Loading...
1// SPDX-License-Identifier: GPL-2.0
2
3/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4 * Copyright (C) 2019-2023 Linaro Ltd.
5 */
6
7#include <linux/types.h>
8#include <linux/device.h>
9#include <linux/slab.h>
10#include <linux/bitfield.h>
11#include <linux/if_rmnet.h>
12#include <linux/dma-direction.h>
13
14#include "gsi.h"
15#include "gsi_trans.h"
16#include "ipa.h"
17#include "ipa_data.h"
18#include "ipa_endpoint.h"
19#include "ipa_cmd.h"
20#include "ipa_mem.h"
21#include "ipa_modem.h"
22#include "ipa_table.h"
23#include "ipa_gsi.h"
24#include "ipa_power.h"
25
26/* Hardware is told about receive buffers once a "batch" has been queued */
27#define IPA_REPLENISH_BATCH 16 /* Must be non-zero */
28
29/* The amount of RX buffer space consumed by standard skb overhead */
30#define IPA_RX_BUFFER_OVERHEAD (PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0))
31
32/* Where to find the QMAP mux_id for a packet within modem-supplied metadata */
33#define IPA_ENDPOINT_QMAP_METADATA_MASK 0x000000ff /* host byte order */
34
35#define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX 3
36
37/** enum ipa_status_opcode - IPA status opcode field hardware values */
38enum ipa_status_opcode { /* *Not* a bitmask */
39 IPA_STATUS_OPCODE_PACKET = 1,
40 IPA_STATUS_OPCODE_NEW_RULE_PACKET = 2,
41 IPA_STATUS_OPCODE_DROPPED_PACKET = 4,
42 IPA_STATUS_OPCODE_SUSPENDED_PACKET = 8,
43 IPA_STATUS_OPCODE_LOG = 16,
44 IPA_STATUS_OPCODE_DCMP = 32,
45 IPA_STATUS_OPCODE_PACKET_2ND_PASS = 64,
46};
47
48/** enum ipa_status_exception - IPA status exception field hardware values */
49enum ipa_status_exception { /* *Not* a bitmask */
50 /* 0 means no exception */
51 IPA_STATUS_EXCEPTION_DEAGGR = 1,
52 IPA_STATUS_EXCEPTION_IPTYPE = 4,
53 IPA_STATUS_EXCEPTION_PACKET_LENGTH = 8,
54 IPA_STATUS_EXCEPTION_FRAG_RULE_MISS = 16,
55 IPA_STATUS_EXCEPTION_SW_FILTER = 32,
56 IPA_STATUS_EXCEPTION_NAT = 64, /* IPv4 */
57 IPA_STATUS_EXCEPTION_IPV6_CONN_TRACK = 64, /* IPv6 */
58 IPA_STATUS_EXCEPTION_UC = 128,
59 IPA_STATUS_EXCEPTION_INVALID_ENDPOINT = 129,
60 IPA_STATUS_EXCEPTION_HEADER_INSERT = 136,
61 IPA_STATUS_EXCEPTION_CHEKCSUM = 229,
62};
63
64/** enum ipa_status_mask - IPA status mask field bitmask hardware values */
65enum ipa_status_mask {
66 IPA_STATUS_MASK_FRAG_PROCESS = BIT(0),
67 IPA_STATUS_MASK_FILT_PROCESS = BIT(1),
68 IPA_STATUS_MASK_NAT_PROCESS = BIT(2),
69 IPA_STATUS_MASK_ROUTE_PROCESS = BIT(3),
70 IPA_STATUS_MASK_TAG_VALID = BIT(4),
71 IPA_STATUS_MASK_FRAGMENT = BIT(5),
72 IPA_STATUS_MASK_FIRST_FRAGMENT = BIT(6),
73 IPA_STATUS_MASK_V4 = BIT(7),
74 IPA_STATUS_MASK_CKSUM_PROCESS = BIT(8),
75 IPA_STATUS_MASK_AGGR_PROCESS = BIT(9),
76 IPA_STATUS_MASK_DEST_EOT = BIT(10),
77 IPA_STATUS_MASK_DEAGGR_PROCESS = BIT(11),
78 IPA_STATUS_MASK_DEAGG_FIRST = BIT(12),
79 IPA_STATUS_MASK_SRC_EOT = BIT(13),
80 IPA_STATUS_MASK_PREV_EOT = BIT(14),
81 IPA_STATUS_MASK_BYTE_LIMIT = BIT(15),
82};
83
84/* Special IPA filter/router rule field value indicating "rule miss" */
85#define IPA_STATUS_RULE_MISS 0x3ff /* 10-bit filter/router rule fields */
86
87/** The IPA status nat_type field uses enum ipa_nat_type hardware values */
88
89/* enum ipa_status_field_id - IPA packet status structure field identifiers */
90enum ipa_status_field_id {
91 STATUS_OPCODE, /* enum ipa_status_opcode */
92 STATUS_EXCEPTION, /* enum ipa_status_exception */
93 STATUS_MASK, /* enum ipa_status_mask (bitmask) */
94 STATUS_LENGTH,
95 STATUS_SRC_ENDPOINT,
96 STATUS_DST_ENDPOINT,
97 STATUS_METADATA,
98 STATUS_FILTER_LOCAL, /* Boolean */
99 STATUS_FILTER_HASH, /* Boolean */
100 STATUS_FILTER_GLOBAL, /* Boolean */
101 STATUS_FILTER_RETAIN, /* Boolean */
102 STATUS_FILTER_RULE_INDEX,
103 STATUS_ROUTER_LOCAL, /* Boolean */
104 STATUS_ROUTER_HASH, /* Boolean */
105 STATUS_UCP, /* Boolean */
106 STATUS_ROUTER_TABLE,
107 STATUS_ROUTER_RULE_INDEX,
108 STATUS_NAT_HIT, /* Boolean */
109 STATUS_NAT_INDEX,
110 STATUS_NAT_TYPE, /* enum ipa_nat_type */
111 STATUS_TAG_LOW32, /* Low-order 32 bits of 48-bit tag */
112 STATUS_TAG_HIGH16, /* High-order 16 bits of 48-bit tag */
113 STATUS_SEQUENCE,
114 STATUS_TIME_OF_DAY,
115 STATUS_HEADER_LOCAL, /* Boolean */
116 STATUS_HEADER_OFFSET,
117 STATUS_FRAG_HIT, /* Boolean */
118 STATUS_FRAG_RULE_INDEX,
119};
120
121/* Size in bytes of an IPA packet status structure */
122#define IPA_STATUS_SIZE sizeof(__le32[8])
123
124/* IPA status structure decoder; looks up field values for a structure */
125static u32 ipa_status_extract(struct ipa *ipa, const void *data,
126 enum ipa_status_field_id field)
127{
128 enum ipa_version version = ipa->version;
129 const __le32 *word = data;
130
131 switch (field) {
132 case STATUS_OPCODE:
133 return le32_get_bits(word[0], GENMASK(7, 0));
134 case STATUS_EXCEPTION:
135 return le32_get_bits(word[0], GENMASK(15, 8));
136 case STATUS_MASK:
137 return le32_get_bits(word[0], GENMASK(31, 16));
138 case STATUS_LENGTH:
139 return le32_get_bits(word[1], GENMASK(15, 0));
140 case STATUS_SRC_ENDPOINT:
141 if (version < IPA_VERSION_5_0)
142 return le32_get_bits(word[1], GENMASK(20, 16));
143 return le32_get_bits(word[1], GENMASK(23, 16));
144 /* Status word 1, bits 21-23 are reserved (not IPA v5.0+) */
145 /* Status word 1, bits 24-26 are reserved (IPA v5.0+) */
146 case STATUS_DST_ENDPOINT:
147 if (version < IPA_VERSION_5_0)
148 return le32_get_bits(word[1], GENMASK(28, 24));
149 return le32_get_bits(word[7], GENMASK(23, 16));
150 /* Status word 1, bits 29-31 are reserved */
151 case STATUS_METADATA:
152 return le32_to_cpu(word[2]);
153 case STATUS_FILTER_LOCAL:
154 return le32_get_bits(word[3], GENMASK(0, 0));
155 case STATUS_FILTER_HASH:
156 return le32_get_bits(word[3], GENMASK(1, 1));
157 case STATUS_FILTER_GLOBAL:
158 return le32_get_bits(word[3], GENMASK(2, 2));
159 case STATUS_FILTER_RETAIN:
160 return le32_get_bits(word[3], GENMASK(3, 3));
161 case STATUS_FILTER_RULE_INDEX:
162 return le32_get_bits(word[3], GENMASK(13, 4));
163 /* ROUTER_TABLE is in word 3, bits 14-21 (IPA v5.0+) */
164 case STATUS_ROUTER_LOCAL:
165 if (version < IPA_VERSION_5_0)
166 return le32_get_bits(word[3], GENMASK(14, 14));
167 return le32_get_bits(word[1], GENMASK(27, 27));
168 case STATUS_ROUTER_HASH:
169 if (version < IPA_VERSION_5_0)
170 return le32_get_bits(word[3], GENMASK(15, 15));
171 return le32_get_bits(word[1], GENMASK(28, 28));
172 case STATUS_UCP:
173 if (version < IPA_VERSION_5_0)
174 return le32_get_bits(word[3], GENMASK(16, 16));
175 return le32_get_bits(word[7], GENMASK(31, 31));
176 case STATUS_ROUTER_TABLE:
177 if (version < IPA_VERSION_5_0)
178 return le32_get_bits(word[3], GENMASK(21, 17));
179 return le32_get_bits(word[3], GENMASK(21, 14));
180 case STATUS_ROUTER_RULE_INDEX:
181 return le32_get_bits(word[3], GENMASK(31, 22));
182 case STATUS_NAT_HIT:
183 return le32_get_bits(word[4], GENMASK(0, 0));
184 case STATUS_NAT_INDEX:
185 return le32_get_bits(word[4], GENMASK(13, 1));
186 case STATUS_NAT_TYPE:
187 return le32_get_bits(word[4], GENMASK(15, 14));
188 case STATUS_TAG_LOW32:
189 return le32_get_bits(word[4], GENMASK(31, 16)) |
190 (le32_get_bits(word[5], GENMASK(15, 0)) << 16);
191 case STATUS_TAG_HIGH16:
192 return le32_get_bits(word[5], GENMASK(31, 16));
193 case STATUS_SEQUENCE:
194 return le32_get_bits(word[6], GENMASK(7, 0));
195 case STATUS_TIME_OF_DAY:
196 return le32_get_bits(word[6], GENMASK(31, 8));
197 case STATUS_HEADER_LOCAL:
198 return le32_get_bits(word[7], GENMASK(0, 0));
199 case STATUS_HEADER_OFFSET:
200 return le32_get_bits(word[7], GENMASK(10, 1));
201 case STATUS_FRAG_HIT:
202 return le32_get_bits(word[7], GENMASK(11, 11));
203 case STATUS_FRAG_RULE_INDEX:
204 return le32_get_bits(word[7], GENMASK(15, 12));
205 /* Status word 7, bits 16-30 are reserved */
206 /* Status word 7, bit 31 is reserved (not IPA v5.0+) */
207 default:
208 WARN(true, "%s: bad field_id %u\n", __func__, field);
209 return 0;
210 }
211}
212
213/* Compute the aggregation size value to use for a given buffer size */
214static u32 ipa_aggr_size_kb(u32 rx_buffer_size, bool aggr_hard_limit)
215{
216 /* A hard aggregation limit will not be crossed; aggregation closes
217 * if saving incoming data would cross the hard byte limit boundary.
218 *
219 * With a soft limit, aggregation closes *after* the size boundary
220 * has been crossed. In that case the limit must leave enough space
221 * after that limit to receive a full MTU of data plus overhead.
222 */
223 if (!aggr_hard_limit)
224 rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
225
226 /* The byte limit is encoded as a number of kilobytes */
227
228 return rx_buffer_size / SZ_1K;
229}
230
231static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count,
232 const struct ipa_gsi_endpoint_data *all_data,
233 const struct ipa_gsi_endpoint_data *data)
234{
235 const struct ipa_gsi_endpoint_data *other_data;
236 struct device *dev = &ipa->pdev->dev;
237 enum ipa_endpoint_name other_name;
238
239 if (ipa_gsi_endpoint_data_empty(data))
240 return true;
241
242 if (!data->toward_ipa) {
243 const struct ipa_endpoint_rx *rx_config;
244 const struct reg *reg;
245 u32 buffer_size;
246 u32 aggr_size;
247 u32 limit;
248
249 if (data->endpoint.filter_support) {
250 dev_err(dev, "filtering not supported for "
251 "RX endpoint %u\n",
252 data->endpoint_id);
253 return false;
254 }
255
256 /* Nothing more to check for non-AP RX */
257 if (data->ee_id != GSI_EE_AP)
258 return true;
259
260 rx_config = &data->endpoint.config.rx;
261
262 /* The buffer size must hold an MTU plus overhead */
263 buffer_size = rx_config->buffer_size;
264 limit = IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
265 if (buffer_size < limit) {
266 dev_err(dev, "RX buffer size too small for RX endpoint %u (%u < %u)\n",
267 data->endpoint_id, buffer_size, limit);
268 return false;
269 }
270
271 if (!data->endpoint.config.aggregation) {
272 bool result = true;
273
274 /* No aggregation; check for bogus aggregation data */
275 if (rx_config->aggr_time_limit) {
276 dev_err(dev,
277 "time limit with no aggregation for RX endpoint %u\n",
278 data->endpoint_id);
279 result = false;
280 }
281
282 if (rx_config->aggr_hard_limit) {
283 dev_err(dev, "hard limit with no aggregation for RX endpoint %u\n",
284 data->endpoint_id);
285 result = false;
286 }
287
288 if (rx_config->aggr_close_eof) {
289 dev_err(dev, "close EOF with no aggregation for RX endpoint %u\n",
290 data->endpoint_id);
291 result = false;
292 }
293
294 return result; /* Nothing more to check */
295 }
296
297 /* For an endpoint supporting receive aggregation, the byte
298 * limit defines the point at which aggregation closes. This
299 * check ensures the receive buffer size doesn't result in a
300 * limit that exceeds what's representable in the aggregation
301 * byte limit field.
302 */
303 aggr_size = ipa_aggr_size_kb(buffer_size - NET_SKB_PAD,
304 rx_config->aggr_hard_limit);
305 reg = ipa_reg(ipa, ENDP_INIT_AGGR);
306
307 limit = reg_field_max(reg, BYTE_LIMIT);
308 if (aggr_size > limit) {
309 dev_err(dev, "aggregated size too large for RX endpoint %u (%u KB > %u KB)\n",
310 data->endpoint_id, aggr_size, limit);
311
312 return false;
313 }
314
315 return true; /* Nothing more to check for RX */
316 }
317
318 /* Starting with IPA v4.5 sequencer replication is obsolete */
319 if (ipa->version >= IPA_VERSION_4_5) {
320 if (data->endpoint.config.tx.seq_rep_type) {
321 dev_err(dev, "no-zero seq_rep_type TX endpoint %u\n",
322 data->endpoint_id);
323 return false;
324 }
325 }
326
327 if (data->endpoint.config.status_enable) {
328 other_name = data->endpoint.config.tx.status_endpoint;
329 if (other_name >= count) {
330 dev_err(dev, "status endpoint name %u out of range "
331 "for endpoint %u\n",
332 other_name, data->endpoint_id);
333 return false;
334 }
335
336 /* Status endpoint must be defined... */
337 other_data = &all_data[other_name];
338 if (ipa_gsi_endpoint_data_empty(other_data)) {
339 dev_err(dev, "DMA endpoint name %u undefined "
340 "for endpoint %u\n",
341 other_name, data->endpoint_id);
342 return false;
343 }
344
345 /* ...and has to be an RX endpoint... */
346 if (other_data->toward_ipa) {
347 dev_err(dev,
348 "status endpoint for endpoint %u not RX\n",
349 data->endpoint_id);
350 return false;
351 }
352
353 /* ...and if it's to be an AP endpoint... */
354 if (other_data->ee_id == GSI_EE_AP) {
355 /* ...make sure it has status enabled. */
356 if (!other_data->endpoint.config.status_enable) {
357 dev_err(dev,
358 "status not enabled for endpoint %u\n",
359 other_data->endpoint_id);
360 return false;
361 }
362 }
363 }
364
365 if (data->endpoint.config.dma_mode) {
366 other_name = data->endpoint.config.dma_endpoint;
367 if (other_name >= count) {
368 dev_err(dev, "DMA endpoint name %u out of range "
369 "for endpoint %u\n",
370 other_name, data->endpoint_id);
371 return false;
372 }
373
374 other_data = &all_data[other_name];
375 if (ipa_gsi_endpoint_data_empty(other_data)) {
376 dev_err(dev, "DMA endpoint name %u undefined "
377 "for endpoint %u\n",
378 other_name, data->endpoint_id);
379 return false;
380 }
381 }
382
383 return true;
384}
385
386/* Validate endpoint configuration data. Return max defined endpoint ID */
387static u32 ipa_endpoint_max(struct ipa *ipa, u32 count,
388 const struct ipa_gsi_endpoint_data *data)
389{
390 const struct ipa_gsi_endpoint_data *dp = data;
391 struct device *dev = &ipa->pdev->dev;
392 enum ipa_endpoint_name name;
393 u32 max;
394
395 if (count > IPA_ENDPOINT_COUNT) {
396 dev_err(dev, "too many endpoints specified (%u > %u)\n",
397 count, IPA_ENDPOINT_COUNT);
398 return 0;
399 }
400
401 /* Make sure needed endpoints have defined data */
402 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) {
403 dev_err(dev, "command TX endpoint not defined\n");
404 return 0;
405 }
406 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) {
407 dev_err(dev, "LAN RX endpoint not defined\n");
408 return 0;
409 }
410 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) {
411 dev_err(dev, "AP->modem TX endpoint not defined\n");
412 return 0;
413 }
414 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) {
415 dev_err(dev, "AP<-modem RX endpoint not defined\n");
416 return 0;
417 }
418
419 max = 0;
420 for (name = 0; name < count; name++, dp++) {
421 if (!ipa_endpoint_data_valid_one(ipa, count, data, dp))
422 return 0;
423 max = max_t(u32, max, dp->endpoint_id);
424 }
425
426 return max;
427}
428
429/* Allocate a transaction to use on a non-command endpoint */
430static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint,
431 u32 tre_count)
432{
433 struct gsi *gsi = &endpoint->ipa->gsi;
434 u32 channel_id = endpoint->channel_id;
435 enum dma_data_direction direction;
436
437 direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
438
439 return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction);
440}
441
442/* suspend_delay represents suspend for RX, delay for TX endpoints.
443 * Note that suspend is not supported starting with IPA v4.0, and
444 * delay mode should not be used starting with IPA v4.2.
445 */
446static bool
447ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay)
448{
449 struct ipa *ipa = endpoint->ipa;
450 const struct reg *reg;
451 u32 field_id;
452 u32 offset;
453 bool state;
454 u32 mask;
455 u32 val;
456
457 if (endpoint->toward_ipa)
458 WARN_ON(ipa->version >= IPA_VERSION_4_2);
459 else
460 WARN_ON(ipa->version >= IPA_VERSION_4_0);
461
462 reg = ipa_reg(ipa, ENDP_INIT_CTRL);
463 offset = reg_n_offset(reg, endpoint->endpoint_id);
464 val = ioread32(ipa->reg_virt + offset);
465
466 field_id = endpoint->toward_ipa ? ENDP_DELAY : ENDP_SUSPEND;
467 mask = reg_bit(reg, field_id);
468
469 state = !!(val & mask);
470
471 /* Don't bother if it's already in the requested state */
472 if (suspend_delay != state) {
473 val ^= mask;
474 iowrite32(val, ipa->reg_virt + offset);
475 }
476
477 return state;
478}
479
480/* We don't care what the previous state was for delay mode */
481static void
482ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable)
483{
484 /* Delay mode should not be used for IPA v4.2+ */
485 WARN_ON(endpoint->ipa->version >= IPA_VERSION_4_2);
486 WARN_ON(!endpoint->toward_ipa);
487
488 (void)ipa_endpoint_init_ctrl(endpoint, enable);
489}
490
491static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint)
492{
493 u32 endpoint_id = endpoint->endpoint_id;
494 struct ipa *ipa = endpoint->ipa;
495 u32 unit = endpoint_id / 32;
496 const struct reg *reg;
497 u32 val;
498
499 WARN_ON(!test_bit(endpoint_id, ipa->available));
500
501 reg = ipa_reg(ipa, STATE_AGGR_ACTIVE);
502 val = ioread32(ipa->reg_virt + reg_n_offset(reg, unit));
503
504 return !!(val & BIT(endpoint_id % 32));
505}
506
507static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint)
508{
509 u32 endpoint_id = endpoint->endpoint_id;
510 u32 mask = BIT(endpoint_id % 32);
511 struct ipa *ipa = endpoint->ipa;
512 u32 unit = endpoint_id / 32;
513 const struct reg *reg;
514
515 WARN_ON(!test_bit(endpoint_id, ipa->available));
516
517 reg = ipa_reg(ipa, AGGR_FORCE_CLOSE);
518 iowrite32(mask, ipa->reg_virt + reg_n_offset(reg, unit));
519}
520
521/**
522 * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt
523 * @endpoint: Endpoint on which to emulate a suspend
524 *
525 * Emulate suspend IPA interrupt to unsuspend an endpoint suspended
526 * with an open aggregation frame. This is to work around a hardware
527 * issue in IPA version 3.5.1 where the suspend interrupt will not be
528 * generated when it should be.
