555	/*
 556	 * If the reset controller does not implement .deassert(), we assume
 557	 * that it handles self-deasserting reset lines via .reset(). In that
 558	 * case, the reset lines are deasserted by default. If that is not the
 559	 * case, the reset controller driver should implement .deassert() and
 560	 * return -ENOTSUPP.
 561	 */
 562	if (!rstc->rcdev->ops->deassert)
 563		return 0;
 564
 565	return rstc->rcdev->ops->deassert(rstc->rcdev, rstc->id);
 566}
 567EXPORT_SYMBOL_GPL(reset_control_deassert);
 568
 569/**
 570 * reset_control_bulk_deassert - deasserts the reset lines in reverse order
 571 * @num_rstcs: number of entries in rstcs array
 572 * @rstcs: array of struct reset_control_bulk_data with reset controls set
 573 *
 574 * Deassert the reset lines for all provided reset controls, in reverse order.
 575 * If a deassertion fails, already deasserted resets are asserted again.
 576 *
 577 * See also: reset_control_deassert()
 578 */
 579int reset_control_bulk_deassert(int num_rstcs,
 580				struct reset_control_bulk_data *rstcs)
 581{
 582	int ret, i;
 583
 584	for (i = num_rstcs - 1; i >= 0; i--) {
 585		ret = reset_control_deassert(rstcs[i].rstc);
 586		if (ret)
 587			goto err;
 588	}
 589
 590	return 0;
 591
 592err:
 593	while (i < num_rstcs)
 594		reset_control_assert(rstcs[i++].rstc);
 595	return ret;
 596}
 597EXPORT_SYMBOL_GPL(reset_control_bulk_deassert);
 598
 599/**
 600 * reset_control_status - returns a negative errno if not supported, a
 601 * positive value if the reset line is asserted, or zero if the reset
 602 * line is not asserted or if the desc is NULL (optional reset).
 603 * @rstc: reset controller
 604 */
 605int reset_control_status(struct reset_control *rstc)
 606{
 607	if (!rstc)
 608		return 0;
 609
 610	if (WARN_ON(IS_ERR(rstc)) || reset_control_is_array(rstc))
 611		return -EINVAL;
 612
 613	if (rstc->rcdev->ops->status)
 614		return rstc->rcdev->ops->status(rstc->rcdev, rstc->id);
 615
 616	return -ENOTSUPP;
 617}
 618EXPORT_SYMBOL_GPL(reset_control_status);
 619
 620/**
 621 * reset_control_acquire() - acquires a reset control for exclusive use
 622 * @rstc: reset control
 623 *
 624 * This is used to explicitly acquire a reset control for exclusive use. Note
 625 * that exclusive resets are requested as acquired by default. In order for a
 626 * second consumer to be able to control the reset, the first consumer has to
 627 * release it first. Typically the easiest way to achieve this is to call the
 628 * reset_control_get_exclusive_released() to obtain an instance of the reset
 629 * control. Such reset controls are not acquired by default.
 630 *
 631 * Consumers implementing shared access to an exclusive reset need to follow
 632 * a specific protocol in order to work together. Before consumers can change
 633 * a reset they must acquire exclusive access using reset_control_acquire().
 634 * After they are done operating the reset, they must release exclusive access
 635 * with a call to reset_control_release(). Consumers are not granted exclusive
 636 * access to the reset as long as another consumer hasn't released a reset.
 637 *
 638 * See also: reset_control_release()
 639 */
 640int reset_control_acquire(struct reset_control *rstc)
 641{
 642	struct reset_control *rc;
 643
 644	if (!rstc)
 645		return 0;
 646
 647	if (WARN_ON(IS_ERR(rstc)))
 648		return -EINVAL;
 649
 650	if (reset_control_is_array(rstc))
 651		return reset_control_array_acquire(rstc_to_array(rstc));
 652
 653	mutex_lock(&reset_list_mutex);
 654
 655	if (rstc->acquired) {
 656		mutex_unlock(&reset_list_mutex);
 657		return 0;
 658	}
 659
 660	list_for_each_entry(rc, &rstc->rcdev->reset_control_head, list) {
 661		if (rstc != rc && rstc->id == rc->id) {
 662			if (rc->acquired) {
 663				mutex_unlock(&reset_list_mutex);
 664				return -EBUSY;
 665			}
 666		}
 667	}
 668
 669	rstc->acquired = true;
 670
 671	mutex_unlock(&reset_list_mutex);
 672	return 0;
 673}
 674EXPORT_SYMBOL_GPL(reset_control_acquire);
 675
 676/**
 677 * reset_control_bulk_acquire - acquires reset controls for exclusive use
 678 * @num_rstcs: number of entries in rstcs array
 679 * @rstcs: array of struct reset_control_bulk_data with reset controls set
 680 *
 681 * This is used to explicitly acquire reset controls requested with
 682 * reset_control_bulk_get_exclusive_release() for temporary exclusive use.
 683 *
 684 * See also: reset_control_acquire(), reset_control_bulk_release()
 685 */
 686int reset_control_bulk_acquire(int num_rstcs,
 687			       struct reset_control_bulk_data *rstcs)
 688{
 689	int ret, i;
 690
 691	for (i = 0; i < num_rstcs; i++) {
 692		ret = reset_control_acquire(rstcs[i].rstc);
 693		if (ret)
 694			goto err;
 695	}
 696
 697	return 0;
 698
 699err:
 700	while (i--)
 701		reset_control_release(rstcs[i].rstc);
 702	return ret;
 703}
 704EXPORT_SYMBOL_GPL(reset_control_bulk_acquire);
 705
 706/**
 707 * reset_control_release() - releases exclusive access to a reset control
 708 * @rstc: reset control
 709 *
 710 * Releases exclusive access right to a reset control previously obtained by a
 711 * call to reset_control_acquire(). Until a consumer calls this function, no
 712 * other consumers will be granted exclusive access.
 713 *
 714 * See also: reset_control_acquire()
 715 */
 716void reset_control_release(struct reset_control *rstc)
 717{
 718	if (!rstc || WARN_ON(IS_ERR(rstc)))
 719		return;
 720
 721	if (reset_control_is_array(rstc))
 722		reset_control_array_release(rstc_to_array(rstc));
 723	else
 724		rstc->acquired = false;
 725}
 726EXPORT_SYMBOL_GPL(reset_control_release);
 727
 728/**
 729 * reset_control_bulk_release() - releases exclusive access to reset controls
 730 * @num_rstcs: number of entries in rstcs array
 731 * @rstcs: array of struct reset_control_bulk_data with reset controls set
 732 *
 733 * Releases exclusive access right to reset controls previously obtained by a
 734 * call to reset_control_bulk_acquire().
 735 *
 736 * See also: reset_control_release(), reset_control_bulk_acquire()
 737 */
 738void reset_control_bulk_release(int num_rstcs,
 739				struct reset_control_bulk_data *rstcs)
 740{
 741	int i;
 742
 743	for (i = 0; i < num_rstcs; i++)
 744		reset_control_release(rstcs[i].rstc);
 745}
 746EXPORT_SYMBOL_GPL(reset_control_bulk_release);
 747
 748static struct reset_control *
 749__reset_control_get_internal(struct reset_controller_dev *rcdev,
 750			     unsigned int index, bool shared, bool acquired)
 751{
 
 
 752	struct reset_control *rstc;
 753
 754	lockdep_assert_held(&reset_list_mutex);
 755
 
 
 
 
 
 756	list_for_each_entry(rstc, &rcdev->reset_control_head, list) {
 757		if (rstc->id == index) {
 758			/*
 759			 * Allow creating a secondary exclusive reset_control
 760			 * that is initially not acquired for an already
 761			 * controlled reset line.
 762			 */
 763			if (!rstc->shared && !shared && !acquired)
 764				break;
 765
 766			if (WARN_ON(!rstc->shared || !shared))
 767				return ERR_PTR(-EBUSY);
 768
 769			kref_get(&rstc->refcnt);
 770			return rstc;
 771		}
 772	}
 773
 774	rstc = kzalloc(sizeof(*rstc), GFP_KERNEL);
 775	if (!rstc)
 776		return ERR_PTR(-ENOMEM);
 777
 778	if (!try_module_get(rcdev->owner)) {
 779		kfree(rstc);
 780		return ERR_PTR(-ENODEV);
 781	}
 782
 783	rstc->rcdev = rcdev;
 784	list_add(&rstc->list, &rcdev->reset_control_head);
 785	rstc->id = index;
 786	kref_init(&rstc->refcnt);
 787	rstc->acquired = acquired;
 788	rstc->shared = shared;
 
 789
 790	return rstc;
 791}
 792
 793static void __reset_control_release(struct kref *kref)
 794{
 795	struct reset_control *rstc = container_of(kref, struct reset_control,
 796						  refcnt);
 797
 798	lockdep_assert_held(&reset_list_mutex);
 799
 800	module_put(rstc->rcdev->owner);
 801
 802	list_del(&rstc->list);
 
 803	kfree(rstc);
 804}
 805
 806static void __reset_control_put_internal(struct reset_control *rstc)
 807{
 808	lockdep_assert_held(&reset_list_mutex);
 809
 810	if (IS_ERR_OR_NULL(rstc))
 811		return;
 812
 813	kref_put(&rstc->refcnt, __reset_control_release);
 814}
 815
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 816struct reset_control *
 817__of_reset_control_get(struct device_node *node, const char *id, int index,
 818		       bool shared, bool optional, bool acquired)
 819{
 
 
 820	struct reset_control *rstc;
 821	struct reset_controller_dev *r, *rcdev;
 822	struct of_phandle_args args;
 823	int rstc_id;
 824	int ret;
 825
 826	if (!node)
 827		return ERR_PTR(-EINVAL);
 828
 829	if (id) {
 830		index = of_property_match_string(node,
 831						 "reset-names", id);
 832		if (index == -EILSEQ)
 833			return ERR_PTR(index);
 834		if (index < 0)
 835			return optional ? NULL : ERR_PTR(-ENOENT);
 836	}
 837
 838	ret = of_parse_phandle_with_args(node, "resets", "#reset-cells",
 839					 index, &args);
 840	if (ret == -EINVAL)
 841		return ERR_PTR(ret);
 842	if (ret)
 843		return optional ? NULL : ERR_PTR(ret);
 
