Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright 2008 Michael Ellerman, IBM Corporation.
4 */
5
6#include <linux/kprobes.h>
7#include <linux/mmu_context.h>
8#include <linux/random.h>
9#include <linux/vmalloc.h>
10#include <linux/init.h>
11#include <linux/cpuhotplug.h>
12#include <linux/uaccess.h>
13#include <linux/jump_label.h>
14
15#include <asm/debug.h>
16#include <asm/pgalloc.h>
17#include <asm/tlb.h>
18#include <asm/tlbflush.h>
19#include <asm/page.h>
20#include <asm/code-patching.h>
21#include <asm/inst.h>
22
23static int __patch_instruction(u32 *exec_addr, ppc_inst_t instr, u32 *patch_addr)
24{
25 if (!ppc_inst_prefixed(instr)) {
26 u32 val = ppc_inst_val(instr);
27
28 __put_kernel_nofault(patch_addr, &val, u32, failed);
29 } else {
30 u64 val = ppc_inst_as_ulong(instr);
31
32 __put_kernel_nofault(patch_addr, &val, u64, failed);
33 }
34
35 asm ("dcbst 0, %0; sync; icbi 0,%1; sync; isync" :: "r" (patch_addr),
36 "r" (exec_addr));
37
38 return 0;
39
40failed:
41 mb(); /* sync */
42 return -EPERM;
43}
44
45int raw_patch_instruction(u32 *addr, ppc_inst_t instr)
46{
47 return __patch_instruction(addr, instr, addr);
48}
49
50struct patch_context {
51 union {
52 struct vm_struct *area;
53 struct mm_struct *mm;
54 };
55 unsigned long addr;
56 pte_t *pte;
57};
58
59static DEFINE_PER_CPU(struct patch_context, cpu_patching_context);
60
61static int map_patch_area(void *addr, unsigned long text_poke_addr);
62static void unmap_patch_area(unsigned long addr);
63
64static bool mm_patch_enabled(void)
65{
66 return IS_ENABLED(CONFIG_SMP) && radix_enabled();
67}
68
69/*
70 * The following applies for Radix MMU. Hash MMU has different requirements,
71 * and so is not supported.
72 *
73 * Changing mm requires context synchronising instructions on both sides of
74 * the context switch, as well as a hwsync between the last instruction for
75 * which the address of an associated storage access was translated using
76 * the current context.
77 *
78 * switch_mm_irqs_off() performs an isync after the context switch. It is
79 * the responsibility of the caller to perform the CSI and hwsync before
80 * starting/stopping the temp mm.
81 */
82static struct mm_struct *start_using_temp_mm(struct mm_struct *temp_mm)
83{
84 struct mm_struct *orig_mm = current->active_mm;
85
86 lockdep_assert_irqs_disabled();
87 switch_mm_irqs_off(orig_mm, temp_mm, current);
88
89 WARN_ON(!mm_is_thread_local(temp_mm));
90
91 suspend_breakpoints();
92 return orig_mm;
93}
94
95static void stop_using_temp_mm(struct mm_struct *temp_mm,
96 struct mm_struct *orig_mm)
97{
98 lockdep_assert_irqs_disabled();
99 switch_mm_irqs_off(temp_mm, orig_mm, current);
100 restore_breakpoints();
101}
102
103static int text_area_cpu_up(unsigned int cpu)
104{
105 struct vm_struct *area;
106 unsigned long addr;
107 int err;
108
109 area = get_vm_area(PAGE_SIZE, VM_ALLOC);
110 if (!area) {
111 WARN_ONCE(1, "Failed to create text area for cpu %d\n",
112 cpu);
113 return -1;
114 }
115
116 // Map/unmap the area to ensure all page tables are pre-allocated
117 addr = (unsigned long)area->addr;
118 err = map_patch_area(empty_zero_page, addr);
119 if (err)
120 return err;
121
122 unmap_patch_area(addr);
123
124 this_cpu_write(cpu_patching_context.area, area);
125 this_cpu_write(cpu_patching_context.addr, addr);
126 this_cpu_write(cpu_patching_context.pte, virt_to_kpte(addr));
127
128 return 0;
129}
130
131static int text_area_cpu_down(unsigned int cpu)
132{
133 free_vm_area(this_cpu_read(cpu_patching_context.area));
134 this_cpu_write(cpu_patching_context.area, NULL);
135 this_cpu_write(cpu_patching_context.addr, 0);
136 this_cpu_write(cpu_patching_context.pte, NULL);
137 return 0;
138}
139
140static void put_patching_mm(struct mm_struct *mm, unsigned long patching_addr)
141{
142 struct mmu_gather tlb;
143
144 tlb_gather_mmu(&tlb, mm);
145 free_pgd_range(&tlb, patching_addr, patching_addr + PAGE_SIZE, 0, 0);
146 mmput(mm);
147}
148
149static int text_area_cpu_up_mm(unsigned int cpu)
150{
151 struct mm_struct *mm;
152 unsigned long addr;
153 pte_t *pte;
154 spinlock_t *ptl;
155
156 mm = mm_alloc();
157 if (WARN_ON(!mm))
158 goto fail_no_mm;
159
160 /*
161 * Choose a random page-aligned address from the interval
162 * [PAGE_SIZE .. DEFAULT_MAP_WINDOW - PAGE_SIZE].
163 * The lower address bound is PAGE_SIZE to avoid the zero-page.
164 */
165 addr = (1 + (get_random_long() % (DEFAULT_MAP_WINDOW / PAGE_SIZE - 2))) << PAGE_SHIFT;
166
167 /*
168 * PTE allocation uses GFP_KERNEL which means we need to
169 * pre-allocate the PTE here because we cannot do the
170 * allocation during patching when IRQs are disabled.
