Linux Audio

Check our new training course

Loading...
v6.8
 
  1/*
  2 * FCC driver for Motorola MPC82xx (PQ2).
  3 *
  4 * Copyright (c) 2003 Intracom S.A.
  5 *  by Pantelis Antoniou <panto@intracom.gr>
  6 *
  7 * 2005 (c) MontaVista Software, Inc.
  8 * Vitaly Bordug <vbordug@ru.mvista.com>
  9 *
 10 * This file is licensed under the terms of the GNU General Public License
 11 * version 2. This program is licensed "as is" without any warranty of any
 12 * kind, whether express or implied.
 13 */
 14
 15#include <linux/module.h>
 16#include <linux/kernel.h>
 17#include <linux/types.h>
 18#include <linux/string.h>
 19#include <linux/ptrace.h>
 20#include <linux/errno.h>
 21#include <linux/ioport.h>
 22#include <linux/interrupt.h>
 23#include <linux/delay.h>
 24#include <linux/netdevice.h>
 25#include <linux/etherdevice.h>
 26#include <linux/skbuff.h>
 27#include <linux/spinlock.h>
 28#include <linux/mii.h>
 29#include <linux/ethtool.h>
 30#include <linux/bitops.h>
 31#include <linux/fs.h>
 32#include <linux/platform_device.h>
 33#include <linux/phy.h>
 34#include <linux/of_address.h>
 35#include <linux/of_irq.h>
 36#include <linux/gfp.h>
 37#include <linux/pgtable.h>
 38
 39#include <asm/immap_cpm2.h>
 40#include <asm/cpm2.h>
 41
 42#include <asm/irq.h>
 43#include <linux/uaccess.h>
 44
 45#include "fs_enet.h"
 46
 47/*************************************************/
 48
 49/* FCC access macros */
 50
 51/* write, read, set bits, clear bits */
 52#define W32(_p, _m, _v)	out_be32(&(_p)->_m, (_v))
 53#define R32(_p, _m)	in_be32(&(_p)->_m)
 54#define S32(_p, _m, _v)	W32(_p, _m, R32(_p, _m) | (_v))
 55#define C32(_p, _m, _v)	W32(_p, _m, R32(_p, _m) & ~(_v))
 56
 57#define W16(_p, _m, _v)	out_be16(&(_p)->_m, (_v))
 58#define R16(_p, _m)	in_be16(&(_p)->_m)
 59#define S16(_p, _m, _v)	W16(_p, _m, R16(_p, _m) | (_v))
 60#define C16(_p, _m, _v)	W16(_p, _m, R16(_p, _m) & ~(_v))
 61
 62#define W8(_p, _m, _v)	out_8(&(_p)->_m, (_v))
 63#define R8(_p, _m)	in_8(&(_p)->_m)
 64#define S8(_p, _m, _v)	W8(_p, _m, R8(_p, _m) | (_v))
 65#define C8(_p, _m, _v)	W8(_p, _m, R8(_p, _m) & ~(_v))
 66
 67/*************************************************/
 68
 69#define FCC_MAX_MULTICAST_ADDRS	64
 70
 71#define mk_mii_read(REG)	(0x60020000 | ((REG & 0x1f) << 18))
 72#define mk_mii_write(REG, VAL)	(0x50020000 | ((REG & 0x1f) << 18) | (VAL & 0xffff))
 73#define mk_mii_end		0
 74
 75#define MAX_CR_CMD_LOOPS	10000
 76
 77static inline int fcc_cr_cmd(struct fs_enet_private *fep, u32 op)
 78{
 79	const struct fs_platform_info *fpi = fep->fpi;
 80
 81	return cpm_command(fpi->cp_command, op);
 82}
 83
 84static int do_pd_setup(struct fs_enet_private *fep)
 85{
 86	struct platform_device *ofdev = to_platform_device(fep->dev);
 87	struct fs_platform_info *fpi = fep->fpi;
 88	int ret = -EINVAL;
 89
 90	fep->interrupt = irq_of_parse_and_map(ofdev->dev.of_node, 0);
 91	if (!fep->interrupt)
 92		goto out;
 93
 94	fep->fcc.fccp = of_iomap(ofdev->dev.of_node, 0);
 95	if (!fep->fcc.fccp)
 96		goto out;
 97
 98	fep->fcc.ep = of_iomap(ofdev->dev.of_node, 1);
 99	if (!fep->fcc.ep)
100		goto out_fccp;
101
102	fep->fcc.fcccp = of_iomap(ofdev->dev.of_node, 2);
103	if (!fep->fcc.fcccp)
104		goto out_ep;
105
106	fep->fcc.mem = (void __iomem *)cpm2_immr;
107	fpi->dpram_offset = cpm_muram_alloc(128, 32);
108	if (IS_ERR_VALUE(fpi->dpram_offset)) {
109		ret = fpi->dpram_offset;
110		goto out_fcccp;
111	}
112
113	return 0;
114
115out_fcccp:
116	iounmap(fep->fcc.fcccp);
117out_ep:
118	iounmap(fep->fcc.ep);
119out_fccp:
120	iounmap(fep->fcc.fccp);
121out:
122	return ret;
123}
124
125#define FCC_NAPI_EVENT_MSK	(FCC_ENET_RXF | FCC_ENET_RXB | FCC_ENET_TXB)
126#define FCC_EVENT		(FCC_ENET_RXF | FCC_ENET_TXB)
127#define FCC_ERR_EVENT_MSK	(FCC_ENET_TXE)
128
129static int setup_data(struct net_device *dev)
130{
131	struct fs_enet_private *fep = netdev_priv(dev);
132
133	if (do_pd_setup(fep) != 0)
134		return -EINVAL;
135
136	fep->ev_napi = FCC_NAPI_EVENT_MSK;
137	fep->ev = FCC_EVENT;
138	fep->ev_err = FCC_ERR_EVENT_MSK;
139
140	return 0;
141}
142
143static int allocate_bd(struct net_device *dev)
144{