529 */
530static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint)
531{
532 struct ipa *ipa = endpoint->ipa;
533
534 if (!endpoint->config.aggregation)
535 return;
536
537 /* Nothing to do if the endpoint doesn't have aggregation open */
538 if (!ipa_endpoint_aggr_active(endpoint))
539 return;
540
541 /* Force close aggregation */
542 ipa_endpoint_force_close(endpoint);
543
544 ipa_interrupt_simulate_suspend(ipa->interrupt);
545}
546
547/* Returns previous suspend state (true means suspend was enabled) */
548static bool
549ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable)
550{
551 bool suspended;
552
553 if (endpoint->ipa->version >= IPA_VERSION_4_0)
554 return enable; /* For IPA v4.0+, no change made */
555
556 WARN_ON(endpoint->toward_ipa);
557
558 suspended = ipa_endpoint_init_ctrl(endpoint, enable);
559
560 /* A client suspended with an open aggregation frame will not
561 * generate a SUSPEND IPA interrupt. If enabling suspend, have
562 * ipa_endpoint_suspend_aggr() handle this.
563 */
564 if (enable && !suspended)
565 ipa_endpoint_suspend_aggr(endpoint);
566
567 return suspended;
568}
569
570/* Put all modem RX endpoints into suspend mode, and stop transmission
571 * on all modem TX endpoints. Prior to IPA v4.2, endpoint DELAY mode is
572 * used for TX endpoints; starting with IPA v4.2 we use GSI channel flow
573 * control instead.
574 */
575void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable)
576{
577 u32 endpoint_id = 0;
578
579 while (endpoint_id < ipa->endpoint_count) {
580 struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id++];
581
582 if (endpoint->ee_id != GSI_EE_MODEM)
583 continue;
584
585 if (!endpoint->toward_ipa)
586 (void)ipa_endpoint_program_suspend(endpoint, enable);
587 else if (ipa->version < IPA_VERSION_4_2)
588 ipa_endpoint_program_delay(endpoint, enable);
589 else
590 gsi_modem_channel_flow_control(&ipa->gsi,
591 endpoint->channel_id,
592 enable);
593 }
594}
595
596/* Reset all modem endpoints to use the default exception endpoint */
597int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa)
598{
599 struct gsi_trans *trans;
600 u32 endpoint_id;
601 u32 count;
602
603 /* We need one command per modem TX endpoint, plus the commands
604 * that clear the pipeline.
605 */
606 count = ipa->modem_tx_count + ipa_cmd_pipeline_clear_count();
607 trans = ipa_cmd_trans_alloc(ipa, count);
608 if (!trans) {
609 dev_err(&ipa->pdev->dev,
610 "no transaction to reset modem exception endpoints\n");
611 return -EBUSY;
612 }
613
614 for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) {
615 struct ipa_endpoint *endpoint;
616 const struct reg *reg;
617 u32 offset;
618
619 /* We only reset modem TX endpoints */
620 endpoint = &ipa->endpoint[endpoint_id];
621 if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa))
622 continue;
623
624 reg = ipa_reg(ipa, ENDP_STATUS);
625 offset = reg_n_offset(reg, endpoint_id);
626
627 /* Value written is 0, and all bits are updated. That
628 * means status is disabled on the endpoint, and as a
629 * result all other fields in the register are ignored.
630 */
631 ipa_cmd_register_write_add(trans, offset, 0, ~0, false);
632 }
633
634 ipa_cmd_pipeline_clear_add(trans);
635
636 gsi_trans_commit_wait(trans);
637
638 ipa_cmd_pipeline_clear_wait(ipa);
639
640 return 0;
641}
642
643static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint)
644{
645 u32 endpoint_id = endpoint->endpoint_id;
646 struct ipa *ipa = endpoint->ipa;
647 enum ipa_cs_offload_en enabled;
648 const struct reg *reg;
649 u32 val = 0;
650
651 reg = ipa_reg(ipa, ENDP_INIT_CFG);
652 /* FRAG_OFFLOAD_EN is 0 */
653 if (endpoint->config.checksum) {
654 enum ipa_version version = ipa->version;
655
656 if (endpoint->toward_ipa) {
657 u32 off;
658
659 /* Checksum header offset is in 4-byte units */
660 off = sizeof(struct rmnet_map_header) / sizeof(u32);
661 val |= reg_encode(reg, CS_METADATA_HDR_OFFSET, off);
662
663 enabled = version < IPA_VERSION_4_5
664 ? IPA_CS_OFFLOAD_UL
665 : IPA_CS_OFFLOAD_INLINE;
666 } else {
667 enabled = version < IPA_VERSION_4_5
668 ? IPA_CS_OFFLOAD_DL
669 : IPA_CS_OFFLOAD_INLINE;
670 }
671 } else {
672 enabled = IPA_CS_OFFLOAD_NONE;
673 }
674 val |= reg_encode(reg, CS_OFFLOAD_EN, enabled);
675 /* CS_GEN_QMB_MASTER_SEL is 0 */
676
677 iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
678}
679
680static void ipa_endpoint_init_nat(struct ipa_endpoint *endpoint)
681{
682 u32 endpoint_id = endpoint->endpoint_id;
683 struct ipa *ipa = endpoint->ipa;
684 const struct reg *reg;
685 u32 val;
686
687 if (!endpoint->toward_ipa)
688 return;
689
690 reg = ipa_reg(ipa, ENDP_INIT_NAT);
691 val = reg_encode(reg, NAT_EN, IPA_NAT_TYPE_BYPASS);
692
693 iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
694}
695
696static u32
697ipa_qmap_header_size(enum ipa_version version, struct ipa_endpoint *endpoint)
698{
699 u32 header_size = sizeof(struct rmnet_map_header);
700
701 /* Without checksum offload, we just have the MAP header */
702 if (!endpoint->config.checksum)
703 return header_size;
704
705 if (version < IPA_VERSION_4_5) {
706 /* Checksum header inserted for AP TX endpoints only */
707 if (endpoint->toward_ipa)
708 header_size += sizeof(struct rmnet_map_ul_csum_header);
709 } else {
710 /* Checksum header is used in both directions */
711 header_size += sizeof(struct rmnet_map_v5_csum_header);
712 }
713
714 return header_size;
715}
716
717/* Encoded value for ENDP_INIT_HDR register HDR_LEN* field(s) */
718static u32 ipa_header_size_encode(enum ipa_version version,
719 const struct reg *reg, u32 header_size)
720{
721 u32 field_max = reg_field_max(reg, HDR_LEN);
722 u32 val;
723
724 /* We know field_max can be used as a mask (2^n - 1) */
725 val = reg_encode(reg, HDR_LEN, header_size & field_max);
726 if (version < IPA_VERSION_4_5) {
727 WARN_ON(header_size > field_max);
728 return val;
729 }
730
731 /* IPA v4.5 adds a few more most-significant bits */
732 header_size >>= hweight32(field_max);
733 WARN_ON(header_size > reg_field_max(reg, HDR_LEN_MSB));
734 val |= reg_encode(reg, HDR_LEN_MSB, header_size);
735
736 return val;
737}
738
739/* Encoded value for ENDP_INIT_HDR register OFST_METADATA* field(s) */
740static u32 ipa_metadata_offset_encode(enum ipa_version version,
741 const struct reg *reg, u32 offset)
742{
743 u32 field_max = reg_field_max(reg, HDR_OFST_METADATA);
744 u32 val;
745
746 /* We know field_max can be used as a mask (2^n - 1) */
747 val = reg_encode(reg, HDR_OFST_METADATA, offset);
748 if (version < IPA_VERSION_4_5) {
749 WARN_ON(offset > field_max);
750 return val;
751 }
752
753 /* IPA v4.5 adds a few more most-significant bits */
754 offset >>= hweight32(field_max);
755 WARN_ON(offset > reg_field_max(reg, HDR_OFST_METADATA_MSB));
756 val |= reg_encode(reg, HDR_OFST_METADATA_MSB, offset);
757
758 return val;
759}
760
761/**
762 * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register
763 * @endpoint: Endpoint pointer
764 *
765 * We program QMAP endpoints so each packet received is preceded by a QMAP
766 * header structure. The QMAP header contains a 1-byte mux_id and 2-byte
767 * packet size field, and we have the IPA hardware populate both for each
768 * received packet. The header is configured (in the HDR_EXT register)
769 * to use big endian format.
770 *
771 * The packet size is written into the QMAP header's pkt_len field. That
772 * location is defined here using the HDR_OFST_PKT_SIZE field.
773 *
774 * The mux_id comes from a 4-byte metadata value supplied with each packet
775 * by the modem. It is *not* a QMAP header, but it does contain the mux_id
776 * value that we want, in its low-order byte. A bitmask defined in the
777 * endpoint's METADATA_MASK register defines which byte within the modem
778 * metadata contains the mux_id. And the OFST_METADATA field programmed
779 * here indicates where the extracted byte should be placed within the QMAP
780 * header.
781 */
782static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint)
783{
784 u32 endpoint_id = endpoint->endpoint_id;
785 struct ipa *ipa = endpoint->ipa;
786 const struct reg *reg;
787 u32 val = 0;
788
789 reg = ipa_reg(ipa, ENDP_INIT_HDR);
790 if (endpoint->config.qmap) {
791 enum ipa_version version = ipa->version;
792 size_t header_size;
793
794 header_size = ipa_qmap_header_size(version, endpoint);
795 val = ipa_header_size_encode(version, reg, header_size);
796
797 /* Define how to fill fields in a received QMAP header */
798 if (!endpoint->toward_ipa) {
799 u32 off; /* Field offset within header */
800
801 /* Where IPA will write the metadata value */
802 off = offsetof(struct rmnet_map_header, mux_id);
803 val |= ipa_metadata_offset_encode(version, reg, off);
804
805 /* Where IPA will write the length */
806 off = offsetof(struct rmnet_map_header, pkt_len);
807 /* Upper bits are stored in HDR_EXT with IPA v4.5 */
808 if (version >= IPA_VERSION_4_5)
809 off &= reg_field_max(reg, HDR_OFST_PKT_SIZE);
810
811 val |= reg_bit(reg, HDR_OFST_PKT_SIZE_VALID);
812 val |= reg_encode(reg, HDR_OFST_PKT_SIZE, off);
813 }
814 /* For QMAP TX, metadata offset is 0 (modem assumes this) */
815 val |= reg_bit(reg, HDR_OFST_METADATA_VALID);
816
817 /* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */
818 /* HDR_A5_MUX is 0 */
819 /* HDR_LEN_INC_DEAGG_HDR is 0 */
820 /* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */
821 }
822
823 iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
824}
825
826static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint)
827{
828 u32 pad_align = endpoint->config.rx.pad_align;
829 u32 endpoint_id = endpoint->endpoint_id;
830 struct ipa *ipa = endpoint->ipa;
831 const struct reg *reg;
832 u32 val = 0;
833
834 reg = ipa_reg(ipa, ENDP_INIT_HDR_EXT);
835 if (endpoint->config.qmap) {
836 /* We have a header, so we must specify its endianness */
837 val |= reg_bit(reg, HDR_ENDIANNESS); /* big endian */
838
839 /* A QMAP header contains a 6 bit pad field at offset 0.
840 * The RMNet driver assumes this field is meaningful in
841 * packets it receives, and assumes the header's payload
842 * length includes that padding. The RMNet driver does
843 * *not* pad packets it sends, however, so the pad field
844 * (although 0) should be ignored.
845 */
846 if (!endpoint->toward_ipa) {
847 val |= reg_bit(reg, HDR_TOTAL_LEN_OR_PAD_VALID);
848 /* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */
849 val |= reg_bit(reg, HDR_PAYLOAD_LEN_INC_PADDING);
850 /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */
851 }
852 }
853
854 /* HDR_PAYLOAD_LEN_INC_PADDING is 0 */
855 if (!endpoint->toward_ipa)
856 val |= reg_encode(reg, HDR_PAD_TO_ALIGNMENT, pad_align);
857
858 /* IPA v4.5 adds some most-significant bits to a few fields,
859 * two of which are defined in the HDR (not HDR_EXT) register.
860 */
861 if (ipa->version >= IPA_VERSION_4_5) {
862 /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */
863 if (endpoint->config.qmap && !endpoint->toward_ipa) {
864 u32 mask = reg_field_max(reg, HDR_OFST_PKT_SIZE);
865 u32 off; /* Field offset within header */
866
867 off = offsetof(struct rmnet_map_header, pkt_len);
868 /* Low bits are in the ENDP_INIT_HDR register */
869 off >>= hweight32(mask);
870 val |= reg_encode(reg, HDR_OFST_PKT_SIZE_MSB, off);
871 /* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */
872 }
873 }
874
875 iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
876}
877
878static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint)
879{
880 u32 endpoint_id = endpoint->endpoint_id;
881 struct ipa *ipa = endpoint->ipa;
882 const struct reg *reg;
883 u32 val = 0;
884 u32 offset;
885
886 if (endpoint->toward_ipa)
887 return; /* Register not valid for TX endpoints */
888
889 reg = ipa_reg(ipa, ENDP_INIT_HDR_METADATA_MASK);
890 offset = reg_n_offset(reg, endpoint_id);
891
892 /* Note that HDR_ENDIANNESS indicates big endian header fields */
893 if (endpoint->config.qmap)
894 val = (__force u32)cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK);
895
896 iowrite32(val, ipa->reg_virt + offset);
897}
898
899static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint)
900{
901 struct ipa *ipa = endpoint->ipa;
902 const struct reg *reg;
903 u32 offset;
904 u32 val;
905
906 if (!endpoint->toward_ipa)
907 return; /* Register not valid for RX endpoints */
908
909 reg = ipa_reg(ipa, ENDP_INIT_MODE);
910 if (endpoint->config.dma_mode) {
911 enum ipa_endpoint_name name = endpoint->config.dma_endpoint;
912 u32 dma_endpoint_id = ipa->name_map[name]->endpoint_id;
913
914 val = reg_encode(reg, ENDP_MODE, IPA_DMA);
915 val |= reg_encode(reg, DEST_PIPE_INDEX, dma_endpoint_id);
916 } else {
917 val = reg_encode(reg, ENDP_MODE, IPA_BASIC);
918 }
919 /* All other bits unspecified (and 0) */
920
921 offset = reg_n_offset(reg, endpoint->endpoint_id);
922 iowrite32(val, ipa->reg_virt + offset);
923}
924
925/* For IPA v4.5+, times are expressed using Qtime. A time is represented
926 * at one of several available granularities, which are configured in
927 * ipa_qtime_config(). Three (or, starting with IPA v5.0, four) pulse
928 * generators are set up with different "tick" periods. A Qtime value
929 * encodes a tick count along with an indication of a pulse generator
930 * (which has a fixed tick period). Two pulse generators are always
931 * available to the AP; a third is available starting with IPA v5.0.
932 * This function determines which pulse generator most accurately
933 * represents the time period provided, and returns the tick count to
934 * use to represent that time.
935 */
936static u32
937ipa_qtime_val(struct ipa *ipa, u32 microseconds, u32 max, u32 *select)
938{
939 u32 which = 0;
940 u32 ticks;
941
942 /* Pulse generator 0 has 100 microsecond granularity */
943 ticks = DIV_ROUND_CLOSEST(microseconds, 100);
944 if (ticks <= max)
945 goto out;
946
947 /* Pulse generator 1 has millisecond granularity */
948 which = 1;
949 ticks = DIV_ROUND_CLOSEST(microseconds, 1000);
950 if (ticks <= max)
951 goto out;
952
953 if (ipa->version >= IPA_VERSION_5_0) {
954 /* Pulse generator 2 has 10 millisecond granularity */
955 which = 2;
956 ticks = DIV_ROUND_CLOSEST(microseconds, 100);
957 }
958 WARN_ON(ticks > max);
959out:
960 *select = which;
961
962 return ticks;
963}
964
965/* Encode the aggregation timer limit (microseconds) based on IPA version */
966static u32 aggr_time_limit_encode(struct ipa *ipa, const struct reg *reg,
967 u32 microseconds)
968{
969 u32 ticks;
970 u32 max;
971
972 if (!microseconds)
973 return 0; /* Nothing to compute if time limit is 0 */
974
975 max = reg_field_max(reg, TIME_LIMIT);
976 if (ipa->version >= IPA_VERSION_4_5) {
977 u32 select;
978
979 ticks = ipa_qtime_val(ipa, microseconds, max, &select);
980
981 return reg_encode(reg, AGGR_GRAN_SEL, select) |
982 reg_encode(reg, TIME_LIMIT, ticks);
983 }
984
985 /* We program aggregation granularity in ipa_hardware_config() */
986 ticks = DIV_ROUND_CLOSEST(microseconds, IPA_AGGR_GRANULARITY);
987 WARN(ticks > max, "aggr_time_limit too large (%u > %u usec)\n",
988 microseconds, max * IPA_AGGR_GRANULARITY);
989
990 return reg_encode(reg, TIME_LIMIT, ticks);
991}
992
993static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint)
994{
995 u32 endpoint_id = endpoint->endpoint_id;
996 struct ipa *ipa = endpoint->ipa;
997 const struct reg *reg;
998 u32 val = 0;
999
1000 reg = ipa_reg(ipa, ENDP_INIT_AGGR);
1001 if (endpoint->config.aggregation) {
1002 if (!endpoint->toward_ipa) {
1003 const struct ipa_endpoint_rx *rx_config;
1004 u32 buffer_size;
1005 u32 limit;
1006
1007 rx_config = &endpoint->config.rx;
1008 val |= reg_encode(reg, AGGR_EN, IPA_ENABLE_AGGR);
1009 val |= reg_encode(reg, AGGR_TYPE, IPA_GENERIC);
1010
1011 buffer_size = rx_config->buffer_size;
1012 limit = ipa_aggr_size_kb(buffer_size - NET_SKB_PAD,
1013 rx_config->aggr_hard_limit);
1014 val |= reg_encode(reg, BYTE_LIMIT, limit);
1015
1016 limit = rx_config->aggr_time_limit;
1017 val |= aggr_time_limit_encode(ipa, reg, limit);
1018
1019 /* AGGR_PKT_LIMIT is 0 (unlimited) */
1020
1021 if (rx_config->aggr_close_eof)
1022 val |= reg_bit(reg, SW_EOF_ACTIVE);
1023 } else {
1024 val |= reg_encode(reg, AGGR_EN, IPA_ENABLE_DEAGGR);
1025 val |= reg_encode(reg, AGGR_TYPE, IPA_QCMAP);
1026 /* other fields ignored */
1027 }
1028 /* AGGR_FORCE_CLOSE is 0 */
1029 /* AGGR_GRAN_SEL is 0 for IPA v4.5 */
1030 } else {
1031 val |= reg_encode(reg, AGGR_EN, IPA_BYPASS_AGGR);
1032 /* other fields ignored */
1033 }
1034
1035 iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
1036}
1037
1038/* The head-of-line blocking timer is defined as a tick count. For
1039 * IPA version 4.5 the tick count is based on the Qtimer, which is
1040 * derived from the 19.2 MHz SoC XO clock. For older IPA versions
1041 * each tick represents 128 cycles of the IPA core clock.
1042 *
1043 * Return the encoded value representing the timeout period provided
1044 * that should be written to the ENDP_INIT_HOL_BLOCK_TIMER register.
