Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 * Driver for the Octeon bootbus compact flash.
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 2005 - 2012 Cavium Inc.
   9 * Copyright (C) 2008 Wind River Systems
  10 */
  11
  12#include <linux/kernel.h>
  13#include <linux/module.h>
  14#include <linux/libata.h>
  15#include <linux/hrtimer.h>
  16#include <linux/slab.h>
  17#include <linux/irq.h>
  18#include <linux/of.h>
  19#include <linux/of_address.h>
  20#include <linux/of_platform.h>
  21#include <linux/platform_device.h>
  22#include <scsi/scsi_host.h>
  23#include <trace/events/libata.h>
  24#include <asm/byteorder.h>
  25#include <asm/octeon/octeon.h>
  26
  27/*
  28 * The Octeon bootbus compact flash interface is connected in at least
  29 * 3 different configurations on various evaluation boards:
  30 *
  31 * -- 8  bits no irq, no DMA
  32 * -- 16 bits no irq, no DMA
  33 * -- 16 bits True IDE mode with DMA, but no irq.
  34 *
  35 * In the last case the DMA engine can generate an interrupt when the
  36 * transfer is complete.  For the first two cases only PIO is supported.
  37 *
  38 */
  39
  40#define DRV_NAME	"pata_octeon_cf"
  41#define DRV_VERSION	"2.2"
  42
  43/* Poll interval in nS. */
  44#define OCTEON_CF_BUSY_POLL_INTERVAL 500000
  45
  46#define DMA_CFG 0
  47#define DMA_TIM 0x20
  48#define DMA_INT 0x38
  49#define DMA_INT_EN 0x50
  50
  51struct octeon_cf_port {
  52	struct hrtimer delayed_finish;
  53	struct ata_port *ap;
  54	int dma_finished;
  55	void		*c0;
  56	unsigned int cs0;
  57	unsigned int cs1;
  58	bool is_true_ide;
  59	u64 dma_base;
  60};
  61
  62static const struct scsi_host_template octeon_cf_sht = {
  63	ATA_PIO_SHT(DRV_NAME),
  64};
  65
  66static int enable_dma;
  67module_param(enable_dma, int, 0444);
  68MODULE_PARM_DESC(enable_dma,
  69		 "Enable use of DMA on interfaces that support it (0=no dma [default], 1=use dma)");
  70
  71/*
  72 * Convert nanosecond based time to setting used in the
  73 * boot bus timing register, based on timing multiple
  74 */
  75static unsigned int ns_to_tim_reg(unsigned int tim_mult, unsigned int nsecs)
  76{
  77	/*
  78	 * Compute # of eclock periods to get desired duration in
  79	 * nanoseconds.
  80	 */
  81	return DIV_ROUND_UP(nsecs * (octeon_get_io_clock_rate() / 1000000),
  82			  1000 * tim_mult);
  83}
  84
  85static void octeon_cf_set_boot_reg_cfg(int cs, unsigned int multiplier)
  86{
  87	union cvmx_mio_boot_reg_cfgx reg_cfg;
  88	unsigned int tim_mult;
  89
  90	switch (multiplier) {
  91	case 8:
  92		tim_mult = 3;
  93		break;
  94	case 4:
  95		tim_mult = 0;
  96		break;
  97	case 2:
  98		tim_mult = 2;
  99		break;
 100	default:
 101		tim_mult = 1;
 102		break;
 103	}
 104
 105	reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
 106	reg_cfg.s.dmack = 0;	/* Don't assert DMACK on access */
 107	reg_cfg.s.tim_mult = tim_mult;	/* Timing mutiplier */
 108	reg_cfg.s.rd_dly = 0;	/* Sample on falling edge of BOOT_OE */
 109	reg_cfg.s.sam = 0;	/* Don't combine write and output enable */
 110	reg_cfg.s.we_ext = 0;	/* No write enable extension */
 111	reg_cfg.s.oe_ext = 0;	/* No read enable extension */
 112	reg_cfg.s.en = 1;	/* Enable this region */
 113	reg_cfg.s.orbit = 0;	/* Don't combine with previous region */
 114	reg_cfg.s.ale = 0;	/* Don't do address multiplexing */
 115	cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), reg_cfg.u64);
 116}
 117
 118/*
 119 * Called after libata determines the needed PIO mode. This
 120 * function programs the Octeon bootbus regions to support the
 121 * timing requirements of the PIO mode.
 122 *
 123 * @ap:     ATA port information
 124 * @dev:    ATA device
 125 */
 126static void octeon_cf_set_piomode(struct ata_port *ap, struct ata_device *dev)
 127{
 128	struct octeon_cf_port *cf_port = ap->private_data;
 129	union cvmx_mio_boot_reg_timx reg_tim;
 130	int T;
 131	struct ata_timing timing;
 132
 133	unsigned int div;
 134	int use_iordy;
 135	int trh;
 136	int pause;
 137	/* These names are timing parameters from the ATA spec */
 138	int t2;
 139
 140	/*
 141	 * A divisor value of four will overflow the timing fields at
 142	 * clock rates greater than 800MHz
 143	 */
 144	if (octeon_get_io_clock_rate() <= 800000000)
 145		div = 4;
 146	else
 147		div = 8;
 148	T = (int)((1000000000000LL * div) / octeon_get_io_clock_rate());
 149
 150	BUG_ON(ata_timing_compute(dev, dev->pio_mode, &timing, T, T));
 151
 152	t2 = timing.active;
 153	if (t2)
 154		t2--;
 155
 156	trh = ns_to_tim_reg(div, 20);
 157	if (trh)
 158		trh--;
 159
 160	pause = (int)timing.cycle - (int)timing.active -
 161		(int)timing.setup - trh;
 162	if (pause < 0)
 163		pause = 0;
 164	if (pause)
 165		pause--;
 166
 167	octeon_cf_set_boot_reg_cfg(cf_port->cs0, div);
 168	if (cf_port->is_true_ide)
 169		/* True IDE mode, program both chip selects.  */
 170		octeon_cf_set_boot_reg_cfg(cf_port->cs1, div);
 171
 172
 173	use_iordy = ata_pio_need_iordy(dev);
 174
 175	reg_tim.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0));
 176	/* Disable page mode */
 177	reg_tim.s.pagem = 0;
 178	/* Enable dynamic timing */
 179	reg_tim.s.waitm = use_iordy;
 180	/* Pages are disabled */
 181	reg_tim.s.pages = 0;
 182	/* We don't use multiplexed address mode */
 183	reg_tim.s.ale = 0;
 184	/* Not used */
 185	reg_tim.s.page = 0;
 186	/* Time after IORDY to coninue to assert the data */
 187	reg_tim.s.wait = 0;
 188	/* Time to wait to complete the cycle. */
 189	reg_tim.s.pause = pause;
 190	/* How long to hold after a write to de-assert CE. */
 191	reg_tim.s.wr_hld = trh;
 192	/* How long to wait after a read to de-assert CE. */
 193	reg_tim.s.rd_hld = trh;
 194	/* How long write enable is asserted */
 195	reg_tim.s.we = t2;
 196	/* How long read enable is asserted */
 197	reg_tim.s.oe = t2;
 198	/* Time after CE that read/write starts */
 199	reg_tim.s.ce = ns_to_tim_reg(div, 5);
 200	/* Time before CE that address is valid */
 201	reg_tim.s.adr = 0;
 202
 203	/* Program the bootbus region timing for the data port chip select. */
 204	cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0), reg_tim.u64);
 205	if (cf_port->is_true_ide)
 206		/* True IDE mode, program both chip selects.  */
 207		cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs1),
 208			       reg_tim.u64);
 209}
 210
 211static void octeon_cf_set_dmamode(struct ata_port *ap, struct ata_device *dev)
 212{
 213	struct octeon_cf_port *cf_port = ap->private_data;
 214	union cvmx_mio_boot_pin_defs pin_defs;
 215	union cvmx_mio_boot_dma_timx dma_tim;
 216	unsigned int oe_a;
 217	unsigned int oe_n;
 218	unsigned int dma_ackh;
 219	unsigned int dma_arq;
 220	unsigned int pause;
 221	unsigned int T0, Tkr, Td;
 222	unsigned int tim_mult;
 223	int c;
 224
 225	const struct ata_timing *timing;
 226
 227	timing = ata_timing_find_mode(dev->dma_mode);
 228	T0	= timing->cycle;
 229	Td	= timing->active;
 230	Tkr	= timing->recover;
 231	dma_ackh = timing->dmack_hold;
 232
 233	dma_tim.u64 = 0;
 234	/* dma_tim.s.tim_mult = 0 --> 4x */
 235	tim_mult = 4;
 236
 237	/* not spec'ed, value in eclocks, not affected by tim_mult */
 238	dma_arq = 8;
 239	pause = 25 - dma_arq * 1000 /
 240		(octeon_get_io_clock_rate() / 1000000); /* Tz */
 241
 242	oe_a = Td;
 243	/* Tkr from cf spec, lengthened to meet T0 */
 244	oe_n = max(T0 - oe_a, Tkr);
 245
 246	pin_defs.u64 = cvmx_read_csr(CVMX_MIO_BOOT_PIN_DEFS);
 247
 248	/* DMA channel number. */
 249	c = (cf_port->dma_base & 8) >> 3;
 250
 251	/* Invert the polarity if the default is 0*/
 252	dma_tim.s.dmack_pi = (pin_defs.u64 & (1ull << (11 + c))) ? 0 : 1;
 253
 254	dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n);
 255	dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a);
 256
 257	/*
 258	 * This is tI, C.F. spec. says 0, but Sony CF card requires
 259	 * more, we use 20 nS.
