Linux Audio

Check our new training course

Loading...
v6.8
  1/*
  2 * Non-physical true random number generator based on timing jitter --
  3 * Jitter RNG standalone code.
  4 *
  5 * Copyright Stephan Mueller <smueller@chronox.de>, 2015 - 2023
  6 *
  7 * Design
  8 * ======
  9 *
 10 * See https://www.chronox.de/jent.html
 11 *
 12 * License
 13 * =======
 14 *
 15 * Redistribution and use in source and binary forms, with or without
 16 * modification, are permitted provided that the following conditions
 17 * are met:
 18 * 1. Redistributions of source code must retain the above copyright
 19 *    notice, and the entire permission notice in its entirety,
 20 *    including the disclaimer of warranties.
 21 * 2. Redistributions in binary form must reproduce the above copyright
 22 *    notice, this list of conditions and the following disclaimer in the
 23 *    documentation and/or other materials provided with the distribution.
 24 * 3. The name of the author may not be used to endorse or promote
 25 *    products derived from this software without specific prior
 26 *    written permission.
 27 *
 28 * ALTERNATIVELY, this product may be distributed under the terms of
 29 * the GNU General Public License, in which case the provisions of the GPL2 are
 30 * required INSTEAD OF the above restrictions.  (This clause is
 31 * necessary due to a potential bad interaction between the GPL and
 32 * the restrictions contained in a BSD-style copyright.)
 33 *
 34 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 35 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 36 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
 37 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
 38 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 39 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
 40 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 41 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 42 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 44 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
 45 * DAMAGE.
 46 */
 47
 48/*
 49 * This Jitterentropy RNG is based on the jitterentropy library
 50 * version 3.4.0 provided at https://www.chronox.de/jent.html
 51 */
 52
 53#ifdef __OPTIMIZE__
 54 #error "The CPU Jitter random number generator must not be compiled with optimizations. See documentation. Use the compiler switch -O0 for compiling jitterentropy.c."
 55#endif
 56
 57typedef	unsigned long long	__u64;
 58typedef	long long		__s64;
 59typedef	unsigned int		__u32;
 60typedef unsigned char		u8;
 61#define NULL    ((void *) 0)
 62
 63/* The entropy pool */
 64struct rand_data {
 65	/* SHA3-256 is used as conditioner */
 66#define DATA_SIZE_BITS 256
 67	/* all data values that are vital to maintain the security
 68	 * of the RNG are marked as SENSITIVE. A user must not
 69	 * access that information while the RNG executes its loops to
 70	 * calculate the next random value. */
 71	void *hash_state;		/* SENSITIVE hash state entropy pool */
 72	__u64 prev_time;		/* SENSITIVE Previous time stamp */
 73	__u64 last_delta;		/* SENSITIVE stuck test */
 74	__s64 last_delta2;		/* SENSITIVE stuck test */
 75
 76	unsigned int flags;		/* Flags used to initialize */
 77	unsigned int osr;		/* Oversample rate */
 78#define JENT_MEMORY_ACCESSLOOPS 128
 79#define JENT_MEMORY_SIZE						\
 80	(CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKS *			\
 81	 CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE)
 82	unsigned char *mem;	/* Memory access location with size of
 83				 * memblocks * memblocksize */
 84	unsigned int memlocation; /* Pointer to byte in *mem */
 85	unsigned int memblocks;	/* Number of memory blocks in *mem */
 86	unsigned int memblocksize; /* Size of one memory block in bytes */
 87	unsigned int memaccessloops; /* Number of memory accesses per random
 88				      * bit generation */
 89
 90	/* Repetition Count Test */
 91	unsigned int rct_count;			/* Number of stuck values */
 92
 93	/* Adaptive Proportion Test cutoff values */
 94	unsigned int apt_cutoff; /* Intermittent health test failure */
 95	unsigned int apt_cutoff_permanent; /* Permanent health test failure */
 96#define JENT_APT_WINDOW_SIZE	512	/* Data window size */
 97	/* LSB of time stamp to process */
 98#define JENT_APT_LSB		16
 99#define JENT_APT_WORD_MASK	(JENT_APT_LSB - 1)
100	unsigned int apt_observations;	/* Number of collected observations */
101	unsigned int apt_count;		/* APT counter */
102	unsigned int apt_base;		/* APT base reference */
103	unsigned int health_failure;	/* Record health failure */
104
105	unsigned int apt_base_set:1;	/* APT base reference set? */
106};
107
108/* Flags that can be used to initialize the RNG */
109#define JENT_DISABLE_MEMORY_ACCESS (1<<2) /* Disable memory access for more
110					   * entropy, saves MEMORY_SIZE RAM for
111					   * entropy collector */
112
113/* -- error codes for init function -- */
114#define JENT_ENOTIME		1 /* Timer service not available */
115#define JENT_ECOARSETIME	2 /* Timer too coarse for RNG */
116#define JENT_ENOMONOTONIC	3 /* Timer is not monotonic increasing */
117#define JENT_EVARVAR		5 /* Timer does not produce variations of
118				   * variations (2nd derivation of time is
119				   * zero). */
120#define JENT_ESTUCK		8 /* Too many stuck results during init. */
121#define JENT_EHEALTH		9 /* Health test failed during initialization */
122#define JENT_ERCT	       10 /* RCT failed during initialization */
123#define JENT_EHASH	       11 /* Hash self test failed */
124#define JENT_EMEM	       12 /* Can't allocate memory for initialization */
125
126#define JENT_RCT_FAILURE	1 /* Failure in RCT health test. */
127#define JENT_APT_FAILURE	2 /* Failure in APT health test. */
128#define JENT_PERMANENT_FAILURE_SHIFT	16
129#define JENT_PERMANENT_FAILURE(x)	(x << JENT_PERMANENT_FAILURE_SHIFT)
130#define JENT_RCT_FAILURE_PERMANENT	JENT_PERMANENT_FAILURE(JENT_RCT_FAILURE)
131#define JENT_APT_FAILURE_PERMANENT	JENT_PERMANENT_FAILURE(JENT_APT_FAILURE)
132
133/*
134 * The output n bits can receive more than n bits of min entropy, of course,
135 * but the fixed output of the conditioning function can only asymptotically
136 * approach the output size bits of min entropy, not attain that bound. Random
137 * maps will tend to have output collisions, which reduces the creditable
138 * output entropy (that is what SP 800-90B Section 3.1.5.1.2 attempts to bound).
139 *
140 * The value "64" is justified in Appendix A.4 of the current 90C draft,
141 * and aligns with NIST's in "epsilon" definition in this document, which is
142 * that a string can be considered "full entropy" if you can bound the min
143 * entropy in each bit of output to at least 1-epsilon, where epsilon is
144 * required to be <= 2^(-32).
145 */
146#define JENT_ENTROPY_SAFETY_FACTOR	64
147
148#include <linux/fips.h>
 
149#include "jitterentropy.h"
150
151/***************************************************************************
152 * Adaptive Proportion Test
153 *
154 * This test complies with SP800-90B section 4.4.2.
155 ***************************************************************************/
156
157/*
158 * See the SP 800-90B comment #10b for the corrected cutoff for the SP 800-90B
159 * APT.
160 * http://www.untruth.org/~josh/sp80090b/UL%20SP800-90B-final%20comments%20v1.9%2020191212.pdf
161 * In in the syntax of R, this is C = 2 + qbinom(1 − 2^(−30), 511, 2^(-1/osr)).
162 * (The original formula wasn't correct because the first symbol must
163 * necessarily have been observed, so there is no chance of observing 0 of these
164 * symbols.)
165 *
166 * For the alpha < 2^-53, R cannot be used as it uses a float data type without
167 * arbitrary precision. A SageMath script is used to calculate those cutoff
168 * values.
