Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/net/sunrpc/svc_xprt.c
4 *
5 * Author: Tom Tucker <tom@opengridcomputing.com>
6 */
7
8#include <linux/sched.h>
9#include <linux/sched/mm.h>
10#include <linux/errno.h>
11#include <linux/freezer.h>
12#include <linux/slab.h>
13#include <net/sock.h>
14#include <linux/sunrpc/addr.h>
15#include <linux/sunrpc/stats.h>
16#include <linux/sunrpc/svc_xprt.h>
17#include <linux/sunrpc/svcsock.h>
18#include <linux/sunrpc/xprt.h>
19#include <linux/sunrpc/bc_xprt.h>
20#include <linux/module.h>
21#include <linux/netdevice.h>
22#include <trace/events/sunrpc.h>
23
24#define RPCDBG_FACILITY RPCDBG_SVCXPRT
25
26static unsigned int svc_rpc_per_connection_limit __read_mostly;
27module_param(svc_rpc_per_connection_limit, uint, 0644);
28
29
30static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
31static int svc_deferred_recv(struct svc_rqst *rqstp);
32static struct cache_deferred_req *svc_defer(struct cache_req *req);
33static void svc_age_temp_xprts(struct timer_list *t);
34static void svc_delete_xprt(struct svc_xprt *xprt);
35
36/* apparently the "standard" is that clients close
37 * idle connections after 5 minutes, servers after
38 * 6 minutes
39 * http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf
40 */
41static int svc_conn_age_period = 6*60;
42
43/* List of registered transport classes */
44static DEFINE_SPINLOCK(svc_xprt_class_lock);
45static LIST_HEAD(svc_xprt_class_list);
46
47/* SMP locking strategy:
48 *
49 * svc_pool->sp_lock protects most of the fields of that pool.
50 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
51 * when both need to be taken (rare), svc_serv->sv_lock is first.
52 * The "service mutex" protects svc_serv->sv_nrthread.
53 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
54 * and the ->sk_info_authunix cache.
55 *
56 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
57 * enqueued multiply. During normal transport processing this bit
58 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
59 * Providers should not manipulate this bit directly.
60 *
61 * Some flags can be set to certain values at any time
62 * providing that certain rules are followed:
63 *
64 * XPT_CONN, XPT_DATA:
65 * - Can be set or cleared at any time.
66 * - After a set, svc_xprt_enqueue must be called to enqueue
67 * the transport for processing.
68 * - After a clear, the transport must be read/accepted.
69 * If this succeeds, it must be set again.
70 * XPT_CLOSE:
71 * - Can set at any time. It is never cleared.
72 * XPT_DEAD:
73 * - Can only be set while XPT_BUSY is held which ensures
74 * that no other thread will be using the transport or will
75 * try to set XPT_DEAD.
76 */
77
78/**
79 * svc_reg_xprt_class - Register a server-side RPC transport class
80 * @xcl: New transport class to be registered
81 *
82 * Returns zero on success; otherwise a negative errno is returned.
83 */
84int svc_reg_xprt_class(struct svc_xprt_class *xcl)
85{
86 struct svc_xprt_class *cl;
87 int res = -EEXIST;
88
89 INIT_LIST_HEAD(&xcl->xcl_list);
90 spin_lock(&svc_xprt_class_lock);
91 /* Make sure there isn't already a class with the same name */
92 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
93 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
94 goto out;
95 }
96 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
97 res = 0;
98out:
99 spin_unlock(&svc_xprt_class_lock);
100 return res;
101}
102EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
103
104/**
105 * svc_unreg_xprt_class - Unregister a server-side RPC transport class
106 * @xcl: Transport class to be unregistered
107 *
108 */
109void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
110{
111 spin_lock(&svc_xprt_class_lock);
112 list_del_init(&xcl->xcl_list);
113 spin_unlock(&svc_xprt_class_lock);
114}
115EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
116
117/**
118 * svc_print_xprts - Format the transport list for printing
119 * @buf: target buffer for formatted address
120 * @maxlen: length of target buffer
121 *
122 * Fills in @buf with a string containing a list of transport names, each name
123 * terminated with '\n'. If the buffer is too small, some entries may be
124 * missing, but it is guaranteed that all lines in the output buffer are
125 * complete.
126 *
127 * Returns positive length of the filled-in string.
128 */
129int svc_print_xprts(char *buf, int maxlen)
130{
131 struct svc_xprt_class *xcl;
132 char tmpstr[80];
133 int len = 0;
134 buf[0] = '\0';
135
136 spin_lock(&svc_xprt_class_lock);
137 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
138 int slen;
139
140 slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n",
141 xcl->xcl_name, xcl->xcl_max_payload);
142 if (slen >= sizeof(tmpstr) || len + slen >= maxlen)
143 break;
144 len += slen;
145 strcat(buf, tmpstr);
146 }
147 spin_unlock(&svc_xprt_class_lock);
148
149 return len;
150}
151
152/**
153 * svc_xprt_deferred_close - Close a transport
154 * @xprt: transport instance
155 *
156 * Used in contexts that need to defer the work of shutting down
157 * the transport to an nfsd thread.
158 */
159void svc_xprt_deferred_close(struct svc_xprt *xprt)
160{
161 if (!test_and_set_bit(XPT_CLOSE, &xprt->xpt_flags))
162 svc_xprt_enqueue(xprt);
163}
164EXPORT_SYMBOL_GPL(svc_xprt_deferred_close);
165
166static void svc_xprt_free(struct kref *kref)
167{
168 struct svc_xprt *xprt =
169 container_of(kref, struct svc_xprt, xpt_ref);
170 struct module *owner = xprt->xpt_class->xcl_owner;
171 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
172 svcauth_unix_info_release(xprt);
173 put_cred(xprt->xpt_cred);
174 put_net_track(xprt->xpt_net, &xprt->ns_tracker);
175 /* See comment on corresponding get in xs_setup_bc_tcp(): */
176 if (xprt->xpt_bc_xprt)
177 xprt_put(xprt->xpt_bc_xprt);
178 if (xprt->xpt_bc_xps)
179 xprt_switch_put(xprt->xpt_bc_xps);
180 trace_svc_xprt_free(xprt);
181 xprt->xpt_ops->xpo_free(xprt);
182 module_put(owner);
183}
184
185void svc_xprt_put(struct svc_xprt *xprt)
186{
187 kref_put(&xprt->xpt_ref, svc_xprt_free);
188}
189EXPORT_SYMBOL_GPL(svc_xprt_put);
190
191/*
192 * Called by transport drivers to initialize the transport independent
193 * portion of the transport instance.
194 */
195void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
196 struct svc_xprt *xprt, struct svc_serv *serv)
197{
198 memset(xprt, 0, sizeof(*xprt));
199 xprt->xpt_class = xcl;
200 xprt->xpt_ops = xcl->xcl_ops;
201 kref_init(&xprt->xpt_ref);
202 xprt->xpt_server = serv;
203 INIT_LIST_HEAD(&xprt->xpt_list);
204 INIT_LIST_HEAD(&xprt->xpt_deferred);
205 INIT_LIST_HEAD(&xprt->xpt_users);
206 mutex_init(&xprt->xpt_mutex);
207 spin_lock_init(&xprt->xpt_lock);
208 set_bit(XPT_BUSY, &xprt->xpt_flags);
209 xprt->xpt_net = get_net_track(net, &xprt->ns_tracker, GFP_ATOMIC);
210 strcpy(xprt->xpt_remotebuf, "uninitialized");
211}
212EXPORT_SYMBOL_GPL(svc_xprt_init);
213
214static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
215 struct svc_serv *serv,
216 struct net *net,
217 const int family,
218 const unsigned short port,
219 int flags)
220{
221 struct sockaddr_in sin = {
222 .sin_family = AF_INET,
223 .sin_addr.s_addr = htonl(INADDR_ANY),
224 .sin_port = htons(port),
225 };
226#if IS_ENABLED(CONFIG_IPV6)
227 struct sockaddr_in6 sin6 = {
228 .sin6_family = AF_INET6,
229 .sin6_addr = IN6ADDR_ANY_INIT,
230 .sin6_port = htons(port),
231 };
232#endif
233 struct svc_xprt *xprt;
234 struct sockaddr *sap;
235 size_t len;
236
237 switch (family) {
238 case PF_INET:
239 sap = (struct sockaddr *)&sin;
240 len = sizeof(sin);
241 break;
242#if IS_ENABLED(CONFIG_IPV6)
243 case PF_INET6:
244 sap = (struct sockaddr *)&sin6;
245 len = sizeof(sin6);
246 break;
247#endif
248 default:
249 return ERR_PTR(-EAFNOSUPPORT);
250 }
251
252 xprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
253 if (IS_ERR(xprt))
254 trace_svc_xprt_create_err(serv->sv_program->pg_name,
255 xcl->xcl_name, sap, len, xprt);
256 return xprt;
257}
258
259/**
260 * svc_xprt_received - start next receiver thread
261 * @xprt: controlling transport
262 *
263 * The caller must hold the XPT_BUSY bit and must
264 * not thereafter touch transport data.
265 *
266 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
267 * insufficient) data.
268 */
269void svc_xprt_received(struct svc_xprt *xprt)
270{
271 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
272 WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
273 return;
274 }
275
276 /* As soon as we clear busy, the xprt could be closed and
277 * 'put', so we need a reference to call svc_xprt_enqueue with:
278 */
279 svc_xprt_get(xprt);
280 smp_mb__before_atomic();
281 clear_bit(XPT_BUSY, &xprt->xpt_flags);
282 svc_xprt_enqueue(xprt);
283 svc_xprt_put(xprt);
284}
285EXPORT_SYMBOL_GPL(svc_xprt_received);
286
287void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
288{
289 clear_bit(XPT_TEMP, &new->xpt_flags);
290 spin_lock_bh(&serv->sv_lock);
291 list_add(&new->xpt_list, &serv->sv_permsocks);
292 spin_unlock_bh(&serv->sv_lock);
293 svc_xprt_received(new);
294}
295
296static int _svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
297 struct net *net, const int family,
298 const unsigned short port, int flags,
299 const struct cred *cred)
300{
301 struct svc_xprt_class *xcl;
302
303 spin_lock(&svc_xprt_class_lock);
304 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
305 struct svc_xprt *newxprt;
306 unsigned short newport;
307
308 if (strcmp(xprt_name, xcl->xcl_name))
309 continue;
310
311 if (!try_module_get(xcl->xcl_owner))
312 goto err;
313
314 spin_unlock(&svc_xprt_class_lock);
315 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
316 if (IS_ERR(newxprt)) {
317 module_put(xcl->xcl_owner);
318 return PTR_ERR(newxprt);
319 }
320 newxprt->xpt_cred = get_cred(cred);
321 svc_add_new_perm_xprt(serv, newxprt);
322 newport = svc_xprt_local_port(newxprt);
323 return newport;
324 }
325 err:
326 spin_unlock(&svc_xprt_class_lock);
327 /* This errno is exposed to user space. Provide a reasonable
328 * perror msg for a bad transport. */
329 return -EPROTONOSUPPORT;
330}
331
332/**
333 * svc_xprt_create - Add a new listener to @serv
334 * @serv: target RPC service
335 * @xprt_name: transport class name
336 * @net: network namespace
337 * @family: network address family
338 * @port: listener port
339 * @flags: SVC_SOCK flags
340 * @cred: credential to bind to this transport
341 *
342 * Return values:
343 * %0: New listener added successfully
344 * %-EPROTONOSUPPORT: Requested transport type not supported
345 */
346int svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
347 struct net *net, const int family,
348 const unsigned short port, int flags,
349 const struct cred *cred)
350{
351 int err;
352
353 err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred);
354 if (err == -EPROTONOSUPPORT) {
355 request_module("svc%s", xprt_name);
356 err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred);
357 }
358 return err;
359}
360EXPORT_SYMBOL_GPL(svc_xprt_create);
361
362/*
363 * Copy the local and remote xprt addresses to the rqstp structure
364 */
365void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
366{
367 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
368 rqstp->rq_addrlen = xprt->xpt_remotelen;
369
370 /*
371 * Destination address in request is needed for binding the
372 * source address in RPC replies/callbacks later.