171 *
172 * Using get_locked_pte() to avoid open coding, the lock
173 * is unnecessary.
174 */
175 pte = get_locked_pte(mm, addr, &ptl);
176 if (!pte)
177 goto fail_no_pte;
178 pte_unmap_unlock(pte, ptl);
179
180 this_cpu_write(cpu_patching_context.mm, mm);
181 this_cpu_write(cpu_patching_context.addr, addr);
182
183 return 0;
184
185fail_no_pte:
186 put_patching_mm(mm, addr);
187fail_no_mm:
188 return -ENOMEM;
189}
190
191static int text_area_cpu_down_mm(unsigned int cpu)
192{
193 put_patching_mm(this_cpu_read(cpu_patching_context.mm),
194 this_cpu_read(cpu_patching_context.addr));
195
196 this_cpu_write(cpu_patching_context.mm, NULL);
197 this_cpu_write(cpu_patching_context.addr, 0);
198
199 return 0;
200}
201
202static __ro_after_init DEFINE_STATIC_KEY_FALSE(poking_init_done);
203
204void __init poking_init(void)
205{
206 int ret;
207
208 if (mm_patch_enabled())
209 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
210 "powerpc/text_poke_mm:online",
211 text_area_cpu_up_mm,
212 text_area_cpu_down_mm);
213 else
214 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
215 "powerpc/text_poke:online",
216 text_area_cpu_up,
217 text_area_cpu_down);
218
219 /* cpuhp_setup_state returns >= 0 on success */
220 if (WARN_ON(ret < 0))
221 return;
222
223 static_branch_enable(&poking_init_done);
224}
225
226static unsigned long get_patch_pfn(void *addr)
227{
228 if (IS_ENABLED(CONFIG_MODULES) && is_vmalloc_or_module_addr(addr))
229 return vmalloc_to_pfn(addr);
230 else
231 return __pa_symbol(addr) >> PAGE_SHIFT;
232}
233
234/*
235 * This can be called for kernel text or a module.
236 */
237static int map_patch_area(void *addr, unsigned long text_poke_addr)
238{
239 unsigned long pfn = get_patch_pfn(addr);
240
241 return map_kernel_page(text_poke_addr, (pfn << PAGE_SHIFT), PAGE_KERNEL);
242}
243
244static void unmap_patch_area(unsigned long addr)
245{
246 pte_t *ptep;
247 pmd_t *pmdp;
248 pud_t *pudp;
249 p4d_t *p4dp;
250 pgd_t *pgdp;
251
252 pgdp = pgd_offset_k(addr);
253 if (WARN_ON(pgd_none(*pgdp)))
254 return;
255
256 p4dp = p4d_offset(pgdp, addr);
257 if (WARN_ON(p4d_none(*p4dp)))
258 return;
259
260 pudp = pud_offset(p4dp, addr);
261 if (WARN_ON(pud_none(*pudp)))
262 return;
263
264 pmdp = pmd_offset(pudp, addr);
265 if (WARN_ON(pmd_none(*pmdp)))
266 return;
267
268 ptep = pte_offset_kernel(pmdp, addr);
269 if (WARN_ON(pte_none(*ptep)))
270 return;
271
272 /*
273 * In hash, pte_clear flushes the tlb, in radix, we have to
274 */
275 pte_clear(&init_mm, addr, ptep);
276 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
277}
278
279static int __do_patch_instruction_mm(u32 *addr, ppc_inst_t instr)
280{
281 int err;
282 u32 *patch_addr;
283 unsigned long text_poke_addr;
284 pte_t *pte;
285 unsigned long pfn = get_patch_pfn(addr);
286 struct mm_struct *patching_mm;
287 struct mm_struct *orig_mm;
288 spinlock_t *ptl;
289
290 patching_mm = __this_cpu_read(cpu_patching_context.mm);
291 text_poke_addr = __this_cpu_read(cpu_patching_context.addr);
292 patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr));
293
294 pte = get_locked_pte(patching_mm, text_poke_addr, &ptl);
295 if (!pte)
296 return -ENOMEM;
297
298 __set_pte_at(patching_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0);
299
300 /* order PTE update before use, also serves as the hwsync */
301 asm volatile("ptesync": : :"memory");
302
303 /* order context switch after arbitrary prior code */
304 isync();
305
306 orig_mm = start_using_temp_mm(patching_mm);
307
308 err = __patch_instruction(addr, instr, patch_addr);
309
310 /* context synchronisation performed by __patch_instruction (isync or exception) */
311 stop_using_temp_mm(patching_mm, orig_mm);
312
313 pte_clear(patching_mm, text_poke_addr, pte);
314 /*
315 * ptesync to order PTE update before TLB invalidation done
316 * by radix__local_flush_tlb_page_psize (in _tlbiel_va)
317 */
318 local_flush_tlb_page_psize(patching_mm, text_poke_addr, mmu_virtual_psize);
319
320 pte_unmap_unlock(pte, ptl);
321
322 return err;
323}
324
325static int __do_patch_instruction(u32 *addr, ppc_inst_t instr)
326{
327 int err;
328 u32 *patch_addr;
329 unsigned long text_poke_addr;
330 pte_t *pte;
331 unsigned long pfn = get_patch_pfn(addr);
332
333 text_poke_addr = (unsigned long)__this_cpu_read(cpu_patching_context.addr) & PAGE_MASK;
334 patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr));
335
336 pte = __this_cpu_read(cpu_patching_context.pte);
337 __set_pte_at(&init_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0);