 260	 */
 261	dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, 20);
 262	dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh);
 263
 264	dma_tim.s.dmarq = dma_arq;
 265	dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause);
 266
 267	dma_tim.s.rd_dly = 0;	/* Sample right on edge */
 268
 269	/*  writes only */
 270	dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n);
 271	dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a);
 272
 273	ata_dev_dbg(dev, "ns to ticks (mult %d) of %d is: %d\n", tim_mult, 60,
 274		 ns_to_tim_reg(tim_mult, 60));
 275	ata_dev_dbg(dev, "oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: %d, dmarq: %d, pause: %d\n",
 276		 dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s,
 277		 dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause);
 278
 279	cvmx_write_csr(cf_port->dma_base + DMA_TIM, dma_tim.u64);
 280}
 281
 282/*
 283 * Handle an 8 bit I/O request.
 284 *
 285 * @qc:         Queued command
 286 * @buffer:     Data buffer
 287 * @buflen:     Length of the buffer.
 288 * @rw:         True to write.
 289 */
 290static unsigned int octeon_cf_data_xfer8(struct ata_queued_cmd *qc,
 291					 unsigned char *buffer,
 292					 unsigned int buflen,
 293					 int rw)
 294{
 295	struct ata_port *ap		= qc->dev->link->ap;
 296	void __iomem *data_addr		= ap->ioaddr.data_addr;
 297	unsigned long words;
 298	int count;
 299
 300	words = buflen;
 301	if (rw) {
 302		count = 16;
 303		while (words--) {
 304			iowrite8(*buffer, data_addr);
 305			buffer++;
 306			/*
 307			 * Every 16 writes do a read so the bootbus
 308			 * FIFO doesn't fill up.
 309			 */
 310			if (--count == 0) {
 311				ioread8(ap->ioaddr.altstatus_addr);
 312				count = 16;
 313			}
 314		}
 315	} else {
 316		ioread8_rep(data_addr, buffer, words);
 317	}
 318	return buflen;
 319}
 320
 321/*
 322 * Handle a 16 bit I/O request.
 323 *
 324 * @qc:         Queued command
 325 * @buffer:     Data buffer
 326 * @buflen:     Length of the buffer.
 327 * @rw:         True to write.
 328 */
 329static unsigned int octeon_cf_data_xfer16(struct ata_queued_cmd *qc,
 330					  unsigned char *buffer,
 331					  unsigned int buflen,
 332					  int rw)
 333{
 334	struct ata_port *ap		= qc->dev->link->ap;
 335	void __iomem *data_addr		= ap->ioaddr.data_addr;
 336	unsigned long words;
 337	int count;
 338
 339	words = buflen / 2;
 340	if (rw) {
 341		count = 16;
 342		while (words--) {
 343			iowrite16(*(uint16_t *)buffer, data_addr);
 344			buffer += sizeof(uint16_t);
 345			/*
 346			 * Every 16 writes do a read so the bootbus
 347			 * FIFO doesn't fill up.
 348			 */
 349			if (--count == 0) {
 350				ioread8(ap->ioaddr.altstatus_addr);
 351				count = 16;
 352			}
 353		}
 354	} else {
 355		while (words--) {
 356			*(uint16_t *)buffer = ioread16(data_addr);
 357			buffer += sizeof(uint16_t);
 358		}
 359	}
 360	/* Transfer trailing 1 byte, if any. */
 361	if (unlikely(buflen & 0x01)) {
 362		__le16 align_buf[1] = { 0 };
 363
 364		if (rw == READ) {
 365			align_buf[0] = cpu_to_le16(ioread16(data_addr));
 366			memcpy(buffer, align_buf, 1);
 367		} else {
 368			memcpy(align_buf, buffer, 1);
 369			iowrite16(le16_to_cpu(align_buf[0]), data_addr);
 370		}
 371		words++;
 372	}
 373	return buflen;
 374}
 375
 376/*
 377 * Read the taskfile for 16bit non-True IDE only.
 378 */
 379static void octeon_cf_tf_read16(struct ata_port *ap, struct ata_taskfile *tf)
 380{
 381	u16 blob;
 382	/* The base of the registers is at ioaddr.data_addr. */
 383	void __iomem *base = ap->ioaddr.data_addr;
 384
 385	blob = __raw_readw(base + 0xc);
 386	tf->error = blob >> 8;
 387
 388	blob = __raw_readw(base + 2);
 389	tf->nsect = blob & 0xff;
 390	tf->lbal = blob >> 8;
 391
 392	blob = __raw_readw(base + 4);
 393	tf->lbam = blob & 0xff;
 394	tf->lbah = blob >> 8;
 395
 396	blob = __raw_readw(base + 6);
 397	tf->device = blob & 0xff;
 398	tf->status = blob >> 8;
 399
 400	if (tf->flags & ATA_TFLAG_LBA48) {
 401		if (likely(ap->ioaddr.ctl_addr)) {
 402			iowrite8(tf->ctl | ATA_HOB, ap->ioaddr.ctl_addr);
 403
 404			blob = __raw_readw(base + 0xc);
 405			tf->hob_feature = blob >> 8;
 406
 407			blob = __raw_readw(base + 2);
 408			tf->hob_nsect = blob & 0xff;
 409			tf->hob_lbal = blob >> 8;
 410
 411			blob = __raw_readw(base + 4);
 412			tf->hob_lbam = blob & 0xff;
 413			tf->hob_lbah = blob >> 8;
 414
 415			iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
 416			ap->last_ctl = tf->ctl;
 417		} else {
 418			WARN_ON(1);
 419		}
 420	}
 421}
 422
 423static u8 octeon_cf_check_status16(struct ata_port *ap)
 424{
 425	u16 blob;
 426	void __iomem *base = ap->ioaddr.data_addr;
 427
 428	blob = __raw_readw(base + 6);
 429	return blob >> 8;
 430}
 431
 432static int octeon_cf_softreset16(struct ata_link *link, unsigned int *classes,
 433				 unsigned long deadline)
 434{
 435	struct ata_port *ap = link->ap;
 436	void __iomem *base = ap->ioaddr.data_addr;
 437	int rc;
 438	u8 err;
 439
 440	__raw_writew(ap->ctl, base + 0xe);
 441	udelay(20);
 442	__raw_writew(ap->ctl | ATA_SRST, base + 0xe);
 443	udelay(20);
 444	__raw_writew(ap->ctl, base + 0xe);
 445
 446	rc = ata_sff_wait_after_reset(link, 1, deadline);
 447	if (rc) {
 448		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
 449		return rc;
 450	}
 451
 452	/* determine by signature whether we have ATA or ATAPI devices */
 453	classes[0] = ata_sff_dev_classify(&link->device[0], 1, &err);
 454	return 0;
 455}
 456
 457/*
 458 * Load the taskfile for 16bit non-True IDE only.  The device_addr is
 459 * not loaded, we do this as part of octeon_cf_exec_command16.
 460 */
 461static void octeon_cf_tf_load16(struct ata_port *ap,
 462				const struct ata_taskfile *tf)
 463{
 464	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
 465	/* The base of the registers is at ioaddr.data_addr. */
 466	void __iomem *base = ap->ioaddr.data_addr;
 467
 468	if (tf->ctl != ap->last_ctl) {
 469		iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
 470		ap->last_ctl = tf->ctl;
 471		ata_wait_idle(ap);
 472	}
 473	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
 474		__raw_writew(tf->hob_feature << 8, base + 0xc);
 475		__raw_writew(tf->hob_nsect | tf->hob_lbal << 8, base + 2);
 476		__raw_writew(tf->hob_lbam | tf->hob_lbah << 8, base + 4);
 477	}
 478	if (is_addr) {
 479		__raw_writew(tf->feature << 8, base + 0xc);
 480		__raw_writew(tf->nsect | tf->lbal << 8, base + 2);
 481		__raw_writew(tf->lbam | tf->lbah << 8, base + 4);
 482	}
 483	ata_wait_idle(ap);
 484}
 485
 486
 487static void octeon_cf_dev_select(struct ata_port *ap, unsigned int device)
 488{
 489/*  There is only one device, do nothing. */
 490	return;
 491}
 492
 493/*
 494 * Issue ATA command to host controller.  The device_addr is also sent
 495 * as it must be written in a combined write with the command.
 496 */
 497static void octeon_cf_exec_command16(struct ata_port *ap,
 498				const struct ata_taskfile *tf)
 499{
 500	/* The base of the registers is at ioaddr.data_addr. */
 501	void __iomem *base = ap->ioaddr.data_addr;
 502	u16 blob = 0;
 503
 504	if (tf->flags & ATA_TFLAG_DEVICE)
 505		blob = tf->device;
 506
 507	blob |= (tf->command << 8);
 508	__raw_writew(blob, base + 6);
 509
 510	ata_wait_idle(ap);
 511}
 512
 513static void octeon_cf_ata_port_noaction(struct ata_port *ap)
 514{
 515}
 516
 517static void octeon_cf_dma_setup(struct ata_queued_cmd *qc)
 518{
 519	struct ata_port *ap = qc->ap;
 520	struct octeon_cf_port *cf_port;
 521
 522	cf_port = ap->private_data;
 523	/* issue r/w command */
 524	qc->cursg = qc->sg;
 525	cf_port->dma_finished = 0;
 526	ap->ops->sff_exec_command(ap, &qc->tf);
 527}
 528
 529/*
 530 * Start a DMA transfer that was already setup
 531 *
 532 * @qc:     Information about the DMA
 533 */
 534static void octeon_cf_dma_start(struct ata_queued_cmd *qc)
 535{
 536	struct octeon_cf_port *cf_port = qc->ap->private_data;
 537	union cvmx_mio_boot_dma_cfgx mio_boot_dma_cfg;
 538	union cvmx_mio_boot_dma_intx mio_boot_dma_int;
 539	struct scatterlist *sg;
 540
 541	/* Get the scatter list entry we need to DMA into */
 542	sg = qc->cursg;
 543	BUG_ON(!sg);
 544
 545	/*
 546	 * Clear the DMA complete status.