 844
 845	mutex_lock(&reset_list_mutex);
 846	rcdev = NULL;
 847	list_for_each_entry(r, &reset_controller_list, list) {
 848		if (args.np == r->of_node) {
 849			rcdev = r;
 850			break;
 
 
 
 
 
 
 
 
 
 851		}
 852	}
 853
 
 
 854	if (!rcdev) {
 855		rstc = ERR_PTR(-EPROBE_DEFER);
 856		goto out;
 857	}
 858
 859	if (WARN_ON(args.args_count != rcdev->of_reset_n_cells)) {
 860		rstc = ERR_PTR(-EINVAL);
 861		goto out;
 862	}
 863
 864	rstc_id = rcdev->of_xlate(rcdev, &args);
 865	if (rstc_id < 0) {
 866		rstc = ERR_PTR(rstc_id);
 867		goto out;
 868	}
 869
 
 
 870	/* reset_list_mutex also protects the rcdev's reset_control list */
 871	rstc = __reset_control_get_internal(rcdev, rstc_id, shared, acquired);
 872
 873out:
 874	mutex_unlock(&reset_list_mutex);
 
 875	of_node_put(args.np);
 876
 877	return rstc;
 878}
 879EXPORT_SYMBOL_GPL(__of_reset_control_get);
 880
 881static struct reset_controller_dev *
 882__reset_controller_by_name(const char *name)
 883{
 884	struct reset_controller_dev *rcdev;
 885
 886	lockdep_assert_held(&reset_list_mutex);
 887
 888	list_for_each_entry(rcdev, &reset_controller_list, list) {
 889		if (!rcdev->dev)
 890			continue;
 891
 892		if (!strcmp(name, dev_name(rcdev->dev)))
 893			return rcdev;
 894	}
 895
 896	return NULL;
 897}
 898
 899static struct reset_control *
 900__reset_control_get_from_lookup(struct device *dev, const char *con_id,
 901				bool shared, bool optional, bool acquired)
 902{
 
 903	const struct reset_control_lookup *lookup;
 904	struct reset_controller_dev *rcdev;
 905	const char *dev_id = dev_name(dev);
 906	struct reset_control *rstc = NULL;
 907
 908	mutex_lock(&reset_lookup_mutex);
 909
 910	list_for_each_entry(lookup, &reset_lookup_list, list) {
 911		if (strcmp(lookup->dev_id, dev_id))
 912			continue;
 913
 914		if ((!con_id && !lookup->con_id) ||
 915		    ((con_id && lookup->con_id) &&
 916		     !strcmp(con_id, lookup->con_id))) {
 917			mutex_lock(&reset_list_mutex);
 918			rcdev = __reset_controller_by_name(lookup->provider);
 919			if (!rcdev) {
 920				mutex_unlock(&reset_list_mutex);
 921				mutex_unlock(&reset_lookup_mutex);
 922				/* Reset provider may not be ready yet. */
 923				return ERR_PTR(-EPROBE_DEFER);
 924			}
 925
 
 
 926			rstc = __reset_control_get_internal(rcdev,
 927							    lookup->index,
 928							    shared, acquired);
 929			mutex_unlock(&reset_list_mutex);
 930			break;
 931		}
 932	}
 933
 934	mutex_unlock(&reset_lookup_mutex);
 935
 936	if (!rstc)
 937		return optional ? NULL : ERR_PTR(-ENOENT);
 938
 939	return rstc;
 940}
 941
 942struct reset_control *__reset_control_get(struct device *dev, const char *id,
 943					  int index, bool shared, bool optional,
 944					  bool acquired)
 945{
 
 
 
 946	if (WARN_ON(shared && acquired))
 947		return ERR_PTR(-EINVAL);
 948
 949	if (dev->of_node)
 950		return __of_reset_control_get(dev->of_node, id, index, shared,
 951					      optional, acquired);
 952
 953	return __reset_control_get_from_lookup(dev, id, shared, optional,
 954					       acquired);
 955}
 956EXPORT_SYMBOL_GPL(__reset_control_get);
 957
 958int __reset_control_bulk_get(struct device *dev, int num_rstcs,
 959			     struct reset_control_bulk_data *rstcs,
 960			     bool shared, bool optional, bool acquired)
 961{
 962	int ret, i;
 963
 964	for (i = 0; i < num_rstcs; i++) {
 965		rstcs[i].rstc = __reset_control_get(dev, rstcs[i].id, 0,
 966						    shared, optional, acquired);
 967		if (IS_ERR(rstcs[i].rstc)) {
 968			ret = PTR_ERR(rstcs[i].rstc);
 969			goto err;
 970		}
 971	}
 972
 973	return 0;
 974
 975err:
 976	mutex_lock(&reset_list_mutex);
 977	while (i--)
 978		__reset_control_put_internal(rstcs[i].rstc);
 979	mutex_unlock(&reset_list_mutex);
 980	return ret;
 981}
 982EXPORT_SYMBOL_GPL(__reset_control_bulk_get);
 983
 984static void reset_control_array_put(struct reset_control_array *resets)
 985{
 986	int i;
 987
 988	mutex_lock(&reset_list_mutex);
 989	for (i = 0; i < resets->num_rstcs; i++)
 990		__reset_control_put_internal(resets->rstc[i]);
 991	mutex_unlock(&reset_list_mutex);
 992	kfree(resets);
 993}
 994
 995/**
 996 * reset_control_put - free the reset controller
 997 * @rstc: reset controller
 998 */
 999void reset_control_put(struct reset_control *rstc)
1000{
1001	if (IS_ERR_OR_NULL(rstc))
1002		return;
1003
1004	if (reset_control_is_array(rstc)) {
1005		reset_control_array_put(rstc_to_array(rstc));
1006		return;
1007	}
1008
1009	mutex_lock(&reset_list_mutex);
1010	__reset_control_put_internal(rstc);
1011	mutex_unlock(&reset_list_mutex);
1012}
1013EXPORT_SYMBOL_GPL(reset_control_put);
1014
1015/**
1016 * reset_control_bulk_put - free the reset controllers
1017 * @num_rstcs: number of entries in rstcs array
1018 * @rstcs: array of struct reset_control_bulk_data with reset controls set
1019 */
1020void reset_control_bulk_put(int num_rstcs, struct reset_control_bulk_data *rstcs)
1021{
1022	mutex_lock(&reset_list_mutex);
1023	while (num_rstcs--)
1024		__reset_control_put_internal(rstcs[num_rstcs].rstc);
1025	mutex_unlock(&reset_list_mutex);
1026}
1027EXPORT_SYMBOL_GPL(reset_control_bulk_put);
1028
1029static void devm_reset_control_release(struct device *dev, void *res)
1030{
1031	reset_control_put(*(struct reset_control **)res);
1032}
1033
 
 
 
 
 
 
 
 
1034struct reset_control *
1035__devm_reset_control_get(struct device *dev, const char *id, int index,
1036			 bool shared, bool optional, bool acquired)
1037{
1038	struct reset_control **ptr, *rstc;
 
1039
1040	ptr = devres_alloc(devm_reset_control_release, sizeof(*ptr),
 
1041			   GFP_KERNEL);
1042	if (!ptr)
1043		return ERR_PTR(-ENOMEM);
1044
1045	rstc = __reset_control_get(dev, id, index, shared, optional, acquired);
 
 
1046	if (IS_ERR_OR_NULL(rstc)) {
1047		devres_free(ptr);
1048		return rstc;
1049	}
1050
 
 
 
 
 
 
 
 
 
 
 
1051	*ptr = rstc;
1052	devres_add(dev, ptr);
1053
1054	return rstc;
1055}
1056EXPORT_SYMBOL_GPL(__devm_reset_control_get);
1057
1058struct reset_control_bulk_devres {
1059	int num_rstcs;
1060	struct reset_control_bulk_data *rstcs;
1061};
1062
1063static void devm_reset_control_bulk_release(struct device *dev, void *res)
1064{
1065	struct reset_control_bulk_devres *devres = res;
1066
1067	reset_control_bulk_put(devres->num_rstcs, devres->rstcs);
1068}
1069
 
 
 
 
 
 
 
 
1070int __devm_reset_control_bulk_get(struct device *dev, int num_rstcs,
1071				  struct reset_control_bulk_data *rstcs,
1072				  bool shared, bool optional, bool acquired)
1073{
1074	struct reset_control_bulk_devres *ptr;
 
1075	int ret;
1076
1077	ptr = devres_alloc(devm_reset_control_bulk_release, sizeof(*ptr),
 
1078			   GFP_KERNEL);
1079	if (!ptr)
1080		return -ENOMEM;
1081
1082	ret = __reset_control_bulk_get(dev, num_rstcs, rstcs, shared, optional, acquired);
 
 
1083	if (ret < 0) {
1084		devres_free(ptr);
1085		return ret;
1086	}
1087
 
 
 
 
 
 
 
 
 
1088	ptr->num_rstcs = num_rstcs;
1089	ptr->rstcs = rstcs;
1090	devres_add(dev, ptr);
1091
1092	return 0;
1093}
1094EXPORT_SYMBOL_GPL(__devm_reset_control_bulk_get);
1095
1096/**
1097 * __device_reset - find reset controller associated with the device
1098 *                  and perform reset
1099 * @dev: device to be reset by the controller
1100 * @optional: whether it is optional to reset the device
1101 *
1102 * Convenience wrapper for __reset_control_get() and reset_control_reset().
1103 * This is useful for the common case of devices with single, dedicated reset
1104 * lines. _RST firmware method will be called for devices with ACPI.
1105 */
1106int __device_reset(struct device *dev, bool optional)
1107{
 
