Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v6.8
   1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
   2/* Copyright (c) 2018 Facebook */
   3
   4#include <byteswap.h>
   5#include <endian.h>
   6#include <stdio.h>
   7#include <stdlib.h>
   8#include <string.h>
   9#include <fcntl.h>
  10#include <unistd.h>
  11#include <errno.h>
  12#include <sys/utsname.h>
  13#include <sys/param.h>
  14#include <sys/stat.h>
  15#include <linux/kernel.h>
  16#include <linux/err.h>
  17#include <linux/btf.h>
  18#include <gelf.h>
  19#include "btf.h"
  20#include "bpf.h"
  21#include "libbpf.h"
  22#include "libbpf_internal.h"
  23#include "hashmap.h"
  24#include "strset.h"
 
 
  25
  26#define BTF_MAX_NR_TYPES 0x7fffffffU
  27#define BTF_MAX_STR_OFFSET 0x7fffffffU
  28
  29static struct btf_type btf_void;
  30
  31struct btf {
  32	/* raw BTF data in native endianness */
  33	void *raw_data;
  34	/* raw BTF data in non-native endianness */
  35	void *raw_data_swapped;
  36	__u32 raw_size;
  37	/* whether target endianness differs from the native one */
  38	bool swapped_endian;
  39
  40	/*
  41	 * When BTF is loaded from an ELF or raw memory it is stored
  42	 * in a contiguous memory block. The hdr, type_data, and, strs_data
  43	 * point inside that memory region to their respective parts of BTF
  44	 * representation:
  45	 *
  46	 * +--------------------------------+
  47	 * |  Header  |  Types  |  Strings  |
  48	 * +--------------------------------+
  49	 * ^          ^         ^
  50	 * |          |         |
  51	 * hdr        |         |
  52	 * types_data-+         |
  53	 * strs_data------------+
  54	 *
  55	 * If BTF data is later modified, e.g., due to types added or
  56	 * removed, BTF deduplication performed, etc, this contiguous
  57	 * representation is broken up into three independently allocated
  58	 * memory regions to be able to modify them independently.
  59	 * raw_data is nulled out at that point, but can be later allocated
  60	 * and cached again if user calls btf__raw_data(), at which point
  61	 * raw_data will contain a contiguous copy of header, types, and
  62	 * strings:
  63	 *
  64	 * +----------+  +---------+  +-----------+
  65	 * |  Header  |  |  Types  |  |  Strings  |
  66	 * +----------+  +---------+  +-----------+
  67	 * ^             ^            ^
  68	 * |             |            |
  69	 * hdr           |            |
  70	 * types_data----+            |
  71	 * strset__data(strs_set)-----+
  72	 *
  73	 *               +----------+---------+-----------+
  74	 *               |  Header  |  Types  |  Strings  |
  75	 * raw_data----->+----------+---------+-----------+
  76	 */
  77	struct btf_header *hdr;
  78
  79	void *types_data;
  80	size_t types_data_cap; /* used size stored in hdr->type_len */
  81
  82	/* type ID to `struct btf_type *` lookup index
  83	 * type_offs[0] corresponds to the first non-VOID type:
  84	 *   - for base BTF it's type [1];
  85	 *   - for split BTF it's the first non-base BTF type.
  86	 */
  87	__u32 *type_offs;
  88	size_t type_offs_cap;
  89	/* number of types in this BTF instance:
  90	 *   - doesn't include special [0] void type;
  91	 *   - for split BTF counts number of types added on top of base BTF.
  92	 */
  93	__u32 nr_types;
  94	/* if not NULL, points to the base BTF on top of which the current
  95	 * split BTF is based
  96	 */
  97	struct btf *base_btf;
  98	/* BTF type ID of the first type in this BTF instance:
  99	 *   - for base BTF it's equal to 1;
 100	 *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
 101	 */
 102	int start_id;
 103	/* logical string offset of this BTF instance:
 104	 *   - for base BTF it's equal to 0;
 105	 *   - for split BTF it's equal to total size of base BTF's string section size.
 106	 */
 107	int start_str_off;
 108
 109	/* only one of strs_data or strs_set can be non-NULL, depending on
 110	 * whether BTF is in a modifiable state (strs_set is used) or not
 111	 * (strs_data points inside raw_data)
 112	 */
 113	void *strs_data;
 114	/* a set of unique strings */
 115	struct strset *strs_set;
 116	/* whether strings are already deduplicated */
 117	bool strs_deduped;
 118
 119	/* BTF object FD, if loaded into kernel */
 120	int fd;
 121
 122	/* Pointer size (in bytes) for a target architecture of this BTF */
 123	int ptr_sz;
 124};
 125
 126static inline __u64 ptr_to_u64(const void *ptr)
 127{
 128	return (__u64) (unsigned long) ptr;
 129}
 130
 131/* Ensure given dynamically allocated memory region pointed to by *data* with
 132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
 133 * memory to accommodate *add_cnt* new elements, assuming *cur_cnt* elements
 134 * are already used. At most *max_cnt* elements can be ever allocated.
 135 * If necessary, memory is reallocated and all existing data is copied over,
 136 * new pointer to the memory region is stored at *data, new memory region
 137 * capacity (in number of elements) is stored in *cap.
 138 * On success, memory pointer to the beginning of unused memory is returned.
 139 * On error, NULL is returned.
 140 */
 141void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
 142		     size_t cur_cnt, size_t max_cnt, size_t add_cnt)
 143{
 144	size_t new_cnt;
 145	void *new_data;
 146
 147	if (cur_cnt + add_cnt <= *cap_cnt)
 148		return *data + cur_cnt * elem_sz;
 149
 150	/* requested more than the set limit */
 151	if (cur_cnt + add_cnt > max_cnt)
 152		return NULL;
 153
 154	new_cnt = *cap_cnt;
 155	new_cnt += new_cnt / 4;		  /* expand by 25% */
 156	if (new_cnt < 16)		  /* but at least 16 elements */
 157		new_cnt = 16;
 158	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
 159		new_cnt = max_cnt;
 160	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
 161		new_cnt = cur_cnt + add_cnt;
 162
 163	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
 164	if (!new_data)
 165		return NULL;
 166
 167	/* zero out newly allocated portion of memory */
 168	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
 169
 170	*data = new_data;
 171	*cap_cnt = new_cnt;
 172	return new_data + cur_cnt * elem_sz;
 173}
 174
 175/* Ensure given dynamically allocated memory region has enough allocated space
 176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each
 177 */
 178int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
 179{
 180	void *p;
 181
 182	if (need_cnt <= *cap_cnt)
 183		return 0;
 184
 185	p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
 186	if (!p)
 187		return -ENOMEM;
 188
 189	return 0;
 190}
 191
 192static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt)
 193{
 194	return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
 195			      btf->nr_types, BTF_MAX_NR_TYPES, add_cnt);
 196}
 197
 198static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
 199{
 200	__u32 *p;
 201
 202	p = btf_add_type_offs_mem(btf, 1);
 203	if (!p)
 204		return -ENOMEM;
 205
 206	*p = type_off;
 207	return 0;
 208}
 209
 210static void btf_bswap_hdr(struct btf_header *h)
 211{
 212	h->magic = bswap_16(h->magic);
 213	h->hdr_len = bswap_32(h->hdr_len);
 214	h->type_off = bswap_32(h->type_off);
 215	h->type_len = bswap_32(h->type_len);
 216	h->str_off = bswap_32(h->str_off);
 217	h->str_len = bswap_32(h->str_len);
 218}
 219
 220static int btf_parse_hdr(struct btf *btf)
 221{
 222	struct btf_header *hdr = btf->hdr;
 223	__u32 meta_left;
 224
 225	if (btf->raw_size < sizeof(struct btf_header)) {
 226		pr_debug("BTF header not found\n");
 227		return -EINVAL;
 228	}
 229
 230	if (hdr->magic == bswap_16(BTF_MAGIC)) {
 231		btf->swapped_endian = true;
 232		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
 233			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
 234				bswap_32(hdr->hdr_len));
 235			return -ENOTSUP;
 236		}
 237		btf_bswap_hdr(hdr);
 238	} else if (hdr->magic != BTF_MAGIC) {
 239		pr_debug("Invalid BTF magic: %x\n", hdr->magic);
 
 
 
 
 
 
 
 
 240		return -EINVAL;
 241	}
 242
 243	if (btf->raw_size < hdr->hdr_len) {
 244		pr_debug("BTF header len %u larger than data size %u\n",
 245			 hdr->hdr_len, btf->raw_size);
 246		return -EINVAL;
 247	}
 248
 249	meta_left = btf->raw_size - hdr->hdr_len;
 250	if (meta_left < (long long)hdr->str_off + hdr->str_len) {
 251		pr_debug("Invalid BTF total size: %u\n", btf->raw_size);
 252		return -EINVAL;
 253	}
 254
 255	if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) {
 256		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
 257			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
 258		return -EINVAL;
 259	}
 260
 261	if (hdr->type_off % 4) {
 262		pr_debug("BTF type section is not aligned to 4 bytes\n");
 263		return -EINVAL;
 264	}
 265
 
 
 266	return 0;
 267}
 268
 269static int btf_parse_str_sec(struct btf *btf)
 270{
 271	const struct btf_header *hdr = btf->hdr;
 272	const char *start = btf->strs_data;
 273	const char *end = start + btf->hdr->str_len;
 274
 275	if (btf->base_btf && hdr->str_len == 0)
 276		return 0;
 277	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
 278		pr_debug("Invalid BTF string section\n");
 279		return -EINVAL;
 280	}
 281	if (!btf->base_btf && start[0]) {
 282		pr_debug("Invalid BTF string section\n");
 283		return -EINVAL;
 284	}
 
 
 
 285	return 0;
 286}
 287
 288static int btf_type_size(const struct btf_type *t)
 289{
 290	const int base_size = sizeof(struct btf_type);
 291	__u16 vlen = btf_vlen(t);
 292
 293	switch (btf_kind(t)) {
 294	case BTF_KIND_FWD:
 295	case BTF_KIND_CONST:
 296	case BTF_KIND_VOLATILE:
 297	case BTF_KIND_RESTRICT:
 298	case BTF_KIND_PTR:
 299	case BTF_KIND_TYPEDEF:
 300	case BTF_KIND_FUNC:
 301	case BTF_KIND_FLOAT:
 302	case BTF_KIND_TYPE_TAG:
 303		return base_size;
 304	case BTF_KIND_INT:
 305		return base_size + sizeof(__u32);
 306	case BTF_KIND_ENUM:
 307		return base_size + vlen * sizeof(struct btf_enum);
 308	case BTF_KIND_ENUM64:
 309		return base_size + vlen * sizeof(struct btf_enum64);
 310	case BTF_KIND_ARRAY:
 311		return base_size + sizeof(struct btf_array);
 312	case BTF_KIND_STRUCT:
 313	case BTF_KIND_UNION:
 314		return base_size + vlen * sizeof(struct btf_member);
 315	case BTF_KIND_FUNC_PROTO:
 316		return base_size + vlen * sizeof(struct btf_param);
 317	case BTF_KIND_VAR:
 318		return base_size + sizeof(struct btf_var);
 319	case BTF_KIND_DATASEC:
 320		return base_size + vlen * sizeof(struct btf_var_secinfo);
 321	case BTF_KIND_DECL_TAG:
 322		return base_size + sizeof(struct btf_decl_tag);
 323	default:
 324		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 325		return -EINVAL;
 326	}
 327}
 328
 329static void btf_bswap_type_base(struct btf_type *t)
 330{
 331	t->name_off = bswap_32(t->name_off);
 332	t->info = bswap_32(t->info);
 333	t->type = bswap_32(t->type);
 334}
 335
 336static int btf_bswap_type_rest(struct btf_type *t)
 337{
 338	struct btf_var_secinfo *v;
 339	struct btf_enum64 *e64;
 340	struct btf_member *m;
 341	struct btf_array *a;
 342	struct btf_param *p;
 343	struct btf_enum *e;
 344	__u16 vlen = btf_vlen(t);
 345	int i;
 346
 347	switch (btf_kind(t)) {
 348	case BTF_KIND_FWD:
 349	case BTF_KIND_CONST:
 350	case BTF_KIND_VOLATILE:
 351	case BTF_KIND_RESTRICT:
 352	case BTF_KIND_PTR:
 353	case BTF_KIND_TYPEDEF:
 354	case BTF_KIND_FUNC:
 355	case BTF_KIND_FLOAT:
 356	case BTF_KIND_TYPE_TAG:
 357		return 0;
 358	case BTF_KIND_INT:
 359		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
 360		return 0;
 361	case BTF_KIND_ENUM:
 362		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
 363			e->name_off = bswap_32(e->name_off);
 364			e->val = bswap_32(e->val);
 365		}
 366		return 0;
 367	case BTF_KIND_ENUM64:
 368		for (i = 0, e64 = btf_enum64(t); i < vlen; i++, e64++) {
 369			e64->name_off = bswap_32(e64->name_off);
 370			e64->val_lo32 = bswap_32(e64->val_lo32);
 371			e64->val_hi32 = bswap_32(e64->val_hi32);
 372		}
 373		return 0;
 374	case BTF_KIND_ARRAY:
 375		a = btf_array(t);
 376		a->type = bswap_32(a->type);
 377		a->index_type = bswap_32(a->index_type);
 378		a->nelems = bswap_32(a->nelems);
 379		return 0;
 380	case BTF_KIND_STRUCT:
 381	case BTF_KIND_UNION:
 382		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
 383			m->name_off = bswap_32(m->name_off);
 384			m->type = bswap_32(m->type);
 385			m->offset = bswap_32(m->offset);
 386		}
 387		return 0;
 388	case BTF_KIND_FUNC_PROTO:
 389		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
 390			p->name_off = bswap_32(p->name_off);
 391			p->type = bswap_32(p->type);
 392		}
 393		return 0;
 394	case BTF_KIND_VAR:
 395		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
 396		return 0;
 397	case BTF_KIND_DATASEC:
 398		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
 399			v->type = bswap_32(v->type);
 400			v->offset = bswap_32(v->offset);
 401			v->size = bswap_32(v->size);
 402		}
 403		return 0;
 404	case BTF_KIND_DECL_TAG:
 405		btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx);
 406		return 0;
 407	default:
 408		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 409		return -EINVAL;
 410	}
 411}
 412
 413static int btf_parse_type_sec(struct btf *btf)
 414{
 415	struct btf_header *hdr = btf->hdr;
 416	void *next_type = btf->types_data;
 417	void *end_type = next_type + hdr->type_len;
 418	int err, type_size;
 419
 420	while (next_type + sizeof(struct btf_type) <= end_type) {
 421		if (btf->swapped_endian)
 422			btf_bswap_type_base(next_type);
 
 423
 424		type_size = btf_type_size(next_type);
 425		if (type_size < 0)
 426			return type_size;
 427		if (next_type + type_size > end_type) {
 428			pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
 429			return -EINVAL;
 430		}
 431
 432		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
 433			return -EINVAL;
 434
 435		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
 436		if (err)
 437			return err;
 438
 439		next_type += type_size;
 440		btf->nr_types++;
 441	}
 442
 443	if (next_type != end_type) {
 444		pr_warn("BTF types data is malformed\n");
 445		return -EINVAL;
 446	}
 447
 448	return 0;
 449}
 450
 451static int btf_validate_str(const struct btf *btf, __u32 str_off, const char *what, __u32 type_id)
 452{
 453	const char *s;
 454
 455	s = btf__str_by_offset(btf, str_off);
 456	if (!s) {
 457		pr_warn("btf: type [%u]: invalid %s (string offset %u)\n", type_id, what, str_off);
 458		return -EINVAL;
 459	}
 460
 461	return 0;
 462}
 463
 464static int btf_validate_id(const struct btf *btf, __u32 id, __u32 ctx_id)
 465{
 466	const struct btf_type *t;
 467
 468	t = btf__type_by_id(btf, id);
 469	if (!t) {
 470		pr_warn("btf: type [%u]: invalid referenced type ID %u\n", ctx_id, id);
 471		return -EINVAL;
 472	}
 473
 474	return 0;
 475}
 476
 477static int btf_validate_type(const struct btf *btf, const struct btf_type *t, __u32 id)
 478{
 479	__u32 kind = btf_kind(t);
 480	int err, i, n;
 481
 482	err = btf_validate_str(btf, t->name_off, "type name", id);
 483	if (err)
 484		return err;
 485
 486	switch (kind) {
 487	case BTF_KIND_UNKN:
 488	case BTF_KIND_INT:
 489	case BTF_KIND_FWD:
 490	case BTF_KIND_FLOAT:
 491		break;
 492	case BTF_KIND_PTR:
 493	case BTF_KIND_TYPEDEF:
 494	case BTF_KIND_VOLATILE:
 495	case BTF_KIND_CONST:
 496	case BTF_KIND_RESTRICT:
 497	case BTF_KIND_VAR:
 498	case BTF_KIND_DECL_TAG:
 499	case BTF_KIND_TYPE_TAG:
 500		err = btf_validate_id(btf, t->type, id);
 501		if (err)
 502			return err;
 503		break;
 504	case BTF_KIND_ARRAY: {
 505		const struct btf_array *a = btf_array(t);
 506
 507		err = btf_validate_id(btf, a->type, id);
 508		err = err ?: btf_validate_id(btf, a->index_type, id);
 509		if (err)
 510			return err;
 511		break;
 512	}
 513	case BTF_KIND_STRUCT:
 514	case BTF_KIND_UNION: {
 515		const struct btf_member *m = btf_members(t);
 516
 517		n = btf_vlen(t);
 518		for (i = 0; i < n; i++, m++) {
 519			err = btf_validate_str(btf, m->name_off, "field name", id);
 520			err = err ?: btf_validate_id(btf, m->type, id);
 521			if (err)
 522				return err;
 523		}
 524		break;
 525	}
 526	case BTF_KIND_ENUM: {
 527		const struct btf_enum *m = btf_enum(t);
 528
 529		n = btf_vlen(t);
 530		for (i = 0; i < n; i++, m++) {
 531			err = btf_validate_str(btf, m->name_off, "enum name", id);
 532			if (err)
 533				return err;
 534		}
 535		break;
 536	}
 537	case BTF_KIND_ENUM64: {
 538		const struct btf_enum64 *m = btf_enum64(t);
 539
 540		n = btf_vlen(t);
 541		for (i = 0; i < n; i++, m++) {
 542			err = btf_validate_str(btf, m->name_off, "enum name", id);
 543			if (err)
 544				return err;
 545		}
 546		break;
 547	}
 548	case BTF_KIND_FUNC: {
 549		const struct btf_type *ft;
 550
 551		err = btf_validate_id(btf, t->type, id);
 552		if (err)
 553			return err;
 554		ft = btf__type_by_id(btf, t->type);
 555		if (btf_kind(ft) != BTF_KIND_FUNC_PROTO) {
 556			pr_warn("btf: type [%u]: referenced type [%u] is not FUNC_PROTO\n", id, t->type);
 557			return -EINVAL;
 558		}
 559		break;
 560	}
 561	case BTF_KIND_FUNC_PROTO: {
 562		const struct btf_param *m = btf_params(t);
 563
 564		n = btf_vlen(t);
 565		for (i = 0; i < n; i++, m++) {
 566			err = btf_validate_str(btf, m->name_off, "param name", id);
 567			err = err ?: btf_validate_id(btf, m->type, id);
 568			if (err)
 569				return err;
 570		}
 571		break;
 572	}
 573	case BTF_KIND_DATASEC: {
 574		const struct btf_var_secinfo *m = btf_var_secinfos(t);
 575
 576		n = btf_vlen(t);
 577		for (i = 0; i < n; i++, m++) {
 578			err = btf_validate_id(btf, m->type, id);
 579			if (err)
 580				return err;
 581		}
 582		break;
 583	}
 584	default:
 585		pr_warn("btf: type [%u]: unrecognized kind %u\n", id, kind);
 586		return -EINVAL;
 587	}
 588	return 0;
 589}
 590
 591/* Validate basic sanity of BTF. It's intentionally less thorough than
 592 * kernel's validation and validates only properties of BTF that libbpf relies
 593 * on to be correct (e.g., valid type IDs, valid string offsets, etc)
 594 */
 595static int btf_sanity_check(const struct btf *btf)
 596{
 597	const struct btf_type *t;
 598	__u32 i, n = btf__type_cnt(btf);
 599	int err;
 600
 601	for (i = 1; i < n; i++) {
 602		t = btf_type_by_id(btf, i);
 603		err = btf_validate_type(btf, t, i);
 604		if (err)
 605			return err;
 606	}
 607	return 0;
 608}
 609
 610__u32 btf__type_cnt(const struct btf *btf)
 611{
 612	return btf->start_id + btf->nr_types;
 613}
 614
 615const struct btf *btf__base_btf(const struct btf *btf)
 616{
 617	return btf->base_btf;
 618}
 619
 620/* internal helper returning non-const pointer to a type */
 621struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id)
 622{
 623	if (type_id == 0)
 624		return &btf_void;
 625	if (type_id < btf->start_id)
 626		return btf_type_by_id(btf->base_btf, type_id);
 627	return btf->types_data + btf->type_offs[type_id - btf->start_id];
 628}
 629
 630const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
 631{
 632	if (type_id >= btf->start_id + btf->nr_types)
 633		return errno = EINVAL, NULL;
 634	return btf_type_by_id((struct btf *)btf, type_id);
 
 635}
 636
 637static int determine_ptr_size(const struct btf *btf)
 638{
 639	static const char * const long_aliases[] = {
 640		"long",
 641		"long int",
 642		"int long",
 643		"unsigned long",
 644		"long unsigned",
 645		"unsigned long int",
 646		"unsigned int long",
 647		"long unsigned int",
 648		"long int unsigned",
 649		"int unsigned long",
 650		"int long unsigned",
 651	};
 652	const struct btf_type *t;
 653	const char *name;
 654	int i, j, n;
 655
 656	if (btf->base_btf && btf->base_btf->ptr_sz > 0)
 657		return btf->base_btf->ptr_sz;
 658
 659	n = btf__type_cnt(btf);
 660	for (i = 1; i < n; i++) {
 661		t = btf__type_by_id(btf, i);
 662		if (!btf_is_int(t))
 663			continue;
 664
 665		if (t->size != 4 && t->size != 8)
 666			continue;
 667
 668		name = btf__name_by_offset(btf, t->name_off);
 669		if (!name)
 670			continue;
 671
 672		for (j = 0; j < ARRAY_SIZE(long_aliases); j++) {
 673			if (strcmp(name, long_aliases[j]) == 0)
 674				return t->size;
 
 
 675		}
 676	}
 677
 678	return -1;
 679}
 680
 681static size_t btf_ptr_sz(const struct btf *btf)
 682{
 683	if (!btf->ptr_sz)
 684		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 685	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
 686}
 687
 688/* Return pointer size this BTF instance assumes. The size is heuristically
 689 * determined by looking for 'long' or 'unsigned long' integer type and
 690 * recording its size in bytes. If BTF type information doesn't have any such
 691 * type, this function returns 0. In the latter case, native architecture's
 692 * pointer size is assumed, so will be either 4 or 8, depending on
 693 * architecture that libbpf was compiled for. It's possible to override
 694 * guessed value by using btf__set_pointer_size() API.
 695 */
 696size_t btf__pointer_size(const struct btf *btf)
 697{
 698	if (!btf->ptr_sz)
 699		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 700
 701	if (btf->ptr_sz < 0)
 702		/* not enough BTF type info to guess */
 703		return 0;
 704
 705	return btf->ptr_sz;
 706}
 707
 708/* Override or set pointer size in bytes. Only values of 4 and 8 are
 709 * supported.
 710 */
 711int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
 712{
 713	if (ptr_sz != 4 && ptr_sz != 8)
 714		return libbpf_err(-EINVAL);
 715	btf->ptr_sz = ptr_sz;
 716	return 0;
 717}
 718
 719static bool is_host_big_endian(void)
 720{
 721#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
 722	return false;
 723#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
 724	return true;
 725#else
 726# error "Unrecognized __BYTE_ORDER__"
 727#endif
 728}
 729
 730enum btf_endianness btf__endianness(const struct btf *btf)
 731{
 732	if (is_host_big_endian())
 733		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
 734	else
 735		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
 736}
 737
 738int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
 739{
 740	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
 741		return libbpf_err(-EINVAL);
 742
 743	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
 744	if (!btf->swapped_endian) {
 745		free(btf->raw_data_swapped);
 746		btf->raw_data_swapped = NULL;
 747	}
 748	return 0;
 749}
 750
 751static bool btf_type_is_void(const struct btf_type *t)
 752{
 753	return t == &btf_void || btf_is_fwd(t);
 754}
 755
 756static bool btf_type_is_void_or_null(const struct btf_type *t)
 757{
 758	return !t || btf_type_is_void(t);
 759}
 760
 761#define MAX_RESOLVE_DEPTH 32
 762
 763__s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
 764{
 765	const struct btf_array *array;
 766	const struct btf_type *t;
 767	__u32 nelems = 1;
 768	__s64 size = -1;
 769	int i;
 770
 771	t = btf__type_by_id(btf, type_id);
 772	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
 
 773		switch (btf_kind(t)) {
 774		case BTF_KIND_INT:
 775		case BTF_KIND_STRUCT:
 776		case BTF_KIND_UNION:
 777		case BTF_KIND_ENUM:
 778		case BTF_KIND_ENUM64:
 779		case BTF_KIND_DATASEC:
 780		case BTF_KIND_FLOAT:
 781			size = t->size;
 782			goto done;
 783		case BTF_KIND_PTR:
 784			size = btf_ptr_sz(btf);
 785			goto done;
 786		case BTF_KIND_TYPEDEF:
 787		case BTF_KIND_VOLATILE:
 788		case BTF_KIND_CONST:
 789		case BTF_KIND_RESTRICT:
 790		case BTF_KIND_VAR:
 791		case BTF_KIND_DECL_TAG:
 792		case BTF_KIND_TYPE_TAG:
 793			type_id = t->type;
 794			break;
 795		case BTF_KIND_ARRAY:
 796			array = btf_array(t);
 797			if (nelems && array->nelems > UINT32_MAX / nelems)
 798				return libbpf_err(-E2BIG);
 799			nelems *= array->nelems;
 800			type_id = array->type;
 801			break;
 802		default:
 803			return libbpf_err(-EINVAL);
 804		}
 805
 806		t = btf__type_by_id(btf, type_id);
 807	}
 808
 809done:
 810	if (size < 0)
 811		return libbpf_err(-EINVAL);
 812	if (nelems && size > UINT32_MAX / nelems)
 813		return libbpf_err(-E2BIG);
 814
 815	return nelems * size;
 816}
 817
 818int btf__align_of(const struct btf *btf, __u32 id)
 819{
 820	const struct btf_type *t = btf__type_by_id(btf, id);
 821	__u16 kind = btf_kind(t);
 822
 823	switch (kind) {
 824	case BTF_KIND_INT:
 825	case BTF_KIND_ENUM:
 826	case BTF_KIND_ENUM64:
 827	case BTF_KIND_FLOAT:
 828		return min(btf_ptr_sz(btf), (size_t)t->size);
 829	case BTF_KIND_PTR:
 830		return btf_ptr_sz(btf);
 831	case BTF_KIND_TYPEDEF:
 832	case BTF_KIND_VOLATILE:
 833	case BTF_KIND_CONST:
 834	case BTF_KIND_RESTRICT:
 835	case BTF_KIND_TYPE_TAG:
 836		return btf__align_of(btf, t->type);
 837	case BTF_KIND_ARRAY:
 838		return btf__align_of(btf, btf_array(t)->type);
 839	case BTF_KIND_STRUCT:
 840	case BTF_KIND_UNION: {
 841		const struct btf_member *m = btf_members(t);
 842		__u16 vlen = btf_vlen(t);
 843		int i, max_align = 1, align;
 844
 845		for (i = 0; i < vlen; i++, m++) {
 846			align = btf__align_of(btf, m->type);
 847			if (align <= 0)
 848				return libbpf_err(align);
 849			max_align = max(max_align, align);
 850
 851			/* if field offset isn't aligned according to field
 852			 * type's alignment, then struct must be packed
 853			 */
 854			if (btf_member_bitfield_size(t, i) == 0 &&
 855			    (m->offset % (8 * align)) != 0)
 856				return 1;
 857		}
 858
 859		/* if struct/union size isn't a multiple of its alignment,
 860		 * then struct must be packed
 861		 */
 862		if ((t->size % max_align) != 0)
 863			return 1;
 864
 865		return max_align;
 866	}
 867	default:
 868		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
 869		return errno = EINVAL, 0;
 870	}
 871}
 872
 873int btf__resolve_type(const struct btf *btf, __u32 type_id)
 874{
 875	const struct btf_type *t;
 876	int depth = 0;
 877
 878	t = btf__type_by_id(btf, type_id);
 879	while (depth < MAX_RESOLVE_DEPTH &&
 880	       !btf_type_is_void_or_null(t) &&
 881	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
 882		type_id = t->type;
 883		t = btf__type_by_id(btf, type_id);
 884		depth++;
 885	}
 886
 887	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
 888		return libbpf_err(-EINVAL);
 889
 890	return type_id;
 891}
 892
 893__s32 btf__find_by_name(const struct btf *btf, const char *type_name)
 894{
 895	__u32 i, nr_types = btf__type_cnt(btf);
 896
 897	if (!strcmp(type_name, "void"))
 898		return 0;
 899
 900	for (i = 1; i < nr_types; i++) {
 901		const struct btf_type *t = btf__type_by_id(btf, i);
 902		const char *name = btf__name_by_offset(btf, t->name_off);
 903
 904		if (name && !strcmp(type_name, name))
 905			return i;
 906	}
 907
 908	return libbpf_err(-ENOENT);
 909}
 910
 911static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id,
 912				   const char *type_name, __u32 kind)
 913{
 914	__u32 i, nr_types = btf__type_cnt(btf);
 915
 916	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
 917		return 0;
 918
 919	for (i = start_id; i < nr_types; i++) {
 920		const struct btf_type *t = btf__type_by_id(btf, i);
 921		const char *name;
 922
 923		if (btf_kind(t) != kind)
 924			continue;
 925		name = btf__name_by_offset(btf, t->name_off);
 926		if (name && !strcmp(type_name, name))
 927			return i;
 928	}
 929
 930	return libbpf_err(-ENOENT);
 931}
 932
 933__s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name,
 934				 __u32 kind)
 935{
 936	return btf_find_by_name_kind(btf, btf->start_id, type_name, kind);
 937}
 938
 939__s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
 940			     __u32 kind)
 941{
 942	return btf_find_by_name_kind(btf, 1, type_name, kind);
 943}
 944
 945static bool btf_is_modifiable(const struct btf *btf)
 946{
 947	return (void *)btf->hdr != btf->raw_data;
 948}
 949
 950void btf__free(struct btf *btf)
 951{
 952	if (IS_ERR_OR_NULL(btf))
 953		return;
 954
 955	if (btf->fd >= 0)
 956		close(btf->fd);
 957
 958	if (btf_is_modifiable(btf)) {
 959		/* if BTF was modified after loading, it will have a split
 960		 * in-memory representation for header, types, and strings
 961		 * sections, so we need to free all of them individually. It
 962		 * might still have a cached contiguous raw data present,
 963		 * which will be unconditionally freed below.
 964		 */
 965		free(btf->hdr);
 966		free(btf->types_data);
 967		strset__free(btf->strs_set);
 968	}
 969	free(btf->raw_data);
 970	free(btf->raw_data_swapped);
 971	free(btf->type_offs);
 972	free(btf);
 973}
 974
 975static struct btf *btf_new_empty(struct btf *base_btf)
 976{
 977	struct btf *btf;
 978
 979	btf = calloc(1, sizeof(*btf));
 980	if (!btf)
 981		return ERR_PTR(-ENOMEM);
 982
 983	btf->nr_types = 0;
 984	btf->start_id = 1;
 985	btf->start_str_off = 0;
 986	btf->fd = -1;
 987	btf->ptr_sz = sizeof(void *);
 988	btf->swapped_endian = false;
 989
 990	if (base_btf) {
 991		btf->base_btf = base_btf;
 992		btf->start_id = btf__type_cnt(base_btf);
 993		btf->start_str_off = base_btf->hdr->str_len;
 994	}
 995
 996	/* +1 for empty string at offset 0 */
 997	btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
 998	btf->raw_data = calloc(1, btf->raw_size);
 999	if (!btf->raw_data) {
1000		free(btf);
1001		return ERR_PTR(-ENOMEM);
1002	}
1003
1004	btf->hdr = btf->raw_data;
1005	btf->hdr->hdr_len = sizeof(struct btf_header);
1006	btf->hdr->magic = BTF_MAGIC;
1007	btf->hdr->version = BTF_VERSION;
1008
1009	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
1010	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
1011	btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
1012
1013	return btf;
1014}
1015
1016struct btf *btf__new_empty(void)
1017{
1018	return libbpf_ptr(btf_new_empty(NULL));
1019}
1020
1021struct btf *btf__new_empty_split(struct btf *base_btf)
1022{
1023	return libbpf_ptr(btf_new_empty(base_btf));
1024}
1025
1026static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
1027{
1028	struct btf *btf;
1029	int err;
1030
1031	btf = calloc(1, sizeof(struct btf));
1032	if (!btf)
1033		return ERR_PTR(-ENOMEM);
1034
1035	btf->nr_types = 0;
1036	btf->start_id = 1;
1037	btf->start_str_off = 0;
1038	btf->fd = -1;
1039
1040	if (base_btf) {
1041		btf->base_btf = base_btf;
1042		btf->start_id = btf__type_cnt(base_btf);
1043		btf->start_str_off = base_btf->hdr->str_len;
1044	}
1045
1046	btf->raw_data = malloc(size);
1047	if (!btf->raw_data) {
1048		err = -ENOMEM;
1049		goto done;
1050	}
1051	memcpy(btf->raw_data, data, size);
1052	btf->raw_size = size;
1053
1054	btf->hdr = btf->raw_data;
 