169 *
170 * For any value above 14, this yields the maximal allowable value of 512
171 * (by FIPS 140-2 IG 7.19 Resolution # 16, we cannot choose a cutoff value that
172 * renders the test unable to fail).
173 */
174static const unsigned int jent_apt_cutoff_lookup[15] = {
175	325, 422, 459, 477, 488, 494, 499, 502,
176	505, 507, 508, 509, 510, 511, 512 };
177static const unsigned int jent_apt_cutoff_permanent_lookup[15] = {
178	355, 447, 479, 494, 502, 507, 510, 512,
179	512, 512, 512, 512, 512, 512, 512 };
180#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
181
182static void jent_apt_init(struct rand_data *ec, unsigned int osr)
183{
184	/*
185	 * Establish the apt_cutoff based on the presumed entropy rate of
186	 * 1/osr.
187	 */
188	if (osr >= ARRAY_SIZE(jent_apt_cutoff_lookup)) {
189		ec->apt_cutoff = jent_apt_cutoff_lookup[
190			ARRAY_SIZE(jent_apt_cutoff_lookup) - 1];
191		ec->apt_cutoff_permanent = jent_apt_cutoff_permanent_lookup[
192			ARRAY_SIZE(jent_apt_cutoff_permanent_lookup) - 1];
193	} else {
194		ec->apt_cutoff = jent_apt_cutoff_lookup[osr - 1];
195		ec->apt_cutoff_permanent =
196				jent_apt_cutoff_permanent_lookup[osr - 1];
197	}
198}
199/*
200 * Reset the APT counter
201 *
202 * @ec [in] Reference to entropy collector
203 */
204static void jent_apt_reset(struct rand_data *ec, unsigned int delta_masked)
205{
206	/* Reset APT counter */
207	ec->apt_count = 0;
208	ec->apt_base = delta_masked;
209	ec->apt_observations = 0;
210}
211
212/*
213 * Insert a new entropy event into APT
214 *
215 * @ec [in] Reference to entropy collector
216 * @delta_masked [in] Masked time delta to process
217 */
218static void jent_apt_insert(struct rand_data *ec, unsigned int delta_masked)
219{
220	/* Initialize the base reference */
221	if (!ec->apt_base_set) {
222		ec->apt_base = delta_masked;
223		ec->apt_base_set = 1;
224		return;
225	}
226
227	if (delta_masked == ec->apt_base) {
228		ec->apt_count++;
229
230		/* Note, ec->apt_count starts with one. */
231		if (ec->apt_count >= ec->apt_cutoff_permanent)
232			ec->health_failure |= JENT_APT_FAILURE_PERMANENT;
233		else if (ec->apt_count >= ec->apt_cutoff)
234			ec->health_failure |= JENT_APT_FAILURE;
235	}
236
237	ec->apt_observations++;
238
239	if (ec->apt_observations >= JENT_APT_WINDOW_SIZE)
240		jent_apt_reset(ec, delta_masked);
241}
242
243/***************************************************************************
244 * Stuck Test and its use as Repetition Count Test
245 *
246 * The Jitter RNG uses an enhanced version of the Repetition Count Test
247 * (RCT) specified in SP800-90B section 4.4.1. Instead of counting identical
248 * back-to-back values, the input to the RCT is the counting of the stuck
249 * values during the generation of one Jitter RNG output block.
250 *
251 * The RCT is applied with an alpha of 2^{-30} compliant to FIPS 140-2 IG 9.8.
252 *
253 * During the counting operation, the Jitter RNG always calculates the RCT
254 * cut-off value of C. If that value exceeds the allowed cut-off value,
255 * the Jitter RNG output block will be calculated completely but discarded at
256 * the end. The caller of the Jitter RNG is informed with an error code.
257 ***************************************************************************/
258
259/*
260 * Repetition Count Test as defined in SP800-90B section 4.4.1
261 *
262 * @ec [in] Reference to entropy collector
263 * @stuck [in] Indicator whether the value is stuck
264 */
265static void jent_rct_insert(struct rand_data *ec, int stuck)
266{
267	if (stuck) {
268		ec->rct_count++;
269
270		/*
271		 * The cutoff value is based on the following consideration:
272		 * alpha = 2^-30 or 2^-60 as recommended in SP800-90B.
273		 * In addition, we require an entropy value H of 1/osr as this
274		 * is the minimum entropy required to provide full entropy.
275		 * Note, we collect (DATA_SIZE_BITS + ENTROPY_SAFETY_FACTOR)*osr
276		 * deltas for inserting them into the entropy pool which should
277		 * then have (close to) DATA_SIZE_BITS bits of entropy in the
278		 * conditioned output.
279		 *
280		 * Note, ec->rct_count (which equals to value B in the pseudo
281		 * code of SP800-90B section 4.4.1) starts with zero. Hence
282		 * we need to subtract one from the cutoff value as calculated
283		 * following SP800-90B. Thus C = ceil(-log_2(alpha)/H) = 30*osr
284		 * or 60*osr.
285		 */
286		if ((unsigned int)ec->rct_count >= (60 * ec->osr)) {
287			ec->rct_count = -1;
288			ec->health_failure |= JENT_RCT_FAILURE_PERMANENT;
289		} else if ((unsigned int)ec->rct_count >= (30 * ec->osr)) {
290			ec->rct_count = -1;
291			ec->health_failure |= JENT_RCT_FAILURE;
292		}
293	} else {
294		/* Reset RCT */
295		ec->rct_count = 0;
296	}
297}
298
299static inline __u64 jent_delta(__u64 prev, __u64 next)
300{
301#define JENT_UINT64_MAX		(__u64)(~((__u64) 0))
302	return (prev < next) ? (next - prev) :
303			       (JENT_UINT64_MAX - prev + 1 + next);
304}
305
306/*
307 * Stuck test by checking the:
308 * 	1st derivative of the jitter measurement (time delta)
309 * 	2nd derivative of the jitter measurement (delta of time deltas)
310 * 	3rd derivative of the jitter measurement (delta of delta of time deltas)
311 *
312 * All values must always be non-zero.
313 *
314 * @ec [in] Reference to entropy collector
315 * @current_delta [in] Jitter time delta
316 *
317 * @return
318 * 	0 jitter measurement not stuck (good bit)
319 * 	1 jitter measurement stuck (reject bit)
320 */
321static int jent_stuck(struct rand_data *ec, __u64 current_delta)
322{
323	__u64 delta2 = jent_delta(ec->last_delta, current_delta);
324	__u64 delta3 = jent_delta(ec->last_delta2, delta2);
325
326	ec->last_delta = current_delta;
327	ec->last_delta2 = delta2;
328
329	/*
330	 * Insert the result of the comparison of two back-to-back time
331	 * deltas.
332	 */
333	jent_apt_insert(ec, current_delta);
334
335	if (!current_delta || !delta2 || !delta3) {
336		/* RCT with a stuck bit */
337		jent_rct_insert(ec, 1);
338		return 1;
339	}
340
341	/* RCT with a non-stuck bit */
342	jent_rct_insert(ec, 0);
343
344	return 0;
345}
346
347/*
348 * Report any health test failures
349 *
350 * @ec [in] Reference to entropy collector
351 *
352 * @return a bitmask indicating which tests failed
353 *	0 No health test failure
354 *	1 RCT failure
355 *	2 APT failure
356 *	1<<JENT_PERMANENT_FAILURE_SHIFT RCT permanent failure
357 *	2<<JENT_PERMANENT_FAILURE_SHIFT APT permanent failure
358 */
359static unsigned int jent_health_failure(struct rand_data *ec)
360{
361	/* Test is only enabled in FIPS mode */
362	if (!fips_enabled)
363		return 0;
364
365	return ec->health_failure;
366}
367
368/***************************************************************************
369 * Noise sources
370 ***************************************************************************/
371
372/*
373 * Update of the loop count used for the next round of
374 * an entropy collection.