1108	struct reset_control *rstc;
1109	int ret;
1110
1111#ifdef CONFIG_ACPI
1112	acpi_handle handle = ACPI_HANDLE(dev);
1113
1114	if (handle) {
1115		if (!acpi_has_method(handle, "_RST"))
1116			return optional ? 0 : -ENOENT;
1117		if (ACPI_FAILURE(acpi_evaluate_object(handle, "_RST", NULL,
1118						      NULL)))
1119			return -EIO;
1120	}
1121#endif
1122
1123	rstc = __reset_control_get(dev, NULL, 0, 0, optional, true);
 
1124	if (IS_ERR(rstc))
1125		return PTR_ERR(rstc);
1126
1127	ret = reset_control_reset(rstc);
1128
1129	reset_control_put(rstc);
1130
1131	return ret;
1132}
1133EXPORT_SYMBOL_GPL(__device_reset);
1134
1135/*
1136 * APIs to manage an array of reset controls.
1137 */
1138
1139/**
1140 * of_reset_control_get_count - Count number of resets available with a device
1141 *
1142 * @node: device node that contains 'resets'.
1143 *
1144 * Returns positive reset count on success, or error number on failure and
1145 * on count being zero.
1146 */
1147static int of_reset_control_get_count(struct device_node *node)
1148{
1149	int count;
1150
1151	if (!node)
1152		return -EINVAL;
1153
1154	count = of_count_phandle_with_args(node, "resets", "#reset-cells");
1155	if (count == 0)
1156		count = -ENOENT;
1157
1158	return count;
1159}
1160
1161/**
1162 * of_reset_control_array_get - Get a list of reset controls using
1163 *				device node.
1164 *
1165 * @np: device node for the device that requests the reset controls array
1166 * @shared: whether reset controls are shared or not
1167 * @optional: whether it is optional to get the reset controls
1168 * @acquired: only one reset control may be acquired for a given controller
1169 *            and ID
1170 *
1171 * Returns pointer to allocated reset_control on success or error on failure
1172 */
1173struct reset_control *
1174of_reset_control_array_get(struct device_node *np, bool shared, bool optional,
1175			   bool acquired)
1176{
 