 547	 */
 548	mio_boot_dma_int.u64 = 0;
 549	mio_boot_dma_int.s.done = 1;
 550	cvmx_write_csr(cf_port->dma_base + DMA_INT, mio_boot_dma_int.u64);
 551
 552	/* Enable the interrupt.  */
 553	cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, mio_boot_dma_int.u64);
 554
 555	/* Set the direction of the DMA */
 556	mio_boot_dma_cfg.u64 = 0;
 557#ifdef __LITTLE_ENDIAN
 558	mio_boot_dma_cfg.s.endian = 1;
 559#endif
 560	mio_boot_dma_cfg.s.en = 1;
 561	mio_boot_dma_cfg.s.rw = ((qc->tf.flags & ATA_TFLAG_WRITE) != 0);
 562
 563	/*
 564	 * Don't stop the DMA if the device deasserts DMARQ. Many
 565	 * compact flashes deassert DMARQ for a short time between
 566	 * sectors. Instead of stopping and restarting the DMA, we'll
 567	 * let the hardware do it. If the DMA is really stopped early
 568	 * due to an error condition, a later timeout will force us to
 569	 * stop.
 570	 */
 571	mio_boot_dma_cfg.s.clr = 0;
 572
 573	/* Size is specified in 16bit words and minus one notation */
 574	mio_boot_dma_cfg.s.size = sg_dma_len(sg) / 2 - 1;
 575
 576	/* We need to swap the high and low bytes of every 16 bits */
 577	mio_boot_dma_cfg.s.swap8 = 1;
 578
 579	mio_boot_dma_cfg.s.adr = sg_dma_address(sg);
 580
 581	cvmx_write_csr(cf_port->dma_base + DMA_CFG, mio_boot_dma_cfg.u64);
 582}
 583
 584/*
 585 *
 586 *	LOCKING:
 587 *	spin_lock_irqsave(host lock)
 588 *
 589 */
 590static unsigned int octeon_cf_dma_finished(struct ata_port *ap,
 591					struct ata_queued_cmd *qc)
 592{
 593	struct ata_eh_info *ehi = &ap->link.eh_info;
 594	struct octeon_cf_port *cf_port = ap->private_data;
 595	union cvmx_mio_boot_dma_cfgx dma_cfg;
 596	union cvmx_mio_boot_dma_intx dma_int;
 597	u8 status;
 598
 599	trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
 600
 601	if (ap->hsm_task_state != HSM_ST_LAST)
 602		return 0;
 603
 604	dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG);
 605	if (dma_cfg.s.size != 0xfffff) {
 606		/* Error, the transfer was not complete.  */
 607		qc->err_mask |= AC_ERR_HOST_BUS;
 608		ap->hsm_task_state = HSM_ST_ERR;
 609	}
 610
 611	/* Stop and clear the dma engine.  */
 612	dma_cfg.u64 = 0;
 613	dma_cfg.s.size = -1;
 614	cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64);
 615
 616	/* Disable the interrupt.  */
 617	dma_int.u64 = 0;
 618	cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64);
 619
 620	/* Clear the DMA complete status */
 621	dma_int.s.done = 1;
 622	cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64);
 623
 624	status = ap->ops->sff_check_status(ap);
 625
 626	ata_sff_hsm_move(ap, qc, status, 0);
 627
 628	if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA))
 629		ata_ehi_push_desc(ehi, "DMA stat 0x%x", status);
 630
 631	return 1;
 632}
 633
 634/*
 635 * Check if any queued commands have more DMAs, if so start the next
 636 * transfer, else do end of transfer handling.
 637 */
 638static irqreturn_t octeon_cf_interrupt(int irq, void *dev_instance)
 639{
 640	struct ata_host *host = dev_instance;
 641	struct octeon_cf_port *cf_port;
 642	int i;
 643	unsigned int handled = 0;
 644	unsigned long flags;
 645
 646	spin_lock_irqsave(&host->lock, flags);
 647
 648	for (i = 0; i < host->n_ports; i++) {
 649		u8 status;
 650		struct ata_port *ap;
 651		struct ata_queued_cmd *qc;
 652		union cvmx_mio_boot_dma_intx dma_int;
 653		union cvmx_mio_boot_dma_cfgx dma_cfg;
 654
 655		ap = host->ports[i];
 656		cf_port = ap->private_data;
 657
 658		dma_int.u64 = cvmx_read_csr(cf_port->dma_base + DMA_INT);
 659		dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG);
 660
 661		qc = ata_qc_from_tag(ap, ap->link.active_tag);
 662
 663		if (!qc || (qc->tf.flags & ATA_TFLAG_POLLING))
 664			continue;
 665
 666		if (dma_int.s.done && !dma_cfg.s.en) {
 667			if (!sg_is_last(qc->cursg)) {
 668				qc->cursg = sg_next(qc->cursg);
 669				handled = 1;
 670				trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
 671				octeon_cf_dma_start(qc);
 672				continue;
 673			} else {
 674				cf_port->dma_finished = 1;
 675			}
 676		}
 677		if (!cf_port->dma_finished)
 678			continue;
 679		status = ioread8(ap->ioaddr.altstatus_addr);
 680		if (status & (ATA_BUSY | ATA_DRQ)) {
 681			/*
 682			 * We are busy, try to handle it later.  This
 683			 * is the DMA finished interrupt, and it could
 684			 * take a little while for the card to be
 685			 * ready for more commands.
 686			 */
 687			/* Clear DMA irq. */
 688			dma_int.u64 = 0;
 689			dma_int.s.done = 1;
 690			cvmx_write_csr(cf_port->dma_base + DMA_INT,
 691				       dma_int.u64);
 692			hrtimer_start_range_ns(&cf_port->delayed_finish,
 693					       ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL),
 694					       OCTEON_CF_BUSY_POLL_INTERVAL / 5,
 695					       HRTIMER_MODE_REL);
 696			handled = 1;
 697		} else {
 698			handled |= octeon_cf_dma_finished(ap, qc);
 699		}
 700	}
 701	spin_unlock_irqrestore(&host->lock, flags);
 702	return IRQ_RETVAL(handled);
 703}
 704
 705static enum hrtimer_restart octeon_cf_delayed_finish(struct hrtimer *hrt)
 706{
 707	struct octeon_cf_port *cf_port = container_of(hrt,
 708						      struct octeon_cf_port,
 709						      delayed_finish);
 710	struct ata_port *ap = cf_port->ap;
 711	struct ata_host *host = ap->host;
 712	struct ata_queued_cmd *qc;
 713	unsigned long flags;
 714	u8 status;
 715	enum hrtimer_restart rv = HRTIMER_NORESTART;
 716
 717	spin_lock_irqsave(&host->lock, flags);
 718
 719	/*
 720	 * If the port is not waiting for completion, it must have
 721	 * handled it previously.  The hsm_task_state is
 722	 * protected by host->lock.
 723	 */
 724	if (ap->hsm_task_state != HSM_ST_LAST || !cf_port->dma_finished)
 725		goto out;
 726
 727	status = ioread8(ap->ioaddr.altstatus_addr);
 728	if (status & (ATA_BUSY | ATA_DRQ)) {
 729		/* Still busy, try again. */
 730		hrtimer_forward_now(hrt,
 731				    ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL));
 732		rv = HRTIMER_RESTART;
 733		goto out;
 734	}
 735	qc = ata_qc_from_tag(ap, ap->link.active_tag);
 736	if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)))
 737		octeon_cf_dma_finished(ap, qc);
 738out:
 739	spin_unlock_irqrestore(&host->lock, flags);
 740	return rv;
 741}
 742
 743static void octeon_cf_dev_config(struct ata_device *dev)
 744{
 745	/*
 746	 * A maximum of 2^20 - 1 16 bit transfers are possible with
 747	 * the bootbus DMA.  So we need to throttle max_sectors to
 748	 * (2^12 - 1 == 4095) to assure that this can never happen.
 749	 */
 750	dev->max_sectors = min(dev->max_sectors, 4095U);
 751}
 752
 753/*
 754 * We don't do ATAPI DMA so return 0.