338 /* See ptesync comment in radix__set_pte_at() */
339 if (radix_enabled())
340 asm volatile("ptesync": : :"memory");
341
342 err = __patch_instruction(addr, instr, patch_addr);
343
344 pte_clear(&init_mm, text_poke_addr, pte);
345 flush_tlb_kernel_range(text_poke_addr, text_poke_addr + PAGE_SIZE);
346
347 return err;
348}
349
350int patch_instruction(u32 *addr, ppc_inst_t instr)
351{
352 int err;
353 unsigned long flags;
354
355 /*
356 * During early early boot patch_instruction is called
357 * when text_poke_area is not ready, but we still need
358 * to allow patching. We just do the plain old patching
359 */
360 if (!IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) ||
361 !static_branch_likely(&poking_init_done))
362 return raw_patch_instruction(addr, instr);
363
364 local_irq_save(flags);
365 if (mm_patch_enabled())
366 err = __do_patch_instruction_mm(addr, instr);
367 else
368 err = __do_patch_instruction(addr, instr);
369 local_irq_restore(flags);
370
371 return err;
372}
373NOKPROBE_SYMBOL(patch_instruction);
374
375static int __patch_instructions(u32 *patch_addr, u32 *code, size_t len, bool repeat_instr)
376{
377 unsigned long start = (unsigned long)patch_addr;
378
379 /* Repeat instruction */
380 if (repeat_instr) {
381 ppc_inst_t instr = ppc_inst_read(code);
382
383 if (ppc_inst_prefixed(instr)) {
384 u64 val = ppc_inst_as_ulong(instr);
385
386 memset64((u64 *)patch_addr, val, len / 8);
387 } else {
388 u32 val = ppc_inst_val(instr);
389
390 memset32(patch_addr, val, len / 4);
391 }
392 } else {
393 memcpy(patch_addr, code, len);
394 }
395
396 smp_wmb(); /* smp write barrier */
397 flush_icache_range(start, start + len);
398 return 0;
399}
400
401/*
402 * A page is mapped and instructions that fit the page are patched.
403 * Assumes 'len' to be (PAGE_SIZE - offset_in_page(addr)) or below.
404 */
405static int __do_patch_instructions_mm(u32 *addr, u32 *code, size_t len, bool repeat_instr)
406{
407 struct mm_struct *patching_mm, *orig_mm;
408 unsigned long pfn = get_patch_pfn(addr);
409 unsigned long text_poke_addr;
410 spinlock_t *ptl;
411 u32 *patch_addr;
412 pte_t *pte;
413 int err;
414
415 patching_mm = __this_cpu_read(cpu_patching_context.mm);
416 text_poke_addr = __this_cpu_read(cpu_patching_context.addr);
417 patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr));
418
419 pte = get_locked_pte(patching_mm, text_poke_addr, &ptl);
420 if (!pte)
421 return -ENOMEM;
422
423 __set_pte_at(patching_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0);
424
425 /* order PTE update before use, also serves as the hwsync */
426 asm volatile("ptesync" ::: "memory");
427
428 /* order context switch after arbitrary prior code */
429 isync();
430
431 orig_mm = start_using_temp_mm(patching_mm);
432
433 err = __patch_instructions(patch_addr, code, len, repeat_instr);
434
435 /* context synchronisation performed by __patch_instructions */
436 stop_using_temp_mm(patching_mm, orig_mm);
437
438 pte_clear(patching_mm, text_poke_addr, pte);
439 /*
440 * ptesync to order PTE update before TLB invalidation done
441 * by radix__local_flush_tlb_page_psize (in _tlbiel_va)
442 */
443 local_flush_tlb_page_psize(patching_mm, text_poke_addr, mmu_virtual_psize);
444
445 pte_unmap_unlock(pte, ptl);
446
447 return err;
448}
449
450/*
451 * A page is mapped and instructions that fit the page are patched.
452 * Assumes 'len' to be (PAGE_SIZE - offset_in_page(addr)) or below.
453 */
454static int __do_patch_instructions(u32 *addr, u32 *code, size_t len, bool repeat_instr)
455{
456 unsigned long pfn = get_patch_pfn(addr);
457 unsigned long text_poke_addr;
458 u32 *patch_addr;
459 pte_t *pte;
460 int err;
461
462 text_poke_addr = (unsigned long)__this_cpu_read(cpu_patching_context.addr) & PAGE_MASK;
463 patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr));
464
465 pte = __this_cpu_read(cpu_patching_context.pte);
466 __set_pte_at(&init_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0);
467 /* See ptesync comment in radix__set_pte_at() */
468 if (radix_enabled())
469 asm volatile("ptesync" ::: "memory");
470
471 err = __patch_instructions(patch_addr, code, len, repeat_instr);
472
473 pte_clear(&init_mm, text_poke_addr, pte);
474 flush_tlb_kernel_range(text_poke_addr, text_poke_addr + PAGE_SIZE);
475
476 return err;
477}
478
479/*
480 * Patch 'addr' with 'len' bytes of instructions from 'code'.
481 *
482 * If repeat_instr is true, the same instruction is filled for
483 * 'len' bytes.