1177	struct reset_control_array *resets;
1178	struct reset_control *rstc;
1179	int num, i;
1180
1181	num = of_reset_control_get_count(np);
1182	if (num < 0)
1183		return optional ? NULL : ERR_PTR(num);
1184
1185	resets = kzalloc(struct_size(resets, rstc, num), GFP_KERNEL);
1186	if (!resets)
1187		return ERR_PTR(-ENOMEM);
1188	resets->num_rstcs = num;
1189
1190	for (i = 0; i < num; i++) {
1191		rstc = __of_reset_control_get(np, NULL, i, shared, optional,
1192					      acquired);
1193		if (IS_ERR(rstc))
1194			goto err_rst;
1195		resets->rstc[i] = rstc;
1196	}
1197	resets->base.array = true;
1198
1199	return &resets->base;
1200
1201err_rst:
1202	mutex_lock(&reset_list_mutex);
1203	while (--i >= 0)
1204		__reset_control_put_internal(resets->rstc[i]);
1205	mutex_unlock(&reset_list_mutex);
1206
1207	kfree(resets);
1208
1209	return rstc;
1210}
1211EXPORT_SYMBOL_GPL(of_reset_control_array_get);
1212
1213/**
1214 * devm_reset_control_array_get - Resource managed reset control array get
1215 *
1216 * @dev: device that requests the list of reset controls
1217 * @shared: whether reset controls are shared or not
1218 * @optional: whether it is optional to get the reset controls
1219 *
1220 * The reset control array APIs are intended for a list of resets
1221 * that just have to be asserted or deasserted, without any
1222 * requirements on the order.
1223 *
1224 * Returns pointer to allocated reset_control on success or error on failure
1225 */
1226struct reset_control *
1227devm_reset_control_array_get(struct device *dev, bool shared, bool optional)
1228{
1229	struct reset_control **ptr, *rstc;
1230
1231	ptr = devres_alloc(devm_reset_control_release, sizeof(*ptr),
1232			   GFP_KERNEL);
1233	if (!ptr)
1234		return ERR_PTR(-ENOMEM);
1235
1236	rstc = of_reset_control_array_get(dev->of_node, shared, optional, true);
1237	if (IS_ERR_OR_NULL(rstc)) {
1238		devres_free(ptr);
1239		return rstc;
1240	}
1241
1242	*ptr = rstc;
1243	devres_add(dev, ptr);
1244
1245	return rstc;
1246}
1247EXPORT_SYMBOL_GPL(devm_reset_control_array_get);
1248
1249static int reset_control_get_count_from_lookup(struct device *dev)
1250{
1251	const struct reset_control_lookup *lookup;
1252	const char *dev_id;
1253	int count = 0;
1254
1255	if (!dev)
1256		return -EINVAL;
1257
1258	dev_id = dev_name(dev);
1259	mutex_lock(&reset_lookup_mutex);
1260
1261	list_for_each_entry(lookup, &reset_lookup_list, list) {
1262		if (!strcmp(lookup->dev_id, dev_id))
1263			count++;
1264	}
1265
1266	mutex_unlock(&reset_lookup_mutex);
1267
1268	if (count == 0)
1269		count = -ENOENT;
1270
1271	return count;
1272}
1273
1274/**
1275 * reset_control_get_count - Count number of resets available with a device
1276 *
1277 * @dev: device for which to return the number of resets
1278 *
1279 * Returns positive reset count on success, or error number on failure and
1280 * on count being zero.
1281 */
1282int reset_control_get_count(struct device *dev)
1283{
1284	if (dev->of_node)
1285		return of_reset_control_get_count(dev->of_node);
1286
1287	return reset_control_get_count_from_lookup(dev);
1288}
1289EXPORT_SYMBOL_GPL(reset_control_get_count);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Reset Controller framework
   4 *
   5 * Copyright 2013 Philipp Zabel, Pengutronix
   6 */
   7#include <linux/atomic.h>
   8#include <linux/cleanup.h>
   9#include <linux/device.h>
  10#include <linux/err.h>
  11#include <linux/export.h>
  12#include <linux/kernel.h>
  13#include <linux/kref.h>
  14#include <linux/gpio/driver.h>
  15#include <linux/gpio/machine.h>
  16#include <linux/idr.h>
  17#include <linux/module.h>
  18#include <linux/of.h>
  19#include <linux/acpi.h>
  20#include <linux/platform_device.h>
  21#include <linux/reset.h>
  22#include <linux/reset-controller.h>
  23#include <linux/slab.h>
  24
  25static DEFINE_MUTEX(reset_list_mutex);
  26static LIST_HEAD(reset_controller_list);
  27
  28static DEFINE_MUTEX(reset_lookup_mutex);
  29static LIST_HEAD(reset_lookup_list);
  30
  31/* Protects reset_gpio_lookup_list */
  32static DEFINE_MUTEX(reset_gpio_lookup_mutex);
  33static LIST_HEAD(reset_gpio_lookup_list);
  34static DEFINE_IDA(reset_gpio_ida);
  35
  36/**
  37 * struct reset_control - a reset control
  38 * @rcdev: a pointer to the reset controller device
  39 *         this reset control belongs to
  40 * @list: list entry for the rcdev's reset controller list
  41 * @id: ID of the reset controller in the reset
  42 *      controller device
  43 * @refcnt: Number of gets of this reset_control
  44 * @acquired: Only one reset_control may be acquired for a given rcdev and id.
  45 * @shared: Is this a shared (1), or an exclusive (0) reset_control?
  46 * @array: Is this an array of reset controls (1)?
  47 * @deassert_count: Number of times this reset line has been deasserted
  48 * @triggered_count: Number of times this reset line has been reset. Currently
  49 *                   only used for shared resets, which means that the value
  50 *                   will be either 0 or 1.
  51 */
  52struct reset_control {
  53	struct reset_controller_dev *rcdev;
  54	struct list_head list;
  55	unsigned int id;
  56	struct kref refcnt;
  57	bool acquired;
  58	bool shared;
  59	bool array;
  60	atomic_t deassert_count;
  61	atomic_t triggered_count;
  62};
  63
  64/**
  65 * struct reset_control_array - an array of reset controls
  66 * @base: reset control for compatibility with reset control API functions
  67 * @num_rstcs: number of reset controls
  68 * @rstc: array of reset controls
  69 */
  70struct reset_control_array {
  71	struct reset_control base;
  72	unsigned int num_rstcs;
  73	struct reset_control *rstc[] __counted_by(num_rstcs);
  74};
  75
  76/**
  77 * struct reset_gpio_lookup - lookup key for ad-hoc created reset-gpio devices
  78 * @of_args: phandle to the reset controller with all the args like GPIO number
  79 * @list: list entry for the reset_gpio_lookup_list
  80 */
  81struct reset_gpio_lookup {
  82	struct of_phandle_args of_args;
  83	struct list_head list;
  84};
  85
  86static const char *rcdev_name(struct reset_controller_dev *rcdev)
  87{
  88	if (rcdev->dev)
  89		return dev_name(rcdev->dev);
  90
  91	if (rcdev->of_node)
  92		return rcdev->of_node->full_name;
  93
  94	if (rcdev->of_args)
  95		return rcdev->of_args->np->full_name;
  96
  97	return NULL;
  98}
  99
 100/**
 101 * of_reset_simple_xlate - translate reset_spec to the reset line number
 102 * @rcdev: a pointer to the reset controller device
 103 * @reset_spec: reset line specifier as found in the device tree
 104 *
 105 * This static translation function is used by default if of_xlate in
 106 * :c:type:`reset_controller_dev` is not set. It is useful for all reset
 107 * controllers with 1:1 mapping, where reset lines can be indexed by number
 108 * without gaps.
 109 */
 110static int of_reset_simple_xlate(struct reset_controller_dev *rcdev,
 111				 const struct of_phandle_args *reset_spec)
 112{
 113	if (reset_spec->args[0] >= rcdev->nr_resets)
 114		return -EINVAL;
 115
 116	return reset_spec->args[0];
 117}
 118
 119/**
 120 * reset_controller_register - register a reset controller device
 121 * @rcdev: a pointer to the initialized reset controller device
 122 */
 123int reset_controller_register(struct reset_controller_dev *rcdev)
 124{
 125	if (rcdev->of_node && rcdev->of_args)
 126		return -EINVAL;
 127
 128	if (!rcdev->of_xlate) {
 129		rcdev->of_reset_n_cells = 1;
 130		rcdev->of_xlate = of_reset_simple_xlate;
 131	}
 132
 133	INIT_LIST_HEAD(&rcdev->reset_control_head);
 134
 135	mutex_lock(&reset_list_mutex);
 136	list_add(&rcdev->list, &reset_controller_list);
 137	mutex_unlock(&reset_list_mutex);
 138
 139	return 0;
 140}
 141EXPORT_SYMBOL_GPL(reset_controller_register);
 142
 143/**
 144 * reset_controller_unregister - unregister a reset controller device
 145 * @rcdev: a pointer to the reset controller device
 146 */
 147void reset_controller_unregister(struct reset_controller_dev *rcdev)
 148{
 149	mutex_lock(&reset_list_mutex);
 150	list_del(&rcdev->list);
 151	mutex_unlock(&reset_list_mutex);
 152}
 153EXPORT_SYMBOL_GPL(reset_controller_unregister);
 154
 155static void devm_reset_controller_release(struct device *dev, void *res)
 156{
 157	reset_controller_unregister(*(struct reset_controller_dev **)res);
 158}
 159
 160/**
 161 * devm_reset_controller_register - resource managed reset_controller_register()
 162 * @dev: device that is registering this reset controller
 163 * @rcdev: a pointer to the initialized reset controller device
 164 *
 165 * Managed reset_controller_register(). For reset controllers registered by
 166 * this function, reset_controller_unregister() is automatically called on
 167 * driver detach. See reset_controller_register() for more information.
 168 */
 169int devm_reset_controller_register(struct device *dev,
 170				   struct reset_controller_dev *rcdev)
 171{
 172	struct reset_controller_dev **rcdevp;
 173	int ret;
 174
 175	rcdevp = devres_alloc(devm_reset_controller_release, sizeof(*rcdevp),
 176			      GFP_KERNEL);
 177	if (!rcdevp)
 178		return -ENOMEM;
 179
 180	ret = reset_controller_register(rcdev);
 181	if (ret) {
 182		devres_free(rcdevp);
 183		return ret;
 184	}
 185
 186	*rcdevp = rcdev;
 187	devres_add(dev, rcdevp);
 188
