Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/compiler.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/memblock.h>
20#include <linux/sysfs.h>
21#include <linux/slab.h>
22#include <linux/sched/mm.h>
23#include <linux/mmdebug.h>
24#include <linux/sched/signal.h>
25#include <linux/rmap.h>
26#include <linux/string_helpers.h>
27#include <linux/swap.h>
28#include <linux/swapops.h>
29#include <linux/jhash.h>
30#include <linux/numa.h>
31#include <linux/llist.h>
32#include <linux/cma.h>
33#include <linux/migrate.h>
34#include <linux/nospec.h>
35#include <linux/delayacct.h>
36#include <linux/memory.h>
37#include <linux/mm_inline.h>
38
39#include <asm/page.h>
40#include <asm/pgalloc.h>
41#include <asm/tlb.h>
42
43#include <linux/io.h>
44#include <linux/hugetlb.h>
45#include <linux/hugetlb_cgroup.h>
46#include <linux/node.h>
47#include <linux/page_owner.h>
48#include "internal.h"
49#include "hugetlb_vmemmap.h"
50
51int hugetlb_max_hstate __read_mostly;
52unsigned int default_hstate_idx;
53struct hstate hstates[HUGE_MAX_HSTATE];
54
55#ifdef CONFIG_CMA
56static struct cma *hugetlb_cma[MAX_NUMNODES];
57static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
58static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
59{
60 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
61 1 << order);
62}
63#else
64static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
65{
66 return false;
67}
68#endif
69static unsigned long hugetlb_cma_size __initdata;
70
71__initdata LIST_HEAD(huge_boot_pages);
72
73/* for command line parsing */
74static struct hstate * __initdata parsed_hstate;
75static unsigned long __initdata default_hstate_max_huge_pages;
76static bool __initdata parsed_valid_hugepagesz = true;
77static bool __initdata parsed_default_hugepagesz;
78static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
79
80/*
81 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
82 * free_huge_pages, and surplus_huge_pages.
83 */
84DEFINE_SPINLOCK(hugetlb_lock);
85
86/*
87 * Serializes faults on the same logical page. This is used to
88 * prevent spurious OOMs when the hugepage pool is fully utilized.
89 */
90static int num_fault_mutexes;
91struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92
93/* Forward declaration */
94static int hugetlb_acct_memory(struct hstate *h, long delta);
95static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
96static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
97static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
98static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
99 unsigned long start, unsigned long end);
100static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
101
102static inline bool subpool_is_free(struct hugepage_subpool *spool)
103{
104 if (spool->count)
105 return false;
106 if (spool->max_hpages != -1)
107 return spool->used_hpages == 0;
108 if (spool->min_hpages != -1)
109 return spool->rsv_hpages == spool->min_hpages;
110
111 return true;
112}
113
114static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
115 unsigned long irq_flags)
116{
117 spin_unlock_irqrestore(&spool->lock, irq_flags);
118
119 /* If no pages are used, and no other handles to the subpool
120 * remain, give up any reservations based on minimum size and
121 * free the subpool */
122 if (subpool_is_free(spool)) {
123 if (spool->min_hpages != -1)
124 hugetlb_acct_memory(spool->hstate,
125 -spool->min_hpages);
126 kfree(spool);
127 }
128}
129
130struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
131 long min_hpages)
132{
133 struct hugepage_subpool *spool;
134
135 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
136 if (!spool)
137 return NULL;
138
139 spin_lock_init(&spool->lock);
140 spool->count = 1;
141 spool->max_hpages = max_hpages;
142 spool->hstate = h;
143 spool->min_hpages = min_hpages;
144
145 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
146 kfree(spool);
147 return NULL;
148 }
149 spool->rsv_hpages = min_hpages;
150
151 return spool;
152}
153
154void hugepage_put_subpool(struct hugepage_subpool *spool)
155{
156 unsigned long flags;
157
158 spin_lock_irqsave(&spool->lock, flags);
159 BUG_ON(!spool->count);
160 spool->count--;
161 unlock_or_release_subpool(spool, flags);
162}
163
164/*
165 * Subpool accounting for allocating and reserving pages.
166 * Return -ENOMEM if there are not enough resources to satisfy the
167 * request. Otherwise, return the number of pages by which the
168 * global pools must be adjusted (upward). The returned value may
169 * only be different than the passed value (delta) in the case where
170 * a subpool minimum size must be maintained.
171 */
172static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
173 long delta)
174{
175 long ret = delta;
176
177 if (!spool)
178 return ret;
179
180 spin_lock_irq(&spool->lock);
181
182 if (spool->max_hpages != -1) { /* maximum size accounting */
183 if ((spool->used_hpages + delta) <= spool->max_hpages)
184 spool->used_hpages += delta;
185 else {
186 ret = -ENOMEM;
187 goto unlock_ret;
188 }
189 }
190
191 /* minimum size accounting */
192 if (spool->min_hpages != -1 && spool->rsv_hpages) {
193 if (delta > spool->rsv_hpages) {
194 /*
195 * Asking for more reserves than those already taken on
196 * behalf of subpool. Return difference.
197 */
198 ret = delta - spool->rsv_hpages;
199 spool->rsv_hpages = 0;
200 } else {
201 ret = 0; /* reserves already accounted for */
202 spool->rsv_hpages -= delta;
203 }
204 }
205
206unlock_ret:
207 spin_unlock_irq(&spool->lock);
208 return ret;
209}
210
211/*
212 * Subpool accounting for freeing and unreserving pages.
213 * Return the number of global page reservations that must be dropped.
214 * The return value may only be different than the passed value (delta)
215 * in the case where a subpool minimum size must be maintained.
216 */
217static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
218 long delta)
219{
220 long ret = delta;
221 unsigned long flags;
222
223 if (!spool)
224 return delta;
225
226 spin_lock_irqsave(&spool->lock, flags);
227
228 if (spool->max_hpages != -1) /* maximum size accounting */
229 spool->used_hpages -= delta;
230
231 /* minimum size accounting */
232 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
233 if (spool->rsv_hpages + delta <= spool->min_hpages)
234 ret = 0;
235 else
236 ret = spool->rsv_hpages + delta - spool->min_hpages;
237
238 spool->rsv_hpages += delta;
239 if (spool->rsv_hpages > spool->min_hpages)
240 spool->rsv_hpages = spool->min_hpages;
241 }
242
243 /*
244 * If hugetlbfs_put_super couldn't free spool due to an outstanding
245 * quota reference, free it now.
246 */
247 unlock_or_release_subpool(spool, flags);
248
249 return ret;
250}
251
252static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
253{
254 return HUGETLBFS_SB(inode->i_sb)->spool;
255}
256
257static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
258{
259 return subpool_inode(file_inode(vma->vm_file));
260}
261
262/*
263 * hugetlb vma_lock helper routines
264 */
265void hugetlb_vma_lock_read(struct vm_area_struct *vma)
266{
267 if (__vma_shareable_lock(vma)) {
268 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
269
270 down_read(&vma_lock->rw_sema);
271 } else if (__vma_private_lock(vma)) {
272 struct resv_map *resv_map = vma_resv_map(vma);
273
274 down_read(&resv_map->rw_sema);
275 }
276}
277
278void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
279{
280 if (__vma_shareable_lock(vma)) {
281 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
282
283 up_read(&vma_lock->rw_sema);
284 } else if (__vma_private_lock(vma)) {
285 struct resv_map *resv_map = vma_resv_map(vma);
286
287 up_read(&resv_map->rw_sema);
288 }
289}
290
291void hugetlb_vma_lock_write(struct vm_area_struct *vma)
292{
293 if (__vma_shareable_lock(vma)) {
294 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
295
296 down_write(&vma_lock->rw_sema);
297 } else if (__vma_private_lock(vma)) {
298 struct resv_map *resv_map = vma_resv_map(vma);
299
300 down_write(&resv_map->rw_sema);
301 }
302}
303
304void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
305{
306 if (__vma_shareable_lock(vma)) {
307 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
308
309 up_write(&vma_lock->rw_sema);
310 } else if (__vma_private_lock(vma)) {
311 struct resv_map *resv_map = vma_resv_map(vma);
312
313 up_write(&resv_map->rw_sema);
314 }
315}
316
317int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
318{
319
320 if (__vma_shareable_lock(vma)) {
321 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
322
323 return down_write_trylock(&vma_lock->rw_sema);
324 } else if (__vma_private_lock(vma)) {
325 struct resv_map *resv_map = vma_resv_map(vma);
326
327 return down_write_trylock(&resv_map->rw_sema);
328 }
329
330 return 1;
331}
332
333void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
334{
335 if (__vma_shareable_lock(vma)) {
336 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
337
338 lockdep_assert_held(&vma_lock->rw_sema);
339 } else if (__vma_private_lock(vma)) {
340 struct resv_map *resv_map = vma_resv_map(vma);
341
342 lockdep_assert_held(&resv_map->rw_sema);
343 }
344}
345
346void hugetlb_vma_lock_release(struct kref *kref)
347{
348 struct hugetlb_vma_lock *vma_lock = container_of(kref,
349 struct hugetlb_vma_lock, refs);
350
351 kfree(vma_lock);
352}
353
354static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
355{
356 struct vm_area_struct *vma = vma_lock->vma;
357
358 /*
359 * vma_lock structure may or not be released as a result of put,
360 * it certainly will no longer be attached to vma so clear pointer.
361 * Semaphore synchronizes access to vma_lock->vma field.
362 */
363 vma_lock->vma = NULL;
364 vma->vm_private_data = NULL;
365 up_write(&vma_lock->rw_sema);
366 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
367}
368
369static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
370{
371 if (__vma_shareable_lock(vma)) {
372 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
373
374 __hugetlb_vma_unlock_write_put(vma_lock);
375 } else if (__vma_private_lock(vma)) {
376 struct resv_map *resv_map = vma_resv_map(vma);
377
378 /* no free for anon vmas, but still need to unlock */
379 up_write(&resv_map->rw_sema);
380 }
381}
382
383static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
384{
385 /*
386 * Only present in sharable vmas.
387 */
388 if (!vma || !__vma_shareable_lock(vma))
389 return;
390
391 if (vma->vm_private_data) {
392 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
393
394 down_write(&vma_lock->rw_sema);
395 __hugetlb_vma_unlock_write_put(vma_lock);
396 }
397}
398
399static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
400{
401 struct hugetlb_vma_lock *vma_lock;
402
403 /* Only establish in (flags) sharable vmas */
404 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
405 return;
406
407 /* Should never get here with non-NULL vm_private_data */
408 if (vma->vm_private_data)
409 return;
410
411 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
412 if (!vma_lock) {
413 /*
414 * If we can not allocate structure, then vma can not
415 * participate in pmd sharing. This is only a possible
416 * performance enhancement and memory saving issue.
417 * However, the lock is also used to synchronize page
418 * faults with truncation. If the lock is not present,
419 * unlikely races could leave pages in a file past i_size
420 * until the file is removed. Warn in the unlikely case of
421 * allocation failure.
422 */
423 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
424 return;
425 }
426
427 kref_init(&vma_lock->refs);
428 init_rwsem(&vma_lock->rw_sema);
429 vma_lock->vma = vma;
430 vma->vm_private_data = vma_lock;
431}
432
433/* Helper that removes a struct file_region from the resv_map cache and returns
434 * it for use.
435 */
436static struct file_region *
437get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
438{
439 struct file_region *nrg;
440
441 VM_BUG_ON(resv->region_cache_count <= 0);
442
443 resv->region_cache_count--;
444 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
445 list_del(&nrg->link);
446
447 nrg->from = from;
448 nrg->to = to;
449
450 return nrg;
451}
452
453static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
454 struct file_region *rg)
455{
456#ifdef CONFIG_CGROUP_HUGETLB
457 nrg->reservation_counter = rg->reservation_counter;
458 nrg->css = rg->css;
459 if (rg->css)
460 css_get(rg->css);
461#endif
462}
463
464/* Helper that records hugetlb_cgroup uncharge info. */
465static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
466 struct hstate *h,
467 struct resv_map *resv,
468 struct file_region *nrg)
469{
470#ifdef CONFIG_CGROUP_HUGETLB
471 if (h_cg) {
472 nrg->reservation_counter =
473 &h_cg->rsvd_hugepage[hstate_index(h)];
474 nrg->css = &h_cg->css;
475 /*
476 * The caller will hold exactly one h_cg->css reference for the
477 * whole contiguous reservation region. But this area might be
478 * scattered when there are already some file_regions reside in
479 * it. As a result, many file_regions may share only one css
480 * reference. In order to ensure that one file_region must hold
481 * exactly one h_cg->css reference, we should do css_get for
482 * each file_region and leave the reference held by caller
483 * untouched.
484 */
485 css_get(&h_cg->css);
486 if (!resv->pages_per_hpage)
487 resv->pages_per_hpage = pages_per_huge_page(h);
488 /* pages_per_hpage should be the same for all entries in
489 * a resv_map.
490 */
491 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
492 } else {
493 nrg->reservation_counter = NULL;
494 nrg->css = NULL;
495 }
496#endif
497}
498
499static void put_uncharge_info(struct file_region *rg)
500{
501#ifdef CONFIG_CGROUP_HUGETLB
502 if (rg->css)
503 css_put(rg->css);
504#endif
505}
506
507static bool has_same_uncharge_info(struct file_region *rg,
508 struct file_region *org)
509{
510#ifdef CONFIG_CGROUP_HUGETLB
511 return rg->reservation_counter == org->reservation_counter &&
512 rg->css == org->css;
513
514#else
515 return true;
516#endif
517}
518
519static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
520{
521 struct file_region *nrg, *prg;
522
523 prg = list_prev_entry(rg, link);
524 if (&prg->link != &resv->regions && prg->to == rg->from &&
525 has_same_uncharge_info(prg, rg)) {
526 prg->to = rg->to;
527
528 list_del(&rg->link);
529 put_uncharge_info(rg);
530 kfree(rg);
531
532 rg = prg;
533 }
534
535 nrg = list_next_entry(rg, link);
536 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
537 has_same_uncharge_info(nrg, rg)) {
538 nrg->from = rg->from;
539
540 list_del(&rg->link);
541 put_uncharge_info(rg);
542 kfree(rg);
543 }
544}
545
546static inline long
547hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
548 long to, struct hstate *h, struct hugetlb_cgroup *cg,
549 long *regions_needed)
550{
551 struct file_region *nrg;
552
553 if (!regions_needed) {
554 nrg = get_file_region_entry_from_cache(map, from, to);
555 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
556 list_add(&nrg->link, rg);
557 coalesce_file_region(map, nrg);
558 } else
559 *regions_needed += 1;
560
561 return to - from;
562}
563
564/*
565 * Must be called with resv->lock held.
566 *
567 * Calling this with regions_needed != NULL will count the number of pages
568 * to be added but will not modify the linked list. And regions_needed will
569 * indicate the number of file_regions needed in the cache to carry out to add
570 * the regions for this range.
571 */
572static long add_reservation_in_range(struct resv_map *resv, long f, long t,
573 struct hugetlb_cgroup *h_cg,
574 struct hstate *h, long *regions_needed)
575{
576 long add = 0;
577 struct list_head *head = &resv->regions;
578 long last_accounted_offset = f;
579 struct file_region *iter, *trg = NULL;
580 struct list_head *rg = NULL;
581
582 if (regions_needed)
583 *regions_needed = 0;
584
585 /* In this loop, we essentially handle an entry for the range
586 * [last_accounted_offset, iter->from), at every iteration, with some
587 * bounds checking.
588 */
589 list_for_each_entry_safe(iter, trg, head, link) {
590 /* Skip irrelevant regions that start before our range. */
591 if (iter->from < f) {
592 /* If this region ends after the last accounted offset,
593 * then we need to update last_accounted_offset.
594 */
595 if (iter->to > last_accounted_offset)
596 last_accounted_offset = iter->to;
597 continue;
598 }
599
600 /* When we find a region that starts beyond our range, we've
601 * finished.
602 */
603 if (iter->from >= t) {
604 rg = iter->link.prev;
605 break;
606 }
607
608 /* Add an entry for last_accounted_offset -> iter->from, and
609 * update last_accounted_offset.
610 */
611 if (iter->from > last_accounted_offset)
612 add += hugetlb_resv_map_add(resv, iter->link.prev,
613 last_accounted_offset,
614 iter->from, h, h_cg,
615 regions_needed);
616
617 last_accounted_offset = iter->to;
618 }
619
620 /* Handle the case where our range extends beyond
621 * last_accounted_offset.
622 */
623 if (!rg)
624 rg = head->prev;
625 if (last_accounted_offset < t)
626 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
627 t, h, h_cg, regions_needed);
628
629 return add;
630}
631
632/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
633 */
634static int allocate_file_region_entries(struct resv_map *resv,
635 int regions_needed)
636 __must_hold(&resv->lock)
637{
638 LIST_HEAD(allocated_regions);
639 int to_allocate = 0, i = 0;
640 struct file_region *trg = NULL, *rg = NULL;
641
642 VM_BUG_ON(regions_needed < 0);
643
644 /*
645 * Check for sufficient descriptors in the cache to accommodate
646 * the number of in progress add operations plus regions_needed.
647 *
648 * This is a while loop because when we drop the lock, some other call
649 * to region_add or region_del may have consumed some region_entries,
650 * so we keep looping here until we finally have enough entries for
651 * (adds_in_progress + regions_needed).
652 */
653 while (resv->region_cache_count <
654 (resv->adds_in_progress + regions_needed)) {
655 to_allocate = resv->adds_in_progress + regions_needed -
656 resv->region_cache_count;
657
658 /* At this point, we should have enough entries in the cache
659 * for all the existing adds_in_progress. We should only be
660 * needing to allocate for regions_needed.
661 */
662 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
663
664 spin_unlock(&resv->lock);
665 for (i = 0; i < to_allocate; i++) {
666 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
667 if (!trg)
668 goto out_of_memory;
669 list_add(&trg->link, &allocated_regions);
670 }
671
672 spin_lock(&resv->lock);
673
674 list_splice(&allocated_regions, &resv->region_cache);
675 resv->region_cache_count += to_allocate;
676 }
677
678 return 0;
679
680out_of_memory:
681 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
682 list_del(&rg->link);
683 kfree(rg);
684 }
685 return -ENOMEM;
686}
687
688/*
689 * Add the huge page range represented by [f, t) to the reserve
690 * map. Regions will be taken from the cache to fill in this range.
691 * Sufficient regions should exist in the cache due to the previous
692 * call to region_chg with the same range, but in some cases the cache will not
693 * have sufficient entries due to races with other code doing region_add or
694 * region_del. The extra needed entries will be allocated.
695 *
696 * regions_needed is the out value provided by a previous call to region_chg.
697 *
698 * Return the number of new huge pages added to the map. This number is greater
699 * than or equal to zero. If file_region entries needed to be allocated for
700 * this operation and we were not able to allocate, it returns -ENOMEM.
701 * region_add of regions of length 1 never allocate file_regions and cannot
702 * fail; region_chg will always allocate at least 1 entry and a region_add for
703 * 1 page will only require at most 1 entry.
704 */
705static long region_add(struct resv_map *resv, long f, long t,
706 long in_regions_needed, struct hstate *h,
707 struct hugetlb_cgroup *h_cg)
708{
709 long add = 0, actual_regions_needed = 0;
710
711 spin_lock(&resv->lock);
712retry:
713
714 /* Count how many regions are actually needed to execute this add. */
715 add_reservation_in_range(resv, f, t, NULL, NULL,
716 &actual_regions_needed);
717
718 /*
719 * Check for sufficient descriptors in the cache to accommodate
720 * this add operation. Note that actual_regions_needed may be greater
721 * than in_regions_needed, as the resv_map may have been modified since
722 * the region_chg call. In this case, we need to make sure that we
723 * allocate extra entries, such that we have enough for all the
724 * existing adds_in_progress, plus the excess needed for this
725 * operation.
726 */
727 if (actual_regions_needed > in_regions_needed &&
728 resv->region_cache_count <
729 resv->adds_in_progress +
730 (actual_regions_needed - in_regions_needed)) {
731 /* region_add operation of range 1 should never need to
732 * allocate file_region entries.
733 */
734 VM_BUG_ON(t - f <= 1);
735
736 if (allocate_file_region_entries(
737 resv, actual_regions_needed - in_regions_needed)) {
738 return -ENOMEM;
739 }
740
741 goto retry;
742 }
743
744 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
745
746 resv->adds_in_progress -= in_regions_needed;
747
748 spin_unlock(&resv->lock);
749 return add;
750}
751
752/*
753 * Examine the existing reserve map and determine how many
754 * huge pages in the specified range [f, t) are NOT currently
755 * represented. This routine is called before a subsequent
756 * call to region_add that will actually modify the reserve
757 * map to add the specified range [f, t). region_chg does
758 * not change the number of huge pages represented by the
759 * map. A number of new file_region structures is added to the cache as a
760 * placeholder, for the subsequent region_add call to use. At least 1
761 * file_region structure is added.
762 *
763 * out_regions_needed is the number of regions added to the
764 * resv->adds_in_progress. This value needs to be provided to a follow up call
765 * to region_add or region_abort for proper accounting.
766 *
767 * Returns the number of huge pages that need to be added to the existing
768 * reservation map for the range [f, t). This number is greater or equal to
769 * zero. -ENOMEM is returned if a new file_region structure or cache entry
770 * is needed and can not be allocated.
771 */
772static long region_chg(struct resv_map *resv, long f, long t,
773 long *out_regions_needed)
774{
775 long chg = 0;
776
777 spin_lock(&resv->lock);
778
779 /* Count how many hugepages in this range are NOT represented. */
780 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
781 out_regions_needed);
782
783 if (*out_regions_needed == 0)
784 *out_regions_needed = 1;
785
786 if (allocate_file_region_entries(resv, *out_regions_needed))
787 return -ENOMEM;
788
789 resv->adds_in_progress += *out_regions_needed;
790
791 spin_unlock(&resv->lock);
792 return chg;
793}
794
795/*
796 * Abort the in progress add operation. The adds_in_progress field
797 * of the resv_map keeps track of the operations in progress between
798 * calls to region_chg and region_add. Operations are sometimes
799 * aborted after the call to region_chg. In such cases, region_abort
800 * is called to decrement the adds_in_progress counter. regions_needed
801 * is the value returned by the region_chg call, it is used to decrement
802 * the adds_in_progress counter.
803 *
804 * NOTE: The range arguments [f, t) are not needed or used in this
805 * routine. They are kept to make reading the calling code easier as
806 * arguments will match the associated region_chg call.
807 */
808static void region_abort(struct resv_map *resv, long f, long t,
809 long regions_needed)
810{
811 spin_lock(&resv->lock);
812 VM_BUG_ON(!resv->region_cache_count);
813 resv->adds_in_progress -= regions_needed;
814 spin_unlock(&resv->lock);
815}
816
817/*
818 * Delete the specified range [f, t) from the reserve map. If the
819 * t parameter is LONG_MAX, this indicates that ALL regions after f
820 * should be deleted. Locate the regions which intersect [f, t)
821 * and either trim, delete or split the existing regions.
822 *
823 * Returns the number of huge pages deleted from the reserve map.
824 * In the normal case, the return value is zero or more. In the
825 * case where a region must be split, a new region descriptor must
826 * be allocated. If the allocation fails, -ENOMEM will be returned.
827 * NOTE: If the parameter t == LONG_MAX, then we will never split
828 * a region and possibly return -ENOMEM. Callers specifying
829 * t == LONG_MAX do not need to check for -ENOMEM error.
830 */
831static long region_del(struct resv_map *resv, long f, long t)
832{
833 struct list_head *head = &resv->regions;
834 struct file_region *rg, *trg;
835 struct file_region *nrg = NULL;
836 long del = 0;
837
838retry:
839 spin_lock(&resv->lock);
840 list_for_each_entry_safe(rg, trg, head, link) {
841 /*
842 * Skip regions before the range to be deleted. file_region
843 * ranges are normally of the form [from, to). However, there
844 * may be a "placeholder" entry in the map which is of the form
845 * (from, to) with from == to. Check for placeholder entries
846 * at the beginning of the range to be deleted.
847 */
848 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
849 continue;
850
851 if (rg->from >= t)
852 break;
853
854 if (f > rg->from && t < rg->to) { /* Must split region */
855 /*
856 * Check for an entry in the cache before dropping
857 * lock and attempting allocation.
858 */
859 if (!nrg &&
860 resv->region_cache_count > resv->adds_in_progress) {
861 nrg = list_first_entry(&resv->region_cache,
862 struct file_region,
863 link);
864 list_del(&nrg->link);
865 resv->region_cache_count--;
866 }
867
868 if (!nrg) {
869 spin_unlock(&resv->lock);
870 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
871 if (!nrg)
872 return -ENOMEM;
873 goto retry;
874 }
875
876 del += t - f;
877 hugetlb_cgroup_uncharge_file_region(
878 resv, rg, t - f, false);
879
880 /* New entry for end of split region */
881 nrg->from = t;
882 nrg->to = rg->to;
883
884 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
885
886 INIT_LIST_HEAD(&nrg->link);
887
888 /* Original entry is trimmed */
889 rg->to = f;
890
891 list_add(&nrg->link, &rg->link);
892 nrg = NULL;
893 break;
894 }
895
896 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
897 del += rg->to - rg->from;
898 hugetlb_cgroup_uncharge_file_region(resv, rg,
899 rg->to - rg->from, true);
900 list_del(&rg->link);
901 kfree(rg);
902 continue;
903 }
904
905 if (f <= rg->from) { /* Trim beginning of region */
906 hugetlb_cgroup_uncharge_file_region(resv, rg,
907 t - rg->from, false);
908
909 del += t - rg->from;
910 rg->from = t;
911 } else { /* Trim end of region */
912 hugetlb_cgroup_uncharge_file_region(resv, rg,
913 rg->to - f, false);
914
915 del += rg->to - f;
916 rg->to = f;
917 }
918 }
919
920 spin_unlock(&resv->lock);
921 kfree(nrg);
922 return del;
923}
924
925/*
926 * A rare out of memory error was encountered which prevented removal of
927 * the reserve map region for a page. The huge page itself was free'ed
928 * and removed from the page cache. This routine will adjust the subpool
929 * usage count, and the global reserve count if needed. By incrementing
930 * these counts, the reserve map entry which could not be deleted will
931 * appear as a "reserved" entry instead of simply dangling with incorrect
932 * counts.
933 */
934void hugetlb_fix_reserve_counts(struct inode *inode)
935{
936 struct hugepage_subpool *spool = subpool_inode(inode);
937 long rsv_adjust;
938 bool reserved = false;
939
940 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
941 if (rsv_adjust > 0) {
942 struct hstate *h = hstate_inode(inode);
943
944 if (!hugetlb_acct_memory(h, 1))
945 reserved = true;
946 } else if (!rsv_adjust) {
947 reserved = true;
948 }
949
950 if (!reserved)
951 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
952}
953
954/*
955 * Count and return the number of huge pages in the reserve map
956 * that intersect with the range [f, t).
957 */
958static long region_count(struct resv_map *resv, long f, long t)
959{
960 struct list_head *head = &resv->regions;
961 struct file_region *rg;
962 long chg = 0;
963
964 spin_lock(&resv->lock);
965 /* Locate each segment we overlap with, and count that overlap. */
966 list_for_each_entry(rg, head, link) {
967 long seg_from;
968 long seg_to;
969
970 if (rg->to <= f)
971 continue;
972 if (rg->from >= t)
973 break;
974
975 seg_from = max(rg->from, f);
976 seg_to = min(rg->to, t);
977
978 chg += seg_to - seg_from;
979 }
980 spin_unlock(&resv->lock);
981
982 return chg;
983}
984
985/*
986 * Convert the address within this vma to the page offset within
987 * the mapping, huge page units here.
988 */
989static pgoff_t vma_hugecache_offset(struct hstate *h,
990 struct vm_area_struct *vma, unsigned long address)
991{
992 return ((address - vma->vm_start) >> huge_page_shift(h)) +
993 (vma->vm_pgoff >> huge_page_order(h));
994}
995
996/**
997 * vma_kernel_pagesize - Page size granularity for this VMA.
998 * @vma: The user mapping.
999 *
1000 * Folios in this VMA will be aligned to, and at least the size of the
1001 * number of bytes returned by this function.
1002 *
1003 * Return: The default size of the folios allocated when backing a VMA.
1004 */
1005unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1006{
1007 if (vma->vm_ops && vma->vm_ops->pagesize)
1008 return vma->vm_ops->pagesize(vma);
1009 return PAGE_SIZE;
1010}
1011EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1012
1013/*
1014 * Return the page size being used by the MMU to back a VMA. In the majority
1015 * of cases, the page size used by the kernel matches the MMU size. On
1016 * architectures where it differs, an architecture-specific 'strong'
1017 * version of this symbol is required.
1018 */
1019__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1020{
1021 return vma_kernel_pagesize(vma);
1022}
1023
1024/*
1025 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
1026 * bits of the reservation map pointer, which are always clear due to
1027 * alignment.
1028 */
1029#define HPAGE_RESV_OWNER (1UL << 0)
1030#define HPAGE_RESV_UNMAPPED (1UL << 1)
1031#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1032
1033/*
1034 * These helpers are used to track how many pages are reserved for
1035 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1036 * is guaranteed to have their future faults succeed.
1037 *
1038 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1039 * the reserve counters are updated with the hugetlb_lock held. It is safe
1040 * to reset the VMA at fork() time as it is not in use yet and there is no
1041 * chance of the global counters getting corrupted as a result of the values.
1042 *
1043 * The private mapping reservation is represented in a subtly different
1044 * manner to a shared mapping. A shared mapping has a region map associated
1045 * with the underlying file, this region map represents the backing file
1046 * pages which have ever had a reservation assigned which this persists even
1047 * after the page is instantiated. A private mapping has a region map
1048 * associated with the original mmap which is attached to all VMAs which
1049 * reference it, this region map represents those offsets which have consumed
1050 * reservation ie. where pages have been instantiated.
1051 */
1052static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1053{
1054 return (unsigned long)vma->vm_private_data;
1055}
1056
1057static void set_vma_private_data(struct vm_area_struct *vma,
1058 unsigned long value)
1059{
1060 vma->vm_private_data = (void *)value;
1061}
1062
1063static void
1064resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1065 struct hugetlb_cgroup *h_cg,
1066 struct hstate *h)
1067{
1068#ifdef CONFIG_CGROUP_HUGETLB
1069 if (!h_cg || !h) {
1070 resv_map->reservation_counter = NULL;
1071 resv_map->pages_per_hpage = 0;
1072 resv_map->css = NULL;
1073 } else {
1074 resv_map->reservation_counter =
1075 &h_cg->rsvd_hugepage[hstate_index(h)];
1076 resv_map->pages_per_hpage = pages_per_huge_page(h);
1077 resv_map->css = &h_cg->css;
1078 }
1079#endif
1080}
1081
1082struct resv_map *resv_map_alloc(void)
1083{
1084 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1085 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1086
1087 if (!resv_map || !rg) {
1088 kfree(resv_map);
1089 kfree(rg);
1090 return NULL;
1091 }
1092
1093 kref_init(&resv_map->refs);
1094 spin_lock_init(&resv_map->lock);
1095 INIT_LIST_HEAD(&resv_map->regions);
1096 init_rwsem(&resv_map->rw_sema);
1097
1098 resv_map->adds_in_progress = 0;
1099 /*
1100 * Initialize these to 0. On shared mappings, 0's here indicate these
1101 * fields don't do cgroup accounting. On private mappings, these will be
1102 * re-initialized to the proper values, to indicate that hugetlb cgroup
1103 * reservations are to be un-charged from here.
1104 */
1105 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1106
1107 INIT_LIST_HEAD(&resv_map->region_cache);
1108 list_add(&rg->link, &resv_map->region_cache);
1109 resv_map->region_cache_count = 1;
1110
1111 return resv_map;
1112}
1113
1114void resv_map_release(struct kref *ref)
1115{
1116 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1117 struct list_head *head = &resv_map->region_cache;
1118 struct file_region *rg, *trg;
1119
1120 /* Clear out any active regions before we release the map. */
1121 region_del(resv_map, 0, LONG_MAX);
1122
1123 /* ... and any entries left in the cache */
1124 list_for_each_entry_safe(rg, trg, head, link) {
1125 list_del(&rg->link);
1126 kfree(rg);
1127 }
1128
1129 VM_BUG_ON(resv_map->adds_in_progress);
1130
1131 kfree(resv_map);
1132}
1133
1134static inline struct resv_map *inode_resv_map(struct inode *inode)
1135{
1136 /*
1137 * At inode evict time, i_mapping may not point to the original
1138 * address space within the inode. This original address space
1139 * contains the pointer to the resv_map. So, always use the
1140 * address space embedded within the inode.
1141 * The VERY common case is inode->mapping == &inode->i_data but,
1142 * this may not be true for device special inodes.
1143 */
1144 return (struct resv_map *)(&inode->i_data)->i_private_data;
1145}
1146
1147static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1148{
1149 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1150 if (vma->vm_flags & VM_MAYSHARE) {
1151 struct address_space *mapping = vma->vm_file->f_mapping;
1152 struct inode *inode = mapping->host;
1153
1154 return inode_resv_map(inode);
1155
1156 } else {
1157 return (struct resv_map *)(get_vma_private_data(vma) &
1158 ~HPAGE_RESV_MASK);
1159 }
1160}
1161
1162static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1163{
1164 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1165 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1166
1167 set_vma_private_data(vma, (unsigned long)map);
1168}
1169
1170static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1171{
1172 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1173 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1174
1175 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1176}
1177
1178static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1179{
1180 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1181
1182 return (get_vma_private_data(vma) & flag) != 0;
1183}
1184
1185bool __vma_private_lock(struct vm_area_struct *vma)
1186{
1187 return !(vma->vm_flags & VM_MAYSHARE) &&
1188 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1189 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1190}
1191
1192void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1193{
1194 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1195 /*
1196 * Clear vm_private_data
1197 * - For shared mappings this is a per-vma semaphore that may be
1198 * allocated in a subsequent call to hugetlb_vm_op_open.
1199 * Before clearing, make sure pointer is not associated with vma
1200 * as this will leak the structure. This is the case when called
1201 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1202 * been called to allocate a new structure.
1203 * - For MAP_PRIVATE mappings, this is the reserve map which does
1204 * not apply to children. Faults generated by the children are
1205 * not guaranteed to succeed, even if read-only.
1206 */
1207 if (vma->vm_flags & VM_MAYSHARE) {
1208 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1209
1210 if (vma_lock && vma_lock->vma != vma)
1211 vma->vm_private_data = NULL;
1212 } else
1213 vma->vm_private_data = NULL;
1214}
1215
1216/*
1217 * Reset and decrement one ref on hugepage private reservation.
1218 * Called with mm->mmap_lock writer semaphore held.
1219 * This function should be only used by move_vma() and operate on
1220 * same sized vma. It should never come here with last ref on the
1221 * reservation.
1222 */
1223void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1224{
1225 /*
1226 * Clear the old hugetlb private page reservation.
1227 * It has already been transferred to new_vma.
1228 *
1229 * During a mremap() operation of a hugetlb vma we call move_vma()
1230 * which copies vma into new_vma and unmaps vma. After the copy
1231 * operation both new_vma and vma share a reference to the resv_map
1232 * struct, and at that point vma is about to be unmapped. We don't
1233 * want to return the reservation to the pool at unmap of vma because
1234 * the reservation still lives on in new_vma, so simply decrement the
1235 * ref here and remove the resv_map reference from this vma.
1236 */
1237 struct resv_map *reservations = vma_resv_map(vma);
1238
1239 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1240 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1241 kref_put(&reservations->refs, resv_map_release);
1242 }
1243
1244 hugetlb_dup_vma_private(vma);
1245}
1246
1247/* Returns true if the VMA has associated reserve pages */
1248static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1249{
1250 if (vma->vm_flags & VM_NORESERVE) {
1251 /*
1252 * This address is already reserved by other process(chg == 0),
1253 * so, we should decrement reserved count. Without decrementing,
1254 * reserve count remains after releasing inode, because this
1255 * allocated page will go into page cache and is regarded as
1256 * coming from reserved pool in releasing step. Currently, we
1257 * don't have any other solution to deal with this situation
1258 * properly, so add work-around here.
1259 */
1260 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1261 return true;
1262 else
1263 return false;
1264 }
1265
1266 /* Shared mappings always use reserves */
1267 if (vma->vm_flags & VM_MAYSHARE) {
1268 /*
1269 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1270 * be a region map for all pages. The only situation where
1271 * there is no region map is if a hole was punched via
1272 * fallocate. In this case, there really are no reserves to
1273 * use. This situation is indicated if chg != 0.
1274 */
1275 if (chg)
1276 return false;
1277 else
1278 return true;
1279 }
1280
1281 /*
1282 * Only the process that called mmap() has reserves for
1283 * private mappings.
1284 */
1285 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1286 /*
1287 * Like the shared case above, a hole punch or truncate
1288 * could have been performed on the private mapping.
1289 * Examine the value of chg to determine if reserves
1290 * actually exist or were previously consumed.
1291 * Very Subtle - The value of chg comes from a previous
1292 * call to vma_needs_reserves(). The reserve map for
1293 * private mappings has different (opposite) semantics
1294 * than that of shared mappings. vma_needs_reserves()
1295 * has already taken this difference in semantics into
1296 * account. Therefore, the meaning of chg is the same
1297 * as in the shared case above. Code could easily be
1298 * combined, but keeping it separate draws attention to
1299 * subtle differences.
1300 */
1301 if (chg)
1302 return false;
1303 else
1304 return true;
1305 }
1306
1307 return false;
1308}
1309
1310static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1311{
1312 int nid = folio_nid(folio);
1313
1314 lockdep_assert_held(&hugetlb_lock);
1315 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1316
1317 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1318 h->free_huge_pages++;
1319 h->free_huge_pages_node[nid]++;
1320 folio_set_hugetlb_freed(folio);
1321}
1322
1323static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1324 int nid)
1325{
1326 struct folio *folio;
1327 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1328
1329 lockdep_assert_held(&hugetlb_lock);
1330 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1331 if (pin && !folio_is_longterm_pinnable(folio))
1332 continue;
1333
1334 if (folio_test_hwpoison(folio))
1335 continue;
1336
1337 list_move(&folio->lru, &h->hugepage_activelist);
1338 folio_ref_unfreeze(folio, 1);
1339 folio_clear_hugetlb_freed(folio);
1340 h->free_huge_pages--;
1341 h->free_huge_pages_node[nid]--;
1342 return folio;
1343 }
1344
1345 return NULL;
1346}
1347
1348static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1349 int nid, nodemask_t *nmask)
1350{
1351 unsigned int cpuset_mems_cookie;
1352 struct zonelist *zonelist;
1353 struct zone *zone;
1354 struct zoneref *z;
1355 int node = NUMA_NO_NODE;
1356
1357 zonelist = node_zonelist(nid, gfp_mask);
1358
1359retry_cpuset:
1360 cpuset_mems_cookie = read_mems_allowed_begin();
1361 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1362 struct folio *folio;
1363
1364 if (!cpuset_zone_allowed(zone, gfp_mask))
1365 continue;
1366 /*
1367 * no need to ask again on the same node. Pool is node rather than
1368 * zone aware
1369 */
1370 if (zone_to_nid(zone) == node)
1371 continue;
1372 node = zone_to_nid(zone);
1373
1374 folio = dequeue_hugetlb_folio_node_exact(h, node);
1375 if (folio)
1376 return folio;
1377 }
1378 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1379 goto retry_cpuset;
1380
1381 return NULL;
1382}
1383
1384static unsigned long available_huge_pages(struct hstate *h)
1385{
1386 return h->free_huge_pages - h->resv_huge_pages;
1387}
1388
1389static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1390 struct vm_area_struct *vma,
1391 unsigned long address, int avoid_reserve,
1392 long chg)
1393{
1394 struct folio *folio = NULL;
1395 struct mempolicy *mpol;
1396 gfp_t gfp_mask;
1397 nodemask_t *nodemask;
1398 int nid;
1399
1400 /*
1401 * A child process with MAP_PRIVATE mappings created by their parent
1402 * have no page reserves. This check ensures that reservations are
1403 * not "stolen". The child may still get SIGKILLed
1404 */
1405 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1406 goto err;
1407
1408 /* If reserves cannot be used, ensure enough pages are in the pool */
1409 if (avoid_reserve && !available_huge_pages(h))
1410 goto err;
1411
1412 gfp_mask = htlb_alloc_mask(h);
1413 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1414
1415 if (mpol_is_preferred_many(mpol)) {
1416 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1417 nid, nodemask);
1418
1419 /* Fallback to all nodes if page==NULL */
1420 nodemask = NULL;
1421 }
1422
1423 if (!folio)
1424 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1425 nid, nodemask);
1426
1427 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1428 folio_set_hugetlb_restore_reserve(folio);
1429 h->resv_huge_pages--;
1430 }
1431
1432 mpol_cond_put(mpol);
1433 return folio;
1434
1435err:
1436 return NULL;
1437}
1438
1439/*
1440 * common helper functions for hstate_next_node_to_{alloc|free}.
1441 * We may have allocated or freed a huge page based on a different
1442 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1443 * be outside of *nodes_allowed. Ensure that we use an allowed
1444 * node for alloc or free.
1445 */
1446static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1447{
1448 nid = next_node_in(nid, *nodes_allowed);
1449 VM_BUG_ON(nid >= MAX_NUMNODES);
1450
1451 return nid;
1452}
1453
1454static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1455{
1456 if (!node_isset(nid, *nodes_allowed))
1457 nid = next_node_allowed(nid, nodes_allowed);
1458 return nid;
1459}
1460
1461/*
1462 * returns the previously saved node ["this node"] from which to
1463 * allocate a persistent huge page for the pool and advance the
1464 * next node from which to allocate, handling wrap at end of node
1465 * mask.
1466 */
1467static int hstate_next_node_to_alloc(struct hstate *h,
1468 nodemask_t *nodes_allowed)
1469{
1470 int nid;
1471
1472 VM_BUG_ON(!nodes_allowed);
1473
1474 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1475 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1476
1477 return nid;
1478}
1479
1480/*
1481 * helper for remove_pool_hugetlb_folio() - return the previously saved
1482 * node ["this node"] from which to free a huge page. Advance the
1483 * next node id whether or not we find a free huge page to free so
1484 * that the next attempt to free addresses the next node.
1485 */
1486static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1487{
1488 int nid;
1489
1490 VM_BUG_ON(!nodes_allowed);
1491
1492 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1493 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1494
1495 return nid;
1496}
1497
1498#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1499 for (nr_nodes = nodes_weight(*mask); \
1500 nr_nodes > 0 && \
1501 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1502 nr_nodes--)
1503
1504#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1505 for (nr_nodes = nodes_weight(*mask); \
1506 nr_nodes > 0 && \
1507 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1508 nr_nodes--)
1509
1510/* used to demote non-gigantic_huge pages as well */
1511static void __destroy_compound_gigantic_folio(struct folio *folio,
1512 unsigned int order, bool demote)
1513{
1514 int i;
1515 int nr_pages = 1 << order;
1516 struct page *p;
1517
1518 atomic_set(&folio->_entire_mapcount, 0);
1519 atomic_set(&folio->_nr_pages_mapped, 0);
1520 atomic_set(&folio->_pincount, 0);
1521
1522 for (i = 1; i < nr_pages; i++) {
1523 p = folio_page(folio, i);
1524 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1525 p->mapping = NULL;
1526 clear_compound_head(p);
1527 if (!demote)
1528 set_page_refcounted(p);
1529 }
1530
1531 __folio_clear_head(folio);
1532}
1533
1534static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1535 unsigned int order)
1536{
1537 __destroy_compound_gigantic_folio(folio, order, true);
1538}
1539
1540#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1541static void destroy_compound_gigantic_folio(struct folio *folio,
1542 unsigned int order)
1543{
1544 __destroy_compound_gigantic_folio(folio, order, false);
1545}
1546
1547static void free_gigantic_folio(struct folio *folio, unsigned int order)
1548{
1549 /*
1550 * If the page isn't allocated using the cma allocator,
1551 * cma_release() returns false.