 
1055	err = btf_parse_hdr(btf);
1056	if (err)
1057		goto done;
1058
1059	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
1060	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
1061
1062	err = btf_parse_str_sec(btf);
1063	err = err ?: btf_parse_type_sec(btf);
1064	err = err ?: btf_sanity_check(btf);
1065	if (err)
1066		goto done;
1067
 
 
1068done:
1069	if (err) {
1070		btf__free(btf);
1071		return ERR_PTR(err);
1072	}
1073
1074	return btf;
1075}
1076
1077struct btf *btf__new(const void *data, __u32 size)
1078{
1079	return libbpf_ptr(btf_new(data, size, NULL));
 
 
 
 
 
 
1080}
1081
1082static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
1083				 struct btf_ext **btf_ext)
1084{
1085	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
1086	int err = 0, fd = -1, idx = 0;
1087	struct btf *btf = NULL;
1088	Elf_Scn *scn = NULL;
1089	Elf *elf = NULL;
1090	GElf_Ehdr ehdr;
1091	size_t shstrndx;
1092
1093	if (elf_version(EV_CURRENT) == EV_NONE) {
1094		pr_warn("failed to init libelf for %s\n", path);
1095		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
1096	}
1097
1098	fd = open(path, O_RDONLY | O_CLOEXEC);
1099	if (fd < 0) {
1100		err = -errno;
1101		pr_warn("failed to open %s: %s\n", path, strerror(errno));
1102		return ERR_PTR(err);
1103	}
1104
1105	err = -LIBBPF_ERRNO__FORMAT;
1106
1107	elf = elf_begin(fd, ELF_C_READ, NULL);
1108	if (!elf) {
1109		pr_warn("failed to open %s as ELF file\n", path);
1110		goto done;
1111	}
1112	if (!gelf_getehdr(elf, &ehdr)) {
1113		pr_warn("failed to get EHDR from %s\n", path);
1114		goto done;
1115	}
1116
1117	if (elf_getshdrstrndx(elf, &shstrndx)) {
1118		pr_warn("failed to get section names section index for %s\n",
1119			path);
1120		goto done;
1121	}
1122
1123	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
1124		pr_warn("failed to get e_shstrndx from %s\n", path);
1125		goto done;
1126	}
1127
1128	while ((scn = elf_nextscn(elf, scn)) != NULL) {
1129		GElf_Shdr sh;
1130		char *name;
1131
1132		idx++;
1133		if (gelf_getshdr(scn, &sh) != &sh) {
1134			pr_warn("failed to get section(%d) header from %s\n",
1135				idx, path);
1136			goto done;
1137		}
1138		name = elf_strptr(elf, shstrndx, sh.sh_name);
1139		if (!name) {
1140			pr_warn("failed to get section(%d) name from %s\n",
1141				idx, path);
1142			goto done;
1143		}
1144		if (strcmp(name, BTF_ELF_SEC) == 0) {
1145			btf_data = elf_getdata(scn, 0);
1146			if (!btf_data) {
1147				pr_warn("failed to get section(%d, %s) data from %s\n",
1148					idx, name, path);
1149				goto done;
1150			}
1151			continue;
1152		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
1153			btf_ext_data = elf_getdata(scn, 0);
1154			if (!btf_ext_data) {
1155				pr_warn("failed to get section(%d, %s) data from %s\n",
1156					idx, name, path);
1157				goto done;
1158			}
1159			continue;
1160		}
1161	}
1162
 
 
1163	if (!btf_data) {
1164		pr_warn("failed to find '%s' ELF section in %s\n", BTF_ELF_SEC, path);
1165		err = -ENODATA;
1166		goto done;
1167	}
1168	btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
1169	err = libbpf_get_error(btf);
1170	if (err)
1171		goto done;
1172
1173	switch (gelf_getclass(elf)) {
1174	case ELFCLASS32:
1175		btf__set_pointer_size(btf, 4);
1176		break;
1177	case ELFCLASS64:
1178		btf__set_pointer_size(btf, 8);
1179		break;
1180	default:
1181		pr_warn("failed to get ELF class (bitness) for %s\n", path);
1182		break;
1183	}
1184
1185	if (btf_ext && btf_ext_data) {
1186		*btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
1187		err = libbpf_get_error(*btf_ext);
1188		if (err)
1189			goto done;
1190	} else if (btf_ext) {
1191		*btf_ext = NULL;
1192	}
1193done:
1194	if (elf)
1195		elf_end(elf);
1196	close(fd);
1197
1198	if (!err)
 
 
 
 
 
 
1199		return btf;
1200
1201	if (btf_ext)
1202		btf_ext__free(*btf_ext);
1203	btf__free(btf);
1204
1205	return ERR_PTR(err);
1206}
1207
1208struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
1209{
1210	return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
1211}
1212
1213struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
1214{
1215	return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
1216}
1217
1218static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
1219{
1220	struct btf *btf = NULL;
1221	void *data = NULL;
1222	FILE *f = NULL;
1223	__u16 magic;
1224	int err = 0;
1225	long sz;
1226
1227	f = fopen(path, "rbe");
1228	if (!f) {
1229		err = -errno;
1230		goto err_out;
1231	}
1232
1233	/* check BTF magic */
1234	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1235		err = -EIO;
1236		goto err_out;
1237	}
1238	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
 
 
 
 
 
 
1239		/* definitely not a raw BTF */
1240		err = -EPROTO;
1241		goto err_out;
1242	}
1243
1244	/* get file size */
1245	if (fseek(f, 0, SEEK_END)) {
1246		err = -errno;
1247		goto err_out;
1248	}
1249	sz = ftell(f);
1250	if (sz < 0) {
1251		err = -errno;
1252		goto err_out;
1253	}
1254	/* rewind to the start */
1255	if (fseek(f, 0, SEEK_SET)) {
1256		err = -errno;
1257		goto err_out;
1258	}
1259
1260	/* pre-alloc memory and read all of BTF data */
1261	data = malloc(sz);
1262	if (!data) {
1263		err = -ENOMEM;
1264		goto err_out;
1265	}
1266	if (fread(data, 1, sz, f) < sz) {
1267		err = -EIO;
1268		goto err_out;
1269	}
1270
1271	/* finally parse BTF data */
1272	btf = btf_new(data, sz, base_btf);
1273
1274err_out:
1275	free(data);
1276	if (f)
1277		fclose(f);
1278	return err ? ERR_PTR(err) : btf;
1279}
1280
1281struct btf *btf__parse_raw(const char *path)
1282{
1283	return libbpf_ptr(btf_parse_raw(path, NULL));
1284}
1285
1286struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1287{
1288	return libbpf_ptr(btf_parse_raw(path, base_btf));
1289}
1290
1291static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1292{
1293	struct btf *btf;
1294	int err;
1295
1296	if (btf_ext)
1297		*btf_ext = NULL;
1298
1299	btf = btf_parse_raw(path, base_btf);
1300	err = libbpf_get_error(btf);
1301	if (!err)
1302		return btf;
1303	if (err != -EPROTO)
1304		return ERR_PTR(err);
1305	return btf_parse_elf(path, base_btf, btf_ext);
1306}
1307
1308struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1309{
1310	return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1311}
1312
1313struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1314{
1315	return libbpf_ptr(btf_parse(path, base_btf, NULL));
1316}
1317
1318static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
 
1319
1320int btf_load_into_kernel(struct btf *btf, char *log_buf, size_t log_sz, __u32 log_level)
 
1321{
1322	LIBBPF_OPTS(bpf_btf_load_opts, opts);
1323	__u32 buf_sz = 0, raw_size;
1324	char *buf = NULL, *tmp;
1325	void *raw_data;
1326	int err = 0;
 
1327
1328	if (btf->fd >= 0)
1329		return libbpf_err(-EEXIST);
1330	if (log_sz && !log_buf)
1331		return libbpf_err(-EINVAL);
1332
1333	/* cache native raw data representation */
1334	raw_data = btf_get_raw_data(btf, &raw_size, false);
1335	if (!raw_data) {
1336		err = -ENOMEM;
1337		goto done;
1338	}
1339	btf->raw_size = raw_size;
1340	btf->raw_data = raw_data;
1341
1342retry_load:
1343	/* if log_level is 0, we won't provide log_buf/log_size to the kernel,
1344	 * initially. Only if BTF loading fails, we bump log_level to 1 and
1345	 * retry, using either auto-allocated or custom log_buf. This way
1346	 * non-NULL custom log_buf provides a buffer just in case, but hopes
1347	 * for successful load and no need for log_buf.
1348	 */
1349	if (log_level) {
1350		/* if caller didn't provide custom log_buf, we'll keep
1351		 * allocating our own progressively bigger buffers for BTF
1352		 * verification log
1353		 */
1354		if (!log_buf) {
1355			buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2);
1356			tmp = realloc(buf, buf_sz);
1357			if (!tmp) {
1358				err = -ENOMEM;
1359				goto done;
1360			}
1361			buf = tmp;
1362			buf[0] = '\0';
1363		}
1364
1365		opts.log_buf = log_buf ? log_buf : buf;
1366		opts.log_size = log_buf ? log_sz : buf_sz;
1367		opts.log_level = log_level;
 
1368	}
1369
1370	btf->fd = bpf_btf_load(raw_data, raw_size, &opts);
1371	if (btf->fd < 0) {
1372		/* time to turn on verbose mode and try again */
1373		if (log_level == 0) {
1374			log_level = 1;
1375			goto retry_load;
 
 
 
1376		}
1377		/* only retry if caller didn't provide custom log_buf, but
1378		 * make sure we can never overflow buf_sz
1379		 */
1380		if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2)
1381			goto retry_load;
1382
1383		err = -errno;
1384		pr_warn("BTF loading error: %d\n", err);
1385		/* don't print out contents of custom log_buf */
1386		if (!log_buf && buf[0])
1387			pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf);
 
 
 
 
 
 
 
 
 
 
 
 
1388	}
1389
1390done:
1391	free(buf);
1392	return libbpf_err(err);
1393}
1394
1395int btf__load_into_kernel(struct btf *btf)
1396{
1397	return btf_load_into_kernel(btf, NULL, 0, 0);
1398}
1399
1400int btf__fd(const struct btf *btf)
1401{
1402	return btf->fd;
1403}
1404
1405void btf__set_fd(struct btf *btf, int fd)
1406{
1407	btf->fd = fd;
1408}
 
 
 
 
 
 
 
1409
1410static const void *btf_strs_data(const struct btf *btf)
1411{
1412	return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1413}
1414
1415static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1416{
1417	struct btf_header *hdr = btf->hdr;
1418	struct btf_type *t;
1419	void *data, *p;
1420	__u32 data_sz;
1421	int i;
1422
1423	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1424	if (data) {
1425		*size = btf->raw_size;
1426		return data;
1427	}
1428
1429	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1430	data = calloc(1, data_sz);
1431	if (!data)
1432		return NULL;
1433	p = data;
1434
1435	memcpy(p, hdr, hdr->hdr_len);
1436	if (swap_endian)
1437		btf_bswap_hdr(p);
1438	p += hdr->hdr_len;
1439
1440	memcpy(p, btf->types_data, hdr->type_len);
1441	if (swap_endian) {
1442		for (i = 0; i < btf->nr_types; i++) {
1443			t = p + btf->type_offs[i];
1444			/* btf_bswap_type_rest() relies on native t->info, so
1445			 * we swap base type info after we swapped all the
1446			 * additional information
1447			 */
1448			if (btf_bswap_type_rest(t))
1449				goto err_out;
1450			btf_bswap_type_base(t);
1451		}
1452	}
1453	p += hdr->type_len;
1454
1455	memcpy(p, btf_strs_data(btf), hdr->str_len);
1456	p += hdr->str_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1457
1458	*size = data_sz;
1459	return data;
1460err_out:
1461	free(data);
1462	return NULL;
1463}
1464
1465const void *btf__raw_data(const struct btf *btf_ro, __u32 *size)
1466{
1467	struct btf *btf = (struct btf *)btf_ro;
1468	__u32 data_sz;
1469	void *data;
1470
1471	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1472	if (!data)
1473		return errno = ENOMEM, NULL;
1474
1475	btf->raw_size = data_sz;
1476	if (btf->swapped_endian)
1477		btf->raw_data_swapped = data;
1478	else
1479		btf->raw_data = data;
1480	*size = data_sz;
1481	return data;
1482}
1483
1484__attribute__((alias("btf__raw_data")))
1485const void *btf__get_raw_data(const struct btf *btf, __u32 *size);
 
 
1486
1487const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1488{
1489	if (offset < btf->start_str_off)
1490		return btf__str_by_offset(btf->base_btf, offset);
1491	else if (offset - btf->start_str_off < btf->hdr->str_len)
1492		return btf_strs_data(btf) + (offset - btf->start_str_off);
1493	else
1494		return errno = EINVAL, NULL;
1495}
1496
1497const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1498{
1499	return btf__str_by_offset(btf, offset);
 
 
 
1500}
1501
1502struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1503{
1504	struct bpf_btf_info btf_info;
1505	__u32 len = sizeof(btf_info);
1506	__u32 last_size;
1507	struct btf *btf;
1508	void *ptr;
1509	int err;
1510
1511	/* we won't know btf_size until we call bpf_btf_get_info_by_fd(). so
 
 
 
 
 
 
1512	 * let's start with a sane default - 4KiB here - and resize it only if
1513	 * bpf_btf_get_info_by_fd() needs a bigger buffer.
1514	 */
1515	last_size = 4096;
 
1516	ptr = malloc(last_size);
1517	if (!ptr)
1518		return ERR_PTR(-ENOMEM);
 
 
1519
1520	memset(&btf_info, 0, sizeof(btf_info));
1521	btf_info.btf = ptr_to_u64(ptr);
1522	btf_info.btf_size = last_size;
1523	err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len);
1524
1525	if (!err && btf_info.btf_size > last_size) {
1526		void *temp_ptr;
1527
1528		last_size = btf_info.btf_size;
1529		temp_ptr = realloc(ptr, last_size);
1530		if (!temp_ptr) {
1531			btf = ERR_PTR(-ENOMEM);
1532			goto exit_free;
1533		}
1534		ptr = temp_ptr;
1535
1536		len = sizeof(btf_info);
1537		memset(&btf_info, 0, sizeof(btf_info));
1538		btf_info.btf = ptr_to_u64(ptr);
1539		btf_info.btf_size = last_size;
1540
1541		err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len);
1542	}
1543
1544	if (err || btf_info.btf_size > last_size) {
1545		btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1546		goto exit_free;
1547	}
1548
1549	btf = btf_new(ptr, btf_info.btf_size, base_btf);
 
 
 
 
1550
1551exit_free:
1552	free(ptr);
1553	return btf;
1554}
1555
1556struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf)
1557{
1558	struct btf *btf;
1559	int btf_fd;
1560
1561	btf_fd = bpf_btf_get_fd_by_id(id);
1562	if (btf_fd < 0)
1563		return libbpf_err_ptr(-errno);
1564
1565	btf = btf_get_from_fd(btf_fd, base_btf);
1566	close(btf_fd);
 
1567
1568	return libbpf_ptr(btf);
1569}
1570
1571struct btf *btf__load_from_kernel_by_id(__u32 id)
1572{
1573	return btf__load_from_kernel_by_id_split(id, NULL);
1574}
1575
1576static void btf_invalidate_raw_data(struct btf *btf)
1577{
1578	if (btf->raw_data) {
1579		free(btf->raw_data);
1580		btf->raw_data = NULL;
1581	}
1582	if (btf->raw_data_swapped) {
1583		free(btf->raw_data_swapped);
1584		btf->raw_data_swapped = NULL;
1585	}
1586}
1587
1588/* Ensure BTF is ready to be modified (by splitting into a three memory
1589 * regions for header, types, and strings). Also invalidate cached
1590 * raw_data, if any.
1591 */
1592static int btf_ensure_modifiable(struct btf *btf)
1593{
1594	void *hdr, *types;
1595	struct strset *set = NULL;
1596	int err = -ENOMEM;
1597
1598	if (btf_is_modifiable(btf)) {
1599		/* any BTF modification invalidates raw_data */
1600		btf_invalidate_raw_data(btf);
1601		return 0;
1602	}
1603
1604	/* split raw data into three memory regions */
1605	hdr = malloc(btf->hdr->hdr_len);
1606	types = malloc(btf->hdr->type_len);
1607	if (!hdr || !types)
1608		goto err_out;
1609
1610	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1611	memcpy(types, btf->types_data, btf->hdr->type_len);
1612
1613	/* build lookup index for all strings */
1614	set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1615	if (IS_ERR(set)) {
1616		err = PTR_ERR(set);
1617		goto err_out;
1618	}
1619
1620	/* only when everything was successful, update internal state */
1621	btf->hdr = hdr;
1622	btf->types_data = types;
1623	btf->types_data_cap = btf->hdr->type_len;
1624	btf->strs_data = NULL;
1625	btf->strs_set = set;
1626	/* if BTF was created from scratch, all strings are guaranteed to be
1627	 * unique and deduplicated
1628	 */
1629	if (btf->hdr->str_len == 0)
1630		btf->strs_deduped = true;
1631	if (!btf->base_btf && btf->hdr->str_len == 1)
1632		btf->strs_deduped = true;
1633
1634	/* invalidate raw_data representation */
1635	btf_invalidate_raw_data(btf);
1636
1637	return 0;
1638
1639err_out:
1640	strset__free(set);
1641	free(hdr);
1642	free(types);
1643	return err;
1644}
1645
1646/* Find an offset in BTF string section that corresponds to a given string *s*.
1647 * Returns:
1648 *   - >0 offset into string section, if string is found;
1649 *   - -ENOENT, if string is not in the string section;
1650 *   - <0, on any other error.
1651 */
1652int btf__find_str(struct btf *btf, const char *s)
1653{
1654	int off;
1655
1656	if (btf->base_btf) {
1657		off = btf__find_str(btf->base_btf, s);
1658		if (off != -ENOENT)
1659			return off;
1660	}
1661
1662	/* BTF needs to be in a modifiable state to build string lookup index */
1663	if (btf_ensure_modifiable(btf))
1664		return libbpf_err(-ENOMEM);
1665
1666	off = strset__find_str(btf->strs_set, s);
1667	if (off < 0)
1668		return libbpf_err(off);
1669
1670	return btf->start_str_off + off;
1671}
1672
1673/* Add a string s to the BTF string section.
1674 * Returns:
1675 *   - > 0 offset into string section, on success;
1676 *   - < 0, on error.
1677 */
1678int btf__add_str(struct btf *btf, const char *s)
1679{
1680	int off;
1681
1682	if (btf->base_btf) {
1683		off = btf__find_str(btf->base_btf, s);
1684		if (off != -ENOENT)
1685			return off;
1686	}
1687
1688	if (btf_ensure_modifiable(btf))
1689		return libbpf_err(-ENOMEM);
1690
1691	off = strset__add_str(btf->strs_set, s);
1692	if (off < 0)
1693		return libbpf_err(off);
1694
1695	btf->hdr->str_len = strset__data_size(btf->strs_set);
1696
1697	return btf->start_str_off + off;
1698}
1699
1700static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1701{
1702	return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1703			      btf->hdr->type_len, UINT_MAX, add_sz);
1704}
 
 
 
1705
1706static void btf_type_inc_vlen(struct btf_type *t)
1707{
1708	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1709}
1710
1711static int btf_commit_type(struct btf *btf, int data_sz)
1712{
1713	int err;
1714
1715	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1716	if (err)
1717		return libbpf_err(err);
1718
1719	btf->hdr->type_len += data_sz;
1720	btf->hdr->str_off += data_sz;
1721	btf->nr_types++;
1722	return btf->start_id + btf->nr_types - 1;
1723}
1724
1725struct btf_pipe {
1726	const struct btf *src;
1727	struct btf *dst;
1728	struct hashmap *str_off_map; /* map string offsets from src to dst */
1729};
1730
1731static int btf_rewrite_str(__u32 *str_off, void *ctx)
1732{
1733	struct btf_pipe *p = ctx;
1734	long mapped_off;
1735	int off, err;
1736
1737	if (!*str_off) /* nothing to do for empty strings */
1738		return 0;
1739
1740	if (p->str_off_map &&
1741	    hashmap__find(p->str_off_map, *str_off, &mapped_off)) {
1742		*str_off = mapped_off;
1743		return 0;
1744	}
1745
1746	off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1747	if (off < 0)
1748		return off;
1749
1750	/* Remember string mapping from src to dst.  It avoids
1751	 * performing expensive string comparisons.
1752	 */
1753	if (p->str_off_map) {
1754		err = hashmap__append(p->str_off_map, *str_off, off);
1755		if (err)
1756			return err;
1757	}
1758
1759	*str_off = off;
1760	return 0;
1761}
1762
1763int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1764{
1765	struct btf_pipe p = { .src = src_btf, .dst = btf };
1766	struct btf_type *t;
1767	int sz, err;
1768
1769	sz = btf_type_size(src_type);
1770	if (sz < 0)
1771		return libbpf_err(sz);
1772
1773	/* deconstruct BTF, if necessary, and invalidate raw_data */
1774	if (btf_ensure_modifiable(btf))
1775		return libbpf_err(-ENOMEM);
1776
1777	t = btf_add_type_mem(btf, sz);
1778	if (!t)
1779		return libbpf_err(-ENOMEM);
1780
1781	memcpy(t, src_type, sz);
1782
1783	err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1784	if (err)
1785		return libbpf_err(err);
1786
1787	return btf_commit_type(btf, sz);
1788}
1789
1790static int btf_rewrite_type_ids(__u32 *type_id, void *ctx)
1791{
1792	struct btf *btf = ctx;
1793
1794	if (!*type_id) /* nothing to do for VOID references */
1795		return 0;
1796
1797	/* we haven't updated btf's type count yet, so
1798	 * btf->start_id + btf->nr_types - 1 is the type ID offset we should
1799	 * add to all newly added BTF types
1800	 */
1801	*type_id += btf->start_id + btf->nr_types - 1;
1802	return 0;
1803}
1804
1805static size_t btf_dedup_identity_hash_fn(long key, void *ctx);
1806static bool btf_dedup_equal_fn(long k1, long k2, void *ctx);
1807
1808int btf__add_btf(struct btf *btf, const struct btf *src_btf)
1809{
1810	struct btf_pipe p = { .src = src_btf, .dst = btf };
1811	int data_sz, sz, cnt, i, err, old_strs_len;
1812	__u32 *off;
1813	void *t;
1814
1815	/* appending split BTF isn't supported yet */
1816	if (src_btf->base_btf)
1817		return libbpf_err(-ENOTSUP);
1818
1819	/* deconstruct BTF, if necessary, and invalidate raw_data */
1820	if (btf_ensure_modifiable(btf))
1821		return libbpf_err(-ENOMEM);
1822
1823	/* remember original strings section size if we have to roll back
1824	 * partial strings section changes
1825	 */
1826	old_strs_len = btf->hdr->str_len;
1827
1828	data_sz = src_btf->hdr->type_len;
1829	cnt = btf__type_cnt(src_btf) - 1;
1830
1831	/* pre-allocate enough memory for new types */
1832	t = btf_add_type_mem(btf, data_sz);
1833	if (!t)
1834		return libbpf_err(-ENOMEM);
1835
1836	/* pre-allocate enough memory for type offset index for new types */
1837	off = btf_add_type_offs_mem(btf, cnt);
1838	if (!off)
1839		return libbpf_err(-ENOMEM);
1840
1841	/* Map the string offsets from src_btf to the offsets from btf to improve performance */
1842	p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
1843	if (IS_ERR(p.str_off_map))
1844		return libbpf_err(-ENOMEM);
1845
1846	/* bulk copy types data for all types from src_btf */
1847	memcpy(t, src_btf->types_data, data_sz);
1848
1849	for (i = 0; i < cnt; i++) {
1850		sz = btf_type_size(t);
1851		if (sz < 0) {
1852			/* unlikely, has to be corrupted src_btf */
1853			err = sz;
1854			goto err_out;
1855		}
1856
1857		/* fill out type ID to type offset mapping for lookups by type ID */
1858		*off = t - btf->types_data;
1859
1860		/* add, dedup, and remap strings referenced by this BTF type */
1861		err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1862		if (err)
1863			goto err_out;
1864
1865		/* remap all type IDs referenced from this BTF type */
1866		err = btf_type_visit_type_ids(t, btf_rewrite_type_ids, btf);
1867		if (err)
1868			goto err_out;
1869
1870		/* go to next type data and type offset index entry */
1871		t += sz;
1872		off++;
1873	}
1874
1875	/* Up until now any of the copied type data was effectively invisible,
1876	 * so if we exited early before this point due to error, BTF would be
1877	 * effectively unmodified. There would be extra internal memory
1878	 * pre-allocated, but it would not be available for querying.  But now
1879	 * that we've copied and rewritten all the data successfully, we can
1880	 * update type count and various internal offsets and sizes to
1881	 * "commit" the changes and made them visible to the outside world.
1882	 */
1883	btf->hdr->type_len += data_sz;
1884	btf->hdr->str_off += data_sz;
1885	btf->nr_types += cnt;
1886
1887	hashmap__free(p.str_off_map);
1888
1889	/* return type ID of the first added BTF type */
1890	return btf->start_id + btf->nr_types - cnt;
1891err_out:
1892	/* zero out preallocated memory as if it was just allocated with
1893	 * libbpf_add_mem()
1894	 */
1895	memset(btf->types_data + btf->hdr->type_len, 0, data_sz);
1896	memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len);
1897
1898	/* and now restore original strings section size; types data size
1899	 * wasn't modified, so doesn't need restoring, see big comment above
1900	 */
1901	btf->hdr->str_len = old_strs_len;
1902
1903	hashmap__free(p.str_off_map);
1904
1905	return libbpf_err(err);
1906}
1907
1908/*
1909 * Append new BTF_KIND_INT type with:
1910 *   - *name* - non-empty, non-NULL type name;
1911 *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1912 *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1913 * Returns:
1914 *   - >0, type ID of newly added BTF type;
1915 *   - <0, on error.
1916 */
1917int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1918{
1919	struct btf_type *t;
1920	int sz, name_off;
1921
1922	/* non-empty name */
1923	if (!name || !name[0])
1924		return libbpf_err(-EINVAL);
1925	/* byte_sz must be power of 2 */
1926	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1927		return libbpf_err(-EINVAL);
1928	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1929		return libbpf_err(-EINVAL);
1930
1931	/* deconstruct BTF, if necessary, and invalidate raw_data */
1932	if (btf_ensure_modifiable(btf))
1933		return libbpf_err(-ENOMEM);
1934
1935	sz = sizeof(struct btf_type) + sizeof(int);
1936	t = btf_add_type_mem(btf, sz);
1937	if (!t)
1938		return libbpf_err(-ENOMEM);
1939
1940	/* if something goes wrong later, we might end up with an extra string,
1941	 * but that shouldn't be a problem, because BTF can't be constructed
1942	 * completely anyway and will most probably be just discarded
1943	 */
1944	name_off = btf__add_str(btf, name);
1945	if (name_off < 0)
1946		return name_off;
1947
1948	t->name_off = name_off;
1949	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1950	t->size = byte_sz;
1951	/* set INT info, we don't allow setting legacy bit offset/size */
1952	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1953
1954	return btf_commit_type(btf, sz);
1955}
1956
1957/*
1958 * Append new BTF_KIND_FLOAT type with:
1959 *   - *name* - non-empty, non-NULL type name;
1960 *   - *sz* - size of the type, in bytes;
1961 * Returns:
1962 *   - >0, type ID of newly added BTF type;
1963 *   - <0, on error.
1964 */
1965int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
1966{
1967	struct btf_type *t;
1968	int sz, name_off;
1969
1970	/* non-empty name */
1971	if (!name || !name[0])
1972		return libbpf_err(-EINVAL);
1973
1974	/* byte_sz must be one of the explicitly allowed values */
1975	if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
1976	    byte_sz != 16)
1977		return libbpf_err(-EINVAL);
1978
1979	if (btf_ensure_modifiable(btf))
1980		return libbpf_err(-ENOMEM);
1981
1982	sz = sizeof(struct btf_type);
1983	t = btf_add_type_mem(btf, sz);
1984	if (!t)
1985		return libbpf_err(-ENOMEM);
1986
1987	name_off = btf__add_str(btf, name);
1988	if (name_off < 0)
1989		return name_off;
1990
1991	t->name_off = name_off;
1992	t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
1993	t->size = byte_sz;
1994
1995	return btf_commit_type(btf, sz);
1996}
1997
1998/* it's completely legal to append BTF types with type IDs pointing forward to
1999 * types that haven't been appended yet, so we only make sure that id looks
2000 * sane, we can't guarantee that ID will always be valid
2001 */
2002static int validate_type_id(int id)
2003{
2004	if (id < 0 || id > BTF_MAX_NR_TYPES)
2005		return -EINVAL;
2006	return 0;
2007}
2008
2009/* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
2010static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
2011{
2012	struct btf_type *t;
2013	int sz, name_off = 0;
2014
2015	if (validate_type_id(ref_type_id))
2016		return libbpf_err(-EINVAL);
2017
2018	if (btf_ensure_modifiable(btf))
2019		return libbpf_err(-ENOMEM);
2020
2021	sz = sizeof(struct btf_type);
2022	t = btf_add_type_mem(btf, sz);
2023	if (!t)
2024		return libbpf_err(-ENOMEM);
2025
2026	if (name && name[0]) {
2027		name_off = btf__add_str(btf, name);
2028		if (name_off < 0)
2029			return name_off;
2030	}
2031
2032	t->name_off = name_off;
2033	t->info = btf_type_info(kind, 0, 0);
2034	t->type = ref_type_id;
2035
2036	return btf_commit_type(btf, sz);
2037}
2038
2039/*
2040 * Append new BTF_KIND_PTR type with:
2041 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2042 * Returns:
2043 *   - >0, type ID of newly added BTF type;
2044 *   - <0, on error.
2045 */
2046int btf__add_ptr(struct btf *btf, int ref_type_id)
2047{
2048	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
2049}
2050
2051/*
2052 * Append new BTF_KIND_ARRAY type with:
2053 *   - *index_type_id* - type ID of the type describing array index;
2054 *   - *elem_type_id* - type ID of the type describing array element;
2055 *   - *nr_elems* - the size of the array;
2056 * Returns:
2057 *   - >0, type ID of newly added BTF type;
2058 *   - <0, on error.
2059 */
2060int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
2061{
2062	struct btf_type *t;
2063	struct btf_array *a;
2064	int sz;
2065
2066	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
2067		return libbpf_err(-EINVAL);
2068
2069	if (btf_ensure_modifiable(btf))
2070		return libbpf_err(-ENOMEM);
2071
2072	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
2073	t = btf_add_type_mem(btf, sz);
2074	if (!t)
2075		return libbpf_err(-ENOMEM);
2076
2077	t->name_off = 0;
2078	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
2079	t->size = 0;
2080
2081	a = btf_array(t);
2082	a->type = elem_type_id;
2083	a->index_type = index_type_id;
2084	a->nelems = nr_elems;
2085
2086	return btf_commit_type(btf, sz);
2087}
2088
2089/* generic STRUCT/UNION append function */
2090static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
2091{
2092	struct btf_type *t;
2093	int sz, name_off = 0;
2094
2095	if (btf_ensure_modifiable(btf))
2096		return libbpf_err(-ENOMEM);
2097
2098	sz = sizeof(struct btf_type);
2099	t = btf_add_type_mem(btf, sz);
2100	if (!t)
2101		return libbpf_err(-ENOMEM);
2102
2103	if (name && name[0]) {
2104		name_off = btf__add_str(btf, name);
2105		if (name_off < 0)
2106			return name_off;
2107	}
2108
2109	/* start out with vlen=0 and no kflag; this will be adjusted when
2110	 * adding each member
2111	 */
2112	t->name_off = name_off;
2113	t->info = btf_type_info(kind, 0, 0);
2114	t->size = bytes_sz;
2115
2116	return btf_commit_type(btf, sz);
2117}
2118
2119/*
2120 * Append new BTF_KIND_STRUCT type with:
2121 *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
2122 *   - *byte_sz* - size of the struct, in bytes;
2123 *
2124 * Struct initially has no fields in it. Fields can be added by
2125 * btf__add_field() right after btf__add_struct() succeeds.
2126 *
2127 * Returns:
2128 *   - >0, type ID of newly added BTF type;
2129 *   - <0, on error.
2130 */
2131int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
2132{
2133	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
2134}
2135
2136/*
2137 * Append new BTF_KIND_UNION type with:
2138 *   - *name* - name of the union, can be NULL or empty for anonymous union;
2139 *   - *byte_sz* - size of the union, in bytes;
2140 *
2141 * Union initially has no fields in it. Fields can be added by
2142 * btf__add_field() right after btf__add_union() succeeds. All fields
2143 * should have *bit_offset* of 0.
2144 *
2145 * Returns:
2146 *   - >0, type ID of newly added BTF type;
2147 *   - <0, on error.
2148 */
2149int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
2150{
2151	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
2152}
2153
2154static struct btf_type *btf_last_type(struct btf *btf)
2155{
2156	return btf_type_by_id(btf, btf__type_cnt(btf) - 1);
2157}
2158
2159/*
2160 * Append new field for the current STRUCT/UNION type with:
2161 *   - *name* - name of the field, can be NULL or empty for anonymous field;
2162 *   - *type_id* - type ID for the type describing field type;
2163 *   - *bit_offset* - bit offset of the start of the field within struct/union;
2164 *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
2165 * Returns:
2166 *   -  0, on success;
2167 *   - <0, on error.
2168 */
2169int btf__add_field(struct btf *btf, const char *name, int type_id,
2170		   __u32 bit_offset, __u32 bit_size)
2171{
2172	struct btf_type *t;
2173	struct btf_member *m;
2174	bool is_bitfield;
2175	int sz, name_off = 0;
2176
2177	/* last type should be union/struct */
2178	if (btf->nr_types == 0)
2179		return libbpf_err(-EINVAL);
2180	t = btf_last_type(btf);
2181	if (!btf_is_composite(t))
2182		return libbpf_err(-EINVAL);
2183
2184	if (validate_type_id(type_id))
2185		return libbpf_err(-EINVAL);
2186	/* best-effort bit field offset/size enforcement */
2187	is_bitfield = bit_size || (bit_offset % 8 != 0);
2188	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
2189		return libbpf_err(-EINVAL);
2190
2191	/* only offset 0 is allowed for unions */
2192	if (btf_is_union(t) && bit_offset)
2193		return libbpf_err(-EINVAL);
2194
2195	/* decompose and invalidate raw data */
2196	if (btf_ensure_modifiable(btf))
2197		return libbpf_err(-ENOMEM);
2198
2199	sz = sizeof(struct btf_member);
2200	m = btf_add_type_mem(btf, sz);
2201	if (!m)
2202		return libbpf_err(-ENOMEM);
2203
2204	if (name && name[0]) {
2205		name_off = btf__add_str(btf, name);
2206		if (name_off < 0)
2207			return name_off;
2208	}
2209
2210	m->name_off = name_off;
2211	m->type = type_id;
2212	m->offset = bit_offset | (bit_size << 24);
2213
2214	/* btf_add_type_mem can invalidate t pointer */
2215	t = btf_last_type(btf);
2216	/* update parent type's vlen and kflag */
2217	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
2218
2219	btf->hdr->type_len += sz;
2220	btf->hdr->str_off += sz;
2221	return 0;
2222}
2223
2224static int btf_add_enum_common(struct btf *btf, const char *name, __u32 byte_sz,
2225			       bool is_signed, __u8 kind)
2226{
2227	struct btf_type *t;
2228	int sz, name_off = 0;
2229
2230	/* byte_sz must be power of 2 */
2231	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2232		return libbpf_err(-EINVAL);
2233
2234	if (btf_ensure_modifiable(btf))
2235		return libbpf_err(-ENOMEM);
2236
2237	sz = sizeof(struct btf_type);
2238	t = btf_add_type_mem(btf, sz);
2239	if (!t)
2240		return libbpf_err(-ENOMEM);
2241
2242	if (name && name[0]) {
2243		name_off = btf__add_str(btf, name);
2244		if (name_off < 0)
2245			return name_off;
2246	}
2247
2248	/* start out with vlen=0; it will be adjusted when adding enum values */
2249	t->name_off = name_off;
2250	t->info = btf_type_info(kind, 0, is_signed);
2251	t->size = byte_sz;
2252
2253	return btf_commit_type(btf, sz);
2254}
2255
2256/*
2257 * Append new BTF_KIND_ENUM type with:
2258 *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2259 *   - *byte_sz* - size of the enum, in bytes.
2260 *
2261 * Enum initially has no enum values in it (and corresponds to enum forward
2262 * declaration). Enumerator values can be added by btf__add_enum_value()
2263 * immediately after btf__add_enum() succeeds.
2264 *
2265 * Returns:
2266 *   - >0, type ID of newly added BTF type;
2267 *   - <0, on error.
2268 */
2269int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2270{
2271	/*
2272	 * set the signedness to be unsigned, it will change to signed
2273	 * if any later enumerator is negative.
2274	 */
2275	return btf_add_enum_common(btf, name, byte_sz, false, BTF_KIND_ENUM);
2276}
2277
2278/*
2279 * Append new enum value for the current ENUM type with:
2280 *   - *name* - name of the enumerator value, can't be NULL or empty;
2281 *   - *value* - integer value corresponding to enum value *name*;
2282 * Returns:
2283 *   -  0, on success;
2284 *   - <0, on error.
2285 */
2286int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2287{
2288	struct btf_type *t;
2289	struct btf_enum *v;
2290	int sz, name_off;
2291
2292	/* last type should be BTF_KIND_ENUM */
2293	if (btf->nr_types == 0)
2294		return libbpf_err(-EINVAL);
2295	t = btf_last_type(btf);
2296	if (!btf_is_enum(t))
2297		return libbpf_err(-EINVAL);
2298
2299	/* non-empty name */
2300	if (!name || !name[0])
2301		return libbpf_err(-EINVAL);
2302	if (value < INT_MIN || value > UINT_MAX)
2303		return libbpf_err(-E2BIG);
2304
2305	/* decompose and invalidate raw data */
2306	if (btf_ensure_modifiable(btf))
2307		return libbpf_err(-ENOMEM);
2308
2309	sz = sizeof(struct btf_enum);
2310	v = btf_add_type_mem(btf, sz);
2311	if (!v)
2312		return libbpf_err(-ENOMEM);
2313
2314	name_off = btf__add_str(btf, name);
2315	if (name_off < 0)
2316		return name_off;
2317
2318	v->name_off = name_off;
2319	v->val = value;
2320
2321	/* update parent type's vlen */
2322	t = btf_last_type(btf);
2323	btf_type_inc_vlen(t);
2324
2325	/* if negative value, set signedness to signed */
2326	if (value < 0)
2327		t->info = btf_type_info(btf_kind(t), btf_vlen(t), true);
2328
2329	btf->hdr->type_len += sz;
2330	btf->hdr->str_off += sz;
2331	return 0;
2332}
2333
2334/*
2335 * Append new BTF_KIND_ENUM64 type with:
2336 *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2337 *   - *byte_sz* - size of the enum, in bytes.
2338 *   - *is_signed* - whether the enum values are signed or not;
2339 *
2340 * Enum initially has no enum values in it (and corresponds to enum forward
2341 * declaration). Enumerator values can be added by btf__add_enum64_value()
2342 * immediately after btf__add_enum64() succeeds.
2343 *
2344 * Returns:
2345 *   - >0, type ID of newly added BTF type;
2346 *   - <0, on error.
2347 */
2348int btf__add_enum64(struct btf *btf, const char *name, __u32 byte_sz,
2349		    bool is_signed)
2350{
2351	return btf_add_enum_common(btf, name, byte_sz, is_signed,
2352				   BTF_KIND_ENUM64);
2353}
2354
2355/*
2356 * Append new enum value for the current ENUM64 type with:
2357 *   - *name* - name of the enumerator value, can't be NULL or empty;
2358 *   - *value* - integer value corresponding to enum value *name*;
2359 * Returns:
2360 *   -  0, on success;
2361 *   - <0, on error.
2362 */
2363int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value)
2364{
2365	struct btf_enum64 *v;
2366	struct btf_type *t;
2367	int sz, name_off;
2368
2369	/* last type should be BTF_KIND_ENUM64 */
2370	if (btf->nr_types == 0)
2371		return libbpf_err(-EINVAL);
2372	t = btf_last_type(btf);
2373	if (!btf_is_enum64(t))
2374		return libbpf_err(-EINVAL);
2375
2376	/* non-empty name */
2377	if (!name || !name[0])
2378		return libbpf_err(-EINVAL);
2379
2380	/* decompose and invalidate raw data */
2381	if (btf_ensure_modifiable(btf))
2382		return libbpf_err(-ENOMEM);
2383
2384	sz = sizeof(struct btf_enum64);
2385	v = btf_add_type_mem(btf, sz);
2386	if (!v)
2387		return libbpf_err(-ENOMEM);
2388
2389	name_off = btf__add_str(btf, name);
2390	if (name_off < 0)
2391		return name_off;
2392
2393	v->name_off = name_off;
2394	v->val_lo32 = (__u32)value;
2395	v->val_hi32 = value >> 32;
2396
2397	/* update parent type's vlen */
2398	t = btf_last_type(btf);
2399	btf_type_inc_vlen(t);
2400
2401	btf->hdr->type_len += sz;
2402	btf->hdr->str_off += sz;
2403	return 0;
2404}
2405
2406/*
2407 * Append new BTF_KIND_FWD type with:
2408 *   - *name*, non-empty/non-NULL name;
2409 *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2410 *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2411 * Returns:
2412 *   - >0, type ID of newly added BTF type;
2413 *   - <0, on error.
2414 */
2415int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2416{
2417	if (!name || !name[0])
2418		return libbpf_err(-EINVAL);
2419
2420	switch (fwd_kind) {
2421	case BTF_FWD_STRUCT:
2422	case BTF_FWD_UNION: {
2423		struct btf_type *t;
2424		int id;
2425
2426		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2427		if (id <= 0)
2428			return id;
2429		t = btf_type_by_id(btf, id);
2430		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2431		return id;
2432	}
2433	case BTF_FWD_ENUM:
2434		/* enum forward in BTF currently is just an enum with no enum
2435		 * values; we also assume a standard 4-byte size for it
2436		 */
2437		return btf__add_enum(btf, name, sizeof(int));
2438	default:
2439		return libbpf_err(-EINVAL);
2440	}
2441}
2442
2443/*
2444 * Append new BTF_KING_TYPEDEF type with:
2445 *   - *name*, non-empty/non-NULL name;
2446 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2447 * Returns:
2448 *   - >0, type ID of newly added BTF type;
2449 *   - <0, on error.
2450 */
2451int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2452{
2453	if (!name || !name[0])
2454		return libbpf_err(-EINVAL);
2455
2456	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2457}
2458
2459/*
2460 * Append new BTF_KIND_VOLATILE type with:
2461 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2462 * Returns:
2463 *   - >0, type ID of newly added BTF type;
2464 *   - <0, on error.
2465 */
2466int btf__add_volatile(struct btf *btf, int ref_type_id)
2467{
2468	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2469}
2470
2471/*
2472 * Append new BTF_KIND_CONST type with:
2473 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2474 * Returns:
2475 *   - >0, type ID of newly added BTF type;
2476 *   - <0, on error.
2477 */
2478int btf__add_const(struct btf *btf, int ref_type_id)
2479{
2480	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2481}
2482
2483/*
2484 * Append new BTF_KIND_RESTRICT type with:
2485 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2486 * Returns:
2487 *   - >0, type ID of newly added BTF type;
2488 *   - <0, on error.
2489 */
2490int btf__add_restrict(struct btf *btf, int ref_type_id)
2491{
2492	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2493}
2494
2495/*
2496 * Append new BTF_KIND_TYPE_TAG type with:
2497 *   - *value*, non-empty/non-NULL tag value;
2498 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2499 * Returns:
2500 *   - >0, type ID of newly added BTF type;
2501 *   - <0, on error.
2502 */
2503int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id)
2504{
2505	if (!value || !value[0])
2506		return libbpf_err(-EINVAL);
2507
2508	return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id);
2509}
2510
2511/*
2512 * Append new BTF_KIND_FUNC type with:
2513 *   - *name*, non-empty/non-NULL name;
2514 *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2515 * Returns:
2516 *   - >0, type ID of newly added BTF type;
2517 *   - <0, on error.
2518 */
2519int btf__add_func(struct btf *btf, const char *name,
2520		  enum btf_func_linkage linkage, int proto_type_id)
2521{
2522	int id;
2523
2524	if (!name || !name[0])
2525		return libbpf_err(-EINVAL);
2526	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2527	    linkage != BTF_FUNC_EXTERN)
2528		return libbpf_err(-EINVAL);
2529
2530	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2531	if (id > 0) {
2532		struct btf_type *t = btf_type_by_id(btf, id);
2533
2534		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
 