145	struct fs_enet_private *fep = netdev_priv(dev);
146	const struct fs_platform_info *fpi = fep->fpi;
147
148	fep->ring_base = (void __iomem __force *)dma_alloc_coherent(fep->dev,
149					    (fpi->tx_ring + fpi->rx_ring) *
150					    sizeof(cbd_t), &fep->ring_mem_addr,
151					    GFP_KERNEL);
152	if (fep->ring_base == NULL)
153		return -ENOMEM;
154
155	return 0;
156}
157
158static void free_bd(struct net_device *dev)
159{
160	struct fs_enet_private *fep = netdev_priv(dev);
161	const struct fs_platform_info *fpi = fep->fpi;
162
163	if (fep->ring_base)
164		dma_free_coherent(fep->dev,
165			(fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
166			(void __force *)fep->ring_base, fep->ring_mem_addr);
167}
168
169static void cleanup_data(struct net_device *dev)
170{
171	/* nothing */
172}
173
174static void set_promiscuous_mode(struct net_device *dev)
175{
176	struct fs_enet_private *fep = netdev_priv(dev);
177	fcc_t __iomem *fccp = fep->fcc.fccp;
178
179	S32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
180}
181
182static void set_multicast_start(struct net_device *dev)
183{
184	struct fs_enet_private *fep = netdev_priv(dev);
185	fcc_enet_t __iomem *ep = fep->fcc.ep;
186
187	W32(ep, fen_gaddrh, 0);
188	W32(ep, fen_gaddrl, 0);
189}
190
191static void set_multicast_one(struct net_device *dev, const u8 *mac)
192{
193	struct fs_enet_private *fep = netdev_priv(dev);
194	fcc_enet_t __iomem *ep = fep->fcc.ep;
195	u16 taddrh, taddrm, taddrl;
196
197	taddrh = ((u16)mac[5] << 8) | mac[4];
198	taddrm = ((u16)mac[3] << 8) | mac[2];
199	taddrl = ((u16)mac[1] << 8) | mac[0];
200
201	W16(ep, fen_taddrh, taddrh);
202	W16(ep, fen_taddrm, taddrm);
203	W16(ep, fen_taddrl, taddrl);
204	fcc_cr_cmd(fep, CPM_CR_SET_GADDR);
205}
206
207static void set_multicast_finish(struct net_device *dev)
208{
209	struct fs_enet_private *fep = netdev_priv(dev);
210	fcc_t __iomem *fccp = fep->fcc.fccp;
211	fcc_enet_t __iomem *ep = fep->fcc.ep;
212
213	/* clear promiscuous always */
214	C32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
215
216	/* if all multi or too many multicasts; just enable all */
217	if ((dev->flags & IFF_ALLMULTI) != 0 ||
218	    netdev_mc_count(dev) > FCC_MAX_MULTICAST_ADDRS) {
219
220		W32(ep, fen_gaddrh, 0xffffffff);
221		W32(ep, fen_gaddrl, 0xffffffff);
222	}
223
224	/* read back */
225	fep->fcc.gaddrh = R32(ep, fen_gaddrh);
226	fep->fcc.gaddrl = R32(ep, fen_gaddrl);
227}
228
229static void set_multicast_list(struct net_device *dev)
230{
231	struct netdev_hw_addr *ha;
232
233	if ((dev->flags & IFF_PROMISC) == 0) {
234		set_multicast_start(dev);
235		netdev_for_each_mc_addr(ha, dev)
236			set_multicast_one(dev, ha->addr);
237		set_multicast_finish(dev);
238	} else
239		set_promiscuous_mode(dev);
240}
241
242static void restart(struct net_device *dev)
 
243{
244	struct fs_enet_private *fep = netdev_priv(dev);
245	const struct fs_platform_info *fpi = fep->fpi;
246	fcc_t __iomem *fccp = fep->fcc.fccp;
247	fcc_c_t __iomem *fcccp = fep->fcc.fcccp;
248	fcc_enet_t __iomem *ep = fep->fcc.ep;
249	dma_addr_t rx_bd_base_phys, tx_bd_base_phys;
250	u16 paddrh, paddrm, paddrl;
251	const unsigned char *mac;
252	int i;
253
254	C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
255
256	/* clear everything (slow & steady does it) */
257	for (i = 0; i < sizeof(*ep); i++)
258		out_8((u8 __iomem *)ep + i, 0);
259
260	/* get physical address */
261	rx_bd_base_phys = fep->ring_mem_addr;
262	tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring;
263
264	/* point to bds */
265	W32(ep, fen_genfcc.fcc_rbase, rx_bd_base_phys);
266	W32(ep, fen_genfcc.fcc_tbase, tx_bd_base_phys);
267
268	/* Set maximum bytes per receive buffer.
269	 * It must be a multiple of 32.
270	 */
271	W16(ep, fen_genfcc.fcc_mrblr, PKT_MAXBLR_SIZE);
272
273	W32(ep, fen_genfcc.fcc_rstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
274	W32(ep, fen_genfcc.fcc_tstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
275
276	/* Allocate space in the reserved FCC area of DPRAM for the
277	 * internal buffers.  No one uses this space (yet), so we
278	 * can do this.  Later, we will add resource management for
279	 * this area.