484 */
485int patch_instructions(u32 *addr, u32 *code, size_t len, bool repeat_instr)
486{
487 while (len > 0) {
488 unsigned long flags;
489 size_t plen;
490 int err;
491
492 plen = min_t(size_t, PAGE_SIZE - offset_in_page(addr), len);
493
494 local_irq_save(flags);
495 if (mm_patch_enabled())
496 err = __do_patch_instructions_mm(addr, code, plen, repeat_instr);
497 else
498 err = __do_patch_instructions(addr, code, plen, repeat_instr);
499 local_irq_restore(flags);
500 if (err)
501 return err;
502
503 len -= plen;
504 addr = (u32 *)((unsigned long)addr + plen);
505 if (!repeat_instr)
506 code = (u32 *)((unsigned long)code + plen);
507 }
508
509 return 0;
510}
511NOKPROBE_SYMBOL(patch_instructions);
512
513int patch_branch(u32 *addr, unsigned long target, int flags)
514{
515 ppc_inst_t instr;
516
517 if (create_branch(&instr, addr, target, flags))
518 return -ERANGE;
519
520 return patch_instruction(addr, instr);
521}
522
523/*
524 * Helper to check if a given instruction is a conditional branch
525 * Derived from the conditional checks in analyse_instr()
526 */
527bool is_conditional_branch(ppc_inst_t instr)
528{
529 unsigned int opcode = ppc_inst_primary_opcode(instr);
530
531 if (opcode == 16) /* bc, bca, bcl, bcla */
532 return true;
533 if (opcode == 19) {
534 switch ((ppc_inst_val(instr) >> 1) & 0x3ff) {
535 case 16: /* bclr, bclrl */
536 case 528: /* bcctr, bcctrl */
537 case 560: /* bctar, bctarl */
538 return true;
539 }
540 }
541 return false;
542}
543NOKPROBE_SYMBOL(is_conditional_branch);
544
545int create_cond_branch(ppc_inst_t *instr, const u32 *addr,
546 unsigned long target, int flags)
547{
548 long offset;
549
550 offset = target;
551 if (! (flags & BRANCH_ABSOLUTE))
552 offset = offset - (unsigned long)addr;
553
554 /* Check we can represent the target in the instruction format */
555 if (!is_offset_in_cond_branch_range(offset))
556 return 1;
557
558 /* Mask out the flags and target, so they don't step on each other. */
559 *instr = ppc_inst(0x40000000 | (flags & 0x3FF0003) | (offset & 0xFFFC));
560
561 return 0;
562}
563
564int instr_is_relative_branch(ppc_inst_t instr)
565{
566 if (ppc_inst_val(instr) & BRANCH_ABSOLUTE)
567 return 0;
568
569 return instr_is_branch_iform(instr) || instr_is_branch_bform(instr);
570}
571
572int instr_is_relative_link_branch(ppc_inst_t instr)
573{
574 return instr_is_relative_branch(instr) && (ppc_inst_val(instr) & BRANCH_SET_LINK);
575}
576
577static unsigned long branch_iform_target(const u32 *instr)
578{
579 signed long imm;
580
581 imm = ppc_inst_val(ppc_inst_read(instr)) & 0x3FFFFFC;
582
583 /* If the top bit of the immediate value is set this is negative */
584 if (imm & 0x2000000)
585 imm -= 0x4000000;
586
587 if ((ppc_inst_val(ppc_inst_read(instr)) & BRANCH_ABSOLUTE) == 0)
588 imm += (unsigned long)instr;
589
590 return (unsigned long)imm;
591}
592
593static unsigned long branch_bform_target(const u32 *instr)
594{
595 signed long imm;
596
597 imm = ppc_inst_val(ppc_inst_read(instr)) & 0xFFFC;
598
599 /* If the top bit of the immediate value is set this is negative */
600 if (imm & 0x8000)
601 imm -= 0x10000;
602
603 if ((ppc_inst_val(ppc_inst_read(instr)) & BRANCH_ABSOLUTE) == 0)
604 imm += (unsigned long)instr;
605
606 return (unsigned long)imm;
607}
608
609unsigned long branch_target(const u32 *instr)
610{
611 if (instr_is_branch_iform(ppc_inst_read(instr)))
612 return branch_iform_target(instr);
613 else if (instr_is_branch_bform(ppc_inst_read(instr)))
614 return branch_bform_target(instr);
615
616 return 0;
617}
618
619int translate_branch(ppc_inst_t *instr, const u32 *dest, const u32 *src)
620{
621 unsigned long target;
622 target = branch_target(src);
623
624 if (instr_is_branch_iform(ppc_inst_read(src)))
625 return create_branch(instr, dest, target,
626 ppc_inst_val(ppc_inst_read(src)));
627 else if (instr_is_branch_bform(ppc_inst_read(src)))
628 return create_cond_branch(instr, dest, target,
629 ppc_inst_val(ppc_inst_read(src)));
630
631 return 1;
632}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright 2008 Michael Ellerman, IBM Corporation.
