Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Realtek SMI subdriver for the Realtek RTL8365MB-VC ethernet switch.
3 *
4 * Copyright (C) 2021 Alvin Šipraga <alsi@bang-olufsen.dk>
5 * Copyright (C) 2021 Michael Rasmussen <mir@bang-olufsen.dk>
6 *
7 * The RTL8365MB-VC is a 4+1 port 10/100/1000M switch controller. It includes 4
8 * integrated PHYs for the user facing ports, and an extension interface which
9 * can be connected to the CPU - or another PHY - via either MII, RMII, or
10 * RGMII. The switch is configured via the Realtek Simple Management Interface
11 * (SMI), which uses the MDIO/MDC lines.
12 *
13 * Below is a simplified block diagram of the chip and its relevant interfaces.
14 *
15 * .-----------------------------------.
16 * | |
17 * UTP <---------------> Giga PHY <-> PCS <-> P0 GMAC |
18 * UTP <---------------> Giga PHY <-> PCS <-> P1 GMAC |
19 * UTP <---------------> Giga PHY <-> PCS <-> P2 GMAC |
20 * UTP <---------------> Giga PHY <-> PCS <-> P3 GMAC |
21 * | |
22 * CPU/PHY <-MII/RMII/RGMII---> Extension <---> Extension |
23 * | interface 1 GMAC 1 |
24 * | |
25 * SMI driver/ <-MDC/SCL---> Management ~~~~~~~~~~~~~~ |
26 * EEPROM <-MDIO/SDA--> interface ~REALTEK ~~~~~ |
27 * | ~RTL8365MB ~~~ |
28 * | ~GXXXC TAIWAN~ |
29 * GPIO <--------------> Reset ~~~~~~~~~~~~~~ |
30 * | |
31 * Interrupt <----------> Link UP/DOWN events |
32 * controller | |
33 * '-----------------------------------'
34 *
35 * The driver uses DSA to integrate the 4 user and 1 extension ports into the
36 * kernel. Netdevices are created for the user ports, as are PHY devices for
37 * their integrated PHYs. The device tree firmware should also specify the link
38 * partner of the extension port - either via a fixed-link or other phy-handle.
39 * See the device tree bindings for more detailed information. Note that the
40 * driver has only been tested with a fixed-link, but in principle it should not
41 * matter.
42 *
43 * NOTE: Currently, only the RGMII interface is implemented in this driver.
44 *
45 * The interrupt line is asserted on link UP/DOWN events. The driver creates a
46 * custom irqchip to handle this interrupt and demultiplex the events by reading
47 * the status registers via SMI. Interrupts are then propagated to the relevant
48 * PHY device.
49 *
50 * The EEPROM contains initial register values which the chip will read over I2C
51 * upon hardware reset. It is also possible to omit the EEPROM. In both cases,
52 * the driver will manually reprogram some registers using jam tables to reach
53 * an initial state defined by the vendor driver.
54 *
55 * This Linux driver is written based on an OS-agnostic vendor driver from
56 * Realtek. The reference GPL-licensed sources can be found in the OpenWrt
57 * source tree under the name rtl8367c. The vendor driver claims to support a
58 * number of similar switch controllers from Realtek, but the only hardware we
59 * have is the RTL8365MB-VC. Moreover, there does not seem to be any chip under
60 * the name RTL8367C. Although one wishes that the 'C' stood for some kind of
61 * common hardware revision, there exist examples of chips with the suffix -VC
62 * which are explicitly not supported by the rtl8367c driver and which instead
63 * require the rtl8367d vendor driver. With all this uncertainty, the driver has
64 * been modestly named rtl8365mb. Future implementors may wish to rename things
65 * accordingly.
66 *
67 * In the same family of chips, some carry up to 8 user ports and up to 2
68 * extension ports. Where possible this driver tries to make things generic, but
69 * more work must be done to support these configurations. According to
70 * documentation from Realtek, the family should include the following chips:
71 *
72 * - RTL8363NB
73 * - RTL8363NB-VB
74 * - RTL8363SC
75 * - RTL8363SC-VB
76 * - RTL8364NB
77 * - RTL8364NB-VB
78 * - RTL8365MB-VC
79 * - RTL8366SC
80 * - RTL8367RB-VB
81 * - RTL8367SB
82 * - RTL8367S
83 * - RTL8370MB
84 * - RTL8310SR
85 *
86 * Some of the register logic for these additional chips has been skipped over
87 * while implementing this driver. It is therefore not possible to assume that
88 * things will work out-of-the-box for other chips, and a careful review of the
89 * vendor driver may be needed to expand support. The RTL8365MB-VC seems to be
90 * one of the simpler chips.
91 */
92
93#include <linux/bitfield.h>
94#include <linux/bitops.h>
95#include <linux/interrupt.h>
96#include <linux/irqdomain.h>
97#include <linux/mutex.h>
98#include <linux/of_irq.h>
99#include <linux/regmap.h>
100#include <linux/if_bridge.h>
101#include <linux/if_vlan.h>
102
103#include "realtek.h"
104
105/* Family-specific data and limits */
106#define RTL8365MB_PHYADDRMAX 7
107#define RTL8365MB_NUM_PHYREGS 32
108#define RTL8365MB_PHYREGMAX (RTL8365MB_NUM_PHYREGS - 1)
109#define RTL8365MB_MAX_NUM_PORTS 11
110#define RTL8365MB_MAX_NUM_EXTINTS 3
111#define RTL8365MB_LEARN_LIMIT_MAX 2112
112
113/* Chip identification registers */
114#define RTL8365MB_CHIP_ID_REG 0x1300
115
116#define RTL8365MB_CHIP_VER_REG 0x1301
117
118#define RTL8365MB_MAGIC_REG 0x13C2
119#define RTL8365MB_MAGIC_VALUE 0x0249
120
121/* Chip reset register */
122#define RTL8365MB_CHIP_RESET_REG 0x1322
123#define RTL8365MB_CHIP_RESET_SW_MASK 0x0002
124#define RTL8365MB_CHIP_RESET_HW_MASK 0x0001
125
126/* Interrupt polarity register */
127#define RTL8365MB_INTR_POLARITY_REG 0x1100
128#define RTL8365MB_INTR_POLARITY_MASK 0x0001
129#define RTL8365MB_INTR_POLARITY_HIGH 0
130#define RTL8365MB_INTR_POLARITY_LOW 1
131
132/* Interrupt control/status register - enable/check specific interrupt types */
133#define RTL8365MB_INTR_CTRL_REG 0x1101
134#define RTL8365MB_INTR_STATUS_REG 0x1102
135#define RTL8365MB_INTR_SLIENT_START_2_MASK 0x1000
136#define RTL8365MB_INTR_SLIENT_START_MASK 0x0800
137#define RTL8365MB_INTR_ACL_ACTION_MASK 0x0200
138#define RTL8365MB_INTR_CABLE_DIAG_FIN_MASK 0x0100
139#define RTL8365MB_INTR_INTERRUPT_8051_MASK 0x0080
140#define RTL8365MB_INTR_LOOP_DETECTION_MASK 0x0040
141#define RTL8365MB_INTR_GREEN_TIMER_MASK 0x0020
142#define RTL8365MB_INTR_SPECIAL_CONGEST_MASK 0x0010
143#define RTL8365MB_INTR_SPEED_CHANGE_MASK 0x0008
144#define RTL8365MB_INTR_LEARN_OVER_MASK 0x0004
145#define RTL8365MB_INTR_METER_EXCEEDED_MASK 0x0002
146#define RTL8365MB_INTR_LINK_CHANGE_MASK 0x0001
147#define RTL8365MB_INTR_ALL_MASK \
148 (RTL8365MB_INTR_SLIENT_START_2_MASK | \
149 RTL8365MB_INTR_SLIENT_START_MASK | \
150 RTL8365MB_INTR_ACL_ACTION_MASK | \
151 RTL8365MB_INTR_CABLE_DIAG_FIN_MASK | \
152 RTL8365MB_INTR_INTERRUPT_8051_MASK | \
153 RTL8365MB_INTR_LOOP_DETECTION_MASK | \
154 RTL8365MB_INTR_GREEN_TIMER_MASK | \
155 RTL8365MB_INTR_SPECIAL_CONGEST_MASK | \
156 RTL8365MB_INTR_SPEED_CHANGE_MASK | \
157 RTL8365MB_INTR_LEARN_OVER_MASK | \
158 RTL8365MB_INTR_METER_EXCEEDED_MASK | \
159 RTL8365MB_INTR_LINK_CHANGE_MASK)
160
161/* Per-port interrupt type status registers */
162#define RTL8365MB_PORT_LINKDOWN_IND_REG 0x1106
163#define RTL8365MB_PORT_LINKDOWN_IND_MASK 0x07FF
164
165#define RTL8365MB_PORT_LINKUP_IND_REG 0x1107
166#define RTL8365MB_PORT_LINKUP_IND_MASK 0x07FF
167
168/* PHY indirect access registers */
169#define RTL8365MB_INDIRECT_ACCESS_CTRL_REG 0x1F00
170#define RTL8365MB_INDIRECT_ACCESS_CTRL_RW_MASK 0x0002
171#define RTL8365MB_INDIRECT_ACCESS_CTRL_RW_READ 0
172#define RTL8365MB_INDIRECT_ACCESS_CTRL_RW_WRITE 1
173#define RTL8365MB_INDIRECT_ACCESS_CTRL_CMD_MASK 0x0001
174#define RTL8365MB_INDIRECT_ACCESS_CTRL_CMD_VALUE 1
175#define RTL8365MB_INDIRECT_ACCESS_STATUS_REG 0x1F01
176#define RTL8365MB_INDIRECT_ACCESS_ADDRESS_REG 0x1F02
177#define RTL8365MB_INDIRECT_ACCESS_ADDRESS_OCPADR_5_1_MASK GENMASK(4, 0)
178#define RTL8365MB_INDIRECT_ACCESS_ADDRESS_PHYNUM_MASK GENMASK(7, 5)
179#define RTL8365MB_INDIRECT_ACCESS_ADDRESS_OCPADR_9_6_MASK GENMASK(11, 8)
180#define RTL8365MB_PHY_BASE 0x2000
181#define RTL8365MB_INDIRECT_ACCESS_WRITE_DATA_REG 0x1F03
182#define RTL8365MB_INDIRECT_ACCESS_READ_DATA_REG 0x1F04
183
184/* PHY OCP address prefix register */
185#define RTL8365MB_GPHY_OCP_MSB_0_REG 0x1D15
186#define RTL8365MB_GPHY_OCP_MSB_0_CFG_CPU_OCPADR_MASK 0x0FC0
187#define RTL8365MB_PHY_OCP_ADDR_PREFIX_MASK 0xFC00
188
189/* The PHY OCP addresses of PHY registers 0~31 start here */
190#define RTL8365MB_PHY_OCP_ADDR_PHYREG_BASE 0xA400
191
192/* External interface port mode values - used in DIGITAL_INTERFACE_SELECT */
193#define RTL8365MB_EXT_PORT_MODE_DISABLE 0
194#define RTL8365MB_EXT_PORT_MODE_RGMII 1
195#define RTL8365MB_EXT_PORT_MODE_MII_MAC 2
196#define RTL8365MB_EXT_PORT_MODE_MII_PHY 3
197#define RTL8365MB_EXT_PORT_MODE_TMII_MAC 4
198#define RTL8365MB_EXT_PORT_MODE_TMII_PHY 5
199#define RTL8365MB_EXT_PORT_MODE_GMII 6
200#define RTL8365MB_EXT_PORT_MODE_RMII_MAC 7
201#define RTL8365MB_EXT_PORT_MODE_RMII_PHY 8
202#define RTL8365MB_EXT_PORT_MODE_SGMII 9
203#define RTL8365MB_EXT_PORT_MODE_HSGMII 10
204#define RTL8365MB_EXT_PORT_MODE_1000X_100FX 11
205#define RTL8365MB_EXT_PORT_MODE_1000X 12
206#define RTL8365MB_EXT_PORT_MODE_100FX 13
207
208/* External interface mode configuration registers 0~1 */
209#define RTL8365MB_DIGITAL_INTERFACE_SELECT_REG0 0x1305 /* EXT1 */
210#define RTL8365MB_DIGITAL_INTERFACE_SELECT_REG1 0x13C3 /* EXT2 */
211#define RTL8365MB_DIGITAL_INTERFACE_SELECT_REG(_extint) \
212 ((_extint) == 1 ? RTL8365MB_DIGITAL_INTERFACE_SELECT_REG0 : \
213 (_extint) == 2 ? RTL8365MB_DIGITAL_INTERFACE_SELECT_REG1 : \
214 0x0)
215#define RTL8365MB_DIGITAL_INTERFACE_SELECT_MODE_MASK(_extint) \
216 (0xF << (((_extint) % 2)))
217#define RTL8365MB_DIGITAL_INTERFACE_SELECT_MODE_OFFSET(_extint) \
218 (((_extint) % 2) * 4)
219
220/* External interface RGMII TX/RX delay configuration registers 0~2 */
221#define RTL8365MB_EXT_RGMXF_REG0 0x1306 /* EXT0 */
222#define RTL8365MB_EXT_RGMXF_REG1 0x1307 /* EXT1 */
223#define RTL8365MB_EXT_RGMXF_REG2 0x13C5 /* EXT2 */
224#define RTL8365MB_EXT_RGMXF_REG(_extint) \
225 ((_extint) == 0 ? RTL8365MB_EXT_RGMXF_REG0 : \
226 (_extint) == 1 ? RTL8365MB_EXT_RGMXF_REG1 : \
227 (_extint) == 2 ? RTL8365MB_EXT_RGMXF_REG2 : \
228 0x0)
229#define RTL8365MB_EXT_RGMXF_RXDELAY_MASK 0x0007
230#define RTL8365MB_EXT_RGMXF_TXDELAY_MASK 0x0008
231
232/* External interface port speed values - used in DIGITAL_INTERFACE_FORCE */
233#define RTL8365MB_PORT_SPEED_10M 0
234#define RTL8365MB_PORT_SPEED_100M 1
235#define RTL8365MB_PORT_SPEED_1000M 2
236
237/* External interface force configuration registers 0~2 */
238#define RTL8365MB_DIGITAL_INTERFACE_FORCE_REG0 0x1310 /* EXT0 */
239#define RTL8365MB_DIGITAL_INTERFACE_FORCE_REG1 0x1311 /* EXT1 */
240#define RTL8365MB_DIGITAL_INTERFACE_FORCE_REG2 0x13C4 /* EXT2 */
241#define RTL8365MB_DIGITAL_INTERFACE_FORCE_REG(_extint) \
242 ((_extint) == 0 ? RTL8365MB_DIGITAL_INTERFACE_FORCE_REG0 : \
243 (_extint) == 1 ? RTL8365MB_DIGITAL_INTERFACE_FORCE_REG1 : \
244 (_extint) == 2 ? RTL8365MB_DIGITAL_INTERFACE_FORCE_REG2 : \
245 0x0)
246#define RTL8365MB_DIGITAL_INTERFACE_FORCE_EN_MASK 0x1000
247#define RTL8365MB_DIGITAL_INTERFACE_FORCE_NWAY_MASK 0x0080
248#define RTL8365MB_DIGITAL_INTERFACE_FORCE_TXPAUSE_MASK 0x0040
249#define RTL8365MB_DIGITAL_INTERFACE_FORCE_RXPAUSE_MASK 0x0020
250#define RTL8365MB_DIGITAL_INTERFACE_FORCE_LINK_MASK 0x0010
251#define RTL8365MB_DIGITAL_INTERFACE_FORCE_DUPLEX_MASK 0x0004
252#define RTL8365MB_DIGITAL_INTERFACE_FORCE_SPEED_MASK 0x0003
253
254/* CPU port mask register - controls which ports are treated as CPU ports */
255#define RTL8365MB_CPU_PORT_MASK_REG 0x1219
256#define RTL8365MB_CPU_PORT_MASK_MASK 0x07FF
257
258/* CPU control register */
259#define RTL8365MB_CPU_CTRL_REG 0x121A
260#define RTL8365MB_CPU_CTRL_TRAP_PORT_EXT_MASK 0x0400
261#define RTL8365MB_CPU_CTRL_TAG_FORMAT_MASK 0x0200
262#define RTL8365MB_CPU_CTRL_RXBYTECOUNT_MASK 0x0080
263#define RTL8365MB_CPU_CTRL_TAG_POSITION_MASK 0x0040
264#define RTL8365MB_CPU_CTRL_TRAP_PORT_MASK 0x0038
265#define RTL8365MB_CPU_CTRL_INSERTMODE_MASK 0x0006
266#define RTL8365MB_CPU_CTRL_EN_MASK 0x0001
267
268/* Maximum packet length register */
269#define RTL8365MB_CFG0_MAX_LEN_REG 0x088C
270#define RTL8365MB_CFG0_MAX_LEN_MASK 0x3FFF
271#define RTL8365MB_CFG0_MAX_LEN_MAX 0x3FFF
272
273/* Port learning limit registers */
274#define RTL8365MB_LUT_PORT_LEARN_LIMIT_BASE 0x0A20
275#define RTL8365MB_LUT_PORT_LEARN_LIMIT_REG(_physport) \
276 (RTL8365MB_LUT_PORT_LEARN_LIMIT_BASE + (_physport))
277
278/* Port isolation (forwarding mask) registers */
279#define RTL8365MB_PORT_ISOLATION_REG_BASE 0x08A2
280#define RTL8365MB_PORT_ISOLATION_REG(_physport) \
281 (RTL8365MB_PORT_ISOLATION_REG_BASE + (_physport))
282#define RTL8365MB_PORT_ISOLATION_MASK 0x07FF
283
284/* MSTP port state registers - indexed by tree instance */
285#define RTL8365MB_MSTI_CTRL_BASE 0x0A00
286#define RTL8365MB_MSTI_CTRL_REG(_msti, _physport) \
287 (RTL8365MB_MSTI_CTRL_BASE + ((_msti) << 1) + ((_physport) >> 3))
288#define RTL8365MB_MSTI_CTRL_PORT_STATE_OFFSET(_physport) ((_physport) << 1)
289#define RTL8365MB_MSTI_CTRL_PORT_STATE_MASK(_physport) \
290 (0x3 << RTL8365MB_MSTI_CTRL_PORT_STATE_OFFSET((_physport)))
291
292/* MIB counter value registers */
293#define RTL8365MB_MIB_COUNTER_BASE 0x1000
294#define RTL8365MB_MIB_COUNTER_REG(_x) (RTL8365MB_MIB_COUNTER_BASE + (_x))
295
296/* MIB counter address register */
297#define RTL8365MB_MIB_ADDRESS_REG 0x1004
298#define RTL8365MB_MIB_ADDRESS_PORT_OFFSET 0x007C
299#define RTL8365MB_MIB_ADDRESS(_p, _x) \
300 (((RTL8365MB_MIB_ADDRESS_PORT_OFFSET) * (_p) + (_x)) >> 2)
301
302#define RTL8365MB_MIB_CTRL0_REG 0x1005
303#define RTL8365MB_MIB_CTRL0_RESET_MASK 0x0002
304#define RTL8365MB_MIB_CTRL0_BUSY_MASK 0x0001
305
306/* The DSA callback .get_stats64 runs in atomic context, so we are not allowed
307 * to block. On the other hand, accessing MIB counters absolutely requires us to
308 * block. The solution is thus to schedule work which polls the MIB counters
309 * asynchronously and updates some private data, which the callback can then
310 * fetch atomically. Three seconds should be a good enough polling interval.