280	 */
281
282	W16(ep, fen_genfcc.fcc_riptr, fpi->dpram_offset);
283	W16(ep, fen_genfcc.fcc_tiptr, fpi->dpram_offset + 32);
284
285	W16(ep, fen_padptr, fpi->dpram_offset + 64);
286
287	/* fill with special symbol...  */
288	memset_io(fep->fcc.mem + fpi->dpram_offset + 64, 0x88, 32);
289
290	W32(ep, fen_genfcc.fcc_rbptr, 0);
291	W32(ep, fen_genfcc.fcc_tbptr, 0);
292	W32(ep, fen_genfcc.fcc_rcrc, 0);
293	W32(ep, fen_genfcc.fcc_tcrc, 0);
294	W16(ep, fen_genfcc.fcc_res1, 0);
295	W32(ep, fen_genfcc.fcc_res2, 0);
296
297	/* no CAM */
298	W32(ep, fen_camptr, 0);
299
300	/* Set CRC preset and mask */
301	W32(ep, fen_cmask, 0xdebb20e3);
302	W32(ep, fen_cpres, 0xffffffff);
303
304	W32(ep, fen_crcec, 0);		/* CRC Error counter       */
305	W32(ep, fen_alec, 0);		/* alignment error counter */
306	W32(ep, fen_disfc, 0);		/* discard frame counter   */
307	W16(ep, fen_retlim, 15);	/* Retry limit threshold   */
308	W16(ep, fen_pper, 0);		/* Normal persistence      */
309
310	/* set group address */
311	W32(ep, fen_gaddrh, fep->fcc.gaddrh);
312	W32(ep, fen_gaddrl, fep->fcc.gaddrh);
313
314	/* Clear hash filter tables */
315	W32(ep, fen_iaddrh, 0);
316	W32(ep, fen_iaddrl, 0);
317
318	/* Clear the Out-of-sequence TxBD  */
319	W16(ep, fen_tfcstat, 0);
320	W16(ep, fen_tfclen, 0);
321	W32(ep, fen_tfcptr, 0);
322
323	W16(ep, fen_mflr, PKT_MAXBUF_SIZE);	/* maximum frame length register */
324	W16(ep, fen_minflr, PKT_MINBUF_SIZE);	/* minimum frame length register */
325
326	/* set address */
327	mac = dev->dev_addr;
328	paddrh = ((u16)mac[5] << 8) | mac[4];
329	paddrm = ((u16)mac[3] << 8) | mac[2];
330	paddrl = ((u16)mac[1] << 8) | mac[0];
331
332	W16(ep, fen_paddrh, paddrh);
333	W16(ep, fen_paddrm, paddrm);
334	W16(ep, fen_paddrl, paddrl);
335
336	W16(ep, fen_taddrh, 0);
337	W16(ep, fen_taddrm, 0);
338	W16(ep, fen_taddrl, 0);
339
340	W16(ep, fen_maxd1, 1520);	/* maximum DMA1 length */
341	W16(ep, fen_maxd2, 1520);	/* maximum DMA2 length */
342
343	/* Clear stat counters, in case we ever enable RMON */
344	W32(ep, fen_octc, 0);
345	W32(ep, fen_colc, 0);
346	W32(ep, fen_broc, 0);
347	W32(ep, fen_mulc, 0);
348	W32(ep, fen_uspc, 0);
349	W32(ep, fen_frgc, 0);
350	W32(ep, fen_ospc, 0);
351	W32(ep, fen_jbrc, 0);
352	W32(ep, fen_p64c, 0);
353	W32(ep, fen_p65c, 0);
354	W32(ep, fen_p128c, 0);
355	W32(ep, fen_p256c, 0);
356	W32(ep, fen_p512c, 0);
357	W32(ep, fen_p1024c, 0);
358
359	W16(ep, fen_rfthr, 0);	/* Suggested by manual */
360	W16(ep, fen_rfcnt, 0);
361	W16(ep, fen_cftype, 0);
362
363	fs_init_bds(dev);
364
365	/* adjust to speed (for RMII mode) */
366	if (fpi->use_rmii) {
367		if (dev->phydev->speed == 100)
368			C8(fcccp, fcc_gfemr, 0x20);
369		else
370			S8(fcccp, fcc_gfemr, 0x20);
371	}
372
373	fcc_cr_cmd(fep, CPM_CR_INIT_TRX);
374
375	/* clear events */
376	W16(fccp, fcc_fcce, 0xffff);
377
378	/* Enable interrupts we wish to service */
379	W16(fccp, fcc_fccm, FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
380
381	/* Set GFMR to enable Ethernet operating mode */
382	W32(fccp, fcc_gfmr, FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
383
384	/* set sync/delimiters */
385	W16(fccp, fcc_fdsr, 0xd555);
386
387	W32(fccp, fcc_fpsmr, FCC_PSMR_ENCRC);
388
389	if (fpi->use_rmii)
390		S32(fccp, fcc_fpsmr, FCC_PSMR_RMII);
391
392	/* adjust to duplex mode */
393	if (dev->phydev->duplex)
394		S32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
395	else
396		C32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
397
398	/* Restore multicast and promiscuous settings */
399	set_multicast_list(dev);
400
401	S32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
402}
403
404static void stop(struct net_device *dev)
405{
406	struct fs_enet_private *fep = netdev_priv(dev);
407	fcc_t __iomem *fccp = fep->fcc.fccp;
408
409	/* stop ethernet */
410	C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
411
412	/* clear events */
413	W16(fccp, fcc_fcce, 0xffff);
414
415	/* clear interrupt mask */
416	W16(fccp, fcc_fccm, 0);
417
418	fs_cleanup_bds(dev);
419}
420
421static void napi_clear_event_fs(struct net_device *dev)
422{
423	struct fs_enet_private *fep = netdev_priv(dev);
424	fcc_t __iomem *fccp = fep->fcc.fccp;
425
426	W16(fccp, fcc_fcce, FCC_NAPI_EVENT_MSK);
427}
428
429static void napi_enable_fs(struct net_device *dev)
430{
431	struct fs_enet_private *fep = netdev_priv(dev);
432	fcc_t __iomem *fccp = fep->fcc.fccp;
433
434	S16(fccp, fcc_fccm, FCC_NAPI_EVENT_MSK);
435}
436
437static void napi_disable_fs(struct net_device *dev)
438{
439	struct fs_enet_private *fep = netdev_priv(dev);