4 */
5
6#include <linux/kprobes.h>
7#include <linux/mmu_context.h>
8#include <linux/random.h>
9#include <linux/vmalloc.h>
10#include <linux/init.h>
11#include <linux/cpuhotplug.h>
12#include <linux/uaccess.h>
13#include <linux/jump_label.h>
14
15#include <asm/debug.h>
16#include <asm/pgalloc.h>
17#include <asm/tlb.h>
18#include <asm/tlbflush.h>
19#include <asm/page.h>
20#include <asm/text-patching.h>
21#include <asm/inst.h>
22
23static int __patch_mem(void *exec_addr, unsigned long val, void *patch_addr, bool is_dword)
24{
25 if (!IS_ENABLED(CONFIG_PPC64) || likely(!is_dword)) {
26 /* For big endian correctness: plain address would use the wrong half */
27 u32 val32 = val;
28
29 __put_kernel_nofault(patch_addr, &val32, u32, failed);
30 } else {
31 __put_kernel_nofault(patch_addr, &val, u64, failed);
32 }
33
34 asm ("dcbst 0, %0; sync; icbi 0,%1; sync; isync" :: "r" (patch_addr),
35 "r" (exec_addr));
36
37 return 0;
38
39failed:
40 mb(); /* sync */
41 return -EPERM;
42}
43
44int raw_patch_instruction(u32 *addr, ppc_inst_t instr)
45{
46 if (ppc_inst_prefixed(instr))
47 return __patch_mem(addr, ppc_inst_as_ulong(instr), addr, true);
48 else
49 return __patch_mem(addr, ppc_inst_val(instr), addr, false);
50}
51
52struct patch_context {
53 union {
54 struct vm_struct *area;
55 struct mm_struct *mm;
56 };
57 unsigned long addr;
58 pte_t *pte;
59};
60
61static DEFINE_PER_CPU(struct patch_context, cpu_patching_context);
62
63static int map_patch_area(void *addr, unsigned long text_poke_addr);
64static void unmap_patch_area(unsigned long addr);
65
66static bool mm_patch_enabled(void)
67{
68 return IS_ENABLED(CONFIG_SMP) && radix_enabled();
69}
70
71/*
72 * The following applies for Radix MMU. Hash MMU has different requirements,
73 * and so is not supported.
74 *
75 * Changing mm requires context synchronising instructions on both sides of
76 * the context switch, as well as a hwsync between the last instruction for
77 * which the address of an associated storage access was translated using
78 * the current context.
79 *
80 * switch_mm_irqs_off() performs an isync after the context switch. It is
81 * the responsibility of the caller to perform the CSI and hwsync before
82 * starting/stopping the temp mm.
83 */
84static struct mm_struct *start_using_temp_mm(struct mm_struct *temp_mm)
85{
86 struct mm_struct *orig_mm = current->active_mm;
87
88 lockdep_assert_irqs_disabled();
89 switch_mm_irqs_off(orig_mm, temp_mm, current);
90
91 WARN_ON(!mm_is_thread_local(temp_mm));
92
93 suspend_breakpoints();
94 return orig_mm;
95}
96
97static void stop_using_temp_mm(struct mm_struct *temp_mm,
98 struct mm_struct *orig_mm)
99{
100 lockdep_assert_irqs_disabled();
101 switch_mm_irqs_off(temp_mm, orig_mm, current);
102 restore_breakpoints();
103}
104
105static int text_area_cpu_up(unsigned int cpu)
106{
107 struct vm_struct *area;
108 unsigned long addr;
109 int err;
110
111 area = get_vm_area(PAGE_SIZE, 0);
112 if (!area) {
113 WARN_ONCE(1, "Failed to create text area for cpu %d\n",
114 cpu);
115 return -1;
116 }
117
118 // Map/unmap the area to ensure all page tables are pre-allocated
119 addr = (unsigned long)area->addr;
120 err = map_patch_area(empty_zero_page, addr);
121 if (err)
122 return err;
123
124 unmap_patch_area(addr);
125
126 this_cpu_write(cpu_patching_context.area, area);
127 this_cpu_write(cpu_patching_context.addr, addr);
128 this_cpu_write(cpu_patching_context.pte, virt_to_kpte(addr));
129
130 return 0;
131}
132
133static int text_area_cpu_down(unsigned int cpu)
134{
135 free_vm_area(this_cpu_read(cpu_patching_context.area));
136 this_cpu_write(cpu_patching_context.area, NULL);
137 this_cpu_write(cpu_patching_context.addr, 0);
138 this_cpu_write(cpu_patching_context.pte, NULL);
139 return 0;
140}
141
142static void put_patching_mm(struct mm_struct *mm, unsigned long patching_addr)
143{
144 struct mmu_gather tlb;
145
146 tlb_gather_mmu(&tlb, mm);
147 free_pgd_range(&tlb, patching_addr, patching_addr + PAGE_SIZE, 0, 0);
148 mmput(mm);
149}
150
151static int text_area_cpu_up_mm(unsigned int cpu)
152{
153 struct mm_struct *mm;
154 unsigned long addr;
155 pte_t *pte;
156 spinlock_t *ptl;
157
158 mm = mm_alloc();
159 if (WARN_ON(!mm))
160 goto fail_no_mm;
161
162 /*
163 * Choose a random page-aligned address from the interval
164 * [PAGE_SIZE .. DEFAULT_MAP_WINDOW - PAGE_SIZE].
165 * The lower address bound is PAGE_SIZE to avoid the zero-page.
166 */
167 addr = (1 + (get_random_long() % (DEFAULT_MAP_WINDOW / PAGE_SIZE - 2))) << PAGE_SHIFT;
168
169 /*
170 * PTE allocation uses GFP_KERNEL which means we need to
171 * pre-allocate the PTE here because we cannot do the
172 * allocation during patching when IRQs are disabled.
173 *
174 * Using get_locked_pte() to avoid open coding, the lock
175 * is unnecessary.