373 */
374 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
375 rqstp->rq_daddrlen = xprt->xpt_locallen;
376}
377EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
378
379/**
380 * svc_print_addr - Format rq_addr field for printing
381 * @rqstp: svc_rqst struct containing address to print
382 * @buf: target buffer for formatted address
383 * @len: length of target buffer
384 *
385 */
386char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
387{
388 return __svc_print_addr(svc_addr(rqstp), buf, len);
389}
390EXPORT_SYMBOL_GPL(svc_print_addr);
391
392static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
393{
394 unsigned int limit = svc_rpc_per_connection_limit;
395 int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
396
397 return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
398}
399
400static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
401{
402 if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
403 if (!svc_xprt_slots_in_range(xprt))
404 return false;
405 atomic_inc(&xprt->xpt_nr_rqsts);
406 set_bit(RQ_DATA, &rqstp->rq_flags);
407 }
408 return true;
409}
410
411static void svc_xprt_release_slot(struct svc_rqst *rqstp)
412{
413 struct svc_xprt *xprt = rqstp->rq_xprt;
414 if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
415 atomic_dec(&xprt->xpt_nr_rqsts);
416 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
417 svc_xprt_enqueue(xprt);
418 }
419}
420
421static bool svc_xprt_ready(struct svc_xprt *xprt)
422{
423 unsigned long xpt_flags;
424
425 /*
426 * If another cpu has recently updated xpt_flags,
427 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
428 * know about it; otherwise it's possible that both that cpu and
429 * this one could call svc_xprt_enqueue() without either
430 * svc_xprt_enqueue() recognizing that the conditions below
431 * are satisfied, and we could stall indefinitely:
432 */
433 smp_rmb();
434 xpt_flags = READ_ONCE(xprt->xpt_flags);
435
436 trace_svc_xprt_enqueue(xprt, xpt_flags);
437 if (xpt_flags & BIT(XPT_BUSY))
438 return false;
439 if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE) | BIT(XPT_HANDSHAKE)))
440 return true;
441 if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
442 if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
443 svc_xprt_slots_in_range(xprt))
444 return true;
445 trace_svc_xprt_no_write_space(xprt);
446 return false;
447 }
448 return false;
449}
450
451/**
452 * svc_xprt_enqueue - Queue a transport on an idle nfsd thread
453 * @xprt: transport with data pending
454 *
455 */
456void svc_xprt_enqueue(struct svc_xprt *xprt)
457{
458 struct svc_pool *pool;
459
460 if (!svc_xprt_ready(xprt))
461 return;
462
463 /* Mark transport as busy. It will remain in this state until
464 * the provider calls svc_xprt_received. We update XPT_BUSY
465 * atomically because it also guards against trying to enqueue
466 * the transport twice.
467 */
468 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
469 return;
470
471 pool = svc_pool_for_cpu(xprt->xpt_server);
472
473 percpu_counter_inc(&pool->sp_sockets_queued);
474 lwq_enqueue(&xprt->xpt_ready, &pool->sp_xprts);
475
476 svc_pool_wake_idle_thread(pool);
477}
478EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
479
480/*
481 * Dequeue the first transport, if there is one.
482 */
483static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
484{
485 struct svc_xprt *xprt = NULL;
486
487 xprt = lwq_dequeue(&pool->sp_xprts, struct svc_xprt, xpt_ready);
488 if (xprt)
489 svc_xprt_get(xprt);
490 return xprt;
491}
492
493/**
494 * svc_reserve - change the space reserved for the reply to a request.
495 * @rqstp: The request in question
496 * @space: new max space to reserve
497 *
498 * Each request reserves some space on the output queue of the transport
499 * to make sure the reply fits. This function reduces that reserved
500 * space to be the amount of space used already, plus @space.
501 *
502 */
503void svc_reserve(struct svc_rqst *rqstp, int space)
504{
505 struct svc_xprt *xprt = rqstp->rq_xprt;
506
507 space += rqstp->rq_res.head[0].iov_len;
508
509 if (xprt && space < rqstp->rq_reserved) {
510 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
511 rqstp->rq_reserved = space;
512 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
513 svc_xprt_enqueue(xprt);
514 }
515}
516EXPORT_SYMBOL_GPL(svc_reserve);
517
518static void free_deferred(struct svc_xprt *xprt, struct svc_deferred_req *dr)
519{
520 if (!dr)
521 return;
522
523 xprt->xpt_ops->xpo_release_ctxt(xprt, dr->xprt_ctxt);
524 kfree(dr);
525}
526
527static void svc_xprt_release(struct svc_rqst *rqstp)
528{
529 struct svc_xprt *xprt = rqstp->rq_xprt;
530
531 xprt->xpt_ops->xpo_release_ctxt(xprt, rqstp->rq_xprt_ctxt);
532 rqstp->rq_xprt_ctxt = NULL;
533
534 free_deferred(xprt, rqstp->rq_deferred);
535 rqstp->rq_deferred = NULL;
536
537 svc_rqst_release_pages(rqstp);
538 rqstp->rq_res.page_len = 0;
539 rqstp->rq_res.page_base = 0;
540
541 /* Reset response buffer and release
542 * the reservation.
543 * But first, check that enough space was reserved
544 * for the reply, otherwise we have a bug!
545 */
546 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
547 printk(KERN_ERR "RPC request reserved %d but used %d\n",
548 rqstp->rq_reserved,
549 rqstp->rq_res.len);
550
551 rqstp->rq_res.head[0].iov_len = 0;
552 svc_reserve(rqstp, 0);
553 svc_xprt_release_slot(rqstp);
554 rqstp->rq_xprt = NULL;
555 svc_xprt_put(xprt);
556}
557
558/**
559 * svc_wake_up - Wake up a service thread for non-transport work
560 * @serv: RPC service
561 *
562 * Some svc_serv's will have occasional work to do, even when a xprt is not
563 * waiting to be serviced. This function is there to "kick" a task in one of
564 * those services so that it can wake up and do that work. Note that we only
565 * bother with pool 0 as we don't need to wake up more than one thread for
566 * this purpose.
567 */
568void svc_wake_up(struct svc_serv *serv)
569{
570 struct svc_pool *pool = &serv->sv_pools[0];
571
572 set_bit(SP_TASK_PENDING, &pool->sp_flags);
573 svc_pool_wake_idle_thread(pool);
574}
575EXPORT_SYMBOL_GPL(svc_wake_up);
576
577int svc_port_is_privileged(struct sockaddr *sin)
578{
579 switch (sin->sa_family) {
580 case AF_INET:
581 return ntohs(((struct sockaddr_in *)sin)->sin_port)
582 < PROT_SOCK;
583 case AF_INET6:
584 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
585 < PROT_SOCK;
586 default:
587 return 0;
588 }
589}
590
591/*
592 * Make sure that we don't have too many active connections. If we have,
593 * something must be dropped. It's not clear what will happen if we allow
594 * "too many" connections, but when dealing with network-facing software,
595 * we have to code defensively. Here we do that by imposing hard limits.
596 *
597 * There's no point in trying to do random drop here for DoS
598 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
599 * attacker can easily beat that.
600 *
601 * The only somewhat efficient mechanism would be if drop old
602 * connections from the same IP first. But right now we don't even
603 * record the client IP in svc_sock.
604 *
605 * single-threaded services that expect a lot of clients will probably
606 * need to set sv_maxconn to override the default value which is based
607 * on the number of threads
608 */
609static void svc_check_conn_limits(struct svc_serv *serv)
610{
611 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
612 (serv->sv_nrthreads+3) * 20;
613
614 if (serv->sv_tmpcnt > limit) {
615 struct svc_xprt *xprt = NULL;
616 spin_lock_bh(&serv->sv_lock);
617 if (!list_empty(&serv->sv_tempsocks)) {
618 /* Try to help the admin */
619 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
620 serv->sv_name, serv->sv_maxconn ?
621 "max number of connections" :
622 "number of threads");
623 /*
624 * Always select the oldest connection. It's not fair,
625 * but so is life
626 */
627 xprt = list_entry(serv->sv_tempsocks.prev,
628 struct svc_xprt,
629 xpt_list);
630 set_bit(XPT_CLOSE, &xprt->xpt_flags);
631 svc_xprt_get(xprt);
632 }
633 spin_unlock_bh(&serv->sv_lock);
634
635 if (xprt) {
636 svc_xprt_enqueue(xprt);
637 svc_xprt_put(xprt);
638 }
639 }
640}
641
642static bool svc_alloc_arg(struct svc_rqst *rqstp)
643{
644 struct svc_serv *serv = rqstp->rq_server;
645 struct xdr_buf *arg = &rqstp->rq_arg;
646 unsigned long pages, filled, ret;
647
648 pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
649 if (pages > RPCSVC_MAXPAGES) {
650 pr_warn_once("svc: warning: pages=%lu > RPCSVC_MAXPAGES=%lu\n",
651 pages, RPCSVC_MAXPAGES);
652 /* use as many pages as possible */
653 pages = RPCSVC_MAXPAGES;
654 }
655
656 for (filled = 0; filled < pages; filled = ret) {
657 ret = alloc_pages_bulk_array(GFP_KERNEL, pages,
658 rqstp->rq_pages);
659 if (ret > filled)
660 /* Made progress, don't sleep yet */
661 continue;
662
663 set_current_state(TASK_IDLE);
664 if (svc_thread_should_stop(rqstp)) {
665 set_current_state(TASK_RUNNING);
666 return false;
667 }
668 trace_svc_alloc_arg_err(pages, ret);
669 memalloc_retry_wait(GFP_KERNEL);
670 }
671 rqstp->rq_page_end = &rqstp->rq_pages[pages];
672 rqstp->rq_pages[pages] = NULL; /* this might be seen in nfsd_splice_actor() */
673
674 /* Make arg->head point to first page and arg->pages point to rest */
675 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
676 arg->head[0].iov_len = PAGE_SIZE;
677 arg->pages = rqstp->rq_pages + 1;
678 arg->page_base = 0;
679 /* save at least one page for response */
680 arg->page_len = (pages-2)*PAGE_SIZE;
681 arg->len = (pages-1)*PAGE_SIZE;
682 arg->tail[0].iov_len = 0;
683
684 rqstp->rq_xid = xdr_zero;
685 return true;
686}
687
688static bool
689svc_thread_should_sleep(struct svc_rqst *rqstp)
690{
691 struct svc_pool *pool = rqstp->rq_pool;
692
693 /* did someone call svc_wake_up? */
694 if (test_bit(SP_TASK_PENDING, &pool->sp_flags))
695 return false;
696
697 /* was a socket queued? */
698 if (!lwq_empty(&pool->sp_xprts))
699 return false;
700
701 /* are we shutting down? */
702 if (svc_thread_should_stop(rqstp))
703 return false;
704
705#if defined(CONFIG_SUNRPC_BACKCHANNEL)
706 if (svc_is_backchannel(rqstp)) {
707 if (!lwq_empty(&rqstp->rq_server->sv_cb_list))
708 return false;
709 }
710#endif
711
712 return true;
713}
714
715static void svc_thread_wait_for_work(struct svc_rqst *rqstp)
716{
717 struct svc_pool *pool = rqstp->rq_pool;
718
719 if (svc_thread_should_sleep(rqstp)) {
720 set_current_state(TASK_IDLE | TASK_FREEZABLE);
721 llist_add(&rqstp->rq_idle, &pool->sp_idle_threads);
722 if (likely(svc_thread_should_sleep(rqstp)))
723 schedule();
724
725 while (!llist_del_first_this(&pool->sp_idle_threads,
726 &rqstp->rq_idle)) {
727 /* Work just became available. This thread can only
728 * handle it after removing rqstp from the idle
729 * list. If that attempt failed, some other thread
730 * must have queued itself after finding no
731 * work to do, so that thread has taken responsibly
732 * for this new work. This thread can safely sleep
733 * until woken again.