1552 */
1553#ifdef CONFIG_CMA
1554 int nid = folio_nid(folio);
1555
1556 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1557 return;
1558#endif
1559
1560 free_contig_range(folio_pfn(folio), 1 << order);
1561}
1562
1563#ifdef CONFIG_CONTIG_ALLOC
1564static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1565 int nid, nodemask_t *nodemask)
1566{
1567 struct page *page;
1568 unsigned long nr_pages = pages_per_huge_page(h);
1569 if (nid == NUMA_NO_NODE)
1570 nid = numa_mem_id();
1571
1572#ifdef CONFIG_CMA
1573 {
1574 int node;
1575
1576 if (hugetlb_cma[nid]) {
1577 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1578 huge_page_order(h), true);
1579 if (page)
1580 return page_folio(page);
1581 }
1582
1583 if (!(gfp_mask & __GFP_THISNODE)) {
1584 for_each_node_mask(node, *nodemask) {
1585 if (node == nid || !hugetlb_cma[node])
1586 continue;
1587
1588 page = cma_alloc(hugetlb_cma[node], nr_pages,
1589 huge_page_order(h), true);
1590 if (page)
1591 return page_folio(page);
1592 }
1593 }
1594 }
1595#endif
1596
1597 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1598 return page ? page_folio(page) : NULL;
1599}
1600
1601#else /* !CONFIG_CONTIG_ALLOC */
1602static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1603 int nid, nodemask_t *nodemask)
1604{
1605 return NULL;
1606}
1607#endif /* CONFIG_CONTIG_ALLOC */
1608
1609#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1610static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1611 int nid, nodemask_t *nodemask)
1612{
1613 return NULL;
1614}
1615static inline void free_gigantic_folio(struct folio *folio,
1616 unsigned int order) { }
1617static inline void destroy_compound_gigantic_folio(struct folio *folio,
1618 unsigned int order) { }
1619#endif
1620
1621static inline void __clear_hugetlb_destructor(struct hstate *h,
1622 struct folio *folio)
1623{
1624 lockdep_assert_held(&hugetlb_lock);
1625
1626 folio_clear_hugetlb(folio);
1627}
1628
1629/*
1630 * Remove hugetlb folio from lists.
1631 * If vmemmap exists for the folio, update dtor so that the folio appears
1632 * as just a compound page. Otherwise, wait until after allocating vmemmap
1633 * to update dtor.
1634 *
1635 * A reference is held on the folio, except in the case of demote.
1636 *
1637 * Must be called with hugetlb lock held.
1638 */
1639static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1640 bool adjust_surplus,
1641 bool demote)
1642{
1643 int nid = folio_nid(folio);
1644
1645 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1646 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1647
1648 lockdep_assert_held(&hugetlb_lock);
1649 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1650 return;
1651
1652 list_del(&folio->lru);
1653
1654 if (folio_test_hugetlb_freed(folio)) {
1655 h->free_huge_pages--;
1656 h->free_huge_pages_node[nid]--;
1657 }
1658 if (adjust_surplus) {
1659 h->surplus_huge_pages--;
1660 h->surplus_huge_pages_node[nid]--;
1661 }
1662
1663 /*
1664 * We can only clear the hugetlb destructor after allocating vmemmap
1665 * pages. Otherwise, someone (memory error handling) may try to write
1666 * to tail struct pages.
1667 */
1668 if (!folio_test_hugetlb_vmemmap_optimized(folio))
1669 __clear_hugetlb_destructor(h, folio);
1670
1671 /*
1672 * In the case of demote we do not ref count the page as it will soon
1673 * be turned into a page of smaller size.
1674 */
1675 if (!demote)
1676 folio_ref_unfreeze(folio, 1);
1677
1678 h->nr_huge_pages--;
1679 h->nr_huge_pages_node[nid]--;
1680}
1681
1682static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1683 bool adjust_surplus)
1684{
1685 __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1686}
1687
1688static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1689 bool adjust_surplus)
1690{
1691 __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1692}
1693
1694static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1695 bool adjust_surplus)
1696{
1697 int zeroed;
1698 int nid = folio_nid(folio);
1699
1700 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1701
1702 lockdep_assert_held(&hugetlb_lock);
1703
1704 INIT_LIST_HEAD(&folio->lru);
1705 h->nr_huge_pages++;
1706 h->nr_huge_pages_node[nid]++;
1707
1708 if (adjust_surplus) {
1709 h->surplus_huge_pages++;
1710 h->surplus_huge_pages_node[nid]++;
1711 }
1712
1713 folio_set_hugetlb(folio);
1714 folio_change_private(folio, NULL);
1715 /*
1716 * We have to set hugetlb_vmemmap_optimized again as above
1717 * folio_change_private(folio, NULL) cleared it.
1718 */
1719 folio_set_hugetlb_vmemmap_optimized(folio);
1720
1721 /*
1722 * This folio is about to be managed by the hugetlb allocator and
1723 * should have no users. Drop our reference, and check for others
1724 * just in case.
1725 */
1726 zeroed = folio_put_testzero(folio);
1727 if (unlikely(!zeroed))
1728 /*
1729 * It is VERY unlikely soneone else has taken a ref
1730 * on the folio. In this case, we simply return as
1731 * free_huge_folio() will be called when this other ref
1732 * is dropped.
1733 */
1734 return;
1735
1736 arch_clear_hugepage_flags(&folio->page);
1737 enqueue_hugetlb_folio(h, folio);
1738}
1739
1740static void __update_and_free_hugetlb_folio(struct hstate *h,
1741 struct folio *folio)
1742{
1743 bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
1744
1745 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1746 return;
1747
1748 /*
1749 * If we don't know which subpages are hwpoisoned, we can't free
1750 * the hugepage, so it's leaked intentionally.
1751 */
1752 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1753 return;
1754
1755 /*
1756 * If folio is not vmemmap optimized (!clear_dtor), then the folio
1757 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio
1758 * can only be passed hugetlb pages and will BUG otherwise.
1759 */
1760 if (clear_dtor && hugetlb_vmemmap_restore_folio(h, folio)) {
1761 spin_lock_irq(&hugetlb_lock);
1762 /*
1763 * If we cannot allocate vmemmap pages, just refuse to free the
1764 * page and put the page back on the hugetlb free list and treat
1765 * as a surplus page.
1766 */
1767 add_hugetlb_folio(h, folio, true);
1768 spin_unlock_irq(&hugetlb_lock);
1769 return;
1770 }
1771
1772 /*
1773 * Move PageHWPoison flag from head page to the raw error pages,
1774 * which makes any healthy subpages reusable.
1775 */
1776 if (unlikely(folio_test_hwpoison(folio)))
1777 folio_clear_hugetlb_hwpoison(folio);
1778
1779 /*
1780 * If vmemmap pages were allocated above, then we need to clear the
1781 * hugetlb destructor under the hugetlb lock.
1782 */
1783 if (clear_dtor) {
1784 spin_lock_irq(&hugetlb_lock);
1785 __clear_hugetlb_destructor(h, folio);
1786 spin_unlock_irq(&hugetlb_lock);
1787 }
1788
1789 /*
1790 * Non-gigantic pages demoted from CMA allocated gigantic pages
1791 * need to be given back to CMA in free_gigantic_folio.
1792 */
1793 if (hstate_is_gigantic(h) ||
1794 hugetlb_cma_folio(folio, huge_page_order(h))) {
1795 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1796 free_gigantic_folio(folio, huge_page_order(h));
1797 } else {
1798 __free_pages(&folio->page, huge_page_order(h));
1799 }
1800}
1801
1802/*
1803 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1804 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1805 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1806 * the vmemmap pages.
1807 *
1808 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1809 * freed and frees them one-by-one. As the page->mapping pointer is going
1810 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1811 * structure of a lockless linked list of huge pages to be freed.
1812 */
1813static LLIST_HEAD(hpage_freelist);
1814
1815static void free_hpage_workfn(struct work_struct *work)
1816{
1817 struct llist_node *node;
1818
1819 node = llist_del_all(&hpage_freelist);
1820
1821 while (node) {
1822 struct folio *folio;
1823 struct hstate *h;
1824
1825 folio = container_of((struct address_space **)node,
1826 struct folio, mapping);
1827 node = node->next;
1828 folio->mapping = NULL;
1829 /*
1830 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1831 * folio_hstate() is going to trigger because a previous call to
1832 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1833 * not use folio_hstate() directly.
1834 */
1835 h = size_to_hstate(folio_size(folio));
1836
1837 __update_and_free_hugetlb_folio(h, folio);
1838
1839 cond_resched();
1840 }
1841}
1842static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1843
1844static inline void flush_free_hpage_work(struct hstate *h)
1845{
1846 if (hugetlb_vmemmap_optimizable(h))
1847 flush_work(&free_hpage_work);
1848}
1849
1850static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1851 bool atomic)
1852{
1853 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1854 __update_and_free_hugetlb_folio(h, folio);
1855 return;
1856 }
1857
1858 /*
1859 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1860 *
1861 * Only call schedule_work() if hpage_freelist is previously
1862 * empty. Otherwise, schedule_work() had been called but the workfn
1863 * hasn't retrieved the list yet.
1864 */
1865 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1866 schedule_work(&free_hpage_work);
1867}
1868
1869static void bulk_vmemmap_restore_error(struct hstate *h,
1870 struct list_head *folio_list,
1871 struct list_head *non_hvo_folios)
1872{
1873 struct folio *folio, *t_folio;
1874
1875 if (!list_empty(non_hvo_folios)) {
1876 /*
1877 * Free any restored hugetlb pages so that restore of the
1878 * entire list can be retried.
1879 * The idea is that in the common case of ENOMEM errors freeing
1880 * hugetlb pages with vmemmap we will free up memory so that we
1881 * can allocate vmemmap for more hugetlb pages.
1882 */
1883 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1884 list_del(&folio->lru);
1885 spin_lock_irq(&hugetlb_lock);
1886 __clear_hugetlb_destructor(h, folio);
1887 spin_unlock_irq(&hugetlb_lock);
1888 update_and_free_hugetlb_folio(h, folio, false);
1889 cond_resched();
1890 }
1891 } else {
1892 /*
1893 * In the case where there are no folios which can be
1894 * immediately freed, we loop through the list trying to restore
1895 * vmemmap individually in the hope that someone elsewhere may
1896 * have done something to cause success (such as freeing some
1897 * memory). If unable to restore a hugetlb page, the hugetlb
1898 * page is made a surplus page and removed from the list.
1899 * If are able to restore vmemmap and free one hugetlb page, we
1900 * quit processing the list to retry the bulk operation.
1901 */
1902 list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1903 if (hugetlb_vmemmap_restore_folio(h, folio)) {
1904 list_del(&folio->lru);
1905 spin_lock_irq(&hugetlb_lock);
1906 add_hugetlb_folio(h, folio, true);
1907 spin_unlock_irq(&hugetlb_lock);
1908 } else {
1909 list_del(&folio->lru);
1910 spin_lock_irq(&hugetlb_lock);
1911 __clear_hugetlb_destructor(h, folio);
1912 spin_unlock_irq(&hugetlb_lock);
1913 update_and_free_hugetlb_folio(h, folio, false);
1914 cond_resched();
1915 break;
1916 }
1917 }
1918}
1919
1920static void update_and_free_pages_bulk(struct hstate *h,
1921 struct list_head *folio_list)
1922{
1923 long ret;
1924 struct folio *folio, *t_folio;
1925 LIST_HEAD(non_hvo_folios);
1926
1927 /*
1928 * First allocate required vmemmmap (if necessary) for all folios.
1929 * Carefully handle errors and free up any available hugetlb pages
1930 * in an effort to make forward progress.
1931 */
1932retry:
1933 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1934 if (ret < 0) {
1935 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1936 goto retry;
1937 }
1938
1939 /*
1940 * At this point, list should be empty, ret should be >= 0 and there
1941 * should only be pages on the non_hvo_folios list.
1942 * Do note that the non_hvo_folios list could be empty.
1943 * Without HVO enabled, ret will be 0 and there is no need to call
1944 * __clear_hugetlb_destructor as this was done previously.
1945 */
1946 VM_WARN_ON(!list_empty(folio_list));
1947 VM_WARN_ON(ret < 0);
1948 if (!list_empty(&non_hvo_folios) && ret) {
1949 spin_lock_irq(&hugetlb_lock);
1950 list_for_each_entry(folio, &non_hvo_folios, lru)
1951 __clear_hugetlb_destructor(h, folio);
1952 spin_unlock_irq(&hugetlb_lock);
1953 }
1954
1955 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1956 update_and_free_hugetlb_folio(h, folio, false);
1957 cond_resched();
1958 }
1959}
1960
1961struct hstate *size_to_hstate(unsigned long size)
1962{
1963 struct hstate *h;
1964
1965 for_each_hstate(h) {
1966 if (huge_page_size(h) == size)
1967 return h;
1968 }
1969 return NULL;
1970}
1971
1972void free_huge_folio(struct folio *folio)
1973{
1974 /*
1975 * Can't pass hstate in here because it is called from the
1976 * compound page destructor.
1977 */
1978 struct hstate *h = folio_hstate(folio);
1979 int nid = folio_nid(folio);
1980 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1981 bool restore_reserve;
1982 unsigned long flags;
1983
1984 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1985 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1986
1987 hugetlb_set_folio_subpool(folio, NULL);
1988 if (folio_test_anon(folio))
1989 __ClearPageAnonExclusive(&folio->page);
1990 folio->mapping = NULL;
1991 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1992 folio_clear_hugetlb_restore_reserve(folio);
1993
1994 /*
1995 * If HPageRestoreReserve was set on page, page allocation consumed a
1996 * reservation. If the page was associated with a subpool, there
1997 * would have been a page reserved in the subpool before allocation
1998 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1999 * reservation, do not call hugepage_subpool_put_pages() as this will
2000 * remove the reserved page from the subpool.
2001 */
2002 if (!restore_reserve) {
2003 /*
2004 * A return code of zero implies that the subpool will be
2005 * under its minimum size if the reservation is not restored
2006 * after page is free. Therefore, force restore_reserve
2007 * operation.
2008 */
2009 if (hugepage_subpool_put_pages(spool, 1) == 0)
2010 restore_reserve = true;
2011 }
2012
2013 spin_lock_irqsave(&hugetlb_lock, flags);
2014 folio_clear_hugetlb_migratable(folio);
2015 hugetlb_cgroup_uncharge_folio(hstate_index(h),
2016 pages_per_huge_page(h), folio);
2017 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
2018 pages_per_huge_page(h), folio);
2019 mem_cgroup_uncharge(folio);
2020 if (restore_reserve)
2021 h->resv_huge_pages++;
2022
2023 if (folio_test_hugetlb_temporary(folio)) {
2024 remove_hugetlb_folio(h, folio, false);
2025 spin_unlock_irqrestore(&hugetlb_lock, flags);
2026 update_and_free_hugetlb_folio(h, folio, true);
2027 } else if (h->surplus_huge_pages_node[nid]) {
2028 /* remove the page from active list */
2029 remove_hugetlb_folio(h, folio, true);
2030 spin_unlock_irqrestore(&hugetlb_lock, flags);
2031 update_and_free_hugetlb_folio(h, folio, true);
2032 } else {
2033 arch_clear_hugepage_flags(&folio->page);
2034 enqueue_hugetlb_folio(h, folio);
2035 spin_unlock_irqrestore(&hugetlb_lock, flags);
2036 }
2037}
2038
2039/*
2040 * Must be called with the hugetlb lock held
2041 */
2042static void __prep_account_new_huge_page(struct hstate *h, int nid)
2043{
2044 lockdep_assert_held(&hugetlb_lock);
2045 h->nr_huge_pages++;
2046 h->nr_huge_pages_node[nid]++;
2047}
2048
2049static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2050{
2051 folio_set_hugetlb(folio);
2052 INIT_LIST_HEAD(&folio->lru);
2053 hugetlb_set_folio_subpool(folio, NULL);
2054 set_hugetlb_cgroup(folio, NULL);
2055 set_hugetlb_cgroup_rsvd(folio, NULL);
2056}
2057
2058static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2059{
2060 init_new_hugetlb_folio(h, folio);
2061 hugetlb_vmemmap_optimize_folio(h, folio);
2062}
2063
2064static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
2065{
2066 __prep_new_hugetlb_folio(h, folio);
2067 spin_lock_irq(&hugetlb_lock);
2068 __prep_account_new_huge_page(h, nid);
2069 spin_unlock_irq(&hugetlb_lock);
2070}
2071
2072static bool __prep_compound_gigantic_folio(struct folio *folio,
2073 unsigned int order, bool demote)
2074{
2075 int i, j;
2076 int nr_pages = 1 << order;
2077 struct page *p;
2078
2079 __folio_clear_reserved(folio);
2080 for (i = 0; i < nr_pages; i++) {
2081 p = folio_page(folio, i);
2082
2083 /*
2084 * For gigantic hugepages allocated through bootmem at
2085 * boot, it's safer to be consistent with the not-gigantic
2086 * hugepages and clear the PG_reserved bit from all tail pages
2087 * too. Otherwise drivers using get_user_pages() to access tail
2088 * pages may get the reference counting wrong if they see
2089 * PG_reserved set on a tail page (despite the head page not
2090 * having PG_reserved set). Enforcing this consistency between
2091 * head and tail pages allows drivers to optimize away a check
2092 * on the head page when they need know if put_page() is needed
2093 * after get_user_pages().
2094 */
2095 if (i != 0) /* head page cleared above */
2096 __ClearPageReserved(p);
2097 /*
2098 * Subtle and very unlikely
2099 *
2100 * Gigantic 'page allocators' such as memblock or cma will
2101 * return a set of pages with each page ref counted. We need
2102 * to turn this set of pages into a compound page with tail
2103 * page ref counts set to zero. Code such as speculative page
2104 * cache adding could take a ref on a 'to be' tail page.
2105 * We need to respect any increased ref count, and only set
2106 * the ref count to zero if count is currently 1. If count
2107 * is not 1, we return an error. An error return indicates
2108 * the set of pages can not be converted to a gigantic page.
2109 * The caller who allocated the pages should then discard the
2110 * pages using the appropriate free interface.
2111 *
2112 * In the case of demote, the ref count will be zero.
2113 */
2114 if (!demote) {
2115 if (!page_ref_freeze(p, 1)) {
2116 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2117 goto out_error;
2118 }
2119 } else {
2120 VM_BUG_ON_PAGE(page_count(p), p);
2121 }
2122 if (i != 0)
2123 set_compound_head(p, &folio->page);
2124 }
2125 __folio_set_head(folio);
2126 /* we rely on prep_new_hugetlb_folio to set the destructor */
2127 folio_set_order(folio, order);
2128 atomic_set(&folio->_entire_mapcount, -1);
2129 atomic_set(&folio->_nr_pages_mapped, 0);
2130 atomic_set(&folio->_pincount, 0);
2131 return true;
2132
2133out_error:
2134 /* undo page modifications made above */
2135 for (j = 0; j < i; j++) {
2136 p = folio_page(folio, j);
2137 if (j != 0)
2138 clear_compound_head(p);
2139 set_page_refcounted(p);
2140 }
2141 /* need to clear PG_reserved on remaining tail pages */
2142 for (; j < nr_pages; j++) {
2143 p = folio_page(folio, j);
2144 __ClearPageReserved(p);
2145 }
2146 return false;
2147}
2148
2149static bool prep_compound_gigantic_folio(struct folio *folio,
2150 unsigned int order)
2151{
2152 return __prep_compound_gigantic_folio(folio, order, false);
2153}
2154
2155static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2156 unsigned int order)
2157{
2158 return __prep_compound_gigantic_folio(folio, order, true);
2159}
2160
2161/*
2162 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2163 * transparent huge pages. See the PageTransHuge() documentation for more
2164 * details.
2165 */
2166int PageHuge(struct page *page)
2167{
2168 struct folio *folio;
2169
2170 if (!PageCompound(page))
2171 return 0;
2172 folio = page_folio(page);
2173 return folio_test_hugetlb(folio);
2174}
2175EXPORT_SYMBOL_GPL(PageHuge);
2176
2177/*
2178 * Find and lock address space (mapping) in write mode.
2179 *
2180 * Upon entry, the page is locked which means that page_mapping() is
2181 * stable. Due to locking order, we can only trylock_write. If we can
2182 * not get the lock, simply return NULL to caller.
2183 */
2184struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2185{
2186 struct address_space *mapping = page_mapping(hpage);
2187
2188 if (!mapping)
2189 return mapping;
2190
2191 if (i_mmap_trylock_write(mapping))
2192 return mapping;
2193
2194 return NULL;
2195}
2196
2197static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2198 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2199 nodemask_t *node_alloc_noretry)
2200{
2201 int order = huge_page_order(h);
2202 struct page *page;
2203 bool alloc_try_hard = true;
2204 bool retry = true;
2205
2206 /*
2207 * By default we always try hard to allocate the page with
2208 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
2209 * a loop (to adjust global huge page counts) and previous allocation
2210 * failed, do not continue to try hard on the same node. Use the
2211 * node_alloc_noretry bitmap to manage this state information.
2212 */
2213 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2214 alloc_try_hard = false;
2215 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2216 if (alloc_try_hard)
2217 gfp_mask |= __GFP_RETRY_MAYFAIL;
2218 if (nid == NUMA_NO_NODE)
2219 nid = numa_mem_id();
2220retry:
2221 page = __alloc_pages(gfp_mask, order, nid, nmask);
2222
2223 /* Freeze head page */
2224 if (page && !page_ref_freeze(page, 1)) {
2225 __free_pages(page, order);
2226 if (retry) { /* retry once */
2227 retry = false;
2228 goto retry;
2229 }
2230 /* WOW! twice in a row. */
2231 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2232 page = NULL;
2233 }
2234
2235 /*
2236 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2237 * indicates an overall state change. Clear bit so that we resume
2238 * normal 'try hard' allocations.
2239 */
2240 if (node_alloc_noretry && page && !alloc_try_hard)
2241 node_clear(nid, *node_alloc_noretry);
2242
2243 /*
2244 * If we tried hard to get a page but failed, set bit so that
2245 * subsequent attempts will not try as hard until there is an
2246 * overall state change.
2247 */
2248 if (node_alloc_noretry && !page && alloc_try_hard)
2249 node_set(nid, *node_alloc_noretry);
2250
2251 if (!page) {
2252 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2253 return NULL;
2254 }
2255
2256 __count_vm_event(HTLB_BUDDY_PGALLOC);
2257 return page_folio(page);
2258}
2259
2260static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h,
2261 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2262 nodemask_t *node_alloc_noretry)
2263{
2264 struct folio *folio;
2265 bool retry = false;
2266
2267retry:
2268 if (hstate_is_gigantic(h))
2269 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2270 else
2271 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2272 nid, nmask, node_alloc_noretry);
2273 if (!folio)
2274 return NULL;
2275
2276 if (hstate_is_gigantic(h)) {
2277 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2278 /*
2279 * Rare failure to convert pages to compound page.
2280 * Free pages and try again - ONCE!
2281 */
2282 free_gigantic_folio(folio, huge_page_order(h));
2283 if (!retry) {
2284 retry = true;
2285 goto retry;
2286 }
2287 return NULL;
2288 }
2289 }
2290
2291 return folio;
2292}
2293
2294static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2295 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2296 nodemask_t *node_alloc_noretry)
2297{
2298 struct folio *folio;
2299
2300 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2301 node_alloc_noretry);
2302 if (folio)
2303 init_new_hugetlb_folio(h, folio);
2304 return folio;
2305}
2306
2307/*
2308 * Common helper to allocate a fresh hugetlb page. All specific allocators
2309 * should use this function to get new hugetlb pages
2310 *
2311 * Note that returned page is 'frozen': ref count of head page and all tail
2312 * pages is zero.
2313 */
2314static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2315 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2316 nodemask_t *node_alloc_noretry)
2317{
2318 struct folio *folio;
2319
2320 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2321 node_alloc_noretry);
2322 if (!folio)
2323 return NULL;
2324
2325 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2326 return folio;
2327}
2328
2329static void prep_and_add_allocated_folios(struct hstate *h,
2330 struct list_head *folio_list)
2331{
2332 unsigned long flags;
2333 struct folio *folio, *tmp_f;
2334
2335 /* Send list for bulk vmemmap optimization processing */
2336 hugetlb_vmemmap_optimize_folios(h, folio_list);
2337
2338 /* Add all new pool pages to free lists in one lock cycle */
2339 spin_lock_irqsave(&hugetlb_lock, flags);
2340 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2341 __prep_account_new_huge_page(h, folio_nid(folio));
2342 enqueue_hugetlb_folio(h, folio);
2343 }
2344 spin_unlock_irqrestore(&hugetlb_lock, flags);
2345}
2346
2347/*
2348 * Allocates a fresh hugetlb page in a node interleaved manner. The page
2349 * will later be added to the appropriate hugetlb pool.
2350 */
2351static struct folio *alloc_pool_huge_folio(struct hstate *h,
2352 nodemask_t *nodes_allowed,
2353 nodemask_t *node_alloc_noretry)
2354{
2355 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2356 int nr_nodes, node;
2357
2358 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2359 struct folio *folio;
2360
2361 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2362 nodes_allowed, node_alloc_noretry);
2363 if (folio)
2364 return folio;
2365 }
2366
2367 return NULL;
2368}
2369
2370/*
2371 * Remove huge page from pool from next node to free. Attempt to keep
2372 * persistent huge pages more or less balanced over allowed nodes.
2373 * This routine only 'removes' the hugetlb page. The caller must make
2374 * an additional call to free the page to low level allocators.
2375 * Called with hugetlb_lock locked.
2376 */
2377static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2378 nodemask_t *nodes_allowed, bool acct_surplus)
2379{
2380 int nr_nodes, node;
2381 struct folio *folio = NULL;
2382
2383 lockdep_assert_held(&hugetlb_lock);
2384 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2385 /*
2386 * If we're returning unused surplus pages, only examine
2387 * nodes with surplus pages.
2388 */
2389 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2390 !list_empty(&h->hugepage_freelists[node])) {
2391 folio = list_entry(h->hugepage_freelists[node].next,
2392 struct folio, lru);
2393 remove_hugetlb_folio(h, folio, acct_surplus);
2394 break;
2395 }
2396 }
2397
2398 return folio;
2399}
2400
2401/*
2402 * Dissolve a given free hugepage into free buddy pages. This function does
2403 * nothing for in-use hugepages and non-hugepages.
2404 * This function returns values like below:
2405 *
2406 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2407 * when the system is under memory pressure and the feature of
2408 * freeing unused vmemmap pages associated with each hugetlb page
2409 * is enabled.
2410 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2411 * (allocated or reserved.)
2412 * 0: successfully dissolved free hugepages or the page is not a
2413 * hugepage (considered as already dissolved)
2414 */
2415int dissolve_free_huge_page(struct page *page)
2416{
2417 int rc = -EBUSY;
2418 struct folio *folio = page_folio(page);
2419
2420retry:
2421 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2422 if (!folio_test_hugetlb(folio))
2423 return 0;
2424
2425 spin_lock_irq(&hugetlb_lock);
2426 if (!folio_test_hugetlb(folio)) {
2427 rc = 0;
2428 goto out;
2429 }
2430
2431 if (!folio_ref_count(folio)) {
2432 struct hstate *h = folio_hstate(folio);
2433 if (!available_huge_pages(h))
2434 goto out;
2435
2436 /*
2437 * We should make sure that the page is already on the free list
2438 * when it is dissolved.
2439 */
2440 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2441 spin_unlock_irq(&hugetlb_lock);
2442 cond_resched();
2443
2444 /*
2445 * Theoretically, we should return -EBUSY when we
2446 * encounter this race. In fact, we have a chance
2447 * to successfully dissolve the page if we do a
2448 * retry. Because the race window is quite small.
2449 * If we seize this opportunity, it is an optimization
2450 * for increasing the success rate of dissolving page.
2451 */
2452 goto retry;
2453 }
2454
2455 remove_hugetlb_folio(h, folio, false);
2456 h->max_huge_pages--;
2457 spin_unlock_irq(&hugetlb_lock);
2458
2459 /*
2460 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2461 * before freeing the page. update_and_free_hugtlb_folio will fail to
2462 * free the page if it can not allocate required vmemmap. We
2463 * need to adjust max_huge_pages if the page is not freed.
2464 * Attempt to allocate vmemmmap here so that we can take
2465 * appropriate action on failure.
2466 *
2467 * The folio_test_hugetlb check here is because
2468 * remove_hugetlb_folio will clear hugetlb folio flag for
2469 * non-vmemmap optimized hugetlb folios.
2470 */
2471 if (folio_test_hugetlb(folio)) {
2472 rc = hugetlb_vmemmap_restore_folio(h, folio);
2473 if (rc) {
2474 spin_lock_irq(&hugetlb_lock);
2475 add_hugetlb_folio(h, folio, false);
2476 h->max_huge_pages++;
2477 goto out;
2478 }
2479 } else
2480 rc = 0;
2481
2482 update_and_free_hugetlb_folio(h, folio, false);
2483 return rc;
2484 }
2485out:
2486 spin_unlock_irq(&hugetlb_lock);
2487 return rc;
2488}
2489
2490/*
2491 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2492 * make specified memory blocks removable from the system.
2493 * Note that this will dissolve a free gigantic hugepage completely, if any
2494 * part of it lies within the given range.
2495 * Also note that if dissolve_free_huge_page() returns with an error, all
2496 * free hugepages that were dissolved before that error are lost.
2497 */
2498int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2499{
2500 unsigned long pfn;
2501 struct page *page;
2502 int rc = 0;
2503 unsigned int order;
2504 struct hstate *h;
2505
2506 if (!hugepages_supported())
2507 return rc;
2508
2509 order = huge_page_order(&default_hstate);
2510 for_each_hstate(h)
2511 order = min(order, huge_page_order(h));
2512
2513 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2514 page = pfn_to_page(pfn);
2515 rc = dissolve_free_huge_page(page);
2516 if (rc)
2517 break;
2518 }
2519
2520 return rc;
2521}
2522
2523/*
2524 * Allocates a fresh surplus page from the page allocator.
2525 */
2526static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2527 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2528{
2529 struct folio *folio = NULL;
2530
2531 if (hstate_is_gigantic(h))
2532 return NULL;
2533
2534 spin_lock_irq(&hugetlb_lock);
2535 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2536 goto out_unlock;
2537 spin_unlock_irq(&hugetlb_lock);
2538
2539 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2540 if (!folio)
2541 return NULL;
2542
2543 spin_lock_irq(&hugetlb_lock);
2544 /*
2545 * We could have raced with the pool size change.
2546 * Double check that and simply deallocate the new page
2547 * if we would end up overcommiting the surpluses. Abuse
2548 * temporary page to workaround the nasty free_huge_folio
2549 * codeflow
2550 */
2551 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2552 folio_set_hugetlb_temporary(folio);
2553 spin_unlock_irq(&hugetlb_lock);
2554 free_huge_folio(folio);
2555 return NULL;
2556 }
2557
2558 h->surplus_huge_pages++;
2559 h->surplus_huge_pages_node[folio_nid(folio)]++;
2560
2561out_unlock:
2562 spin_unlock_irq(&hugetlb_lock);
2563
2564 return folio;
2565}
2566
2567static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2568 int nid, nodemask_t *nmask)
2569{
2570 struct folio *folio;
2571
2572 if (hstate_is_gigantic(h))
2573 return NULL;
2574
2575 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2576 if (!folio)
2577 return NULL;
2578
2579 /* fresh huge pages are frozen */
2580 folio_ref_unfreeze(folio, 1);
2581 /*
2582 * We do not account these pages as surplus because they are only
2583 * temporary and will be released properly on the last reference
2584 */
2585 folio_set_hugetlb_temporary(folio);
2586
2587 return folio;
2588}
2589
2590/*
2591 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2592 */
2593static
2594struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2595 struct vm_area_struct *vma, unsigned long addr)
2596{
2597 struct folio *folio = NULL;
2598 struct mempolicy *mpol;
2599 gfp_t gfp_mask = htlb_alloc_mask(h);
2600 int nid;
2601 nodemask_t *nodemask;
2602
2603 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2604 if (mpol_is_preferred_many(mpol)) {
2605 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2606
2607 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2608 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2609
2610 /* Fallback to all nodes if page==NULL */
2611 nodemask = NULL;
2612 }
2613
2614 if (!folio)
2615 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2616 mpol_cond_put(mpol);
2617 return folio;
2618}
2619
2620/* folio migration callback function */
2621struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2622 nodemask_t *nmask, gfp_t gfp_mask)
2623{
2624 spin_lock_irq(&hugetlb_lock);
2625 if (available_huge_pages(h)) {
2626 struct folio *folio;
2627
2628 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2629 preferred_nid, nmask);
2630 if (folio) {
2631 spin_unlock_irq(&hugetlb_lock);
2632 return folio;
2633 }
2634 }
2635 spin_unlock_irq(&hugetlb_lock);
2636
2637 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2638}
2639
2640/*
2641 * Increase the hugetlb pool such that it can accommodate a reservation
2642 * of size 'delta'.
2643 */
2644static int gather_surplus_pages(struct hstate *h, long delta)
2645 __must_hold(&hugetlb_lock)
2646{
2647 LIST_HEAD(surplus_list);
2648 struct folio *folio, *tmp;
2649 int ret;
2650 long i;
2651 long needed, allocated;
2652 bool alloc_ok = true;
2653
2654 lockdep_assert_held(&hugetlb_lock);
2655 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2656 if (needed <= 0) {
2657 h->resv_huge_pages += delta;
2658 return 0;
2659 }
2660
2661 allocated = 0;
2662
2663 ret = -ENOMEM;
2664retry:
2665 spin_unlock_irq(&hugetlb_lock);
2666 for (i = 0; i < needed; i++) {
2667 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2668 NUMA_NO_NODE, NULL);
2669 if (!folio) {
2670 alloc_ok = false;
2671 break;
2672 }
2673 list_add(&folio->lru, &surplus_list);
2674 cond_resched();
2675 }
2676 allocated += i;
2677
2678 /*
2679 * After retaking hugetlb_lock, we need to recalculate 'needed'
2680 * because either resv_huge_pages or free_huge_pages may have changed.
2681 */
2682 spin_lock_irq(&hugetlb_lock);
2683 needed = (h->resv_huge_pages + delta) -
2684 (h->free_huge_pages + allocated);
2685 if (needed > 0) {
2686 if (alloc_ok)
2687 goto retry;
2688 /*
2689 * We were not able to allocate enough pages to
2690 * satisfy the entire reservation so we free what
2691 * we've allocated so far.
2692 */
2693 goto free;
2694 }
2695 /*
2696 * The surplus_list now contains _at_least_ the number of extra pages
2697 * needed to accommodate the reservation. Add the appropriate number
2698 * of pages to the hugetlb pool and free the extras back to the buddy
2699 * allocator. Commit the entire reservation here to prevent another
2700 * process from stealing the pages as they are added to the pool but
2701 * before they are reserved.
2702 */
2703 needed += allocated;
2704 h->resv_huge_pages += delta;
2705 ret = 0;
2706
2707 /* Free the needed pages to the hugetlb pool */
2708 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2709 if ((--needed) < 0)
2710 break;
2711 /* Add the page to the hugetlb allocator */
2712 enqueue_hugetlb_folio(h, folio);
2713 }
2714free:
2715 spin_unlock_irq(&hugetlb_lock);
2716
2717 /*
2718 * Free unnecessary surplus pages to the buddy allocator.
2719 * Pages have no ref count, call free_huge_folio directly.
2720 */
2721 list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2722 free_huge_folio(folio);
2723 spin_lock_irq(&hugetlb_lock);
2724
2725 return ret;
2726}
2727
2728/*
2729 * This routine has two main purposes:
2730 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2731 * in unused_resv_pages. This corresponds to the prior adjustments made
2732 * to the associated reservation map.
2733 * 2) Free any unused surplus pages that may have been allocated to satisfy
2734 * the reservation. As many as unused_resv_pages may be freed.
2735 */
2736static void return_unused_surplus_pages(struct hstate *h,
2737 unsigned long unused_resv_pages)
2738{
2739 unsigned long nr_pages;
2740 LIST_HEAD(page_list);
2741
2742 lockdep_assert_held(&hugetlb_lock);
2743 /* Uncommit the reservation */
2744 h->resv_huge_pages -= unused_resv_pages;
2745
2746 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2747 goto out;
2748
2749 /*
2750 * Part (or even all) of the reservation could have been backed
2751 * by pre-allocated pages. Only free surplus pages.
2752 */
2753 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2754
2755 /*
2756 * We want to release as many surplus pages as possible, spread
2757 * evenly across all nodes with memory. Iterate across these nodes
2758 * until we can no longer free unreserved surplus pages. This occurs
2759 * when the nodes with surplus pages have no free pages.
2760 * remove_pool_hugetlb_folio() will balance the freed pages across the
2761 * on-line nodes with memory and will handle the hstate accounting.
2762 */
2763 while (nr_pages--) {
2764 struct folio *folio;
2765
2766 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2767 if (!folio)
2768 goto out;
2769
2770 list_add(&folio->lru, &page_list);
2771 }
2772
2773out:
2774 spin_unlock_irq(&hugetlb_lock);
2775 update_and_free_pages_bulk(h, &page_list);
2776 spin_lock_irq(&hugetlb_lock);
2777}
2778
2779
2780/*
2781 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2782 * are used by the huge page allocation routines to manage reservations.
2783 *
2784 * vma_needs_reservation is called to determine if the huge page at addr
2785 * within the vma has an associated reservation. If a reservation is
2786 * needed, the value 1 is returned. The caller is then responsible for
2787 * managing the global reservation and subpool usage counts. After
2788 * the huge page has been allocated, vma_commit_reservation is called
2789 * to add the page to the reservation map. If the page allocation fails,
2790 * the reservation must be ended instead of committed. vma_end_reservation
2791 * is called in such cases.
2792 *
2793 * In the normal case, vma_commit_reservation returns the same value
2794 * as the preceding vma_needs_reservation call. The only time this
2795 * is not the case is if a reserve map was changed between calls. It
2796 * is the responsibility of the caller to notice the difference and
2797 * take appropriate action.
2798 *
2799 * vma_add_reservation is used in error paths where a reservation must
2800 * be restored when a newly allocated huge page must be freed. It is
2801 * to be called after calling vma_needs_reservation to determine if a
2802 * reservation exists.
2803 *
2804 * vma_del_reservation is used in error paths where an entry in the reserve
2805 * map was created during huge page allocation and must be removed. It is to
2806 * be called after calling vma_needs_reservation to determine if a reservation
2807 * exists.
2808 */
2809enum vma_resv_mode {
2810 VMA_NEEDS_RESV,
2811 VMA_COMMIT_RESV,
2812 VMA_END_RESV,
2813 VMA_ADD_RESV,
2814 VMA_DEL_RESV,
2815};
2816static long __vma_reservation_common(struct hstate *h,
2817 struct vm_area_struct *vma, unsigned long addr,
2818 enum vma_resv_mode mode)
2819{
2820 struct resv_map *resv;
2821 pgoff_t idx;
2822 long ret;
2823 long dummy_out_regions_needed;
2824
2825 resv = vma_resv_map(vma);
2826 if (!resv)
2827 return 1;
2828
2829 idx = vma_hugecache_offset(h, vma, addr);
2830 switch (mode) {
2831 case VMA_NEEDS_RESV:
2832 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2833 /* We assume that vma_reservation_* routines always operate on
2834 * 1 page, and that adding to resv map a 1 page entry can only
2835 * ever require 1 region.
2836 */
2837 VM_BUG_ON(dummy_out_regions_needed != 1);
2838 break;
2839 case VMA_COMMIT_RESV:
2840 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2841 /* region_add calls of range 1 should never fail. */
2842 VM_BUG_ON(ret < 0);
2843 break;
2844 case VMA_END_RESV:
2845 region_abort(resv, idx, idx + 1, 1);
2846 ret = 0;
2847 break;
2848 case VMA_ADD_RESV:
2849 if (vma->vm_flags & VM_MAYSHARE) {
2850 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2851 /* region_add calls of range 1 should never fail. */
2852 VM_BUG_ON(ret < 0);
2853 } else {
2854 region_abort(resv, idx, idx + 1, 1);
2855 ret = region_del(resv, idx, idx + 1);
2856 }
2857 break;
2858 case VMA_DEL_RESV:
2859 if (vma->vm_flags & VM_MAYSHARE) {
2860 region_abort(resv, idx, idx + 1, 1);
2861 ret = region_del(resv, idx, idx + 1);
2862 } else {
2863 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2864 /* region_add calls of range 1 should never fail. */
2865 VM_BUG_ON(ret < 0);
2866 }
2867 break;
2868 default:
2869 BUG();
2870 }
2871
2872 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2873 return ret;
2874 /*
2875 * We know private mapping must have HPAGE_RESV_OWNER set.
2876 *
2877 * In most cases, reserves always exist for private mappings.
2878 * However, a file associated with mapping could have been
2879 * hole punched or truncated after reserves were consumed.
2880 * As subsequent fault on such a range will not use reserves.
2881 * Subtle - The reserve map for private mappings has the
2882 * opposite meaning than that of shared mappings. If NO
2883 * entry is in the reserve map, it means a reservation exists.
2884 * If an entry exists in the reserve map, it means the
2885 * reservation has already been consumed. As a result, the
2886 * return value of this routine is the opposite of the
2887 * value returned from reserve map manipulation routines above.
2888 */
2889 if (ret > 0)
2890 return 0;
2891 if (ret == 0)
2892 return 1;
2893 return ret;
2894}
2895
2896static long vma_needs_reservation(struct hstate *h,
2897 struct vm_area_struct *vma, unsigned long addr)
2898{
2899 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2900}
2901
2902static long vma_commit_reservation(struct hstate *h,
2903 struct vm_area_struct *vma, unsigned long addr)
2904{
2905 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2906}
2907
2908static void vma_end_reservation(struct hstate *h,
2909 struct vm_area_struct *vma, unsigned long addr)
2910{
2911 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2912}
2913
2914static long vma_add_reservation(struct hstate *h,
2915 struct vm_area_struct *vma, unsigned long addr)
2916{
2917 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2918}
2919
2920static long vma_del_reservation(struct hstate *h,
2921 struct vm_area_struct *vma, unsigned long addr)
2922{
2923 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2924}
2925
2926/*
2927 * This routine is called to restore reservation information on error paths.
2928 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2929 * and the hugetlb mutex should remain held when calling this routine.
2930 *
2931 * It handles two specific cases:
2932 * 1) A reservation was in place and the folio consumed the reservation.
2933 * hugetlb_restore_reserve is set in the folio.
2934 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2935 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2936 *
2937 * In case 1, free_huge_folio later in the error path will increment the
2938 * global reserve count. But, free_huge_folio does not have enough context
2939 * to adjust the reservation map. This case deals primarily with private
2940 * mappings. Adjust the reserve map here to be consistent with global
2941 * reserve count adjustments to be made by free_huge_folio. Make sure the
2942 * reserve map indicates there is a reservation present.