440	fcc_t __iomem *fccp = fep->fcc.fccp;
441
442	C16(fccp, fcc_fccm, FCC_NAPI_EVENT_MSK);
443}
444
445static void rx_bd_done(struct net_device *dev)
446{
447	/* nothing */
448}
449
450static void tx_kickstart(struct net_device *dev)
451{
452	struct fs_enet_private *fep = netdev_priv(dev);
453	fcc_t __iomem *fccp = fep->fcc.fccp;
454
455	S16(fccp, fcc_ftodr, 0x8000);
456}
457
458static u32 get_int_events(struct net_device *dev)
459{
460	struct fs_enet_private *fep = netdev_priv(dev);
461	fcc_t __iomem *fccp = fep->fcc.fccp;
462
463	return (u32)R16(fccp, fcc_fcce);
464}
465
466static void clear_int_events(struct net_device *dev, u32 int_events)
467{
468	struct fs_enet_private *fep = netdev_priv(dev);
469	fcc_t __iomem *fccp = fep->fcc.fccp;
470
471	W16(fccp, fcc_fcce, int_events & 0xffff);
472}
473
474static void ev_error(struct net_device *dev, u32 int_events)
475{
476	struct fs_enet_private *fep = netdev_priv(dev);
477
478	dev_warn(fep->dev, "FS_ENET ERROR(s) 0x%x\n", int_events);
479}
480
481static int get_regs(struct net_device *dev, void *p, int *sizep)
482{
483	struct fs_enet_private *fep = netdev_priv(dev);
484
485	if (*sizep < sizeof(fcc_t) + sizeof(fcc_enet_t) + 1)
486		return -EINVAL;
487
488	memcpy_fromio(p, fep->fcc.fccp, sizeof(fcc_t));
489	p = (char *)p + sizeof(fcc_t);
490
491	memcpy_fromio(p, fep->fcc.ep, sizeof(fcc_enet_t));
492	p = (char *)p + sizeof(fcc_enet_t);
493
494	memcpy_fromio(p, fep->fcc.fcccp, 1);
495	return 0;
496}
497
498static int get_regs_len(struct net_device *dev)
499{
500	return sizeof(fcc_t) + sizeof(fcc_enet_t) + 1;
501}
502
503/* Some transmit errors cause the transmitter to shut
504 * down.  We now issue a restart transmit.
505 * Also, to workaround 8260 device erratum CPM37, we must
506 * disable and then re-enable the transmitterfollowing a
507 * Late Collision, Underrun, or Retry Limit error.
508 * In addition, tbptr may point beyond BDs beyond still marked
509 * as ready due to internal pipelining, so we need to look back
510 * through the BDs and adjust tbptr to point to the last BD
511 * marked as ready.  This may result in some buffers being
512 * retransmitted.
513 */
514static void tx_restart(struct net_device *dev)
515{
516	struct fs_enet_private *fep = netdev_priv(dev);
517	fcc_t __iomem *fccp = fep->fcc.fccp;
518	const struct fs_platform_info *fpi = fep->fpi;
519	fcc_enet_t __iomem *ep = fep->fcc.ep;
520	cbd_t __iomem *curr_tbptr;
521	cbd_t __iomem *recheck_bd;
522	cbd_t __iomem *prev_bd;
523	cbd_t __iomem *last_tx_bd;
524
525	last_tx_bd = fep->tx_bd_base + (fpi->tx_ring - 1);
526
527	/* get the current bd held in TBPTR  and scan back from this point */
528	recheck_bd = curr_tbptr = (cbd_t __iomem *)
529		((R32(ep, fen_genfcc.fcc_tbptr) - fep->ring_mem_addr) +
530		fep->ring_base);
531
532	prev_bd = (recheck_bd == fep->tx_bd_base) ? last_tx_bd : recheck_bd - 1;
533
534	/* Move through the bds in reverse, look for the earliest buffer
535	 * that is not ready.  Adjust TBPTR to the following buffer */
536	while ((CBDR_SC(prev_bd) & BD_ENET_TX_READY) != 0) {
537		/* Go back one buffer */
538		recheck_bd = prev_bd;
539
540		/* update the previous buffer */
541		prev_bd = (prev_bd == fep->tx_bd_base) ? last_tx_bd : prev_bd - 1;
542
543		/* We should never see all bds marked as ready, check anyway */
544		if (recheck_bd == curr_tbptr)
545			break;
546	}
547	/* Now update the TBPTR and dirty flag to the current buffer */
548	W32(ep, fen_genfcc.fcc_tbptr,
549		(uint)(((void __iomem *)recheck_bd - fep->ring_base) +
550		fep->ring_mem_addr));
551	fep->dirty_tx = recheck_bd;
552
553	C32(fccp, fcc_gfmr, FCC_GFMR_ENT);
554	udelay(10);
555	S32(fccp, fcc_gfmr, FCC_GFMR_ENT);
556
557	fcc_cr_cmd(fep, CPM_CR_RESTART_TX);
558}
559
560/*************************************************************************/
561
562const struct fs_ops fs_fcc_ops = {
563	.setup_data		= setup_data,
564	.cleanup_data		= cleanup_data,
565	.set_multicast_list	= set_multicast_list,
566	.restart		= restart,
567	.stop			= stop,
568	.napi_clear_event	= napi_clear_event_fs,
569	.napi_enable		= napi_enable_fs,
570	.napi_disable		= napi_disable_fs,
571	.rx_bd_done		= rx_bd_done,
572	.tx_kickstart		= tx_kickstart,
573	.get_int_events		= get_int_events,
574	.clear_int_events	= clear_int_events,
575	.ev_error		= ev_error,
576	.get_regs		= get_regs,
577	.get_regs_len		= get_regs_len,
578	.tx_restart		= tx_restart,
579	.allocate_bd		= allocate_bd,
580	.free_bd		= free_bd,
581};
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * FCC driver for Motorola MPC82xx (PQ2).