 755 */
 756static int octeon_cf_check_atapi_dma(struct ata_queued_cmd *qc)
 757{
 758	return 0;
 759}
 760
 761static unsigned int octeon_cf_qc_issue(struct ata_queued_cmd *qc)
 762{
 763	struct ata_port *ap = qc->ap;
 764
 765	switch (qc->tf.protocol) {
 766	case ATA_PROT_DMA:
 767		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
 768
 769		trace_ata_tf_load(ap, &qc->tf);
 770		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
 771		trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
 772		octeon_cf_dma_setup(qc);	    /* set up dma */
 773		trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
 774		octeon_cf_dma_start(qc);	    /* initiate dma */
 775		ap->hsm_task_state = HSM_ST_LAST;
 776		break;
 777
 778	case ATAPI_PROT_DMA:
 779		dev_err(ap->dev, "Error, ATAPI not supported\n");
 780		BUG();
 781
 782	default:
 783		return ata_sff_qc_issue(qc);
 784	}
 785
 786	return 0;
 787}
 788
 789static struct ata_port_operations octeon_cf_ops = {
 790	.inherits		= &ata_sff_port_ops,
 791	.check_atapi_dma	= octeon_cf_check_atapi_dma,
 792	.qc_prep		= ata_noop_qc_prep,
 793	.qc_issue		= octeon_cf_qc_issue,
 794	.sff_dev_select		= octeon_cf_dev_select,
 795	.sff_irq_on		= octeon_cf_ata_port_noaction,
 796	.sff_irq_clear		= octeon_cf_ata_port_noaction,
 797	.cable_detect		= ata_cable_40wire,
 798	.set_piomode		= octeon_cf_set_piomode,
 799	.set_dmamode		= octeon_cf_set_dmamode,
 800	.dev_config		= octeon_cf_dev_config,
 801};
 802
 803static int octeon_cf_probe(struct platform_device *pdev)
 804{
 805	struct resource *res_cs0, *res_cs1;
 806
 807	bool is_16bit;
 808	u64 reg;
 809	struct device_node *node;
 810	void __iomem *cs0;
 811	void __iomem *cs1 = NULL;
 812	struct ata_host *host;
 813	struct ata_port *ap;
 814	int irq = 0;
 815	irq_handler_t irq_handler = NULL;
 816	void __iomem *base;
 817	struct octeon_cf_port *cf_port;
 818	u32 bus_width;
 819	int rv;
 820
 821	node = pdev->dev.of_node;
 822	if (node == NULL)
 823		return -EINVAL;
 824
 825	cf_port = devm_kzalloc(&pdev->dev, sizeof(*cf_port), GFP_KERNEL);
 826	if (!cf_port)
 827		return -ENOMEM;
 828
 829	cf_port->is_true_ide = of_property_read_bool(node, "cavium,true-ide");
 830
 831	if (of_property_read_u32(node, "cavium,bus-width", &bus_width) == 0)
 832		is_16bit = (bus_width == 16);
 833	else
 834		is_16bit = false;
 835
 836	rv = of_property_read_reg(node, 0, &reg, NULL);
 837	if (rv < 0)
 838		return rv;
 839	cf_port->cs0 = upper_32_bits(reg);
 840
 841	if (cf_port->is_true_ide) {
 842		struct device_node *dma_node;
 843		dma_node = of_parse_phandle(node,
 844					    "cavium,dma-engine-handle", 0);
 845		if (dma_node) {
 846			struct platform_device *dma_dev;
 847			dma_dev = of_find_device_by_node(dma_node);
 848			if (dma_dev) {
 849				struct resource *res_dma;
 850				int i;
 851				res_dma = platform_get_resource(dma_dev, IORESOURCE_MEM, 0);
 852				if (!res_dma) {
 853					put_device(&dma_dev->dev);
 854					of_node_put(dma_node);
 855					return -EINVAL;
 856				}
 857				cf_port->dma_base = (u64)devm_ioremap(&pdev->dev, res_dma->start,
 858									 resource_size(res_dma));
 859				if (!cf_port->dma_base) {
 860					put_device(&dma_dev->dev);
 861					of_node_put(dma_node);
 862					return -EINVAL;
 863				}
 864
 865				i = platform_get_irq(dma_dev, 0);
 866				if (i > 0) {
 867					irq = i;
 868					irq_handler = octeon_cf_interrupt;
 869				}
 870				put_device(&dma_dev->dev);
 871			}
 872			of_node_put(dma_node);
 873		}
 874		res_cs1 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
 875		if (!res_cs1)
 876			return -EINVAL;
 877
 878		cs1 = devm_ioremap(&pdev->dev, res_cs1->start,
 879					   resource_size(res_cs1));
 880		if (!cs1)
 881			return -EINVAL;
 882
 883		rv = of_property_read_reg(node, 1, &reg, NULL);
 884		if (rv < 0)
 885			return rv;
 886		cf_port->cs1 = upper_32_bits(reg);
 887	}
 888
 889	res_cs0 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 890	if (!res_cs0)
 891		return -EINVAL;
 892
 893	cs0 = devm_ioremap(&pdev->dev, res_cs0->start,
 894				   resource_size(res_cs0));
 895	if (!cs0)
 896		return -ENOMEM;
 897
 898	/* allocate host */
 899	host = ata_host_alloc(&pdev->dev, 1);
 900	if (!host)
 901		return -ENOMEM;
 902
 903	ap = host->ports[0];
 904	ap->private_data = cf_port;
 905	pdev->dev.platform_data = cf_port;
 906	cf_port->ap = ap;
 907	ap->ops = &octeon_cf_ops;
 908	ap->pio_mask = ATA_PIO6;
 909	ap->flags |= ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING;
 910
 911	if (!is_16bit) {
 912		base = cs0 + 0x800;
 913		ap->ioaddr.cmd_addr	= base;
 914		ata_sff_std_ports(&ap->ioaddr);
 915
 916		ap->ioaddr.altstatus_addr = base + 0xe;
 917		ap->ioaddr.ctl_addr	= base + 0xe;
 918		octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer8;
 919	} else if (cf_port->is_true_ide) {
 920		base = cs0;
 921		ap->ioaddr.cmd_addr	= base + (ATA_REG_CMD << 1) + 1;
 922		ap->ioaddr.data_addr	= base + (ATA_REG_DATA << 1);
 923		ap->ioaddr.error_addr	= base + (ATA_REG_ERR << 1) + 1;
 924		ap->ioaddr.feature_addr	= base + (ATA_REG_FEATURE << 1) + 1;
 925		ap->ioaddr.nsect_addr	= base + (ATA_REG_NSECT << 1) + 1;
 926		ap->ioaddr.lbal_addr	= base + (ATA_REG_LBAL << 1) + 1;
 927		ap->ioaddr.lbam_addr	= base + (ATA_REG_LBAM << 1) + 1;
 928		ap->ioaddr.lbah_addr	= base + (ATA_REG_LBAH << 1) + 1;
 929		ap->ioaddr.device_addr	= base + (ATA_REG_DEVICE << 1) + 1;
 930		ap->ioaddr.status_addr	= base + (ATA_REG_STATUS << 1) + 1;
 931		ap->ioaddr.command_addr	= base + (ATA_REG_CMD << 1) + 1;
 932		ap->ioaddr.altstatus_addr = cs1 + (6 << 1) + 1;
 933		ap->ioaddr.ctl_addr	= cs1 + (6 << 1) + 1;
 934		octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
 935
 936		ap->mwdma_mask	= enable_dma ? ATA_MWDMA4 : 0;
 937
 938		/* True IDE mode needs a timer to poll for not-busy.  */
 939		hrtimer_init(&cf_port->delayed_finish, CLOCK_MONOTONIC,
 940			     HRTIMER_MODE_REL);
 941		cf_port->delayed_finish.function = octeon_cf_delayed_finish;
 942	} else {
 943		/* 16 bit but not True IDE */
 944		base = cs0 + 0x800;
 945		octeon_cf_ops.sff_data_xfer	= octeon_cf_data_xfer16;
 946		octeon_cf_ops.softreset		= octeon_cf_softreset16;
 947		octeon_cf_ops.sff_check_status	= octeon_cf_check_status16;
 948		octeon_cf_ops.sff_tf_read	= octeon_cf_tf_read16;
 949		octeon_cf_ops.sff_tf_load	= octeon_cf_tf_load16;
 950		octeon_cf_ops.sff_exec_command	= octeon_cf_exec_command16;
 951
 952		ap->ioaddr.data_addr	= base + ATA_REG_DATA;
 953		ap->ioaddr.nsect_addr	= base + ATA_REG_NSECT;
 954		ap->ioaddr.lbal_addr	= base + ATA_REG_LBAL;
 955		ap->ioaddr.ctl_addr	= base + 0xe;
 956		ap->ioaddr.altstatus_addr = base + 0xe;
 957	}
 958	cf_port->c0 = ap->ioaddr.ctl_addr;
 959
 960	rv = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
 961	if (rv)
 962		return rv;
 963
 964	ata_port_desc(ap, "cmd %p ctl %p", base, ap->ioaddr.ctl_addr);
 965
 966	dev_info(&pdev->dev, "version " DRV_VERSION" %d bit%s.\n",
 967		 is_16bit ? 16 : 8,
 968		 cf_port->is_true_ide ? ", True IDE" : "");
 969
 970	return ata_host_activate(host, irq, irq_handler,
 971				 IRQF_SHARED, &octeon_cf_sht);
 972}
 973
 974static void octeon_cf_shutdown(struct device *dev)
 975{
 976	union cvmx_mio_boot_dma_cfgx dma_cfg;
 977	union cvmx_mio_boot_dma_intx dma_int;
 978
 979	struct octeon_cf_port *cf_port = dev_get_platdata(dev);
 980
 981	if (cf_port->dma_base) {
 982		/* Stop and clear the dma engine.  */
 983		dma_cfg.u64 = 0;
 984		dma_cfg.s.size = -1;
 985		cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64);
 986
 987		/* Disable the interrupt.  */
 988		dma_int.u64 = 0;
 989		cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64);
 990
 991		/* Clear the DMA complete status */
 992		dma_int.s.done = 1;
 993		cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64);
 994
 995		__raw_writeb(0, cf_port->c0);
 996		udelay(20);
 997		__raw_writeb(ATA_SRST, cf_port->c0);
 998		udelay(20);
 999		__raw_writeb(0, cf_port->c0);
1000		mdelay(100);
1001	}
1002}
1003
1004static const struct of_device_id octeon_cf_match[] = {
1005	{ .compatible = "cavium,ebt3000-compact-flash", },
1006	{ /* sentinel */ }
1007};
1008MODULE_DEVICE_TABLE(of, octeon_cf_match);
1009
1010static struct platform_driver octeon_cf_driver = {
1011	.probe		= octeon_cf_probe,
1012	.driver		= {
1013		.name	= DRV_NAME,
1014		.of_match_table = octeon_cf_match,
1015		.shutdown = octeon_cf_shutdown
1016	},
1017};
1018
1019static int __init octeon_cf_init(void)
1020{
1021	return platform_driver_register(&octeon_cf_driver);
1022}
1023
1024
1025MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
1026MODULE_DESCRIPTION("low-level driver for Cavium OCTEON Compact Flash PATA");
1027MODULE_LICENSE("GPL");
1028MODULE_VERSION(DRV_VERSION);
1029MODULE_ALIAS("platform:" DRV_NAME);
1030
1031module_init(octeon_cf_init);
v6.13.7
   1/*
   2 * Driver for the Octeon bootbus compact flash.