1045 */
1046static u32 hol_block_timer_encode(struct ipa *ipa, const struct reg *reg,
1047 u32 microseconds)
1048{
1049 u32 width;
1050 u32 scale;
1051 u64 ticks;
1052 u64 rate;
1053 u32 high;
1054 u32 val;
1055
1056 if (!microseconds)
1057 return 0; /* Nothing to compute if timer period is 0 */
1058
1059 if (ipa->version >= IPA_VERSION_4_5) {
1060 u32 max = reg_field_max(reg, TIMER_LIMIT);
1061 u32 select;
1062 u32 ticks;
1063
1064 ticks = ipa_qtime_val(ipa, microseconds, max, &select);
1065
1066 return reg_encode(reg, TIMER_GRAN_SEL, 1) |
1067 reg_encode(reg, TIMER_LIMIT, ticks);
1068 }
1069
1070 /* Use 64 bit arithmetic to avoid overflow */
1071 rate = ipa_core_clock_rate(ipa);
1072 ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC);
1073
1074 /* We still need the result to fit into the field */
1075 WARN_ON(ticks > reg_field_max(reg, TIMER_BASE_VALUE));
1076
1077 /* IPA v3.5.1 through v4.1 just record the tick count */
1078 if (ipa->version < IPA_VERSION_4_2)
1079 return reg_encode(reg, TIMER_BASE_VALUE, (u32)ticks);
1080
1081 /* For IPA v4.2, the tick count is represented by base and
1082 * scale fields within the 32-bit timer register, where:
1083 * ticks = base << scale;
1084 * The best precision is achieved when the base value is as
1085 * large as possible. Find the highest set bit in the tick
1086 * count, and extract the number of bits in the base field
1087 * such that high bit is included.
1088 */
1089 high = fls(ticks); /* 1..32 (or warning above) */
1090 width = hweight32(reg_fmask(reg, TIMER_BASE_VALUE));
1091 scale = high > width ? high - width : 0;
1092 if (scale) {
1093 /* If we're scaling, round up to get a closer result */
1094 ticks += 1 << (scale - 1);
1095 /* High bit was set, so rounding might have affected it */
1096 if (fls(ticks) != high)
1097 scale++;
1098 }
1099
1100 val = reg_encode(reg, TIMER_SCALE, scale);
1101 val |= reg_encode(reg, TIMER_BASE_VALUE, (u32)ticks >> scale);
1102
1103 return val;
1104}
1105
1106/* If microseconds is 0, timeout is immediate */
1107static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint,
1108 u32 microseconds)
1109{
1110 u32 endpoint_id = endpoint->endpoint_id;
1111 struct ipa *ipa = endpoint->ipa;
1112 const struct reg *reg;
1113 u32 val;
1114
1115 /* This should only be changed when HOL_BLOCK_EN is disabled */
1116 reg = ipa_reg(ipa, ENDP_INIT_HOL_BLOCK_TIMER);
1117 val = hol_block_timer_encode(ipa, reg, microseconds);
1118
1119 iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
1120}
1121
1122static void
1123ipa_endpoint_init_hol_block_en(struct ipa_endpoint *endpoint, bool enable)
1124{
1125 u32 endpoint_id = endpoint->endpoint_id;
1126 struct ipa *ipa = endpoint->ipa;
1127 const struct reg *reg;
1128 u32 offset;
1129 u32 val;
1130
1131 reg = ipa_reg(ipa, ENDP_INIT_HOL_BLOCK_EN);
1132 offset = reg_n_offset(reg, endpoint_id);
1133 val = enable ? reg_bit(reg, HOL_BLOCK_EN) : 0;
1134
1135 iowrite32(val, ipa->reg_virt + offset);
1136
1137 /* When enabling, the register must be written twice for IPA v4.5+ */
1138 if (enable && ipa->version >= IPA_VERSION_4_5)
1139 iowrite32(val, ipa->reg_virt + offset);
1140}
1141
1142/* Assumes HOL_BLOCK is in disabled state */
1143static void ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint,
1144 u32 microseconds)
1145{
1146 ipa_endpoint_init_hol_block_timer(endpoint, microseconds);
1147 ipa_endpoint_init_hol_block_en(endpoint, true);
1148}
1149
1150static void ipa_endpoint_init_hol_block_disable(struct ipa_endpoint *endpoint)
1151{
1152 ipa_endpoint_init_hol_block_en(endpoint, false);
1153}
1154
1155void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa)
1156{
1157 u32 endpoint_id = 0;
1158
1159 while (endpoint_id < ipa->endpoint_count) {
1160 struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id++];
1161
1162 if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM)
1163 continue;
1164
1165 ipa_endpoint_init_hol_block_disable(endpoint);
1166 ipa_endpoint_init_hol_block_enable(endpoint, 0);
1167 }
1168}
1169
1170static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint)
1171{
1172 u32 endpoint_id = endpoint->endpoint_id;
1173 struct ipa *ipa = endpoint->ipa;
1174 const struct reg *reg;
1175 u32 val = 0;
1176
1177 if (!endpoint->toward_ipa)
1178 return; /* Register not valid for RX endpoints */
1179
1180 reg = ipa_reg(ipa, ENDP_INIT_DEAGGR);
1181 /* DEAGGR_HDR_LEN is 0 */
1182 /* PACKET_OFFSET_VALID is 0 */
1183 /* PACKET_OFFSET_LOCATION is ignored (not valid) */
1184 /* MAX_PACKET_LEN is 0 (not enforced) */
1185
1186 iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
1187}
1188
1189static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint)
1190{
1191 u32 resource_group = endpoint->config.resource_group;
1192 u32 endpoint_id = endpoint->endpoint_id;
1193 struct ipa *ipa = endpoint->ipa;
1194 const struct reg *reg;
1195 u32 val;
1196
1197 reg = ipa_reg(ipa, ENDP_INIT_RSRC_GRP);
1198 val = reg_encode(reg, ENDP_RSRC_GRP, resource_group);
1199
1200 iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
1201}
1202
1203static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint)
1204{
1205 u32 endpoint_id = endpoint->endpoint_id;
1206 struct ipa *ipa = endpoint->ipa;
1207 const struct reg *reg;
1208 u32 val;
1209
1210 if (!endpoint->toward_ipa)
1211 return; /* Register not valid for RX endpoints */
1212
1213 reg = ipa_reg(ipa, ENDP_INIT_SEQ);
1214
1215 /* Low-order byte configures primary packet processing */
1216 val = reg_encode(reg, SEQ_TYPE, endpoint->config.tx.seq_type);
1217
1218 /* Second byte (if supported) configures replicated packet processing */
1219 if (ipa->version < IPA_VERSION_4_5)
1220 val |= reg_encode(reg, SEQ_REP_TYPE,
1221 endpoint->config.tx.seq_rep_type);
1222
1223 iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
1224}
1225
1226/**
1227 * ipa_endpoint_skb_tx() - Transmit a socket buffer
1228 * @endpoint: Endpoint pointer
1229 * @skb: Socket buffer to send
1230 *
1231 * Returns: 0 if successful, or a negative error code
1232 */
1233int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb)
1234{
1235 struct gsi_trans *trans;
1236 u32 nr_frags;
1237 int ret;
1238
1239 /* Make sure source endpoint's TLV FIFO has enough entries to
1240 * hold the linear portion of the skb and all its fragments.
1241 * If not, see if we can linearize it before giving up.
1242 */
1243 nr_frags = skb_shinfo(skb)->nr_frags;
1244 if (nr_frags > endpoint->skb_frag_max) {
1245 if (skb_linearize(skb))
1246 return -E2BIG;
1247 nr_frags = 0;
1248 }
1249
1250 trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags);
1251 if (!trans)
1252 return -EBUSY;
1253
1254 ret = gsi_trans_skb_add(trans, skb);
1255 if (ret)
1256 goto err_trans_free;
1257 trans->data = skb; /* transaction owns skb now */
1258
1259 gsi_trans_commit(trans, !netdev_xmit_more());
1260
1261 return 0;
1262
1263err_trans_free:
1264 gsi_trans_free(trans);
1265
1266 return -ENOMEM;
1267}
1268
1269static void ipa_endpoint_status(struct ipa_endpoint *endpoint)
1270{
1271 u32 endpoint_id = endpoint->endpoint_id;
1272 struct ipa *ipa = endpoint->ipa;
1273 const struct reg *reg;
1274 u32 val = 0;
1275
1276 reg = ipa_reg(ipa, ENDP_STATUS);
1277 if (endpoint->config.status_enable) {
1278 val |= reg_bit(reg, STATUS_EN);
1279 if (endpoint->toward_ipa) {
1280 enum ipa_endpoint_name name;
1281 u32 status_endpoint_id;
1282
1283 name = endpoint->config.tx.status_endpoint;
1284 status_endpoint_id = ipa->name_map[name]->endpoint_id;
1285
1286 val |= reg_encode(reg, STATUS_ENDP, status_endpoint_id);
1287 }
1288 /* STATUS_LOCATION is 0, meaning IPA packet status
1289 * precedes the packet (not present for IPA v4.5+)
1290 */
1291 /* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v4.0+) */
1292 }
1293
1294 iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
1295}
1296
1297static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint,
1298 struct gsi_trans *trans)
1299{
1300 struct page *page;
1301 u32 buffer_size;
1302 u32 offset;
1303 u32 len;
1304 int ret;
1305
1306 buffer_size = endpoint->config.rx.buffer_size;
1307 page = dev_alloc_pages(get_order(buffer_size));
1308 if (!page)
1309 return -ENOMEM;
1310
1311 /* Offset the buffer to make space for skb headroom */
1312 offset = NET_SKB_PAD;
1313 len = buffer_size - offset;
1314
1315 ret = gsi_trans_page_add(trans, page, len, offset);
1316 if (ret)
1317 put_page(page);
1318 else
1319 trans->data = page; /* transaction owns page now */
1320
1321 return ret;
1322}
1323
1324/**
1325 * ipa_endpoint_replenish() - Replenish endpoint receive buffers
1326 * @endpoint: Endpoint to be replenished
1327 *
1328 * The IPA hardware can hold a fixed number of receive buffers for an RX
1329 * endpoint, based on the number of entries in the underlying channel ring
1330 * buffer. If an endpoint's "backlog" is non-zero, it indicates how many
1331 * more receive buffers can be supplied to the hardware. Replenishing for
1332 * an endpoint can be disabled, in which case buffers are not queued to
1333 * the hardware.
1334 */
1335static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint)
1336{
1337 struct gsi_trans *trans;
1338
1339 if (!test_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags))
1340 return;
1341
1342 /* Skip it if it's already active */
1343 if (test_and_set_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags))
1344 return;
1345
1346 while ((trans = ipa_endpoint_trans_alloc(endpoint, 1))) {
1347 bool doorbell;
1348
1349 if (ipa_endpoint_replenish_one(endpoint, trans))
1350 goto try_again_later;
1351
1352
1353 /* Ring the doorbell if we've got a full batch */
1354 doorbell = !(++endpoint->replenish_count % IPA_REPLENISH_BATCH);
1355 gsi_trans_commit(trans, doorbell);
1356 }
1357
1358 clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1359
1360 return;
1361
1362try_again_later:
1363 gsi_trans_free(trans);
1364 clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1365
1366 /* Whenever a receive buffer transaction completes we'll try to
1367 * replenish again. It's unlikely, but if we fail to supply even
1368 * one buffer, nothing will trigger another replenish attempt.
1369 * If the hardware has no receive buffers queued, schedule work to
1370 * try replenishing again.
1371 */
1372 if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id))
1373 schedule_delayed_work(&endpoint->replenish_work,
1374 msecs_to_jiffies(1));
1375}
1376
1377static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint)
1378{
1379 set_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1380
1381 /* Start replenishing if hardware currently has no buffers */
1382 if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id))
1383 ipa_endpoint_replenish(endpoint);
1384}
1385
1386static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint)
1387{
1388 clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1389}
1390
1391static void ipa_endpoint_replenish_work(struct work_struct *work)
1392{
1393 struct delayed_work *dwork = to_delayed_work(work);
1394 struct ipa_endpoint *endpoint;
1395
1396 endpoint = container_of(dwork, struct ipa_endpoint, replenish_work);
1397
1398 ipa_endpoint_replenish(endpoint);
1399}
1400
1401static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint,
1402 void *data, u32 len, u32 extra)
1403{
1404 struct sk_buff *skb;
1405
1406 if (!endpoint->netdev)
1407 return;
1408
1409 skb = __dev_alloc_skb(len, GFP_ATOMIC);
1410 if (skb) {
1411 /* Copy the data into the socket buffer and receive it */
1412 skb_put(skb, len);
1413 memcpy(skb->data, data, len);
1414 skb->truesize += extra;
1415 }
1416
1417 ipa_modem_skb_rx(endpoint->netdev, skb);
1418}
1419
1420static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint,
1421 struct page *page, u32 len)
1422{
1423 u32 buffer_size = endpoint->config.rx.buffer_size;
1424 struct sk_buff *skb;
1425
1426 /* Nothing to do if there's no netdev */
1427 if (!endpoint->netdev)
1428 return false;
1429
1430 WARN_ON(len > SKB_WITH_OVERHEAD(buffer_size - NET_SKB_PAD));
1431
1432 skb = build_skb(page_address(page), buffer_size);
1433 if (skb) {
1434 /* Reserve the headroom and account for the data */
1435 skb_reserve(skb, NET_SKB_PAD);
1436 skb_put(skb, len);
1437 }
1438
1439 /* Receive the buffer (or record drop if unable to build it) */
1440 ipa_modem_skb_rx(endpoint->netdev, skb);
1441
1442 return skb != NULL;
1443}
1444
1445 /* The format of an IPA packet status structure is the same for several
1446 * status types (opcodes). Other types aren't currently supported.
1447 */
1448static bool ipa_status_format_packet(enum ipa_status_opcode opcode)
1449{
1450 switch (opcode) {
1451 case IPA_STATUS_OPCODE_PACKET:
1452 case IPA_STATUS_OPCODE_DROPPED_PACKET:
1453 case IPA_STATUS_OPCODE_SUSPENDED_PACKET:
1454 case IPA_STATUS_OPCODE_PACKET_2ND_PASS:
1455 return true;
1456 default:
1457 return false;
1458 }
1459}
1460
1461static bool
1462ipa_endpoint_status_skip(struct ipa_endpoint *endpoint, const void *data)
1463{
1464 struct ipa *ipa = endpoint->ipa;
1465 enum ipa_status_opcode opcode;
1466 u32 endpoint_id;
1467
1468 opcode = ipa_status_extract(ipa, data, STATUS_OPCODE);
1469 if (!ipa_status_format_packet(opcode))
1470 return true;
1471
1472 endpoint_id = ipa_status_extract(ipa, data, STATUS_DST_ENDPOINT);
1473 if (endpoint_id != endpoint->endpoint_id)
1474 return true;
1475
1476 return false; /* Don't skip this packet, process it */
1477}
1478
1479static bool
1480ipa_endpoint_status_tag_valid(struct ipa_endpoint *endpoint, const void *data)
1481{
1482 struct ipa_endpoint *command_endpoint;
1483 enum ipa_status_mask status_mask;
1484 struct ipa *ipa = endpoint->ipa;
1485 u32 endpoint_id;
1486
1487 status_mask = ipa_status_extract(ipa, data, STATUS_MASK);
1488 if (!status_mask)
1489 return false; /* No valid tag */
1490
1491 /* The status contains a valid tag. We know the packet was sent to
1492 * this endpoint (already verified by ipa_endpoint_status_skip()).
1493 * If the packet came from the AP->command TX endpoint we know
1494 * this packet was sent as part of the pipeline clear process.
1495 */
1496 endpoint_id = ipa_status_extract(ipa, data, STATUS_SRC_ENDPOINT);
1497 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
1498 if (endpoint_id == command_endpoint->endpoint_id) {
1499 complete(&ipa->completion);
1500 } else {
1501 dev_err(&ipa->pdev->dev,
1502 "unexpected tagged packet from endpoint %u\n",
1503 endpoint_id);
1504 }
1505
1506 return true;
1507}
1508
1509/* Return whether the status indicates the packet should be dropped */
1510static bool
1511ipa_endpoint_status_drop(struct ipa_endpoint *endpoint, const void *data)
1512{
1513 enum ipa_status_exception exception;
1514 struct ipa *ipa = endpoint->ipa;
1515 u32 rule;
1516
1517 /* If the status indicates a tagged transfer, we'll drop the packet */
1518 if (ipa_endpoint_status_tag_valid(endpoint, data))
1519 return true;
1520
1521 /* Deaggregation exceptions we drop; all other types we consume */
1522 exception = ipa_status_extract(ipa, data, STATUS_EXCEPTION);
1523 if (exception)
1524 return exception == IPA_STATUS_EXCEPTION_DEAGGR;
1525
1526 /* Drop the packet if it fails to match a routing rule; otherwise no */
1527 rule = ipa_status_extract(ipa, data, STATUS_ROUTER_RULE_INDEX);
1528
1529 return rule == IPA_STATUS_RULE_MISS;
1530}
1531
1532static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint,
1533 struct page *page, u32 total_len)
1534{
1535 u32 buffer_size = endpoint->config.rx.buffer_size;
1536 void *data = page_address(page) + NET_SKB_PAD;
1537 u32 unused = buffer_size - total_len;
1538 struct ipa *ipa = endpoint->ipa;
1539 u32 resid = total_len;
1540
1541 while (resid) {
1542 u32 length;
1543 u32 align;
1544 u32 len;
1545
1546 if (resid < IPA_STATUS_SIZE) {
1547 dev_err(&endpoint->ipa->pdev->dev,
1548 "short message (%u bytes < %zu byte status)\n",
1549 resid, IPA_STATUS_SIZE);
1550 break;
1551 }
1552
1553 /* Skip over status packets that lack packet data */
1554 length = ipa_status_extract(ipa, data, STATUS_LENGTH);
1555 if (!length || ipa_endpoint_status_skip(endpoint, data)) {
1556 data += IPA_STATUS_SIZE;
1557 resid -= IPA_STATUS_SIZE;
1558 continue;
1559 }
1560
1561 /* Compute the amount of buffer space consumed by the packet,
1562 * including the status. If the hardware is configured to
1563 * pad packet data to an aligned boundary, account for that.
1564 * And if checksum offload is enabled a trailer containing
1565 * computed checksum information will be appended.
1566 */
1567 align = endpoint->config.rx.pad_align ? : 1;
1568 len = IPA_STATUS_SIZE + ALIGN(length, align);
1569 if (endpoint->config.checksum)
1570 len += sizeof(struct rmnet_map_dl_csum_trailer);
1571
1572 if (!ipa_endpoint_status_drop(endpoint, data)) {
1573 void *data2;
1574 u32 extra;
1575
1576 /* Client receives only packet data (no status) */
1577 data2 = data + IPA_STATUS_SIZE;
1578
1579 /* Have the true size reflect the extra unused space in
1580 * the original receive buffer. Distribute the "cost"
1581 * proportionately across all aggregated packets in the
1582 * buffer.
1583 */
1584 extra = DIV_ROUND_CLOSEST(unused * len, total_len);
1585 ipa_endpoint_skb_copy(endpoint, data2, length, extra);
1586 }
1587
1588 /* Consume status and the full packet it describes */
1589 data += len;
1590 resid -= len;
1591 }
1592}
1593
1594void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint,
1595 struct gsi_trans *trans)
1596{
1597 struct page *page;
1598
1599 if (endpoint->toward_ipa)
1600 return;
1601
1602 if (trans->cancelled)
1603 goto done;
1604
1605 /* Parse or build a socket buffer using the actual received length */
1606 page = trans->data;
1607 if (endpoint->config.status_enable)
1608 ipa_endpoint_status_parse(endpoint, page, trans->len);
1609 else if (ipa_endpoint_skb_build(endpoint, page, trans->len))
1610 trans->data = NULL; /* Pages have been consumed */
1611done:
1612 ipa_endpoint_replenish(endpoint);
1613}
1614
1615void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint,
1616 struct gsi_trans *trans)
1617{
1618 if (endpoint->toward_ipa) {
1619 struct ipa *ipa = endpoint->ipa;
1620
1621 /* Nothing to do for command transactions */
1622 if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) {
1623 struct sk_buff *skb = trans->data;
1624
1625 if (skb)
1626 dev_kfree_skb_any(skb);
1627 }
1628 } else {
1629 struct page *page = trans->data;
1630
1631 if (page)
1632 put_page(page);
1633 }
1634}
1635
1636void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id)
1637{
1638 const struct reg *reg;
1639 u32 val;
1640
1641 reg = ipa_reg(ipa, ROUTE);
1642 /* ROUTE_DIS is 0 */
1643 val = reg_encode(reg, ROUTE_DEF_PIPE, endpoint_id);
1644 val |= reg_bit(reg, ROUTE_DEF_HDR_TABLE);
1645 /* ROUTE_DEF_HDR_OFST is 0 */
1646 val |= reg_encode(reg, ROUTE_FRAG_DEF_PIPE, endpoint_id);
1647 val |= reg_bit(reg, ROUTE_DEF_RETAIN_HDR);
1648
1649 iowrite32(val, ipa->reg_virt + reg_offset(reg));
1650}
1651
1652void ipa_endpoint_default_route_clear(struct ipa *ipa)
1653{
1654 ipa_endpoint_default_route_set(ipa, 0);
1655}
1656
1657/**
1658 * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active
1659 * @endpoint: Endpoint to be reset
1660 *
1661 * If aggregation is active on an RX endpoint when a reset is performed
1662 * on its underlying GSI channel, a special sequence of actions must be
1663 * taken to ensure the IPA pipeline is properly cleared.