2943 *
2944 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2945 */
2946void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2947 unsigned long address, struct folio *folio)
2948{
2949 long rc = vma_needs_reservation(h, vma, address);
2950
2951 if (folio_test_hugetlb_restore_reserve(folio)) {
2952 if (unlikely(rc < 0))
2953 /*
2954 * Rare out of memory condition in reserve map
2955 * manipulation. Clear hugetlb_restore_reserve so
2956 * that global reserve count will not be incremented
2957 * by free_huge_folio. This will make it appear
2958 * as though the reservation for this folio was
2959 * consumed. This may prevent the task from
2960 * faulting in the folio at a later time. This
2961 * is better than inconsistent global huge page
2962 * accounting of reserve counts.
2963 */
2964 folio_clear_hugetlb_restore_reserve(folio);
2965 else if (rc)
2966 (void)vma_add_reservation(h, vma, address);
2967 else
2968 vma_end_reservation(h, vma, address);
2969 } else {
2970 if (!rc) {
2971 /*
2972 * This indicates there is an entry in the reserve map
2973 * not added by alloc_hugetlb_folio. We know it was added
2974 * before the alloc_hugetlb_folio call, otherwise
2975 * hugetlb_restore_reserve would be set on the folio.
2976 * Remove the entry so that a subsequent allocation
2977 * does not consume a reservation.
2978 */
2979 rc = vma_del_reservation(h, vma, address);
2980 if (rc < 0)
2981 /*
2982 * VERY rare out of memory condition. Since
2983 * we can not delete the entry, set
2984 * hugetlb_restore_reserve so that the reserve
2985 * count will be incremented when the folio
2986 * is freed. This reserve will be consumed
2987 * on a subsequent allocation.
2988 */
2989 folio_set_hugetlb_restore_reserve(folio);
2990 } else if (rc < 0) {
2991 /*
2992 * Rare out of memory condition from
2993 * vma_needs_reservation call. Memory allocation is
2994 * only attempted if a new entry is needed. Therefore,
2995 * this implies there is not an entry in the
2996 * reserve map.
2997 *
2998 * For shared mappings, no entry in the map indicates
2999 * no reservation. We are done.
3000 */
3001 if (!(vma->vm_flags & VM_MAYSHARE))
3002 /*
3003 * For private mappings, no entry indicates
3004 * a reservation is present. Since we can
3005 * not add an entry, set hugetlb_restore_reserve
3006 * on the folio so reserve count will be
3007 * incremented when freed. This reserve will
3008 * be consumed on a subsequent allocation.
3009 */
3010 folio_set_hugetlb_restore_reserve(folio);
3011 } else
3012 /*
3013 * No reservation present, do nothing
3014 */
3015 vma_end_reservation(h, vma, address);
3016 }
3017}
3018
3019/*
3020 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
3021 * the old one
3022 * @h: struct hstate old page belongs to
3023 * @old_folio: Old folio to dissolve
3024 * @list: List to isolate the page in case we need to
3025 * Returns 0 on success, otherwise negated error.
3026 */
3027static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
3028 struct folio *old_folio, struct list_head *list)
3029{
3030 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3031 int nid = folio_nid(old_folio);
3032 struct folio *new_folio;
3033 int ret = 0;
3034
3035 /*
3036 * Before dissolving the folio, we need to allocate a new one for the
3037 * pool to remain stable. Here, we allocate the folio and 'prep' it
3038 * by doing everything but actually updating counters and adding to
3039 * the pool. This simplifies and let us do most of the processing
3040 * under the lock.
3041 */
3042 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
3043 if (!new_folio)
3044 return -ENOMEM;
3045 __prep_new_hugetlb_folio(h, new_folio);
3046
3047retry:
3048 spin_lock_irq(&hugetlb_lock);
3049 if (!folio_test_hugetlb(old_folio)) {
3050 /*
3051 * Freed from under us. Drop new_folio too.
3052 */
3053 goto free_new;
3054 } else if (folio_ref_count(old_folio)) {
3055 bool isolated;
3056
3057 /*
3058 * Someone has grabbed the folio, try to isolate it here.
3059 * Fail with -EBUSY if not possible.
3060 */
3061 spin_unlock_irq(&hugetlb_lock);
3062 isolated = isolate_hugetlb(old_folio, list);
3063 ret = isolated ? 0 : -EBUSY;
3064 spin_lock_irq(&hugetlb_lock);
3065 goto free_new;
3066 } else if (!folio_test_hugetlb_freed(old_folio)) {
3067 /*
3068 * Folio's refcount is 0 but it has not been enqueued in the
3069 * freelist yet. Race window is small, so we can succeed here if
3070 * we retry.
3071 */
3072 spin_unlock_irq(&hugetlb_lock);
3073 cond_resched();
3074 goto retry;
3075 } else {
3076 /*
3077 * Ok, old_folio is still a genuine free hugepage. Remove it from
3078 * the freelist and decrease the counters. These will be
3079 * incremented again when calling __prep_account_new_huge_page()
3080 * and enqueue_hugetlb_folio() for new_folio. The counters will
3081 * remain stable since this happens under the lock.
3082 */
3083 remove_hugetlb_folio(h, old_folio, false);
3084
3085 /*
3086 * Ref count on new_folio is already zero as it was dropped
3087 * earlier. It can be directly added to the pool free list.
3088 */
3089 __prep_account_new_huge_page(h, nid);
3090 enqueue_hugetlb_folio(h, new_folio);
3091
3092 /*
3093 * Folio has been replaced, we can safely free the old one.
3094 */
3095 spin_unlock_irq(&hugetlb_lock);
3096 update_and_free_hugetlb_folio(h, old_folio, false);
3097 }
3098
3099 return ret;
3100
3101free_new:
3102 spin_unlock_irq(&hugetlb_lock);
3103 /* Folio has a zero ref count, but needs a ref to be freed */
3104 folio_ref_unfreeze(new_folio, 1);
3105 update_and_free_hugetlb_folio(h, new_folio, false);
3106
3107 return ret;
3108}
3109
3110int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3111{
3112 struct hstate *h;
3113 struct folio *folio = page_folio(page);
3114 int ret = -EBUSY;
3115
3116 /*
3117 * The page might have been dissolved from under our feet, so make sure
3118 * to carefully check the state under the lock.
3119 * Return success when racing as if we dissolved the page ourselves.
3120 */
3121 spin_lock_irq(&hugetlb_lock);
3122 if (folio_test_hugetlb(folio)) {
3123 h = folio_hstate(folio);
3124 } else {
3125 spin_unlock_irq(&hugetlb_lock);
3126 return 0;
3127 }
3128 spin_unlock_irq(&hugetlb_lock);
3129
3130 /*
3131 * Fence off gigantic pages as there is a cyclic dependency between
3132 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3133 * of bailing out right away without further retrying.
3134 */
3135 if (hstate_is_gigantic(h))
3136 return -ENOMEM;
3137
3138 if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3139 ret = 0;
3140 else if (!folio_ref_count(folio))
3141 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3142
3143 return ret;
3144}
3145
3146struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3147 unsigned long addr, int avoid_reserve)
3148{
3149 struct hugepage_subpool *spool = subpool_vma(vma);
3150 struct hstate *h = hstate_vma(vma);
3151 struct folio *folio;
3152 long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
3153 long gbl_chg;
3154 int memcg_charge_ret, ret, idx;
3155 struct hugetlb_cgroup *h_cg = NULL;
3156 struct mem_cgroup *memcg;
3157 bool deferred_reserve;
3158 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
3159
3160 memcg = get_mem_cgroup_from_current();
3161 memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
3162 if (memcg_charge_ret == -ENOMEM) {
3163 mem_cgroup_put(memcg);
3164 return ERR_PTR(-ENOMEM);
3165 }
3166
3167 idx = hstate_index(h);
3168 /*
3169 * Examine the region/reserve map to determine if the process
3170 * has a reservation for the page to be allocated. A return
3171 * code of zero indicates a reservation exists (no change).
3172 */
3173 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3174 if (map_chg < 0) {
3175 if (!memcg_charge_ret)
3176 mem_cgroup_cancel_charge(memcg, nr_pages);
3177 mem_cgroup_put(memcg);
3178 return ERR_PTR(-ENOMEM);
3179 }
3180
3181 /*
3182 * Processes that did not create the mapping will have no
3183 * reserves as indicated by the region/reserve map. Check
3184 * that the allocation will not exceed the subpool limit.
3185 * Allocations for MAP_NORESERVE mappings also need to be
3186 * checked against any subpool limit.
3187 */
3188 if (map_chg || avoid_reserve) {
3189 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3190 if (gbl_chg < 0)
3191 goto out_end_reservation;
3192
3193 /*
3194 * Even though there was no reservation in the region/reserve
3195 * map, there could be reservations associated with the
3196 * subpool that can be used. This would be indicated if the
3197 * return value of hugepage_subpool_get_pages() is zero.
3198 * However, if avoid_reserve is specified we still avoid even
3199 * the subpool reservations.
3200 */
3201 if (avoid_reserve)
3202 gbl_chg = 1;
3203 }
3204
3205 /* If this allocation is not consuming a reservation, charge it now.
3206 */
3207 deferred_reserve = map_chg || avoid_reserve;
3208 if (deferred_reserve) {
3209 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3210 idx, pages_per_huge_page(h), &h_cg);
3211 if (ret)
3212 goto out_subpool_put;
3213 }
3214
3215 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3216 if (ret)
3217 goto out_uncharge_cgroup_reservation;
3218
3219 spin_lock_irq(&hugetlb_lock);
3220 /*
3221 * glb_chg is passed to indicate whether or not a page must be taken
3222 * from the global free pool (global change). gbl_chg == 0 indicates
3223 * a reservation exists for the allocation.
3224 */
3225 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3226 if (!folio) {
3227 spin_unlock_irq(&hugetlb_lock);
3228 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3229 if (!folio)
3230 goto out_uncharge_cgroup;
3231 spin_lock_irq(&hugetlb_lock);
3232 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3233 folio_set_hugetlb_restore_reserve(folio);
3234 h->resv_huge_pages--;
3235 }
3236 list_add(&folio->lru, &h->hugepage_activelist);
3237 folio_ref_unfreeze(folio, 1);
3238 /* Fall through */
3239 }
3240
3241 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3242 /* If allocation is not consuming a reservation, also store the
3243 * hugetlb_cgroup pointer on the page.
3244 */
3245 if (deferred_reserve) {
3246 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3247 h_cg, folio);
3248 }
3249
3250 spin_unlock_irq(&hugetlb_lock);
3251
3252 hugetlb_set_folio_subpool(folio, spool);
3253
3254 map_commit = vma_commit_reservation(h, vma, addr);
3255 if (unlikely(map_chg > map_commit)) {
3256 /*
3257 * The page was added to the reservation map between
3258 * vma_needs_reservation and vma_commit_reservation.
3259 * This indicates a race with hugetlb_reserve_pages.
3260 * Adjust for the subpool count incremented above AND
3261 * in hugetlb_reserve_pages for the same page. Also,
3262 * the reservation count added in hugetlb_reserve_pages
3263 * no longer applies.
3264 */
3265 long rsv_adjust;
3266
3267 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3268 hugetlb_acct_memory(h, -rsv_adjust);
3269 if (deferred_reserve)
3270 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3271 pages_per_huge_page(h), folio);
3272 }
3273
3274 if (!memcg_charge_ret)
3275 mem_cgroup_commit_charge(folio, memcg);
3276 mem_cgroup_put(memcg);
3277
3278 return folio;
3279
3280out_uncharge_cgroup:
3281 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3282out_uncharge_cgroup_reservation:
3283 if (deferred_reserve)
3284 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3285 h_cg);
3286out_subpool_put:
3287 if (map_chg || avoid_reserve)
3288 hugepage_subpool_put_pages(spool, 1);
3289out_end_reservation:
3290 vma_end_reservation(h, vma, addr);
3291 if (!memcg_charge_ret)
3292 mem_cgroup_cancel_charge(memcg, nr_pages);
3293 mem_cgroup_put(memcg);
3294 return ERR_PTR(-ENOSPC);
3295}
3296
3297int alloc_bootmem_huge_page(struct hstate *h, int nid)
3298 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3299int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3300{
3301 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3302 int nr_nodes, node;
3303
3304 /* do node specific alloc */
3305 if (nid != NUMA_NO_NODE) {
3306 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3307 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3308 if (!m)
3309 return 0;
3310 goto found;
3311 }
3312 /* allocate from next node when distributing huge pages */
3313 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3314 m = memblock_alloc_try_nid_raw(
3315 huge_page_size(h), huge_page_size(h),
3316 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3317 /*
3318 * Use the beginning of the huge page to store the
3319 * huge_bootmem_page struct (until gather_bootmem
3320 * puts them into the mem_map).
3321 */
3322 if (!m)
3323 return 0;
3324 goto found;
3325 }
3326
3327found:
3328
3329 /*
3330 * Only initialize the head struct page in memmap_init_reserved_pages,
3331 * rest of the struct pages will be initialized by the HugeTLB
3332 * subsystem itself.
3333 * The head struct page is used to get folio information by the HugeTLB
3334 * subsystem like zone id and node id.
3335 */
3336 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3337 huge_page_size(h) - PAGE_SIZE);
3338 /* Put them into a private list first because mem_map is not up yet */
3339 INIT_LIST_HEAD(&m->list);
3340 list_add(&m->list, &huge_boot_pages);
3341 m->hstate = h;
3342 return 1;
3343}
3344
3345/* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3346static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3347 unsigned long start_page_number,
3348 unsigned long end_page_number)
3349{
3350 enum zone_type zone = zone_idx(folio_zone(folio));
3351 int nid = folio_nid(folio);
3352 unsigned long head_pfn = folio_pfn(folio);
3353 unsigned long pfn, end_pfn = head_pfn + end_page_number;
3354 int ret;
3355
3356 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3357 struct page *page = pfn_to_page(pfn);
3358
3359 __init_single_page(page, pfn, zone, nid);
3360 prep_compound_tail((struct page *)folio, pfn - head_pfn);
3361 ret = page_ref_freeze(page, 1);
3362 VM_BUG_ON(!ret);
3363 }
3364}
3365
3366static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3367 struct hstate *h,
3368 unsigned long nr_pages)
3369{
3370 int ret;
3371
3372 /* Prepare folio head */
3373 __folio_clear_reserved(folio);
3374 __folio_set_head(folio);
3375 ret = folio_ref_freeze(folio, 1);
3376 VM_BUG_ON(!ret);
3377 /* Initialize the necessary tail struct pages */
3378 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3379 prep_compound_head((struct page *)folio, huge_page_order(h));
3380}
3381
3382static void __init prep_and_add_bootmem_folios(struct hstate *h,
3383 struct list_head *folio_list)
3384{
3385 unsigned long flags;
3386 struct folio *folio, *tmp_f;
3387
3388 /* Send list for bulk vmemmap optimization processing */
3389 hugetlb_vmemmap_optimize_folios(h, folio_list);
3390
3391 /* Add all new pool pages to free lists in one lock cycle */
3392 spin_lock_irqsave(&hugetlb_lock, flags);
3393 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3394 if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3395 /*
3396 * If HVO fails, initialize all tail struct pages
3397 * We do not worry about potential long lock hold
3398 * time as this is early in boot and there should
3399 * be no contention.
3400 */
3401 hugetlb_folio_init_tail_vmemmap(folio,
3402 HUGETLB_VMEMMAP_RESERVE_PAGES,
3403 pages_per_huge_page(h));
3404 }
3405 __prep_account_new_huge_page(h, folio_nid(folio));
3406 enqueue_hugetlb_folio(h, folio);
3407 }
3408 spin_unlock_irqrestore(&hugetlb_lock, flags);
3409}
3410
3411/*
3412 * Put bootmem huge pages into the standard lists after mem_map is up.
3413 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3414 */
3415static void __init gather_bootmem_prealloc(void)
3416{
3417 LIST_HEAD(folio_list);
3418 struct huge_bootmem_page *m;
3419 struct hstate *h = NULL, *prev_h = NULL;
3420
3421 list_for_each_entry(m, &huge_boot_pages, list) {
3422 struct page *page = virt_to_page(m);
3423 struct folio *folio = (void *)page;
3424
3425 h = m->hstate;
3426 /*
3427 * It is possible to have multiple huge page sizes (hstates)
3428 * in this list. If so, process each size separately.
3429 */
3430 if (h != prev_h && prev_h != NULL)
3431 prep_and_add_bootmem_folios(prev_h, &folio_list);
3432 prev_h = h;
3433
3434 VM_BUG_ON(!hstate_is_gigantic(h));
3435 WARN_ON(folio_ref_count(folio) != 1);
3436
3437 hugetlb_folio_init_vmemmap(folio, h,
3438 HUGETLB_VMEMMAP_RESERVE_PAGES);
3439 init_new_hugetlb_folio(h, folio);
3440 list_add(&folio->lru, &folio_list);
3441
3442 /*
3443 * We need to restore the 'stolen' pages to totalram_pages
3444 * in order to fix confusing memory reports from free(1) and
3445 * other side-effects, like CommitLimit going negative.
3446 */
3447 adjust_managed_page_count(page, pages_per_huge_page(h));
3448 cond_resched();
3449 }
3450
3451 prep_and_add_bootmem_folios(h, &folio_list);
3452}
3453
3454static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3455{
3456 unsigned long i;
3457 char buf[32];
3458
3459 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3460 if (hstate_is_gigantic(h)) {
3461 if (!alloc_bootmem_huge_page(h, nid))
3462 break;
3463 } else {
3464 struct folio *folio;
3465 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3466
3467 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3468 &node_states[N_MEMORY], NULL);
3469 if (!folio)
3470 break;
3471 free_huge_folio(folio); /* free it into the hugepage allocator */
3472 }
3473 cond_resched();
3474 }
3475 if (i == h->max_huge_pages_node[nid])
3476 return;
3477
3478 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3479 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3480 h->max_huge_pages_node[nid], buf, nid, i);
3481 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3482 h->max_huge_pages_node[nid] = i;
3483}
3484
3485/*
3486 * NOTE: this routine is called in different contexts for gigantic and
3487 * non-gigantic pages.
3488 * - For gigantic pages, this is called early in the boot process and
3489 * pages are allocated from memblock allocated or something similar.
3490 * Gigantic pages are actually added to pools later with the routine
3491 * gather_bootmem_prealloc.
3492 * - For non-gigantic pages, this is called later in the boot process after
3493 * all of mm is up and functional. Pages are allocated from buddy and
3494 * then added to hugetlb pools.
3495 */
3496static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3497{
3498 unsigned long i;
3499 struct folio *folio;
3500 LIST_HEAD(folio_list);
3501 nodemask_t *node_alloc_noretry;
3502 bool node_specific_alloc = false;
3503
3504 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3505 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3506 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3507 return;
3508 }
3509
3510 /* do node specific alloc */
3511 for_each_online_node(i) {
3512 if (h->max_huge_pages_node[i] > 0) {
3513 hugetlb_hstate_alloc_pages_onenode(h, i);
3514 node_specific_alloc = true;
3515 }
3516 }
3517
3518 if (node_specific_alloc)
3519 return;
3520
3521 /* below will do all node balanced alloc */
3522 if (!hstate_is_gigantic(h)) {
3523 /*
3524 * Bit mask controlling how hard we retry per-node allocations.
3525 * Ignore errors as lower level routines can deal with
3526 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3527 * time, we are likely in bigger trouble.
3528 */
3529 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3530 GFP_KERNEL);
3531 } else {
3532 /* allocations done at boot time */
3533 node_alloc_noretry = NULL;
3534 }
3535
3536 /* bit mask controlling how hard we retry per-node allocations */
3537 if (node_alloc_noretry)
3538 nodes_clear(*node_alloc_noretry);
3539
3540 for (i = 0; i < h->max_huge_pages; ++i) {
3541 if (hstate_is_gigantic(h)) {
3542 /*
3543 * gigantic pages not added to list as they are not
3544 * added to pools now.
3545 */
3546 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3547 break;
3548 } else {
3549 folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3550 node_alloc_noretry);
3551 if (!folio)
3552 break;
3553 list_add(&folio->lru, &folio_list);
3554 }
3555 cond_resched();
3556 }
3557
3558 /* list will be empty if hstate_is_gigantic */
3559 prep_and_add_allocated_folios(h, &folio_list);
3560
3561 if (i < h->max_huge_pages) {
3562 char buf[32];
3563
3564 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3565 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3566 h->max_huge_pages, buf, i);
3567 h->max_huge_pages = i;
3568 }
3569 kfree(node_alloc_noretry);
3570}
3571
3572static void __init hugetlb_init_hstates(void)
3573{
3574 struct hstate *h, *h2;
3575
3576 for_each_hstate(h) {
3577 /* oversize hugepages were init'ed in early boot */
3578 if (!hstate_is_gigantic(h))
3579 hugetlb_hstate_alloc_pages(h);
3580
3581 /*
3582 * Set demote order for each hstate. Note that
3583 * h->demote_order is initially 0.
3584 * - We can not demote gigantic pages if runtime freeing
3585 * is not supported, so skip this.
3586 * - If CMA allocation is possible, we can not demote
3587 * HUGETLB_PAGE_ORDER or smaller size pages.
3588 */
3589 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3590 continue;
3591 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3592 continue;
3593 for_each_hstate(h2) {
3594 if (h2 == h)
3595 continue;
3596 if (h2->order < h->order &&
3597 h2->order > h->demote_order)
3598 h->demote_order = h2->order;
3599 }
3600 }
3601}
3602
3603static void __init report_hugepages(void)
3604{
3605 struct hstate *h;
3606
3607 for_each_hstate(h) {
3608 char buf[32];
3609
3610 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3611 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3612 buf, h->free_huge_pages);
3613 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3614 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3615 }
3616}
3617
3618#ifdef CONFIG_HIGHMEM
3619static void try_to_free_low(struct hstate *h, unsigned long count,
3620 nodemask_t *nodes_allowed)
3621{
3622 int i;
3623 LIST_HEAD(page_list);
3624
3625 lockdep_assert_held(&hugetlb_lock);
3626 if (hstate_is_gigantic(h))
3627 return;
3628
3629 /*
3630 * Collect pages to be freed on a list, and free after dropping lock
3631 */
3632 for_each_node_mask(i, *nodes_allowed) {
3633 struct folio *folio, *next;
3634 struct list_head *freel = &h->hugepage_freelists[i];
3635 list_for_each_entry_safe(folio, next, freel, lru) {
3636 if (count >= h->nr_huge_pages)
3637 goto out;
3638 if (folio_test_highmem(folio))
3639 continue;
3640 remove_hugetlb_folio(h, folio, false);
3641 list_add(&folio->lru, &page_list);
3642 }
3643 }
3644
3645out:
3646 spin_unlock_irq(&hugetlb_lock);
3647 update_and_free_pages_bulk(h, &page_list);
3648 spin_lock_irq(&hugetlb_lock);
3649}
3650#else
3651static inline void try_to_free_low(struct hstate *h, unsigned long count,
3652 nodemask_t *nodes_allowed)
3653{
3654}
3655#endif
3656
3657/*
3658 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3659 * balanced by operating on them in a round-robin fashion.
3660 * Returns 1 if an adjustment was made.
3661 */
3662static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3663 int delta)
3664{
3665 int nr_nodes, node;
3666
3667 lockdep_assert_held(&hugetlb_lock);
3668 VM_BUG_ON(delta != -1 && delta != 1);
3669
3670 if (delta < 0) {
3671 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3672 if (h->surplus_huge_pages_node[node])
3673 goto found;
3674 }
3675 } else {
3676 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3677 if (h->surplus_huge_pages_node[node] <
3678 h->nr_huge_pages_node[node])
3679 goto found;
3680 }
3681 }
3682 return 0;
3683
3684found:
3685 h->surplus_huge_pages += delta;
3686 h->surplus_huge_pages_node[node] += delta;
3687 return 1;
3688}
3689
3690#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3691static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3692 nodemask_t *nodes_allowed)
3693{
3694 unsigned long min_count;
3695 unsigned long allocated;
3696 struct folio *folio;
3697 LIST_HEAD(page_list);
3698 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3699
3700 /*
3701 * Bit mask controlling how hard we retry per-node allocations.
3702 * If we can not allocate the bit mask, do not attempt to allocate
3703 * the requested huge pages.
3704 */
3705 if (node_alloc_noretry)
3706 nodes_clear(*node_alloc_noretry);
3707 else
3708 return -ENOMEM;
3709
3710 /*
3711 * resize_lock mutex prevents concurrent adjustments to number of
3712 * pages in hstate via the proc/sysfs interfaces.
3713 */
3714 mutex_lock(&h->resize_lock);
3715 flush_free_hpage_work(h);
3716 spin_lock_irq(&hugetlb_lock);
3717
3718 /*
3719 * Check for a node specific request.
3720 * Changing node specific huge page count may require a corresponding
3721 * change to the global count. In any case, the passed node mask
3722 * (nodes_allowed) will restrict alloc/free to the specified node.
3723 */
3724 if (nid != NUMA_NO_NODE) {
3725 unsigned long old_count = count;
3726
3727 count += persistent_huge_pages(h) -
3728 (h->nr_huge_pages_node[nid] -
3729 h->surplus_huge_pages_node[nid]);
3730 /*
3731 * User may have specified a large count value which caused the
3732 * above calculation to overflow. In this case, they wanted
3733 * to allocate as many huge pages as possible. Set count to
3734 * largest possible value to align with their intention.
3735 */
3736 if (count < old_count)
3737 count = ULONG_MAX;
3738 }
3739
3740 /*
3741 * Gigantic pages runtime allocation depend on the capability for large
3742 * page range allocation.
3743 * If the system does not provide this feature, return an error when
3744 * the user tries to allocate gigantic pages but let the user free the
3745 * boottime allocated gigantic pages.
3746 */
3747 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3748 if (count > persistent_huge_pages(h)) {
3749 spin_unlock_irq(&hugetlb_lock);
3750 mutex_unlock(&h->resize_lock);
3751 NODEMASK_FREE(node_alloc_noretry);
3752 return -EINVAL;
3753 }
3754 /* Fall through to decrease pool */
3755 }
3756
3757 /*
3758 * Increase the pool size
3759 * First take pages out of surplus state. Then make up the
3760 * remaining difference by allocating fresh huge pages.
3761 *
3762 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3763 * to convert a surplus huge page to a normal huge page. That is
3764 * not critical, though, it just means the overall size of the
3765 * pool might be one hugepage larger than it needs to be, but
3766 * within all the constraints specified by the sysctls.
3767 */
3768 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3769 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3770 break;
3771 }
3772
3773 allocated = 0;
3774 while (count > (persistent_huge_pages(h) + allocated)) {
3775 /*
3776 * If this allocation races such that we no longer need the
3777 * page, free_huge_folio will handle it by freeing the page
3778 * and reducing the surplus.
3779 */
3780 spin_unlock_irq(&hugetlb_lock);
3781
3782 /* yield cpu to avoid soft lockup */
3783 cond_resched();
3784
3785 folio = alloc_pool_huge_folio(h, nodes_allowed,
3786 node_alloc_noretry);
3787 if (!folio) {
3788 prep_and_add_allocated_folios(h, &page_list);
3789 spin_lock_irq(&hugetlb_lock);
3790 goto out;
3791 }
3792
3793 list_add(&folio->lru, &page_list);
3794 allocated++;
3795
3796 /* Bail for signals. Probably ctrl-c from user */
3797 if (signal_pending(current)) {
3798 prep_and_add_allocated_folios(h, &page_list);
3799 spin_lock_irq(&hugetlb_lock);
3800 goto out;
3801 }
3802
3803 spin_lock_irq(&hugetlb_lock);
3804 }
3805
3806 /* Add allocated pages to the pool */
3807 if (!list_empty(&page_list)) {
3808 spin_unlock_irq(&hugetlb_lock);
3809 prep_and_add_allocated_folios(h, &page_list);
3810 spin_lock_irq(&hugetlb_lock);
3811 }
3812
3813 /*
3814 * Decrease the pool size
3815 * First return free pages to the buddy allocator (being careful
3816 * to keep enough around to satisfy reservations). Then place
3817 * pages into surplus state as needed so the pool will shrink
3818 * to the desired size as pages become free.
3819 *
3820 * By placing pages into the surplus state independent of the
3821 * overcommit value, we are allowing the surplus pool size to
3822 * exceed overcommit. There are few sane options here. Since
3823 * alloc_surplus_hugetlb_folio() is checking the global counter,
3824 * though, we'll note that we're not allowed to exceed surplus
3825 * and won't grow the pool anywhere else. Not until one of the
3826 * sysctls are changed, or the surplus pages go out of use.
3827 */
3828 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3829 min_count = max(count, min_count);
3830 try_to_free_low(h, min_count, nodes_allowed);
3831
3832 /*
3833 * Collect pages to be removed on list without dropping lock
3834 */
3835 while (min_count < persistent_huge_pages(h)) {
3836 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3837 if (!folio)
3838 break;
3839
3840 list_add(&folio->lru, &page_list);
3841 }
3842 /* free the pages after dropping lock */
3843 spin_unlock_irq(&hugetlb_lock);
3844 update_and_free_pages_bulk(h, &page_list);
3845 flush_free_hpage_work(h);
3846 spin_lock_irq(&hugetlb_lock);
3847
3848 while (count < persistent_huge_pages(h)) {
3849 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3850 break;
3851 }
3852out:
3853 h->max_huge_pages = persistent_huge_pages(h);
3854 spin_unlock_irq(&hugetlb_lock);
3855 mutex_unlock(&h->resize_lock);
3856
3857 NODEMASK_FREE(node_alloc_noretry);
3858
3859 return 0;
3860}
3861
3862static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3863{
3864 int i, nid = folio_nid(folio);
3865 struct hstate *target_hstate;
3866 struct page *subpage;
3867 struct folio *inner_folio;
3868 int rc = 0;
3869
3870 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3871
3872 remove_hugetlb_folio_for_demote(h, folio, false);
3873 spin_unlock_irq(&hugetlb_lock);
3874
3875 /*
3876 * If vmemmap already existed for folio, the remove routine above would
3877 * have cleared the hugetlb folio flag. Hence the folio is technically
3878 * no longer a hugetlb folio. hugetlb_vmemmap_restore_folio can only be
3879 * passed hugetlb folios and will BUG otherwise.
3880 */
3881 if (folio_test_hugetlb(folio)) {
3882 rc = hugetlb_vmemmap_restore_folio(h, folio);
3883 if (rc) {
3884 /* Allocation of vmemmmap failed, we can not demote folio */
3885 spin_lock_irq(&hugetlb_lock);
3886 folio_ref_unfreeze(folio, 1);
3887 add_hugetlb_folio(h, folio, false);
3888 return rc;
3889 }
3890 }
3891
3892 /*
3893 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3894 * sizes as it will not ref count folios.
3895 */
3896 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3897
3898 /*
3899 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3900 * Without the mutex, pages added to target hstate could be marked
3901 * as surplus.
3902 *
3903 * Note that we already hold h->resize_lock. To prevent deadlock,
3904 * use the convention of always taking larger size hstate mutex first.
3905 */
3906 mutex_lock(&target_hstate->resize_lock);
3907 for (i = 0; i < pages_per_huge_page(h);
3908 i += pages_per_huge_page(target_hstate)) {
3909 subpage = folio_page(folio, i);
3910 inner_folio = page_folio(subpage);
3911 if (hstate_is_gigantic(target_hstate))
3912 prep_compound_gigantic_folio_for_demote(inner_folio,
3913 target_hstate->order);
3914 else
3915 prep_compound_page(subpage, target_hstate->order);
3916 folio_change_private(inner_folio, NULL);
3917 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3918 free_huge_folio(inner_folio);
3919 }
3920 mutex_unlock(&target_hstate->resize_lock);
3921
3922 spin_lock_irq(&hugetlb_lock);
3923
3924 /*
3925 * Not absolutely necessary, but for consistency update max_huge_pages
3926 * based on pool changes for the demoted page.
3927 */
3928 h->max_huge_pages--;
3929 target_hstate->max_huge_pages +=
3930 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3931
3932 return rc;
3933}
3934
3935static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3936 __must_hold(&hugetlb_lock)
3937{
3938 int nr_nodes, node;
3939 struct folio *folio;
3940
3941 lockdep_assert_held(&hugetlb_lock);
3942
3943 /* We should never get here if no demote order */
3944 if (!h->demote_order) {
3945 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3946 return -EINVAL; /* internal error */
3947 }
3948
3949 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3950 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3951 if (folio_test_hwpoison(folio))
3952 continue;
3953 return demote_free_hugetlb_folio(h, folio);
3954 }
3955 }
3956
3957 /*
3958 * Only way to get here is if all pages on free lists are poisoned.
3959 * Return -EBUSY so that caller will not retry.
3960 */
3961 return -EBUSY;
3962}
3963
3964#define HSTATE_ATTR_RO(_name) \
3965 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3966
3967#define HSTATE_ATTR_WO(_name) \
3968 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3969
3970#define HSTATE_ATTR(_name) \
3971 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3972
3973static struct kobject *hugepages_kobj;
3974static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3975
3976static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3977
3978static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3979{
3980 int i;
3981
3982 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3983 if (hstate_kobjs[i] == kobj) {
3984 if (nidp)
3985 *nidp = NUMA_NO_NODE;
3986 return &hstates[i];
3987 }
3988
3989 return kobj_to_node_hstate(kobj, nidp);
3990}
3991
3992static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3993 struct kobj_attribute *attr, char *buf)
3994{
3995 struct hstate *h;
3996 unsigned long nr_huge_pages;
3997 int nid;
3998
3999 h = kobj_to_hstate(kobj, &nid);
4000 if (nid == NUMA_NO_NODE)
4001 nr_huge_pages = h->nr_huge_pages;
4002 else
4003 nr_huge_pages = h->nr_huge_pages_node[nid];
4004
4005 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
4006}
4007
4008static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4009 struct hstate *h, int nid,
4010 unsigned long count, size_t len)
4011{
4012 int err;
4013 nodemask_t nodes_allowed, *n_mask;
4014
4015 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4016 return -EINVAL;
4017
4018 if (nid == NUMA_NO_NODE) {
4019 /*
4020 * global hstate attribute
4021 */
4022 if (!(obey_mempolicy &&
4023 init_nodemask_of_mempolicy(&nodes_allowed)))
4024 n_mask = &node_states[N_MEMORY];
4025 else
4026 n_mask = &nodes_allowed;
4027 } else {
4028 /*
4029 * Node specific request. count adjustment happens in
4030 * set_max_huge_pages() after acquiring hugetlb_lock.
4031 */
4032 init_nodemask_of_node(&nodes_allowed, nid);
4033 n_mask = &nodes_allowed;
4034 }
4035
4036 err = set_max_huge_pages(h, count, nid, n_mask);
4037
4038 return err ? err : len;
4039}
4040
4041static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4042 struct kobject *kobj, const char *buf,
4043 size_t len)
4044{
4045 struct hstate *h;
4046 unsigned long count;
4047 int nid;
4048 int err;
4049
4050 err = kstrtoul(buf, 10, &count);
4051 if (err)
4052 return err;
4053
4054 h = kobj_to_hstate(kobj, &nid);
4055 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4056}
4057
4058static ssize_t nr_hugepages_show(struct kobject *kobj,
4059 struct kobj_attribute *attr, char *buf)
4060{
4061 return nr_hugepages_show_common(kobj, attr, buf);
4062}
4063
4064static ssize_t nr_hugepages_store(struct kobject *kobj,
4065 struct kobj_attribute *attr, const char *buf, size_t len)
4066{
4067 return nr_hugepages_store_common(false, kobj, buf, len);
4068}
4069HSTATE_ATTR(nr_hugepages);
4070
4071#ifdef CONFIG_NUMA
4072
4073/*
4074 * hstate attribute for optionally mempolicy-based constraint on persistent
4075 * huge page alloc/free.
4076 */
4077static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4078 struct kobj_attribute *attr,
4079 char *buf)
4080{
4081 return nr_hugepages_show_common(kobj, attr, buf);
4082}
4083
4084static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4085 struct kobj_attribute *attr, const char *buf, size_t len)
4086{
4087 return nr_hugepages_store_common(true, kobj, buf, len);
4088}
4089HSTATE_ATTR(nr_hugepages_mempolicy);
4090#endif
4091
4092
4093static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4094 struct kobj_attribute *attr, char *buf)
4095{
4096 struct hstate *h = kobj_to_hstate(kobj, NULL);
4097 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4098}
4099
4100static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4101 struct kobj_attribute *attr, const char *buf, size_t count)
4102{
4103 int err;
4104 unsigned long input;
4105 struct hstate *h = kobj_to_hstate(kobj, NULL);
4106
4107 if (hstate_is_gigantic(h))
4108 return -EINVAL;
4109
4110 err = kstrtoul(buf, 10, &input);
4111 if (err)
4112 return err;
4113
4114 spin_lock_irq(&hugetlb_lock);
4115 h->nr_overcommit_huge_pages = input;
4116 spin_unlock_irq(&hugetlb_lock);
4117
4118 return count;
4119}
4120HSTATE_ATTR(nr_overcommit_hugepages);
4121
4122static ssize_t free_hugepages_show(struct kobject *kobj,
4123 struct kobj_attribute *attr, char *buf)
4124{
4125 struct hstate *h;
4126 unsigned long free_huge_pages;
4127 int nid;
4128
4129 h = kobj_to_hstate(kobj, &nid);
4130 if (nid == NUMA_NO_NODE)
4131 free_huge_pages = h->free_huge_pages;
4132 else
4133 free_huge_pages = h->free_huge_pages_node[nid];
4134
4135 return sysfs_emit(buf, "%lu\n", free_huge_pages);
4136}
4137HSTATE_ATTR_RO(free_hugepages);
4138
4139static ssize_t resv_hugepages_show(struct kobject *kobj,
4140 struct kobj_attribute *attr, char *buf)
4141{
4142 struct hstate *h = kobj_to_hstate(kobj, NULL);
4143 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4144}
4145HSTATE_ATTR_RO(resv_hugepages);
4146
4147static ssize_t surplus_hugepages_show(struct kobject *kobj,
4148 struct kobj_attribute *attr, char *buf)
4149{
4150 struct hstate *h;
4151 unsigned long surplus_huge_pages;
4152 int nid;
4153
4154 h = kobj_to_hstate(kobj, &nid);
4155 if (nid == NUMA_NO_NODE)
4156 surplus_huge_pages = h->surplus_huge_pages;
4157 else
4158 surplus_huge_pages = h->surplus_huge_pages_node[nid];
4159
4160 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4161}
4162HSTATE_ATTR_RO(surplus_hugepages);
4163
4164static ssize_t demote_store(struct kobject *kobj,
4165 struct kobj_attribute *attr, const char *buf, size_t len)
4166{
4167 unsigned long nr_demote;
4168 unsigned long nr_available;
4169 nodemask_t nodes_allowed, *n_mask;
4170 struct hstate *h;
4171 int err;
4172 int nid;
4173
4174 err = kstrtoul(buf, 10, &nr_demote);
4175 if (err)
4176 return err;
4177 h = kobj_to_hstate(kobj, &nid);
4178
4179 if (nid != NUMA_NO_NODE) {
4180 init_nodemask_of_node(&nodes_allowed, nid);
4181 n_mask = &nodes_allowed;
4182 } else {
4183 n_mask = &node_states[N_MEMORY];
4184 }
4185
4186 /* Synchronize with other sysfs operations modifying huge pages */
4187 mutex_lock(&h->resize_lock);
4188 spin_lock_irq(&hugetlb_lock);
4189
4190 while (nr_demote) {
4191 /*
4192 * Check for available pages to demote each time thorough the
4193 * loop as demote_pool_huge_page will drop hugetlb_lock.
4194 */
4195 if (nid != NUMA_NO_NODE)
4196 nr_available = h->free_huge_pages_node[nid];
4197 else
4198 nr_available = h->free_huge_pages;
4199 nr_available -= h->resv_huge_pages;
4200 if (!nr_available)
4201 break;
4202
4203 err = demote_pool_huge_page(h, n_mask);
4204 if (err)
4205 break;
4206
4207 nr_demote--;
4208 }
4209
4210 spin_unlock_irq(&hugetlb_lock);
4211 mutex_unlock(&h->resize_lock);
4212
4213 if (err)
4214 return err;
4215 return len;
4216}
4217HSTATE_ATTR_WO(demote);
4218
4219static ssize_t demote_size_show(struct kobject *kobj,
4220 struct kobj_attribute *attr, char *buf)
4221{
4222 struct hstate *h = kobj_to_hstate(kobj, NULL);
4223 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4224
4225 return sysfs_emit(buf, "%lukB\n", demote_size);
4226}
4227
4228static ssize_t demote_size_store(struct kobject *kobj,
4229 struct kobj_attribute *attr,
4230 const char *buf, size_t count)
4231{
4232 struct hstate *h, *demote_hstate;
4233 unsigned long demote_size;
4234 unsigned int demote_order;
4235
4236 demote_size = (unsigned long)memparse(buf, NULL);
4237
4238 demote_hstate = size_to_hstate(demote_size);
4239 if (!demote_hstate)
4240 return -EINVAL;
4241 demote_order = demote_hstate->order;
4242 if (demote_order < HUGETLB_PAGE_ORDER)
4243 return -EINVAL;
4244
4245 /* demote order must be smaller than hstate order */
4246 h = kobj_to_hstate(kobj, NULL);
4247 if (demote_order >= h->order)
4248 return -EINVAL;
4249
4250 /* resize_lock synchronizes access to demote size and writes */
4251 mutex_lock(&h->resize_lock);
4252 h->demote_order = demote_order;
4253 mutex_unlock(&h->resize_lock);
4254
4255 return count;
4256}
4257HSTATE_ATTR(demote_size);
4258
4259static struct attribute *hstate_attrs[] = {
4260 &nr_hugepages_attr.attr,
4261 &nr_overcommit_hugepages_attr.attr,
4262 &free_hugepages_attr.attr,
4263 &resv_hugepages_attr.attr,
4264 &surplus_hugepages_attr.attr,
4265#ifdef CONFIG_NUMA
4266 &nr_hugepages_mempolicy_attr.attr,
4267#endif
4268 NULL,
4269};
4270
4271static const struct attribute_group hstate_attr_group = {
4272 .attrs = hstate_attrs,
4273};
4274
4275static struct attribute *hstate_demote_attrs[] = {
4276 &demote_size_attr.attr,
4277 &demote_attr.attr,
4278 NULL,
4279};
4280
4281static const struct attribute_group hstate_demote_attr_group = {
4282 .attrs = hstate_demote_attrs,
4283};
4284
4285static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4286 struct kobject **hstate_kobjs,
4287 const struct attribute_group *hstate_attr_group)
4288{
4289 int retval;
4290 int hi = hstate_index(h);
4291
4292 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4293 if (!hstate_kobjs[hi])
4294 return -ENOMEM;
4295
4296 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4297 if (retval) {
4298 kobject_put(hstate_kobjs[hi]);
4299 hstate_kobjs[hi] = NULL;
4300 return retval;
4301 }
4302
4303 if (h->demote_order) {
4304 retval = sysfs_create_group(hstate_kobjs[hi],
4305 &hstate_demote_attr_group);
4306 if (retval) {
4307 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4308 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4309 kobject_put(hstate_kobjs[hi]);
4310 hstate_kobjs[hi] = NULL;
4311 return retval;
4312 }
4313 }
4314
4315 return 0;
4316}
4317
4318#ifdef CONFIG_NUMA
4319static bool hugetlb_sysfs_initialized __ro_after_init;
4320
4321/*
4322 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4323 * with node devices in node_devices[] using a parallel array. The array
4324 * index of a node device or _hstate == node id.
4325 * This is here to avoid any static dependency of the node device driver, in
4326 * the base kernel, on the hugetlb module.