734 */
735 schedule();
736 set_current_state(TASK_IDLE | TASK_FREEZABLE);
737 }
738 __set_current_state(TASK_RUNNING);
739 } else {
740 cond_resched();
741 }
742 try_to_freeze();
743}
744
745static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
746{
747 spin_lock_bh(&serv->sv_lock);
748 set_bit(XPT_TEMP, &newxpt->xpt_flags);
749 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
750 serv->sv_tmpcnt++;
751 if (serv->sv_temptimer.function == NULL) {
752 /* setup timer to age temp transports */
753 serv->sv_temptimer.function = svc_age_temp_xprts;
754 mod_timer(&serv->sv_temptimer,
755 jiffies + svc_conn_age_period * HZ);
756 }
757 spin_unlock_bh(&serv->sv_lock);
758 svc_xprt_received(newxpt);
759}
760
761static void svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
762{
763 struct svc_serv *serv = rqstp->rq_server;
764 int len = 0;
765
766 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
767 if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
768 xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
769 svc_delete_xprt(xprt);
770 /* Leave XPT_BUSY set on the dead xprt: */
771 goto out;
772 }
773 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
774 struct svc_xprt *newxpt;
775 /*
776 * We know this module_get will succeed because the
777 * listener holds a reference too
778 */
779 __module_get(xprt->xpt_class->xcl_owner);
780 svc_check_conn_limits(xprt->xpt_server);
781 newxpt = xprt->xpt_ops->xpo_accept(xprt);
782 if (newxpt) {
783 newxpt->xpt_cred = get_cred(xprt->xpt_cred);
784 svc_add_new_temp_xprt(serv, newxpt);
785 trace_svc_xprt_accept(newxpt, serv->sv_name);
786 } else {
787 module_put(xprt->xpt_class->xcl_owner);
788 }
789 svc_xprt_received(xprt);
790 } else if (test_bit(XPT_HANDSHAKE, &xprt->xpt_flags)) {
791 xprt->xpt_ops->xpo_handshake(xprt);
792 svc_xprt_received(xprt);
793 } else if (svc_xprt_reserve_slot(rqstp, xprt)) {
794 /* XPT_DATA|XPT_DEFERRED case: */
795 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
796 if (rqstp->rq_deferred)
797 len = svc_deferred_recv(rqstp);
798 else
799 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
800 rqstp->rq_reserved = serv->sv_max_mesg;
801 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
802 if (len <= 0)
803 goto out;
804
805 trace_svc_xdr_recvfrom(&rqstp->rq_arg);
806
807 clear_bit(XPT_OLD, &xprt->xpt_flags);
808
809 rqstp->rq_chandle.defer = svc_defer;
810
811 if (serv->sv_stats)
812 serv->sv_stats->netcnt++;
813 percpu_counter_inc(&rqstp->rq_pool->sp_messages_arrived);
814 rqstp->rq_stime = ktime_get();
815 svc_process(rqstp);
816 } else
817 svc_xprt_received(xprt);
818
819out:
820 rqstp->rq_res.len = 0;
821 svc_xprt_release(rqstp);
822}
823
824static void svc_thread_wake_next(struct svc_rqst *rqstp)
825{
826 if (!svc_thread_should_sleep(rqstp))
827 /* More work pending after I dequeued some,
828 * wake another worker
829 */
830 svc_pool_wake_idle_thread(rqstp->rq_pool);
831}
832
833/**
834 * svc_recv - Receive and process the next request on any transport
835 * @rqstp: an idle RPC service thread
836 *
837 * This code is carefully organised not to touch any cachelines in
838 * the shared svc_serv structure, only cachelines in the local
839 * svc_pool.
840 */
841void svc_recv(struct svc_rqst *rqstp)
842{
843 struct svc_pool *pool = rqstp->rq_pool;
844
845 if (!svc_alloc_arg(rqstp))
846 return;
847
848 svc_thread_wait_for_work(rqstp);
849
850 clear_bit(SP_TASK_PENDING, &pool->sp_flags);
851
852 if (svc_thread_should_stop(rqstp)) {
853 svc_thread_wake_next(rqstp);
854 return;
855 }
856
857 rqstp->rq_xprt = svc_xprt_dequeue(pool);
858 if (rqstp->rq_xprt) {
859 struct svc_xprt *xprt = rqstp->rq_xprt;
860
861 svc_thread_wake_next(rqstp);
862 /* Normally we will wait up to 5 seconds for any required
863 * cache information to be provided. When there are no
864 * idle threads, we reduce the wait time.
865 */
866 if (pool->sp_idle_threads.first)
867 rqstp->rq_chandle.thread_wait = 5 * HZ;
868 else
869 rqstp->rq_chandle.thread_wait = 1 * HZ;
870
871 trace_svc_xprt_dequeue(rqstp);
872 svc_handle_xprt(rqstp, xprt);
873 }
874
875#if defined(CONFIG_SUNRPC_BACKCHANNEL)
876 if (svc_is_backchannel(rqstp)) {
877 struct svc_serv *serv = rqstp->rq_server;
878 struct rpc_rqst *req;
879
880 req = lwq_dequeue(&serv->sv_cb_list,
881 struct rpc_rqst, rq_bc_list);
882 if (req) {
883 svc_thread_wake_next(rqstp);
884 svc_process_bc(req, rqstp);
885 }
886 }
887#endif
888}
889EXPORT_SYMBOL_GPL(svc_recv);
890
891/*
892 * Drop request
893 */
894void svc_drop(struct svc_rqst *rqstp)
895{
896 trace_svc_drop(rqstp);
897}
898EXPORT_SYMBOL_GPL(svc_drop);
899
900/**
901 * svc_send - Return reply to client
902 * @rqstp: RPC transaction context
903 *
904 */
905void svc_send(struct svc_rqst *rqstp)
906{
907 struct svc_xprt *xprt;
908 struct xdr_buf *xb;
909 int status;
910
911 xprt = rqstp->rq_xprt;
912
913 /* calculate over-all length */
914 xb = &rqstp->rq_res;
915 xb->len = xb->head[0].iov_len +
916 xb->page_len +
917 xb->tail[0].iov_len;
918 trace_svc_xdr_sendto(rqstp->rq_xid, xb);
919 trace_svc_stats_latency(rqstp);
920
921 status = xprt->xpt_ops->xpo_sendto(rqstp);
922
923 trace_svc_send(rqstp, status);
924}
925
926/*
927 * Timer function to close old temporary transports, using
928 * a mark-and-sweep algorithm.
929 */
930static void svc_age_temp_xprts(struct timer_list *t)
931{
932 struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
933 struct svc_xprt *xprt;
934 struct list_head *le, *next;
935
936 dprintk("svc_age_temp_xprts\n");
937
938 if (!spin_trylock_bh(&serv->sv_lock)) {
939 /* busy, try again 1 sec later */
940 dprintk("svc_age_temp_xprts: busy\n");
941 mod_timer(&serv->sv_temptimer, jiffies + HZ);
942 return;
943 }
944
945 list_for_each_safe(le, next, &serv->sv_tempsocks) {
946 xprt = list_entry(le, struct svc_xprt, xpt_list);
947
948 /* First time through, just mark it OLD. Second time
949 * through, close it. */
950 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
951 continue;
952 if (kref_read(&xprt->xpt_ref) > 1 ||
953 test_bit(XPT_BUSY, &xprt->xpt_flags))
954 continue;
955 list_del_init(le);
956 set_bit(XPT_CLOSE, &xprt->xpt_flags);
957 dprintk("queuing xprt %p for closing\n", xprt);
958
959 /* a thread will dequeue and close it soon */
960 svc_xprt_enqueue(xprt);
961 }
962 spin_unlock_bh(&serv->sv_lock);
963
964 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
965}
966
967/* Close temporary transports whose xpt_local matches server_addr immediately
968 * instead of waiting for them to be picked up by the timer.
969 *
970 * This is meant to be called from a notifier_block that runs when an ip
971 * address is deleted.
972 */
973void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
974{
975 struct svc_xprt *xprt;
976 struct list_head *le, *next;
977 LIST_HEAD(to_be_closed);
978
979 spin_lock_bh(&serv->sv_lock);
980 list_for_each_safe(le, next, &serv->sv_tempsocks) {
981 xprt = list_entry(le, struct svc_xprt, xpt_list);
982 if (rpc_cmp_addr(server_addr, (struct sockaddr *)
983 &xprt->xpt_local)) {
984 dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
985 list_move(le, &to_be_closed);
986 }
987 }
988 spin_unlock_bh(&serv->sv_lock);
989
990 while (!list_empty(&to_be_closed)) {
991 le = to_be_closed.next;
992 list_del_init(le);
993 xprt = list_entry(le, struct svc_xprt, xpt_list);
994 set_bit(XPT_CLOSE, &xprt->xpt_flags);
995 set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
996 dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
997 xprt);
998 svc_xprt_enqueue(xprt);
999 }
1000}
1001EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1002
1003static void call_xpt_users(struct svc_xprt *xprt)
1004{
1005 struct svc_xpt_user *u;
1006
1007 spin_lock(&xprt->xpt_lock);
1008 while (!list_empty(&xprt->xpt_users)) {
1009 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1010 list_del_init(&u->list);
1011 u->callback(u);
1012 }
1013 spin_unlock(&xprt->xpt_lock);
1014}
1015
1016/*
1017 * Remove a dead transport
1018 */
1019static void svc_delete_xprt(struct svc_xprt *xprt)
1020{
1021 struct svc_serv *serv = xprt->xpt_server;
1022 struct svc_deferred_req *dr;
1023
1024 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1025 return;
1026
1027 trace_svc_xprt_detach(xprt);
1028 xprt->xpt_ops->xpo_detach(xprt);
1029 if (xprt->xpt_bc_xprt)
1030 xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt);
1031
1032 spin_lock_bh(&serv->sv_lock);
1033 list_del_init(&xprt->xpt_list);
1034 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1035 serv->sv_tmpcnt--;
1036 spin_unlock_bh(&serv->sv_lock);
1037
1038 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1039 free_deferred(xprt, dr);
1040
1041 call_xpt_users(xprt);
1042 svc_xprt_put(xprt);
1043}
1044
1045/**
1046 * svc_xprt_close - Close a client connection
1047 * @xprt: transport to disconnect
1048 *
1049 */
1050void svc_xprt_close(struct svc_xprt *xprt)
1051{
1052 trace_svc_xprt_close(xprt);
1053 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1054 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1055 /* someone else will have to effect the close */
1056 return;
1057 /*
1058 * We expect svc_close_xprt() to work even when no threads are
1059 * running (e.g., while configuring the server before starting
1060 * any threads), so if the transport isn't busy, we delete
1061 * it ourself:
1062 */
1063 svc_delete_xprt(xprt);
1064}
1065EXPORT_SYMBOL_GPL(svc_xprt_close);
1066
1067static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1068{
1069 struct svc_xprt *xprt;
1070 int ret = 0;
1071
1072 spin_lock_bh(&serv->sv_lock);
1073 list_for_each_entry(xprt, xprt_list, xpt_list) {
1074 if (xprt->xpt_net != net)
1075 continue;
1076 ret++;
1077 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1078 svc_xprt_enqueue(xprt);
1079 }
1080 spin_unlock_bh(&serv->sv_lock);
1081 return ret;
1082}
1083
1084static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1085{
1086 struct svc_xprt *xprt;
1087 int i;
1088
1089 for (i = 0; i < serv->sv_nrpools; i++) {
1090 struct svc_pool *pool = &serv->sv_pools[i];
1091 struct llist_node *q, **t1, *t2;
1092
1093 q = lwq_dequeue_all(&pool->sp_xprts);
1094 lwq_for_each_safe(xprt, t1, t2, &q, xpt_ready) {
1095 if (xprt->xpt_net == net) {
1096 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1097 svc_delete_xprt(xprt);
1098 xprt = NULL;
1099 }
1100 }
1101
1102 if (q)
1103 lwq_enqueue_batch(q, &pool->sp_xprts);
1104 }
1105}
1106
1107/**
1108 * svc_xprt_destroy_all - Destroy transports associated with @serv
1109 * @serv: RPC service to be shut down
1110 * @net: target network namespace
1111 *
1112 * Server threads may still be running (especially in the case where the
1113 * service is still running in other network namespaces).