375 *
376 * Input:
377 * @bits is the number of low bits of the timer to consider
378 * @min is the number of bits we shift the timer value to the right at
379 *	the end to make sure we have a guaranteed minimum value
380 *
381 * @return Newly calculated loop counter
382 */
383static __u64 jent_loop_shuffle(unsigned int bits, unsigned int min)
384{
385	__u64 time = 0;
386	__u64 shuffle = 0;
387	unsigned int i = 0;
388	unsigned int mask = (1<<bits) - 1;
389
390	jent_get_nstime(&time);
391
392	/*
393	 * We fold the time value as much as possible to ensure that as many
394	 * bits of the time stamp are included as possible.
395	 */
396	for (i = 0; ((DATA_SIZE_BITS + bits - 1) / bits) > i; i++) {
397		shuffle ^= time & mask;
398		time = time >> bits;
399	}
400
401	/*
402	 * We add a lower boundary value to ensure we have a minimum
403	 * RNG loop count.
404	 */
405	return (shuffle + (1<<min));
406}
407
408/*
409 * CPU Jitter noise source -- this is the noise source based on the CPU
410 *			      execution time jitter
411 *
412 * This function injects the individual bits of the time value into the
413 * entropy pool using a hash.
414 *
415 * ec [in] entropy collector
416 * time [in] time stamp to be injected
417 * stuck [in] Is the time stamp identified as stuck?
418 *
419 * Output:
420 * updated hash context in the entropy collector or error code
421 */
422static int jent_condition_data(struct rand_data *ec, __u64 time, int stuck)
423{
424#define SHA3_HASH_LOOP (1<<3)
425	struct {
426		int rct_count;
427		unsigned int apt_observations;
428		unsigned int apt_count;
429		unsigned int apt_base;
430	} addtl = {
431		ec->rct_count,
432		ec->apt_observations,
433		ec->apt_count,
434		ec->apt_base
435	};
436
437	return jent_hash_time(ec->hash_state, time, (u8 *)&addtl, sizeof(addtl),
438			      SHA3_HASH_LOOP, stuck);
439}
440
441/*
442 * Memory Access noise source -- this is a noise source based on variations in
443 *				 memory access times
444 *
445 * This function performs memory accesses which will add to the timing
446 * variations due to an unknown amount of CPU wait states that need to be
447 * added when accessing memory. The memory size should be larger than the L1
448 * caches as outlined in the documentation and the associated testing.
449 *
450 * The L1 cache has a very high bandwidth, albeit its access rate is  usually
451 * slower than accessing CPU registers. Therefore, L1 accesses only add minimal
452 * variations as the CPU has hardly to wait. Starting with L2, significant
453 * variations are added because L2 typically does not belong to the CPU any more
454 * and therefore a wider range of CPU wait states is necessary for accesses.
455 * L3 and real memory accesses have even a wider range of wait states. However,
456 * to reliably access either L3 or memory, the ec->mem memory must be quite
457 * large which is usually not desirable.
458 *
459 * @ec [in] Reference to the entropy collector with the memory access data -- if
460 *	    the reference to the memory block to be accessed is NULL, this noise
461 *	    source is disabled
462 * @loop_cnt [in] if a value not equal to 0 is set, use the given value
463 *		  number of loops to perform the LFSR
464 */
465static void jent_memaccess(struct rand_data *ec, __u64 loop_cnt)
466{
467	unsigned int wrap = 0;
468	__u64 i = 0;
469#define MAX_ACC_LOOP_BIT 7
470#define MIN_ACC_LOOP_BIT 0
471	__u64 acc_loop_cnt =
472		jent_loop_shuffle(MAX_ACC_LOOP_BIT, MIN_ACC_LOOP_BIT);
473
474	if (NULL == ec || NULL == ec->mem)
475		return;
476	wrap = ec->memblocksize * ec->memblocks;
477
478	/*
479	 * testing purposes -- allow test app to set the counter, not
480	 * needed during runtime
481	 */
482	if (loop_cnt)
483		acc_loop_cnt = loop_cnt;
484
485	for (i = 0; i < (ec->memaccessloops + acc_loop_cnt); i++) {
486		unsigned char *tmpval = ec->mem + ec->memlocation;
487		/*
488		 * memory access: just add 1 to one byte,
489		 * wrap at 255 -- memory access implies read
490		 * from and write to memory location
491		 */
492		*tmpval = (*tmpval + 1) & 0xff;
493		/*
494		 * Addition of memblocksize - 1 to pointer
495		 * with wrap around logic to ensure that every
496		 * memory location is hit evenly
497		 */
498		ec->memlocation = ec->memlocation + ec->memblocksize - 1;
499		ec->memlocation = ec->memlocation % wrap;
500	}
501}
502
503/***************************************************************************
504 * Start of entropy processing logic
505 ***************************************************************************/
506/*
507 * This is the heart of the entropy generation: calculate time deltas and
508 * use the CPU jitter in the time deltas. The jitter is injected into the
509 * entropy pool.
510 *
511 * WARNING: ensure that ->prev_time is primed before using the output
512 *	    of this function! This can be done by calling this function
513 *	    and not using its result.
514 *
515 * @ec [in] Reference to entropy collector
516 *
517 * @return result of stuck test
518 */
519static int jent_measure_jitter(struct rand_data *ec, __u64 *ret_current_delta)
520{
521	__u64 time = 0;
522	__u64 current_delta = 0;
523	int stuck;
524
525	/* Invoke one noise source before time measurement to add variations */
526	jent_memaccess(ec, 0);
527
528	/*
529	 * Get time stamp and calculate time delta to previous
530	 * invocation to measure the timing variations
531	 */
532	jent_get_nstime(&time);
533	current_delta = jent_delta(ec->prev_time, time);
534	ec->prev_time = time;
535
536	/* Check whether we have a stuck measurement. */
537	stuck = jent_stuck(ec, current_delta);
538
539	/* Now call the next noise sources which also injects the data */
540	if (jent_condition_data(ec, current_delta, stuck))
541		stuck = 1;
542
543	/* return the raw entropy value */
544	if (ret_current_delta)
545		*ret_current_delta = current_delta;
546
547	return stuck;
548}
549
550/*
551 * Generator of one 64 bit random number
552 * Function fills rand_data->hash_state
553 *
554 * @ec [in] Reference to entropy collector
555 */
556static void jent_gen_entropy(struct rand_data *ec)
557{
558	unsigned int k = 0, safety_factor = 0;
559
560	if (fips_enabled)
561		safety_factor = JENT_ENTROPY_SAFETY_FACTOR;
562
563	/* priming of the ->prev_time value */
564	jent_measure_jitter(ec, NULL);
565
566	while (!jent_health_failure(ec)) {
567		/* If a stuck measurement is received, repeat measurement */
568		if (jent_measure_jitter(ec, NULL))
569			continue;
570
571		/*
572		 * We multiply the loop value with ->osr to obtain the
573		 * oversampling rate requested by the caller
574		 */
575		if (++k >= ((DATA_SIZE_BITS + safety_factor) * ec->osr))
576			break;
577	}
578}
579
580/*
581 * Entry function: Obtain entropy for the caller.
582 *
583 * This function invokes the entropy gathering logic as often to generate
584 * as many bytes as requested by the caller. The entropy gathering logic
585 * creates 64 bit per invocation.
586 *
587 * This function truncates the last 64 bit entropy value output to the exact
588 * size specified by the caller.