1664 *
1665 * Return: 0 if successful, or a negative error code
1666 */
1667static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint)
1668{
1669 struct device *dev = &endpoint->ipa->pdev->dev;
1670 struct ipa *ipa = endpoint->ipa;
1671 struct gsi *gsi = &ipa->gsi;
1672 bool suspended = false;
1673 dma_addr_t addr;
1674 u32 retries;
1675 u32 len = 1;
1676 void *virt;
1677 int ret;
1678
1679 virt = kzalloc(len, GFP_KERNEL);
1680 if (!virt)
1681 return -ENOMEM;
1682
1683 addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE);
1684 if (dma_mapping_error(dev, addr)) {
1685 ret = -ENOMEM;
1686 goto out_kfree;
1687 }
1688
1689 /* Force close aggregation before issuing the reset */
1690 ipa_endpoint_force_close(endpoint);
1691
1692 /* Reset and reconfigure the channel with the doorbell engine
1693 * disabled. Then poll until we know aggregation is no longer
1694 * active. We'll re-enable the doorbell (if appropriate) when
1695 * we reset again below.
1696 */
1697 gsi_channel_reset(gsi, endpoint->channel_id, false);
1698
1699 /* Make sure the channel isn't suspended */
1700 suspended = ipa_endpoint_program_suspend(endpoint, false);
1701
1702 /* Start channel and do a 1 byte read */
1703 ret = gsi_channel_start(gsi, endpoint->channel_id);
1704 if (ret)
1705 goto out_suspend_again;
1706
1707 ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr);
1708 if (ret)
1709 goto err_endpoint_stop;
1710
1711 /* Wait for aggregation to be closed on the channel */
1712 retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX;
1713 do {
1714 if (!ipa_endpoint_aggr_active(endpoint))
1715 break;
1716 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1717 } while (retries--);
1718
1719 /* Check one last time */
1720 if (ipa_endpoint_aggr_active(endpoint))
1721 dev_err(dev, "endpoint %u still active during reset\n",
1722 endpoint->endpoint_id);
1723
1724 gsi_trans_read_byte_done(gsi, endpoint->channel_id);
1725
1726 ret = gsi_channel_stop(gsi, endpoint->channel_id);
1727 if (ret)
1728 goto out_suspend_again;
1729
1730 /* Finally, reset and reconfigure the channel again (re-enabling
1731 * the doorbell engine if appropriate). Sleep for 1 millisecond to
1732 * complete the channel reset sequence. Finish by suspending the
1733 * channel again (if necessary).
1734 */
1735 gsi_channel_reset(gsi, endpoint->channel_id, true);
1736
1737 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1738
1739 goto out_suspend_again;
1740
1741err_endpoint_stop:
1742 (void)gsi_channel_stop(gsi, endpoint->channel_id);
1743out_suspend_again:
1744 if (suspended)
1745 (void)ipa_endpoint_program_suspend(endpoint, true);
1746 dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE);
1747out_kfree:
1748 kfree(virt);
1749
1750 return ret;
1751}
1752
1753static void ipa_endpoint_reset(struct ipa_endpoint *endpoint)
1754{
1755 u32 channel_id = endpoint->channel_id;
1756 struct ipa *ipa = endpoint->ipa;
1757 bool special;
1758 int ret = 0;
1759
1760 /* On IPA v3.5.1, if an RX endpoint is reset while aggregation
1761 * is active, we need to handle things specially to recover.
1762 * All other cases just need to reset the underlying GSI channel.
1763 */
1764 special = ipa->version < IPA_VERSION_4_0 && !endpoint->toward_ipa &&
1765 endpoint->config.aggregation;
1766 if (special && ipa_endpoint_aggr_active(endpoint))
1767 ret = ipa_endpoint_reset_rx_aggr(endpoint);
1768 else
1769 gsi_channel_reset(&ipa->gsi, channel_id, true);
1770
1771 if (ret)
1772 dev_err(&ipa->pdev->dev,
1773 "error %d resetting channel %u for endpoint %u\n",
1774 ret, endpoint->channel_id, endpoint->endpoint_id);
1775}
1776
1777static void ipa_endpoint_program(struct ipa_endpoint *endpoint)
1778{
1779 if (endpoint->toward_ipa) {
1780 /* Newer versions of IPA use GSI channel flow control
1781 * instead of endpoint DELAY mode to prevent sending data.
1782 * Flow control is disabled for newly-allocated channels,
1783 * and we can assume flow control is not (ever) enabled
1784 * for AP TX channels.
1785 */
1786 if (endpoint->ipa->version < IPA_VERSION_4_2)
1787 ipa_endpoint_program_delay(endpoint, false);
1788 } else {
1789 /* Ensure suspend mode is off on all AP RX endpoints */
1790 (void)ipa_endpoint_program_suspend(endpoint, false);
1791 }
1792 ipa_endpoint_init_cfg(endpoint);
1793 ipa_endpoint_init_nat(endpoint);
1794 ipa_endpoint_init_hdr(endpoint);
1795 ipa_endpoint_init_hdr_ext(endpoint);
1796 ipa_endpoint_init_hdr_metadata_mask(endpoint);
1797 ipa_endpoint_init_mode(endpoint);
1798 ipa_endpoint_init_aggr(endpoint);
1799 if (!endpoint->toward_ipa) {
1800 if (endpoint->config.rx.holb_drop)
1801 ipa_endpoint_init_hol_block_enable(endpoint, 0);
1802 else
1803 ipa_endpoint_init_hol_block_disable(endpoint);
1804 }
1805 ipa_endpoint_init_deaggr(endpoint);
1806 ipa_endpoint_init_rsrc_grp(endpoint);
1807 ipa_endpoint_init_seq(endpoint);
1808 ipa_endpoint_status(endpoint);
1809}
1810
1811int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint)
1812{
1813 u32 endpoint_id = endpoint->endpoint_id;
1814 struct ipa *ipa = endpoint->ipa;
1815 struct gsi *gsi = &ipa->gsi;
1816 int ret;
1817
1818 ret = gsi_channel_start(gsi, endpoint->channel_id);
1819 if (ret) {
1820 dev_err(&ipa->pdev->dev,
1821 "error %d starting %cX channel %u for endpoint %u\n",
1822 ret, endpoint->toward_ipa ? 'T' : 'R',
1823 endpoint->channel_id, endpoint_id);
1824 return ret;
1825 }
1826
1827 if (!endpoint->toward_ipa) {
1828 ipa_interrupt_suspend_enable(ipa->interrupt, endpoint_id);
1829 ipa_endpoint_replenish_enable(endpoint);
1830 }
1831
1832 __set_bit(endpoint_id, ipa->enabled);
1833
1834 return 0;
1835}
1836
1837void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint)
1838{
1839 u32 endpoint_id = endpoint->endpoint_id;
1840 struct ipa *ipa = endpoint->ipa;
1841 struct gsi *gsi = &ipa->gsi;
1842 int ret;
1843
1844 if (!test_bit(endpoint_id, ipa->enabled))
1845 return;
1846
1847 __clear_bit(endpoint_id, endpoint->ipa->enabled);
1848
1849 if (!endpoint->toward_ipa) {
1850 ipa_endpoint_replenish_disable(endpoint);
1851 ipa_interrupt_suspend_disable(ipa->interrupt, endpoint_id);
1852 }
1853
1854 /* Note that if stop fails, the channel's state is not well-defined */
1855 ret = gsi_channel_stop(gsi, endpoint->channel_id);
1856 if (ret)
1857 dev_err(&ipa->pdev->dev,
1858 "error %d attempting to stop endpoint %u\n", ret,
1859 endpoint_id);
1860}
1861
1862void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint)
1863{
1864 struct device *dev = &endpoint->ipa->pdev->dev;
1865 struct gsi *gsi = &endpoint->ipa->gsi;
1866 int ret;
1867
1868 if (!test_bit(endpoint->endpoint_id, endpoint->ipa->enabled))
1869 return;
1870
1871 if (!endpoint->toward_ipa) {
1872 ipa_endpoint_replenish_disable(endpoint);
1873 (void)ipa_endpoint_program_suspend(endpoint, true);
1874 }
1875
1876 ret = gsi_channel_suspend(gsi, endpoint->channel_id);
1877 if (ret)
1878 dev_err(dev, "error %d suspending channel %u\n", ret,
1879 endpoint->channel_id);
1880}
1881
1882void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint)
1883{
1884 struct device *dev = &endpoint->ipa->pdev->dev;
1885 struct gsi *gsi = &endpoint->ipa->gsi;
1886 int ret;
1887
1888 if (!test_bit(endpoint->endpoint_id, endpoint->ipa->enabled))
1889 return;
1890
1891 if (!endpoint->toward_ipa)
1892 (void)ipa_endpoint_program_suspend(endpoint, false);
1893
1894 ret = gsi_channel_resume(gsi, endpoint->channel_id);
1895 if (ret)
1896 dev_err(dev, "error %d resuming channel %u\n", ret,
1897 endpoint->channel_id);
1898 else if (!endpoint->toward_ipa)
1899 ipa_endpoint_replenish_enable(endpoint);
1900}
1901
1902void ipa_endpoint_suspend(struct ipa *ipa)
1903{
1904 if (!ipa->setup_complete)
1905 return;
1906
1907 if (ipa->modem_netdev)
1908 ipa_modem_suspend(ipa->modem_netdev);
1909
1910 ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1911 ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1912}
1913
1914void ipa_endpoint_resume(struct ipa *ipa)
1915{
1916 if (!ipa->setup_complete)
1917 return;
1918
1919 ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1920 ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1921
1922 if (ipa->modem_netdev)
1923 ipa_modem_resume(ipa->modem_netdev);
1924}
1925
1926static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint)
1927{
1928 struct gsi *gsi = &endpoint->ipa->gsi;
1929 u32 channel_id = endpoint->channel_id;
1930
1931 /* Only AP endpoints get set up */
1932 if (endpoint->ee_id != GSI_EE_AP)
1933 return;
1934
1935 endpoint->skb_frag_max = gsi->channel[channel_id].trans_tre_max - 1;
1936 if (!endpoint->toward_ipa) {
1937 /* RX transactions require a single TRE, so the maximum
1938 * backlog is the same as the maximum outstanding TREs.
1939 */
1940 clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1941 clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1942 INIT_DELAYED_WORK(&endpoint->replenish_work,
1943 ipa_endpoint_replenish_work);
1944 }
1945
1946 ipa_endpoint_program(endpoint);
1947
1948 __set_bit(endpoint->endpoint_id, endpoint->ipa->set_up);
1949}
1950
1951static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint)
1952{
1953 __clear_bit(endpoint->endpoint_id, endpoint->ipa->set_up);
1954
1955 if (!endpoint->toward_ipa)
1956 cancel_delayed_work_sync(&endpoint->replenish_work);
1957
1958 ipa_endpoint_reset(endpoint);
1959}
1960
1961void ipa_endpoint_setup(struct ipa *ipa)
1962{
1963 u32 endpoint_id;
1964
1965 for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count)
1966 ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]);
1967}
1968
1969void ipa_endpoint_teardown(struct ipa *ipa)
1970{
1971 u32 endpoint_id;
1972
1973 for_each_set_bit(endpoint_id, ipa->set_up, ipa->endpoint_count)
1974 ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]);
1975}
1976
1977void ipa_endpoint_deconfig(struct ipa *ipa)
1978{
1979 ipa->available_count = 0;
1980 bitmap_free(ipa->available);
1981 ipa->available = NULL;
1982}
1983
1984int ipa_endpoint_config(struct ipa *ipa)
1985{
1986 struct device *dev = &ipa->pdev->dev;
1987 const struct reg *reg;
1988 u32 endpoint_id;
1989 u32 hw_limit;
1990 u32 tx_count;
1991 u32 rx_count;
1992 u32 rx_base;
1993 u32 limit;
1994 u32 val;
1995
1996 /* Prior to IPA v3.5, the FLAVOR_0 register was not supported.
1997 * Furthermore, the endpoints were not grouped such that TX
1998 * endpoint numbers started with 0 and RX endpoints had numbers
1999 * higher than all TX endpoints, so we can't do the simple
2000 * direction check used for newer hardware below.
2001 *
2002 * For hardware that doesn't support the FLAVOR_0 register,
2003 * just set the available mask to support any endpoint, and
2004 * assume the configuration is valid.
2005 */
2006 if (ipa->version < IPA_VERSION_3_5) {
2007 ipa->available = bitmap_zalloc(IPA_ENDPOINT_MAX, GFP_KERNEL);
2008 if (!ipa->available)
2009 return -ENOMEM;
2010 ipa->available_count = IPA_ENDPOINT_MAX;
2011
2012 bitmap_set(ipa->available, 0, IPA_ENDPOINT_MAX);
2013
2014 return 0;
2015 }
2016
2017 /* Find out about the endpoints supplied by the hardware, and ensure
2018 * the highest one doesn't exceed the number supported by software.
2019 */
2020 reg = ipa_reg(ipa, FLAVOR_0);
2021 val = ioread32(ipa->reg_virt + reg_offset(reg));
2022
2023 /* Our RX is an IPA producer; our TX is an IPA consumer. */
2024 tx_count = reg_decode(reg, MAX_CONS_PIPES, val);
2025 rx_count = reg_decode(reg, MAX_PROD_PIPES, val);
2026 rx_base = reg_decode(reg, PROD_LOWEST, val);
2027
2028 limit = rx_base + rx_count;
2029 if (limit > IPA_ENDPOINT_MAX) {
2030 dev_err(dev, "too many endpoints, %u > %u\n",
2031 limit, IPA_ENDPOINT_MAX);
2032 return -EINVAL;
2033 }
2034
2035 /* Until IPA v5.0, the max endpoint ID was 32 */
2036 hw_limit = ipa->version < IPA_VERSION_5_0 ? 32 : U8_MAX + 1;
2037 if (limit > hw_limit) {
2038 dev_err(dev, "unexpected endpoint count, %u > %u\n",
2039 limit, hw_limit);
2040 return -EINVAL;
2041 }
2042
2043 /* Allocate and initialize the available endpoint bitmap */
2044 ipa->available = bitmap_zalloc(limit, GFP_KERNEL);
2045 if (!ipa->available)
2046 return -ENOMEM;
2047 ipa->available_count = limit;
2048
2049 /* Mark all supported RX and TX endpoints as available */
2050 bitmap_set(ipa->available, 0, tx_count);
2051 bitmap_set(ipa->available, rx_base, rx_count);
2052
2053 for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) {
2054 struct ipa_endpoint *endpoint;
2055
2056 if (endpoint_id >= limit) {
2057 dev_err(dev, "invalid endpoint id, %u > %u\n",
2058 endpoint_id, limit - 1);
2059 goto err_free_bitmap;
2060 }
2061
2062 if (!test_bit(endpoint_id, ipa->available)) {
2063 dev_err(dev, "unavailable endpoint id %u\n",
2064 endpoint_id);
2065 goto err_free_bitmap;
2066 }
2067
2068 /* Make sure it's pointing in the right direction */
2069 endpoint = &ipa->endpoint[endpoint_id];
2070 if (endpoint->toward_ipa) {
2071 if (endpoint_id < tx_count)
2072 continue;
2073 } else if (endpoint_id >= rx_base) {
2074 continue;
2075 }
2076
2077 dev_err(dev, "endpoint id %u wrong direction\n", endpoint_id);
2078 goto err_free_bitmap;
2079 }
2080
2081 return 0;
2082
2083err_free_bitmap:
2084 ipa_endpoint_deconfig(ipa);
2085
2086 return -EINVAL;
2087}
2088
2089static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name,
2090 const struct ipa_gsi_endpoint_data *data)
2091{
2092 struct ipa_endpoint *endpoint;
2093
2094 endpoint = &ipa->endpoint[data->endpoint_id];
2095
2096 if (data->ee_id == GSI_EE_AP)
2097 ipa->channel_map[data->channel_id] = endpoint;
2098 ipa->name_map[name] = endpoint;
2099
2100 endpoint->ipa = ipa;
2101 endpoint->ee_id = data->ee_id;
2102 endpoint->channel_id = data->channel_id;
2103 endpoint->endpoint_id = data->endpoint_id;
2104 endpoint->toward_ipa = data->toward_ipa;
2105 endpoint->config = data->endpoint.config;
2106
2107 __set_bit(endpoint->endpoint_id, ipa->defined);
2108}
2109
2110static void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint)
2111{
2112 __clear_bit(endpoint->endpoint_id, endpoint->ipa->defined);
2113
2114 memset(endpoint, 0, sizeof(*endpoint));
2115}
2116
2117void ipa_endpoint_exit(struct ipa *ipa)
2118{
2119 u32 endpoint_id;
2120
2121 ipa->filtered = 0;
2122
2123 for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count)
2124 ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]);
2125
2126 bitmap_free(ipa->enabled);
2127 ipa->enabled = NULL;
2128 bitmap_free(ipa->set_up);
2129 ipa->set_up = NULL;
2130 bitmap_free(ipa->defined);
2131 ipa->defined = NULL;
2132
2133 memset(ipa->name_map, 0, sizeof(ipa->name_map));
2134 memset(ipa->channel_map, 0, sizeof(ipa->channel_map));
2135}
2136
2137/* Returns a bitmask of endpoints that support filtering, or 0 on error */
2138int ipa_endpoint_init(struct ipa *ipa, u32 count,
2139 const struct ipa_gsi_endpoint_data *data)
2140{
2141 enum ipa_endpoint_name name;
2142 u32 filtered;
2143
2144 BUILD_BUG_ON(!IPA_REPLENISH_BATCH);
2145
2146 /* Number of endpoints is one more than the maximum ID */
2147 ipa->endpoint_count = ipa_endpoint_max(ipa, count, data) + 1;
2148 if (!ipa->endpoint_count)
2149 return -EINVAL;
2150
2151 /* Initialize endpoint state bitmaps */
2152 ipa->defined = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL);
2153 if (!ipa->defined)
2154 return -ENOMEM;
2155
2156 ipa->set_up = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL);
2157 if (!ipa->set_up)
2158 goto err_free_defined;
2159
2160 ipa->enabled = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL);
2161 if (!ipa->enabled)
2162 goto err_free_set_up;
2163
2164 filtered = 0;
2165 for (name = 0; name < count; name++, data++) {
2166 if (ipa_gsi_endpoint_data_empty(data))
2167 continue; /* Skip over empty slots */
2168
2169 ipa_endpoint_init_one(ipa, name, data);
2170
2171 if (data->endpoint.filter_support)
2172 filtered |= BIT(data->endpoint_id);
2173 if (data->ee_id == GSI_EE_MODEM && data->toward_ipa)
2174 ipa->modem_tx_count++;
2175 }
2176
2177 /* Make sure the set of filtered endpoints is valid */
2178 if (!ipa_filtered_valid(ipa, filtered)) {
2179 ipa_endpoint_exit(ipa);
2180
2181 return -EINVAL;
2182 }
2183
2184 ipa->filtered = filtered;
2185
2186 return 0;
2187
2188err_free_set_up:
2189 bitmap_free(ipa->set_up);
2190 ipa->set_up = NULL;
2191err_free_defined:
2192 bitmap_free(ipa->defined);
2193 ipa->defined = NULL;
2194
2195 return -ENOMEM;
2196}
1// SPDX-License-Identifier: GPL-2.0
2
3/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4 * Copyright (C) 2019-2024 Linaro Ltd.