311 */
312#define RTL8365MB_STATS_INTERVAL_JIFFIES (3 * HZ)
313
314enum rtl8365mb_mib_counter_index {
315 RTL8365MB_MIB_ifInOctets,
316 RTL8365MB_MIB_dot3StatsFCSErrors,
317 RTL8365MB_MIB_dot3StatsSymbolErrors,
318 RTL8365MB_MIB_dot3InPauseFrames,
319 RTL8365MB_MIB_dot3ControlInUnknownOpcodes,
320 RTL8365MB_MIB_etherStatsFragments,
321 RTL8365MB_MIB_etherStatsJabbers,
322 RTL8365MB_MIB_ifInUcastPkts,
323 RTL8365MB_MIB_etherStatsDropEvents,
324 RTL8365MB_MIB_ifInMulticastPkts,
325 RTL8365MB_MIB_ifInBroadcastPkts,
326 RTL8365MB_MIB_inMldChecksumError,
327 RTL8365MB_MIB_inIgmpChecksumError,
328 RTL8365MB_MIB_inMldSpecificQuery,
329 RTL8365MB_MIB_inMldGeneralQuery,
330 RTL8365MB_MIB_inIgmpSpecificQuery,
331 RTL8365MB_MIB_inIgmpGeneralQuery,
332 RTL8365MB_MIB_inMldLeaves,
333 RTL8365MB_MIB_inIgmpLeaves,
334 RTL8365MB_MIB_etherStatsOctets,
335 RTL8365MB_MIB_etherStatsUnderSizePkts,
336 RTL8365MB_MIB_etherOversizeStats,
337 RTL8365MB_MIB_etherStatsPkts64Octets,
338 RTL8365MB_MIB_etherStatsPkts65to127Octets,
339 RTL8365MB_MIB_etherStatsPkts128to255Octets,
340 RTL8365MB_MIB_etherStatsPkts256to511Octets,
341 RTL8365MB_MIB_etherStatsPkts512to1023Octets,
342 RTL8365MB_MIB_etherStatsPkts1024to1518Octets,
343 RTL8365MB_MIB_ifOutOctets,
344 RTL8365MB_MIB_dot3StatsSingleCollisionFrames,
345 RTL8365MB_MIB_dot3StatsMultipleCollisionFrames,
346 RTL8365MB_MIB_dot3StatsDeferredTransmissions,
347 RTL8365MB_MIB_dot3StatsLateCollisions,
348 RTL8365MB_MIB_etherStatsCollisions,
349 RTL8365MB_MIB_dot3StatsExcessiveCollisions,
350 RTL8365MB_MIB_dot3OutPauseFrames,
351 RTL8365MB_MIB_ifOutDiscards,
352 RTL8365MB_MIB_dot1dTpPortInDiscards,
353 RTL8365MB_MIB_ifOutUcastPkts,
354 RTL8365MB_MIB_ifOutMulticastPkts,
355 RTL8365MB_MIB_ifOutBroadcastPkts,
356 RTL8365MB_MIB_outOampduPkts,
357 RTL8365MB_MIB_inOampduPkts,
358 RTL8365MB_MIB_inIgmpJoinsSuccess,
359 RTL8365MB_MIB_inIgmpJoinsFail,
360 RTL8365MB_MIB_inMldJoinsSuccess,
361 RTL8365MB_MIB_inMldJoinsFail,
362 RTL8365MB_MIB_inReportSuppressionDrop,
363 RTL8365MB_MIB_inLeaveSuppressionDrop,
364 RTL8365MB_MIB_outIgmpReports,
365 RTL8365MB_MIB_outIgmpLeaves,
366 RTL8365MB_MIB_outIgmpGeneralQuery,
367 RTL8365MB_MIB_outIgmpSpecificQuery,
368 RTL8365MB_MIB_outMldReports,
369 RTL8365MB_MIB_outMldLeaves,
370 RTL8365MB_MIB_outMldGeneralQuery,
371 RTL8365MB_MIB_outMldSpecificQuery,
372 RTL8365MB_MIB_inKnownMulticastPkts,
373 RTL8365MB_MIB_END,
374};
375
376struct rtl8365mb_mib_counter {
377 u32 offset;
378 u32 length;
379 const char *name;
380};
381
382#define RTL8365MB_MAKE_MIB_COUNTER(_offset, _length, _name) \
383 [RTL8365MB_MIB_ ## _name] = { _offset, _length, #_name }
384
385static struct rtl8365mb_mib_counter rtl8365mb_mib_counters[] = {
386 RTL8365MB_MAKE_MIB_COUNTER(0, 4, ifInOctets),
387 RTL8365MB_MAKE_MIB_COUNTER(4, 2, dot3StatsFCSErrors),
388 RTL8365MB_MAKE_MIB_COUNTER(6, 2, dot3StatsSymbolErrors),
389 RTL8365MB_MAKE_MIB_COUNTER(8, 2, dot3InPauseFrames),
390 RTL8365MB_MAKE_MIB_COUNTER(10, 2, dot3ControlInUnknownOpcodes),
391 RTL8365MB_MAKE_MIB_COUNTER(12, 2, etherStatsFragments),
392 RTL8365MB_MAKE_MIB_COUNTER(14, 2, etherStatsJabbers),
393 RTL8365MB_MAKE_MIB_COUNTER(16, 2, ifInUcastPkts),
394 RTL8365MB_MAKE_MIB_COUNTER(18, 2, etherStatsDropEvents),
395 RTL8365MB_MAKE_MIB_COUNTER(20, 2, ifInMulticastPkts),
396 RTL8365MB_MAKE_MIB_COUNTER(22, 2, ifInBroadcastPkts),
397 RTL8365MB_MAKE_MIB_COUNTER(24, 2, inMldChecksumError),
398 RTL8365MB_MAKE_MIB_COUNTER(26, 2, inIgmpChecksumError),
399 RTL8365MB_MAKE_MIB_COUNTER(28, 2, inMldSpecificQuery),
400 RTL8365MB_MAKE_MIB_COUNTER(30, 2, inMldGeneralQuery),
401 RTL8365MB_MAKE_MIB_COUNTER(32, 2, inIgmpSpecificQuery),
402 RTL8365MB_MAKE_MIB_COUNTER(34, 2, inIgmpGeneralQuery),
403 RTL8365MB_MAKE_MIB_COUNTER(36, 2, inMldLeaves),
404 RTL8365MB_MAKE_MIB_COUNTER(38, 2, inIgmpLeaves),
405 RTL8365MB_MAKE_MIB_COUNTER(40, 4, etherStatsOctets),
406 RTL8365MB_MAKE_MIB_COUNTER(44, 2, etherStatsUnderSizePkts),
407 RTL8365MB_MAKE_MIB_COUNTER(46, 2, etherOversizeStats),
408 RTL8365MB_MAKE_MIB_COUNTER(48, 2, etherStatsPkts64Octets),
409 RTL8365MB_MAKE_MIB_COUNTER(50, 2, etherStatsPkts65to127Octets),
410 RTL8365MB_MAKE_MIB_COUNTER(52, 2, etherStatsPkts128to255Octets),
411 RTL8365MB_MAKE_MIB_COUNTER(54, 2, etherStatsPkts256to511Octets),
412 RTL8365MB_MAKE_MIB_COUNTER(56, 2, etherStatsPkts512to1023Octets),
413 RTL8365MB_MAKE_MIB_COUNTER(58, 2, etherStatsPkts1024to1518Octets),
414 RTL8365MB_MAKE_MIB_COUNTER(60, 4, ifOutOctets),
415 RTL8365MB_MAKE_MIB_COUNTER(64, 2, dot3StatsSingleCollisionFrames),
416 RTL8365MB_MAKE_MIB_COUNTER(66, 2, dot3StatsMultipleCollisionFrames),
417 RTL8365MB_MAKE_MIB_COUNTER(68, 2, dot3StatsDeferredTransmissions),
418 RTL8365MB_MAKE_MIB_COUNTER(70, 2, dot3StatsLateCollisions),
419 RTL8365MB_MAKE_MIB_COUNTER(72, 2, etherStatsCollisions),
420 RTL8365MB_MAKE_MIB_COUNTER(74, 2, dot3StatsExcessiveCollisions),
421 RTL8365MB_MAKE_MIB_COUNTER(76, 2, dot3OutPauseFrames),
422 RTL8365MB_MAKE_MIB_COUNTER(78, 2, ifOutDiscards),
423 RTL8365MB_MAKE_MIB_COUNTER(80, 2, dot1dTpPortInDiscards),
424 RTL8365MB_MAKE_MIB_COUNTER(82, 2, ifOutUcastPkts),
425 RTL8365MB_MAKE_MIB_COUNTER(84, 2, ifOutMulticastPkts),
426 RTL8365MB_MAKE_MIB_COUNTER(86, 2, ifOutBroadcastPkts),
427 RTL8365MB_MAKE_MIB_COUNTER(88, 2, outOampduPkts),
428 RTL8365MB_MAKE_MIB_COUNTER(90, 2, inOampduPkts),
429 RTL8365MB_MAKE_MIB_COUNTER(92, 4, inIgmpJoinsSuccess),
430 RTL8365MB_MAKE_MIB_COUNTER(96, 2, inIgmpJoinsFail),
431 RTL8365MB_MAKE_MIB_COUNTER(98, 2, inMldJoinsSuccess),
432 RTL8365MB_MAKE_MIB_COUNTER(100, 2, inMldJoinsFail),
433 RTL8365MB_MAKE_MIB_COUNTER(102, 2, inReportSuppressionDrop),
434 RTL8365MB_MAKE_MIB_COUNTER(104, 2, inLeaveSuppressionDrop),
435 RTL8365MB_MAKE_MIB_COUNTER(106, 2, outIgmpReports),
436 RTL8365MB_MAKE_MIB_COUNTER(108, 2, outIgmpLeaves),
437 RTL8365MB_MAKE_MIB_COUNTER(110, 2, outIgmpGeneralQuery),
438 RTL8365MB_MAKE_MIB_COUNTER(112, 2, outIgmpSpecificQuery),
439 RTL8365MB_MAKE_MIB_COUNTER(114, 2, outMldReports),
440 RTL8365MB_MAKE_MIB_COUNTER(116, 2, outMldLeaves),
441 RTL8365MB_MAKE_MIB_COUNTER(118, 2, outMldGeneralQuery),
442 RTL8365MB_MAKE_MIB_COUNTER(120, 2, outMldSpecificQuery),
443 RTL8365MB_MAKE_MIB_COUNTER(122, 2, inKnownMulticastPkts),
444};
445
446static_assert(ARRAY_SIZE(rtl8365mb_mib_counters) == RTL8365MB_MIB_END);
447
448struct rtl8365mb_jam_tbl_entry {
449 u16 reg;
450 u16 val;
451};
452
453/* Lifted from the vendor driver sources */
454static const struct rtl8365mb_jam_tbl_entry rtl8365mb_init_jam_8365mb_vc[] = {
455 { 0x13EB, 0x15BB }, { 0x1303, 0x06D6 }, { 0x1304, 0x0700 },
456 { 0x13E2, 0x003F }, { 0x13F9, 0x0090 }, { 0x121E, 0x03CA },
457 { 0x1233, 0x0352 }, { 0x1237, 0x00A0 }, { 0x123A, 0x0030 },
458 { 0x1239, 0x0084 }, { 0x0301, 0x1000 }, { 0x1349, 0x001F },
459 { 0x18E0, 0x4004 }, { 0x122B, 0x241C }, { 0x1305, 0xC000 },
460 { 0x13F0, 0x0000 },
461};
462
463static const struct rtl8365mb_jam_tbl_entry rtl8365mb_init_jam_common[] = {
464 { 0x1200, 0x7FCB }, { 0x0884, 0x0003 }, { 0x06EB, 0x0001 },
465 { 0x03Fa, 0x0007 }, { 0x08C8, 0x00C0 }, { 0x0A30, 0x020E },
466 { 0x0800, 0x0000 }, { 0x0802, 0x0000 }, { 0x09DA, 0x0013 },
467 { 0x1D32, 0x0002 },
468};
469
470enum rtl8365mb_phy_interface_mode {
471 RTL8365MB_PHY_INTERFACE_MODE_INVAL = 0,
472 RTL8365MB_PHY_INTERFACE_MODE_INTERNAL = BIT(0),
473 RTL8365MB_PHY_INTERFACE_MODE_MII = BIT(1),
474 RTL8365MB_PHY_INTERFACE_MODE_TMII = BIT(2),
475 RTL8365MB_PHY_INTERFACE_MODE_RMII = BIT(3),
476 RTL8365MB_PHY_INTERFACE_MODE_RGMII = BIT(4),
477 RTL8365MB_PHY_INTERFACE_MODE_SGMII = BIT(5),
478 RTL8365MB_PHY_INTERFACE_MODE_HSGMII = BIT(6),
479};
480
481/**
482 * struct rtl8365mb_extint - external interface info
483 * @port: the port with an external interface
484 * @id: the external interface ID, which is either 0, 1, or 2
485 * @supported_interfaces: a bitmask of supported PHY interface modes
486 *
487 * Represents a mapping: port -> { id, supported_interfaces }. To be embedded
488 * in &struct rtl8365mb_chip_info for every port with an external interface.
489 */
490struct rtl8365mb_extint {
491 int port;
492 int id;
493 unsigned int supported_interfaces;
494};
495
496/**
497 * struct rtl8365mb_chip_info - static chip-specific info
498 * @name: human-readable chip name
499 * @chip_id: chip identifier
500 * @chip_ver: chip silicon revision
501 * @extints: available external interfaces
502 * @jam_table: chip-specific initialization jam table
503 * @jam_size: size of the chip's jam table
504 *
505 * These data are specific to a given chip in the family of switches supported
506 * by this driver. When adding support for another chip in the family, a new
507 * chip info should be added to the rtl8365mb_chip_infos array.
508 */
509struct rtl8365mb_chip_info {
510 const char *name;
511 u32 chip_id;
512 u32 chip_ver;
513 const struct rtl8365mb_extint extints[RTL8365MB_MAX_NUM_EXTINTS];
514 const struct rtl8365mb_jam_tbl_entry *jam_table;
515 size_t jam_size;
516};
517
518/* Chip info for each supported switch in the family */
519#define PHY_INTF(_mode) (RTL8365MB_PHY_INTERFACE_MODE_ ## _mode)
520static const struct rtl8365mb_chip_info rtl8365mb_chip_infos[] = {
521 {
522 .name = "RTL8365MB-VC",
523 .chip_id = 0x6367,
524 .chip_ver = 0x0040,
525 .extints = {
526 { 6, 1, PHY_INTF(MII) | PHY_INTF(TMII) |
527 PHY_INTF(RMII) | PHY_INTF(RGMII) },
528 },
529 .jam_table = rtl8365mb_init_jam_8365mb_vc,
530 .jam_size = ARRAY_SIZE(rtl8365mb_init_jam_8365mb_vc),
531 },
532 {
533 .name = "RTL8367S",
534 .chip_id = 0x6367,
535 .chip_ver = 0x00A0,
536 .extints = {
537 { 6, 1, PHY_INTF(SGMII) | PHY_INTF(HSGMII) },
538 { 7, 2, PHY_INTF(MII) | PHY_INTF(TMII) |
539 PHY_INTF(RMII) | PHY_INTF(RGMII) },
540 },
541 .jam_table = rtl8365mb_init_jam_8365mb_vc,
542 .jam_size = ARRAY_SIZE(rtl8365mb_init_jam_8365mb_vc),
543 },
544 {
545 .name = "RTL8367RB-VB",
546 .chip_id = 0x6367,
547 .chip_ver = 0x0020,
548 .extints = {
549 { 6, 1, PHY_INTF(MII) | PHY_INTF(TMII) |
550 PHY_INTF(RMII) | PHY_INTF(RGMII) },
551 { 7, 2, PHY_INTF(MII) | PHY_INTF(TMII) |
552 PHY_INTF(RMII) | PHY_INTF(RGMII) },
553 },
554 .jam_table = rtl8365mb_init_jam_8365mb_vc,
555 .jam_size = ARRAY_SIZE(rtl8365mb_init_jam_8365mb_vc),
556 },
557};
558
559enum rtl8365mb_stp_state {
560 RTL8365MB_STP_STATE_DISABLED = 0,
561 RTL8365MB_STP_STATE_BLOCKING = 1,
562 RTL8365MB_STP_STATE_LEARNING = 2,
563 RTL8365MB_STP_STATE_FORWARDING = 3,
564};
565
566enum rtl8365mb_cpu_insert {
567 RTL8365MB_CPU_INSERT_TO_ALL = 0,
568 RTL8365MB_CPU_INSERT_TO_TRAPPING = 1,
569 RTL8365MB_CPU_INSERT_TO_NONE = 2,
570};
571
572enum rtl8365mb_cpu_position {
573 RTL8365MB_CPU_POS_AFTER_SA = 0,
574 RTL8365MB_CPU_POS_BEFORE_CRC = 1,
575};
576
577enum rtl8365mb_cpu_format {
578 RTL8365MB_CPU_FORMAT_8BYTES = 0,
579 RTL8365MB_CPU_FORMAT_4BYTES = 1,
580};
581
582enum rtl8365mb_cpu_rxlen {
583 RTL8365MB_CPU_RXLEN_72BYTES = 0,
584 RTL8365MB_CPU_RXLEN_64BYTES = 1,
585};
586
587/**
588 * struct rtl8365mb_cpu - CPU port configuration
589 * @enable: enable/disable hardware insertion of CPU tag in switch->CPU frames
590 * @mask: port mask of ports that parse should parse CPU tags
591 * @trap_port: forward trapped frames to this port
592 * @insert: CPU tag insertion mode in switch->CPU frames
593 * @position: position of CPU tag in frame
594 * @rx_length: minimum CPU RX length
595 * @format: CPU tag format
596 *
597 * Represents the CPU tagging and CPU port configuration of the switch. These
598 * settings are configurable at runtime.
599 */
600struct rtl8365mb_cpu {
601 bool enable;
602 u32 mask;
603 u32 trap_port;
604 enum rtl8365mb_cpu_insert insert;
605 enum rtl8365mb_cpu_position position;
606 enum rtl8365mb_cpu_rxlen rx_length;
607 enum rtl8365mb_cpu_format format;
608};
609
610/**
611 * struct rtl8365mb_port - private per-port data
612 * @priv: pointer to parent realtek_priv data
613 * @index: DSA port index, same as dsa_port::index
614 * @stats: link statistics populated by rtl8365mb_stats_poll, ready for atomic
615 * access via rtl8365mb_get_stats64
616 * @stats_lock: protect the stats structure during read/update
617 * @mib_work: delayed work for polling MIB counters
618 */
619struct rtl8365mb_port {
620 struct realtek_priv *priv;
621 unsigned int index;
622 struct rtnl_link_stats64 stats;
623 spinlock_t stats_lock;
624 struct delayed_work mib_work;
625};
626
627/**
628 * struct rtl8365mb - driver private data
629 * @priv: pointer to parent realtek_priv data
630 * @irq: registered IRQ or zero
631 * @chip_info: chip-specific info about the attached switch
632 * @cpu: CPU tagging and CPU port configuration for this chip
633 * @mib_lock: prevent concurrent reads of MIB counters
634 * @ports: per-port data
635 *
636 * Private data for this driver.
637 */
638struct rtl8365mb {
639 struct realtek_priv *priv;
640 int irq;
641 const struct rtl8365mb_chip_info *chip_info;
642 struct rtl8365mb_cpu cpu;
643 struct mutex mib_lock;
644 struct rtl8365mb_port ports[RTL8365MB_MAX_NUM_PORTS];
645};
646
647static int rtl8365mb_phy_poll_busy(struct realtek_priv *priv)
648{
649 u32 val;
650
651 return regmap_read_poll_timeout(priv->map_nolock,
652 RTL8365MB_INDIRECT_ACCESS_STATUS_REG,
653 val, !val, 10, 100);
654}
655
656static int rtl8365mb_phy_ocp_prepare(struct realtek_priv *priv, int phy,
657 u32 ocp_addr)
658{
659 u32 val;
660 int ret;
661
662 /* Set OCP prefix */
663 val = FIELD_GET(RTL8365MB_PHY_OCP_ADDR_PREFIX_MASK, ocp_addr);
664 ret = regmap_update_bits(
665 priv->map_nolock, RTL8365MB_GPHY_OCP_MSB_0_REG,
666 RTL8365MB_GPHY_OCP_MSB_0_CFG_CPU_OCPADR_MASK,
667 FIELD_PREP(RTL8365MB_GPHY_OCP_MSB_0_CFG_CPU_OCPADR_MASK, val));
668 if (ret)
669 return ret;
670
671 /* Set PHY register address */
672 val = RTL8365MB_PHY_BASE;
673 val |= FIELD_PREP(RTL8365MB_INDIRECT_ACCESS_ADDRESS_PHYNUM_MASK, phy);
674 val |= FIELD_PREP(RTL8365MB_INDIRECT_ACCESS_ADDRESS_OCPADR_5_1_MASK,
675 ocp_addr >> 1);
676 val |= FIELD_PREP(RTL8365MB_INDIRECT_ACCESS_ADDRESS_OCPADR_9_6_MASK,
677 ocp_addr >> 6);
678 ret = regmap_write(priv->map_nolock,
679 RTL8365MB_INDIRECT_ACCESS_ADDRESS_REG, val);
680 if (ret)
681 return ret;
682
683 return 0;
684}
685
686static int rtl8365mb_phy_ocp_read(struct realtek_priv *priv, int phy,
687 u32 ocp_addr, u16 *data)
688{
689 u32 val;
690 int ret;
691
692 mutex_lock(&priv->map_lock);
693
694 ret = rtl8365mb_phy_poll_busy(priv);
695 if (ret)
696 goto out;
697
698 ret = rtl8365mb_phy_ocp_prepare(priv, phy, ocp_addr);
699 if (ret)
700 goto out;
701
702 /* Execute read operation */
703 val = FIELD_PREP(RTL8365MB_INDIRECT_ACCESS_CTRL_CMD_MASK,
704 RTL8365MB_INDIRECT_ACCESS_CTRL_CMD_VALUE) |
705 FIELD_PREP(RTL8365MB_INDIRECT_ACCESS_CTRL_RW_MASK,
706 RTL8365MB_INDIRECT_ACCESS_CTRL_RW_READ);
707 ret = regmap_write(priv->map_nolock, RTL8365MB_INDIRECT_ACCESS_CTRL_REG,
708 val);
709 if (ret)
710 goto out;
711
712 ret = rtl8365mb_phy_poll_busy(priv);
713 if (ret)
714 goto out;
715
716 /* Get PHY register data */
717 ret = regmap_read(priv->map_nolock,
718 RTL8365MB_INDIRECT_ACCESS_READ_DATA_REG, &val);
719 if (ret)
720 goto out;
721
722 *data = val & 0xFFFF;
723
724out:
725 mutex_unlock(&priv->map_lock);
726
727 return ret;
728}
729
730static int rtl8365mb_phy_ocp_write(struct realtek_priv *priv, int phy,
731 u32 ocp_addr, u16 data)
732{
733 u32 val;
734 int ret;
735
736 mutex_lock(&priv->map_lock);
737
738 ret = rtl8365mb_phy_poll_busy(priv);
739 if (ret)
740 goto out;
741
742 ret = rtl8365mb_phy_ocp_prepare(priv, phy, ocp_addr);
743 if (ret)
744 goto out;
745
746 /* Set PHY register data */
747 ret = regmap_write(priv->map_nolock,
748 RTL8365MB_INDIRECT_ACCESS_WRITE_DATA_REG, data);
749 if (ret)
750 goto out;
751
752 /* Execute write operation */
753 val = FIELD_PREP(RTL8365MB_INDIRECT_ACCESS_CTRL_CMD_MASK,
754 RTL8365MB_INDIRECT_ACCESS_CTRL_CMD_VALUE) |
755 FIELD_PREP(RTL8365MB_INDIRECT_ACCESS_CTRL_RW_MASK,
756 RTL8365MB_INDIRECT_ACCESS_CTRL_RW_WRITE);
757 ret = regmap_write(priv->map_nolock, RTL8365MB_INDIRECT_ACCESS_CTRL_REG,
758 val);
759 if (ret)
760 goto out;
761
762 ret = rtl8365mb_phy_poll_busy(priv);
763 if (ret)
764 goto out;
765
766out:
767 mutex_unlock(&priv->map_lock);
768
769 return 0;
770}
771
772static int rtl8365mb_phy_read(struct realtek_priv *priv, int phy, int regnum)
773{
774 u32 ocp_addr;
775 u16 val;
776 int ret;
777
778 if (phy > RTL8365MB_PHYADDRMAX)
779 return -EINVAL;
780
781 if (regnum > RTL8365MB_PHYREGMAX)
782 return -EINVAL;
783
784 ocp_addr = RTL8365MB_PHY_OCP_ADDR_PHYREG_BASE + regnum * 2;
785
786 ret = rtl8365mb_phy_ocp_read(priv, phy, ocp_addr, &val);
787 if (ret) {
788 dev_err(priv->dev,
789 "failed to read PHY%d reg %02x @ %04x, ret %d\n", phy,
790 regnum, ocp_addr, ret);
791 return ret;
792 }
793
794 dev_dbg(priv->dev, "read PHY%d register 0x%02x @ %04x, val <- %04x\n",
795 phy, regnum, ocp_addr, val);
796
797 return val;
798}
799
800static int rtl8365mb_phy_write(struct realtek_priv *priv, int phy, int regnum,
801 u16 val)
802{
803 u32 ocp_addr;
804 int ret;
805
806 if (phy > RTL8365MB_PHYADDRMAX)
807 return -EINVAL;
808
809 if (regnum > RTL8365MB_PHYREGMAX)
810 return -EINVAL;
811
812 ocp_addr = RTL8365MB_PHY_OCP_ADDR_PHYREG_BASE + regnum * 2;
813
814 ret = rtl8365mb_phy_ocp_write(priv, phy, ocp_addr, val);
815 if (ret) {
816 dev_err(priv->dev,
817 "failed to write PHY%d reg %02x @ %04x, ret %d\n", phy,
818 regnum, ocp_addr, ret);
819 return ret;
820 }
821
822 dev_dbg(priv->dev, "write PHY%d register 0x%02x @ %04x, val -> %04x\n",
823 phy, regnum, ocp_addr, val);
824
825 return 0;
826}
827
828static int rtl8365mb_dsa_phy_read(struct dsa_switch *ds, int phy, int regnum)
829{
830 return rtl8365mb_phy_read(ds->priv, phy, regnum);
831}
832
833static int rtl8365mb_dsa_phy_write(struct dsa_switch *ds, int phy, int regnum,
834 u16 val)
835{
836 return rtl8365mb_phy_write(ds->priv, phy, regnum, val);
837}
838
839static const struct rtl8365mb_extint *
840rtl8365mb_get_port_extint(struct realtek_priv *priv, int port)
841{
842 struct rtl8365mb *mb = priv->chip_data;
843 int i;
844
845 for (i = 0; i < RTL8365MB_MAX_NUM_EXTINTS; i++) {
846 const struct rtl8365mb_extint *extint =
847 &mb->chip_info->extints[i];
848
849 if (!extint->supported_interfaces)
850 continue;
851
852 if (extint->port == port)
853 return extint;
854 }
855
856 return NULL;
857}
858
859static enum dsa_tag_protocol
860rtl8365mb_get_tag_protocol(struct dsa_switch *ds, int port,
861 enum dsa_tag_protocol mp)
862{
863 struct realtek_priv *priv = ds->priv;
864 struct rtl8365mb_cpu *cpu;
865 struct rtl8365mb *mb;
866
867 mb = priv->chip_data;
868 cpu = &mb->cpu;
869
870 if (cpu->position == RTL8365MB_CPU_POS_BEFORE_CRC)
871 return DSA_TAG_PROTO_RTL8_4T;
872
873 return DSA_TAG_PROTO_RTL8_4;
874}
875
876static int rtl8365mb_ext_config_rgmii(struct realtek_priv *priv, int port,
877 phy_interface_t interface)
878{
879 const struct rtl8365mb_extint *extint =
880 rtl8365mb_get_port_extint(priv, port);
881 struct device_node *dn;
882 struct dsa_port *dp;
883 int tx_delay = 0;
884 int rx_delay = 0;
885 u32 val;
886 int ret;
887
888 if (!extint)
889 return -ENODEV;
890
891 dp = dsa_to_port(priv->ds, port);
892 dn = dp->dn;
893
894 /* Set the RGMII TX/RX delay
895 *
896 * The Realtek vendor driver indicates the following possible
897 * configuration settings:
898 *
899 * TX delay:
900 * 0 = no delay, 1 = 2 ns delay
901 * RX delay:
902 * 0 = no delay, 7 = maximum delay
903 * Each step is approximately 0.3 ns, so the maximum delay is about
904 * 2.1 ns.
905 *
906 * The vendor driver also states that this must be configured *before*
907 * forcing the external interface into a particular mode, which is done
908 * in the rtl8365mb_phylink_mac_link_{up,down} functions.
909 *
910 * Only configure an RGMII TX (resp. RX) delay if the
911 * tx-internal-delay-ps (resp. rx-internal-delay-ps) OF property is
912 * specified. We ignore the detail of the RGMII interface mode
913 * (RGMII_{RXID, TXID, etc.}), as this is considered to be a PHY-only
914 * property.