4327 */
4328struct node_hstate {
4329 struct kobject *hugepages_kobj;
4330 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4331};
4332static struct node_hstate node_hstates[MAX_NUMNODES];
4333
4334/*
4335 * A subset of global hstate attributes for node devices
4336 */
4337static struct attribute *per_node_hstate_attrs[] = {
4338 &nr_hugepages_attr.attr,
4339 &free_hugepages_attr.attr,
4340 &surplus_hugepages_attr.attr,
4341 NULL,
4342};
4343
4344static const struct attribute_group per_node_hstate_attr_group = {
4345 .attrs = per_node_hstate_attrs,
4346};
4347
4348/*
4349 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4350 * Returns node id via non-NULL nidp.
4351 */
4352static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4353{
4354 int nid;
4355
4356 for (nid = 0; nid < nr_node_ids; nid++) {
4357 struct node_hstate *nhs = &node_hstates[nid];
4358 int i;
4359 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4360 if (nhs->hstate_kobjs[i] == kobj) {
4361 if (nidp)
4362 *nidp = nid;
4363 return &hstates[i];
4364 }
4365 }
4366
4367 BUG();
4368 return NULL;
4369}
4370
4371/*
4372 * Unregister hstate attributes from a single node device.
4373 * No-op if no hstate attributes attached.
4374 */
4375void hugetlb_unregister_node(struct node *node)
4376{
4377 struct hstate *h;
4378 struct node_hstate *nhs = &node_hstates[node->dev.id];
4379
4380 if (!nhs->hugepages_kobj)
4381 return; /* no hstate attributes */
4382
4383 for_each_hstate(h) {
4384 int idx = hstate_index(h);
4385 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4386
4387 if (!hstate_kobj)
4388 continue;
4389 if (h->demote_order)
4390 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4391 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4392 kobject_put(hstate_kobj);
4393 nhs->hstate_kobjs[idx] = NULL;
4394 }
4395
4396 kobject_put(nhs->hugepages_kobj);
4397 nhs->hugepages_kobj = NULL;
4398}
4399
4400
4401/*
4402 * Register hstate attributes for a single node device.
4403 * No-op if attributes already registered.
4404 */
4405void hugetlb_register_node(struct node *node)
4406{
4407 struct hstate *h;
4408 struct node_hstate *nhs = &node_hstates[node->dev.id];
4409 int err;
4410
4411 if (!hugetlb_sysfs_initialized)
4412 return;
4413
4414 if (nhs->hugepages_kobj)
4415 return; /* already allocated */
4416
4417 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4418 &node->dev.kobj);
4419 if (!nhs->hugepages_kobj)
4420 return;
4421
4422 for_each_hstate(h) {
4423 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4424 nhs->hstate_kobjs,
4425 &per_node_hstate_attr_group);
4426 if (err) {
4427 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4428 h->name, node->dev.id);
4429 hugetlb_unregister_node(node);
4430 break;
4431 }
4432 }
4433}
4434
4435/*
4436 * hugetlb init time: register hstate attributes for all registered node
4437 * devices of nodes that have memory. All on-line nodes should have
4438 * registered their associated device by this time.
4439 */
4440static void __init hugetlb_register_all_nodes(void)
4441{
4442 int nid;
4443
4444 for_each_online_node(nid)
4445 hugetlb_register_node(node_devices[nid]);
4446}
4447#else /* !CONFIG_NUMA */
4448
4449static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4450{
4451 BUG();
4452 if (nidp)
4453 *nidp = -1;
4454 return NULL;
4455}
4456
4457static void hugetlb_register_all_nodes(void) { }
4458
4459#endif
4460
4461#ifdef CONFIG_CMA
4462static void __init hugetlb_cma_check(void);
4463#else
4464static inline __init void hugetlb_cma_check(void)
4465{
4466}
4467#endif
4468
4469static void __init hugetlb_sysfs_init(void)
4470{
4471 struct hstate *h;
4472 int err;
4473
4474 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4475 if (!hugepages_kobj)
4476 return;
4477
4478 for_each_hstate(h) {
4479 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4480 hstate_kobjs, &hstate_attr_group);
4481 if (err)
4482 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4483 }
4484
4485#ifdef CONFIG_NUMA
4486 hugetlb_sysfs_initialized = true;
4487#endif
4488 hugetlb_register_all_nodes();
4489}
4490
4491#ifdef CONFIG_SYSCTL
4492static void hugetlb_sysctl_init(void);
4493#else
4494static inline void hugetlb_sysctl_init(void) { }
4495#endif
4496
4497static int __init hugetlb_init(void)
4498{
4499 int i;
4500
4501 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4502 __NR_HPAGEFLAGS);
4503
4504 if (!hugepages_supported()) {
4505 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4506 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4507 return 0;
4508 }
4509
4510 /*
4511 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4512 * architectures depend on setup being done here.
4513 */
4514 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4515 if (!parsed_default_hugepagesz) {
4516 /*
4517 * If we did not parse a default huge page size, set
4518 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4519 * number of huge pages for this default size was implicitly
4520 * specified, set that here as well.
4521 * Note that the implicit setting will overwrite an explicit
4522 * setting. A warning will be printed in this case.
4523 */
4524 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4525 if (default_hstate_max_huge_pages) {
4526 if (default_hstate.max_huge_pages) {
4527 char buf[32];
4528
4529 string_get_size(huge_page_size(&default_hstate),
4530 1, STRING_UNITS_2, buf, 32);
4531 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4532 default_hstate.max_huge_pages, buf);
4533 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4534 default_hstate_max_huge_pages);
4535 }
4536 default_hstate.max_huge_pages =
4537 default_hstate_max_huge_pages;
4538
4539 for_each_online_node(i)
4540 default_hstate.max_huge_pages_node[i] =
4541 default_hugepages_in_node[i];
4542 }
4543 }
4544
4545 hugetlb_cma_check();
4546 hugetlb_init_hstates();
4547 gather_bootmem_prealloc();
4548 report_hugepages();
4549
4550 hugetlb_sysfs_init();
4551 hugetlb_cgroup_file_init();
4552 hugetlb_sysctl_init();
4553
4554#ifdef CONFIG_SMP
4555 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4556#else
4557 num_fault_mutexes = 1;
4558#endif
4559 hugetlb_fault_mutex_table =
4560 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4561 GFP_KERNEL);
4562 BUG_ON(!hugetlb_fault_mutex_table);
4563
4564 for (i = 0; i < num_fault_mutexes; i++)
4565 mutex_init(&hugetlb_fault_mutex_table[i]);
4566 return 0;
4567}
4568subsys_initcall(hugetlb_init);
4569
4570/* Overwritten by architectures with more huge page sizes */
4571bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4572{
4573 return size == HPAGE_SIZE;
4574}
4575
4576void __init hugetlb_add_hstate(unsigned int order)
4577{
4578 struct hstate *h;
4579 unsigned long i;
4580
4581 if (size_to_hstate(PAGE_SIZE << order)) {
4582 return;
4583 }
4584 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4585 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4586 h = &hstates[hugetlb_max_hstate++];
4587 mutex_init(&h->resize_lock);
4588 h->order = order;
4589 h->mask = ~(huge_page_size(h) - 1);
4590 for (i = 0; i < MAX_NUMNODES; ++i)
4591 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4592 INIT_LIST_HEAD(&h->hugepage_activelist);
4593 h->next_nid_to_alloc = first_memory_node;
4594 h->next_nid_to_free = first_memory_node;
4595 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4596 huge_page_size(h)/SZ_1K);
4597
4598 parsed_hstate = h;
4599}
4600
4601bool __init __weak hugetlb_node_alloc_supported(void)
4602{
4603 return true;
4604}
4605
4606static void __init hugepages_clear_pages_in_node(void)
4607{
4608 if (!hugetlb_max_hstate) {
4609 default_hstate_max_huge_pages = 0;
4610 memset(default_hugepages_in_node, 0,
4611 sizeof(default_hugepages_in_node));
4612 } else {
4613 parsed_hstate->max_huge_pages = 0;
4614 memset(parsed_hstate->max_huge_pages_node, 0,
4615 sizeof(parsed_hstate->max_huge_pages_node));
4616 }
4617}
4618
4619/*
4620 * hugepages command line processing
4621 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4622 * specification. If not, ignore the hugepages value. hugepages can also
4623 * be the first huge page command line option in which case it implicitly
4624 * specifies the number of huge pages for the default size.
4625 */
4626static int __init hugepages_setup(char *s)
4627{
4628 unsigned long *mhp;
4629 static unsigned long *last_mhp;
4630 int node = NUMA_NO_NODE;
4631 int count;
4632 unsigned long tmp;
4633 char *p = s;
4634
4635 if (!parsed_valid_hugepagesz) {
4636 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4637 parsed_valid_hugepagesz = true;
4638 return 1;
4639 }
4640
4641 /*
4642 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4643 * yet, so this hugepages= parameter goes to the "default hstate".
4644 * Otherwise, it goes with the previously parsed hugepagesz or
4645 * default_hugepagesz.
4646 */
4647 else if (!hugetlb_max_hstate)
4648 mhp = &default_hstate_max_huge_pages;
4649 else
4650 mhp = &parsed_hstate->max_huge_pages;
4651
4652 if (mhp == last_mhp) {
4653 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4654 return 1;
4655 }
4656
4657 while (*p) {
4658 count = 0;
4659 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4660 goto invalid;
4661 /* Parameter is node format */
4662 if (p[count] == ':') {
4663 if (!hugetlb_node_alloc_supported()) {
4664 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4665 return 1;
4666 }
4667 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4668 goto invalid;
4669 node = array_index_nospec(tmp, MAX_NUMNODES);
4670 p += count + 1;
4671 /* Parse hugepages */
4672 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4673 goto invalid;
4674 if (!hugetlb_max_hstate)
4675 default_hugepages_in_node[node] = tmp;
4676 else
4677 parsed_hstate->max_huge_pages_node[node] = tmp;
4678 *mhp += tmp;
4679 /* Go to parse next node*/
4680 if (p[count] == ',')
4681 p += count + 1;
4682 else
4683 break;
4684 } else {
4685 if (p != s)
4686 goto invalid;
4687 *mhp = tmp;
4688 break;
4689 }
4690 }
4691
4692 /*
4693 * Global state is always initialized later in hugetlb_init.
4694 * But we need to allocate gigantic hstates here early to still
4695 * use the bootmem allocator.
4696 */
4697 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4698 hugetlb_hstate_alloc_pages(parsed_hstate);
4699
4700 last_mhp = mhp;
4701
4702 return 1;
4703
4704invalid:
4705 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4706 hugepages_clear_pages_in_node();
4707 return 1;
4708}
4709__setup("hugepages=", hugepages_setup);
4710
4711/*
4712 * hugepagesz command line processing
4713 * A specific huge page size can only be specified once with hugepagesz.
4714 * hugepagesz is followed by hugepages on the command line. The global
4715 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4716 * hugepagesz argument was valid.
4717 */
4718static int __init hugepagesz_setup(char *s)
4719{
4720 unsigned long size;
4721 struct hstate *h;
4722
4723 parsed_valid_hugepagesz = false;
4724 size = (unsigned long)memparse(s, NULL);
4725
4726 if (!arch_hugetlb_valid_size(size)) {
4727 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4728 return 1;
4729 }
4730
4731 h = size_to_hstate(size);
4732 if (h) {
4733 /*
4734 * hstate for this size already exists. This is normally
4735 * an error, but is allowed if the existing hstate is the
4736 * default hstate. More specifically, it is only allowed if
4737 * the number of huge pages for the default hstate was not
4738 * previously specified.
4739 */
4740 if (!parsed_default_hugepagesz || h != &default_hstate ||
4741 default_hstate.max_huge_pages) {
4742 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4743 return 1;
4744 }
4745
4746 /*
4747 * No need to call hugetlb_add_hstate() as hstate already
4748 * exists. But, do set parsed_hstate so that a following
4749 * hugepages= parameter will be applied to this hstate.
4750 */
4751 parsed_hstate = h;
4752 parsed_valid_hugepagesz = true;
4753 return 1;
4754 }
4755
4756 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4757 parsed_valid_hugepagesz = true;
4758 return 1;
4759}
4760__setup("hugepagesz=", hugepagesz_setup);
4761
4762/*
4763 * default_hugepagesz command line input
4764 * Only one instance of default_hugepagesz allowed on command line.
4765 */
4766static int __init default_hugepagesz_setup(char *s)
4767{
4768 unsigned long size;
4769 int i;
4770
4771 parsed_valid_hugepagesz = false;
4772 if (parsed_default_hugepagesz) {
4773 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4774 return 1;
4775 }
4776
4777 size = (unsigned long)memparse(s, NULL);
4778
4779 if (!arch_hugetlb_valid_size(size)) {
4780 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4781 return 1;
4782 }
4783
4784 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4785 parsed_valid_hugepagesz = true;
4786 parsed_default_hugepagesz = true;
4787 default_hstate_idx = hstate_index(size_to_hstate(size));
4788
4789 /*
4790 * The number of default huge pages (for this size) could have been
4791 * specified as the first hugetlb parameter: hugepages=X. If so,
4792 * then default_hstate_max_huge_pages is set. If the default huge
4793 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4794 * allocated here from bootmem allocator.
4795 */
4796 if (default_hstate_max_huge_pages) {
4797 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4798 for_each_online_node(i)
4799 default_hstate.max_huge_pages_node[i] =
4800 default_hugepages_in_node[i];
4801 if (hstate_is_gigantic(&default_hstate))
4802 hugetlb_hstate_alloc_pages(&default_hstate);
4803 default_hstate_max_huge_pages = 0;
4804 }
4805
4806 return 1;
4807}
4808__setup("default_hugepagesz=", default_hugepagesz_setup);
4809
4810static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4811{
4812#ifdef CONFIG_NUMA
4813 struct mempolicy *mpol = get_task_policy(current);
4814
4815 /*
4816 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4817 * (from policy_nodemask) specifically for hugetlb case
4818 */
4819 if (mpol->mode == MPOL_BIND &&
4820 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4821 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4822 return &mpol->nodes;
4823#endif
4824 return NULL;
4825}
4826
4827static unsigned int allowed_mems_nr(struct hstate *h)
4828{
4829 int node;
4830 unsigned int nr = 0;
4831 nodemask_t *mbind_nodemask;
4832 unsigned int *array = h->free_huge_pages_node;
4833 gfp_t gfp_mask = htlb_alloc_mask(h);
4834
4835 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4836 for_each_node_mask(node, cpuset_current_mems_allowed) {
4837 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4838 nr += array[node];
4839 }
4840
4841 return nr;
4842}
4843
4844#ifdef CONFIG_SYSCTL
4845static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4846 void *buffer, size_t *length,
4847 loff_t *ppos, unsigned long *out)
4848{
4849 struct ctl_table dup_table;
4850
4851 /*
4852 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4853 * can duplicate the @table and alter the duplicate of it.
4854 */
4855 dup_table = *table;
4856 dup_table.data = out;
4857
4858 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4859}
4860
4861static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4862 struct ctl_table *table, int write,
4863 void *buffer, size_t *length, loff_t *ppos)
4864{
4865 struct hstate *h = &default_hstate;
4866 unsigned long tmp = h->max_huge_pages;
4867 int ret;
4868
4869 if (!hugepages_supported())
4870 return -EOPNOTSUPP;
4871
4872 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4873 &tmp);
4874 if (ret)
4875 goto out;
4876
4877 if (write)
4878 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4879 NUMA_NO_NODE, tmp, *length);
4880out:
4881 return ret;
4882}
4883
4884static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4885 void *buffer, size_t *length, loff_t *ppos)
4886{
4887
4888 return hugetlb_sysctl_handler_common(false, table, write,
4889 buffer, length, ppos);
4890}
4891
4892#ifdef CONFIG_NUMA
4893static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4894 void *buffer, size_t *length, loff_t *ppos)
4895{
4896 return hugetlb_sysctl_handler_common(true, table, write,
4897 buffer, length, ppos);
4898}
4899#endif /* CONFIG_NUMA */
4900
4901static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4902 void *buffer, size_t *length, loff_t *ppos)
4903{
4904 struct hstate *h = &default_hstate;
4905 unsigned long tmp;
4906 int ret;
4907
4908 if (!hugepages_supported())
4909 return -EOPNOTSUPP;
4910
4911 tmp = h->nr_overcommit_huge_pages;
4912
4913 if (write && hstate_is_gigantic(h))
4914 return -EINVAL;
4915
4916 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4917 &tmp);
4918 if (ret)
4919 goto out;
4920
4921 if (write) {
4922 spin_lock_irq(&hugetlb_lock);
4923 h->nr_overcommit_huge_pages = tmp;
4924 spin_unlock_irq(&hugetlb_lock);
4925 }
4926out:
4927 return ret;
4928}
4929
4930static struct ctl_table hugetlb_table[] = {
4931 {
4932 .procname = "nr_hugepages",
4933 .data = NULL,
4934 .maxlen = sizeof(unsigned long),
4935 .mode = 0644,
4936 .proc_handler = hugetlb_sysctl_handler,
4937 },
4938#ifdef CONFIG_NUMA
4939 {
4940 .procname = "nr_hugepages_mempolicy",
4941 .data = NULL,
4942 .maxlen = sizeof(unsigned long),
4943 .mode = 0644,
4944 .proc_handler = &hugetlb_mempolicy_sysctl_handler,
4945 },
4946#endif
4947 {
4948 .procname = "hugetlb_shm_group",
4949 .data = &sysctl_hugetlb_shm_group,
4950 .maxlen = sizeof(gid_t),
4951 .mode = 0644,
4952 .proc_handler = proc_dointvec,
4953 },
4954 {
4955 .procname = "nr_overcommit_hugepages",
4956 .data = NULL,
4957 .maxlen = sizeof(unsigned long),
4958 .mode = 0644,
4959 .proc_handler = hugetlb_overcommit_handler,
4960 },
4961 { }
4962};
4963
4964static void hugetlb_sysctl_init(void)
4965{
4966 register_sysctl_init("vm", hugetlb_table);
4967}
4968#endif /* CONFIG_SYSCTL */
4969
4970void hugetlb_report_meminfo(struct seq_file *m)
4971{
4972 struct hstate *h;
4973 unsigned long total = 0;
4974
4975 if (!hugepages_supported())
4976 return;
4977
4978 for_each_hstate(h) {
4979 unsigned long count = h->nr_huge_pages;
4980
4981 total += huge_page_size(h) * count;
4982
4983 if (h == &default_hstate)
4984 seq_printf(m,
4985 "HugePages_Total: %5lu\n"
4986 "HugePages_Free: %5lu\n"
4987 "HugePages_Rsvd: %5lu\n"
4988 "HugePages_Surp: %5lu\n"
4989 "Hugepagesize: %8lu kB\n",
4990 count,
4991 h->free_huge_pages,
4992 h->resv_huge_pages,
4993 h->surplus_huge_pages,
4994 huge_page_size(h) / SZ_1K);
4995 }
4996
4997 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4998}
4999
5000int hugetlb_report_node_meminfo(char *buf, int len, int nid)
5001{
5002 struct hstate *h = &default_hstate;
5003
5004 if (!hugepages_supported())
5005 return 0;
5006
5007 return sysfs_emit_at(buf, len,
5008 "Node %d HugePages_Total: %5u\n"
5009 "Node %d HugePages_Free: %5u\n"
5010 "Node %d HugePages_Surp: %5u\n",
5011 nid, h->nr_huge_pages_node[nid],
5012 nid, h->free_huge_pages_node[nid],
5013 nid, h->surplus_huge_pages_node[nid]);
5014}
5015
5016void hugetlb_show_meminfo_node(int nid)
5017{
5018 struct hstate *h;
5019
5020 if (!hugepages_supported())
5021 return;
5022
5023 for_each_hstate(h)
5024 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5025 nid,
5026 h->nr_huge_pages_node[nid],
5027 h->free_huge_pages_node[nid],
5028 h->surplus_huge_pages_node[nid],
5029 huge_page_size(h) / SZ_1K);
5030}
5031
5032void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5033{
5034 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5035 K(atomic_long_read(&mm->hugetlb_usage)));
5036}
5037
5038/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
5039unsigned long hugetlb_total_pages(void)
5040{
5041 struct hstate *h;
5042 unsigned long nr_total_pages = 0;
5043
5044 for_each_hstate(h)
5045 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5046 return nr_total_pages;
5047}
5048
5049static int hugetlb_acct_memory(struct hstate *h, long delta)
5050{
5051 int ret = -ENOMEM;
5052
5053 if (!delta)
5054 return 0;
5055
5056 spin_lock_irq(&hugetlb_lock);
5057 /*
5058 * When cpuset is configured, it breaks the strict hugetlb page
5059 * reservation as the accounting is done on a global variable. Such
5060 * reservation is completely rubbish in the presence of cpuset because
5061 * the reservation is not checked against page availability for the
5062 * current cpuset. Application can still potentially OOM'ed by kernel
5063 * with lack of free htlb page in cpuset that the task is in.
5064 * Attempt to enforce strict accounting with cpuset is almost
5065 * impossible (or too ugly) because cpuset is too fluid that
5066 * task or memory node can be dynamically moved between cpusets.
5067 *
5068 * The change of semantics for shared hugetlb mapping with cpuset is
5069 * undesirable. However, in order to preserve some of the semantics,
5070 * we fall back to check against current free page availability as
5071 * a best attempt and hopefully to minimize the impact of changing
5072 * semantics that cpuset has.
5073 *
5074 * Apart from cpuset, we also have memory policy mechanism that
5075 * also determines from which node the kernel will allocate memory
5076 * in a NUMA system. So similar to cpuset, we also should consider
5077 * the memory policy of the current task. Similar to the description
5078 * above.
5079 */
5080 if (delta > 0) {
5081 if (gather_surplus_pages(h, delta) < 0)
5082 goto out;
5083
5084 if (delta > allowed_mems_nr(h)) {
5085 return_unused_surplus_pages(h, delta);
5086 goto out;
5087 }
5088 }
5089
5090 ret = 0;
5091 if (delta < 0)
5092 return_unused_surplus_pages(h, (unsigned long) -delta);
5093
5094out:
5095 spin_unlock_irq(&hugetlb_lock);
5096 return ret;
5097}
5098
5099static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5100{
5101 struct resv_map *resv = vma_resv_map(vma);
5102
5103 /*
5104 * HPAGE_RESV_OWNER indicates a private mapping.
5105 * This new VMA should share its siblings reservation map if present.
5106 * The VMA will only ever have a valid reservation map pointer where
5107 * it is being copied for another still existing VMA. As that VMA
5108 * has a reference to the reservation map it cannot disappear until
5109 * after this open call completes. It is therefore safe to take a
5110 * new reference here without additional locking.
5111 */
5112 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5113 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5114 kref_get(&resv->refs);
5115 }
5116
5117 /*
5118 * vma_lock structure for sharable mappings is vma specific.
5119 * Clear old pointer (if copied via vm_area_dup) and allocate
5120 * new structure. Before clearing, make sure vma_lock is not
5121 * for this vma.
5122 */
5123 if (vma->vm_flags & VM_MAYSHARE) {
5124 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5125
5126 if (vma_lock) {
5127 if (vma_lock->vma != vma) {
5128 vma->vm_private_data = NULL;
5129 hugetlb_vma_lock_alloc(vma);
5130 } else
5131 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5132 } else
5133 hugetlb_vma_lock_alloc(vma);
5134 }
5135}
5136
5137static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5138{
5139 struct hstate *h = hstate_vma(vma);
5140 struct resv_map *resv;
5141 struct hugepage_subpool *spool = subpool_vma(vma);
5142 unsigned long reserve, start, end;
5143 long gbl_reserve;
5144
5145 hugetlb_vma_lock_free(vma);
5146
5147 resv = vma_resv_map(vma);
5148 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5149 return;
5150
5151 start = vma_hugecache_offset(h, vma, vma->vm_start);
5152 end = vma_hugecache_offset(h, vma, vma->vm_end);
5153
5154 reserve = (end - start) - region_count(resv, start, end);
5155 hugetlb_cgroup_uncharge_counter(resv, start, end);
5156 if (reserve) {
5157 /*
5158 * Decrement reserve counts. The global reserve count may be
5159 * adjusted if the subpool has a minimum size.
5160 */
5161 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5162 hugetlb_acct_memory(h, -gbl_reserve);
5163 }
5164
5165 kref_put(&resv->refs, resv_map_release);
5166}
5167
5168static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5169{
5170 if (addr & ~(huge_page_mask(hstate_vma(vma))))
5171 return -EINVAL;
5172
5173 /*
5174 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5175 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5176 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5177 */
5178 if (addr & ~PUD_MASK) {
5179 /*
5180 * hugetlb_vm_op_split is called right before we attempt to
5181 * split the VMA. We will need to unshare PMDs in the old and
5182 * new VMAs, so let's unshare before we split.
5183 */
5184 unsigned long floor = addr & PUD_MASK;
5185 unsigned long ceil = floor + PUD_SIZE;
5186
5187 if (floor >= vma->vm_start && ceil <= vma->vm_end)
5188 hugetlb_unshare_pmds(vma, floor, ceil);
5189 }
5190
5191 return 0;
5192}
5193
5194static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5195{
5196 return huge_page_size(hstate_vma(vma));
5197}
5198
5199/*
5200 * We cannot handle pagefaults against hugetlb pages at all. They cause
5201 * handle_mm_fault() to try to instantiate regular-sized pages in the
5202 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
5203 * this far.
5204 */
5205static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5206{
5207 BUG();
5208 return 0;
5209}
5210
5211/*
5212 * When a new function is introduced to vm_operations_struct and added
5213 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5214 * This is because under System V memory model, mappings created via
5215 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5216 * their original vm_ops are overwritten with shm_vm_ops.
5217 */
5218const struct vm_operations_struct hugetlb_vm_ops = {
5219 .fault = hugetlb_vm_op_fault,
5220 .open = hugetlb_vm_op_open,
5221 .close = hugetlb_vm_op_close,
5222 .may_split = hugetlb_vm_op_split,
5223 .pagesize = hugetlb_vm_op_pagesize,
5224};
5225
5226static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5227 int writable)
5228{
5229 pte_t entry;
5230 unsigned int shift = huge_page_shift(hstate_vma(vma));
5231
5232 if (writable) {
5233 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5234 vma->vm_page_prot)));
5235 } else {
5236 entry = huge_pte_wrprotect(mk_huge_pte(page,
5237 vma->vm_page_prot));
5238 }
5239 entry = pte_mkyoung(entry);
5240 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5241
5242 return entry;
5243}
5244
5245static void set_huge_ptep_writable(struct vm_area_struct *vma,
5246 unsigned long address, pte_t *ptep)
5247{
5248 pte_t entry;
5249
5250 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
5251 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5252 update_mmu_cache(vma, address, ptep);
5253}
5254
5255bool is_hugetlb_entry_migration(pte_t pte)
5256{
5257 swp_entry_t swp;
5258
5259 if (huge_pte_none(pte) || pte_present(pte))
5260 return false;
5261 swp = pte_to_swp_entry(pte);
5262 if (is_migration_entry(swp))
5263 return true;
5264 else
5265 return false;
5266}
5267
5268bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5269{
5270 swp_entry_t swp;
5271
5272 if (huge_pte_none(pte) || pte_present(pte))
5273 return false;
5274 swp = pte_to_swp_entry(pte);
5275 if (is_hwpoison_entry(swp))
5276 return true;
5277 else
5278 return false;
5279}
5280
5281static void
5282hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5283 struct folio *new_folio, pte_t old, unsigned long sz)
5284{
5285 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5286
5287 __folio_mark_uptodate(new_folio);
5288 hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5289 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5290 newpte = huge_pte_mkuffd_wp(newpte);
5291 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5292 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5293 folio_set_hugetlb_migratable(new_folio);
5294}
5295
5296int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5297 struct vm_area_struct *dst_vma,
5298 struct vm_area_struct *src_vma)
5299{
5300 pte_t *src_pte, *dst_pte, entry;
5301 struct folio *pte_folio;
5302 unsigned long addr;
5303 bool cow = is_cow_mapping(src_vma->vm_flags);
5304 struct hstate *h = hstate_vma(src_vma);
5305 unsigned long sz = huge_page_size(h);
5306 unsigned long npages = pages_per_huge_page(h);
5307 struct mmu_notifier_range range;
5308 unsigned long last_addr_mask;
5309 int ret = 0;
5310
5311 if (cow) {
5312 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5313 src_vma->vm_start,
5314 src_vma->vm_end);
5315 mmu_notifier_invalidate_range_start(&range);
5316 vma_assert_write_locked(src_vma);
5317 raw_write_seqcount_begin(&src->write_protect_seq);
5318 } else {
5319 /*
5320 * For shared mappings the vma lock must be held before
5321 * calling hugetlb_walk() in the src vma. Otherwise, the
5322 * returned ptep could go away if part of a shared pmd and
5323 * another thread calls huge_pmd_unshare.
5324 */
5325 hugetlb_vma_lock_read(src_vma);
5326 }
5327
5328 last_addr_mask = hugetlb_mask_last_page(h);
5329 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5330 spinlock_t *src_ptl, *dst_ptl;
5331 src_pte = hugetlb_walk(src_vma, addr, sz);
5332 if (!src_pte) {
5333 addr |= last_addr_mask;
5334 continue;
5335 }
5336 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5337 if (!dst_pte) {
5338 ret = -ENOMEM;
5339 break;
5340 }
5341
5342 /*
5343 * If the pagetables are shared don't copy or take references.
5344 *
5345 * dst_pte == src_pte is the common case of src/dest sharing.
5346 * However, src could have 'unshared' and dst shares with
5347 * another vma. So page_count of ptep page is checked instead
5348 * to reliably determine whether pte is shared.
5349 */
5350 if (page_count(virt_to_page(dst_pte)) > 1) {
5351 addr |= last_addr_mask;
5352 continue;
5353 }
5354
5355 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5356 src_ptl = huge_pte_lockptr(h, src, src_pte);
5357 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5358 entry = huge_ptep_get(src_pte);
5359again:
5360 if (huge_pte_none(entry)) {
5361 /*
5362 * Skip if src entry none.
5363 */
5364 ;
5365 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5366 if (!userfaultfd_wp(dst_vma))
5367 entry = huge_pte_clear_uffd_wp(entry);
5368 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5369 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5370 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5371 bool uffd_wp = pte_swp_uffd_wp(entry);
5372
5373 if (!is_readable_migration_entry(swp_entry) && cow) {
5374 /*
5375 * COW mappings require pages in both
5376 * parent and child to be set to read.
5377 */
5378 swp_entry = make_readable_migration_entry(
5379 swp_offset(swp_entry));
5380 entry = swp_entry_to_pte(swp_entry);
5381 if (userfaultfd_wp(src_vma) && uffd_wp)
5382 entry = pte_swp_mkuffd_wp(entry);
5383 set_huge_pte_at(src, addr, src_pte, entry, sz);
5384 }
5385 if (!userfaultfd_wp(dst_vma))
5386 entry = huge_pte_clear_uffd_wp(entry);
5387 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5388 } else if (unlikely(is_pte_marker(entry))) {
5389 pte_marker marker = copy_pte_marker(
5390 pte_to_swp_entry(entry), dst_vma);
5391
5392 if (marker)
5393 set_huge_pte_at(dst, addr, dst_pte,
5394 make_pte_marker(marker), sz);
5395 } else {
5396 entry = huge_ptep_get(src_pte);
5397 pte_folio = page_folio(pte_page(entry));
5398 folio_get(pte_folio);
5399
5400 /*
5401 * Failing to duplicate the anon rmap is a rare case
5402 * where we see pinned hugetlb pages while they're
5403 * prone to COW. We need to do the COW earlier during
5404 * fork.
5405 *
5406 * When pre-allocating the page or copying data, we
5407 * need to be without the pgtable locks since we could
5408 * sleep during the process.
5409 */
5410 if (!folio_test_anon(pte_folio)) {
5411 hugetlb_add_file_rmap(pte_folio);
5412 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5413 pte_t src_pte_old = entry;
5414 struct folio *new_folio;
5415
5416 spin_unlock(src_ptl);
5417 spin_unlock(dst_ptl);
5418 /* Do not use reserve as it's private owned */
5419 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5420 if (IS_ERR(new_folio)) {
5421 folio_put(pte_folio);
5422 ret = PTR_ERR(new_folio);
5423 break;
5424 }
5425 ret = copy_user_large_folio(new_folio,
5426 pte_folio,
5427 addr, dst_vma);
5428 folio_put(pte_folio);
5429 if (ret) {
5430 folio_put(new_folio);
5431 break;
5432 }
5433
5434 /* Install the new hugetlb folio if src pte stable */
5435 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5436 src_ptl = huge_pte_lockptr(h, src, src_pte);
5437 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5438 entry = huge_ptep_get(src_pte);
5439 if (!pte_same(src_pte_old, entry)) {
5440 restore_reserve_on_error(h, dst_vma, addr,
5441 new_folio);
5442 folio_put(new_folio);
5443 /* huge_ptep of dst_pte won't change as in child */
5444 goto again;
5445 }
5446 hugetlb_install_folio(dst_vma, dst_pte, addr,
5447 new_folio, src_pte_old, sz);
5448 spin_unlock(src_ptl);
5449 spin_unlock(dst_ptl);
5450 continue;
5451 }
5452
5453 if (cow) {
5454 /*
5455 * No need to notify as we are downgrading page
5456 * table protection not changing it to point
5457 * to a new page.
5458 *
5459 * See Documentation/mm/mmu_notifier.rst
5460 */
5461 huge_ptep_set_wrprotect(src, addr, src_pte);
5462 entry = huge_pte_wrprotect(entry);
5463 }
5464
5465 if (!userfaultfd_wp(dst_vma))
5466 entry = huge_pte_clear_uffd_wp(entry);
5467
5468 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5469 hugetlb_count_add(npages, dst);
5470 }
5471 spin_unlock(src_ptl);
5472 spin_unlock(dst_ptl);
5473 }
5474
5475 if (cow) {
5476 raw_write_seqcount_end(&src->write_protect_seq);
5477 mmu_notifier_invalidate_range_end(&range);
5478 } else {
5479 hugetlb_vma_unlock_read(src_vma);
5480 }
5481
5482 return ret;
5483}
5484
5485static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5486 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5487 unsigned long sz)
5488{
5489 struct hstate *h = hstate_vma(vma);
5490 struct mm_struct *mm = vma->vm_mm;
5491 spinlock_t *src_ptl, *dst_ptl;
5492 pte_t pte;
5493
5494 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5495 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5496
5497 /*
5498 * We don't have to worry about the ordering of src and dst ptlocks
5499 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5500 */
5501 if (src_ptl != dst_ptl)
5502 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5503
5504 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5505 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5506
5507 if (src_ptl != dst_ptl)
5508 spin_unlock(src_ptl);
5509 spin_unlock(dst_ptl);
5510}
5511
5512int move_hugetlb_page_tables(struct vm_area_struct *vma,
5513 struct vm_area_struct *new_vma,
5514 unsigned long old_addr, unsigned long new_addr,
5515 unsigned long len)
5516{
5517 struct hstate *h = hstate_vma(vma);
5518 struct address_space *mapping = vma->vm_file->f_mapping;
5519 unsigned long sz = huge_page_size(h);
5520 struct mm_struct *mm = vma->vm_mm;
5521 unsigned long old_end = old_addr + len;
5522 unsigned long last_addr_mask;
5523 pte_t *src_pte, *dst_pte;
5524 struct mmu_notifier_range range;
5525 bool shared_pmd = false;
5526
5527 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5528 old_end);
5529 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5530 /*
5531 * In case of shared PMDs, we should cover the maximum possible
5532 * range.
5533 */
5534 flush_cache_range(vma, range.start, range.end);
5535
5536 mmu_notifier_invalidate_range_start(&range);
5537 last_addr_mask = hugetlb_mask_last_page(h);
5538 /* Prevent race with file truncation */
5539 hugetlb_vma_lock_write(vma);
5540 i_mmap_lock_write(mapping);
5541 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5542 src_pte = hugetlb_walk(vma, old_addr, sz);
5543 if (!src_pte) {
5544 old_addr |= last_addr_mask;
5545 new_addr |= last_addr_mask;
5546 continue;
5547 }
5548 if (huge_pte_none(huge_ptep_get(src_pte)))
5549 continue;
5550
5551 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5552 shared_pmd = true;
5553 old_addr |= last_addr_mask;
5554 new_addr |= last_addr_mask;
5555 continue;
5556 }
5557
5558 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5559 if (!dst_pte)
5560 break;
5561
5562 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5563 }
5564
5565 if (shared_pmd)
5566 flush_hugetlb_tlb_range(vma, range.start, range.end);
5567 else
5568 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5569 mmu_notifier_invalidate_range_end(&range);
5570 i_mmap_unlock_write(mapping);
5571 hugetlb_vma_unlock_write(vma);
5572
5573 return len + old_addr - old_end;
5574}
5575
5576void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5577 unsigned long start, unsigned long end,
5578 struct page *ref_page, zap_flags_t zap_flags)
5579{
5580 struct mm_struct *mm = vma->vm_mm;
5581 unsigned long address;
5582 pte_t *ptep;
5583 pte_t pte;
5584 spinlock_t *ptl;
5585 struct page *page;
5586 struct hstate *h = hstate_vma(vma);
5587 unsigned long sz = huge_page_size(h);
5588 unsigned long last_addr_mask;
5589 bool force_flush = false;
5590
5591 WARN_ON(!is_vm_hugetlb_page(vma));
5592 BUG_ON(start & ~huge_page_mask(h));
5593 BUG_ON(end & ~huge_page_mask(h));
5594
5595 /*
5596 * This is a hugetlb vma, all the pte entries should point
5597 * to huge page.
5598 */
5599 tlb_change_page_size(tlb, sz);
5600 tlb_start_vma(tlb, vma);
5601
5602 last_addr_mask = hugetlb_mask_last_page(h);
5603 address = start;
5604 for (; address < end; address += sz) {
5605 ptep = hugetlb_walk(vma, address, sz);
5606 if (!ptep) {
5607 address |= last_addr_mask;
5608 continue;
5609 }
5610
5611 ptl = huge_pte_lock(h, mm, ptep);
5612 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5613 spin_unlock(ptl);
5614 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5615 force_flush = true;
5616 address |= last_addr_mask;
5617 continue;
5618 }
5619
5620 pte = huge_ptep_get(ptep);
5621 if (huge_pte_none(pte)) {
5622 spin_unlock(ptl);
5623 continue;
5624 }
5625
5626 /*
5627 * Migrating hugepage or HWPoisoned hugepage is already
5628 * unmapped and its refcount is dropped, so just clear pte here.
5629 */
5630 if (unlikely(!pte_present(pte))) {
5631 /*
5632 * If the pte was wr-protected by uffd-wp in any of the
5633 * swap forms, meanwhile the caller does not want to
5634 * drop the uffd-wp bit in this zap, then replace the
5635 * pte with a marker.
5636 */
5637 if (pte_swp_uffd_wp_any(pte) &&
5638 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5639 set_huge_pte_at(mm, address, ptep,
5640 make_pte_marker(PTE_MARKER_UFFD_WP),
5641 sz);
5642 else
5643 huge_pte_clear(mm, address, ptep, sz);
5644 spin_unlock(ptl);
5645 continue;
5646 }
5647
5648 page = pte_page(pte);
5649 /*
5650 * If a reference page is supplied, it is because a specific
5651 * page is being unmapped, not a range. Ensure the page we
5652 * are about to unmap is the actual page of interest.
5653 */
5654 if (ref_page) {
5655 if (page != ref_page) {
5656 spin_unlock(ptl);
5657 continue;
5658 }
5659 /*
5660 * Mark the VMA as having unmapped its page so that
5661 * future faults in this VMA will fail rather than
5662 * looking like data was lost
5663 */
5664 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5665 }
5666
5667 pte = huge_ptep_get_and_clear(mm, address, ptep);
5668 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5669 if (huge_pte_dirty(pte))
5670 set_page_dirty(page);
5671 /* Leave a uffd-wp pte marker if needed */
5672 if (huge_pte_uffd_wp(pte) &&
5673 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5674 set_huge_pte_at(mm, address, ptep,
5675 make_pte_marker(PTE_MARKER_UFFD_WP),
5676 sz);
5677 hugetlb_count_sub(pages_per_huge_page(h), mm);
5678 hugetlb_remove_rmap(page_folio(page));
5679
5680 spin_unlock(ptl);
5681 tlb_remove_page_size(tlb, page, huge_page_size(h));
5682 /*
5683 * Bail out after unmapping reference page if supplied
5684 */
5685 if (ref_page)
5686 break;
5687 }
5688 tlb_end_vma(tlb, vma);
5689
5690 /*
5691 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5692 * could defer the flush until now, since by holding i_mmap_rwsem we
5693 * guaranteed that the last refernece would not be dropped. But we must
5694 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5695 * dropped and the last reference to the shared PMDs page might be
5696 * dropped as well.
5697 *
5698 * In theory we could defer the freeing of the PMD pages as well, but
5699 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5700 * detect sharing, so we cannot defer the release of the page either.
5701 * Instead, do flush now.
5702 */
5703 if (force_flush)
5704 tlb_flush_mmu_tlbonly(tlb);
5705}
5706
5707void __hugetlb_zap_begin(struct vm_area_struct *vma,
5708 unsigned long *start, unsigned long *end)
5709{
5710 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5711 return;
5712
5713 adjust_range_if_pmd_sharing_possible(vma, start, end);
5714 hugetlb_vma_lock_write(vma);
5715 if (vma->vm_file)
5716 i_mmap_lock_write(vma->vm_file->f_mapping);
5717}
5718
5719void __hugetlb_zap_end(struct vm_area_struct *vma,
5720 struct zap_details *details)
5721{
5722 zap_flags_t zap_flags = details ? details->zap_flags : 0;
5723
5724 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5725 return;
5726
5727 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5728 /*
5729 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5730 * When the vma_lock is freed, this makes the vma ineligible
5731 * for pmd sharing. And, i_mmap_rwsem is required to set up
5732 * pmd sharing. This is important as page tables for this
5733 * unmapped range will be asynchrously deleted. If the page
5734 * tables are shared, there will be issues when accessed by
5735 * someone else.
5736 */
5737 __hugetlb_vma_unlock_write_free(vma);
5738 } else {
5739 hugetlb_vma_unlock_write(vma);
5740 }
5741
5742 if (vma->vm_file)
5743 i_mmap_unlock_write(vma->vm_file->f_mapping);
5744}
5745
5746void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5747 unsigned long end, struct page *ref_page,
5748 zap_flags_t zap_flags)
5749{
5750 struct mmu_notifier_range range;
5751 struct mmu_gather tlb;
5752
5753 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5754 start, end);
5755 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5756 mmu_notifier_invalidate_range_start(&range);
5757 tlb_gather_mmu(&tlb, vma->vm_mm);
5758
5759 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5760
5761 mmu_notifier_invalidate_range_end(&range);
5762 tlb_finish_mmu(&tlb);
5763}
5764
5765/*
5766 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5767 * mapping it owns the reserve page for. The intention is to unmap the page
5768 * from other VMAs and let the children be SIGKILLed if they are faulting the
5769 * same region.
5770 */
5771static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5772 struct page *page, unsigned long address)
5773{
5774 struct hstate *h = hstate_vma(vma);
5775 struct vm_area_struct *iter_vma;
5776 struct address_space *mapping;
5777 pgoff_t pgoff;
5778
5779 /*
5780 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5781 * from page cache lookup which is in HPAGE_SIZE units.