5 */
6
7#include <linux/bitfield.h>
8#include <linux/bits.h>
9#include <linux/device.h>
10#include <linux/dma-direction.h>
11#include <linux/if_rmnet.h>
12#include <linux/types.h>
13
14#include "gsi.h"
15#include "gsi_trans.h"
16#include "ipa.h"
17#include "ipa_cmd.h"
18#include "ipa_data.h"
19#include "ipa_endpoint.h"
20#include "ipa_gsi.h"
21#include "ipa_interrupt.h"
22#include "ipa_mem.h"
23#include "ipa_modem.h"
24#include "ipa_power.h"
25#include "ipa_reg.h"
26#include "ipa_table.h"
27#include "ipa_version.h"
28
29/* Hardware is told about receive buffers once a "batch" has been queued */
30#define IPA_REPLENISH_BATCH 16 /* Must be non-zero */
31
32/* The amount of RX buffer space consumed by standard skb overhead */
33#define IPA_RX_BUFFER_OVERHEAD (PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0))
34
35/* Where to find the QMAP mux_id for a packet within modem-supplied metadata */
36#define IPA_ENDPOINT_QMAP_METADATA_MASK 0x000000ff /* host byte order */
37
38#define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX 3
39
40/** enum ipa_status_opcode - IPA status opcode field hardware values */
41enum ipa_status_opcode { /* *Not* a bitmask */
42 IPA_STATUS_OPCODE_PACKET = 1,
43 IPA_STATUS_OPCODE_NEW_RULE_PACKET = 2,
44 IPA_STATUS_OPCODE_DROPPED_PACKET = 4,
45 IPA_STATUS_OPCODE_SUSPENDED_PACKET = 8,
46 IPA_STATUS_OPCODE_LOG = 16,
47 IPA_STATUS_OPCODE_DCMP = 32,
48 IPA_STATUS_OPCODE_PACKET_2ND_PASS = 64,
49};
50
51/** enum ipa_status_exception - IPA status exception field hardware values */
52enum ipa_status_exception { /* *Not* a bitmask */
53 /* 0 means no exception */
54 IPA_STATUS_EXCEPTION_DEAGGR = 1,
55 IPA_STATUS_EXCEPTION_IPTYPE = 4,
56 IPA_STATUS_EXCEPTION_PACKET_LENGTH = 8,
57 IPA_STATUS_EXCEPTION_FRAG_RULE_MISS = 16,
58 IPA_STATUS_EXCEPTION_SW_FILTER = 32,
59 IPA_STATUS_EXCEPTION_NAT = 64, /* IPv4 */
60 IPA_STATUS_EXCEPTION_IPV6_CONN_TRACK = 64, /* IPv6 */
61 IPA_STATUS_EXCEPTION_UC = 128,
62 IPA_STATUS_EXCEPTION_INVALID_ENDPOINT = 129,
63 IPA_STATUS_EXCEPTION_HEADER_INSERT = 136,
64 IPA_STATUS_EXCEPTION_CHEKCSUM = 229,
65};
66
67/** enum ipa_status_mask - IPA status mask field bitmask hardware values */
68enum ipa_status_mask {
69 IPA_STATUS_MASK_FRAG_PROCESS = BIT(0),
70 IPA_STATUS_MASK_FILT_PROCESS = BIT(1),
71 IPA_STATUS_MASK_NAT_PROCESS = BIT(2),
72 IPA_STATUS_MASK_ROUTE_PROCESS = BIT(3),
73 IPA_STATUS_MASK_TAG_VALID = BIT(4),
74 IPA_STATUS_MASK_FRAGMENT = BIT(5),
75 IPA_STATUS_MASK_FIRST_FRAGMENT = BIT(6),
76 IPA_STATUS_MASK_V4 = BIT(7),
77 IPA_STATUS_MASK_CKSUM_PROCESS = BIT(8),
78 IPA_STATUS_MASK_AGGR_PROCESS = BIT(9),
79 IPA_STATUS_MASK_DEST_EOT = BIT(10),
80 IPA_STATUS_MASK_DEAGGR_PROCESS = BIT(11),
81 IPA_STATUS_MASK_DEAGG_FIRST = BIT(12),
82 IPA_STATUS_MASK_SRC_EOT = BIT(13),
83 IPA_STATUS_MASK_PREV_EOT = BIT(14),
84 IPA_STATUS_MASK_BYTE_LIMIT = BIT(15),
85};
86
87/* Special IPA filter/router rule field value indicating "rule miss" */
88#define IPA_STATUS_RULE_MISS 0x3ff /* 10-bit filter/router rule fields */
89
90/** The IPA status nat_type field uses enum ipa_nat_type hardware values */
91
92/* enum ipa_status_field_id - IPA packet status structure field identifiers */
93enum ipa_status_field_id {
94 STATUS_OPCODE, /* enum ipa_status_opcode */
95 STATUS_EXCEPTION, /* enum ipa_status_exception */
96 STATUS_MASK, /* enum ipa_status_mask (bitmask) */
97 STATUS_LENGTH,
98 STATUS_SRC_ENDPOINT,
99 STATUS_DST_ENDPOINT,
100 STATUS_METADATA,
101 STATUS_FILTER_LOCAL, /* Boolean */
102 STATUS_FILTER_HASH, /* Boolean */
103 STATUS_FILTER_GLOBAL, /* Boolean */
104 STATUS_FILTER_RETAIN, /* Boolean */
105 STATUS_FILTER_RULE_INDEX,
106 STATUS_ROUTER_LOCAL, /* Boolean */
107 STATUS_ROUTER_HASH, /* Boolean */
108 STATUS_UCP, /* Boolean */
109 STATUS_ROUTER_TABLE,
110 STATUS_ROUTER_RULE_INDEX,
111 STATUS_NAT_HIT, /* Boolean */
112 STATUS_NAT_INDEX,
113 STATUS_NAT_TYPE, /* enum ipa_nat_type */
114 STATUS_TAG_LOW32, /* Low-order 32 bits of 48-bit tag */
115 STATUS_TAG_HIGH16, /* High-order 16 bits of 48-bit tag */
116 STATUS_SEQUENCE,
117 STATUS_TIME_OF_DAY,
118 STATUS_HEADER_LOCAL, /* Boolean */
119 STATUS_HEADER_OFFSET,
120 STATUS_FRAG_HIT, /* Boolean */
121 STATUS_FRAG_RULE_INDEX,
122};
123
124/* Size in bytes of an IPA packet status structure */
125#define IPA_STATUS_SIZE sizeof(__le32[8])
126
127/* IPA status structure decoder; looks up field values for a structure */
128static u32 ipa_status_extract(struct ipa *ipa, const void *data,
129 enum ipa_status_field_id field)
130{
131 enum ipa_version version = ipa->version;
132 const __le32 *word = data;
133
134 switch (field) {
135 case STATUS_OPCODE:
136 return le32_get_bits(word[0], GENMASK(7, 0));
137 case STATUS_EXCEPTION:
138 return le32_get_bits(word[0], GENMASK(15, 8));
139 case STATUS_MASK:
140 return le32_get_bits(word[0], GENMASK(31, 16));
141 case STATUS_LENGTH:
142 return le32_get_bits(word[1], GENMASK(15, 0));
143 case STATUS_SRC_ENDPOINT:
144 if (version < IPA_VERSION_5_0)
145 return le32_get_bits(word[1], GENMASK(20, 16));
146 return le32_get_bits(word[1], GENMASK(23, 16));
147 /* Status word 1, bits 21-23 are reserved (not IPA v5.0+) */
148 /* Status word 1, bits 24-26 are reserved (IPA v5.0+) */
149 case STATUS_DST_ENDPOINT:
150 if (version < IPA_VERSION_5_0)
151 return le32_get_bits(word[1], GENMASK(28, 24));
152 return le32_get_bits(word[7], GENMASK(23, 16));
153 /* Status word 1, bits 29-31 are reserved */
154 case STATUS_METADATA:
155 return le32_to_cpu(word[2]);
156 case STATUS_FILTER_LOCAL:
157 return le32_get_bits(word[3], GENMASK(0, 0));
158 case STATUS_FILTER_HASH:
159 return le32_get_bits(word[3], GENMASK(1, 1));
160 case STATUS_FILTER_GLOBAL:
161 return le32_get_bits(word[3], GENMASK(2, 2));
162 case STATUS_FILTER_RETAIN:
163 return le32_get_bits(word[3], GENMASK(3, 3));
164 case STATUS_FILTER_RULE_INDEX:
165 return le32_get_bits(word[3], GENMASK(13, 4));
166 /* ROUTER_TABLE is in word 3, bits 14-21 (IPA v5.0+) */
167 case STATUS_ROUTER_LOCAL:
168 if (version < IPA_VERSION_5_0)
169 return le32_get_bits(word[3], GENMASK(14, 14));
170 return le32_get_bits(word[1], GENMASK(27, 27));
171 case STATUS_ROUTER_HASH:
172 if (version < IPA_VERSION_5_0)
173 return le32_get_bits(word[3], GENMASK(15, 15));
174 return le32_get_bits(word[1], GENMASK(28, 28));
175 case STATUS_UCP:
176 if (version < IPA_VERSION_5_0)
177 return le32_get_bits(word[3], GENMASK(16, 16));
178 return le32_get_bits(word[7], GENMASK(31, 31));
179 case STATUS_ROUTER_TABLE:
180 if (version < IPA_VERSION_5_0)
181 return le32_get_bits(word[3], GENMASK(21, 17));
182 return le32_get_bits(word[3], GENMASK(21, 14));
183 case STATUS_ROUTER_RULE_INDEX:
184 return le32_get_bits(word[3], GENMASK(31, 22));
185 case STATUS_NAT_HIT:
186 return le32_get_bits(word[4], GENMASK(0, 0));
187 case STATUS_NAT_INDEX:
188 return le32_get_bits(word[4], GENMASK(13, 1));
189 case STATUS_NAT_TYPE:
190 return le32_get_bits(word[4], GENMASK(15, 14));
191 case STATUS_TAG_LOW32:
192 return le32_get_bits(word[4], GENMASK(31, 16)) |
193 (le32_get_bits(word[5], GENMASK(15, 0)) << 16);
194 case STATUS_TAG_HIGH16:
195 return le32_get_bits(word[5], GENMASK(31, 16));
196 case STATUS_SEQUENCE:
197 return le32_get_bits(word[6], GENMASK(7, 0));
198 case STATUS_TIME_OF_DAY:
199 return le32_get_bits(word[6], GENMASK(31, 8));
200 case STATUS_HEADER_LOCAL:
201 return le32_get_bits(word[7], GENMASK(0, 0));
202 case STATUS_HEADER_OFFSET:
203 return le32_get_bits(word[7], GENMASK(10, 1));
204 case STATUS_FRAG_HIT:
205 return le32_get_bits(word[7], GENMASK(11, 11));
206 case STATUS_FRAG_RULE_INDEX:
207 return le32_get_bits(word[7], GENMASK(15, 12));
208 /* Status word 7, bits 16-30 are reserved */
209 /* Status word 7, bit 31 is reserved (not IPA v5.0+) */
210 default:
211 WARN(true, "%s: bad field_id %u\n", __func__, field);
212 return 0;
213 }
214}
215
216/* Compute the aggregation size value to use for a given buffer size */
217static u32 ipa_aggr_size_kb(u32 rx_buffer_size, bool aggr_hard_limit)
218{
219 /* A hard aggregation limit will not be crossed; aggregation closes
220 * if saving incoming data would cross the hard byte limit boundary.
221 *
222 * With a soft limit, aggregation closes *after* the size boundary
223 * has been crossed. In that case the limit must leave enough space
224 * after that limit to receive a full MTU of data plus overhead.
225 */
226 if (!aggr_hard_limit)
227 rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
228
229 /* The byte limit is encoded as a number of kilobytes */
230
231 return rx_buffer_size / SZ_1K;
232}
233
234static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count,
235 const struct ipa_gsi_endpoint_data *all_data,
236 const struct ipa_gsi_endpoint_data *data)
237{
238 const struct ipa_gsi_endpoint_data *other_data;
239 enum ipa_endpoint_name other_name;
240 struct device *dev = ipa->dev;
241
242 if (ipa_gsi_endpoint_data_empty(data))
243 return true;
244
245 if (!data->toward_ipa) {
246 const struct ipa_endpoint_rx *rx_config;
247 const struct reg *reg;
248 u32 buffer_size;
249 u32 aggr_size;
250 u32 limit;
251
252 if (data->endpoint.filter_support) {
253 dev_err(dev, "filtering not supported for "
254 "RX endpoint %u\n",
255 data->endpoint_id);
256 return false;
257 }
258
259 /* Nothing more to check for non-AP RX */
260 if (data->ee_id != GSI_EE_AP)
261 return true;
262
263 rx_config = &data->endpoint.config.rx;
264
265 /* The buffer size must hold an MTU plus overhead */
266 buffer_size = rx_config->buffer_size;
267 limit = IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
268 if (buffer_size < limit) {
269 dev_err(dev, "RX buffer size too small for RX endpoint %u (%u < %u)\n",
270 data->endpoint_id, buffer_size, limit);
271 return false;
272 }
273
274 if (!data->endpoint.config.aggregation) {
275 bool result = true;
276
277 /* No aggregation; check for bogus aggregation data */
278 if (rx_config->aggr_time_limit) {
279 dev_err(dev,
280 "time limit with no aggregation for RX endpoint %u\n",
281 data->endpoint_id);
282 result = false;
283 }
284
285 if (rx_config->aggr_hard_limit) {
286 dev_err(dev, "hard limit with no aggregation for RX endpoint %u\n",
287 data->endpoint_id);
288 result = false;
289 }
290
291 if (rx_config->aggr_close_eof) {
292 dev_err(dev, "close EOF with no aggregation for RX endpoint %u\n",
293 data->endpoint_id);
294 result = false;
295 }
296
297 return result; /* Nothing more to check */
298 }
299
300 /* For an endpoint supporting receive aggregation, the byte
301 * limit defines the point at which aggregation closes. This
302 * check ensures the receive buffer size doesn't result in a
303 * limit that exceeds what's representable in the aggregation
304 * byte limit field.
305 */
306 aggr_size = ipa_aggr_size_kb(buffer_size - NET_SKB_PAD,
307 rx_config->aggr_hard_limit);
308 reg = ipa_reg(ipa, ENDP_INIT_AGGR);
309
310 limit = reg_field_max(reg, BYTE_LIMIT);
311 if (aggr_size > limit) {
312 dev_err(dev, "aggregated size too large for RX endpoint %u (%u KB > %u KB)\n",
313 data->endpoint_id, aggr_size, limit);
314
315 return false;
316 }
317
318 return true; /* Nothing more to check for RX */
319 }
320
321 /* Starting with IPA v4.5 sequencer replication is obsolete */
322 if (ipa->version >= IPA_VERSION_4_5) {
323 if (data->endpoint.config.tx.seq_rep_type) {
324 dev_err(dev, "no-zero seq_rep_type TX endpoint %u\n",
325 data->endpoint_id);
326 return false;
327 }
328 }
329
330 if (data->endpoint.config.status_enable) {
331 other_name = data->endpoint.config.tx.status_endpoint;
332 if (other_name >= count) {
333 dev_err(dev, "status endpoint name %u out of range "
334 "for endpoint %u\n",
335 other_name, data->endpoint_id);
336 return false;
337 }
338
339 /* Status endpoint must be defined... */
340 other_data = &all_data[other_name];
341 if (ipa_gsi_endpoint_data_empty(other_data)) {
342 dev_err(dev, "DMA endpoint name %u undefined "
343 "for endpoint %u\n",
344 other_name, data->endpoint_id);
345 return false;
346 }
347
348 /* ...and has to be an RX endpoint... */
349 if (other_data->toward_ipa) {
350 dev_err(dev,
351 "status endpoint for endpoint %u not RX\n",
352 data->endpoint_id);
353 return false;
354 }
355
356 /* ...and if it's to be an AP endpoint... */
357 if (other_data->ee_id == GSI_EE_AP) {
358 /* ...make sure it has status enabled. */
359 if (!other_data->endpoint.config.status_enable) {
360 dev_err(dev,
361 "status not enabled for endpoint %u\n",
362 other_data->endpoint_id);
363 return false;
364 }
365 }
366 }
367
368 if (data->endpoint.config.dma_mode) {
369 other_name = data->endpoint.config.dma_endpoint;
370 if (other_name >= count) {
371 dev_err(dev, "DMA endpoint name %u out of range "
372 "for endpoint %u\n",
373 other_name, data->endpoint_id);
374 return false;
375 }
376
377 other_data = &all_data[other_name];
378 if (ipa_gsi_endpoint_data_empty(other_data)) {
379 dev_err(dev, "DMA endpoint name %u undefined "
380 "for endpoint %u\n",
381 other_name, data->endpoint_id);
382 return false;
383 }
384 }
385
386 return true;
387}
388
389/* Validate endpoint configuration data. Return max defined endpoint ID */
390static u32 ipa_endpoint_max(struct ipa *ipa, u32 count,
391 const struct ipa_gsi_endpoint_data *data)
392{
393 const struct ipa_gsi_endpoint_data *dp = data;
394 struct device *dev = ipa->dev;
395 enum ipa_endpoint_name name;
396 u32 max;
397
398 if (count > IPA_ENDPOINT_COUNT) {
399 dev_err(dev, "too many endpoints specified (%u > %u)\n",
400 count, IPA_ENDPOINT_COUNT);
401 return 0;
402 }
403
404 /* Make sure needed endpoints have defined data */
405 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) {
406 dev_err(dev, "command TX endpoint not defined\n");
407 return 0;
408 }
409 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) {
410 dev_err(dev, "LAN RX endpoint not defined\n");
411 return 0;
412 }
413 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) {
414 dev_err(dev, "AP->modem TX endpoint not defined\n");
415 return 0;
416 }
417 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) {
418 dev_err(dev, "AP<-modem RX endpoint not defined\n");
419 return 0;
420 }
421
422 max = 0;
423 for (name = 0; name < count; name++, dp++) {
424 if (!ipa_endpoint_data_valid_one(ipa, count, data, dp))
425 return 0;
426 max = max_t(u32, max, dp->endpoint_id);
427 }
428
429 return max;
430}
431
432/* Allocate a transaction to use on a non-command endpoint */
433static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint,
434 u32 tre_count)
435{
436 struct gsi *gsi = &endpoint->ipa->gsi;
437 u32 channel_id = endpoint->channel_id;
438 enum dma_data_direction direction;
439
440 direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
441
442 return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction);
443}
444
445/* suspend_delay represents suspend for RX, delay for TX endpoints.
446 * Note that suspend is not supported starting with IPA v4.0, and
447 * delay mode should not be used starting with IPA v4.2.
448 */
449static bool
450ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay)
451{
452 struct ipa *ipa = endpoint->ipa;
453 const struct reg *reg;
454 u32 field_id;
455 u32 offset;
456 bool state;
457 u32 mask;
458 u32 val;
459
460 if (endpoint->toward_ipa)
461 WARN_ON(ipa->version >= IPA_VERSION_4_2);
462 else
463 WARN_ON(ipa->version >= IPA_VERSION_4_0);
464
465 reg = ipa_reg(ipa, ENDP_INIT_CTRL);
466 offset = reg_n_offset(reg, endpoint->endpoint_id);
467 val = ioread32(ipa->reg_virt + offset);
468
469 field_id = endpoint->toward_ipa ? ENDP_DELAY : ENDP_SUSPEND;
470 mask = reg_bit(reg, field_id);
471
472 state = !!(val & mask);
473
474 /* Don't bother if it's already in the requested state */
475 if (suspend_delay != state) {
476 val ^= mask;
477 iowrite32(val, ipa->reg_virt + offset);
478 }
479
480 return state;
481}
482
483/* We don't care what the previous state was for delay mode */
484static void
485ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable)
486{
487 /* Delay mode should not be used for IPA v4.2+ */
488 WARN_ON(endpoint->ipa->version >= IPA_VERSION_4_2);
489 WARN_ON(!endpoint->toward_ipa);
490
491 (void)ipa_endpoint_init_ctrl(endpoint, enable);
492}
493
494static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint)
495{
496 u32 endpoint_id = endpoint->endpoint_id;
497 struct ipa *ipa = endpoint->ipa;
498 u32 unit = endpoint_id / 32;
499 const struct reg *reg;
500 u32 val;
501
502 WARN_ON(!test_bit(endpoint_id, ipa->available));
503
504 reg = ipa_reg(ipa, STATE_AGGR_ACTIVE);
505 val = ioread32(ipa->reg_virt + reg_n_offset(reg, unit));
506
507 return !!(val & BIT(endpoint_id % 32));
508}
509
510static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint)
511{
512 u32 endpoint_id = endpoint->endpoint_id;
513 u32 mask = BIT(endpoint_id % 32);
514 struct ipa *ipa = endpoint->ipa;
515 u32 unit = endpoint_id / 32;
516 const struct reg *reg;
517
518 WARN_ON(!test_bit(endpoint_id, ipa->available));
519
520 reg = ipa_reg(ipa, AGGR_FORCE_CLOSE);
521 iowrite32(mask, ipa->reg_virt + reg_n_offset(reg, unit));
522}
523
524/**
525 * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt
526 * @endpoint: Endpoint on which to emulate a suspend
527 *
528 * Emulate suspend IPA interrupt to unsuspend an endpoint suspended
529 * with an open aggregation frame. This is to work around a hardware
530 * issue in IPA version 3.5.1 where the suspend interrupt will not be
531 * generated when it should be.