  4 *
  5 * Copyright (c) 2003 Intracom S.A.
  6 *  by Pantelis Antoniou <panto@intracom.gr>
  7 *
  8 * 2005 (c) MontaVista Software, Inc.
  9 * Vitaly Bordug <vbordug@ru.mvista.com>
 
 
 
 
 10 */
 11
 12#include <linux/module.h>
 13#include <linux/kernel.h>
 14#include <linux/types.h>
 15#include <linux/string.h>
 16#include <linux/ptrace.h>
 17#include <linux/errno.h>
 18#include <linux/ioport.h>
 19#include <linux/interrupt.h>
 20#include <linux/delay.h>
 21#include <linux/netdevice.h>
 22#include <linux/etherdevice.h>
 23#include <linux/skbuff.h>
 24#include <linux/spinlock.h>
 
 25#include <linux/ethtool.h>
 26#include <linux/bitops.h>
 27#include <linux/fs.h>
 28#include <linux/platform_device.h>
 29#include <linux/phy.h>
 30#include <linux/of_address.h>
 31#include <linux/of_irq.h>
 32#include <linux/gfp.h>
 33#include <linux/pgtable.h>
 34
 35#include <asm/immap_cpm2.h>
 36#include <asm/cpm2.h>
 37
 38#include <asm/irq.h>
 39#include <linux/uaccess.h>
 40
 41#include "fs_enet.h"
 42
 43/*************************************************/
 44
 45/* FCC access macros */
 46
 47/* write, read, set bits, clear bits */
 48#define W32(_p, _m, _v)	out_be32(&(_p)->_m, (_v))
 49#define R32(_p, _m)	in_be32(&(_p)->_m)
 50#define S32(_p, _m, _v)	W32(_p, _m, R32(_p, _m) | (_v))
 51#define C32(_p, _m, _v)	W32(_p, _m, R32(_p, _m) & ~(_v))
 52
 53#define W16(_p, _m, _v)	out_be16(&(_p)->_m, (_v))
 54#define R16(_p, _m)	in_be16(&(_p)->_m)
 55#define S16(_p, _m, _v)	W16(_p, _m, R16(_p, _m) | (_v))
 56#define C16(_p, _m, _v)	W16(_p, _m, R16(_p, _m) & ~(_v))
 57
 58#define W8(_p, _m, _v)	out_8(&(_p)->_m, (_v))
 59#define R8(_p, _m)	in_8(&(_p)->_m)
 60#define S8(_p, _m, _v)	W8(_p, _m, R8(_p, _m) | (_v))
 61#define C8(_p, _m, _v)	W8(_p, _m, R8(_p, _m) & ~(_v))
 62
 63/*************************************************/
 64
 65#define FCC_MAX_MULTICAST_ADDRS	64
 66
 67#define mk_mii_read(REG)	(0x60020000 | ((REG & 0x1f) << 18))
 68#define mk_mii_write(REG, VAL)	(0x50020000 | ((REG & 0x1f) << 18) | (VAL & 0xffff))
 69#define mk_mii_end		0
 70
 71#define MAX_CR_CMD_LOOPS	10000
 72
 73static inline int fcc_cr_cmd(struct fs_enet_private *fep, u32 op)
 74{
 75	const struct fs_platform_info *fpi = fep->fpi;
 76
 77	return cpm_command(fpi->cp_command, op);
 78}
 79
 80static int do_pd_setup(struct fs_enet_private *fep)
 81{
 82	struct platform_device *ofdev = to_platform_device(fep->dev);
 83	struct fs_platform_info *fpi = fep->fpi;
 84	int ret = -EINVAL;
 85
 86	fep->interrupt = irq_of_parse_and_map(ofdev->dev.of_node, 0);
 87	if (!fep->interrupt)
 88		goto out;
 89
 90	fep->fcc.fccp = of_iomap(ofdev->dev.of_node, 0);
 91	if (!fep->fcc.fccp)
 92		goto out;
 93
 94	fep->fcc.ep = of_iomap(ofdev->dev.of_node, 1);
 95	if (!fep->fcc.ep)
 96		goto out_fccp;
 97
 98	fep->fcc.fcccp = of_iomap(ofdev->dev.of_node, 2);
 99	if (!fep->fcc.fcccp)
100		goto out_ep;
101
102	fep->fcc.mem = (void __iomem *)cpm2_immr;
103	fpi->dpram_offset = cpm_muram_alloc(128, 32);
104	if (IS_ERR_VALUE(fpi->dpram_offset)) {
105		ret = fpi->dpram_offset;
106		goto out_fcccp;
107	}
108
109	return 0;
110
111out_fcccp:
112	iounmap(fep->fcc.fcccp);
113out_ep:
114	iounmap(fep->fcc.ep);
115out_fccp:
116	iounmap(fep->fcc.fccp);
117out:
118	return ret;
119}
120
121#define FCC_NAPI_EVENT_MSK	(FCC_ENET_RXF | FCC_ENET_RXB | FCC_ENET_TXB)
122#define FCC_EVENT		(FCC_ENET_RXF | FCC_ENET_TXB)
123#define FCC_ERR_EVENT_MSK	(FCC_ENET_TXE)
124
125static int setup_data(struct net_device *dev)
126{
127	struct fs_enet_private *fep = netdev_priv(dev);
128
129	if (do_pd_setup(fep) != 0)
130		return -EINVAL;
131
132	fep->ev_napi = FCC_NAPI_EVENT_MSK;
133	fep->ev = FCC_EVENT;
134	fep->ev_err = FCC_ERR_EVENT_MSK;
135
136	return 0;
137}
138
139static int allocate_bd(struct net_device *dev)
140{
141	struct fs_enet_private *fep = netdev_priv(dev);
142	const struct fs_platform_info *fpi = fep->fpi;
143
144	fep->ring_base = (void __iomem __force *)dma_alloc_coherent(fep->dev,
145					    (fpi->tx_ring + fpi->rx_ring) *
