Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * TI K3 R5F (MCU) Remote Processor driver
4 *
5 * Copyright (C) 2017-2022 Texas Instruments Incorporated - https://www.ti.com/
6 * Suman Anna <s-anna@ti.com>
7 */
8
9#include <linux/dma-mapping.h>
10#include <linux/err.h>
11#include <linux/interrupt.h>
12#include <linux/kernel.h>
13#include <linux/mailbox_client.h>
14#include <linux/module.h>
15#include <linux/of.h>
16#include <linux/of_address.h>
17#include <linux/of_reserved_mem.h>
18#include <linux/of_platform.h>
19#include <linux/omap-mailbox.h>
20#include <linux/platform_device.h>
21#include <linux/pm_runtime.h>
22#include <linux/remoteproc.h>
23#include <linux/reset.h>
24#include <linux/slab.h>
25
26#include "omap_remoteproc.h"
27#include "remoteproc_internal.h"
28#include "ti_sci_proc.h"
29
30/* This address can either be for ATCM or BTCM with the other at address 0x0 */
31#define K3_R5_TCM_DEV_ADDR 0x41010000
32
33/* R5 TI-SCI Processor Configuration Flags */
34#define PROC_BOOT_CFG_FLAG_R5_DBG_EN 0x00000001
35#define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN 0x00000002
36#define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP 0x00000100
37#define PROC_BOOT_CFG_FLAG_R5_TEINIT 0x00000200
38#define PROC_BOOT_CFG_FLAG_R5_NMFI_EN 0x00000400
39#define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE 0x00000800
40#define PROC_BOOT_CFG_FLAG_R5_BTCM_EN 0x00001000
41#define PROC_BOOT_CFG_FLAG_R5_ATCM_EN 0x00002000
42/* Available from J7200 SoCs onwards */
43#define PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS 0x00004000
44/* Applicable to only AM64x SoCs */
45#define PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE 0x00008000
46
47/* R5 TI-SCI Processor Control Flags */
48#define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT 0x00000001
49
50/* R5 TI-SCI Processor Status Flags */
51#define PROC_BOOT_STATUS_FLAG_R5_WFE 0x00000001
52#define PROC_BOOT_STATUS_FLAG_R5_WFI 0x00000002
53#define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED 0x00000004
54#define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED 0x00000100
55/* Applicable to only AM64x SoCs */
56#define PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY 0x00000200
57
58/**
59 * struct k3_r5_mem - internal memory structure
60 * @cpu_addr: MPU virtual address of the memory region
61 * @bus_addr: Bus address used to access the memory region
62 * @dev_addr: Device address from remoteproc view
63 * @size: Size of the memory region
64 */
65struct k3_r5_mem {
66 void __iomem *cpu_addr;
67 phys_addr_t bus_addr;
68 u32 dev_addr;
69 size_t size;
70};
71
72/*
73 * All cluster mode values are not applicable on all SoCs. The following
74 * are the modes supported on various SoCs:
75 * Split mode : AM65x, J721E, J7200 and AM64x SoCs
76 * LockStep mode : AM65x, J721E and J7200 SoCs
77 * Single-CPU mode : AM64x SoCs only
78 * Single-Core mode : AM62x, AM62A SoCs
79 */
80enum cluster_mode {
81 CLUSTER_MODE_SPLIT = 0,
82 CLUSTER_MODE_LOCKSTEP,
83 CLUSTER_MODE_SINGLECPU,
84 CLUSTER_MODE_SINGLECORE
85};
86
87/**
88 * struct k3_r5_soc_data - match data to handle SoC variations
89 * @tcm_is_double: flag to denote the larger unified TCMs in certain modes
90 * @tcm_ecc_autoinit: flag to denote the auto-initialization of TCMs for ECC
91 * @single_cpu_mode: flag to denote if SoC/IP supports Single-CPU mode
92 * @is_single_core: flag to denote if SoC/IP has only single core R5
93 */
94struct k3_r5_soc_data {
95 bool tcm_is_double;
96 bool tcm_ecc_autoinit;
97 bool single_cpu_mode;
98 bool is_single_core;
99};
100
101/**
102 * struct k3_r5_cluster - K3 R5F Cluster structure
103 * @dev: cached device pointer
104 * @mode: Mode to configure the Cluster - Split or LockStep
105 * @cores: list of R5 cores within the cluster
106 * @soc_data: SoC-specific feature data for a R5FSS
107 */
108struct k3_r5_cluster {
109 struct device *dev;
110 enum cluster_mode mode;
111 struct list_head cores;
112 const struct k3_r5_soc_data *soc_data;
113};
114
115/**
116 * struct k3_r5_core - K3 R5 core structure
117 * @elem: linked list item
118 * @dev: cached device pointer
119 * @rproc: rproc handle representing this core
120 * @mem: internal memory regions data
121 * @sram: on-chip SRAM memory regions data
122 * @num_mems: number of internal memory regions
123 * @num_sram: number of on-chip SRAM memory regions
124 * @reset: reset control handle
125 * @tsp: TI-SCI processor control handle
126 * @ti_sci: TI-SCI handle
127 * @ti_sci_id: TI-SCI device identifier
128 * @atcm_enable: flag to control ATCM enablement
129 * @btcm_enable: flag to control BTCM enablement
130 * @loczrama: flag to dictate which TCM is at device address 0x0
131 */
132struct k3_r5_core {
133 struct list_head elem;
134 struct device *dev;
135 struct rproc *rproc;
136 struct k3_r5_mem *mem;
137 struct k3_r5_mem *sram;
138 int num_mems;
139 int num_sram;
140 struct reset_control *reset;
141 struct ti_sci_proc *tsp;
142 const struct ti_sci_handle *ti_sci;
143 u32 ti_sci_id;
144 u32 atcm_enable;
145 u32 btcm_enable;
146 u32 loczrama;
147};
148
149/**
150 * struct k3_r5_rproc - K3 remote processor state
151 * @dev: cached device pointer
152 * @cluster: cached pointer to parent cluster structure
153 * @mbox: mailbox channel handle
154 * @client: mailbox client to request the mailbox channel
155 * @rproc: rproc handle
156 * @core: cached pointer to r5 core structure being used
157 * @rmem: reserved memory regions data
158 * @num_rmems: number of reserved memory regions
159 */
160struct k3_r5_rproc {
161 struct device *dev;
162 struct k3_r5_cluster *cluster;
163 struct mbox_chan *mbox;
164 struct mbox_client client;
165 struct rproc *rproc;
166 struct k3_r5_core *core;
167 struct k3_r5_mem *rmem;
168 int num_rmems;
169};
170
171/**
172 * k3_r5_rproc_mbox_callback() - inbound mailbox message handler
173 * @client: mailbox client pointer used for requesting the mailbox channel
174 * @data: mailbox payload
175 *
176 * This handler is invoked by the OMAP mailbox driver whenever a mailbox
177 * message is received. Usually, the mailbox payload simply contains
178 * the index of the virtqueue that is kicked by the remote processor,
179 * and we let remoteproc core handle it.
180 *
181 * In addition to virtqueue indices, we also have some out-of-band values
182 * that indicate different events. Those values are deliberately very
183 * large so they don't coincide with virtqueue indices.
184 */
185static void k3_r5_rproc_mbox_callback(struct mbox_client *client, void *data)
186{
187 struct k3_r5_rproc *kproc = container_of(client, struct k3_r5_rproc,
188 client);
189 struct device *dev = kproc->rproc->dev.parent;
190 const char *name = kproc->rproc->name;
191 u32 msg = omap_mbox_message(data);
192
193 dev_dbg(dev, "mbox msg: 0x%x\n", msg);
194
195 switch (msg) {
196 case RP_MBOX_CRASH:
197 /*
198 * remoteproc detected an exception, but error recovery is not
199 * supported. So, just log this for now
200 */
201 dev_err(dev, "K3 R5F rproc %s crashed\n", name);
202 break;
203 case RP_MBOX_ECHO_REPLY:
204 dev_info(dev, "received echo reply from %s\n", name);
205 break;
206 default:
207 /* silently handle all other valid messages */
208 if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
209 return;
210 if (msg > kproc->rproc->max_notifyid) {
211 dev_dbg(dev, "dropping unknown message 0x%x", msg);
212 return;
213 }
214 /* msg contains the index of the triggered vring */
215 if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE)
216 dev_dbg(dev, "no message was found in vqid %d\n", msg);
217 }
218}
219
220/* kick a virtqueue */
221static void k3_r5_rproc_kick(struct rproc *rproc, int vqid)
222{
223 struct k3_r5_rproc *kproc = rproc->priv;
224 struct device *dev = rproc->dev.parent;
225 mbox_msg_t msg = (mbox_msg_t)vqid;
226 int ret;
227
228 /* send the index of the triggered virtqueue in the mailbox payload */
229 ret = mbox_send_message(kproc->mbox, (void *)msg);
230 if (ret < 0)
231 dev_err(dev, "failed to send mailbox message, status = %d\n",
232 ret);
233}
234
235static int k3_r5_split_reset(struct k3_r5_core *core)
236{
237 int ret;
238
239 ret = reset_control_assert(core->reset);
240 if (ret) {
241 dev_err(core->dev, "local-reset assert failed, ret = %d\n",
242 ret);
243 return ret;
244 }
245
246 ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
247 core->ti_sci_id);
248 if (ret) {
249 dev_err(core->dev, "module-reset assert failed, ret = %d\n",
250 ret);
251 if (reset_control_deassert(core->reset))
252 dev_warn(core->dev, "local-reset deassert back failed\n");
253 }
254
255 return ret;
256}
257
258static int k3_r5_split_release(struct k3_r5_core *core)
259{
260 int ret;
261
262 ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
263 core->ti_sci_id);
264 if (ret) {
265 dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
266 ret);
267 return ret;
268 }
269
270 ret = reset_control_deassert(core->reset);
271 if (ret) {
272 dev_err(core->dev, "local-reset deassert failed, ret = %d\n",
273 ret);
274 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
275 core->ti_sci_id))
276 dev_warn(core->dev, "module-reset assert back failed\n");
277 }
278
279 return ret;
280}
281
282static int k3_r5_lockstep_reset(struct k3_r5_cluster *cluster)
283{
284 struct k3_r5_core *core;
285 int ret;
286
287 /* assert local reset on all applicable cores */
288 list_for_each_entry(core, &cluster->cores, elem) {
289 ret = reset_control_assert(core->reset);
290 if (ret) {
291 dev_err(core->dev, "local-reset assert failed, ret = %d\n",
292 ret);
293 core = list_prev_entry(core, elem);
294 goto unroll_local_reset;
295 }
296 }
297
298 /* disable PSC modules on all applicable cores */
299 list_for_each_entry(core, &cluster->cores, elem) {
300 ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
301 core->ti_sci_id);
302 if (ret) {
303 dev_err(core->dev, "module-reset assert failed, ret = %d\n",
304 ret);
305 goto unroll_module_reset;
306 }
307 }
308
309 return 0;
310
311unroll_module_reset:
312 list_for_each_entry_continue_reverse(core, &cluster->cores, elem) {
313 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
314 core->ti_sci_id))
315 dev_warn(core->dev, "module-reset assert back failed\n");
316 }
317 core = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
318unroll_local_reset:
319 list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
320 if (reset_control_deassert(core->reset))
321 dev_warn(core->dev, "local-reset deassert back failed\n");
322 }
323
324 return ret;
325}
326
327static int k3_r5_lockstep_release(struct k3_r5_cluster *cluster)
328{
329 struct k3_r5_core *core;
330 int ret;
331
332 /* enable PSC modules on all applicable cores */
333 list_for_each_entry_reverse(core, &cluster->cores, elem) {
334 ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
335 core->ti_sci_id);
336 if (ret) {
337 dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
338 ret);
339 core = list_next_entry(core, elem);
340 goto unroll_module_reset;
341 }
342 }
343
344 /* deassert local reset on all applicable cores */
345 list_for_each_entry_reverse(core, &cluster->cores, elem) {
346 ret = reset_control_deassert(core->reset);
347 if (ret) {
348 dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
349 ret);
350 goto unroll_local_reset;
351 }
352 }
353
354 return 0;
355
356unroll_local_reset:
357 list_for_each_entry_continue(core, &cluster->cores, elem) {
358 if (reset_control_assert(core->reset))
359 dev_warn(core->dev, "local-reset assert back failed\n");
360 }
361 core = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
362unroll_module_reset:
363 list_for_each_entry_from(core, &cluster->cores, elem) {
364 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
365 core->ti_sci_id))
366 dev_warn(core->dev, "module-reset assert back failed\n");
367 }
368
369 return ret;
370}
371
372static inline int k3_r5_core_halt(struct k3_r5_core *core)
373{
374 return ti_sci_proc_set_control(core->tsp,
375 PROC_BOOT_CTRL_FLAG_R5_CORE_HALT, 0);
376}
377
378static inline int k3_r5_core_run(struct k3_r5_core *core)
379{
380 return ti_sci_proc_set_control(core->tsp,
381 0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT);
382}
383
384static int k3_r5_rproc_request_mbox(struct rproc *rproc)
385{
386 struct k3_r5_rproc *kproc = rproc->priv;
387 struct mbox_client *client = &kproc->client;
388 struct device *dev = kproc->dev;
389 int ret;
390
391 client->dev = dev;
392 client->tx_done = NULL;
393 client->rx_callback = k3_r5_rproc_mbox_callback;
394 client->tx_block = false;
395 client->knows_txdone = false;
396
397 kproc->mbox = mbox_request_channel(client, 0);
398 if (IS_ERR(kproc->mbox)) {
399 ret = -EBUSY;
400 dev_err(dev, "mbox_request_channel failed: %ld\n",
401 PTR_ERR(kproc->mbox));
402 return ret;
403 }
404
405 /*
406 * Ping the remote processor, this is only for sanity-sake for now;
407 * there is no functional effect whatsoever.
408 *
409 * Note that the reply will _not_ arrive immediately: this message
410 * will wait in the mailbox fifo until the remote processor is booted.
411 */
412 ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
413 if (ret < 0) {
414 dev_err(dev, "mbox_send_message failed: %d\n", ret);
415 mbox_free_channel(kproc->mbox);
416 return ret;
417 }
418
419 return 0;
420}
421
422/*
423 * The R5F cores have controls for both a reset and a halt/run. The code
424 * execution from DDR requires the initial boot-strapping code to be run
425 * from the internal TCMs. This function is used to release the resets on
426 * applicable cores to allow loading into the TCMs. The .prepare() ops is
427 * invoked by remoteproc core before any firmware loading, and is followed
428 * by the .start() ops after loading to actually let the R5 cores run.
429 *
430 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to
431 * execute code, but combines the TCMs from both cores. The resets for both
432 * cores need to be released to make this possible, as the TCMs are in general
433 * private to each core. Only Core0 needs to be unhalted for running the
434 * cluster in this mode. The function uses the same reset logic as LockStep
435 * mode for this (though the behavior is agnostic of the reset release order).
436 * This callback is invoked only in remoteproc mode.
437 */
438static int k3_r5_rproc_prepare(struct rproc *rproc)
439{
440 struct k3_r5_rproc *kproc = rproc->priv;
441 struct k3_r5_cluster *cluster = kproc->cluster;
442 struct k3_r5_core *core = kproc->core;
443 struct device *dev = kproc->dev;
444 u32 ctrl = 0, cfg = 0, stat = 0;
445 u64 boot_vec = 0;
446 bool mem_init_dis;
447 int ret;
448
449 ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, &stat);
450 if (ret < 0)
451 return ret;
452 mem_init_dis = !!(cfg & PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS);
453
454 /* Re-use LockStep-mode reset logic for Single-CPU mode */
455 ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
456 cluster->mode == CLUSTER_MODE_SINGLECPU) ?
457 k3_r5_lockstep_release(cluster) : k3_r5_split_release(core);
458 if (ret) {
459 dev_err(dev, "unable to enable cores for TCM loading, ret = %d\n",
460 ret);
461 return ret;
462 }
463
464 /*
465 * Newer IP revisions like on J7200 SoCs support h/w auto-initialization
466 * of TCMs, so there is no need to perform the s/w memzero. This bit is
467 * configurable through System Firmware, the default value does perform
468 * auto-init, but account for it in case it is disabled
469 */
470 if (cluster->soc_data->tcm_ecc_autoinit && !mem_init_dis) {
471 dev_dbg(dev, "leveraging h/w init for TCM memories\n");
472 return 0;
473 }
474
475 /*
476 * Zero out both TCMs unconditionally (access from v8 Arm core is not
477 * affected by ATCM & BTCM enable configuration values) so that ECC
478 * can be effective on all TCM addresses.