 
 
2535	}
2536	return libbpf_err(id);
2537}
2538
2539/*
2540 * Append new BTF_KIND_FUNC_PROTO with:
2541 *   - *ret_type_id* - type ID for return result of a function.
2542 *
2543 * Function prototype initially has no arguments, but they can be added by
2544 * btf__add_func_param() one by one, immediately after
2545 * btf__add_func_proto() succeeded.
2546 *
2547 * Returns:
2548 *   - >0, type ID of newly added BTF type;
2549 *   - <0, on error.
2550 */
2551int btf__add_func_proto(struct btf *btf, int ret_type_id)
2552{
2553	struct btf_type *t;
2554	int sz;
2555
2556	if (validate_type_id(ret_type_id))
2557		return libbpf_err(-EINVAL);
2558
2559	if (btf_ensure_modifiable(btf))
2560		return libbpf_err(-ENOMEM);
2561
2562	sz = sizeof(struct btf_type);
2563	t = btf_add_type_mem(btf, sz);
2564	if (!t)
2565		return libbpf_err(-ENOMEM);
2566
2567	/* start out with vlen=0; this will be adjusted when adding enum
2568	 * values, if necessary
2569	 */
2570	t->name_off = 0;
2571	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2572	t->type = ret_type_id;
2573
2574	return btf_commit_type(btf, sz);
2575}
2576
2577/*
2578 * Append new function parameter for current FUNC_PROTO type with:
2579 *   - *name* - parameter name, can be NULL or empty;
2580 *   - *type_id* - type ID describing the type of the parameter.
2581 * Returns:
2582 *   -  0, on success;
2583 *   - <0, on error.
2584 */
2585int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2586{
2587	struct btf_type *t;
2588	struct btf_param *p;
2589	int sz, name_off = 0;
2590
2591	if (validate_type_id(type_id))
2592		return libbpf_err(-EINVAL);
2593
2594	/* last type should be BTF_KIND_FUNC_PROTO */
2595	if (btf->nr_types == 0)
2596		return libbpf_err(-EINVAL);
2597	t = btf_last_type(btf);
2598	if (!btf_is_func_proto(t))
2599		return libbpf_err(-EINVAL);
2600
2601	/* decompose and invalidate raw data */
2602	if (btf_ensure_modifiable(btf))
2603		return libbpf_err(-ENOMEM);
2604
2605	sz = sizeof(struct btf_param);
2606	p = btf_add_type_mem(btf, sz);
2607	if (!p)
2608		return libbpf_err(-ENOMEM);
2609
2610	if (name && name[0]) {
2611		name_off = btf__add_str(btf, name);
2612		if (name_off < 0)
2613			return name_off;
2614	}
2615
2616	p->name_off = name_off;
2617	p->type = type_id;
2618
2619	/* update parent type's vlen */
2620	t = btf_last_type(btf);
2621	btf_type_inc_vlen(t);
2622
2623	btf->hdr->type_len += sz;
2624	btf->hdr->str_off += sz;
2625	return 0;
2626}
2627
2628/*
2629 * Append new BTF_KIND_VAR type with:
2630 *   - *name* - non-empty/non-NULL name;
2631 *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2632 *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2633 *   - *type_id* - type ID of the type describing the type of the variable.
2634 * Returns:
2635 *   - >0, type ID of newly added BTF type;
2636 *   - <0, on error.
2637 */
2638int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2639{
2640	struct btf_type *t;
2641	struct btf_var *v;
2642	int sz, name_off;
2643
2644	/* non-empty name */
2645	if (!name || !name[0])
2646		return libbpf_err(-EINVAL);
2647	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2648	    linkage != BTF_VAR_GLOBAL_EXTERN)
2649		return libbpf_err(-EINVAL);
2650	if (validate_type_id(type_id))
2651		return libbpf_err(-EINVAL);
2652
2653	/* deconstruct BTF, if necessary, and invalidate raw_data */
2654	if (btf_ensure_modifiable(btf))
2655		return libbpf_err(-ENOMEM);
2656
2657	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2658	t = btf_add_type_mem(btf, sz);
2659	if (!t)
2660		return libbpf_err(-ENOMEM);
2661
2662	name_off = btf__add_str(btf, name);
2663	if (name_off < 0)
2664		return name_off;
2665
2666	t->name_off = name_off;
2667	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2668	t->type = type_id;
2669
2670	v = btf_var(t);
2671	v->linkage = linkage;
2672
2673	return btf_commit_type(btf, sz);
2674}
2675
2676/*
2677 * Append new BTF_KIND_DATASEC type with:
2678 *   - *name* - non-empty/non-NULL name;
2679 *   - *byte_sz* - data section size, in bytes.
2680 *
2681 * Data section is initially empty. Variables info can be added with
2682 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2683 *
2684 * Returns:
2685 *   - >0, type ID of newly added BTF type;
2686 *   - <0, on error.
2687 */
2688int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2689{
2690	struct btf_type *t;
2691	int sz, name_off;
2692
2693	/* non-empty name */
2694	if (!name || !name[0])
2695		return libbpf_err(-EINVAL);
2696
2697	if (btf_ensure_modifiable(btf))
2698		return libbpf_err(-ENOMEM);
2699
2700	sz = sizeof(struct btf_type);
2701	t = btf_add_type_mem(btf, sz);
2702	if (!t)
2703		return libbpf_err(-ENOMEM);
2704
2705	name_off = btf__add_str(btf, name);
2706	if (name_off < 0)
2707		return name_off;
2708
2709	/* start with vlen=0, which will be update as var_secinfos are added */
2710	t->name_off = name_off;
2711	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2712	t->size = byte_sz;
2713
2714	return btf_commit_type(btf, sz);
2715}
2716
2717/*
2718 * Append new data section variable information entry for current DATASEC type:
2719 *   - *var_type_id* - type ID, describing type of the variable;
2720 *   - *offset* - variable offset within data section, in bytes;
2721 *   - *byte_sz* - variable size, in bytes.
2722 *
2723 * Returns:
2724 *   -  0, on success;
2725 *   - <0, on error.
2726 */
2727int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2728{
2729	struct btf_type *t;
2730	struct btf_var_secinfo *v;
2731	int sz;
2732
2733	/* last type should be BTF_KIND_DATASEC */
2734	if (btf->nr_types == 0)
2735		return libbpf_err(-EINVAL);
2736	t = btf_last_type(btf);
2737	if (!btf_is_datasec(t))
2738		return libbpf_err(-EINVAL);
2739
2740	if (validate_type_id(var_type_id))
2741		return libbpf_err(-EINVAL);
2742
2743	/* decompose and invalidate raw data */
2744	if (btf_ensure_modifiable(btf))
2745		return libbpf_err(-ENOMEM);
2746
2747	sz = sizeof(struct btf_var_secinfo);
2748	v = btf_add_type_mem(btf, sz);
2749	if (!v)
2750		return libbpf_err(-ENOMEM);
2751
2752	v->type = var_type_id;
2753	v->offset = offset;
2754	v->size = byte_sz;
2755
2756	/* update parent type's vlen */
2757	t = btf_last_type(btf);
2758	btf_type_inc_vlen(t);
2759
2760	btf->hdr->type_len += sz;
2761	btf->hdr->str_off += sz;
2762	return 0;
2763}
2764
2765/*
2766 * Append new BTF_KIND_DECL_TAG type with:
2767 *   - *value* - non-empty/non-NULL string;
2768 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2769 *   - *component_idx* - -1 for tagging reference type, otherwise struct/union
2770 *     member or function argument index;
2771 * Returns:
2772 *   - >0, type ID of newly added BTF type;
2773 *   - <0, on error.
2774 */
2775int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id,
2776		 int component_idx)
2777{
2778	struct btf_type *t;
2779	int sz, value_off;
2780
2781	if (!value || !value[0] || component_idx < -1)
2782		return libbpf_err(-EINVAL);
2783
2784	if (validate_type_id(ref_type_id))
2785		return libbpf_err(-EINVAL);
2786
2787	if (btf_ensure_modifiable(btf))
2788		return libbpf_err(-ENOMEM);
2789
2790	sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag);
2791	t = btf_add_type_mem(btf, sz);
2792	if (!t)
2793		return libbpf_err(-ENOMEM);
2794
2795	value_off = btf__add_str(btf, value);
2796	if (value_off < 0)
2797		return value_off;
2798
2799	t->name_off = value_off;
2800	t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false);
2801	t->type = ref_type_id;
2802	btf_decl_tag(t)->component_idx = component_idx;
2803
2804	return btf_commit_type(btf, sz);
2805}
2806
2807struct btf_ext_sec_setup_param {
2808	__u32 off;
2809	__u32 len;
2810	__u32 min_rec_size;
2811	struct btf_ext_info *ext_info;
2812	const char *desc;
2813};
2814
2815static int btf_ext_setup_info(struct btf_ext *btf_ext,
2816			      struct btf_ext_sec_setup_param *ext_sec)
2817{
2818	const struct btf_ext_info_sec *sinfo;
2819	struct btf_ext_info *ext_info;
2820	__u32 info_left, record_size;
2821	size_t sec_cnt = 0;
2822	/* The start of the info sec (including the __u32 record_size). */
2823	void *info;
2824
2825	if (ext_sec->len == 0)
2826		return 0;
2827
2828	if (ext_sec->off & 0x03) {
2829		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2830		     ext_sec->desc);
2831		return -EINVAL;
2832	}
2833
2834	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2835	info_left = ext_sec->len;
2836
2837	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2838		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2839			 ext_sec->desc, ext_sec->off, ext_sec->len);
2840		return -EINVAL;
2841	}
2842
2843	/* At least a record size */
2844	if (info_left < sizeof(__u32)) {
2845		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2846		return -EINVAL;
2847	}
2848
2849	/* The record size needs to meet the minimum standard */
2850	record_size = *(__u32 *)info;
2851	if (record_size < ext_sec->min_rec_size ||
2852	    record_size & 0x03) {
2853		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2854			 ext_sec->desc, record_size);
2855		return -EINVAL;
2856	}
2857
2858	sinfo = info + sizeof(__u32);
2859	info_left -= sizeof(__u32);
2860
2861	/* If no records, return failure now so .BTF.ext won't be used. */
2862	if (!info_left) {
2863		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2864		return -EINVAL;
2865	}
2866
2867	while (info_left) {
2868		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2869		__u64 total_record_size;
2870		__u32 num_records;
2871
2872		if (info_left < sec_hdrlen) {
2873			pr_debug("%s section header is not found in .BTF.ext\n",
2874			     ext_sec->desc);
2875			return -EINVAL;
2876		}
2877
2878		num_records = sinfo->num_info;
2879		if (num_records == 0) {
2880			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2881			     ext_sec->desc);
2882			return -EINVAL;
2883		}
2884
2885		total_record_size = sec_hdrlen + (__u64)num_records * record_size;
 
2886		if (info_left < total_record_size) {
2887			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2888			     ext_sec->desc);
2889			return -EINVAL;
2890		}
2891
2892		info_left -= total_record_size;
2893		sinfo = (void *)sinfo + total_record_size;
2894		sec_cnt++;
2895	}
2896
2897	ext_info = ext_sec->ext_info;
2898	ext_info->len = ext_sec->len - sizeof(__u32);
2899	ext_info->rec_size = record_size;
2900	ext_info->info = info + sizeof(__u32);
2901	ext_info->sec_cnt = sec_cnt;
2902
2903	return 0;
2904}
2905
2906static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2907{
2908	struct btf_ext_sec_setup_param param = {
2909		.off = btf_ext->hdr->func_info_off,
2910		.len = btf_ext->hdr->func_info_len,
2911		.min_rec_size = sizeof(struct bpf_func_info_min),
2912		.ext_info = &btf_ext->func_info,
2913		.desc = "func_info"
2914	};
2915
2916	return btf_ext_setup_info(btf_ext, &param);
2917}
2918
2919static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2920{
2921	struct btf_ext_sec_setup_param param = {
2922		.off = btf_ext->hdr->line_info_off,
2923		.len = btf_ext->hdr->line_info_len,
2924		.min_rec_size = sizeof(struct bpf_line_info_min),
2925		.ext_info = &btf_ext->line_info,
2926		.desc = "line_info",
2927	};
2928
2929	return btf_ext_setup_info(btf_ext, &param);
2930}
2931
2932static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2933{
2934	struct btf_ext_sec_setup_param param = {
2935		.off = btf_ext->hdr->core_relo_off,
2936		.len = btf_ext->hdr->core_relo_len,
2937		.min_rec_size = sizeof(struct bpf_core_relo),
2938		.ext_info = &btf_ext->core_relo_info,
2939		.desc = "core_relo",
2940	};
2941
2942	return btf_ext_setup_info(btf_ext, &param);
2943}
2944
2945static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2946{
2947	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2948
2949	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2950	    data_size < hdr->hdr_len) {
2951		pr_debug("BTF.ext header not found");
2952		return -EINVAL;
2953	}
2954
2955	if (hdr->magic == bswap_16(BTF_MAGIC)) {
2956		pr_warn("BTF.ext in non-native endianness is not supported\n");
2957		return -ENOTSUP;
2958	} else if (hdr->magic != BTF_MAGIC) {
2959		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2960		return -EINVAL;
2961	}
2962
2963	if (hdr->version != BTF_VERSION) {
2964		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2965		return -ENOTSUP;
2966	}
2967
2968	if (hdr->flags) {
2969		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2970		return -ENOTSUP;
2971	}
2972
2973	if (data_size == hdr->hdr_len) {
2974		pr_debug("BTF.ext has no data\n");
2975		return -EINVAL;
2976	}
2977
2978	return 0;
2979}
2980
2981void btf_ext__free(struct btf_ext *btf_ext)
2982{
2983	if (IS_ERR_OR_NULL(btf_ext))
2984		return;
2985	free(btf_ext->func_info.sec_idxs);
2986	free(btf_ext->line_info.sec_idxs);
2987	free(btf_ext->core_relo_info.sec_idxs);
2988	free(btf_ext->data);
2989	free(btf_ext);
2990}
2991
2992struct btf_ext *btf_ext__new(const __u8 *data, __u32 size)
2993{
2994	struct btf_ext *btf_ext;
2995	int err;
2996
 
 
 
 
2997	btf_ext = calloc(1, sizeof(struct btf_ext));
2998	if (!btf_ext)
2999		return libbpf_err_ptr(-ENOMEM);
3000
3001	btf_ext->data_size = size;
3002	btf_ext->data = malloc(size);
3003	if (!btf_ext->data) {
3004		err = -ENOMEM;
3005		goto done;
3006	}
3007	memcpy(btf_ext->data, data, size);
3008
3009	err = btf_ext_parse_hdr(btf_ext->data, size);
3010	if (err)
3011		goto done;
3012
3013	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
3014		err = -EINVAL;
3015		goto done;
3016	}
3017
3018	err = btf_ext_setup_func_info(btf_ext);
3019	if (err)
3020		goto done;
3021
3022	err = btf_ext_setup_line_info(btf_ext);
3023	if (err)
3024		goto done;
3025
3026	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
3027		goto done; /* skip core relos parsing */
3028
3029	err = btf_ext_setup_core_relos(btf_ext);
3030	if (err)
3031		goto done;
3032
3033done:
3034	if (err) {
3035		btf_ext__free(btf_ext);
3036		return libbpf_err_ptr(err);
3037	}
3038
3039	return btf_ext;
3040}
3041
3042const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
3043{
3044	*size = btf_ext->data_size;
3045	return btf_ext->data;
3046}
3047
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3048struct btf_dedup;
3049
3050static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts);
 
3051static void btf_dedup_free(struct btf_dedup *d);
3052static int btf_dedup_prep(struct btf_dedup *d);
3053static int btf_dedup_strings(struct btf_dedup *d);
3054static int btf_dedup_prim_types(struct btf_dedup *d);
3055static int btf_dedup_struct_types(struct btf_dedup *d);
3056static int btf_dedup_ref_types(struct btf_dedup *d);
3057static int btf_dedup_resolve_fwds(struct btf_dedup *d);
3058static int btf_dedup_compact_types(struct btf_dedup *d);
3059static int btf_dedup_remap_types(struct btf_dedup *d);
3060
3061/*
3062 * Deduplicate BTF types and strings.
3063 *
3064 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
3065 * section with all BTF type descriptors and string data. It overwrites that
3066 * memory in-place with deduplicated types and strings without any loss of
3067 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
3068 * is provided, all the strings referenced from .BTF.ext section are honored
3069 * and updated to point to the right offsets after deduplication.
3070 *
3071 * If function returns with error, type/string data might be garbled and should
3072 * be discarded.
3073 *
3074 * More verbose and detailed description of both problem btf_dedup is solving,
3075 * as well as solution could be found at:
3076 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
3077 *
3078 * Problem description and justification
3079 * =====================================
3080 *
3081 * BTF type information is typically emitted either as a result of conversion
3082 * from DWARF to BTF or directly by compiler. In both cases, each compilation
3083 * unit contains information about a subset of all the types that are used
3084 * in an application. These subsets are frequently overlapping and contain a lot
3085 * of duplicated information when later concatenated together into a single
3086 * binary. This algorithm ensures that each unique type is represented by single
3087 * BTF type descriptor, greatly reducing resulting size of BTF data.
3088 *
3089 * Compilation unit isolation and subsequent duplication of data is not the only
3090 * problem. The same type hierarchy (e.g., struct and all the type that struct
3091 * references) in different compilation units can be represented in BTF to
3092 * various degrees of completeness (or, rather, incompleteness) due to
3093 * struct/union forward declarations.
3094 *
3095 * Let's take a look at an example, that we'll use to better understand the
3096 * problem (and solution). Suppose we have two compilation units, each using
3097 * same `struct S`, but each of them having incomplete type information about
3098 * struct's fields:
3099 *
3100 * // CU #1:
3101 * struct S;
3102 * struct A {
3103 *	int a;
3104 *	struct A* self;
3105 *	struct S* parent;
3106 * };
3107 * struct B;
3108 * struct S {
3109 *	struct A* a_ptr;
3110 *	struct B* b_ptr;
3111 * };
3112 *
3113 * // CU #2:
3114 * struct S;
3115 * struct A;
3116 * struct B {
3117 *	int b;
3118 *	struct B* self;
3119 *	struct S* parent;
3120 * };
3121 * struct S {
3122 *	struct A* a_ptr;
3123 *	struct B* b_ptr;
3124 * };
3125 *
3126 * In case of CU #1, BTF data will know only that `struct B` exist (but no
3127 * more), but will know the complete type information about `struct A`. While
3128 * for CU #2, it will know full type information about `struct B`, but will
3129 * only know about forward declaration of `struct A` (in BTF terms, it will
3130 * have `BTF_KIND_FWD` type descriptor with name `B`).
3131 *
3132 * This compilation unit isolation means that it's possible that there is no
3133 * single CU with complete type information describing structs `S`, `A`, and
3134 * `B`. Also, we might get tons of duplicated and redundant type information.
3135 *
3136 * Additional complication we need to keep in mind comes from the fact that
3137 * types, in general, can form graphs containing cycles, not just DAGs.
3138 *
3139 * While algorithm does deduplication, it also merges and resolves type
3140 * information (unless disabled throught `struct btf_opts`), whenever possible.
3141 * E.g., in the example above with two compilation units having partial type
3142 * information for structs `A` and `B`, the output of algorithm will emit
3143 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
3144 * (as well as type information for `int` and pointers), as if they were defined
3145 * in a single compilation unit as:
3146 *
3147 * struct A {
3148 *	int a;
3149 *	struct A* self;
3150 *	struct S* parent;
3151 * };
3152 * struct B {
3153 *	int b;
3154 *	struct B* self;
3155 *	struct S* parent;
3156 * };
3157 * struct S {
3158 *	struct A* a_ptr;
3159 *	struct B* b_ptr;
3160 * };
3161 *
3162 * Algorithm summary
3163 * =================
3164 *
3165 * Algorithm completes its work in 7 separate passes:
3166 *
3167 * 1. Strings deduplication.
3168 * 2. Primitive types deduplication (int, enum, fwd).
3169 * 3. Struct/union types deduplication.
3170 * 4. Resolve unambiguous forward declarations.
3171 * 5. Reference types deduplication (pointers, typedefs, arrays, funcs, func
3172 *    protos, and const/volatile/restrict modifiers).
3173 * 6. Types compaction.
3174 * 7. Types remapping.
3175 *
3176 * Algorithm determines canonical type descriptor, which is a single
3177 * representative type for each truly unique type. This canonical type is the
3178 * one that will go into final deduplicated BTF type information. For
3179 * struct/unions, it is also the type that algorithm will merge additional type
3180 * information into (while resolving FWDs), as it discovers it from data in
3181 * other CUs. Each input BTF type eventually gets either mapped to itself, if
3182 * that type is canonical, or to some other type, if that type is equivalent
3183 * and was chosen as canonical representative. This mapping is stored in
3184 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
3185 * FWD type got resolved to.
3186 *
3187 * To facilitate fast discovery of canonical types, we also maintain canonical
3188 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
3189 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
3190 * that match that signature. With sufficiently good choice of type signature
3191 * hashing function, we can limit number of canonical types for each unique type
3192 * signature to a very small number, allowing to find canonical type for any
3193 * duplicated type very quickly.
3194 *
3195 * Struct/union deduplication is the most critical part and algorithm for
3196 * deduplicating structs/unions is described in greater details in comments for
3197 * `btf_dedup_is_equiv` function.
3198 */
3199int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts)
 