1114 *
1115 * So we shut down sockets the same way we would on a running server, by
1116 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1117 * the close. In the case there are no such other threads,
1118 * threads running, svc_clean_up_xprts() does a simple version of a
1119 * server's main event loop, and in the case where there are other
1120 * threads, we may need to wait a little while and then check again to
1121 * see if they're done.
1122 */
1123void svc_xprt_destroy_all(struct svc_serv *serv, struct net *net)
1124{
1125 int delay = 0;
1126
1127 while (svc_close_list(serv, &serv->sv_permsocks, net) +
1128 svc_close_list(serv, &serv->sv_tempsocks, net)) {
1129
1130 svc_clean_up_xprts(serv, net);
1131 msleep(delay++);
1132 }
1133}
1134EXPORT_SYMBOL_GPL(svc_xprt_destroy_all);
1135
1136/*
1137 * Handle defer and revisit of requests
1138 */
1139
1140static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1141{
1142 struct svc_deferred_req *dr =
1143 container_of(dreq, struct svc_deferred_req, handle);
1144 struct svc_xprt *xprt = dr->xprt;
1145
1146 spin_lock(&xprt->xpt_lock);
1147 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1148 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1149 spin_unlock(&xprt->xpt_lock);
1150 trace_svc_defer_drop(dr);
1151 free_deferred(xprt, dr);
1152 svc_xprt_put(xprt);
1153 return;
1154 }
1155 dr->xprt = NULL;
1156 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1157 spin_unlock(&xprt->xpt_lock);
1158 trace_svc_defer_queue(dr);
1159 svc_xprt_enqueue(xprt);
1160 svc_xprt_put(xprt);
1161}
1162
1163/*
1164 * Save the request off for later processing. The request buffer looks
1165 * like this:
1166 *
1167 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1168 *
1169 * This code can only handle requests that consist of an xprt-header
1170 * and rpc-header.
1171 */
1172static struct cache_deferred_req *svc_defer(struct cache_req *req)
1173{
1174 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1175 struct svc_deferred_req *dr;
1176
1177 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1178 return NULL; /* if more than a page, give up FIXME */
1179 if (rqstp->rq_deferred) {
1180 dr = rqstp->rq_deferred;
1181 rqstp->rq_deferred = NULL;
1182 } else {
1183 size_t skip;
1184 size_t size;
1185 /* FIXME maybe discard if size too large */
1186 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1187 dr = kmalloc(size, GFP_KERNEL);
1188 if (dr == NULL)
1189 return NULL;
1190
1191 dr->handle.owner = rqstp->rq_server;
1192 dr->prot = rqstp->rq_prot;
1193 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1194 dr->addrlen = rqstp->rq_addrlen;
1195 dr->daddr = rqstp->rq_daddr;
1196 dr->argslen = rqstp->rq_arg.len >> 2;
1197
1198 /* back up head to the start of the buffer and copy */
1199 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1200 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1201 dr->argslen << 2);
1202 }
1203 dr->xprt_ctxt = rqstp->rq_xprt_ctxt;
1204 rqstp->rq_xprt_ctxt = NULL;
1205 trace_svc_defer(rqstp);
1206 svc_xprt_get(rqstp->rq_xprt);
1207 dr->xprt = rqstp->rq_xprt;
1208 set_bit(RQ_DROPME, &rqstp->rq_flags);
1209
1210 dr->handle.revisit = svc_revisit;
1211 return &dr->handle;
1212}
1213
1214/*
1215 * recv data from a deferred request into an active one
1216 */
1217static noinline int svc_deferred_recv(struct svc_rqst *rqstp)
1218{
1219 struct svc_deferred_req *dr = rqstp->rq_deferred;
1220
1221 trace_svc_defer_recv(dr);
1222
1223 /* setup iov_base past transport header */
1224 rqstp->rq_arg.head[0].iov_base = dr->args;
1225 /* The iov_len does not include the transport header bytes */
1226 rqstp->rq_arg.head[0].iov_len = dr->argslen << 2;
1227 rqstp->rq_arg.page_len = 0;
1228 /* The rq_arg.len includes the transport header bytes */
1229 rqstp->rq_arg.len = dr->argslen << 2;
1230 rqstp->rq_prot = dr->prot;
1231 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1232 rqstp->rq_addrlen = dr->addrlen;
1233 /* Save off transport header len in case we get deferred again */
1234 rqstp->rq_daddr = dr->daddr;
1235 rqstp->rq_respages = rqstp->rq_pages;
1236 rqstp->rq_xprt_ctxt = dr->xprt_ctxt;
1237
1238 dr->xprt_ctxt = NULL;
1239 svc_xprt_received(rqstp->rq_xprt);
1240 return dr->argslen << 2;
1241}
1242
1243
1244static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1245{
1246 struct svc_deferred_req *dr = NULL;
1247
1248 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1249 return NULL;
1250 spin_lock(&xprt->xpt_lock);
1251 if (!list_empty(&xprt->xpt_deferred)) {
1252 dr = list_entry(xprt->xpt_deferred.next,
1253 struct svc_deferred_req,
1254 handle.recent);
1255 list_del_init(&dr->handle.recent);
1256 } else
1257 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1258 spin_unlock(&xprt->xpt_lock);
1259 return dr;
1260}
1261
1262/**
1263 * svc_find_xprt - find an RPC transport instance
1264 * @serv: pointer to svc_serv to search
1265 * @xcl_name: C string containing transport's class name
1266 * @net: owner net pointer
1267 * @af: Address family of transport's local address
1268 * @port: transport's IP port number
1269 *
1270 * Return the transport instance pointer for the endpoint accepting
1271 * connections/peer traffic from the specified transport class,
1272 * address family and port.
1273 *
1274 * Specifying 0 for the address family or port is effectively a
1275 * wild-card, and will result in matching the first transport in the
1276 * service's list that has a matching class name.
1277 */
1278struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1279 struct net *net, const sa_family_t af,
1280 const unsigned short port)
1281{
1282 struct svc_xprt *xprt;
1283 struct svc_xprt *found = NULL;
1284
1285 /* Sanity check the args */
1286 if (serv == NULL || xcl_name == NULL)
1287 return found;
1288
1289 spin_lock_bh(&serv->sv_lock);
1290 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1291 if (xprt->xpt_net != net)
1292 continue;
1293 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1294 continue;
1295 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1296 continue;
1297 if (port != 0 && port != svc_xprt_local_port(xprt))
1298 continue;
1299 found = xprt;
1300 svc_xprt_get(xprt);
1301 break;
1302 }
1303 spin_unlock_bh(&serv->sv_lock);
1304 return found;
1305}
1306EXPORT_SYMBOL_GPL(svc_find_xprt);
1307
1308static int svc_one_xprt_name(const struct svc_xprt *xprt,
1309 char *pos, int remaining)
1310{
1311 int len;
1312
1313 len = snprintf(pos, remaining, "%s %u\n",
1314 xprt->xpt_class->xcl_name,
1315 svc_xprt_local_port(xprt));
1316 if (len >= remaining)
1317 return -ENAMETOOLONG;
1318 return len;
1319}
1320
1321/**
1322 * svc_xprt_names - format a buffer with a list of transport names
1323 * @serv: pointer to an RPC service
1324 * @buf: pointer to a buffer to be filled in
1325 * @buflen: length of buffer to be filled in
1326 *
1327 * Fills in @buf with a string containing a list of transport names,
1328 * each name terminated with '\n'.
1329 *
1330 * Returns positive length of the filled-in string on success; otherwise
1331 * a negative errno value is returned if an error occurs.