479 */
480 dev_dbg(dev, "zeroing out ATCM memory\n");
481 memset(core->mem[0].cpu_addr, 0x00, core->mem[0].size);
482
483 dev_dbg(dev, "zeroing out BTCM memory\n");
484 memset(core->mem[1].cpu_addr, 0x00, core->mem[1].size);
485
486 return 0;
487}
488
489/*
490 * This function implements the .unprepare() ops and performs the complimentary
491 * operations to that of the .prepare() ops. The function is used to assert the
492 * resets on all applicable cores for the rproc device (depending on LockStep
493 * or Split mode). This completes the second portion of powering down the R5F
494 * cores. The cores themselves are only halted in the .stop() ops, and the
495 * .unprepare() ops is invoked by the remoteproc core after the remoteproc is
496 * stopped.
497 *
498 * The Single-CPU mode on applicable SoCs (eg: AM64x) combines the TCMs from
499 * both cores. The access is made possible only with releasing the resets for
500 * both cores, but with only Core0 unhalted. This function re-uses the same
501 * reset assert logic as LockStep mode for this mode (though the behavior is
502 * agnostic of the reset assert order). This callback is invoked only in
503 * remoteproc mode.
504 */
505static int k3_r5_rproc_unprepare(struct rproc *rproc)
506{
507 struct k3_r5_rproc *kproc = rproc->priv;
508 struct k3_r5_cluster *cluster = kproc->cluster;
509 struct k3_r5_core *core = kproc->core;
510 struct device *dev = kproc->dev;
511 int ret;
512
513 /* Re-use LockStep-mode reset logic for Single-CPU mode */
514 ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
515 cluster->mode == CLUSTER_MODE_SINGLECPU) ?
516 k3_r5_lockstep_reset(cluster) : k3_r5_split_reset(core);
517 if (ret)
518 dev_err(dev, "unable to disable cores, ret = %d\n", ret);
519
520 return ret;
521}
522
523/*
524 * The R5F start sequence includes two different operations
525 * 1. Configure the boot vector for R5F core(s)
526 * 2. Unhalt/Run the R5F core(s)
527 *
528 * The sequence is different between LockStep and Split modes. The LockStep
529 * mode requires the boot vector to be configured only for Core0, and then
530 * unhalt both the cores to start the execution - Core1 needs to be unhalted
531 * first followed by Core0. The Split-mode requires that Core0 to be maintained
532 * always in a higher power state that Core1 (implying Core1 needs to be started
533 * always only after Core0 is started).
534 *
535 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
536 * code, so only Core0 needs to be unhalted. The function uses the same logic
537 * flow as Split-mode for this. This callback is invoked only in remoteproc
538 * mode.
539 */
540static int k3_r5_rproc_start(struct rproc *rproc)
541{
542 struct k3_r5_rproc *kproc = rproc->priv;
543 struct k3_r5_cluster *cluster = kproc->cluster;
544 struct device *dev = kproc->dev;
545 struct k3_r5_core *core;
546 u32 boot_addr;
547 int ret;
548
549 ret = k3_r5_rproc_request_mbox(rproc);
550 if (ret)
551 return ret;
552
553 boot_addr = rproc->bootaddr;
554 /* TODO: add boot_addr sanity checking */
555 dev_dbg(dev, "booting R5F core using boot addr = 0x%x\n", boot_addr);
556
557 /* boot vector need not be programmed for Core1 in LockStep mode */
558 core = kproc->core;
559 ret = ti_sci_proc_set_config(core->tsp, boot_addr, 0, 0);
560 if (ret)
561 goto put_mbox;
562
563 /* unhalt/run all applicable cores */
564 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
565 list_for_each_entry_reverse(core, &cluster->cores, elem) {
566 ret = k3_r5_core_run(core);
567 if (ret)
568 goto unroll_core_run;
569 }
570 } else {
571 ret = k3_r5_core_run(core);
572 if (ret)
573 goto put_mbox;
574 }
575
576 return 0;
577
578unroll_core_run:
579 list_for_each_entry_continue(core, &cluster->cores, elem) {
580 if (k3_r5_core_halt(core))
581 dev_warn(core->dev, "core halt back failed\n");
582 }
583put_mbox:
584 mbox_free_channel(kproc->mbox);
585 return ret;
586}
587
588/*
589 * The R5F stop function includes the following operations
590 * 1. Halt R5F core(s)
591 *
592 * The sequence is different between LockStep and Split modes, and the order
593 * of cores the operations are performed are also in general reverse to that
594 * of the start function. The LockStep mode requires each operation to be
595 * performed first on Core0 followed by Core1. The Split-mode requires that
596 * Core0 to be maintained always in a higher power state that Core1 (implying
597 * Core1 needs to be stopped first before Core0).
598 *
599 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
600 * code, so only Core0 needs to be halted. The function uses the same logic
601 * flow as Split-mode for this.
602 *
603 * Note that the R5F halt operation in general is not effective when the R5F
604 * core is running, but is needed to make sure the core won't run after
605 * deasserting the reset the subsequent time. The asserting of reset can
606 * be done here, but is preferred to be done in the .unprepare() ops - this
607 * maintains the symmetric behavior between the .start(), .stop(), .prepare()
608 * and .unprepare() ops, and also balances them well between sysfs 'state'
609 * flow and device bind/unbind or module removal. This callback is invoked
610 * only in remoteproc mode.
611 */
612static int k3_r5_rproc_stop(struct rproc *rproc)
613{
614 struct k3_r5_rproc *kproc = rproc->priv;
615 struct k3_r5_cluster *cluster = kproc->cluster;
616 struct k3_r5_core *core = kproc->core;
617 int ret;
618
619 /* halt all applicable cores */
620 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
621 list_for_each_entry(core, &cluster->cores, elem) {
622 ret = k3_r5_core_halt(core);
623 if (ret) {
624 core = list_prev_entry(core, elem);
625 goto unroll_core_halt;
626 }
627 }
628 } else {
629 ret = k3_r5_core_halt(core);
630 if (ret)
631 goto out;
632 }
633
634 mbox_free_channel(kproc->mbox);
635
636 return 0;
637
638unroll_core_halt:
639 list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
640 if (k3_r5_core_run(core))
641 dev_warn(core->dev, "core run back failed\n");
642 }
643out:
644 return ret;
645}
646
647/*
648 * Attach to a running R5F remote processor (IPC-only mode)
649 *
650 * The R5F attach callback only needs to request the mailbox, the remote
651 * processor is already booted, so there is no need to issue any TI-SCI
652 * commands to boot the R5F cores in IPC-only mode. This callback is invoked
653 * only in IPC-only mode.
654 */
655static int k3_r5_rproc_attach(struct rproc *rproc)
656{
657 struct k3_r5_rproc *kproc = rproc->priv;
658 struct device *dev = kproc->dev;
659 int ret;
660
661 ret = k3_r5_rproc_request_mbox(rproc);
662 if (ret)
663 return ret;
664
665 dev_info(dev, "R5F core initialized in IPC-only mode\n");
666 return 0;
667}
668
669/*
670 * Detach from a running R5F remote processor (IPC-only mode)
671 *
672 * The R5F detach callback performs the opposite operation to attach callback
673 * and only needs to release the mailbox, the R5F cores are not stopped and
674 * will be left in booted state in IPC-only mode. This callback is invoked
675 * only in IPC-only mode.
676 */
677static int k3_r5_rproc_detach(struct rproc *rproc)
678{
679 struct k3_r5_rproc *kproc = rproc->priv;
680 struct device *dev = kproc->dev;
681
682 mbox_free_channel(kproc->mbox);
683 dev_info(dev, "R5F core deinitialized in IPC-only mode\n");
684 return 0;
685}
686
687/*
688 * This function implements the .get_loaded_rsc_table() callback and is used
689 * to provide the resource table for the booted R5F in IPC-only mode. The K3 R5F
690 * firmwares follow a design-by-contract approach and are expected to have the
691 * resource table at the base of the DDR region reserved for firmware usage.
692 * This provides flexibility for the remote processor to be booted by different
693 * bootloaders that may or may not have the ability to publish the resource table
694 * address and size through a DT property. This callback is invoked only in
695 * IPC-only mode.
696 */
697static struct resource_table *k3_r5_get_loaded_rsc_table(struct rproc *rproc,
698 size_t *rsc_table_sz)
699{
700 struct k3_r5_rproc *kproc = rproc->priv;
701 struct device *dev = kproc->dev;
702
703 if (!kproc->rmem[0].cpu_addr) {
704 dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found");
705 return ERR_PTR(-ENOMEM);
706 }
707
708 /*
709 * NOTE: The resource table size is currently hard-coded to a maximum
710 * of 256 bytes. The most common resource table usage for K3 firmwares
711 * is to only have the vdev resource entry and an optional trace entry.
712 * The exact size could be computed based on resource table address, but
713 * the hard-coded value suffices to support the IPC-only mode.
714 */
715 *rsc_table_sz = 256;
716 return (struct resource_table *)kproc->rmem[0].cpu_addr;
717}
718
719/*
720 * Internal Memory translation helper
721 *
722 * Custom function implementing the rproc .da_to_va ops to provide address
723 * translation (device address to kernel virtual address) for internal RAMs
724 * present in a DSP or IPU device). The translated addresses can be used
725 * either by the remoteproc core for loading, or by any rpmsg bus drivers.
726 */
727static void *k3_r5_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
728{
729 struct k3_r5_rproc *kproc = rproc->priv;
730 struct k3_r5_core *core = kproc->core;
731 void __iomem *va = NULL;
732 phys_addr_t bus_addr;
733 u32 dev_addr, offset;
734 size_t size;
735 int i;
736
737 if (len == 0)
738 return NULL;
739
740 /* handle both R5 and SoC views of ATCM and BTCM */
741 for (i = 0; i < core->num_mems; i++) {
742 bus_addr = core->mem[i].bus_addr;
743 dev_addr = core->mem[i].dev_addr;
744 size = core->mem[i].size;
745
746 /* handle R5-view addresses of TCMs */
747 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
748 offset = da - dev_addr;
749 va = core->mem[i].cpu_addr + offset;
750 return (__force void *)va;
751 }
752
753 /* handle SoC-view addresses of TCMs */
754 if (da >= bus_addr && ((da + len) <= (bus_addr + size))) {
755 offset = da - bus_addr;
756 va = core->mem[i].cpu_addr + offset;
757 return (__force void *)va;
758 }
759 }
760
761 /* handle any SRAM regions using SoC-view addresses */
762 for (i = 0; i < core->num_sram; i++) {
763 dev_addr = core->sram[i].dev_addr;
764 size = core->sram[i].size;
765
766 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
767 offset = da - dev_addr;
768 va = core->sram[i].cpu_addr + offset;
769 return (__force void *)va;
770 }
771 }
772
773 /* handle static DDR reserved memory regions */
774 for (i = 0; i < kproc->num_rmems; i++) {
775 dev_addr = kproc->rmem[i].dev_addr;
776 size = kproc->rmem[i].size;
777
778 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
779 offset = da - dev_addr;
780 va = kproc->rmem[i].cpu_addr + offset;
781 return (__force void *)va;
782 }
783 }
784
785 return NULL;
786}
787
788static const struct rproc_ops k3_r5_rproc_ops = {
789 .prepare = k3_r5_rproc_prepare,
790 .unprepare = k3_r5_rproc_unprepare,
791 .start = k3_r5_rproc_start,
792 .stop = k3_r5_rproc_stop,
793 .kick = k3_r5_rproc_kick,
794 .da_to_va = k3_r5_rproc_da_to_va,
795};
796
797/*
798 * Internal R5F Core configuration
799 *
800 * Each R5FSS has a cluster-level setting for configuring the processor
801 * subsystem either in a safety/fault-tolerant LockStep mode or a performance
802 * oriented Split mode on most SoCs. A fewer SoCs support a non-safety mode
803 * as an alternate for LockStep mode that exercises only a single R5F core
804 * called Single-CPU mode. Each R5F core has a number of settings to either
805 * enable/disable each of the TCMs, control which TCM appears at the R5F core's
806 * address 0x0. These settings need to be configured before the resets for the
807 * corresponding core are released. These settings are all protected and managed
808 * by the System Processor.
809 *
810 * This function is used to pre-configure these settings for each R5F core, and
811 * the configuration is all done through various ti_sci_proc functions that
812 * communicate with the System Processor. The function also ensures that both
813 * the cores are halted before the .prepare() step.
814 *
815 * The function is called from k3_r5_cluster_rproc_init() and is invoked either
816 * once (in LockStep mode or Single-CPU modes) or twice (in Split mode). Support
817 * for LockStep-mode is dictated by an eFUSE register bit, and the config
818 * settings retrieved from DT are adjusted accordingly as per the permitted
819 * cluster mode. Another eFUSE register bit dictates if the R5F cluster only
820 * supports a Single-CPU mode. All cluster level settings like Cluster mode and
821 * TEINIT (exception handling state dictating ARM or Thumb mode) can only be set
822 * and retrieved using Core0.
823 *
824 * The function behavior is different based on the cluster mode. The R5F cores
825 * are configured independently as per their individual settings in Split mode.
826 * They are identically configured in LockStep mode using the primary Core0
827 * settings. However, some individual settings cannot be set in LockStep mode.
828 * This is overcome by switching to Split-mode initially and then programming
829 * both the cores with the same settings, before reconfiguing again for
830 * LockStep mode.
831 */
832static int k3_r5_rproc_configure(struct k3_r5_rproc *kproc)
833{
834 struct k3_r5_cluster *cluster = kproc->cluster;
835 struct device *dev = kproc->dev;
836 struct k3_r5_core *core0, *core, *temp;
837 u32 ctrl = 0, cfg = 0, stat = 0;
838 u32 set_cfg = 0, clr_cfg = 0;
839 u64 boot_vec = 0;
840 bool lockstep_en;
841 bool single_cpu;
842 int ret;
843
844 core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
845 if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
846 cluster->mode == CLUSTER_MODE_SINGLECPU ||
847 cluster->mode == CLUSTER_MODE_SINGLECORE) {
848 core = core0;
849 } else {
850 core = kproc->core;
851 }
852
853 ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl,
854 &stat);
855 if (ret < 0)
856 return ret;
857
858 dev_dbg(dev, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n",
859 boot_vec, cfg, ctrl, stat);
860
861 single_cpu = !!(stat & PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY);
862 lockstep_en = !!(stat & PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED);
863
864 /* Override to single CPU mode if set in status flag */
865 if (single_cpu && cluster->mode == CLUSTER_MODE_SPLIT) {
866 dev_err(cluster->dev, "split-mode not permitted, force configuring for single-cpu mode\n");
867 cluster->mode = CLUSTER_MODE_SINGLECPU;
868 }
869
870 /* Override to split mode if lockstep enable bit is not set in status flag */
871 if (!lockstep_en && cluster->mode == CLUSTER_MODE_LOCKSTEP) {
872 dev_err(cluster->dev, "lockstep mode not permitted, force configuring for split-mode\n");
873 cluster->mode = CLUSTER_MODE_SPLIT;
874 }
875
876 /* always enable ARM mode and set boot vector to 0 */
877 boot_vec = 0x0;
878 if (core == core0) {
879 clr_cfg = PROC_BOOT_CFG_FLAG_R5_TEINIT;
880 /*
881 * Single-CPU configuration bit can only be configured
882 * on Core0 and system firmware will NACK any requests
883 * with the bit configured, so program it only on
884 * permitted cores
885 */
886 if (cluster->mode == CLUSTER_MODE_SINGLECPU ||
887 cluster->mode == CLUSTER_MODE_SINGLECORE) {
888 set_cfg = PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE;
889 } else {
890 /*
891 * LockStep configuration bit is Read-only on Split-mode
892 * _only_ devices and system firmware will NACK any
893 * requests with the bit configured, so program it only
894 * on permitted devices
895 */
896 if (lockstep_en)
897 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
898 }
899 }
900
901 if (core->atcm_enable)
902 set_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
903 else
904 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
905
906 if (core->btcm_enable)
907 set_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
908 else
909 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
910
911 if (core->loczrama)
912 set_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
913 else
914 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
915
916 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
917 /*
918 * work around system firmware limitations to make sure both
919 * cores are programmed symmetrically in LockStep. LockStep
920 * and TEINIT config is only allowed with Core0.