3200{
3201	struct btf_dedup *d;
3202	int err;
3203
3204	if (!OPTS_VALID(opts, btf_dedup_opts))
3205		return libbpf_err(-EINVAL);
3206
3207	d = btf_dedup_new(btf, opts);
3208	if (IS_ERR(d)) {
3209		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
3210		return libbpf_err(-EINVAL);
3211	}
3212
3213	if (btf_ensure_modifiable(btf)) {
3214		err = -ENOMEM;
3215		goto done;
3216	}
3217
3218	err = btf_dedup_prep(d);
3219	if (err) {
3220		pr_debug("btf_dedup_prep failed:%d\n", err);
3221		goto done;
3222	}
3223	err = btf_dedup_strings(d);
3224	if (err < 0) {
3225		pr_debug("btf_dedup_strings failed:%d\n", err);
3226		goto done;
3227	}
3228	err = btf_dedup_prim_types(d);
3229	if (err < 0) {
3230		pr_debug("btf_dedup_prim_types failed:%d\n", err);
3231		goto done;
3232	}
3233	err = btf_dedup_struct_types(d);
3234	if (err < 0) {
3235		pr_debug("btf_dedup_struct_types failed:%d\n", err);
3236		goto done;
3237	}
3238	err = btf_dedup_resolve_fwds(d);
3239	if (err < 0) {
3240		pr_debug("btf_dedup_resolve_fwds failed:%d\n", err);
3241		goto done;
3242	}
3243	err = btf_dedup_ref_types(d);
3244	if (err < 0) {
3245		pr_debug("btf_dedup_ref_types failed:%d\n", err);
3246		goto done;
3247	}
3248	err = btf_dedup_compact_types(d);
3249	if (err < 0) {
3250		pr_debug("btf_dedup_compact_types failed:%d\n", err);
3251		goto done;
3252	}
3253	err = btf_dedup_remap_types(d);
3254	if (err < 0) {
3255		pr_debug("btf_dedup_remap_types failed:%d\n", err);
3256		goto done;
3257	}
3258
3259done:
3260	btf_dedup_free(d);
3261	return libbpf_err(err);
3262}
3263
3264#define BTF_UNPROCESSED_ID ((__u32)-1)
3265#define BTF_IN_PROGRESS_ID ((__u32)-2)
3266
3267struct btf_dedup {
3268	/* .BTF section to be deduped in-place */
3269	struct btf *btf;
3270	/*
3271	 * Optional .BTF.ext section. When provided, any strings referenced
3272	 * from it will be taken into account when deduping strings
3273	 */
3274	struct btf_ext *btf_ext;
3275	/*
3276	 * This is a map from any type's signature hash to a list of possible
3277	 * canonical representative type candidates. Hash collisions are
3278	 * ignored, so even types of various kinds can share same list of
3279	 * candidates, which is fine because we rely on subsequent
3280	 * btf_xxx_equal() checks to authoritatively verify type equality.
3281	 */
3282	struct hashmap *dedup_table;
3283	/* Canonical types map */
3284	__u32 *map;
3285	/* Hypothetical mapping, used during type graph equivalence checks */
3286	__u32 *hypot_map;
3287	__u32 *hypot_list;
3288	size_t hypot_cnt;
3289	size_t hypot_cap;
3290	/* Whether hypothetical mapping, if successful, would need to adjust
3291	 * already canonicalized types (due to a new forward declaration to
3292	 * concrete type resolution). In such case, during split BTF dedup
3293	 * candidate type would still be considered as different, because base
3294	 * BTF is considered to be immutable.
3295	 */
3296	bool hypot_adjust_canon;
3297	/* Various option modifying behavior of algorithm */
3298	struct btf_dedup_opts opts;
3299	/* temporary strings deduplication state */
3300	struct strset *strs_set;
 
 
 
 
 
 
 
 
 
 
 
3301};
3302
3303static long hash_combine(long h, long value)
3304{
3305	return h * 31 + value;
3306}
3307
3308#define for_each_dedup_cand(d, node, hash) \
3309	hashmap__for_each_key_entry(d->dedup_table, node, hash)
3310
3311static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
3312{
3313	return hashmap__append(d->dedup_table, hash, type_id);
 
3314}
3315
3316static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3317				   __u32 from_id, __u32 to_id)
3318{
3319	if (d->hypot_cnt == d->hypot_cap) {
3320		__u32 *new_list;
3321
3322		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3323		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3324		if (!new_list)
3325			return -ENOMEM;
3326		d->hypot_list = new_list;
3327	}
3328	d->hypot_list[d->hypot_cnt++] = from_id;
3329	d->hypot_map[from_id] = to_id;
3330	return 0;
3331}
3332
3333static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3334{
3335	int i;
3336
3337	for (i = 0; i < d->hypot_cnt; i++)
3338		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3339	d->hypot_cnt = 0;
3340	d->hypot_adjust_canon = false;
3341}
3342
3343static void btf_dedup_free(struct btf_dedup *d)
3344{
3345	hashmap__free(d->dedup_table);
3346	d->dedup_table = NULL;
3347
3348	free(d->map);
3349	d->map = NULL;
3350
3351	free(d->hypot_map);
3352	d->hypot_map = NULL;
3353
3354	free(d->hypot_list);
3355	d->hypot_list = NULL;
3356
3357	free(d);
3358}
3359
3360static size_t btf_dedup_identity_hash_fn(long key, void *ctx)
3361{
3362	return key;
3363}
3364
3365static size_t btf_dedup_collision_hash_fn(long key, void *ctx)
3366{
3367	return 0;
3368}
3369
3370static bool btf_dedup_equal_fn(long k1, long k2, void *ctx)
3371{
3372	return k1 == k2;
3373}
3374
3375static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts)
 
3376{
3377	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3378	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3379	int i, err = 0, type_cnt;
3380
3381	if (!d)
3382		return ERR_PTR(-ENOMEM);
3383
3384	if (OPTS_GET(opts, force_collisions, false))
 
 
3385		hash_fn = btf_dedup_collision_hash_fn;
3386
3387	d->btf = btf;
3388	d->btf_ext = OPTS_GET(opts, btf_ext, NULL);
3389
3390	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3391	if (IS_ERR(d->dedup_table)) {
3392		err = PTR_ERR(d->dedup_table);
3393		d->dedup_table = NULL;
3394		goto done;
3395	}
3396
3397	type_cnt = btf__type_cnt(btf);
3398	d->map = malloc(sizeof(__u32) * type_cnt);
3399	if (!d->map) {
3400		err = -ENOMEM;
3401		goto done;
3402	}
3403	/* special BTF "void" type is made canonical immediately */
3404	d->map[0] = 0;
3405	for (i = 1; i < type_cnt; i++) {
3406		struct btf_type *t = btf_type_by_id(d->btf, i);
3407
3408		/* VAR and DATASEC are never deduped and are self-canonical */
3409		if (btf_is_var(t) || btf_is_datasec(t))
3410			d->map[i] = i;
3411		else
3412			d->map[i] = BTF_UNPROCESSED_ID;
3413	}
3414
3415	d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3416	if (!d->hypot_map) {
3417		err = -ENOMEM;
3418		goto done;
3419	}
3420	for (i = 0; i < type_cnt; i++)
3421		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3422
3423done:
3424	if (err) {
3425		btf_dedup_free(d);
3426		return ERR_PTR(err);
3427	}
3428
3429	return d;
3430}
3431
 
 
3432/*
3433 * Iterate over all possible places in .BTF and .BTF.ext that can reference
3434 * string and pass pointer to it to a provided callback `fn`.
3435 */
3436static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3437{
3438	int i, r;
3439
3440	for (i = 0; i < d->btf->nr_types; i++) {
3441		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3442
3443		r = btf_type_visit_str_offs(t, fn, ctx);
 
 
3444		if (r)
3445			return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3446	}
3447
3448	if (!d->btf_ext)
3449		return 0;
3450
3451	r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3452	if (r)
3453		return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3454
 
 
3455	return 0;
3456}
3457
3458static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3459{
3460	struct btf_dedup *d = ctx;
3461	__u32 str_off = *str_off_ptr;
3462	const char *s;
3463	int off, err;
3464
3465	/* don't touch empty string or string in main BTF */
3466	if (str_off == 0 || str_off < d->btf->start_str_off)
3467		return 0;
3468
3469	s = btf__str_by_offset(d->btf, str_off);
3470	if (d->btf->base_btf) {
3471		err = btf__find_str(d->btf->base_btf, s);
3472		if (err >= 0) {
3473			*str_off_ptr = err;
3474			return 0;
3475		}
3476		if (err != -ENOENT)
3477			return err;
3478	}
 
 
 
3479
3480	off = strset__add_str(d->strs_set, s);
3481	if (off < 0)
3482		return off;
3483
3484	*str_off_ptr = d->btf->start_str_off + off;
 
 
 
 
 
3485	return 0;
3486}
3487
3488/*
3489 * Dedup string and filter out those that are not referenced from either .BTF
3490 * or .BTF.ext (if provided) sections.
3491 *
3492 * This is done by building index of all strings in BTF's string section,
3493 * then iterating over all entities that can reference strings (e.g., type
3494 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3495 * strings as used. After that all used strings are deduped and compacted into
3496 * sequential blob of memory and new offsets are calculated. Then all the string
3497 * references are iterated again and rewritten using new offsets.
3498 */
3499static int btf_dedup_strings(struct btf_dedup *d)
3500{
3501	int err;
 
 
 
 
 
 
 
 
 
 
 
3502
3503	if (d->btf->strs_deduped)
3504		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
3505
3506	d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3507	if (IS_ERR(d->strs_set)) {
3508		err = PTR_ERR(d->strs_set);
3509		goto err_out;
 
 
 
 
 
 
 
 
3510	}
3511
3512	if (!d->btf->base_btf) {
3513		/* insert empty string; we won't be looking it up during strings
3514		 * dedup, but it's good to have it for generic BTF string lookups
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3515		 */
3516		err = strset__add_str(d->strs_set, "");
3517		if (err < 0)
3518			goto err_out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3519	}
3520
 
 
 
 
 
 
 
 
3521	/* remap string offsets */
3522	err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3523	if (err)
3524		goto err_out;
3525
3526	/* replace BTF string data and hash with deduped ones */
3527	strset__free(d->btf->strs_set);
3528	d->btf->hdr->str_len = strset__data_size(d->strs_set);
3529	d->btf->strs_set = d->strs_set;
3530	d->strs_set = NULL;
3531	d->btf->strs_deduped = true;
3532	return 0;
3533
3534err_out:
3535	strset__free(d->strs_set);
3536	d->strs_set = NULL;
3537
 
 
 
3538	return err;
3539}
3540
3541static long btf_hash_common(struct btf_type *t)
3542{
3543	long h;
3544
3545	h = hash_combine(0, t->name_off);
3546	h = hash_combine(h, t->info);
3547	h = hash_combine(h, t->size);
3548	return h;
3549}
3550
3551static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3552{
3553	return t1->name_off == t2->name_off &&
3554	       t1->info == t2->info &&
3555	       t1->size == t2->size;
3556}
3557
3558/* Calculate type signature hash of INT or TAG. */
3559static long btf_hash_int_decl_tag(struct btf_type *t)
3560{
3561	__u32 info = *(__u32 *)(t + 1);
3562	long h;
3563
3564	h = btf_hash_common(t);
3565	h = hash_combine(h, info);
3566	return h;
3567}
3568
3569/* Check structural equality of two INTs or TAGs. */
3570static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2)
3571{
3572	__u32 info1, info2;
3573
3574	if (!btf_equal_common(t1, t2))
3575		return false;
3576	info1 = *(__u32 *)(t1 + 1);
3577	info2 = *(__u32 *)(t2 + 1);
3578	return info1 == info2;
3579}
3580
3581/* Calculate type signature hash of ENUM/ENUM64. */
3582static long btf_hash_enum(struct btf_type *t)
3583{
3584	long h;
3585
3586	/* don't hash vlen, enum members and size to support enum fwd resolving */
3587	h = hash_combine(0, t->name_off);
 
 
3588	return h;
3589}
3590
3591static bool btf_equal_enum_members(struct btf_type *t1, struct btf_type *t2)
 
3592{
3593	const struct btf_enum *m1, *m2;
3594	__u16 vlen;
3595	int i;
3596
 
 
 
3597	vlen = btf_vlen(t1);
3598	m1 = btf_enum(t1);
3599	m2 = btf_enum(t2);
3600	for (i = 0; i < vlen; i++) {
3601		if (m1->name_off != m2->name_off || m1->val != m2->val)
3602			return false;
3603		m1++;
3604		m2++;
3605	}
3606	return true;
3607}
3608
3609static bool btf_equal_enum64_members(struct btf_type *t1, struct btf_type *t2)
3610{
3611	const struct btf_enum64 *m1, *m2;
3612	__u16 vlen;
3613	int i;
3614
3615	vlen = btf_vlen(t1);
3616	m1 = btf_enum64(t1);
3617	m2 = btf_enum64(t2);
3618	for (i = 0; i < vlen; i++) {
3619		if (m1->name_off != m2->name_off || m1->val_lo32 != m2->val_lo32 ||
3620		    m1->val_hi32 != m2->val_hi32)
3621			return false;
3622		m1++;
3623		m2++;
3624	}
3625	return true;
3626}
3627
3628/* Check structural equality of two ENUMs or ENUM64s. */
3629static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3630{
3631	if (!btf_equal_common(t1, t2))
3632		return false;
3633
3634	/* t1 & t2 kinds are identical because of btf_equal_common */
3635	if (btf_kind(t1) == BTF_KIND_ENUM)
3636		return btf_equal_enum_members(t1, t2);
3637	else
3638		return btf_equal_enum64_members(t1, t2);
3639}
3640
3641static inline bool btf_is_enum_fwd(struct btf_type *t)
3642{
3643	return btf_is_any_enum(t) && btf_vlen(t) == 0;
3644}
3645
3646static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3647{
3648	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3649		return btf_equal_enum(t1, t2);
3650	/* At this point either t1 or t2 or both are forward declarations, thus:
3651	 * - skip comparing vlen because it is zero for forward declarations;
3652	 * - skip comparing size to allow enum forward declarations
3653	 *   to be compatible with enum64 full declarations;
3654	 * - skip comparing kind for the same reason.
3655	 */
3656	return t1->name_off == t2->name_off &&
3657	       btf_is_any_enum(t1) && btf_is_any_enum(t2);
 
3658}
3659
3660/*
3661 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3662 * as referenced type IDs equivalence is established separately during type
3663 * graph equivalence check algorithm.
3664 */
3665static long btf_hash_struct(struct btf_type *t)
3666{
3667	const struct btf_member *member = btf_members(t);
3668	__u32 vlen = btf_vlen(t);
3669	long h = btf_hash_common(t);
3670	int i;
3671
3672	for (i = 0; i < vlen; i++) {
3673		h = hash_combine(h, member->name_off);
3674		h = hash_combine(h, member->offset);
3675		/* no hashing of referenced type ID, it can be unresolved yet */
3676		member++;
3677	}
3678	return h;
3679}
3680
3681/*
3682 * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced
3683 * type IDs. This check is performed during type graph equivalence check and
3684 * referenced types equivalence is checked separately.
3685 */
3686static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3687{
3688	const struct btf_member *m1, *m2;
3689	__u16 vlen;
3690	int i;
3691
3692	if (!btf_equal_common(t1, t2))
3693		return false;
3694
3695	vlen = btf_vlen(t1);
3696	m1 = btf_members(t1);
3697	m2 = btf_members(t2);
3698	for (i = 0; i < vlen; i++) {
3699		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3700			return false;
3701		m1++;
3702		m2++;
3703	}
3704	return true;
3705}
3706
3707/*
3708 * Calculate type signature hash of ARRAY, including referenced type IDs,
3709 * under assumption that they were already resolved to canonical type IDs and
3710 * are not going to change.
3711 */
3712static long btf_hash_array(struct btf_type *t)
3713{
3714	const struct btf_array *info = btf_array(t);
3715	long h = btf_hash_common(t);
3716
3717	h = hash_combine(h, info->type);
3718	h = hash_combine(h, info->index_type);
3719	h = hash_combine(h, info->nelems);
3720	return h;
3721}
3722
3723/*
3724 * Check exact equality of two ARRAYs, taking into account referenced
3725 * type IDs, under assumption that they were already resolved to canonical
3726 * type IDs and are not going to change.
3727 * This function is called during reference types deduplication to compare
3728 * ARRAY to potential canonical representative.
3729 */
3730static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3731{
3732	const struct btf_array *info1, *info2;
3733
3734	if (!btf_equal_common(t1, t2))
3735		return false;
3736
3737	info1 = btf_array(t1);
3738	info2 = btf_array(t2);
3739	return info1->type == info2->type &&
3740	       info1->index_type == info2->index_type &&
3741	       info1->nelems == info2->nelems;
3742}
3743
3744/*
3745 * Check structural compatibility of two ARRAYs, ignoring referenced type
3746 * IDs. This check is performed during type graph equivalence check and
3747 * referenced types equivalence is checked separately.
3748 */
3749static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3750{
3751	if (!btf_equal_common(t1, t2))
3752		return false;
3753
3754	return btf_array(t1)->nelems == btf_array(t2)->nelems;
3755}
3756
3757/*
3758 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3759 * under assumption that they were already resolved to canonical type IDs and
3760 * are not going to change.
3761 */
3762static long btf_hash_fnproto(struct btf_type *t)
3763{
3764	const struct btf_param *member = btf_params(t);
3765	__u16 vlen = btf_vlen(t);
3766	long h = btf_hash_common(t);
3767	int i;
3768
3769	for (i = 0; i < vlen; i++) {
3770		h = hash_combine(h, member->name_off);
3771		h = hash_combine(h, member->type);
3772		member++;
3773	}
3774	return h;
3775}
3776
3777/*
3778 * Check exact equality of two FUNC_PROTOs, taking into account referenced
3779 * type IDs, under assumption that they were already resolved to canonical
3780 * type IDs and are not going to change.
3781 * This function is called during reference types deduplication to compare
3782 * FUNC_PROTO to potential canonical representative.
3783 */
3784static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3785{
3786	const struct btf_param *m1, *m2;
3787	__u16 vlen;
3788	int i;
3789
3790	if (!btf_equal_common(t1, t2))
3791		return false;
3792
3793	vlen = btf_vlen(t1);
3794	m1 = btf_params(t1);
3795	m2 = btf_params(t2);
3796	for (i = 0; i < vlen; i++) {
3797		if (m1->name_off != m2->name_off || m1->type != m2->type)
3798			return false;
3799		m1++;
3800		m2++;
3801	}
3802	return true;
3803}
3804
3805/*
3806 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3807 * IDs. This check is performed during type graph equivalence check and
3808 * referenced types equivalence is checked separately.
3809 */
3810static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3811{
3812	const struct btf_param *m1, *m2;
3813	__u16 vlen;
3814	int i;
3815
3816	/* skip return type ID */
3817	if (t1->name_off != t2->name_off || t1->info != t2->info)
3818		return false;
3819
3820	vlen = btf_vlen(t1);
3821	m1 = btf_params(t1);
3822	m2 = btf_params(t2);
3823	for (i = 0; i < vlen; i++) {
3824		if (m1->name_off != m2->name_off)
3825			return false;
3826		m1++;
3827		m2++;
3828	}
3829	return true;
3830}
3831
3832/* Prepare split BTF for deduplication by calculating hashes of base BTF's
3833 * types and initializing the rest of the state (canonical type mapping) for
3834 * the fixed base BTF part.
3835 */
3836static int btf_dedup_prep(struct btf_dedup *d)
3837{
3838	struct btf_type *t;
3839	int type_id;
3840	long h;
3841
3842	if (!d->btf->base_btf)
3843		return 0;
3844
3845	for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3846		t = btf_type_by_id(d->btf, type_id);
3847
3848		/* all base BTF types are self-canonical by definition */
3849		d->map[type_id] = type_id;
3850
3851		switch (btf_kind(t)) {
3852		case BTF_KIND_VAR:
3853		case BTF_KIND_DATASEC:
3854			/* VAR and DATASEC are never hash/deduplicated */
3855			continue;
3856		case BTF_KIND_CONST:
3857		case BTF_KIND_VOLATILE:
3858		case BTF_KIND_RESTRICT:
3859		case BTF_KIND_PTR:
3860		case BTF_KIND_FWD:
3861		case BTF_KIND_TYPEDEF:
3862		case BTF_KIND_FUNC:
3863		case BTF_KIND_FLOAT:
3864		case BTF_KIND_TYPE_TAG:
3865			h = btf_hash_common(t);
3866			break;
3867		case BTF_KIND_INT:
3868		case BTF_KIND_DECL_TAG:
3869			h = btf_hash_int_decl_tag(t);
3870			break;
3871		case BTF_KIND_ENUM:
3872		case BTF_KIND_ENUM64:
3873			h = btf_hash_enum(t);
3874			break;
3875		case BTF_KIND_STRUCT:
3876		case BTF_KIND_UNION:
3877			h = btf_hash_struct(t);
3878			break;
3879		case BTF_KIND_ARRAY:
3880			h = btf_hash_array(t);
3881			break;
3882		case BTF_KIND_FUNC_PROTO:
3883			h = btf_hash_fnproto(t);
3884			break;
3885		default:
3886			pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3887			return -EINVAL;
3888		}
3889		if (btf_dedup_table_add(d, h, type_id))
3890			return -ENOMEM;
3891	}
3892
3893	return 0;
3894}
3895
3896/*
3897 * Deduplicate primitive types, that can't reference other types, by calculating
3898 * their type signature hash and comparing them with any possible canonical
3899 * candidate. If no canonical candidate matches, type itself is marked as
3900 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3901 */
3902static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3903{
3904	struct btf_type *t = btf_type_by_id(d->btf, type_id);
3905	struct hashmap_entry *hash_entry;
3906	struct btf_type *cand;
3907	/* if we don't find equivalent type, then we are canonical */
3908	__u32 new_id = type_id;
3909	__u32 cand_id;
3910	long h;
3911
3912	switch (btf_kind(t)) {
3913	case BTF_KIND_CONST:
3914	case BTF_KIND_VOLATILE:
3915	case BTF_KIND_RESTRICT:
3916	case BTF_KIND_PTR:
3917	case BTF_KIND_TYPEDEF:
3918	case BTF_KIND_ARRAY:
3919	case BTF_KIND_STRUCT:
3920	case BTF_KIND_UNION:
3921	case BTF_KIND_FUNC:
3922	case BTF_KIND_FUNC_PROTO:
3923	case BTF_KIND_VAR:
3924	case BTF_KIND_DATASEC:
3925	case BTF_KIND_DECL_TAG:
3926	case BTF_KIND_TYPE_TAG:
3927		return 0;
3928
3929	case BTF_KIND_INT:
3930		h = btf_hash_int_decl_tag(t);
3931		for_each_dedup_cand(d, hash_entry, h) {
3932			cand_id = hash_entry->value;
3933			cand = btf_type_by_id(d->btf, cand_id);
3934			if (btf_equal_int_tag(t, cand)) {
3935				new_id = cand_id;
3936				break;
3937			}
3938		}
3939		break;
3940
3941	case BTF_KIND_ENUM:
3942	case BTF_KIND_ENUM64:
3943		h = btf_hash_enum(t);
3944		for_each_dedup_cand(d, hash_entry, h) {
3945			cand_id = hash_entry->value;
3946			cand = btf_type_by_id(d->btf, cand_id);
3947			if (btf_equal_enum(t, cand)) {
3948				new_id = cand_id;
3949				break;
3950			}
 
 
3951			if (btf_compat_enum(t, cand)) {
3952				if (btf_is_enum_fwd(t)) {
3953					/* resolve fwd to full enum */
3954					new_id = cand_id;
3955					break;
3956				}
3957				/* resolve canonical enum fwd to full enum */
3958				d->map[cand_id] = type_id;
3959			}
3960		}
3961		break;
3962
3963	case BTF_KIND_FWD:
3964	case BTF_KIND_FLOAT:
3965		h = btf_hash_common(t);
3966		for_each_dedup_cand(d, hash_entry, h) {
3967			cand_id = hash_entry->value;
3968			cand = btf_type_by_id(d->btf, cand_id);
3969			if (btf_equal_common(t, cand)) {
3970				new_id = cand_id;
3971				break;
3972			}
3973		}
3974		break;
3975
3976	default:
3977		return -EINVAL;
3978	}
3979
3980	d->map[type_id] = new_id;
3981	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3982		return -ENOMEM;
3983
3984	return 0;
3985}
3986
3987static int btf_dedup_prim_types(struct btf_dedup *d)
3988{
3989	int i, err;
3990
3991	for (i = 0; i < d->btf->nr_types; i++) {
3992		err = btf_dedup_prim_type(d, d->btf->start_id + i);
3993		if (err)
3994			return err;
3995	}
3996	return 0;
3997}
3998
3999/*
4000 * Check whether type is already mapped into canonical one (could be to itself).
4001 */
4002static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
4003{
4004	return d->map[type_id] <= BTF_MAX_NR_TYPES;
4005}
4006
4007/*
4008 * Resolve type ID into its canonical type ID, if any; otherwise return original
4009 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
4010 * STRUCT/UNION link and resolve it into canonical type ID as well.
4011 */
4012static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
4013{
4014	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
4015		type_id = d->map[type_id];
4016	return type_id;
4017}
4018
4019/*
4020 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
4021 * type ID.
4022 */
4023static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
4024{
4025	__u32 orig_type_id = type_id;
4026
4027	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
4028		return type_id;
4029
4030	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
4031		type_id = d->map[type_id];
4032
4033	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
4034		return type_id;
4035
4036	return orig_type_id;
4037}
4038
4039
4040static inline __u16 btf_fwd_kind(struct btf_type *t)
4041{
4042	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
4043}
4044
4045/* Check if given two types are identical ARRAY definitions */
4046static bool btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
4047{
4048	struct btf_type *t1, *t2;
4049
4050	t1 = btf_type_by_id(d->btf, id1);
4051	t2 = btf_type_by_id(d->btf, id2);
4052	if (!btf_is_array(t1) || !btf_is_array(t2))
4053		return false;
4054
4055	return btf_equal_array(t1, t2);
4056}
4057
4058/* Check if given two types are identical STRUCT/UNION definitions */
4059static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2)
4060{
4061	const struct btf_member *m1, *m2;
4062	struct btf_type *t1, *t2;
4063	int n, i;
4064
4065	t1 = btf_type_by_id(d->btf, id1);
4066	t2 = btf_type_by_id(d->btf, id2);
4067
4068	if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2))
4069		return false;
4070
4071	if (!btf_shallow_equal_struct(t1, t2))
4072		return false;
4073
4074	m1 = btf_members(t1);
4075	m2 = btf_members(t2);
4076	for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) {
4077		if (m1->type != m2->type &&
4078		    !btf_dedup_identical_arrays(d, m1->type, m2->type) &&
4079		    !btf_dedup_identical_structs(d, m1->type, m2->type))
4080			return false;
4081	}
4082	return true;
4083}
4084
4085/*
4086 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
4087 * call it "candidate graph" in this description for brevity) to a type graph
4088 * formed by (potential) canonical struct/union ("canonical graph" for brevity
4089 * here, though keep in mind that not all types in canonical graph are
4090 * necessarily canonical representatives themselves, some of them might be
4091 * duplicates or its uniqueness might not have been established yet).
4092 * Returns:
4093 *  - >0, if type graphs are equivalent;
4094 *  -  0, if not equivalent;
4095 *  - <0, on error.
4096 *
4097 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
4098 * equivalence of BTF types at each step. If at any point BTF types in candidate
4099 * and canonical graphs are not compatible structurally, whole graphs are
4100 * incompatible. If types are structurally equivalent (i.e., all information
4101 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
4102 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
4103 * If a type references other types, then those referenced types are checked
4104 * for equivalence recursively.
4105 *
4106 * During DFS traversal, if we find that for current `canon_id` type we
4107 * already have some mapping in hypothetical map, we check for two possible
4108 * situations:
4109 *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
4110 *     happen when type graphs have cycles. In this case we assume those two
4111 *     types are equivalent.
4112 *   - `canon_id` is mapped to different type. This is contradiction in our
4113 *     hypothetical mapping, because same graph in canonical graph corresponds
4114 *     to two different types in candidate graph, which for equivalent type
4115 *     graphs shouldn't happen. This condition terminates equivalence check
4116 *     with negative result.
4117 *
4118 * If type graphs traversal exhausts types to check and find no contradiction,
4119 * then type graphs are equivalent.
4120 *
4121 * When checking types for equivalence, there is one special case: FWD types.
4122 * If FWD type resolution is allowed and one of the types (either from canonical
4123 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
4124 * flag) and their names match, hypothetical mapping is updated to point from
4125 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
4126 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
4127 *
4128 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
4129 * if there are two exactly named (or anonymous) structs/unions that are
4130 * compatible structurally, one of which has FWD field, while other is concrete
4131 * STRUCT/UNION, but according to C sources they are different structs/unions
4132 * that are referencing different types with the same name. This is extremely
4133 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
4134 * this logic is causing problems.
4135 *
4136 * Doing FWD resolution means that both candidate and/or canonical graphs can
4137 * consists of portions of the graph that come from multiple compilation units.
4138 * This is due to the fact that types within single compilation unit are always
4139 * deduplicated and FWDs are already resolved, if referenced struct/union
4140 * definiton is available. So, if we had unresolved FWD and found corresponding
4141 * STRUCT/UNION, they will be from different compilation units. This
4142 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
4143 * type graph will likely have at least two different BTF types that describe
4144 * same type (e.g., most probably there will be two different BTF types for the
4145 * same 'int' primitive type) and could even have "overlapping" parts of type
4146 * graph that describe same subset of types.
4147 *
4148 * This in turn means that our assumption that each type in canonical graph
4149 * must correspond to exactly one type in candidate graph might not hold
4150 * anymore and will make it harder to detect contradictions using hypothetical
4151 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
4152 * resolution only in canonical graph. FWDs in candidate graphs are never
4153 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
4154 * that can occur:
4155 *   - Both types in canonical and candidate graphs are FWDs. If they are
4156 *     structurally equivalent, then they can either be both resolved to the
4157 *     same STRUCT/UNION or not resolved at all. In both cases they are
4158 *     equivalent and there is no need to resolve FWD on candidate side.
4159 *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
4160 *     so nothing to resolve as well, algorithm will check equivalence anyway.
4161 *   - Type in canonical graph is FWD, while type in candidate is concrete
4162 *     STRUCT/UNION. In this case candidate graph comes from single compilation
4163 *     unit, so there is exactly one BTF type for each unique C type. After
4164 *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
4165 *     in canonical graph mapping to single BTF type in candidate graph, but
4166 *     because hypothetical mapping maps from canonical to candidate types, it's
4167 *     alright, and we still maintain the property of having single `canon_id`
4168 *     mapping to single `cand_id` (there could be two different `canon_id`
4169 *     mapped to the same `cand_id`, but it's not contradictory).
4170 *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
4171 *     graph is FWD. In this case we are just going to check compatibility of
4172 *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
4173 *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
4174 *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
4175 *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
4176 *     canonical graph.
4177 */
4178static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
4179			      __u32 canon_id)
4180{
4181	struct btf_type *cand_type;
4182	struct btf_type *canon_type;
4183	__u32 hypot_type_id;
4184	__u16 cand_kind;
4185	__u16 canon_kind;
4186	int i, eq;
4187
4188	/* if both resolve to the same canonical, they must be equivalent */
4189	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
4190		return 1;
4191
4192	canon_id = resolve_fwd_id(d, canon_id);
4193
4194	hypot_type_id = d->hypot_map[canon_id];
4195	if (hypot_type_id <= BTF_MAX_NR_TYPES) {
4196		if (hypot_type_id == cand_id)
4197			return 1;
4198		/* In some cases compiler will generate different DWARF types
4199		 * for *identical* array type definitions and use them for
4200		 * different fields within the *same* struct. This breaks type
4201		 * equivalence check, which makes an assumption that candidate
4202		 * types sub-graph has a consistent and deduped-by-compiler
4203		 * types within a single CU. So work around that by explicitly
4204		 * allowing identical array types here.
4205		 */
4206		if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id))
4207			return 1;
4208		/* It turns out that similar situation can happen with
4209		 * struct/union sometimes, sigh... Handle the case where
4210		 * structs/unions are exactly the same, down to the referenced
4211		 * type IDs. Anything more complicated (e.g., if referenced
4212		 * types are different, but equivalent) is *way more*
4213		 * complicated and requires a many-to-many equivalence mapping.
4214		 */
4215		if (btf_dedup_identical_structs(d, hypot_type_id, cand_id))
4216			return 1;
4217		return 0;
4218	}
4219
4220	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
4221		return -ENOMEM;
4222
4223	cand_type = btf_type_by_id(d->btf, cand_id);
4224	canon_type = btf_type_by_id(d->btf, canon_id);
4225	cand_kind = btf_kind(cand_type);
4226	canon_kind = btf_kind(canon_type);
4227
4228	if (cand_type->name_off != canon_type->name_off)
4229		return 0;
4230
4231	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
4232	if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
 