146					    sizeof(cbd_t), &fep->ring_mem_addr,
147					    GFP_KERNEL);
148	if (fep->ring_base == NULL)
149		return -ENOMEM;
150
151	return 0;
152}
153
154static void free_bd(struct net_device *dev)
155{
156	struct fs_enet_private *fep = netdev_priv(dev);
157	const struct fs_platform_info *fpi = fep->fpi;
158
159	if (fep->ring_base)
160		dma_free_coherent(fep->dev,
161			(fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
162			(void __force *)fep->ring_base, fep->ring_mem_addr);
163}
164
165static void cleanup_data(struct net_device *dev)
166{
167	/* nothing */
168}
169
170static void set_promiscuous_mode(struct net_device *dev)
171{
172	struct fs_enet_private *fep = netdev_priv(dev);
173	fcc_t __iomem *fccp = fep->fcc.fccp;
174
175	S32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
176}
177
178static void set_multicast_start(struct net_device *dev)
179{
180	struct fs_enet_private *fep = netdev_priv(dev);
181	fcc_enet_t __iomem *ep = fep->fcc.ep;
182
183	W32(ep, fen_gaddrh, 0);
184	W32(ep, fen_gaddrl, 0);
185}
186
187static void set_multicast_one(struct net_device *dev, const u8 *mac)
188{
189	struct fs_enet_private *fep = netdev_priv(dev);
190	fcc_enet_t __iomem *ep = fep->fcc.ep;
191	u16 taddrh, taddrm, taddrl;
192
193	taddrh = ((u16)mac[5] << 8) | mac[4];
194	taddrm = ((u16)mac[3] << 8) | mac[2];
195	taddrl = ((u16)mac[1] << 8) | mac[0];
196
197	W16(ep, fen_taddrh, taddrh);
198	W16(ep, fen_taddrm, taddrm);
199	W16(ep, fen_taddrl, taddrl);
200	fcc_cr_cmd(fep, CPM_CR_SET_GADDR);
201}
202
203static void set_multicast_finish(struct net_device *dev)
204{
205	struct fs_enet_private *fep = netdev_priv(dev);
206	fcc_t __iomem *fccp = fep->fcc.fccp;
207	fcc_enet_t __iomem *ep = fep->fcc.ep;
208
209	/* clear promiscuous always */
210	C32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
211
212	/* if all multi or too many multicasts; just enable all */
213	if ((dev->flags & IFF_ALLMULTI) != 0 ||
214	    netdev_mc_count(dev) > FCC_MAX_MULTICAST_ADDRS) {
215
216		W32(ep, fen_gaddrh, 0xffffffff);
217		W32(ep, fen_gaddrl, 0xffffffff);
218	}
219
220	/* read back */
221	fep->fcc.gaddrh = R32(ep, fen_gaddrh);
222	fep->fcc.gaddrl = R32(ep, fen_gaddrl);
223}
224
225static void set_multicast_list(struct net_device *dev)
226{
227	struct netdev_hw_addr *ha;
228
229	if ((dev->flags & IFF_PROMISC) == 0) {
230		set_multicast_start(dev);
231		netdev_for_each_mc_addr(ha, dev)
232			set_multicast_one(dev, ha->addr);
233		set_multicast_finish(dev);
234	} else
235		set_promiscuous_mode(dev);
236}
237
238static void restart(struct net_device *dev, phy_interface_t interface,
239		    int speed, int duplex)
240{
241	struct fs_enet_private *fep = netdev_priv(dev);
242	const struct fs_platform_info *fpi = fep->fpi;
243	fcc_t __iomem *fccp = fep->fcc.fccp;
244	fcc_c_t __iomem *fcccp = fep->fcc.fcccp;
245	fcc_enet_t __iomem *ep = fep->fcc.ep;
246	dma_addr_t rx_bd_base_phys, tx_bd_base_phys;
247	u16 paddrh, paddrm, paddrl;
248	const unsigned char *mac;
249	int i;
250
251	C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
252
253	/* clear everything (slow & steady does it) */
254	for (i = 0; i < sizeof(*ep); i++)
255		out_8((u8 __iomem *)ep + i, 0);
256
257	/* get physical address */
258	rx_bd_base_phys = fep->ring_mem_addr;
259	tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring;
260
261	/* point to bds */
262	W32(ep, fen_genfcc.fcc_rbase, rx_bd_base_phys);
263	W32(ep, fen_genfcc.fcc_tbase, tx_bd_base_phys);
264
265	/* Set maximum bytes per receive buffer.
266	 * It must be a multiple of 32.
267	 */
268	W16(ep, fen_genfcc.fcc_mrblr, PKT_MAXBLR_SIZE);
269
270	W32(ep, fen_genfcc.fcc_rstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
271	W32(ep, fen_genfcc.fcc_tstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
272
273	/* Allocate space in the reserved FCC area of DPRAM for the
274	 * internal buffers.  No one uses this space (yet), so we
275	 * can do this.  Later, we will add resource management for
276	 * this area.