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 2005 - 2012 Cavium Inc.
   9 * Copyright (C) 2008 Wind River Systems
  10 */
  11
  12#include <linux/kernel.h>
  13#include <linux/module.h>
  14#include <linux/libata.h>
  15#include <linux/hrtimer.h>
  16#include <linux/slab.h>
  17#include <linux/irq.h>
  18#include <linux/of.h>
  19#include <linux/of_address.h>
  20#include <linux/of_platform.h>
  21#include <linux/platform_device.h>
  22#include <scsi/scsi_host.h>
  23#include <trace/events/libata.h>
  24#include <asm/byteorder.h>
  25#include <asm/octeon/octeon.h>
  26
  27/*
  28 * The Octeon bootbus compact flash interface is connected in at least
  29 * 3 different configurations on various evaluation boards:
  30 *
  31 * -- 8  bits no irq, no DMA
  32 * -- 16 bits no irq, no DMA
  33 * -- 16 bits True IDE mode with DMA, but no irq.
  34 *
  35 * In the last case the DMA engine can generate an interrupt when the
  36 * transfer is complete.  For the first two cases only PIO is supported.
  37 *
  38 */
  39
  40#define DRV_NAME	"pata_octeon_cf"
  41#define DRV_VERSION	"2.2"
  42
  43/* Poll interval in nS. */
  44#define OCTEON_CF_BUSY_POLL_INTERVAL 500000
  45
  46#define DMA_CFG 0
  47#define DMA_TIM 0x20
  48#define DMA_INT 0x38
  49#define DMA_INT_EN 0x50
  50
  51struct octeon_cf_port {
  52	struct hrtimer delayed_finish;
  53	struct ata_port *ap;
  54	int dma_finished;
  55	void		*c0;
  56	unsigned int cs0;
  57	unsigned int cs1;
  58	bool is_true_ide;
  59	u64 dma_base;
  60};
  61
  62static const struct scsi_host_template octeon_cf_sht = {
  63	ATA_PIO_SHT(DRV_NAME),
  64};
  65
  66static int enable_dma;
  67module_param(enable_dma, int, 0444);
  68MODULE_PARM_DESC(enable_dma,
  69		 "Enable use of DMA on interfaces that support it (0=no dma [default], 1=use dma)");
  70
  71/*
  72 * Convert nanosecond based time to setting used in the
  73 * boot bus timing register, based on timing multiple
  74 */
  75static unsigned int ns_to_tim_reg(unsigned int tim_mult, unsigned int nsecs)
  76{
  77	/*
  78	 * Compute # of eclock periods to get desired duration in
  79	 * nanoseconds.
  80	 */
  81	return DIV_ROUND_UP(nsecs * (octeon_get_io_clock_rate() / 1000000),
  82			  1000 * tim_mult);
  83}
  84
  85static void octeon_cf_set_boot_reg_cfg(int cs, unsigned int multiplier)
  86{
  87	union cvmx_mio_boot_reg_cfgx reg_cfg;
  88	unsigned int tim_mult;
  89
  90	switch (multiplier) {
  91	case 8:
  92		tim_mult = 3;
  93		break;
  94	case 4:
  95		tim_mult = 0;
  96		break;
  97	case 2:
  98		tim_mult = 2;
  99		break;
 100	default:
 101		tim_mult = 1;
 102		break;
 103	}
 104
 105	reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
 106	reg_cfg.s.dmack = 0;	/* Don't assert DMACK on access */
 107	reg_cfg.s.tim_mult = tim_mult;	/* Timing mutiplier */
 108	reg_cfg.s.rd_dly = 0;	/* Sample on falling edge of BOOT_OE */
 109	reg_cfg.s.sam = 0;	/* Don't combine write and output enable */
 110	reg_cfg.s.we_ext = 0;	/* No write enable extension */
 111	reg_cfg.s.oe_ext = 0;	/* No read enable extension */
 112	reg_cfg.s.en = 1;	/* Enable this region */
 113	reg_cfg.s.orbit = 0;	/* Don't combine with previous region */
 114	reg_cfg.s.ale = 0;	/* Don't do address multiplexing */
 115	cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), reg_cfg.u64);
 116}
 117
 118/*
 119 * Called after libata determines the needed PIO mode. This
 120 * function programs the Octeon bootbus regions to support the
 121 * timing requirements of the PIO mode.
 122 *
 123 * @ap:     ATA port information
 124 * @dev:    ATA device
 125 */
 126static void octeon_cf_set_piomode(struct ata_port *ap, struct ata_device *dev)
 127{
 128	struct octeon_cf_port *cf_port = ap->private_data;
 129	union cvmx_mio_boot_reg_timx reg_tim;
 130	int T;
 131	struct ata_timing timing;
 132
 133	unsigned int div;
 134	int use_iordy;
 135	int trh;
 136	int pause;
 137	/* These names are timing parameters from the ATA spec */
 138	int t2;
 139
 140	/*
 141	 * A divisor value of four will overflow the timing fields at
 142	 * clock rates greater than 800MHz
 143	 */
 144	if (octeon_get_io_clock_rate() <= 800000000)
 145		div = 4;
 146	else
 147		div = 8;
 148	T = (int)((1000000000000LL * div) / octeon_get_io_clock_rate());
 149
 150	BUG_ON(ata_timing_compute(dev, dev->pio_mode, &timing, T, T));
 151
 152	t2 = timing.active;
 153	if (t2)
 154		t2--;
 155
 156	trh = ns_to_tim_reg(div, 20);
 157	if (trh)
 158		trh--;
 159
 160	pause = (int)timing.cycle - (int)timing.active -
 161		(int)timing.setup - trh;
 162	if (pause < 0)
 163		pause = 0;
 164	if (pause)
 165		pause--;
 166
 167	octeon_cf_set_boot_reg_cfg(cf_port->cs0, div);
 168	if (cf_port->is_true_ide)
 169		/* True IDE mode, program both chip selects.  */
 170		octeon_cf_set_boot_reg_cfg(cf_port->cs1, div);
 171
 172
 173	use_iordy = ata_pio_need_iordy(dev);
 174
 175	reg_tim.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0));
 176	/* Disable page mode */
 177	reg_tim.s.pagem = 0;
 178	/* Enable dynamic timing */
 179	reg_tim.s.waitm = use_iordy;
 180	/* Pages are disabled */
 181	reg_tim.s.pages = 0;
 182	/* We don't use multiplexed address mode */
 183	reg_tim.s.ale = 0;
 184	/* Not used */
 185	reg_tim.s.page = 0;
 186	/* Time after IORDY to continue to assert the data */
 187	reg_tim.s.wait = 0;
 188	/* Time to wait to complete the cycle. */
 189	reg_tim.s.pause = pause;
 190	/* How long to hold after a write to de-assert CE. */
 191	reg_tim.s.wr_hld = trh;
 192	/* How long to wait after a read to de-assert CE. */
 193	reg_tim.s.rd_hld = trh;
 194	/* How long write enable is asserted */
 195	reg_tim.s.we = t2;
 196	/* How long read enable is asserted */
 197	reg_tim.s.oe = t2;
 198	/* Time after CE that read/write starts */
 199	reg_tim.s.ce = ns_to_tim_reg(div, 5);
 200	/* Time before CE that address is valid */
 201	reg_tim.s.adr = 0;
 202
 203	/* Program the bootbus region timing for the data port chip select. */
 204	cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0), reg_tim.u64);
 205	if (cf_port->is_true_ide)
 206		/* True IDE mode, program both chip selects.  */
 207		cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs1),
 208			       reg_tim.u64);
 209}
 210
 211static void octeon_cf_set_dmamode(struct ata_port *ap, struct ata_device *dev)
 212{
 213	struct octeon_cf_port *cf_port = ap->private_data;
 214	union cvmx_mio_boot_pin_defs pin_defs;
 215	union cvmx_mio_boot_dma_timx dma_tim;
 216	unsigned int oe_a;
 217	unsigned int oe_n;
 218	unsigned int dma_ackh;
 219	unsigned int dma_arq;
 220	unsigned int pause;
 221	unsigned int T0, Tkr, Td;
 222	unsigned int tim_mult;
 223	int c;
 224
 225	const struct ata_timing *timing;
 226
 227	timing = ata_timing_find_mode(dev->dma_mode);
 228	T0	= timing->cycle;
 229	Td	= timing->active;
 230	Tkr	= timing->recover;
 231	dma_ackh = timing->dmack_hold;
 232
 233	dma_tim.u64 = 0;
 234	/* dma_tim.s.tim_mult = 0 --> 4x */
 235	tim_mult = 4;
 236
 237	/* not spec'ed, value in eclocks, not affected by tim_mult */
 238	dma_arq = 8;
 239	pause = 25 - dma_arq * 1000 /
 240		(octeon_get_io_clock_rate() / 1000000); /* Tz */
 241
 242	oe_a = Td;
 243	/* Tkr from cf spec, lengthened to meet T0 */
 244	oe_n = max(T0 - oe_a, Tkr);
 245
 246	pin_defs.u64 = cvmx_read_csr(CVMX_MIO_BOOT_PIN_DEFS);
 247
 248	/* DMA channel number. */
 249	c = (cf_port->dma_base & 8) >> 3;
 250
 251	/* Invert the polarity if the default is 0*/
 252	dma_tim.s.dmack_pi = (pin_defs.u64 & (1ull << (11 + c))) ? 0 : 1;
 253
 254	dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n);
 255	dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a);
 256
 257	/*
 258	 * This is tI, C.F. spec. says 0, but Sony CF card requires
 259	 * more, we use 20 nS.