176 */
177 pte = get_locked_pte(mm, addr, &ptl);
178 if (!pte)
179 goto fail_no_pte;
180 pte_unmap_unlock(pte, ptl);
181
182 this_cpu_write(cpu_patching_context.mm, mm);
183 this_cpu_write(cpu_patching_context.addr, addr);
184
185 return 0;
186
187fail_no_pte:
188 put_patching_mm(mm, addr);
189fail_no_mm:
190 return -ENOMEM;
191}
192
193static int text_area_cpu_down_mm(unsigned int cpu)
194{
195 put_patching_mm(this_cpu_read(cpu_patching_context.mm),
196 this_cpu_read(cpu_patching_context.addr));
197
198 this_cpu_write(cpu_patching_context.mm, NULL);
199 this_cpu_write(cpu_patching_context.addr, 0);
200
201 return 0;
202}
203
204static __ro_after_init DEFINE_STATIC_KEY_FALSE(poking_init_done);
205
206void __init poking_init(void)
207{
208 int ret;
209
210 if (mm_patch_enabled())
211 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
212 "powerpc/text_poke_mm:online",
213 text_area_cpu_up_mm,
214 text_area_cpu_down_mm);
215 else
216 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
217 "powerpc/text_poke:online",
218 text_area_cpu_up,
219 text_area_cpu_down);
220
221 /* cpuhp_setup_state returns >= 0 on success */
222 if (WARN_ON(ret < 0))
223 return;
224
225 static_branch_enable(&poking_init_done);
226}
227
228static unsigned long get_patch_pfn(void *addr)
229{
230 if (IS_ENABLED(CONFIG_EXECMEM) && is_vmalloc_or_module_addr(addr))
231 return vmalloc_to_pfn(addr);
232 else
233 return __pa_symbol(addr) >> PAGE_SHIFT;
234}
235
236/*
237 * This can be called for kernel text or a module.
238 */
239static int map_patch_area(void *addr, unsigned long text_poke_addr)
240{
241 unsigned long pfn = get_patch_pfn(addr);
242
243 return map_kernel_page(text_poke_addr, (pfn << PAGE_SHIFT), PAGE_KERNEL);
244}
245
246static void unmap_patch_area(unsigned long addr)
247{
248 pte_t *ptep;
249 pmd_t *pmdp;
250 pud_t *pudp;
251 p4d_t *p4dp;
252 pgd_t *pgdp;
253
254 pgdp = pgd_offset_k(addr);
255 if (WARN_ON(pgd_none(*pgdp)))
256 return;
257
258 p4dp = p4d_offset(pgdp, addr);
259 if (WARN_ON(p4d_none(*p4dp)))
260 return;
261
262 pudp = pud_offset(p4dp, addr);
263 if (WARN_ON(pud_none(*pudp)))
264 return;
265
266 pmdp = pmd_offset(pudp, addr);
267 if (WARN_ON(pmd_none(*pmdp)))
268 return;
269
270 ptep = pte_offset_kernel(pmdp, addr);
271 if (WARN_ON(pte_none(*ptep)))
272 return;
273
274 /*
275 * In hash, pte_clear flushes the tlb, in radix, we have to
276 */
277 pte_clear(&init_mm, addr, ptep);
278 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
279}
280
281static int __do_patch_mem_mm(void *addr, unsigned long val, bool is_dword)
282{
283 int err;
284 u32 *patch_addr;
285 unsigned long text_poke_addr;
286 pte_t *pte;
287 unsigned long pfn = get_patch_pfn(addr);
288 struct mm_struct *patching_mm;
289 struct mm_struct *orig_mm;
290 spinlock_t *ptl;
291
292 patching_mm = __this_cpu_read(cpu_patching_context.mm);
293 text_poke_addr = __this_cpu_read(cpu_patching_context.addr);
294 patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr));
295
296 pte = get_locked_pte(patching_mm, text_poke_addr, &ptl);
297 if (!pte)
298 return -ENOMEM;
299
300 __set_pte_at(patching_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0);
301
302 /* order PTE update before use, also serves as the hwsync */
303 asm volatile("ptesync": : :"memory");
304
305 /* order context switch after arbitrary prior code */
306 isync();
307
308 orig_mm = start_using_temp_mm(patching_mm);
309
310 err = __patch_mem(addr, val, patch_addr, is_dword);
311
312 /* context synchronisation performed by __patch_instruction (isync or exception) */
313 stop_using_temp_mm(patching_mm, orig_mm);
314
315 pte_clear(patching_mm, text_poke_addr, pte);
316 /*
317 * ptesync to order PTE update before TLB invalidation done
318 * by radix__local_flush_tlb_page_psize (in _tlbiel_va)
319 */
320 local_flush_tlb_page_psize(patching_mm, text_poke_addr, mmu_virtual_psize);
321
322 pte_unmap_unlock(pte, ptl);
323
324 return err;
325}
326
327static int __do_patch_mem(void *addr, unsigned long val, bool is_dword)
328{
329 int err;
330 u32 *patch_addr;
331 unsigned long text_poke_addr;
332 pte_t *pte;
333 unsigned long pfn = get_patch_pfn(addr);
334
335 text_poke_addr = (unsigned long)__this_cpu_read(cpu_patching_context.addr) & PAGE_MASK;
336 patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr));
337
338 pte = __this_cpu_read(cpu_patching_context.pte);
339 __set_pte_at(&init_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0);
340 /* See ptesync comment in radix__set_pte_at() */
341 if (radix_enabled())
342 asm volatile("ptesync": : :"memory");
343
344 err = __patch_mem(addr, val, patch_addr, is_dword);
345
346 pte_clear(&init_mm, text_poke_addr, pte);