4233	    && cand_kind != canon_kind) {
4234		__u16 real_kind;
4235		__u16 fwd_kind;
4236
4237		if (cand_kind == BTF_KIND_FWD) {
4238			real_kind = canon_kind;
4239			fwd_kind = btf_fwd_kind(cand_type);
4240		} else {
4241			real_kind = cand_kind;
4242			fwd_kind = btf_fwd_kind(canon_type);
4243			/* we'd need to resolve base FWD to STRUCT/UNION */
4244			if (fwd_kind == real_kind && canon_id < d->btf->start_id)
4245				d->hypot_adjust_canon = true;
4246		}
4247		return fwd_kind == real_kind;
4248	}
4249
4250	if (cand_kind != canon_kind)
4251		return 0;
4252
4253	switch (cand_kind) {
4254	case BTF_KIND_INT:
4255		return btf_equal_int_tag(cand_type, canon_type);
4256
4257	case BTF_KIND_ENUM:
4258	case BTF_KIND_ENUM64:
4259		return btf_compat_enum(cand_type, canon_type);
 
 
4260
4261	case BTF_KIND_FWD:
4262	case BTF_KIND_FLOAT:
4263		return btf_equal_common(cand_type, canon_type);
4264
4265	case BTF_KIND_CONST:
4266	case BTF_KIND_VOLATILE:
4267	case BTF_KIND_RESTRICT:
4268	case BTF_KIND_PTR:
4269	case BTF_KIND_TYPEDEF:
4270	case BTF_KIND_FUNC:
4271	case BTF_KIND_TYPE_TAG:
4272		if (cand_type->info != canon_type->info)
4273			return 0;
4274		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4275
4276	case BTF_KIND_ARRAY: {
4277		const struct btf_array *cand_arr, *canon_arr;
4278
4279		if (!btf_compat_array(cand_type, canon_type))
4280			return 0;
4281		cand_arr = btf_array(cand_type);
4282		canon_arr = btf_array(canon_type);
4283		eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
 
4284		if (eq <= 0)
4285			return eq;
4286		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
4287	}
4288
4289	case BTF_KIND_STRUCT:
4290	case BTF_KIND_UNION: {
4291		const struct btf_member *cand_m, *canon_m;
4292		__u16 vlen;
4293
4294		if (!btf_shallow_equal_struct(cand_type, canon_type))
4295			return 0;
4296		vlen = btf_vlen(cand_type);
4297		cand_m = btf_members(cand_type);
4298		canon_m = btf_members(canon_type);
4299		for (i = 0; i < vlen; i++) {
4300			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
4301			if (eq <= 0)
4302				return eq;
4303			cand_m++;
4304			canon_m++;
4305		}
4306
4307		return 1;
4308	}
4309
4310	case BTF_KIND_FUNC_PROTO: {
4311		const struct btf_param *cand_p, *canon_p;
4312		__u16 vlen;
4313
4314		if (!btf_compat_fnproto(cand_type, canon_type))
4315			return 0;
4316		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4317		if (eq <= 0)
4318			return eq;
4319		vlen = btf_vlen(cand_type);
4320		cand_p = btf_params(cand_type);
4321		canon_p = btf_params(canon_type);
4322		for (i = 0; i < vlen; i++) {
4323			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
4324			if (eq <= 0)
4325				return eq;
4326			cand_p++;
4327			canon_p++;
4328		}
4329		return 1;
4330	}
4331
4332	default:
4333		return -EINVAL;
4334	}
4335	return 0;
4336}
4337
4338/*
4339 * Use hypothetical mapping, produced by successful type graph equivalence
4340 * check, to augment existing struct/union canonical mapping, where possible.
4341 *
4342 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
4343 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
4344 * it doesn't matter if FWD type was part of canonical graph or candidate one,
4345 * we are recording the mapping anyway. As opposed to carefulness required
4346 * for struct/union correspondence mapping (described below), for FWD resolution
4347 * it's not important, as by the time that FWD type (reference type) will be
4348 * deduplicated all structs/unions will be deduped already anyway.
4349 *
4350 * Recording STRUCT/UNION mapping is purely a performance optimization and is
4351 * not required for correctness. It needs to be done carefully to ensure that
4352 * struct/union from candidate's type graph is not mapped into corresponding
4353 * struct/union from canonical type graph that itself hasn't been resolved into
4354 * canonical representative. The only guarantee we have is that canonical
4355 * struct/union was determined as canonical and that won't change. But any
4356 * types referenced through that struct/union fields could have been not yet
4357 * resolved, so in case like that it's too early to establish any kind of
4358 * correspondence between structs/unions.
4359 *
4360 * No canonical correspondence is derived for primitive types (they are already
4361 * deduplicated completely already anyway) or reference types (they rely on
4362 * stability of struct/union canonical relationship for equivalence checks).
4363 */
4364static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
4365{
4366	__u32 canon_type_id, targ_type_id;
4367	__u16 t_kind, c_kind;
4368	__u32 t_id, c_id;
4369	int i;
4370
4371	for (i = 0; i < d->hypot_cnt; i++) {
4372		canon_type_id = d->hypot_list[i];
4373		targ_type_id = d->hypot_map[canon_type_id];
4374		t_id = resolve_type_id(d, targ_type_id);
4375		c_id = resolve_type_id(d, canon_type_id);
4376		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4377		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4378		/*
4379		 * Resolve FWD into STRUCT/UNION.
4380		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4381		 * mapped to canonical representative (as opposed to
4382		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4383		 * eventually that struct is going to be mapped and all resolved
4384		 * FWDs will automatically resolve to correct canonical
4385		 * representative. This will happen before ref type deduping,
4386		 * which critically depends on stability of these mapping. This
4387		 * stability is not a requirement for STRUCT/UNION equivalence
4388		 * checks, though.
4389		 */
4390
4391		/* if it's the split BTF case, we still need to point base FWD
4392		 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4393		 * will be resolved against base FWD. If we don't point base
4394		 * canonical FWD to the resolved STRUCT/UNION, then all the
4395		 * FWDs in split BTF won't be correctly resolved to a proper
4396		 * STRUCT/UNION.
4397		 */
4398		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4399			d->map[c_id] = t_id;
4400
4401		/* if graph equivalence determined that we'd need to adjust
4402		 * base canonical types, then we need to only point base FWDs
4403		 * to STRUCTs/UNIONs and do no more modifications. For all
4404		 * other purposes the type graphs were not equivalent.
4405		 */
4406		if (d->hypot_adjust_canon)
4407			continue;
4408
4409		if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4410			d->map[t_id] = c_id;
4411
4412		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4413		    c_kind != BTF_KIND_FWD &&
4414		    is_type_mapped(d, c_id) &&
4415		    !is_type_mapped(d, t_id)) {
4416			/*
4417			 * as a perf optimization, we can map struct/union
4418			 * that's part of type graph we just verified for
4419			 * equivalence. We can do that for struct/union that has
4420			 * canonical representative only, though.
4421			 */
4422			d->map[t_id] = c_id;
4423		}
4424	}
4425}
4426
4427/*
4428 * Deduplicate struct/union types.
4429 *
4430 * For each struct/union type its type signature hash is calculated, taking
4431 * into account type's name, size, number, order and names of fields, but
4432 * ignoring type ID's referenced from fields, because they might not be deduped
4433 * completely until after reference types deduplication phase. This type hash
4434 * is used to iterate over all potential canonical types, sharing same hash.
4435 * For each canonical candidate we check whether type graphs that they form
4436 * (through referenced types in fields and so on) are equivalent using algorithm
4437 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4438 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4439 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4440 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4441 * potentially map other structs/unions to their canonical representatives,
4442 * if such relationship hasn't yet been established. This speeds up algorithm
4443 * by eliminating some of the duplicate work.
4444 *
4445 * If no matching canonical representative was found, struct/union is marked
4446 * as canonical for itself and is added into btf_dedup->dedup_table hash map
4447 * for further look ups.
4448 */
4449static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4450{
4451	struct btf_type *cand_type, *t;
4452	struct hashmap_entry *hash_entry;
4453	/* if we don't find equivalent type, then we are canonical */
4454	__u32 new_id = type_id;
4455	__u16 kind;
4456	long h;
4457
4458	/* already deduped or is in process of deduping (loop detected) */
4459	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4460		return 0;
4461
4462	t = btf_type_by_id(d->btf, type_id);
4463	kind = btf_kind(t);
4464
4465	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4466		return 0;
4467
4468	h = btf_hash_struct(t);
4469	for_each_dedup_cand(d, hash_entry, h) {
4470		__u32 cand_id = hash_entry->value;
4471		int eq;
4472
4473		/*
4474		 * Even though btf_dedup_is_equiv() checks for
4475		 * btf_shallow_equal_struct() internally when checking two
4476		 * structs (unions) for equivalence, we need to guard here
4477		 * from picking matching FWD type as a dedup candidate.
4478		 * This can happen due to hash collision. In such case just
4479		 * relying on btf_dedup_is_equiv() would lead to potentially
4480		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4481		 * FWD and compatible STRUCT/UNION are considered equivalent.
4482		 */
4483		cand_type = btf_type_by_id(d->btf, cand_id);
4484		if (!btf_shallow_equal_struct(t, cand_type))
4485			continue;
4486
4487		btf_dedup_clear_hypot_map(d);
4488		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4489		if (eq < 0)
4490			return eq;
4491		if (!eq)
4492			continue;
4493		btf_dedup_merge_hypot_map(d);
4494		if (d->hypot_adjust_canon) /* not really equivalent */
4495			continue;
4496		new_id = cand_id;
 
4497		break;
4498	}
4499
4500	d->map[type_id] = new_id;
4501	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4502		return -ENOMEM;
4503
4504	return 0;
4505}
4506
4507static int btf_dedup_struct_types(struct btf_dedup *d)
4508{
4509	int i, err;
4510
4511	for (i = 0; i < d->btf->nr_types; i++) {
4512		err = btf_dedup_struct_type(d, d->btf->start_id + i);
4513		if (err)
4514			return err;
4515	}
4516	return 0;
4517}
4518
4519/*
4520 * Deduplicate reference type.
4521 *
4522 * Once all primitive and struct/union types got deduplicated, we can easily
4523 * deduplicate all other (reference) BTF types. This is done in two steps:
4524 *
4525 * 1. Resolve all referenced type IDs into their canonical type IDs. This
4526 * resolution can be done either immediately for primitive or struct/union types
4527 * (because they were deduped in previous two phases) or recursively for
4528 * reference types. Recursion will always terminate at either primitive or
4529 * struct/union type, at which point we can "unwind" chain of reference types
4530 * one by one. There is no danger of encountering cycles because in C type
4531 * system the only way to form type cycle is through struct/union, so any chain
4532 * of reference types, even those taking part in a type cycle, will inevitably
4533 * reach struct/union at some point.
4534 *
4535 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4536 * becomes "stable", in the sense that no further deduplication will cause
4537 * any changes to it. With that, it's now possible to calculate type's signature
4538 * hash (this time taking into account referenced type IDs) and loop over all
4539 * potential canonical representatives. If no match was found, current type
4540 * will become canonical representative of itself and will be added into
4541 * btf_dedup->dedup_table as another possible canonical representative.
4542 */
4543static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4544{
4545	struct hashmap_entry *hash_entry;
4546	__u32 new_id = type_id, cand_id;
4547	struct btf_type *t, *cand;
4548	/* if we don't find equivalent type, then we are representative type */
4549	int ref_type_id;
4550	long h;
4551
4552	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4553		return -ELOOP;
4554	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4555		return resolve_type_id(d, type_id);
4556
4557	t = btf_type_by_id(d->btf, type_id);
4558	d->map[type_id] = BTF_IN_PROGRESS_ID;
4559
4560	switch (btf_kind(t)) {
4561	case BTF_KIND_CONST:
4562	case BTF_KIND_VOLATILE:
4563	case BTF_KIND_RESTRICT:
4564	case BTF_KIND_PTR:
4565	case BTF_KIND_TYPEDEF:
4566	case BTF_KIND_FUNC:
4567	case BTF_KIND_TYPE_TAG:
4568		ref_type_id = btf_dedup_ref_type(d, t->type);
4569		if (ref_type_id < 0)
4570			return ref_type_id;
4571		t->type = ref_type_id;
4572
4573		h = btf_hash_common(t);
4574		for_each_dedup_cand(d, hash_entry, h) {
4575			cand_id = hash_entry->value;
4576			cand = btf_type_by_id(d->btf, cand_id);
4577			if (btf_equal_common(t, cand)) {
4578				new_id = cand_id;
4579				break;
4580			}
4581		}
4582		break;
4583
4584	case BTF_KIND_DECL_TAG:
4585		ref_type_id = btf_dedup_ref_type(d, t->type);
4586		if (ref_type_id < 0)
4587			return ref_type_id;
4588		t->type = ref_type_id;
4589
4590		h = btf_hash_int_decl_tag(t);
4591		for_each_dedup_cand(d, hash_entry, h) {
4592			cand_id = hash_entry->value;
4593			cand = btf_type_by_id(d->btf, cand_id);
4594			if (btf_equal_int_tag(t, cand)) {
4595				new_id = cand_id;
4596				break;
4597			}
4598		}
4599		break;
4600
4601	case BTF_KIND_ARRAY: {
4602		struct btf_array *info = btf_array(t);
4603
4604		ref_type_id = btf_dedup_ref_type(d, info->type);
4605		if (ref_type_id < 0)
4606			return ref_type_id;
4607		info->type = ref_type_id;
4608
4609		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4610		if (ref_type_id < 0)
4611			return ref_type_id;
4612		info->index_type = ref_type_id;
4613
4614		h = btf_hash_array(t);
4615		for_each_dedup_cand(d, hash_entry, h) {
4616			cand_id = hash_entry->value;
4617			cand = btf_type_by_id(d->btf, cand_id);
4618			if (btf_equal_array(t, cand)) {
4619				new_id = cand_id;
4620				break;
4621			}
4622		}
4623		break;
4624	}
4625
4626	case BTF_KIND_FUNC_PROTO: {
4627		struct btf_param *param;
4628		__u16 vlen;
4629		int i;
4630
4631		ref_type_id = btf_dedup_ref_type(d, t->type);
4632		if (ref_type_id < 0)
4633			return ref_type_id;
4634		t->type = ref_type_id;
4635
4636		vlen = btf_vlen(t);
4637		param = btf_params(t);
4638		for (i = 0; i < vlen; i++) {
4639			ref_type_id = btf_dedup_ref_type(d, param->type);
4640			if (ref_type_id < 0)
4641				return ref_type_id;
4642			param->type = ref_type_id;
4643			param++;
4644		}
4645
4646		h = btf_hash_fnproto(t);
4647		for_each_dedup_cand(d, hash_entry, h) {
4648			cand_id = hash_entry->value;
4649			cand = btf_type_by_id(d->btf, cand_id);
4650			if (btf_equal_fnproto(t, cand)) {
4651				new_id = cand_id;
4652				break;
4653			}
4654		}
4655		break;
4656	}
4657
4658	default:
4659		return -EINVAL;
4660	}
4661
4662	d->map[type_id] = new_id;
4663	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4664		return -ENOMEM;
4665
4666	return new_id;
4667}
4668
4669static int btf_dedup_ref_types(struct btf_dedup *d)
4670{
4671	int i, err;
4672
4673	for (i = 0; i < d->btf->nr_types; i++) {
4674		err = btf_dedup_ref_type(d, d->btf->start_id + i);
4675		if (err < 0)
4676			return err;
4677	}
4678	/* we won't need d->dedup_table anymore */
4679	hashmap__free(d->dedup_table);
4680	d->dedup_table = NULL;
4681	return 0;
4682}
4683
4684/*
4685 * Collect a map from type names to type ids for all canonical structs
4686 * and unions. If the same name is shared by several canonical types
4687 * use a special value 0 to indicate this fact.
4688 */
4689static int btf_dedup_fill_unique_names_map(struct btf_dedup *d, struct hashmap *names_map)
4690{
4691	__u32 nr_types = btf__type_cnt(d->btf);
4692	struct btf_type *t;
4693	__u32 type_id;
4694	__u16 kind;
4695	int err;
4696
4697	/*
4698	 * Iterate over base and split module ids in order to get all
4699	 * available structs in the map.
4700	 */
4701	for (type_id = 1; type_id < nr_types; ++type_id) {
4702		t = btf_type_by_id(d->btf, type_id);
4703		kind = btf_kind(t);
4704
4705		if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4706			continue;
4707
4708		/* Skip non-canonical types */
4709		if (type_id != d->map[type_id])
4710			continue;
4711
4712		err = hashmap__add(names_map, t->name_off, type_id);
4713		if (err == -EEXIST)
4714			err = hashmap__set(names_map, t->name_off, 0, NULL, NULL);
4715
4716		if (err)
4717			return err;
4718	}
4719
4720	return 0;
4721}
4722
4723static int btf_dedup_resolve_fwd(struct btf_dedup *d, struct hashmap *names_map, __u32 type_id)
4724{
4725	struct btf_type *t = btf_type_by_id(d->btf, type_id);
4726	enum btf_fwd_kind fwd_kind = btf_kflag(t);
4727	__u16 cand_kind, kind = btf_kind(t);
4728	struct btf_type *cand_t;
4729	uintptr_t cand_id;
4730
4731	if (kind != BTF_KIND_FWD)
4732		return 0;
4733
4734	/* Skip if this FWD already has a mapping */
4735	if (type_id != d->map[type_id])
4736		return 0;
4737
4738	if (!hashmap__find(names_map, t->name_off, &cand_id))
4739		return 0;
4740
4741	/* Zero is a special value indicating that name is not unique */
4742	if (!cand_id)
4743		return 0;
4744
4745	cand_t = btf_type_by_id(d->btf, cand_id);
4746	cand_kind = btf_kind(cand_t);
4747	if ((cand_kind == BTF_KIND_STRUCT && fwd_kind != BTF_FWD_STRUCT) ||
4748	    (cand_kind == BTF_KIND_UNION && fwd_kind != BTF_FWD_UNION))
4749		return 0;
4750
4751	d->map[type_id] = cand_id;
4752
4753	return 0;
4754}
4755
4756/*
4757 * Resolve unambiguous forward declarations.
4758 *
4759 * The lion's share of all FWD declarations is resolved during
4760 * `btf_dedup_struct_types` phase when different type graphs are
4761 * compared against each other. However, if in some compilation unit a
4762 * FWD declaration is not a part of a type graph compared against
4763 * another type graph that declaration's canonical type would not be
4764 * changed. Example:
4765 *
4766 * CU #1:
4767 *
4768 * struct foo;
4769 * struct foo *some_global;
4770 *
4771 * CU #2:
4772 *
4773 * struct foo { int u; };
4774 * struct foo *another_global;
4775 *
4776 * After `btf_dedup_struct_types` the BTF looks as follows:
4777 *
4778 * [1] STRUCT 'foo' size=4 vlen=1 ...
4779 * [2] INT 'int' size=4 ...
4780 * [3] PTR '(anon)' type_id=1
4781 * [4] FWD 'foo' fwd_kind=struct
4782 * [5] PTR '(anon)' type_id=4
4783 *
4784 * This pass assumes that such FWD declarations should be mapped to
4785 * structs or unions with identical name in case if the name is not
4786 * ambiguous.
4787 */
4788static int btf_dedup_resolve_fwds(struct btf_dedup *d)
4789{
4790	int i, err;
4791	struct hashmap *names_map;
4792
4793	names_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
4794	if (IS_ERR(names_map))
4795		return PTR_ERR(names_map);
4796
4797	err = btf_dedup_fill_unique_names_map(d, names_map);
4798	if (err < 0)
4799		goto exit;
4800
4801	for (i = 0; i < d->btf->nr_types; i++) {
4802		err = btf_dedup_resolve_fwd(d, names_map, d->btf->start_id + i);
4803		if (err < 0)
4804			break;
4805	}
4806
4807exit:
4808	hashmap__free(names_map);
4809	return err;
4810}
4811
4812/*
4813 * Compact types.
4814 *
4815 * After we established for each type its corresponding canonical representative
4816 * type, we now can eliminate types that are not canonical and leave only
4817 * canonical ones layed out sequentially in memory by copying them over
4818 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4819 * a map from original type ID to a new compacted type ID, which will be used
4820 * during next phase to "fix up" type IDs, referenced from struct/union and
4821 * reference types.
4822 */
4823static int btf_dedup_compact_types(struct btf_dedup *d)
4824{
4825	__u32 *new_offs;
4826	__u32 next_type_id = d->btf->start_id;
4827	const struct btf_type *t;
4828	void *p;
4829	int i, id, len;
4830
4831	/* we are going to reuse hypot_map to store compaction remapping */
4832	d->hypot_map[0] = 0;
4833	/* base BTF types are not renumbered */
4834	for (id = 1; id < d->btf->start_id; id++)
4835		d->hypot_map[id] = id;
4836	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4837		d->hypot_map[id] = BTF_UNPROCESSED_ID;
4838
4839	p = d->btf->types_data;
 
4840
4841	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4842		if (d->map[id] != id)
4843			continue;
4844
4845		t = btf__type_by_id(d->btf, id);
4846		len = btf_type_size(t);
4847		if (len < 0)
4848			return len;
4849
4850		memmove(p, t, len);
4851		d->hypot_map[id] = next_type_id;
4852		d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4853		p += len;
4854		next_type_id++;
4855	}
4856
4857	/* shrink struct btf's internal types index and update btf_header */
4858	d->btf->nr_types = next_type_id - d->btf->start_id;
4859	d->btf->type_offs_cap = d->btf->nr_types;
4860	d->btf->hdr->type_len = p - d->btf->types_data;
4861	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4862				       sizeof(*new_offs));
4863	if (d->btf->type_offs_cap && !new_offs)
4864		return -ENOMEM;
4865	d->btf->type_offs = new_offs;
4866	d->btf->hdr->str_off = d->btf->hdr->type_len;
4867	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
 
 
 
 
 
 
4868	return 0;
4869}
4870
4871/*
4872 * Figure out final (deduplicated and compacted) type ID for provided original
4873 * `type_id` by first resolving it into corresponding canonical type ID and
4874 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4875 * which is populated during compaction phase.
4876 */
4877static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
4878{
4879	struct btf_dedup *d = ctx;
4880	__u32 resolved_type_id, new_type_id;
4881
4882	resolved_type_id = resolve_type_id(d, *type_id);
4883	new_type_id = d->hypot_map[resolved_type_id];
4884	if (new_type_id > BTF_MAX_NR_TYPES)
4885		return -EINVAL;
4886
4887	*type_id = new_type_id;
4888	return 0;
4889}
4890
4891/*
4892 * Remap referenced type IDs into deduped type IDs.
4893 *
4894 * After BTF types are deduplicated and compacted, their final type IDs may
4895 * differ from original ones. The map from original to a corresponding
4896 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4897 * compaction phase. During remapping phase we are rewriting all type IDs
4898 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4899 * their final deduped type IDs.
4900 */
4901static int btf_dedup_remap_types(struct btf_dedup *d)
4902{
 
4903	int i, r;
4904
4905	for (i = 0; i < d->btf->nr_types; i++) {
4906		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
4907
4908		r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d);
4909		if (r)
4910			return r;
4911	}
4912
4913	if (!d->btf_ext)
4914		return 0;
4915
4916	r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
4917	if (r)
4918		return r;
4919
4920	return 0;
4921}
4922
4923/*
4924 * Probe few well-known locations for vmlinux kernel image and try to load BTF
4925 * data out of it to use for target BTF.
4926 */
4927struct btf *btf__load_vmlinux_btf(void)
4928{
4929	const char *locations[] = {
4930		/* try canonical vmlinux BTF through sysfs first */
4931		"/sys/kernel/btf/vmlinux",
4932		/* fall back to trying to find vmlinux on disk otherwise */
4933		"/boot/vmlinux-%1$s",
4934		"/lib/modules/%1$s/vmlinux-%1$s",
4935		"/lib/modules/%1$s/build/vmlinux",
4936		"/usr/lib/modules/%1$s/kernel/vmlinux",
4937		"/usr/lib/debug/boot/vmlinux-%1$s",
4938		"/usr/lib/debug/boot/vmlinux-%1$s.debug",
4939		"/usr/lib/debug/lib/modules/%1$s/vmlinux",
4940	};
4941	char path[PATH_MAX + 1];
4942	struct utsname buf;
4943	struct btf *btf;
4944	int i, err;
4945
4946	uname(&buf);
4947
4948	for (i = 0; i < ARRAY_SIZE(locations); i++) {
4949		snprintf(path, PATH_MAX, locations[i], buf.release);
4950
4951		if (faccessat(AT_FDCWD, path, R_OK, AT_EACCESS))
4952			continue;
4953
4954		btf = btf__parse(path, NULL);
4955		err = libbpf_get_error(btf);
4956		pr_debug("loading kernel BTF '%s': %d\n", path, err);
4957		if (err)
4958			continue;
4959
4960		return btf;
4961	}
4962
4963	pr_warn("failed to find valid kernel BTF\n");
4964	return libbpf_err_ptr(-ESRCH);
4965}
4966
4967struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf")));
4968
4969struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf)
4970{
4971	char path[80];
4972
4973	snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name);
4974	return btf__parse_split(path, vmlinux_btf);
4975}
4976
4977int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx)
4978{
4979	int i, n, err;
4980
4981	switch (btf_kind(t)) {
4982	case BTF_KIND_INT:
4983	case BTF_KIND_FLOAT:
4984	case BTF_KIND_ENUM:
4985	case BTF_KIND_ENUM64:
4986		return 0;
4987
4988	case BTF_KIND_FWD:
4989	case BTF_KIND_CONST:
4990	case BTF_KIND_VOLATILE:
4991	case BTF_KIND_RESTRICT:
4992	case BTF_KIND_PTR:
4993	case BTF_KIND_TYPEDEF:
4994	case BTF_KIND_FUNC:
4995	case BTF_KIND_VAR:
4996	case BTF_KIND_DECL_TAG:
4997	case BTF_KIND_TYPE_TAG:
4998		return visit(&t->type, ctx);
 
 
4999
5000	case BTF_KIND_ARRAY: {
5001		struct btf_array *a = btf_array(t);
5002
5003		err = visit(&a->type, ctx);
5004		err = err ?: visit(&a->index_type, ctx);
5005		return err;
 
 
 
 
 
 
5006	}
5007
5008	case BTF_KIND_STRUCT:
5009	case BTF_KIND_UNION: {
5010		struct btf_member *m = btf_members(t);
 
5011
5012		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
5013			err = visit(&m->type, ctx);
5014			if (err)
5015				return err;
 
 
5016		}
5017		return 0;
5018	}
5019
5020	case BTF_KIND_FUNC_PROTO: {
5021		struct btf_param *m = btf_params(t);
5022
5023		err = visit(&t->type, ctx);
5024		if (err)
5025			return err;
5026		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
5027			err = visit(&m->type, ctx);
5028			if (err)
5029				return err;
5030		}
5031		return 0;
5032	}
5033
5034	case BTF_KIND_DATASEC: {
5035		struct btf_var_secinfo *m = btf_var_secinfos(t);
5036
5037		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
5038			err = visit(&m->type, ctx);
5039			if (err)
5040				return err;
5041		}
5042		return 0;
5043	}
5044
5045	default:
5046		return -EINVAL;
5047	}
5048}
5049
5050int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx)
5051{
5052	int i, n, err;
5053
5054	err = visit(&t->name_off, ctx);
5055	if (err)
5056		return err;
5057
5058	switch (btf_kind(t)) {
5059	case BTF_KIND_STRUCT:
5060	case BTF_KIND_UNION: {
5061		struct btf_member *m = btf_members(t);
5062
5063		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
5064			err = visit(&m->name_off, ctx);
5065			if (err)
5066				return err;
 
 
5067		}
5068		break;
5069	}
5070	case BTF_KIND_ENUM: {
5071		struct btf_enum *m = btf_enum(t);
5072
5073		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
5074			err = visit(&m->name_off, ctx);
5075			if (err)
5076				return err;
5077		}
5078		break;
5079	}
5080	case BTF_KIND_ENUM64: {
5081		struct btf_enum64 *m = btf_enum64(t);
5082
5083		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
5084			err = visit(&m->name_off, ctx);
5085			if (err)
5086				return err;
 
 
5087		}
5088		break;
5089	}
5090	case BTF_KIND_FUNC_PROTO: {
5091		struct btf_param *m = btf_params(t);
5092
5093		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
5094			err = visit(&m->name_off, ctx);
5095			if (err)
5096				return err;
5097		}
5098		break;
5099	}
5100	default:
5101		break;
5102	}
5103
5104	return 0;
5105}
5106
5107int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
5108{
5109	const struct btf_ext_info *seg;
5110	struct btf_ext_info_sec *sec;
5111	int i, err;
5112
5113	seg = &btf_ext->func_info;
5114	for_each_btf_ext_sec(seg, sec) {
5115		struct bpf_func_info_min *rec;
5116
5117		for_each_btf_ext_rec(seg, sec, i, rec) {
5118			err = visit(&rec->type_id, ctx);
5119			if (err < 0)
5120				return err;
5121		}
5122	}
5123
5124	seg = &btf_ext->core_relo_info;
5125	for_each_btf_ext_sec(seg, sec) {
5126		struct bpf_core_relo *rec;
5127
5128		for_each_btf_ext_rec(seg, sec, i, rec) {
5129			err = visit(&rec->type_id, ctx);
5130			if (err < 0)
5131				return err;
5132		}
5133	}
5134
5135	return 0;
5136}
5137
5138int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
 
 
 
 
5139{
5140	const struct btf_ext_info *seg;
5141	struct btf_ext_info_sec *sec;
5142	int i, err;
5143
5144	seg = &btf_ext->func_info;
5145	for_each_btf_ext_sec(seg, sec) {
5146		err = visit(&sec->sec_name_off, ctx);
5147		if (err)
5148			return err;
5149	}
 
 
 
 
 
 
 
 
 
5150
5151	seg = &btf_ext->line_info;
5152	for_each_btf_ext_sec(seg, sec) {
5153		struct bpf_line_info_min *rec;
5154
5155		err = visit(&sec->sec_name_off, ctx);
5156		if (err)
5157			return err;
5158
5159		for_each_btf_ext_rec(seg, sec, i, rec) {
5160			err = visit(&rec->file_name_off, ctx);
5161			if (err)
5162				return err;
5163			err = visit(&rec->line_off, ctx);
5164			if (err)
5165				return err;
5166		}
5167	}
5168
5169	seg = &btf_ext->core_relo_info;
5170	for_each_btf_ext_sec(seg, sec) {
5171		struct bpf_core_relo *rec;
 
5172
5173		err = visit(&sec->sec_name_off, ctx);
5174		if (err)
5175			return err;
 
5176
5177		for_each_btf_ext_rec(seg, sec, i, rec) {
5178			err = visit(&rec->access_str_off, ctx);
5179			if (err)
5180				return err;
5181		}
5182	}
5183
5184	return 0;
 
5185}
v5.9
   1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
   2/* Copyright (c) 2018 Facebook */
   3
 
   4#include <endian.h>
   5#include <stdio.h>
   6#include <stdlib.h>
   7#include <string.h>
   8#include <fcntl.h>
   9#include <unistd.h>
  10#include <errno.h>
  11#include <sys/utsname.h>
  12#include <sys/param.h>
  13#include <sys/stat.h>
  14#include <linux/kernel.h>
  15#include <linux/err.h>
  16#include <linux/btf.h>
  17#include <gelf.h>
  18#include "btf.h"
  19#include "bpf.h"
  20#include "libbpf.h"
  21#include "libbpf_internal.h"
  22#include "hashmap.h"
  23
  24/* make sure libbpf doesn't use kernel-only integer typedefs */
  25#pragma GCC poison u8 u16 u32 u64 s8 s16 s32 s64
  26
  27#define BTF_MAX_NR_TYPES 0x7fffffffU
  28#define BTF_MAX_STR_OFFSET 0x7fffffffU
  29
  30static struct btf_type btf_void;
  31
  32struct btf {
  33	union {
  34		struct btf_header *hdr;
  35		void *data;
  36	};
  37	struct btf_type **types;
  38	const char *strings;
  39	void *nohdr_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  40	__u32 nr_types;
  41	__u32 types_size;
  42	__u32 data_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  43	int fd;
 
 
  44	int ptr_sz;
  45};
  46
  47static inline __u64 ptr_to_u64(const void *ptr)
  48{
  49	return (__u64) (unsigned long) ptr;
  50}
  51
  52static int btf_add_type(struct btf *btf, struct btf_type *t)
 