532 */
533static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint)
534{
535 struct ipa *ipa = endpoint->ipa;
536
537 if (!endpoint->config.aggregation)
538 return;
539
540 /* Nothing to do if the endpoint doesn't have aggregation open */
541 if (!ipa_endpoint_aggr_active(endpoint))
542 return;
543
544 /* Force close aggregation */
545 ipa_endpoint_force_close(endpoint);
546
547 ipa_interrupt_simulate_suspend(ipa->interrupt);
548}
549
550/* Returns previous suspend state (true means suspend was enabled) */
551static bool
552ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable)
553{
554 bool suspended;
555
556 if (endpoint->ipa->version >= IPA_VERSION_4_0)
557 return enable; /* For IPA v4.0+, no change made */
558
559 WARN_ON(endpoint->toward_ipa);
560
561 suspended = ipa_endpoint_init_ctrl(endpoint, enable);
562
563 /* A client suspended with an open aggregation frame will not
564 * generate a SUSPEND IPA interrupt. If enabling suspend, have
565 * ipa_endpoint_suspend_aggr() handle this.
566 */
567 if (enable && !suspended)
568 ipa_endpoint_suspend_aggr(endpoint);
569
570 return suspended;
571}
572
573/* Put all modem RX endpoints into suspend mode, and stop transmission
574 * on all modem TX endpoints. Prior to IPA v4.2, endpoint DELAY mode is
575 * used for TX endpoints; starting with IPA v4.2 we use GSI channel flow
576 * control instead.
577 */
578void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable)
579{
580 u32 endpoint_id = 0;
581
582 while (endpoint_id < ipa->endpoint_count) {
583 struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id++];
584
585 if (endpoint->ee_id != GSI_EE_MODEM)
586 continue;
587
588 if (!endpoint->toward_ipa)
589 (void)ipa_endpoint_program_suspend(endpoint, enable);
590 else if (ipa->version < IPA_VERSION_4_2)
591 ipa_endpoint_program_delay(endpoint, enable);
592 else
593 gsi_modem_channel_flow_control(&ipa->gsi,
594 endpoint->channel_id,
595 enable);
596 }
597}
598
599/* Reset all modem endpoints to use the default exception endpoint */
600int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa)
601{
602 struct gsi_trans *trans;
603 u32 endpoint_id;
604 u32 count;
605
606 /* We need one command per modem TX endpoint, plus the commands
607 * that clear the pipeline.
608 */
609 count = ipa->modem_tx_count + ipa_cmd_pipeline_clear_count();
610 trans = ipa_cmd_trans_alloc(ipa, count);
611 if (!trans) {
612 dev_err(ipa->dev,
613 "no transaction to reset modem exception endpoints\n");
614 return -EBUSY;
615 }
616
617 for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) {
618 struct ipa_endpoint *endpoint;
619 const struct reg *reg;
620 u32 offset;
621
622 /* We only reset modem TX endpoints */
623 endpoint = &ipa->endpoint[endpoint_id];
624 if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa))
625 continue;
626
627 reg = ipa_reg(ipa, ENDP_STATUS);
628 offset = reg_n_offset(reg, endpoint_id);
629
630 /* Value written is 0, and all bits are updated. That
631 * means status is disabled on the endpoint, and as a
632 * result all other fields in the register are ignored.
633 */
634 ipa_cmd_register_write_add(trans, offset, 0, ~0, false);
635 }
636
637 ipa_cmd_pipeline_clear_add(trans);
638
639 gsi_trans_commit_wait(trans);
640
641 ipa_cmd_pipeline_clear_wait(ipa);
642
643 return 0;
644}
645
646static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint)
647{
648 u32 endpoint_id = endpoint->endpoint_id;
649 struct ipa *ipa = endpoint->ipa;
650 enum ipa_cs_offload_en enabled;
651 const struct reg *reg;
652 u32 val = 0;
653
654 reg = ipa_reg(ipa, ENDP_INIT_CFG);
655 /* FRAG_OFFLOAD_EN is 0 */
656 if (endpoint->config.checksum) {
657 enum ipa_version version = ipa->version;
658
659 if (endpoint->toward_ipa) {
660 u32 off;
661
662 /* Checksum header offset is in 4-byte units */
663 off = sizeof(struct rmnet_map_header) / sizeof(u32);
664 val |= reg_encode(reg, CS_METADATA_HDR_OFFSET, off);
665
666 enabled = version < IPA_VERSION_4_5
667 ? IPA_CS_OFFLOAD_UL
668 : IPA_CS_OFFLOAD_INLINE;
669 } else {
670 enabled = version < IPA_VERSION_4_5
671 ? IPA_CS_OFFLOAD_DL
672 : IPA_CS_OFFLOAD_INLINE;
673 }
674 } else {
675 enabled = IPA_CS_OFFLOAD_NONE;
676 }
677 val |= reg_encode(reg, CS_OFFLOAD_EN, enabled);
678 /* CS_GEN_QMB_MASTER_SEL is 0 */
679
680 iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
681}
682
683static void ipa_endpoint_init_nat(struct ipa_endpoint *endpoint)
684{
685 u32 endpoint_id = endpoint->endpoint_id;
686 struct ipa *ipa = endpoint->ipa;
687 const struct reg *reg;
688 u32 val;
689
690 if (!endpoint->toward_ipa)
691 return;
692
693 reg = ipa_reg(ipa, ENDP_INIT_NAT);
694 val = reg_encode(reg, NAT_EN, IPA_NAT_TYPE_BYPASS);
695
696 iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
697}
698
699static u32
700ipa_qmap_header_size(enum ipa_version version, struct ipa_endpoint *endpoint)
701{
702 u32 header_size = sizeof(struct rmnet_map_header);
703
704 /* Without checksum offload, we just have the MAP header */
705 if (!endpoint->config.checksum)
706 return header_size;
707
708 if (version < IPA_VERSION_4_5) {
709 /* Checksum header inserted for AP TX endpoints only */
710 if (endpoint->toward_ipa)
711 header_size += sizeof(struct rmnet_map_ul_csum_header);
712 } else {
713 /* Checksum header is used in both directions */
714 header_size += sizeof(struct rmnet_map_v5_csum_header);
715 }
716
717 return header_size;
718}
719
720/* Encoded value for ENDP_INIT_HDR register HDR_LEN* field(s) */
721static u32 ipa_header_size_encode(enum ipa_version version,
722 const struct reg *reg, u32 header_size)
723{
724 u32 field_max = reg_field_max(reg, HDR_LEN);
725 u32 val;
726
727 /* We know field_max can be used as a mask (2^n - 1) */
728 val = reg_encode(reg, HDR_LEN, header_size & field_max);
729 if (version < IPA_VERSION_4_5) {
730 WARN_ON(header_size > field_max);
731 return val;
732 }
733
734 /* IPA v4.5 adds a few more most-significant bits */
735 header_size >>= hweight32(field_max);
736 WARN_ON(header_size > reg_field_max(reg, HDR_LEN_MSB));
737 val |= reg_encode(reg, HDR_LEN_MSB, header_size);
738
739 return val;
740}
741
742/* Encoded value for ENDP_INIT_HDR register OFST_METADATA* field(s) */
743static u32 ipa_metadata_offset_encode(enum ipa_version version,
744 const struct reg *reg, u32 offset)
745{
746 u32 field_max = reg_field_max(reg, HDR_OFST_METADATA);
747 u32 val;
748
749 /* We know field_max can be used as a mask (2^n - 1) */
750 val = reg_encode(reg, HDR_OFST_METADATA, offset);
751 if (version < IPA_VERSION_4_5) {
752 WARN_ON(offset > field_max);
753 return val;
754 }
755
756 /* IPA v4.5 adds a few more most-significant bits */
757 offset >>= hweight32(field_max);
758 WARN_ON(offset > reg_field_max(reg, HDR_OFST_METADATA_MSB));
759 val |= reg_encode(reg, HDR_OFST_METADATA_MSB, offset);
760
761 return val;
762}
763
764/**
765 * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register
766 * @endpoint: Endpoint pointer
767 *
768 * We program QMAP endpoints so each packet received is preceded by a QMAP
769 * header structure. The QMAP header contains a 1-byte mux_id and 2-byte
770 * packet size field, and we have the IPA hardware populate both for each
771 * received packet. The header is configured (in the HDR_EXT register)
772 * to use big endian format.
773 *
774 * The packet size is written into the QMAP header's pkt_len field. That
775 * location is defined here using the HDR_OFST_PKT_SIZE field.
776 *
777 * The mux_id comes from a 4-byte metadata value supplied with each packet
778 * by the modem. It is *not* a QMAP header, but it does contain the mux_id
779 * value that we want, in its low-order byte. A bitmask defined in the
780 * endpoint's METADATA_MASK register defines which byte within the modem
781 * metadata contains the mux_id. And the OFST_METADATA field programmed
782 * here indicates where the extracted byte should be placed within the QMAP
783 * header.
784 */
785static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint)
786{
787 u32 endpoint_id = endpoint->endpoint_id;
788 struct ipa *ipa = endpoint->ipa;
789 const struct reg *reg;
790 u32 val = 0;
791
792 reg = ipa_reg(ipa, ENDP_INIT_HDR);
793 if (endpoint->config.qmap) {
794 enum ipa_version version = ipa->version;
795 size_t header_size;
796
797 header_size = ipa_qmap_header_size(version, endpoint);
798 val = ipa_header_size_encode(version, reg, header_size);
799
800 /* Define how to fill fields in a received QMAP header */
801 if (!endpoint->toward_ipa) {
802 u32 off; /* Field offset within header */
803
804 /* Where IPA will write the metadata value */
805 off = offsetof(struct rmnet_map_header, mux_id);
806 val |= ipa_metadata_offset_encode(version, reg, off);
807
808 /* Where IPA will write the length */
809 off = offsetof(struct rmnet_map_header, pkt_len);
810 /* Upper bits are stored in HDR_EXT with IPA v4.5 */
811 if (version >= IPA_VERSION_4_5)
812 off &= reg_field_max(reg, HDR_OFST_PKT_SIZE);
813
814 val |= reg_bit(reg, HDR_OFST_PKT_SIZE_VALID);
815 val |= reg_encode(reg, HDR_OFST_PKT_SIZE, off);
816 }
817 /* For QMAP TX, metadata offset is 0 (modem assumes this) */
818 val |= reg_bit(reg, HDR_OFST_METADATA_VALID);
819
820 /* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */
821 /* HDR_A5_MUX is 0 */
822 /* HDR_LEN_INC_DEAGG_HDR is 0 */
823 /* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */
824 }
825
826 iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
827}
828
829static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint)
830{
831 u32 pad_align = endpoint->config.rx.pad_align;
832 u32 endpoint_id = endpoint->endpoint_id;
833 struct ipa *ipa = endpoint->ipa;
834 const struct reg *reg;
835 u32 val = 0;
836
837 reg = ipa_reg(ipa, ENDP_INIT_HDR_EXT);
838 if (endpoint->config.qmap) {
839 /* We have a header, so we must specify its endianness */
840 val |= reg_bit(reg, HDR_ENDIANNESS); /* big endian */
841
842 /* A QMAP header contains a 6 bit pad field at offset 0.
843 * The RMNet driver assumes this field is meaningful in
844 * packets it receives, and assumes the header's payload
845 * length includes that padding. The RMNet driver does
846 * *not* pad packets it sends, however, so the pad field
847 * (although 0) should be ignored.
848 */
849 if (!endpoint->toward_ipa) {
850 val |= reg_bit(reg, HDR_TOTAL_LEN_OR_PAD_VALID);
851 /* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */
852 val |= reg_bit(reg, HDR_PAYLOAD_LEN_INC_PADDING);
853 /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */
854 }
855 }
856
857 /* HDR_PAYLOAD_LEN_INC_PADDING is 0 */
858 if (!endpoint->toward_ipa)
859 val |= reg_encode(reg, HDR_PAD_TO_ALIGNMENT, pad_align);
860
861 /* IPA v4.5 adds some most-significant bits to a few fields,
862 * two of which are defined in the HDR (not HDR_EXT) register.
863 */
864 if (ipa->version >= IPA_VERSION_4_5) {
865 /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */
866 if (endpoint->config.qmap && !endpoint->toward_ipa) {
867 u32 mask = reg_field_max(reg, HDR_OFST_PKT_SIZE);
868 u32 off; /* Field offset within header */
869
870 off = offsetof(struct rmnet_map_header, pkt_len);
871 /* Low bits are in the ENDP_INIT_HDR register */
872 off >>= hweight32(mask);
873 val |= reg_encode(reg, HDR_OFST_PKT_SIZE_MSB, off);
874 /* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */
875 }
876 }
877
878 iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
879}
880
881static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint)
882{
883 u32 endpoint_id = endpoint->endpoint_id;
884 struct ipa *ipa = endpoint->ipa;
885 const struct reg *reg;
886 u32 val = 0;
887 u32 offset;
888
889 if (endpoint->toward_ipa)
890 return; /* Register not valid for TX endpoints */
891
892 reg = ipa_reg(ipa, ENDP_INIT_HDR_METADATA_MASK);
893 offset = reg_n_offset(reg, endpoint_id);
894
895 /* Note that HDR_ENDIANNESS indicates big endian header fields */
896 if (endpoint->config.qmap)
897 val = (__force u32)cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK);
898
899 iowrite32(val, ipa->reg_virt + offset);
900}
901
902static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint)
903{
904 struct ipa *ipa = endpoint->ipa;
905 const struct reg *reg;
906 u32 offset;
907 u32 val;
908
909 if (!endpoint->toward_ipa)
910 return; /* Register not valid for RX endpoints */
911
912 reg = ipa_reg(ipa, ENDP_INIT_MODE);
913 if (endpoint->config.dma_mode) {
914 enum ipa_endpoint_name name = endpoint->config.dma_endpoint;
915 u32 dma_endpoint_id = ipa->name_map[name]->endpoint_id;
916
917 val = reg_encode(reg, ENDP_MODE, IPA_DMA);
918 val |= reg_encode(reg, DEST_PIPE_INDEX, dma_endpoint_id);
919 } else {
920 val = reg_encode(reg, ENDP_MODE, IPA_BASIC);
921 }
922 /* All other bits unspecified (and 0) */
923
924 offset = reg_n_offset(reg, endpoint->endpoint_id);
925 iowrite32(val, ipa->reg_virt + offset);
926}
927
928/* For IPA v4.5+, times are expressed using Qtime. A time is represented
929 * at one of several available granularities, which are configured in
930 * ipa_qtime_config(). Three (or, starting with IPA v5.0, four) pulse
931 * generators are set up with different "tick" periods. A Qtime value
932 * encodes a tick count along with an indication of a pulse generator
933 * (which has a fixed tick period). Two pulse generators are always
934 * available to the AP; a third is available starting with IPA v5.0.
935 * This function determines which pulse generator most accurately
936 * represents the time period provided, and returns the tick count to
937 * use to represent that time.
938 */
939static u32
940ipa_qtime_val(struct ipa *ipa, u32 microseconds, u32 max, u32 *select)
941{
942 u32 which = 0;
943 u32 ticks;
944
945 /* Pulse generator 0 has 100 microsecond granularity */
946 ticks = DIV_ROUND_CLOSEST(microseconds, 100);
947 if (ticks <= max)
948 goto out;
949
950 /* Pulse generator 1 has millisecond granularity */
951 which = 1;
952 ticks = DIV_ROUND_CLOSEST(microseconds, 1000);
953 if (ticks <= max)
954 goto out;
955
956 if (ipa->version >= IPA_VERSION_5_0) {
957 /* Pulse generator 2 has 10 millisecond granularity */
958 which = 2;
959 ticks = DIV_ROUND_CLOSEST(microseconds, 100);
960 }
961 WARN_ON(ticks > max);
962out:
963 *select = which;
964
965 return ticks;
966}
967
968/* Encode the aggregation timer limit (microseconds) based on IPA version */
969static u32 aggr_time_limit_encode(struct ipa *ipa, const struct reg *reg,
970 u32 microseconds)
971{
972 u32 ticks;
973 u32 max;
974
975 if (!microseconds)
976 return 0; /* Nothing to compute if time limit is 0 */
977
978 max = reg_field_max(reg, TIME_LIMIT);
979 if (ipa->version >= IPA_VERSION_4_5) {
980 u32 select;
981
982 ticks = ipa_qtime_val(ipa, microseconds, max, &select);
983
984 return reg_encode(reg, AGGR_GRAN_SEL, select) |
985 reg_encode(reg, TIME_LIMIT, ticks);
986 }
987
988 /* We program aggregation granularity in ipa_hardware_config() */
989 ticks = DIV_ROUND_CLOSEST(microseconds, IPA_AGGR_GRANULARITY);
990 WARN(ticks > max, "aggr_time_limit too large (%u > %u usec)\n",
991 microseconds, max * IPA_AGGR_GRANULARITY);
992
993 return reg_encode(reg, TIME_LIMIT, ticks);
994}
995
996static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint)
997{
998 u32 endpoint_id = endpoint->endpoint_id;
999 struct ipa *ipa = endpoint->ipa;
1000 const struct reg *reg;
1001 u32 val = 0;
1002
1003 reg = ipa_reg(ipa, ENDP_INIT_AGGR);
1004 if (endpoint->config.aggregation) {
1005 if (!endpoint->toward_ipa) {
1006 const struct ipa_endpoint_rx *rx_config;
1007 u32 buffer_size;
1008 u32 limit;
1009
1010 rx_config = &endpoint->config.rx;
1011 val |= reg_encode(reg, AGGR_EN, IPA_ENABLE_AGGR);
1012 val |= reg_encode(reg, AGGR_TYPE, IPA_GENERIC);
1013
1014 buffer_size = rx_config->buffer_size;
1015 limit = ipa_aggr_size_kb(buffer_size - NET_SKB_PAD,
1016 rx_config->aggr_hard_limit);
1017 val |= reg_encode(reg, BYTE_LIMIT, limit);
1018
1019 limit = rx_config->aggr_time_limit;
1020 val |= aggr_time_limit_encode(ipa, reg, limit);
1021
1022 /* AGGR_PKT_LIMIT is 0 (unlimited) */
1023
1024 if (rx_config->aggr_close_eof)
1025 val |= reg_bit(reg, SW_EOF_ACTIVE);
1026 } else {
1027 val |= reg_encode(reg, AGGR_EN, IPA_ENABLE_DEAGGR);
1028 val |= reg_encode(reg, AGGR_TYPE, IPA_QCMAP);
1029 /* other fields ignored */
1030 }
1031 /* AGGR_FORCE_CLOSE is 0 */
1032 /* AGGR_GRAN_SEL is 0 for IPA v4.5 */
1033 } else {
1034 val |= reg_encode(reg, AGGR_EN, IPA_BYPASS_AGGR);
1035 /* other fields ignored */
1036 }
1037
1038 iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
1039}
1040
1041/* The head-of-line blocking timer is defined as a tick count. For
1042 * IPA version 4.5 the tick count is based on the Qtimer, which is
1043 * derived from the 19.2 MHz SoC XO clock. For older IPA versions
1044 * each tick represents 128 cycles of the IPA core clock.