5782 */
5783 address = address & huge_page_mask(h);
5784 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5785 vma->vm_pgoff;
5786 mapping = vma->vm_file->f_mapping;
5787
5788 /*
5789 * Take the mapping lock for the duration of the table walk. As
5790 * this mapping should be shared between all the VMAs,
5791 * __unmap_hugepage_range() is called as the lock is already held
5792 */
5793 i_mmap_lock_write(mapping);
5794 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5795 /* Do not unmap the current VMA */
5796 if (iter_vma == vma)
5797 continue;
5798
5799 /*
5800 * Shared VMAs have their own reserves and do not affect
5801 * MAP_PRIVATE accounting but it is possible that a shared
5802 * VMA is using the same page so check and skip such VMAs.
5803 */
5804 if (iter_vma->vm_flags & VM_MAYSHARE)
5805 continue;
5806
5807 /*
5808 * Unmap the page from other VMAs without their own reserves.
5809 * They get marked to be SIGKILLed if they fault in these
5810 * areas. This is because a future no-page fault on this VMA
5811 * could insert a zeroed page instead of the data existing
5812 * from the time of fork. This would look like data corruption
5813 */
5814 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5815 unmap_hugepage_range(iter_vma, address,
5816 address + huge_page_size(h), page, 0);
5817 }
5818 i_mmap_unlock_write(mapping);
5819}
5820
5821/*
5822 * hugetlb_wp() should be called with page lock of the original hugepage held.
5823 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5824 * cannot race with other handlers or page migration.
5825 * Keep the pte_same checks anyway to make transition from the mutex easier.
5826 */
5827static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5828 unsigned long address, pte_t *ptep, unsigned int flags,
5829 struct folio *pagecache_folio, spinlock_t *ptl)
5830{
5831 const bool unshare = flags & FAULT_FLAG_UNSHARE;
5832 pte_t pte = huge_ptep_get(ptep);
5833 struct hstate *h = hstate_vma(vma);
5834 struct folio *old_folio;
5835 struct folio *new_folio;
5836 int outside_reserve = 0;
5837 vm_fault_t ret = 0;
5838 unsigned long haddr = address & huge_page_mask(h);
5839 struct mmu_notifier_range range;
5840
5841 /*
5842 * Never handle CoW for uffd-wp protected pages. It should be only
5843 * handled when the uffd-wp protection is removed.
5844 *
5845 * Note that only the CoW optimization path (in hugetlb_no_page())
5846 * can trigger this, because hugetlb_fault() will always resolve
5847 * uffd-wp bit first.
5848 */
5849 if (!unshare && huge_pte_uffd_wp(pte))
5850 return 0;
5851
5852 /*
5853 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5854 * PTE mapped R/O such as maybe_mkwrite() would do.
5855 */
5856 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5857 return VM_FAULT_SIGSEGV;
5858
5859 /* Let's take out MAP_SHARED mappings first. */
5860 if (vma->vm_flags & VM_MAYSHARE) {
5861 set_huge_ptep_writable(vma, haddr, ptep);
5862 return 0;
5863 }
5864
5865 old_folio = page_folio(pte_page(pte));
5866
5867 delayacct_wpcopy_start();
5868
5869retry_avoidcopy:
5870 /*
5871 * If no-one else is actually using this page, we're the exclusive
5872 * owner and can reuse this page.
5873 */
5874 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5875 if (!PageAnonExclusive(&old_folio->page)) {
5876 folio_move_anon_rmap(old_folio, vma);
5877 SetPageAnonExclusive(&old_folio->page);
5878 }
5879 if (likely(!unshare))
5880 set_huge_ptep_writable(vma, haddr, ptep);
5881
5882 delayacct_wpcopy_end();
5883 return 0;
5884 }
5885 VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5886 PageAnonExclusive(&old_folio->page), &old_folio->page);
5887
5888 /*
5889 * If the process that created a MAP_PRIVATE mapping is about to
5890 * perform a COW due to a shared page count, attempt to satisfy
5891 * the allocation without using the existing reserves. The pagecache
5892 * page is used to determine if the reserve at this address was
5893 * consumed or not. If reserves were used, a partial faulted mapping
5894 * at the time of fork() could consume its reserves on COW instead
5895 * of the full address range.
5896 */
5897 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5898 old_folio != pagecache_folio)
5899 outside_reserve = 1;
5900
5901 folio_get(old_folio);
5902
5903 /*
5904 * Drop page table lock as buddy allocator may be called. It will
5905 * be acquired again before returning to the caller, as expected.
5906 */
5907 spin_unlock(ptl);
5908 new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5909
5910 if (IS_ERR(new_folio)) {
5911 /*
5912 * If a process owning a MAP_PRIVATE mapping fails to COW,
5913 * it is due to references held by a child and an insufficient
5914 * huge page pool. To guarantee the original mappers
5915 * reliability, unmap the page from child processes. The child
5916 * may get SIGKILLed if it later faults.
5917 */
5918 if (outside_reserve) {
5919 struct address_space *mapping = vma->vm_file->f_mapping;
5920 pgoff_t idx;
5921 u32 hash;
5922
5923 folio_put(old_folio);
5924 /*
5925 * Drop hugetlb_fault_mutex and vma_lock before
5926 * unmapping. unmapping needs to hold vma_lock
5927 * in write mode. Dropping vma_lock in read mode
5928 * here is OK as COW mappings do not interact with
5929 * PMD sharing.
5930 *
5931 * Reacquire both after unmap operation.
5932 */
5933 idx = vma_hugecache_offset(h, vma, haddr);
5934 hash = hugetlb_fault_mutex_hash(mapping, idx);
5935 hugetlb_vma_unlock_read(vma);
5936 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5937
5938 unmap_ref_private(mm, vma, &old_folio->page, haddr);
5939
5940 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5941 hugetlb_vma_lock_read(vma);
5942 spin_lock(ptl);
5943 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5944 if (likely(ptep &&
5945 pte_same(huge_ptep_get(ptep), pte)))
5946 goto retry_avoidcopy;
5947 /*
5948 * race occurs while re-acquiring page table
5949 * lock, and our job is done.
5950 */
5951 delayacct_wpcopy_end();
5952 return 0;
5953 }
5954
5955 ret = vmf_error(PTR_ERR(new_folio));
5956 goto out_release_old;
5957 }
5958
5959 /*
5960 * When the original hugepage is shared one, it does not have
5961 * anon_vma prepared.
5962 */
5963 if (unlikely(anon_vma_prepare(vma))) {
5964 ret = VM_FAULT_OOM;
5965 goto out_release_all;
5966 }
5967
5968 if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5969 ret = VM_FAULT_HWPOISON_LARGE;
5970 goto out_release_all;
5971 }
5972 __folio_mark_uptodate(new_folio);
5973
5974 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5975 haddr + huge_page_size(h));
5976 mmu_notifier_invalidate_range_start(&range);
5977
5978 /*
5979 * Retake the page table lock to check for racing updates
5980 * before the page tables are altered
5981 */
5982 spin_lock(ptl);
5983 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5984 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5985 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5986
5987 /* Break COW or unshare */
5988 huge_ptep_clear_flush(vma, haddr, ptep);
5989 hugetlb_remove_rmap(old_folio);
5990 hugetlb_add_new_anon_rmap(new_folio, vma, haddr);
5991 if (huge_pte_uffd_wp(pte))
5992 newpte = huge_pte_mkuffd_wp(newpte);
5993 set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h));
5994 folio_set_hugetlb_migratable(new_folio);
5995 /* Make the old page be freed below */
5996 new_folio = old_folio;
5997 }
5998 spin_unlock(ptl);
5999 mmu_notifier_invalidate_range_end(&range);
6000out_release_all:
6001 /*
6002 * No restore in case of successful pagetable update (Break COW or
6003 * unshare)
6004 */
6005 if (new_folio != old_folio)
6006 restore_reserve_on_error(h, vma, haddr, new_folio);
6007 folio_put(new_folio);
6008out_release_old:
6009 folio_put(old_folio);
6010
6011 spin_lock(ptl); /* Caller expects lock to be held */
6012
6013 delayacct_wpcopy_end();
6014 return ret;
6015}
6016
6017/*
6018 * Return whether there is a pagecache page to back given address within VMA.
6019 */
6020static bool hugetlbfs_pagecache_present(struct hstate *h,
6021 struct vm_area_struct *vma, unsigned long address)
6022{
6023 struct address_space *mapping = vma->vm_file->f_mapping;
6024 pgoff_t idx = linear_page_index(vma, address);
6025 struct folio *folio;
6026
6027 folio = filemap_get_folio(mapping, idx);
6028 if (IS_ERR(folio))
6029 return false;
6030 folio_put(folio);
6031 return true;
6032}
6033
6034int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6035 pgoff_t idx)
6036{
6037 struct inode *inode = mapping->host;
6038 struct hstate *h = hstate_inode(inode);
6039 int err;
6040
6041 idx <<= huge_page_order(h);
6042 __folio_set_locked(folio);
6043 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6044
6045 if (unlikely(err)) {
6046 __folio_clear_locked(folio);
6047 return err;
6048 }
6049 folio_clear_hugetlb_restore_reserve(folio);
6050
6051 /*
6052 * mark folio dirty so that it will not be removed from cache/file
6053 * by non-hugetlbfs specific code paths.
6054 */
6055 folio_mark_dirty(folio);
6056
6057 spin_lock(&inode->i_lock);
6058 inode->i_blocks += blocks_per_huge_page(h);
6059 spin_unlock(&inode->i_lock);
6060 return 0;
6061}
6062
6063static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
6064 struct address_space *mapping,
6065 pgoff_t idx,
6066 unsigned int flags,
6067 unsigned long haddr,
6068 unsigned long addr,
6069 unsigned long reason)
6070{
6071 u32 hash;
6072 struct vm_fault vmf = {
6073 .vma = vma,
6074 .address = haddr,
6075 .real_address = addr,
6076 .flags = flags,
6077
6078 /*
6079 * Hard to debug if it ends up being
6080 * used by a callee that assumes
6081 * something about the other
6082 * uninitialized fields... same as in
6083 * memory.c
6084 */
6085 };
6086
6087 /*
6088 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6089 * userfault. Also mmap_lock could be dropped due to handling
6090 * userfault, any vma operation should be careful from here.
6091 */
6092 hugetlb_vma_unlock_read(vma);
6093 hash = hugetlb_fault_mutex_hash(mapping, idx);
6094 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6095 return handle_userfault(&vmf, reason);
6096}
6097
6098/*
6099 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
6100 * false if pte changed or is changing.
6101 */
6102static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
6103 pte_t *ptep, pte_t old_pte)
6104{
6105 spinlock_t *ptl;
6106 bool same;
6107
6108 ptl = huge_pte_lock(h, mm, ptep);
6109 same = pte_same(huge_ptep_get(ptep), old_pte);
6110 spin_unlock(ptl);
6111
6112 return same;
6113}
6114
6115static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
6116 struct vm_area_struct *vma,
6117 struct address_space *mapping, pgoff_t idx,
6118 unsigned long address, pte_t *ptep,
6119 pte_t old_pte, unsigned int flags)
6120{
6121 struct hstate *h = hstate_vma(vma);
6122 vm_fault_t ret = VM_FAULT_SIGBUS;
6123 int anon_rmap = 0;
6124 unsigned long size;
6125 struct folio *folio;
6126 pte_t new_pte;
6127 spinlock_t *ptl;
6128 unsigned long haddr = address & huge_page_mask(h);
6129 bool new_folio, new_pagecache_folio = false;
6130 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
6131
6132 /*
6133 * Currently, we are forced to kill the process in the event the
6134 * original mapper has unmapped pages from the child due to a failed
6135 * COW/unsharing. Warn that such a situation has occurred as it may not
6136 * be obvious.
6137 */
6138 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6139 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6140 current->pid);
6141 goto out;
6142 }
6143
6144 /*
6145 * Use page lock to guard against racing truncation
6146 * before we get page_table_lock.
6147 */
6148 new_folio = false;
6149 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6150 if (IS_ERR(folio)) {
6151 size = i_size_read(mapping->host) >> huge_page_shift(h);
6152 if (idx >= size)
6153 goto out;
6154 /* Check for page in userfault range */
6155 if (userfaultfd_missing(vma)) {
6156 /*
6157 * Since hugetlb_no_page() was examining pte
6158 * without pgtable lock, we need to re-test under
6159 * lock because the pte may not be stable and could
6160 * have changed from under us. Try to detect
6161 * either changed or during-changing ptes and retry
6162 * properly when needed.
6163 *
6164 * Note that userfaultfd is actually fine with
6165 * false positives (e.g. caused by pte changed),
6166 * but not wrong logical events (e.g. caused by
6167 * reading a pte during changing). The latter can
6168 * confuse the userspace, so the strictness is very
6169 * much preferred. E.g., MISSING event should
6170 * never happen on the page after UFFDIO_COPY has
6171 * correctly installed the page and returned.
6172 */
6173 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
6174 ret = 0;
6175 goto out;
6176 }
6177
6178 return hugetlb_handle_userfault(vma, mapping, idx, flags,
6179 haddr, address,
6180 VM_UFFD_MISSING);
6181 }
6182
6183 folio = alloc_hugetlb_folio(vma, haddr, 0);
6184 if (IS_ERR(folio)) {
6185 /*
6186 * Returning error will result in faulting task being
6187 * sent SIGBUS. The hugetlb fault mutex prevents two
6188 * tasks from racing to fault in the same page which
6189 * could result in false unable to allocate errors.
6190 * Page migration does not take the fault mutex, but
6191 * does a clear then write of pte's under page table
6192 * lock. Page fault code could race with migration,
6193 * notice the clear pte and try to allocate a page
6194 * here. Before returning error, get ptl and make
6195 * sure there really is no pte entry.
6196 */
6197 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
6198 ret = vmf_error(PTR_ERR(folio));
6199 else
6200 ret = 0;
6201 goto out;
6202 }
6203 clear_huge_page(&folio->page, address, pages_per_huge_page(h));
6204 __folio_mark_uptodate(folio);
6205 new_folio = true;
6206
6207 if (vma->vm_flags & VM_MAYSHARE) {
6208 int err = hugetlb_add_to_page_cache(folio, mapping, idx);
6209 if (err) {
6210 /*
6211 * err can't be -EEXIST which implies someone
6212 * else consumed the reservation since hugetlb
6213 * fault mutex is held when add a hugetlb page
6214 * to the page cache. So it's safe to call
6215 * restore_reserve_on_error() here.
6216 */
6217 restore_reserve_on_error(h, vma, haddr, folio);
6218 folio_put(folio);
6219 goto out;
6220 }
6221 new_pagecache_folio = true;
6222 } else {
6223 folio_lock(folio);
6224 if (unlikely(anon_vma_prepare(vma))) {
6225 ret = VM_FAULT_OOM;
6226 goto backout_unlocked;
6227 }
6228 anon_rmap = 1;
6229 }
6230 } else {
6231 /*
6232 * If memory error occurs between mmap() and fault, some process
6233 * don't have hwpoisoned swap entry for errored virtual address.
6234 * So we need to block hugepage fault by PG_hwpoison bit check.
6235 */
6236 if (unlikely(folio_test_hwpoison(folio))) {
6237 ret = VM_FAULT_HWPOISON_LARGE |
6238 VM_FAULT_SET_HINDEX(hstate_index(h));
6239 goto backout_unlocked;
6240 }
6241
6242 /* Check for page in userfault range. */
6243 if (userfaultfd_minor(vma)) {
6244 folio_unlock(folio);
6245 folio_put(folio);
6246 /* See comment in userfaultfd_missing() block above */
6247 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
6248 ret = 0;
6249 goto out;
6250 }
6251 return hugetlb_handle_userfault(vma, mapping, idx, flags,
6252 haddr, address,
6253 VM_UFFD_MINOR);
6254 }
6255 }
6256
6257 /*
6258 * If we are going to COW a private mapping later, we examine the
6259 * pending reservations for this page now. This will ensure that
6260 * any allocations necessary to record that reservation occur outside
6261 * the spinlock.
6262 */
6263 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6264 if (vma_needs_reservation(h, vma, haddr) < 0) {
6265 ret = VM_FAULT_OOM;
6266 goto backout_unlocked;
6267 }
6268 /* Just decrements count, does not deallocate */
6269 vma_end_reservation(h, vma, haddr);
6270 }
6271
6272 ptl = huge_pte_lock(h, mm, ptep);
6273 ret = 0;
6274 /* If pte changed from under us, retry */
6275 if (!pte_same(huge_ptep_get(ptep), old_pte))
6276 goto backout;
6277
6278 if (anon_rmap)
6279 hugetlb_add_new_anon_rmap(folio, vma, haddr);
6280 else
6281 hugetlb_add_file_rmap(folio);
6282 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6283 && (vma->vm_flags & VM_SHARED)));
6284 /*
6285 * If this pte was previously wr-protected, keep it wr-protected even
6286 * if populated.
6287 */
6288 if (unlikely(pte_marker_uffd_wp(old_pte)))
6289 new_pte = huge_pte_mkuffd_wp(new_pte);
6290 set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h));
6291
6292 hugetlb_count_add(pages_per_huge_page(h), mm);
6293 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6294 /* Optimization, do the COW without a second fault */
6295 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
6296 }
6297
6298 spin_unlock(ptl);
6299
6300 /*
6301 * Only set hugetlb_migratable in newly allocated pages. Existing pages
6302 * found in the pagecache may not have hugetlb_migratable if they have
6303 * been isolated for migration.
6304 */
6305 if (new_folio)
6306 folio_set_hugetlb_migratable(folio);
6307
6308 folio_unlock(folio);
6309out:
6310 hugetlb_vma_unlock_read(vma);
6311 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6312 return ret;
6313
6314backout:
6315 spin_unlock(ptl);
6316backout_unlocked:
6317 if (new_folio && !new_pagecache_folio)
6318 restore_reserve_on_error(h, vma, haddr, folio);
6319
6320 folio_unlock(folio);
6321 folio_put(folio);
6322 goto out;
6323}
6324
6325#ifdef CONFIG_SMP
6326u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6327{
6328 unsigned long key[2];
6329 u32 hash;
6330
6331 key[0] = (unsigned long) mapping;
6332 key[1] = idx;
6333
6334 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6335
6336 return hash & (num_fault_mutexes - 1);
6337}
6338#else
6339/*
6340 * For uniprocessor systems we always use a single mutex, so just
6341 * return 0 and avoid the hashing overhead.
6342 */
6343u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6344{
6345 return 0;
6346}
6347#endif
6348
6349vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6350 unsigned long address, unsigned int flags)
6351{
6352 pte_t *ptep, entry;
6353 spinlock_t *ptl;
6354 vm_fault_t ret;
6355 u32 hash;
6356 pgoff_t idx;
6357 struct folio *folio = NULL;
6358 struct folio *pagecache_folio = NULL;
6359 struct hstate *h = hstate_vma(vma);
6360 struct address_space *mapping;
6361 int need_wait_lock = 0;
6362 unsigned long haddr = address & huge_page_mask(h);
6363
6364 /* TODO: Handle faults under the VMA lock */
6365 if (flags & FAULT_FLAG_VMA_LOCK) {
6366 vma_end_read(vma);
6367 return VM_FAULT_RETRY;
6368 }
6369
6370 /*
6371 * Serialize hugepage allocation and instantiation, so that we don't
6372 * get spurious allocation failures if two CPUs race to instantiate
6373 * the same page in the page cache.
6374 */
6375 mapping = vma->vm_file->f_mapping;
6376 idx = vma_hugecache_offset(h, vma, haddr);
6377 hash = hugetlb_fault_mutex_hash(mapping, idx);
6378 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6379
6380 /*
6381 * Acquire vma lock before calling huge_pte_alloc and hold
6382 * until finished with ptep. This prevents huge_pmd_unshare from
6383 * being called elsewhere and making the ptep no longer valid.
6384 */
6385 hugetlb_vma_lock_read(vma);
6386 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6387 if (!ptep) {
6388 hugetlb_vma_unlock_read(vma);
6389 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6390 return VM_FAULT_OOM;
6391 }
6392
6393 entry = huge_ptep_get(ptep);
6394 if (huge_pte_none_mostly(entry)) {
6395 if (is_pte_marker(entry)) {
6396 pte_marker marker =
6397 pte_marker_get(pte_to_swp_entry(entry));
6398
6399 if (marker & PTE_MARKER_POISONED) {
6400 ret = VM_FAULT_HWPOISON_LARGE;
6401 goto out_mutex;
6402 }
6403 }
6404
6405 /*
6406 * Other PTE markers should be handled the same way as none PTE.
6407 *
6408 * hugetlb_no_page will drop vma lock and hugetlb fault
6409 * mutex internally, which make us return immediately.
6410 */
6411 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6412 entry, flags);
6413 }
6414
6415 ret = 0;
6416
6417 /*
6418 * entry could be a migration/hwpoison entry at this point, so this
6419 * check prevents the kernel from going below assuming that we have
6420 * an active hugepage in pagecache. This goto expects the 2nd page
6421 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6422 * properly handle it.
6423 */
6424 if (!pte_present(entry)) {
6425 if (unlikely(is_hugetlb_entry_migration(entry))) {
6426 /*
6427 * Release the hugetlb fault lock now, but retain
6428 * the vma lock, because it is needed to guard the
6429 * huge_pte_lockptr() later in
6430 * migration_entry_wait_huge(). The vma lock will
6431 * be released there.
6432 */
6433 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6434 migration_entry_wait_huge(vma, ptep);
6435 return 0;
6436 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6437 ret = VM_FAULT_HWPOISON_LARGE |
6438 VM_FAULT_SET_HINDEX(hstate_index(h));
6439 goto out_mutex;
6440 }
6441
6442 /*
6443 * If we are going to COW/unshare the mapping later, we examine the
6444 * pending reservations for this page now. This will ensure that any
6445 * allocations necessary to record that reservation occur outside the
6446 * spinlock. Also lookup the pagecache page now as it is used to
6447 * determine if a reservation has been consumed.
6448 */
6449 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6450 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6451 if (vma_needs_reservation(h, vma, haddr) < 0) {
6452 ret = VM_FAULT_OOM;
6453 goto out_mutex;
6454 }
6455 /* Just decrements count, does not deallocate */
6456 vma_end_reservation(h, vma, haddr);
6457
6458 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6459 if (IS_ERR(pagecache_folio))
6460 pagecache_folio = NULL;
6461 }
6462
6463 ptl = huge_pte_lock(h, mm, ptep);
6464
6465 /* Check for a racing update before calling hugetlb_wp() */
6466 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6467 goto out_ptl;
6468
6469 /* Handle userfault-wp first, before trying to lock more pages */
6470 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6471 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6472 if (!userfaultfd_wp_async(vma)) {
6473 struct vm_fault vmf = {
6474 .vma = vma,
6475 .address = haddr,
6476 .real_address = address,
6477 .flags = flags,
6478 };
6479
6480 spin_unlock(ptl);
6481 if (pagecache_folio) {
6482 folio_unlock(pagecache_folio);
6483 folio_put(pagecache_folio);
6484 }
6485 hugetlb_vma_unlock_read(vma);
6486 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6487 return handle_userfault(&vmf, VM_UFFD_WP);
6488 }
6489
6490 entry = huge_pte_clear_uffd_wp(entry);
6491 set_huge_pte_at(mm, haddr, ptep, entry,
6492 huge_page_size(hstate_vma(vma)));
6493 /* Fallthrough to CoW */
6494 }
6495
6496 /*
6497 * hugetlb_wp() requires page locks of pte_page(entry) and
6498 * pagecache_folio, so here we need take the former one
6499 * when folio != pagecache_folio or !pagecache_folio.
6500 */
6501 folio = page_folio(pte_page(entry));
6502 if (folio != pagecache_folio)
6503 if (!folio_trylock(folio)) {
6504 need_wait_lock = 1;
6505 goto out_ptl;
6506 }
6507
6508 folio_get(folio);
6509
6510 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6511 if (!huge_pte_write(entry)) {
6512 ret = hugetlb_wp(mm, vma, address, ptep, flags,
6513 pagecache_folio, ptl);
6514 goto out_put_page;
6515 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6516 entry = huge_pte_mkdirty(entry);
6517 }
6518 }
6519 entry = pte_mkyoung(entry);
6520 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6521 flags & FAULT_FLAG_WRITE))
6522 update_mmu_cache(vma, haddr, ptep);
6523out_put_page:
6524 if (folio != pagecache_folio)
6525 folio_unlock(folio);
6526 folio_put(folio);
6527out_ptl:
6528 spin_unlock(ptl);
6529
6530 if (pagecache_folio) {
6531 folio_unlock(pagecache_folio);
6532 folio_put(pagecache_folio);
6533 }
6534out_mutex:
6535 hugetlb_vma_unlock_read(vma);
6536 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6537 /*
6538 * Generally it's safe to hold refcount during waiting page lock. But
6539 * here we just wait to defer the next page fault to avoid busy loop and
6540 * the page is not used after unlocked before returning from the current
6541 * page fault. So we are safe from accessing freed page, even if we wait
6542 * here without taking refcount.
6543 */
6544 if (need_wait_lock)
6545 folio_wait_locked(folio);
6546 return ret;
6547}
6548
6549#ifdef CONFIG_USERFAULTFD
6550/*
6551 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6552 */
6553static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6554 struct vm_area_struct *vma, unsigned long address)
6555{
6556 struct mempolicy *mpol;
6557 nodemask_t *nodemask;
6558 struct folio *folio;
6559 gfp_t gfp_mask;
6560 int node;
6561
6562 gfp_mask = htlb_alloc_mask(h);
6563 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6564 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
6565 mpol_cond_put(mpol);
6566
6567 return folio;
6568}
6569
6570/*
6571 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6572 * with modifications for hugetlb pages.
6573 */
6574int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6575 struct vm_area_struct *dst_vma,
6576 unsigned long dst_addr,
6577 unsigned long src_addr,
6578 uffd_flags_t flags,
6579 struct folio **foliop)
6580{
6581 struct mm_struct *dst_mm = dst_vma->vm_mm;
6582 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6583 bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6584 struct hstate *h = hstate_vma(dst_vma);
6585 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6586 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6587 unsigned long size;
6588 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6589 pte_t _dst_pte;
6590 spinlock_t *ptl;
6591 int ret = -ENOMEM;
6592 struct folio *folio;
6593 int writable;
6594 bool folio_in_pagecache = false;
6595
6596 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6597 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6598
6599 /* Don't overwrite any existing PTEs (even markers) */
6600 if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6601 spin_unlock(ptl);
6602 return -EEXIST;
6603 }
6604
6605 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6606 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6607 huge_page_size(h));
6608
6609 /* No need to invalidate - it was non-present before */
6610 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6611
6612 spin_unlock(ptl);
6613 return 0;
6614 }
6615
6616 if (is_continue) {
6617 ret = -EFAULT;
6618 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6619 if (IS_ERR(folio))
6620 goto out;
6621 folio_in_pagecache = true;
6622 } else if (!*foliop) {
6623 /* If a folio already exists, then it's UFFDIO_COPY for
6624 * a non-missing case. Return -EEXIST.
6625 */
6626 if (vm_shared &&
6627 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6628 ret = -EEXIST;
6629 goto out;
6630 }
6631
6632 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6633 if (IS_ERR(folio)) {
6634 ret = -ENOMEM;
6635 goto out;
6636 }
6637
6638 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6639 false);
6640
6641 /* fallback to copy_from_user outside mmap_lock */
6642 if (unlikely(ret)) {
6643 ret = -ENOENT;
6644 /* Free the allocated folio which may have
6645 * consumed a reservation.
6646 */
6647 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6648 folio_put(folio);
6649
6650 /* Allocate a temporary folio to hold the copied
6651 * contents.
6652 */
6653 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6654 if (!folio) {
6655 ret = -ENOMEM;
6656 goto out;
6657 }
6658 *foliop = folio;
6659 /* Set the outparam foliop and return to the caller to
6660 * copy the contents outside the lock. Don't free the
6661 * folio.
6662 */
6663 goto out;
6664 }
6665 } else {
6666 if (vm_shared &&
6667 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6668 folio_put(*foliop);
6669 ret = -EEXIST;
6670 *foliop = NULL;
6671 goto out;
6672 }
6673
6674 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6675 if (IS_ERR(folio)) {
6676 folio_put(*foliop);
6677 ret = -ENOMEM;
6678 *foliop = NULL;
6679 goto out;
6680 }
6681 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6682 folio_put(*foliop);
6683 *foliop = NULL;
6684 if (ret) {
6685 folio_put(folio);
6686 goto out;
6687 }
6688 }
6689
6690 /*
6691 * The memory barrier inside __folio_mark_uptodate makes sure that
6692 * preceding stores to the page contents become visible before
6693 * the set_pte_at() write.
6694 */
6695 __folio_mark_uptodate(folio);
6696
6697 /* Add shared, newly allocated pages to the page cache. */
6698 if (vm_shared && !is_continue) {
6699 size = i_size_read(mapping->host) >> huge_page_shift(h);
6700 ret = -EFAULT;
6701 if (idx >= size)
6702 goto out_release_nounlock;
6703
6704 /*
6705 * Serialization between remove_inode_hugepages() and
6706 * hugetlb_add_to_page_cache() below happens through the
6707 * hugetlb_fault_mutex_table that here must be hold by
6708 * the caller.
6709 */
6710 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6711 if (ret)
6712 goto out_release_nounlock;
6713 folio_in_pagecache = true;
6714 }
6715
6716 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6717
6718 ret = -EIO;
6719 if (folio_test_hwpoison(folio))
6720 goto out_release_unlock;
6721
6722 /*
6723 * We allow to overwrite a pte marker: consider when both MISSING|WP
6724 * registered, we firstly wr-protect a none pte which has no page cache
6725 * page backing it, then access the page.
6726 */
6727 ret = -EEXIST;
6728 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6729 goto out_release_unlock;
6730
6731 if (folio_in_pagecache)
6732 hugetlb_add_file_rmap(folio);
6733 else
6734 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6735
6736 /*
6737 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6738 * with wp flag set, don't set pte write bit.
6739 */
6740 if (wp_enabled || (is_continue && !vm_shared))
6741 writable = 0;
6742 else
6743 writable = dst_vma->vm_flags & VM_WRITE;
6744
6745 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6746 /*
6747 * Always mark UFFDIO_COPY page dirty; note that this may not be
6748 * extremely important for hugetlbfs for now since swapping is not
6749 * supported, but we should still be clear in that this page cannot be
6750 * thrown away at will, even if write bit not set.
6751 */
6752 _dst_pte = huge_pte_mkdirty(_dst_pte);
6753 _dst_pte = pte_mkyoung(_dst_pte);
6754
6755 if (wp_enabled)
6756 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6757
6758 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6759
6760 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6761
6762 /* No need to invalidate - it was non-present before */
6763 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6764
6765 spin_unlock(ptl);
6766 if (!is_continue)
6767 folio_set_hugetlb_migratable(folio);
6768 if (vm_shared || is_continue)
6769 folio_unlock(folio);
6770 ret = 0;
6771out:
6772 return ret;
6773out_release_unlock:
6774 spin_unlock(ptl);
6775 if (vm_shared || is_continue)
6776 folio_unlock(folio);
6777out_release_nounlock:
6778 if (!folio_in_pagecache)
6779 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6780 folio_put(folio);
6781 goto out;
6782}
6783#endif /* CONFIG_USERFAULTFD */
6784
6785struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6786 unsigned long address, unsigned int flags,
6787 unsigned int *page_mask)
6788{
6789 struct hstate *h = hstate_vma(vma);
6790 struct mm_struct *mm = vma->vm_mm;
6791 unsigned long haddr = address & huge_page_mask(h);
6792 struct page *page = NULL;
6793 spinlock_t *ptl;
6794 pte_t *pte, entry;
6795 int ret;
6796
6797 hugetlb_vma_lock_read(vma);
6798 pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6799 if (!pte)
6800 goto out_unlock;
6801
6802 ptl = huge_pte_lock(h, mm, pte);
6803 entry = huge_ptep_get(pte);
6804 if (pte_present(entry)) {
6805 page = pte_page(entry);
6806
6807 if (!huge_pte_write(entry)) {
6808 if (flags & FOLL_WRITE) {
6809 page = NULL;
6810 goto out;
6811 }
6812
6813 if (gup_must_unshare(vma, flags, page)) {
6814 /* Tell the caller to do unsharing */
6815 page = ERR_PTR(-EMLINK);
6816 goto out;
6817 }
6818 }
6819
6820 page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT));
6821
6822 /*
6823 * Note that page may be a sub-page, and with vmemmap
6824 * optimizations the page struct may be read only.
6825 * try_grab_page() will increase the ref count on the
6826 * head page, so this will be OK.
6827 *
6828 * try_grab_page() should always be able to get the page here,
6829 * because we hold the ptl lock and have verified pte_present().
6830 */
6831 ret = try_grab_page(page, flags);
6832
6833 if (WARN_ON_ONCE(ret)) {
6834 page = ERR_PTR(ret);
6835 goto out;
6836 }
6837
6838 *page_mask = (1U << huge_page_order(h)) - 1;
6839 }
6840out:
6841 spin_unlock(ptl);
6842out_unlock:
6843 hugetlb_vma_unlock_read(vma);
6844
6845 /*
6846 * Fixup retval for dump requests: if pagecache doesn't exist,
6847 * don't try to allocate a new page but just skip it.
6848 */
6849 if (!page && (flags & FOLL_DUMP) &&
6850 !hugetlbfs_pagecache_present(h, vma, address))
6851 page = ERR_PTR(-EFAULT);
6852
6853 return page;
6854}
6855
6856long hugetlb_change_protection(struct vm_area_struct *vma,
6857 unsigned long address, unsigned long end,
6858 pgprot_t newprot, unsigned long cp_flags)
6859{
6860 struct mm_struct *mm = vma->vm_mm;
6861 unsigned long start = address;
6862 pte_t *ptep;
6863 pte_t pte;
6864 struct hstate *h = hstate_vma(vma);
6865 long pages = 0, psize = huge_page_size(h);
6866 bool shared_pmd = false;
6867 struct mmu_notifier_range range;
6868 unsigned long last_addr_mask;
6869 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6870 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6871
6872 /*
6873 * In the case of shared PMDs, the area to flush could be beyond
6874 * start/end. Set range.start/range.end to cover the maximum possible
6875 * range if PMD sharing is possible.
6876 */
6877 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6878 0, mm, start, end);
6879 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6880
6881 BUG_ON(address >= end);
6882 flush_cache_range(vma, range.start, range.end);
6883
6884 mmu_notifier_invalidate_range_start(&range);
6885 hugetlb_vma_lock_write(vma);
6886 i_mmap_lock_write(vma->vm_file->f_mapping);
6887 last_addr_mask = hugetlb_mask_last_page(h);
6888 for (; address < end; address += psize) {
6889 spinlock_t *ptl;
6890 ptep = hugetlb_walk(vma, address, psize);
6891 if (!ptep) {
6892 if (!uffd_wp) {
6893 address |= last_addr_mask;
6894 continue;
6895 }
6896 /*
6897 * Userfaultfd wr-protect requires pgtable
6898 * pre-allocations to install pte markers.
6899 */
6900 ptep = huge_pte_alloc(mm, vma, address, psize);
6901 if (!ptep) {
6902 pages = -ENOMEM;
6903 break;
6904 }
6905 }
6906 ptl = huge_pte_lock(h, mm, ptep);
6907 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6908 /*
6909 * When uffd-wp is enabled on the vma, unshare
6910 * shouldn't happen at all. Warn about it if it
6911 * happened due to some reason.
6912 */
6913 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6914 pages++;
6915 spin_unlock(ptl);
6916 shared_pmd = true;
6917 address |= last_addr_mask;
6918 continue;
6919 }
6920 pte = huge_ptep_get(ptep);
6921 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6922 /* Nothing to do. */
6923 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6924 swp_entry_t entry = pte_to_swp_entry(pte);
6925 struct page *page = pfn_swap_entry_to_page(entry);
6926 pte_t newpte = pte;
6927
6928 if (is_writable_migration_entry(entry)) {
6929 if (PageAnon(page))
6930 entry = make_readable_exclusive_migration_entry(
6931 swp_offset(entry));
6932 else
6933 entry = make_readable_migration_entry(
6934 swp_offset(entry));
6935 newpte = swp_entry_to_pte(entry);
6936 pages++;
6937 }
6938
6939 if (uffd_wp)
6940 newpte = pte_swp_mkuffd_wp(newpte);
6941 else if (uffd_wp_resolve)
6942 newpte = pte_swp_clear_uffd_wp(newpte);
6943 if (!pte_same(pte, newpte))
6944 set_huge_pte_at(mm, address, ptep, newpte, psize);
6945 } else if (unlikely(is_pte_marker(pte))) {
6946 /* No other markers apply for now. */
6947 WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6948 if (uffd_wp_resolve)
6949 /* Safe to modify directly (non-present->none). */
6950 huge_pte_clear(mm, address, ptep, psize);
6951 } else if (!huge_pte_none(pte)) {
6952 pte_t old_pte;
6953 unsigned int shift = huge_page_shift(hstate_vma(vma));
6954
6955 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6956 pte = huge_pte_modify(old_pte, newprot);
6957 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6958 if (uffd_wp)
6959 pte = huge_pte_mkuffd_wp(pte);
6960 else if (uffd_wp_resolve)
6961 pte = huge_pte_clear_uffd_wp(pte);
6962 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6963 pages++;
6964 } else {
6965 /* None pte */
6966 if (unlikely(uffd_wp))
6967 /* Safe to modify directly (none->non-present). */
6968 set_huge_pte_at(mm, address, ptep,
6969 make_pte_marker(PTE_MARKER_UFFD_WP),
6970 psize);
6971 }
6972 spin_unlock(ptl);
6973 }
6974 /*
6975 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6976 * may have cleared our pud entry and done put_page on the page table:
6977 * once we release i_mmap_rwsem, another task can do the final put_page
6978 * and that page table be reused and filled with junk. If we actually
6979 * did unshare a page of pmds, flush the range corresponding to the pud.
6980 */
6981 if (shared_pmd)
6982 flush_hugetlb_tlb_range(vma, range.start, range.end);
6983 else
6984 flush_hugetlb_tlb_range(vma, start, end);
6985 /*
6986 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6987 * downgrading page table protection not changing it to point to a new
6988 * page.
6989 *
6990 * See Documentation/mm/mmu_notifier.rst
6991 */
6992 i_mmap_unlock_write(vma->vm_file->f_mapping);
6993 hugetlb_vma_unlock_write(vma);
6994 mmu_notifier_invalidate_range_end(&range);
6995
6996 return pages > 0 ? (pages << h->order) : pages;
6997}
6998
6999/* Return true if reservation was successful, false otherwise. */
7000bool hugetlb_reserve_pages(struct inode *inode,
7001 long from, long to,
7002 struct vm_area_struct *vma,
7003 vm_flags_t vm_flags)
7004{
7005 long chg = -1, add = -1;
7006 struct hstate *h = hstate_inode(inode);
7007 struct hugepage_subpool *spool = subpool_inode(inode);
7008 struct resv_map *resv_map;
7009 struct hugetlb_cgroup *h_cg = NULL;
7010 long gbl_reserve, regions_needed = 0;
7011
7012 /* This should never happen */
7013 if (from > to) {
7014 VM_WARN(1, "%s called with a negative range\n", __func__);
7015 return false;
7016 }
7017
7018 /*
7019 * vma specific semaphore used for pmd sharing and fault/truncation
7020 * synchronization
7021 */
7022 hugetlb_vma_lock_alloc(vma);
7023
7024 /*
7025 * Only apply hugepage reservation if asked. At fault time, an
7026 * attempt will be made for VM_NORESERVE to allocate a page
7027 * without using reserves
7028 */
7029 if (vm_flags & VM_NORESERVE)
7030 return true;
7031
7032 /*
7033 * Shared mappings base their reservation on the number of pages that
7034 * are already allocated on behalf of the file. Private mappings need
7035 * to reserve the full area even if read-only as mprotect() may be
7036 * called to make the mapping read-write. Assume !vma is a shm mapping
7037 */
7038 if (!vma || vma->vm_flags & VM_MAYSHARE) {
7039 /*
7040 * resv_map can not be NULL as hugetlb_reserve_pages is only
7041 * called for inodes for which resv_maps were created (see
7042 * hugetlbfs_get_inode).
7043 */
7044 resv_map = inode_resv_map(inode);
7045
7046 chg = region_chg(resv_map, from, to, ®ions_needed);
7047 } else {
7048 /* Private mapping. */
7049 resv_map = resv_map_alloc();
7050 if (!resv_map)
7051 goto out_err;
7052
7053 chg = to - from;
7054
7055 set_vma_resv_map(vma, resv_map);
7056 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7057 }
7058
7059 if (chg < 0)
7060 goto out_err;
7061
7062 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7063 chg * pages_per_huge_page(h), &h_cg) < 0)
7064 goto out_err;
7065
7066 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7067 /* For private mappings, the hugetlb_cgroup uncharge info hangs
7068 * of the resv_map.
7069 */
7070 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7071 }
7072
7073 /*
7074 * There must be enough pages in the subpool for the mapping. If
7075 * the subpool has a minimum size, there may be some global
7076 * reservations already in place (gbl_reserve).
7077 */
7078 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7079 if (gbl_reserve < 0)
7080 goto out_uncharge_cgroup;
7081
7082 /*
7083 * Check enough hugepages are available for the reservation.
7084 * Hand the pages back to the subpool if there are not
7085 */
7086 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7087 goto out_put_pages;
7088
7089 /*
7090 * Account for the reservations made. Shared mappings record regions
7091 * that have reservations as they are shared by multiple VMAs.
7092 * When the last VMA disappears, the region map says how much
7093 * the reservation was and the page cache tells how much of
7094 * the reservation was consumed. Private mappings are per-VMA and
7095 * only the consumed reservations are tracked. When the VMA
7096 * disappears, the original reservation is the VMA size and the
7097 * consumed reservations are stored in the map. Hence, nothing
7098 * else has to be done for private mappings here
7099 */
7100 if (!vma || vma->vm_flags & VM_MAYSHARE) {
7101 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7102
7103 if (unlikely(add < 0)) {
7104 hugetlb_acct_memory(h, -gbl_reserve);
7105 goto out_put_pages;
7106 } else if (unlikely(chg > add)) {
7107 /*
7108 * pages in this range were added to the reserve
7109 * map between region_chg and region_add. This
7110 * indicates a race with alloc_hugetlb_folio. Adjust
7111 * the subpool and reserve counts modified above
7112 * based on the difference.
7113 */
7114 long rsv_adjust;
7115
7116 /*
7117 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7118 * reference to h_cg->css. See comment below for detail.
7119 */
7120 hugetlb_cgroup_uncharge_cgroup_rsvd(
7121 hstate_index(h),
7122 (chg - add) * pages_per_huge_page(h), h_cg);
7123
7124 rsv_adjust = hugepage_subpool_put_pages(spool,
7125 chg - add);
7126 hugetlb_acct_memory(h, -rsv_adjust);
7127 } else if (h_cg) {
7128 /*
7129 * The file_regions will hold their own reference to
7130 * h_cg->css. So we should release the reference held
7131 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7132 * done.
7133 */
7134 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7135 }
7136 }
7137 return true;
7138
7139out_put_pages:
7140 /* put back original number of pages, chg */
7141 (void)hugepage_subpool_put_pages(spool, chg);
7142out_uncharge_cgroup:
7143 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7144 chg * pages_per_huge_page(h), h_cg);
7145out_err:
7146 hugetlb_vma_lock_free(vma);
7147 if (!vma || vma->vm_flags & VM_MAYSHARE)
7148 /* Only call region_abort if the region_chg succeeded but the
7149 * region_add failed or didn't run.