915 */
916 if (!of_property_read_u32(dn, "tx-internal-delay-ps", &val)) {
917 val = val / 1000; /* convert to ns */
918
919 if (val == 0 || val == 2)
920 tx_delay = val / 2;
921 else
922 dev_warn(priv->dev,
923 "RGMII TX delay must be 0 or 2 ns\n");
924 }
925
926 if (!of_property_read_u32(dn, "rx-internal-delay-ps", &val)) {
927 val = DIV_ROUND_CLOSEST(val, 300); /* convert to 0.3 ns step */
928
929 if (val <= 7)
930 rx_delay = val;
931 else
932 dev_warn(priv->dev,
933 "RGMII RX delay must be 0 to 2.1 ns\n");
934 }
935
936 ret = regmap_update_bits(
937 priv->map, RTL8365MB_EXT_RGMXF_REG(extint->id),
938 RTL8365MB_EXT_RGMXF_TXDELAY_MASK |
939 RTL8365MB_EXT_RGMXF_RXDELAY_MASK,
940 FIELD_PREP(RTL8365MB_EXT_RGMXF_TXDELAY_MASK, tx_delay) |
941 FIELD_PREP(RTL8365MB_EXT_RGMXF_RXDELAY_MASK, rx_delay));
942 if (ret)
943 return ret;
944
945 ret = regmap_update_bits(
946 priv->map, RTL8365MB_DIGITAL_INTERFACE_SELECT_REG(extint->id),
947 RTL8365MB_DIGITAL_INTERFACE_SELECT_MODE_MASK(extint->id),
948 RTL8365MB_EXT_PORT_MODE_RGMII
949 << RTL8365MB_DIGITAL_INTERFACE_SELECT_MODE_OFFSET(
950 extint->id));
951 if (ret)
952 return ret;
953
954 return 0;
955}
956
957static int rtl8365mb_ext_config_forcemode(struct realtek_priv *priv, int port,
958 bool link, int speed, int duplex,
959 bool tx_pause, bool rx_pause)
960{
961 const struct rtl8365mb_extint *extint =
962 rtl8365mb_get_port_extint(priv, port);
963 u32 r_tx_pause;
964 u32 r_rx_pause;
965 u32 r_duplex;
966 u32 r_speed;
967 u32 r_link;
968 int val;
969 int ret;
970
971 if (!extint)
972 return -ENODEV;
973
974 if (link) {
975 /* Force the link up with the desired configuration */
976 r_link = 1;
977 r_rx_pause = rx_pause ? 1 : 0;
978 r_tx_pause = tx_pause ? 1 : 0;
979
980 if (speed == SPEED_1000) {
981 r_speed = RTL8365MB_PORT_SPEED_1000M;
982 } else if (speed == SPEED_100) {
983 r_speed = RTL8365MB_PORT_SPEED_100M;
984 } else if (speed == SPEED_10) {
985 r_speed = RTL8365MB_PORT_SPEED_10M;
986 } else {
987 dev_err(priv->dev, "unsupported port speed %s\n",
988 phy_speed_to_str(speed));
989 return -EINVAL;
990 }
991
992 if (duplex == DUPLEX_FULL) {
993 r_duplex = 1;
994 } else if (duplex == DUPLEX_HALF) {
995 r_duplex = 0;
996 } else {
997 dev_err(priv->dev, "unsupported duplex %s\n",
998 phy_duplex_to_str(duplex));
999 return -EINVAL;
1000 }
1001 } else {
1002 /* Force the link down and reset any programmed configuration */
1003 r_link = 0;
1004 r_tx_pause = 0;
1005 r_rx_pause = 0;
1006 r_speed = 0;
1007 r_duplex = 0;
1008 }
1009
1010 val = FIELD_PREP(RTL8365MB_DIGITAL_INTERFACE_FORCE_EN_MASK, 1) |
1011 FIELD_PREP(RTL8365MB_DIGITAL_INTERFACE_FORCE_TXPAUSE_MASK,
1012 r_tx_pause) |
1013 FIELD_PREP(RTL8365MB_DIGITAL_INTERFACE_FORCE_RXPAUSE_MASK,
1014 r_rx_pause) |
1015 FIELD_PREP(RTL8365MB_DIGITAL_INTERFACE_FORCE_LINK_MASK, r_link) |
1016 FIELD_PREP(RTL8365MB_DIGITAL_INTERFACE_FORCE_DUPLEX_MASK,
1017 r_duplex) |
1018 FIELD_PREP(RTL8365MB_DIGITAL_INTERFACE_FORCE_SPEED_MASK, r_speed);
1019 ret = regmap_write(priv->map,
1020 RTL8365MB_DIGITAL_INTERFACE_FORCE_REG(extint->id),
1021 val);
1022 if (ret)
1023 return ret;
1024
1025 return 0;
1026}
1027
1028static void rtl8365mb_phylink_get_caps(struct dsa_switch *ds, int port,
1029 struct phylink_config *config)
1030{
1031 const struct rtl8365mb_extint *extint =
1032 rtl8365mb_get_port_extint(ds->priv, port);
1033
1034 config->mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE |
1035 MAC_10 | MAC_100 | MAC_1000FD;
1036
1037 if (!extint) {
1038 __set_bit(PHY_INTERFACE_MODE_INTERNAL,
1039 config->supported_interfaces);
1040
1041 /* GMII is the default interface mode for phylib, so
1042 * we have to support it for ports with integrated PHY.
1043 */
1044 __set_bit(PHY_INTERFACE_MODE_GMII,
1045 config->supported_interfaces);
1046 return;
1047 }
1048
1049 /* Populate according to the modes supported by _this driver_,
1050 * not necessarily the modes supported by the hardware, some of
1051 * which remain unimplemented.
1052 */
1053
1054 if (extint->supported_interfaces & RTL8365MB_PHY_INTERFACE_MODE_RGMII)
1055 phy_interface_set_rgmii(config->supported_interfaces);
1056}
1057
1058static void rtl8365mb_phylink_mac_config(struct dsa_switch *ds, int port,
1059 unsigned int mode,
1060 const struct phylink_link_state *state)
1061{
1062 struct realtek_priv *priv = ds->priv;
1063 int ret;
1064
1065 if (mode != MLO_AN_PHY && mode != MLO_AN_FIXED) {
1066 dev_err(priv->dev,
1067 "port %d supports only conventional PHY or fixed-link\n",
1068 port);
1069 return;
1070 }
1071
1072 if (phy_interface_mode_is_rgmii(state->interface)) {
1073 ret = rtl8365mb_ext_config_rgmii(priv, port, state->interface);
1074 if (ret)
1075 dev_err(priv->dev,
1076 "failed to configure RGMII mode on port %d: %d\n",
1077 port, ret);
1078 return;
1079 }
1080
1081 /* TODO: Implement MII and RMII modes, which the RTL8365MB-VC also
1082 * supports
1083 */
1084}
1085
1086static void rtl8365mb_phylink_mac_link_down(struct dsa_switch *ds, int port,
1087 unsigned int mode,
1088 phy_interface_t interface)
1089{
1090 struct realtek_priv *priv = ds->priv;
1091 struct rtl8365mb_port *p;
1092 struct rtl8365mb *mb;
1093 int ret;
1094
1095 mb = priv->chip_data;
1096 p = &mb->ports[port];
1097 cancel_delayed_work_sync(&p->mib_work);
1098
1099 if (phy_interface_mode_is_rgmii(interface)) {
1100 ret = rtl8365mb_ext_config_forcemode(priv, port, false, 0, 0,
1101 false, false);
1102 if (ret)
1103 dev_err(priv->dev,
1104 "failed to reset forced mode on port %d: %d\n",
1105 port, ret);
1106
1107 return;
1108 }
1109}
1110
1111static void rtl8365mb_phylink_mac_link_up(struct dsa_switch *ds, int port,
1112 unsigned int mode,
1113 phy_interface_t interface,
1114 struct phy_device *phydev, int speed,
1115 int duplex, bool tx_pause,
1116 bool rx_pause)
1117{
1118 struct realtek_priv *priv = ds->priv;
1119 struct rtl8365mb_port *p;
1120 struct rtl8365mb *mb;
1121 int ret;
1122
1123 mb = priv->chip_data;
1124 p = &mb->ports[port];
1125 schedule_delayed_work(&p->mib_work, 0);
1126
1127 if (phy_interface_mode_is_rgmii(interface)) {
1128 ret = rtl8365mb_ext_config_forcemode(priv, port, true, speed,
1129 duplex, tx_pause,
1130 rx_pause);
1131 if (ret)
1132 dev_err(priv->dev,
1133 "failed to force mode on port %d: %d\n", port,
1134 ret);
1135
1136 return;
1137 }
1138}
1139
1140static int rtl8365mb_port_change_mtu(struct dsa_switch *ds, int port,
1141 int new_mtu)
1142{
1143 struct realtek_priv *priv = ds->priv;
1144 int frame_size;
1145
1146 /* When a new MTU is set, DSA always sets the CPU port's MTU to the
1147 * largest MTU of the user ports. Because the switch only has a global
1148 * RX length register, only allowing CPU port here is enough.
1149 */
1150 if (!dsa_is_cpu_port(ds, port))
1151 return 0;
1152
1153 frame_size = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
1154
1155 dev_dbg(priv->dev, "changing mtu to %d (frame size: %d)\n",
1156 new_mtu, frame_size);
1157
1158 return regmap_update_bits(priv->map, RTL8365MB_CFG0_MAX_LEN_REG,
1159 RTL8365MB_CFG0_MAX_LEN_MASK,
1160 FIELD_PREP(RTL8365MB_CFG0_MAX_LEN_MASK,
1161 frame_size));
1162}
1163
1164static int rtl8365mb_port_max_mtu(struct dsa_switch *ds, int port)
1165{
1166 return RTL8365MB_CFG0_MAX_LEN_MAX - VLAN_ETH_HLEN - ETH_FCS_LEN;
1167}
1168
1169static void rtl8365mb_port_stp_state_set(struct dsa_switch *ds, int port,
1170 u8 state)
1171{
1172 struct realtek_priv *priv = ds->priv;
1173 enum rtl8365mb_stp_state val;
1174 int msti = 0;
1175
1176 switch (state) {
1177 case BR_STATE_DISABLED:
1178 val = RTL8365MB_STP_STATE_DISABLED;
1179 break;
1180 case BR_STATE_BLOCKING:
1181 case BR_STATE_LISTENING:
1182 val = RTL8365MB_STP_STATE_BLOCKING;
1183 break;
1184 case BR_STATE_LEARNING:
1185 val = RTL8365MB_STP_STATE_LEARNING;
1186 break;
1187 case BR_STATE_FORWARDING:
1188 val = RTL8365MB_STP_STATE_FORWARDING;
1189 break;
1190 default:
1191 dev_err(priv->dev, "invalid STP state: %u\n", state);
1192 return;
1193 }
1194
1195 regmap_update_bits(priv->map, RTL8365MB_MSTI_CTRL_REG(msti, port),
1196 RTL8365MB_MSTI_CTRL_PORT_STATE_MASK(port),
1197 val << RTL8365MB_MSTI_CTRL_PORT_STATE_OFFSET(port));
1198}
1199
1200static int rtl8365mb_port_set_learning(struct realtek_priv *priv, int port,
1201 bool enable)
1202{
1203 /* Enable/disable learning by limiting the number of L2 addresses the
1204 * port can learn. Realtek documentation states that a limit of zero
1205 * disables learning. When enabling learning, set it to the chip's
1206 * maximum.
1207 */
1208 return regmap_write(priv->map, RTL8365MB_LUT_PORT_LEARN_LIMIT_REG(port),
1209 enable ? RTL8365MB_LEARN_LIMIT_MAX : 0);
1210}
1211
1212static int rtl8365mb_port_set_isolation(struct realtek_priv *priv, int port,
1213 u32 mask)
1214{
1215 return regmap_write(priv->map, RTL8365MB_PORT_ISOLATION_REG(port), mask);
1216}
1217
1218static int rtl8365mb_mib_counter_read(struct realtek_priv *priv, int port,
1219 u32 offset, u32 length, u64 *mibvalue)
1220{
1221 u64 tmpvalue = 0;
1222 u32 val;
1223 int ret;
1224 int i;
1225
1226 /* The MIB address is an SRAM address. We request a particular address
1227 * and then poll the control register before reading the value from some
1228 * counter registers.
1229 */
1230 ret = regmap_write(priv->map, RTL8365MB_MIB_ADDRESS_REG,
1231 RTL8365MB_MIB_ADDRESS(port, offset));
1232 if (ret)
1233 return ret;
1234
1235 /* Poll for completion */
1236 ret = regmap_read_poll_timeout(priv->map, RTL8365MB_MIB_CTRL0_REG, val,
1237 !(val & RTL8365MB_MIB_CTRL0_BUSY_MASK),
1238 10, 100);
1239 if (ret)
1240 return ret;
1241
1242 /* Presumably this indicates a MIB counter read failure */
1243 if (val & RTL8365MB_MIB_CTRL0_RESET_MASK)
1244 return -EIO;
1245
1246 /* There are four MIB counter registers each holding a 16 bit word of a
1247 * MIB counter. Depending on the offset, we should read from the upper
1248 * two or lower two registers. In case the MIB counter is 4 words, we
1249 * read from all four registers.
1250 */
1251 if (length == 4)
1252 offset = 3;
1253 else
1254 offset = (offset + 1) % 4;
1255
1256 /* Read the MIB counter 16 bits at a time */
1257 for (i = 0; i < length; i++) {
1258 ret = regmap_read(priv->map,
1259 RTL8365MB_MIB_COUNTER_REG(offset - i), &val);
1260 if (ret)
1261 return ret;
1262
1263 tmpvalue = ((tmpvalue) << 16) | (val & 0xFFFF);
1264 }
1265
1266 /* Only commit the result if no error occurred */
1267 *mibvalue = tmpvalue;
1268
1269 return 0;
1270}
1271
1272static void rtl8365mb_get_ethtool_stats(struct dsa_switch *ds, int port, u64 *data)
1273{
1274 struct realtek_priv *priv = ds->priv;
1275 struct rtl8365mb *mb;
1276 int ret;
1277 int i;
1278
1279 mb = priv->chip_data;
1280
1281 mutex_lock(&mb->mib_lock);
1282 for (i = 0; i < RTL8365MB_MIB_END; i++) {
1283 struct rtl8365mb_mib_counter *mib = &rtl8365mb_mib_counters[i];
1284
1285 ret = rtl8365mb_mib_counter_read(priv, port, mib->offset,
1286 mib->length, &data[i]);
1287 if (ret) {
1288 dev_err(priv->dev,
1289 "failed to read port %d counters: %d\n", port,
1290 ret);
1291 break;
1292 }
1293 }
1294 mutex_unlock(&mb->mib_lock);
1295}
1296
1297static void rtl8365mb_get_strings(struct dsa_switch *ds, int port, u32 stringset, u8 *data)
1298{
1299 int i;
1300
1301 if (stringset != ETH_SS_STATS)
1302 return;
1303
1304 for (i = 0; i < RTL8365MB_MIB_END; i++) {
1305 struct rtl8365mb_mib_counter *mib = &rtl8365mb_mib_counters[i];
1306 ethtool_puts(&data, mib->name);
1307 }
1308}
1309
1310static int rtl8365mb_get_sset_count(struct dsa_switch *ds, int port, int sset)
1311{
1312 if (sset != ETH_SS_STATS)
1313 return -EOPNOTSUPP;
1314
1315 return RTL8365MB_MIB_END;
1316}
1317
1318static void rtl8365mb_get_phy_stats(struct dsa_switch *ds, int port,
1319 struct ethtool_eth_phy_stats *phy_stats)
1320{
1321 struct realtek_priv *priv = ds->priv;
1322 struct rtl8365mb_mib_counter *mib;
1323 struct rtl8365mb *mb;
1324
1325 mb = priv->chip_data;
1326 mib = &rtl8365mb_mib_counters[RTL8365MB_MIB_dot3StatsSymbolErrors];
1327
1328 mutex_lock(&mb->mib_lock);
1329 rtl8365mb_mib_counter_read(priv, port, mib->offset, mib->length,
1330 &phy_stats->SymbolErrorDuringCarrier);
1331 mutex_unlock(&mb->mib_lock);
1332}
1333
1334static void rtl8365mb_get_mac_stats(struct dsa_switch *ds, int port,
1335 struct ethtool_eth_mac_stats *mac_stats)
1336{
1337 u64 cnt[RTL8365MB_MIB_END] = {
1338 [RTL8365MB_MIB_ifOutOctets] = 1,
1339 [RTL8365MB_MIB_ifOutUcastPkts] = 1,
1340 [RTL8365MB_MIB_ifOutMulticastPkts] = 1,
1341 [RTL8365MB_MIB_ifOutBroadcastPkts] = 1,
1342 [RTL8365MB_MIB_dot3OutPauseFrames] = 1,
1343 [RTL8365MB_MIB_ifOutDiscards] = 1,
1344 [RTL8365MB_MIB_ifInOctets] = 1,
1345 [RTL8365MB_MIB_ifInUcastPkts] = 1,
1346 [RTL8365MB_MIB_ifInMulticastPkts] = 1,
1347 [RTL8365MB_MIB_ifInBroadcastPkts] = 1,
1348 [RTL8365MB_MIB_dot3InPauseFrames] = 1,
1349 [RTL8365MB_MIB_dot3StatsSingleCollisionFrames] = 1,
1350 [RTL8365MB_MIB_dot3StatsMultipleCollisionFrames] = 1,
1351 [RTL8365MB_MIB_dot3StatsFCSErrors] = 1,
1352 [RTL8365MB_MIB_dot3StatsDeferredTransmissions] = 1,
1353 [RTL8365MB_MIB_dot3StatsLateCollisions] = 1,
1354 [RTL8365MB_MIB_dot3StatsExcessiveCollisions] = 1,
1355
1356 };
1357 struct realtek_priv *priv = ds->priv;
1358 struct rtl8365mb *mb;
1359 int ret;
1360 int i;
1361
1362 mb = priv->chip_data;
1363
1364 mutex_lock(&mb->mib_lock);
1365 for (i = 0; i < RTL8365MB_MIB_END; i++) {
1366 struct rtl8365mb_mib_counter *mib = &rtl8365mb_mib_counters[i];
1367
1368 /* Only fetch required MIB counters (marked = 1 above) */
1369 if (!cnt[i])
1370 continue;
1371
1372 ret = rtl8365mb_mib_counter_read(priv, port, mib->offset,
1373 mib->length, &cnt[i]);
1374 if (ret)
1375 break;
1376 }
1377 mutex_unlock(&mb->mib_lock);
1378
1379 /* The RTL8365MB-VC exposes MIB objects, which we have to translate into
1380 * IEEE 802.3 Managed Objects. This is not always completely faithful,
1381 * but we try out best. See RFC 3635 for a detailed treatment of the
1382 * subject.
1383 */
1384
1385 mac_stats->FramesTransmittedOK = cnt[RTL8365MB_MIB_ifOutUcastPkts] +
1386 cnt[RTL8365MB_MIB_ifOutMulticastPkts] +
1387 cnt[RTL8365MB_MIB_ifOutBroadcastPkts] +
1388 cnt[RTL8365MB_MIB_dot3OutPauseFrames] -
1389 cnt[RTL8365MB_MIB_ifOutDiscards];
1390 mac_stats->SingleCollisionFrames =
1391 cnt[RTL8365MB_MIB_dot3StatsSingleCollisionFrames];
1392 mac_stats->MultipleCollisionFrames =
1393 cnt[RTL8365MB_MIB_dot3StatsMultipleCollisionFrames];
1394 mac_stats->FramesReceivedOK = cnt[RTL8365MB_MIB_ifInUcastPkts] +
1395 cnt[RTL8365MB_MIB_ifInMulticastPkts] +
1396 cnt[RTL8365MB_MIB_ifInBroadcastPkts] +
1397 cnt[RTL8365MB_MIB_dot3InPauseFrames];
1398 mac_stats->FrameCheckSequenceErrors =
1399 cnt[RTL8365MB_MIB_dot3StatsFCSErrors];
1400 mac_stats->OctetsTransmittedOK = cnt[RTL8365MB_MIB_ifOutOctets] -
1401 18 * mac_stats->FramesTransmittedOK;
1402 mac_stats->FramesWithDeferredXmissions =
1403 cnt[RTL8365MB_MIB_dot3StatsDeferredTransmissions];
1404 mac_stats->LateCollisions = cnt[RTL8365MB_MIB_dot3StatsLateCollisions];
1405 mac_stats->FramesAbortedDueToXSColls =
1406 cnt[RTL8365MB_MIB_dot3StatsExcessiveCollisions];
1407 mac_stats->OctetsReceivedOK = cnt[RTL8365MB_MIB_ifInOctets] -
1408 18 * mac_stats->FramesReceivedOK;
1409 mac_stats->MulticastFramesXmittedOK =
1410 cnt[RTL8365MB_MIB_ifOutMulticastPkts];
1411 mac_stats->BroadcastFramesXmittedOK =
1412 cnt[RTL8365MB_MIB_ifOutBroadcastPkts];
1413 mac_stats->MulticastFramesReceivedOK =
1414 cnt[RTL8365MB_MIB_ifInMulticastPkts];
1415 mac_stats->BroadcastFramesReceivedOK =
1416 cnt[RTL8365MB_MIB_ifInBroadcastPkts];
1417}
1418
1419static void rtl8365mb_get_ctrl_stats(struct dsa_switch *ds, int port,
1420 struct ethtool_eth_ctrl_stats *ctrl_stats)
1421{
1422 struct realtek_priv *priv = ds->priv;
1423 struct rtl8365mb_mib_counter *mib;
1424 struct rtl8365mb *mb;
1425
1426 mb = priv->chip_data;
1427 mib = &rtl8365mb_mib_counters[RTL8365MB_MIB_dot3ControlInUnknownOpcodes];
1428
1429 mutex_lock(&mb->mib_lock);
1430 rtl8365mb_mib_counter_read(priv, port, mib->offset, mib->length,
1431 &ctrl_stats->UnsupportedOpcodesReceived);
1432 mutex_unlock(&mb->mib_lock);
1433}
1434
1435static void rtl8365mb_stats_update(struct realtek_priv *priv, int port)
1436{
1437 u64 cnt[RTL8365MB_MIB_END] = {
1438 [RTL8365MB_MIB_ifOutOctets] = 1,
1439 [RTL8365MB_MIB_ifOutUcastPkts] = 1,
1440 [RTL8365MB_MIB_ifOutMulticastPkts] = 1,
1441 [RTL8365MB_MIB_ifOutBroadcastPkts] = 1,
1442 [RTL8365MB_MIB_ifOutDiscards] = 1,
1443 [RTL8365MB_MIB_ifInOctets] = 1,
1444 [RTL8365MB_MIB_ifInUcastPkts] = 1,
1445 [RTL8365MB_MIB_ifInMulticastPkts] = 1,
1446 [RTL8365MB_MIB_ifInBroadcastPkts] = 1,
1447 [RTL8365MB_MIB_etherStatsDropEvents] = 1,
1448 [RTL8365MB_MIB_etherStatsCollisions] = 1,
1449 [RTL8365MB_MIB_etherStatsFragments] = 1,
1450 [RTL8365MB_MIB_etherStatsJabbers] = 1,
1451 [RTL8365MB_MIB_dot3StatsFCSErrors] = 1,
1452 [RTL8365MB_MIB_dot3StatsLateCollisions] = 1,
1453 };
1454 struct rtl8365mb *mb = priv->chip_data;
1455 struct rtnl_link_stats64 *stats;
1456 int ret;
1457 int i;
1458
1459 stats = &mb->ports[port].stats;
1460
1461 mutex_lock(&mb->mib_lock);
1462 for (i = 0; i < RTL8365MB_MIB_END; i++) {
1463 struct rtl8365mb_mib_counter *c = &rtl8365mb_mib_counters[i];
1464
1465 /* Only fetch required MIB counters (marked = 1 above) */
1466 if (!cnt[i])
1467 continue;
1468
1469 ret = rtl8365mb_mib_counter_read(priv, port, c->offset,
1470 c->length, &cnt[i]);
1471 if (ret)
1472 break;
1473 }
1474 mutex_unlock(&mb->mib_lock);
1475
1476 /* Don't update statistics if there was an error reading the counters */
1477 if (ret)
1478 return;
1479
1480 spin_lock(&mb->ports[port].stats_lock);
1481
1482 stats->rx_packets = cnt[RTL8365MB_MIB_ifInUcastPkts] +
1483 cnt[RTL8365MB_MIB_ifInMulticastPkts] +
1484 cnt[RTL8365MB_MIB_ifInBroadcastPkts] -
1485 cnt[RTL8365MB_MIB_ifOutDiscards];
1486
1487 stats->tx_packets = cnt[RTL8365MB_MIB_ifOutUcastPkts] +
1488 cnt[RTL8365MB_MIB_ifOutMulticastPkts] +
1489 cnt[RTL8365MB_MIB_ifOutBroadcastPkts];
1490
1491 /* if{In,Out}Octets includes FCS - remove it */
1492 stats->rx_bytes = cnt[RTL8365MB_MIB_ifInOctets] - 4 * stats->rx_packets;
1493 stats->tx_bytes =
1494 cnt[RTL8365MB_MIB_ifOutOctets] - 4 * stats->tx_packets;
1495
1496 stats->rx_dropped = cnt[RTL8365MB_MIB_etherStatsDropEvents];
1497 stats->tx_dropped = cnt[RTL8365MB_MIB_ifOutDiscards];
1498
1499 stats->multicast = cnt[RTL8365MB_MIB_ifInMulticastPkts];
1500 stats->collisions = cnt[RTL8365MB_MIB_etherStatsCollisions];
1501
1502 stats->rx_length_errors = cnt[RTL8365MB_MIB_etherStatsFragments] +
1503 cnt[RTL8365MB_MIB_etherStatsJabbers];
1504 stats->rx_crc_errors = cnt[RTL8365MB_MIB_dot3StatsFCSErrors];
1505 stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors;
1506
1507 stats->tx_aborted_errors = cnt[RTL8365MB_MIB_ifOutDiscards];
1508 stats->tx_window_errors = cnt[RTL8365MB_MIB_dot3StatsLateCollisions];
1509 stats->tx_errors = stats->tx_aborted_errors + stats->tx_window_errors;
1510
1511 spin_unlock(&mb->ports[port].stats_lock);
1512}
1513
1514static void rtl8365mb_stats_poll(struct work_struct *work)
1515{
1516 struct rtl8365mb_port *p = container_of(to_delayed_work(work),
1517 struct rtl8365mb_port,
1518 mib_work);
1519 struct realtek_priv *priv = p->priv;
1520
1521 rtl8365mb_stats_update(priv, p->index);
1522
1523 schedule_delayed_work(&p->mib_work, RTL8365MB_STATS_INTERVAL_JIFFIES);
1524}
1525
1526static void rtl8365mb_get_stats64(struct dsa_switch *ds, int port,
1527 struct rtnl_link_stats64 *s)
1528{
1529 struct realtek_priv *priv = ds->priv;
1530 struct rtl8365mb_port *p;
1531 struct rtl8365mb *mb;
1532
1533 mb = priv->chip_data;
1534 p = &mb->ports[port];
1535
1536 spin_lock(&p->stats_lock);
1537 memcpy(s, &p->stats, sizeof(*s));
1538 spin_unlock(&p->stats_lock);
1539}
1540
1541static void rtl8365mb_stats_setup(struct realtek_priv *priv)
1542{
1543 struct rtl8365mb *mb = priv->chip_data;
1544 int i;
1545
1546 /* Per-chip global mutex to protect MIB counter access, since doing
1547 * so requires accessing a series of registers in a particular order.