 189	return ret;
 190}
 191EXPORT_SYMBOL_GPL(devm_reset_controller_register);
 192
 193/**
 194 * reset_controller_add_lookup - register a set of lookup entries
 195 * @lookup: array of reset lookup entries
 196 * @num_entries: number of entries in the lookup array
 197 */
 198void reset_controller_add_lookup(struct reset_control_lookup *lookup,
 199				 unsigned int num_entries)
 200{
 201	struct reset_control_lookup *entry;
 202	unsigned int i;
 203
 204	mutex_lock(&reset_lookup_mutex);
 205	for (i = 0; i < num_entries; i++) {
 206		entry = &lookup[i];
 207
 208		if (!entry->dev_id || !entry->provider) {
 209			pr_warn("%s(): reset lookup entry badly specified, skipping\n",
 210				__func__);
 211			continue;
 212		}
 213
 214		list_add_tail(&entry->list, &reset_lookup_list);
 215	}
 216	mutex_unlock(&reset_lookup_mutex);
 217}
 218EXPORT_SYMBOL_GPL(reset_controller_add_lookup);
 219
 220static inline struct reset_control_array *
 221rstc_to_array(struct reset_control *rstc) {
 222	return container_of(rstc, struct reset_control_array, base);
 223}
 224
 225static int reset_control_array_reset(struct reset_control_array *resets)
 226{
 227	int ret, i;
 228
 229	for (i = 0; i < resets->num_rstcs; i++) {
 230		ret = reset_control_reset(resets->rstc[i]);
 231		if (ret)
 232			return ret;
 233	}
 234
 235	return 0;
 236}
 237
 238static int reset_control_array_rearm(struct reset_control_array *resets)
 239{
 240	struct reset_control *rstc;
 241	int i;
 242
 243	for (i = 0; i < resets->num_rstcs; i++) {
 244		rstc = resets->rstc[i];
 245
 246		if (!rstc)
 247			continue;
 248
 249		if (WARN_ON(IS_ERR(rstc)))
 250			return -EINVAL;
 251
 252		if (rstc->shared) {
 253			if (WARN_ON(atomic_read(&rstc->deassert_count) != 0))
 254				return -EINVAL;
 255		} else {
 256			if (!rstc->acquired)
 257				return -EPERM;
 258		}
 259	}
 260
 261	for (i = 0; i < resets->num_rstcs; i++) {
 262		rstc = resets->rstc[i];
 263
 264		if (rstc && rstc->shared)
 265			WARN_ON(atomic_dec_return(&rstc->triggered_count) < 0);
 266	}
 267
 268	return 0;
 269}
 270
 271static int reset_control_array_assert(struct reset_control_array *resets)
 272{
 273	int ret, i;
 274
 275	for (i = 0; i < resets->num_rstcs; i++) {
 276		ret = reset_control_assert(resets->rstc[i]);
 277		if (ret)
 278			goto err;
 279	}
 280
 281	return 0;
 282
 283err:
 284	while (i--)
 285		reset_control_deassert(resets->rstc[i]);
 286	return ret;
 287}
 288
 289static int reset_control_array_deassert(struct reset_control_array *resets)
 290{
 291	int ret, i;
 292
 293	for (i = 0; i < resets->num_rstcs; i++) {
 294		ret = reset_control_deassert(resets->rstc[i]);
 295		if (ret)
 296			goto err;
 297	}
 298
 299	return 0;
 300
 301err:
 302	while (i--)
 303		reset_control_assert(resets->rstc[i]);
 304	return ret;
 305}
 306
 307static int reset_control_array_acquire(struct reset_control_array *resets)
 308{
 309	unsigned int i;
 310	int err;
 311
 312	for (i = 0; i < resets->num_rstcs; i++) {
 313		err = reset_control_acquire(resets->rstc[i]);
 314		if (err < 0)
 315			goto release;
 316	}
 317
 318	return 0;
 319
 320release:
 321	while (i--)
 322		reset_control_release(resets->rstc[i]);
 323
 324	return err;
 325}
 326
 327static void reset_control_array_release(struct reset_control_array *resets)
 328{
 329	unsigned int i;
 330
 331	for (i = 0; i < resets->num_rstcs; i++)
 332		reset_control_release(resets->rstc[i]);
 333}
 334
 335static inline bool reset_control_is_array(struct reset_control *rstc)
 336{
 337	return rstc->array;
 338}
 339
 340/**
 341 * reset_control_reset - reset the controlled device
 342 * @rstc: reset controller
 343 *
 344 * On a shared reset line the actual reset pulse is only triggered once for the
 345 * lifetime of the reset_control instance: for all but the first caller this is
 346 * a no-op.
 347 * Consumers must not use reset_control_(de)assert on shared reset lines when
 348 * reset_control_reset has been used.
 349 *
 350 * If rstc is NULL it is an optional reset and the function will just
 351 * return 0.
 352 */
 353int reset_control_reset(struct reset_control *rstc)
 354{
 355	int ret;
 356
 357	if (!rstc)
 358		return 0;
 359
 360	if (WARN_ON(IS_ERR(rstc)))
 361		return -EINVAL;
 362
 363	if (reset_control_is_array(rstc))
 364		return reset_control_array_reset(rstc_to_array(rstc));
 365
 366	if (!rstc->rcdev->ops->reset)
 367		return -ENOTSUPP;
 368
 369	if (rstc->shared) {
 370		if (WARN_ON(atomic_read(&rstc->deassert_count) != 0))
 371			return -EINVAL;
 372
 373		if (atomic_inc_return(&rstc->triggered_count) != 1)
 374			return 0;
 375	} else {
 376		if (!rstc->acquired)
 377			return -EPERM;
 378	}
 379
 380	ret = rstc->rcdev->ops->reset(rstc->rcdev, rstc->id);
 381	if (rstc->shared && ret)
 382		atomic_dec(&rstc->triggered_count);
 383
 384	return ret;
 385}
 386EXPORT_SYMBOL_GPL(reset_control_reset);
 387
 388/**
 389 * reset_control_bulk_reset - reset the controlled devices in order
 390 * @num_rstcs: number of entries in rstcs array
 391 * @rstcs: array of struct reset_control_bulk_data with reset controls set
 392 *
 393 * Issue a reset on all provided reset controls, in order.
 394 *
 395 * See also: reset_control_reset()
 396 */
 397int reset_control_bulk_reset(int num_rstcs,
 398			     struct reset_control_bulk_data *rstcs)
 399{
 400	int ret, i;
 401
 402	for (i = 0; i < num_rstcs; i++) {
 403		ret = reset_control_reset(rstcs[i].rstc);
 404		if (ret)
 405			return ret;
 406	}
 407
 408	return 0;
 409}
 410EXPORT_SYMBOL_GPL(reset_control_bulk_reset);
 411
 412/**
 413 * reset_control_rearm - allow shared reset line to be re-triggered"
 414 * @rstc: reset controller
 415 *
 416 * On a shared reset line the actual reset pulse is only triggered once for the
 417 * lifetime of the reset_control instance, except if this call is used.
 418 *
 419 * Calls to this function must be balanced with calls to reset_control_reset,
 420 * a warning is thrown in case triggered_count ever dips below 0.
 421 *
 422 * Consumers must not use reset_control_(de)assert on shared reset lines when
 423 * reset_control_reset or reset_control_rearm have been used.
 424 *
 425 * If rstc is NULL the function will just return 0.
 426 */
 427int reset_control_rearm(struct reset_control *rstc)
 428{
 429	if (!rstc)
 430		return 0;
 431
 432	if (WARN_ON(IS_ERR(rstc)))
 433		return -EINVAL;
 434
 435	if (reset_control_is_array(rstc))
 436		return reset_control_array_rearm(rstc_to_array(rstc));
 437
 438	if (rstc->shared) {
 439		if (WARN_ON(atomic_read(&rstc->deassert_count) != 0))
 440			return -EINVAL;
 441
 442		WARN_ON(atomic_dec_return(&rstc->triggered_count) < 0);
 443	} else {
 444		if (!rstc->acquired)
 445			return -EPERM;
 446	}
 447
 448	return 0;
 449}
 450EXPORT_SYMBOL_GPL(reset_control_rearm);
 451
 452/**
 453 * reset_control_assert - asserts the reset line
 454 * @rstc: reset controller
 455 *
 456 * Calling this on an exclusive reset controller guarantees that the reset
 457 * will be asserted. When called on a shared reset controller the line may
 458 * still be deasserted, as long as other users keep it so.
 459 *
 460 * For shared reset controls a driver cannot expect the hw's registers and
 461 * internal state to be reset, but must be prepared for this to happen.
 462 * Consumers must not use reset_control_reset on shared reset lines when
 463 * reset_control_(de)assert has been used.
 464 *
 465 * If rstc is NULL it is an optional reset and the function will just
 466 * return 0.
 467 */
 468int reset_control_assert(struct reset_control *rstc)
 469{
 470	if (!rstc)
 471		return 0;
 472
 473	if (WARN_ON(IS_ERR(rstc)))
 474		return -EINVAL;
 475
 476	if (reset_control_is_array(rstc))
 477		return reset_control_array_assert(rstc_to_array(rstc));
 478
 479	if (rstc->shared) {
 480		if (WARN_ON(atomic_read(&rstc->triggered_count) != 0))
 481			return -EINVAL;
 482
 483		if (WARN_ON(atomic_read(&rstc->deassert_count) == 0))
 484			return -EINVAL;
 485
 486		if (atomic_dec_return(&rstc->deassert_count) != 0)
 487			return 0;
 488
 489		/*
 490		 * Shared reset controls allow the reset line to be in any state
 491		 * after this call, so doing nothing is a valid option.
 492		 */
 493		if (!rstc->rcdev->ops->assert)
 494			return 0;
 495	} else {
 496		/*
 497		 * If the reset controller does not implement .assert(), there
 498		 * is no way to guarantee that the reset line is asserted after
 499		 * this call.
 500		 */
 501		if (!rstc->rcdev->ops->assert)
 502			return -ENOTSUPP;
 503
 504		if (!rstc->acquired) {
 505			WARN(1, "reset %s (ID: %u) is not acquired\n",
 506			     rcdev_name(rstc->rcdev), rstc->id);
 507			return -EPERM;
 508		}
 509	}
 510
 511	return rstc->rcdev->ops->assert(rstc->rcdev, rstc->id);
 512}
 513EXPORT_SYMBOL_GPL(reset_control_assert);
 514
 515/**
 516 * reset_control_bulk_assert - asserts the reset lines in order
 517 * @num_rstcs: number of entries in rstcs array
 518 * @rstcs: array of struct reset_control_bulk_data with reset controls set
 519 *
 520 * Assert the reset lines for all provided reset controls, in order.
 521 * If an assertion fails, already asserted resets are deasserted again.
 522 *
 523 * See also: reset_control_assert()
 524 */
 525int reset_control_bulk_assert(int num_rstcs,