1045 *
1046 * Return the encoded value representing the timeout period provided
1047 * that should be written to the ENDP_INIT_HOL_BLOCK_TIMER register.
1048 */
1049static u32 hol_block_timer_encode(struct ipa *ipa, const struct reg *reg,
1050 u32 microseconds)
1051{
1052 u32 width;
1053 u32 scale;
1054 u64 ticks;
1055 u64 rate;
1056 u32 high;
1057 u32 val;
1058
1059 if (!microseconds)
1060 return 0; /* Nothing to compute if timer period is 0 */
1061
1062 if (ipa->version >= IPA_VERSION_4_5) {
1063 u32 max = reg_field_max(reg, TIMER_LIMIT);
1064 u32 select;
1065 u32 ticks;
1066
1067 ticks = ipa_qtime_val(ipa, microseconds, max, &select);
1068
1069 return reg_encode(reg, TIMER_GRAN_SEL, 1) |
1070 reg_encode(reg, TIMER_LIMIT, ticks);
1071 }
1072
1073 /* Use 64 bit arithmetic to avoid overflow */
1074 rate = ipa_core_clock_rate(ipa);
1075 ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC);
1076
1077 /* We still need the result to fit into the field */
1078 WARN_ON(ticks > reg_field_max(reg, TIMER_BASE_VALUE));
1079
1080 /* IPA v3.5.1 through v4.1 just record the tick count */
1081 if (ipa->version < IPA_VERSION_4_2)
1082 return reg_encode(reg, TIMER_BASE_VALUE, (u32)ticks);
1083
1084 /* For IPA v4.2, the tick count is represented by base and
1085 * scale fields within the 32-bit timer register, where:
1086 * ticks = base << scale;
1087 * The best precision is achieved when the base value is as
1088 * large as possible. Find the highest set bit in the tick
1089 * count, and extract the number of bits in the base field
1090 * such that high bit is included.
1091 */
1092 high = fls(ticks); /* 1..32 (or warning above) */
1093 width = hweight32(reg_fmask(reg, TIMER_BASE_VALUE));
1094 scale = high > width ? high - width : 0;
1095 if (scale) {
1096 /* If we're scaling, round up to get a closer result */
1097 ticks += 1 << (scale - 1);
1098 /* High bit was set, so rounding might have affected it */
1099 if (fls(ticks) != high)
1100 scale++;
1101 }
1102
1103 val = reg_encode(reg, TIMER_SCALE, scale);
1104 val |= reg_encode(reg, TIMER_BASE_VALUE, (u32)ticks >> scale);
1105
1106 return val;
1107}
1108
1109/* If microseconds is 0, timeout is immediate */
1110static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint,
1111 u32 microseconds)
1112{
1113 u32 endpoint_id = endpoint->endpoint_id;
1114 struct ipa *ipa = endpoint->ipa;
1115 const struct reg *reg;
1116 u32 val;
1117
1118 /* This should only be changed when HOL_BLOCK_EN is disabled */
1119 reg = ipa_reg(ipa, ENDP_INIT_HOL_BLOCK_TIMER);
1120 val = hol_block_timer_encode(ipa, reg, microseconds);
1121
1122 iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
1123}
1124
1125static void
1126ipa_endpoint_init_hol_block_en(struct ipa_endpoint *endpoint, bool enable)
1127{
1128 u32 endpoint_id = endpoint->endpoint_id;
1129 struct ipa *ipa = endpoint->ipa;
1130 const struct reg *reg;
1131 u32 offset;
1132 u32 val;
1133
1134 reg = ipa_reg(ipa, ENDP_INIT_HOL_BLOCK_EN);
1135 offset = reg_n_offset(reg, endpoint_id);
1136 val = enable ? reg_bit(reg, HOL_BLOCK_EN) : 0;
1137
1138 iowrite32(val, ipa->reg_virt + offset);
1139
1140 /* When enabling, the register must be written twice for IPA v4.5+ */
1141 if (enable && ipa->version >= IPA_VERSION_4_5)
1142 iowrite32(val, ipa->reg_virt + offset);
1143}
1144
1145/* Assumes HOL_BLOCK is in disabled state */
1146static void ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint,
1147 u32 microseconds)
1148{
1149 ipa_endpoint_init_hol_block_timer(endpoint, microseconds);
1150 ipa_endpoint_init_hol_block_en(endpoint, true);
1151}
1152
1153static void ipa_endpoint_init_hol_block_disable(struct ipa_endpoint *endpoint)
1154{
1155 ipa_endpoint_init_hol_block_en(endpoint, false);
1156}
1157
1158void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa)
1159{
1160 u32 endpoint_id = 0;
1161
1162 while (endpoint_id < ipa->endpoint_count) {
1163 struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id++];
1164
1165 if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM)
1166 continue;
1167
1168 ipa_endpoint_init_hol_block_disable(endpoint);
1169 ipa_endpoint_init_hol_block_enable(endpoint, 0);
1170 }
1171}
1172
1173static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint)
1174{
1175 u32 endpoint_id = endpoint->endpoint_id;
1176 struct ipa *ipa = endpoint->ipa;
1177 const struct reg *reg;
1178 u32 val = 0;
1179
1180 if (!endpoint->toward_ipa)
1181 return; /* Register not valid for RX endpoints */
1182
1183 reg = ipa_reg(ipa, ENDP_INIT_DEAGGR);
1184 /* DEAGGR_HDR_LEN is 0 */
1185 /* PACKET_OFFSET_VALID is 0 */
1186 /* PACKET_OFFSET_LOCATION is ignored (not valid) */
1187 /* MAX_PACKET_LEN is 0 (not enforced) */
1188
1189 iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
1190}
1191
1192static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint)
1193{
1194 u32 resource_group = endpoint->config.resource_group;
1195 u32 endpoint_id = endpoint->endpoint_id;
1196 struct ipa *ipa = endpoint->ipa;
1197 const struct reg *reg;
1198 u32 val;
1199
1200 reg = ipa_reg(ipa, ENDP_INIT_RSRC_GRP);
1201 val = reg_encode(reg, ENDP_RSRC_GRP, resource_group);
1202
1203 iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
1204}
1205
1206static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint)
1207{
1208 u32 endpoint_id = endpoint->endpoint_id;
1209 struct ipa *ipa = endpoint->ipa;
1210 const struct reg *reg;
1211 u32 val;
1212
1213 if (!endpoint->toward_ipa)
1214 return; /* Register not valid for RX endpoints */
1215
1216 reg = ipa_reg(ipa, ENDP_INIT_SEQ);
1217
1218 /* Low-order byte configures primary packet processing */
1219 val = reg_encode(reg, SEQ_TYPE, endpoint->config.tx.seq_type);
1220
1221 /* Second byte (if supported) configures replicated packet processing */
1222 if (ipa->version < IPA_VERSION_4_5)
1223 val |= reg_encode(reg, SEQ_REP_TYPE,
1224 endpoint->config.tx.seq_rep_type);
1225
1226 iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
1227}
1228
1229/**
1230 * ipa_endpoint_skb_tx() - Transmit a socket buffer
1231 * @endpoint: Endpoint pointer
1232 * @skb: Socket buffer to send
1233 *
1234 * Returns: 0 if successful, or a negative error code
1235 */
1236int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb)
1237{
1238 struct gsi_trans *trans;
1239 u32 nr_frags;
1240 int ret;
1241
1242 /* Make sure source endpoint's TLV FIFO has enough entries to
1243 * hold the linear portion of the skb and all its fragments.
1244 * If not, see if we can linearize it before giving up.
1245 */
1246 nr_frags = skb_shinfo(skb)->nr_frags;
1247 if (nr_frags > endpoint->skb_frag_max) {
1248 if (skb_linearize(skb))
1249 return -E2BIG;
1250 nr_frags = 0;
1251 }
1252
1253 trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags);
1254 if (!trans)
1255 return -EBUSY;
1256
1257 ret = gsi_trans_skb_add(trans, skb);
1258 if (ret)
1259 goto err_trans_free;
1260 trans->data = skb; /* transaction owns skb now */
1261
1262 gsi_trans_commit(trans, !netdev_xmit_more());
1263
1264 return 0;
1265
1266err_trans_free:
1267 gsi_trans_free(trans);
1268
1269 return -ENOMEM;
1270}
1271
1272static void ipa_endpoint_status(struct ipa_endpoint *endpoint)
1273{
1274 u32 endpoint_id = endpoint->endpoint_id;
1275 struct ipa *ipa = endpoint->ipa;
1276 const struct reg *reg;
1277 u32 val = 0;
1278
1279 reg = ipa_reg(ipa, ENDP_STATUS);
1280 if (endpoint->config.status_enable) {
1281 val |= reg_bit(reg, STATUS_EN);
1282 if (endpoint->toward_ipa) {
1283 enum ipa_endpoint_name name;
1284 u32 status_endpoint_id;
1285
1286 name = endpoint->config.tx.status_endpoint;
1287 status_endpoint_id = ipa->name_map[name]->endpoint_id;
1288
1289 val |= reg_encode(reg, STATUS_ENDP, status_endpoint_id);
1290 }
1291 /* STATUS_LOCATION is 0, meaning IPA packet status
1292 * precedes the packet (not present for IPA v4.5+)
1293 */
1294 /* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v4.0+) */
1295 }
1296
1297 iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
1298}
1299
1300static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint,
1301 struct gsi_trans *trans)
1302{
1303 struct page *page;
1304 u32 buffer_size;
1305 u32 offset;
1306 u32 len;
1307 int ret;
1308
1309 buffer_size = endpoint->config.rx.buffer_size;
1310 page = dev_alloc_pages(get_order(buffer_size));
1311 if (!page)
1312 return -ENOMEM;
1313
1314 /* Offset the buffer to make space for skb headroom */
1315 offset = NET_SKB_PAD;
1316 len = buffer_size - offset;
1317
1318 ret = gsi_trans_page_add(trans, page, len, offset);
1319 if (ret)
1320 put_page(page);
1321 else
1322 trans->data = page; /* transaction owns page now */
1323
1324 return ret;
1325}
1326
1327/**
1328 * ipa_endpoint_replenish() - Replenish endpoint receive buffers
1329 * @endpoint: Endpoint to be replenished
1330 *
1331 * The IPA hardware can hold a fixed number of receive buffers for an RX
1332 * endpoint, based on the number of entries in the underlying channel ring
1333 * buffer. If an endpoint's "backlog" is non-zero, it indicates how many
1334 * more receive buffers can be supplied to the hardware. Replenishing for
1335 * an endpoint can be disabled, in which case buffers are not queued to
1336 * the hardware.
1337 */
1338static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint)
1339{
1340 struct gsi_trans *trans;
1341
1342 if (!test_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags))
1343 return;
1344
1345 /* Skip it if it's already active */
1346 if (test_and_set_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags))
1347 return;
1348
1349 while ((trans = ipa_endpoint_trans_alloc(endpoint, 1))) {
1350 bool doorbell;
1351
1352 if (ipa_endpoint_replenish_one(endpoint, trans))
1353 goto try_again_later;
1354
1355
1356 /* Ring the doorbell if we've got a full batch */
1357 doorbell = !(++endpoint->replenish_count % IPA_REPLENISH_BATCH);
1358 gsi_trans_commit(trans, doorbell);
1359 }
1360
1361 clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1362
1363 return;
1364
1365try_again_later:
1366 gsi_trans_free(trans);
1367 clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1368
1369 /* Whenever a receive buffer transaction completes we'll try to
1370 * replenish again. It's unlikely, but if we fail to supply even
1371 * one buffer, nothing will trigger another replenish attempt.
1372 * If the hardware has no receive buffers queued, schedule work to
1373 * try replenishing again.
1374 */
1375 if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id))
1376 schedule_delayed_work(&endpoint->replenish_work,
1377 msecs_to_jiffies(1));
1378}
1379
1380static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint)
1381{
1382 set_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1383
1384 /* Start replenishing if hardware currently has no buffers */
1385 if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id))
1386 ipa_endpoint_replenish(endpoint);
1387}
1388
1389static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint)
1390{
1391 clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1392}
1393
1394static void ipa_endpoint_replenish_work(struct work_struct *work)
1395{
1396 struct delayed_work *dwork = to_delayed_work(work);
1397 struct ipa_endpoint *endpoint;
1398
1399 endpoint = container_of(dwork, struct ipa_endpoint, replenish_work);
1400
1401 ipa_endpoint_replenish(endpoint);
1402}
1403
1404static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint,
1405 void *data, u32 len, u32 extra)
1406{
1407 struct sk_buff *skb;
1408
1409 if (!endpoint->netdev)
1410 return;
1411
1412 skb = __dev_alloc_skb(len, GFP_ATOMIC);
1413 if (skb) {
1414 /* Copy the data into the socket buffer and receive it */
1415 skb_put(skb, len);
1416 memcpy(skb->data, data, len);
1417 skb->truesize += extra;
1418 }
1419
1420 ipa_modem_skb_rx(endpoint->netdev, skb);
1421}
1422
1423static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint,
1424 struct page *page, u32 len)
1425{
1426 u32 buffer_size = endpoint->config.rx.buffer_size;
1427 struct sk_buff *skb;
1428
1429 /* Nothing to do if there's no netdev */
1430 if (!endpoint->netdev)
1431 return false;
1432
1433 WARN_ON(len > SKB_WITH_OVERHEAD(buffer_size - NET_SKB_PAD));
1434
1435 skb = build_skb(page_address(page), buffer_size);
1436 if (skb) {
1437 /* Reserve the headroom and account for the data */
1438 skb_reserve(skb, NET_SKB_PAD);
1439 skb_put(skb, len);
1440 }
1441
1442 /* Receive the buffer (or record drop if unable to build it) */
1443 ipa_modem_skb_rx(endpoint->netdev, skb);
1444
1445 return skb != NULL;
1446}
1447
1448 /* The format of an IPA packet status structure is the same for several
1449 * status types (opcodes). Other types aren't currently supported.
1450 */
1451static bool ipa_status_format_packet(enum ipa_status_opcode opcode)
1452{
1453 switch (opcode) {
1454 case IPA_STATUS_OPCODE_PACKET:
1455 case IPA_STATUS_OPCODE_DROPPED_PACKET:
1456 case IPA_STATUS_OPCODE_SUSPENDED_PACKET:
1457 case IPA_STATUS_OPCODE_PACKET_2ND_PASS:
1458 return true;
1459 default:
1460 return false;
1461 }
1462}
1463
1464static bool
1465ipa_endpoint_status_skip(struct ipa_endpoint *endpoint, const void *data)
1466{
1467 struct ipa *ipa = endpoint->ipa;
1468 enum ipa_status_opcode opcode;
1469 u32 endpoint_id;
1470
1471 opcode = ipa_status_extract(ipa, data, STATUS_OPCODE);
1472 if (!ipa_status_format_packet(opcode))
1473 return true;
1474
1475 endpoint_id = ipa_status_extract(ipa, data, STATUS_DST_ENDPOINT);
1476 if (endpoint_id != endpoint->endpoint_id)
1477 return true;
1478
1479 return false; /* Don't skip this packet, process it */
1480}
1481
1482static bool
1483ipa_endpoint_status_tag_valid(struct ipa_endpoint *endpoint, const void *data)
1484{
1485 struct ipa_endpoint *command_endpoint;
1486 enum ipa_status_mask status_mask;
1487 struct ipa *ipa = endpoint->ipa;
1488 u32 endpoint_id;
1489
1490 status_mask = ipa_status_extract(ipa, data, STATUS_MASK);
1491 if (!status_mask)
1492 return false; /* No valid tag */
1493
1494 /* The status contains a valid tag. We know the packet was sent to
1495 * this endpoint (already verified by ipa_endpoint_status_skip()).
1496 * If the packet came from the AP->command TX endpoint we know
1497 * this packet was sent as part of the pipeline clear process.
1498 */
1499 endpoint_id = ipa_status_extract(ipa, data, STATUS_SRC_ENDPOINT);
1500 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
1501 if (endpoint_id == command_endpoint->endpoint_id) {
1502 complete(&ipa->completion);
1503 } else {
1504 dev_err(ipa->dev, "unexpected tagged packet from endpoint %u\n",
1505 endpoint_id);
1506 }
1507
1508 return true;
1509}
1510
1511/* Return whether the status indicates the packet should be dropped */
1512static bool
1513ipa_endpoint_status_drop(struct ipa_endpoint *endpoint, const void *data)
1514{
1515 enum ipa_status_exception exception;
1516 struct ipa *ipa = endpoint->ipa;
1517 u32 rule;
1518
1519 /* If the status indicates a tagged transfer, we'll drop the packet */
1520 if (ipa_endpoint_status_tag_valid(endpoint, data))
1521 return true;
1522
1523 /* Deaggregation exceptions we drop; all other types we consume */
1524 exception = ipa_status_extract(ipa, data, STATUS_EXCEPTION);
1525 if (exception)
1526 return exception == IPA_STATUS_EXCEPTION_DEAGGR;
1527
1528 /* Drop the packet if it fails to match a routing rule; otherwise no */
1529 rule = ipa_status_extract(ipa, data, STATUS_ROUTER_RULE_INDEX);
1530
1531 return rule == IPA_STATUS_RULE_MISS;
1532}
1533
1534static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint,
1535 struct page *page, u32 total_len)
1536{
1537 u32 buffer_size = endpoint->config.rx.buffer_size;
1538 void *data = page_address(page) + NET_SKB_PAD;
1539 u32 unused = buffer_size - total_len;
1540 struct ipa *ipa = endpoint->ipa;
1541 struct device *dev = ipa->dev;
1542 u32 resid = total_len;
1543
1544 while (resid) {
1545 u32 length;
1546 u32 align;
1547 u32 len;
1548
1549 if (resid < IPA_STATUS_SIZE) {
1550 dev_err(dev,
1551 "short message (%u bytes < %zu byte status)\n",
1552 resid, IPA_STATUS_SIZE);
1553 break;
1554 }
1555
1556 /* Skip over status packets that lack packet data */
1557 length = ipa_status_extract(ipa, data, STATUS_LENGTH);
1558 if (!length || ipa_endpoint_status_skip(endpoint, data)) {
1559 data += IPA_STATUS_SIZE;
1560 resid -= IPA_STATUS_SIZE;
1561 continue;
1562 }
1563
1564 /* Compute the amount of buffer space consumed by the packet,
1565 * including the status. If the hardware is configured to
1566 * pad packet data to an aligned boundary, account for that.
1567 * And if checksum offload is enabled a trailer containing
1568 * computed checksum information will be appended.
1569 */
1570 align = endpoint->config.rx.pad_align ? : 1;
1571 len = IPA_STATUS_SIZE + ALIGN(length, align);
1572 if (endpoint->config.checksum)
1573 len += sizeof(struct rmnet_map_dl_csum_trailer);
1574
1575 if (!ipa_endpoint_status_drop(endpoint, data)) {
1576 void *data2;
1577 u32 extra;
1578
1579 /* Client receives only packet data (no status) */
1580 data2 = data + IPA_STATUS_SIZE;
1581
1582 /* Have the true size reflect the extra unused space in
1583 * the original receive buffer. Distribute the "cost"
1584 * proportionately across all aggregated packets in the
1585 * buffer.