1548 */
1549 mutex_init(&mb->mib_lock);
1550
1551 for (i = 0; i < priv->num_ports; i++) {
1552 struct rtl8365mb_port *p = &mb->ports[i];
1553
1554 if (dsa_is_unused_port(priv->ds, i))
1555 continue;
1556
1557 /* Per-port spinlock to protect the stats64 data */
1558 spin_lock_init(&p->stats_lock);
1559
1560 /* This work polls the MIB counters and keeps the stats64 data
1561 * up-to-date.
1562 */
1563 INIT_DELAYED_WORK(&p->mib_work, rtl8365mb_stats_poll);
1564 }
1565}
1566
1567static void rtl8365mb_stats_teardown(struct realtek_priv *priv)
1568{
1569 struct rtl8365mb *mb = priv->chip_data;
1570 int i;
1571
1572 for (i = 0; i < priv->num_ports; i++) {
1573 struct rtl8365mb_port *p = &mb->ports[i];
1574
1575 if (dsa_is_unused_port(priv->ds, i))
1576 continue;
1577
1578 cancel_delayed_work_sync(&p->mib_work);
1579 }
1580}
1581
1582static int rtl8365mb_get_and_clear_status_reg(struct realtek_priv *priv, u32 reg,
1583 u32 *val)
1584{
1585 int ret;
1586
1587 ret = regmap_read(priv->map, reg, val);
1588 if (ret)
1589 return ret;
1590
1591 return regmap_write(priv->map, reg, *val);
1592}
1593
1594static irqreturn_t rtl8365mb_irq(int irq, void *data)
1595{
1596 struct realtek_priv *priv = data;
1597 unsigned long line_changes = 0;
1598 u32 stat;
1599 int line;
1600 int ret;
1601
1602 ret = rtl8365mb_get_and_clear_status_reg(priv, RTL8365MB_INTR_STATUS_REG,
1603 &stat);
1604 if (ret)
1605 goto out_error;
1606
1607 if (stat & RTL8365MB_INTR_LINK_CHANGE_MASK) {
1608 u32 linkdown_ind;
1609 u32 linkup_ind;
1610 u32 val;
1611
1612 ret = rtl8365mb_get_and_clear_status_reg(
1613 priv, RTL8365MB_PORT_LINKUP_IND_REG, &val);
1614 if (ret)
1615 goto out_error;
1616
1617 linkup_ind = FIELD_GET(RTL8365MB_PORT_LINKUP_IND_MASK, val);
1618
1619 ret = rtl8365mb_get_and_clear_status_reg(
1620 priv, RTL8365MB_PORT_LINKDOWN_IND_REG, &val);
1621 if (ret)
1622 goto out_error;
1623
1624 linkdown_ind = FIELD_GET(RTL8365MB_PORT_LINKDOWN_IND_MASK, val);
1625
1626 line_changes = linkup_ind | linkdown_ind;
1627 }
1628
1629 if (!line_changes)
1630 goto out_none;
1631
1632 for_each_set_bit(line, &line_changes, priv->num_ports) {
1633 int child_irq = irq_find_mapping(priv->irqdomain, line);
1634
1635 handle_nested_irq(child_irq);
1636 }
1637
1638 return IRQ_HANDLED;
1639
1640out_error:
1641 dev_err(priv->dev, "failed to read interrupt status: %d\n", ret);
1642
1643out_none:
1644 return IRQ_NONE;
1645}
1646
1647static struct irq_chip rtl8365mb_irq_chip = {
1648 .name = "rtl8365mb",
1649 /* The hardware doesn't support masking IRQs on a per-port basis */
1650};
1651
1652static int rtl8365mb_irq_map(struct irq_domain *domain, unsigned int irq,
1653 irq_hw_number_t hwirq)
1654{
1655 irq_set_chip_data(irq, domain->host_data);
1656 irq_set_chip_and_handler(irq, &rtl8365mb_irq_chip, handle_simple_irq);
1657 irq_set_nested_thread(irq, 1);
1658 irq_set_noprobe(irq);
1659
1660 return 0;
1661}
1662
1663static void rtl8365mb_irq_unmap(struct irq_domain *d, unsigned int irq)
1664{
1665 irq_set_nested_thread(irq, 0);
1666 irq_set_chip_and_handler(irq, NULL, NULL);
1667 irq_set_chip_data(irq, NULL);
1668}
1669
1670static const struct irq_domain_ops rtl8365mb_irqdomain_ops = {
1671 .map = rtl8365mb_irq_map,
1672 .unmap = rtl8365mb_irq_unmap,
1673 .xlate = irq_domain_xlate_onecell,
1674};
1675
1676static int rtl8365mb_set_irq_enable(struct realtek_priv *priv, bool enable)
1677{
1678 return regmap_update_bits(priv->map, RTL8365MB_INTR_CTRL_REG,
1679 RTL8365MB_INTR_LINK_CHANGE_MASK,
1680 FIELD_PREP(RTL8365MB_INTR_LINK_CHANGE_MASK,
1681 enable ? 1 : 0));
1682}
1683
1684static int rtl8365mb_irq_enable(struct realtek_priv *priv)
1685{
1686 return rtl8365mb_set_irq_enable(priv, true);
1687}
1688
1689static int rtl8365mb_irq_disable(struct realtek_priv *priv)
1690{
1691 return rtl8365mb_set_irq_enable(priv, false);
1692}
1693
1694static int rtl8365mb_irq_setup(struct realtek_priv *priv)
1695{
1696 struct rtl8365mb *mb = priv->chip_data;
1697 struct device_node *intc;
1698 u32 irq_trig;
1699 int virq;
1700 int irq;
1701 u32 val;
1702 int ret;
1703 int i;
1704
1705 intc = of_get_child_by_name(priv->dev->of_node, "interrupt-controller");
1706 if (!intc) {
1707 dev_err(priv->dev, "missing child interrupt-controller node\n");
1708 return -EINVAL;
1709 }
1710
1711 /* rtl8365mb IRQs cascade off this one */
1712 irq = of_irq_get(intc, 0);
1713 if (irq <= 0) {
1714 if (irq != -EPROBE_DEFER)
1715 dev_err(priv->dev, "failed to get parent irq: %d\n",
1716 irq);
1717 ret = irq ? irq : -EINVAL;
1718 goto out_put_node;
1719 }
1720
1721 priv->irqdomain = irq_domain_add_linear(intc, priv->num_ports,
1722 &rtl8365mb_irqdomain_ops, priv);
1723 if (!priv->irqdomain) {
1724 dev_err(priv->dev, "failed to add irq domain\n");
1725 ret = -ENOMEM;
1726 goto out_put_node;
1727 }
1728
1729 for (i = 0; i < priv->num_ports; i++) {
1730 virq = irq_create_mapping(priv->irqdomain, i);
1731 if (!virq) {
1732 dev_err(priv->dev,
1733 "failed to create irq domain mapping\n");
1734 ret = -EINVAL;
1735 goto out_remove_irqdomain;
1736 }
1737
1738 irq_set_parent(virq, irq);
1739 }
1740
1741 /* Configure chip interrupt signal polarity */
1742 irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
1743 switch (irq_trig) {
1744 case IRQF_TRIGGER_RISING:
1745 case IRQF_TRIGGER_HIGH:
1746 val = RTL8365MB_INTR_POLARITY_HIGH;
1747 break;
1748 case IRQF_TRIGGER_FALLING:
1749 case IRQF_TRIGGER_LOW:
1750 val = RTL8365MB_INTR_POLARITY_LOW;
1751 break;
1752 default:
1753 dev_err(priv->dev, "unsupported irq trigger type %u\n",
1754 irq_trig);
1755 ret = -EINVAL;
1756 goto out_remove_irqdomain;
1757 }
1758
1759 ret = regmap_update_bits(priv->map, RTL8365MB_INTR_POLARITY_REG,
1760 RTL8365MB_INTR_POLARITY_MASK,
1761 FIELD_PREP(RTL8365MB_INTR_POLARITY_MASK, val));
1762 if (ret)
1763 goto out_remove_irqdomain;
1764
1765 /* Disable the interrupt in case the chip has it enabled on reset */
1766 ret = rtl8365mb_irq_disable(priv);
1767 if (ret)
1768 goto out_remove_irqdomain;
1769
1770 /* Clear the interrupt status register */
1771 ret = regmap_write(priv->map, RTL8365MB_INTR_STATUS_REG,
1772 RTL8365MB_INTR_ALL_MASK);
1773 if (ret)
1774 goto out_remove_irqdomain;
1775
1776 ret = request_threaded_irq(irq, NULL, rtl8365mb_irq, IRQF_ONESHOT,
1777 "rtl8365mb", priv);
1778 if (ret) {
1779 dev_err(priv->dev, "failed to request irq: %d\n", ret);
1780 goto out_remove_irqdomain;
1781 }
1782
1783 /* Store the irq so that we know to free it during teardown */
1784 mb->irq = irq;
1785
1786 ret = rtl8365mb_irq_enable(priv);
1787 if (ret)
1788 goto out_free_irq;
1789
1790 of_node_put(intc);
1791
1792 return 0;
1793
1794out_free_irq:
1795 free_irq(mb->irq, priv);
1796 mb->irq = 0;
1797
1798out_remove_irqdomain:
1799 for (i = 0; i < priv->num_ports; i++) {
1800 virq = irq_find_mapping(priv->irqdomain, i);
1801 irq_dispose_mapping(virq);
1802 }
1803
1804 irq_domain_remove(priv->irqdomain);
1805 priv->irqdomain = NULL;
1806
1807out_put_node:
1808 of_node_put(intc);
1809
1810 return ret;
1811}
1812
1813static void rtl8365mb_irq_teardown(struct realtek_priv *priv)
1814{
1815 struct rtl8365mb *mb = priv->chip_data;
1816 int virq;
1817 int i;
1818
1819 if (mb->irq) {
1820 free_irq(mb->irq, priv);
1821 mb->irq = 0;
1822 }
1823
1824 if (priv->irqdomain) {
1825 for (i = 0; i < priv->num_ports; i++) {
1826 virq = irq_find_mapping(priv->irqdomain, i);
1827 irq_dispose_mapping(virq);
1828 }
1829
1830 irq_domain_remove(priv->irqdomain);
1831 priv->irqdomain = NULL;
1832 }
1833}
1834
1835static int rtl8365mb_cpu_config(struct realtek_priv *priv)
1836{
1837 struct rtl8365mb *mb = priv->chip_data;
1838 struct rtl8365mb_cpu *cpu = &mb->cpu;
1839 u32 val;
1840 int ret;
1841
1842 ret = regmap_update_bits(priv->map, RTL8365MB_CPU_PORT_MASK_REG,
1843 RTL8365MB_CPU_PORT_MASK_MASK,
1844 FIELD_PREP(RTL8365MB_CPU_PORT_MASK_MASK,
1845 cpu->mask));
1846 if (ret)
1847 return ret;
1848
1849 val = FIELD_PREP(RTL8365MB_CPU_CTRL_EN_MASK, cpu->enable ? 1 : 0) |
1850 FIELD_PREP(RTL8365MB_CPU_CTRL_INSERTMODE_MASK, cpu->insert) |
1851 FIELD_PREP(RTL8365MB_CPU_CTRL_TAG_POSITION_MASK, cpu->position) |
1852 FIELD_PREP(RTL8365MB_CPU_CTRL_RXBYTECOUNT_MASK, cpu->rx_length) |
1853 FIELD_PREP(RTL8365MB_CPU_CTRL_TAG_FORMAT_MASK, cpu->format) |
1854 FIELD_PREP(RTL8365MB_CPU_CTRL_TRAP_PORT_MASK, cpu->trap_port & 0x7) |
1855 FIELD_PREP(RTL8365MB_CPU_CTRL_TRAP_PORT_EXT_MASK,
1856 cpu->trap_port >> 3 & 0x1);
1857 ret = regmap_write(priv->map, RTL8365MB_CPU_CTRL_REG, val);
1858 if (ret)
1859 return ret;
1860
1861 return 0;
1862}
1863
1864static int rtl8365mb_change_tag_protocol(struct dsa_switch *ds,
1865 enum dsa_tag_protocol proto)
1866{
1867 struct realtek_priv *priv = ds->priv;
1868 struct rtl8365mb_cpu *cpu;
1869 struct rtl8365mb *mb;
1870
1871 mb = priv->chip_data;
1872 cpu = &mb->cpu;
1873
1874 switch (proto) {
1875 case DSA_TAG_PROTO_RTL8_4:
1876 cpu->format = RTL8365MB_CPU_FORMAT_8BYTES;
1877 cpu->position = RTL8365MB_CPU_POS_AFTER_SA;
1878 break;
1879 case DSA_TAG_PROTO_RTL8_4T:
1880 cpu->format = RTL8365MB_CPU_FORMAT_8BYTES;
1881 cpu->position = RTL8365MB_CPU_POS_BEFORE_CRC;
1882 break;
1883 /* The switch also supports a 4-byte format, similar to rtl4a but with
1884 * the same 0x04 8-bit version and probably 8-bit port source/dest.
1885 * There is no public doc about it. Not supported yet and it will probably
1886 * never be.
1887 */
1888 default:
1889 return -EPROTONOSUPPORT;
1890 }
1891
1892 return rtl8365mb_cpu_config(priv);
1893}
1894
1895static int rtl8365mb_switch_init(struct realtek_priv *priv)
1896{
1897 struct rtl8365mb *mb = priv->chip_data;
1898 const struct rtl8365mb_chip_info *ci;
1899 int ret;
1900 int i;
1901
1902 ci = mb->chip_info;
1903
1904 /* Do any chip-specific init jam before getting to the common stuff */
1905 if (ci->jam_table) {
1906 for (i = 0; i < ci->jam_size; i++) {
1907 ret = regmap_write(priv->map, ci->jam_table[i].reg,
1908 ci->jam_table[i].val);
1909 if (ret)
1910 return ret;
1911 }
1912 }
1913
1914 /* Common init jam */
1915 for (i = 0; i < ARRAY_SIZE(rtl8365mb_init_jam_common); i++) {
1916 ret = regmap_write(priv->map, rtl8365mb_init_jam_common[i].reg,
1917 rtl8365mb_init_jam_common[i].val);
1918 if (ret)
1919 return ret;
1920 }
1921
1922 return 0;
1923}
1924
1925static int rtl8365mb_reset_chip(struct realtek_priv *priv)
1926{
1927 u32 val;
1928
1929 priv->write_reg_noack(priv, RTL8365MB_CHIP_RESET_REG,
1930 FIELD_PREP(RTL8365MB_CHIP_RESET_HW_MASK, 1));
1931
1932 /* Realtek documentation says the chip needs 1 second to reset. Sleep
1933 * for 100 ms before accessing any registers to prevent ACK timeouts.
1934 */
1935 msleep(100);
1936 return regmap_read_poll_timeout(priv->map, RTL8365MB_CHIP_RESET_REG, val,
1937 !(val & RTL8365MB_CHIP_RESET_HW_MASK),
1938 20000, 1e6);
1939}
1940
1941static int rtl8365mb_setup(struct dsa_switch *ds)
1942{
1943 struct realtek_priv *priv = ds->priv;
1944 struct rtl8365mb_cpu *cpu;
1945 struct dsa_port *cpu_dp;
1946 struct rtl8365mb *mb;
1947 int ret;
1948 int i;
1949
1950 mb = priv->chip_data;
1951 cpu = &mb->cpu;
1952
1953 ret = rtl8365mb_reset_chip(priv);
1954 if (ret) {
1955 dev_err(priv->dev, "failed to reset chip: %d\n", ret);
1956 goto out_error;
1957 }
1958
1959 /* Configure switch to vendor-defined initial state */
1960 ret = rtl8365mb_switch_init(priv);
1961 if (ret) {
1962 dev_err(priv->dev, "failed to initialize switch: %d\n", ret);
1963 goto out_error;
1964 }
1965
1966 /* Set up cascading IRQs */
1967 ret = rtl8365mb_irq_setup(priv);
1968 if (ret == -EPROBE_DEFER)
1969 return ret;
1970 else if (ret)
1971 dev_info(priv->dev, "no interrupt support\n");
1972
1973 /* Configure CPU tagging */
1974 dsa_switch_for_each_cpu_port(cpu_dp, priv->ds) {
1975 cpu->mask |= BIT(cpu_dp->index);
1976
1977 if (cpu->trap_port == RTL8365MB_MAX_NUM_PORTS)
1978 cpu->trap_port = cpu_dp->index;
1979 }
1980 cpu->enable = cpu->mask > 0;
1981 ret = rtl8365mb_cpu_config(priv);
1982 if (ret)
1983 goto out_teardown_irq;
1984
1985 /* Configure ports */
1986 for (i = 0; i < priv->num_ports; i++) {
1987 struct rtl8365mb_port *p = &mb->ports[i];
1988
1989 if (dsa_is_unused_port(priv->ds, i))
1990 continue;
1991
1992 /* Forward only to the CPU */
1993 ret = rtl8365mb_port_set_isolation(priv, i, cpu->mask);
1994 if (ret)
1995 goto out_teardown_irq;
1996
1997 /* Disable learning */
1998 ret = rtl8365mb_port_set_learning(priv, i, false);
1999 if (ret)
2000 goto out_teardown_irq;
2001
2002 /* Set the initial STP state of all ports to DISABLED, otherwise
2003 * ports will still forward frames to the CPU despite being
2004 * administratively down by default.
2005 */
2006 rtl8365mb_port_stp_state_set(priv->ds, i, BR_STATE_DISABLED);
2007
2008 /* Set up per-port private data */
2009 p->priv = priv;
2010 p->index = i;
2011 }
2012
2013 ret = rtl8365mb_port_change_mtu(ds, cpu->trap_port, ETH_DATA_LEN);
2014 if (ret)
2015 goto out_teardown_irq;
2016
2017 if (priv->setup_interface) {
2018 ret = priv->setup_interface(ds);
2019 if (ret) {
2020 dev_err(priv->dev, "could not set up MDIO bus\n");
2021 goto out_teardown_irq;
2022 }
2023 }
2024
2025 /* Start statistics counter polling */
2026 rtl8365mb_stats_setup(priv);
2027
2028 return 0;
2029
2030out_teardown_irq:
2031 rtl8365mb_irq_teardown(priv);
2032
2033out_error:
2034 return ret;
2035}
2036
2037static void rtl8365mb_teardown(struct dsa_switch *ds)
2038{
2039 struct realtek_priv *priv = ds->priv;
2040
2041 rtl8365mb_stats_teardown(priv);
2042 rtl8365mb_irq_teardown(priv);
2043}
2044
2045static int rtl8365mb_get_chip_id_and_ver(struct regmap *map, u32 *id, u32 *ver)
2046{
2047 int ret;
2048
2049 /* For some reason we have to write a magic value to an arbitrary
2050 * register whenever accessing the chip ID/version registers.
2051 */
2052 ret = regmap_write(map, RTL8365MB_MAGIC_REG, RTL8365MB_MAGIC_VALUE);
2053 if (ret)
2054 return ret;
2055
2056 ret = regmap_read(map, RTL8365MB_CHIP_ID_REG, id);
2057 if (ret)
2058 return ret;
2059
2060 ret = regmap_read(map, RTL8365MB_CHIP_VER_REG, ver);
2061 if (ret)
2062 return ret;
2063
2064 /* Reset magic register */
2065 ret = regmap_write(map, RTL8365MB_MAGIC_REG, 0);
2066 if (ret)
2067 return ret;
2068
2069 return 0;
2070}
2071
2072static int rtl8365mb_detect(struct realtek_priv *priv)
2073{
2074 struct rtl8365mb *mb = priv->chip_data;
2075 u32 chip_id;
2076 u32 chip_ver;
2077 int ret;
2078 int i;
2079
2080 ret = rtl8365mb_get_chip_id_and_ver(priv->map, &chip_id, &chip_ver);
2081 if (ret) {
2082 dev_err(priv->dev, "failed to read chip id and version: %d\n",
2083 ret);
2084 return ret;
2085 }
2086
2087 for (i = 0; i < ARRAY_SIZE(rtl8365mb_chip_infos); i++) {
2088 const struct rtl8365mb_chip_info *ci = &rtl8365mb_chip_infos[i];
2089
2090 if (ci->chip_id == chip_id && ci->chip_ver == chip_ver) {
2091 mb->chip_info = ci;
2092 break;
2093 }
2094 }
2095
2096 if (!mb->chip_info) {
2097 dev_err(priv->dev,
2098 "unrecognized switch (id=0x%04x, ver=0x%04x)", chip_id,
2099 chip_ver);
2100 return -ENODEV;
2101 }
2102
2103 dev_info(priv->dev, "found an %s switch\n", mb->chip_info->name);
2104
2105 priv->num_ports = RTL8365MB_MAX_NUM_PORTS;
2106 mb->priv = priv;
2107 mb->cpu.trap_port = RTL8365MB_MAX_NUM_PORTS;
2108 mb->cpu.insert = RTL8365MB_CPU_INSERT_TO_ALL;
2109 mb->cpu.position = RTL8365MB_CPU_POS_AFTER_SA;
2110 mb->cpu.rx_length = RTL8365MB_CPU_RXLEN_64BYTES;
2111 mb->cpu.format = RTL8365MB_CPU_FORMAT_8BYTES;
2112
2113 return 0;
2114}
2115
2116static const struct dsa_switch_ops rtl8365mb_switch_ops_smi = {
2117 .get_tag_protocol = rtl8365mb_get_tag_protocol,
2118 .change_tag_protocol = rtl8365mb_change_tag_protocol,
2119 .setup = rtl8365mb_setup,
2120 .teardown = rtl8365mb_teardown,
2121 .phylink_get_caps = rtl8365mb_phylink_get_caps,
2122 .phylink_mac_config = rtl8365mb_phylink_mac_config,
2123 .phylink_mac_link_down = rtl8365mb_phylink_mac_link_down,
2124 .phylink_mac_link_up = rtl8365mb_phylink_mac_link_up,
2125 .port_stp_state_set = rtl8365mb_port_stp_state_set,
2126 .get_strings = rtl8365mb_get_strings,
2127 .get_ethtool_stats = rtl8365mb_get_ethtool_stats,
2128 .get_sset_count = rtl8365mb_get_sset_count,
2129 .get_eth_phy_stats = rtl8365mb_get_phy_stats,
2130 .get_eth_mac_stats = rtl8365mb_get_mac_stats,
2131 .get_eth_ctrl_stats = rtl8365mb_get_ctrl_stats,
2132 .get_stats64 = rtl8365mb_get_stats64,
2133 .port_change_mtu = rtl8365mb_port_change_mtu,
2134 .port_max_mtu = rtl8365mb_port_max_mtu,
2135};
2136
2137static const struct dsa_switch_ops rtl8365mb_switch_ops_mdio = {
2138 .get_tag_protocol = rtl8365mb_get_tag_protocol,
2139 .change_tag_protocol = rtl8365mb_change_tag_protocol,
2140 .setup = rtl8365mb_setup,
2141 .teardown = rtl8365mb_teardown,
2142 .phylink_get_caps = rtl8365mb_phylink_get_caps,
2143 .phylink_mac_config = rtl8365mb_phylink_mac_config,
2144 .phylink_mac_link_down = rtl8365mb_phylink_mac_link_down,
2145 .phylink_mac_link_up = rtl8365mb_phylink_mac_link_up,
2146 .phy_read = rtl8365mb_dsa_phy_read,
2147 .phy_write = rtl8365mb_dsa_phy_write,
2148 .port_stp_state_set = rtl8365mb_port_stp_state_set,
2149 .get_strings = rtl8365mb_get_strings,
2150 .get_ethtool_stats = rtl8365mb_get_ethtool_stats,
2151 .get_sset_count = rtl8365mb_get_sset_count,
2152 .get_eth_phy_stats = rtl8365mb_get_phy_stats,
2153 .get_eth_mac_stats = rtl8365mb_get_mac_stats,
2154 .get_eth_ctrl_stats = rtl8365mb_get_ctrl_stats,
2155 .get_stats64 = rtl8365mb_get_stats64,
2156 .port_change_mtu = rtl8365mb_port_change_mtu,
2157 .port_max_mtu = rtl8365mb_port_max_mtu,
2158};
2159
2160static const struct realtek_ops rtl8365mb_ops = {
2161 .detect = rtl8365mb_detect,
2162 .phy_read = rtl8365mb_phy_read,
2163 .phy_write = rtl8365mb_phy_write,
2164};
2165
2166const struct realtek_variant rtl8365mb_variant = {
2167 .ds_ops_smi = &rtl8365mb_switch_ops_smi,
2168 .ds_ops_mdio = &rtl8365mb_switch_ops_mdio,
2169 .ops = &rtl8365mb_ops,
2170 .clk_delay = 10,
2171 .cmd_read = 0xb9,
2172 .cmd_write = 0xb8,
2173 .chip_data_sz = sizeof(struct rtl8365mb),
2174};
2175EXPORT_SYMBOL_GPL(rtl8365mb_variant);
2176
2177MODULE_AUTHOR("Alvin Šipraga <alsi@bang-olufsen.dk>");
2178MODULE_DESCRIPTION("Driver for RTL8365MB-VC ethernet switch");
2179MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0
2/* Realtek SMI subdriver for the Realtek RTL8365MB-VC ethernet switch.