 526			      struct reset_control_bulk_data *rstcs)
 527{
 528	int ret, i;
 529
 530	for (i = 0; i < num_rstcs; i++) {
 531		ret = reset_control_assert(rstcs[i].rstc);
 532		if (ret)
 533			goto err;
 534	}
 535
 536	return 0;
 537
 538err:
 539	while (i--)
 540		reset_control_deassert(rstcs[i].rstc);
 541	return ret;
 542}
 543EXPORT_SYMBOL_GPL(reset_control_bulk_assert);
 544
 545/**
 546 * reset_control_deassert - deasserts the reset line
 547 * @rstc: reset controller
 548 *
 549 * After calling this function, the reset is guaranteed to be deasserted.
 550 * Consumers must not use reset_control_reset on shared reset lines when
 551 * reset_control_(de)assert has been used.
 552 *
 553 * If rstc is NULL it is an optional reset and the function will just
 554 * return 0.
 555 */
 556int reset_control_deassert(struct reset_control *rstc)
 557{
 558	if (!rstc)
 559		return 0;
 560
 561	if (WARN_ON(IS_ERR(rstc)))
 562		return -EINVAL;
 563
 564	if (reset_control_is_array(rstc))
 565		return reset_control_array_deassert(rstc_to_array(rstc));
 566
 567	if (rstc->shared) {
 568		if (WARN_ON(atomic_read(&rstc->triggered_count) != 0))
 569			return -EINVAL;
 570
 571		if (atomic_inc_return(&rstc->deassert_count) != 1)
 572			return 0;
 573	} else {
 574		if (!rstc->acquired) {
 575			WARN(1, "reset %s (ID: %u) is not acquired\n",
 576			     rcdev_name(rstc->rcdev), rstc->id);
 577			return -EPERM;
 578		}
 579	}
 580
 581	/*
 582	 * If the reset controller does not implement .deassert(), we assume
 583	 * that it handles self-deasserting reset lines via .reset(). In that
 584	 * case, the reset lines are deasserted by default. If that is not the
 585	 * case, the reset controller driver should implement .deassert() and
 586	 * return -ENOTSUPP.
 587	 */
 588	if (!rstc->rcdev->ops->deassert)
 589		return 0;
 590
 591	return rstc->rcdev->ops->deassert(rstc->rcdev, rstc->id);
 592}
 593EXPORT_SYMBOL_GPL(reset_control_deassert);
 594
 595/**
 596 * reset_control_bulk_deassert - deasserts the reset lines in reverse order
 597 * @num_rstcs: number of entries in rstcs array
 598 * @rstcs: array of struct reset_control_bulk_data with reset controls set
 599 *
 600 * Deassert the reset lines for all provided reset controls, in reverse order.
 601 * If a deassertion fails, already deasserted resets are asserted again.
 602 *
 603 * See also: reset_control_deassert()
 604 */
 605int reset_control_bulk_deassert(int num_rstcs,
 606				struct reset_control_bulk_data *rstcs)
 607{
 608	int ret, i;
 609
 610	for (i = num_rstcs - 1; i >= 0; i--) {
 611		ret = reset_control_deassert(rstcs[i].rstc);
 612		if (ret)
 613			goto err;
 614	}
 615
 616	return 0;
 617
 618err:
 619	while (i < num_rstcs)
 620		reset_control_assert(rstcs[i++].rstc);
 621	return ret;
 622}
 623EXPORT_SYMBOL_GPL(reset_control_bulk_deassert);
 624
 625/**
 626 * reset_control_status - returns a negative errno if not supported, a
 627 * positive value if the reset line is asserted, or zero if the reset
 628 * line is not asserted or if the desc is NULL (optional reset).
 629 * @rstc: reset controller
 630 */
 631int reset_control_status(struct reset_control *rstc)
 632{
 633	if (!rstc)
 634		return 0;
 635
 636	if (WARN_ON(IS_ERR(rstc)) || reset_control_is_array(rstc))
 637		return -EINVAL;
 638
 639	if (rstc->rcdev->ops->status)
 640		return rstc->rcdev->ops->status(rstc->rcdev, rstc->id);
 641
 642	return -ENOTSUPP;
 643}
 644EXPORT_SYMBOL_GPL(reset_control_status);
 645
 646/**
 647 * reset_control_acquire() - acquires a reset control for exclusive use
 648 * @rstc: reset control
 649 *
 650 * This is used to explicitly acquire a reset control for exclusive use. Note
 651 * that exclusive resets are requested as acquired by default. In order for a
 652 * second consumer to be able to control the reset, the first consumer has to
 653 * release it first. Typically the easiest way to achieve this is to call the
 654 * reset_control_get_exclusive_released() to obtain an instance of the reset
 655 * control. Such reset controls are not acquired by default.
 656 *
 657 * Consumers implementing shared access to an exclusive reset need to follow
 658 * a specific protocol in order to work together. Before consumers can change
 659 * a reset they must acquire exclusive access using reset_control_acquire().
 660 * After they are done operating the reset, they must release exclusive access
 661 * with a call to reset_control_release(). Consumers are not granted exclusive
 662 * access to the reset as long as another consumer hasn't released a reset.
 663 *
 664 * See also: reset_control_release()
 665 */
 666int reset_control_acquire(struct reset_control *rstc)
 667{
 668	struct reset_control *rc;
 669
 670	if (!rstc)
 671		return 0;
 672
 673	if (WARN_ON(IS_ERR(rstc)))
 674		return -EINVAL;
 675
 676	if (reset_control_is_array(rstc))
 677		return reset_control_array_acquire(rstc_to_array(rstc));
 678
 679	mutex_lock(&reset_list_mutex);
 680
 681	if (rstc->acquired) {
 682		mutex_unlock(&reset_list_mutex);
 683		return 0;
 684	}
 685
 686	list_for_each_entry(rc, &rstc->rcdev->reset_control_head, list) {
 687		if (rstc != rc && rstc->id == rc->id) {
 688			if (rc->acquired) {
 689				mutex_unlock(&reset_list_mutex);
 690				return -EBUSY;
 691			}
 692		}
 693	}
 694
 695	rstc->acquired = true;
 696
 697	mutex_unlock(&reset_list_mutex);
 698	return 0;
 699}
 700EXPORT_SYMBOL_GPL(reset_control_acquire);
 701
 702/**
 703 * reset_control_bulk_acquire - acquires reset controls for exclusive use
 704 * @num_rstcs: number of entries in rstcs array
 705 * @rstcs: array of struct reset_control_bulk_data with reset controls set
 706 *
 707 * This is used to explicitly acquire reset controls requested with
 708 * reset_control_bulk_get_exclusive_release() for temporary exclusive use.
 709 *
 710 * See also: reset_control_acquire(), reset_control_bulk_release()
 711 */
 712int reset_control_bulk_acquire(int num_rstcs,
 713			       struct reset_control_bulk_data *rstcs)
 714{
 715	int ret, i;
 716
 717	for (i = 0; i < num_rstcs; i++) {
 718		ret = reset_control_acquire(rstcs[i].rstc);
 719		if (ret)
 720			goto err;
 721	}
 722
 723	return 0;
 724
 725err:
 726	while (i--)
 727		reset_control_release(rstcs[i].rstc);
 728	return ret;
 729}
 730EXPORT_SYMBOL_GPL(reset_control_bulk_acquire);
 731
 732/**
 733 * reset_control_release() - releases exclusive access to a reset control
 734 * @rstc: reset control
 735 *
 736 * Releases exclusive access right to a reset control previously obtained by a
 737 * call to reset_control_acquire(). Until a consumer calls this function, no
 738 * other consumers will be granted exclusive access.
 739 *
 740 * See also: reset_control_acquire()
 741 */
 742void reset_control_release(struct reset_control *rstc)
 743{
 744	if (!rstc || WARN_ON(IS_ERR(rstc)))
 745		return;
 746
 747	if (reset_control_is_array(rstc))
 748		reset_control_array_release(rstc_to_array(rstc));
 749	else
 750		rstc->acquired = false;
 751}
 752EXPORT_SYMBOL_GPL(reset_control_release);
 753
 754/**
 755 * reset_control_bulk_release() - releases exclusive access to reset controls
 756 * @num_rstcs: number of entries in rstcs array
 757 * @rstcs: array of struct reset_control_bulk_data with reset controls set
 758 *
 759 * Releases exclusive access right to reset controls previously obtained by a
 760 * call to reset_control_bulk_acquire().
 761 *
 762 * See also: reset_control_release(), reset_control_bulk_acquire()
 763 */
 764void reset_control_bulk_release(int num_rstcs,
 765				struct reset_control_bulk_data *rstcs)
 766{
 767	int i;
 768
 769	for (i = 0; i < num_rstcs; i++)
 770		reset_control_release(rstcs[i].rstc);
 771}
 772EXPORT_SYMBOL_GPL(reset_control_bulk_release);
 773
 774static struct reset_control *
 775__reset_control_get_internal(struct reset_controller_dev *rcdev,
 776			     unsigned int index, enum reset_control_flags flags)
 777{
 778	bool shared = flags & RESET_CONTROL_FLAGS_BIT_SHARED;
 779	bool acquired = flags & RESET_CONTROL_FLAGS_BIT_ACQUIRED;
 780	struct reset_control *rstc;
 781
 782	lockdep_assert_held(&reset_list_mutex);
 783
 784	/* Expect callers to filter out OPTIONAL and DEASSERTED bits */
 785	if (WARN_ON(flags & ~(RESET_CONTROL_FLAGS_BIT_SHARED |
 786			      RESET_CONTROL_FLAGS_BIT_ACQUIRED)))
 787		return ERR_PTR(-EINVAL);
 788
 789	list_for_each_entry(rstc, &rcdev->reset_control_head, list) {
 790		if (rstc->id == index) {
 791			/*
 792			 * Allow creating a secondary exclusive reset_control
 793			 * that is initially not acquired for an already
 794			 * controlled reset line.
 795			 */
 796			if (!rstc->shared && !shared && !acquired)
 797				break;
 798
 799			if (WARN_ON(!rstc->shared || !shared))
 800				return ERR_PTR(-EBUSY);
 801
 802			kref_get(&rstc->refcnt);
 803			return rstc;
 804		}
 805	}
 806
 807	rstc = kzalloc(sizeof(*rstc), GFP_KERNEL);
 808	if (!rstc)
 809		return ERR_PTR(-ENOMEM);
 810
 811	if (!try_module_get(rcdev->owner)) {
 812		kfree(rstc);
 813		return ERR_PTR(-ENODEV);
 814	}
 815
 816	rstc->rcdev = rcdev;
 817	list_add(&rstc->list, &rcdev->reset_control_head);
 818	rstc->id = index;
 819	kref_init(&rstc->refcnt);
 820	rstc->acquired = acquired;
 821	rstc->shared = shared;
 822	get_device(rcdev->dev);
 823
 824	return rstc;
 825}
 826