 260	 */
 261	dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, 20);
 262	dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh);
 263
 264	dma_tim.s.dmarq = dma_arq;
 265	dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause);
 266
 267	dma_tim.s.rd_dly = 0;	/* Sample right on edge */
 268
 269	/*  writes only */
 270	dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n);
 271	dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a);
 272
 273	ata_dev_dbg(dev, "ns to ticks (mult %d) of %d is: %d\n", tim_mult, 60,
 274		 ns_to_tim_reg(tim_mult, 60));
 275	ata_dev_dbg(dev, "oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: %d, dmarq: %d, pause: %d\n",
 276		 dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s,
 277		 dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause);
 278
 279	cvmx_write_csr(cf_port->dma_base + DMA_TIM, dma_tim.u64);
 280}
 281
 282/*
 283 * Handle an 8 bit I/O request.
 284 *
 285 * @qc:         Queued command
 286 * @buffer:     Data buffer
 287 * @buflen:     Length of the buffer.
 288 * @rw:         True to write.
 289 */
 290static unsigned int octeon_cf_data_xfer8(struct ata_queued_cmd *qc,
 291					 unsigned char *buffer,
 292					 unsigned int buflen,
 293					 int rw)
 294{
 295	struct ata_port *ap		= qc->dev->link->ap;
 296	void __iomem *data_addr		= ap->ioaddr.data_addr;
 297	unsigned long words;
 298	int count;
 299
 300	words = buflen;
 301	if (rw) {
 302		count = 16;
 303		while (words--) {
 304			iowrite8(*buffer, data_addr);
 305			buffer++;
 306			/*
 307			 * Every 16 writes do a read so the bootbus
 308			 * FIFO doesn't fill up.
 309			 */
 310			if (--count == 0) {
 311				ioread8(ap->ioaddr.altstatus_addr);
 312				count = 16;
 313			}
 314		}
 315	} else {
 316		ioread8_rep(data_addr, buffer, words);
 317	}
 318	return buflen;
 319}
 320
 321/*
 322 * Handle a 16 bit I/O request.
 323 *
 324 * @qc:         Queued command
 325 * @buffer:     Data buffer
 326 * @buflen:     Length of the buffer.
 327 * @rw:         True to write.
 328 */
 329static unsigned int octeon_cf_data_xfer16(struct ata_queued_cmd *qc,
 330					  unsigned char *buffer,
 331					  unsigned int buflen,
 332					  int rw)
 333{
 334	struct ata_port *ap		= qc->dev->link->ap;
 335	void __iomem *data_addr		= ap->ioaddr.data_addr;
 336	unsigned long words;
 337	int count;
 338
 339	words = buflen / 2;
 340	if (rw) {
 341		count = 16;
 342		while (words--) {
 343			iowrite16(*(uint16_t *)buffer, data_addr);
 344			buffer += sizeof(uint16_t);
 345			/*
 346			 * Every 16 writes do a read so the bootbus
 347			 * FIFO doesn't fill up.
 348			 */
 349			if (--count == 0) {
 350				ioread8(ap->ioaddr.altstatus_addr);
 351				count = 16;
 352			}
 353		}
 354	} else {
 355		while (words--) {
 356			*(uint16_t *)buffer = ioread16(data_addr);
 357			buffer += sizeof(uint16_t);
 358		}
 359	}
 360	/* Transfer trailing 1 byte, if any. */
 361	if (unlikely(buflen & 0x01)) {
 362		__le16 align_buf[1] = { 0 };
 363
 364		if (rw == READ) {
 365			align_buf[0] = cpu_to_le16(ioread16(data_addr));
 366			memcpy(buffer, align_buf, 1);
 367		} else {
 368			memcpy(align_buf, buffer, 1);
 369			iowrite16(le16_to_cpu(align_buf[0]), data_addr);
 370		}
 371		words++;
 372	}
 373	return buflen;
 374}
 375
 376/*
 377 * Read the taskfile for 16bit non-True IDE only.
 378 */
 379static void octeon_cf_tf_read16(struct ata_port *ap, struct ata_taskfile *tf)
 380{
 381	u16 blob;
 382	/* The base of the registers is at ioaddr.data_addr. */
 383	void __iomem *base = ap->ioaddr.data_addr;
 384
 385	blob = __raw_readw(base + 0xc);
 386	tf->error = blob >> 8;
 387
 388	blob = __raw_readw(base + 2);
 389	tf->nsect = blob & 0xff;
 390	tf->lbal = blob >> 8;
 391
 392	blob = __raw_readw(base + 4);
 393	tf->lbam = blob & 0xff;
 394	tf->lbah = blob >> 8;
 395
 396	blob = __raw_readw(base + 6);
 397	tf->device = blob & 0xff;
 398	tf->status = blob >> 8;
 399
 400	if (tf->flags & ATA_TFLAG_LBA48) {
 401		if (likely(ap->ioaddr.ctl_addr)) {
 402			iowrite8(tf->ctl | ATA_HOB, ap->ioaddr.ctl_addr);
 403
 404			blob = __raw_readw(base + 0xc);
 405			tf->hob_feature = blob >> 8;
 406
 407			blob = __raw_readw(base + 2);
 408			tf->hob_nsect = blob & 0xff;
 409			tf->hob_lbal = blob >> 8;
 410
 411			blob = __raw_readw(base + 4);
 412			tf->hob_lbam = blob & 0xff;
 413			tf->hob_lbah = blob >> 8;
 414
 415			iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
 416			ap->last_ctl = tf->ctl;
 417		} else {
 418			WARN_ON(1);
 419		}
 420	}
 421}
 422
 423static u8 octeon_cf_check_status16(struct ata_port *ap)
 424{
 425	u16 blob;
 426	void __iomem *base = ap->ioaddr.data_addr;
 427
 428	blob = __raw_readw(base + 6);
 429	return blob >> 8;
 430}
 431
 432static int octeon_cf_softreset16(struct ata_link *link, unsigned int *classes,
 433				 unsigned long deadline)
 434{
 435	struct ata_port *ap = link->ap;
 436	void __iomem *base = ap->ioaddr.data_addr;
 437	int rc;
 438	u8 err;
 439
 440	__raw_writew(ap->ctl, base + 0xe);
 441	udelay(20);
 442	__raw_writew(ap->ctl | ATA_SRST, base + 0xe);
 443	udelay(20);
 444	__raw_writew(ap->ctl, base + 0xe);
 445
 446	rc = ata_sff_wait_after_reset(link, 1, deadline);
 447	if (rc) {
 448		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
 449		return rc;
 450	}
 451
 452	/* determine by signature whether we have ATA or ATAPI devices */
 453	classes[0] = ata_sff_dev_classify(&link->device[0], 1, &err);
 454	return 0;
 455}
 456
 457/*
 458 * Load the taskfile for 16bit non-True IDE only.  The device_addr is
 459 * not loaded, we do this as part of octeon_cf_exec_command16.
 460 */
 461static void octeon_cf_tf_load16(struct ata_port *ap,
 462				const struct ata_taskfile *tf)
 463{
 464	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
 465	/* The base of the registers is at ioaddr.data_addr. */
 466	void __iomem *base = ap->ioaddr.data_addr;
 467
 468	if (tf->ctl != ap->last_ctl) {
 469		iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
 470		ap->last_ctl = tf->ctl;
 471		ata_wait_idle(ap);
 472	}
 473	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
 474		__raw_writew(tf->hob_feature << 8, base + 0xc);
 475		__raw_writew(tf->hob_nsect | tf->hob_lbal << 8, base + 2);
 476		__raw_writew(tf->hob_lbam | tf->hob_lbah << 8, base + 4);
 477	}
 478	if (is_addr) {
 479		__raw_writew(tf->feature << 8, base + 0xc);
 480		__raw_writew(tf->nsect | tf->lbal << 8, base + 2);
 481		__raw_writew(tf->lbam | tf->lbah << 8, base + 4);
 482	}
 483	ata_wait_idle(ap);
 484}
 485
 486
 487static void octeon_cf_dev_select(struct ata_port *ap, unsigned int device)
 488{
 489/*  There is only one device, do nothing. */
 490	return;
 491}
 492
 493/*
 494 * Issue ATA command to host controller.  The device_addr is also sent
 495 * as it must be written in a combined write with the command.
 496 */
 497static void octeon_cf_exec_command16(struct ata_port *ap,
 498				const struct ata_taskfile *tf)
 499{
 500	/* The base of the registers is at ioaddr.data_addr. */
 501	void __iomem *base = ap->ioaddr.data_addr;
 502	u16 blob = 0;
 503
 504	if (tf->flags & ATA_TFLAG_DEVICE)
 505		blob = tf->device;
 506
 507	blob |= (tf->command << 8);
 508	__raw_writew(blob, base + 6);
 509
 510	ata_wait_idle(ap);
 511}
 512
 513static void octeon_cf_ata_port_noaction(struct ata_port *ap)
 514{
 515}
 516
 517static void octeon_cf_dma_setup(struct ata_queued_cmd *qc)
 518{
 519	struct ata_port *ap = qc->ap;
 520	struct octeon_cf_port *cf_port;
 521
 522	cf_port = ap->private_data;
 523	/* issue r/w command */
 524	qc->cursg = qc->sg;
 525	cf_port->dma_finished = 0;
 526	ap->ops->sff_exec_command(ap, &qc->tf);
 527}
 528
 529/*
 530 * Start a DMA transfer that was already setup
 531 *
 532 * @qc:     Information about the DMA
 533 */
 534static void octeon_cf_dma_start(struct ata_queued_cmd *qc)
 535{
 536	struct octeon_cf_port *cf_port = qc->ap->private_data;
 537	union cvmx_mio_boot_dma_cfgx mio_boot_dma_cfg;
 538	union cvmx_mio_boot_dma_intx mio_boot_dma_int;
 539	struct scatterlist *sg;
 540
 541	/* Get the scatter list entry we need to DMA into */
 542	sg = qc->cursg;
 543	BUG_ON(!sg);
 544
 545	/*
 546	 * Clear the DMA complete status.