3 *
4 * Copyright (C) 2021 Alvin Šipraga <alsi@bang-olufsen.dk>
5 * Copyright (C) 2021 Michael Rasmussen <mir@bang-olufsen.dk>
6 *
7 * The RTL8365MB-VC is a 4+1 port 10/100/1000M switch controller. It includes 4
8 * integrated PHYs for the user facing ports, and an extension interface which
9 * can be connected to the CPU - or another PHY - via either MII, RMII, or
10 * RGMII. The switch is configured via the Realtek Simple Management Interface
11 * (SMI), which uses the MDIO/MDC lines.
12 *
13 * Below is a simplified block diagram of the chip and its relevant interfaces.
14 *
15 * .-----------------------------------.
16 * | |
17 * UTP <---------------> Giga PHY <-> PCS <-> P0 GMAC |
18 * UTP <---------------> Giga PHY <-> PCS <-> P1 GMAC |
19 * UTP <---------------> Giga PHY <-> PCS <-> P2 GMAC |
20 * UTP <---------------> Giga PHY <-> PCS <-> P3 GMAC |
21 * | |
22 * CPU/PHY <-MII/RMII/RGMII---> Extension <---> Extension |
23 * | interface 1 GMAC 1 |
24 * | |
25 * SMI driver/ <-MDC/SCL---> Management ~~~~~~~~~~~~~~ |
26 * EEPROM <-MDIO/SDA--> interface ~REALTEK ~~~~~ |
27 * | ~RTL8365MB ~~~ |
28 * | ~GXXXC TAIWAN~ |
29 * GPIO <--------------> Reset ~~~~~~~~~~~~~~ |
30 * | |
31 * Interrupt <----------> Link UP/DOWN events |
32 * controller | |
33 * '-----------------------------------'
34 *
35 * The driver uses DSA to integrate the 4 user and 1 extension ports into the
36 * kernel. Netdevices are created for the user ports, as are PHY devices for
37 * their integrated PHYs. The device tree firmware should also specify the link
38 * partner of the extension port - either via a fixed-link or other phy-handle.
39 * See the device tree bindings for more detailed information. Note that the
40 * driver has only been tested with a fixed-link, but in principle it should not
41 * matter.
42 *
43 * NOTE: Currently, only the RGMII interface is implemented in this driver.
44 *
45 * The interrupt line is asserted on link UP/DOWN events. The driver creates a
46 * custom irqchip to handle this interrupt and demultiplex the events by reading
47 * the status registers via SMI. Interrupts are then propagated to the relevant
48 * PHY device.
49 *
50 * The EEPROM contains initial register values which the chip will read over I2C
51 * upon hardware reset. It is also possible to omit the EEPROM. In both cases,
52 * the driver will manually reprogram some registers using jam tables to reach
53 * an initial state defined by the vendor driver.
54 *
55 * This Linux driver is written based on an OS-agnostic vendor driver from
56 * Realtek. The reference GPL-licensed sources can be found in the OpenWrt
57 * source tree under the name rtl8367c. The vendor driver claims to support a
58 * number of similar switch controllers from Realtek, but the only hardware we
59 * have is the RTL8365MB-VC. Moreover, there does not seem to be any chip under
60 * the name RTL8367C. Although one wishes that the 'C' stood for some kind of
61 * common hardware revision, there exist examples of chips with the suffix -VC
62 * which are explicitly not supported by the rtl8367c driver and which instead
63 * require the rtl8367d vendor driver. With all this uncertainty, the driver has
64 * been modestly named rtl8365mb. Future implementors may wish to rename things
65 * accordingly.
66 *
67 * In the same family of chips, some carry up to 8 user ports and up to 2
68 * extension ports. Where possible this driver tries to make things generic, but
69 * more work must be done to support these configurations. According to
70 * documentation from Realtek, the family should include the following chips:
71 *
72 * - RTL8363NB
73 * - RTL8363NB-VB
74 * - RTL8363SC
75 * - RTL8363SC-VB
76 * - RTL8364NB
77 * - RTL8364NB-VB
78 * - RTL8365MB-VC
79 * - RTL8366SC
80 * - RTL8367RB-VB
81 * - RTL8367SB
82 * - RTL8367S
83 * - RTL8370MB
84 * - RTL8310SR
85 *
86 * Some of the register logic for these additional chips has been skipped over
87 * while implementing this driver. It is therefore not possible to assume that
88 * things will work out-of-the-box for other chips, and a careful review of the
89 * vendor driver may be needed to expand support. The RTL8365MB-VC seems to be
90 * one of the simpler chips.
91 */
92
93#include <linux/bitfield.h>
94#include <linux/bitops.h>
95#include <linux/interrupt.h>
96#include <linux/irqdomain.h>
97#include <linux/mutex.h>
98#include <linux/of_irq.h>
99#include <linux/regmap.h>
100#include <linux/if_bridge.h>
101#include <linux/if_vlan.h>
102
103#include "realtek.h"
104#include "realtek-smi.h"
105#include "realtek-mdio.h"
106#include "rtl83xx.h"
107
108/* Family-specific data and limits */
109#define RTL8365MB_PHYADDRMAX 7
110#define RTL8365MB_NUM_PHYREGS 32
111#define RTL8365MB_PHYREGMAX (RTL8365MB_NUM_PHYREGS - 1)
112#define RTL8365MB_MAX_NUM_PORTS 11
113#define RTL8365MB_MAX_NUM_EXTINTS 3
114#define RTL8365MB_LEARN_LIMIT_MAX 2112
115
116/* Chip identification registers */
117#define RTL8365MB_CHIP_ID_REG 0x1300
118
119#define RTL8365MB_CHIP_VER_REG 0x1301
120
121#define RTL8365MB_MAGIC_REG 0x13C2
122#define RTL8365MB_MAGIC_VALUE 0x0249
123
124/* Chip reset register */
125#define RTL8365MB_CHIP_RESET_REG 0x1322
126#define RTL8365MB_CHIP_RESET_SW_MASK 0x0002
127#define RTL8365MB_CHIP_RESET_HW_MASK 0x0001
128
129/* Interrupt polarity register */
130#define RTL8365MB_INTR_POLARITY_REG 0x1100
131#define RTL8365MB_INTR_POLARITY_MASK 0x0001
132#define RTL8365MB_INTR_POLARITY_HIGH 0
133#define RTL8365MB_INTR_POLARITY_LOW 1
134
135/* Interrupt control/status register - enable/check specific interrupt types */
136#define RTL8365MB_INTR_CTRL_REG 0x1101
137#define RTL8365MB_INTR_STATUS_REG 0x1102
138#define RTL8365MB_INTR_SLIENT_START_2_MASK 0x1000
139#define RTL8365MB_INTR_SLIENT_START_MASK 0x0800
140#define RTL8365MB_INTR_ACL_ACTION_MASK 0x0200
141#define RTL8365MB_INTR_CABLE_DIAG_FIN_MASK 0x0100
142#define RTL8365MB_INTR_INTERRUPT_8051_MASK 0x0080
143#define RTL8365MB_INTR_LOOP_DETECTION_MASK 0x0040
144#define RTL8365MB_INTR_GREEN_TIMER_MASK 0x0020
145#define RTL8365MB_INTR_SPECIAL_CONGEST_MASK 0x0010
146#define RTL8365MB_INTR_SPEED_CHANGE_MASK 0x0008
147#define RTL8365MB_INTR_LEARN_OVER_MASK 0x0004
148#define RTL8365MB_INTR_METER_EXCEEDED_MASK 0x0002
149#define RTL8365MB_INTR_LINK_CHANGE_MASK 0x0001
150#define RTL8365MB_INTR_ALL_MASK \
151 (RTL8365MB_INTR_SLIENT_START_2_MASK | \
152 RTL8365MB_INTR_SLIENT_START_MASK | \
153 RTL8365MB_INTR_ACL_ACTION_MASK | \
154 RTL8365MB_INTR_CABLE_DIAG_FIN_MASK | \
155 RTL8365MB_INTR_INTERRUPT_8051_MASK | \
156 RTL8365MB_INTR_LOOP_DETECTION_MASK | \
157 RTL8365MB_INTR_GREEN_TIMER_MASK | \
158 RTL8365MB_INTR_SPECIAL_CONGEST_MASK | \
159 RTL8365MB_INTR_SPEED_CHANGE_MASK | \
160 RTL8365MB_INTR_LEARN_OVER_MASK | \
161 RTL8365MB_INTR_METER_EXCEEDED_MASK | \
162 RTL8365MB_INTR_LINK_CHANGE_MASK)
163
164/* Per-port interrupt type status registers */
165#define RTL8365MB_PORT_LINKDOWN_IND_REG 0x1106
166#define RTL8365MB_PORT_LINKDOWN_IND_MASK 0x07FF
167
168#define RTL8365MB_PORT_LINKUP_IND_REG 0x1107
169#define RTL8365MB_PORT_LINKUP_IND_MASK 0x07FF
170
171/* PHY indirect access registers */
172#define RTL8365MB_INDIRECT_ACCESS_CTRL_REG 0x1F00
173#define RTL8365MB_INDIRECT_ACCESS_CTRL_RW_MASK 0x0002
174#define RTL8365MB_INDIRECT_ACCESS_CTRL_RW_READ 0
175#define RTL8365MB_INDIRECT_ACCESS_CTRL_RW_WRITE 1
176#define RTL8365MB_INDIRECT_ACCESS_CTRL_CMD_MASK 0x0001
177#define RTL8365MB_INDIRECT_ACCESS_CTRL_CMD_VALUE 1
178#define RTL8365MB_INDIRECT_ACCESS_STATUS_REG 0x1F01
179#define RTL8365MB_INDIRECT_ACCESS_ADDRESS_REG 0x1F02
180#define RTL8365MB_INDIRECT_ACCESS_ADDRESS_OCPADR_5_1_MASK GENMASK(4, 0)
181#define RTL8365MB_INDIRECT_ACCESS_ADDRESS_PHYNUM_MASK GENMASK(7, 5)
182#define RTL8365MB_INDIRECT_ACCESS_ADDRESS_OCPADR_9_6_MASK GENMASK(11, 8)
183#define RTL8365MB_PHY_BASE 0x2000
184#define RTL8365MB_INDIRECT_ACCESS_WRITE_DATA_REG 0x1F03
185#define RTL8365MB_INDIRECT_ACCESS_READ_DATA_REG 0x1F04
186
187/* PHY OCP address prefix register */
188#define RTL8365MB_GPHY_OCP_MSB_0_REG 0x1D15
189#define RTL8365MB_GPHY_OCP_MSB_0_CFG_CPU_OCPADR_MASK 0x0FC0
190#define RTL8365MB_PHY_OCP_ADDR_PREFIX_MASK 0xFC00
191
192/* The PHY OCP addresses of PHY registers 0~31 start here */
193#define RTL8365MB_PHY_OCP_ADDR_PHYREG_BASE 0xA400
194
195/* External interface port mode values - used in DIGITAL_INTERFACE_SELECT */
196#define RTL8365MB_EXT_PORT_MODE_DISABLE 0
197#define RTL8365MB_EXT_PORT_MODE_RGMII 1
198#define RTL8365MB_EXT_PORT_MODE_MII_MAC 2
199#define RTL8365MB_EXT_PORT_MODE_MII_PHY 3
200#define RTL8365MB_EXT_PORT_MODE_TMII_MAC 4
201#define RTL8365MB_EXT_PORT_MODE_TMII_PHY 5
202#define RTL8365MB_EXT_PORT_MODE_GMII 6
203#define RTL8365MB_EXT_PORT_MODE_RMII_MAC 7
204#define RTL8365MB_EXT_PORT_MODE_RMII_PHY 8
205#define RTL8365MB_EXT_PORT_MODE_SGMII 9
206#define RTL8365MB_EXT_PORT_MODE_HSGMII 10
207#define RTL8365MB_EXT_PORT_MODE_1000X_100FX 11
208#define RTL8365MB_EXT_PORT_MODE_1000X 12
209#define RTL8365MB_EXT_PORT_MODE_100FX 13
210
211/* External interface mode configuration registers 0~1 */
212#define RTL8365MB_DIGITAL_INTERFACE_SELECT_REG0 0x1305 /* EXT0,EXT1 */
213#define RTL8365MB_DIGITAL_INTERFACE_SELECT_REG1 0x13C3 /* EXT2 */
214#define RTL8365MB_DIGITAL_INTERFACE_SELECT_REG(_extint) \
215 ((_extint) <= 1 ? RTL8365MB_DIGITAL_INTERFACE_SELECT_REG0 : \
216 (_extint) == 2 ? RTL8365MB_DIGITAL_INTERFACE_SELECT_REG1 : \
217 0x0)
218#define RTL8365MB_DIGITAL_INTERFACE_SELECT_MODE_MASK(_extint) \
219 (0xF << (((_extint) % 2)))
220#define RTL8365MB_DIGITAL_INTERFACE_SELECT_MODE_OFFSET(_extint) \
221 (((_extint) % 2) * 4)
222
223/* External interface RGMII TX/RX delay configuration registers 0~2 */
224#define RTL8365MB_EXT_RGMXF_REG0 0x1306 /* EXT0 */
225#define RTL8365MB_EXT_RGMXF_REG1 0x1307 /* EXT1 */
226#define RTL8365MB_EXT_RGMXF_REG2 0x13C5 /* EXT2 */
227#define RTL8365MB_EXT_RGMXF_REG(_extint) \
228 ((_extint) == 0 ? RTL8365MB_EXT_RGMXF_REG0 : \
229 (_extint) == 1 ? RTL8365MB_EXT_RGMXF_REG1 : \
230 (_extint) == 2 ? RTL8365MB_EXT_RGMXF_REG2 : \
231 0x0)
232#define RTL8365MB_EXT_RGMXF_RXDELAY_MASK 0x0007
233#define RTL8365MB_EXT_RGMXF_TXDELAY_MASK 0x0008
234
235/* External interface port speed values - used in DIGITAL_INTERFACE_FORCE */
236#define RTL8365MB_PORT_SPEED_10M 0
237#define RTL8365MB_PORT_SPEED_100M 1
238#define RTL8365MB_PORT_SPEED_1000M 2
239
240/* External interface force configuration registers 0~2 */
241#define RTL8365MB_DIGITAL_INTERFACE_FORCE_REG0 0x1310 /* EXT0 */
242#define RTL8365MB_DIGITAL_INTERFACE_FORCE_REG1 0x1311 /* EXT1 */
243#define RTL8365MB_DIGITAL_INTERFACE_FORCE_REG2 0x13C4 /* EXT2 */
244#define RTL8365MB_DIGITAL_INTERFACE_FORCE_REG(_extint) \
245 ((_extint) == 0 ? RTL8365MB_DIGITAL_INTERFACE_FORCE_REG0 : \
246 (_extint) == 1 ? RTL8365MB_DIGITAL_INTERFACE_FORCE_REG1 : \
247 (_extint) == 2 ? RTL8365MB_DIGITAL_INTERFACE_FORCE_REG2 : \
248 0x0)
249#define RTL8365MB_DIGITAL_INTERFACE_FORCE_EN_MASK 0x1000
250#define RTL8365MB_DIGITAL_INTERFACE_FORCE_NWAY_MASK 0x0080
251#define RTL8365MB_DIGITAL_INTERFACE_FORCE_TXPAUSE_MASK 0x0040
252#define RTL8365MB_DIGITAL_INTERFACE_FORCE_RXPAUSE_MASK 0x0020
253#define RTL8365MB_DIGITAL_INTERFACE_FORCE_LINK_MASK 0x0010
254#define RTL8365MB_DIGITAL_INTERFACE_FORCE_DUPLEX_MASK 0x0004
255#define RTL8365MB_DIGITAL_INTERFACE_FORCE_SPEED_MASK 0x0003
256
257/* CPU port mask register - controls which ports are treated as CPU ports */
258#define RTL8365MB_CPU_PORT_MASK_REG 0x1219
259#define RTL8365MB_CPU_PORT_MASK_MASK 0x07FF
260
261/* CPU control register */
262#define RTL8365MB_CPU_CTRL_REG 0x121A
263#define RTL8365MB_CPU_CTRL_TRAP_PORT_EXT_MASK 0x0400
264#define RTL8365MB_CPU_CTRL_TAG_FORMAT_MASK 0x0200
265#define RTL8365MB_CPU_CTRL_RXBYTECOUNT_MASK 0x0080
266#define RTL8365MB_CPU_CTRL_TAG_POSITION_MASK 0x0040
267#define RTL8365MB_CPU_CTRL_TRAP_PORT_MASK 0x0038
268#define RTL8365MB_CPU_CTRL_INSERTMODE_MASK 0x0006
269#define RTL8365MB_CPU_CTRL_EN_MASK 0x0001
270
271/* Maximum packet length register */
272#define RTL8365MB_CFG0_MAX_LEN_REG 0x088C
273#define RTL8365MB_CFG0_MAX_LEN_MASK 0x3FFF
274#define RTL8365MB_CFG0_MAX_LEN_MAX 0x3FFF
275
276/* Port learning limit registers */
277#define RTL8365MB_LUT_PORT_LEARN_LIMIT_BASE 0x0A20
278#define RTL8365MB_LUT_PORT_LEARN_LIMIT_REG(_physport) \
279 (RTL8365MB_LUT_PORT_LEARN_LIMIT_BASE + (_physport))
280
281/* Port isolation (forwarding mask) registers */
282#define RTL8365MB_PORT_ISOLATION_REG_BASE 0x08A2
283#define RTL8365MB_PORT_ISOLATION_REG(_physport) \
284 (RTL8365MB_PORT_ISOLATION_REG_BASE + (_physport))
285#define RTL8365MB_PORT_ISOLATION_MASK 0x07FF
286
287/* MSTP port state registers - indexed by tree instance */
288#define RTL8365MB_MSTI_CTRL_BASE 0x0A00
289#define RTL8365MB_MSTI_CTRL_REG(_msti, _physport) \
290 (RTL8365MB_MSTI_CTRL_BASE + ((_msti) << 1) + ((_physport) >> 3))
291#define RTL8365MB_MSTI_CTRL_PORT_STATE_OFFSET(_physport) ((_physport) << 1)
292#define RTL8365MB_MSTI_CTRL_PORT_STATE_MASK(_physport) \
293 (0x3 << RTL8365MB_MSTI_CTRL_PORT_STATE_OFFSET((_physport)))
294
295/* MIB counter value registers */
296#define RTL8365MB_MIB_COUNTER_BASE 0x1000
297#define RTL8365MB_MIB_COUNTER_REG(_x) (RTL8365MB_MIB_COUNTER_BASE + (_x))
298
299/* MIB counter address register */
300#define RTL8365MB_MIB_ADDRESS_REG 0x1004
301#define RTL8365MB_MIB_ADDRESS_PORT_OFFSET 0x007C
302#define RTL8365MB_MIB_ADDRESS(_p, _x) \
303 (((RTL8365MB_MIB_ADDRESS_PORT_OFFSET) * (_p) + (_x)) >> 2)
304
305#define RTL8365MB_MIB_CTRL0_REG 0x1005
306#define RTL8365MB_MIB_CTRL0_RESET_MASK 0x0002
307#define RTL8365MB_MIB_CTRL0_BUSY_MASK 0x0001
308
309/* The DSA callback .get_stats64 runs in atomic context, so we are not allowed
310 * to block. On the other hand, accessing MIB counters absolutely requires us to
311 * block. The solution is thus to schedule work which polls the MIB counters
312 * asynchronously and updates some private data, which the callback can then
313 * fetch atomically. Three seconds should be a good enough polling interval.