921 */
922 list_for_each_entry(temp, &cluster->cores, elem) {
923 ret = k3_r5_core_halt(temp);
924 if (ret)
925 goto out;
926
927 if (temp != core) {
928 clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
929 clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_TEINIT;
930 }
931 ret = ti_sci_proc_set_config(temp->tsp, boot_vec,
932 set_cfg, clr_cfg);
933 if (ret)
934 goto out;
935 }
936
937 set_cfg = PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
938 clr_cfg = 0;
939 ret = ti_sci_proc_set_config(core->tsp, boot_vec,
940 set_cfg, clr_cfg);
941 } else {
942 ret = k3_r5_core_halt(core);
943 if (ret)
944 goto out;
945
946 ret = ti_sci_proc_set_config(core->tsp, boot_vec,
947 set_cfg, clr_cfg);
948 }
949
950out:
951 return ret;
952}
953
954static int k3_r5_reserved_mem_init(struct k3_r5_rproc *kproc)
955{
956 struct device *dev = kproc->dev;
957 struct device_node *np = dev_of_node(dev);
958 struct device_node *rmem_np;
959 struct reserved_mem *rmem;
960 int num_rmems;
961 int ret, i;
962
963 num_rmems = of_property_count_elems_of_size(np, "memory-region",
964 sizeof(phandle));
965 if (num_rmems <= 0) {
966 dev_err(dev, "device does not have reserved memory regions, ret = %d\n",
967 num_rmems);
968 return -EINVAL;
969 }
970 if (num_rmems < 2) {
971 dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n",
972 num_rmems);
973 return -EINVAL;
974 }
975
976 /* use reserved memory region 0 for vring DMA allocations */
977 ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
978 if (ret) {
979 dev_err(dev, "device cannot initialize DMA pool, ret = %d\n",
980 ret);
981 return ret;
982 }
983
984 num_rmems--;
985 kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
986 if (!kproc->rmem) {
987 ret = -ENOMEM;
988 goto release_rmem;
989 }
990
991 /* use remaining reserved memory regions for static carveouts */
992 for (i = 0; i < num_rmems; i++) {
993 rmem_np = of_parse_phandle(np, "memory-region", i + 1);
994 if (!rmem_np) {
995 ret = -EINVAL;
996 goto unmap_rmem;
997 }
998
999 rmem = of_reserved_mem_lookup(rmem_np);
1000 if (!rmem) {
1001 of_node_put(rmem_np);
1002 ret = -EINVAL;
1003 goto unmap_rmem;
1004 }
1005 of_node_put(rmem_np);
1006
1007 kproc->rmem[i].bus_addr = rmem->base;
1008 /*
1009 * R5Fs do not have an MMU, but have a Region Address Translator
1010 * (RAT) module that provides a fixed entry translation between
1011 * the 32-bit processor addresses to 64-bit bus addresses. The
1012 * RAT is programmable only by the R5F cores. Support for RAT
1013 * is currently not supported, so 64-bit address regions are not
1014 * supported. The absence of MMUs implies that the R5F device
1015 * addresses/supported memory regions are restricted to 32-bit
1016 * bus addresses, and are identical
1017 */
1018 kproc->rmem[i].dev_addr = (u32)rmem->base;
1019 kproc->rmem[i].size = rmem->size;
1020 kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size);
1021 if (!kproc->rmem[i].cpu_addr) {
1022 dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
1023 i + 1, &rmem->base, &rmem->size);
1024 ret = -ENOMEM;
1025 goto unmap_rmem;
1026 }
1027
1028 dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1029 i + 1, &kproc->rmem[i].bus_addr,
1030 kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
1031 kproc->rmem[i].dev_addr);
1032 }
1033 kproc->num_rmems = num_rmems;
1034
1035 return 0;
1036
1037unmap_rmem:
1038 for (i--; i >= 0; i--)
1039 iounmap(kproc->rmem[i].cpu_addr);
1040 kfree(kproc->rmem);
1041release_rmem:
1042 of_reserved_mem_device_release(dev);
1043 return ret;
1044}
1045
1046static void k3_r5_reserved_mem_exit(struct k3_r5_rproc *kproc)
1047{
1048 int i;
1049
1050 for (i = 0; i < kproc->num_rmems; i++)
1051 iounmap(kproc->rmem[i].cpu_addr);
1052 kfree(kproc->rmem);
1053
1054 of_reserved_mem_device_release(kproc->dev);
1055}
1056
1057/*
1058 * Each R5F core within a typical R5FSS instance has a total of 64 KB of TCMs,
1059 * split equally into two 32 KB banks between ATCM and BTCM. The TCMs from both
1060 * cores are usable in Split-mode, but only the Core0 TCMs can be used in
1061 * LockStep-mode. The newer revisions of the R5FSS IP maximizes these TCMs by
1062 * leveraging the Core1 TCMs as well in certain modes where they would have
1063 * otherwise been unusable (Eg: LockStep-mode on J7200 SoCs, Single-CPU mode on
1064 * AM64x SoCs). This is done by making a Core1 TCM visible immediately after the
1065 * corresponding Core0 TCM. The SoC memory map uses the larger 64 KB sizes for
1066 * the Core0 TCMs, and the dts representation reflects this increased size on
1067 * supported SoCs. The Core0 TCM sizes therefore have to be adjusted to only
1068 * half the original size in Split mode.
1069 */
1070static void k3_r5_adjust_tcm_sizes(struct k3_r5_rproc *kproc)
1071{
1072 struct k3_r5_cluster *cluster = kproc->cluster;
1073 struct k3_r5_core *core = kproc->core;
1074 struct device *cdev = core->dev;
1075 struct k3_r5_core *core0;
1076
1077 if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
1078 cluster->mode == CLUSTER_MODE_SINGLECPU ||
1079 cluster->mode == CLUSTER_MODE_SINGLECORE ||
1080 !cluster->soc_data->tcm_is_double)
1081 return;
1082
1083 core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
1084 if (core == core0) {
1085 WARN_ON(core->mem[0].size != SZ_64K);
1086 WARN_ON(core->mem[1].size != SZ_64K);
1087
1088 core->mem[0].size /= 2;
1089 core->mem[1].size /= 2;
1090
1091 dev_dbg(cdev, "adjusted TCM sizes, ATCM = 0x%zx BTCM = 0x%zx\n",
1092 core->mem[0].size, core->mem[1].size);
1093 }
1094}
1095
1096/*
1097 * This function checks and configures a R5F core for IPC-only or remoteproc
1098 * mode. The driver is configured to be in IPC-only mode for a R5F core when
1099 * the core has been loaded and started by a bootloader. The IPC-only mode is
1100 * detected by querying the System Firmware for reset, power on and halt status
1101 * and ensuring that the core is running. Any incomplete steps at bootloader
1102 * are validated and errored out.
1103 *
1104 * In IPC-only mode, the driver state flags for ATCM, BTCM and LOCZRAMA settings
1105 * and cluster mode parsed originally from kernel DT are updated to reflect the
1106 * actual values configured by bootloader. The driver internal device memory
1107 * addresses for TCMs are also updated.
1108 */
1109static int k3_r5_rproc_configure_mode(struct k3_r5_rproc *kproc)
1110{
1111 struct k3_r5_cluster *cluster = kproc->cluster;
1112 struct k3_r5_core *core = kproc->core;
1113 struct device *cdev = core->dev;
1114 bool r_state = false, c_state = false, lockstep_en = false, single_cpu = false;
1115 u32 ctrl = 0, cfg = 0, stat = 0, halted = 0;
1116 u64 boot_vec = 0;
1117 u32 atcm_enable, btcm_enable, loczrama;
1118 struct k3_r5_core *core0;
1119 enum cluster_mode mode = cluster->mode;
1120 int ret;
1121
1122 core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
1123
1124 ret = core->ti_sci->ops.dev_ops.is_on(core->ti_sci, core->ti_sci_id,
1125 &r_state, &c_state);
1126 if (ret) {
1127 dev_err(cdev, "failed to get initial state, mode cannot be determined, ret = %d\n",
1128 ret);
1129 return ret;
1130 }
1131 if (r_state != c_state) {
1132 dev_warn(cdev, "R5F core may have been powered on by a different host, programmed state (%d) != actual state (%d)\n",
1133 r_state, c_state);
1134 }
1135
1136 ret = reset_control_status(core->reset);
1137 if (ret < 0) {
1138 dev_err(cdev, "failed to get initial local reset status, ret = %d\n",
1139 ret);
1140 return ret;
1141 }
1142
1143 ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl,
1144 &stat);
1145 if (ret < 0) {
1146 dev_err(cdev, "failed to get initial processor status, ret = %d\n",
1147 ret);
1148 return ret;
1149 }
1150 atcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_ATCM_EN ? 1 : 0;
1151 btcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_BTCM_EN ? 1 : 0;
1152 loczrama = cfg & PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE ? 1 : 0;
1153 single_cpu = cfg & PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE ? 1 : 0;
1154 lockstep_en = cfg & PROC_BOOT_CFG_FLAG_R5_LOCKSTEP ? 1 : 0;
1155
1156 if (single_cpu && mode != CLUSTER_MODE_SINGLECORE)
1157 mode = CLUSTER_MODE_SINGLECPU;
1158 if (lockstep_en)
1159 mode = CLUSTER_MODE_LOCKSTEP;
1160
1161 halted = ctrl & PROC_BOOT_CTRL_FLAG_R5_CORE_HALT;
1162
1163 /*
1164 * IPC-only mode detection requires both local and module resets to
1165 * be deasserted and R5F core to be unhalted. Local reset status is
1166 * irrelevant if module reset is asserted (POR value has local reset
1167 * deasserted), and is deemed as remoteproc mode
1168 */
1169 if (c_state && !ret && !halted) {
1170 dev_info(cdev, "configured R5F for IPC-only mode\n");
1171 kproc->rproc->state = RPROC_DETACHED;
1172 ret = 1;
1173 /* override rproc ops with only required IPC-only mode ops */
1174 kproc->rproc->ops->prepare = NULL;
1175 kproc->rproc->ops->unprepare = NULL;
1176 kproc->rproc->ops->start = NULL;
1177 kproc->rproc->ops->stop = NULL;
1178 kproc->rproc->ops->attach = k3_r5_rproc_attach;
1179 kproc->rproc->ops->detach = k3_r5_rproc_detach;
1180 kproc->rproc->ops->get_loaded_rsc_table =
1181 k3_r5_get_loaded_rsc_table;
1182 } else if (!c_state) {
1183 dev_info(cdev, "configured R5F for remoteproc mode\n");
1184 ret = 0;
1185 } else {
1186 dev_err(cdev, "mismatched mode: local_reset = %s, module_reset = %s, core_state = %s\n",
1187 !ret ? "deasserted" : "asserted",
1188 c_state ? "deasserted" : "asserted",
1189 halted ? "halted" : "unhalted");
1190 ret = -EINVAL;
1191 }
1192
1193 /* fixup TCMs, cluster & core flags to actual values in IPC-only mode */
1194 if (ret > 0) {
1195 if (core == core0)
1196 cluster->mode = mode;
1197 core->atcm_enable = atcm_enable;
1198 core->btcm_enable = btcm_enable;
1199 core->loczrama = loczrama;
1200 core->mem[0].dev_addr = loczrama ? 0 : K3_R5_TCM_DEV_ADDR;
1201 core->mem[1].dev_addr = loczrama ? K3_R5_TCM_DEV_ADDR : 0;
1202 }
1203
1204 return ret;
1205}
1206
1207static int k3_r5_cluster_rproc_init(struct platform_device *pdev)
1208{
1209 struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
1210 struct device *dev = &pdev->dev;
1211 struct k3_r5_rproc *kproc;
1212 struct k3_r5_core *core, *core1;
1213 struct device *cdev;
1214 const char *fw_name;
1215 struct rproc *rproc;
1216 int ret, ret1;
1217
1218 core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
1219 list_for_each_entry(core, &cluster->cores, elem) {
1220 cdev = core->dev;
1221 ret = rproc_of_parse_firmware(cdev, 0, &fw_name);
1222 if (ret) {
1223 dev_err(dev, "failed to parse firmware-name property, ret = %d\n",
1224 ret);
1225 goto out;
1226 }
1227
1228 rproc = rproc_alloc(cdev, dev_name(cdev), &k3_r5_rproc_ops,
1229 fw_name, sizeof(*kproc));
1230 if (!rproc) {
1231 ret = -ENOMEM;
1232 goto out;
1233 }
1234
1235 /* K3 R5s have a Region Address Translator (RAT) but no MMU */
1236 rproc->has_iommu = false;
1237 /* error recovery is not supported at present */
1238 rproc->recovery_disabled = true;
1239
1240 kproc = rproc->priv;
1241 kproc->cluster = cluster;
1242 kproc->core = core;
1243 kproc->dev = cdev;
1244 kproc->rproc = rproc;
1245 core->rproc = rproc;
1246
1247 ret = k3_r5_rproc_configure_mode(kproc);
1248 if (ret < 0)
1249 goto err_config;
1250 if (ret)
1251 goto init_rmem;
1252
1253 ret = k3_r5_rproc_configure(kproc);
1254 if (ret) {
1255 dev_err(dev, "initial configure failed, ret = %d\n",
1256 ret);
1257 goto err_config;
1258 }
1259
1260init_rmem:
1261 k3_r5_adjust_tcm_sizes(kproc);
1262
1263 ret = k3_r5_reserved_mem_init(kproc);
1264 if (ret) {
1265 dev_err(dev, "reserved memory init failed, ret = %d\n",
1266 ret);
1267 goto err_config;
1268 }
1269
1270 ret = rproc_add(rproc);
1271 if (ret) {
1272 dev_err(dev, "rproc_add failed, ret = %d\n", ret);
1273 goto err_add;
1274 }
1275
1276 /* create only one rproc in lockstep, single-cpu or
1277 * single core mode
1278 */
1279 if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
1280 cluster->mode == CLUSTER_MODE_SINGLECPU ||
1281 cluster->mode == CLUSTER_MODE_SINGLECORE)
1282 break;
1283 }
1284
1285 return 0;
1286
1287err_split:
1288 if (rproc->state == RPROC_ATTACHED) {
1289 ret1 = rproc_detach(rproc);
1290 if (ret1) {
1291 dev_err(kproc->dev, "failed to detach rproc, ret = %d\n",
1292 ret1);
1293 return ret1;
1294 }
1295 }
1296
1297 rproc_del(rproc);
1298err_add:
1299 k3_r5_reserved_mem_exit(kproc);
1300err_config:
1301 rproc_free(rproc);
1302 core->rproc = NULL;
1303out:
1304 /* undo core0 upon any failures on core1 in split-mode */
1305 if (cluster->mode == CLUSTER_MODE_SPLIT && core == core1) {
1306 core = list_prev_entry(core, elem);
1307 rproc = core->rproc;
1308 kproc = rproc->priv;
1309 goto err_split;
1310 }
1311 return ret;
1312}
1313
1314static void k3_r5_cluster_rproc_exit(void *data)
1315{
1316 struct k3_r5_cluster *cluster = platform_get_drvdata(data);
1317 struct k3_r5_rproc *kproc;
1318 struct k3_r5_core *core;
1319 struct rproc *rproc;
1320 int ret;
1321
1322 /*
1323 * lockstep mode and single-cpu modes have only one rproc associated
1324 * with first core, whereas split-mode has two rprocs associated with
1325 * each core, and requires that core1 be powered down first
1326 */
1327 core = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
1328 cluster->mode == CLUSTER_MODE_SINGLECPU) ?
1329 list_first_entry(&cluster->cores, struct k3_r5_core, elem) :
1330 list_last_entry(&cluster->cores, struct k3_r5_core, elem);
1331
1332 list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
1333 rproc = core->rproc;
1334 kproc = rproc->priv;
1335
1336 if (rproc->state == RPROC_ATTACHED) {
1337 ret = rproc_detach(rproc);
1338 if (ret) {
1339 dev_err(kproc->dev, "failed to detach rproc, ret = %d\n", ret);
1340 return;
1341 }
1342 }
1343
1344 rproc_del(rproc);
1345
1346 k3_r5_reserved_mem_exit(kproc);
1347
1348 rproc_free(rproc);
1349 core->rproc = NULL;
1350 }
1351}
1352
1353static int k3_r5_core_of_get_internal_memories(struct platform_device *pdev,
1354 struct k3_r5_core *core)
1355{
1356 static const char * const mem_names[] = {"atcm", "btcm"};
1357 struct device *dev = &pdev->dev;
1358 struct resource *res;
1359 int num_mems;
1360 int i;
1361
1362 num_mems = ARRAY_SIZE(mem_names);
1363 core->mem = devm_kcalloc(dev, num_mems, sizeof(*core->mem), GFP_KERNEL);
1364 if (!core->mem)
1365 return -ENOMEM;
1366
1367 for (i = 0; i < num_mems; i++) {
1368 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1369 mem_names[i]);
1370 if (!res) {
1371 dev_err(dev, "found no memory resource for %s\n",
1372 mem_names[i]);
1373 return -EINVAL;
1374 }
1375 if (!devm_request_mem_region(dev, res->start,
1376 resource_size(res),
1377 dev_name(dev))) {
1378 dev_err(dev, "could not request %s region for resource\n",
1379 mem_names[i]);
1380 return -EBUSY;
1381 }
1382
1383 /*
1384 * TCMs are designed in general to support RAM-like backing
1385 * memories. So, map these as Normal Non-Cached memories. This
1386 * also avoids/fixes any potential alignment faults due to
1387 * unaligned data accesses when using memcpy() or memset()
1388 * functions (normally seen with device type memory).