1332 */
1333int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1334{
1335 struct svc_xprt *xprt;
1336 int len, totlen;
1337 char *pos;
1338
1339 /* Sanity check args */
1340 if (!serv)
1341 return 0;
1342
1343 spin_lock_bh(&serv->sv_lock);
1344
1345 pos = buf;
1346 totlen = 0;
1347 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1348 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1349 if (len < 0) {
1350 *buf = '\0';
1351 totlen = len;
1352 }
1353 if (len <= 0)
1354 break;
1355
1356 pos += len;
1357 totlen += len;
1358 }
1359
1360 spin_unlock_bh(&serv->sv_lock);
1361 return totlen;
1362}
1363EXPORT_SYMBOL_GPL(svc_xprt_names);
1364
1365/*----------------------------------------------------------------------------*/
1366
1367static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1368{
1369 unsigned int pidx = (unsigned int)*pos;
1370 struct svc_info *si = m->private;
1371
1372 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1373
1374 mutex_lock(si->mutex);
1375
1376 if (!pidx)
1377 return SEQ_START_TOKEN;
1378 if (!si->serv)
1379 return NULL;
1380 return pidx > si->serv->sv_nrpools ? NULL
1381 : &si->serv->sv_pools[pidx - 1];
1382}
1383
1384static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1385{
1386 struct svc_pool *pool = p;
1387 struct svc_info *si = m->private;
1388 struct svc_serv *serv = si->serv;
1389
1390 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1391
1392 if (!serv) {
1393 pool = NULL;
1394 } else if (p == SEQ_START_TOKEN) {
1395 pool = &serv->sv_pools[0];
1396 } else {
1397 unsigned int pidx = (pool - &serv->sv_pools[0]);
1398 if (pidx < serv->sv_nrpools-1)
1399 pool = &serv->sv_pools[pidx+1];
1400 else
1401 pool = NULL;
1402 }
1403 ++*pos;
1404 return pool;
1405}
1406
1407static void svc_pool_stats_stop(struct seq_file *m, void *p)
1408{
1409 struct svc_info *si = m->private;
1410
1411 mutex_unlock(si->mutex);
1412}
1413
1414static int svc_pool_stats_show(struct seq_file *m, void *p)
1415{
1416 struct svc_pool *pool = p;
1417
1418 if (p == SEQ_START_TOKEN) {
1419 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1420 return 0;
1421 }
1422
1423 seq_printf(m, "%u %llu %llu %llu 0\n",
1424 pool->sp_id,
1425 percpu_counter_sum_positive(&pool->sp_messages_arrived),
1426 percpu_counter_sum_positive(&pool->sp_sockets_queued),
1427 percpu_counter_sum_positive(&pool->sp_threads_woken));
1428
1429 return 0;
1430}
1431
1432static const struct seq_operations svc_pool_stats_seq_ops = {
1433 .start = svc_pool_stats_start,
1434 .next = svc_pool_stats_next,
1435 .stop = svc_pool_stats_stop,
1436 .show = svc_pool_stats_show,
1437};
1438
1439int svc_pool_stats_open(struct svc_info *info, struct file *file)
1440{
1441 struct seq_file *seq;
1442 int err;
1443
1444 err = seq_open(file, &svc_pool_stats_seq_ops);
1445 if (err)
1446 return err;
1447 seq = file->private_data;
1448 seq->private = info;
1449
1450 return 0;
1451}
1452EXPORT_SYMBOL(svc_pool_stats_open);
1453
1454/*----------------------------------------------------------------------------*/
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/net/sunrpc/svc_xprt.c
4 *
5 * Author: Tom Tucker <tom@opengridcomputing.com>
6 */
7
8#include <linux/sched.h>
9#include <linux/errno.h>
10#include <linux/freezer.h>
11#include <linux/kthread.h>
12#include <linux/slab.h>
13#include <net/sock.h>
14#include <linux/sunrpc/addr.h>
15#include <linux/sunrpc/stats.h>
16#include <linux/sunrpc/svc_xprt.h>
17#include <linux/sunrpc/svcsock.h>
18#include <linux/sunrpc/xprt.h>
19#include <linux/module.h>
20#include <linux/netdevice.h>
21#include <trace/events/sunrpc.h>
22
23#define RPCDBG_FACILITY RPCDBG_SVCXPRT
24
25static unsigned int svc_rpc_per_connection_limit __read_mostly;
26module_param(svc_rpc_per_connection_limit, uint, 0644);
27
28
29static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
30static int svc_deferred_recv(struct svc_rqst *rqstp);
31static struct cache_deferred_req *svc_defer(struct cache_req *req);
32static void svc_age_temp_xprts(struct timer_list *t);
33static void svc_delete_xprt(struct svc_xprt *xprt);
34
35/* apparently the "standard" is that clients close
36 * idle connections after 5 minutes, servers after
37 * 6 minutes
38 * http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf
39 */
40static int svc_conn_age_period = 6*60;
41
42/* List of registered transport classes */
43static DEFINE_SPINLOCK(svc_xprt_class_lock);
44static LIST_HEAD(svc_xprt_class_list);
45
46/* SMP locking strategy:
47 *
48 * svc_pool->sp_lock protects most of the fields of that pool.
49 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
50 * when both need to be taken (rare), svc_serv->sv_lock is first.
51 * The "service mutex" protects svc_serv->sv_nrthread.
52 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
53 * and the ->sk_info_authunix cache.
54 *
55 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
56 * enqueued multiply. During normal transport processing this bit
57 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
58 * Providers should not manipulate this bit directly.
59 *
60 * Some flags can be set to certain values at any time
61 * providing that certain rules are followed:
62 *
63 * XPT_CONN, XPT_DATA:
64 * - Can be set or cleared at any time.
65 * - After a set, svc_xprt_enqueue must be called to enqueue
66 * the transport for processing.
67 * - After a clear, the transport must be read/accepted.
68 * If this succeeds, it must be set again.
69 * XPT_CLOSE:
70 * - Can set at any time. It is never cleared.
71 * XPT_DEAD:
72 * - Can only be set while XPT_BUSY is held which ensures
73 * that no other thread will be using the transport or will
74 * try to set XPT_DEAD.
75 */
76int svc_reg_xprt_class(struct svc_xprt_class *xcl)
77{
78 struct svc_xprt_class *cl;
79 int res = -EEXIST;
80
81 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
82
83 INIT_LIST_HEAD(&xcl->xcl_list);
84 spin_lock(&svc_xprt_class_lock);
85 /* Make sure there isn't already a class with the same name */
86 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
87 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
88 goto out;
89 }
90 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
91 res = 0;
92out:
93 spin_unlock(&svc_xprt_class_lock);
94 return res;
95}
96EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
97
98void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
99{
100 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
101 spin_lock(&svc_xprt_class_lock);
102 list_del_init(&xcl->xcl_list);
103 spin_unlock(&svc_xprt_class_lock);
104}
105EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
106
107/**
108 * svc_print_xprts - Format the transport list for printing
109 * @buf: target buffer for formatted address
110 * @maxlen: length of target buffer
111 *
112 * Fills in @buf with a string containing a list of transport names, each name
113 * terminated with '\n'. If the buffer is too small, some entries may be
114 * missing, but it is guaranteed that all lines in the output buffer are
115 * complete.
116 *
117 * Returns positive length of the filled-in string.
118 */
119int svc_print_xprts(char *buf, int maxlen)
120{
121 struct svc_xprt_class *xcl;
122 char tmpstr[80];
123 int len = 0;
124 buf[0] = '\0';
125
126 spin_lock(&svc_xprt_class_lock);
127 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
128 int slen;
129
130 slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n",
131 xcl->xcl_name, xcl->xcl_max_payload);
132 if (slen >= sizeof(tmpstr) || len + slen >= maxlen)
133 break;
134 len += slen;
135 strcat(buf, tmpstr);
136 }
137 spin_unlock(&svc_xprt_class_lock);
138
139 return len;
140}
141
142static void svc_xprt_free(struct kref *kref)
143{
144 struct svc_xprt *xprt =
145 container_of(kref, struct svc_xprt, xpt_ref);
146 struct module *owner = xprt->xpt_class->xcl_owner;
147 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
148 svcauth_unix_info_release(xprt);
149 put_cred(xprt->xpt_cred);
150 put_net(xprt->xpt_net);
151 /* See comment on corresponding get in xs_setup_bc_tcp(): */
152 if (xprt->xpt_bc_xprt)
153 xprt_put(xprt->xpt_bc_xprt);
154 if (xprt->xpt_bc_xps)
155 xprt_switch_put(xprt->xpt_bc_xps);
156 trace_svc_xprt_free(xprt);
157 xprt->xpt_ops->xpo_free(xprt);
158 module_put(owner);
159}
160
161void svc_xprt_put(struct svc_xprt *xprt)
162{
163 kref_put(&xprt->xpt_ref, svc_xprt_free);
164}
165EXPORT_SYMBOL_GPL(svc_xprt_put);
166
167/*
168 * Called by transport drivers to initialize the transport independent
169 * portion of the transport instance.
170 */
171void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
172 struct svc_xprt *xprt, struct svc_serv *serv)
173{
174 memset(xprt, 0, sizeof(*xprt));
175 xprt->xpt_class = xcl;
176 xprt->xpt_ops = xcl->xcl_ops;
177 kref_init(&xprt->xpt_ref);
178 xprt->xpt_server = serv;
179 INIT_LIST_HEAD(&xprt->xpt_list);
180 INIT_LIST_HEAD(&xprt->xpt_ready);
181 INIT_LIST_HEAD(&xprt->xpt_deferred);
182 INIT_LIST_HEAD(&xprt->xpt_users);
183 mutex_init(&xprt->xpt_mutex);
184 spin_lock_init(&xprt->xpt_lock);
185 set_bit(XPT_BUSY, &xprt->xpt_flags);
186 xprt->xpt_net = get_net(net);
187 strcpy(xprt->xpt_remotebuf, "uninitialized");
188}
189EXPORT_SYMBOL_GPL(svc_xprt_init);
190
191static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
192 struct svc_serv *serv,
193 struct net *net,
194 const int family,
195 const unsigned short port,
196 int flags)
197{
198 struct sockaddr_in sin = {
199 .sin_family = AF_INET,
200 .sin_addr.s_addr = htonl(INADDR_ANY),
201 .sin_port = htons(port),
202 };
203#if IS_ENABLED(CONFIG_IPV6)
204 struct sockaddr_in6 sin6 = {
205 .sin6_family = AF_INET6,
206 .sin6_addr = IN6ADDR_ANY_INIT,
207 .sin6_port = htons(port),
208 };
209#endif
210 struct svc_xprt *xprt;
211 struct sockaddr *sap;
212 size_t len;
213
214 switch (family) {
215 case PF_INET:
216 sap = (struct sockaddr *)&sin;
217 len = sizeof(sin);
218 break;
219#if IS_ENABLED(CONFIG_IPV6)
220 case PF_INET6:
221 sap = (struct sockaddr *)&sin6;
222 len = sizeof(sin6);
223 break;
224#endif
225 default:
226 return ERR_PTR(-EAFNOSUPPORT);
227 }
228
229 xprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
230 if (IS_ERR(xprt))
231 trace_svc_xprt_create_err(serv->sv_program->pg_name,
232 xcl->xcl_name, sap, xprt);
233 return xprt;
234}
235
236/*
237 * svc_xprt_received conditionally queues the transport for processing
238 * by another thread. The caller must hold the XPT_BUSY bit and must
239 * not thereafter touch transport data.
240 *
241 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
242 * insufficient) data.
243 */
244static void svc_xprt_received(struct svc_xprt *xprt)
245{
246 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
247 WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
248 return;
249 }
250
251 /* As soon as we clear busy, the xprt could be closed and
252 * 'put', so we need a reference to call svc_enqueue_xprt with:
253 */
254 svc_xprt_get(xprt);
255 smp_mb__before_atomic();
256 clear_bit(XPT_BUSY, &xprt->xpt_flags);
257 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
258 svc_xprt_put(xprt);
259}
260
261void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
262{
263 clear_bit(XPT_TEMP, &new->xpt_flags);
264 spin_lock_bh(&serv->sv_lock);
265 list_add(&new->xpt_list, &serv->sv_permsocks);
266 spin_unlock_bh(&serv->sv_lock);
267 svc_xprt_received(new);
268}
269
270static int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
271 struct net *net, const int family,
272 const unsigned short port, int flags,
273 const struct cred *cred)
274{
275 struct svc_xprt_class *xcl;
276
277 spin_lock(&svc_xprt_class_lock);
278 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
279 struct svc_xprt *newxprt;
280 unsigned short newport;
281
282 if (strcmp(xprt_name, xcl->xcl_name))
283 continue;
284
285 if (!try_module_get(xcl->xcl_owner))
286 goto err;
287
288 spin_unlock(&svc_xprt_class_lock);
289 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
290 if (IS_ERR(newxprt)) {
291 module_put(xcl->xcl_owner);
292 return PTR_ERR(newxprt);
293 }
294 newxprt->xpt_cred = get_cred(cred);
295 svc_add_new_perm_xprt(serv, newxprt);
296 newport = svc_xprt_local_port(newxprt);
297 return newport;
298 }
299 err:
300 spin_unlock(&svc_xprt_class_lock);
301 /* This errno is exposed to user space. Provide a reasonable
302 * perror msg for a bad transport. */
303 return -EPROTONOSUPPORT;
304}
305
306int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
307 struct net *net, const int family,
308 const unsigned short port, int flags,
309 const struct cred *cred)
310{
311 int err;
312
313 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred);
314 if (err == -EPROTONOSUPPORT) {
315 request_module("svc%s", xprt_name);
316 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred);
317 }
318 return err;
319}
320EXPORT_SYMBOL_GPL(svc_create_xprt);
321
322/*
323 * Copy the local and remote xprt addresses to the rqstp structure
324 */
325void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
326{
327 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
328 rqstp->rq_addrlen = xprt->xpt_remotelen;
329
330 /*
331 * Destination address in request is needed for binding the
332 * source address in RPC replies/callbacks later.