 547	 */
 548	mio_boot_dma_int.u64 = 0;
 549	mio_boot_dma_int.s.done = 1;
 550	cvmx_write_csr(cf_port->dma_base + DMA_INT, mio_boot_dma_int.u64);
 551
 552	/* Enable the interrupt.  */
 553	cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, mio_boot_dma_int.u64);
 554
 555	/* Set the direction of the DMA */
 556	mio_boot_dma_cfg.u64 = 0;
 557#ifdef __LITTLE_ENDIAN
 558	mio_boot_dma_cfg.s.endian = 1;
 559#endif
 560	mio_boot_dma_cfg.s.en = 1;
 561	mio_boot_dma_cfg.s.rw = ((qc->tf.flags & ATA_TFLAG_WRITE) != 0);
 562
 563	/*
 564	 * Don't stop the DMA if the device deasserts DMARQ. Many
 565	 * compact flashes deassert DMARQ for a short time between
 566	 * sectors. Instead of stopping and restarting the DMA, we'll
 567	 * let the hardware do it. If the DMA is really stopped early
 568	 * due to an error condition, a later timeout will force us to
 569	 * stop.
 570	 */
 571	mio_boot_dma_cfg.s.clr = 0;
 572
 573	/* Size is specified in 16bit words and minus one notation */
 574	mio_boot_dma_cfg.s.size = sg_dma_len(sg) / 2 - 1;
 575
 576	/* We need to swap the high and low bytes of every 16 bits */
 577	mio_boot_dma_cfg.s.swap8 = 1;
 578
 579	mio_boot_dma_cfg.s.adr = sg_dma_address(sg);
 580
 581	cvmx_write_csr(cf_port->dma_base + DMA_CFG, mio_boot_dma_cfg.u64);
 582}
 583
 584/*
 585 *
 586 *	LOCKING:
 587 *	spin_lock_irqsave(host lock)
 588 *
 589 */
 590static unsigned int octeon_cf_dma_finished(struct ata_port *ap,
 591					struct ata_queued_cmd *qc)
 592{
 593	struct ata_eh_info *ehi = &ap->link.eh_info;
 594	struct octeon_cf_port *cf_port = ap->private_data;
 595	union cvmx_mio_boot_dma_cfgx dma_cfg;
 596	union cvmx_mio_boot_dma_intx dma_int;
 597	u8 status;
 598
 599	trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
 600
 601	if (ap->hsm_task_state != HSM_ST_LAST)
 602		return 0;
 603
 604	dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG);
 605	if (dma_cfg.s.size != 0xfffff) {
 606		/* Error, the transfer was not complete.  */
 607		qc->err_mask |= AC_ERR_HOST_BUS;
 608		ap->hsm_task_state = HSM_ST_ERR;
 609	}
 610
 611	/* Stop and clear the dma engine.  */
 612	dma_cfg.u64 = 0;
 613	dma_cfg.s.size = -1;
 614	cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64);
 615
 616	/* Disable the interrupt.  */
 617	dma_int.u64 = 0;
 618	cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64);
 619
 620	/* Clear the DMA complete status */
 621	dma_int.s.done = 1;
 622	cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64);
 623
 624	status = ap->ops->sff_check_status(ap);
 625
 626	ata_sff_hsm_move(ap, qc, status, 0);
 627
 628	if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA))
 629		ata_ehi_push_desc(ehi, "DMA stat 0x%x", status);
 630
 631	return 1;
 632}
 633
 634/*
 635 * Check if any queued commands have more DMAs, if so start the next
 636 * transfer, else do end of transfer handling.
 637 */
 638static irqreturn_t octeon_cf_interrupt(int irq, void *dev_instance)
 639{
 640	struct ata_host *host = dev_instance;
 641	struct octeon_cf_port *cf_port;
 642	int i;
 643	unsigned int handled = 0;
 644	unsigned long flags;
 645
 646	spin_lock_irqsave(&host->lock, flags);
 647
 648	for (i = 0; i < host->n_ports; i++) {
 649		u8 status;
 650		struct ata_port *ap;
 651		struct ata_queued_cmd *qc;
 652		union cvmx_mio_boot_dma_intx dma_int;
 653		union cvmx_mio_boot_dma_cfgx dma_cfg;
 654
 655		ap = host->ports[i];
 656		cf_port = ap->private_data;
 657
 658		dma_int.u64 = cvmx_read_csr(cf_port->dma_base + DMA_INT);
 659		dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG);
 660
 661		qc = ata_qc_from_tag(ap, ap->link.active_tag);
 662
 663		if (!qc || (qc->tf.flags & ATA_TFLAG_POLLING))
 664			continue;
 665
 666		if (dma_int.s.done && !dma_cfg.s.en) {
 667			if (!sg_is_last(qc->cursg)) {
 668				qc->cursg = sg_next(qc->cursg);
 669				handled = 1;
 670				trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
 671				octeon_cf_dma_start(qc);
 672				continue;
 673			} else {
 674				cf_port->dma_finished = 1;
 675			}
 676		}
 677		if (!cf_port->dma_finished)
 678			continue;
 679		status = ioread8(ap->ioaddr.altstatus_addr);
 680		if (status & (ATA_BUSY | ATA_DRQ)) {
 681			/*
 682			 * We are busy, try to handle it later.  This
 683			 * is the DMA finished interrupt, and it could
 684			 * take a little while for the card to be
 685			 * ready for more commands.
 686			 */
 687			/* Clear DMA irq. */
 688			dma_int.u64 = 0;
 689			dma_int.s.done = 1;
 690			cvmx_write_csr(cf_port->dma_base + DMA_INT,
 691				       dma_int.u64);
 692			hrtimer_start_range_ns(&cf_port->delayed_finish,
 693					       ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL),
 694					       OCTEON_CF_BUSY_POLL_INTERVAL / 5,
 695					       HRTIMER_MODE_REL);
 696			handled = 1;
 697		} else {
 698			handled |= octeon_cf_dma_finished(ap, qc);
 699		}
 700	}
 701	spin_unlock_irqrestore(&host->lock, flags);
 702	return IRQ_RETVAL(handled);
 703}
 704
 705static enum hrtimer_restart octeon_cf_delayed_finish(struct hrtimer *hrt)
 706{
 707	struct octeon_cf_port *cf_port = container_of(hrt,
 708						      struct octeon_cf_port,
 709						      delayed_finish);
 710	struct ata_port *ap = cf_port->ap;
 711	struct ata_host *host = ap->host;
 712	struct ata_queued_cmd *qc;
 713	unsigned long flags;
 714	u8 status;
 715	enum hrtimer_restart rv = HRTIMER_NORESTART;
 716
 717	spin_lock_irqsave(&host->lock, flags);
 718
 719	/*
 720	 * If the port is not waiting for completion, it must have
 721	 * handled it previously.  The hsm_task_state is
 722	 * protected by host->lock.
 723	 */
 724	if (ap->hsm_task_state != HSM_ST_LAST || !cf_port->dma_finished)
 725		goto out;
 726
 727	status = ioread8(ap->ioaddr.altstatus_addr);
 728	if (status & (ATA_BUSY | ATA_DRQ)) {
 729		/* Still busy, try again. */
 730		hrtimer_forward_now(hrt,
 731				    ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL));
 732		rv = HRTIMER_RESTART;
 733		goto out;
 734	}
 735	qc = ata_qc_from_tag(ap, ap->link.active_tag);
 736	if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)))
 737		octeon_cf_dma_finished(ap, qc);
 738out:
 739	spin_unlock_irqrestore(&host->lock, flags);
 740	return rv;
 741}
 742
 743static void octeon_cf_dev_config(struct ata_device *dev)
 744{
 745	/*
 746	 * A maximum of 2^20 - 1 16 bit transfers are possible with
 747	 * the bootbus DMA.  So we need to throttle max_sectors to
 748	 * (2^12 - 1 == 4095) to assure that this can never happen.
 749	 */
 750	dev->max_sectors = min(dev->max_sectors, 4095U);
 751}
 752
 753/*
 754 * We don't do ATAPI DMA so return 0.