7150 */
7151 if (chg >= 0 && add < 0)
7152 region_abort(resv_map, from, to, regions_needed);
7153 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7154 kref_put(&resv_map->refs, resv_map_release);
7155 set_vma_resv_map(vma, NULL);
7156 }
7157 return false;
7158}
7159
7160long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7161 long freed)
7162{
7163 struct hstate *h = hstate_inode(inode);
7164 struct resv_map *resv_map = inode_resv_map(inode);
7165 long chg = 0;
7166 struct hugepage_subpool *spool = subpool_inode(inode);
7167 long gbl_reserve;
7168
7169 /*
7170 * Since this routine can be called in the evict inode path for all
7171 * hugetlbfs inodes, resv_map could be NULL.
7172 */
7173 if (resv_map) {
7174 chg = region_del(resv_map, start, end);
7175 /*
7176 * region_del() can fail in the rare case where a region
7177 * must be split and another region descriptor can not be
7178 * allocated. If end == LONG_MAX, it will not fail.
7179 */
7180 if (chg < 0)
7181 return chg;
7182 }
7183
7184 spin_lock(&inode->i_lock);
7185 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7186 spin_unlock(&inode->i_lock);
7187
7188 /*
7189 * If the subpool has a minimum size, the number of global
7190 * reservations to be released may be adjusted.
7191 *
7192 * Note that !resv_map implies freed == 0. So (chg - freed)
7193 * won't go negative.
7194 */
7195 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7196 hugetlb_acct_memory(h, -gbl_reserve);
7197
7198 return 0;
7199}
7200
7201#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7202static unsigned long page_table_shareable(struct vm_area_struct *svma,
7203 struct vm_area_struct *vma,
7204 unsigned long addr, pgoff_t idx)
7205{
7206 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7207 svma->vm_start;
7208 unsigned long sbase = saddr & PUD_MASK;
7209 unsigned long s_end = sbase + PUD_SIZE;
7210
7211 /* Allow segments to share if only one is marked locked */
7212 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7213 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7214
7215 /*
7216 * match the virtual addresses, permission and the alignment of the
7217 * page table page.
7218 *
7219 * Also, vma_lock (vm_private_data) is required for sharing.
7220 */
7221 if (pmd_index(addr) != pmd_index(saddr) ||
7222 vm_flags != svm_flags ||
7223 !range_in_vma(svma, sbase, s_end) ||
7224 !svma->vm_private_data)
7225 return 0;
7226
7227 return saddr;
7228}
7229
7230bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7231{
7232 unsigned long start = addr & PUD_MASK;
7233 unsigned long end = start + PUD_SIZE;
7234
7235#ifdef CONFIG_USERFAULTFD
7236 if (uffd_disable_huge_pmd_share(vma))
7237 return false;
7238#endif
7239 /*
7240 * check on proper vm_flags and page table alignment
7241 */
7242 if (!(vma->vm_flags & VM_MAYSHARE))
7243 return false;
7244 if (!vma->vm_private_data) /* vma lock required for sharing */
7245 return false;
7246 if (!range_in_vma(vma, start, end))
7247 return false;
7248 return true;
7249}
7250
7251/*
7252 * Determine if start,end range within vma could be mapped by shared pmd.
7253 * If yes, adjust start and end to cover range associated with possible
7254 * shared pmd mappings.
7255 */
7256void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7257 unsigned long *start, unsigned long *end)
7258{
7259 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7260 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7261
7262 /*
7263 * vma needs to span at least one aligned PUD size, and the range
7264 * must be at least partially within in.
7265 */
7266 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7267 (*end <= v_start) || (*start >= v_end))
7268 return;
7269
7270 /* Extend the range to be PUD aligned for a worst case scenario */
7271 if (*start > v_start)
7272 *start = ALIGN_DOWN(*start, PUD_SIZE);
7273
7274 if (*end < v_end)
7275 *end = ALIGN(*end, PUD_SIZE);
7276}
7277
7278/*
7279 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7280 * and returns the corresponding pte. While this is not necessary for the
7281 * !shared pmd case because we can allocate the pmd later as well, it makes the
7282 * code much cleaner. pmd allocation is essential for the shared case because
7283 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7284 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7285 * bad pmd for sharing.
7286 */
7287pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7288 unsigned long addr, pud_t *pud)
7289{
7290 struct address_space *mapping = vma->vm_file->f_mapping;
7291 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7292 vma->vm_pgoff;
7293 struct vm_area_struct *svma;
7294 unsigned long saddr;
7295 pte_t *spte = NULL;
7296 pte_t *pte;
7297
7298 i_mmap_lock_read(mapping);
7299 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7300 if (svma == vma)
7301 continue;
7302
7303 saddr = page_table_shareable(svma, vma, addr, idx);
7304 if (saddr) {
7305 spte = hugetlb_walk(svma, saddr,
7306 vma_mmu_pagesize(svma));
7307 if (spte) {
7308 get_page(virt_to_page(spte));
7309 break;
7310 }
7311 }
7312 }
7313
7314 if (!spte)
7315 goto out;
7316
7317 spin_lock(&mm->page_table_lock);
7318 if (pud_none(*pud)) {
7319 pud_populate(mm, pud,
7320 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7321 mm_inc_nr_pmds(mm);
7322 } else {
7323 put_page(virt_to_page(spte));
7324 }
7325 spin_unlock(&mm->page_table_lock);
7326out:
7327 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7328 i_mmap_unlock_read(mapping);
7329 return pte;
7330}
7331
7332/*
7333 * unmap huge page backed by shared pte.
7334 *
7335 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7336 * indicated by page_count > 1, unmap is achieved by clearing pud and
7337 * decrementing the ref count. If count == 1, the pte page is not shared.
7338 *
7339 * Called with page table lock held.
7340 *
7341 * returns: 1 successfully unmapped a shared pte page
7342 * 0 the underlying pte page is not shared, or it is the last user
7343 */
7344int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7345 unsigned long addr, pte_t *ptep)
7346{
7347 pgd_t *pgd = pgd_offset(mm, addr);
7348 p4d_t *p4d = p4d_offset(pgd, addr);
7349 pud_t *pud = pud_offset(p4d, addr);
7350
7351 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7352 hugetlb_vma_assert_locked(vma);
7353 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7354 if (page_count(virt_to_page(ptep)) == 1)
7355 return 0;
7356
7357 pud_clear(pud);
7358 put_page(virt_to_page(ptep));
7359 mm_dec_nr_pmds(mm);
7360 return 1;
7361}
7362
7363#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7364
7365pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7366 unsigned long addr, pud_t *pud)
7367{
7368 return NULL;
7369}
7370
7371int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7372 unsigned long addr, pte_t *ptep)
7373{
7374 return 0;
7375}
7376
7377void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7378 unsigned long *start, unsigned long *end)
7379{
7380}
7381
7382bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7383{
7384 return false;
7385}
7386#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7387
7388#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7389pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7390 unsigned long addr, unsigned long sz)
7391{
7392 pgd_t *pgd;
7393 p4d_t *p4d;
7394 pud_t *pud;
7395 pte_t *pte = NULL;
7396
7397 pgd = pgd_offset(mm, addr);
7398 p4d = p4d_alloc(mm, pgd, addr);
7399 if (!p4d)
7400 return NULL;
7401 pud = pud_alloc(mm, p4d, addr);
7402 if (pud) {
7403 if (sz == PUD_SIZE) {
7404 pte = (pte_t *)pud;
7405 } else {
7406 BUG_ON(sz != PMD_SIZE);
7407 if (want_pmd_share(vma, addr) && pud_none(*pud))
7408 pte = huge_pmd_share(mm, vma, addr, pud);
7409 else
7410 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7411 }
7412 }
7413
7414 if (pte) {
7415 pte_t pteval = ptep_get_lockless(pte);
7416
7417 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7418 }
7419
7420 return pte;
7421}
7422
7423/*
7424 * huge_pte_offset() - Walk the page table to resolve the hugepage
7425 * entry at address @addr
7426 *
7427 * Return: Pointer to page table entry (PUD or PMD) for
7428 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7429 * size @sz doesn't match the hugepage size at this level of the page
7430 * table.
7431 */
7432pte_t *huge_pte_offset(struct mm_struct *mm,
7433 unsigned long addr, unsigned long sz)
7434{
7435 pgd_t *pgd;
7436 p4d_t *p4d;
7437 pud_t *pud;
7438 pmd_t *pmd;
7439
7440 pgd = pgd_offset(mm, addr);
7441 if (!pgd_present(*pgd))
7442 return NULL;
7443 p4d = p4d_offset(pgd, addr);
7444 if (!p4d_present(*p4d))
7445 return NULL;
7446
7447 pud = pud_offset(p4d, addr);
7448 if (sz == PUD_SIZE)
7449 /* must be pud huge, non-present or none */
7450 return (pte_t *)pud;
7451 if (!pud_present(*pud))
7452 return NULL;
7453 /* must have a valid entry and size to go further */
7454
7455 pmd = pmd_offset(pud, addr);
7456 /* must be pmd huge, non-present or none */
7457 return (pte_t *)pmd;
7458}
7459
7460/*
7461 * Return a mask that can be used to update an address to the last huge
7462 * page in a page table page mapping size. Used to skip non-present
7463 * page table entries when linearly scanning address ranges. Architectures
7464 * with unique huge page to page table relationships can define their own
7465 * version of this routine.
7466 */
7467unsigned long hugetlb_mask_last_page(struct hstate *h)
7468{
7469 unsigned long hp_size = huge_page_size(h);
7470
7471 if (hp_size == PUD_SIZE)
7472 return P4D_SIZE - PUD_SIZE;
7473 else if (hp_size == PMD_SIZE)
7474 return PUD_SIZE - PMD_SIZE;
7475 else
7476 return 0UL;
7477}
7478
7479#else
7480
7481/* See description above. Architectures can provide their own version. */
7482__weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7483{
7484#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7485 if (huge_page_size(h) == PMD_SIZE)
7486 return PUD_SIZE - PMD_SIZE;
7487#endif
7488 return 0UL;
7489}
7490
7491#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7492
7493/*
7494 * These functions are overwritable if your architecture needs its own
7495 * behavior.
7496 */
7497bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7498{
7499 bool ret = true;
7500
7501 spin_lock_irq(&hugetlb_lock);
7502 if (!folio_test_hugetlb(folio) ||
7503 !folio_test_hugetlb_migratable(folio) ||
7504 !folio_try_get(folio)) {
7505 ret = false;
7506 goto unlock;
7507 }
7508 folio_clear_hugetlb_migratable(folio);
7509 list_move_tail(&folio->lru, list);
7510unlock:
7511 spin_unlock_irq(&hugetlb_lock);
7512 return ret;
7513}
7514
7515int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7516{
7517 int ret = 0;
7518
7519 *hugetlb = false;
7520 spin_lock_irq(&hugetlb_lock);
7521 if (folio_test_hugetlb(folio)) {
7522 *hugetlb = true;
7523 if (folio_test_hugetlb_freed(folio))
7524 ret = 0;
7525 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7526 ret = folio_try_get(folio);
7527 else
7528 ret = -EBUSY;
7529 }
7530 spin_unlock_irq(&hugetlb_lock);
7531 return ret;
7532}
7533
7534int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7535 bool *migratable_cleared)
7536{
7537 int ret;
7538
7539 spin_lock_irq(&hugetlb_lock);
7540 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7541 spin_unlock_irq(&hugetlb_lock);
7542 return ret;
7543}
7544
7545void folio_putback_active_hugetlb(struct folio *folio)
7546{
7547 spin_lock_irq(&hugetlb_lock);
7548 folio_set_hugetlb_migratable(folio);
7549 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7550 spin_unlock_irq(&hugetlb_lock);
7551 folio_put(folio);
7552}
7553
7554void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7555{
7556 struct hstate *h = folio_hstate(old_folio);
7557
7558 hugetlb_cgroup_migrate(old_folio, new_folio);
7559 set_page_owner_migrate_reason(&new_folio->page, reason);
7560
7561 /*
7562 * transfer temporary state of the new hugetlb folio. This is
7563 * reverse to other transitions because the newpage is going to
7564 * be final while the old one will be freed so it takes over
7565 * the temporary status.
7566 *
7567 * Also note that we have to transfer the per-node surplus state
7568 * here as well otherwise the global surplus count will not match
7569 * the per-node's.
7570 */
7571 if (folio_test_hugetlb_temporary(new_folio)) {
7572 int old_nid = folio_nid(old_folio);
7573 int new_nid = folio_nid(new_folio);
7574
7575 folio_set_hugetlb_temporary(old_folio);
7576 folio_clear_hugetlb_temporary(new_folio);
7577
7578
7579 /*
7580 * There is no need to transfer the per-node surplus state
7581 * when we do not cross the node.
7582 */
7583 if (new_nid == old_nid)
7584 return;
7585 spin_lock_irq(&hugetlb_lock);
7586 if (h->surplus_huge_pages_node[old_nid]) {
7587 h->surplus_huge_pages_node[old_nid]--;
7588 h->surplus_huge_pages_node[new_nid]++;
7589 }
7590 spin_unlock_irq(&hugetlb_lock);
7591 }
7592}
7593
7594static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7595 unsigned long start,
7596 unsigned long end)
7597{
7598 struct hstate *h = hstate_vma(vma);
7599 unsigned long sz = huge_page_size(h);
7600 struct mm_struct *mm = vma->vm_mm;
7601 struct mmu_notifier_range range;
7602 unsigned long address;
7603 spinlock_t *ptl;
7604 pte_t *ptep;
7605
7606 if (!(vma->vm_flags & VM_MAYSHARE))
7607 return;
7608
7609 if (start >= end)
7610 return;
7611
7612 flush_cache_range(vma, start, end);
7613 /*
7614 * No need to call adjust_range_if_pmd_sharing_possible(), because
7615 * we have already done the PUD_SIZE alignment.
7616 */
7617 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7618 start, end);
7619 mmu_notifier_invalidate_range_start(&range);
7620 hugetlb_vma_lock_write(vma);
7621 i_mmap_lock_write(vma->vm_file->f_mapping);
7622 for (address = start; address < end; address += PUD_SIZE) {
7623 ptep = hugetlb_walk(vma, address, sz);
7624 if (!ptep)
7625 continue;
7626 ptl = huge_pte_lock(h, mm, ptep);
7627 huge_pmd_unshare(mm, vma, address, ptep);
7628 spin_unlock(ptl);
7629 }
7630 flush_hugetlb_tlb_range(vma, start, end);
7631 i_mmap_unlock_write(vma->vm_file->f_mapping);
7632 hugetlb_vma_unlock_write(vma);
7633 /*
7634 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7635 * Documentation/mm/mmu_notifier.rst.
7636 */
7637 mmu_notifier_invalidate_range_end(&range);
7638}
7639
7640/*
7641 * This function will unconditionally remove all the shared pmd pgtable entries
7642 * within the specific vma for a hugetlbfs memory range.
7643 */
7644void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7645{
7646 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7647 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7648}
7649
7650#ifdef CONFIG_CMA
7651static bool cma_reserve_called __initdata;
7652
7653static int __init cmdline_parse_hugetlb_cma(char *p)
7654{
7655 int nid, count = 0;
7656 unsigned long tmp;
7657 char *s = p;
7658
7659 while (*s) {
7660 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7661 break;
7662
7663 if (s[count] == ':') {
7664 if (tmp >= MAX_NUMNODES)
7665 break;
7666 nid = array_index_nospec(tmp, MAX_NUMNODES);
7667
7668 s += count + 1;
7669 tmp = memparse(s, &s);
7670 hugetlb_cma_size_in_node[nid] = tmp;
7671 hugetlb_cma_size += tmp;
7672
7673 /*
7674 * Skip the separator if have one, otherwise
7675 * break the parsing.
7676 */
7677 if (*s == ',')
7678 s++;
7679 else
7680 break;
7681 } else {
7682 hugetlb_cma_size = memparse(p, &p);
7683 break;
7684 }
7685 }
7686
7687 return 0;
7688}
7689
7690early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7691
7692void __init hugetlb_cma_reserve(int order)
7693{
7694 unsigned long size, reserved, per_node;
7695 bool node_specific_cma_alloc = false;
7696 int nid;
7697
7698 cma_reserve_called = true;
7699
7700 if (!hugetlb_cma_size)
7701 return;
7702
7703 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7704 if (hugetlb_cma_size_in_node[nid] == 0)
7705 continue;
7706
7707 if (!node_online(nid)) {
7708 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7709 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7710 hugetlb_cma_size_in_node[nid] = 0;
7711 continue;
7712 }
7713
7714 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7715 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7716 nid, (PAGE_SIZE << order) / SZ_1M);
7717 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7718 hugetlb_cma_size_in_node[nid] = 0;
7719 } else {
7720 node_specific_cma_alloc = true;
7721 }
7722 }
7723
7724 /* Validate the CMA size again in case some invalid nodes specified. */
7725 if (!hugetlb_cma_size)
7726 return;
7727
7728 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7729 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7730 (PAGE_SIZE << order) / SZ_1M);
7731 hugetlb_cma_size = 0;
7732 return;
7733 }
7734
7735 if (!node_specific_cma_alloc) {
7736 /*
7737 * If 3 GB area is requested on a machine with 4 numa nodes,
7738 * let's allocate 1 GB on first three nodes and ignore the last one.
7739 */
7740 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7741 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7742 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7743 }
7744
7745 reserved = 0;
7746 for_each_online_node(nid) {
7747 int res;
7748 char name[CMA_MAX_NAME];
7749
7750 if (node_specific_cma_alloc) {
7751 if (hugetlb_cma_size_in_node[nid] == 0)
7752 continue;
7753
7754 size = hugetlb_cma_size_in_node[nid];
7755 } else {
7756 size = min(per_node, hugetlb_cma_size - reserved);
7757 }
7758
7759 size = round_up(size, PAGE_SIZE << order);
7760
7761 snprintf(name, sizeof(name), "hugetlb%d", nid);
7762 /*
7763 * Note that 'order per bit' is based on smallest size that
7764 * may be returned to CMA allocator in the case of
7765 * huge page demotion.
7766 */
7767 res = cma_declare_contiguous_nid(0, size, 0,
7768 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7769 0, false, name,
7770 &hugetlb_cma[nid], nid);
7771 if (res) {
7772 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7773 res, nid);
7774 continue;
7775 }
7776
7777 reserved += size;
7778 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7779 size / SZ_1M, nid);
7780
7781 if (reserved >= hugetlb_cma_size)
7782 break;
7783 }
7784
7785 if (!reserved)
7786 /*
7787 * hugetlb_cma_size is used to determine if allocations from
7788 * cma are possible. Set to zero if no cma regions are set up.
7789 */
7790 hugetlb_cma_size = 0;
7791}
7792
7793static void __init hugetlb_cma_check(void)
7794{
7795 if (!hugetlb_cma_size || cma_reserve_called)
7796 return;
7797
7798 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7799}
7800
7801#endif /* CONFIG_CMA */
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/compiler.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/memblock.h>
20#include <linux/sysfs.h>
21#include <linux/slab.h>
22#include <linux/sched/mm.h>
23#include <linux/mmdebug.h>
24#include <linux/sched/signal.h>
25#include <linux/rmap.h>
26#include <linux/string_helpers.h>
27#include <linux/swap.h>
28#include <linux/swapops.h>
29#include <linux/jhash.h>
30#include <linux/numa.h>
31#include <linux/llist.h>
32#include <linux/cma.h>
33
34#include <asm/page.h>
35#include <asm/pgalloc.h>
36#include <asm/tlb.h>
37
38#include <linux/io.h>
39#include <linux/hugetlb.h>
40#include <linux/hugetlb_cgroup.h>
41#include <linux/node.h>
42#include <linux/userfaultfd_k.h>
43#include <linux/page_owner.h>
44#include "internal.h"
45
46int hugetlb_max_hstate __read_mostly;
47unsigned int default_hstate_idx;
48struct hstate hstates[HUGE_MAX_HSTATE];
49
50#ifdef CONFIG_CMA
51static struct cma *hugetlb_cma[MAX_NUMNODES];
52#endif
53static unsigned long hugetlb_cma_size __initdata;
54
55/*
56 * Minimum page order among possible hugepage sizes, set to a proper value
57 * at boot time.
58 */
59static unsigned int minimum_order __read_mostly = UINT_MAX;
60
61__initdata LIST_HEAD(huge_boot_pages);
62
63/* for command line parsing */
64static struct hstate * __initdata parsed_hstate;
65static unsigned long __initdata default_hstate_max_huge_pages;
66static bool __initdata parsed_valid_hugepagesz = true;
67static bool __initdata parsed_default_hugepagesz;
68
69/*
70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71 * free_huge_pages, and surplus_huge_pages.
72 */
73DEFINE_SPINLOCK(hugetlb_lock);
74
75/*
76 * Serializes faults on the same logical page. This is used to
77 * prevent spurious OOMs when the hugepage pool is fully utilized.
78 */
79static int num_fault_mutexes;
80struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81
82/* Forward declaration */
83static int hugetlb_acct_memory(struct hstate *h, long delta);
84
85static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
86{
87 bool free = (spool->count == 0) && (spool->used_hpages == 0);
88
89 spin_unlock(&spool->lock);
90
91 /* If no pages are used, and no other handles to the subpool
92 * remain, give up any reservations based on minimum size and
93 * free the subpool */
94 if (free) {
95 if (spool->min_hpages != -1)
96 hugetlb_acct_memory(spool->hstate,
97 -spool->min_hpages);
98 kfree(spool);
99 }
100}
101
102struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
103 long min_hpages)
104{
105 struct hugepage_subpool *spool;
106
107 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
108 if (!spool)
109 return NULL;
110
111 spin_lock_init(&spool->lock);
112 spool->count = 1;
113 spool->max_hpages = max_hpages;
114 spool->hstate = h;
115 spool->min_hpages = min_hpages;
116
117 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
118 kfree(spool);
119 return NULL;
120 }
121 spool->rsv_hpages = min_hpages;
122
123 return spool;
124}
125
126void hugepage_put_subpool(struct hugepage_subpool *spool)
127{
128 spin_lock(&spool->lock);
129 BUG_ON(!spool->count);
130 spool->count--;
131 unlock_or_release_subpool(spool);
132}
133
134/*
135 * Subpool accounting for allocating and reserving pages.
136 * Return -ENOMEM if there are not enough resources to satisfy the
137 * request. Otherwise, return the number of pages by which the
138 * global pools must be adjusted (upward). The returned value may
139 * only be different than the passed value (delta) in the case where
140 * a subpool minimum size must be maintained.
141 */
142static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
143 long delta)
144{
145 long ret = delta;
146
147 if (!spool)
148 return ret;
149
150 spin_lock(&spool->lock);
151
152 if (spool->max_hpages != -1) { /* maximum size accounting */
153 if ((spool->used_hpages + delta) <= spool->max_hpages)
154 spool->used_hpages += delta;
155 else {
156 ret = -ENOMEM;
157 goto unlock_ret;
158 }
159 }
160
161 /* minimum size accounting */
162 if (spool->min_hpages != -1 && spool->rsv_hpages) {
163 if (delta > spool->rsv_hpages) {
164 /*
165 * Asking for more reserves than those already taken on
166 * behalf of subpool. Return difference.
167 */
168 ret = delta - spool->rsv_hpages;
169 spool->rsv_hpages = 0;
170 } else {
171 ret = 0; /* reserves already accounted for */
172 spool->rsv_hpages -= delta;
173 }
174 }
175
176unlock_ret:
177 spin_unlock(&spool->lock);
178 return ret;
179}
180
181/*
182 * Subpool accounting for freeing and unreserving pages.
183 * Return the number of global page reservations that must be dropped.
184 * The return value may only be different than the passed value (delta)
185 * in the case where a subpool minimum size must be maintained.
186 */
187static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
188 long delta)
189{
190 long ret = delta;
191
192 if (!spool)
193 return delta;
194
195 spin_lock(&spool->lock);
196
197 if (spool->max_hpages != -1) /* maximum size accounting */
198 spool->used_hpages -= delta;
199
200 /* minimum size accounting */
201 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
202 if (spool->rsv_hpages + delta <= spool->min_hpages)
203 ret = 0;
204 else
205 ret = spool->rsv_hpages + delta - spool->min_hpages;
206
207 spool->rsv_hpages += delta;
208 if (spool->rsv_hpages > spool->min_hpages)
209 spool->rsv_hpages = spool->min_hpages;
210 }
211
212 /*
213 * If hugetlbfs_put_super couldn't free spool due to an outstanding
214 * quota reference, free it now.
215 */
216 unlock_or_release_subpool(spool);
217
218 return ret;
219}
220
221static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
222{
223 return HUGETLBFS_SB(inode->i_sb)->spool;
224}
225
226static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
227{
228 return subpool_inode(file_inode(vma->vm_file));
229}
230
231/* Helper that removes a struct file_region from the resv_map cache and returns
232 * it for use.
233 */
234static struct file_region *
235get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
236{
237 struct file_region *nrg = NULL;
238
239 VM_BUG_ON(resv->region_cache_count <= 0);
240
241 resv->region_cache_count--;
242 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
243 VM_BUG_ON(!nrg);
244 list_del(&nrg->link);
245
246 nrg->from = from;
247 nrg->to = to;
248
249 return nrg;
250}
251
252static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
253 struct file_region *rg)
254{
255#ifdef CONFIG_CGROUP_HUGETLB
256 nrg->reservation_counter = rg->reservation_counter;
257 nrg->css = rg->css;
258 if (rg->css)
259 css_get(rg->css);
260#endif
261}
262
263/* Helper that records hugetlb_cgroup uncharge info. */
264static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
265 struct hstate *h,
266 struct resv_map *resv,
267 struct file_region *nrg)
268{
269#ifdef CONFIG_CGROUP_HUGETLB
270 if (h_cg) {
271 nrg->reservation_counter =
272 &h_cg->rsvd_hugepage[hstate_index(h)];
273 nrg->css = &h_cg->css;
274 if (!resv->pages_per_hpage)
275 resv->pages_per_hpage = pages_per_huge_page(h);
276 /* pages_per_hpage should be the same for all entries in
277 * a resv_map.
278 */
279 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
280 } else {
281 nrg->reservation_counter = NULL;
282 nrg->css = NULL;
283 }
284#endif
285}
286
287static bool has_same_uncharge_info(struct file_region *rg,
288 struct file_region *org)
289{
290#ifdef CONFIG_CGROUP_HUGETLB
291 return rg && org &&
292 rg->reservation_counter == org->reservation_counter &&
293 rg->css == org->css;
294
295#else
296 return true;
297#endif
298}
299
300static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
301{
302 struct file_region *nrg = NULL, *prg = NULL;
303
304 prg = list_prev_entry(rg, link);
305 if (&prg->link != &resv->regions && prg->to == rg->from &&
306 has_same_uncharge_info(prg, rg)) {
307 prg->to = rg->to;
308
309 list_del(&rg->link);
310 kfree(rg);
311
312 coalesce_file_region(resv, prg);
313 return;
314 }
315
316 nrg = list_next_entry(rg, link);
317 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
318 has_same_uncharge_info(nrg, rg)) {
319 nrg->from = rg->from;
320
321 list_del(&rg->link);
322 kfree(rg);
323
324 coalesce_file_region(resv, nrg);
325 return;
326 }
327}
328
329/* Must be called with resv->lock held. Calling this with count_only == true
330 * will count the number of pages to be added but will not modify the linked
331 * list. If regions_needed != NULL and count_only == true, then regions_needed
332 * will indicate the number of file_regions needed in the cache to carry out to
333 * add the regions for this range.
334 */
335static long add_reservation_in_range(struct resv_map *resv, long f, long t,
336 struct hugetlb_cgroup *h_cg,
337 struct hstate *h, long *regions_needed,
338 bool count_only)
339{
340 long add = 0;
341 struct list_head *head = &resv->regions;
342 long last_accounted_offset = f;
343 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
344
345 if (regions_needed)
346 *regions_needed = 0;
347
348 /* In this loop, we essentially handle an entry for the range
349 * [last_accounted_offset, rg->from), at every iteration, with some
350 * bounds checking.
351 */
352 list_for_each_entry_safe(rg, trg, head, link) {
353 /* Skip irrelevant regions that start before our range. */
354 if (rg->from < f) {
355 /* If this region ends after the last accounted offset,
356 * then we need to update last_accounted_offset.
357 */
358 if (rg->to > last_accounted_offset)
359 last_accounted_offset = rg->to;
360 continue;
361 }
362
363 /* When we find a region that starts beyond our range, we've
364 * finished.
365 */
366 if (rg->from > t)
367 break;
368
369 /* Add an entry for last_accounted_offset -> rg->from, and
370 * update last_accounted_offset.
371 */
372 if (rg->from > last_accounted_offset) {
373 add += rg->from - last_accounted_offset;
374 if (!count_only) {
375 nrg = get_file_region_entry_from_cache(
376 resv, last_accounted_offset, rg->from);
377 record_hugetlb_cgroup_uncharge_info(h_cg, h,
378 resv, nrg);
379 list_add(&nrg->link, rg->link.prev);
380 coalesce_file_region(resv, nrg);
381 } else if (regions_needed)
382 *regions_needed += 1;
383 }
384
385 last_accounted_offset = rg->to;
386 }
387
388 /* Handle the case where our range extends beyond
389 * last_accounted_offset.
390 */
391 if (last_accounted_offset < t) {
392 add += t - last_accounted_offset;
393 if (!count_only) {
394 nrg = get_file_region_entry_from_cache(
395 resv, last_accounted_offset, t);
396 record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
397 list_add(&nrg->link, rg->link.prev);
398 coalesce_file_region(resv, nrg);
399 } else if (regions_needed)
400 *regions_needed += 1;
401 }
402
403 VM_BUG_ON(add < 0);
404 return add;
405}
406
407/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
408 */
409static int allocate_file_region_entries(struct resv_map *resv,
410 int regions_needed)
411 __must_hold(&resv->lock)
412{
413 struct list_head allocated_regions;
414 int to_allocate = 0, i = 0;
415 struct file_region *trg = NULL, *rg = NULL;
416
417 VM_BUG_ON(regions_needed < 0);
418
419 INIT_LIST_HEAD(&allocated_regions);
420
421 /*
422 * Check for sufficient descriptors in the cache to accommodate
423 * the number of in progress add operations plus regions_needed.
424 *
425 * This is a while loop because when we drop the lock, some other call
426 * to region_add or region_del may have consumed some region_entries,
427 * so we keep looping here until we finally have enough entries for
428 * (adds_in_progress + regions_needed).
429 */
430 while (resv->region_cache_count <
431 (resv->adds_in_progress + regions_needed)) {
432 to_allocate = resv->adds_in_progress + regions_needed -
433 resv->region_cache_count;
434
435 /* At this point, we should have enough entries in the cache
436 * for all the existings adds_in_progress. We should only be
437 * needing to allocate for regions_needed.
438 */
439 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
440
441 spin_unlock(&resv->lock);
442 for (i = 0; i < to_allocate; i++) {
443 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
444 if (!trg)
445 goto out_of_memory;
446 list_add(&trg->link, &allocated_regions);
447 }
448
449 spin_lock(&resv->lock);
450
451 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
452 list_del(&rg->link);
453 list_add(&rg->link, &resv->region_cache);
454 resv->region_cache_count++;
455 }
456 }
457
458 return 0;
459
460out_of_memory:
461 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
462 list_del(&rg->link);
463 kfree(rg);
464 }
465 return -ENOMEM;
466}
467
468/*
469 * Add the huge page range represented by [f, t) to the reserve
470 * map. Regions will be taken from the cache to fill in this range.
471 * Sufficient regions should exist in the cache due to the previous
472 * call to region_chg with the same range, but in some cases the cache will not
473 * have sufficient entries due to races with other code doing region_add or
474 * region_del. The extra needed entries will be allocated.
475 *
476 * regions_needed is the out value provided by a previous call to region_chg.
477 *
478 * Return the number of new huge pages added to the map. This number is greater
479 * than or equal to zero. If file_region entries needed to be allocated for
480 * this operation and we were not able to allocate, it returns -ENOMEM.
481 * region_add of regions of length 1 never allocate file_regions and cannot
482 * fail; region_chg will always allocate at least 1 entry and a region_add for
483 * 1 page will only require at most 1 entry.
484 */
485static long region_add(struct resv_map *resv, long f, long t,
486 long in_regions_needed, struct hstate *h,
487 struct hugetlb_cgroup *h_cg)
488{
489 long add = 0, actual_regions_needed = 0;
490
491 spin_lock(&resv->lock);
492retry:
493
494 /* Count how many regions are actually needed to execute this add. */
495 add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed,
496 true);
497
498 /*
499 * Check for sufficient descriptors in the cache to accommodate
500 * this add operation. Note that actual_regions_needed may be greater
501 * than in_regions_needed, as the resv_map may have been modified since
502 * the region_chg call. In this case, we need to make sure that we
503 * allocate extra entries, such that we have enough for all the
504 * existing adds_in_progress, plus the excess needed for this
505 * operation.
506 */
507 if (actual_regions_needed > in_regions_needed &&
508 resv->region_cache_count <
509 resv->adds_in_progress +
510 (actual_regions_needed - in_regions_needed)) {
511 /* region_add operation of range 1 should never need to
512 * allocate file_region entries.
513 */
514 VM_BUG_ON(t - f <= 1);
515
516 if (allocate_file_region_entries(
517 resv, actual_regions_needed - in_regions_needed)) {
518 return -ENOMEM;
519 }
520
521 goto retry;
522 }
523
524 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false);
525
526 resv->adds_in_progress -= in_regions_needed;
527
528 spin_unlock(&resv->lock);
529 VM_BUG_ON(add < 0);
530 return add;
531}
532
533/*
534 * Examine the existing reserve map and determine how many
535 * huge pages in the specified range [f, t) are NOT currently
536 * represented. This routine is called before a subsequent
537 * call to region_add that will actually modify the reserve
538 * map to add the specified range [f, t). region_chg does
539 * not change the number of huge pages represented by the
540 * map. A number of new file_region structures is added to the cache as a
541 * placeholder, for the subsequent region_add call to use. At least 1
542 * file_region structure is added.
543 *
544 * out_regions_needed is the number of regions added to the
545 * resv->adds_in_progress. This value needs to be provided to a follow up call
546 * to region_add or region_abort for proper accounting.
547 *
548 * Returns the number of huge pages that need to be added to the existing
549 * reservation map for the range [f, t). This number is greater or equal to
550 * zero. -ENOMEM is returned if a new file_region structure or cache entry
551 * is needed and can not be allocated.
552 */
553static long region_chg(struct resv_map *resv, long f, long t,
554 long *out_regions_needed)
555{
556 long chg = 0;
557
558 spin_lock(&resv->lock);
559
560 /* Count how many hugepages in this range are NOT respresented. */
561 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
562 out_regions_needed, true);
563
564 if (*out_regions_needed == 0)
565 *out_regions_needed = 1;
566
567 if (allocate_file_region_entries(resv, *out_regions_needed))
568 return -ENOMEM;
569
570 resv->adds_in_progress += *out_regions_needed;
571
572 spin_unlock(&resv->lock);
573 return chg;
574}
575
576/*
577 * Abort the in progress add operation. The adds_in_progress field
578 * of the resv_map keeps track of the operations in progress between
579 * calls to region_chg and region_add. Operations are sometimes
580 * aborted after the call to region_chg. In such cases, region_abort
581 * is called to decrement the adds_in_progress counter. regions_needed
582 * is the value returned by the region_chg call, it is used to decrement
583 * the adds_in_progress counter.
584 *
585 * NOTE: The range arguments [f, t) are not needed or used in this
586 * routine. They are kept to make reading the calling code easier as
587 * arguments will match the associated region_chg call.
588 */
589static void region_abort(struct resv_map *resv, long f, long t,
590 long regions_needed)
591{
592 spin_lock(&resv->lock);
593 VM_BUG_ON(!resv->region_cache_count);
594 resv->adds_in_progress -= regions_needed;
595 spin_unlock(&resv->lock);
596}
597
598/*
599 * Delete the specified range [f, t) from the reserve map. If the
600 * t parameter is LONG_MAX, this indicates that ALL regions after f
601 * should be deleted. Locate the regions which intersect [f, t)
602 * and either trim, delete or split the existing regions.
603 *
604 * Returns the number of huge pages deleted from the reserve map.
605 * In the normal case, the return value is zero or more. In the
606 * case where a region must be split, a new region descriptor must
607 * be allocated. If the allocation fails, -ENOMEM will be returned.
608 * NOTE: If the parameter t == LONG_MAX, then we will never split
609 * a region and possibly return -ENOMEM. Callers specifying
610 * t == LONG_MAX do not need to check for -ENOMEM error.
611 */
612static long region_del(struct resv_map *resv, long f, long t)
613{
614 struct list_head *head = &resv->regions;
615 struct file_region *rg, *trg;
616 struct file_region *nrg = NULL;
617 long del = 0;
618
619retry:
620 spin_lock(&resv->lock);
621 list_for_each_entry_safe(rg, trg, head, link) {
622 /*
623 * Skip regions before the range to be deleted. file_region
624 * ranges are normally of the form [from, to). However, there
625 * may be a "placeholder" entry in the map which is of the form
626 * (from, to) with from == to. Check for placeholder entries
627 * at the beginning of the range to be deleted.
628 */
629 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
630 continue;
631
632 if (rg->from >= t)
633 break;
634
635 if (f > rg->from && t < rg->to) { /* Must split region */
636 /*
637 * Check for an entry in the cache before dropping
638 * lock and attempting allocation.
639 */
640 if (!nrg &&
641 resv->region_cache_count > resv->adds_in_progress) {
642 nrg = list_first_entry(&resv->region_cache,
643 struct file_region,
644 link);
645 list_del(&nrg->link);
646 resv->region_cache_count--;
647 }
648
649 if (!nrg) {
650 spin_unlock(&resv->lock);
651 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
652 if (!nrg)
653 return -ENOMEM;
654 goto retry;
655 }
656
657 del += t - f;
658
659 /* New entry for end of split region */
660 nrg->from = t;
661 nrg->to = rg->to;
662
663 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
664
665 INIT_LIST_HEAD(&nrg->link);
666
667 /* Original entry is trimmed */
668 rg->to = f;
669
670 hugetlb_cgroup_uncharge_file_region(
671 resv, rg, nrg->to - nrg->from);
672
673 list_add(&nrg->link, &rg->link);
674 nrg = NULL;
675 break;
676 }
677
678 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
679 del += rg->to - rg->from;
680 hugetlb_cgroup_uncharge_file_region(resv, rg,
681 rg->to - rg->from);
682 list_del(&rg->link);
683 kfree(rg);
684 continue;
685 }
686
687 if (f <= rg->from) { /* Trim beginning of region */
688 del += t - rg->from;
689 rg->from = t;
690
691 hugetlb_cgroup_uncharge_file_region(resv, rg,
692 t - rg->from);
693 } else { /* Trim end of region */
694 del += rg->to - f;
695 rg->to = f;
696
697 hugetlb_cgroup_uncharge_file_region(resv, rg,
698 rg->to - f);
699 }
700 }
701
702 spin_unlock(&resv->lock);
703 kfree(nrg);
704 return del;
705}
706
707/*
708 * A rare out of memory error was encountered which prevented removal of
709 * the reserve map region for a page. The huge page itself was free'ed
710 * and removed from the page cache. This routine will adjust the subpool
711 * usage count, and the global reserve count if needed. By incrementing
712 * these counts, the reserve map entry which could not be deleted will
713 * appear as a "reserved" entry instead of simply dangling with incorrect
714 * counts.
715 */
716void hugetlb_fix_reserve_counts(struct inode *inode)
717{
718 struct hugepage_subpool *spool = subpool_inode(inode);
719 long rsv_adjust;
720
721 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
722 if (rsv_adjust) {
723 struct hstate *h = hstate_inode(inode);
724
725 hugetlb_acct_memory(h, 1);
726 }
727}
728
729/*
730 * Count and return the number of huge pages in the reserve map
731 * that intersect with the range [f, t).
732 */
733static long region_count(struct resv_map *resv, long f, long t)
734{
735 struct list_head *head = &resv->regions;
736 struct file_region *rg;
737 long chg = 0;
738
739 spin_lock(&resv->lock);
740 /* Locate each segment we overlap with, and count that overlap. */
741 list_for_each_entry(rg, head, link) {
742 long seg_from;
743 long seg_to;
744
745 if (rg->to <= f)
746 continue;
747 if (rg->from >= t)
748 break;
749
750 seg_from = max(rg->from, f);
751 seg_to = min(rg->to, t);
752
753 chg += seg_to - seg_from;
754 }
755 spin_unlock(&resv->lock);
756
757 return chg;
758}
759
760/*
761 * Convert the address within this vma to the page offset within
762 * the mapping, in pagecache page units; huge pages here.
763 */
764static pgoff_t vma_hugecache_offset(struct hstate *h,
765 struct vm_area_struct *vma, unsigned long address)
766{
767 return ((address - vma->vm_start) >> huge_page_shift(h)) +
768 (vma->vm_pgoff >> huge_page_order(h));
769}
770
771pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
772 unsigned long address)
773{
774 return vma_hugecache_offset(hstate_vma(vma), vma, address);
775}
776EXPORT_SYMBOL_GPL(linear_hugepage_index);
777
778/*
779 * Return the size of the pages allocated when backing a VMA. In the majority
780 * cases this will be same size as used by the page table entries.
781 */
782unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
783{
784 if (vma->vm_ops && vma->vm_ops->pagesize)
785 return vma->vm_ops->pagesize(vma);
786 return PAGE_SIZE;
787}
788EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
789
790/*
791 * Return the page size being used by the MMU to back a VMA. In the majority
792 * of cases, the page size used by the kernel matches the MMU size. On
793 * architectures where it differs, an architecture-specific 'strong'
794 * version of this symbol is required.
795 */
796__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
797{
798 return vma_kernel_pagesize(vma);
799}
800
801/*
802 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
803 * bits of the reservation map pointer, which are always clear due to
804 * alignment.
805 */
806#define HPAGE_RESV_OWNER (1UL << 0)
807#define HPAGE_RESV_UNMAPPED (1UL << 1)
808#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
809
810/*
811 * These helpers are used to track how many pages are reserved for
812 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
813 * is guaranteed to have their future faults succeed.
814 *
815 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
816 * the reserve counters are updated with the hugetlb_lock held. It is safe
817 * to reset the VMA at fork() time as it is not in use yet and there is no
818 * chance of the global counters getting corrupted as a result of the values.
819 *
820 * The private mapping reservation is represented in a subtly different
821 * manner to a shared mapping. A shared mapping has a region map associated
822 * with the underlying file, this region map represents the backing file
823 * pages which have ever had a reservation assigned which this persists even
824 * after the page is instantiated. A private mapping has a region map
825 * associated with the original mmap which is attached to all VMAs which
826 * reference it, this region map represents those offsets which have consumed
827 * reservation ie. where pages have been instantiated.