1389 */
1390 core->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
1391 resource_size(res));
1392 if (!core->mem[i].cpu_addr) {
1393 dev_err(dev, "failed to map %s memory\n", mem_names[i]);
1394 return -ENOMEM;
1395 }
1396 core->mem[i].bus_addr = res->start;
1397
1398 /*
1399 * TODO:
1400 * The R5F cores can place ATCM & BTCM anywhere in its address
1401 * based on the corresponding Region Registers in the System
1402 * Control coprocessor. For now, place ATCM and BTCM at
1403 * addresses 0 and 0x41010000 (same as the bus address on AM65x
1404 * SoCs) based on loczrama setting
1405 */
1406 if (!strcmp(mem_names[i], "atcm")) {
1407 core->mem[i].dev_addr = core->loczrama ?
1408 0 : K3_R5_TCM_DEV_ADDR;
1409 } else {
1410 core->mem[i].dev_addr = core->loczrama ?
1411 K3_R5_TCM_DEV_ADDR : 0;
1412 }
1413 core->mem[i].size = resource_size(res);
1414
1415 dev_dbg(dev, "memory %5s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1416 mem_names[i], &core->mem[i].bus_addr,
1417 core->mem[i].size, core->mem[i].cpu_addr,
1418 core->mem[i].dev_addr);
1419 }
1420 core->num_mems = num_mems;
1421
1422 return 0;
1423}
1424
1425static int k3_r5_core_of_get_sram_memories(struct platform_device *pdev,
1426 struct k3_r5_core *core)
1427{
1428 struct device_node *np = pdev->dev.of_node;
1429 struct device *dev = &pdev->dev;
1430 struct device_node *sram_np;
1431 struct resource res;
1432 int num_sram;
1433 int i, ret;
1434
1435 num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle));
1436 if (num_sram <= 0) {
1437 dev_dbg(dev, "device does not use reserved on-chip memories, num_sram = %d\n",
1438 num_sram);
1439 return 0;
1440 }
1441
1442 core->sram = devm_kcalloc(dev, num_sram, sizeof(*core->sram), GFP_KERNEL);
1443 if (!core->sram)
1444 return -ENOMEM;
1445
1446 for (i = 0; i < num_sram; i++) {
1447 sram_np = of_parse_phandle(np, "sram", i);
1448 if (!sram_np)
1449 return -EINVAL;
1450
1451 if (!of_device_is_available(sram_np)) {
1452 of_node_put(sram_np);
1453 return -EINVAL;
1454 }
1455
1456 ret = of_address_to_resource(sram_np, 0, &res);
1457 of_node_put(sram_np);
1458 if (ret)
1459 return -EINVAL;
1460
1461 core->sram[i].bus_addr = res.start;
1462 core->sram[i].dev_addr = res.start;
1463 core->sram[i].size = resource_size(&res);
1464 core->sram[i].cpu_addr = devm_ioremap_wc(dev, res.start,
1465 resource_size(&res));
1466 if (!core->sram[i].cpu_addr) {
1467 dev_err(dev, "failed to parse and map sram%d memory at %pad\n",
1468 i, &res.start);
1469 return -ENOMEM;
1470 }
1471
1472 dev_dbg(dev, "memory sram%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1473 i, &core->sram[i].bus_addr,
1474 core->sram[i].size, core->sram[i].cpu_addr,
1475 core->sram[i].dev_addr);
1476 }
1477 core->num_sram = num_sram;
1478
1479 return 0;
1480}
1481
1482static
1483struct ti_sci_proc *k3_r5_core_of_get_tsp(struct device *dev,
1484 const struct ti_sci_handle *sci)
1485{
1486 struct ti_sci_proc *tsp;
1487 u32 temp[2];
1488 int ret;
1489
1490 ret = of_property_read_u32_array(dev_of_node(dev), "ti,sci-proc-ids",
1491 temp, 2);
1492 if (ret < 0)
1493 return ERR_PTR(ret);
1494
1495 tsp = devm_kzalloc(dev, sizeof(*tsp), GFP_KERNEL);
1496 if (!tsp)
1497 return ERR_PTR(-ENOMEM);
1498
1499 tsp->dev = dev;
1500 tsp->sci = sci;
1501 tsp->ops = &sci->ops.proc_ops;
1502 tsp->proc_id = temp[0];
1503 tsp->host_id = temp[1];
1504
1505 return tsp;
1506}
1507
1508static int k3_r5_core_of_init(struct platform_device *pdev)
1509{
1510 struct device *dev = &pdev->dev;
1511 struct device_node *np = dev_of_node(dev);
1512 struct k3_r5_core *core;
1513 int ret;
1514
1515 if (!devres_open_group(dev, k3_r5_core_of_init, GFP_KERNEL))
1516 return -ENOMEM;
1517
1518 core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL);
1519 if (!core) {
1520 ret = -ENOMEM;
1521 goto err;
1522 }
1523
1524 core->dev = dev;
1525 /*
1526 * Use SoC Power-on-Reset values as default if no DT properties are
1527 * used to dictate the TCM configurations
1528 */
1529 core->atcm_enable = 0;
1530 core->btcm_enable = 1;
1531 core->loczrama = 1;
1532
1533 ret = of_property_read_u32(np, "ti,atcm-enable", &core->atcm_enable);
1534 if (ret < 0 && ret != -EINVAL) {
1535 dev_err(dev, "invalid format for ti,atcm-enable, ret = %d\n",
1536 ret);
1537 goto err;
1538 }
1539
1540 ret = of_property_read_u32(np, "ti,btcm-enable", &core->btcm_enable);
1541 if (ret < 0 && ret != -EINVAL) {
1542 dev_err(dev, "invalid format for ti,btcm-enable, ret = %d\n",
1543 ret);
1544 goto err;
1545 }
1546
1547 ret = of_property_read_u32(np, "ti,loczrama", &core->loczrama);
1548 if (ret < 0 && ret != -EINVAL) {
1549 dev_err(dev, "invalid format for ti,loczrama, ret = %d\n", ret);
1550 goto err;
1551 }
1552
1553 core->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci");
1554 if (IS_ERR(core->ti_sci)) {
1555 ret = PTR_ERR(core->ti_sci);
1556 if (ret != -EPROBE_DEFER) {
1557 dev_err(dev, "failed to get ti-sci handle, ret = %d\n",
1558 ret);
1559 }
1560 core->ti_sci = NULL;
1561 goto err;
1562 }
1563
1564 ret = of_property_read_u32(np, "ti,sci-dev-id", &core->ti_sci_id);
1565 if (ret) {
1566 dev_err(dev, "missing 'ti,sci-dev-id' property\n");
1567 goto err;
1568 }
1569
1570 core->reset = devm_reset_control_get_exclusive(dev, NULL);
1571 if (IS_ERR_OR_NULL(core->reset)) {
1572 ret = PTR_ERR_OR_ZERO(core->reset);
1573 if (!ret)
1574 ret = -ENODEV;
1575 if (ret != -EPROBE_DEFER) {
1576 dev_err(dev, "failed to get reset handle, ret = %d\n",
1577 ret);
1578 }
1579 goto err;
1580 }
1581
1582 core->tsp = k3_r5_core_of_get_tsp(dev, core->ti_sci);
1583 if (IS_ERR(core->tsp)) {
1584 ret = PTR_ERR(core->tsp);
1585 dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n",
1586 ret);
1587 goto err;
1588 }
1589
1590 ret = k3_r5_core_of_get_internal_memories(pdev, core);
1591 if (ret) {
1592 dev_err(dev, "failed to get internal memories, ret = %d\n",
1593 ret);
1594 goto err;
1595 }
1596
1597 ret = k3_r5_core_of_get_sram_memories(pdev, core);
1598 if (ret) {
1599 dev_err(dev, "failed to get sram memories, ret = %d\n", ret);
1600 goto err;
1601 }
1602
1603 ret = ti_sci_proc_request(core->tsp);
1604 if (ret < 0) {
1605 dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret);
1606 goto err;
1607 }
1608
1609 platform_set_drvdata(pdev, core);
1610 devres_close_group(dev, k3_r5_core_of_init);
1611
1612 return 0;
1613
1614err:
1615 devres_release_group(dev, k3_r5_core_of_init);
1616 return ret;
1617}
1618
1619/*
1620 * free the resources explicitly since driver model is not being used
1621 * for the child R5F devices
1622 */
1623static void k3_r5_core_of_exit(struct platform_device *pdev)
1624{
1625 struct k3_r5_core *core = platform_get_drvdata(pdev);
1626 struct device *dev = &pdev->dev;
1627 int ret;
1628
1629 ret = ti_sci_proc_release(core->tsp);
1630 if (ret)
1631 dev_err(dev, "failed to release proc, ret = %d\n", ret);
1632
1633 platform_set_drvdata(pdev, NULL);
1634 devres_release_group(dev, k3_r5_core_of_init);
1635}
1636
1637static void k3_r5_cluster_of_exit(void *data)
1638{
1639 struct k3_r5_cluster *cluster = platform_get_drvdata(data);
1640 struct platform_device *cpdev;
1641 struct k3_r5_core *core, *temp;
1642
1643 list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) {
1644 list_del(&core->elem);
1645 cpdev = to_platform_device(core->dev);
1646 k3_r5_core_of_exit(cpdev);
1647 }
1648}
1649
1650static int k3_r5_cluster_of_init(struct platform_device *pdev)
1651{
1652 struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
1653 struct device *dev = &pdev->dev;
1654 struct device_node *np = dev_of_node(dev);
1655 struct platform_device *cpdev;
1656 struct device_node *child;
1657 struct k3_r5_core *core;
1658 int ret;
1659
1660 for_each_available_child_of_node(np, child) {
1661 cpdev = of_find_device_by_node(child);
1662 if (!cpdev) {
1663 ret = -ENODEV;
1664 dev_err(dev, "could not get R5 core platform device\n");
1665 of_node_put(child);
1666 goto fail;
1667 }
1668
1669 ret = k3_r5_core_of_init(cpdev);
1670 if (ret) {
1671 dev_err(dev, "k3_r5_core_of_init failed, ret = %d\n",
1672 ret);
1673 put_device(&cpdev->dev);
1674 of_node_put(child);
1675 goto fail;
1676 }
1677
1678 core = platform_get_drvdata(cpdev);
1679 put_device(&cpdev->dev);
1680 list_add_tail(&core->elem, &cluster->cores);
1681 }
1682
1683 return 0;
1684
1685fail:
1686 k3_r5_cluster_of_exit(pdev);
1687 return ret;
1688}
1689
1690static int k3_r5_probe(struct platform_device *pdev)
1691{
1692 struct device *dev = &pdev->dev;
1693 struct device_node *np = dev_of_node(dev);
1694 struct k3_r5_cluster *cluster;
1695 const struct k3_r5_soc_data *data;
1696 int ret;
1697 int num_cores;
1698
1699 data = of_device_get_match_data(&pdev->dev);
1700 if (!data) {
1701 dev_err(dev, "SoC-specific data is not defined\n");
1702 return -ENODEV;
1703 }
1704
1705 cluster = devm_kzalloc(dev, sizeof(*cluster), GFP_KERNEL);
1706 if (!cluster)
1707 return -ENOMEM;
1708
1709 cluster->dev = dev;
1710 cluster->soc_data = data;
1711 INIT_LIST_HEAD(&cluster->cores);
1712
1713 ret = of_property_read_u32(np, "ti,cluster-mode", &cluster->mode);
1714 if (ret < 0 && ret != -EINVAL) {
1715 dev_err(dev, "invalid format for ti,cluster-mode, ret = %d\n",
1716 ret);
1717 return ret;
1718 }
1719
1720 if (ret == -EINVAL) {
1721 /*
1722 * default to most common efuse configurations - Split-mode on AM64x
1723 * and LockStep-mode on all others
1724 * default to most common efuse configurations -
1725 * Split-mode on AM64x
1726 * Single core on AM62x
1727 * LockStep-mode on all others
1728 */
1729 if (!data->is_single_core)
1730 cluster->mode = data->single_cpu_mode ?