 755 */
 756static int octeon_cf_check_atapi_dma(struct ata_queued_cmd *qc)
 757{
 758	return 0;
 759}
 760
 761static unsigned int octeon_cf_qc_issue(struct ata_queued_cmd *qc)
 762{
 763	struct ata_port *ap = qc->ap;
 764
 765	switch (qc->tf.protocol) {
 766	case ATA_PROT_DMA:
 767		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
 768
 769		trace_ata_tf_load(ap, &qc->tf);
 770		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
 771		trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
 772		octeon_cf_dma_setup(qc);	    /* set up dma */
 773		trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
 774		octeon_cf_dma_start(qc);	    /* initiate dma */
 775		ap->hsm_task_state = HSM_ST_LAST;
 776		break;
 777
 778	case ATAPI_PROT_DMA:
 779		dev_err(ap->dev, "Error, ATAPI not supported\n");
 780		BUG();
 781
 782	default:
 783		return ata_sff_qc_issue(qc);
 784	}
 785
 786	return 0;
 787}
 788
 789static struct ata_port_operations octeon_cf_ops = {
 790	.inherits		= &ata_sff_port_ops,
 791	.check_atapi_dma	= octeon_cf_check_atapi_dma,
 
 792	.qc_issue		= octeon_cf_qc_issue,
 793	.sff_dev_select		= octeon_cf_dev_select,
 794	.sff_irq_on		= octeon_cf_ata_port_noaction,
 795	.sff_irq_clear		= octeon_cf_ata_port_noaction,
 796	.cable_detect		= ata_cable_40wire,
 797	.set_piomode		= octeon_cf_set_piomode,
 798	.set_dmamode		= octeon_cf_set_dmamode,
 799	.dev_config		= octeon_cf_dev_config,
 800};
 801
 802static int octeon_cf_probe(struct platform_device *pdev)
 803{
 804	struct resource *res_cs0, *res_cs1;
 805
 806	bool is_16bit;
 807	u64 reg;
 808	struct device_node *node;
 809	void __iomem *cs0;
 810	void __iomem *cs1 = NULL;
 811	struct ata_host *host;
 812	struct ata_port *ap;
 813	int irq = 0;
 814	irq_handler_t irq_handler = NULL;
 815	void __iomem *base;
 816	struct octeon_cf_port *cf_port;
 817	u32 bus_width;
 818	int rv;
 819
 820	node = pdev->dev.of_node;
 821	if (node == NULL)
 822		return -EINVAL;
 823
 824	cf_port = devm_kzalloc(&pdev->dev, sizeof(*cf_port), GFP_KERNEL);
 825	if (!cf_port)
 826		return -ENOMEM;
 827
 828	cf_port->is_true_ide = of_property_read_bool(node, "cavium,true-ide");
 829
 830	if (of_property_read_u32(node, "cavium,bus-width", &bus_width) == 0)
 831		is_16bit = (bus_width == 16);
 832	else
 833		is_16bit = false;
 834
 835	rv = of_property_read_reg(node, 0, &reg, NULL);
 836	if (rv < 0)
 837		return rv;
 838	cf_port->cs0 = upper_32_bits(reg);
 839
 840	if (cf_port->is_true_ide) {
 841		struct device_node *dma_node;
 842		dma_node = of_parse_phandle(node,
 843					    "cavium,dma-engine-handle", 0);
 844		if (dma_node) {
 845			struct platform_device *dma_dev;
 846			dma_dev = of_find_device_by_node(dma_node);
 847			if (dma_dev) {
 848				struct resource *res_dma;
 849				int i;
 850				res_dma = platform_get_resource(dma_dev, IORESOURCE_MEM, 0);
 851				if (!res_dma) {
 852					put_device(&dma_dev->dev);
 853					of_node_put(dma_node);
 854					return -EINVAL;
 855				}
 856				cf_port->dma_base = (u64)devm_ioremap(&pdev->dev, res_dma->start,
 857									 resource_size(res_dma));
 858				if (!cf_port->dma_base) {
 859					put_device(&dma_dev->dev);
 860					of_node_put(dma_node);
 861					return -EINVAL;
 862				}
 863
 864				i = platform_get_irq(dma_dev, 0);
 865				if (i > 0) {
 866					irq = i;
 867					irq_handler = octeon_cf_interrupt;
 868				}
 869				put_device(&dma_dev->dev);
 870			}
 871			of_node_put(dma_node);
 872		}
 873		res_cs1 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
 874		if (!res_cs1)
 875			return -EINVAL;
 876
 877		cs1 = devm_ioremap(&pdev->dev, res_cs1->start,
 878					   resource_size(res_cs1));
 879		if (!cs1)
 880			return -EINVAL;
 881
 882		rv = of_property_read_reg(node, 1, &reg, NULL);
 883		if (rv < 0)
 884			return rv;
 885		cf_port->cs1 = upper_32_bits(reg);
 886	}
 887
 888	res_cs0 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 889	if (!res_cs0)
 890		return -EINVAL;
 891
 892	cs0 = devm_ioremap(&pdev->dev, res_cs0->start,
 893				   resource_size(res_cs0));
 894	if (!cs0)
 895		return -ENOMEM;
 896
 897	/* allocate host */
 898	host = ata_host_alloc(&pdev->dev, 1);
 899	if (!host)
 900		return -ENOMEM;
 901
 902	ap = host->ports[0];
 903	ap->private_data = cf_port;
 904	pdev->dev.platform_data = cf_port;
 905	cf_port->ap = ap;
 906	ap->ops = &octeon_cf_ops;
 907	ap->pio_mask = ATA_PIO6;
 908	ap->flags |= ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING;
 909
 910	if (!is_16bit) {
 911		base = cs0 + 0x800;
 912		ap->ioaddr.cmd_addr	= base;
 913		ata_sff_std_ports(&ap->ioaddr);
 914
 915		ap->ioaddr.altstatus_addr = base + 0xe;
 916		ap->ioaddr.ctl_addr	= base + 0xe;
 917		octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer8;
 918	} else if (cf_port->is_true_ide) {
 919		base = cs0;
 920		ap->ioaddr.cmd_addr	= base + (ATA_REG_CMD << 1) + 1;
 921		ap->ioaddr.data_addr	= base + (ATA_REG_DATA << 1);
 922		ap->ioaddr.error_addr	= base + (ATA_REG_ERR << 1) + 1;
 923		ap->ioaddr.feature_addr	= base + (ATA_REG_FEATURE << 1) + 1;
 924		ap->ioaddr.nsect_addr	= base + (ATA_REG_NSECT << 1) + 1;
 925		ap->ioaddr.lbal_addr	= base + (ATA_REG_LBAL << 1) + 1;
 926		ap->ioaddr.lbam_addr	= base + (ATA_REG_LBAM << 1) + 1;
 927		ap->ioaddr.lbah_addr	= base + (ATA_REG_LBAH << 1) + 1;
 928		ap->ioaddr.device_addr	= base + (ATA_REG_DEVICE << 1) + 1;
 929		ap->ioaddr.status_addr	= base + (ATA_REG_STATUS << 1) + 1;
 930		ap->ioaddr.command_addr	= base + (ATA_REG_CMD << 1) + 1;
 931		ap->ioaddr.altstatus_addr = cs1 + (6 << 1) + 1;
 932		ap->ioaddr.ctl_addr	= cs1 + (6 << 1) + 1;
 933		octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
 934
 935		ap->mwdma_mask	= enable_dma ? ATA_MWDMA4 : 0;
 936
 937		/* True IDE mode needs a timer to poll for not-busy.  */
 938		hrtimer_init(&cf_port->delayed_finish, CLOCK_MONOTONIC,
 939			     HRTIMER_MODE_REL);
 940		cf_port->delayed_finish.function = octeon_cf_delayed_finish;
 941	} else {
 942		/* 16 bit but not True IDE */
 943		base = cs0 + 0x800;
 944		octeon_cf_ops.sff_data_xfer	= octeon_cf_data_xfer16;
 945		octeon_cf_ops.softreset		= octeon_cf_softreset16;
 946		octeon_cf_ops.sff_check_status	= octeon_cf_check_status16;
 947		octeon_cf_ops.sff_tf_read	= octeon_cf_tf_read16;
 948		octeon_cf_ops.sff_tf_load	= octeon_cf_tf_load16;
 949		octeon_cf_ops.sff_exec_command	= octeon_cf_exec_command16;
 950
 951		ap->ioaddr.data_addr	= base + ATA_REG_DATA;
 952		ap->ioaddr.nsect_addr	= base + ATA_REG_NSECT;
 953		ap->ioaddr.lbal_addr	= base + ATA_REG_LBAL;
 954		ap->ioaddr.ctl_addr	= base + 0xe;
 955		ap->ioaddr.altstatus_addr = base + 0xe;
 956	}
 957	cf_port->c0 = ap->ioaddr.ctl_addr;
 958
 959	rv = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
 960	if (rv)
 961		return rv;
 962
 963	ata_port_desc(ap, "cmd %p ctl %p", base, ap->ioaddr.ctl_addr);
 964
 965	dev_info(&pdev->dev, "version " DRV_VERSION" %d bit%s.\n",
 966		 is_16bit ? 16 : 8,
 967		 cf_port->is_true_ide ? ", True IDE" : "");
 968
 969	return ata_host_activate(host, irq, irq_handler,
 970				 IRQF_SHARED, &octeon_cf_sht);
 971}
 972
 973static void octeon_cf_shutdown(struct device *dev)
 974{
 975	union cvmx_mio_boot_dma_cfgx dma_cfg;
 976	union cvmx_mio_boot_dma_intx dma_int;
 977
 978	struct octeon_cf_port *cf_port = dev_get_platdata(dev);
 979
 980	if (cf_port->dma_base) {
 981		/* Stop and clear the dma engine.  */
 982		dma_cfg.u64 = 0;
 983		dma_cfg.s.size = -1;
 984		cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64);
 985
 986		/* Disable the interrupt.  */
 987		dma_int.u64 = 0;
 988		cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64);
 989
 990		/* Clear the DMA complete status */
 991		dma_int.s.done = 1;
 992		cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64);
 993
 994		__raw_writeb(0, cf_port->c0);
 995		udelay(20);
 996		__raw_writeb(ATA_SRST, cf_port->c0);
 997		udelay(20);
 998		__raw_writeb(0, cf_port->c0);
 999		mdelay(100);
1000	}
1001}
1002
1003static const struct of_device_id octeon_cf_match[] = {
1004	{ .compatible = "cavium,ebt3000-compact-flash", },
1005	{ /* sentinel */ }
1006};
1007MODULE_DEVICE_TABLE(of, octeon_cf_match);
1008
1009static struct platform_driver octeon_cf_driver = {
1010	.probe		= octeon_cf_probe,
1011	.driver		= {
1012		.name	= DRV_NAME,
1013		.of_match_table = octeon_cf_match,
1014		.shutdown = octeon_cf_shutdown
1015	},
1016};
1017
1018static int __init octeon_cf_init(void)
1019{
1020	return platform_driver_register(&octeon_cf_driver);
1021}
1022
1023
1024MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
1025MODULE_DESCRIPTION("low-level driver for Cavium OCTEON Compact Flash PATA");
1026MODULE_LICENSE("GPL");
1027MODULE_VERSION(DRV_VERSION);
1028MODULE_ALIAS("platform:" DRV_NAME);
1029
1030module_init(octeon_cf_init);