589 *
590 * @ec [in] Reference to entropy collector
591 * @data [in] pointer to buffer for storing random data -- buffer must already
592 *	      exist
593 * @len [in] size of the buffer, specifying also the requested number of random
594 *	     in bytes
595 *
596 * @return 0 when request is fulfilled or an error
597 *
598 * The following error codes can occur:
599 *	-1	entropy_collector is NULL or the generation failed
600 *	-2	Intermittent health failure
601 *	-3	Permanent health failure
602 */
603int jent_read_entropy(struct rand_data *ec, unsigned char *data,
604		      unsigned int len)
605{
606	unsigned char *p = data;
607
608	if (!ec)
609		return -1;
610
611	while (len > 0) {
612		unsigned int tocopy, health_test_result;
613
614		jent_gen_entropy(ec);
615
616		health_test_result = jent_health_failure(ec);
617		if (health_test_result > JENT_PERMANENT_FAILURE_SHIFT) {
618			/*
619			 * At this point, the Jitter RNG instance is considered
620			 * as a failed instance. There is no rerun of the
621			 * startup test any more, because the caller
622			 * is assumed to not further use this instance.
623			 */
624			return -3;
625		} else if (health_test_result) {
626			/*
627			 * Perform startup health tests and return permanent
628			 * error if it fails.
629			 */
630			if (jent_entropy_init(0, 0, NULL, ec)) {
631				/* Mark the permanent error */
632				ec->health_failure &=
633					JENT_RCT_FAILURE_PERMANENT |
634					JENT_APT_FAILURE_PERMANENT;
635				return -3;
636			}
637
638			return -2;
639		}
640
641		if ((DATA_SIZE_BITS / 8) < len)
642			tocopy = (DATA_SIZE_BITS / 8);
643		else
644			tocopy = len;
645		if (jent_read_random_block(ec->hash_state, p, tocopy))
646			return -1;
647
648		len -= tocopy;
649		p += tocopy;
650	}
651
652	return 0;
653}
654
655/***************************************************************************
656 * Initialization logic
657 ***************************************************************************/
658
659struct rand_data *jent_entropy_collector_alloc(unsigned int osr,
660					       unsigned int flags,
661					       void *hash_state)
662{
663	struct rand_data *entropy_collector;
664
665	entropy_collector = jent_zalloc(sizeof(struct rand_data));
666	if (!entropy_collector)
667		return NULL;
668
669	if (!(flags & JENT_DISABLE_MEMORY_ACCESS)) {
670		/* Allocate memory for adding variations based on memory
671		 * access
672		 */
673		entropy_collector->mem = jent_kvzalloc(JENT_MEMORY_SIZE);
674		if (!entropy_collector->mem) {
675			jent_zfree(entropy_collector);
676			return NULL;
677		}
678		entropy_collector->memblocksize =
679			CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE;
680		entropy_collector->memblocks =
681			CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKS;
682		entropy_collector->memaccessloops = JENT_MEMORY_ACCESSLOOPS;
683	}
684
685	/* verify and set the oversampling rate */
686	if (osr == 0)
687		osr = 1; /* H_submitter = 1 / osr */
688	entropy_collector->osr = osr;
689	entropy_collector->flags = flags;
690
691	entropy_collector->hash_state = hash_state;
692
693	/* Initialize the APT */
694	jent_apt_init(entropy_collector, osr);
695
696	/* fill the data pad with non-zero values */
697	jent_gen_entropy(entropy_collector);
698
699	return entropy_collector;
700}
701
702void jent_entropy_collector_free(struct rand_data *entropy_collector)
703{
704	jent_kvzfree(entropy_collector->mem, JENT_MEMORY_SIZE);
705	entropy_collector->mem = NULL;
706	jent_zfree(entropy_collector);
707}
708
709int jent_entropy_init(unsigned int osr, unsigned int flags, void *hash_state,
710		      struct rand_data *p_ec)
711{
712	/*
713	 * If caller provides an allocated ec, reuse it which implies that the
714	 * health test entropy data is used to further still the available
715	 * entropy pool.
716	 */
717	struct rand_data *ec = p_ec;
718	int i, time_backwards = 0, ret = 0, ec_free = 0;
719	unsigned int health_test_result;
720
721	if (!ec) {
722		ec = jent_entropy_collector_alloc(osr, flags, hash_state);
723		if (!ec)
724			return JENT_EMEM;
725		ec_free = 1;
726	} else {
727		/* Reset the APT */
728		jent_apt_reset(ec, 0);
729		/* Ensure that a new APT base is obtained */
730		ec->apt_base_set = 0;
731		/* Reset the RCT */
732		ec->rct_count = 0;
733		/* Reset intermittent, leave permanent health test result */
734		ec->health_failure &= (~JENT_RCT_FAILURE);
735		ec->health_failure &= (~JENT_APT_FAILURE);
736	}
737
738	/* We could perform statistical tests here, but the problem is
739	 * that we only have a few loop counts to do testing. These
740	 * loop counts may show some slight skew and we produce
741	 * false positives.
742	 *
743	 * Moreover, only old systems show potentially problematic
744	 * jitter entropy that could potentially be caught here. But
745	 * the RNG is intended for hardware that is available or widely
746	 * used, but not old systems that are long out of favor. Thus,
747	 * no statistical tests.
748	 */
749
750	/*
751	 * We could add a check for system capabilities such as clock_getres or
752	 * check for CONFIG_X86_TSC, but it does not make much sense as the
753	 * following sanity checks verify that we have a high-resolution
754	 * timer.
755	 */
756	/*
757	 * TESTLOOPCOUNT needs some loops to identify edge systems. 100 is
758	 * definitely too little.
759	 *
760	 * SP800-90B requires at least 1024 initial test cycles.
761	 */
762#define TESTLOOPCOUNT 1024
763#define CLEARCACHE 100
764	for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) {
765		__u64 start_time = 0, end_time = 0, delta = 0;
766
767		/* Invoke core entropy collection logic */
768		jent_measure_jitter(ec, &delta);
769		end_time = ec->prev_time;
770		start_time = ec->prev_time - delta;
771
772		/* test whether timer works */
773		if (!start_time || !end_time) {
774			ret = JENT_ENOTIME;
775			goto out;
776		}
777
778		/*
779		 * test whether timer is fine grained enough to provide
780		 * delta even when called shortly after each other -- this
781		 * implies that we also have a high resolution timer
782		 */
783		if (!delta || (end_time == start_time)) {
784			ret = JENT_ECOARSETIME;
785			goto out;
786		}
787
788		/*
789		 * up to here we did not modify any variable that will be
790		 * evaluated later, but we already performed some work. Thus we
791		 * already have had an impact on the caches, branch prediction,
792		 * etc. with the goal to clear it to get the worst case
793		 * measurements.
794		 */
795		if (i < CLEARCACHE)
796			continue;
797
798		/* test whether we have an increasing timer */
799		if (!(end_time > start_time))
800			time_backwards++;
801	}
802
803	/*
804	 * we allow up to three times the time running backwards.
805	 * CLOCK_REALTIME is affected by adjtime and NTP operations. Thus,
806	 * if such an operation just happens to interfere with our test, it
807	 * should not fail. The value of 3 should cover the NTP case being
808	 * performed during our test run.
809	 */
810	if (time_backwards > 3) {
811		ret = JENT_ENOMONOTONIC;
812		goto out;
813	}
814
815	/* Did we encounter a health test failure? */
816	health_test_result = jent_health_failure(ec);
817	if (health_test_result) {
818		ret = (health_test_result & JENT_RCT_FAILURE) ? JENT_ERCT :
819								JENT_EHEALTH;
820		goto out;
821	}
822
823out:
824	if (ec_free)
825		jent_entropy_collector_free(ec);
826
827	return ret;
828}
v6.13.7
  1/*
  2 * Non-physical true random number generator based on timing jitter --
  3 * Jitter RNG standalone code.