 
 
 
 
 
 
 
 
 
 
  53{
  54	if (btf->types_size - btf->nr_types < 2) {
  55		struct btf_type **new_types;
  56		__u32 expand_by, new_size;
 
 
  57
  58		if (btf->types_size == BTF_MAX_NR_TYPES)
  59			return -E2BIG;
 
  60
  61		expand_by = max(btf->types_size >> 2, 16U);
  62		new_size = min(BTF_MAX_NR_TYPES, btf->types_size + expand_by);
 
 
 
 
 
 
 
 
 
 
  63
  64		new_types = realloc(btf->types, sizeof(*new_types) * new_size);
  65		if (!new_types)
  66			return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67
  68		if (btf->nr_types == 0)
  69			new_types[0] = &btf_void;
 
 
 
  70
  71		btf->types = new_types;
  72		btf->types_size = new_size;
  73	}
  74
  75	btf->types[++(btf->nr_types)] = t;
 
 
  76
 
  77	return 0;
  78}
  79
 
 
 
 
 
 
 
 
 
 
  80static int btf_parse_hdr(struct btf *btf)
  81{
  82	const struct btf_header *hdr = btf->hdr;
  83	__u32 meta_left;
  84
  85	if (btf->data_size < sizeof(struct btf_header)) {
  86		pr_debug("BTF header not found\n");
  87		return -EINVAL;
  88	}
  89
  90	if (hdr->magic != BTF_MAGIC) {
  91		pr_debug("Invalid BTF magic:%x\n", hdr->magic);
  92		return -EINVAL;
  93	}
  94
  95	if (hdr->version != BTF_VERSION) {
  96		pr_debug("Unsupported BTF version:%u\n", hdr->version);
  97		return -ENOTSUP;
  98	}
  99
 100	if (hdr->flags) {
 101		pr_debug("Unsupported BTF flags:%x\n", hdr->flags);
 102		return -ENOTSUP;
 103	}
 104
 105	meta_left = btf->data_size - sizeof(*hdr);
 106	if (!meta_left) {
 107		pr_debug("BTF has no data\n");
 108		return -EINVAL;
 109	}
 110
 111	if (meta_left < hdr->type_off) {
 112		pr_debug("Invalid BTF type section offset:%u\n", hdr->type_off);
 
 113		return -EINVAL;
 114	}
 115
 116	if (meta_left < hdr->str_off) {
 117		pr_debug("Invalid BTF string section offset:%u\n", hdr->str_off);
 
 118		return -EINVAL;
 119	}
 120
 121	if (hdr->type_off >= hdr->str_off) {
 122		pr_debug("BTF type section offset >= string section offset. No type?\n");
 
 123		return -EINVAL;
 124	}
 125
 126	if (hdr->type_off & 0x02) {
 127		pr_debug("BTF type section is not aligned to 4 bytes\n");
 128		return -EINVAL;
 129	}
 130
 131	btf->nohdr_data = btf->hdr + 1;
 132
 133	return 0;
 134}
 135
 136static int btf_parse_str_sec(struct btf *btf)
 137{
 138	const struct btf_header *hdr = btf->hdr;
 139	const char *start = btf->nohdr_data + hdr->str_off;
 140	const char *end = start + btf->hdr->str_len;
 141
 142	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET ||
 143	    start[0] || end[-1]) {
 
 
 
 
 
 144		pr_debug("Invalid BTF string section\n");
 145		return -EINVAL;
 146	}
 147
 148	btf->strings = start;
 149
 150	return 0;
 151}
 152
 153static int btf_type_size(struct btf_type *t)
 154{
 155	int base_size = sizeof(struct btf_type);
 156	__u16 vlen = btf_vlen(t);
 157
 158	switch (btf_kind(t)) {
 159	case BTF_KIND_FWD:
 160	case BTF_KIND_CONST:
 161	case BTF_KIND_VOLATILE:
 162	case BTF_KIND_RESTRICT:
 163	case BTF_KIND_PTR:
 164	case BTF_KIND_TYPEDEF:
 165	case BTF_KIND_FUNC:
 
 
 166		return base_size;
 167	case BTF_KIND_INT:
 168		return base_size + sizeof(__u32);
 169	case BTF_KIND_ENUM:
 170		return base_size + vlen * sizeof(struct btf_enum);
 
 
 171	case BTF_KIND_ARRAY:
 172		return base_size + sizeof(struct btf_array);
 173	case BTF_KIND_STRUCT:
 174	case BTF_KIND_UNION:
 175		return base_size + vlen * sizeof(struct btf_member);
 176	case BTF_KIND_FUNC_PROTO:
 177		return base_size + vlen * sizeof(struct btf_param);
 178	case BTF_KIND_VAR:
 179		return base_size + sizeof(struct btf_var);
 180	case BTF_KIND_DATASEC:
 181		return base_size + vlen * sizeof(struct btf_var_secinfo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 182	default:
 183		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 184		return -EINVAL;
 185	}
 186}
 187
 188static int btf_parse_type_sec(struct btf *btf)
 189{
 190	struct btf_header *hdr = btf->hdr;
 191	void *nohdr_data = btf->nohdr_data;
 192	void *next_type = nohdr_data + hdr->type_off;
 193	void *end_type = nohdr_data + hdr->str_off;
 194
 195	while (next_type < end_type) {
 196		struct btf_type *t = next_type;
 197		int type_size;
 198		int err;
 199
 200		type_size = btf_type_size(t);
 201		if (type_size < 0)
 202			return type_size;
 
 
 
 
 
 
 
 
 
 
 
 
 203		next_type += type_size;
 204		err = btf_add_type(btf, t);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 205		if (err)
 206			return err;
 
 207	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 209	return 0;
 210}
 211
 212__u32 btf__get_nr_types(const struct btf *btf)
 
 
 
 
 213{
 214	return btf->nr_types;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 215}
 216
 217const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
 218{
 219	if (type_id > btf->nr_types)
 220		return NULL;
 221
 222	return btf->types[type_id];
 223}
 224
 225static int determine_ptr_size(const struct btf *btf)
 226{
 
 
 
 
 
 
 
 
 
 
 
 
 
 227	const struct btf_type *t;
 228	const char *name;
 229	int i;
 
 
 
 230
 231	for (i = 1; i <= btf->nr_types; i++) {
 
 232		t = btf__type_by_id(btf, i);
 233		if (!btf_is_int(t))
 234			continue;
 235
 
 
 
 236		name = btf__name_by_offset(btf, t->name_off);
 237		if (!name)
 238			continue;
 239
 240		if (strcmp(name, "long int") == 0 ||
 241		    strcmp(name, "long unsigned int") == 0) {
 242			if (t->size != 4 && t->size != 8)
 243				continue;
 244			return t->size;
 245		}
 246	}
 247
 248	return -1;
 249}
 250
 251static size_t btf_ptr_sz(const struct btf *btf)
 252{
 253	if (!btf->ptr_sz)
 254		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 255	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
 256}
 257
 258/* Return pointer size this BTF instance assumes. The size is heuristically
 259 * determined by looking for 'long' or 'unsigned long' integer type and
 260 * recording its size in bytes. If BTF type information doesn't have any such
 261 * type, this function returns 0. In the latter case, native architecture's
 262 * pointer size is assumed, so will be either 4 or 8, depending on
 263 * architecture that libbpf was compiled for. It's possible to override
 264 * guessed value by using btf__set_pointer_size() API.
 265 */
 266size_t btf__pointer_size(const struct btf *btf)
 267{
 268	if (!btf->ptr_sz)
 269		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 270
 271	if (btf->ptr_sz < 0)
 272		/* not enough BTF type info to guess */
 273		return 0;
 274
 275	return btf->ptr_sz;
 276}
 277
 278/* Override or set pointer size in bytes. Only values of 4 and 8 are
 279 * supported.
 280 */
 281int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
 282{
 283	if (ptr_sz != 4 && ptr_sz != 8)
 284		return -EINVAL;
 285	btf->ptr_sz = ptr_sz;
 286	return 0;
 287}
 288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 289static bool btf_type_is_void(const struct btf_type *t)
 290{
 291	return t == &btf_void || btf_is_fwd(t);
 292}
 293
 294static bool btf_type_is_void_or_null(const struct btf_type *t)
 295{
 296	return !t || btf_type_is_void(t);
 297}
 298
 299#define MAX_RESOLVE_DEPTH 32
 300
 301__s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
 302{
 303	const struct btf_array *array;
 304	const struct btf_type *t;
 305	__u32 nelems = 1;
 306	__s64 size = -1;
 307	int i;
 308
 309	t = btf__type_by_id(btf, type_id);
 310	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t);
 311	     i++) {
 312		switch (btf_kind(t)) {
 313		case BTF_KIND_INT:
 314		case BTF_KIND_STRUCT:
 315		case BTF_KIND_UNION:
 316		case BTF_KIND_ENUM:
 
 317		case BTF_KIND_DATASEC:
 
 318			size = t->size;
 319			goto done;
 320		case BTF_KIND_PTR:
 321			size = btf_ptr_sz(btf);
 322			goto done;
 323		case BTF_KIND_TYPEDEF:
 324		case BTF_KIND_VOLATILE:
 325		case BTF_KIND_CONST:
 326		case BTF_KIND_RESTRICT:
 327		case BTF_KIND_VAR:
 
 
 328			type_id = t->type;
 329			break;
 330		case BTF_KIND_ARRAY:
 331			array = btf_array(t);
 332			if (nelems && array->nelems > UINT32_MAX / nelems)
 333				return -E2BIG;
 334			nelems *= array->nelems;
 335			type_id = array->type;
 336			break;
 337		default:
 338			return -EINVAL;
 339		}
 340
 341		t = btf__type_by_id(btf, type_id);
 342	}
 343
 344done:
 345	if (size < 0)
 346		return -EINVAL;
 347	if (nelems && size > UINT32_MAX / nelems)
 348		return -E2BIG;
 349
 350	return nelems * size;
 351}
 352
 353int btf__align_of(const struct btf *btf, __u32 id)
 354{
 355	const struct btf_type *t = btf__type_by_id(btf, id);
 356	__u16 kind = btf_kind(t);
 357
 358	switch (kind) {
 359	case BTF_KIND_INT:
 360	case BTF_KIND_ENUM:
 
 
 361		return min(btf_ptr_sz(btf), (size_t)t->size);
 362	case BTF_KIND_PTR:
 363		return btf_ptr_sz(btf);
 364	case BTF_KIND_TYPEDEF:
 365	case BTF_KIND_VOLATILE:
 366	case BTF_KIND_CONST:
 367	case BTF_KIND_RESTRICT:
 
 368		return btf__align_of(btf, t->type);
 369	case BTF_KIND_ARRAY:
 370		return btf__align_of(btf, btf_array(t)->type);
 371	case BTF_KIND_STRUCT:
 372	case BTF_KIND_UNION: {
 373		const struct btf_member *m = btf_members(t);
 374		__u16 vlen = btf_vlen(t);
 375		int i, max_align = 1, align;
 376
 377		for (i = 0; i < vlen; i++, m++) {
 378			align = btf__align_of(btf, m->type);
 379			if (align <= 0)
 380				return align;
 381			max_align = max(max_align, align);
 
 
 
 
 
 
 
 382		}
 383
 
 
 
 
 
 
 384		return max_align;
 385	}
 386	default:
 387		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
 388		return 0;
 389	}
 390}
 391
 392int btf__resolve_type(const struct btf *btf, __u32 type_id)
 393{
 394	const struct btf_type *t;
 395	int depth = 0;
 396
 397	t = btf__type_by_id(btf, type_id);
 398	while (depth < MAX_RESOLVE_DEPTH &&
 399	       !btf_type_is_void_or_null(t) &&
 400	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
 401		type_id = t->type;
 402		t = btf__type_by_id(btf, type_id);
 403		depth++;
 404	}
 405
 406	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
 407		return -EINVAL;
 408
 409	return type_id;
 410}
 411
 412__s32 btf__find_by_name(const struct btf *btf, const char *type_name)
 413{
 414	__u32 i;
 415
 416	if (!strcmp(type_name, "void"))
 417		return 0;
 418
 419	for (i = 1; i <= btf->nr_types; i++) {
 420		const struct btf_type *t = btf->types[i];
 421		const char *name = btf__name_by_offset(btf, t->name_off);
 422
 423		if (name && !strcmp(type_name, name))
 424			return i;
 425	}
 426
 427	return -ENOENT;
 428}
 429
 430__s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
 431			     __u32 kind)
 432{
 433	__u32 i;
 434
 435	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
 436		return 0;
 437
 438	for (i = 1; i <= btf->nr_types; i++) {
 439		const struct btf_type *t = btf->types[i];
 440		const char *name;
 441
 442		if (btf_kind(t) != kind)
 443			continue;
 444		name = btf__name_by_offset(btf, t->name_off);
 445		if (name && !strcmp(type_name, name))
 446			return i;
 447	}
 448
 449	return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 450}
 451
 452void btf__free(struct btf *btf)
 453{
 454	if (IS_ERR_OR_NULL(btf))
 455		return;
 456
 457	if (btf->fd >= 0)
 458		close(btf->fd);
 459
 460	free(btf->data);
 461	free(btf->types);
 
 
 
 
 
 
 
 
 
 
 
 
 462	free(btf);
 463}
 464
 465struct btf *btf__new(const void *data, __u32 size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 466{
 467	struct btf *btf;
 468	int err;
 469
 470	btf = calloc(1, sizeof(struct btf));
 471	if (!btf)
 472		return ERR_PTR(-ENOMEM);
 473
 
 
 
 474	btf->fd = -1;
 475
 476	btf->data = malloc(size);
 477	if (!btf->data) {
 
 
 
 
 
 
 478		err = -ENOMEM;
 479		goto done;
 480	}
 
 
 481
 482	memcpy(btf->data, data, size);
 483	btf->data_size = size;
 484
 485	err = btf_parse_hdr(btf);
 486	if (err)
 487		goto done;
 488
 
 
 
 489	err = btf_parse_str_sec(btf);
 
 
 490	if (err)
 491		goto done;
 492
 493	err = btf_parse_type_sec(btf);
 494
 495done:
 496	if (err) {
 497		btf__free(btf);
 498		return ERR_PTR(err);
 499	}
 500
 501	return btf;
 502}
 503
 504static bool btf_check_endianness(const GElf_Ehdr *ehdr)
 505{
 506#if __BYTE_ORDER == __LITTLE_ENDIAN
 507	return ehdr->e_ident[EI_DATA] == ELFDATA2LSB;
 508#elif __BYTE_ORDER == __BIG_ENDIAN
 509	return ehdr->e_ident[EI_DATA] == ELFDATA2MSB;
 510#else
 511# error "Unrecognized __BYTE_ORDER__"
 512#endif
 513}
 514
 515struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
 
 516{
 517	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
 518	int err = 0, fd = -1, idx = 0;
 519	struct btf *btf = NULL;
 520	Elf_Scn *scn = NULL;
 521	Elf *elf = NULL;
 522	GElf_Ehdr ehdr;
 
 523
 524	if (elf_version(EV_CURRENT) == EV_NONE) {
 525		pr_warn("failed to init libelf for %s\n", path);
 526		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
 527	}
 528
 529	fd = open(path, O_RDONLY);
 530	if (fd < 0) {
 531		err = -errno;
 532		pr_warn("failed to open %s: %s\n", path, strerror(errno));
 533		return ERR_PTR(err);
 534	}
 535
 536	err = -LIBBPF_ERRNO__FORMAT;
 537
 538	elf = elf_begin(fd, ELF_C_READ, NULL);
 539	if (!elf) {
 540		pr_warn("failed to open %s as ELF file\n", path);
 541		goto done;
 542	}
 543	if (!gelf_getehdr(elf, &ehdr)) {
 544		pr_warn("failed to get EHDR from %s\n", path);
 545		goto done;
 546	}
 547	if (!btf_check_endianness(&ehdr)) {
 548		pr_warn("non-native ELF endianness is not supported\n");
 
 
 549		goto done;
 550	}
 551	if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) {
 
 552		pr_warn("failed to get e_shstrndx from %s\n", path);
 553		goto done;
 554	}
 555
 556	while ((scn = elf_nextscn(elf, scn)) != NULL) {
 557		GElf_Shdr sh;
 558		char *name;
 559
 560		idx++;
 561		if (gelf_getshdr(scn, &sh) != &sh) {
 562			pr_warn("failed to get section(%d) header from %s\n",
 563				idx, path);
 564			goto done;
 565		}
 566		name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name);
 567		if (!name) {
 568			pr_warn("failed to get section(%d) name from %s\n",
 569				idx, path);
 570			goto done;
 571		}
 572		if (strcmp(name, BTF_ELF_SEC) == 0) {
 573			btf_data = elf_getdata(scn, 0);
 574			if (!btf_data) {
 575				pr_warn("failed to get section(%d, %s) data from %s\n",
 576					idx, name, path);
 577				goto done;
 578			}
 579			continue;
 580		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
 581			btf_ext_data = elf_getdata(scn, 0);
 582			if (!btf_ext_data) {
 583				pr_warn("failed to get section(%d, %s) data from %s\n",
 584					idx, name, path);
 585				goto done;
 586			}
 587			continue;
 588		}
 589	}
 590
 591	err = 0;
 592
 593	if (!btf_data) {
 594		err = -ENOENT;
 
 595		goto done;
 596	}
 597	btf = btf__new(btf_data->d_buf, btf_data->d_size);
 598	if (IS_ERR(btf))
 
 599		goto done;
 600
 601	switch (gelf_getclass(elf)) {
 602	case ELFCLASS32:
 603		btf__set_pointer_size(btf, 4);
 604		break;
 605	case ELFCLASS64:
 606		btf__set_pointer_size(btf, 8);
 607		break;
 608	default:
 609		pr_warn("failed to get ELF class (bitness) for %s\n", path);
 610		break;
 611	}
 612
 613	if (btf_ext && btf_ext_data) {
 614		*btf_ext = btf_ext__new(btf_ext_data->d_buf,
 615					btf_ext_data->d_size);
 616		if (IS_ERR(*btf_ext))
 617			goto done;
 618	} else if (btf_ext) {
 619		*btf_ext = NULL;
 620	}
 621done:
 622	if (elf)
 623		elf_end(elf);
 624	close(fd);
 625
 626	if (err)
 627		return ERR_PTR(err);
 628	/*
 629	 * btf is always parsed before btf_ext, so no need to clean up
 630	 * btf_ext, if btf loading failed
 631	 */
 632	if (IS_ERR(btf))
 633		return btf;
 634	if (btf_ext && IS_ERR(*btf_ext)) {
 635		btf__free(btf);
 636		err = PTR_ERR(*btf_ext);
 637		return ERR_PTR(err);
 638	}
 639	return btf;
 
 
 
 
 
 
 
 
 
 
 640}
 641
 642struct btf *btf__parse_raw(const char *path)
 643{
 644	struct btf *btf = NULL;
 645	void *data = NULL;
 646	FILE *f = NULL;
 647	__u16 magic;
 648	int err = 0;
 649	long sz;
 650
 651	f = fopen(path, "rb");
 652	if (!f) {
 653		err = -errno;
 654		goto err_out;
 655	}
 656
 657	/* check BTF magic */
 658	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
 659		err = -EIO;
 660		goto err_out;
 661	}
 662	if (magic == __bswap_16(BTF_MAGIC)) {
 663		/* non-native endian raw BTF */
 664		pr_warn("non-native BTF endianness is not supported\n");
 665		err = -LIBBPF_ERRNO__ENDIAN;
 666		goto err_out;
 667	}
 668	if (magic != BTF_MAGIC) {
 669		/* definitely not a raw BTF */
 670		err = -EPROTO;
 671		goto err_out;
 672	}
 673
 674	/* get file size */
 675	if (fseek(f, 0, SEEK_END)) {
 676		err = -errno;
 677		goto err_out;
 678	}
 679	sz = ftell(f);
 680	if (sz < 0) {
 681		err = -errno;
 682		goto err_out;
 683	}
 684	/* rewind to the start */
 685	if (fseek(f, 0, SEEK_SET)) {
 686		err = -errno;
 687		goto err_out;
 688	}
 689
 690	/* pre-alloc memory and read all of BTF data */
 691	data = malloc(sz);
 692	if (!data) {
 693		err = -ENOMEM;
 694		goto err_out;
 695	}
 696	if (fread(data, 1, sz, f) < sz) {
 697		err = -EIO;
 698		goto err_out;
 699	}
 700
 701	/* finally parse BTF data */
 702	btf = btf__new(data, sz);
 703
 704err_out:
 705	free(data);
 706	if (f)
 707		fclose(f);
 708	return err ? ERR_PTR(err) : btf;
 709}
 710
 711struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
 
 
 
 
 
 
 
 
 
 
 712{
 713	struct btf *btf;
 
 714
 715	if (btf_ext)
 716		*btf_ext = NULL;
 717
 718	btf = btf__parse_raw(path);
 719	if (!IS_ERR(btf) || PTR_ERR(btf) != -EPROTO)
 
 720		return btf;
 
 
 
 
 721
 722	return btf__parse_elf(path, btf_ext);
 
 
 723}
 724
 725static int compare_vsi_off(const void *_a, const void *_b)
 726{
 727	const struct btf_var_secinfo *a = _a;
 728	const struct btf_var_secinfo *b = _b;
 729
 730	return a->offset - b->offset;
 731}
 732
 733static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
 734			     struct btf_type *t)
 735{
 736	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
 737	const char *name = btf__name_by_offset(btf, t->name_off);
 738	const struct btf_type *t_var;
 739	struct btf_var_secinfo *vsi;
 740	const struct btf_var *var;
 741	int ret;
 742
 743	if (!name) {
 744		pr_debug("No name found in string section for DATASEC kind.\n");
 745		return -ENOENT;
 
 
 
 
 
 
 
 746	}
 
 
 747
 748	/* .extern datasec size and var offsets were set correctly during
 749	 * extern collection step, so just skip straight to sorting variables
 
 
 
 
 750	 */
 751	if (t->size)
 752		goto sort_vars;
 
 
 
 
 
 
 
 
 
 
 
 
 
 753
 754	ret = bpf_object__section_size(obj, name, &size);
 755	if (ret || !size || (t->size && t->size != size)) {
 756		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
 757		return -ENOENT;
 758	}
 759
 760	t->size = size;
 761
 762	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
 763		t_var = btf__type_by_id(btf, vsi->type);
 764		var = btf_var(t_var);
 765
 766		if (!btf_is_var(t_var)) {
 767			pr_debug("Non-VAR type seen in section %s\n", name);
 768			return -EINVAL;
 769		}
 
 
 
 
 
 770
 771		if (var->linkage == BTF_VAR_STATIC)
 772			continue;
 773
 774		name = btf__name_by_offset(btf, t_var->name_off);
 775		if (!name) {
 776			pr_debug("No name found in string section for VAR kind\n");
 777			return -ENOENT;
 778		}
 779
 780		ret = bpf_object__variable_offset(obj, name, &off);
 781		if (ret) {
 782			pr_debug("No offset found in symbol table for VAR %s\n",
 783				 name);
 784			return -ENOENT;
 785		}
 786
 787		vsi->offset = off;
 788	}
 789
 790sort_vars:
 791	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
 792	return 0;
 793}
 794
 795int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
 796{
 797	int err = 0;
 798	__u32 i;
 799
 800	for (i = 1; i <= btf->nr_types; i++) {
 801		struct btf_type *t = btf->types[i];
 
 
 802
 803		/* Loader needs to fix up some of the things compiler
 804		 * couldn't get its hands on while emitting BTF. This
 805		 * is section size and global variable offset. We use
 806		 * the info from the ELF itself for this purpose.
 807		 */
 808		if (btf_is_datasec(t)) {
 809			err = btf_fixup_datasec(obj, btf, t);
 810			if (err)
 811				break;
 812		}
 813	}
 814
 815	return err;
 
 
 816}
 817
 818int btf__load(struct btf *btf)
 819{
 820	__u32 log_buf_size = 0;
 821	char *log_buf = NULL;
 822	int err = 0;
 
 
 823
 824	if (btf->fd >= 0)
 825		return -EEXIST;
 
 
 
 826
 827retry_load:
 828	if (log_buf_size) {
 829		log_buf = malloc(log_buf_size);
 830		if (!log_buf)
 831			return -ENOMEM;
 832
 833		*log_buf = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 834	}
 
 835
 836	btf->fd = bpf_load_btf(btf->data, btf->data_size,
 837			       log_buf, log_buf_size, false);
 838	if (btf->fd < 0) {
 839		if (!log_buf || errno == ENOSPC) {
 840			log_buf_size = max((__u32)BPF_LOG_BUF_SIZE,
 841					   log_buf_size << 1);
 842			free(log_buf);
 843			goto retry_load;
 844		}
 845
 846		err = -errno;
 847		pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno);
 848		if (*log_buf)
 849			pr_warn("%s\n", log_buf);
 850		goto done;
 851	}
 852
 853done:
 854	free(log_buf);
 855	return err;
 
 
 856}
 857
 858int btf__fd(const struct btf *btf)
 859{
 860	return btf->fd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 861}
 862
 863void btf__set_fd(struct btf *btf, int fd)
 864{
 865	btf->fd = fd;
 866}
 867
 868const void *btf__get_raw_data(const struct btf *btf, __u32 *size)
 869{
 870	*size = btf->data_size;
 871	return btf->data;
 
 
 
 
 872}
 873
 874const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
 875{
 876	if (offset < btf->hdr->str_len)
 877		return &btf->strings[offset];
 878	else
 879		return NULL;
 880}
 881
 882int btf__get_from_id(__u32 id, struct btf **btf)
 883{
 884	struct bpf_btf_info btf_info = { 0 };
 885	__u32 len = sizeof(btf_info);
 886	__u32 last_size;
 887	int btf_fd;
 888	void *ptr;
 889	int err;
 890
 891	err = 0;
 892	*btf = NULL;
 893	btf_fd = bpf_btf_get_fd_by_id(id);
 894	if (btf_fd < 0)
 895		return 0;
 896
 897	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
 898	 * let's start with a sane default - 4KiB here - and resize it only if
 899	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
 900	 */
 901	btf_info.btf_size = 4096;
 902	last_size = btf_info.btf_size;
 903	ptr = malloc(last_size);
 904	if (!ptr) {
 905		err = -ENOMEM;
 906		goto exit_free;
 907	}
 908
 909	memset(ptr, 0, last_size);
 910	btf_info.btf = ptr_to_u64(ptr);
 911	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
 
 912
 913	if (!err && btf_info.btf_size > last_size) {
 914		void *temp_ptr;
 915
 916		last_size = btf_info.btf_size;
 917		temp_ptr = realloc(ptr, last_size);
 918		if (!temp_ptr) {
 919			err = -ENOMEM;
 920			goto exit_free;
 921		}
 922		ptr = temp_ptr;
 923		memset(ptr, 0, last_size);
 
 
 924		btf_info.btf = ptr_to_u64(ptr);
 925		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
 
 
 926	}
 927
 928	if (err || btf_info.btf_size > last_size) {
 929		err = errno;
 930		goto exit_free;
 931	}
 932
 933	*btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size);
 934	if (IS_ERR(*btf)) {
 935		err = PTR_ERR(*btf);
 936		*btf = NULL;
 937	}
 938
 939exit_free:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 940	close(btf_fd);
 941	free(ptr);
 942
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943	return err;
 944}
 945
 946int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
 947			 __u32 expected_key_size, __u32 expected_value_size,
 948			 __u32 *key_type_id, __u32 *value_type_id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 949{
 950	const struct btf_type *container_type;
 951	const struct btf_member *key, *value;
 952	const size_t max_name = 256;
 953	char container_name[max_name];
 954	__s64 key_size, value_size;
 955	__s32 container_id;
 956
 957	if (snprintf(container_name, max_name, "____btf_map_%s", map_name) ==
 958	    max_name) {
 959		pr_warn("map:%s length of '____btf_map_%s' is too long\n",
 960			map_name, map_name);
 961		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 962	}
 963
 964	container_id = btf__find_by_name(btf, container_name);
 965	if (container_id < 0) {
 966		pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
 967			 map_name, container_name);
 968		return container_id;
 
 
 
 
 
 
 969	}
 970
 971	container_type = btf__type_by_id(btf, container_id);
 972	if (!container_type) {
 973		pr_warn("map:%s cannot find BTF type for container_id:%u\n",
 974			map_name, container_id);
 975		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 976	}
 977
 978	if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
 979		pr_warn("map:%s container_name:%s is an invalid container struct\n",
 980			map_name, container_name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 981		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 982	}
 983
 984	key = btf_members(container_type);
 985	value = key + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 986
 987	key_size = btf__resolve_size(btf, key->type);
 988	if (key_size < 0) {
 989		pr_warn("map:%s invalid BTF key_type_size\n", map_name);
 990		return key_size;
 991	}
 992
 993	if (expected_key_size != key_size) {
 994		pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
 995			map_name, (__u32)key_size, expected_key_size);
 996		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 997	}
 998
 999	value_size = btf__resolve_size(btf, value->type);
1000	if (value_size < 0) {
1001		pr_warn("map:%s invalid BTF value_type_size\n", map_name);
1002		return value_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1003	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1004
1005	if (expected_value_size != value_size) {
1006		pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
1007			map_name, (__u32)value_size, expected_value_size);
1008		return -EINVAL;
1009	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1010
1011	*key_type_id = key->type;
1012	*value_type_id = value->type;
1013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1014	return 0;
1015}
1016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1017struct btf_ext_sec_setup_param {
1018	__u32 off;
1019	__u32 len;
1020	__u32 min_rec_size;
1021	struct btf_ext_info *ext_info;
1022	const char *desc;
1023};
1024
1025static int btf_ext_setup_info(struct btf_ext *btf_ext,
1026			      struct btf_ext_sec_setup_param *ext_sec)
1027{
1028	const struct btf_ext_info_sec *sinfo;
1029	struct btf_ext_info *ext_info;
1030	__u32 info_left, record_size;
 
1031	/* The start of the info sec (including the __u32 record_size). */
1032	void *info;
1033
1034	if (ext_sec->len == 0)
1035		return 0;
1036
1037	if (ext_sec->off & 0x03) {
1038		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
1039		     ext_sec->desc);
1040		return -EINVAL;
1041	}
1042
1043	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
1044	info_left = ext_sec->len;
1045
1046	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
1047		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
1048			 ext_sec->desc, ext_sec->off, ext_sec->len);
1049		return -EINVAL;
1050	}
1051
1052	/* At least a record size */
1053	if (info_left < sizeof(__u32)) {
1054		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
1055		return -EINVAL;
1056	}
1057
1058	/* The record size needs to meet the minimum standard */
1059	record_size = *(__u32 *)info;
1060	if (record_size < ext_sec->min_rec_size ||
1061	    record_size & 0x03) {
1062		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
1063			 ext_sec->desc, record_size);
1064		return -EINVAL;
1065	}
1066
1067	sinfo = info + sizeof(__u32);
1068	info_left -= sizeof(__u32);
1069
1070	/* If no records, return failure now so .BTF.ext won't be used. */
1071	if (!info_left) {
1072		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
1073		return -EINVAL;
1074	}
1075
1076	while (info_left) {
1077		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
1078		__u64 total_record_size;
1079		__u32 num_records;
1080
1081		if (info_left < sec_hdrlen) {
1082			pr_debug("%s section header is not found in .BTF.ext\n",
1083			     ext_sec->desc);
1084			return -EINVAL;
1085		}
1086
1087		num_records = sinfo->num_info;
1088		if (num_records == 0) {
1089			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
1090			     ext_sec->desc);
1091			return -EINVAL;
1092		}
1093
1094		total_record_size = sec_hdrlen +
1095				    (__u64)num_records * record_size;
1096		if (info_left < total_record_size) {
1097			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
1098			     ext_sec->desc);
1099			return -EINVAL;
1100		}
1101
1102		info_left -= total_record_size;
1103		sinfo = (void *)sinfo + total_record_size;
 
1104	}
1105
1106	ext_info = ext_sec->ext_info;
1107	ext_info->len = ext_sec->len - sizeof(__u32);
1108	ext_info->rec_size = record_size;
1109	ext_info->info = info + sizeof(__u32);
 
1110
1111	return 0;
1112}
1113
1114static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
1115{
1116	struct btf_ext_sec_setup_param param = {
1117		.off = btf_ext->hdr->func_info_off,
1118		.len = btf_ext->hdr->func_info_len,
1119		.min_rec_size = sizeof(struct bpf_func_info_min),
1120		.ext_info = &btf_ext->func_info,
1121		.desc = "func_info"
1122	};
1123
1124	return btf_ext_setup_info(btf_ext, &param);
1125}
1126
1127static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
1128{
1129	struct btf_ext_sec_setup_param param = {
1130		.off = btf_ext->hdr->line_info_off,
1131		.len = btf_ext->hdr->line_info_len,
1132		.min_rec_size = sizeof(struct bpf_line_info_min),
1133		.ext_info = &btf_ext->line_info,
1134		.desc = "line_info",
1135	};
1136
1137	return btf_ext_setup_info(btf_ext, &param);
1138}
1139
1140static int btf_ext_setup_field_reloc(struct btf_ext *btf_ext)
1141{
1142	struct btf_ext_sec_setup_param param = {
1143		.off = btf_ext->hdr->field_reloc_off,
1144		.len = btf_ext->hdr->field_reloc_len,
1145		.min_rec_size = sizeof(struct bpf_field_reloc),
1146		.ext_info = &btf_ext->field_reloc_info,
1147		.desc = "field_reloc",
1148	};
1149
1150	return btf_ext_setup_info(btf_ext, &param);
1151}
1152
1153static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
1154{
1155	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
1156
1157	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
1158	    data_size < hdr->hdr_len) {
1159		pr_debug("BTF.ext header not found");
1160		return -EINVAL;
1161	}
1162
1163	if (hdr->magic != BTF_MAGIC) {
 