1731 CLUSTER_MODE_SPLIT : CLUSTER_MODE_LOCKSTEP;
1732 else
1733 cluster->mode = CLUSTER_MODE_SINGLECORE;
1734 }
1735
1736 if ((cluster->mode == CLUSTER_MODE_SINGLECPU && !data->single_cpu_mode) ||
1737 (cluster->mode == CLUSTER_MODE_SINGLECORE && !data->is_single_core)) {
1738 dev_err(dev, "Cluster mode = %d is not supported on this SoC\n", cluster->mode);
1739 return -EINVAL;
1740 }
1741
1742 num_cores = of_get_available_child_count(np);
1743 if (num_cores != 2 && !data->is_single_core) {
1744 dev_err(dev, "MCU cluster requires both R5F cores to be enabled but num_cores is set to = %d\n",
1745 num_cores);
1746 return -ENODEV;
1747 }
1748
1749 if (num_cores != 1 && data->is_single_core) {
1750 dev_err(dev, "SoC supports only single core R5 but num_cores is set to %d\n",
1751 num_cores);
1752 return -ENODEV;
1753 }
1754
1755 platform_set_drvdata(pdev, cluster);
1756
1757 ret = devm_of_platform_populate(dev);
1758 if (ret) {
1759 dev_err(dev, "devm_of_platform_populate failed, ret = %d\n",
1760 ret);
1761 return ret;
1762 }
1763
1764 ret = k3_r5_cluster_of_init(pdev);
1765 if (ret) {
1766 dev_err(dev, "k3_r5_cluster_of_init failed, ret = %d\n", ret);
1767 return ret;
1768 }
1769
1770 ret = devm_add_action_or_reset(dev, k3_r5_cluster_of_exit, pdev);
1771 if (ret)
1772 return ret;
1773
1774 ret = k3_r5_cluster_rproc_init(pdev);
1775 if (ret) {
1776 dev_err(dev, "k3_r5_cluster_rproc_init failed, ret = %d\n",
1777 ret);
1778 return ret;
1779 }
1780
1781 ret = devm_add_action_or_reset(dev, k3_r5_cluster_rproc_exit, pdev);
1782 if (ret)
1783 return ret;
1784
1785 return 0;
1786}
1787
1788static const struct k3_r5_soc_data am65_j721e_soc_data = {
1789 .tcm_is_double = false,
1790 .tcm_ecc_autoinit = false,
1791 .single_cpu_mode = false,
1792 .is_single_core = false,
1793};
1794
1795static const struct k3_r5_soc_data j7200_j721s2_soc_data = {
1796 .tcm_is_double = true,
1797 .tcm_ecc_autoinit = true,
1798 .single_cpu_mode = false,
1799 .is_single_core = false,
1800};
1801
1802static const struct k3_r5_soc_data am64_soc_data = {
1803 .tcm_is_double = true,
1804 .tcm_ecc_autoinit = true,
1805 .single_cpu_mode = true,
1806 .is_single_core = false,
1807};
1808
1809static const struct k3_r5_soc_data am62_soc_data = {
1810 .tcm_is_double = false,
1811 .tcm_ecc_autoinit = true,
1812 .single_cpu_mode = false,
1813 .is_single_core = true,
1814};
1815
1816static const struct of_device_id k3_r5_of_match[] = {
1817 { .compatible = "ti,am654-r5fss", .data = &am65_j721e_soc_data, },
1818 { .compatible = "ti,j721e-r5fss", .data = &am65_j721e_soc_data, },
1819 { .compatible = "ti,j7200-r5fss", .data = &j7200_j721s2_soc_data, },
1820 { .compatible = "ti,am64-r5fss", .data = &am64_soc_data, },
1821 { .compatible = "ti,am62-r5fss", .data = &am62_soc_data, },
1822 { .compatible = "ti,j721s2-r5fss", .data = &j7200_j721s2_soc_data, },
1823 { /* sentinel */ },
1824};
1825MODULE_DEVICE_TABLE(of, k3_r5_of_match);
1826
1827static struct platform_driver k3_r5_rproc_driver = {
1828 .probe = k3_r5_probe,
1829 .driver = {
1830 .name = "k3_r5_rproc",
1831 .of_match_table = k3_r5_of_match,
1832 },
1833};
1834
1835module_platform_driver(k3_r5_rproc_driver);
1836
1837MODULE_LICENSE("GPL v2");
1838MODULE_DESCRIPTION("TI K3 R5F remote processor driver");
1839MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * TI K3 R5F (MCU) Remote Processor driver
4 *
5 * Copyright (C) 2017-2022 Texas Instruments Incorporated - https://www.ti.com/
6 * Suman Anna <s-anna@ti.com>
7 */
8
9#include <linux/dma-mapping.h>
10#include <linux/err.h>
11#include <linux/interrupt.h>
12#include <linux/kernel.h>
13#include <linux/mailbox_client.h>
14#include <linux/module.h>
15#include <linux/of.h>
16#include <linux/of_address.h>
17#include <linux/of_reserved_mem.h>
18#include <linux/of_platform.h>
19#include <linux/omap-mailbox.h>
20#include <linux/platform_device.h>
21#include <linux/pm_runtime.h>
22#include <linux/remoteproc.h>
23#include <linux/reset.h>
24#include <linux/slab.h>
25
26#include "omap_remoteproc.h"
27#include "remoteproc_internal.h"
28#include "ti_sci_proc.h"
29
30/* This address can either be for ATCM or BTCM with the other at address 0x0 */
31#define K3_R5_TCM_DEV_ADDR 0x41010000
32
33/* R5 TI-SCI Processor Configuration Flags */
34#define PROC_BOOT_CFG_FLAG_R5_DBG_EN 0x00000001
35#define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN 0x00000002
36#define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP 0x00000100
37#define PROC_BOOT_CFG_FLAG_R5_TEINIT 0x00000200
38#define PROC_BOOT_CFG_FLAG_R5_NMFI_EN 0x00000400
39#define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE 0x00000800
40#define PROC_BOOT_CFG_FLAG_R5_BTCM_EN 0x00001000
41#define PROC_BOOT_CFG_FLAG_R5_ATCM_EN 0x00002000
42/* Available from J7200 SoCs onwards */
43#define PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS 0x00004000
44/* Applicable to only AM64x SoCs */
45#define PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE 0x00008000
46
47/* R5 TI-SCI Processor Control Flags */
48#define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT 0x00000001
49
50/* R5 TI-SCI Processor Status Flags */
51#define PROC_BOOT_STATUS_FLAG_R5_WFE 0x00000001
52#define PROC_BOOT_STATUS_FLAG_R5_WFI 0x00000002
53#define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED 0x00000004
54#define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED 0x00000100
55/* Applicable to only AM64x SoCs */
56#define PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY 0x00000200
57
58/**
59 * struct k3_r5_mem - internal memory structure
60 * @cpu_addr: MPU virtual address of the memory region
61 * @bus_addr: Bus address used to access the memory region
62 * @dev_addr: Device address from remoteproc view
63 * @size: Size of the memory region
64 */
65struct k3_r5_mem {
66 void __iomem *cpu_addr;
67 phys_addr_t bus_addr;
68 u32 dev_addr;
69 size_t size;
70};
71
72/*
73 * All cluster mode values are not applicable on all SoCs. The following
74 * are the modes supported on various SoCs:
75 * Split mode : AM65x, J721E, J7200 and AM64x SoCs
76 * LockStep mode : AM65x, J721E and J7200 SoCs
77 * Single-CPU mode : AM64x SoCs only
78 * Single-Core mode : AM62x, AM62A SoCs
79 */
80enum cluster_mode {
81 CLUSTER_MODE_SPLIT = 0,
82 CLUSTER_MODE_LOCKSTEP,
83 CLUSTER_MODE_SINGLECPU,
84 CLUSTER_MODE_SINGLECORE
85};
86
87/**
88 * struct k3_r5_soc_data - match data to handle SoC variations
89 * @tcm_is_double: flag to denote the larger unified TCMs in certain modes
90 * @tcm_ecc_autoinit: flag to denote the auto-initialization of TCMs for ECC
91 * @single_cpu_mode: flag to denote if SoC/IP supports Single-CPU mode
92 * @is_single_core: flag to denote if SoC/IP has only single core R5
93 */
94struct k3_r5_soc_data {
95 bool tcm_is_double;
96 bool tcm_ecc_autoinit;
97 bool single_cpu_mode;
98 bool is_single_core;
99};
100
101/**
102 * struct k3_r5_cluster - K3 R5F Cluster structure
103 * @dev: cached device pointer
104 * @mode: Mode to configure the Cluster - Split or LockStep
105 * @cores: list of R5 cores within the cluster
106 * @core_transition: wait queue to sync core state changes
107 * @soc_data: SoC-specific feature data for a R5FSS
108 */
109struct k3_r5_cluster {
110 struct device *dev;
111 enum cluster_mode mode;
112 struct list_head cores;
113 wait_queue_head_t core_transition;
114 const struct k3_r5_soc_data *soc_data;
115};
116
117/**
118 * struct k3_r5_core - K3 R5 core structure
119 * @elem: linked list item
120 * @dev: cached device pointer
121 * @rproc: rproc handle representing this core
122 * @mem: internal memory regions data
123 * @sram: on-chip SRAM memory regions data
124 * @num_mems: number of internal memory regions
125 * @num_sram: number of on-chip SRAM memory regions
126 * @reset: reset control handle
127 * @tsp: TI-SCI processor control handle
128 * @ti_sci: TI-SCI handle
129 * @ti_sci_id: TI-SCI device identifier
130 * @atcm_enable: flag to control ATCM enablement
131 * @btcm_enable: flag to control BTCM enablement
132 * @loczrama: flag to dictate which TCM is at device address 0x0
133 * @released_from_reset: flag to signal when core is out of reset
134 */
135struct k3_r5_core {
136 struct list_head elem;
137 struct device *dev;
138 struct rproc *rproc;
139 struct k3_r5_mem *mem;
140 struct k3_r5_mem *sram;
141 int num_mems;
142 int num_sram;
143 struct reset_control *reset;
144 struct ti_sci_proc *tsp;
145 const struct ti_sci_handle *ti_sci;
146 u32 ti_sci_id;
147 u32 atcm_enable;
148 u32 btcm_enable;
149 u32 loczrama;
150 bool released_from_reset;
151};
152
153/**
154 * struct k3_r5_rproc - K3 remote processor state
155 * @dev: cached device pointer
156 * @cluster: cached pointer to parent cluster structure
157 * @mbox: mailbox channel handle
158 * @client: mailbox client to request the mailbox channel
159 * @rproc: rproc handle
160 * @core: cached pointer to r5 core structure being used
161 * @rmem: reserved memory regions data
162 * @num_rmems: number of reserved memory regions
163 */
164struct k3_r5_rproc {
165 struct device *dev;
166 struct k3_r5_cluster *cluster;
167 struct mbox_chan *mbox;
168 struct mbox_client client;
169 struct rproc *rproc;
170 struct k3_r5_core *core;
171 struct k3_r5_mem *rmem;
172 int num_rmems;
173};
174
175/**
176 * k3_r5_rproc_mbox_callback() - inbound mailbox message handler
177 * @client: mailbox client pointer used for requesting the mailbox channel
178 * @data: mailbox payload
179 *
180 * This handler is invoked by the OMAP mailbox driver whenever a mailbox
181 * message is received. Usually, the mailbox payload simply contains
182 * the index of the virtqueue that is kicked by the remote processor,
183 * and we let remoteproc core handle it.
184 *
185 * In addition to virtqueue indices, we also have some out-of-band values
186 * that indicate different events. Those values are deliberately very
187 * large so they don't coincide with virtqueue indices.
188 */
189static void k3_r5_rproc_mbox_callback(struct mbox_client *client, void *data)
190{
191 struct k3_r5_rproc *kproc = container_of(client, struct k3_r5_rproc,
192 client);
193 struct device *dev = kproc->rproc->dev.parent;
194 const char *name = kproc->rproc->name;
195 u32 msg = omap_mbox_message(data);
196
197 /* Do not forward message from a detached core */
198 if (kproc->rproc->state == RPROC_DETACHED)
199 return;
200
201 dev_dbg(dev, "mbox msg: 0x%x\n", msg);
202
203 switch (msg) {
204 case RP_MBOX_CRASH:
205 /*
206 * remoteproc detected an exception, but error recovery is not
207 * supported. So, just log this for now
208 */
209 dev_err(dev, "K3 R5F rproc %s crashed\n", name);
210 break;
211 case RP_MBOX_ECHO_REPLY:
212 dev_info(dev, "received echo reply from %s\n", name);
213 break;
214 default:
215 /* silently handle all other valid messages */
216 if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
217 return;
218 if (msg > kproc->rproc->max_notifyid) {
219 dev_dbg(dev, "dropping unknown message 0x%x", msg);
220 return;
221 }
222 /* msg contains the index of the triggered vring */
223 if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE)
224 dev_dbg(dev, "no message was found in vqid %d\n", msg);
225 }
226}
227
228/* kick a virtqueue */
229static void k3_r5_rproc_kick(struct rproc *rproc, int vqid)
230{
231 struct k3_r5_rproc *kproc = rproc->priv;
232 struct device *dev = rproc->dev.parent;
233 mbox_msg_t msg = (mbox_msg_t)vqid;
234 int ret;
235
236 /* Do not forward message to a detached core */
237 if (kproc->rproc->state == RPROC_DETACHED)
238 return;
239
240 /* send the index of the triggered virtqueue in the mailbox payload */
241 ret = mbox_send_message(kproc->mbox, (void *)msg);
242 if (ret < 0)
243 dev_err(dev, "failed to send mailbox message, status = %d\n",
244 ret);
245}
246
247static int k3_r5_split_reset(struct k3_r5_core *core)
248{
249 int ret;
250
251 ret = reset_control_assert(core->reset);
252 if (ret) {
253 dev_err(core->dev, "local-reset assert failed, ret = %d\n",
254 ret);
255 return ret;
256 }
257
258 ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
259 core->ti_sci_id);
260 if (ret) {
261 dev_err(core->dev, "module-reset assert failed, ret = %d\n",
262 ret);
263 if (reset_control_deassert(core->reset))
264 dev_warn(core->dev, "local-reset deassert back failed\n");
265 }
266
267 return ret;
268}
269
270static int k3_r5_split_release(struct k3_r5_core *core)
271{
272 int ret;
273
274 ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
275 core->ti_sci_id);
276 if (ret) {
277 dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
278 ret);
279 return ret;
280 }
281
282 ret = reset_control_deassert(core->reset);
283 if (ret) {
284 dev_err(core->dev, "local-reset deassert failed, ret = %d\n",
285 ret);
286 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
287 core->ti_sci_id))
288 dev_warn(core->dev, "module-reset assert back failed\n");
289 }
290
291 return ret;
292}
293
294static int k3_r5_lockstep_reset(struct k3_r5_cluster *cluster)
295{
296 struct k3_r5_core *core;
297 int ret;
298
299 /* assert local reset on all applicable cores */
300 list_for_each_entry(core, &cluster->cores, elem) {
301 ret = reset_control_assert(core->reset);
302 if (ret) {
303 dev_err(core->dev, "local-reset assert failed, ret = %d\n",
304 ret);
305 core = list_prev_entry(core, elem);
306 goto unroll_local_reset;
307 }
308 }
309
310 /* disable PSC modules on all applicable cores */
311 list_for_each_entry(core, &cluster->cores, elem) {
312 ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
313 core->ti_sci_id);
314 if (ret) {
315 dev_err(core->dev, "module-reset assert failed, ret = %d\n",
316 ret);
317 goto unroll_module_reset;
318 }
319 }
320
321 return 0;
322
323unroll_module_reset:
324 list_for_each_entry_continue_reverse(core, &cluster->cores, elem) {
325 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
326 core->ti_sci_id))
327 dev_warn(core->dev, "module-reset assert back failed\n");
328 }
329 core = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
330unroll_local_reset:
331 list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
332 if (reset_control_deassert(core->reset))
333 dev_warn(core->dev, "local-reset deassert back failed\n");
334 }
335
336 return ret;
337}
338
339static int k3_r5_lockstep_release(struct k3_r5_cluster *cluster)
340{
341 struct k3_r5_core *core;
342 int ret;
343
344 /* enable PSC modules on all applicable cores */
345 list_for_each_entry_reverse(core, &cluster->cores, elem) {
346 ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
347 core->ti_sci_id);
348 if (ret) {
349 dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
350 ret);
351 core = list_next_entry(core, elem);
352 goto unroll_module_reset;
353 }
354 }
355
356 /* deassert local reset on all applicable cores */
357 list_for_each_entry_reverse(core, &cluster->cores, elem) {
358 ret = reset_control_deassert(core->reset);
359 if (ret) {
360 dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
361 ret);
362 goto unroll_local_reset;
363 }
364 }
365
366 return 0;
367
368unroll_local_reset:
369 list_for_each_entry_continue(core, &cluster->cores, elem) {
370 if (reset_control_assert(core->reset))
371 dev_warn(core->dev, "local-reset assert back failed\n");
372 }
373 core = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
374unroll_module_reset:
375 list_for_each_entry_from(core, &cluster->cores, elem) {
376 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
377 core->ti_sci_id))
378 dev_warn(core->dev, "module-reset assert back failed\n");
379 }
380
381 return ret;
382}
383
384static inline int k3_r5_core_halt(struct k3_r5_core *core)
385{
386 return ti_sci_proc_set_control(core->tsp,
387 PROC_BOOT_CTRL_FLAG_R5_CORE_HALT, 0);
388}
389
390static inline int k3_r5_core_run(struct k3_r5_core *core)
391{
392 return ti_sci_proc_set_control(core->tsp,
393 0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT);
394}
395
396static int k3_r5_rproc_request_mbox(struct rproc *rproc)
397{
398 struct k3_r5_rproc *kproc = rproc->priv;
399 struct mbox_client *client = &kproc->client;
400 struct device *dev = kproc->dev;
401 int ret;
402
403 client->dev = dev;
404 client->tx_done = NULL;
405 client->rx_callback = k3_r5_rproc_mbox_callback;
406 client->tx_block = false;
407 client->knows_txdone = false;
408
409 kproc->mbox = mbox_request_channel(client, 0);
410 if (IS_ERR(kproc->mbox))
411 return dev_err_probe(dev, PTR_ERR(kproc->mbox),
412 "mbox_request_channel failed\n");
413
414 /*
415 * Ping the remote processor, this is only for sanity-sake for now;
416 * there is no functional effect whatsoever.
417 *
418 * Note that the reply will _not_ arrive immediately: this message
419 * will wait in the mailbox fifo until the remote processor is booted.
420 */
421 ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
422 if (ret < 0) {
423 dev_err(dev, "mbox_send_message failed: %d\n", ret);
424 mbox_free_channel(kproc->mbox);
425 return ret;
426 }
427
428 return 0;
429}
430
431/*
432 * The R5F cores have controls for both a reset and a halt/run. The code
433 * execution from DDR requires the initial boot-strapping code to be run
434 * from the internal TCMs. This function is used to release the resets on
435 * applicable cores to allow loading into the TCMs. The .prepare() ops is
436 * invoked by remoteproc core before any firmware loading, and is followed
437 * by the .start() ops after loading to actually let the R5 cores run.
438 *
439 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to
440 * execute code, but combines the TCMs from both cores. The resets for both
441 * cores need to be released to make this possible, as the TCMs are in general
442 * private to each core. Only Core0 needs to be unhalted for running the
443 * cluster in this mode. The function uses the same reset logic as LockStep
444 * mode for this (though the behavior is agnostic of the reset release order).
445 * This callback is invoked only in remoteproc mode.
446 */
447static int k3_r5_rproc_prepare(struct rproc *rproc)
448{
449 struct k3_r5_rproc *kproc = rproc->priv;
450 struct k3_r5_cluster *cluster = kproc->cluster;
451 struct k3_r5_core *core = kproc->core;
452 struct device *dev = kproc->dev;
453 u32 ctrl = 0, cfg = 0, stat = 0;
454 u64 boot_vec = 0;
455 bool mem_init_dis;
456 int ret;
457
458 ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, &stat);
459 if (ret < 0)
460 return ret;
461 mem_init_dis = !!(cfg & PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS);
462
463 /* Re-use LockStep-mode reset logic for Single-CPU mode */
464 ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
465 cluster->mode == CLUSTER_MODE_SINGLECPU) ?
466 k3_r5_lockstep_release(cluster) : k3_r5_split_release(core);
467 if (ret) {
468 dev_err(dev, "unable to enable cores for TCM loading, ret = %d\n",
469 ret);
470 return ret;
471 }
472
473 /*
474 * Newer IP revisions like on J7200 SoCs support h/w auto-initialization
475 * of TCMs, so there is no need to perform the s/w memzero. This bit is
476 * configurable through System Firmware, the default value does perform
477 * auto-init, but account for it in case it is disabled
478 */
479 if (cluster->soc_data->tcm_ecc_autoinit && !mem_init_dis) {
480 dev_dbg(dev, "leveraging h/w init for TCM memories\n");
481 return 0;
482 }
483
484 /*
485 * Zero out both TCMs unconditionally (access from v8 Arm core is not
486 * affected by ATCM & BTCM enable configuration values) so that ECC
487 * can be effective on all TCM addresses.