  4 *
  5 * Copyright Stephan Mueller <smueller@chronox.de>, 2015 - 2023
  6 *
  7 * Design
  8 * ======
  9 *
 10 * See https://www.chronox.de/jent.html
 11 *
 12 * License
 13 * =======
 14 *
 15 * Redistribution and use in source and binary forms, with or without
 16 * modification, are permitted provided that the following conditions
 17 * are met:
 18 * 1. Redistributions of source code must retain the above copyright
 19 *    notice, and the entire permission notice in its entirety,
 20 *    including the disclaimer of warranties.
 21 * 2. Redistributions in binary form must reproduce the above copyright
 22 *    notice, this list of conditions and the following disclaimer in the
 23 *    documentation and/or other materials provided with the distribution.
 24 * 3. The name of the author may not be used to endorse or promote
 25 *    products derived from this software without specific prior
 26 *    written permission.
 27 *
 28 * ALTERNATIVELY, this product may be distributed under the terms of
 29 * the GNU General Public License, in which case the provisions of the GPL2 are
 30 * required INSTEAD OF the above restrictions.  (This clause is
 31 * necessary due to a potential bad interaction between the GPL and
 32 * the restrictions contained in a BSD-style copyright.)
 33 *
 34 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 35 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 36 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
 37 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
 38 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 39 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
 40 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 41 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 42 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 44 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
 45 * DAMAGE.
 46 */
 47
 48/*
 49 * This Jitterentropy RNG is based on the jitterentropy library
 50 * version 3.4.0 provided at https://www.chronox.de/jent.html
 51 */
 52
 53#ifdef __OPTIMIZE__
 54 #error "The CPU Jitter random number generator must not be compiled with optimizations. See documentation. Use the compiler switch -O0 for compiling jitterentropy.c."
 55#endif
 56
 57typedef	unsigned long long	__u64;
 58typedef	long long		__s64;
 59typedef	unsigned int		__u32;
 60typedef unsigned char		u8;
 61#define NULL    ((void *) 0)
 62
 63/* The entropy pool */
 64struct rand_data {
 65	/* SHA3-256 is used as conditioner */
 66#define DATA_SIZE_BITS 256
 67	/* all data values that are vital to maintain the security
 68	 * of the RNG are marked as SENSITIVE. A user must not
 69	 * access that information while the RNG executes its loops to
 70	 * calculate the next random value. */
 71	void *hash_state;		/* SENSITIVE hash state entropy pool */
 72	__u64 prev_time;		/* SENSITIVE Previous time stamp */
 73	__u64 last_delta;		/* SENSITIVE stuck test */
 74	__s64 last_delta2;		/* SENSITIVE stuck test */
 75
 76	unsigned int flags;		/* Flags used to initialize */
 77	unsigned int osr;		/* Oversample rate */
 78#define JENT_MEMORY_ACCESSLOOPS 128
 79#define JENT_MEMORY_SIZE						\
 80	(CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKS *			\
 81	 CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE)
 82	unsigned char *mem;	/* Memory access location with size of
 83				 * memblocks * memblocksize */
 84	unsigned int memlocation; /* Pointer to byte in *mem */
 85	unsigned int memblocks;	/* Number of memory blocks in *mem */
 86	unsigned int memblocksize; /* Size of one memory block in bytes */
 87	unsigned int memaccessloops; /* Number of memory accesses per random
 88				      * bit generation */
 89
 90	/* Repetition Count Test */
 91	unsigned int rct_count;			/* Number of stuck values */
 92
 93	/* Adaptive Proportion Test cutoff values */
 94	unsigned int apt_cutoff; /* Intermittent health test failure */
 95	unsigned int apt_cutoff_permanent; /* Permanent health test failure */
 96#define JENT_APT_WINDOW_SIZE	512	/* Data window size */
 97	/* LSB of time stamp to process */
 98#define JENT_APT_LSB		16
 99#define JENT_APT_WORD_MASK	(JENT_APT_LSB - 1)
100	unsigned int apt_observations;	/* Number of collected observations */
101	unsigned int apt_count;		/* APT counter */
102	unsigned int apt_base;		/* APT base reference */
103	unsigned int health_failure;	/* Record health failure */
104
105	unsigned int apt_base_set:1;	/* APT base reference set? */
106};
107
108/* Flags that can be used to initialize the RNG */
109#define JENT_DISABLE_MEMORY_ACCESS (1<<2) /* Disable memory access for more
110					   * entropy, saves MEMORY_SIZE RAM for
111					   * entropy collector */
112
113/* -- error codes for init function -- */
114#define JENT_ENOTIME		1 /* Timer service not available */
115#define JENT_ECOARSETIME	2 /* Timer too coarse for RNG */
116#define JENT_ENOMONOTONIC	3 /* Timer is not monotonic increasing */
117#define JENT_EVARVAR		5 /* Timer does not produce variations of
118				   * variations (2nd derivation of time is
119				   * zero). */
120#define JENT_ESTUCK		8 /* Too many stuck results during init. */
121#define JENT_EHEALTH		9 /* Health test failed during initialization */
122#define JENT_ERCT	       10 /* RCT failed during initialization */
123#define JENT_EHASH	       11 /* Hash self test failed */
124#define JENT_EMEM	       12 /* Can't allocate memory for initialization */
125
126#define JENT_RCT_FAILURE	1 /* Failure in RCT health test. */
127#define JENT_APT_FAILURE	2 /* Failure in APT health test. */
128#define JENT_PERMANENT_FAILURE_SHIFT	16
129#define JENT_PERMANENT_FAILURE(x)	(x << JENT_PERMANENT_FAILURE_SHIFT)
130#define JENT_RCT_FAILURE_PERMANENT	JENT_PERMANENT_FAILURE(JENT_RCT_FAILURE)
131#define JENT_APT_FAILURE_PERMANENT	JENT_PERMANENT_FAILURE(JENT_APT_FAILURE)
132
133/*
134 * The output n bits can receive more than n bits of min entropy, of course,
135 * but the fixed output of the conditioning function can only asymptotically
136 * approach the output size bits of min entropy, not attain that bound. Random
137 * maps will tend to have output collisions, which reduces the creditable
138 * output entropy (that is what SP 800-90B Section 3.1.5.1.2 attempts to bound).
139 *
140 * The value "64" is justified in Appendix A.4 of the current 90C draft,
141 * and aligns with NIST's in "epsilon" definition in this document, which is
142 * that a string can be considered "full entropy" if you can bound the min
143 * entropy in each bit of output to at least 1-epsilon, where epsilon is
144 * required to be <= 2^(-32).
145 */
146#define JENT_ENTROPY_SAFETY_FACTOR	64
147
148#include <linux/fips.h>
149#include <linux/minmax.h>
150#include "jitterentropy.h"
151
152/***************************************************************************
153 * Adaptive Proportion Test
154 *
155 * This test complies with SP800-90B section 4.4.2.
156 ***************************************************************************/
157
158/*
159 * See the SP 800-90B comment #10b for the corrected cutoff for the SP 800-90B
160 * APT.
161 * https://www.untruth.org/~josh/sp80090b/UL%20SP800-90B-final%20comments%20v1.9%2020191212.pdf
162 * In the syntax of R, this is C = 2 + qbinom(1 − 2^(−30), 511, 2^(-1/osr)).
163 * (The original formula wasn't correct because the first symbol must
164 * necessarily have been observed, so there is no chance of observing 0 of these
165 * symbols.)