347 flush_tlb_kernel_range(text_poke_addr, text_poke_addr + PAGE_SIZE);
348
349 return err;
350}
351
352static int patch_mem(void *addr, unsigned long val, bool is_dword)
353{
354 int err;
355 unsigned long flags;
356
357 /*
358 * During early early boot patch_instruction is called
359 * when text_poke_area is not ready, but we still need
360 * to allow patching. We just do the plain old patching
361 */
362 if (!IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) ||
363 !static_branch_likely(&poking_init_done))
364 return __patch_mem(addr, val, addr, is_dword);
365
366 local_irq_save(flags);
367 if (mm_patch_enabled())
368 err = __do_patch_mem_mm(addr, val, is_dword);
369 else
370 err = __do_patch_mem(addr, val, is_dword);
371 local_irq_restore(flags);
372
373 return err;
374}
375
376#ifdef CONFIG_PPC64
377
378int patch_instruction(u32 *addr, ppc_inst_t instr)
379{
380 if (ppc_inst_prefixed(instr))
381 return patch_mem(addr, ppc_inst_as_ulong(instr), true);
382 else
383 return patch_mem(addr, ppc_inst_val(instr), false);
384}
385NOKPROBE_SYMBOL(patch_instruction);
386
387int patch_uint(void *addr, unsigned int val)
388{
389 if (!IS_ALIGNED((unsigned long)addr, sizeof(unsigned int)))
390 return -EINVAL;
391
392 return patch_mem(addr, val, false);
393}
394NOKPROBE_SYMBOL(patch_uint);
395
396int patch_ulong(void *addr, unsigned long val)
397{
398 if (!IS_ALIGNED((unsigned long)addr, sizeof(unsigned long)))
399 return -EINVAL;
400
401 return patch_mem(addr, val, true);
402}
403NOKPROBE_SYMBOL(patch_ulong);
404
405#else
406
407int patch_instruction(u32 *addr, ppc_inst_t instr)
408{
409 return patch_mem(addr, ppc_inst_val(instr), false);
410}
411NOKPROBE_SYMBOL(patch_instruction)
412
413#endif
414
415static int patch_memset64(u64 *addr, u64 val, size_t count)
416{
417 for (u64 *end = addr + count; addr < end; addr++)
418 __put_kernel_nofault(addr, &val, u64, failed);
419
420 return 0;
421
422failed:
423 return -EPERM;
424}
425
426static int patch_memset32(u32 *addr, u32 val, size_t count)
427{
428 for (u32 *end = addr + count; addr < end; addr++)
429 __put_kernel_nofault(addr, &val, u32, failed);
430
431 return 0;
432
433failed:
434 return -EPERM;
435}
436
437static int __patch_instructions(u32 *patch_addr, u32 *code, size_t len, bool repeat_instr)
438{
439 unsigned long start = (unsigned long)patch_addr;
440 int err;
441
442 /* Repeat instruction */
443 if (repeat_instr) {
444 ppc_inst_t instr = ppc_inst_read(code);
445
446 if (ppc_inst_prefixed(instr)) {
447 u64 val = ppc_inst_as_ulong(instr);
448
449 err = patch_memset64((u64 *)patch_addr, val, len / 8);
450 } else {
451 u32 val = ppc_inst_val(instr);
452
453 err = patch_memset32(patch_addr, val, len / 4);
454 }
455 } else {
456 err = copy_to_kernel_nofault(patch_addr, code, len);
457 }
458
459 smp_wmb(); /* smp write barrier */
460 flush_icache_range(start, start + len);
461 return err;
462}
463
464/*
465 * A page is mapped and instructions that fit the page are patched.
466 * Assumes 'len' to be (PAGE_SIZE - offset_in_page(addr)) or below.
467 */
468static int __do_patch_instructions_mm(u32 *addr, u32 *code, size_t len, bool repeat_instr)
469{
470 struct mm_struct *patching_mm, *orig_mm;
471 unsigned long pfn = get_patch_pfn(addr);
472 unsigned long text_poke_addr;
473 spinlock_t *ptl;
474 u32 *patch_addr;
475 pte_t *pte;
476 int err;
477
478 patching_mm = __this_cpu_read(cpu_patching_context.mm);
479 text_poke_addr = __this_cpu_read(cpu_patching_context.addr);
480 patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr));
481
482 pte = get_locked_pte(patching_mm, text_poke_addr, &ptl);
483 if (!pte)
484 return -ENOMEM;
485
486 __set_pte_at(patching_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0);
487
488 /* order PTE update before use, also serves as the hwsync */
489 asm volatile("ptesync" ::: "memory");
490
491 /* order context switch after arbitrary prior code */
492 isync();
493
494 orig_mm = start_using_temp_mm(patching_mm);
495
496 kasan_disable_current();
497 err = __patch_instructions(patch_addr, code, len, repeat_instr);
498 kasan_enable_current();
499
500 /* context synchronisation performed by __patch_instructions */
501 stop_using_temp_mm(patching_mm, orig_mm);
502
503 pte_clear(patching_mm, text_poke_addr, pte);
504 /*
505 * ptesync to order PTE update before TLB invalidation done
506 * by radix__local_flush_tlb_page_psize (in _tlbiel_va)
507 */
508 local_flush_tlb_page_psize(patching_mm, text_poke_addr, mmu_virtual_psize);
509
510 pte_unmap_unlock(pte, ptl);
511
512 return err;
513}
514
515/*
516 * A page is mapped and instructions that fit the page are patched.
517 * Assumes 'len' to be (PAGE_SIZE - offset_in_page(addr)) or below.