488 */
489 dev_dbg(dev, "zeroing out ATCM memory\n");
490 memset_io(core->mem[0].cpu_addr, 0x00, core->mem[0].size);
491
492 dev_dbg(dev, "zeroing out BTCM memory\n");
493 memset_io(core->mem[1].cpu_addr, 0x00, core->mem[1].size);
494
495 return 0;
496}
497
498/*
499 * This function implements the .unprepare() ops and performs the complimentary
500 * operations to that of the .prepare() ops. The function is used to assert the
501 * resets on all applicable cores for the rproc device (depending on LockStep
502 * or Split mode). This completes the second portion of powering down the R5F
503 * cores. The cores themselves are only halted in the .stop() ops, and the
504 * .unprepare() ops is invoked by the remoteproc core after the remoteproc is
505 * stopped.
506 *
507 * The Single-CPU mode on applicable SoCs (eg: AM64x) combines the TCMs from
508 * both cores. The access is made possible only with releasing the resets for
509 * both cores, but with only Core0 unhalted. This function re-uses the same
510 * reset assert logic as LockStep mode for this mode (though the behavior is
511 * agnostic of the reset assert order). This callback is invoked only in
512 * remoteproc mode.
513 */
514static int k3_r5_rproc_unprepare(struct rproc *rproc)
515{
516 struct k3_r5_rproc *kproc = rproc->priv;
517 struct k3_r5_cluster *cluster = kproc->cluster;
518 struct k3_r5_core *core = kproc->core;
519 struct device *dev = kproc->dev;
520 int ret;
521
522 /* Re-use LockStep-mode reset logic for Single-CPU mode */
523 ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
524 cluster->mode == CLUSTER_MODE_SINGLECPU) ?
525 k3_r5_lockstep_reset(cluster) : k3_r5_split_reset(core);
526 if (ret)
527 dev_err(dev, "unable to disable cores, ret = %d\n", ret);
528
529 return ret;
530}
531
532/*
533 * The R5F start sequence includes two different operations
534 * 1. Configure the boot vector for R5F core(s)
535 * 2. Unhalt/Run the R5F core(s)
536 *
537 * The sequence is different between LockStep and Split modes. The LockStep
538 * mode requires the boot vector to be configured only for Core0, and then
539 * unhalt both the cores to start the execution - Core1 needs to be unhalted
540 * first followed by Core0. The Split-mode requires that Core0 to be maintained
541 * always in a higher power state that Core1 (implying Core1 needs to be started
542 * always only after Core0 is started).
543 *
544 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
545 * code, so only Core0 needs to be unhalted. The function uses the same logic
546 * flow as Split-mode for this. This callback is invoked only in remoteproc
547 * mode.
548 */
549static int k3_r5_rproc_start(struct rproc *rproc)
550{
551 struct k3_r5_rproc *kproc = rproc->priv;
552 struct k3_r5_cluster *cluster = kproc->cluster;
553 struct device *dev = kproc->dev;
554 struct k3_r5_core *core0, *core;
555 u32 boot_addr;
556 int ret;
557
558 boot_addr = rproc->bootaddr;
559 /* TODO: add boot_addr sanity checking */
560 dev_dbg(dev, "booting R5F core using boot addr = 0x%x\n", boot_addr);
561
562 /* boot vector need not be programmed for Core1 in LockStep mode */
563 core = kproc->core;
564 ret = ti_sci_proc_set_config(core->tsp, boot_addr, 0, 0);
565 if (ret)
566 return ret;
567
568 /* unhalt/run all applicable cores */
569 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
570 list_for_each_entry_reverse(core, &cluster->cores, elem) {
571 ret = k3_r5_core_run(core);
572 if (ret)
573 goto unroll_core_run;
574 }
575 } else {
576 /* do not allow core 1 to start before core 0 */
577 core0 = list_first_entry(&cluster->cores, struct k3_r5_core,
578 elem);
579 if (core != core0 && core0->rproc->state == RPROC_OFFLINE) {
580 dev_err(dev, "%s: can not start core 1 before core 0\n",
581 __func__);
582 return -EPERM;
583 }
584
585 ret = k3_r5_core_run(core);
586 if (ret)
587 return ret;
588
589 core->released_from_reset = true;
590 wake_up_interruptible(&cluster->core_transition);
591 }
592
593 return 0;
594
595unroll_core_run:
596 list_for_each_entry_continue(core, &cluster->cores, elem) {
597 if (k3_r5_core_halt(core))
598 dev_warn(core->dev, "core halt back failed\n");
599 }
600 return ret;
601}
602
603/*
604 * The R5F stop function includes the following operations
605 * 1. Halt R5F core(s)
606 *
607 * The sequence is different between LockStep and Split modes, and the order
608 * of cores the operations are performed are also in general reverse to that
609 * of the start function. The LockStep mode requires each operation to be
610 * performed first on Core0 followed by Core1. The Split-mode requires that
611 * Core0 to be maintained always in a higher power state that Core1 (implying
612 * Core1 needs to be stopped first before Core0).
613 *
614 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
615 * code, so only Core0 needs to be halted. The function uses the same logic
616 * flow as Split-mode for this.
617 *
618 * Note that the R5F halt operation in general is not effective when the R5F
619 * core is running, but is needed to make sure the core won't run after
620 * deasserting the reset the subsequent time. The asserting of reset can
621 * be done here, but is preferred to be done in the .unprepare() ops - this
622 * maintains the symmetric behavior between the .start(), .stop(), .prepare()
623 * and .unprepare() ops, and also balances them well between sysfs 'state'
624 * flow and device bind/unbind or module removal. This callback is invoked
625 * only in remoteproc mode.
626 */
627static int k3_r5_rproc_stop(struct rproc *rproc)
628{
629 struct k3_r5_rproc *kproc = rproc->priv;
630 struct k3_r5_cluster *cluster = kproc->cluster;
631 struct device *dev = kproc->dev;
632 struct k3_r5_core *core1, *core = kproc->core;
633 int ret;
634
635 /* halt all applicable cores */
636 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
637 list_for_each_entry(core, &cluster->cores, elem) {
638 ret = k3_r5_core_halt(core);
639 if (ret) {
640 core = list_prev_entry(core, elem);
641 goto unroll_core_halt;
642 }
643 }
644 } else {
645 /* do not allow core 0 to stop before core 1 */
646 core1 = list_last_entry(&cluster->cores, struct k3_r5_core,
647 elem);
648 if (core != core1 && core1->rproc->state != RPROC_OFFLINE) {
649 dev_err(dev, "%s: can not stop core 0 before core 1\n",
650 __func__);
651 ret = -EPERM;
652 goto out;
653 }
654
655 ret = k3_r5_core_halt(core);
656 if (ret)
657 goto out;
658 }
659
660 return 0;
661
662unroll_core_halt:
663 list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
664 if (k3_r5_core_run(core))
665 dev_warn(core->dev, "core run back failed\n");
666 }
667out:
668 return ret;
669}
670
671/*
672 * Attach to a running R5F remote processor (IPC-only mode)
673 *
674 * The R5F attach callback is a NOP. The remote processor is already booted, and
675 * all required resources have been acquired during probe routine, so there is
676 * no need to issue any TI-SCI commands to boot the R5F cores in IPC-only mode.
677 * This callback is invoked only in IPC-only mode and exists because
678 * rproc_validate() checks for its existence.
679 */
680static int k3_r5_rproc_attach(struct rproc *rproc) { return 0; }
681
682/*
683 * Detach from a running R5F remote processor (IPC-only mode)
684 *
685 * The R5F detach callback is a NOP. The R5F cores are not stopped and will be
686 * left in booted state in IPC-only mode. This callback is invoked only in
687 * IPC-only mode and exists for sanity sake.
688 */
689static int k3_r5_rproc_detach(struct rproc *rproc) { return 0; }
690
691/*
692 * This function implements the .get_loaded_rsc_table() callback and is used
693 * to provide the resource table for the booted R5F in IPC-only mode. The K3 R5F
694 * firmwares follow a design-by-contract approach and are expected to have the
695 * resource table at the base of the DDR region reserved for firmware usage.
696 * This provides flexibility for the remote processor to be booted by different
697 * bootloaders that may or may not have the ability to publish the resource table
698 * address and size through a DT property. This callback is invoked only in
699 * IPC-only mode.
700 */
701static struct resource_table *k3_r5_get_loaded_rsc_table(struct rproc *rproc,
702 size_t *rsc_table_sz)
703{
704 struct k3_r5_rproc *kproc = rproc->priv;
705 struct device *dev = kproc->dev;
706
707 if (!kproc->rmem[0].cpu_addr) {
708 dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found");
709 return ERR_PTR(-ENOMEM);
710 }
711
712 /*
713 * NOTE: The resource table size is currently hard-coded to a maximum
714 * of 256 bytes. The most common resource table usage for K3 firmwares
715 * is to only have the vdev resource entry and an optional trace entry.
716 * The exact size could be computed based on resource table address, but
717 * the hard-coded value suffices to support the IPC-only mode.
718 */
719 *rsc_table_sz = 256;
720 return (__force struct resource_table *)kproc->rmem[0].cpu_addr;
721}
722
723/*
724 * Internal Memory translation helper
725 *
726 * Custom function implementing the rproc .da_to_va ops to provide address
727 * translation (device address to kernel virtual address) for internal RAMs
728 * present in a DSP or IPU device). The translated addresses can be used
729 * either by the remoteproc core for loading, or by any rpmsg bus drivers.
730 */
731static void *k3_r5_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
732{
733 struct k3_r5_rproc *kproc = rproc->priv;
734 struct k3_r5_core *core = kproc->core;
735 void __iomem *va = NULL;
736 phys_addr_t bus_addr;
737 u32 dev_addr, offset;
738 size_t size;
739 int i;
740
741 if (len == 0)
742 return NULL;
743
744 /* handle both R5 and SoC views of ATCM and BTCM */
745 for (i = 0; i < core->num_mems; i++) {
746 bus_addr = core->mem[i].bus_addr;
747 dev_addr = core->mem[i].dev_addr;
748 size = core->mem[i].size;
749
750 /* handle R5-view addresses of TCMs */
751 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
752 offset = da - dev_addr;
753 va = core->mem[i].cpu_addr + offset;
754 return (__force void *)va;
755 }
756
757 /* handle SoC-view addresses of TCMs */
758 if (da >= bus_addr && ((da + len) <= (bus_addr + size))) {
759 offset = da - bus_addr;
760 va = core->mem[i].cpu_addr + offset;
761 return (__force void *)va;
762 }
763 }
764
765 /* handle any SRAM regions using SoC-view addresses */
766 for (i = 0; i < core->num_sram; i++) {
767 dev_addr = core->sram[i].dev_addr;
768 size = core->sram[i].size;
769
770 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
771 offset = da - dev_addr;
772 va = core->sram[i].cpu_addr + offset;
773 return (__force void *)va;
774 }
775 }
776
777 /* handle static DDR reserved memory regions */
778 for (i = 0; i < kproc->num_rmems; i++) {
779 dev_addr = kproc->rmem[i].dev_addr;
780 size = kproc->rmem[i].size;
781
782 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
783 offset = da - dev_addr;
784 va = kproc->rmem[i].cpu_addr + offset;
785 return (__force void *)va;
786 }
787 }
788
789 return NULL;
790}
791
792static const struct rproc_ops k3_r5_rproc_ops = {
793 .prepare = k3_r5_rproc_prepare,
794 .unprepare = k3_r5_rproc_unprepare,
795 .start = k3_r5_rproc_start,
796 .stop = k3_r5_rproc_stop,
797 .kick = k3_r5_rproc_kick,
798 .da_to_va = k3_r5_rproc_da_to_va,
799};
800
801/*
802 * Internal R5F Core configuration
803 *
804 * Each R5FSS has a cluster-level setting for configuring the processor
805 * subsystem either in a safety/fault-tolerant LockStep mode or a performance
806 * oriented Split mode on most SoCs. A fewer SoCs support a non-safety mode
807 * as an alternate for LockStep mode that exercises only a single R5F core
808 * called Single-CPU mode. Each R5F core has a number of settings to either
809 * enable/disable each of the TCMs, control which TCM appears at the R5F core's
810 * address 0x0. These settings need to be configured before the resets for the
811 * corresponding core are released. These settings are all protected and managed
812 * by the System Processor.
813 *
814 * This function is used to pre-configure these settings for each R5F core, and
815 * the configuration is all done through various ti_sci_proc functions that
816 * communicate with the System Processor. The function also ensures that both
817 * the cores are halted before the .prepare() step.
818 *
819 * The function is called from k3_r5_cluster_rproc_init() and is invoked either
820 * once (in LockStep mode or Single-CPU modes) or twice (in Split mode). Support
821 * for LockStep-mode is dictated by an eFUSE register bit, and the config
822 * settings retrieved from DT are adjusted accordingly as per the permitted
823 * cluster mode. Another eFUSE register bit dictates if the R5F cluster only
824 * supports a Single-CPU mode. All cluster level settings like Cluster mode and
825 * TEINIT (exception handling state dictating ARM or Thumb mode) can only be set
826 * and retrieved using Core0.
827 *
828 * The function behavior is different based on the cluster mode. The R5F cores
829 * are configured independently as per their individual settings in Split mode.
830 * They are identically configured in LockStep mode using the primary Core0
831 * settings. However, some individual settings cannot be set in LockStep mode.
832 * This is overcome by switching to Split-mode initially and then programming
833 * both the cores with the same settings, before reconfiguing again for
834 * LockStep mode.
835 */
836static int k3_r5_rproc_configure(struct k3_r5_rproc *kproc)
837{
838 struct k3_r5_cluster *cluster = kproc->cluster;
839 struct device *dev = kproc->dev;
840 struct k3_r5_core *core0, *core, *temp;
841 u32 ctrl = 0, cfg = 0, stat = 0;
842 u32 set_cfg = 0, clr_cfg = 0;
843 u64 boot_vec = 0;
844 bool lockstep_en;
845 bool single_cpu;
846 int ret;
847
848 core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
849 if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
850 cluster->mode == CLUSTER_MODE_SINGLECPU ||
851 cluster->mode == CLUSTER_MODE_SINGLECORE) {
852 core = core0;
853 } else {
854 core = kproc->core;
855 }
856
857 ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl,
858 &stat);
859 if (ret < 0)
860 return ret;
861
862 dev_dbg(dev, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n",
863 boot_vec, cfg, ctrl, stat);
864
865 single_cpu = !!(stat & PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY);
866 lockstep_en = !!(stat & PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED);
867
868 /* Override to single CPU mode if set in status flag */
869 if (single_cpu && cluster->mode == CLUSTER_MODE_SPLIT) {
870 dev_err(cluster->dev, "split-mode not permitted, force configuring for single-cpu mode\n");
871 cluster->mode = CLUSTER_MODE_SINGLECPU;
872 }
873
874 /* Override to split mode if lockstep enable bit is not set in status flag */
875 if (!lockstep_en && cluster->mode == CLUSTER_MODE_LOCKSTEP) {
876 dev_err(cluster->dev, "lockstep mode not permitted, force configuring for split-mode\n");
877 cluster->mode = CLUSTER_MODE_SPLIT;
878 }
879
880 /* always enable ARM mode and set boot vector to 0 */
881 boot_vec = 0x0;
882 if (core == core0) {
883 clr_cfg = PROC_BOOT_CFG_FLAG_R5_TEINIT;
884 /*
885 * Single-CPU configuration bit can only be configured
886 * on Core0 and system firmware will NACK any requests
887 * with the bit configured, so program it only on
888 * permitted cores
889 */
890 if (cluster->mode == CLUSTER_MODE_SINGLECPU ||
891 cluster->mode == CLUSTER_MODE_SINGLECORE) {
892 set_cfg = PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE;
893 } else {
894 /*
895 * LockStep configuration bit is Read-only on Split-mode
896 * _only_ devices and system firmware will NACK any
897 * requests with the bit configured, so program it only
898 * on permitted devices
899 */
900 if (lockstep_en)
901 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
902 }
903 }
904
905 if (core->atcm_enable)
906 set_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
907 else
908 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
909
910 if (core->btcm_enable)
911 set_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
912 else
913 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
914
915 if (core->loczrama)
916 set_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
917 else
918 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
919
920 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
921 /*
922 * work around system firmware limitations to make sure both
923 * cores are programmed symmetrically in LockStep. LockStep
924 * and TEINIT config is only allowed with Core0.