1586 */
1587 extra = DIV_ROUND_CLOSEST(unused * len, total_len);
1588 ipa_endpoint_skb_copy(endpoint, data2, length, extra);
1589 }
1590
1591 /* Consume status and the full packet it describes */
1592 data += len;
1593 resid -= len;
1594 }
1595}
1596
1597void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint,
1598 struct gsi_trans *trans)
1599{
1600 struct page *page;
1601
1602 if (endpoint->toward_ipa)
1603 return;
1604
1605 if (trans->cancelled)
1606 goto done;
1607
1608 /* Parse or build a socket buffer using the actual received length */
1609 page = trans->data;
1610 if (endpoint->config.status_enable)
1611 ipa_endpoint_status_parse(endpoint, page, trans->len);
1612 else if (ipa_endpoint_skb_build(endpoint, page, trans->len))
1613 trans->data = NULL; /* Pages have been consumed */
1614done:
1615 ipa_endpoint_replenish(endpoint);
1616}
1617
1618void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint,
1619 struct gsi_trans *trans)
1620{
1621 if (endpoint->toward_ipa) {
1622 struct ipa *ipa = endpoint->ipa;
1623
1624 /* Nothing to do for command transactions */
1625 if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) {
1626 struct sk_buff *skb = trans->data;
1627
1628 if (skb)
1629 dev_kfree_skb_any(skb);
1630 }
1631 } else {
1632 struct page *page = trans->data;
1633
1634 if (page)
1635 put_page(page);
1636 }
1637}
1638
1639void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id)
1640{
1641 const struct reg *reg;
1642 u32 val;
1643
1644 reg = ipa_reg(ipa, ROUTE);
1645 /* ROUTE_DIS is 0 */
1646 val = reg_encode(reg, ROUTE_DEF_PIPE, endpoint_id);
1647 val |= reg_bit(reg, ROUTE_DEF_HDR_TABLE);
1648 /* ROUTE_DEF_HDR_OFST is 0 */
1649 val |= reg_encode(reg, ROUTE_FRAG_DEF_PIPE, endpoint_id);
1650 val |= reg_bit(reg, ROUTE_DEF_RETAIN_HDR);
1651
1652 iowrite32(val, ipa->reg_virt + reg_offset(reg));
1653}
1654
1655void ipa_endpoint_default_route_clear(struct ipa *ipa)
1656{
1657 ipa_endpoint_default_route_set(ipa, 0);
1658}
1659
1660/**
1661 * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active
1662 * @endpoint: Endpoint to be reset
1663 *
1664 * If aggregation is active on an RX endpoint when a reset is performed
1665 * on its underlying GSI channel, a special sequence of actions must be
1666 * taken to ensure the IPA pipeline is properly cleared.
1667 *
1668 * Return: 0 if successful, or a negative error code
1669 */
1670static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint)
1671{
1672 struct ipa *ipa = endpoint->ipa;
1673 struct device *dev = ipa->dev;
1674 struct gsi *gsi = &ipa->gsi;
1675 bool suspended = false;
1676 dma_addr_t addr;
1677 u32 retries;
1678 u32 len = 1;
1679 void *virt;
1680 int ret;
1681
1682 virt = kzalloc(len, GFP_KERNEL);
1683 if (!virt)
1684 return -ENOMEM;
1685
1686 addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE);
1687 if (dma_mapping_error(dev, addr)) {
1688 ret = -ENOMEM;
1689 goto out_kfree;
1690 }
1691
1692 /* Force close aggregation before issuing the reset */
1693 ipa_endpoint_force_close(endpoint);
1694
1695 /* Reset and reconfigure the channel with the doorbell engine
1696 * disabled. Then poll until we know aggregation is no longer
1697 * active. We'll re-enable the doorbell (if appropriate) when
1698 * we reset again below.
1699 */
1700 gsi_channel_reset(gsi, endpoint->channel_id, false);
1701
1702 /* Make sure the channel isn't suspended */
1703 suspended = ipa_endpoint_program_suspend(endpoint, false);
1704
1705 /* Start channel and do a 1 byte read */
1706 ret = gsi_channel_start(gsi, endpoint->channel_id);
1707 if (ret)
1708 goto out_suspend_again;
1709
1710 ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr);
1711 if (ret)
1712 goto err_endpoint_stop;
1713
1714 /* Wait for aggregation to be closed on the channel */
1715 retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX;
1716 do {
1717 if (!ipa_endpoint_aggr_active(endpoint))
1718 break;
1719 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1720 } while (retries--);
1721
1722 /* Check one last time */
1723 if (ipa_endpoint_aggr_active(endpoint))
1724 dev_err(dev, "endpoint %u still active during reset\n",
1725 endpoint->endpoint_id);
1726
1727 gsi_trans_read_byte_done(gsi, endpoint->channel_id);
1728
1729 ret = gsi_channel_stop(gsi, endpoint->channel_id);
1730 if (ret)
1731 goto out_suspend_again;
1732
1733 /* Finally, reset and reconfigure the channel again (re-enabling
1734 * the doorbell engine if appropriate). Sleep for 1 millisecond to
1735 * complete the channel reset sequence. Finish by suspending the
1736 * channel again (if necessary).
1737 */
1738 gsi_channel_reset(gsi, endpoint->channel_id, true);
1739
1740 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1741
1742 goto out_suspend_again;
1743
1744err_endpoint_stop:
1745 (void)gsi_channel_stop(gsi, endpoint->channel_id);
1746out_suspend_again:
1747 if (suspended)
1748 (void)ipa_endpoint_program_suspend(endpoint, true);
1749 dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE);
1750out_kfree:
1751 kfree(virt);
1752
1753 return ret;
1754}
1755
1756static void ipa_endpoint_reset(struct ipa_endpoint *endpoint)
1757{
1758 u32 channel_id = endpoint->channel_id;
1759 struct ipa *ipa = endpoint->ipa;
1760 bool special;
1761 int ret = 0;
1762
1763 /* On IPA v3.5.1, if an RX endpoint is reset while aggregation
1764 * is active, we need to handle things specially to recover.
1765 * All other cases just need to reset the underlying GSI channel.
1766 */
1767 special = ipa->version < IPA_VERSION_4_0 && !endpoint->toward_ipa &&
1768 endpoint->config.aggregation;
1769 if (special && ipa_endpoint_aggr_active(endpoint))
1770 ret = ipa_endpoint_reset_rx_aggr(endpoint);
1771 else
1772 gsi_channel_reset(&ipa->gsi, channel_id, true);
1773
1774 if (ret)
1775 dev_err(ipa->dev,
1776 "error %d resetting channel %u for endpoint %u\n",
1777 ret, endpoint->channel_id, endpoint->endpoint_id);
1778}
1779
1780static void ipa_endpoint_program(struct ipa_endpoint *endpoint)
1781{
1782 if (endpoint->toward_ipa) {
1783 /* Newer versions of IPA use GSI channel flow control
1784 * instead of endpoint DELAY mode to prevent sending data.
1785 * Flow control is disabled for newly-allocated channels,
1786 * and we can assume flow control is not (ever) enabled
1787 * for AP TX channels.
1788 */
1789 if (endpoint->ipa->version < IPA_VERSION_4_2)
1790 ipa_endpoint_program_delay(endpoint, false);
1791 } else {
1792 /* Ensure suspend mode is off on all AP RX endpoints */
1793 (void)ipa_endpoint_program_suspend(endpoint, false);
1794 }
1795 ipa_endpoint_init_cfg(endpoint);
1796 ipa_endpoint_init_nat(endpoint);
1797 ipa_endpoint_init_hdr(endpoint);
1798 ipa_endpoint_init_hdr_ext(endpoint);
1799 ipa_endpoint_init_hdr_metadata_mask(endpoint);
1800 ipa_endpoint_init_mode(endpoint);
1801 ipa_endpoint_init_aggr(endpoint);
1802 if (!endpoint->toward_ipa) {
1803 if (endpoint->config.rx.holb_drop)
1804 ipa_endpoint_init_hol_block_enable(endpoint, 0);
1805 else
1806 ipa_endpoint_init_hol_block_disable(endpoint);
1807 }
1808 ipa_endpoint_init_deaggr(endpoint);
1809 ipa_endpoint_init_rsrc_grp(endpoint);
1810 ipa_endpoint_init_seq(endpoint);
1811 ipa_endpoint_status(endpoint);
1812}
1813
1814int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint)
1815{
1816 u32 endpoint_id = endpoint->endpoint_id;
1817 struct ipa *ipa = endpoint->ipa;
1818 struct gsi *gsi = &ipa->gsi;
1819 int ret;
1820
1821 ret = gsi_channel_start(gsi, endpoint->channel_id);
1822 if (ret) {
1823 dev_err(ipa->dev,
1824 "error %d starting %cX channel %u for endpoint %u\n",
1825 ret, endpoint->toward_ipa ? 'T' : 'R',
1826 endpoint->channel_id, endpoint_id);
1827 return ret;
1828 }
1829
1830 if (!endpoint->toward_ipa) {
1831 ipa_interrupt_suspend_enable(ipa->interrupt, endpoint_id);
1832 ipa_endpoint_replenish_enable(endpoint);
1833 }
1834
1835 __set_bit(endpoint_id, ipa->enabled);
1836
1837 return 0;
1838}
1839
1840void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint)
1841{
1842 u32 endpoint_id = endpoint->endpoint_id;
1843 struct ipa *ipa = endpoint->ipa;
1844 struct gsi *gsi = &ipa->gsi;
1845 int ret;
1846
1847 if (!test_bit(endpoint_id, ipa->enabled))
1848 return;
1849
1850 __clear_bit(endpoint_id, endpoint->ipa->enabled);
1851
1852 if (!endpoint->toward_ipa) {
1853 ipa_endpoint_replenish_disable(endpoint);
1854 ipa_interrupt_suspend_disable(ipa->interrupt, endpoint_id);
1855 }
1856
1857 /* Note that if stop fails, the channel's state is not well-defined */
1858 ret = gsi_channel_stop(gsi, endpoint->channel_id);
1859 if (ret)
1860 dev_err(ipa->dev, "error %d attempting to stop endpoint %u\n",
1861 ret, endpoint_id);
1862}
1863
1864void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint)
1865{
1866 struct device *dev = endpoint->ipa->dev;
1867 struct gsi *gsi = &endpoint->ipa->gsi;
1868 int ret;
1869
1870 if (!test_bit(endpoint->endpoint_id, endpoint->ipa->enabled))
1871 return;
1872
1873 if (!endpoint->toward_ipa) {
1874 ipa_endpoint_replenish_disable(endpoint);
1875 (void)ipa_endpoint_program_suspend(endpoint, true);
1876 }
1877
1878 ret = gsi_channel_suspend(gsi, endpoint->channel_id);
1879 if (ret)
1880 dev_err(dev, "error %d suspending channel %u\n", ret,
1881 endpoint->channel_id);
1882}
1883
1884void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint)
1885{
1886 struct device *dev = endpoint->ipa->dev;
1887 struct gsi *gsi = &endpoint->ipa->gsi;
1888 int ret;
1889
1890 if (!test_bit(endpoint->endpoint_id, endpoint->ipa->enabled))
1891 return;
1892
1893 if (!endpoint->toward_ipa)
1894 (void)ipa_endpoint_program_suspend(endpoint, false);
1895
1896 ret = gsi_channel_resume(gsi, endpoint->channel_id);
1897 if (ret)
1898 dev_err(dev, "error %d resuming channel %u\n", ret,
1899 endpoint->channel_id);
1900 else if (!endpoint->toward_ipa)
1901 ipa_endpoint_replenish_enable(endpoint);
1902}
1903
1904void ipa_endpoint_suspend(struct ipa *ipa)
1905{
1906 if (!ipa->setup_complete)
1907 return;
1908
1909 if (ipa->modem_netdev)
1910 ipa_modem_suspend(ipa->modem_netdev);
1911
1912 ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1913 ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1914}
1915
1916void ipa_endpoint_resume(struct ipa *ipa)
1917{
1918 if (!ipa->setup_complete)
1919 return;
1920
1921 ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1922 ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1923
1924 if (ipa->modem_netdev)
1925 ipa_modem_resume(ipa->modem_netdev);
1926}
1927
1928static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint)
1929{
1930 struct gsi *gsi = &endpoint->ipa->gsi;
1931 u32 channel_id = endpoint->channel_id;
1932
1933 /* Only AP endpoints get set up */
1934 if (endpoint->ee_id != GSI_EE_AP)
1935 return;
1936
1937 endpoint->skb_frag_max = gsi->channel[channel_id].trans_tre_max - 1;
1938 if (!endpoint->toward_ipa) {
1939 /* RX transactions require a single TRE, so the maximum
1940 * backlog is the same as the maximum outstanding TREs.
1941 */
1942 clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1943 clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1944 INIT_DELAYED_WORK(&endpoint->replenish_work,
1945 ipa_endpoint_replenish_work);
1946 }
1947
1948 ipa_endpoint_program(endpoint);
1949
1950 __set_bit(endpoint->endpoint_id, endpoint->ipa->set_up);
1951}
1952
1953static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint)
1954{
1955 __clear_bit(endpoint->endpoint_id, endpoint->ipa->set_up);
1956
1957 if (!endpoint->toward_ipa)
1958 cancel_delayed_work_sync(&endpoint->replenish_work);
1959
1960 ipa_endpoint_reset(endpoint);
1961}
1962
1963void ipa_endpoint_setup(struct ipa *ipa)
1964{
1965 u32 endpoint_id;
1966
1967 for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count)
1968 ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]);
1969}
1970
1971void ipa_endpoint_teardown(struct ipa *ipa)
1972{
1973 u32 endpoint_id;
1974
1975 for_each_set_bit(endpoint_id, ipa->set_up, ipa->endpoint_count)
1976 ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]);
1977}
1978
1979void ipa_endpoint_deconfig(struct ipa *ipa)
1980{
1981 ipa->available_count = 0;
1982 bitmap_free(ipa->available);
1983 ipa->available = NULL;
1984}
1985
1986int ipa_endpoint_config(struct ipa *ipa)
1987{
1988 struct device *dev = ipa->dev;
1989 const struct reg *reg;
1990 u32 endpoint_id;
1991 u32 hw_limit;
1992 u32 tx_count;
1993 u32 rx_count;
1994 u32 rx_base;
1995 u32 limit;
1996 u32 val;
1997
1998 /* Prior to IPA v3.5, the FLAVOR_0 register was not supported.
1999 * Furthermore, the endpoints were not grouped such that TX
2000 * endpoint numbers started with 0 and RX endpoints had numbers
2001 * higher than all TX endpoints, so we can't do the simple
2002 * direction check used for newer hardware below.
2003 *
2004 * For hardware that doesn't support the FLAVOR_0 register,
2005 * just set the available mask to support any endpoint, and
2006 * assume the configuration is valid.
2007 */
2008 if (ipa->version < IPA_VERSION_3_5) {
2009 ipa->available = bitmap_zalloc(IPA_ENDPOINT_MAX, GFP_KERNEL);
2010 if (!ipa->available)
2011 return -ENOMEM;
2012 ipa->available_count = IPA_ENDPOINT_MAX;
2013
2014 bitmap_set(ipa->available, 0, IPA_ENDPOINT_MAX);
2015
2016 return 0;
2017 }
2018
2019 /* Find out about the endpoints supplied by the hardware, and ensure
2020 * the highest one doesn't exceed the number supported by software.
2021 */
2022 reg = ipa_reg(ipa, FLAVOR_0);
2023 val = ioread32(ipa->reg_virt + reg_offset(reg));
2024
2025 /* Our RX is an IPA producer; our TX is an IPA consumer. */
2026 tx_count = reg_decode(reg, MAX_CONS_PIPES, val);
2027 rx_count = reg_decode(reg, MAX_PROD_PIPES, val);
2028 rx_base = reg_decode(reg, PROD_LOWEST, val);
2029
2030 limit = rx_base + rx_count;
2031 if (limit > IPA_ENDPOINT_MAX) {
2032 dev_err(dev, "too many endpoints, %u > %u\n",
2033 limit, IPA_ENDPOINT_MAX);
2034 return -EINVAL;
2035 }
2036
2037 /* Until IPA v5.0, the max endpoint ID was 32 */
2038 hw_limit = ipa->version < IPA_VERSION_5_0 ? 32 : U8_MAX + 1;
2039 if (limit > hw_limit) {
2040 dev_err(dev, "unexpected endpoint count, %u > %u\n",
2041 limit, hw_limit);
2042 return -EINVAL;
2043 }
2044
2045 /* Allocate and initialize the available endpoint bitmap */
2046 ipa->available = bitmap_zalloc(limit, GFP_KERNEL);
2047 if (!ipa->available)
2048 return -ENOMEM;
2049 ipa->available_count = limit;
2050
2051 /* Mark all supported RX and TX endpoints as available */
2052 bitmap_set(ipa->available, 0, tx_count);
2053 bitmap_set(ipa->available, rx_base, rx_count);
2054
2055 for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) {
2056 struct ipa_endpoint *endpoint;
2057
2058 if (endpoint_id >= limit) {
2059 dev_err(dev, "invalid endpoint id, %u > %u\n",
2060 endpoint_id, limit - 1);
2061 goto err_free_bitmap;
2062 }
2063
2064 if (!test_bit(endpoint_id, ipa->available)) {
2065 dev_err(dev, "unavailable endpoint id %u\n",
2066 endpoint_id);
2067 goto err_free_bitmap;
2068 }
2069
2070 /* Make sure it's pointing in the right direction */
2071 endpoint = &ipa->endpoint[endpoint_id];
2072 if (endpoint->toward_ipa) {
2073 if (endpoint_id < tx_count)
2074 continue;
2075 } else if (endpoint_id >= rx_base) {
2076 continue;
2077 }
2078
2079 dev_err(dev, "endpoint id %u wrong direction\n", endpoint_id);
2080 goto err_free_bitmap;
2081 }
2082
2083 return 0;
2084
2085err_free_bitmap:
2086 ipa_endpoint_deconfig(ipa);
2087
2088 return -EINVAL;
2089}
2090
2091static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name,
2092 const struct ipa_gsi_endpoint_data *data)
2093{
2094 struct ipa_endpoint *endpoint;
2095
2096 endpoint = &ipa->endpoint[data->endpoint_id];
2097
2098 if (data->ee_id == GSI_EE_AP)
2099 ipa->channel_map[data->channel_id] = endpoint;
2100 ipa->name_map[name] = endpoint;
2101
2102 endpoint->ipa = ipa;
2103 endpoint->ee_id = data->ee_id;
2104 endpoint->channel_id = data->channel_id;
2105 endpoint->endpoint_id = data->endpoint_id;
2106 endpoint->toward_ipa = data->toward_ipa;
2107 endpoint->config = data->endpoint.config;
2108
2109 __set_bit(endpoint->endpoint_id, ipa->defined);
2110}
2111
2112static void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint)
2113{
2114 __clear_bit(endpoint->endpoint_id, endpoint->ipa->defined);
2115
2116 memset(endpoint, 0, sizeof(*endpoint));
2117}
2118
2119void ipa_endpoint_exit(struct ipa *ipa)
2120{
2121 u32 endpoint_id;
2122
2123 ipa->filtered = 0;
2124
2125 for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count)
2126 ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]);
2127
2128 bitmap_free(ipa->enabled);
2129 ipa->enabled = NULL;
2130 bitmap_free(ipa->set_up);
2131 ipa->set_up = NULL;
2132 bitmap_free(ipa->defined);
2133 ipa->defined = NULL;
2134
2135 memset(ipa->name_map, 0, sizeof(ipa->name_map));
2136 memset(ipa->channel_map, 0, sizeof(ipa->channel_map));
2137}
2138
2139/* Returns a bitmask of endpoints that support filtering, or 0 on error */
2140int ipa_endpoint_init(struct ipa *ipa, u32 count,
2141 const struct ipa_gsi_endpoint_data *data)
2142{
2143 enum ipa_endpoint_name name;
2144 u32 filtered;
2145
2146 BUILD_BUG_ON(!IPA_REPLENISH_BATCH);
2147
2148 /* Number of endpoints is one more than the maximum ID */
2149 ipa->endpoint_count = ipa_endpoint_max(ipa, count, data) + 1;
2150 if (!ipa->endpoint_count)
2151 return -EINVAL;
2152
2153 /* Initialize endpoint state bitmaps */
2154 ipa->defined = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL);
2155 if (!ipa->defined)
2156 return -ENOMEM;
2157
2158 ipa->set_up = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL);
2159 if (!ipa->set_up)
2160 goto err_free_defined;
2161
2162 ipa->enabled = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL);
2163 if (!ipa->enabled)
2164 goto err_free_set_up;
2165
2166 filtered = 0;
2167 for (name = 0; name < count; name++, data++) {
2168 if (ipa_gsi_endpoint_data_empty(data))
2169 continue; /* Skip over empty slots */
2170
2171 ipa_endpoint_init_one(ipa, name, data);
2172
2173 if (data->endpoint.filter_support)
2174 filtered |= BIT(data->endpoint_id);
2175 if (data->ee_id == GSI_EE_MODEM && data->toward_ipa)
2176 ipa->modem_tx_count++;
2177 }
2178
2179 /* Make sure the set of filtered endpoints is valid */
2180 if (!ipa_filtered_valid(ipa, filtered)) {
2181 ipa_endpoint_exit(ipa);
2182
2183 return -EINVAL;
2184 }
2185
2186 ipa->filtered = filtered;
2187
2188 return 0;
2189
2190err_free_set_up:
2191 bitmap_free(ipa->set_up);
2192 ipa->set_up = NULL;
2193err_free_defined:
2194 bitmap_free(ipa->defined);
2195 ipa->defined = NULL;
2196
2197 return -ENOMEM;
2198}