166 *
167 * For the alpha < 2^-53, R cannot be used as it uses a float data type without
168 * arbitrary precision. A SageMath script is used to calculate those cutoff
169 * values.
170 *
171 * For any value above 14, this yields the maximal allowable value of 512
172 * (by FIPS 140-2 IG 7.19 Resolution # 16, we cannot choose a cutoff value that
173 * renders the test unable to fail).
174 */
175static const unsigned int jent_apt_cutoff_lookup[15] = {
176	325, 422, 459, 477, 488, 494, 499, 502,
177	505, 507, 508, 509, 510, 511, 512 };
178static const unsigned int jent_apt_cutoff_permanent_lookup[15] = {
179	355, 447, 479, 494, 502, 507, 510, 512,
180	512, 512, 512, 512, 512, 512, 512 };
181#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
182
183static void jent_apt_init(struct rand_data *ec, unsigned int osr)
184{
185	/*
186	 * Establish the apt_cutoff based on the presumed entropy rate of
187	 * 1/osr.
188	 */
189	if (osr >= ARRAY_SIZE(jent_apt_cutoff_lookup)) {
190		ec->apt_cutoff = jent_apt_cutoff_lookup[
191			ARRAY_SIZE(jent_apt_cutoff_lookup) - 1];
192		ec->apt_cutoff_permanent = jent_apt_cutoff_permanent_lookup[
193			ARRAY_SIZE(jent_apt_cutoff_permanent_lookup) - 1];
194	} else {
195		ec->apt_cutoff = jent_apt_cutoff_lookup[osr - 1];
196		ec->apt_cutoff_permanent =
197				jent_apt_cutoff_permanent_lookup[osr - 1];
198	}
199}
200/*
201 * Reset the APT counter
202 *
203 * @ec [in] Reference to entropy collector
204 */
205static void jent_apt_reset(struct rand_data *ec, unsigned int delta_masked)
206{
207	/* Reset APT counter */
208	ec->apt_count = 0;
209	ec->apt_base = delta_masked;
210	ec->apt_observations = 0;
211}
212
213/*
214 * Insert a new entropy event into APT
215 *
216 * @ec [in] Reference to entropy collector
217 * @delta_masked [in] Masked time delta to process
218 */
219static void jent_apt_insert(struct rand_data *ec, unsigned int delta_masked)
220{
221	/* Initialize the base reference */
222	if (!ec->apt_base_set) {
223		ec->apt_base = delta_masked;
224		ec->apt_base_set = 1;
225		return;
226	}
227
228	if (delta_masked == ec->apt_base) {
229		ec->apt_count++;
230
231		/* Note, ec->apt_count starts with one. */
232		if (ec->apt_count >= ec->apt_cutoff_permanent)
233			ec->health_failure |= JENT_APT_FAILURE_PERMANENT;
234		else if (ec->apt_count >= ec->apt_cutoff)
235			ec->health_failure |= JENT_APT_FAILURE;
236	}
237
238	ec->apt_observations++;
239
240	if (ec->apt_observations >= JENT_APT_WINDOW_SIZE)
241		jent_apt_reset(ec, delta_masked);
242}
243
244/***************************************************************************
245 * Stuck Test and its use as Repetition Count Test
246 *
247 * The Jitter RNG uses an enhanced version of the Repetition Count Test
248 * (RCT) specified in SP800-90B section 4.4.1. Instead of counting identical
249 * back-to-back values, the input to the RCT is the counting of the stuck
250 * values during the generation of one Jitter RNG output block.
251 *
252 * The RCT is applied with an alpha of 2^{-30} compliant to FIPS 140-2 IG 9.8.
253 *
254 * During the counting operation, the Jitter RNG always calculates the RCT
255 * cut-off value of C. If that value exceeds the allowed cut-off value,
256 * the Jitter RNG output block will be calculated completely but discarded at
257 * the end. The caller of the Jitter RNG is informed with an error code.
258 ***************************************************************************/
259
260/*
261 * Repetition Count Test as defined in SP800-90B section 4.4.1
262 *
263 * @ec [in] Reference to entropy collector
264 * @stuck [in] Indicator whether the value is stuck
265 */
266static void jent_rct_insert(struct rand_data *ec, int stuck)
267{
268	if (stuck) {
269		ec->rct_count++;
270
271		/*
272		 * The cutoff value is based on the following consideration:
273		 * alpha = 2^-30 or 2^-60 as recommended in SP800-90B.
274		 * In addition, we require an entropy value H of 1/osr as this
275		 * is the minimum entropy required to provide full entropy.
276		 * Note, we collect (DATA_SIZE_BITS + ENTROPY_SAFETY_FACTOR)*osr
277		 * deltas for inserting them into the entropy pool which should
278		 * then have (close to) DATA_SIZE_BITS bits of entropy in the
279		 * conditioned output.
280		 *
281		 * Note, ec->rct_count (which equals to value B in the pseudo
282		 * code of SP800-90B section 4.4.1) starts with zero. Hence
283		 * we need to subtract one from the cutoff value as calculated
284		 * following SP800-90B. Thus C = ceil(-log_2(alpha)/H) = 30*osr
285		 * or 60*osr.
286		 */
287		if ((unsigned int)ec->rct_count >= (60 * ec->osr)) {
288			ec->rct_count = -1;
289			ec->health_failure |= JENT_RCT_FAILURE_PERMANENT;
290		} else if ((unsigned int)ec->rct_count >= (30 * ec->osr)) {
291			ec->rct_count = -1;
292			ec->health_failure |= JENT_RCT_FAILURE;
293		}
294	} else {
295		/* Reset RCT */
296		ec->rct_count = 0;
297	}
298}
299
300static inline __u64 jent_delta(__u64 prev, __u64 next)
301{
302#define JENT_UINT64_MAX		(__u64)(~((__u64) 0))
303	return (prev < next) ? (next - prev) :
304			       (JENT_UINT64_MAX - prev + 1 + next);
305}
306
307/*
308 * Stuck test by checking the:
309 * 	1st derivative of the jitter measurement (time delta)
310 * 	2nd derivative of the jitter measurement (delta of time deltas)
311 * 	3rd derivative of the jitter measurement (delta of delta of time deltas)
312 *
313 * All values must always be non-zero.
314 *
315 * @ec [in] Reference to entropy collector
316 * @current_delta [in] Jitter time delta
317 *
318 * @return
319 * 	0 jitter measurement not stuck (good bit)
320 * 	1 jitter measurement stuck (reject bit)
321 */
322static int jent_stuck(struct rand_data *ec, __u64 current_delta)
323{
324	__u64 delta2 = jent_delta(ec->last_delta, current_delta);
325	__u64 delta3 = jent_delta(ec->last_delta2, delta2);
326
327	ec->last_delta = current_delta;
328	ec->last_delta2 = delta2;
329
330	/*
331	 * Insert the result of the comparison of two back-to-back time
332	 * deltas.
333	 */
334	jent_apt_insert(ec, current_delta);
335
336	if (!current_delta || !delta2 || !delta3) {
337		/* RCT with a stuck bit */
338		jent_rct_insert(ec, 1);
339		return 1;
340	}
341
342	/* RCT with a non-stuck bit */
343	jent_rct_insert(ec, 0);
344
345	return 0;
346}
347
348/*
349 * Report any health test failures
350 *
351 * @ec [in] Reference to entropy collector
352 *
353 * @return a bitmask indicating which tests failed
354 *	0 No health test failure
355 *	1 RCT failure
356 *	2 APT failure
357 *	1<<JENT_PERMANENT_FAILURE_SHIFT RCT permanent failure
358 *	2<<JENT_PERMANENT_FAILURE_SHIFT APT permanent failure
359 */
360static unsigned int jent_health_failure(struct rand_data *ec)
361{
362	/* Test is only enabled in FIPS mode */
363	if (!fips_enabled)
364		return 0;
365
366	return ec->health_failure;
367}
368
369/***************************************************************************
370 * Noise sources
371 ***************************************************************************/
372
373/*
374 * Update of the loop count used for the next round of
375 * an entropy collection.