925 */
926 list_for_each_entry(temp, &cluster->cores, elem) {
927 ret = k3_r5_core_halt(temp);
928 if (ret)
929 goto out;
930
931 if (temp != core) {
932 clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
933 clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_TEINIT;
934 }
935 ret = ti_sci_proc_set_config(temp->tsp, boot_vec,
936 set_cfg, clr_cfg);
937 if (ret)
938 goto out;
939 }
940
941 set_cfg = PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
942 clr_cfg = 0;
943 ret = ti_sci_proc_set_config(core->tsp, boot_vec,
944 set_cfg, clr_cfg);
945 } else {
946 ret = k3_r5_core_halt(core);
947 if (ret)
948 goto out;
949
950 ret = ti_sci_proc_set_config(core->tsp, boot_vec,
951 set_cfg, clr_cfg);
952 }
953
954out:
955 return ret;
956}
957
958static int k3_r5_reserved_mem_init(struct k3_r5_rproc *kproc)
959{
960 struct device *dev = kproc->dev;
961 struct device_node *np = dev_of_node(dev);
962 struct device_node *rmem_np;
963 struct reserved_mem *rmem;
964 int num_rmems;
965 int ret, i;
966
967 num_rmems = of_property_count_elems_of_size(np, "memory-region",
968 sizeof(phandle));
969 if (num_rmems <= 0) {
970 dev_err(dev, "device does not have reserved memory regions, ret = %d\n",
971 num_rmems);
972 return -EINVAL;
973 }
974 if (num_rmems < 2) {
975 dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n",
976 num_rmems);
977 return -EINVAL;
978 }
979
980 /* use reserved memory region 0 for vring DMA allocations */
981 ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
982 if (ret) {
983 dev_err(dev, "device cannot initialize DMA pool, ret = %d\n",
984 ret);
985 return ret;
986 }
987
988 num_rmems--;
989 kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
990 if (!kproc->rmem) {
991 ret = -ENOMEM;
992 goto release_rmem;
993 }
994
995 /* use remaining reserved memory regions for static carveouts */
996 for (i = 0; i < num_rmems; i++) {
997 rmem_np = of_parse_phandle(np, "memory-region", i + 1);
998 if (!rmem_np) {
999 ret = -EINVAL;
1000 goto unmap_rmem;
1001 }
1002
1003 rmem = of_reserved_mem_lookup(rmem_np);
1004 of_node_put(rmem_np);
1005 if (!rmem) {
1006 ret = -EINVAL;
1007 goto unmap_rmem;
1008 }
1009
1010 kproc->rmem[i].bus_addr = rmem->base;
1011 /*
1012 * R5Fs do not have an MMU, but have a Region Address Translator
1013 * (RAT) module that provides a fixed entry translation between
1014 * the 32-bit processor addresses to 64-bit bus addresses. The
1015 * RAT is programmable only by the R5F cores. Support for RAT
1016 * is currently not supported, so 64-bit address regions are not
1017 * supported. The absence of MMUs implies that the R5F device
1018 * addresses/supported memory regions are restricted to 32-bit
1019 * bus addresses, and are identical
1020 */
1021 kproc->rmem[i].dev_addr = (u32)rmem->base;
1022 kproc->rmem[i].size = rmem->size;
1023 kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size);
1024 if (!kproc->rmem[i].cpu_addr) {
1025 dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
1026 i + 1, &rmem->base, &rmem->size);
1027 ret = -ENOMEM;
1028 goto unmap_rmem;
1029 }
1030
1031 dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1032 i + 1, &kproc->rmem[i].bus_addr,
1033 kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
1034 kproc->rmem[i].dev_addr);
1035 }
1036 kproc->num_rmems = num_rmems;
1037
1038 return 0;
1039
1040unmap_rmem:
1041 for (i--; i >= 0; i--)
1042 iounmap(kproc->rmem[i].cpu_addr);
1043 kfree(kproc->rmem);
1044release_rmem:
1045 of_reserved_mem_device_release(dev);
1046 return ret;
1047}
1048
1049static void k3_r5_reserved_mem_exit(struct k3_r5_rproc *kproc)
1050{
1051 int i;
1052
1053 for (i = 0; i < kproc->num_rmems; i++)
1054 iounmap(kproc->rmem[i].cpu_addr);
1055 kfree(kproc->rmem);
1056
1057 of_reserved_mem_device_release(kproc->dev);
1058}
1059
1060/*
1061 * Each R5F core within a typical R5FSS instance has a total of 64 KB of TCMs,
1062 * split equally into two 32 KB banks between ATCM and BTCM. The TCMs from both
1063 * cores are usable in Split-mode, but only the Core0 TCMs can be used in
1064 * LockStep-mode. The newer revisions of the R5FSS IP maximizes these TCMs by
1065 * leveraging the Core1 TCMs as well in certain modes where they would have
1066 * otherwise been unusable (Eg: LockStep-mode on J7200 SoCs, Single-CPU mode on
1067 * AM64x SoCs). This is done by making a Core1 TCM visible immediately after the
1068 * corresponding Core0 TCM. The SoC memory map uses the larger 64 KB sizes for
1069 * the Core0 TCMs, and the dts representation reflects this increased size on
1070 * supported SoCs. The Core0 TCM sizes therefore have to be adjusted to only
1071 * half the original size in Split mode.
1072 */
1073static void k3_r5_adjust_tcm_sizes(struct k3_r5_rproc *kproc)
1074{
1075 struct k3_r5_cluster *cluster = kproc->cluster;
1076 struct k3_r5_core *core = kproc->core;
1077 struct device *cdev = core->dev;
1078 struct k3_r5_core *core0;
1079
1080 if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
1081 cluster->mode == CLUSTER_MODE_SINGLECPU ||
1082 cluster->mode == CLUSTER_MODE_SINGLECORE ||
1083 !cluster->soc_data->tcm_is_double)
1084 return;
1085
1086 core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
1087 if (core == core0) {
1088 WARN_ON(core->mem[0].size != SZ_64K);
1089 WARN_ON(core->mem[1].size != SZ_64K);
1090
1091 core->mem[0].size /= 2;
1092 core->mem[1].size /= 2;
1093
1094 dev_dbg(cdev, "adjusted TCM sizes, ATCM = 0x%zx BTCM = 0x%zx\n",
1095 core->mem[0].size, core->mem[1].size);
1096 }
1097}
1098
1099/*
1100 * This function checks and configures a R5F core for IPC-only or remoteproc
1101 * mode. The driver is configured to be in IPC-only mode for a R5F core when
1102 * the core has been loaded and started by a bootloader. The IPC-only mode is
1103 * detected by querying the System Firmware for reset, power on and halt status
1104 * and ensuring that the core is running. Any incomplete steps at bootloader
1105 * are validated and errored out.
1106 *
1107 * In IPC-only mode, the driver state flags for ATCM, BTCM and LOCZRAMA settings
1108 * and cluster mode parsed originally from kernel DT are updated to reflect the
1109 * actual values configured by bootloader. The driver internal device memory
1110 * addresses for TCMs are also updated.
1111 */
1112static int k3_r5_rproc_configure_mode(struct k3_r5_rproc *kproc)
1113{
1114 struct k3_r5_cluster *cluster = kproc->cluster;
1115 struct k3_r5_core *core = kproc->core;
1116 struct device *cdev = core->dev;
1117 bool r_state = false, c_state = false, lockstep_en = false, single_cpu = false;
1118 u32 ctrl = 0, cfg = 0, stat = 0, halted = 0;
1119 u64 boot_vec = 0;
1120 u32 atcm_enable, btcm_enable, loczrama;
1121 struct k3_r5_core *core0;
1122 enum cluster_mode mode = cluster->mode;
1123 int reset_ctrl_status;
1124 int ret;
1125
1126 core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
1127
1128 ret = core->ti_sci->ops.dev_ops.is_on(core->ti_sci, core->ti_sci_id,
1129 &r_state, &c_state);
1130 if (ret) {
1131 dev_err(cdev, "failed to get initial state, mode cannot be determined, ret = %d\n",
1132 ret);
1133 return ret;
1134 }
1135 if (r_state != c_state) {
1136 dev_warn(cdev, "R5F core may have been powered on by a different host, programmed state (%d) != actual state (%d)\n",
1137 r_state, c_state);
1138 }
1139
1140 reset_ctrl_status = reset_control_status(core->reset);
1141 if (reset_ctrl_status < 0) {
1142 dev_err(cdev, "failed to get initial local reset status, ret = %d\n",
1143 reset_ctrl_status);
1144 return reset_ctrl_status;
1145 }
1146
1147 /*
1148 * Skip the waiting mechanism for sequential power-on of cores if the
1149 * core has already been booted by another entity.
1150 */
1151 core->released_from_reset = c_state;
1152
1153 ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl,
1154 &stat);
1155 if (ret < 0) {
1156 dev_err(cdev, "failed to get initial processor status, ret = %d\n",
1157 ret);
1158 return ret;
1159 }
1160 atcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_ATCM_EN ? 1 : 0;
1161 btcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_BTCM_EN ? 1 : 0;
1162 loczrama = cfg & PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE ? 1 : 0;
1163 single_cpu = cfg & PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE ? 1 : 0;
1164 lockstep_en = cfg & PROC_BOOT_CFG_FLAG_R5_LOCKSTEP ? 1 : 0;
1165
1166 if (single_cpu && mode != CLUSTER_MODE_SINGLECORE)
1167 mode = CLUSTER_MODE_SINGLECPU;
1168 if (lockstep_en)
1169 mode = CLUSTER_MODE_LOCKSTEP;
1170
1171 halted = ctrl & PROC_BOOT_CTRL_FLAG_R5_CORE_HALT;
1172
1173 /*
1174 * IPC-only mode detection requires both local and module resets to
1175 * be deasserted and R5F core to be unhalted. Local reset status is
1176 * irrelevant if module reset is asserted (POR value has local reset
1177 * deasserted), and is deemed as remoteproc mode
1178 */
1179 if (c_state && !reset_ctrl_status && !halted) {
1180 dev_info(cdev, "configured R5F for IPC-only mode\n");
1181 kproc->rproc->state = RPROC_DETACHED;
1182 ret = 1;
1183 /* override rproc ops with only required IPC-only mode ops */
1184 kproc->rproc->ops->prepare = NULL;
1185 kproc->rproc->ops->unprepare = NULL;
1186 kproc->rproc->ops->start = NULL;
1187 kproc->rproc->ops->stop = NULL;
1188 kproc->rproc->ops->attach = k3_r5_rproc_attach;
1189 kproc->rproc->ops->detach = k3_r5_rproc_detach;
1190 kproc->rproc->ops->get_loaded_rsc_table =
1191 k3_r5_get_loaded_rsc_table;
1192 } else if (!c_state) {
1193 dev_info(cdev, "configured R5F for remoteproc mode\n");
1194 ret = 0;
1195 } else {
1196 dev_err(cdev, "mismatched mode: local_reset = %s, module_reset = %s, core_state = %s\n",
1197 !reset_ctrl_status ? "deasserted" : "asserted",
1198 c_state ? "deasserted" : "asserted",
1199 halted ? "halted" : "unhalted");
1200 ret = -EINVAL;
1201 }
1202
1203 /* fixup TCMs, cluster & core flags to actual values in IPC-only mode */
1204 if (ret > 0) {
1205 if (core == core0)
1206 cluster->mode = mode;
1207 core->atcm_enable = atcm_enable;
1208 core->btcm_enable = btcm_enable;
1209 core->loczrama = loczrama;
1210 core->mem[0].dev_addr = loczrama ? 0 : K3_R5_TCM_DEV_ADDR;
1211 core->mem[1].dev_addr = loczrama ? K3_R5_TCM_DEV_ADDR : 0;
1212 }
1213
1214 return ret;
1215}
1216
1217static int k3_r5_cluster_rproc_init(struct platform_device *pdev)
1218{
1219 struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
1220 struct device *dev = &pdev->dev;
1221 struct k3_r5_rproc *kproc;
1222 struct k3_r5_core *core, *core1;
1223 struct device *cdev;
1224 const char *fw_name;
1225 struct rproc *rproc;
1226 int ret, ret1;
1227
1228 core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
1229 list_for_each_entry(core, &cluster->cores, elem) {
1230 cdev = core->dev;
1231 ret = rproc_of_parse_firmware(cdev, 0, &fw_name);
1232 if (ret) {
1233 dev_err(dev, "failed to parse firmware-name property, ret = %d\n",
1234 ret);
1235 goto out;
1236 }
1237
1238 rproc = devm_rproc_alloc(cdev, dev_name(cdev), &k3_r5_rproc_ops,
1239 fw_name, sizeof(*kproc));
1240 if (!rproc) {
1241 ret = -ENOMEM;
1242 goto out;
1243 }
1244
1245 /* K3 R5s have a Region Address Translator (RAT) but no MMU */
1246 rproc->has_iommu = false;
1247 /* error recovery is not supported at present */
1248 rproc->recovery_disabled = true;
1249
1250 kproc = rproc->priv;
1251 kproc->cluster = cluster;
1252 kproc->core = core;
1253 kproc->dev = cdev;
1254 kproc->rproc = rproc;
1255 core->rproc = rproc;
1256
1257 ret = k3_r5_rproc_request_mbox(rproc);
1258 if (ret)
1259 return ret;
1260
1261 ret = k3_r5_rproc_configure_mode(kproc);
1262 if (ret < 0)
1263 goto out;
1264 if (ret)
1265 goto init_rmem;
1266
1267 ret = k3_r5_rproc_configure(kproc);
1268 if (ret) {
1269 dev_err(dev, "initial configure failed, ret = %d\n",
1270 ret);
1271 goto out;
1272 }
1273
1274init_rmem:
1275 k3_r5_adjust_tcm_sizes(kproc);
1276
1277 ret = k3_r5_reserved_mem_init(kproc);
1278 if (ret) {
1279 dev_err(dev, "reserved memory init failed, ret = %d\n",
1280 ret);
1281 goto out;
1282 }
1283
1284 ret = rproc_add(rproc);
1285 if (ret) {
1286 dev_err(dev, "rproc_add failed, ret = %d\n", ret);
1287 goto err_add;
1288 }
1289
1290 /* create only one rproc in lockstep, single-cpu or
1291 * single core mode
1292 */
1293 if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
1294 cluster->mode == CLUSTER_MODE_SINGLECPU ||
1295 cluster->mode == CLUSTER_MODE_SINGLECORE)
1296 break;
1297
1298 /*
1299 * R5 cores require to be powered on sequentially, core0
1300 * should be in higher power state than core1 in a cluster
1301 * So, wait for current core to power up before proceeding
1302 * to next core and put timeout of 2sec for each core.
1303 *
1304 * This waiting mechanism is necessary because
1305 * rproc_auto_boot_callback() for core1 can be called before
1306 * core0 due to thread execution order.
1307 */
1308 ret = wait_event_interruptible_timeout(cluster->core_transition,
1309 core->released_from_reset,
1310 msecs_to_jiffies(2000));
1311 if (ret <= 0) {
1312 dev_err(dev,
1313 "Timed out waiting for %s core to power up!\n",
1314 rproc->name);
1315 goto err_powerup;
1316 }
1317 }
1318
1319 return 0;
1320
1321err_split:
1322 if (rproc->state == RPROC_ATTACHED) {
1323 ret1 = rproc_detach(rproc);
1324 if (ret1) {
1325 dev_err(kproc->dev, "failed to detach rproc, ret = %d\n",
1326 ret1);
1327 return ret1;
1328 }
1329 }
1330
1331err_powerup:
1332 rproc_del(rproc);
1333err_add:
1334 k3_r5_reserved_mem_exit(kproc);
1335out:
1336 /* undo core0 upon any failures on core1 in split-mode */
1337 if (cluster->mode == CLUSTER_MODE_SPLIT && core == core1) {
1338 core = list_prev_entry(core, elem);
1339 rproc = core->rproc;
1340 kproc = rproc->priv;
1341 goto err_split;
1342 }
1343 return ret;
1344}
1345
1346static void k3_r5_cluster_rproc_exit(void *data)
1347{
1348 struct k3_r5_cluster *cluster = platform_get_drvdata(data);
1349 struct k3_r5_rproc *kproc;
1350 struct k3_r5_core *core;
1351 struct rproc *rproc;
1352 int ret;
1353
1354 /*
1355 * lockstep mode and single-cpu modes have only one rproc associated
1356 * with first core, whereas split-mode has two rprocs associated with
1357 * each core, and requires that core1 be powered down first
1358 */
1359 core = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
1360 cluster->mode == CLUSTER_MODE_SINGLECPU) ?