828 */
829static unsigned long get_vma_private_data(struct vm_area_struct *vma)
830{
831 return (unsigned long)vma->vm_private_data;
832}
833
834static void set_vma_private_data(struct vm_area_struct *vma,
835 unsigned long value)
836{
837 vma->vm_private_data = (void *)value;
838}
839
840static void
841resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
842 struct hugetlb_cgroup *h_cg,
843 struct hstate *h)
844{
845#ifdef CONFIG_CGROUP_HUGETLB
846 if (!h_cg || !h) {
847 resv_map->reservation_counter = NULL;
848 resv_map->pages_per_hpage = 0;
849 resv_map->css = NULL;
850 } else {
851 resv_map->reservation_counter =
852 &h_cg->rsvd_hugepage[hstate_index(h)];
853 resv_map->pages_per_hpage = pages_per_huge_page(h);
854 resv_map->css = &h_cg->css;
855 }
856#endif
857}
858
859struct resv_map *resv_map_alloc(void)
860{
861 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
862 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
863
864 if (!resv_map || !rg) {
865 kfree(resv_map);
866 kfree(rg);
867 return NULL;
868 }
869
870 kref_init(&resv_map->refs);
871 spin_lock_init(&resv_map->lock);
872 INIT_LIST_HEAD(&resv_map->regions);
873
874 resv_map->adds_in_progress = 0;
875 /*
876 * Initialize these to 0. On shared mappings, 0's here indicate these
877 * fields don't do cgroup accounting. On private mappings, these will be
878 * re-initialized to the proper values, to indicate that hugetlb cgroup
879 * reservations are to be un-charged from here.
880 */
881 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
882
883 INIT_LIST_HEAD(&resv_map->region_cache);
884 list_add(&rg->link, &resv_map->region_cache);
885 resv_map->region_cache_count = 1;
886
887 return resv_map;
888}
889
890void resv_map_release(struct kref *ref)
891{
892 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
893 struct list_head *head = &resv_map->region_cache;
894 struct file_region *rg, *trg;
895
896 /* Clear out any active regions before we release the map. */
897 region_del(resv_map, 0, LONG_MAX);
898
899 /* ... and any entries left in the cache */
900 list_for_each_entry_safe(rg, trg, head, link) {
901 list_del(&rg->link);
902 kfree(rg);
903 }
904
905 VM_BUG_ON(resv_map->adds_in_progress);
906
907 kfree(resv_map);
908}
909
910static inline struct resv_map *inode_resv_map(struct inode *inode)
911{
912 /*
913 * At inode evict time, i_mapping may not point to the original
914 * address space within the inode. This original address space
915 * contains the pointer to the resv_map. So, always use the
916 * address space embedded within the inode.
917 * The VERY common case is inode->mapping == &inode->i_data but,
918 * this may not be true for device special inodes.
919 */
920 return (struct resv_map *)(&inode->i_data)->private_data;
921}
922
923static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
924{
925 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
926 if (vma->vm_flags & VM_MAYSHARE) {
927 struct address_space *mapping = vma->vm_file->f_mapping;
928 struct inode *inode = mapping->host;
929
930 return inode_resv_map(inode);
931
932 } else {
933 return (struct resv_map *)(get_vma_private_data(vma) &
934 ~HPAGE_RESV_MASK);
935 }
936}
937
938static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
939{
940 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
941 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
942
943 set_vma_private_data(vma, (get_vma_private_data(vma) &
944 HPAGE_RESV_MASK) | (unsigned long)map);
945}
946
947static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
948{
949 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
950 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
951
952 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
953}
954
955static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
956{
957 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
958
959 return (get_vma_private_data(vma) & flag) != 0;
960}
961
962/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
963void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
964{
965 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
966 if (!(vma->vm_flags & VM_MAYSHARE))
967 vma->vm_private_data = (void *)0;
968}
969
970/* Returns true if the VMA has associated reserve pages */
971static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
972{
973 if (vma->vm_flags & VM_NORESERVE) {
974 /*
975 * This address is already reserved by other process(chg == 0),
976 * so, we should decrement reserved count. Without decrementing,
977 * reserve count remains after releasing inode, because this
978 * allocated page will go into page cache and is regarded as
979 * coming from reserved pool in releasing step. Currently, we
980 * don't have any other solution to deal with this situation
981 * properly, so add work-around here.
982 */
983 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
984 return true;
985 else
986 return false;
987 }
988
989 /* Shared mappings always use reserves */
990 if (vma->vm_flags & VM_MAYSHARE) {
991 /*
992 * We know VM_NORESERVE is not set. Therefore, there SHOULD
993 * be a region map for all pages. The only situation where
994 * there is no region map is if a hole was punched via
995 * fallocate. In this case, there really are no reserves to
996 * use. This situation is indicated if chg != 0.
997 */
998 if (chg)
999 return false;
1000 else
1001 return true;
1002 }
1003
1004 /*
1005 * Only the process that called mmap() has reserves for
1006 * private mappings.
1007 */
1008 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1009 /*
1010 * Like the shared case above, a hole punch or truncate
1011 * could have been performed on the private mapping.
1012 * Examine the value of chg to determine if reserves
1013 * actually exist or were previously consumed.
1014 * Very Subtle - The value of chg comes from a previous
1015 * call to vma_needs_reserves(). The reserve map for
1016 * private mappings has different (opposite) semantics
1017 * than that of shared mappings. vma_needs_reserves()
1018 * has already taken this difference in semantics into
1019 * account. Therefore, the meaning of chg is the same
1020 * as in the shared case above. Code could easily be
1021 * combined, but keeping it separate draws attention to
1022 * subtle differences.
1023 */
1024 if (chg)
1025 return false;
1026 else
1027 return true;
1028 }
1029
1030 return false;
1031}
1032
1033static void enqueue_huge_page(struct hstate *h, struct page *page)
1034{
1035 int nid = page_to_nid(page);
1036 list_move(&page->lru, &h->hugepage_freelists[nid]);
1037 h->free_huge_pages++;
1038 h->free_huge_pages_node[nid]++;
1039}
1040
1041static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1042{
1043 struct page *page;
1044 bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1045
1046 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1047 if (nocma && is_migrate_cma_page(page))
1048 continue;
1049
1050 if (!PageHWPoison(page))
1051 break;
1052 }
1053
1054 /*
1055 * if 'non-isolated free hugepage' not found on the list,
1056 * the allocation fails.
1057 */
1058 if (&h->hugepage_freelists[nid] == &page->lru)
1059 return NULL;
1060 list_move(&page->lru, &h->hugepage_activelist);
1061 set_page_refcounted(page);
1062 h->free_huge_pages--;
1063 h->free_huge_pages_node[nid]--;
1064 return page;
1065}
1066
1067static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1068 nodemask_t *nmask)
1069{
1070 unsigned int cpuset_mems_cookie;
1071 struct zonelist *zonelist;
1072 struct zone *zone;
1073 struct zoneref *z;
1074 int node = NUMA_NO_NODE;
1075
1076 zonelist = node_zonelist(nid, gfp_mask);
1077
1078retry_cpuset:
1079 cpuset_mems_cookie = read_mems_allowed_begin();
1080 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1081 struct page *page;
1082
1083 if (!cpuset_zone_allowed(zone, gfp_mask))
1084 continue;
1085 /*
1086 * no need to ask again on the same node. Pool is node rather than
1087 * zone aware
1088 */
1089 if (zone_to_nid(zone) == node)
1090 continue;
1091 node = zone_to_nid(zone);
1092
1093 page = dequeue_huge_page_node_exact(h, node);
1094 if (page)
1095 return page;
1096 }
1097 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1098 goto retry_cpuset;
1099
1100 return NULL;
1101}
1102
1103static struct page *dequeue_huge_page_vma(struct hstate *h,
1104 struct vm_area_struct *vma,
1105 unsigned long address, int avoid_reserve,
1106 long chg)
1107{
1108 struct page *page;
1109 struct mempolicy *mpol;
1110 gfp_t gfp_mask;
1111 nodemask_t *nodemask;
1112 int nid;
1113
1114 /*
1115 * A child process with MAP_PRIVATE mappings created by their parent
1116 * have no page reserves. This check ensures that reservations are
1117 * not "stolen". The child may still get SIGKILLed
1118 */
1119 if (!vma_has_reserves(vma, chg) &&
1120 h->free_huge_pages - h->resv_huge_pages == 0)
1121 goto err;
1122
1123 /* If reserves cannot be used, ensure enough pages are in the pool */
1124 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1125 goto err;
1126
1127 gfp_mask = htlb_alloc_mask(h);
1128 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1129 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1130 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1131 SetPagePrivate(page);
1132 h->resv_huge_pages--;
1133 }
1134
1135 mpol_cond_put(mpol);
1136 return page;
1137
1138err:
1139 return NULL;
1140}
1141
1142/*
1143 * common helper functions for hstate_next_node_to_{alloc|free}.
1144 * We may have allocated or freed a huge page based on a different
1145 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1146 * be outside of *nodes_allowed. Ensure that we use an allowed
1147 * node for alloc or free.
1148 */
1149static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1150{
1151 nid = next_node_in(nid, *nodes_allowed);
1152 VM_BUG_ON(nid >= MAX_NUMNODES);
1153
1154 return nid;
1155}
1156
1157static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1158{
1159 if (!node_isset(nid, *nodes_allowed))
1160 nid = next_node_allowed(nid, nodes_allowed);
1161 return nid;
1162}
1163
1164/*
1165 * returns the previously saved node ["this node"] from which to
1166 * allocate a persistent huge page for the pool and advance the
1167 * next node from which to allocate, handling wrap at end of node
1168 * mask.
1169 */
1170static int hstate_next_node_to_alloc(struct hstate *h,
1171 nodemask_t *nodes_allowed)
1172{
1173 int nid;
1174
1175 VM_BUG_ON(!nodes_allowed);
1176
1177 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1178 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1179
1180 return nid;
1181}
1182
1183/*
1184 * helper for free_pool_huge_page() - return the previously saved
1185 * node ["this node"] from which to free a huge page. Advance the
1186 * next node id whether or not we find a free huge page to free so
1187 * that the next attempt to free addresses the next node.
1188 */
1189static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1190{
1191 int nid;
1192
1193 VM_BUG_ON(!nodes_allowed);
1194
1195 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1196 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1197
1198 return nid;
1199}
1200
1201#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1202 for (nr_nodes = nodes_weight(*mask); \
1203 nr_nodes > 0 && \
1204 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1205 nr_nodes--)
1206
1207#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1208 for (nr_nodes = nodes_weight(*mask); \
1209 nr_nodes > 0 && \
1210 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1211 nr_nodes--)
1212
1213#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1214static void destroy_compound_gigantic_page(struct page *page,
1215 unsigned int order)
1216{
1217 int i;
1218 int nr_pages = 1 << order;
1219 struct page *p = page + 1;
1220
1221 atomic_set(compound_mapcount_ptr(page), 0);
1222 if (hpage_pincount_available(page))
1223 atomic_set(compound_pincount_ptr(page), 0);
1224
1225 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1226 clear_compound_head(p);
1227 set_page_refcounted(p);
1228 }
1229
1230 set_compound_order(page, 0);
1231 __ClearPageHead(page);
1232}
1233
1234static void free_gigantic_page(struct page *page, unsigned int order)
1235{
1236 /*
1237 * If the page isn't allocated using the cma allocator,
1238 * cma_release() returns false.
1239 */
1240#ifdef CONFIG_CMA
1241 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1242 return;
1243#endif
1244
1245 free_contig_range(page_to_pfn(page), 1 << order);
1246}
1247
1248#ifdef CONFIG_CONTIG_ALLOC
1249static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1250 int nid, nodemask_t *nodemask)
1251{
1252 unsigned long nr_pages = 1UL << huge_page_order(h);
1253 if (nid == NUMA_NO_NODE)
1254 nid = numa_mem_id();
1255
1256#ifdef CONFIG_CMA
1257 {
1258 struct page *page;
1259 int node;
1260
1261 if (hugetlb_cma[nid]) {
1262 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1263 huge_page_order(h), true);
1264 if (page)
1265 return page;
1266 }
1267
1268 if (!(gfp_mask & __GFP_THISNODE)) {
1269 for_each_node_mask(node, *nodemask) {
1270 if (node == nid || !hugetlb_cma[node])
1271 continue;
1272
1273 page = cma_alloc(hugetlb_cma[node], nr_pages,
1274 huge_page_order(h), true);
1275 if (page)
1276 return page;
1277 }
1278 }
1279 }
1280#endif
1281
1282 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1283}
1284
1285static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1286static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1287#else /* !CONFIG_CONTIG_ALLOC */
1288static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1289 int nid, nodemask_t *nodemask)
1290{
1291 return NULL;
1292}
1293#endif /* CONFIG_CONTIG_ALLOC */
1294
1295#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1296static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1297 int nid, nodemask_t *nodemask)
1298{
1299 return NULL;
1300}
1301static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1302static inline void destroy_compound_gigantic_page(struct page *page,
1303 unsigned int order) { }
1304#endif
1305
1306static void update_and_free_page(struct hstate *h, struct page *page)
1307{
1308 int i;
1309
1310 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1311 return;
1312
1313 h->nr_huge_pages--;
1314 h->nr_huge_pages_node[page_to_nid(page)]--;
1315 for (i = 0; i < pages_per_huge_page(h); i++) {
1316 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1317 1 << PG_referenced | 1 << PG_dirty |
1318 1 << PG_active | 1 << PG_private |
1319 1 << PG_writeback);
1320 }
1321 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1322 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1323 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1324 set_page_refcounted(page);
1325 if (hstate_is_gigantic(h)) {
1326 /*
1327 * Temporarily drop the hugetlb_lock, because
1328 * we might block in free_gigantic_page().
1329 */
1330 spin_unlock(&hugetlb_lock);
1331 destroy_compound_gigantic_page(page, huge_page_order(h));
1332 free_gigantic_page(page, huge_page_order(h));
1333 spin_lock(&hugetlb_lock);
1334 } else {
1335 __free_pages(page, huge_page_order(h));
1336 }
1337}
1338
1339struct hstate *size_to_hstate(unsigned long size)
1340{
1341 struct hstate *h;
1342
1343 for_each_hstate(h) {
1344 if (huge_page_size(h) == size)
1345 return h;
1346 }
1347 return NULL;
1348}
1349
1350/*
1351 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1352 * to hstate->hugepage_activelist.)
1353 *
1354 * This function can be called for tail pages, but never returns true for them.
1355 */
1356bool page_huge_active(struct page *page)
1357{
1358 VM_BUG_ON_PAGE(!PageHuge(page), page);
1359 return PageHead(page) && PagePrivate(&page[1]);
1360}
1361
1362/* never called for tail page */
1363static void set_page_huge_active(struct page *page)
1364{
1365 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1366 SetPagePrivate(&page[1]);
1367}
1368
1369static void clear_page_huge_active(struct page *page)
1370{
1371 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1372 ClearPagePrivate(&page[1]);
1373}
1374
1375/*
1376 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1377 * code
1378 */
1379static inline bool PageHugeTemporary(struct page *page)
1380{
1381 if (!PageHuge(page))
1382 return false;
1383
1384 return (unsigned long)page[2].mapping == -1U;
1385}
1386
1387static inline void SetPageHugeTemporary(struct page *page)
1388{
1389 page[2].mapping = (void *)-1U;
1390}
1391
1392static inline void ClearPageHugeTemporary(struct page *page)
1393{
1394 page[2].mapping = NULL;
1395}
1396
1397static void __free_huge_page(struct page *page)
1398{
1399 /*
1400 * Can't pass hstate in here because it is called from the
1401 * compound page destructor.
1402 */
1403 struct hstate *h = page_hstate(page);
1404 int nid = page_to_nid(page);
1405 struct hugepage_subpool *spool =
1406 (struct hugepage_subpool *)page_private(page);
1407 bool restore_reserve;
1408
1409 VM_BUG_ON_PAGE(page_count(page), page);
1410 VM_BUG_ON_PAGE(page_mapcount(page), page);
1411
1412 set_page_private(page, 0);
1413 page->mapping = NULL;
1414 restore_reserve = PagePrivate(page);
1415 ClearPagePrivate(page);
1416
1417 /*
1418 * If PagePrivate() was set on page, page allocation consumed a
1419 * reservation. If the page was associated with a subpool, there
1420 * would have been a page reserved in the subpool before allocation
1421 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1422 * reservtion, do not call hugepage_subpool_put_pages() as this will
1423 * remove the reserved page from the subpool.
1424 */
1425 if (!restore_reserve) {
1426 /*
1427 * A return code of zero implies that the subpool will be
1428 * under its minimum size if the reservation is not restored
1429 * after page is free. Therefore, force restore_reserve
1430 * operation.
1431 */
1432 if (hugepage_subpool_put_pages(spool, 1) == 0)
1433 restore_reserve = true;
1434 }
1435
1436 spin_lock(&hugetlb_lock);
1437 clear_page_huge_active(page);
1438 hugetlb_cgroup_uncharge_page(hstate_index(h),
1439 pages_per_huge_page(h), page);
1440 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1441 pages_per_huge_page(h), page);
1442 if (restore_reserve)
1443 h->resv_huge_pages++;
1444
1445 if (PageHugeTemporary(page)) {
1446 list_del(&page->lru);
1447 ClearPageHugeTemporary(page);
1448 update_and_free_page(h, page);
1449 } else if (h->surplus_huge_pages_node[nid]) {
1450 /* remove the page from active list */
1451 list_del(&page->lru);
1452 update_and_free_page(h, page);
1453 h->surplus_huge_pages--;
1454 h->surplus_huge_pages_node[nid]--;
1455 } else {
1456 arch_clear_hugepage_flags(page);
1457 enqueue_huge_page(h, page);
1458 }
1459 spin_unlock(&hugetlb_lock);
1460}
1461
1462/*
1463 * As free_huge_page() can be called from a non-task context, we have
1464 * to defer the actual freeing in a workqueue to prevent potential
1465 * hugetlb_lock deadlock.
1466 *
1467 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1468 * be freed and frees them one-by-one. As the page->mapping pointer is
1469 * going to be cleared in __free_huge_page() anyway, it is reused as the
1470 * llist_node structure of a lockless linked list of huge pages to be freed.
1471 */
1472static LLIST_HEAD(hpage_freelist);
1473
1474static void free_hpage_workfn(struct work_struct *work)
1475{
1476 struct llist_node *node;
1477 struct page *page;
1478
1479 node = llist_del_all(&hpage_freelist);
1480
1481 while (node) {
1482 page = container_of((struct address_space **)node,
1483 struct page, mapping);
1484 node = node->next;
1485 __free_huge_page(page);
1486 }
1487}
1488static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1489
1490void free_huge_page(struct page *page)
1491{
1492 /*
1493 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1494 */
1495 if (!in_task()) {
1496 /*
1497 * Only call schedule_work() if hpage_freelist is previously
1498 * empty. Otherwise, schedule_work() had been called but the
1499 * workfn hasn't retrieved the list yet.
1500 */
1501 if (llist_add((struct llist_node *)&page->mapping,
1502 &hpage_freelist))
1503 schedule_work(&free_hpage_work);
1504 return;
1505 }
1506
1507 __free_huge_page(page);
1508}
1509
1510static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1511{
1512 INIT_LIST_HEAD(&page->lru);
1513 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1514 spin_lock(&hugetlb_lock);
1515 set_hugetlb_cgroup(page, NULL);
1516 set_hugetlb_cgroup_rsvd(page, NULL);
1517 h->nr_huge_pages++;
1518 h->nr_huge_pages_node[nid]++;
1519 spin_unlock(&hugetlb_lock);
1520}
1521
1522static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1523{
1524 int i;
1525 int nr_pages = 1 << order;
1526 struct page *p = page + 1;
1527
1528 /* we rely on prep_new_huge_page to set the destructor */
1529 set_compound_order(page, order);
1530 __ClearPageReserved(page);
1531 __SetPageHead(page);
1532 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1533 /*
1534 * For gigantic hugepages allocated through bootmem at
1535 * boot, it's safer to be consistent with the not-gigantic
1536 * hugepages and clear the PG_reserved bit from all tail pages
1537 * too. Otherwise drivers using get_user_pages() to access tail
1538 * pages may get the reference counting wrong if they see
1539 * PG_reserved set on a tail page (despite the head page not
1540 * having PG_reserved set). Enforcing this consistency between
1541 * head and tail pages allows drivers to optimize away a check
1542 * on the head page when they need know if put_page() is needed
1543 * after get_user_pages().
1544 */
1545 __ClearPageReserved(p);
1546 set_page_count(p, 0);
1547 set_compound_head(p, page);
1548 }
1549 atomic_set(compound_mapcount_ptr(page), -1);
1550
1551 if (hpage_pincount_available(page))
1552 atomic_set(compound_pincount_ptr(page), 0);
1553}
1554
1555/*
1556 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1557 * transparent huge pages. See the PageTransHuge() documentation for more
1558 * details.
1559 */
1560int PageHuge(struct page *page)
1561{
1562 if (!PageCompound(page))
1563 return 0;
1564
1565 page = compound_head(page);
1566 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1567}
1568EXPORT_SYMBOL_GPL(PageHuge);
1569
1570/*
1571 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1572 * normal or transparent huge pages.
1573 */
1574int PageHeadHuge(struct page *page_head)
1575{
1576 if (!PageHead(page_head))
1577 return 0;
1578
1579 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1580}
1581
1582/*
1583 * Find address_space associated with hugetlbfs page.
1584 * Upon entry page is locked and page 'was' mapped although mapped state
1585 * could change. If necessary, use anon_vma to find vma and associated
1586 * address space. The returned mapping may be stale, but it can not be
1587 * invalid as page lock (which is held) is required to destroy mapping.
1588 */
1589static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
1590{
1591 struct anon_vma *anon_vma;
1592 pgoff_t pgoff_start, pgoff_end;
1593 struct anon_vma_chain *avc;
1594 struct address_space *mapping = page_mapping(hpage);
1595
1596 /* Simple file based mapping */
1597 if (mapping)
1598 return mapping;
1599
1600 /*
1601 * Even anonymous hugetlbfs mappings are associated with an
1602 * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1603 * code). Find a vma associated with the anonymous vma, and
1604 * use the file pointer to get address_space.
1605 */
1606 anon_vma = page_lock_anon_vma_read(hpage);
1607 if (!anon_vma)
1608 return mapping; /* NULL */
1609
1610 /* Use first found vma */
1611 pgoff_start = page_to_pgoff(hpage);
1612 pgoff_end = pgoff_start + pages_per_huge_page(page_hstate(hpage)) - 1;
1613 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1614 pgoff_start, pgoff_end) {
1615 struct vm_area_struct *vma = avc->vma;
1616
1617 mapping = vma->vm_file->f_mapping;
1618 break;
1619 }
1620
1621 anon_vma_unlock_read(anon_vma);
1622 return mapping;
1623}
1624
1625/*
1626 * Find and lock address space (mapping) in write mode.
1627 *
1628 * Upon entry, the page is locked which allows us to find the mapping
1629 * even in the case of an anon page. However, locking order dictates
1630 * the i_mmap_rwsem be acquired BEFORE the page lock. This is hugetlbfs
1631 * specific. So, we first try to lock the sema while still holding the
1632 * page lock. If this works, great! If not, then we need to drop the
1633 * page lock and then acquire i_mmap_rwsem and reacquire page lock. Of
1634 * course, need to revalidate state along the way.
1635 */
1636struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1637{
1638 struct address_space *mapping, *mapping2;
1639
1640 mapping = _get_hugetlb_page_mapping(hpage);
1641retry:
1642 if (!mapping)
1643 return mapping;
1644
1645 /*
1646 * If no contention, take lock and return
1647 */
1648 if (i_mmap_trylock_write(mapping))
1649 return mapping;
1650
1651 /*
1652 * Must drop page lock and wait on mapping sema.
1653 * Note: Once page lock is dropped, mapping could become invalid.
1654 * As a hack, increase map count until we lock page again.
1655 */
1656 atomic_inc(&hpage->_mapcount);
1657 unlock_page(hpage);
1658 i_mmap_lock_write(mapping);
1659 lock_page(hpage);
1660 atomic_add_negative(-1, &hpage->_mapcount);
1661
1662 /* verify page is still mapped */
1663 if (!page_mapped(hpage)) {
1664 i_mmap_unlock_write(mapping);
1665 return NULL;
1666 }
1667
1668 /*
1669 * Get address space again and verify it is the same one
1670 * we locked. If not, drop lock and retry.
1671 */
1672 mapping2 = _get_hugetlb_page_mapping(hpage);
1673 if (mapping2 != mapping) {
1674 i_mmap_unlock_write(mapping);
1675 mapping = mapping2;
1676 goto retry;
1677 }
1678
1679 return mapping;
1680}
1681
1682pgoff_t __basepage_index(struct page *page)
1683{
1684 struct page *page_head = compound_head(page);
1685 pgoff_t index = page_index(page_head);
1686 unsigned long compound_idx;
1687
1688 if (!PageHuge(page_head))
1689 return page_index(page);
1690
1691 if (compound_order(page_head) >= MAX_ORDER)
1692 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1693 else
1694 compound_idx = page - page_head;
1695
1696 return (index << compound_order(page_head)) + compound_idx;
1697}
1698
1699static struct page *alloc_buddy_huge_page(struct hstate *h,
1700 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1701 nodemask_t *node_alloc_noretry)
1702{
1703 int order = huge_page_order(h);
1704 struct page *page;
1705 bool alloc_try_hard = true;
1706
1707 /*
1708 * By default we always try hard to allocate the page with
1709 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1710 * a loop (to adjust global huge page counts) and previous allocation
1711 * failed, do not continue to try hard on the same node. Use the
1712 * node_alloc_noretry bitmap to manage this state information.
1713 */
1714 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1715 alloc_try_hard = false;
1716 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1717 if (alloc_try_hard)
1718 gfp_mask |= __GFP_RETRY_MAYFAIL;
1719 if (nid == NUMA_NO_NODE)
1720 nid = numa_mem_id();
1721 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1722 if (page)
1723 __count_vm_event(HTLB_BUDDY_PGALLOC);
1724 else
1725 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1726
1727 /*
1728 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1729 * indicates an overall state change. Clear bit so that we resume
1730 * normal 'try hard' allocations.
1731 */
1732 if (node_alloc_noretry && page && !alloc_try_hard)
1733 node_clear(nid, *node_alloc_noretry);
1734
1735 /*
1736 * If we tried hard to get a page but failed, set bit so that
1737 * subsequent attempts will not try as hard until there is an
1738 * overall state change.
1739 */
1740 if (node_alloc_noretry && !page && alloc_try_hard)
1741 node_set(nid, *node_alloc_noretry);
1742
1743 return page;
1744}
1745
1746/*
1747 * Common helper to allocate a fresh hugetlb page. All specific allocators
1748 * should use this function to get new hugetlb pages
1749 */
1750static struct page *alloc_fresh_huge_page(struct hstate *h,
1751 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1752 nodemask_t *node_alloc_noretry)
1753{
1754 struct page *page;
1755
1756 if (hstate_is_gigantic(h))
1757 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1758 else
1759 page = alloc_buddy_huge_page(h, gfp_mask,
1760 nid, nmask, node_alloc_noretry);
1761 if (!page)
1762 return NULL;
1763
1764 if (hstate_is_gigantic(h))
1765 prep_compound_gigantic_page(page, huge_page_order(h));
1766 prep_new_huge_page(h, page, page_to_nid(page));
1767
1768 return page;
1769}
1770
1771/*
1772 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1773 * manner.
1774 */
1775static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1776 nodemask_t *node_alloc_noretry)
1777{
1778 struct page *page;
1779 int nr_nodes, node;
1780 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1781
1782 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1783 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1784 node_alloc_noretry);
1785 if (page)
1786 break;
1787 }
1788
1789 if (!page)
1790 return 0;
1791
1792 put_page(page); /* free it into the hugepage allocator */
1793
1794 return 1;
1795}
1796
1797/*
1798 * Free huge page from pool from next node to free.
1799 * Attempt to keep persistent huge pages more or less
1800 * balanced over allowed nodes.
1801 * Called with hugetlb_lock locked.
1802 */
1803static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1804 bool acct_surplus)
1805{
1806 int nr_nodes, node;
1807 int ret = 0;
1808
1809 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1810 /*
1811 * If we're returning unused surplus pages, only examine
1812 * nodes with surplus pages.
1813 */
1814 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1815 !list_empty(&h->hugepage_freelists[node])) {
1816 struct page *page =
1817 list_entry(h->hugepage_freelists[node].next,
1818 struct page, lru);
1819 list_del(&page->lru);
1820 h->free_huge_pages--;
1821 h->free_huge_pages_node[node]--;
1822 if (acct_surplus) {
1823 h->surplus_huge_pages--;
1824 h->surplus_huge_pages_node[node]--;
1825 }
1826 update_and_free_page(h, page);
1827 ret = 1;
1828 break;
1829 }
1830 }
1831
1832 return ret;
1833}
1834
1835/*
1836 * Dissolve a given free hugepage into free buddy pages. This function does
1837 * nothing for in-use hugepages and non-hugepages.
1838 * This function returns values like below:
1839 *
1840 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1841 * (allocated or reserved.)
1842 * 0: successfully dissolved free hugepages or the page is not a
1843 * hugepage (considered as already dissolved)
1844 */
1845int dissolve_free_huge_page(struct page *page)
1846{
1847 int rc = -EBUSY;
1848
1849 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1850 if (!PageHuge(page))
1851 return 0;
1852
1853 spin_lock(&hugetlb_lock);
1854 if (!PageHuge(page)) {
1855 rc = 0;
1856 goto out;
1857 }
1858
1859 if (!page_count(page)) {
1860 struct page *head = compound_head(page);
1861 struct hstate *h = page_hstate(head);
1862 int nid = page_to_nid(head);
1863 if (h->free_huge_pages - h->resv_huge_pages == 0)
1864 goto out;
1865 /*
1866 * Move PageHWPoison flag from head page to the raw error page,
1867 * which makes any subpages rather than the error page reusable.
1868 */
1869 if (PageHWPoison(head) && page != head) {
1870 SetPageHWPoison(page);
1871 ClearPageHWPoison(head);
1872 }
1873 list_del(&head->lru);
1874 h->free_huge_pages--;
1875 h->free_huge_pages_node[nid]--;
1876 h->max_huge_pages--;
1877 update_and_free_page(h, head);
1878 rc = 0;
1879 }
1880out:
1881 spin_unlock(&hugetlb_lock);
1882 return rc;
1883}
1884
1885/*
1886 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1887 * make specified memory blocks removable from the system.
1888 * Note that this will dissolve a free gigantic hugepage completely, if any
1889 * part of it lies within the given range.
1890 * Also note that if dissolve_free_huge_page() returns with an error, all
1891 * free hugepages that were dissolved before that error are lost.
1892 */
1893int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1894{
1895 unsigned long pfn;
1896 struct page *page;
1897 int rc = 0;
1898
1899 if (!hugepages_supported())
1900 return rc;
1901
1902 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1903 page = pfn_to_page(pfn);
1904 rc = dissolve_free_huge_page(page);
1905 if (rc)
1906 break;
1907 }
1908
1909 return rc;
1910}
1911
1912/*
1913 * Allocates a fresh surplus page from the page allocator.
1914 */
1915static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1916 int nid, nodemask_t *nmask)
1917{
1918 struct page *page = NULL;
1919
1920 if (hstate_is_gigantic(h))
1921 return NULL;
1922
1923 spin_lock(&hugetlb_lock);
1924 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1925 goto out_unlock;
1926 spin_unlock(&hugetlb_lock);
1927
1928 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1929 if (!page)
1930 return NULL;
1931
1932 spin_lock(&hugetlb_lock);
1933 /*
1934 * We could have raced with the pool size change.
1935 * Double check that and simply deallocate the new page
1936 * if we would end up overcommiting the surpluses. Abuse
1937 * temporary page to workaround the nasty free_huge_page
1938 * codeflow
1939 */
1940 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1941 SetPageHugeTemporary(page);
1942 spin_unlock(&hugetlb_lock);
1943 put_page(page);
1944 return NULL;
1945 } else {
1946 h->surplus_huge_pages++;
1947 h->surplus_huge_pages_node[page_to_nid(page)]++;
1948 }
1949
1950out_unlock:
1951 spin_unlock(&hugetlb_lock);
1952
1953 return page;
1954}
1955
1956static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1957 int nid, nodemask_t *nmask)
1958{
1959 struct page *page;
1960
1961 if (hstate_is_gigantic(h))
1962 return NULL;
1963
1964 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1965 if (!page)
1966 return NULL;
1967
1968 /*
1969 * We do not account these pages as surplus because they are only
1970 * temporary and will be released properly on the last reference
1971 */
1972 SetPageHugeTemporary(page);
1973
1974 return page;
1975}
1976
1977/*
1978 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1979 */
1980static
1981struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1982 struct vm_area_struct *vma, unsigned long addr)
1983{
1984 struct page *page;
1985 struct mempolicy *mpol;
1986 gfp_t gfp_mask = htlb_alloc_mask(h);
1987 int nid;
1988 nodemask_t *nodemask;
1989
1990 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1991 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1992 mpol_cond_put(mpol);
1993
1994 return page;
1995}
1996
1997/* page migration callback function */
1998struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1999 nodemask_t *nmask, gfp_t gfp_mask)
2000{
2001 spin_lock(&hugetlb_lock);
2002 if (h->free_huge_pages - h->resv_huge_pages > 0) {
2003 struct page *page;
2004
2005 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2006 if (page) {
2007 spin_unlock(&hugetlb_lock);
2008 return page;
2009 }
2010 }
2011 spin_unlock(&hugetlb_lock);
2012
2013 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2014}
2015
2016/* mempolicy aware migration callback */
2017struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2018 unsigned long address)
2019{
2020 struct mempolicy *mpol;
2021 nodemask_t *nodemask;
2022 struct page *page;
2023 gfp_t gfp_mask;
2024 int node;
2025
2026 gfp_mask = htlb_alloc_mask(h);
2027 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2028 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2029 mpol_cond_put(mpol);
2030
2031 return page;
2032}
2033
2034/*
2035 * Increase the hugetlb pool such that it can accommodate a reservation
2036 * of size 'delta'.
2037 */
2038static int gather_surplus_pages(struct hstate *h, int delta)
2039 __must_hold(&hugetlb_lock)
2040{
2041 struct list_head surplus_list;
2042 struct page *page, *tmp;
2043 int ret, i;
2044 int needed, allocated;
2045 bool alloc_ok = true;
2046
2047 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2048 if (needed <= 0) {
2049 h->resv_huge_pages += delta;
2050 return 0;
2051 }
2052
2053 allocated = 0;
2054 INIT_LIST_HEAD(&surplus_list);
2055
2056 ret = -ENOMEM;
2057retry:
2058 spin_unlock(&hugetlb_lock);
2059 for (i = 0; i < needed; i++) {
2060 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2061 NUMA_NO_NODE, NULL);
2062 if (!page) {
2063 alloc_ok = false;
2064 break;
2065 }
2066 list_add(&page->lru, &surplus_list);
2067 cond_resched();
2068 }
2069 allocated += i;
2070
2071 /*
2072 * After retaking hugetlb_lock, we need to recalculate 'needed'
2073 * because either resv_huge_pages or free_huge_pages may have changed.
2074 */
2075 spin_lock(&hugetlb_lock);
2076 needed = (h->resv_huge_pages + delta) -
2077 (h->free_huge_pages + allocated);
2078 if (needed > 0) {
2079 if (alloc_ok)
2080 goto retry;
2081 /*
2082 * We were not able to allocate enough pages to
2083 * satisfy the entire reservation so we free what
2084 * we've allocated so far.
2085 */
2086 goto free;
2087 }
2088 /*
2089 * The surplus_list now contains _at_least_ the number of extra pages
2090 * needed to accommodate the reservation. Add the appropriate number
2091 * of pages to the hugetlb pool and free the extras back to the buddy
2092 * allocator. Commit the entire reservation here to prevent another
2093 * process from stealing the pages as they are added to the pool but
2094 * before they are reserved.
2095 */
2096 needed += allocated;
2097 h->resv_huge_pages += delta;
2098 ret = 0;
2099
2100 /* Free the needed pages to the hugetlb pool */
2101 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2102 if ((--needed) < 0)
2103 break;
2104 /*
2105 * This page is now managed by the hugetlb allocator and has
2106 * no users -- drop the buddy allocator's reference.
2107 */
2108 put_page_testzero(page);
2109 VM_BUG_ON_PAGE(page_count(page), page);
2110 enqueue_huge_page(h, page);
2111 }
2112free:
2113 spin_unlock(&hugetlb_lock);
2114
2115 /* Free unnecessary surplus pages to the buddy allocator */
2116 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2117 put_page(page);
2118 spin_lock(&hugetlb_lock);
2119
2120 return ret;
2121}
2122
2123/*
2124 * This routine has two main purposes:
2125 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2126 * in unused_resv_pages. This corresponds to the prior adjustments made
2127 * to the associated reservation map.
2128 * 2) Free any unused surplus pages that may have been allocated to satisfy
2129 * the reservation. As many as unused_resv_pages may be freed.
2130 *
2131 * Called with hugetlb_lock held. However, the lock could be dropped (and
2132 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
2133 * we must make sure nobody else can claim pages we are in the process of
2134 * freeing. Do this by ensuring resv_huge_page always is greater than the
2135 * number of huge pages we plan to free when dropping the lock.
2136 */
2137static void return_unused_surplus_pages(struct hstate *h,
2138 unsigned long unused_resv_pages)
2139{
2140 unsigned long nr_pages;
2141
2142 /* Cannot return gigantic pages currently */
2143 if (hstate_is_gigantic(h))
2144 goto out;
2145
2146 /*
2147 * Part (or even all) of the reservation could have been backed
2148 * by pre-allocated pages. Only free surplus pages.
2149 */
2150 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2151
2152 /*
2153 * We want to release as many surplus pages as possible, spread
2154 * evenly across all nodes with memory. Iterate across these nodes
2155 * until we can no longer free unreserved surplus pages. This occurs
2156 * when the nodes with surplus pages have no free pages.
2157 * free_pool_huge_page() will balance the freed pages across the
2158 * on-line nodes with memory and will handle the hstate accounting.
2159 *
2160 * Note that we decrement resv_huge_pages as we free the pages. If
2161 * we drop the lock, resv_huge_pages will still be sufficiently large
2162 * to cover subsequent pages we may free.
2163 */
2164 while (nr_pages--) {
2165 h->resv_huge_pages--;
2166 unused_resv_pages--;
2167 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2168 goto out;
2169 cond_resched_lock(&hugetlb_lock);
2170 }
2171
2172out:
2173 /* Fully uncommit the reservation */
2174 h->resv_huge_pages -= unused_resv_pages;
2175}
2176
2177
2178/*
2179 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2180 * are used by the huge page allocation routines to manage reservations.
2181 *
2182 * vma_needs_reservation is called to determine if the huge page at addr
2183 * within the vma has an associated reservation. If a reservation is
2184 * needed, the value 1 is returned. The caller is then responsible for
2185 * managing the global reservation and subpool usage counts. After
2186 * the huge page has been allocated, vma_commit_reservation is called
2187 * to add the page to the reservation map. If the page allocation fails,
2188 * the reservation must be ended instead of committed. vma_end_reservation
2189 * is called in such cases.
2190 *
2191 * In the normal case, vma_commit_reservation returns the same value
2192 * as the preceding vma_needs_reservation call. The only time this
2193 * is not the case is if a reserve map was changed between calls. It
2194 * is the responsibility of the caller to notice the difference and
2195 * take appropriate action.
2196 *
2197 * vma_add_reservation is used in error paths where a reservation must
2198 * be restored when a newly allocated huge page must be freed. It is
2199 * to be called after calling vma_needs_reservation to determine if a
2200 * reservation exists.
2201 */
2202enum vma_resv_mode {
2203 VMA_NEEDS_RESV,
2204 VMA_COMMIT_RESV,
2205 VMA_END_RESV,
2206 VMA_ADD_RESV,
2207};
2208static long __vma_reservation_common(struct hstate *h,
2209 struct vm_area_struct *vma, unsigned long addr,
2210 enum vma_resv_mode mode)
2211{
2212 struct resv_map *resv;
2213 pgoff_t idx;
2214 long ret;
2215 long dummy_out_regions_needed;
2216
2217 resv = vma_resv_map(vma);
2218 if (!resv)
2219 return 1;
2220
2221 idx = vma_hugecache_offset(h, vma, addr);
2222 switch (mode) {
2223 case VMA_NEEDS_RESV:
2224 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2225 /* We assume that vma_reservation_* routines always operate on
2226 * 1 page, and that adding to resv map a 1 page entry can only
2227 * ever require 1 region.
2228 */
2229 VM_BUG_ON(dummy_out_regions_needed != 1);
2230 break;
2231 case VMA_COMMIT_RESV:
2232 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2233 /* region_add calls of range 1 should never fail. */
2234 VM_BUG_ON(ret < 0);
2235 break;
2236 case VMA_END_RESV:
2237 region_abort(resv, idx, idx + 1, 1);
2238 ret = 0;
2239 break;
2240 case VMA_ADD_RESV:
2241 if (vma->vm_flags & VM_MAYSHARE) {
2242 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2243 /* region_add calls of range 1 should never fail. */
2244 VM_BUG_ON(ret < 0);
2245 } else {
2246 region_abort(resv, idx, idx + 1, 1);
2247 ret = region_del(resv, idx, idx + 1);
2248 }
2249 break;
2250 default:
2251 BUG();
2252 }
2253
2254 if (vma->vm_flags & VM_MAYSHARE)
2255 return ret;
2256 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2257 /*
2258 * In most cases, reserves always exist for private mappings.
2259 * However, a file associated with mapping could have been
2260 * hole punched or truncated after reserves were consumed.
2261 * As subsequent fault on such a range will not use reserves.
2262 * Subtle - The reserve map for private mappings has the
2263 * opposite meaning than that of shared mappings. If NO
2264 * entry is in the reserve map, it means a reservation exists.
2265 * If an entry exists in the reserve map, it means the
2266 * reservation has already been consumed. As a result, the
2267 * return value of this routine is the opposite of the
2268 * value returned from reserve map manipulation routines above.
2269 */
2270 if (ret)
2271 return 0;
2272 else
2273 return 1;
2274 }
2275 else
2276 return ret < 0 ? ret : 0;
2277}
2278
2279static long vma_needs_reservation(struct hstate *h,
2280 struct vm_area_struct *vma, unsigned long addr)
2281{
2282 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2283}
2284
2285static long vma_commit_reservation(struct hstate *h,
2286 struct vm_area_struct *vma, unsigned long addr)
2287{
2288 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2289}
2290
2291static void vma_end_reservation(struct hstate *h,
2292 struct vm_area_struct *vma, unsigned long addr)
2293{
2294 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2295}
2296
2297static long vma_add_reservation(struct hstate *h,
2298 struct vm_area_struct *vma, unsigned long addr)
2299{
2300 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2301}
2302
2303/*
2304 * This routine is called to restore a reservation on error paths. In the
2305 * specific error paths, a huge page was allocated (via alloc_huge_page)
2306 * and is about to be freed. If a reservation for the page existed,
2307 * alloc_huge_page would have consumed the reservation and set PagePrivate
2308 * in the newly allocated page. When the page is freed via free_huge_page,
2309 * the global reservation count will be incremented if PagePrivate is set.
2310 * However, free_huge_page can not adjust the reserve map. Adjust the
2311 * reserve map here to be consistent with global reserve count adjustments
2312 * to be made by free_huge_page.
2313 */
2314static void restore_reserve_on_error(struct hstate *h,
2315 struct vm_area_struct *vma, unsigned long address,
2316 struct page *page)
2317{
2318 if (unlikely(PagePrivate(page))) {
2319 long rc = vma_needs_reservation(h, vma, address);
2320
2321 if (unlikely(rc < 0)) {
2322 /*
2323 * Rare out of memory condition in reserve map
2324 * manipulation. Clear PagePrivate so that
2325 * global reserve count will not be incremented
2326 * by free_huge_page. This will make it appear
2327 * as though the reservation for this page was
2328 * consumed. This may prevent the task from
2329 * faulting in the page at a later time. This
2330 * is better than inconsistent global huge page
2331 * accounting of reserve counts.