314 */
315#define RTL8365MB_STATS_INTERVAL_JIFFIES (3 * HZ)
316
317enum rtl8365mb_mib_counter_index {
318 RTL8365MB_MIB_ifInOctets,
319 RTL8365MB_MIB_dot3StatsFCSErrors,
320 RTL8365MB_MIB_dot3StatsSymbolErrors,
321 RTL8365MB_MIB_dot3InPauseFrames,
322 RTL8365MB_MIB_dot3ControlInUnknownOpcodes,
323 RTL8365MB_MIB_etherStatsFragments,
324 RTL8365MB_MIB_etherStatsJabbers,
325 RTL8365MB_MIB_ifInUcastPkts,
326 RTL8365MB_MIB_etherStatsDropEvents,
327 RTL8365MB_MIB_ifInMulticastPkts,
328 RTL8365MB_MIB_ifInBroadcastPkts,
329 RTL8365MB_MIB_inMldChecksumError,
330 RTL8365MB_MIB_inIgmpChecksumError,
331 RTL8365MB_MIB_inMldSpecificQuery,
332 RTL8365MB_MIB_inMldGeneralQuery,
333 RTL8365MB_MIB_inIgmpSpecificQuery,
334 RTL8365MB_MIB_inIgmpGeneralQuery,
335 RTL8365MB_MIB_inMldLeaves,
336 RTL8365MB_MIB_inIgmpLeaves,
337 RTL8365MB_MIB_etherStatsOctets,
338 RTL8365MB_MIB_etherStatsUnderSizePkts,
339 RTL8365MB_MIB_etherOversizeStats,
340 RTL8365MB_MIB_etherStatsPkts64Octets,
341 RTL8365MB_MIB_etherStatsPkts65to127Octets,
342 RTL8365MB_MIB_etherStatsPkts128to255Octets,
343 RTL8365MB_MIB_etherStatsPkts256to511Octets,
344 RTL8365MB_MIB_etherStatsPkts512to1023Octets,
345 RTL8365MB_MIB_etherStatsPkts1024to1518Octets,
346 RTL8365MB_MIB_ifOutOctets,
347 RTL8365MB_MIB_dot3StatsSingleCollisionFrames,
348 RTL8365MB_MIB_dot3StatsMultipleCollisionFrames,
349 RTL8365MB_MIB_dot3StatsDeferredTransmissions,
350 RTL8365MB_MIB_dot3StatsLateCollisions,
351 RTL8365MB_MIB_etherStatsCollisions,
352 RTL8365MB_MIB_dot3StatsExcessiveCollisions,
353 RTL8365MB_MIB_dot3OutPauseFrames,
354 RTL8365MB_MIB_ifOutDiscards,
355 RTL8365MB_MIB_dot1dTpPortInDiscards,
356 RTL8365MB_MIB_ifOutUcastPkts,
357 RTL8365MB_MIB_ifOutMulticastPkts,
358 RTL8365MB_MIB_ifOutBroadcastPkts,
359 RTL8365MB_MIB_outOampduPkts,
360 RTL8365MB_MIB_inOampduPkts,
361 RTL8365MB_MIB_inIgmpJoinsSuccess,
362 RTL8365MB_MIB_inIgmpJoinsFail,
363 RTL8365MB_MIB_inMldJoinsSuccess,
364 RTL8365MB_MIB_inMldJoinsFail,
365 RTL8365MB_MIB_inReportSuppressionDrop,
366 RTL8365MB_MIB_inLeaveSuppressionDrop,
367 RTL8365MB_MIB_outIgmpReports,
368 RTL8365MB_MIB_outIgmpLeaves,
369 RTL8365MB_MIB_outIgmpGeneralQuery,
370 RTL8365MB_MIB_outIgmpSpecificQuery,
371 RTL8365MB_MIB_outMldReports,
372 RTL8365MB_MIB_outMldLeaves,
373 RTL8365MB_MIB_outMldGeneralQuery,
374 RTL8365MB_MIB_outMldSpecificQuery,
375 RTL8365MB_MIB_inKnownMulticastPkts,
376 RTL8365MB_MIB_END,
377};
378
379struct rtl8365mb_mib_counter {
380 u32 offset;
381 u32 length;
382 const char *name;
383};
384
385#define RTL8365MB_MAKE_MIB_COUNTER(_offset, _length, _name) \
386 [RTL8365MB_MIB_ ## _name] = { _offset, _length, #_name }
387
388static struct rtl8365mb_mib_counter rtl8365mb_mib_counters[] = {
389 RTL8365MB_MAKE_MIB_COUNTER(0, 4, ifInOctets),
390 RTL8365MB_MAKE_MIB_COUNTER(4, 2, dot3StatsFCSErrors),
391 RTL8365MB_MAKE_MIB_COUNTER(6, 2, dot3StatsSymbolErrors),
392 RTL8365MB_MAKE_MIB_COUNTER(8, 2, dot3InPauseFrames),
393 RTL8365MB_MAKE_MIB_COUNTER(10, 2, dot3ControlInUnknownOpcodes),
394 RTL8365MB_MAKE_MIB_COUNTER(12, 2, etherStatsFragments),
395 RTL8365MB_MAKE_MIB_COUNTER(14, 2, etherStatsJabbers),
396 RTL8365MB_MAKE_MIB_COUNTER(16, 2, ifInUcastPkts),
397 RTL8365MB_MAKE_MIB_COUNTER(18, 2, etherStatsDropEvents),
398 RTL8365MB_MAKE_MIB_COUNTER(20, 2, ifInMulticastPkts),
399 RTL8365MB_MAKE_MIB_COUNTER(22, 2, ifInBroadcastPkts),
400 RTL8365MB_MAKE_MIB_COUNTER(24, 2, inMldChecksumError),
401 RTL8365MB_MAKE_MIB_COUNTER(26, 2, inIgmpChecksumError),
402 RTL8365MB_MAKE_MIB_COUNTER(28, 2, inMldSpecificQuery),
403 RTL8365MB_MAKE_MIB_COUNTER(30, 2, inMldGeneralQuery),
404 RTL8365MB_MAKE_MIB_COUNTER(32, 2, inIgmpSpecificQuery),
405 RTL8365MB_MAKE_MIB_COUNTER(34, 2, inIgmpGeneralQuery),
406 RTL8365MB_MAKE_MIB_COUNTER(36, 2, inMldLeaves),
407 RTL8365MB_MAKE_MIB_COUNTER(38, 2, inIgmpLeaves),
408 RTL8365MB_MAKE_MIB_COUNTER(40, 4, etherStatsOctets),
409 RTL8365MB_MAKE_MIB_COUNTER(44, 2, etherStatsUnderSizePkts),
410 RTL8365MB_MAKE_MIB_COUNTER(46, 2, etherOversizeStats),
411 RTL8365MB_MAKE_MIB_COUNTER(48, 2, etherStatsPkts64Octets),
412 RTL8365MB_MAKE_MIB_COUNTER(50, 2, etherStatsPkts65to127Octets),
413 RTL8365MB_MAKE_MIB_COUNTER(52, 2, etherStatsPkts128to255Octets),
414 RTL8365MB_MAKE_MIB_COUNTER(54, 2, etherStatsPkts256to511Octets),
415 RTL8365MB_MAKE_MIB_COUNTER(56, 2, etherStatsPkts512to1023Octets),
416 RTL8365MB_MAKE_MIB_COUNTER(58, 2, etherStatsPkts1024to1518Octets),
417 RTL8365MB_MAKE_MIB_COUNTER(60, 4, ifOutOctets),
418 RTL8365MB_MAKE_MIB_COUNTER(64, 2, dot3StatsSingleCollisionFrames),
419 RTL8365MB_MAKE_MIB_COUNTER(66, 2, dot3StatsMultipleCollisionFrames),
420 RTL8365MB_MAKE_MIB_COUNTER(68, 2, dot3StatsDeferredTransmissions),
421 RTL8365MB_MAKE_MIB_COUNTER(70, 2, dot3StatsLateCollisions),
422 RTL8365MB_MAKE_MIB_COUNTER(72, 2, etherStatsCollisions),
423 RTL8365MB_MAKE_MIB_COUNTER(74, 2, dot3StatsExcessiveCollisions),
424 RTL8365MB_MAKE_MIB_COUNTER(76, 2, dot3OutPauseFrames),
425 RTL8365MB_MAKE_MIB_COUNTER(78, 2, ifOutDiscards),
426 RTL8365MB_MAKE_MIB_COUNTER(80, 2, dot1dTpPortInDiscards),
427 RTL8365MB_MAKE_MIB_COUNTER(82, 2, ifOutUcastPkts),
428 RTL8365MB_MAKE_MIB_COUNTER(84, 2, ifOutMulticastPkts),
429 RTL8365MB_MAKE_MIB_COUNTER(86, 2, ifOutBroadcastPkts),
430 RTL8365MB_MAKE_MIB_COUNTER(88, 2, outOampduPkts),
431 RTL8365MB_MAKE_MIB_COUNTER(90, 2, inOampduPkts),
432 RTL8365MB_MAKE_MIB_COUNTER(92, 4, inIgmpJoinsSuccess),
433 RTL8365MB_MAKE_MIB_COUNTER(96, 2, inIgmpJoinsFail),
434 RTL8365MB_MAKE_MIB_COUNTER(98, 2, inMldJoinsSuccess),
435 RTL8365MB_MAKE_MIB_COUNTER(100, 2, inMldJoinsFail),
436 RTL8365MB_MAKE_MIB_COUNTER(102, 2, inReportSuppressionDrop),
437 RTL8365MB_MAKE_MIB_COUNTER(104, 2, inLeaveSuppressionDrop),
438 RTL8365MB_MAKE_MIB_COUNTER(106, 2, outIgmpReports),
439 RTL8365MB_MAKE_MIB_COUNTER(108, 2, outIgmpLeaves),
440 RTL8365MB_MAKE_MIB_COUNTER(110, 2, outIgmpGeneralQuery),
441 RTL8365MB_MAKE_MIB_COUNTER(112, 2, outIgmpSpecificQuery),
442 RTL8365MB_MAKE_MIB_COUNTER(114, 2, outMldReports),
443 RTL8365MB_MAKE_MIB_COUNTER(116, 2, outMldLeaves),
444 RTL8365MB_MAKE_MIB_COUNTER(118, 2, outMldGeneralQuery),
445 RTL8365MB_MAKE_MIB_COUNTER(120, 2, outMldSpecificQuery),
446 RTL8365MB_MAKE_MIB_COUNTER(122, 2, inKnownMulticastPkts),
447};
448
449static_assert(ARRAY_SIZE(rtl8365mb_mib_counters) == RTL8365MB_MIB_END);
450
451struct rtl8365mb_jam_tbl_entry {
452 u16 reg;
453 u16 val;
454};
455
456/* Lifted from the vendor driver sources */
457static const struct rtl8365mb_jam_tbl_entry rtl8365mb_init_jam_8365mb_vc[] = {
458 { 0x13EB, 0x15BB }, { 0x1303, 0x06D6 }, { 0x1304, 0x0700 },
459 { 0x13E2, 0x003F }, { 0x13F9, 0x0090 }, { 0x121E, 0x03CA },
460 { 0x1233, 0x0352 }, { 0x1237, 0x00A0 }, { 0x123A, 0x0030 },
461 { 0x1239, 0x0084 }, { 0x0301, 0x1000 }, { 0x1349, 0x001F },
462 { 0x18E0, 0x4004 }, { 0x122B, 0x241C }, { 0x1305, 0xC000 },
463 { 0x13F0, 0x0000 },
464};
465
466static const struct rtl8365mb_jam_tbl_entry rtl8365mb_init_jam_common[] = {
467 { 0x1200, 0x7FCB }, { 0x0884, 0x0003 }, { 0x06EB, 0x0001 },
468 { 0x03Fa, 0x0007 }, { 0x08C8, 0x00C0 }, { 0x0A30, 0x020E },
469 { 0x0800, 0x0000 }, { 0x0802, 0x0000 }, { 0x09DA, 0x0013 },
470 { 0x1D32, 0x0002 },
471};
472
473enum rtl8365mb_phy_interface_mode {
474 RTL8365MB_PHY_INTERFACE_MODE_INVAL = 0,
475 RTL8365MB_PHY_INTERFACE_MODE_INTERNAL = BIT(0),
476 RTL8365MB_PHY_INTERFACE_MODE_MII = BIT(1),
477 RTL8365MB_PHY_INTERFACE_MODE_TMII = BIT(2),
478 RTL8365MB_PHY_INTERFACE_MODE_RMII = BIT(3),
479 RTL8365MB_PHY_INTERFACE_MODE_RGMII = BIT(4),
480 RTL8365MB_PHY_INTERFACE_MODE_SGMII = BIT(5),
481 RTL8365MB_PHY_INTERFACE_MODE_HSGMII = BIT(6),
482};
483
484/**
485 * struct rtl8365mb_extint - external interface info
486 * @port: the port with an external interface
487 * @id: the external interface ID, which is either 0, 1, or 2
488 * @supported_interfaces: a bitmask of supported PHY interface modes
489 *
490 * Represents a mapping: port -> { id, supported_interfaces }. To be embedded
491 * in &struct rtl8365mb_chip_info for every port with an external interface.
492 */
493struct rtl8365mb_extint {
494 int port;
495 int id;
496 unsigned int supported_interfaces;
497};
498
499/**
500 * struct rtl8365mb_chip_info - static chip-specific info
501 * @name: human-readable chip name
502 * @chip_id: chip identifier
503 * @chip_ver: chip silicon revision
504 * @extints: available external interfaces
505 * @jam_table: chip-specific initialization jam table
506 * @jam_size: size of the chip's jam table
507 *
508 * These data are specific to a given chip in the family of switches supported
509 * by this driver. When adding support for another chip in the family, a new
510 * chip info should be added to the rtl8365mb_chip_infos array.
511 */
512struct rtl8365mb_chip_info {
513 const char *name;
514 u32 chip_id;
515 u32 chip_ver;
516 const struct rtl8365mb_extint extints[RTL8365MB_MAX_NUM_EXTINTS];
517 const struct rtl8365mb_jam_tbl_entry *jam_table;
518 size_t jam_size;
519};
520
521/* Chip info for each supported switch in the family */
522#define PHY_INTF(_mode) (RTL8365MB_PHY_INTERFACE_MODE_ ## _mode)
523static const struct rtl8365mb_chip_info rtl8365mb_chip_infos[] = {
524 {
525 .name = "RTL8365MB-VC",
526 .chip_id = 0x6367,
527 .chip_ver = 0x0040,
528 .extints = {
529 { 6, 1, PHY_INTF(MII) | PHY_INTF(TMII) |
530 PHY_INTF(RMII) | PHY_INTF(RGMII) },
531 },
532 .jam_table = rtl8365mb_init_jam_8365mb_vc,
533 .jam_size = ARRAY_SIZE(rtl8365mb_init_jam_8365mb_vc),
534 },
535 {
536 .name = "RTL8367S",
537 .chip_id = 0x6367,
538 .chip_ver = 0x00A0,
539 .extints = {
540 { 6, 1, PHY_INTF(SGMII) | PHY_INTF(HSGMII) },
541 { 7, 2, PHY_INTF(MII) | PHY_INTF(TMII) |
542 PHY_INTF(RMII) | PHY_INTF(RGMII) },
543 },
544 .jam_table = rtl8365mb_init_jam_8365mb_vc,
545 .jam_size = ARRAY_SIZE(rtl8365mb_init_jam_8365mb_vc),
546 },
547 {
548 .name = "RTL8367RB-VB",
549 .chip_id = 0x6367,
550 .chip_ver = 0x0020,
551 .extints = {
552 { 6, 1, PHY_INTF(MII) | PHY_INTF(TMII) |
553 PHY_INTF(RMII) | PHY_INTF(RGMII) },
554 { 7, 2, PHY_INTF(MII) | PHY_INTF(TMII) |
555 PHY_INTF(RMII) | PHY_INTF(RGMII) },
556 },
557 .jam_table = rtl8365mb_init_jam_8365mb_vc,
558 .jam_size = ARRAY_SIZE(rtl8365mb_init_jam_8365mb_vc),
559 },
560};
561
562enum rtl8365mb_stp_state {
563 RTL8365MB_STP_STATE_DISABLED = 0,
564 RTL8365MB_STP_STATE_BLOCKING = 1,
565 RTL8365MB_STP_STATE_LEARNING = 2,
566 RTL8365MB_STP_STATE_FORWARDING = 3,
567};
568
569enum rtl8365mb_cpu_insert {
570 RTL8365MB_CPU_INSERT_TO_ALL = 0,
571 RTL8365MB_CPU_INSERT_TO_TRAPPING = 1,
572 RTL8365MB_CPU_INSERT_TO_NONE = 2,
573};
574
575enum rtl8365mb_cpu_position {
576 RTL8365MB_CPU_POS_AFTER_SA = 0,
577 RTL8365MB_CPU_POS_BEFORE_CRC = 1,
578};
579
580enum rtl8365mb_cpu_format {
581 RTL8365MB_CPU_FORMAT_8BYTES = 0,
582 RTL8365MB_CPU_FORMAT_4BYTES = 1,
583};
584
585enum rtl8365mb_cpu_rxlen {
586 RTL8365MB_CPU_RXLEN_72BYTES = 0,
587 RTL8365MB_CPU_RXLEN_64BYTES = 1,
588};
589
590/**
591 * struct rtl8365mb_cpu - CPU port configuration
592 * @enable: enable/disable hardware insertion of CPU tag in switch->CPU frames
593 * @mask: port mask of ports that parse should parse CPU tags
594 * @trap_port: forward trapped frames to this port
595 * @insert: CPU tag insertion mode in switch->CPU frames
596 * @position: position of CPU tag in frame
597 * @rx_length: minimum CPU RX length
598 * @format: CPU tag format
599 *
600 * Represents the CPU tagging and CPU port configuration of the switch. These
601 * settings are configurable at runtime.
602 */
603struct rtl8365mb_cpu {
604 bool enable;
605 u32 mask;
606 u32 trap_port;
607 enum rtl8365mb_cpu_insert insert;
608 enum rtl8365mb_cpu_position position;
609 enum rtl8365mb_cpu_rxlen rx_length;
610 enum rtl8365mb_cpu_format format;
611};
612
613/**
614 * struct rtl8365mb_port - private per-port data
615 * @priv: pointer to parent realtek_priv data
616 * @index: DSA port index, same as dsa_port::index
617 * @stats: link statistics populated by rtl8365mb_stats_poll, ready for atomic
618 * access via rtl8365mb_get_stats64
619 * @stats_lock: protect the stats structure during read/update
620 * @mib_work: delayed work for polling MIB counters
621 */
622struct rtl8365mb_port {
623 struct realtek_priv *priv;
624 unsigned int index;
625 struct rtnl_link_stats64 stats;
626 spinlock_t stats_lock;
627 struct delayed_work mib_work;
628};
629
630/**
631 * struct rtl8365mb - driver private data
632 * @priv: pointer to parent realtek_priv data
633 * @irq: registered IRQ or zero
634 * @chip_info: chip-specific info about the attached switch
635 * @cpu: CPU tagging and CPU port configuration for this chip
636 * @mib_lock: prevent concurrent reads of MIB counters
637 * @ports: per-port data
638 *
639 * Private data for this driver.
640 */
641struct rtl8365mb {
642 struct realtek_priv *priv;
643 int irq;
644 const struct rtl8365mb_chip_info *chip_info;
645 struct rtl8365mb_cpu cpu;
646 struct mutex mib_lock;
647 struct rtl8365mb_port ports[RTL8365MB_MAX_NUM_PORTS];
648};
649
650static int rtl8365mb_phy_poll_busy(struct realtek_priv *priv)
651{
652 u32 val;
653
654 return regmap_read_poll_timeout(priv->map_nolock,
655 RTL8365MB_INDIRECT_ACCESS_STATUS_REG,
656 val, !val, 10, 100);
657}
658
659static int rtl8365mb_phy_ocp_prepare(struct realtek_priv *priv, int phy,
660 u32 ocp_addr)
661{
662 u32 val;
663 int ret;
664
665 /* Set OCP prefix */
666 val = FIELD_GET(RTL8365MB_PHY_OCP_ADDR_PREFIX_MASK, ocp_addr);
667 ret = regmap_update_bits(
668 priv->map_nolock, RTL8365MB_GPHY_OCP_MSB_0_REG,
669 RTL8365MB_GPHY_OCP_MSB_0_CFG_CPU_OCPADR_MASK,
670 FIELD_PREP(RTL8365MB_GPHY_OCP_MSB_0_CFG_CPU_OCPADR_MASK, val));
671 if (ret)
672 return ret;
673
674 /* Set PHY register address */
675 val = RTL8365MB_PHY_BASE;
676 val |= FIELD_PREP(RTL8365MB_INDIRECT_ACCESS_ADDRESS_PHYNUM_MASK, phy);
677 val |= FIELD_PREP(RTL8365MB_INDIRECT_ACCESS_ADDRESS_OCPADR_5_1_MASK,
678 ocp_addr >> 1);
679 val |= FIELD_PREP(RTL8365MB_INDIRECT_ACCESS_ADDRESS_OCPADR_9_6_MASK,
680 ocp_addr >> 6);
681 ret = regmap_write(priv->map_nolock,
682 RTL8365MB_INDIRECT_ACCESS_ADDRESS_REG, val);
683 if (ret)
684 return ret;
685
686 return 0;
687}
688
689static int rtl8365mb_phy_ocp_read(struct realtek_priv *priv, int phy,
690 u32 ocp_addr, u16 *data)
691{
692 u32 val;
693 int ret;
694
695 rtl83xx_lock(priv);
696
697 ret = rtl8365mb_phy_poll_busy(priv);
698 if (ret)
699 goto out;
700
701 ret = rtl8365mb_phy_ocp_prepare(priv, phy, ocp_addr);
702 if (ret)
703 goto out;
704
705 /* Execute read operation */
706 val = FIELD_PREP(RTL8365MB_INDIRECT_ACCESS_CTRL_CMD_MASK,
707 RTL8365MB_INDIRECT_ACCESS_CTRL_CMD_VALUE) |
708 FIELD_PREP(RTL8365MB_INDIRECT_ACCESS_CTRL_RW_MASK,
709 RTL8365MB_INDIRECT_ACCESS_CTRL_RW_READ);
710 ret = regmap_write(priv->map_nolock, RTL8365MB_INDIRECT_ACCESS_CTRL_REG,
711 val);
712 if (ret)
713 goto out;
714
715 ret = rtl8365mb_phy_poll_busy(priv);
716 if (ret)
717 goto out;
718
719 /* Get PHY register data */
720 ret = regmap_read(priv->map_nolock,
721 RTL8365MB_INDIRECT_ACCESS_READ_DATA_REG, &val);
722 if (ret)
723 goto out;
724
725 *data = val & 0xFFFF;
726
727out:
728 rtl83xx_unlock(priv);
729
730 return ret;
731}
732
733static int rtl8365mb_phy_ocp_write(struct realtek_priv *priv, int phy,
734 u32 ocp_addr, u16 data)
735{
736 u32 val;
737 int ret;
738
739 rtl83xx_lock(priv);
740
741 ret = rtl8365mb_phy_poll_busy(priv);
742 if (ret)
743 goto out;
744
745 ret = rtl8365mb_phy_ocp_prepare(priv, phy, ocp_addr);
746 if (ret)
747 goto out;
748
749 /* Set PHY register data */
750 ret = regmap_write(priv->map_nolock,
751 RTL8365MB_INDIRECT_ACCESS_WRITE_DATA_REG, data);
752 if (ret)
753 goto out;
754
755 /* Execute write operation */
756 val = FIELD_PREP(RTL8365MB_INDIRECT_ACCESS_CTRL_CMD_MASK,
757 RTL8365MB_INDIRECT_ACCESS_CTRL_CMD_VALUE) |
758 FIELD_PREP(RTL8365MB_INDIRECT_ACCESS_CTRL_RW_MASK,
759 RTL8365MB_INDIRECT_ACCESS_CTRL_RW_WRITE);
760 ret = regmap_write(priv->map_nolock, RTL8365MB_INDIRECT_ACCESS_CTRL_REG,
761 val);
762 if (ret)
763 goto out;
764
765 ret = rtl8365mb_phy_poll_busy(priv);
766 if (ret)
767 goto out;
768
769out:
770 rtl83xx_unlock(priv);
771
772 return 0;
773}
774
775static int rtl8365mb_phy_read(struct realtek_priv *priv, int phy, int regnum)
776{
777 u32 ocp_addr;
778 u16 val;
779 int ret;
780
781 if (phy > RTL8365MB_PHYADDRMAX)
782 return -EINVAL;
783
784 if (regnum > RTL8365MB_PHYREGMAX)
785 return -EINVAL;
786
787 ocp_addr = RTL8365MB_PHY_OCP_ADDR_PHYREG_BASE + regnum * 2;
788
789 ret = rtl8365mb_phy_ocp_read(priv, phy, ocp_addr, &val);
790 if (ret) {
791 dev_err(priv->dev,
792 "failed to read PHY%d reg %02x @ %04x, ret %d\n", phy,
793 regnum, ocp_addr, ret);
794 return ret;
795 }
796
797 dev_dbg(priv->dev, "read PHY%d register 0x%02x @ %04x, val <- %04x\n",
798 phy, regnum, ocp_addr, val);
799
800 return val;
801}
802
803static int rtl8365mb_phy_write(struct realtek_priv *priv, int phy, int regnum,
804 u16 val)
805{
806 u32 ocp_addr;
807 int ret;
808
809 if (phy > RTL8365MB_PHYADDRMAX)
810 return -EINVAL;
811
812 if (regnum > RTL8365MB_PHYREGMAX)
813 return -EINVAL;
814
815 ocp_addr = RTL8365MB_PHY_OCP_ADDR_PHYREG_BASE + regnum * 2;
816
817 ret = rtl8365mb_phy_ocp_write(priv, phy, ocp_addr, val);
818 if (ret) {
819 dev_err(priv->dev,
820 "failed to write PHY%d reg %02x @ %04x, ret %d\n", phy,
821 regnum, ocp_addr, ret);
822 return ret;
823 }
824
825 dev_dbg(priv->dev, "write PHY%d register 0x%02x @ %04x, val -> %04x\n",
826 phy, regnum, ocp_addr, val);
827
828 return 0;
829}
830
831static const struct rtl8365mb_extint *
832rtl8365mb_get_port_extint(struct realtek_priv *priv, int port)
833{
834 struct rtl8365mb *mb = priv->chip_data;
835 int i;
836
837 for (i = 0; i < RTL8365MB_MAX_NUM_EXTINTS; i++) {
838 const struct rtl8365mb_extint *extint =
839 &mb->chip_info->extints[i];
840
841 if (!extint->supported_interfaces)
842 continue;
843
844 if (extint->port == port)
845 return extint;
846 }
847
848 return NULL;
849}
850
851static enum dsa_tag_protocol
852rtl8365mb_get_tag_protocol(struct dsa_switch *ds, int port,
853 enum dsa_tag_protocol mp)
854{
855 struct realtek_priv *priv = ds->priv;
856 struct rtl8365mb_cpu *cpu;
857 struct rtl8365mb *mb;
858
859 mb = priv->chip_data;
860 cpu = &mb->cpu;
861
862 if (cpu->position == RTL8365MB_CPU_POS_BEFORE_CRC)
863 return DSA_TAG_PROTO_RTL8_4T;
864
865 return DSA_TAG_PROTO_RTL8_4;
866}
867
868static int rtl8365mb_ext_config_rgmii(struct realtek_priv *priv, int port,
869 phy_interface_t interface)
870{
871 const struct rtl8365mb_extint *extint =
872 rtl8365mb_get_port_extint(priv, port);
873 struct dsa_switch *ds = &priv->ds;
874 struct device_node *dn;
875 struct dsa_port *dp;
876 int tx_delay = 0;
877 int rx_delay = 0;
878 u32 val;
879 int ret;
880
881 if (!extint)
882 return -ENODEV;
883
884 dp = dsa_to_port(ds, port);
885 dn = dp->dn;
886
887 /* Set the RGMII TX/RX delay
888 *
889 * The Realtek vendor driver indicates the following possible
890 * configuration settings:
891 *
892 * TX delay:
893 * 0 = no delay, 1 = 2 ns delay
894 * RX delay:
895 * 0 = no delay, 7 = maximum delay
896 * Each step is approximately 0.3 ns, so the maximum delay is about
897 * 2.1 ns.
898 *
899 * The vendor driver also states that this must be configured *before*
900 * forcing the external interface into a particular mode, which is done
901 * in the rtl8365mb_phylink_mac_link_{up,down} functions.
902 *
903 * Only configure an RGMII TX (resp. RX) delay if the
904 * tx-internal-delay-ps (resp. rx-internal-delay-ps) OF property is
905 * specified. We ignore the detail of the RGMII interface mode
906 * (RGMII_{RXID, TXID, etc.}), as this is considered to be a PHY-only
907 * property.
908 */
909 if (!of_property_read_u32(dn, "tx-internal-delay-ps", &val)) {
910 val = val / 1000; /* convert to ns */
911
912 if (val == 0 || val == 2)
913 tx_delay = val / 2;
914 else
915 dev_warn(priv->dev,
916 "RGMII TX delay must be 0 or 2 ns\n");
917 }
918
919 if (!of_property_read_u32(dn, "rx-internal-delay-ps", &val)) {
920 val = DIV_ROUND_CLOSEST(val, 300); /* convert to 0.3 ns step */
921
922 if (val <= 7)
923 rx_delay = val;
924 else
925 dev_warn(priv->dev,
926 "RGMII RX delay must be 0 to 2.1 ns\n");
927 }
928
929 ret = regmap_update_bits(
930 priv->map, RTL8365MB_EXT_RGMXF_REG(extint->id),
931 RTL8365MB_EXT_RGMXF_TXDELAY_MASK |
932 RTL8365MB_EXT_RGMXF_RXDELAY_MASK,
933 FIELD_PREP(RTL8365MB_EXT_RGMXF_TXDELAY_MASK, tx_delay) |
934 FIELD_PREP(RTL8365MB_EXT_RGMXF_RXDELAY_MASK, rx_delay));
935 if (ret)
936 return ret;
937
938 ret = regmap_update_bits(
939 priv->map, RTL8365MB_DIGITAL_INTERFACE_SELECT_REG(extint->id),
940 RTL8365MB_DIGITAL_INTERFACE_SELECT_MODE_MASK(extint->id),
941 RTL8365MB_EXT_PORT_MODE_RGMII
942 << RTL8365MB_DIGITAL_INTERFACE_SELECT_MODE_OFFSET(
943 extint->id));
944 if (ret)
945 return ret;
946
947 return 0;
948}
949
950static int rtl8365mb_ext_config_forcemode(struct realtek_priv *priv, int port,
951 bool link, int speed, int duplex,
952 bool tx_pause, bool rx_pause)
953{
954 const struct rtl8365mb_extint *extint =
955 rtl8365mb_get_port_extint(priv, port);
956 u32 r_tx_pause;
957 u32 r_rx_pause;
958 u32 r_duplex;
959 u32 r_speed;
960 u32 r_link;
961 int val;
962 int ret;
963
964 if (!extint)
965 return -ENODEV;
966
967 if (link) {
968 /* Force the link up with the desired configuration */
969 r_link = 1;
970 r_rx_pause = rx_pause ? 1 : 0;
971 r_tx_pause = tx_pause ? 1 : 0;
972
973 if (speed == SPEED_1000) {
974 r_speed = RTL8365MB_PORT_SPEED_1000M;
975 } else if (speed == SPEED_100) {
976 r_speed = RTL8365MB_PORT_SPEED_100M;
977 } else if (speed == SPEED_10) {
978 r_speed = RTL8365MB_PORT_SPEED_10M;
979 } else {
980 dev_err(priv->dev, "unsupported port speed %s\n",
981 phy_speed_to_str(speed));
982 return -EINVAL;
983 }
984
985 if (duplex == DUPLEX_FULL) {
986 r_duplex = 1;
987 } else if (duplex == DUPLEX_HALF) {
988 r_duplex = 0;
989 } else {
990 dev_err(priv->dev, "unsupported duplex %s\n",
991 phy_duplex_to_str(duplex));
992 return -EINVAL;
993 }
994 } else {
995 /* Force the link down and reset any programmed configuration */
996 r_link = 0;
997 r_tx_pause = 0;
998 r_rx_pause = 0;
999 r_speed = 0;
1000 r_duplex = 0;
1001 }
1002
1003 val = FIELD_PREP(RTL8365MB_DIGITAL_INTERFACE_FORCE_EN_MASK, 1) |
1004 FIELD_PREP(RTL8365MB_DIGITAL_INTERFACE_FORCE_TXPAUSE_MASK,
1005 r_tx_pause) |
1006 FIELD_PREP(RTL8365MB_DIGITAL_INTERFACE_FORCE_RXPAUSE_MASK,
1007 r_rx_pause) |
1008 FIELD_PREP(RTL8365MB_DIGITAL_INTERFACE_FORCE_LINK_MASK, r_link) |
1009 FIELD_PREP(RTL8365MB_DIGITAL_INTERFACE_FORCE_DUPLEX_MASK,
1010 r_duplex) |
1011 FIELD_PREP(RTL8365MB_DIGITAL_INTERFACE_FORCE_SPEED_MASK, r_speed);
1012 ret = regmap_write(priv->map,
1013 RTL8365MB_DIGITAL_INTERFACE_FORCE_REG(extint->id),
1014 val);
1015 if (ret)
1016 return ret;
1017
1018 return 0;
1019}
1020
1021static void rtl8365mb_phylink_get_caps(struct dsa_switch *ds, int port,
1022 struct phylink_config *config)
1023{
1024 const struct rtl8365mb_extint *extint =
1025 rtl8365mb_get_port_extint(ds->priv, port);
1026
1027 config->mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE |
1028 MAC_10 | MAC_100 | MAC_1000FD;
1029
1030 if (!extint) {
1031 __set_bit(PHY_INTERFACE_MODE_INTERNAL,
1032 config->supported_interfaces);
1033
1034 /* GMII is the default interface mode for phylib, so
1035 * we have to support it for ports with integrated PHY.