277	 */
278
279	W16(ep, fen_genfcc.fcc_riptr, fpi->dpram_offset);
280	W16(ep, fen_genfcc.fcc_tiptr, fpi->dpram_offset + 32);
281
282	W16(ep, fen_padptr, fpi->dpram_offset + 64);
283
284	/* fill with special symbol...  */
285	memset_io(fep->fcc.mem + fpi->dpram_offset + 64, 0x88, 32);
286
287	W32(ep, fen_genfcc.fcc_rbptr, 0);
288	W32(ep, fen_genfcc.fcc_tbptr, 0);
289	W32(ep, fen_genfcc.fcc_rcrc, 0);
290	W32(ep, fen_genfcc.fcc_tcrc, 0);
291	W16(ep, fen_genfcc.fcc_res1, 0);
292	W32(ep, fen_genfcc.fcc_res2, 0);
293
294	/* no CAM */
295	W32(ep, fen_camptr, 0);
296
297	/* Set CRC preset and mask */
298	W32(ep, fen_cmask, 0xdebb20e3);
299	W32(ep, fen_cpres, 0xffffffff);
300
301	W32(ep, fen_crcec, 0);		/* CRC Error counter       */
302	W32(ep, fen_alec, 0);		/* alignment error counter */
303	W32(ep, fen_disfc, 0);		/* discard frame counter   */
304	W16(ep, fen_retlim, 15);	/* Retry limit threshold   */
305	W16(ep, fen_pper, 0);		/* Normal persistence      */
306
307	/* set group address */
308	W32(ep, fen_gaddrh, fep->fcc.gaddrh);
309	W32(ep, fen_gaddrl, fep->fcc.gaddrh);
310
311	/* Clear hash filter tables */
312	W32(ep, fen_iaddrh, 0);
313	W32(ep, fen_iaddrl, 0);
314
315	/* Clear the Out-of-sequence TxBD  */
316	W16(ep, fen_tfcstat, 0);
317	W16(ep, fen_tfclen, 0);
318	W32(ep, fen_tfcptr, 0);
319
320	W16(ep, fen_mflr, PKT_MAXBUF_SIZE);	/* maximum frame length register */
321	W16(ep, fen_minflr, PKT_MINBUF_SIZE);	/* minimum frame length register */
322
323	/* set address */
324	mac = dev->dev_addr;
325	paddrh = ((u16)mac[5] << 8) | mac[4];
326	paddrm = ((u16)mac[3] << 8) | mac[2];
327	paddrl = ((u16)mac[1] << 8) | mac[0];
328
329	W16(ep, fen_paddrh, paddrh);
330	W16(ep, fen_paddrm, paddrm);
331	W16(ep, fen_paddrl, paddrl);
332
333	W16(ep, fen_taddrh, 0);
334	W16(ep, fen_taddrm, 0);
335	W16(ep, fen_taddrl, 0);
336
337	W16(ep, fen_maxd1, 1520);	/* maximum DMA1 length */
338	W16(ep, fen_maxd2, 1520);	/* maximum DMA2 length */
339
340	/* Clear stat counters, in case we ever enable RMON */
341	W32(ep, fen_octc, 0);
342	W32(ep, fen_colc, 0);
343	W32(ep, fen_broc, 0);
344	W32(ep, fen_mulc, 0);
345	W32(ep, fen_uspc, 0);
346	W32(ep, fen_frgc, 0);
347	W32(ep, fen_ospc, 0);
348	W32(ep, fen_jbrc, 0);
349	W32(ep, fen_p64c, 0);
350	W32(ep, fen_p65c, 0);
351	W32(ep, fen_p128c, 0);
352	W32(ep, fen_p256c, 0);
353	W32(ep, fen_p512c, 0);
354	W32(ep, fen_p1024c, 0);
355
356	W16(ep, fen_rfthr, 0);	/* Suggested by manual */
357	W16(ep, fen_rfcnt, 0);
358	W16(ep, fen_cftype, 0);
359
360	fs_init_bds(dev);
361
362	/* adjust to speed (for RMII mode) */
363	if (interface == PHY_INTERFACE_MODE_RMII) {
364		if (speed == SPEED_100)
365			C8(fcccp, fcc_gfemr, 0x20);
366		else
367			S8(fcccp, fcc_gfemr, 0x20);
368	}
369
370	fcc_cr_cmd(fep, CPM_CR_INIT_TRX);
371
372	/* clear events */
373	W16(fccp, fcc_fcce, 0xffff);
374
375	/* Enable interrupts we wish to service */
376	W16(fccp, fcc_fccm, FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
377
378	/* Set GFMR to enable Ethernet operating mode */
379	W32(fccp, fcc_gfmr, FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
380
381	/* set sync/delimiters */
382	W16(fccp, fcc_fdsr, 0xd555);
383
384	W32(fccp, fcc_fpsmr, FCC_PSMR_ENCRC);
385
386	if (interface == PHY_INTERFACE_MODE_RMII)
387		S32(fccp, fcc_fpsmr, FCC_PSMR_RMII);
388
389	/* adjust to duplex mode */
390	if (duplex == DUPLEX_FULL)
391		S32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
392	else
393		C32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
394
395	/* Restore multicast and promiscuous settings */
396	set_multicast_list(dev);
397
398	S32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
399}
400
401static void stop(struct net_device *dev)
402{
403	struct fs_enet_private *fep = netdev_priv(dev);
404	fcc_t __iomem *fccp = fep->fcc.fccp;
405
406	/* stop ethernet */
407	C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
408
409	/* clear events */
410	W16(fccp, fcc_fcce, 0xffff);
411
412	/* clear interrupt mask */
413	W16(fccp, fcc_fccm, 0);
414
415	fs_cleanup_bds(dev);
416}
417
418static void napi_clear_event_fs(struct net_device *dev)
419{
420	struct fs_enet_private *fep = netdev_priv(dev);
421	fcc_t __iomem *fccp = fep->fcc.fccp;
422
423	W16(fccp, fcc_fcce, FCC_NAPI_EVENT_MSK);
424}
425
426static void napi_enable_fs(struct net_device *dev)
427{
428	struct fs_enet_private *fep = netdev_priv(dev);
429	fcc_t __iomem *fccp = fep->fcc.fccp;
430
431	S16(fccp, fcc_fccm, FCC_NAPI_EVENT_MSK);
432}
433
434static void napi_disable_fs(struct net_device *dev)