 
 
1164		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
1165		return -EINVAL;
1166	}
1167
1168	if (hdr->version != BTF_VERSION) {
1169		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
1170		return -ENOTSUP;
1171	}
1172
1173	if (hdr->flags) {
1174		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
1175		return -ENOTSUP;
1176	}
1177
1178	if (data_size == hdr->hdr_len) {
1179		pr_debug("BTF.ext has no data\n");
1180		return -EINVAL;
1181	}
1182
1183	return 0;
1184}
1185
1186void btf_ext__free(struct btf_ext *btf_ext)
1187{
1188	if (IS_ERR_OR_NULL(btf_ext))
1189		return;
 
 
 
1190	free(btf_ext->data);
1191	free(btf_ext);
1192}
1193
1194struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
1195{
1196	struct btf_ext *btf_ext;
1197	int err;
1198
1199	err = btf_ext_parse_hdr(data, size);
1200	if (err)
1201		return ERR_PTR(err);
1202
1203	btf_ext = calloc(1, sizeof(struct btf_ext));
1204	if (!btf_ext)
1205		return ERR_PTR(-ENOMEM);
1206
1207	btf_ext->data_size = size;
1208	btf_ext->data = malloc(size);
1209	if (!btf_ext->data) {
1210		err = -ENOMEM;
1211		goto done;
1212	}
1213	memcpy(btf_ext->data, data, size);
1214
1215	if (btf_ext->hdr->hdr_len <
1216	    offsetofend(struct btf_ext_header, line_info_len))
 
 
 
 
1217		goto done;
 
 
1218	err = btf_ext_setup_func_info(btf_ext);
1219	if (err)
1220		goto done;
1221
1222	err = btf_ext_setup_line_info(btf_ext);
1223	if (err)
1224		goto done;
1225
1226	if (btf_ext->hdr->hdr_len <
1227	    offsetofend(struct btf_ext_header, field_reloc_len))
1228		goto done;
1229	err = btf_ext_setup_field_reloc(btf_ext);
1230	if (err)
1231		goto done;
1232
1233done:
1234	if (err) {
1235		btf_ext__free(btf_ext);
1236		return ERR_PTR(err);
1237	}
1238
1239	return btf_ext;
1240}
1241
1242const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
1243{
1244	*size = btf_ext->data_size;
1245	return btf_ext->data;
1246}
1247
1248static int btf_ext_reloc_info(const struct btf *btf,
1249			      const struct btf_ext_info *ext_info,
1250			      const char *sec_name, __u32 insns_cnt,
1251			      void **info, __u32 *cnt)
1252{
1253	__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
1254	__u32 i, record_size, existing_len, records_len;
1255	struct btf_ext_info_sec *sinfo;
1256	const char *info_sec_name;
1257	__u64 remain_len;
1258	void *data;
1259
1260	record_size = ext_info->rec_size;
1261	sinfo = ext_info->info;
1262	remain_len = ext_info->len;
1263	while (remain_len > 0) {
1264		records_len = sinfo->num_info * record_size;
1265		info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
1266		if (strcmp(info_sec_name, sec_name)) {
1267			remain_len -= sec_hdrlen + records_len;
1268			sinfo = (void *)sinfo + sec_hdrlen + records_len;
1269			continue;
1270		}
1271
1272		existing_len = (*cnt) * record_size;
1273		data = realloc(*info, existing_len + records_len);
1274		if (!data)
1275			return -ENOMEM;
1276
1277		memcpy(data + existing_len, sinfo->data, records_len);
1278		/* adjust insn_off only, the rest data will be passed
1279		 * to the kernel.
1280		 */
1281		for (i = 0; i < sinfo->num_info; i++) {
1282			__u32 *insn_off;
1283
1284			insn_off = data + existing_len + (i * record_size);
1285			*insn_off = *insn_off / sizeof(struct bpf_insn) +
1286				insns_cnt;
1287		}
1288		*info = data;
1289		*cnt += sinfo->num_info;
1290		return 0;
1291	}
1292
1293	return -ENOENT;
1294}
1295
1296int btf_ext__reloc_func_info(const struct btf *btf,
1297			     const struct btf_ext *btf_ext,
1298			     const char *sec_name, __u32 insns_cnt,
1299			     void **func_info, __u32 *cnt)
1300{
1301	return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
1302				  insns_cnt, func_info, cnt);
1303}
1304
1305int btf_ext__reloc_line_info(const struct btf *btf,
1306			     const struct btf_ext *btf_ext,
1307			     const char *sec_name, __u32 insns_cnt,
1308			     void **line_info, __u32 *cnt)
1309{
1310	return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
1311				  insns_cnt, line_info, cnt);
1312}
1313
1314__u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
1315{
1316	return btf_ext->func_info.rec_size;
1317}
1318
1319__u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
1320{
1321	return btf_ext->line_info.rec_size;
1322}
1323
1324struct btf_dedup;
1325
1326static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
1327				       const struct btf_dedup_opts *opts);
1328static void btf_dedup_free(struct btf_dedup *d);
 
1329static int btf_dedup_strings(struct btf_dedup *d);
1330static int btf_dedup_prim_types(struct btf_dedup *d);
1331static int btf_dedup_struct_types(struct btf_dedup *d);
1332static int btf_dedup_ref_types(struct btf_dedup *d);
 
1333static int btf_dedup_compact_types(struct btf_dedup *d);
1334static int btf_dedup_remap_types(struct btf_dedup *d);
1335
1336/*
1337 * Deduplicate BTF types and strings.
1338 *
1339 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
1340 * section with all BTF type descriptors and string data. It overwrites that
1341 * memory in-place with deduplicated types and strings without any loss of
1342 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
1343 * is provided, all the strings referenced from .BTF.ext section are honored
1344 * and updated to point to the right offsets after deduplication.
1345 *
1346 * If function returns with error, type/string data might be garbled and should
1347 * be discarded.
1348 *
1349 * More verbose and detailed description of both problem btf_dedup is solving,
1350 * as well as solution could be found at:
1351 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
1352 *
1353 * Problem description and justification
1354 * =====================================
1355 *
1356 * BTF type information is typically emitted either as a result of conversion
1357 * from DWARF to BTF or directly by compiler. In both cases, each compilation
1358 * unit contains information about a subset of all the types that are used
1359 * in an application. These subsets are frequently overlapping and contain a lot
1360 * of duplicated information when later concatenated together into a single
1361 * binary. This algorithm ensures that each unique type is represented by single
1362 * BTF type descriptor, greatly reducing resulting size of BTF data.
1363 *
1364 * Compilation unit isolation and subsequent duplication of data is not the only
1365 * problem. The same type hierarchy (e.g., struct and all the type that struct
1366 * references) in different compilation units can be represented in BTF to
1367 * various degrees of completeness (or, rather, incompleteness) due to
1368 * struct/union forward declarations.
1369 *
1370 * Let's take a look at an example, that we'll use to better understand the
1371 * problem (and solution). Suppose we have two compilation units, each using
1372 * same `struct S`, but each of them having incomplete type information about
1373 * struct's fields:
1374 *
1375 * // CU #1:
1376 * struct S;
1377 * struct A {
1378 *	int a;
1379 *	struct A* self;
1380 *	struct S* parent;
1381 * };
1382 * struct B;
1383 * struct S {
1384 *	struct A* a_ptr;
1385 *	struct B* b_ptr;
1386 * };
1387 *
1388 * // CU #2:
1389 * struct S;
1390 * struct A;
1391 * struct B {
1392 *	int b;
1393 *	struct B* self;
1394 *	struct S* parent;
1395 * };
1396 * struct S {
1397 *	struct A* a_ptr;
1398 *	struct B* b_ptr;
1399 * };
1400 *
1401 * In case of CU #1, BTF data will know only that `struct B` exist (but no
1402 * more), but will know the complete type information about `struct A`. While
1403 * for CU #2, it will know full type information about `struct B`, but will
1404 * only know about forward declaration of `struct A` (in BTF terms, it will
1405 * have `BTF_KIND_FWD` type descriptor with name `B`).
1406 *
1407 * This compilation unit isolation means that it's possible that there is no
1408 * single CU with complete type information describing structs `S`, `A`, and
1409 * `B`. Also, we might get tons of duplicated and redundant type information.
1410 *
1411 * Additional complication we need to keep in mind comes from the fact that
1412 * types, in general, can form graphs containing cycles, not just DAGs.
1413 *
1414 * While algorithm does deduplication, it also merges and resolves type
1415 * information (unless disabled throught `struct btf_opts`), whenever possible.
1416 * E.g., in the example above with two compilation units having partial type
1417 * information for structs `A` and `B`, the output of algorithm will emit
1418 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
1419 * (as well as type information for `int` and pointers), as if they were defined
1420 * in a single compilation unit as:
1421 *
1422 * struct A {
1423 *	int a;
1424 *	struct A* self;
1425 *	struct S* parent;
1426 * };
1427 * struct B {
1428 *	int b;
1429 *	struct B* self;
1430 *	struct S* parent;
1431 * };
1432 * struct S {
1433 *	struct A* a_ptr;
1434 *	struct B* b_ptr;
1435 * };
1436 *
1437 * Algorithm summary
1438 * =================
1439 *
1440 * Algorithm completes its work in 6 separate passes:
1441 *
1442 * 1. Strings deduplication.
1443 * 2. Primitive types deduplication (int, enum, fwd).
1444 * 3. Struct/union types deduplication.
1445 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
 
1446 *    protos, and const/volatile/restrict modifiers).
1447 * 5. Types compaction.
1448 * 6. Types remapping.
1449 *
1450 * Algorithm determines canonical type descriptor, which is a single
1451 * representative type for each truly unique type. This canonical type is the
1452 * one that will go into final deduplicated BTF type information. For
1453 * struct/unions, it is also the type that algorithm will merge additional type
1454 * information into (while resolving FWDs), as it discovers it from data in
1455 * other CUs. Each input BTF type eventually gets either mapped to itself, if
1456 * that type is canonical, or to some other type, if that type is equivalent
1457 * and was chosen as canonical representative. This mapping is stored in
1458 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
1459 * FWD type got resolved to.
1460 *
1461 * To facilitate fast discovery of canonical types, we also maintain canonical
1462 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
1463 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
1464 * that match that signature. With sufficiently good choice of type signature
1465 * hashing function, we can limit number of canonical types for each unique type
1466 * signature to a very small number, allowing to find canonical type for any
1467 * duplicated type very quickly.
1468 *
1469 * Struct/union deduplication is the most critical part and algorithm for
1470 * deduplicating structs/unions is described in greater details in comments for
1471 * `btf_dedup_is_equiv` function.
1472 */
1473int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
1474	       const struct btf_dedup_opts *opts)
1475{
1476	struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
1477	int err;
1478
 
 
 
 
1479	if (IS_ERR(d)) {
1480		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
1481		return -EINVAL;
 
 
 
 
 
1482	}
1483
 
 
 
 
 
1484	err = btf_dedup_strings(d);
1485	if (err < 0) {
1486		pr_debug("btf_dedup_strings failed:%d\n", err);
1487		goto done;
1488	}
1489	err = btf_dedup_prim_types(d);
1490	if (err < 0) {
1491		pr_debug("btf_dedup_prim_types failed:%d\n", err);
1492		goto done;
1493	}
1494	err = btf_dedup_struct_types(d);
1495	if (err < 0) {
1496		pr_debug("btf_dedup_struct_types failed:%d\n", err);
1497		goto done;
1498	}
 
 
 
 
 
1499	err = btf_dedup_ref_types(d);
1500	if (err < 0) {
1501		pr_debug("btf_dedup_ref_types failed:%d\n", err);
1502		goto done;
1503	}
1504	err = btf_dedup_compact_types(d);
1505	if (err < 0) {
1506		pr_debug("btf_dedup_compact_types failed:%d\n", err);
1507		goto done;
1508	}
1509	err = btf_dedup_remap_types(d);
1510	if (err < 0) {
1511		pr_debug("btf_dedup_remap_types failed:%d\n", err);
1512		goto done;
1513	}
1514
1515done:
1516	btf_dedup_free(d);
1517	return err;
1518}
1519
1520#define BTF_UNPROCESSED_ID ((__u32)-1)
1521#define BTF_IN_PROGRESS_ID ((__u32)-2)
1522
1523struct btf_dedup {
1524	/* .BTF section to be deduped in-place */
1525	struct btf *btf;
1526	/*
1527	 * Optional .BTF.ext section. When provided, any strings referenced
1528	 * from it will be taken into account when deduping strings
1529	 */
1530	struct btf_ext *btf_ext;
1531	/*
1532	 * This is a map from any type's signature hash to a list of possible
1533	 * canonical representative type candidates. Hash collisions are
1534	 * ignored, so even types of various kinds can share same list of
1535	 * candidates, which is fine because we rely on subsequent
1536	 * btf_xxx_equal() checks to authoritatively verify type equality.
1537	 */
1538	struct hashmap *dedup_table;
1539	/* Canonical types map */
1540	__u32 *map;
1541	/* Hypothetical mapping, used during type graph equivalence checks */
1542	__u32 *hypot_map;
1543	__u32 *hypot_list;
1544	size_t hypot_cnt;
1545	size_t hypot_cap;
 
 
 
 
 
 
 
1546	/* Various option modifying behavior of algorithm */
1547	struct btf_dedup_opts opts;
1548};
1549
1550struct btf_str_ptr {
1551	const char *str;
1552	__u32 new_off;
1553	bool used;
1554};
1555
1556struct btf_str_ptrs {
1557	struct btf_str_ptr *ptrs;
1558	const char *data;
1559	__u32 cnt;
1560	__u32 cap;
1561};
1562
1563static long hash_combine(long h, long value)
1564{
1565	return h * 31 + value;
1566}
1567
1568#define for_each_dedup_cand(d, node, hash) \
1569	hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
1570
1571static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
1572{
1573	return hashmap__append(d->dedup_table,
1574			       (void *)hash, (void *)(long)type_id);
1575}
1576
1577static int btf_dedup_hypot_map_add(struct btf_dedup *d,
1578				   __u32 from_id, __u32 to_id)
1579{
1580	if (d->hypot_cnt == d->hypot_cap) {
1581		__u32 *new_list;
1582
1583		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
1584		new_list = realloc(d->hypot_list, sizeof(__u32) * d->hypot_cap);
1585		if (!new_list)
1586			return -ENOMEM;
1587		d->hypot_list = new_list;
1588	}
1589	d->hypot_list[d->hypot_cnt++] = from_id;
1590	d->hypot_map[from_id] = to_id;
1591	return 0;
1592}
1593
1594static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
1595{
1596	int i;
1597
1598	for (i = 0; i < d->hypot_cnt; i++)
1599		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
1600	d->hypot_cnt = 0;
 
1601}
1602
1603static void btf_dedup_free(struct btf_dedup *d)
1604{
1605	hashmap__free(d->dedup_table);
1606	d->dedup_table = NULL;
1607
1608	free(d->map);
1609	d->map = NULL;
1610
1611	free(d->hypot_map);
1612	d->hypot_map = NULL;
1613
1614	free(d->hypot_list);
1615	d->hypot_list = NULL;
1616
1617	free(d);
1618}
1619
1620static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
1621{
1622	return (size_t)key;
1623}
1624
1625static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
1626{
1627	return 0;
1628}
1629
1630static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
1631{
1632	return k1 == k2;
1633}
1634
1635static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
1636				       const struct btf_dedup_opts *opts)
1637{
1638	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
1639	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
1640	int i, err = 0;
1641
1642	if (!d)
1643		return ERR_PTR(-ENOMEM);
1644
1645	d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
1646	/* dedup_table_size is now used only to force collisions in tests */
1647	if (opts && opts->dedup_table_size == 1)
1648		hash_fn = btf_dedup_collision_hash_fn;
1649
1650	d->btf = btf;
1651	d->btf_ext = btf_ext;
1652
1653	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
1654	if (IS_ERR(d->dedup_table)) {
1655		err = PTR_ERR(d->dedup_table);
1656		d->dedup_table = NULL;
1657		goto done;
1658	}
1659
1660	d->map = malloc(sizeof(__u32) * (1 + btf->nr_types));
 
1661	if (!d->map) {
1662		err = -ENOMEM;
1663		goto done;
1664	}
1665	/* special BTF "void" type is made canonical immediately */
1666	d->map[0] = 0;
1667	for (i = 1; i <= btf->nr_types; i++) {
1668		struct btf_type *t = d->btf->types[i];
1669
1670		/* VAR and DATASEC are never deduped and are self-canonical */
1671		if (btf_is_var(t) || btf_is_datasec(t))
1672			d->map[i] = i;
1673		else
1674			d->map[i] = BTF_UNPROCESSED_ID;
1675	}
1676
1677	d->hypot_map = malloc(sizeof(__u32) * (1 + btf->nr_types));
1678	if (!d->hypot_map) {
1679		err = -ENOMEM;
1680		goto done;
1681	}
1682	for (i = 0; i <= btf->nr_types; i++)
1683		d->hypot_map[i] = BTF_UNPROCESSED_ID;
1684
1685done:
1686	if (err) {
1687		btf_dedup_free(d);
1688		return ERR_PTR(err);
1689	}
1690
1691	return d;
1692}
1693
1694typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx);
1695
1696/*
1697 * Iterate over all possible places in .BTF and .BTF.ext that can reference
1698 * string and pass pointer to it to a provided callback `fn`.
1699 */
1700static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx)
1701{
1702	void *line_data_cur, *line_data_end;
1703	int i, j, r, rec_size;
1704	struct btf_type *t;
 
1705
1706	for (i = 1; i <= d->btf->nr_types; i++) {
1707		t = d->btf->types[i];
1708		r = fn(&t->name_off, ctx);
1709		if (r)
1710			return r;
1711
1712		switch (btf_kind(t)) {
1713		case BTF_KIND_STRUCT:
1714		case BTF_KIND_UNION: {
1715			struct btf_member *m = btf_members(t);
1716			__u16 vlen = btf_vlen(t);
1717
1718			for (j = 0; j < vlen; j++) {
1719				r = fn(&m->name_off, ctx);
1720				if (r)
1721					return r;
1722				m++;
1723			}
1724			break;
1725		}
1726		case BTF_KIND_ENUM: {
1727			struct btf_enum *m = btf_enum(t);
1728			__u16 vlen = btf_vlen(t);
1729
1730			for (j = 0; j < vlen; j++) {
1731				r = fn(&m->name_off, ctx);
1732				if (r)
1733					return r;
1734				m++;
1735			}
1736			break;
1737		}
1738		case BTF_KIND_FUNC_PROTO: {
1739			struct btf_param *m = btf_params(t);
1740			__u16 vlen = btf_vlen(t);
1741
1742			for (j = 0; j < vlen; j++) {
1743				r = fn(&m->name_off, ctx);
1744				if (r)
1745					return r;
1746				m++;
1747			}
1748			break;
1749		}
1750		default:
1751			break;
1752		}
1753	}
1754
1755	if (!d->btf_ext)
1756		return 0;
1757
1758	line_data_cur = d->btf_ext->line_info.info;
1759	line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len;
1760	rec_size = d->btf_ext->line_info.rec_size;
1761
1762	while (line_data_cur < line_data_end) {
1763		struct btf_ext_info_sec *sec = line_data_cur;
1764		struct bpf_line_info_min *line_info;
1765		__u32 num_info = sec->num_info;
1766
1767		r = fn(&sec->sec_name_off, ctx);
1768		if (r)
1769			return r;
1770
1771		line_data_cur += sizeof(struct btf_ext_info_sec);
1772		for (i = 0; i < num_info; i++) {
1773			line_info = line_data_cur;
1774			r = fn(&line_info->file_name_off, ctx);
1775			if (r)
1776				return r;
1777			r = fn(&line_info->line_off, ctx);
1778			if (r)
1779				return r;
1780			line_data_cur += rec_size;
1781		}
1782	}
1783
1784	return 0;
1785}
1786
1787static int str_sort_by_content(const void *a1, const void *a2)
1788{
1789	const struct btf_str_ptr *p1 = a1;
1790	const struct btf_str_ptr *p2 = a2;
1791
1792	return strcmp(p1->str, p2->str);
1793}
1794
1795static int str_sort_by_offset(const void *a1, const void *a2)
1796{
1797	const struct btf_str_ptr *p1 = a1;
1798	const struct btf_str_ptr *p2 = a2;
1799
1800	if (p1->str != p2->str)
1801		return p1->str < p2->str ? -1 : 1;
1802	return 0;
1803}
1804
1805static int btf_dedup_str_ptr_cmp(const void *str_ptr, const void *pelem)
1806{
1807	const struct btf_str_ptr *p = pelem;
1808
1809	if (str_ptr != p->str)
1810		return (const char *)str_ptr < p->str ? -1 : 1;
1811	return 0;
1812}
1813
1814static int btf_str_mark_as_used(__u32 *str_off_ptr, void *ctx)
1815{
1816	struct btf_str_ptrs *strs;
1817	struct btf_str_ptr *s;
 
 
1818
1819	if (*str_off_ptr == 0)
 
1820		return 0;
1821
1822	strs = ctx;
1823	s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
1824		    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
1825	if (!s)
1826		return -EINVAL;
1827	s->used = true;
1828	return 0;
1829}
1830
1831static int btf_str_remap_offset(__u32 *str_off_ptr, void *ctx)
1832{
1833	struct btf_str_ptrs *strs;
1834	struct btf_str_ptr *s;
1835
1836	if (*str_off_ptr == 0)
1837		return 0;
 
1838
1839	strs = ctx;
1840	s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
1841		    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
1842	if (!s)
1843		return -EINVAL;
1844	*str_off_ptr = s->new_off;
1845	return 0;
1846}
1847
1848/*
1849 * Dedup string and filter out those that are not referenced from either .BTF
1850 * or .BTF.ext (if provided) sections.
1851 *
1852 * This is done by building index of all strings in BTF's string section,
1853 * then iterating over all entities that can reference strings (e.g., type
1854 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
1855 * strings as used. After that all used strings are deduped and compacted into
1856 * sequential blob of memory and new offsets are calculated. Then all the string
1857 * references are iterated again and rewritten using new offsets.
1858 */
1859static int btf_dedup_strings(struct btf_dedup *d)
1860{
1861	const struct btf_header *hdr = d->btf->hdr;
1862	char *start = (char *)d->btf->nohdr_data + hdr->str_off;
1863	char *end = start + d->btf->hdr->str_len;
1864	char *p = start, *tmp_strs = NULL;
1865	struct btf_str_ptrs strs = {
1866		.cnt = 0,
1867		.cap = 0,
1868		.ptrs = NULL,
1869		.data = start,
1870	};
1871	int i, j, err = 0, grp_idx;
1872	bool grp_used;
1873
1874	/* build index of all strings */
1875	while (p < end) {
1876		if (strs.cnt + 1 > strs.cap) {
1877			struct btf_str_ptr *new_ptrs;
1878
1879			strs.cap += max(strs.cnt / 2, 16U);
1880			new_ptrs = realloc(strs.ptrs,
1881					   sizeof(strs.ptrs[0]) * strs.cap);
1882			if (!new_ptrs) {
1883				err = -ENOMEM;
1884				goto done;
1885			}
1886			strs.ptrs = new_ptrs;
1887		}
1888
1889		strs.ptrs[strs.cnt].str = p;
1890		strs.ptrs[strs.cnt].used = false;
1891
1892		p += strlen(p) + 1;
1893		strs.cnt++;
1894	}
1895
1896	/* temporary storage for deduplicated strings */
1897	tmp_strs = malloc(d->btf->hdr->str_len);
1898	if (!tmp_strs) {
1899		err = -ENOMEM;
1900		goto done;
1901	}
1902
1903	/* mark all used strings */
1904	strs.ptrs[0].used = true;
1905	err = btf_for_each_str_off(d, btf_str_mark_as_used, &strs);
1906	if (err)
1907		goto done;
1908
1909	/* sort strings by context, so that we can identify duplicates */
1910	qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_content);
1911
1912	/*
1913	 * iterate groups of equal strings and if any instance in a group was
1914	 * referenced, emit single instance and remember new offset
1915	 */
1916	p = tmp_strs;
1917	grp_idx = 0;
1918	grp_used = strs.ptrs[0].used;
1919	/* iterate past end to avoid code duplication after loop */
1920	for (i = 1; i <= strs.cnt; i++) {
1921		/*
1922		 * when i == strs.cnt, we want to skip string comparison and go
1923		 * straight to handling last group of strings (otherwise we'd
1924		 * need to handle last group after the loop w/ duplicated code)
1925		 */
1926		if (i < strs.cnt &&
1927		    !strcmp(strs.ptrs[i].str, strs.ptrs[grp_idx].str)) {
1928			grp_used = grp_used || strs.ptrs[i].used;
1929			continue;
1930		}
1931
1932		/*
1933		 * this check would have been required after the loop to handle
1934		 * last group of strings, but due to <= condition in a loop
1935		 * we avoid that duplication
1936		 */
1937		if (grp_used) {
1938			int new_off = p - tmp_strs;
1939			__u32 len = strlen(strs.ptrs[grp_idx].str);
1940
1941			memmove(p, strs.ptrs[grp_idx].str, len + 1);
1942			for (j = grp_idx; j < i; j++)
1943				strs.ptrs[j].new_off = new_off;
1944			p += len + 1;
1945		}
1946
1947		if (i < strs.cnt) {
1948			grp_idx = i;
1949			grp_used = strs.ptrs[i].used;
1950		}
1951	}
1952
1953	/* replace original strings with deduped ones */
1954	d->btf->hdr->str_len = p - tmp_strs;
1955	memmove(start, tmp_strs, d->btf->hdr->str_len);
1956	end = start + d->btf->hdr->str_len;
1957
1958	/* restore original order for further binary search lookups */
1959	qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_offset);
1960
1961	/* remap string offsets */
1962	err = btf_for_each_str_off(d, btf_str_remap_offset, &strs);
1963	if (err)
1964		goto done;
1965
1966	d->btf->hdr->str_len = end - start;
 
 
 
 
 
 
 
 
 
 
1967
1968done:
1969	free(tmp_strs);
1970	free(strs.ptrs);
1971	return err;
1972}
1973
1974static long btf_hash_common(struct btf_type *t)
1975{
1976	long h;
1977
1978	h = hash_combine(0, t->name_off);
1979	h = hash_combine(h, t->info);
1980	h = hash_combine(h, t->size);
1981	return h;
1982}
1983
1984static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
1985{
1986	return t1->name_off == t2->name_off &&
1987	       t1->info == t2->info &&
1988	       t1->size == t2->size;
1989}
1990
1991/* Calculate type signature hash of INT. */
1992static long btf_hash_int(struct btf_type *t)
1993{
1994	__u32 info = *(__u32 *)(t + 1);
1995	long h;
1996
1997	h = btf_hash_common(t);
1998	h = hash_combine(h, info);
1999	return h;
2000}
2001
2002/* Check structural equality of two INTs. */
2003static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
2004{
2005	__u32 info1, info2;
2006
2007	if (!btf_equal_common(t1, t2))
2008		return false;
2009	info1 = *(__u32 *)(t1 + 1);
2010	info2 = *(__u32 *)(t2 + 1);
2011	return info1 == info2;
2012}
2013
2014/* Calculate type signature hash of ENUM. */
2015static long btf_hash_enum(struct btf_type *t)
2016{
2017	long h;
2018
2019	/* don't hash vlen and enum members to support enum fwd resolving */
2020	h = hash_combine(0, t->name_off);
2021	h = hash_combine(h, t->info & ~0xffff);
2022	h = hash_combine(h, t->size);
2023	return h;
2024}
2025
2026/* Check structural equality of two ENUMs. */
2027static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
2028{
2029	const struct btf_enum *m1, *m2;
2030	__u16 vlen;
2031	int i;
2032
2033	if (!btf_equal_common(t1, t2))
2034		return false;
2035
2036	vlen = btf_vlen(t1);
2037	m1 = btf_enum(t1);
2038	m2 = btf_enum(t2);
2039	for (i = 0; i < vlen; i++) {
2040		if (m1->name_off != m2->name_off || m1->val != m2->val)
2041			return false;
2042		m1++;
2043		m2++;
2044	}
2045	return true;
2046}
2047
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2048static inline bool btf_is_enum_fwd(struct btf_type *t)
2049{
2050	return btf_is_enum(t) && btf_vlen(t) == 0;
2051}
2052
2053static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
2054{
2055	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
2056		return btf_equal_enum(t1, t2);
2057	/* ignore vlen when comparing */
 
 
 
 
 
2058	return t1->name_off == t2->name_off &&
2059	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
2060	       t1->size == t2->size;
2061}
2062
2063/*
2064 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
2065 * as referenced type IDs equivalence is established separately during type
2066 * graph equivalence check algorithm.
2067 */
2068static long btf_hash_struct(struct btf_type *t)
2069{
2070	const struct btf_member *member = btf_members(t);
2071	__u32 vlen = btf_vlen(t);
2072	long h = btf_hash_common(t);
2073	int i;
2074
2075	for (i = 0; i < vlen; i++) {
2076		h = hash_combine(h, member->name_off);
2077		h = hash_combine(h, member->offset);
2078		/* no hashing of referenced type ID, it can be unresolved yet */
2079		member++;
2080	}
2081	return h;
2082}
2083
2084/*
2085 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
2086 * IDs. This check is performed during type graph equivalence check and
2087 * referenced types equivalence is checked separately.
2088 */
2089static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
2090{
2091	const struct btf_member *m1, *m2;
2092	__u16 vlen;
2093	int i;
2094
2095	if (!btf_equal_common(t1, t2))
2096		return false;
2097
2098	vlen = btf_vlen(t1);
2099	m1 = btf_members(t1);
2100	m2 = btf_members(t2);
2101	for (i = 0; i < vlen; i++) {
2102		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
2103			return false;
2104		m1++;
2105		m2++;
2106	}
2107	return true;
2108}
2109
2110/*
2111 * Calculate type signature hash of ARRAY, including referenced type IDs,
2112 * under assumption that they were already resolved to canonical type IDs and
2113 * are not going to change.
2114 */
2115static long btf_hash_array(struct btf_type *t)
2116{
2117	const struct btf_array *info = btf_array(t);
2118	long h = btf_hash_common(t);
2119
2120	h = hash_combine(h, info->type);
2121	h = hash_combine(h, info->index_type);
2122	h = hash_combine(h, info->nelems);
2123	return h;
2124}
2125
2126/*
2127 * Check exact equality of two ARRAYs, taking into account referenced
2128 * type IDs, under assumption that they were already resolved to canonical
2129 * type IDs and are not going to change.
2130 * This function is called during reference types deduplication to compare
2131 * ARRAY to potential canonical representative.
2132 */
2133static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
2134{
2135	const struct btf_array *info1, *info2;
2136
2137	if (!btf_equal_common(t1, t2))
2138		return false;
2139
2140	info1 = btf_array(t1);
2141	info2 = btf_array(t2);
2142	return info1->type == info2->type &&
2143	       info1->index_type == info2->index_type &&
2144	       info1->nelems == info2->nelems;
2145}
2146
2147/*
2148 * Check structural compatibility of two ARRAYs, ignoring referenced type
2149 * IDs. This check is performed during type graph equivalence check and
2150 * referenced types equivalence is checked separately.
2151 */
2152static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
2153{
2154	if (!btf_equal_common(t1, t2))
2155		return false;
2156
2157	return btf_array(t1)->nelems == btf_array(t2)->nelems;
2158}
2159
2160/*
2161 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
2162 * under assumption that they were already resolved to canonical type IDs and
2163 * are not going to change.
2164 */
2165static long btf_hash_fnproto(struct btf_type *t)
2166{
2167	const struct btf_param *member = btf_params(t);
2168	__u16 vlen = btf_vlen(t);
2169	long h = btf_hash_common(t);
2170	int i;
2171
2172	for (i = 0; i < vlen; i++) {
2173		h = hash_combine(h, member->name_off);
2174		h = hash_combine(h, member->type);
2175		member++;
2176	}
2177	return h;
2178}
2179
2180/*
2181 * Check exact equality of two FUNC_PROTOs, taking into account referenced
2182 * type IDs, under assumption that they were already resolved to canonical
2183 * type IDs and are not going to change.
2184 * This function is called during reference types deduplication to compare
2185 * FUNC_PROTO to potential canonical representative.
2186 */
2187static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
2188{
2189	const struct btf_param *m1, *m2;
2190	__u16 vlen;
2191	int i;
2192
2193	if (!btf_equal_common(t1, t2))
2194		return false;
2195
2196	vlen = btf_vlen(t1);
2197	m1 = btf_params(t1);
2198	m2 = btf_params(t2);
2199	for (i = 0; i < vlen; i++) {
2200		if (m1->name_off != m2->name_off || m1->type != m2->type)
2201			return false;
2202		m1++;
2203		m2++;
2204	}
2205	return true;
2206}
2207
2208/*
2209 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
2210 * IDs. This check is performed during type graph equivalence check and
2211 * referenced types equivalence is checked separately.
2212 */
2213static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
2214{
2215	const struct btf_param *m1, *m2;
2216	__u16 vlen;
2217	int i;
2218
2219	/* skip return type ID */
2220	if (t1->name_off != t2->name_off || t1->info != t2->info)
2221		return false;
2222
2223	vlen = btf_vlen(t1);
2224	m1 = btf_params(t1);
2225	m2 = btf_params(t2);
2226	for (i = 0; i < vlen; i++) {
2227		if (m1->name_off != m2->name_off)
2228			return false;
2229		m1++;
2230		m2++;
2231	}
2232	return true;
2233}
2234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2235/*
2236 * Deduplicate primitive types, that can't reference other types, by calculating
2237 * their type signature hash and comparing them with any possible canonical
2238 * candidate. If no canonical candidate matches, type itself is marked as
2239 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
2240 */
2241static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
2242{
2243	struct btf_type *t = d->btf->types[type_id];
2244	struct hashmap_entry *hash_entry;
2245	struct btf_type *cand;
2246	/* if we don't find equivalent type, then we are canonical */
2247	__u32 new_id = type_id;
2248	__u32 cand_id;
2249	long h;
2250
2251	switch (btf_kind(t)) {
2252	case BTF_KIND_CONST:
2253	case BTF_KIND_VOLATILE:
2254	case BTF_KIND_RESTRICT:
2255	case BTF_KIND_PTR:
2256	case BTF_KIND_TYPEDEF:
2257	case BTF_KIND_ARRAY:
2258	case BTF_KIND_STRUCT:
2259	case BTF_KIND_UNION:
2260	case BTF_KIND_FUNC:
2261	case BTF_KIND_FUNC_PROTO:
2262	case BTF_KIND_VAR:
2263	case BTF_KIND_DATASEC:
 