1361 list_first_entry(&cluster->cores, struct k3_r5_core, elem) :
1362 list_last_entry(&cluster->cores, struct k3_r5_core, elem);
1363
1364 list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
1365 rproc = core->rproc;
1366 kproc = rproc->priv;
1367
1368 if (rproc->state == RPROC_ATTACHED) {
1369 ret = rproc_detach(rproc);
1370 if (ret) {
1371 dev_err(kproc->dev, "failed to detach rproc, ret = %d\n", ret);
1372 return;
1373 }
1374 }
1375
1376 mbox_free_channel(kproc->mbox);
1377
1378 rproc_del(rproc);
1379
1380 k3_r5_reserved_mem_exit(kproc);
1381 }
1382}
1383
1384static int k3_r5_core_of_get_internal_memories(struct platform_device *pdev,
1385 struct k3_r5_core *core)
1386{
1387 static const char * const mem_names[] = {"atcm", "btcm"};
1388 struct device *dev = &pdev->dev;
1389 struct resource *res;
1390 int num_mems;
1391 int i;
1392
1393 num_mems = ARRAY_SIZE(mem_names);
1394 core->mem = devm_kcalloc(dev, num_mems, sizeof(*core->mem), GFP_KERNEL);
1395 if (!core->mem)
1396 return -ENOMEM;
1397
1398 for (i = 0; i < num_mems; i++) {
1399 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1400 mem_names[i]);
1401 if (!res) {
1402 dev_err(dev, "found no memory resource for %s\n",
1403 mem_names[i]);
1404 return -EINVAL;
1405 }
1406 if (!devm_request_mem_region(dev, res->start,
1407 resource_size(res),
1408 dev_name(dev))) {
1409 dev_err(dev, "could not request %s region for resource\n",
1410 mem_names[i]);
1411 return -EBUSY;
1412 }
1413
1414 /*
1415 * TCMs are designed in general to support RAM-like backing
1416 * memories. So, map these as Normal Non-Cached memories. This
1417 * also avoids/fixes any potential alignment faults due to
1418 * unaligned data accesses when using memcpy() or memset()
1419 * functions (normally seen with device type memory).
1420 */
1421 core->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
1422 resource_size(res));
1423 if (!core->mem[i].cpu_addr) {
1424 dev_err(dev, "failed to map %s memory\n", mem_names[i]);
1425 return -ENOMEM;
1426 }
1427 core->mem[i].bus_addr = res->start;
1428
1429 /*
1430 * TODO:
1431 * The R5F cores can place ATCM & BTCM anywhere in its address
1432 * based on the corresponding Region Registers in the System
1433 * Control coprocessor. For now, place ATCM and BTCM at
1434 * addresses 0 and 0x41010000 (same as the bus address on AM65x
1435 * SoCs) based on loczrama setting
1436 */
1437 if (!strcmp(mem_names[i], "atcm")) {
1438 core->mem[i].dev_addr = core->loczrama ?
1439 0 : K3_R5_TCM_DEV_ADDR;
1440 } else {
1441 core->mem[i].dev_addr = core->loczrama ?
1442 K3_R5_TCM_DEV_ADDR : 0;
1443 }
1444 core->mem[i].size = resource_size(res);
1445
1446 dev_dbg(dev, "memory %5s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1447 mem_names[i], &core->mem[i].bus_addr,
1448 core->mem[i].size, core->mem[i].cpu_addr,
1449 core->mem[i].dev_addr);
1450 }
1451 core->num_mems = num_mems;
1452
1453 return 0;
1454}
1455
1456static int k3_r5_core_of_get_sram_memories(struct platform_device *pdev,
1457 struct k3_r5_core *core)
1458{
1459 struct device_node *np = pdev->dev.of_node;
1460 struct device *dev = &pdev->dev;
1461 struct device_node *sram_np;
1462 struct resource res;
1463 int num_sram;
1464 int i, ret;
1465
1466 num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle));
1467 if (num_sram <= 0) {
1468 dev_dbg(dev, "device does not use reserved on-chip memories, num_sram = %d\n",
1469 num_sram);
1470 return 0;
1471 }
1472
1473 core->sram = devm_kcalloc(dev, num_sram, sizeof(*core->sram), GFP_KERNEL);
1474 if (!core->sram)
1475 return -ENOMEM;
1476
1477 for (i = 0; i < num_sram; i++) {
1478 sram_np = of_parse_phandle(np, "sram", i);
1479 if (!sram_np)
1480 return -EINVAL;
1481
1482 if (!of_device_is_available(sram_np)) {
1483 of_node_put(sram_np);
1484 return -EINVAL;
1485 }
1486
1487 ret = of_address_to_resource(sram_np, 0, &res);
1488 of_node_put(sram_np);
1489 if (ret)
1490 return -EINVAL;
1491
1492 core->sram[i].bus_addr = res.start;
1493 core->sram[i].dev_addr = res.start;
1494 core->sram[i].size = resource_size(&res);
1495 core->sram[i].cpu_addr = devm_ioremap_wc(dev, res.start,
1496 resource_size(&res));
1497 if (!core->sram[i].cpu_addr) {
1498 dev_err(dev, "failed to parse and map sram%d memory at %pad\n",
1499 i, &res.start);
1500 return -ENOMEM;
1501 }
1502
1503 dev_dbg(dev, "memory sram%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1504 i, &core->sram[i].bus_addr,
1505 core->sram[i].size, core->sram[i].cpu_addr,
1506 core->sram[i].dev_addr);
1507 }
1508 core->num_sram = num_sram;
1509
1510 return 0;
1511}
1512
1513static int k3_r5_core_of_init(struct platform_device *pdev)
1514{
1515 struct device *dev = &pdev->dev;
1516 struct device_node *np = dev_of_node(dev);
1517 struct k3_r5_core *core;
1518 int ret;
1519
1520 if (!devres_open_group(dev, k3_r5_core_of_init, GFP_KERNEL))
1521 return -ENOMEM;
1522
1523 core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL);
1524 if (!core) {
1525 ret = -ENOMEM;
1526 goto err;
1527 }
1528
1529 core->dev = dev;
1530 /*
1531 * Use SoC Power-on-Reset values as default if no DT properties are
1532 * used to dictate the TCM configurations
1533 */
1534 core->atcm_enable = 0;
1535 core->btcm_enable = 1;
1536 core->loczrama = 1;
1537
1538 ret = of_property_read_u32(np, "ti,atcm-enable", &core->atcm_enable);
1539 if (ret < 0 && ret != -EINVAL) {
1540 dev_err(dev, "invalid format for ti,atcm-enable, ret = %d\n",
1541 ret);
1542 goto err;
1543 }
1544
1545 ret = of_property_read_u32(np, "ti,btcm-enable", &core->btcm_enable);
1546 if (ret < 0 && ret != -EINVAL) {
1547 dev_err(dev, "invalid format for ti,btcm-enable, ret = %d\n",
1548 ret);
1549 goto err;
1550 }
1551
1552 ret = of_property_read_u32(np, "ti,loczrama", &core->loczrama);
1553 if (ret < 0 && ret != -EINVAL) {
1554 dev_err(dev, "invalid format for ti,loczrama, ret = %d\n", ret);
1555 goto err;
1556 }
1557
1558 core->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci");
1559 if (IS_ERR(core->ti_sci)) {
1560 ret = dev_err_probe(dev, PTR_ERR(core->ti_sci), "failed to get ti-sci handle\n");
1561 core->ti_sci = NULL;
1562 goto err;
1563 }
1564
1565 ret = of_property_read_u32(np, "ti,sci-dev-id", &core->ti_sci_id);
1566 if (ret) {
1567 dev_err(dev, "missing 'ti,sci-dev-id' property\n");
1568 goto err;
1569 }
1570
1571 core->reset = devm_reset_control_get_exclusive(dev, NULL);
1572 if (IS_ERR_OR_NULL(core->reset)) {
1573 ret = PTR_ERR_OR_ZERO(core->reset);
1574 if (!ret)
1575 ret = -ENODEV;
1576 dev_err_probe(dev, ret, "failed to get reset handle\n");
1577 goto err;
1578 }
1579
1580 core->tsp = ti_sci_proc_of_get_tsp(dev, core->ti_sci);
1581 if (IS_ERR(core->tsp)) {
1582 ret = dev_err_probe(dev, PTR_ERR(core->tsp),
1583 "failed to construct ti-sci proc control\n");
1584 goto err;
1585 }
1586
1587 ret = k3_r5_core_of_get_internal_memories(pdev, core);
1588 if (ret) {
1589 dev_err(dev, "failed to get internal memories, ret = %d\n",
1590 ret);
1591 goto err;
1592 }
1593
1594 ret = k3_r5_core_of_get_sram_memories(pdev, core);
1595 if (ret) {
1596 dev_err(dev, "failed to get sram memories, ret = %d\n", ret);
1597 goto err;
1598 }
1599
1600 ret = ti_sci_proc_request(core->tsp);
1601 if (ret < 0) {
1602 dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret);
1603 goto err;
1604 }
1605
1606 platform_set_drvdata(pdev, core);
1607 devres_close_group(dev, k3_r5_core_of_init);
1608
1609 return 0;
1610
1611err:
1612 devres_release_group(dev, k3_r5_core_of_init);
1613 return ret;
1614}
1615
1616/*
1617 * free the resources explicitly since driver model is not being used
1618 * for the child R5F devices
1619 */
1620static void k3_r5_core_of_exit(struct platform_device *pdev)
1621{
1622 struct k3_r5_core *core = platform_get_drvdata(pdev);
1623 struct device *dev = &pdev->dev;
1624 int ret;
1625
1626 ret = ti_sci_proc_release(core->tsp);
1627 if (ret)
1628 dev_err(dev, "failed to release proc, ret = %d\n", ret);
1629
1630 platform_set_drvdata(pdev, NULL);
1631 devres_release_group(dev, k3_r5_core_of_init);
1632}
1633
1634static void k3_r5_cluster_of_exit(void *data)
1635{
1636 struct k3_r5_cluster *cluster = platform_get_drvdata(data);
1637 struct platform_device *cpdev;
1638 struct k3_r5_core *core, *temp;
1639
1640 list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) {
1641 list_del(&core->elem);
1642 cpdev = to_platform_device(core->dev);
1643 k3_r5_core_of_exit(cpdev);
1644 }
1645}
1646
1647static int k3_r5_cluster_of_init(struct platform_device *pdev)
1648{
1649 struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
1650 struct device *dev = &pdev->dev;
1651 struct device_node *np = dev_of_node(dev);
1652 struct platform_device *cpdev;
1653 struct k3_r5_core *core;
1654 int ret;
1655
1656 for_each_available_child_of_node_scoped(np, child) {
1657 cpdev = of_find_device_by_node(child);
1658 if (!cpdev) {
1659 ret = -ENODEV;
1660 dev_err(dev, "could not get R5 core platform device\n");
1661 goto fail;
1662 }
1663
1664 ret = k3_r5_core_of_init(cpdev);
1665 if (ret) {
1666 dev_err(dev, "k3_r5_core_of_init failed, ret = %d\n",
1667 ret);
1668 put_device(&cpdev->dev);
1669 goto fail;
1670 }
1671
1672 core = platform_get_drvdata(cpdev);
1673 put_device(&cpdev->dev);
1674 list_add_tail(&core->elem, &cluster->cores);
1675 }
1676
1677 return 0;
1678
1679fail:
1680 k3_r5_cluster_of_exit(pdev);
1681 return ret;
1682}
1683
1684static int k3_r5_probe(struct platform_device *pdev)
1685{
1686 struct device *dev = &pdev->dev;
1687 struct device_node *np = dev_of_node(dev);
1688 struct k3_r5_cluster *cluster;
1689 const struct k3_r5_soc_data *data;
1690 int ret;
1691 int num_cores;
1692
1693 data = of_device_get_match_data(&pdev->dev);
1694 if (!data) {
1695 dev_err(dev, "SoC-specific data is not defined\n");
1696 return -ENODEV;
1697 }
1698
1699 cluster = devm_kzalloc(dev, sizeof(*cluster), GFP_KERNEL);
1700 if (!cluster)
1701 return -ENOMEM;
1702
1703 cluster->dev = dev;
1704 cluster->soc_data = data;
1705 INIT_LIST_HEAD(&cluster->cores);
1706 init_waitqueue_head(&cluster->core_transition);
1707
1708 ret = of_property_read_u32(np, "ti,cluster-mode", &cluster->mode);
1709 if (ret < 0 && ret != -EINVAL)
1710 return dev_err_probe(dev, ret, "invalid format for ti,cluster-mode\n");
1711
1712 if (ret == -EINVAL) {
1713 /*
1714 * default to most common efuse configurations - Split-mode on AM64x
1715 * and LockStep-mode on all others
1716 * default to most common efuse configurations -
1717 * Split-mode on AM64x
1718 * Single core on AM62x
1719 * LockStep-mode on all others
1720 */
1721 if (!data->is_single_core)
1722 cluster->mode = data->single_cpu_mode ?
1723 CLUSTER_MODE_SPLIT : CLUSTER_MODE_LOCKSTEP;
1724 else
1725 cluster->mode = CLUSTER_MODE_SINGLECORE;
1726 }
1727
1728 if ((cluster->mode == CLUSTER_MODE_SINGLECPU && !data->single_cpu_mode) ||
1729 (cluster->mode == CLUSTER_MODE_SINGLECORE && !data->is_single_core))
1730 return dev_err_probe(dev, -EINVAL,
1731 "Cluster mode = %d is not supported on this SoC\n",
1732 cluster->mode);
1733
1734 num_cores = of_get_available_child_count(np);
1735 if (num_cores != 2 && !data->is_single_core)
1736 return dev_err_probe(dev, -ENODEV,
1737 "MCU cluster requires both R5F cores to be enabled but num_cores is set to = %d\n",
1738 num_cores);
1739
1740 if (num_cores != 1 && data->is_single_core)
1741 return dev_err_probe(dev, -ENODEV,
1742 "SoC supports only single core R5 but num_cores is set to %d\n",
1743 num_cores);
1744
1745 platform_set_drvdata(pdev, cluster);
1746
1747 ret = devm_of_platform_populate(dev);
1748 if (ret)
1749 return dev_err_probe(dev, ret, "devm_of_platform_populate failed\n");
1750
1751 ret = k3_r5_cluster_of_init(pdev);
1752 if (ret)
1753 return dev_err_probe(dev, ret, "k3_r5_cluster_of_init failed\n");
1754
1755 ret = devm_add_action_or_reset(dev, k3_r5_cluster_of_exit, pdev);
1756 if (ret)
1757 return ret;
1758
1759 ret = k3_r5_cluster_rproc_init(pdev);
1760 if (ret)
1761 return dev_err_probe(dev, ret, "k3_r5_cluster_rproc_init failed\n");
1762
1763 ret = devm_add_action_or_reset(dev, k3_r5_cluster_rproc_exit, pdev);
1764 if (ret)
1765 return ret;
1766
1767 return 0;
1768}
1769
1770static const struct k3_r5_soc_data am65_j721e_soc_data = {
1771 .tcm_is_double = false,
1772 .tcm_ecc_autoinit = false,
1773 .single_cpu_mode = false,
1774 .is_single_core = false,
1775};
1776
1777static const struct k3_r5_soc_data j7200_j721s2_soc_data = {
1778 .tcm_is_double = true,
1779 .tcm_ecc_autoinit = true,
1780 .single_cpu_mode = false,
1781 .is_single_core = false,
1782};
1783
1784static const struct k3_r5_soc_data am64_soc_data = {
1785 .tcm_is_double = true,
1786 .tcm_ecc_autoinit = true,
1787 .single_cpu_mode = true,
1788 .is_single_core = false,
1789};
1790
1791static const struct k3_r5_soc_data am62_soc_data = {
1792 .tcm_is_double = false,
1793 .tcm_ecc_autoinit = true,
1794 .single_cpu_mode = false,
1795 .is_single_core = true,
1796};
1797
1798static const struct of_device_id k3_r5_of_match[] = {
1799 { .compatible = "ti,am654-r5fss", .data = &am65_j721e_soc_data, },
1800 { .compatible = "ti,j721e-r5fss", .data = &am65_j721e_soc_data, },
1801 { .compatible = "ti,j7200-r5fss", .data = &j7200_j721s2_soc_data, },
1802 { .compatible = "ti,am64-r5fss", .data = &am64_soc_data, },
1803 { .compatible = "ti,am62-r5fss", .data = &am62_soc_data, },
1804 { .compatible = "ti,j721s2-r5fss", .data = &j7200_j721s2_soc_data, },
1805 { /* sentinel */ },
1806};
1807MODULE_DEVICE_TABLE(of, k3_r5_of_match);
1808
1809static struct platform_driver k3_r5_rproc_driver = {
1810 .probe = k3_r5_probe,
1811 .driver = {
1812 .name = "k3_r5_rproc",
1813 .of_match_table = k3_r5_of_match,
1814 },
1815};
1816
1817module_platform_driver(k3_r5_rproc_driver);
1818
1819MODULE_LICENSE("GPL v2");
1820MODULE_DESCRIPTION("TI K3 R5F remote processor driver");
1821MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");