333 */
334 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
335 rqstp->rq_daddrlen = xprt->xpt_locallen;
336}
337EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
338
339/**
340 * svc_print_addr - Format rq_addr field for printing
341 * @rqstp: svc_rqst struct containing address to print
342 * @buf: target buffer for formatted address
343 * @len: length of target buffer
344 *
345 */
346char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
347{
348 return __svc_print_addr(svc_addr(rqstp), buf, len);
349}
350EXPORT_SYMBOL_GPL(svc_print_addr);
351
352static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
353{
354 unsigned int limit = svc_rpc_per_connection_limit;
355 int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
356
357 return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
358}
359
360static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
361{
362 if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
363 if (!svc_xprt_slots_in_range(xprt))
364 return false;
365 atomic_inc(&xprt->xpt_nr_rqsts);
366 set_bit(RQ_DATA, &rqstp->rq_flags);
367 }
368 return true;
369}
370
371static void svc_xprt_release_slot(struct svc_rqst *rqstp)
372{
373 struct svc_xprt *xprt = rqstp->rq_xprt;
374 if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
375 atomic_dec(&xprt->xpt_nr_rqsts);
376 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
377 svc_xprt_enqueue(xprt);
378 }
379}
380
381static bool svc_xprt_ready(struct svc_xprt *xprt)
382{
383 unsigned long xpt_flags;
384
385 /*
386 * If another cpu has recently updated xpt_flags,
387 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
388 * know about it; otherwise it's possible that both that cpu and
389 * this one could call svc_xprt_enqueue() without either
390 * svc_xprt_enqueue() recognizing that the conditions below
391 * are satisfied, and we could stall indefinitely:
392 */
393 smp_rmb();
394 xpt_flags = READ_ONCE(xprt->xpt_flags);
395
396 if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE)))
397 return true;
398 if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
399 if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
400 svc_xprt_slots_in_range(xprt))
401 return true;
402 trace_svc_xprt_no_write_space(xprt);
403 return false;
404 }
405 return false;
406}
407
408void svc_xprt_do_enqueue(struct svc_xprt *xprt)
409{
410 struct svc_pool *pool;
411 struct svc_rqst *rqstp = NULL;
412 int cpu;
413
414 if (!svc_xprt_ready(xprt))
415 return;
416
417 /* Mark transport as busy. It will remain in this state until
418 * the provider calls svc_xprt_received. We update XPT_BUSY
419 * atomically because it also guards against trying to enqueue
420 * the transport twice.
421 */
422 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
423 return;
424
425 cpu = get_cpu();
426 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
427
428 atomic_long_inc(&pool->sp_stats.packets);
429
430 spin_lock_bh(&pool->sp_lock);
431 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
432 pool->sp_stats.sockets_queued++;
433 spin_unlock_bh(&pool->sp_lock);
434
435 /* find a thread for this xprt */
436 rcu_read_lock();
437 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
438 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
439 continue;
440 atomic_long_inc(&pool->sp_stats.threads_woken);
441 rqstp->rq_qtime = ktime_get();
442 wake_up_process(rqstp->rq_task);
443 goto out_unlock;
444 }
445 set_bit(SP_CONGESTED, &pool->sp_flags);
446 rqstp = NULL;
447out_unlock:
448 rcu_read_unlock();
449 put_cpu();
450 trace_svc_xprt_do_enqueue(xprt, rqstp);
451}
452EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
453
454/*
455 * Queue up a transport with data pending. If there are idle nfsd
456 * processes, wake 'em up.
457 *
458 */
459void svc_xprt_enqueue(struct svc_xprt *xprt)
460{
461 if (test_bit(XPT_BUSY, &xprt->xpt_flags))
462 return;
463 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
464}
465EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
466
467/*
468 * Dequeue the first transport, if there is one.
469 */
470static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
471{
472 struct svc_xprt *xprt = NULL;
473
474 if (list_empty(&pool->sp_sockets))
475 goto out;
476
477 spin_lock_bh(&pool->sp_lock);
478 if (likely(!list_empty(&pool->sp_sockets))) {
479 xprt = list_first_entry(&pool->sp_sockets,
480 struct svc_xprt, xpt_ready);
481 list_del_init(&xprt->xpt_ready);
482 svc_xprt_get(xprt);
483 }
484 spin_unlock_bh(&pool->sp_lock);
485out:
486 return xprt;
487}
488
489/**
490 * svc_reserve - change the space reserved for the reply to a request.
491 * @rqstp: The request in question
492 * @space: new max space to reserve
493 *
494 * Each request reserves some space on the output queue of the transport
495 * to make sure the reply fits. This function reduces that reserved
496 * space to be the amount of space used already, plus @space.
497 *
498 */
499void svc_reserve(struct svc_rqst *rqstp, int space)
500{
501 struct svc_xprt *xprt = rqstp->rq_xprt;
502
503 space += rqstp->rq_res.head[0].iov_len;
504
505 if (xprt && space < rqstp->rq_reserved) {
506 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
507 rqstp->rq_reserved = space;
508 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
509 svc_xprt_enqueue(xprt);
510 }
511}
512EXPORT_SYMBOL_GPL(svc_reserve);
513
514static void svc_xprt_release(struct svc_rqst *rqstp)
515{
516 struct svc_xprt *xprt = rqstp->rq_xprt;
517
518 xprt->xpt_ops->xpo_release_rqst(rqstp);
519
520 kfree(rqstp->rq_deferred);
521 rqstp->rq_deferred = NULL;
522
523 svc_free_res_pages(rqstp);
524 rqstp->rq_res.page_len = 0;
525 rqstp->rq_res.page_base = 0;
526
527 /* Reset response buffer and release
528 * the reservation.
529 * But first, check that enough space was reserved
530 * for the reply, otherwise we have a bug!
531 */
532 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
533 printk(KERN_ERR "RPC request reserved %d but used %d\n",
534 rqstp->rq_reserved,
535 rqstp->rq_res.len);
536
537 rqstp->rq_res.head[0].iov_len = 0;
538 svc_reserve(rqstp, 0);
539 svc_xprt_release_slot(rqstp);
540 rqstp->rq_xprt = NULL;
541 svc_xprt_put(xprt);
542}
543
544/*
545 * Some svc_serv's will have occasional work to do, even when a xprt is not
546 * waiting to be serviced. This function is there to "kick" a task in one of
547 * those services so that it can wake up and do that work. Note that we only
548 * bother with pool 0 as we don't need to wake up more than one thread for
549 * this purpose.
550 */
551void svc_wake_up(struct svc_serv *serv)
552{
553 struct svc_rqst *rqstp;
554 struct svc_pool *pool;
555
556 pool = &serv->sv_pools[0];
557
558 rcu_read_lock();
559 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
560 /* skip any that aren't queued */
561 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
562 continue;
563 rcu_read_unlock();
564 wake_up_process(rqstp->rq_task);
565 trace_svc_wake_up(rqstp->rq_task->pid);
566 return;
567 }
568 rcu_read_unlock();
569
570 /* No free entries available */
571 set_bit(SP_TASK_PENDING, &pool->sp_flags);
572 smp_wmb();
573 trace_svc_wake_up(0);
574}
575EXPORT_SYMBOL_GPL(svc_wake_up);
576
577int svc_port_is_privileged(struct sockaddr *sin)
578{
579 switch (sin->sa_family) {
580 case AF_INET:
581 return ntohs(((struct sockaddr_in *)sin)->sin_port)
582 < PROT_SOCK;
583 case AF_INET6:
584 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
585 < PROT_SOCK;
586 default:
587 return 0;
588 }
589}
590
591/*
592 * Make sure that we don't have too many active connections. If we have,
593 * something must be dropped. It's not clear what will happen if we allow
594 * "too many" connections, but when dealing with network-facing software,
595 * we have to code defensively. Here we do that by imposing hard limits.
596 *
597 * There's no point in trying to do random drop here for DoS
598 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
599 * attacker can easily beat that.
600 *
601 * The only somewhat efficient mechanism would be if drop old
602 * connections from the same IP first. But right now we don't even
603 * record the client IP in svc_sock.
604 *
605 * single-threaded services that expect a lot of clients will probably
606 * need to set sv_maxconn to override the default value which is based
607 * on the number of threads
608 */
609static void svc_check_conn_limits(struct svc_serv *serv)
610{
611 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
612 (serv->sv_nrthreads+3) * 20;
613
614 if (serv->sv_tmpcnt > limit) {
615 struct svc_xprt *xprt = NULL;
616 spin_lock_bh(&serv->sv_lock);
617 if (!list_empty(&serv->sv_tempsocks)) {
618 /* Try to help the admin */
619 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
620 serv->sv_name, serv->sv_maxconn ?
621 "max number of connections" :
622 "number of threads");
623 /*
624 * Always select the oldest connection. It's not fair,
625 * but so is life
626 */
627 xprt = list_entry(serv->sv_tempsocks.prev,
628 struct svc_xprt,
629 xpt_list);
630 set_bit(XPT_CLOSE, &xprt->xpt_flags);
631 svc_xprt_get(xprt);
632 }
633 spin_unlock_bh(&serv->sv_lock);
634
635 if (xprt) {
636 svc_xprt_enqueue(xprt);
637 svc_xprt_put(xprt);
638 }
639 }
640}
641
642static int svc_alloc_arg(struct svc_rqst *rqstp)
643{
644 struct svc_serv *serv = rqstp->rq_server;
645 struct xdr_buf *arg;
646 int pages;
647 int i;
648
649 /* now allocate needed pages. If we get a failure, sleep briefly */
650 pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
651 if (pages > RPCSVC_MAXPAGES) {
652 pr_warn_once("svc: warning: pages=%u > RPCSVC_MAXPAGES=%lu\n",
653 pages, RPCSVC_MAXPAGES);
654 /* use as many pages as possible */
655 pages = RPCSVC_MAXPAGES;
656 }
657 for (i = 0; i < pages ; i++)
658 while (rqstp->rq_pages[i] == NULL) {
659 struct page *p = alloc_page(GFP_KERNEL);
660 if (!p) {
661 set_current_state(TASK_INTERRUPTIBLE);
662 if (signalled() || kthread_should_stop()) {
663 set_current_state(TASK_RUNNING);
664 return -EINTR;
665 }
666 schedule_timeout(msecs_to_jiffies(500));
667 }
668 rqstp->rq_pages[i] = p;
669 }
670 rqstp->rq_page_end = &rqstp->rq_pages[i];
671 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
672
673 /* Make arg->head point to first page and arg->pages point to rest */
674 arg = &rqstp->rq_arg;
675 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
676 arg->head[0].iov_len = PAGE_SIZE;
677 arg->pages = rqstp->rq_pages + 1;
678 arg->page_base = 0;
679 /* save at least one page for response */
680 arg->page_len = (pages-2)*PAGE_SIZE;
681 arg->len = (pages-1)*PAGE_SIZE;
682 arg->tail[0].iov_len = 0;
683 return 0;
684}
685
686static bool
687rqst_should_sleep(struct svc_rqst *rqstp)
688{
689 struct svc_pool *pool = rqstp->rq_pool;
690
691 /* did someone call svc_wake_up? */
692 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
693 return false;
694
695 /* was a socket queued? */
696 if (!list_empty(&pool->sp_sockets))
697 return false;
698
699 /* are we shutting down? */
700 if (signalled() || kthread_should_stop())
701 return false;
702
703 /* are we freezing? */
704 if (freezing(current))
705 return false;
706
707 return true;
708}
709
710static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
711{
712 struct svc_pool *pool = rqstp->rq_pool;
713 long time_left = 0;
714
715 /* rq_xprt should be clear on entry */
716 WARN_ON_ONCE(rqstp->rq_xprt);
717
718 rqstp->rq_xprt = svc_xprt_dequeue(pool);
719 if (rqstp->rq_xprt)
720 goto out_found;
721
722 /*
723 * We have to be able to interrupt this wait
724 * to bring down the daemons ...