376 *
377 * Input:
378 * @bits is the number of low bits of the timer to consider
379 * @min is the number of bits we shift the timer value to the right at
380 *	the end to make sure we have a guaranteed minimum value
381 *
382 * @return Newly calculated loop counter
383 */
384static __u64 jent_loop_shuffle(unsigned int bits, unsigned int min)
385{
386	__u64 time = 0;
387	__u64 shuffle = 0;
388	unsigned int i = 0;
389	unsigned int mask = (1<<bits) - 1;
390
391	jent_get_nstime(&time);
392
393	/*
394	 * We fold the time value as much as possible to ensure that as many
395	 * bits of the time stamp are included as possible.
396	 */
397	for (i = 0; ((DATA_SIZE_BITS + bits - 1) / bits) > i; i++) {
398		shuffle ^= time & mask;
399		time = time >> bits;
400	}
401
402	/*
403	 * We add a lower boundary value to ensure we have a minimum
404	 * RNG loop count.
405	 */
406	return (shuffle + (1<<min));
407}
408
409/*
410 * CPU Jitter noise source -- this is the noise source based on the CPU
411 *			      execution time jitter
412 *
413 * This function injects the individual bits of the time value into the
414 * entropy pool using a hash.
415 *
416 * ec [in] entropy collector
417 * time [in] time stamp to be injected
418 * stuck [in] Is the time stamp identified as stuck?
419 *
420 * Output:
421 * updated hash context in the entropy collector or error code
422 */
423static int jent_condition_data(struct rand_data *ec, __u64 time, int stuck)
424{
425#define SHA3_HASH_LOOP (1<<3)
426	struct {
427		int rct_count;
428		unsigned int apt_observations;
429		unsigned int apt_count;
430		unsigned int apt_base;
431	} addtl = {
432		ec->rct_count,
433		ec->apt_observations,
434		ec->apt_count,
435		ec->apt_base
436	};
437
438	return jent_hash_time(ec->hash_state, time, (u8 *)&addtl, sizeof(addtl),
439			      SHA3_HASH_LOOP, stuck);
440}
441
442/*
443 * Memory Access noise source -- this is a noise source based on variations in
444 *				 memory access times
445 *
446 * This function performs memory accesses which will add to the timing
447 * variations due to an unknown amount of CPU wait states that need to be
448 * added when accessing memory. The memory size should be larger than the L1
449 * caches as outlined in the documentation and the associated testing.
450 *
451 * The L1 cache has a very high bandwidth, albeit its access rate is  usually
452 * slower than accessing CPU registers. Therefore, L1 accesses only add minimal
453 * variations as the CPU has hardly to wait. Starting with L2, significant
454 * variations are added because L2 typically does not belong to the CPU any more
455 * and therefore a wider range of CPU wait states is necessary for accesses.
456 * L3 and real memory accesses have even a wider range of wait states. However,
457 * to reliably access either L3 or memory, the ec->mem memory must be quite
458 * large which is usually not desirable.
459 *
460 * @ec [in] Reference to the entropy collector with the memory access data -- if
461 *	    the reference to the memory block to be accessed is NULL, this noise
462 *	    source is disabled
463 * @loop_cnt [in] if a value not equal to 0 is set, use the given value
464 *		  number of loops to perform the LFSR
465 */
466static void jent_memaccess(struct rand_data *ec, __u64 loop_cnt)
467{
468	unsigned int wrap = 0;
469	__u64 i = 0;
470#define MAX_ACC_LOOP_BIT 7
471#define MIN_ACC_LOOP_BIT 0
472	__u64 acc_loop_cnt =
473		jent_loop_shuffle(MAX_ACC_LOOP_BIT, MIN_ACC_LOOP_BIT);
474
475	if (NULL == ec || NULL == ec->mem)
476		return;
477	wrap = ec->memblocksize * ec->memblocks;
478
479	/*
480	 * testing purposes -- allow test app to set the counter, not
481	 * needed during runtime
482	 */
483	if (loop_cnt)
484		acc_loop_cnt = loop_cnt;
485
486	for (i = 0; i < (ec->memaccessloops + acc_loop_cnt); i++) {
487		unsigned char *tmpval = ec->mem + ec->memlocation;
488		/*
489		 * memory access: just add 1 to one byte,
490		 * wrap at 255 -- memory access implies read
491		 * from and write to memory location
492		 */
493		*tmpval = (*tmpval + 1) & 0xff;
494		/*
495		 * Addition of memblocksize - 1 to pointer
496		 * with wrap around logic to ensure that every
497		 * memory location is hit evenly
498		 */
499		ec->memlocation = ec->memlocation + ec->memblocksize - 1;
500		ec->memlocation = ec->memlocation % wrap;
501	}
502}
503
504/***************************************************************************
505 * Start of entropy processing logic
506 ***************************************************************************/
507/*
508 * This is the heart of the entropy generation: calculate time deltas and
509 * use the CPU jitter in the time deltas. The jitter is injected into the
510 * entropy pool.
511 *
512 * WARNING: ensure that ->prev_time is primed before using the output
513 *	    of this function! This can be done by calling this function
514 *	    and not using its result.
515 *
516 * @ec [in] Reference to entropy collector
517 *
518 * @return result of stuck test
519 */
520static int jent_measure_jitter(struct rand_data *ec, __u64 *ret_current_delta)
521{
522	__u64 time = 0;
523	__u64 current_delta = 0;
524	int stuck;
525
526	/* Invoke one noise source before time measurement to add variations */
527	jent_memaccess(ec, 0);
528
529	/*
530	 * Get time stamp and calculate time delta to previous
531	 * invocation to measure the timing variations
532	 */
533	jent_get_nstime(&time);
534	current_delta = jent_delta(ec->prev_time, time);
535	ec->prev_time = time;
536
537	/* Check whether we have a stuck measurement. */
538	stuck = jent_stuck(ec, current_delta);
539
540	/* Now call the next noise sources which also injects the data */
541	if (jent_condition_data(ec, current_delta, stuck))
542		stuck = 1;
543
544	/* return the raw entropy value */
545	if (ret_current_delta)
546		*ret_current_delta = current_delta;
547
548	return stuck;
549}
550
551/*
552 * Generator of one 64 bit random number
553 * Function fills rand_data->hash_state
554 *
555 * @ec [in] Reference to entropy collector
556 */
557static void jent_gen_entropy(struct rand_data *ec)
558{
559	unsigned int k = 0, safety_factor = 0;
560
561	if (fips_enabled)
562		safety_factor = JENT_ENTROPY_SAFETY_FACTOR;
563
564	/* priming of the ->prev_time value */
565	jent_measure_jitter(ec, NULL);
566
567	while (!jent_health_failure(ec)) {
568		/* If a stuck measurement is received, repeat measurement */
569		if (jent_measure_jitter(ec, NULL))
570			continue;
571
572		/*
573		 * We multiply the loop value with ->osr to obtain the
574		 * oversampling rate requested by the caller
575		 */
576		if (++k >= ((DATA_SIZE_BITS + safety_factor) * ec->osr))
577			break;
578	}
579}
580
581/*
582 * Entry function: Obtain entropy for the caller.
583 *
584 * This function invokes the entropy gathering logic as often to generate
585 * as many bytes as requested by the caller. The entropy gathering logic
586 * creates 64 bit per invocation.
587 *
588 * This function truncates the last 64 bit entropy value output to the exact
589 * size specified by the caller.