 827static void __reset_control_release(struct kref *kref)
 828{
 829	struct reset_control *rstc = container_of(kref, struct reset_control,
 830						  refcnt);
 831
 832	lockdep_assert_held(&reset_list_mutex);
 833
 834	module_put(rstc->rcdev->owner);
 835
 836	list_del(&rstc->list);
 837	put_device(rstc->rcdev->dev);
 838	kfree(rstc);
 839}
 840
 841static void __reset_control_put_internal(struct reset_control *rstc)
 842{
 843	lockdep_assert_held(&reset_list_mutex);
 844
 845	if (IS_ERR_OR_NULL(rstc))
 846		return;
 847
 848	kref_put(&rstc->refcnt, __reset_control_release);
 849}
 850
 851static int __reset_add_reset_gpio_lookup(int id, struct device_node *np,
 852					 unsigned int gpio,
 853					 unsigned int of_flags)
 854{
 855	const struct fwnode_handle *fwnode = of_fwnode_handle(np);
 856	unsigned int lookup_flags;
 857	const char *label_tmp;
 858
 859	/*
 860	 * Later we map GPIO flags between OF and Linux, however not all
 861	 * constants from include/dt-bindings/gpio/gpio.h and
 862	 * include/linux/gpio/machine.h match each other.
 863	 */
 864	if (of_flags > GPIO_ACTIVE_LOW) {
 865		pr_err("reset-gpio code does not support GPIO flags %u for GPIO %u\n",
 866		       of_flags, gpio);
 867		return -EINVAL;
 868	}
 869
 870	struct gpio_device *gdev __free(gpio_device_put) = gpio_device_find_by_fwnode(fwnode);
 871	if (!gdev)
 872		return -EPROBE_DEFER;
 873
 874	label_tmp = gpio_device_get_label(gdev);
 875	if (!label_tmp)
 876		return -EINVAL;
 877
 878	char *label __free(kfree) = kstrdup(label_tmp, GFP_KERNEL);
 879	if (!label)
 880		return -ENOMEM;
 881
 882	/* Size: one lookup entry plus sentinel */
 883	struct gpiod_lookup_table *lookup __free(kfree) = kzalloc(struct_size(lookup, table, 2),
 884								  GFP_KERNEL);
 885	if (!lookup)
 886		return -ENOMEM;
 887
 888	lookup->dev_id = kasprintf(GFP_KERNEL, "reset-gpio.%d", id);
 889	if (!lookup->dev_id)
 890		return -ENOMEM;
 891
 892	lookup_flags = GPIO_PERSISTENT;
 893	lookup_flags |= of_flags & GPIO_ACTIVE_LOW;
 894	lookup->table[0] = GPIO_LOOKUP(no_free_ptr(label), gpio, "reset",
 895				       lookup_flags);
 896
 897	/* Not freed on success, because it is persisent subsystem data. */
 898	gpiod_add_lookup_table(no_free_ptr(lookup));
 899
 900	return 0;
 901}
 902
 903/*
 904 * @args:	phandle to the GPIO provider with all the args like GPIO number
 905 */
 906static int __reset_add_reset_gpio_device(const struct of_phandle_args *args)
 907{
 908	struct reset_gpio_lookup *rgpio_dev;
 909	struct platform_device *pdev;
 910	int id, ret;
 911
 912	/*
 913	 * Currently only #gpio-cells=2 is supported with the meaning of:
 914	 * args[0]: GPIO number
 915	 * args[1]: GPIO flags
 916	 * TODO: Handle other cases.
 917	 */
 918	if (args->args_count != 2)
 919		return -ENOENT;
 920
 921	/*
 922	 * Registering reset-gpio device might cause immediate
 923	 * bind, resulting in its probe() registering new reset controller thus
 924	 * taking reset_list_mutex lock via reset_controller_register().
 925	 */
 926	lockdep_assert_not_held(&reset_list_mutex);
 927
 928	guard(mutex)(&reset_gpio_lookup_mutex);
 929
 930	list_for_each_entry(rgpio_dev, &reset_gpio_lookup_list, list) {
 931		if (args->np == rgpio_dev->of_args.np) {
 932			if (of_phandle_args_equal(args, &rgpio_dev->of_args))
 933				return 0; /* Already on the list, done */
 934		}
 935	}
 936
 937	id = ida_alloc(&reset_gpio_ida, GFP_KERNEL);
 938	if (id < 0)
 939		return id;
 940
 941	/* Not freed on success, because it is persisent subsystem data. */
 942	rgpio_dev = kzalloc(sizeof(*rgpio_dev), GFP_KERNEL);
 943	if (!rgpio_dev) {
 944		ret = -ENOMEM;
 945		goto err_ida_free;
 946	}
 947
 948	ret = __reset_add_reset_gpio_lookup(id, args->np, args->args[0],
 949					    args->args[1]);
 950	if (ret < 0)
 951		goto err_kfree;
 952
 953	rgpio_dev->of_args = *args;
 954	/*
 955	 * We keep the device_node reference, but of_args.np is put at the end
 956	 * of __of_reset_control_get(), so get it one more time.
 957	 * Hold reference as long as rgpio_dev memory is valid.
 958	 */
 959	of_node_get(rgpio_dev->of_args.np);
 960	pdev = platform_device_register_data(NULL, "reset-gpio", id,
 961					     &rgpio_dev->of_args,
 962					     sizeof(rgpio_dev->of_args));
 963	ret = PTR_ERR_OR_ZERO(pdev);
 964	if (ret)
 965		goto err_put;
 966
 967	list_add(&rgpio_dev->list, &reset_gpio_lookup_list);
 968
 969	return 0;
 970
 971err_put:
 972	of_node_put(rgpio_dev->of_args.np);
 973err_kfree:
 974	kfree(rgpio_dev);
 975err_ida_free:
 976	ida_free(&reset_gpio_ida, id);
 977
 978	return ret;
 979}
 980
 981static struct reset_controller_dev *__reset_find_rcdev(const struct of_phandle_args *args,
 982						       bool gpio_fallback)
 983{
 984	struct reset_controller_dev *rcdev;
 985
 986	lockdep_assert_held(&reset_list_mutex);
 987
 988	list_for_each_entry(rcdev, &reset_controller_list, list) {
 989		if (gpio_fallback) {
 990			if (rcdev->of_args && of_phandle_args_equal(args,
 991								    rcdev->of_args))
 992				return rcdev;
 993		} else {
 994			if (args->np == rcdev->of_node)
 995				return rcdev;
 996		}
 997	}
 998
 999	return NULL;
1000}
1001
1002struct reset_control *
1003__of_reset_control_get(struct device_node *node, const char *id, int index,
1004		       enum reset_control_flags flags)
1005{
1006	bool optional = flags & RESET_CONTROL_FLAGS_BIT_OPTIONAL;
1007	bool gpio_fallback = false;
1008	struct reset_control *rstc;
1009	struct reset_controller_dev *rcdev;
1010	struct of_phandle_args args;
1011	int rstc_id;
1012	int ret;
1013
1014	if (!node)
1015		return ERR_PTR(-EINVAL);
1016
1017	if (id) {
1018		index = of_property_match_string(node,
1019						 "reset-names", id);
1020		if (index == -EILSEQ)
1021			return ERR_PTR(index);
1022		if (index < 0)
1023			return optional ? NULL : ERR_PTR(-ENOENT);
1024	}
1025
1026	ret = of_parse_phandle_with_args(node, "resets", "#reset-cells",
1027					 index, &args);
1028	if (ret == -EINVAL)
1029		return ERR_PTR(ret);
1030	if (ret) {
1031		if (!IS_ENABLED(CONFIG_RESET_GPIO))
1032			return optional ? NULL : ERR_PTR(ret);
1033
1034		/*
1035		 * There can be only one reset-gpio for regular devices, so
1036		 * don't bother with the "reset-gpios" phandle index.
1037		 */
1038		ret = of_parse_phandle_with_args(node, "reset-gpios", "#gpio-cells",
1039						 0, &args);
1040		if (ret)
1041			return optional ? NULL : ERR_PTR(ret);
1042
1043		gpio_fallback = true;
1044
1045		ret = __reset_add_reset_gpio_device(&args);
1046		if (ret) {
1047			rstc = ERR_PTR(ret);
1048			goto out_put;
1049		}
1050	}
1051
1052	mutex_lock(&reset_list_mutex);
1053	rcdev = __reset_find_rcdev(&args, gpio_fallback);
1054	if (!rcdev) {
1055		rstc = ERR_PTR(-EPROBE_DEFER);
1056		goto out_unlock;
1057	}
1058
1059	if (WARN_ON(args.args_count != rcdev->of_reset_n_cells)) {
1060		rstc = ERR_PTR(-EINVAL);
1061		goto out_unlock;
1062	}
1063
1064	rstc_id = rcdev->of_xlate(rcdev, &args);
1065	if (rstc_id < 0) {
1066		rstc = ERR_PTR(rstc_id);
1067		goto out_unlock;
1068	}
1069
1070	flags &= ~RESET_CONTROL_FLAGS_BIT_OPTIONAL;
1071
1072	/* reset_list_mutex also protects the rcdev's reset_control list */
1073	rstc = __reset_control_get_internal(rcdev, rstc_id, flags);
1074
1075out_unlock:
1076	mutex_unlock(&reset_list_mutex);
1077out_put:
1078	of_node_put(args.np);
1079
1080	return rstc;
1081}
1082EXPORT_SYMBOL_GPL(__of_reset_control_get);
1083
1084static struct reset_controller_dev *
1085__reset_controller_by_name(const char *name)
1086{
1087	struct reset_controller_dev *rcdev;
1088
1089	lockdep_assert_held(&reset_list_mutex);
1090
1091	list_for_each_entry(rcdev, &reset_controller_list, list) {
1092		if (!rcdev->dev)
1093			continue;
1094
1095		if (!strcmp(name, dev_name(rcdev->dev)))
1096			return rcdev;
1097	}
1098
1099	return NULL;
1100}
1101
1102static struct reset_control *
1103__reset_control_get_from_lookup(struct device *dev, const char *con_id,
1104				enum reset_control_flags flags)
1105{
1106	bool optional = flags & RESET_CONTROL_FLAGS_BIT_OPTIONAL;
1107	const struct reset_control_lookup *lookup;
1108	struct reset_controller_dev *rcdev;
1109	const char *dev_id = dev_name(dev);
1110	struct reset_control *rstc = NULL;
1111
1112	mutex_lock(&reset_lookup_mutex);
1113
1114	list_for_each_entry(lookup, &reset_lookup_list, list) {
1115		if (strcmp(lookup->dev_id, dev_id))
1116			continue;
1117
1118		if ((!con_id && !lookup->con_id) ||
1119		    ((con_id && lookup->con_id) &&
1120		     !strcmp(con_id, lookup->con_id))) {
1121			mutex_lock(&reset_list_mutex);
1122			rcdev = __reset_controller_by_name(lookup->provider);
1123			if (!rcdev) {
1124				mutex_unlock(&reset_list_mutex);
1125				mutex_unlock(&reset_lookup_mutex);
1126				/* Reset provider may not be ready yet. */
1127				return ERR_PTR(-EPROBE_DEFER);
1128			}
1129
1130			flags &= ~RESET_CONTROL_FLAGS_BIT_OPTIONAL;
1131
1132			rstc = __reset_control_get_internal(rcdev,
1133							    lookup->index,
1134							    flags);
1135			mutex_unlock(&reset_list_mutex);
1136			break;
1137		}
1138	}
1139
1140	mutex_unlock(&reset_lookup_mutex);
1141
1142	if (!rstc)
1143		return optional ? NULL : ERR_PTR(-ENOENT);
1144
1145	return rstc;
1146}
1147
1148struct reset_control *__reset_control_get(struct device *dev, const char *id,
1149					  int index, enum reset_control_flags flags)
 