435{
436	struct fs_enet_private *fep = netdev_priv(dev);
437	fcc_t __iomem *fccp = fep->fcc.fccp;
438
439	C16(fccp, fcc_fccm, FCC_NAPI_EVENT_MSK);
440}
441
442static void rx_bd_done(struct net_device *dev)
443{
444	/* nothing */
445}
446
447static void tx_kickstart(struct net_device *dev)
448{
449	struct fs_enet_private *fep = netdev_priv(dev);
450	fcc_t __iomem *fccp = fep->fcc.fccp;
451
452	S16(fccp, fcc_ftodr, 0x8000);
453}
454
455static u32 get_int_events(struct net_device *dev)
456{
457	struct fs_enet_private *fep = netdev_priv(dev);
458	fcc_t __iomem *fccp = fep->fcc.fccp;
459
460	return (u32)R16(fccp, fcc_fcce);
461}
462
463static void clear_int_events(struct net_device *dev, u32 int_events)
464{
465	struct fs_enet_private *fep = netdev_priv(dev);
466	fcc_t __iomem *fccp = fep->fcc.fccp;
467
468	W16(fccp, fcc_fcce, int_events & 0xffff);
469}
470
471static void ev_error(struct net_device *dev, u32 int_events)
472{
473	struct fs_enet_private *fep = netdev_priv(dev);
474
475	dev_warn(fep->dev, "FS_ENET ERROR(s) 0x%x\n", int_events);
476}
477
478static int get_regs(struct net_device *dev, void *p, int *sizep)
479{
480	struct fs_enet_private *fep = netdev_priv(dev);
481
482	if (*sizep < sizeof(fcc_t) + sizeof(fcc_enet_t) + 1)
483		return -EINVAL;
484
485	memcpy_fromio(p, fep->fcc.fccp, sizeof(fcc_t));
486	p = (char *)p + sizeof(fcc_t);
487
488	memcpy_fromio(p, fep->fcc.ep, sizeof(fcc_enet_t));
489	p = (char *)p + sizeof(fcc_enet_t);
490
491	memcpy_fromio(p, fep->fcc.fcccp, 1);
492	return 0;
493}
494
495static int get_regs_len(struct net_device *dev)
496{
497	return sizeof(fcc_t) + sizeof(fcc_enet_t) + 1;
498}
499
500/* Some transmit errors cause the transmitter to shut
501 * down.  We now issue a restart transmit.
502 * Also, to workaround 8260 device erratum CPM37, we must
503 * disable and then re-enable the transmitterfollowing a
504 * Late Collision, Underrun, or Retry Limit error.
505 * In addition, tbptr may point beyond BDs beyond still marked
506 * as ready due to internal pipelining, so we need to look back
507 * through the BDs and adjust tbptr to point to the last BD
508 * marked as ready.  This may result in some buffers being
509 * retransmitted.
510 */
511static void tx_restart(struct net_device *dev)
512{
513	struct fs_enet_private *fep = netdev_priv(dev);
514	fcc_t __iomem *fccp = fep->fcc.fccp;
515	const struct fs_platform_info *fpi = fep->fpi;
516	fcc_enet_t __iomem *ep = fep->fcc.ep;
517	cbd_t __iomem *curr_tbptr;
518	cbd_t __iomem *recheck_bd;
519	cbd_t __iomem *prev_bd;
520	cbd_t __iomem *last_tx_bd;
521
522	last_tx_bd = fep->tx_bd_base + (fpi->tx_ring - 1);
523
524	/* get the current bd held in TBPTR  and scan back from this point */
525	recheck_bd = curr_tbptr = (cbd_t __iomem *)
526		((R32(ep, fen_genfcc.fcc_tbptr) - fep->ring_mem_addr) +
527		fep->ring_base);
528
529	prev_bd = (recheck_bd == fep->tx_bd_base) ? last_tx_bd : recheck_bd - 1;
530
531	/* Move through the bds in reverse, look for the earliest buffer
532	 * that is not ready.  Adjust TBPTR to the following buffer */
533	while ((CBDR_SC(prev_bd) & BD_ENET_TX_READY) != 0) {
534		/* Go back one buffer */
535		recheck_bd = prev_bd;
536
537		/* update the previous buffer */
538		prev_bd = (prev_bd == fep->tx_bd_base) ? last_tx_bd : prev_bd - 1;
539
540		/* We should never see all bds marked as ready, check anyway */
541		if (recheck_bd == curr_tbptr)
542			break;
543	}
544	/* Now update the TBPTR and dirty flag to the current buffer */
545	W32(ep, fen_genfcc.fcc_tbptr,
546		(uint)(((void __iomem *)recheck_bd - fep->ring_base) +
547		fep->ring_mem_addr));
548	fep->dirty_tx = recheck_bd;
549
550	C32(fccp, fcc_gfmr, FCC_GFMR_ENT);
551	udelay(10);
552	S32(fccp, fcc_gfmr, FCC_GFMR_ENT);
553
554	fcc_cr_cmd(fep, CPM_CR_RESTART_TX);
555}
556
557/*************************************************************************/
558
559const struct fs_ops fs_fcc_ops = {
560	.setup_data		= setup_data,
561	.cleanup_data		= cleanup_data,
562	.set_multicast_list	= set_multicast_list,
563	.restart		= restart,
564	.stop			= stop,
565	.napi_clear_event	= napi_clear_event_fs,
566	.napi_enable		= napi_enable_fs,
567	.napi_disable		= napi_disable_fs,
568	.rx_bd_done		= rx_bd_done,
569	.tx_kickstart		= tx_kickstart,
570	.get_int_events		= get_int_events,
571	.clear_int_events	= clear_int_events,
572	.ev_error		= ev_error,
573	.get_regs		= get_regs,
574	.get_regs_len		= get_regs_len,
575	.tx_restart		= tx_restart,
576	.allocate_bd		= allocate_bd,
577	.free_bd		= free_bd,
578};