590 *
591 * @ec [in] Reference to entropy collector
592 * @data [in] pointer to buffer for storing random data -- buffer must already
593 *	      exist
594 * @len [in] size of the buffer, specifying also the requested number of random
595 *	     in bytes
596 *
597 * @return 0 when request is fulfilled or an error
598 *
599 * The following error codes can occur:
600 *	-1	entropy_collector is NULL or the generation failed
601 *	-2	Intermittent health failure
602 *	-3	Permanent health failure
603 */
604int jent_read_entropy(struct rand_data *ec, unsigned char *data,
605		      unsigned int len)
606{
607	unsigned char *p = data;
608
609	if (!ec)
610		return -1;
611
612	while (len > 0) {
613		unsigned int tocopy, health_test_result;
614
615		jent_gen_entropy(ec);
616
617		health_test_result = jent_health_failure(ec);
618		if (health_test_result > JENT_PERMANENT_FAILURE_SHIFT) {
619			/*
620			 * At this point, the Jitter RNG instance is considered
621			 * as a failed instance. There is no rerun of the
622			 * startup test any more, because the caller
623			 * is assumed to not further use this instance.
624			 */
625			return -3;
626		} else if (health_test_result) {
627			/*
628			 * Perform startup health tests and return permanent
629			 * error if it fails.
630			 */
631			if (jent_entropy_init(0, 0, NULL, ec)) {
632				/* Mark the permanent error */
633				ec->health_failure &=
634					JENT_RCT_FAILURE_PERMANENT |
635					JENT_APT_FAILURE_PERMANENT;
636				return -3;
637			}
638
639			return -2;
640		}
641
642		tocopy = min(DATA_SIZE_BITS / 8, len);
 
 
 
643		if (jent_read_random_block(ec->hash_state, p, tocopy))
644			return -1;
645
646		len -= tocopy;
647		p += tocopy;
648	}
649
650	return 0;
651}
652
653/***************************************************************************
654 * Initialization logic
655 ***************************************************************************/
656
657struct rand_data *jent_entropy_collector_alloc(unsigned int osr,
658					       unsigned int flags,
659					       void *hash_state)
660{
661	struct rand_data *entropy_collector;
662
663	entropy_collector = jent_zalloc(sizeof(struct rand_data));
664	if (!entropy_collector)
665		return NULL;
666
667	if (!(flags & JENT_DISABLE_MEMORY_ACCESS)) {
668		/* Allocate memory for adding variations based on memory
669		 * access
670		 */
671		entropy_collector->mem = jent_kvzalloc(JENT_MEMORY_SIZE);
672		if (!entropy_collector->mem) {
673			jent_zfree(entropy_collector);
674			return NULL;
675		}
676		entropy_collector->memblocksize =
677			CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE;
678		entropy_collector->memblocks =
679			CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKS;
680		entropy_collector->memaccessloops = JENT_MEMORY_ACCESSLOOPS;
681	}
682
683	/* verify and set the oversampling rate */
684	if (osr == 0)
685		osr = 1; /* H_submitter = 1 / osr */
686	entropy_collector->osr = osr;
687	entropy_collector->flags = flags;
688
689	entropy_collector->hash_state = hash_state;
690
691	/* Initialize the APT */
692	jent_apt_init(entropy_collector, osr);
693
694	/* fill the data pad with non-zero values */
695	jent_gen_entropy(entropy_collector);
696
697	return entropy_collector;
698}
699
700void jent_entropy_collector_free(struct rand_data *entropy_collector)
701{
702	jent_kvzfree(entropy_collector->mem, JENT_MEMORY_SIZE);
703	entropy_collector->mem = NULL;
704	jent_zfree(entropy_collector);
705}
706
707int jent_entropy_init(unsigned int osr, unsigned int flags, void *hash_state,
708		      struct rand_data *p_ec)
709{
710	/*
711	 * If caller provides an allocated ec, reuse it which implies that the
712	 * health test entropy data is used to further still the available
713	 * entropy pool.
714	 */
715	struct rand_data *ec = p_ec;
716	int i, time_backwards = 0, ret = 0, ec_free = 0;
717	unsigned int health_test_result;
718
719	if (!ec) {
720		ec = jent_entropy_collector_alloc(osr, flags, hash_state);
721		if (!ec)
722			return JENT_EMEM;
723		ec_free = 1;
724	} else {
725		/* Reset the APT */
726		jent_apt_reset(ec, 0);
727		/* Ensure that a new APT base is obtained */
728		ec->apt_base_set = 0;
729		/* Reset the RCT */
730		ec->rct_count = 0;
731		/* Reset intermittent, leave permanent health test result */
732		ec->health_failure &= (~JENT_RCT_FAILURE);
733		ec->health_failure &= (~JENT_APT_FAILURE);
734	}
735
736	/* We could perform statistical tests here, but the problem is
737	 * that we only have a few loop counts to do testing. These
738	 * loop counts may show some slight skew and we produce
739	 * false positives.
740	 *
741	 * Moreover, only old systems show potentially problematic
742	 * jitter entropy that could potentially be caught here. But
743	 * the RNG is intended for hardware that is available or widely
744	 * used, but not old systems that are long out of favor. Thus,
745	 * no statistical tests.
746	 */
747
748	/*
749	 * We could add a check for system capabilities such as clock_getres or
750	 * check for CONFIG_X86_TSC, but it does not make much sense as the
751	 * following sanity checks verify that we have a high-resolution
752	 * timer.
753	 */
754	/*
755	 * TESTLOOPCOUNT needs some loops to identify edge systems. 100 is
756	 * definitely too little.
757	 *
758	 * SP800-90B requires at least 1024 initial test cycles.
759	 */
760#define TESTLOOPCOUNT 1024
761#define CLEARCACHE 100
762	for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) {
763		__u64 start_time = 0, end_time = 0, delta = 0;
764
765		/* Invoke core entropy collection logic */
766		jent_measure_jitter(ec, &delta);
767		end_time = ec->prev_time;
768		start_time = ec->prev_time - delta;
769
770		/* test whether timer works */
771		if (!start_time || !end_time) {
772			ret = JENT_ENOTIME;
773			goto out;
774		}
775
776		/*
777		 * test whether timer is fine grained enough to provide
778		 * delta even when called shortly after each other -- this
779		 * implies that we also have a high resolution timer
780		 */
781		if (!delta || (end_time == start_time)) {
782			ret = JENT_ECOARSETIME;
783			goto out;
784		}
785
786		/*
787		 * up to here we did not modify any variable that will be
788		 * evaluated later, but we already performed some work. Thus we
789		 * already have had an impact on the caches, branch prediction,
790		 * etc. with the goal to clear it to get the worst case
791		 * measurements.
792		 */
793		if (i < CLEARCACHE)
794			continue;
795
796		/* test whether we have an increasing timer */
797		if (!(end_time > start_time))
798			time_backwards++;
799	}
800
801	/*
802	 * we allow up to three times the time running backwards.
803	 * CLOCK_REALTIME is affected by adjtime and NTP operations. Thus,
804	 * if such an operation just happens to interfere with our test, it
805	 * should not fail. The value of 3 should cover the NTP case being
806	 * performed during our test run.
807	 */
808	if (time_backwards > 3) {
809		ret = JENT_ENOMONOTONIC;
810		goto out;
811	}
812
813	/* Did we encounter a health test failure? */
814	health_test_result = jent_health_failure(ec);
815	if (health_test_result) {
816		ret = (health_test_result & JENT_RCT_FAILURE) ? JENT_ERCT :
817								JENT_EHEALTH;
818		goto out;
819	}
820
821out:
822	if (ec_free)
823		jent_entropy_collector_free(ec);
824
825	return ret;
826}