725 */
726 set_current_state(TASK_INTERRUPTIBLE);
727 smp_mb__before_atomic();
728 clear_bit(SP_CONGESTED, &pool->sp_flags);
729 clear_bit(RQ_BUSY, &rqstp->rq_flags);
730 smp_mb__after_atomic();
731
732 if (likely(rqst_should_sleep(rqstp)))
733 time_left = schedule_timeout(timeout);
734 else
735 __set_current_state(TASK_RUNNING);
736
737 try_to_freeze();
738
739 set_bit(RQ_BUSY, &rqstp->rq_flags);
740 smp_mb__after_atomic();
741 rqstp->rq_xprt = svc_xprt_dequeue(pool);
742 if (rqstp->rq_xprt)
743 goto out_found;
744
745 if (!time_left)
746 atomic_long_inc(&pool->sp_stats.threads_timedout);
747
748 if (signalled() || kthread_should_stop())
749 return ERR_PTR(-EINTR);
750 return ERR_PTR(-EAGAIN);
751out_found:
752 /* Normally we will wait up to 5 seconds for any required
753 * cache information to be provided.
754 */
755 if (!test_bit(SP_CONGESTED, &pool->sp_flags))
756 rqstp->rq_chandle.thread_wait = 5*HZ;
757 else
758 rqstp->rq_chandle.thread_wait = 1*HZ;
759 trace_svc_xprt_dequeue(rqstp);
760 return rqstp->rq_xprt;
761}
762
763static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
764{
765 spin_lock_bh(&serv->sv_lock);
766 set_bit(XPT_TEMP, &newxpt->xpt_flags);
767 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
768 serv->sv_tmpcnt++;
769 if (serv->sv_temptimer.function == NULL) {
770 /* setup timer to age temp transports */
771 serv->sv_temptimer.function = svc_age_temp_xprts;
772 mod_timer(&serv->sv_temptimer,
773 jiffies + svc_conn_age_period * HZ);
774 }
775 spin_unlock_bh(&serv->sv_lock);
776 svc_xprt_received(newxpt);
777}
778
779static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
780{
781 struct svc_serv *serv = rqstp->rq_server;
782 int len = 0;
783
784 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
785 if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
786 xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
787 svc_delete_xprt(xprt);
788 /* Leave XPT_BUSY set on the dead xprt: */
789 goto out;
790 }
791 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
792 struct svc_xprt *newxpt;
793 /*
794 * We know this module_get will succeed because the
795 * listener holds a reference too
796 */
797 __module_get(xprt->xpt_class->xcl_owner);
798 svc_check_conn_limits(xprt->xpt_server);
799 newxpt = xprt->xpt_ops->xpo_accept(xprt);
800 if (newxpt) {
801 newxpt->xpt_cred = get_cred(xprt->xpt_cred);
802 svc_add_new_temp_xprt(serv, newxpt);
803 trace_svc_xprt_accept(newxpt, serv->sv_name);
804 } else
805 module_put(xprt->xpt_class->xcl_owner);
806 } else if (svc_xprt_reserve_slot(rqstp, xprt)) {
807 /* XPT_DATA|XPT_DEFERRED case: */
808 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
809 rqstp, rqstp->rq_pool->sp_id, xprt,
810 kref_read(&xprt->xpt_ref));
811 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
812 if (rqstp->rq_deferred)
813 len = svc_deferred_recv(rqstp);
814 else
815 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
816 if (len > 0)
817 trace_svc_xdr_recvfrom(rqstp, &rqstp->rq_arg);
818 rqstp->rq_stime = ktime_get();
819 rqstp->rq_reserved = serv->sv_max_mesg;
820 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
821 }
822 /* clear XPT_BUSY: */
823 svc_xprt_received(xprt);
824out:
825 trace_svc_handle_xprt(xprt, len);
826 return len;
827}
828
829/*
830 * Receive the next request on any transport. This code is carefully
831 * organised not to touch any cachelines in the shared svc_serv
832 * structure, only cachelines in the local svc_pool.
833 */
834int svc_recv(struct svc_rqst *rqstp, long timeout)
835{
836 struct svc_xprt *xprt = NULL;
837 struct svc_serv *serv = rqstp->rq_server;
838 int len, err;
839
840 err = svc_alloc_arg(rqstp);
841 if (err)
842 goto out;
843
844 try_to_freeze();
845 cond_resched();
846 err = -EINTR;
847 if (signalled() || kthread_should_stop())
848 goto out;
849
850 xprt = svc_get_next_xprt(rqstp, timeout);
851 if (IS_ERR(xprt)) {
852 err = PTR_ERR(xprt);
853 goto out;
854 }
855
856 len = svc_handle_xprt(rqstp, xprt);
857
858 /* No data, incomplete (TCP) read, or accept() */
859 err = -EAGAIN;
860 if (len <= 0)
861 goto out_release;
862
863 clear_bit(XPT_OLD, &xprt->xpt_flags);
864
865 xprt->xpt_ops->xpo_secure_port(rqstp);
866 rqstp->rq_chandle.defer = svc_defer;
867 rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
868
869 if (serv->sv_stats)
870 serv->sv_stats->netcnt++;
871 trace_svc_recv(rqstp, len);
872 return len;
873out_release:
874 rqstp->rq_res.len = 0;
875 svc_xprt_release(rqstp);
876out:
877 return err;
878}
879EXPORT_SYMBOL_GPL(svc_recv);
880
881/*
882 * Drop request
883 */
884void svc_drop(struct svc_rqst *rqstp)
885{
886 trace_svc_drop(rqstp);
887 svc_xprt_release(rqstp);
888}
889EXPORT_SYMBOL_GPL(svc_drop);
890
891/*
892 * Return reply to client.
893 */
894int svc_send(struct svc_rqst *rqstp)
895{
896 struct svc_xprt *xprt;
897 int len = -EFAULT;
898 struct xdr_buf *xb;
899
900 xprt = rqstp->rq_xprt;
901 if (!xprt)
902 goto out;
903
904 /* calculate over-all length */
905 xb = &rqstp->rq_res;
906 xb->len = xb->head[0].iov_len +
907 xb->page_len +
908 xb->tail[0].iov_len;
909 trace_svc_xdr_sendto(rqstp, xb);
910 trace_svc_stats_latency(rqstp);
911
912 len = xprt->xpt_ops->xpo_sendto(rqstp);
913
914 trace_svc_send(rqstp, len);
915 svc_xprt_release(rqstp);
916
917 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
918 len = 0;
919out:
920 return len;
921}
922
923/*
924 * Timer function to close old temporary transports, using
925 * a mark-and-sweep algorithm.
926 */
927static void svc_age_temp_xprts(struct timer_list *t)
928{
929 struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
930 struct svc_xprt *xprt;
931 struct list_head *le, *next;
932
933 dprintk("svc_age_temp_xprts\n");
934
935 if (!spin_trylock_bh(&serv->sv_lock)) {
936 /* busy, try again 1 sec later */
937 dprintk("svc_age_temp_xprts: busy\n");
938 mod_timer(&serv->sv_temptimer, jiffies + HZ);
939 return;
940 }
941
942 list_for_each_safe(le, next, &serv->sv_tempsocks) {
943 xprt = list_entry(le, struct svc_xprt, xpt_list);
944
945 /* First time through, just mark it OLD. Second time
946 * through, close it. */
947 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
948 continue;
949 if (kref_read(&xprt->xpt_ref) > 1 ||
950 test_bit(XPT_BUSY, &xprt->xpt_flags))
951 continue;
952 list_del_init(le);
953 set_bit(XPT_CLOSE, &xprt->xpt_flags);
954 dprintk("queuing xprt %p for closing\n", xprt);
955
956 /* a thread will dequeue and close it soon */
957 svc_xprt_enqueue(xprt);
958 }
959 spin_unlock_bh(&serv->sv_lock);
960
961 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
962}
963
964/* Close temporary transports whose xpt_local matches server_addr immediately
965 * instead of waiting for them to be picked up by the timer.
966 *
967 * This is meant to be called from a notifier_block that runs when an ip
968 * address is deleted.
969 */
970void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
971{
972 struct svc_xprt *xprt;
973 struct list_head *le, *next;
974 LIST_HEAD(to_be_closed);
975
976 spin_lock_bh(&serv->sv_lock);
977 list_for_each_safe(le, next, &serv->sv_tempsocks) {
978 xprt = list_entry(le, struct svc_xprt, xpt_list);
979 if (rpc_cmp_addr(server_addr, (struct sockaddr *)
980 &xprt->xpt_local)) {
981 dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
982 list_move(le, &to_be_closed);
983 }
984 }
985 spin_unlock_bh(&serv->sv_lock);
986
987 while (!list_empty(&to_be_closed)) {
988 le = to_be_closed.next;
989 list_del_init(le);
990 xprt = list_entry(le, struct svc_xprt, xpt_list);
991 set_bit(XPT_CLOSE, &xprt->xpt_flags);
992 set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
993 dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
994 xprt);
995 svc_xprt_enqueue(xprt);
996 }
997}
998EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
999
1000static void call_xpt_users(struct svc_xprt *xprt)
1001{
1002 struct svc_xpt_user *u;
1003
1004 spin_lock(&xprt->xpt_lock);
1005 while (!list_empty(&xprt->xpt_users)) {
1006 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1007 list_del_init(&u->list);
1008 u->callback(u);
1009 }
1010 spin_unlock(&xprt->xpt_lock);
1011}
1012
1013/*
1014 * Remove a dead transport
1015 */
1016static void svc_delete_xprt(struct svc_xprt *xprt)
1017{
1018 struct svc_serv *serv = xprt->xpt_server;
1019 struct svc_deferred_req *dr;
1020
1021 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1022 return;
1023
1024 trace_svc_xprt_detach(xprt);
1025 xprt->xpt_ops->xpo_detach(xprt);
1026 if (xprt->xpt_bc_xprt)
1027 xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt);
1028
1029 spin_lock_bh(&serv->sv_lock);
1030 list_del_init(&xprt->xpt_list);
1031 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1032 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1033 serv->sv_tmpcnt--;
1034 spin_unlock_bh(&serv->sv_lock);
1035
1036 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1037 kfree(dr);
1038
1039 call_xpt_users(xprt);
1040 svc_xprt_put(xprt);
1041}
1042
1043void svc_close_xprt(struct svc_xprt *xprt)
1044{
1045 trace_svc_xprt_close(xprt);
1046 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1047 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1048 /* someone else will have to effect the close */
1049 return;
1050 /*
1051 * We expect svc_close_xprt() to work even when no threads are
1052 * running (e.g., while configuring the server before starting
1053 * any threads), so if the transport isn't busy, we delete
1054 * it ourself:
1055 */
1056 svc_delete_xprt(xprt);
1057}
1058EXPORT_SYMBOL_GPL(svc_close_xprt);
1059
1060static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1061{
1062 struct svc_xprt *xprt;
1063 int ret = 0;
1064
1065 spin_lock(&serv->sv_lock);
1066 list_for_each_entry(xprt, xprt_list, xpt_list) {
1067 if (xprt->xpt_net != net)
1068 continue;
1069 ret++;
1070 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1071 svc_xprt_enqueue(xprt);
1072 }
1073 spin_unlock(&serv->sv_lock);
1074 return ret;
1075}
1076
1077static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1078{
1079 struct svc_pool *pool;
1080 struct svc_xprt *xprt;
1081 struct svc_xprt *tmp;
1082 int i;
1083
1084 for (i = 0; i < serv->sv_nrpools; i++) {
1085 pool = &serv->sv_pools[i];
1086
1087 spin_lock_bh(&pool->sp_lock);
1088 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1089 if (xprt->xpt_net != net)
1090 continue;
1091 list_del_init(&xprt->xpt_ready);
1092 spin_unlock_bh(&pool->sp_lock);
1093 return xprt;
1094 }
1095 spin_unlock_bh(&pool->sp_lock);
1096 }
1097 return NULL;
1098}
1099
1100static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1101{
1102 struct svc_xprt *xprt;
1103
1104 while ((xprt = svc_dequeue_net(serv, net))) {
1105 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1106 svc_delete_xprt(xprt);
1107 }
1108}
1109
1110/*
1111 * Server threads may still be running (especially in the case where the
1112 * service is still running in other network namespaces).