518 */
519static int __do_patch_instructions(u32 *addr, u32 *code, size_t len, bool repeat_instr)
520{
521 unsigned long pfn = get_patch_pfn(addr);
522 unsigned long text_poke_addr;
523 u32 *patch_addr;
524 pte_t *pte;
525 int err;
526
527 text_poke_addr = (unsigned long)__this_cpu_read(cpu_patching_context.addr) & PAGE_MASK;
528 patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr));
529
530 pte = __this_cpu_read(cpu_patching_context.pte);
531 __set_pte_at(&init_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0);
532 /* See ptesync comment in radix__set_pte_at() */
533 if (radix_enabled())
534 asm volatile("ptesync" ::: "memory");
535
536 err = __patch_instructions(patch_addr, code, len, repeat_instr);
537
538 pte_clear(&init_mm, text_poke_addr, pte);
539 flush_tlb_kernel_range(text_poke_addr, text_poke_addr + PAGE_SIZE);
540
541 return err;
542}
543
544/*
545 * Patch 'addr' with 'len' bytes of instructions from 'code'.
546 *
547 * If repeat_instr is true, the same instruction is filled for
548 * 'len' bytes.
549 */
550int patch_instructions(u32 *addr, u32 *code, size_t len, bool repeat_instr)
551{
552 while (len > 0) {
553 unsigned long flags;
554 size_t plen;
555 int err;
556
557 plen = min_t(size_t, PAGE_SIZE - offset_in_page(addr), len);
558
559 local_irq_save(flags);
560 if (mm_patch_enabled())
561 err = __do_patch_instructions_mm(addr, code, plen, repeat_instr);
562 else
563 err = __do_patch_instructions(addr, code, plen, repeat_instr);
564 local_irq_restore(flags);
565 if (err)
566 return err;
567
568 len -= plen;
569 addr = (u32 *)((unsigned long)addr + plen);
570 if (!repeat_instr)
571 code = (u32 *)((unsigned long)code + plen);
572 }
573
574 return 0;
575}
576NOKPROBE_SYMBOL(patch_instructions);
577
578int patch_branch(u32 *addr, unsigned long target, int flags)
579{
580 ppc_inst_t instr;
581
582 if (create_branch(&instr, addr, target, flags))
583 return -ERANGE;
584
585 return patch_instruction(addr, instr);
586}
587
588/*
589 * Helper to check if a given instruction is a conditional branch
590 * Derived from the conditional checks in analyse_instr()
591 */
592bool is_conditional_branch(ppc_inst_t instr)
593{
594 unsigned int opcode = ppc_inst_primary_opcode(instr);
595
596 if (opcode == 16) /* bc, bca, bcl, bcla */
597 return true;
598 if (opcode == 19) {
599 switch ((ppc_inst_val(instr) >> 1) & 0x3ff) {
600 case 16: /* bclr, bclrl */
601 case 528: /* bcctr, bcctrl */
602 case 560: /* bctar, bctarl */
603 return true;
604 }
605 }
606 return false;
607}
608NOKPROBE_SYMBOL(is_conditional_branch);
609
610int create_cond_branch(ppc_inst_t *instr, const u32 *addr,
611 unsigned long target, int flags)
612{
613 long offset;
614
615 offset = target;
616 if (! (flags & BRANCH_ABSOLUTE))
617 offset = offset - (unsigned long)addr;
618
619 /* Check we can represent the target in the instruction format */
620 if (!is_offset_in_cond_branch_range(offset))
621 return 1;
622
623 /* Mask out the flags and target, so they don't step on each other. */
624 *instr = ppc_inst(0x40000000 | (flags & 0x3FF0003) | (offset & 0xFFFC));
625
626 return 0;
627}
628
629int instr_is_relative_branch(ppc_inst_t instr)
630{
631 if (ppc_inst_val(instr) & BRANCH_ABSOLUTE)
632 return 0;
633
634 return instr_is_branch_iform(instr) || instr_is_branch_bform(instr);
635}
636
637int instr_is_relative_link_branch(ppc_inst_t instr)
638{
639 return instr_is_relative_branch(instr) && (ppc_inst_val(instr) & BRANCH_SET_LINK);
640}
641
642static unsigned long branch_iform_target(const u32 *instr)
643{
644 signed long imm;
645
646 imm = ppc_inst_val(ppc_inst_read(instr)) & 0x3FFFFFC;
647
648 /* If the top bit of the immediate value is set this is negative */
649 if (imm & 0x2000000)
650 imm -= 0x4000000;
651
652 if ((ppc_inst_val(ppc_inst_read(instr)) & BRANCH_ABSOLUTE) == 0)
653 imm += (unsigned long)instr;
654
655 return (unsigned long)imm;
656}
657
658static unsigned long branch_bform_target(const u32 *instr)
659{
660 signed long imm;
661
662 imm = ppc_inst_val(ppc_inst_read(instr)) & 0xFFFC;
663
664 /* If the top bit of the immediate value is set this is negative */
665 if (imm & 0x8000)
666 imm -= 0x10000;
667
668 if ((ppc_inst_val(ppc_inst_read(instr)) & BRANCH_ABSOLUTE) == 0)
669 imm += (unsigned long)instr;
670
671 return (unsigned long)imm;
672}
673
674unsigned long branch_target(const u32 *instr)
675{
676 if (instr_is_branch_iform(ppc_inst_read(instr)))
677 return branch_iform_target(instr);
678 else if (instr_is_branch_bform(ppc_inst_read(instr)))
679 return branch_bform_target(instr);
680
681 return 0;
682}
683
684int translate_branch(ppc_inst_t *instr, const u32 *dest, const u32 *src)
685{
686 unsigned long target;
687 target = branch_target(src);
688
689 if (instr_is_branch_iform(ppc_inst_read(src)))
690 return create_branch(instr, dest, target,
691 ppc_inst_val(ppc_inst_read(src)));
692 else if (instr_is_branch_bform(ppc_inst_read(src)))
693 return create_cond_branch(instr, dest, target,
694 ppc_inst_val(ppc_inst_read(src)));
695
696 return 1;
697}