 
2264		return 0;
2265
2266	case BTF_KIND_INT:
2267		h = btf_hash_int(t);
2268		for_each_dedup_cand(d, hash_entry, h) {
2269			cand_id = (__u32)(long)hash_entry->value;
2270			cand = d->btf->types[cand_id];
2271			if (btf_equal_int(t, cand)) {
2272				new_id = cand_id;
2273				break;
2274			}
2275		}
2276		break;
2277
2278	case BTF_KIND_ENUM:
 
2279		h = btf_hash_enum(t);
2280		for_each_dedup_cand(d, hash_entry, h) {
2281			cand_id = (__u32)(long)hash_entry->value;
2282			cand = d->btf->types[cand_id];
2283			if (btf_equal_enum(t, cand)) {
2284				new_id = cand_id;
2285				break;
2286			}
2287			if (d->opts.dont_resolve_fwds)
2288				continue;
2289			if (btf_compat_enum(t, cand)) {
2290				if (btf_is_enum_fwd(t)) {
2291					/* resolve fwd to full enum */
2292					new_id = cand_id;
2293					break;
2294				}
2295				/* resolve canonical enum fwd to full enum */
2296				d->map[cand_id] = type_id;
2297			}
2298		}
2299		break;
2300
2301	case BTF_KIND_FWD:
 
2302		h = btf_hash_common(t);
2303		for_each_dedup_cand(d, hash_entry, h) {
2304			cand_id = (__u32)(long)hash_entry->value;
2305			cand = d->btf->types[cand_id];
2306			if (btf_equal_common(t, cand)) {
2307				new_id = cand_id;
2308				break;
2309			}
2310		}
2311		break;
2312
2313	default:
2314		return -EINVAL;
2315	}
2316
2317	d->map[type_id] = new_id;
2318	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2319		return -ENOMEM;
2320
2321	return 0;
2322}
2323
2324static int btf_dedup_prim_types(struct btf_dedup *d)
2325{
2326	int i, err;
2327
2328	for (i = 1; i <= d->btf->nr_types; i++) {
2329		err = btf_dedup_prim_type(d, i);
2330		if (err)
2331			return err;
2332	}
2333	return 0;
2334}
2335
2336/*
2337 * Check whether type is already mapped into canonical one (could be to itself).
2338 */
2339static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
2340{
2341	return d->map[type_id] <= BTF_MAX_NR_TYPES;
2342}
2343
2344/*
2345 * Resolve type ID into its canonical type ID, if any; otherwise return original
2346 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
2347 * STRUCT/UNION link and resolve it into canonical type ID as well.
2348 */
2349static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
2350{
2351	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
2352		type_id = d->map[type_id];
2353	return type_id;
2354}
2355
2356/*
2357 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
2358 * type ID.
2359 */
2360static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
2361{
2362	__u32 orig_type_id = type_id;
2363
2364	if (!btf_is_fwd(d->btf->types[type_id]))
2365		return type_id;
2366
2367	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
2368		type_id = d->map[type_id];
2369
2370	if (!btf_is_fwd(d->btf->types[type_id]))
2371		return type_id;
2372
2373	return orig_type_id;
2374}
2375
2376
2377static inline __u16 btf_fwd_kind(struct btf_type *t)
2378{
2379	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
2380}
2381
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2382/*
2383 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
2384 * call it "candidate graph" in this description for brevity) to a type graph
2385 * formed by (potential) canonical struct/union ("canonical graph" for brevity
2386 * here, though keep in mind that not all types in canonical graph are
2387 * necessarily canonical representatives themselves, some of them might be
2388 * duplicates or its uniqueness might not have been established yet).
2389 * Returns:
2390 *  - >0, if type graphs are equivalent;
2391 *  -  0, if not equivalent;
2392 *  - <0, on error.
2393 *
2394 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
2395 * equivalence of BTF types at each step. If at any point BTF types in candidate
2396 * and canonical graphs are not compatible structurally, whole graphs are
2397 * incompatible. If types are structurally equivalent (i.e., all information
2398 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
2399 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
2400 * If a type references other types, then those referenced types are checked
2401 * for equivalence recursively.
2402 *
2403 * During DFS traversal, if we find that for current `canon_id` type we
2404 * already have some mapping in hypothetical map, we check for two possible
2405 * situations:
2406 *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
2407 *     happen when type graphs have cycles. In this case we assume those two
2408 *     types are equivalent.
2409 *   - `canon_id` is mapped to different type. This is contradiction in our
2410 *     hypothetical mapping, because same graph in canonical graph corresponds
2411 *     to two different types in candidate graph, which for equivalent type
2412 *     graphs shouldn't happen. This condition terminates equivalence check
2413 *     with negative result.
2414 *
2415 * If type graphs traversal exhausts types to check and find no contradiction,
2416 * then type graphs are equivalent.
2417 *
2418 * When checking types for equivalence, there is one special case: FWD types.
2419 * If FWD type resolution is allowed and one of the types (either from canonical
2420 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
2421 * flag) and their names match, hypothetical mapping is updated to point from
2422 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
2423 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
2424 *
2425 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
2426 * if there are two exactly named (or anonymous) structs/unions that are
2427 * compatible structurally, one of which has FWD field, while other is concrete
2428 * STRUCT/UNION, but according to C sources they are different structs/unions
2429 * that are referencing different types with the same name. This is extremely
2430 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
2431 * this logic is causing problems.
2432 *
2433 * Doing FWD resolution means that both candidate and/or canonical graphs can
2434 * consists of portions of the graph that come from multiple compilation units.
2435 * This is due to the fact that types within single compilation unit are always
2436 * deduplicated and FWDs are already resolved, if referenced struct/union
2437 * definiton is available. So, if we had unresolved FWD and found corresponding
2438 * STRUCT/UNION, they will be from different compilation units. This
2439 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
2440 * type graph will likely have at least two different BTF types that describe
2441 * same type (e.g., most probably there will be two different BTF types for the
2442 * same 'int' primitive type) and could even have "overlapping" parts of type
2443 * graph that describe same subset of types.
2444 *
2445 * This in turn means that our assumption that each type in canonical graph
2446 * must correspond to exactly one type in candidate graph might not hold
2447 * anymore and will make it harder to detect contradictions using hypothetical
2448 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
2449 * resolution only in canonical graph. FWDs in candidate graphs are never
2450 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
2451 * that can occur:
2452 *   - Both types in canonical and candidate graphs are FWDs. If they are
2453 *     structurally equivalent, then they can either be both resolved to the
2454 *     same STRUCT/UNION or not resolved at all. In both cases they are
2455 *     equivalent and there is no need to resolve FWD on candidate side.
2456 *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
2457 *     so nothing to resolve as well, algorithm will check equivalence anyway.
2458 *   - Type in canonical graph is FWD, while type in candidate is concrete
2459 *     STRUCT/UNION. In this case candidate graph comes from single compilation
2460 *     unit, so there is exactly one BTF type for each unique C type. After
2461 *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
2462 *     in canonical graph mapping to single BTF type in candidate graph, but
2463 *     because hypothetical mapping maps from canonical to candidate types, it's
2464 *     alright, and we still maintain the property of having single `canon_id`
2465 *     mapping to single `cand_id` (there could be two different `canon_id`
2466 *     mapped to the same `cand_id`, but it's not contradictory).
2467 *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
2468 *     graph is FWD. In this case we are just going to check compatibility of
2469 *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
2470 *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
2471 *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
2472 *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
2473 *     canonical graph.
2474 */
2475static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
2476			      __u32 canon_id)
2477{
2478	struct btf_type *cand_type;
2479	struct btf_type *canon_type;
2480	__u32 hypot_type_id;
2481	__u16 cand_kind;
2482	__u16 canon_kind;
2483	int i, eq;
2484
2485	/* if both resolve to the same canonical, they must be equivalent */
2486	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
2487		return 1;
2488
2489	canon_id = resolve_fwd_id(d, canon_id);
2490
2491	hypot_type_id = d->hypot_map[canon_id];
2492	if (hypot_type_id <= BTF_MAX_NR_TYPES)
2493		return hypot_type_id == cand_id;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2494
2495	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
2496		return -ENOMEM;
2497
2498	cand_type = d->btf->types[cand_id];
2499	canon_type = d->btf->types[canon_id];
2500	cand_kind = btf_kind(cand_type);
2501	canon_kind = btf_kind(canon_type);
2502
2503	if (cand_type->name_off != canon_type->name_off)
2504		return 0;
2505
2506	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
2507	if (!d->opts.dont_resolve_fwds
2508	    && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
2509	    && cand_kind != canon_kind) {
2510		__u16 real_kind;
2511		__u16 fwd_kind;
2512
2513		if (cand_kind == BTF_KIND_FWD) {
2514			real_kind = canon_kind;
2515			fwd_kind = btf_fwd_kind(cand_type);
2516		} else {
2517			real_kind = cand_kind;
2518			fwd_kind = btf_fwd_kind(canon_type);
 
 
 
2519		}
2520		return fwd_kind == real_kind;
2521	}
2522
2523	if (cand_kind != canon_kind)
2524		return 0;
2525
2526	switch (cand_kind) {
2527	case BTF_KIND_INT:
2528		return btf_equal_int(cand_type, canon_type);
2529
2530	case BTF_KIND_ENUM:
2531		if (d->opts.dont_resolve_fwds)
2532			return btf_equal_enum(cand_type, canon_type);
2533		else
2534			return btf_compat_enum(cand_type, canon_type);
2535
2536	case BTF_KIND_FWD:
 
2537		return btf_equal_common(cand_type, canon_type);
2538
2539	case BTF_KIND_CONST:
2540	case BTF_KIND_VOLATILE:
2541	case BTF_KIND_RESTRICT:
2542	case BTF_KIND_PTR:
2543	case BTF_KIND_TYPEDEF:
2544	case BTF_KIND_FUNC:
 
2545		if (cand_type->info != canon_type->info)
2546			return 0;
2547		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
2548
2549	case BTF_KIND_ARRAY: {
2550		const struct btf_array *cand_arr, *canon_arr;
2551
2552		if (!btf_compat_array(cand_type, canon_type))
2553			return 0;
2554		cand_arr = btf_array(cand_type);
2555		canon_arr = btf_array(canon_type);
2556		eq = btf_dedup_is_equiv(d,
2557			cand_arr->index_type, canon_arr->index_type);
2558		if (eq <= 0)
2559			return eq;
2560		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
2561	}
2562
2563	case BTF_KIND_STRUCT:
2564	case BTF_KIND_UNION: {
2565		const struct btf_member *cand_m, *canon_m;
2566		__u16 vlen;
2567
2568		if (!btf_shallow_equal_struct(cand_type, canon_type))
2569			return 0;
2570		vlen = btf_vlen(cand_type);
2571		cand_m = btf_members(cand_type);
2572		canon_m = btf_members(canon_type);
2573		for (i = 0; i < vlen; i++) {
2574			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
2575			if (eq <= 0)
2576				return eq;
2577			cand_m++;
2578			canon_m++;
2579		}
2580
2581		return 1;
2582	}
2583
2584	case BTF_KIND_FUNC_PROTO: {
2585		const struct btf_param *cand_p, *canon_p;
2586		__u16 vlen;
2587
2588		if (!btf_compat_fnproto(cand_type, canon_type))
2589			return 0;
2590		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
2591		if (eq <= 0)
2592			return eq;
2593		vlen = btf_vlen(cand_type);
2594		cand_p = btf_params(cand_type);
2595		canon_p = btf_params(canon_type);
2596		for (i = 0; i < vlen; i++) {
2597			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
2598			if (eq <= 0)
2599				return eq;
2600			cand_p++;
2601			canon_p++;
2602		}
2603		return 1;
2604	}
2605
2606	default:
2607		return -EINVAL;
2608	}
2609	return 0;
2610}
2611
2612/*
2613 * Use hypothetical mapping, produced by successful type graph equivalence
2614 * check, to augment existing struct/union canonical mapping, where possible.
2615 *
2616 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
2617 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
2618 * it doesn't matter if FWD type was part of canonical graph or candidate one,
2619 * we are recording the mapping anyway. As opposed to carefulness required
2620 * for struct/union correspondence mapping (described below), for FWD resolution
2621 * it's not important, as by the time that FWD type (reference type) will be
2622 * deduplicated all structs/unions will be deduped already anyway.
2623 *
2624 * Recording STRUCT/UNION mapping is purely a performance optimization and is
2625 * not required for correctness. It needs to be done carefully to ensure that
2626 * struct/union from candidate's type graph is not mapped into corresponding
2627 * struct/union from canonical type graph that itself hasn't been resolved into
2628 * canonical representative. The only guarantee we have is that canonical
2629 * struct/union was determined as canonical and that won't change. But any
2630 * types referenced through that struct/union fields could have been not yet
2631 * resolved, so in case like that it's too early to establish any kind of
2632 * correspondence between structs/unions.
2633 *
2634 * No canonical correspondence is derived for primitive types (they are already
2635 * deduplicated completely already anyway) or reference types (they rely on
2636 * stability of struct/union canonical relationship for equivalence checks).
2637 */
2638static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
2639{
2640	__u32 cand_type_id, targ_type_id;
2641	__u16 t_kind, c_kind;
2642	__u32 t_id, c_id;
2643	int i;
2644
2645	for (i = 0; i < d->hypot_cnt; i++) {
2646		cand_type_id = d->hypot_list[i];
2647		targ_type_id = d->hypot_map[cand_type_id];
2648		t_id = resolve_type_id(d, targ_type_id);
2649		c_id = resolve_type_id(d, cand_type_id);
2650		t_kind = btf_kind(d->btf->types[t_id]);
2651		c_kind = btf_kind(d->btf->types[c_id]);
2652		/*
2653		 * Resolve FWD into STRUCT/UNION.
2654		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
2655		 * mapped to canonical representative (as opposed to
2656		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
2657		 * eventually that struct is going to be mapped and all resolved
2658		 * FWDs will automatically resolve to correct canonical
2659		 * representative. This will happen before ref type deduping,
2660		 * which critically depends on stability of these mapping. This
2661		 * stability is not a requirement for STRUCT/UNION equivalence
2662		 * checks, though.
2663		 */
 
 
 
 
 
 
 
 
2664		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
2665			d->map[c_id] = t_id;
2666		else if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
 
 
 
 
 
 
 
 
 
2667			d->map[t_id] = c_id;
2668
2669		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
2670		    c_kind != BTF_KIND_FWD &&
2671		    is_type_mapped(d, c_id) &&
2672		    !is_type_mapped(d, t_id)) {
2673			/*
2674			 * as a perf optimization, we can map struct/union
2675			 * that's part of type graph we just verified for
2676			 * equivalence. We can do that for struct/union that has
2677			 * canonical representative only, though.
2678			 */
2679			d->map[t_id] = c_id;
2680		}
2681	}
2682}
2683
2684/*
2685 * Deduplicate struct/union types.
2686 *
2687 * For each struct/union type its type signature hash is calculated, taking
2688 * into account type's name, size, number, order and names of fields, but
2689 * ignoring type ID's referenced from fields, because they might not be deduped
2690 * completely until after reference types deduplication phase. This type hash
2691 * is used to iterate over all potential canonical types, sharing same hash.
2692 * For each canonical candidate we check whether type graphs that they form
2693 * (through referenced types in fields and so on) are equivalent using algorithm
2694 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
2695 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
2696 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
2697 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
2698 * potentially map other structs/unions to their canonical representatives,
2699 * if such relationship hasn't yet been established. This speeds up algorithm
2700 * by eliminating some of the duplicate work.
2701 *
2702 * If no matching canonical representative was found, struct/union is marked
2703 * as canonical for itself and is added into btf_dedup->dedup_table hash map
2704 * for further look ups.
2705 */
2706static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
2707{
2708	struct btf_type *cand_type, *t;
2709	struct hashmap_entry *hash_entry;
2710	/* if we don't find equivalent type, then we are canonical */
2711	__u32 new_id = type_id;
2712	__u16 kind;
2713	long h;
2714
2715	/* already deduped or is in process of deduping (loop detected) */
2716	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
2717		return 0;
2718
2719	t = d->btf->types[type_id];
2720	kind = btf_kind(t);
2721
2722	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
2723		return 0;
2724
2725	h = btf_hash_struct(t);
2726	for_each_dedup_cand(d, hash_entry, h) {
2727		__u32 cand_id = (__u32)(long)hash_entry->value;
2728		int eq;
2729
2730		/*
2731		 * Even though btf_dedup_is_equiv() checks for
2732		 * btf_shallow_equal_struct() internally when checking two
2733		 * structs (unions) for equivalence, we need to guard here
2734		 * from picking matching FWD type as a dedup candidate.
2735		 * This can happen due to hash collision. In such case just
2736		 * relying on btf_dedup_is_equiv() would lead to potentially
2737		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
2738		 * FWD and compatible STRUCT/UNION are considered equivalent.
2739		 */
2740		cand_type = d->btf->types[cand_id];
2741		if (!btf_shallow_equal_struct(t, cand_type))
2742			continue;
2743
2744		btf_dedup_clear_hypot_map(d);
2745		eq = btf_dedup_is_equiv(d, type_id, cand_id);
2746		if (eq < 0)
2747			return eq;
2748		if (!eq)
2749			continue;
 
 
 
2750		new_id = cand_id;
2751		btf_dedup_merge_hypot_map(d);
2752		break;
2753	}
2754
2755	d->map[type_id] = new_id;
2756	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2757		return -ENOMEM;
2758
2759	return 0;
2760}
2761
2762static int btf_dedup_struct_types(struct btf_dedup *d)
2763{
2764	int i, err;
2765
2766	for (i = 1; i <= d->btf->nr_types; i++) {
2767		err = btf_dedup_struct_type(d, i);
2768		if (err)
2769			return err;
2770	}
2771	return 0;
2772}
2773
2774/*
2775 * Deduplicate reference type.
2776 *
2777 * Once all primitive and struct/union types got deduplicated, we can easily
2778 * deduplicate all other (reference) BTF types. This is done in two steps:
2779 *
2780 * 1. Resolve all referenced type IDs into their canonical type IDs. This
2781 * resolution can be done either immediately for primitive or struct/union types
2782 * (because they were deduped in previous two phases) or recursively for
2783 * reference types. Recursion will always terminate at either primitive or
2784 * struct/union type, at which point we can "unwind" chain of reference types
2785 * one by one. There is no danger of encountering cycles because in C type
2786 * system the only way to form type cycle is through struct/union, so any chain
2787 * of reference types, even those taking part in a type cycle, will inevitably
2788 * reach struct/union at some point.
2789 *
2790 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
2791 * becomes "stable", in the sense that no further deduplication will cause
2792 * any changes to it. With that, it's now possible to calculate type's signature
2793 * hash (this time taking into account referenced type IDs) and loop over all
2794 * potential canonical representatives. If no match was found, current type
2795 * will become canonical representative of itself and will be added into
2796 * btf_dedup->dedup_table as another possible canonical representative.
2797 */
2798static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
2799{
2800	struct hashmap_entry *hash_entry;
2801	__u32 new_id = type_id, cand_id;
2802	struct btf_type *t, *cand;
2803	/* if we don't find equivalent type, then we are representative type */
2804	int ref_type_id;
2805	long h;
2806
2807	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
2808		return -ELOOP;
2809	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
2810		return resolve_type_id(d, type_id);
2811
2812	t = d->btf->types[type_id];
2813	d->map[type_id] = BTF_IN_PROGRESS_ID;
2814
2815	switch (btf_kind(t)) {
2816	case BTF_KIND_CONST:
2817	case BTF_KIND_VOLATILE:
2818	case BTF_KIND_RESTRICT:
2819	case BTF_KIND_PTR:
2820	case BTF_KIND_TYPEDEF:
2821	case BTF_KIND_FUNC:
 
2822		ref_type_id = btf_dedup_ref_type(d, t->type);
2823		if (ref_type_id < 0)
2824			return ref_type_id;
2825		t->type = ref_type_id;
2826
2827		h = btf_hash_common(t);
2828		for_each_dedup_cand(d, hash_entry, h) {
2829			cand_id = (__u32)(long)hash_entry->value;
2830			cand = d->btf->types[cand_id];
2831			if (btf_equal_common(t, cand)) {
2832				new_id = cand_id;
2833				break;
2834			}
2835		}
2836		break;
2837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2838	case BTF_KIND_ARRAY: {
2839		struct btf_array *info = btf_array(t);
2840
2841		ref_type_id = btf_dedup_ref_type(d, info->type);
2842		if (ref_type_id < 0)
2843			return ref_type_id;
2844		info->type = ref_type_id;
2845
2846		ref_type_id = btf_dedup_ref_type(d, info->index_type);
2847		if (ref_type_id < 0)
2848			return ref_type_id;
2849		info->index_type = ref_type_id;
2850
2851		h = btf_hash_array(t);
2852		for_each_dedup_cand(d, hash_entry, h) {
2853			cand_id = (__u32)(long)hash_entry->value;
2854			cand = d->btf->types[cand_id];
2855			if (btf_equal_array(t, cand)) {
2856				new_id = cand_id;
2857				break;
2858			}
2859		}
2860		break;
2861	}
2862
2863	case BTF_KIND_FUNC_PROTO: {
2864		struct btf_param *param;
2865		__u16 vlen;
2866		int i;
2867
2868		ref_type_id = btf_dedup_ref_type(d, t->type);
2869		if (ref_type_id < 0)
2870			return ref_type_id;
2871		t->type = ref_type_id;
2872
2873		vlen = btf_vlen(t);
2874		param = btf_params(t);
2875		for (i = 0; i < vlen; i++) {
2876			ref_type_id = btf_dedup_ref_type(d, param->type);
2877			if (ref_type_id < 0)
2878				return ref_type_id;
2879			param->type = ref_type_id;
2880			param++;
2881		}
2882
2883		h = btf_hash_fnproto(t);
2884		for_each_dedup_cand(d, hash_entry, h) {
2885			cand_id = (__u32)(long)hash_entry->value;
2886			cand = d->btf->types[cand_id];
2887			if (btf_equal_fnproto(t, cand)) {
2888				new_id = cand_id;
2889				break;
2890			}
2891		}
2892		break;
2893	}
2894
2895	default:
2896		return -EINVAL;
2897	}
2898
2899	d->map[type_id] = new_id;
2900	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2901		return -ENOMEM;
2902
2903	return new_id;
2904}
2905
2906static int btf_dedup_ref_types(struct btf_dedup *d)
2907{
2908	int i, err;
2909
2910	for (i = 1; i <= d->btf->nr_types; i++) {
2911		err = btf_dedup_ref_type(d, i);
2912		if (err < 0)
2913			return err;
2914	}
2915	/* we won't need d->dedup_table anymore */
2916	hashmap__free(d->dedup_table);
2917	d->dedup_table = NULL;
2918	return 0;
2919}
2920
2921/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2922 * Compact types.
2923 *
2924 * After we established for each type its corresponding canonical representative
2925 * type, we now can eliminate types that are not canonical and leave only
2926 * canonical ones layed out sequentially in memory by copying them over
2927 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
2928 * a map from original type ID to a new compacted type ID, which will be used
2929 * during next phase to "fix up" type IDs, referenced from struct/union and
2930 * reference types.
2931 */
2932static int btf_dedup_compact_types(struct btf_dedup *d)
2933{
2934	struct btf_type **new_types;
2935	__u32 next_type_id = 1;
2936	char *types_start, *p;
2937	int i, len;
 
2938
2939	/* we are going to reuse hypot_map to store compaction remapping */
2940	d->hypot_map[0] = 0;
2941	for (i = 1; i <= d->btf->nr_types; i++)
2942		d->hypot_map[i] = BTF_UNPROCESSED_ID;
 
 
 
2943
2944	types_start = d->btf->nohdr_data + d->btf->hdr->type_off;
2945	p = types_start;
2946
2947	for (i = 1; i <= d->btf->nr_types; i++) {
2948		if (d->map[i] != i)
2949			continue;
2950
2951		len = btf_type_size(d->btf->types[i]);
 
2952		if (len < 0)
2953			return len;
2954
2955		memmove(p, d->btf->types[i], len);
2956		d->hypot_map[i] = next_type_id;
2957		d->btf->types[next_type_id] = (struct btf_type *)p;
2958		p += len;
2959		next_type_id++;
2960	}
2961
2962	/* shrink struct btf's internal types index and update btf_header */
2963	d->btf->nr_types = next_type_id - 1;
2964	d->btf->types_size = d->btf->nr_types;
2965	d->btf->hdr->type_len = p - types_start;
2966	new_types = realloc(d->btf->types,
2967			    (1 + d->btf->nr_types) * sizeof(struct btf_type *));
2968	if (!new_types)
2969		return -ENOMEM;
2970	d->btf->types = new_types;
2971
2972	/* make sure string section follows type information without gaps */
2973	d->btf->hdr->str_off = p - (char *)d->btf->nohdr_data;
2974	memmove(p, d->btf->strings, d->btf->hdr->str_len);
2975	d->btf->strings = p;
2976	p += d->btf->hdr->str_len;
2977
2978	d->btf->data_size = p - (char *)d->btf->data;
2979	return 0;
2980}
2981
2982/*
2983 * Figure out final (deduplicated and compacted) type ID for provided original
2984 * `type_id` by first resolving it into corresponding canonical type ID and
2985 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
2986 * which is populated during compaction phase.
2987 */
2988static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id)
2989{
 
2990	__u32 resolved_type_id, new_type_id;
2991
2992	resolved_type_id = resolve_type_id(d, type_id);
2993	new_type_id = d->hypot_map[resolved_type_id];
2994	if (new_type_id > BTF_MAX_NR_TYPES)
2995		return -EINVAL;
2996	return new_type_id;
 
 
2997}
2998
2999/*
3000 * Remap referenced type IDs into deduped type IDs.
3001 *
3002 * After BTF types are deduplicated and compacted, their final type IDs may
3003 * differ from original ones. The map from original to a corresponding
3004 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
3005 * compaction phase. During remapping phase we are rewriting all type IDs
3006 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
3007 * their final deduped type IDs.
3008 */
3009static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id)
3010{
3011	struct btf_type *t = d->btf->types[type_id];
3012	int i, r;
3013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3014	switch (btf_kind(t)) {
3015	case BTF_KIND_INT:
 
3016	case BTF_KIND_ENUM:
3017		break;
 
3018
3019	case BTF_KIND_FWD:
3020	case BTF_KIND_CONST:
3021	case BTF_KIND_VOLATILE:
3022	case BTF_KIND_RESTRICT:
3023	case BTF_KIND_PTR:
3024	case BTF_KIND_TYPEDEF:
3025	case BTF_KIND_FUNC:
3026	case BTF_KIND_VAR:
3027		r = btf_dedup_remap_type_id(d, t->type);
3028		if (r < 0)
3029			return r;
3030		t->type = r;
3031		break;
3032
3033	case BTF_KIND_ARRAY: {
3034		struct btf_array *arr_info = btf_array(t);
3035
3036		r = btf_dedup_remap_type_id(d, arr_info->type);
3037		if (r < 0)
3038			return r;
3039		arr_info->type = r;
3040		r = btf_dedup_remap_type_id(d, arr_info->index_type);
3041		if (r < 0)
3042			return r;
3043		arr_info->index_type = r;
3044		break;
3045	}
3046
3047	case BTF_KIND_STRUCT:
3048	case BTF_KIND_UNION: {
3049		struct btf_member *member = btf_members(t);
3050		__u16 vlen = btf_vlen(t);
3051
3052		for (i = 0; i < vlen; i++) {
3053			r = btf_dedup_remap_type_id(d, member->type);
3054			if (r < 0)
3055				return r;
3056			member->type = r;
3057			member++;
3058		}
3059		break;
3060	}
3061
3062	case BTF_KIND_FUNC_PROTO: {
3063		struct btf_param *param = btf_params(t);
3064		__u16 vlen = btf_vlen(t);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3065
3066		r = btf_dedup_remap_type_id(d, t->type);
3067		if (r < 0)
3068			return r;
3069		t->type = r;
3070
3071		for (i = 0; i < vlen; i++) {
3072			r = btf_dedup_remap_type_id(d, param->type);
3073			if (r < 0)
3074				return r;
3075			param->type = r;
3076			param++;
3077		}
3078		break;
3079	}
 
 
3080
3081	case BTF_KIND_DATASEC: {
3082		struct btf_var_secinfo *var = btf_var_secinfos(t);
3083		__u16 vlen = btf_vlen(t);
 
 
 
 
 
 
3084
3085		for (i = 0; i < vlen; i++) {
3086			r = btf_dedup_remap_type_id(d, var->type);
3087			if (r < 0)
3088				return r;
3089			var->type = r;
3090			var++;
3091		}
3092		break;
3093	}
 
 
3094
 
 
 
 
 
 
 
3095	default:
3096		return -EINVAL;
3097	}
3098
3099	return 0;
3100}
3101
3102static int btf_dedup_remap_types(struct btf_dedup *d)
3103{
3104	int i, r;
 
 
 
 
 
 
 
 
 
 
 
 
 
3105
3106	for (i = 1; i <= d->btf->nr_types; i++) {
3107		r = btf_dedup_remap_type(d, i);
3108		if (r < 0)
3109			return r;
 
 
 
 
 
3110	}
 
3111	return 0;
3112}
3113
3114/*
3115 * Probe few well-known locations for vmlinux kernel image and try to load BTF
3116 * data out of it to use for target BTF.
3117 */
3118struct btf *libbpf_find_kernel_btf(void)
3119{
3120	struct {
3121		const char *path_fmt;
3122		bool raw_btf;
3123	} locations[] = {
3124		/* try canonical vmlinux BTF through sysfs first */
3125		{ "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
3126		/* fall back to trying to find vmlinux ELF on disk otherwise */
3127		{ "/boot/vmlinux-%1$s" },
3128		{ "/lib/modules/%1$s/vmlinux-%1$s" },
3129		{ "/lib/modules/%1$s/build/vmlinux" },
3130		{ "/usr/lib/modules/%1$s/kernel/vmlinux" },
3131		{ "/usr/lib/debug/boot/vmlinux-%1$s" },
3132		{ "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
3133		{ "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
3134	};
3135	char path[PATH_MAX + 1];
3136	struct utsname buf;
3137	struct btf *btf;
3138	int i;
3139
3140	uname(&buf);
 
 
3141
3142	for (i = 0; i < ARRAY_SIZE(locations); i++) {
3143		snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
 
3144
3145		if (access(path, R_OK))
3146			continue;
 
 
 
 
 
 
 
3147
3148		if (locations[i].raw_btf)
3149			btf = btf__parse_raw(path);
3150		else
3151			btf = btf__parse_elf(path, NULL);
3152
3153		pr_debug("loading kernel BTF '%s': %ld\n",
3154			 path, IS_ERR(btf) ? PTR_ERR(btf) : 0);
3155		if (IS_ERR(btf))
3156			continue;
3157
3158		return btf;
 
 
 
 
3159	}
3160
3161	pr_warn("failed to find valid kernel BTF\n");
3162	return ERR_PTR(-ESRCH);
3163}