1113 *
1114 * So we shut down sockets the same way we would on a running server, by
1115 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1116 * the close. In the case there are no such other threads,
1117 * threads running, svc_clean_up_xprts() does a simple version of a
1118 * server's main event loop, and in the case where there are other
1119 * threads, we may need to wait a little while and then check again to
1120 * see if they're done.
1121 */
1122void svc_close_net(struct svc_serv *serv, struct net *net)
1123{
1124 int delay = 0;
1125
1126 while (svc_close_list(serv, &serv->sv_permsocks, net) +
1127 svc_close_list(serv, &serv->sv_tempsocks, net)) {
1128
1129 svc_clean_up_xprts(serv, net);
1130 msleep(delay++);
1131 }
1132}
1133
1134/*
1135 * Handle defer and revisit of requests
1136 */
1137
1138static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1139{
1140 struct svc_deferred_req *dr =
1141 container_of(dreq, struct svc_deferred_req, handle);
1142 struct svc_xprt *xprt = dr->xprt;
1143
1144 spin_lock(&xprt->xpt_lock);
1145 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1146 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1147 spin_unlock(&xprt->xpt_lock);
1148 trace_svc_defer_drop(dr);
1149 svc_xprt_put(xprt);
1150 kfree(dr);
1151 return;
1152 }
1153 dr->xprt = NULL;
1154 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1155 spin_unlock(&xprt->xpt_lock);
1156 trace_svc_defer_queue(dr);
1157 svc_xprt_enqueue(xprt);
1158 svc_xprt_put(xprt);
1159}
1160
1161/*
1162 * Save the request off for later processing. The request buffer looks
1163 * like this:
1164 *
1165 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1166 *
1167 * This code can only handle requests that consist of an xprt-header
1168 * and rpc-header.
1169 */
1170static struct cache_deferred_req *svc_defer(struct cache_req *req)
1171{
1172 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1173 struct svc_deferred_req *dr;
1174
1175 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1176 return NULL; /* if more than a page, give up FIXME */
1177 if (rqstp->rq_deferred) {
1178 dr = rqstp->rq_deferred;
1179 rqstp->rq_deferred = NULL;
1180 } else {
1181 size_t skip;
1182 size_t size;
1183 /* FIXME maybe discard if size too large */
1184 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1185 dr = kmalloc(size, GFP_KERNEL);
1186 if (dr == NULL)
1187 return NULL;
1188
1189 dr->handle.owner = rqstp->rq_server;
1190 dr->prot = rqstp->rq_prot;
1191 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1192 dr->addrlen = rqstp->rq_addrlen;
1193 dr->daddr = rqstp->rq_daddr;
1194 dr->argslen = rqstp->rq_arg.len >> 2;
1195 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1196
1197 /* back up head to the start of the buffer and copy */
1198 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1199 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1200 dr->argslen << 2);
1201 }
1202 trace_svc_defer(rqstp);
1203 svc_xprt_get(rqstp->rq_xprt);
1204 dr->xprt = rqstp->rq_xprt;
1205 set_bit(RQ_DROPME, &rqstp->rq_flags);
1206
1207 dr->handle.revisit = svc_revisit;
1208 return &dr->handle;
1209}
1210
1211/*
1212 * recv data from a deferred request into an active one
1213 */
1214static noinline int svc_deferred_recv(struct svc_rqst *rqstp)
1215{
1216 struct svc_deferred_req *dr = rqstp->rq_deferred;
1217
1218 trace_svc_defer_recv(dr);
1219
1220 /* setup iov_base past transport header */
1221 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1222 /* The iov_len does not include the transport header bytes */
1223 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1224 rqstp->rq_arg.page_len = 0;
1225 /* The rq_arg.len includes the transport header bytes */
1226 rqstp->rq_arg.len = dr->argslen<<2;
1227 rqstp->rq_prot = dr->prot;
1228 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1229 rqstp->rq_addrlen = dr->addrlen;
1230 /* Save off transport header len in case we get deferred again */
1231 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1232 rqstp->rq_daddr = dr->daddr;
1233 rqstp->rq_respages = rqstp->rq_pages;
1234 return (dr->argslen<<2) - dr->xprt_hlen;
1235}
1236
1237
1238static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1239{
1240 struct svc_deferred_req *dr = NULL;
1241
1242 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1243 return NULL;
1244 spin_lock(&xprt->xpt_lock);
1245 if (!list_empty(&xprt->xpt_deferred)) {
1246 dr = list_entry(xprt->xpt_deferred.next,
1247 struct svc_deferred_req,
1248 handle.recent);
1249 list_del_init(&dr->handle.recent);
1250 } else
1251 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1252 spin_unlock(&xprt->xpt_lock);
1253 return dr;
1254}
1255
1256/**
1257 * svc_find_xprt - find an RPC transport instance
1258 * @serv: pointer to svc_serv to search
1259 * @xcl_name: C string containing transport's class name
1260 * @net: owner net pointer
1261 * @af: Address family of transport's local address
1262 * @port: transport's IP port number
1263 *
1264 * Return the transport instance pointer for the endpoint accepting
1265 * connections/peer traffic from the specified transport class,
1266 * address family and port.
1267 *
1268 * Specifying 0 for the address family or port is effectively a
1269 * wild-card, and will result in matching the first transport in the
1270 * service's list that has a matching class name.
1271 */
1272struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1273 struct net *net, const sa_family_t af,
1274 const unsigned short port)
1275{
1276 struct svc_xprt *xprt;
1277 struct svc_xprt *found = NULL;
1278
1279 /* Sanity check the args */
1280 if (serv == NULL || xcl_name == NULL)
1281 return found;
1282
1283 spin_lock_bh(&serv->sv_lock);
1284 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1285 if (xprt->xpt_net != net)
1286 continue;
1287 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1288 continue;
1289 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1290 continue;
1291 if (port != 0 && port != svc_xprt_local_port(xprt))
1292 continue;
1293 found = xprt;
1294 svc_xprt_get(xprt);
1295 break;
1296 }
1297 spin_unlock_bh(&serv->sv_lock);
1298 return found;
1299}
1300EXPORT_SYMBOL_GPL(svc_find_xprt);
1301
1302static int svc_one_xprt_name(const struct svc_xprt *xprt,
1303 char *pos, int remaining)
1304{
1305 int len;
1306
1307 len = snprintf(pos, remaining, "%s %u\n",
1308 xprt->xpt_class->xcl_name,
1309 svc_xprt_local_port(xprt));
1310 if (len >= remaining)
1311 return -ENAMETOOLONG;
1312 return len;
1313}
1314
1315/**
1316 * svc_xprt_names - format a buffer with a list of transport names
1317 * @serv: pointer to an RPC service
1318 * @buf: pointer to a buffer to be filled in
1319 * @buflen: length of buffer to be filled in
1320 *
1321 * Fills in @buf with a string containing a list of transport names,
1322 * each name terminated with '\n'.
1323 *
1324 * Returns positive length of the filled-in string on success; otherwise
1325 * a negative errno value is returned if an error occurs.
1326 */
1327int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1328{
1329 struct svc_xprt *xprt;
1330 int len, totlen;
1331 char *pos;
1332
1333 /* Sanity check args */
1334 if (!serv)
1335 return 0;
1336
1337 spin_lock_bh(&serv->sv_lock);
1338
1339 pos = buf;
1340 totlen = 0;
1341 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1342 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1343 if (len < 0) {
1344 *buf = '\0';
1345 totlen = len;
1346 }
1347 if (len <= 0)
1348 break;
1349
1350 pos += len;
1351 totlen += len;
1352 }
1353
1354 spin_unlock_bh(&serv->sv_lock);
1355 return totlen;
1356}
1357EXPORT_SYMBOL_GPL(svc_xprt_names);
1358
1359
1360/*----------------------------------------------------------------------------*/
1361
1362static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1363{
1364 unsigned int pidx = (unsigned int)*pos;
1365 struct svc_serv *serv = m->private;
1366
1367 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1368
1369 if (!pidx)
1370 return SEQ_START_TOKEN;
1371 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1372}
1373
1374static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1375{
1376 struct svc_pool *pool = p;
1377 struct svc_serv *serv = m->private;
1378
1379 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1380
1381 if (p == SEQ_START_TOKEN) {
1382 pool = &serv->sv_pools[0];
1383 } else {
1384 unsigned int pidx = (pool - &serv->sv_pools[0]);
1385 if (pidx < serv->sv_nrpools-1)
1386 pool = &serv->sv_pools[pidx+1];
1387 else
1388 pool = NULL;
1389 }
1390 ++*pos;
1391 return pool;
1392}
1393
1394static void svc_pool_stats_stop(struct seq_file *m, void *p)
1395{
1396}
1397
1398static int svc_pool_stats_show(struct seq_file *m, void *p)
1399{
1400 struct svc_pool *pool = p;
1401
1402 if (p == SEQ_START_TOKEN) {
1403 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1404 return 0;
1405 }
1406
1407 seq_printf(m, "%u %lu %lu %lu %lu\n",
1408 pool->sp_id,
1409 (unsigned long)atomic_long_read(&pool->sp_stats.packets),
1410 pool->sp_stats.sockets_queued,
1411 (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1412 (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1413
1414 return 0;
1415}
1416
1417static const struct seq_operations svc_pool_stats_seq_ops = {
1418 .start = svc_pool_stats_start,
1419 .next = svc_pool_stats_next,
1420 .stop = svc_pool_stats_stop,
1421 .show = svc_pool_stats_show,
1422};
1423
1424int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1425{
1426 int err;
1427
1428 err = seq_open(file, &svc_pool_stats_seq_ops);
1429 if (!err)
1430 ((struct seq_file *) file->private_data)->private = serv;
1431 return err;
1432}
1433EXPORT_SYMBOL(svc_pool_stats_open);
1434
1435/*----------------------------------------------------------------------------*/