1036 */
1037 __set_bit(PHY_INTERFACE_MODE_GMII,
1038 config->supported_interfaces);
1039 return;
1040 }
1041
1042 /* Populate according to the modes supported by _this driver_,
1043 * not necessarily the modes supported by the hardware, some of
1044 * which remain unimplemented.
1045 */
1046
1047 if (extint->supported_interfaces & RTL8365MB_PHY_INTERFACE_MODE_RGMII)
1048 phy_interface_set_rgmii(config->supported_interfaces);
1049}
1050
1051static void rtl8365mb_phylink_mac_config(struct phylink_config *config,
1052 unsigned int mode,
1053 const struct phylink_link_state *state)
1054{
1055 struct dsa_port *dp = dsa_phylink_to_port(config);
1056 struct realtek_priv *priv = dp->ds->priv;
1057 u8 port = dp->index;
1058 int ret;
1059
1060 if (mode != MLO_AN_PHY && mode != MLO_AN_FIXED) {
1061 dev_err(priv->dev,
1062 "port %d supports only conventional PHY or fixed-link\n",
1063 port);
1064 return;
1065 }
1066
1067 if (phy_interface_mode_is_rgmii(state->interface)) {
1068 ret = rtl8365mb_ext_config_rgmii(priv, port, state->interface);
1069 if (ret)
1070 dev_err(priv->dev,
1071 "failed to configure RGMII mode on port %d: %d\n",
1072 port, ret);
1073 return;
1074 }
1075
1076 /* TODO: Implement MII and RMII modes, which the RTL8365MB-VC also
1077 * supports
1078 */
1079}
1080
1081static void rtl8365mb_phylink_mac_link_down(struct phylink_config *config,
1082 unsigned int mode,
1083 phy_interface_t interface)
1084{
1085 struct dsa_port *dp = dsa_phylink_to_port(config);
1086 struct realtek_priv *priv = dp->ds->priv;
1087 struct rtl8365mb_port *p;
1088 struct rtl8365mb *mb;
1089 u8 port = dp->index;
1090 int ret;
1091
1092 mb = priv->chip_data;
1093 p = &mb->ports[port];
1094 cancel_delayed_work_sync(&p->mib_work);
1095
1096 if (phy_interface_mode_is_rgmii(interface)) {
1097 ret = rtl8365mb_ext_config_forcemode(priv, port, false, 0, 0,
1098 false, false);
1099 if (ret)
1100 dev_err(priv->dev,
1101 "failed to reset forced mode on port %d: %d\n",
1102 port, ret);
1103
1104 return;
1105 }
1106}
1107
1108static void rtl8365mb_phylink_mac_link_up(struct phylink_config *config,
1109 struct phy_device *phydev,
1110 unsigned int mode,
1111 phy_interface_t interface,
1112 int speed, int duplex, bool tx_pause,
1113 bool rx_pause)
1114{
1115 struct dsa_port *dp = dsa_phylink_to_port(config);
1116 struct realtek_priv *priv = dp->ds->priv;
1117 struct rtl8365mb_port *p;
1118 struct rtl8365mb *mb;
1119 u8 port = dp->index;
1120 int ret;
1121
1122 mb = priv->chip_data;
1123 p = &mb->ports[port];
1124 schedule_delayed_work(&p->mib_work, 0);
1125
1126 if (phy_interface_mode_is_rgmii(interface)) {
1127 ret = rtl8365mb_ext_config_forcemode(priv, port, true, speed,
1128 duplex, tx_pause,
1129 rx_pause);
1130 if (ret)
1131 dev_err(priv->dev,
1132 "failed to force mode on port %d: %d\n", port,
1133 ret);
1134
1135 return;
1136 }
1137}
1138
1139static int rtl8365mb_port_change_mtu(struct dsa_switch *ds, int port,
1140 int new_mtu)
1141{
1142 struct realtek_priv *priv = ds->priv;
1143 int frame_size;
1144
1145 /* When a new MTU is set, DSA always sets the CPU port's MTU to the
1146 * largest MTU of the user ports. Because the switch only has a global
1147 * RX length register, only allowing CPU port here is enough.
1148 */
1149 if (!dsa_is_cpu_port(ds, port))
1150 return 0;
1151
1152 frame_size = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
1153
1154 dev_dbg(priv->dev, "changing mtu to %d (frame size: %d)\n",
1155 new_mtu, frame_size);
1156
1157 return regmap_update_bits(priv->map, RTL8365MB_CFG0_MAX_LEN_REG,
1158 RTL8365MB_CFG0_MAX_LEN_MASK,
1159 FIELD_PREP(RTL8365MB_CFG0_MAX_LEN_MASK,
1160 frame_size));
1161}
1162
1163static int rtl8365mb_port_max_mtu(struct dsa_switch *ds, int port)
1164{
1165 return RTL8365MB_CFG0_MAX_LEN_MAX - VLAN_ETH_HLEN - ETH_FCS_LEN;
1166}
1167
1168static void rtl8365mb_port_stp_state_set(struct dsa_switch *ds, int port,
1169 u8 state)
1170{
1171 struct realtek_priv *priv = ds->priv;
1172 enum rtl8365mb_stp_state val;
1173 int msti = 0;
1174
1175 switch (state) {
1176 case BR_STATE_DISABLED:
1177 val = RTL8365MB_STP_STATE_DISABLED;
1178 break;
1179 case BR_STATE_BLOCKING:
1180 case BR_STATE_LISTENING:
1181 val = RTL8365MB_STP_STATE_BLOCKING;
1182 break;
1183 case BR_STATE_LEARNING:
1184 val = RTL8365MB_STP_STATE_LEARNING;
1185 break;
1186 case BR_STATE_FORWARDING:
1187 val = RTL8365MB_STP_STATE_FORWARDING;
1188 break;
1189 default:
1190 dev_err(priv->dev, "invalid STP state: %u\n", state);
1191 return;
1192 }
1193
1194 regmap_update_bits(priv->map, RTL8365MB_MSTI_CTRL_REG(msti, port),
1195 RTL8365MB_MSTI_CTRL_PORT_STATE_MASK(port),
1196 val << RTL8365MB_MSTI_CTRL_PORT_STATE_OFFSET(port));
1197}
1198
1199static int rtl8365mb_port_set_learning(struct realtek_priv *priv, int port,
1200 bool enable)
1201{
1202 /* Enable/disable learning by limiting the number of L2 addresses the
1203 * port can learn. Realtek documentation states that a limit of zero
1204 * disables learning. When enabling learning, set it to the chip's
1205 * maximum.
1206 */
1207 return regmap_write(priv->map, RTL8365MB_LUT_PORT_LEARN_LIMIT_REG(port),
1208 enable ? RTL8365MB_LEARN_LIMIT_MAX : 0);
1209}
1210
1211static int rtl8365mb_port_set_isolation(struct realtek_priv *priv, int port,
1212 u32 mask)
1213{
1214 return regmap_write(priv->map, RTL8365MB_PORT_ISOLATION_REG(port), mask);
1215}
1216
1217static int rtl8365mb_mib_counter_read(struct realtek_priv *priv, int port,
1218 u32 offset, u32 length, u64 *mibvalue)
1219{
1220 u64 tmpvalue = 0;
1221 u32 val;
1222 int ret;
1223 int i;
1224
1225 /* The MIB address is an SRAM address. We request a particular address
1226 * and then poll the control register before reading the value from some
1227 * counter registers.
1228 */
1229 ret = regmap_write(priv->map, RTL8365MB_MIB_ADDRESS_REG,
1230 RTL8365MB_MIB_ADDRESS(port, offset));
1231 if (ret)
1232 return ret;
1233
1234 /* Poll for completion */
1235 ret = regmap_read_poll_timeout(priv->map, RTL8365MB_MIB_CTRL0_REG, val,
1236 !(val & RTL8365MB_MIB_CTRL0_BUSY_MASK),
1237 10, 100);
1238 if (ret)
1239 return ret;
1240
1241 /* Presumably this indicates a MIB counter read failure */
1242 if (val & RTL8365MB_MIB_CTRL0_RESET_MASK)
1243 return -EIO;
1244
1245 /* There are four MIB counter registers each holding a 16 bit word of a
1246 * MIB counter. Depending on the offset, we should read from the upper
1247 * two or lower two registers. In case the MIB counter is 4 words, we
1248 * read from all four registers.
1249 */
1250 if (length == 4)
1251 offset = 3;
1252 else
1253 offset = (offset + 1) % 4;
1254
1255 /* Read the MIB counter 16 bits at a time */
1256 for (i = 0; i < length; i++) {
1257 ret = regmap_read(priv->map,
1258 RTL8365MB_MIB_COUNTER_REG(offset - i), &val);
1259 if (ret)
1260 return ret;
1261
1262 tmpvalue = ((tmpvalue) << 16) | (val & 0xFFFF);
1263 }
1264
1265 /* Only commit the result if no error occurred */
1266 *mibvalue = tmpvalue;
1267
1268 return 0;
1269}
1270
1271static void rtl8365mb_get_ethtool_stats(struct dsa_switch *ds, int port, u64 *data)
1272{
1273 struct realtek_priv *priv = ds->priv;
1274 struct rtl8365mb *mb;
1275 int ret;
1276 int i;
1277
1278 mb = priv->chip_data;
1279
1280 mutex_lock(&mb->mib_lock);
1281 for (i = 0; i < RTL8365MB_MIB_END; i++) {
1282 struct rtl8365mb_mib_counter *mib = &rtl8365mb_mib_counters[i];
1283
1284 ret = rtl8365mb_mib_counter_read(priv, port, mib->offset,
1285 mib->length, &data[i]);
1286 if (ret) {
1287 dev_err(priv->dev,
1288 "failed to read port %d counters: %d\n", port,
1289 ret);
1290 break;
1291 }
1292 }
1293 mutex_unlock(&mb->mib_lock);
1294}
1295
1296static void rtl8365mb_get_strings(struct dsa_switch *ds, int port, u32 stringset, u8 *data)
1297{
1298 int i;
1299
1300 if (stringset != ETH_SS_STATS)
1301 return;
1302
1303 for (i = 0; i < RTL8365MB_MIB_END; i++) {
1304 struct rtl8365mb_mib_counter *mib = &rtl8365mb_mib_counters[i];
1305 ethtool_puts(&data, mib->name);
1306 }
1307}
1308
1309static int rtl8365mb_get_sset_count(struct dsa_switch *ds, int port, int sset)
1310{
1311 if (sset != ETH_SS_STATS)
1312 return -EOPNOTSUPP;
1313
1314 return RTL8365MB_MIB_END;
1315}
1316
1317static void rtl8365mb_get_phy_stats(struct dsa_switch *ds, int port,
1318 struct ethtool_eth_phy_stats *phy_stats)
1319{
1320 struct realtek_priv *priv = ds->priv;
1321 struct rtl8365mb_mib_counter *mib;
1322 struct rtl8365mb *mb;
1323
1324 mb = priv->chip_data;
1325 mib = &rtl8365mb_mib_counters[RTL8365MB_MIB_dot3StatsSymbolErrors];
1326
1327 mutex_lock(&mb->mib_lock);
1328 rtl8365mb_mib_counter_read(priv, port, mib->offset, mib->length,
1329 &phy_stats->SymbolErrorDuringCarrier);
1330 mutex_unlock(&mb->mib_lock);
1331}
1332
1333static void rtl8365mb_get_mac_stats(struct dsa_switch *ds, int port,
1334 struct ethtool_eth_mac_stats *mac_stats)
1335{
1336 u64 cnt[RTL8365MB_MIB_END] = {
1337 [RTL8365MB_MIB_ifOutOctets] = 1,
1338 [RTL8365MB_MIB_ifOutUcastPkts] = 1,
1339 [RTL8365MB_MIB_ifOutMulticastPkts] = 1,
1340 [RTL8365MB_MIB_ifOutBroadcastPkts] = 1,
1341 [RTL8365MB_MIB_dot3OutPauseFrames] = 1,
1342 [RTL8365MB_MIB_ifOutDiscards] = 1,
1343 [RTL8365MB_MIB_ifInOctets] = 1,
1344 [RTL8365MB_MIB_ifInUcastPkts] = 1,
1345 [RTL8365MB_MIB_ifInMulticastPkts] = 1,
1346 [RTL8365MB_MIB_ifInBroadcastPkts] = 1,
1347 [RTL8365MB_MIB_dot3InPauseFrames] = 1,
1348 [RTL8365MB_MIB_dot3StatsSingleCollisionFrames] = 1,
1349 [RTL8365MB_MIB_dot3StatsMultipleCollisionFrames] = 1,
1350 [RTL8365MB_MIB_dot3StatsFCSErrors] = 1,
1351 [RTL8365MB_MIB_dot3StatsDeferredTransmissions] = 1,
1352 [RTL8365MB_MIB_dot3StatsLateCollisions] = 1,
1353 [RTL8365MB_MIB_dot3StatsExcessiveCollisions] = 1,
1354
1355 };
1356 struct realtek_priv *priv = ds->priv;
1357 struct rtl8365mb *mb;
1358 int ret;
1359 int i;
1360
1361 mb = priv->chip_data;
1362
1363 mutex_lock(&mb->mib_lock);
1364 for (i = 0; i < RTL8365MB_MIB_END; i++) {
1365 struct rtl8365mb_mib_counter *mib = &rtl8365mb_mib_counters[i];
1366
1367 /* Only fetch required MIB counters (marked = 1 above) */
1368 if (!cnt[i])
1369 continue;
1370
1371 ret = rtl8365mb_mib_counter_read(priv, port, mib->offset,
1372 mib->length, &cnt[i]);
1373 if (ret)
1374 break;
1375 }
1376 mutex_unlock(&mb->mib_lock);
1377
1378 /* The RTL8365MB-VC exposes MIB objects, which we have to translate into
1379 * IEEE 802.3 Managed Objects. This is not always completely faithful,
1380 * but we try out best. See RFC 3635 for a detailed treatment of the
1381 * subject.
1382 */
1383
1384 mac_stats->FramesTransmittedOK = cnt[RTL8365MB_MIB_ifOutUcastPkts] +
1385 cnt[RTL8365MB_MIB_ifOutMulticastPkts] +
1386 cnt[RTL8365MB_MIB_ifOutBroadcastPkts] +
1387 cnt[RTL8365MB_MIB_dot3OutPauseFrames] -
1388 cnt[RTL8365MB_MIB_ifOutDiscards];
1389 mac_stats->SingleCollisionFrames =
1390 cnt[RTL8365MB_MIB_dot3StatsSingleCollisionFrames];
1391 mac_stats->MultipleCollisionFrames =
1392 cnt[RTL8365MB_MIB_dot3StatsMultipleCollisionFrames];
1393 mac_stats->FramesReceivedOK = cnt[RTL8365MB_MIB_ifInUcastPkts] +
1394 cnt[RTL8365MB_MIB_ifInMulticastPkts] +
1395 cnt[RTL8365MB_MIB_ifInBroadcastPkts] +
1396 cnt[RTL8365MB_MIB_dot3InPauseFrames];
1397 mac_stats->FrameCheckSequenceErrors =
1398 cnt[RTL8365MB_MIB_dot3StatsFCSErrors];
1399 mac_stats->OctetsTransmittedOK = cnt[RTL8365MB_MIB_ifOutOctets] -
1400 18 * mac_stats->FramesTransmittedOK;
1401 mac_stats->FramesWithDeferredXmissions =
1402 cnt[RTL8365MB_MIB_dot3StatsDeferredTransmissions];
1403 mac_stats->LateCollisions = cnt[RTL8365MB_MIB_dot3StatsLateCollisions];
1404 mac_stats->FramesAbortedDueToXSColls =
1405 cnt[RTL8365MB_MIB_dot3StatsExcessiveCollisions];
1406 mac_stats->OctetsReceivedOK = cnt[RTL8365MB_MIB_ifInOctets] -
1407 18 * mac_stats->FramesReceivedOK;
1408 mac_stats->MulticastFramesXmittedOK =
1409 cnt[RTL8365MB_MIB_ifOutMulticastPkts];
1410 mac_stats->BroadcastFramesXmittedOK =
1411 cnt[RTL8365MB_MIB_ifOutBroadcastPkts];
1412 mac_stats->MulticastFramesReceivedOK =
1413 cnt[RTL8365MB_MIB_ifInMulticastPkts];
1414 mac_stats->BroadcastFramesReceivedOK =
1415 cnt[RTL8365MB_MIB_ifInBroadcastPkts];
1416}
1417
1418static void rtl8365mb_get_ctrl_stats(struct dsa_switch *ds, int port,
1419 struct ethtool_eth_ctrl_stats *ctrl_stats)
1420{
1421 struct realtek_priv *priv = ds->priv;
1422 struct rtl8365mb_mib_counter *mib;
1423 struct rtl8365mb *mb;
1424
1425 mb = priv->chip_data;
1426 mib = &rtl8365mb_mib_counters[RTL8365MB_MIB_dot3ControlInUnknownOpcodes];
1427
1428 mutex_lock(&mb->mib_lock);
1429 rtl8365mb_mib_counter_read(priv, port, mib->offset, mib->length,
1430 &ctrl_stats->UnsupportedOpcodesReceived);
1431 mutex_unlock(&mb->mib_lock);
1432}
1433
1434static void rtl8365mb_stats_update(struct realtek_priv *priv, int port)
1435{
1436 u64 cnt[RTL8365MB_MIB_END] = {
1437 [RTL8365MB_MIB_ifOutOctets] = 1,
1438 [RTL8365MB_MIB_ifOutUcastPkts] = 1,
1439 [RTL8365MB_MIB_ifOutMulticastPkts] = 1,
1440 [RTL8365MB_MIB_ifOutBroadcastPkts] = 1,
1441 [RTL8365MB_MIB_ifOutDiscards] = 1,
1442 [RTL8365MB_MIB_ifInOctets] = 1,
1443 [RTL8365MB_MIB_ifInUcastPkts] = 1,
1444 [RTL8365MB_MIB_ifInMulticastPkts] = 1,
1445 [RTL8365MB_MIB_ifInBroadcastPkts] = 1,
1446 [RTL8365MB_MIB_etherStatsDropEvents] = 1,
1447 [RTL8365MB_MIB_etherStatsCollisions] = 1,
1448 [RTL8365MB_MIB_etherStatsFragments] = 1,
1449 [RTL8365MB_MIB_etherStatsJabbers] = 1,
1450 [RTL8365MB_MIB_dot3StatsFCSErrors] = 1,
1451 [RTL8365MB_MIB_dot3StatsLateCollisions] = 1,
1452 };
1453 struct rtl8365mb *mb = priv->chip_data;
1454 struct rtnl_link_stats64 *stats;
1455 int ret;
1456 int i;
1457
1458 stats = &mb->ports[port].stats;
1459
1460 mutex_lock(&mb->mib_lock);
1461 for (i = 0; i < RTL8365MB_MIB_END; i++) {
1462 struct rtl8365mb_mib_counter *c = &rtl8365mb_mib_counters[i];
1463
1464 /* Only fetch required MIB counters (marked = 1 above) */
1465 if (!cnt[i])
1466 continue;
1467
1468 ret = rtl8365mb_mib_counter_read(priv, port, c->offset,
1469 c->length, &cnt[i]);
1470 if (ret)
1471 break;
1472 }
1473 mutex_unlock(&mb->mib_lock);
1474
1475 /* Don't update statistics if there was an error reading the counters */
1476 if (ret)
1477 return;
1478
1479 spin_lock(&mb->ports[port].stats_lock);
1480
1481 stats->rx_packets = cnt[RTL8365MB_MIB_ifInUcastPkts] +
1482 cnt[RTL8365MB_MIB_ifInMulticastPkts] +
1483 cnt[RTL8365MB_MIB_ifInBroadcastPkts] -
1484 cnt[RTL8365MB_MIB_ifOutDiscards];
1485
1486 stats->tx_packets = cnt[RTL8365MB_MIB_ifOutUcastPkts] +
1487 cnt[RTL8365MB_MIB_ifOutMulticastPkts] +
1488 cnt[RTL8365MB_MIB_ifOutBroadcastPkts];
1489
1490 /* if{In,Out}Octets includes FCS - remove it */
1491 stats->rx_bytes = cnt[RTL8365MB_MIB_ifInOctets] - 4 * stats->rx_packets;
1492 stats->tx_bytes =
1493 cnt[RTL8365MB_MIB_ifOutOctets] - 4 * stats->tx_packets;
1494
1495 stats->rx_dropped = cnt[RTL8365MB_MIB_etherStatsDropEvents];
1496 stats->tx_dropped = cnt[RTL8365MB_MIB_ifOutDiscards];
1497
1498 stats->multicast = cnt[RTL8365MB_MIB_ifInMulticastPkts];
1499 stats->collisions = cnt[RTL8365MB_MIB_etherStatsCollisions];
1500
1501 stats->rx_length_errors = cnt[RTL8365MB_MIB_etherStatsFragments] +
1502 cnt[RTL8365MB_MIB_etherStatsJabbers];
1503 stats->rx_crc_errors = cnt[RTL8365MB_MIB_dot3StatsFCSErrors];
1504 stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors;
1505
1506 stats->tx_aborted_errors = cnt[RTL8365MB_MIB_ifOutDiscards];
1507 stats->tx_window_errors = cnt[RTL8365MB_MIB_dot3StatsLateCollisions];
1508 stats->tx_errors = stats->tx_aborted_errors + stats->tx_window_errors;
1509
1510 spin_unlock(&mb->ports[port].stats_lock);
1511}
1512
1513static void rtl8365mb_stats_poll(struct work_struct *work)
1514{
1515 struct rtl8365mb_port *p = container_of(to_delayed_work(work),
1516 struct rtl8365mb_port,
1517 mib_work);
1518 struct realtek_priv *priv = p->priv;
1519
1520 rtl8365mb_stats_update(priv, p->index);
1521
1522 schedule_delayed_work(&p->mib_work, RTL8365MB_STATS_INTERVAL_JIFFIES);
1523}
1524
1525static void rtl8365mb_get_stats64(struct dsa_switch *ds, int port,
1526 struct rtnl_link_stats64 *s)
1527{
1528 struct realtek_priv *priv = ds->priv;
1529 struct rtl8365mb_port *p;
1530 struct rtl8365mb *mb;
1531
1532 mb = priv->chip_data;
1533 p = &mb->ports[port];
1534
1535 spin_lock(&p->stats_lock);
1536 memcpy(s, &p->stats, sizeof(*s));
1537 spin_unlock(&p->stats_lock);
1538}
1539
1540static void rtl8365mb_stats_setup(struct realtek_priv *priv)
1541{
1542 struct rtl8365mb *mb = priv->chip_data;
1543 struct dsa_switch *ds = &priv->ds;
1544 int i;
1545
1546 /* Per-chip global mutex to protect MIB counter access, since doing
1547 * so requires accessing a series of registers in a particular order.