1150{
1151	bool shared = flags & RESET_CONTROL_FLAGS_BIT_SHARED;
1152	bool acquired = flags & RESET_CONTROL_FLAGS_BIT_ACQUIRED;
1153
1154	if (WARN_ON(shared && acquired))
1155		return ERR_PTR(-EINVAL);
1156
1157	if (dev->of_node)
1158		return __of_reset_control_get(dev->of_node, id, index, flags);
 
1159
1160	return __reset_control_get_from_lookup(dev, id, flags);
 
1161}
1162EXPORT_SYMBOL_GPL(__reset_control_get);
1163
1164int __reset_control_bulk_get(struct device *dev, int num_rstcs,
1165			     struct reset_control_bulk_data *rstcs,
1166			     enum reset_control_flags flags)
1167{
1168	int ret, i;
1169
1170	for (i = 0; i < num_rstcs; i++) {
1171		rstcs[i].rstc = __reset_control_get(dev, rstcs[i].id, 0, flags);
 
1172		if (IS_ERR(rstcs[i].rstc)) {
1173			ret = PTR_ERR(rstcs[i].rstc);
1174			goto err;
1175		}
1176	}
1177
1178	return 0;
1179
1180err:
1181	mutex_lock(&reset_list_mutex);
1182	while (i--)
1183		__reset_control_put_internal(rstcs[i].rstc);
1184	mutex_unlock(&reset_list_mutex);
1185	return ret;
1186}
1187EXPORT_SYMBOL_GPL(__reset_control_bulk_get);
1188
1189static void reset_control_array_put(struct reset_control_array *resets)
1190{
1191	int i;
1192
1193	mutex_lock(&reset_list_mutex);
1194	for (i = 0; i < resets->num_rstcs; i++)
1195		__reset_control_put_internal(resets->rstc[i]);
1196	mutex_unlock(&reset_list_mutex);
1197	kfree(resets);
1198}
1199
1200/**
1201 * reset_control_put - free the reset controller
1202 * @rstc: reset controller
1203 */
1204void reset_control_put(struct reset_control *rstc)
1205{
1206	if (IS_ERR_OR_NULL(rstc))
1207		return;
1208
1209	if (reset_control_is_array(rstc)) {
1210		reset_control_array_put(rstc_to_array(rstc));
1211		return;
1212	}
1213
1214	mutex_lock(&reset_list_mutex);
1215	__reset_control_put_internal(rstc);
1216	mutex_unlock(&reset_list_mutex);
1217}
1218EXPORT_SYMBOL_GPL(reset_control_put);
1219
1220/**
1221 * reset_control_bulk_put - free the reset controllers
1222 * @num_rstcs: number of entries in rstcs array
1223 * @rstcs: array of struct reset_control_bulk_data with reset controls set
1224 */
1225void reset_control_bulk_put(int num_rstcs, struct reset_control_bulk_data *rstcs)
1226{
1227	mutex_lock(&reset_list_mutex);
1228	while (num_rstcs--)
1229		__reset_control_put_internal(rstcs[num_rstcs].rstc);
1230	mutex_unlock(&reset_list_mutex);
1231}
1232EXPORT_SYMBOL_GPL(reset_control_bulk_put);
1233
1234static void devm_reset_control_release(struct device *dev, void *res)
1235{
1236	reset_control_put(*(struct reset_control **)res);
1237}
1238
1239static void devm_reset_control_release_deasserted(struct device *dev, void *res)
1240{
1241	struct reset_control *rstc = *(struct reset_control **)res;
1242
1243	reset_control_assert(rstc);
1244	reset_control_put(rstc);
1245}
1246
1247struct reset_control *
1248__devm_reset_control_get(struct device *dev, const char *id, int index,
1249			 enum reset_control_flags flags)
1250{
1251	struct reset_control **ptr, *rstc;
1252	bool deasserted = flags & RESET_CONTROL_FLAGS_BIT_DEASSERTED;
1253
1254	ptr = devres_alloc(deasserted ? devm_reset_control_release_deasserted :
1255			   devm_reset_control_release, sizeof(*ptr),
1256			   GFP_KERNEL);
1257	if (!ptr)
1258		return ERR_PTR(-ENOMEM);
1259
1260	flags &= ~RESET_CONTROL_FLAGS_BIT_DEASSERTED;
1261
1262	rstc = __reset_control_get(dev, id, index, flags);
1263	if (IS_ERR_OR_NULL(rstc)) {
1264		devres_free(ptr);
1265		return rstc;
1266	}
1267
1268	if (deasserted) {
1269		int ret;
1270
1271		ret = reset_control_deassert(rstc);
1272		if (ret) {
1273			reset_control_put(rstc);
1274			devres_free(ptr);
1275			return ERR_PTR(ret);
1276		}
1277	}
1278
1279	*ptr = rstc;
1280	devres_add(dev, ptr);
1281
1282	return rstc;
1283}
1284EXPORT_SYMBOL_GPL(__devm_reset_control_get);
1285
1286struct reset_control_bulk_devres {
1287	int num_rstcs;
1288	struct reset_control_bulk_data *rstcs;
1289};
1290
1291static void devm_reset_control_bulk_release(struct device *dev, void *res)
1292{
1293	struct reset_control_bulk_devres *devres = res;
1294
1295	reset_control_bulk_put(devres->num_rstcs, devres->rstcs);
1296}
1297
1298static void devm_reset_control_bulk_release_deasserted(struct device *dev, void *res)
1299{
1300	struct reset_control_bulk_devres *devres = res;
1301
1302	reset_control_bulk_assert(devres->num_rstcs, devres->rstcs);
1303	reset_control_bulk_put(devres->num_rstcs, devres->rstcs);
1304}
1305
1306int __devm_reset_control_bulk_get(struct device *dev, int num_rstcs,
1307				  struct reset_control_bulk_data *rstcs,
1308				  enum reset_control_flags flags)
1309{
1310	struct reset_control_bulk_devres *ptr;
1311	bool deasserted = flags & RESET_CONTROL_FLAGS_BIT_DEASSERTED;
1312	int ret;
1313
1314	ptr = devres_alloc(deasserted ? devm_reset_control_bulk_release_deasserted :
1315			   devm_reset_control_bulk_release, sizeof(*ptr),
1316			   GFP_KERNEL);
1317	if (!ptr)
1318		return -ENOMEM;
1319
1320	flags &= ~RESET_CONTROL_FLAGS_BIT_DEASSERTED;
1321
1322	ret = __reset_control_bulk_get(dev, num_rstcs, rstcs, flags);
1323	if (ret < 0) {
1324		devres_free(ptr);
1325		return ret;
1326	}
1327
1328	if (deasserted) {
1329		ret = reset_control_bulk_deassert(num_rstcs, rstcs);
1330		if (ret) {
1331			reset_control_bulk_put(num_rstcs, rstcs);
1332			devres_free(ptr);
1333			return ret;
1334		}
1335	}
1336
1337	ptr->num_rstcs = num_rstcs;
1338	ptr->rstcs = rstcs;
1339	devres_add(dev, ptr);
1340
1341	return 0;
1342}
1343EXPORT_SYMBOL_GPL(__devm_reset_control_bulk_get);
1344
1345/**
1346 * __device_reset - find reset controller associated with the device
1347 *                  and perform reset
1348 * @dev: device to be reset by the controller
1349 * @optional: whether it is optional to reset the device
1350 *
1351 * Convenience wrapper for __reset_control_get() and reset_control_reset().
1352 * This is useful for the common case of devices with single, dedicated reset
1353 * lines. _RST firmware method will be called for devices with ACPI.
1354 */
1355int __device_reset(struct device *dev, bool optional)
1356{
1357	enum reset_control_flags flags;
1358	struct reset_control *rstc;
1359	int ret;
1360
1361#ifdef CONFIG_ACPI
1362	acpi_handle handle = ACPI_HANDLE(dev);
1363
1364	if (handle) {
1365		if (!acpi_has_method(handle, "_RST"))
1366			return optional ? 0 : -ENOENT;
1367		if (ACPI_FAILURE(acpi_evaluate_object(handle, "_RST", NULL,
1368						      NULL)))
1369			return -EIO;
1370	}
1371#endif
1372
1373	flags = optional ? RESET_CONTROL_OPTIONAL_EXCLUSIVE : RESET_CONTROL_EXCLUSIVE;
1374	rstc = __reset_control_get(dev, NULL, 0, flags);
1375	if (IS_ERR(rstc))
1376		return PTR_ERR(rstc);
1377
1378	ret = reset_control_reset(rstc);
1379
1380	reset_control_put(rstc);
1381
1382	return ret;
1383}
1384EXPORT_SYMBOL_GPL(__device_reset);
1385
1386/*
1387 * APIs to manage an array of reset controls.
1388 */
1389
1390/**
1391 * of_reset_control_get_count - Count number of resets available with a device
1392 *
1393 * @node: device node that contains 'resets'.
1394 *
1395 * Returns positive reset count on success, or error number on failure and
1396 * on count being zero.
1397 */
1398static int of_reset_control_get_count(struct device_node *node)
1399{
1400	int count;
1401
1402	if (!node)
1403		return -EINVAL;
1404
1405	count = of_count_phandle_with_args(node, "resets", "#reset-cells");
1406	if (count == 0)
1407		count = -ENOENT;
1408
1409	return count;
1410}
1411
1412/**
1413 * of_reset_control_array_get - Get a list of reset controls using
1414 *				device node.
1415 *
1416 * @np: device node for the device that requests the reset controls array
1417 * @flags: whether reset controls are shared, optional, acquired
 
 
 
1418 *
1419 * Returns pointer to allocated reset_control on success or error on failure
1420 */
1421struct reset_control *
1422of_reset_control_array_get(struct device_node *np, enum reset_control_flags flags)
 
1423{
1424	bool optional = flags & RESET_CONTROL_FLAGS_BIT_OPTIONAL;
1425	struct reset_control_array *resets;
1426	struct reset_control *rstc;
1427	int num, i;
1428
1429	num = of_reset_control_get_count(np);
1430	if (num < 0)
1431		return optional ? NULL : ERR_PTR(num);
1432
1433	resets = kzalloc(struct_size(resets, rstc, num), GFP_KERNEL);
1434	if (!resets)
1435		return ERR_PTR(-ENOMEM);
1436	resets->num_rstcs = num;
1437
1438	for (i = 0; i < num; i++) {
1439		rstc = __of_reset_control_get(np, NULL, i, flags);
 
1440		if (IS_ERR(rstc))
1441			goto err_rst;
1442		resets->rstc[i] = rstc;
1443	}
1444	resets->base.array = true;
1445
1446	return &resets->base;
1447
1448err_rst:
1449	mutex_lock(&reset_list_mutex);
1450	while (--i >= 0)
1451		__reset_control_put_internal(resets->rstc[i]);
1452	mutex_unlock(&reset_list_mutex);
1453
1454	kfree(resets);
1455
1456	return rstc;
1457}
1458EXPORT_SYMBOL_GPL(of_reset_control_array_get);
1459
1460/**
1461 * devm_reset_control_array_get - Resource managed reset control array get
1462 *
1463 * @dev: device that requests the list of reset controls
1464 * @flags: whether reset controls are shared, optional, acquired
 
1465 *
1466 * The reset control array APIs are intended for a list of resets
1467 * that just have to be asserted or deasserted, without any
1468 * requirements on the order.
1469 *
1470 * Returns pointer to allocated reset_control on success or error on failure
1471 */
1472struct reset_control *
1473devm_reset_control_array_get(struct device *dev, enum reset_control_flags flags)
1474{
1475	struct reset_control **ptr, *rstc;
1476
1477	ptr = devres_alloc(devm_reset_control_release, sizeof(*ptr),
1478			   GFP_KERNEL);
1479	if (!ptr)
1480		return ERR_PTR(-ENOMEM);
1481
1482	rstc = of_reset_control_array_get(dev->of_node, flags);
1483	if (IS_ERR_OR_NULL(rstc)) {
1484		devres_free(ptr);
1485		return rstc;
1486	}
1487
1488	*ptr = rstc;
1489	devres_add(dev, ptr);
1490
1491	return rstc;
1492}
1493EXPORT_SYMBOL_GPL(devm_reset_control_array_get);
1494
1495static int reset_control_get_count_from_lookup(struct device *dev)
1496{
1497	const struct reset_control_lookup *lookup;
1498	const char *dev_id;
1499	int count = 0;
1500
1501	if (!dev)
1502		return -EINVAL;
1503
1504	dev_id = dev_name(dev);
1505	mutex_lock(&reset_lookup_mutex);
1506
1507	list_for_each_entry(lookup, &reset_lookup_list, list) {
1508		if (!strcmp(lookup->dev_id, dev_id))
1509			count++;
1510	}
1511
1512	mutex_unlock(&reset_lookup_mutex);
1513
1514	if (count == 0)
1515		count = -ENOENT;
1516
1517	return count;
1518}
1519
1520/**
1521 * reset_control_get_count - Count number of resets available with a device
1522 *
1523 * @dev: device for which to return the number of resets
1524 *
1525 * Returns positive reset count on success, or error number on failure and
1526 * on count being zero.
1527 */
1528int reset_control_get_count(struct device *dev)
1529{
1530	if (dev->of_node)
1531		return of_reset_control_get_count(dev->of_node);
1532
1533	return reset_control_get_count_from_lookup(dev);
1534}
1535EXPORT_SYMBOL_GPL(reset_control_get_count);