1548 */
1549 mutex_init(&mb->mib_lock);
1550
1551 for (i = 0; i < priv->num_ports; i++) {
1552 struct rtl8365mb_port *p = &mb->ports[i];
1553
1554 if (dsa_is_unused_port(ds, i))
1555 continue;
1556
1557 /* Per-port spinlock to protect the stats64 data */
1558 spin_lock_init(&p->stats_lock);
1559
1560 /* This work polls the MIB counters and keeps the stats64 data
1561 * up-to-date.
1562 */
1563 INIT_DELAYED_WORK(&p->mib_work, rtl8365mb_stats_poll);
1564 }
1565}
1566
1567static void rtl8365mb_stats_teardown(struct realtek_priv *priv)
1568{
1569 struct rtl8365mb *mb = priv->chip_data;
1570 struct dsa_switch *ds = &priv->ds;
1571 int i;
1572
1573 for (i = 0; i < priv->num_ports; i++) {
1574 struct rtl8365mb_port *p = &mb->ports[i];
1575
1576 if (dsa_is_unused_port(ds, i))
1577 continue;
1578
1579 cancel_delayed_work_sync(&p->mib_work);
1580 }
1581}
1582
1583static int rtl8365mb_get_and_clear_status_reg(struct realtek_priv *priv, u32 reg,
1584 u32 *val)
1585{
1586 int ret;
1587
1588 ret = regmap_read(priv->map, reg, val);
1589 if (ret)
1590 return ret;
1591
1592 return regmap_write(priv->map, reg, *val);
1593}
1594
1595static irqreturn_t rtl8365mb_irq(int irq, void *data)
1596{
1597 struct realtek_priv *priv = data;
1598 unsigned long line_changes = 0;
1599 u32 stat;
1600 int line;
1601 int ret;
1602
1603 ret = rtl8365mb_get_and_clear_status_reg(priv, RTL8365MB_INTR_STATUS_REG,
1604 &stat);
1605 if (ret)
1606 goto out_error;
1607
1608 if (stat & RTL8365MB_INTR_LINK_CHANGE_MASK) {
1609 u32 linkdown_ind;
1610 u32 linkup_ind;
1611 u32 val;
1612
1613 ret = rtl8365mb_get_and_clear_status_reg(
1614 priv, RTL8365MB_PORT_LINKUP_IND_REG, &val);
1615 if (ret)
1616 goto out_error;
1617
1618 linkup_ind = FIELD_GET(RTL8365MB_PORT_LINKUP_IND_MASK, val);
1619
1620 ret = rtl8365mb_get_and_clear_status_reg(
1621 priv, RTL8365MB_PORT_LINKDOWN_IND_REG, &val);
1622 if (ret)
1623 goto out_error;
1624
1625 linkdown_ind = FIELD_GET(RTL8365MB_PORT_LINKDOWN_IND_MASK, val);
1626
1627 line_changes = linkup_ind | linkdown_ind;
1628 }
1629
1630 if (!line_changes)
1631 goto out_none;
1632
1633 for_each_set_bit(line, &line_changes, priv->num_ports) {
1634 int child_irq = irq_find_mapping(priv->irqdomain, line);
1635
1636 handle_nested_irq(child_irq);
1637 }
1638
1639 return IRQ_HANDLED;
1640
1641out_error:
1642 dev_err(priv->dev, "failed to read interrupt status: %d\n", ret);
1643
1644out_none:
1645 return IRQ_NONE;
1646}
1647
1648static struct irq_chip rtl8365mb_irq_chip = {
1649 .name = "rtl8365mb",
1650 /* The hardware doesn't support masking IRQs on a per-port basis */
1651};
1652
1653static int rtl8365mb_irq_map(struct irq_domain *domain, unsigned int irq,
1654 irq_hw_number_t hwirq)
1655{
1656 irq_set_chip_data(irq, domain->host_data);
1657 irq_set_chip_and_handler(irq, &rtl8365mb_irq_chip, handle_simple_irq);
1658 irq_set_nested_thread(irq, 1);
1659 irq_set_noprobe(irq);
1660
1661 return 0;
1662}
1663
1664static void rtl8365mb_irq_unmap(struct irq_domain *d, unsigned int irq)
1665{
1666 irq_set_nested_thread(irq, 0);
1667 irq_set_chip_and_handler(irq, NULL, NULL);
1668 irq_set_chip_data(irq, NULL);
1669}
1670
1671static const struct irq_domain_ops rtl8365mb_irqdomain_ops = {
1672 .map = rtl8365mb_irq_map,
1673 .unmap = rtl8365mb_irq_unmap,
1674 .xlate = irq_domain_xlate_onecell,
1675};
1676
1677static int rtl8365mb_set_irq_enable(struct realtek_priv *priv, bool enable)
1678{
1679 return regmap_update_bits(priv->map, RTL8365MB_INTR_CTRL_REG,
1680 RTL8365MB_INTR_LINK_CHANGE_MASK,
1681 FIELD_PREP(RTL8365MB_INTR_LINK_CHANGE_MASK,
1682 enable ? 1 : 0));
1683}
1684
1685static int rtl8365mb_irq_enable(struct realtek_priv *priv)
1686{
1687 return rtl8365mb_set_irq_enable(priv, true);
1688}
1689
1690static int rtl8365mb_irq_disable(struct realtek_priv *priv)
1691{
1692 return rtl8365mb_set_irq_enable(priv, false);
1693}
1694
1695static int rtl8365mb_irq_setup(struct realtek_priv *priv)
1696{
1697 struct rtl8365mb *mb = priv->chip_data;
1698 struct device_node *intc;
1699 u32 irq_trig;
1700 int virq;
1701 int irq;
1702 u32 val;
1703 int ret;
1704 int i;
1705
1706 intc = of_get_child_by_name(priv->dev->of_node, "interrupt-controller");
1707 if (!intc) {
1708 dev_err(priv->dev, "missing child interrupt-controller node\n");
1709 return -EINVAL;
1710 }
1711
1712 /* rtl8365mb IRQs cascade off this one */
1713 irq = of_irq_get(intc, 0);
1714 if (irq <= 0) {
1715 if (irq != -EPROBE_DEFER)
1716 dev_err(priv->dev, "failed to get parent irq: %d\n",
1717 irq);
1718 ret = irq ? irq : -EINVAL;
1719 goto out_put_node;
1720 }
1721
1722 priv->irqdomain = irq_domain_add_linear(intc, priv->num_ports,
1723 &rtl8365mb_irqdomain_ops, priv);
1724 if (!priv->irqdomain) {
1725 dev_err(priv->dev, "failed to add irq domain\n");
1726 ret = -ENOMEM;
1727 goto out_put_node;
1728 }
1729
1730 for (i = 0; i < priv->num_ports; i++) {
1731 virq = irq_create_mapping(priv->irqdomain, i);
1732 if (!virq) {
1733 dev_err(priv->dev,
1734 "failed to create irq domain mapping\n");
1735 ret = -EINVAL;
1736 goto out_remove_irqdomain;
1737 }
1738
1739 irq_set_parent(virq, irq);
1740 }
1741
1742 /* Configure chip interrupt signal polarity */
1743 irq_trig = irq_get_trigger_type(irq);
1744 switch (irq_trig) {
1745 case IRQF_TRIGGER_RISING:
1746 case IRQF_TRIGGER_HIGH:
1747 val = RTL8365MB_INTR_POLARITY_HIGH;
1748 break;
1749 case IRQF_TRIGGER_FALLING:
1750 case IRQF_TRIGGER_LOW:
1751 val = RTL8365MB_INTR_POLARITY_LOW;
1752 break;
1753 default:
1754 dev_err(priv->dev, "unsupported irq trigger type %u\n",
1755 irq_trig);
1756 ret = -EINVAL;
1757 goto out_remove_irqdomain;
1758 }
1759
1760 ret = regmap_update_bits(priv->map, RTL8365MB_INTR_POLARITY_REG,
1761 RTL8365MB_INTR_POLARITY_MASK,
1762 FIELD_PREP(RTL8365MB_INTR_POLARITY_MASK, val));
1763 if (ret)
1764 goto out_remove_irqdomain;
1765
1766 /* Disable the interrupt in case the chip has it enabled on reset */
1767 ret = rtl8365mb_irq_disable(priv);
1768 if (ret)
1769 goto out_remove_irqdomain;
1770
1771 /* Clear the interrupt status register */
1772 ret = regmap_write(priv->map, RTL8365MB_INTR_STATUS_REG,
1773 RTL8365MB_INTR_ALL_MASK);
1774 if (ret)
1775 goto out_remove_irqdomain;
1776
1777 ret = request_threaded_irq(irq, NULL, rtl8365mb_irq, IRQF_ONESHOT,
1778 "rtl8365mb", priv);
1779 if (ret) {
1780 dev_err(priv->dev, "failed to request irq: %d\n", ret);
1781 goto out_remove_irqdomain;
1782 }
1783
1784 /* Store the irq so that we know to free it during teardown */
1785 mb->irq = irq;
1786
1787 ret = rtl8365mb_irq_enable(priv);
1788 if (ret)
1789 goto out_free_irq;
1790
1791 of_node_put(intc);
1792
1793 return 0;
1794
1795out_free_irq:
1796 free_irq(mb->irq, priv);
1797 mb->irq = 0;
1798
1799out_remove_irqdomain:
1800 for (i = 0; i < priv->num_ports; i++) {
1801 virq = irq_find_mapping(priv->irqdomain, i);
1802 irq_dispose_mapping(virq);
1803 }
1804
1805 irq_domain_remove(priv->irqdomain);
1806 priv->irqdomain = NULL;
1807
1808out_put_node:
1809 of_node_put(intc);
1810
1811 return ret;
1812}
1813
1814static void rtl8365mb_irq_teardown(struct realtek_priv *priv)
1815{
1816 struct rtl8365mb *mb = priv->chip_data;
1817 int virq;
1818 int i;
1819
1820 if (mb->irq) {
1821 free_irq(mb->irq, priv);
1822 mb->irq = 0;
1823 }
1824
1825 if (priv->irqdomain) {
1826 for (i = 0; i < priv->num_ports; i++) {
1827 virq = irq_find_mapping(priv->irqdomain, i);
1828 irq_dispose_mapping(virq);
1829 }
1830
1831 irq_domain_remove(priv->irqdomain);
1832 priv->irqdomain = NULL;
1833 }
1834}
1835
1836static int rtl8365mb_cpu_config(struct realtek_priv *priv)
1837{
1838 struct rtl8365mb *mb = priv->chip_data;
1839 struct rtl8365mb_cpu *cpu = &mb->cpu;
1840 u32 val;
1841 int ret;
1842
1843 ret = regmap_update_bits(priv->map, RTL8365MB_CPU_PORT_MASK_REG,
1844 RTL8365MB_CPU_PORT_MASK_MASK,
1845 FIELD_PREP(RTL8365MB_CPU_PORT_MASK_MASK,
1846 cpu->mask));
1847 if (ret)
1848 return ret;
1849
1850 val = FIELD_PREP(RTL8365MB_CPU_CTRL_EN_MASK, cpu->enable ? 1 : 0) |
1851 FIELD_PREP(RTL8365MB_CPU_CTRL_INSERTMODE_MASK, cpu->insert) |
1852 FIELD_PREP(RTL8365MB_CPU_CTRL_TAG_POSITION_MASK, cpu->position) |
1853 FIELD_PREP(RTL8365MB_CPU_CTRL_RXBYTECOUNT_MASK, cpu->rx_length) |
1854 FIELD_PREP(RTL8365MB_CPU_CTRL_TAG_FORMAT_MASK, cpu->format) |
1855 FIELD_PREP(RTL8365MB_CPU_CTRL_TRAP_PORT_MASK, cpu->trap_port & 0x7) |
1856 FIELD_PREP(RTL8365MB_CPU_CTRL_TRAP_PORT_EXT_MASK,
1857 cpu->trap_port >> 3 & 0x1);
1858 ret = regmap_write(priv->map, RTL8365MB_CPU_CTRL_REG, val);
1859 if (ret)
1860 return ret;
1861
1862 return 0;
1863}
1864
1865static int rtl8365mb_change_tag_protocol(struct dsa_switch *ds,
1866 enum dsa_tag_protocol proto)
1867{
1868 struct realtek_priv *priv = ds->priv;
1869 struct rtl8365mb_cpu *cpu;
1870 struct rtl8365mb *mb;
1871
1872 mb = priv->chip_data;
1873 cpu = &mb->cpu;
1874
1875 switch (proto) {
1876 case DSA_TAG_PROTO_RTL8_4:
1877 cpu->format = RTL8365MB_CPU_FORMAT_8BYTES;
1878 cpu->position = RTL8365MB_CPU_POS_AFTER_SA;
1879 break;
1880 case DSA_TAG_PROTO_RTL8_4T:
1881 cpu->format = RTL8365MB_CPU_FORMAT_8BYTES;
1882 cpu->position = RTL8365MB_CPU_POS_BEFORE_CRC;
1883 break;
1884 /* The switch also supports a 4-byte format, similar to rtl4a but with
1885 * the same 0x04 8-bit version and probably 8-bit port source/dest.
1886 * There is no public doc about it. Not supported yet and it will probably
1887 * never be.
1888 */
1889 default:
1890 return -EPROTONOSUPPORT;
1891 }
1892
1893 return rtl8365mb_cpu_config(priv);
1894}
1895
1896static int rtl8365mb_switch_init(struct realtek_priv *priv)
1897{
1898 struct rtl8365mb *mb = priv->chip_data;
1899 const struct rtl8365mb_chip_info *ci;
1900 int ret;
1901 int i;
1902
1903 ci = mb->chip_info;
1904
1905 /* Do any chip-specific init jam before getting to the common stuff */
1906 if (ci->jam_table) {
1907 for (i = 0; i < ci->jam_size; i++) {
1908 ret = regmap_write(priv->map, ci->jam_table[i].reg,
1909 ci->jam_table[i].val);
1910 if (ret)
1911 return ret;
1912 }
1913 }
1914
1915 /* Common init jam */
1916 for (i = 0; i < ARRAY_SIZE(rtl8365mb_init_jam_common); i++) {
1917 ret = regmap_write(priv->map, rtl8365mb_init_jam_common[i].reg,
1918 rtl8365mb_init_jam_common[i].val);
1919 if (ret)
1920 return ret;
1921 }
1922
1923 return 0;
1924}
1925
1926static int rtl8365mb_reset_chip(struct realtek_priv *priv)
1927{
1928 u32 val;
1929
1930 priv->write_reg_noack(priv, RTL8365MB_CHIP_RESET_REG,
1931 FIELD_PREP(RTL8365MB_CHIP_RESET_HW_MASK, 1));
1932
1933 /* Realtek documentation says the chip needs 1 second to reset. Sleep
1934 * for 100 ms before accessing any registers to prevent ACK timeouts.
1935 */
1936 msleep(100);
1937 return regmap_read_poll_timeout(priv->map, RTL8365MB_CHIP_RESET_REG, val,
1938 !(val & RTL8365MB_CHIP_RESET_HW_MASK),
1939 20000, 1e6);
1940}
1941
1942static int rtl8365mb_setup(struct dsa_switch *ds)
1943{
1944 struct realtek_priv *priv = ds->priv;
1945 struct rtl8365mb_cpu *cpu;
1946 struct dsa_port *cpu_dp;
1947 struct rtl8365mb *mb;
1948 int ret;
1949 int i;
1950
1951 mb = priv->chip_data;
1952 cpu = &mb->cpu;
1953
1954 ret = rtl8365mb_reset_chip(priv);
1955 if (ret) {
1956 dev_err(priv->dev, "failed to reset chip: %d\n", ret);
1957 goto out_error;
1958 }
1959
1960 /* Configure switch to vendor-defined initial state */
1961 ret = rtl8365mb_switch_init(priv);
1962 if (ret) {
1963 dev_err(priv->dev, "failed to initialize switch: %d\n", ret);
1964 goto out_error;
1965 }
1966
1967 /* Set up cascading IRQs */
1968 ret = rtl8365mb_irq_setup(priv);
1969 if (ret == -EPROBE_DEFER)
1970 return ret;
1971 else if (ret)
1972 dev_info(priv->dev, "no interrupt support\n");
1973
1974 /* Configure CPU tagging */
1975 dsa_switch_for_each_cpu_port(cpu_dp, ds) {
1976 cpu->mask |= BIT(cpu_dp->index);
1977
1978 if (cpu->trap_port == RTL8365MB_MAX_NUM_PORTS)
1979 cpu->trap_port = cpu_dp->index;
1980 }
1981 cpu->enable = cpu->mask > 0;
1982 ret = rtl8365mb_cpu_config(priv);
1983 if (ret)
1984 goto out_teardown_irq;
1985
1986 /* Configure ports */
1987 for (i = 0; i < priv->num_ports; i++) {
1988 struct rtl8365mb_port *p = &mb->ports[i];
1989
1990 if (dsa_is_unused_port(ds, i))
1991 continue;
1992
1993 /* Forward only to the CPU */
1994 ret = rtl8365mb_port_set_isolation(priv, i, cpu->mask);
1995 if (ret)
1996 goto out_teardown_irq;
1997
1998 /* Disable learning */
1999 ret = rtl8365mb_port_set_learning(priv, i, false);
2000 if (ret)
2001 goto out_teardown_irq;
2002
2003 /* Set the initial STP state of all ports to DISABLED, otherwise
2004 * ports will still forward frames to the CPU despite being
2005 * administratively down by default.
2006 */
2007 rtl8365mb_port_stp_state_set(ds, i, BR_STATE_DISABLED);
2008
2009 /* Set up per-port private data */
2010 p->priv = priv;
2011 p->index = i;
2012 }
2013
2014 ret = rtl8365mb_port_change_mtu(ds, cpu->trap_port, ETH_DATA_LEN);
2015 if (ret)
2016 goto out_teardown_irq;
2017
2018 ret = rtl83xx_setup_user_mdio(ds);
2019 if (ret) {
2020 dev_err(priv->dev, "could not set up MDIO bus\n");
2021 goto out_teardown_irq;
2022 }
2023
2024 /* Start statistics counter polling */
2025 rtl8365mb_stats_setup(priv);
2026
2027 return 0;
2028
2029out_teardown_irq:
2030 rtl8365mb_irq_teardown(priv);
2031
2032out_error:
2033 return ret;
2034}
2035
2036static void rtl8365mb_teardown(struct dsa_switch *ds)
2037{
2038 struct realtek_priv *priv = ds->priv;
2039
2040 rtl8365mb_stats_teardown(priv);
2041 rtl8365mb_irq_teardown(priv);
2042}
2043
2044static int rtl8365mb_get_chip_id_and_ver(struct regmap *map, u32 *id, u32 *ver)
2045{
2046 int ret;
2047
2048 /* For some reason we have to write a magic value to an arbitrary
2049 * register whenever accessing the chip ID/version registers.
2050 */
2051 ret = regmap_write(map, RTL8365MB_MAGIC_REG, RTL8365MB_MAGIC_VALUE);
2052 if (ret)
2053 return ret;
2054
2055 ret = regmap_read(map, RTL8365MB_CHIP_ID_REG, id);
2056 if (ret)
2057 return ret;
2058
2059 ret = regmap_read(map, RTL8365MB_CHIP_VER_REG, ver);
2060 if (ret)
2061 return ret;
2062
2063 /* Reset magic register */
2064 ret = regmap_write(map, RTL8365MB_MAGIC_REG, 0);
2065 if (ret)
2066 return ret;
2067
2068 return 0;
2069}
2070
2071static int rtl8365mb_detect(struct realtek_priv *priv)
2072{
2073 struct rtl8365mb *mb = priv->chip_data;
2074 u32 chip_id;
2075 u32 chip_ver;
2076 int ret;
2077 int i;
2078
2079 ret = rtl8365mb_get_chip_id_and_ver(priv->map, &chip_id, &chip_ver);
2080 if (ret) {
2081 dev_err(priv->dev, "failed to read chip id and version: %d\n",
2082 ret);
2083 return ret;
2084 }
2085
2086 for (i = 0; i < ARRAY_SIZE(rtl8365mb_chip_infos); i++) {
2087 const struct rtl8365mb_chip_info *ci = &rtl8365mb_chip_infos[i];
2088
2089 if (ci->chip_id == chip_id && ci->chip_ver == chip_ver) {
2090 mb->chip_info = ci;
2091 break;
2092 }
2093 }
2094
2095 if (!mb->chip_info) {
2096 dev_err(priv->dev,
2097 "unrecognized switch (id=0x%04x, ver=0x%04x)", chip_id,
2098 chip_ver);
2099 return -ENODEV;
2100 }
2101
2102 dev_info(priv->dev, "found an %s switch\n", mb->chip_info->name);
2103
2104 priv->num_ports = RTL8365MB_MAX_NUM_PORTS;
2105 mb->priv = priv;
2106 mb->cpu.trap_port = RTL8365MB_MAX_NUM_PORTS;
2107 mb->cpu.insert = RTL8365MB_CPU_INSERT_TO_ALL;
2108 mb->cpu.position = RTL8365MB_CPU_POS_AFTER_SA;
2109 mb->cpu.rx_length = RTL8365MB_CPU_RXLEN_64BYTES;
2110 mb->cpu.format = RTL8365MB_CPU_FORMAT_8BYTES;
2111
2112 return 0;
2113}
2114
2115static const struct phylink_mac_ops rtl8365mb_phylink_mac_ops = {
2116 .mac_config = rtl8365mb_phylink_mac_config,
2117 .mac_link_down = rtl8365mb_phylink_mac_link_down,
2118 .mac_link_up = rtl8365mb_phylink_mac_link_up,
2119};
2120
2121static const struct dsa_switch_ops rtl8365mb_switch_ops = {
2122 .get_tag_protocol = rtl8365mb_get_tag_protocol,
2123 .change_tag_protocol = rtl8365mb_change_tag_protocol,
2124 .setup = rtl8365mb_setup,
2125 .teardown = rtl8365mb_teardown,
2126 .phylink_get_caps = rtl8365mb_phylink_get_caps,
2127 .port_stp_state_set = rtl8365mb_port_stp_state_set,
2128 .get_strings = rtl8365mb_get_strings,
2129 .get_ethtool_stats = rtl8365mb_get_ethtool_stats,
2130 .get_sset_count = rtl8365mb_get_sset_count,
2131 .get_eth_phy_stats = rtl8365mb_get_phy_stats,
2132 .get_eth_mac_stats = rtl8365mb_get_mac_stats,
2133 .get_eth_ctrl_stats = rtl8365mb_get_ctrl_stats,
2134 .get_stats64 = rtl8365mb_get_stats64,
2135 .port_change_mtu = rtl8365mb_port_change_mtu,
2136 .port_max_mtu = rtl8365mb_port_max_mtu,
2137};
2138
2139static const struct realtek_ops rtl8365mb_ops = {
2140 .detect = rtl8365mb_detect,
2141 .phy_read = rtl8365mb_phy_read,
2142 .phy_write = rtl8365mb_phy_write,
2143};
2144
2145const struct realtek_variant rtl8365mb_variant = {
2146 .ds_ops = &rtl8365mb_switch_ops,
2147 .ops = &rtl8365mb_ops,
2148 .phylink_mac_ops = &rtl8365mb_phylink_mac_ops,
2149 .clk_delay = 10,
2150 .cmd_read = 0xb9,
2151 .cmd_write = 0xb8,
2152 .chip_data_sz = sizeof(struct rtl8365mb),
2153};
2154
2155static const struct of_device_id rtl8365mb_of_match[] = {
2156 { .compatible = "realtek,rtl8365mb", .data = &rtl8365mb_variant, },
2157 { /* sentinel */ },
2158};
2159MODULE_DEVICE_TABLE(of, rtl8365mb_of_match);
2160
2161static struct platform_driver rtl8365mb_smi_driver = {
2162 .driver = {
2163 .name = "rtl8365mb-smi",
2164 .of_match_table = rtl8365mb_of_match,
2165 },
2166 .probe = realtek_smi_probe,
2167 .remove = realtek_smi_remove,
2168 .shutdown = realtek_smi_shutdown,
2169};
2170
2171static struct mdio_driver rtl8365mb_mdio_driver = {
2172 .mdiodrv.driver = {
2173 .name = "rtl8365mb-mdio",
2174 .of_match_table = rtl8365mb_of_match,
2175 },
2176 .probe = realtek_mdio_probe,
2177 .remove = realtek_mdio_remove,
2178 .shutdown = realtek_mdio_shutdown,
2179};
2180
2181static int rtl8365mb_init(void)
2182{
2183 int ret;
2184
2185 ret = realtek_mdio_driver_register(&rtl8365mb_mdio_driver);
2186 if (ret)
2187 return ret;
2188
2189 ret = realtek_smi_driver_register(&rtl8365mb_smi_driver);
2190 if (ret) {
2191 realtek_mdio_driver_unregister(&rtl8365mb_mdio_driver);
2192 return ret;
2193 }
2194
2195 return 0;
2196}
2197module_init(rtl8365mb_init);
2198
2199static void __exit rtl8365mb_exit(void)
2200{
2201 realtek_smi_driver_unregister(&rtl8365mb_smi_driver);
2202 realtek_mdio_driver_unregister(&rtl8365mb_mdio_driver);
2203}
2204module_exit(rtl8365mb_exit);
2205
2206MODULE_AUTHOR("Alvin Šipraga <alsi@bang-olufsen.dk>");
2207MODULE_DESCRIPTION("Driver for RTL8365MB-VC ethernet switch");
2208MODULE_LICENSE("GPL");
2209MODULE_IMPORT_NS("REALTEK_DSA");