2332 */
2333 ClearPagePrivate(page);
2334 } else if (rc) {
2335 rc = vma_add_reservation(h, vma, address);
2336 if (unlikely(rc < 0))
2337 /*
2338 * See above comment about rare out of
2339 * memory condition.
2340 */
2341 ClearPagePrivate(page);
2342 } else
2343 vma_end_reservation(h, vma, address);
2344 }
2345}
2346
2347struct page *alloc_huge_page(struct vm_area_struct *vma,
2348 unsigned long addr, int avoid_reserve)
2349{
2350 struct hugepage_subpool *spool = subpool_vma(vma);
2351 struct hstate *h = hstate_vma(vma);
2352 struct page *page;
2353 long map_chg, map_commit;
2354 long gbl_chg;
2355 int ret, idx;
2356 struct hugetlb_cgroup *h_cg;
2357 bool deferred_reserve;
2358
2359 idx = hstate_index(h);
2360 /*
2361 * Examine the region/reserve map to determine if the process
2362 * has a reservation for the page to be allocated. A return
2363 * code of zero indicates a reservation exists (no change).
2364 */
2365 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2366 if (map_chg < 0)
2367 return ERR_PTR(-ENOMEM);
2368
2369 /*
2370 * Processes that did not create the mapping will have no
2371 * reserves as indicated by the region/reserve map. Check
2372 * that the allocation will not exceed the subpool limit.
2373 * Allocations for MAP_NORESERVE mappings also need to be
2374 * checked against any subpool limit.
2375 */
2376 if (map_chg || avoid_reserve) {
2377 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2378 if (gbl_chg < 0) {
2379 vma_end_reservation(h, vma, addr);
2380 return ERR_PTR(-ENOSPC);
2381 }
2382
2383 /*
2384 * Even though there was no reservation in the region/reserve
2385 * map, there could be reservations associated with the
2386 * subpool that can be used. This would be indicated if the
2387 * return value of hugepage_subpool_get_pages() is zero.
2388 * However, if avoid_reserve is specified we still avoid even
2389 * the subpool reservations.
2390 */
2391 if (avoid_reserve)
2392 gbl_chg = 1;
2393 }
2394
2395 /* If this allocation is not consuming a reservation, charge it now.
2396 */
2397 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2398 if (deferred_reserve) {
2399 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2400 idx, pages_per_huge_page(h), &h_cg);
2401 if (ret)
2402 goto out_subpool_put;
2403 }
2404
2405 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2406 if (ret)
2407 goto out_uncharge_cgroup_reservation;
2408
2409 spin_lock(&hugetlb_lock);
2410 /*
2411 * glb_chg is passed to indicate whether or not a page must be taken
2412 * from the global free pool (global change). gbl_chg == 0 indicates
2413 * a reservation exists for the allocation.
2414 */
2415 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2416 if (!page) {
2417 spin_unlock(&hugetlb_lock);
2418 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2419 if (!page)
2420 goto out_uncharge_cgroup;
2421 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2422 SetPagePrivate(page);
2423 h->resv_huge_pages--;
2424 }
2425 spin_lock(&hugetlb_lock);
2426 list_move(&page->lru, &h->hugepage_activelist);
2427 /* Fall through */
2428 }
2429 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2430 /* If allocation is not consuming a reservation, also store the
2431 * hugetlb_cgroup pointer on the page.
2432 */
2433 if (deferred_reserve) {
2434 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2435 h_cg, page);
2436 }
2437
2438 spin_unlock(&hugetlb_lock);
2439
2440 set_page_private(page, (unsigned long)spool);
2441
2442 map_commit = vma_commit_reservation(h, vma, addr);
2443 if (unlikely(map_chg > map_commit)) {
2444 /*
2445 * The page was added to the reservation map between
2446 * vma_needs_reservation and vma_commit_reservation.
2447 * This indicates a race with hugetlb_reserve_pages.
2448 * Adjust for the subpool count incremented above AND
2449 * in hugetlb_reserve_pages for the same page. Also,
2450 * the reservation count added in hugetlb_reserve_pages
2451 * no longer applies.
2452 */
2453 long rsv_adjust;
2454
2455 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2456 hugetlb_acct_memory(h, -rsv_adjust);
2457 }
2458 return page;
2459
2460out_uncharge_cgroup:
2461 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2462out_uncharge_cgroup_reservation:
2463 if (deferred_reserve)
2464 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2465 h_cg);
2466out_subpool_put:
2467 if (map_chg || avoid_reserve)
2468 hugepage_subpool_put_pages(spool, 1);
2469 vma_end_reservation(h, vma, addr);
2470 return ERR_PTR(-ENOSPC);
2471}
2472
2473int alloc_bootmem_huge_page(struct hstate *h)
2474 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2475int __alloc_bootmem_huge_page(struct hstate *h)
2476{
2477 struct huge_bootmem_page *m;
2478 int nr_nodes, node;
2479
2480 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2481 void *addr;
2482
2483 addr = memblock_alloc_try_nid_raw(
2484 huge_page_size(h), huge_page_size(h),
2485 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2486 if (addr) {
2487 /*
2488 * Use the beginning of the huge page to store the
2489 * huge_bootmem_page struct (until gather_bootmem
2490 * puts them into the mem_map).
2491 */
2492 m = addr;
2493 goto found;
2494 }
2495 }
2496 return 0;
2497
2498found:
2499 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2500 /* Put them into a private list first because mem_map is not up yet */
2501 INIT_LIST_HEAD(&m->list);
2502 list_add(&m->list, &huge_boot_pages);
2503 m->hstate = h;
2504 return 1;
2505}
2506
2507static void __init prep_compound_huge_page(struct page *page,
2508 unsigned int order)
2509{
2510 if (unlikely(order > (MAX_ORDER - 1)))
2511 prep_compound_gigantic_page(page, order);
2512 else
2513 prep_compound_page(page, order);
2514}
2515
2516/* Put bootmem huge pages into the standard lists after mem_map is up */
2517static void __init gather_bootmem_prealloc(void)
2518{
2519 struct huge_bootmem_page *m;
2520
2521 list_for_each_entry(m, &huge_boot_pages, list) {
2522 struct page *page = virt_to_page(m);
2523 struct hstate *h = m->hstate;
2524
2525 WARN_ON(page_count(page) != 1);
2526 prep_compound_huge_page(page, h->order);
2527 WARN_ON(PageReserved(page));
2528 prep_new_huge_page(h, page, page_to_nid(page));
2529 put_page(page); /* free it into the hugepage allocator */
2530
2531 /*
2532 * If we had gigantic hugepages allocated at boot time, we need
2533 * to restore the 'stolen' pages to totalram_pages in order to
2534 * fix confusing memory reports from free(1) and another
2535 * side-effects, like CommitLimit going negative.
2536 */
2537 if (hstate_is_gigantic(h))
2538 adjust_managed_page_count(page, 1 << h->order);
2539 cond_resched();
2540 }
2541}
2542
2543static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2544{
2545 unsigned long i;
2546 nodemask_t *node_alloc_noretry;
2547
2548 if (!hstate_is_gigantic(h)) {
2549 /*
2550 * Bit mask controlling how hard we retry per-node allocations.
2551 * Ignore errors as lower level routines can deal with
2552 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2553 * time, we are likely in bigger trouble.
2554 */
2555 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2556 GFP_KERNEL);
2557 } else {
2558 /* allocations done at boot time */
2559 node_alloc_noretry = NULL;
2560 }
2561
2562 /* bit mask controlling how hard we retry per-node allocations */
2563 if (node_alloc_noretry)
2564 nodes_clear(*node_alloc_noretry);
2565
2566 for (i = 0; i < h->max_huge_pages; ++i) {
2567 if (hstate_is_gigantic(h)) {
2568 if (hugetlb_cma_size) {
2569 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2570 break;
2571 }
2572 if (!alloc_bootmem_huge_page(h))
2573 break;
2574 } else if (!alloc_pool_huge_page(h,
2575 &node_states[N_MEMORY],
2576 node_alloc_noretry))
2577 break;
2578 cond_resched();
2579 }
2580 if (i < h->max_huge_pages) {
2581 char buf[32];
2582
2583 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2584 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2585 h->max_huge_pages, buf, i);
2586 h->max_huge_pages = i;
2587 }
2588
2589 kfree(node_alloc_noretry);
2590}
2591
2592static void __init hugetlb_init_hstates(void)
2593{
2594 struct hstate *h;
2595
2596 for_each_hstate(h) {
2597 if (minimum_order > huge_page_order(h))
2598 minimum_order = huge_page_order(h);
2599
2600 /* oversize hugepages were init'ed in early boot */
2601 if (!hstate_is_gigantic(h))
2602 hugetlb_hstate_alloc_pages(h);
2603 }
2604 VM_BUG_ON(minimum_order == UINT_MAX);
2605}
2606
2607static void __init report_hugepages(void)
2608{
2609 struct hstate *h;
2610
2611 for_each_hstate(h) {
2612 char buf[32];
2613
2614 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2615 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2616 buf, h->free_huge_pages);
2617 }
2618}
2619
2620#ifdef CONFIG_HIGHMEM
2621static void try_to_free_low(struct hstate *h, unsigned long count,
2622 nodemask_t *nodes_allowed)
2623{
2624 int i;
2625
2626 if (hstate_is_gigantic(h))
2627 return;
2628
2629 for_each_node_mask(i, *nodes_allowed) {
2630 struct page *page, *next;
2631 struct list_head *freel = &h->hugepage_freelists[i];
2632 list_for_each_entry_safe(page, next, freel, lru) {
2633 if (count >= h->nr_huge_pages)
2634 return;
2635 if (PageHighMem(page))
2636 continue;
2637 list_del(&page->lru);
2638 update_and_free_page(h, page);
2639 h->free_huge_pages--;
2640 h->free_huge_pages_node[page_to_nid(page)]--;
2641 }
2642 }
2643}
2644#else
2645static inline void try_to_free_low(struct hstate *h, unsigned long count,
2646 nodemask_t *nodes_allowed)
2647{
2648}
2649#endif
2650
2651/*
2652 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2653 * balanced by operating on them in a round-robin fashion.
2654 * Returns 1 if an adjustment was made.
2655 */
2656static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2657 int delta)
2658{
2659 int nr_nodes, node;
2660
2661 VM_BUG_ON(delta != -1 && delta != 1);
2662
2663 if (delta < 0) {
2664 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2665 if (h->surplus_huge_pages_node[node])
2666 goto found;
2667 }
2668 } else {
2669 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2670 if (h->surplus_huge_pages_node[node] <
2671 h->nr_huge_pages_node[node])
2672 goto found;
2673 }
2674 }
2675 return 0;
2676
2677found:
2678 h->surplus_huge_pages += delta;
2679 h->surplus_huge_pages_node[node] += delta;
2680 return 1;
2681}
2682
2683#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2684static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2685 nodemask_t *nodes_allowed)
2686{
2687 unsigned long min_count, ret;
2688 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2689
2690 /*
2691 * Bit mask controlling how hard we retry per-node allocations.
2692 * If we can not allocate the bit mask, do not attempt to allocate
2693 * the requested huge pages.
2694 */
2695 if (node_alloc_noretry)
2696 nodes_clear(*node_alloc_noretry);
2697 else
2698 return -ENOMEM;
2699
2700 spin_lock(&hugetlb_lock);
2701
2702 /*
2703 * Check for a node specific request.
2704 * Changing node specific huge page count may require a corresponding
2705 * change to the global count. In any case, the passed node mask
2706 * (nodes_allowed) will restrict alloc/free to the specified node.
2707 */
2708 if (nid != NUMA_NO_NODE) {
2709 unsigned long old_count = count;
2710
2711 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2712 /*
2713 * User may have specified a large count value which caused the
2714 * above calculation to overflow. In this case, they wanted
2715 * to allocate as many huge pages as possible. Set count to
2716 * largest possible value to align with their intention.
2717 */
2718 if (count < old_count)
2719 count = ULONG_MAX;
2720 }
2721
2722 /*
2723 * Gigantic pages runtime allocation depend on the capability for large
2724 * page range allocation.
2725 * If the system does not provide this feature, return an error when
2726 * the user tries to allocate gigantic pages but let the user free the
2727 * boottime allocated gigantic pages.
2728 */
2729 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2730 if (count > persistent_huge_pages(h)) {
2731 spin_unlock(&hugetlb_lock);
2732 NODEMASK_FREE(node_alloc_noretry);
2733 return -EINVAL;
2734 }
2735 /* Fall through to decrease pool */
2736 }
2737
2738 /*
2739 * Increase the pool size
2740 * First take pages out of surplus state. Then make up the
2741 * remaining difference by allocating fresh huge pages.
2742 *
2743 * We might race with alloc_surplus_huge_page() here and be unable
2744 * to convert a surplus huge page to a normal huge page. That is
2745 * not critical, though, it just means the overall size of the
2746 * pool might be one hugepage larger than it needs to be, but
2747 * within all the constraints specified by the sysctls.
2748 */
2749 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2750 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2751 break;
2752 }
2753
2754 while (count > persistent_huge_pages(h)) {
2755 /*
2756 * If this allocation races such that we no longer need the
2757 * page, free_huge_page will handle it by freeing the page
2758 * and reducing the surplus.
2759 */
2760 spin_unlock(&hugetlb_lock);
2761
2762 /* yield cpu to avoid soft lockup */
2763 cond_resched();
2764
2765 ret = alloc_pool_huge_page(h, nodes_allowed,
2766 node_alloc_noretry);
2767 spin_lock(&hugetlb_lock);
2768 if (!ret)
2769 goto out;
2770
2771 /* Bail for signals. Probably ctrl-c from user */
2772 if (signal_pending(current))
2773 goto out;
2774 }
2775
2776 /*
2777 * Decrease the pool size
2778 * First return free pages to the buddy allocator (being careful
2779 * to keep enough around to satisfy reservations). Then place
2780 * pages into surplus state as needed so the pool will shrink
2781 * to the desired size as pages become free.
2782 *
2783 * By placing pages into the surplus state independent of the
2784 * overcommit value, we are allowing the surplus pool size to
2785 * exceed overcommit. There are few sane options here. Since
2786 * alloc_surplus_huge_page() is checking the global counter,
2787 * though, we'll note that we're not allowed to exceed surplus
2788 * and won't grow the pool anywhere else. Not until one of the
2789 * sysctls are changed, or the surplus pages go out of use.
2790 */
2791 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2792 min_count = max(count, min_count);
2793 try_to_free_low(h, min_count, nodes_allowed);
2794 while (min_count < persistent_huge_pages(h)) {
2795 if (!free_pool_huge_page(h, nodes_allowed, 0))
2796 break;
2797 cond_resched_lock(&hugetlb_lock);
2798 }
2799 while (count < persistent_huge_pages(h)) {
2800 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2801 break;
2802 }
2803out:
2804 h->max_huge_pages = persistent_huge_pages(h);
2805 spin_unlock(&hugetlb_lock);
2806
2807 NODEMASK_FREE(node_alloc_noretry);
2808
2809 return 0;
2810}
2811
2812#define HSTATE_ATTR_RO(_name) \
2813 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2814
2815#define HSTATE_ATTR(_name) \
2816 static struct kobj_attribute _name##_attr = \
2817 __ATTR(_name, 0644, _name##_show, _name##_store)
2818
2819static struct kobject *hugepages_kobj;
2820static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2821
2822static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2823
2824static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2825{
2826 int i;
2827
2828 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2829 if (hstate_kobjs[i] == kobj) {
2830 if (nidp)
2831 *nidp = NUMA_NO_NODE;
2832 return &hstates[i];
2833 }
2834
2835 return kobj_to_node_hstate(kobj, nidp);
2836}
2837
2838static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2839 struct kobj_attribute *attr, char *buf)
2840{
2841 struct hstate *h;
2842 unsigned long nr_huge_pages;
2843 int nid;
2844
2845 h = kobj_to_hstate(kobj, &nid);
2846 if (nid == NUMA_NO_NODE)
2847 nr_huge_pages = h->nr_huge_pages;
2848 else
2849 nr_huge_pages = h->nr_huge_pages_node[nid];
2850
2851 return sprintf(buf, "%lu\n", nr_huge_pages);
2852}
2853
2854static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2855 struct hstate *h, int nid,
2856 unsigned long count, size_t len)
2857{
2858 int err;
2859 nodemask_t nodes_allowed, *n_mask;
2860
2861 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2862 return -EINVAL;
2863
2864 if (nid == NUMA_NO_NODE) {
2865 /*
2866 * global hstate attribute
2867 */
2868 if (!(obey_mempolicy &&
2869 init_nodemask_of_mempolicy(&nodes_allowed)))
2870 n_mask = &node_states[N_MEMORY];
2871 else
2872 n_mask = &nodes_allowed;
2873 } else {
2874 /*
2875 * Node specific request. count adjustment happens in
2876 * set_max_huge_pages() after acquiring hugetlb_lock.
2877 */
2878 init_nodemask_of_node(&nodes_allowed, nid);
2879 n_mask = &nodes_allowed;
2880 }
2881
2882 err = set_max_huge_pages(h, count, nid, n_mask);
2883
2884 return err ? err : len;
2885}
2886
2887static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2888 struct kobject *kobj, const char *buf,
2889 size_t len)
2890{
2891 struct hstate *h;
2892 unsigned long count;
2893 int nid;
2894 int err;
2895
2896 err = kstrtoul(buf, 10, &count);
2897 if (err)
2898 return err;
2899
2900 h = kobj_to_hstate(kobj, &nid);
2901 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2902}
2903
2904static ssize_t nr_hugepages_show(struct kobject *kobj,
2905 struct kobj_attribute *attr, char *buf)
2906{
2907 return nr_hugepages_show_common(kobj, attr, buf);
2908}
2909
2910static ssize_t nr_hugepages_store(struct kobject *kobj,
2911 struct kobj_attribute *attr, const char *buf, size_t len)
2912{
2913 return nr_hugepages_store_common(false, kobj, buf, len);
2914}
2915HSTATE_ATTR(nr_hugepages);
2916
2917#ifdef CONFIG_NUMA
2918
2919/*
2920 * hstate attribute for optionally mempolicy-based constraint on persistent
2921 * huge page alloc/free.
2922 */
2923static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2924 struct kobj_attribute *attr, char *buf)
2925{
2926 return nr_hugepages_show_common(kobj, attr, buf);
2927}
2928
2929static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2930 struct kobj_attribute *attr, const char *buf, size_t len)
2931{
2932 return nr_hugepages_store_common(true, kobj, buf, len);
2933}
2934HSTATE_ATTR(nr_hugepages_mempolicy);
2935#endif
2936
2937
2938static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2939 struct kobj_attribute *attr, char *buf)
2940{
2941 struct hstate *h = kobj_to_hstate(kobj, NULL);
2942 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2943}
2944
2945static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2946 struct kobj_attribute *attr, const char *buf, size_t count)
2947{
2948 int err;
2949 unsigned long input;
2950 struct hstate *h = kobj_to_hstate(kobj, NULL);
2951
2952 if (hstate_is_gigantic(h))
2953 return -EINVAL;
2954
2955 err = kstrtoul(buf, 10, &input);
2956 if (err)
2957 return err;
2958
2959 spin_lock(&hugetlb_lock);
2960 h->nr_overcommit_huge_pages = input;
2961 spin_unlock(&hugetlb_lock);
2962
2963 return count;
2964}
2965HSTATE_ATTR(nr_overcommit_hugepages);
2966
2967static ssize_t free_hugepages_show(struct kobject *kobj,
2968 struct kobj_attribute *attr, char *buf)
2969{
2970 struct hstate *h;
2971 unsigned long free_huge_pages;
2972 int nid;
2973
2974 h = kobj_to_hstate(kobj, &nid);
2975 if (nid == NUMA_NO_NODE)
2976 free_huge_pages = h->free_huge_pages;
2977 else
2978 free_huge_pages = h->free_huge_pages_node[nid];
2979
2980 return sprintf(buf, "%lu\n", free_huge_pages);
2981}
2982HSTATE_ATTR_RO(free_hugepages);
2983
2984static ssize_t resv_hugepages_show(struct kobject *kobj,
2985 struct kobj_attribute *attr, char *buf)
2986{
2987 struct hstate *h = kobj_to_hstate(kobj, NULL);
2988 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2989}
2990HSTATE_ATTR_RO(resv_hugepages);
2991
2992static ssize_t surplus_hugepages_show(struct kobject *kobj,
2993 struct kobj_attribute *attr, char *buf)
2994{
2995 struct hstate *h;
2996 unsigned long surplus_huge_pages;
2997 int nid;
2998
2999 h = kobj_to_hstate(kobj, &nid);
3000 if (nid == NUMA_NO_NODE)
3001 surplus_huge_pages = h->surplus_huge_pages;
3002 else
3003 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3004
3005 return sprintf(buf, "%lu\n", surplus_huge_pages);
3006}
3007HSTATE_ATTR_RO(surplus_hugepages);
3008
3009static struct attribute *hstate_attrs[] = {
3010 &nr_hugepages_attr.attr,
3011 &nr_overcommit_hugepages_attr.attr,
3012 &free_hugepages_attr.attr,
3013 &resv_hugepages_attr.attr,
3014 &surplus_hugepages_attr.attr,
3015#ifdef CONFIG_NUMA
3016 &nr_hugepages_mempolicy_attr.attr,
3017#endif
3018 NULL,
3019};
3020
3021static const struct attribute_group hstate_attr_group = {
3022 .attrs = hstate_attrs,
3023};
3024
3025static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3026 struct kobject **hstate_kobjs,
3027 const struct attribute_group *hstate_attr_group)
3028{
3029 int retval;
3030 int hi = hstate_index(h);
3031
3032 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3033 if (!hstate_kobjs[hi])
3034 return -ENOMEM;
3035
3036 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3037 if (retval)
3038 kobject_put(hstate_kobjs[hi]);
3039
3040 return retval;
3041}
3042
3043static void __init hugetlb_sysfs_init(void)
3044{
3045 struct hstate *h;
3046 int err;
3047
3048 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3049 if (!hugepages_kobj)
3050 return;
3051
3052 for_each_hstate(h) {
3053 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3054 hstate_kobjs, &hstate_attr_group);
3055 if (err)
3056 pr_err("HugeTLB: Unable to add hstate %s", h->name);
3057 }
3058}
3059
3060#ifdef CONFIG_NUMA
3061
3062/*
3063 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3064 * with node devices in node_devices[] using a parallel array. The array
3065 * index of a node device or _hstate == node id.
3066 * This is here to avoid any static dependency of the node device driver, in
3067 * the base kernel, on the hugetlb module.
3068 */
3069struct node_hstate {
3070 struct kobject *hugepages_kobj;
3071 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3072};
3073static struct node_hstate node_hstates[MAX_NUMNODES];
3074
3075/*
3076 * A subset of global hstate attributes for node devices
3077 */
3078static struct attribute *per_node_hstate_attrs[] = {
3079 &nr_hugepages_attr.attr,
3080 &free_hugepages_attr.attr,
3081 &surplus_hugepages_attr.attr,
3082 NULL,
3083};
3084
3085static const struct attribute_group per_node_hstate_attr_group = {
3086 .attrs = per_node_hstate_attrs,
3087};
3088
3089/*
3090 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3091 * Returns node id via non-NULL nidp.
3092 */
3093static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3094{
3095 int nid;
3096
3097 for (nid = 0; nid < nr_node_ids; nid++) {
3098 struct node_hstate *nhs = &node_hstates[nid];
3099 int i;
3100 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3101 if (nhs->hstate_kobjs[i] == kobj) {
3102 if (nidp)
3103 *nidp = nid;
3104 return &hstates[i];
3105 }
3106 }
3107
3108 BUG();
3109 return NULL;
3110}
3111
3112/*
3113 * Unregister hstate attributes from a single node device.
3114 * No-op if no hstate attributes attached.
3115 */
3116static void hugetlb_unregister_node(struct node *node)
3117{
3118 struct hstate *h;
3119 struct node_hstate *nhs = &node_hstates[node->dev.id];
3120
3121 if (!nhs->hugepages_kobj)
3122 return; /* no hstate attributes */
3123
3124 for_each_hstate(h) {
3125 int idx = hstate_index(h);
3126 if (nhs->hstate_kobjs[idx]) {
3127 kobject_put(nhs->hstate_kobjs[idx]);
3128 nhs->hstate_kobjs[idx] = NULL;
3129 }
3130 }
3131
3132 kobject_put(nhs->hugepages_kobj);
3133 nhs->hugepages_kobj = NULL;
3134}
3135
3136
3137/*
3138 * Register hstate attributes for a single node device.
3139 * No-op if attributes already registered.
3140 */
3141static void hugetlb_register_node(struct node *node)
3142{
3143 struct hstate *h;
3144 struct node_hstate *nhs = &node_hstates[node->dev.id];
3145 int err;
3146
3147 if (nhs->hugepages_kobj)
3148 return; /* already allocated */
3149
3150 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3151 &node->dev.kobj);
3152 if (!nhs->hugepages_kobj)
3153 return;
3154
3155 for_each_hstate(h) {
3156 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3157 nhs->hstate_kobjs,
3158 &per_node_hstate_attr_group);
3159 if (err) {
3160 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3161 h->name, node->dev.id);
3162 hugetlb_unregister_node(node);
3163 break;
3164 }
3165 }
3166}
3167
3168/*
3169 * hugetlb init time: register hstate attributes for all registered node
3170 * devices of nodes that have memory. All on-line nodes should have
3171 * registered their associated device by this time.
3172 */
3173static void __init hugetlb_register_all_nodes(void)
3174{
3175 int nid;
3176
3177 for_each_node_state(nid, N_MEMORY) {
3178 struct node *node = node_devices[nid];
3179 if (node->dev.id == nid)
3180 hugetlb_register_node(node);
3181 }
3182
3183 /*
3184 * Let the node device driver know we're here so it can
3185 * [un]register hstate attributes on node hotplug.
3186 */
3187 register_hugetlbfs_with_node(hugetlb_register_node,
3188 hugetlb_unregister_node);
3189}
3190#else /* !CONFIG_NUMA */
3191
3192static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3193{
3194 BUG();
3195 if (nidp)
3196 *nidp = -1;
3197 return NULL;
3198}
3199
3200static void hugetlb_register_all_nodes(void) { }
3201
3202#endif
3203
3204static int __init hugetlb_init(void)
3205{
3206 int i;
3207
3208 if (!hugepages_supported()) {
3209 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3210 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3211 return 0;
3212 }
3213
3214 /*
3215 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3216 * architectures depend on setup being done here.
3217 */
3218 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3219 if (!parsed_default_hugepagesz) {
3220 /*
3221 * If we did not parse a default huge page size, set
3222 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3223 * number of huge pages for this default size was implicitly
3224 * specified, set that here as well.
3225 * Note that the implicit setting will overwrite an explicit
3226 * setting. A warning will be printed in this case.
3227 */
3228 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3229 if (default_hstate_max_huge_pages) {
3230 if (default_hstate.max_huge_pages) {
3231 char buf[32];
3232
3233 string_get_size(huge_page_size(&default_hstate),
3234 1, STRING_UNITS_2, buf, 32);
3235 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3236 default_hstate.max_huge_pages, buf);
3237 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3238 default_hstate_max_huge_pages);
3239 }
3240 default_hstate.max_huge_pages =
3241 default_hstate_max_huge_pages;
3242 }
3243 }
3244
3245 hugetlb_cma_check();
3246 hugetlb_init_hstates();
3247 gather_bootmem_prealloc();
3248 report_hugepages();
3249
3250 hugetlb_sysfs_init();
3251 hugetlb_register_all_nodes();
3252 hugetlb_cgroup_file_init();
3253
3254#ifdef CONFIG_SMP
3255 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3256#else
3257 num_fault_mutexes = 1;
3258#endif
3259 hugetlb_fault_mutex_table =
3260 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3261 GFP_KERNEL);
3262 BUG_ON(!hugetlb_fault_mutex_table);
3263
3264 for (i = 0; i < num_fault_mutexes; i++)
3265 mutex_init(&hugetlb_fault_mutex_table[i]);
3266 return 0;
3267}
3268subsys_initcall(hugetlb_init);
3269
3270/* Overwritten by architectures with more huge page sizes */
3271bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3272{
3273 return size == HPAGE_SIZE;
3274}
3275
3276void __init hugetlb_add_hstate(unsigned int order)
3277{
3278 struct hstate *h;
3279 unsigned long i;
3280
3281 if (size_to_hstate(PAGE_SIZE << order)) {
3282 return;
3283 }
3284 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3285 BUG_ON(order == 0);
3286 h = &hstates[hugetlb_max_hstate++];
3287 h->order = order;
3288 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3289 h->nr_huge_pages = 0;
3290 h->free_huge_pages = 0;
3291 for (i = 0; i < MAX_NUMNODES; ++i)
3292 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3293 INIT_LIST_HEAD(&h->hugepage_activelist);
3294 h->next_nid_to_alloc = first_memory_node;
3295 h->next_nid_to_free = first_memory_node;
3296 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3297 huge_page_size(h)/1024);
3298
3299 parsed_hstate = h;
3300}
3301
3302/*
3303 * hugepages command line processing
3304 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3305 * specification. If not, ignore the hugepages value. hugepages can also
3306 * be the first huge page command line option in which case it implicitly
3307 * specifies the number of huge pages for the default size.
3308 */
3309static int __init hugepages_setup(char *s)
3310{
3311 unsigned long *mhp;
3312 static unsigned long *last_mhp;
3313
3314 if (!parsed_valid_hugepagesz) {
3315 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3316 parsed_valid_hugepagesz = true;
3317 return 0;
3318 }
3319
3320 /*
3321 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3322 * yet, so this hugepages= parameter goes to the "default hstate".
3323 * Otherwise, it goes with the previously parsed hugepagesz or
3324 * default_hugepagesz.
3325 */
3326 else if (!hugetlb_max_hstate)
3327 mhp = &default_hstate_max_huge_pages;
3328 else
3329 mhp = &parsed_hstate->max_huge_pages;
3330
3331 if (mhp == last_mhp) {
3332 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3333 return 0;
3334 }
3335
3336 if (sscanf(s, "%lu", mhp) <= 0)
3337 *mhp = 0;
3338
3339 /*
3340 * Global state is always initialized later in hugetlb_init.
3341 * But we need to allocate >= MAX_ORDER hstates here early to still
3342 * use the bootmem allocator.
3343 */
3344 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3345 hugetlb_hstate_alloc_pages(parsed_hstate);
3346
3347 last_mhp = mhp;
3348
3349 return 1;
3350}
3351__setup("hugepages=", hugepages_setup);
3352
3353/*
3354 * hugepagesz command line processing
3355 * A specific huge page size can only be specified once with hugepagesz.
3356 * hugepagesz is followed by hugepages on the command line. The global
3357 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3358 * hugepagesz argument was valid.
3359 */
3360static int __init hugepagesz_setup(char *s)
3361{
3362 unsigned long size;
3363 struct hstate *h;
3364
3365 parsed_valid_hugepagesz = false;
3366 size = (unsigned long)memparse(s, NULL);
3367
3368 if (!arch_hugetlb_valid_size(size)) {
3369 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3370 return 0;
3371 }
3372
3373 h = size_to_hstate(size);
3374 if (h) {
3375 /*
3376 * hstate for this size already exists. This is normally
3377 * an error, but is allowed if the existing hstate is the
3378 * default hstate. More specifically, it is only allowed if
3379 * the number of huge pages for the default hstate was not
3380 * previously specified.
3381 */
3382 if (!parsed_default_hugepagesz || h != &default_hstate ||
3383 default_hstate.max_huge_pages) {
3384 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3385 return 0;
3386 }
3387
3388 /*
3389 * No need to call hugetlb_add_hstate() as hstate already
3390 * exists. But, do set parsed_hstate so that a following
3391 * hugepages= parameter will be applied to this hstate.
3392 */
3393 parsed_hstate = h;
3394 parsed_valid_hugepagesz = true;
3395 return 1;
3396 }
3397
3398 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3399 parsed_valid_hugepagesz = true;
3400 return 1;
3401}
3402__setup("hugepagesz=", hugepagesz_setup);
3403
3404/*
3405 * default_hugepagesz command line input
3406 * Only one instance of default_hugepagesz allowed on command line.
3407 */
3408static int __init default_hugepagesz_setup(char *s)
3409{
3410 unsigned long size;
3411
3412 parsed_valid_hugepagesz = false;
3413 if (parsed_default_hugepagesz) {
3414 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3415 return 0;
3416 }
3417
3418 size = (unsigned long)memparse(s, NULL);
3419
3420 if (!arch_hugetlb_valid_size(size)) {
3421 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3422 return 0;
3423 }
3424
3425 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3426 parsed_valid_hugepagesz = true;
3427 parsed_default_hugepagesz = true;
3428 default_hstate_idx = hstate_index(size_to_hstate(size));
3429
3430 /*
3431 * The number of default huge pages (for this size) could have been
3432 * specified as the first hugetlb parameter: hugepages=X. If so,
3433 * then default_hstate_max_huge_pages is set. If the default huge
3434 * page size is gigantic (>= MAX_ORDER), then the pages must be
3435 * allocated here from bootmem allocator.
3436 */
3437 if (default_hstate_max_huge_pages) {
3438 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3439 if (hstate_is_gigantic(&default_hstate))
3440 hugetlb_hstate_alloc_pages(&default_hstate);
3441 default_hstate_max_huge_pages = 0;
3442 }
3443
3444 return 1;
3445}
3446__setup("default_hugepagesz=", default_hugepagesz_setup);
3447
3448static unsigned int allowed_mems_nr(struct hstate *h)
3449{
3450 int node;
3451 unsigned int nr = 0;
3452 nodemask_t *mpol_allowed;
3453 unsigned int *array = h->free_huge_pages_node;
3454 gfp_t gfp_mask = htlb_alloc_mask(h);
3455
3456 mpol_allowed = policy_nodemask_current(gfp_mask);
3457
3458 for_each_node_mask(node, cpuset_current_mems_allowed) {
3459 if (!mpol_allowed ||
3460 (mpol_allowed && node_isset(node, *mpol_allowed)))
3461 nr += array[node];
3462 }
3463
3464 return nr;
3465}
3466
3467#ifdef CONFIG_SYSCTL
3468static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3469 void *buffer, size_t *length,
3470 loff_t *ppos, unsigned long *out)
3471{
3472 struct ctl_table dup_table;
3473
3474 /*
3475 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3476 * can duplicate the @table and alter the duplicate of it.
3477 */
3478 dup_table = *table;
3479 dup_table.data = out;
3480
3481 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3482}
3483
3484static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3485 struct ctl_table *table, int write,
3486 void *buffer, size_t *length, loff_t *ppos)
3487{
3488 struct hstate *h = &default_hstate;
3489 unsigned long tmp = h->max_huge_pages;
3490 int ret;
3491
3492 if (!hugepages_supported())
3493 return -EOPNOTSUPP;
3494
3495 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3496 &tmp);
3497 if (ret)
3498 goto out;
3499
3500 if (write)
3501 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3502 NUMA_NO_NODE, tmp, *length);
3503out:
3504 return ret;
3505}
3506
3507int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3508 void *buffer, size_t *length, loff_t *ppos)
3509{
3510
3511 return hugetlb_sysctl_handler_common(false, table, write,
3512 buffer, length, ppos);
3513}
3514
3515#ifdef CONFIG_NUMA
3516int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3517 void *buffer, size_t *length, loff_t *ppos)
3518{
3519 return hugetlb_sysctl_handler_common(true, table, write,
3520 buffer, length, ppos);
3521}
3522#endif /* CONFIG_NUMA */
3523
3524int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3525 void *buffer, size_t *length, loff_t *ppos)
3526{
3527 struct hstate *h = &default_hstate;
3528 unsigned long tmp;
3529 int ret;
3530
3531 if (!hugepages_supported())
3532 return -EOPNOTSUPP;
3533
3534 tmp = h->nr_overcommit_huge_pages;
3535
3536 if (write && hstate_is_gigantic(h))
3537 return -EINVAL;
3538
3539 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3540 &tmp);
3541 if (ret)
3542 goto out;
3543
3544 if (write) {
3545 spin_lock(&hugetlb_lock);
3546 h->nr_overcommit_huge_pages = tmp;
3547 spin_unlock(&hugetlb_lock);
3548 }
3549out:
3550 return ret;
3551}
3552
3553#endif /* CONFIG_SYSCTL */
3554
3555void hugetlb_report_meminfo(struct seq_file *m)
3556{
3557 struct hstate *h;
3558 unsigned long total = 0;
3559
3560 if (!hugepages_supported())
3561 return;
3562
3563 for_each_hstate(h) {
3564 unsigned long count = h->nr_huge_pages;
3565
3566 total += (PAGE_SIZE << huge_page_order(h)) * count;
3567
3568 if (h == &default_hstate)
3569 seq_printf(m,
3570 "HugePages_Total: %5lu\n"
3571 "HugePages_Free: %5lu\n"
3572 "HugePages_Rsvd: %5lu\n"
3573 "HugePages_Surp: %5lu\n"
3574 "Hugepagesize: %8lu kB\n",
3575 count,
3576 h->free_huge_pages,
3577 h->resv_huge_pages,
3578 h->surplus_huge_pages,
3579 (PAGE_SIZE << huge_page_order(h)) / 1024);
3580 }
3581
3582 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3583}
3584
3585int hugetlb_report_node_meminfo(int nid, char *buf)
3586{
3587 struct hstate *h = &default_hstate;
3588 if (!hugepages_supported())
3589 return 0;
3590 return sprintf(buf,
3591 "Node %d HugePages_Total: %5u\n"
3592 "Node %d HugePages_Free: %5u\n"
3593 "Node %d HugePages_Surp: %5u\n",
3594 nid, h->nr_huge_pages_node[nid],
3595 nid, h->free_huge_pages_node[nid],
3596 nid, h->surplus_huge_pages_node[nid]);
3597}
3598
3599void hugetlb_show_meminfo(void)
3600{
3601 struct hstate *h;
3602 int nid;
3603
3604 if (!hugepages_supported())
3605 return;
3606
3607 for_each_node_state(nid, N_MEMORY)
3608 for_each_hstate(h)
3609 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3610 nid,
3611 h->nr_huge_pages_node[nid],
3612 h->free_huge_pages_node[nid],
3613 h->surplus_huge_pages_node[nid],
3614 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3615}
3616
3617void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3618{
3619 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3620 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3621}
3622
3623/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3624unsigned long hugetlb_total_pages(void)
3625{
3626 struct hstate *h;
3627 unsigned long nr_total_pages = 0;
3628
3629 for_each_hstate(h)
3630 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3631 return nr_total_pages;
3632}
3633
3634static int hugetlb_acct_memory(struct hstate *h, long delta)
3635{
3636 int ret = -ENOMEM;
3637
3638 spin_lock(&hugetlb_lock);
3639 /*
3640 * When cpuset is configured, it breaks the strict hugetlb page
3641 * reservation as the accounting is done on a global variable. Such
3642 * reservation is completely rubbish in the presence of cpuset because
3643 * the reservation is not checked against page availability for the
3644 * current cpuset. Application can still potentially OOM'ed by kernel
3645 * with lack of free htlb page in cpuset that the task is in.
3646 * Attempt to enforce strict accounting with cpuset is almost
3647 * impossible (or too ugly) because cpuset is too fluid that
3648 * task or memory node can be dynamically moved between cpusets.
3649 *
3650 * The change of semantics for shared hugetlb mapping with cpuset is
3651 * undesirable. However, in order to preserve some of the semantics,
3652 * we fall back to check against current free page availability as
3653 * a best attempt and hopefully to minimize the impact of changing
3654 * semantics that cpuset has.
3655 *
3656 * Apart from cpuset, we also have memory policy mechanism that
3657 * also determines from which node the kernel will allocate memory
3658 * in a NUMA system. So similar to cpuset, we also should consider
3659 * the memory policy of the current task. Similar to the description
3660 * above.
3661 */
3662 if (delta > 0) {
3663 if (gather_surplus_pages(h, delta) < 0)
3664 goto out;
3665
3666 if (delta > allowed_mems_nr(h)) {
3667 return_unused_surplus_pages(h, delta);
3668 goto out;
3669 }
3670 }
3671
3672 ret = 0;
3673 if (delta < 0)
3674 return_unused_surplus_pages(h, (unsigned long) -delta);
3675
3676out:
3677 spin_unlock(&hugetlb_lock);
3678 return ret;
3679}
3680
3681static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3682{
3683 struct resv_map *resv = vma_resv_map(vma);
3684
3685 /*
3686 * This new VMA should share its siblings reservation map if present.
3687 * The VMA will only ever have a valid reservation map pointer where
3688 * it is being copied for another still existing VMA. As that VMA
3689 * has a reference to the reservation map it cannot disappear until
3690 * after this open call completes. It is therefore safe to take a
3691 * new reference here without additional locking.
3692 */
3693 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3694 kref_get(&resv->refs);
3695}
3696
3697static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3698{
3699 struct hstate *h = hstate_vma(vma);
3700 struct resv_map *resv = vma_resv_map(vma);
3701 struct hugepage_subpool *spool = subpool_vma(vma);
3702 unsigned long reserve, start, end;
3703 long gbl_reserve;
3704
3705 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3706 return;
3707
3708 start = vma_hugecache_offset(h, vma, vma->vm_start);
3709 end = vma_hugecache_offset(h, vma, vma->vm_end);
3710
3711 reserve = (end - start) - region_count(resv, start, end);
3712 hugetlb_cgroup_uncharge_counter(resv, start, end);
3713 if (reserve) {
3714 /*
3715 * Decrement reserve counts. The global reserve count may be
3716 * adjusted if the subpool has a minimum size.
3717 */
3718 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3719 hugetlb_acct_memory(h, -gbl_reserve);
3720 }
3721
3722 kref_put(&resv->refs, resv_map_release);
3723}
3724
3725static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3726{
3727 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3728 return -EINVAL;
3729 return 0;
3730}
3731
3732static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3733{
3734 struct hstate *hstate = hstate_vma(vma);
3735
3736 return 1UL << huge_page_shift(hstate);
3737}
3738
3739/*
3740 * We cannot handle pagefaults against hugetlb pages at all. They cause
3741 * handle_mm_fault() to try to instantiate regular-sized pages in the
3742 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3743 * this far.
3744 */
3745static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3746{
3747 BUG();
3748 return 0;
3749}
3750
3751/*
3752 * When a new function is introduced to vm_operations_struct and added
3753 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3754 * This is because under System V memory model, mappings created via
3755 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3756 * their original vm_ops are overwritten with shm_vm_ops.
3757 */
3758const struct vm_operations_struct hugetlb_vm_ops = {
3759 .fault = hugetlb_vm_op_fault,
3760 .open = hugetlb_vm_op_open,
3761 .close = hugetlb_vm_op_close,
3762 .split = hugetlb_vm_op_split,
3763 .pagesize = hugetlb_vm_op_pagesize,
3764};
3765
3766static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3767 int writable)
3768{
3769 pte_t entry;
3770
3771 if (writable) {
3772 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3773 vma->vm_page_prot)));
3774 } else {
3775 entry = huge_pte_wrprotect(mk_huge_pte(page,
3776 vma->vm_page_prot));
3777 }
3778 entry = pte_mkyoung(entry);
3779 entry = pte_mkhuge(entry);
3780 entry = arch_make_huge_pte(entry, vma, page, writable);
3781
3782 return entry;
3783}
3784
3785static void set_huge_ptep_writable(struct vm_area_struct *vma,
3786 unsigned long address, pte_t *ptep)
3787{
3788 pte_t entry;
3789
3790 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3791 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3792 update_mmu_cache(vma, address, ptep);
3793}
3794
3795bool is_hugetlb_entry_migration(pte_t pte)
3796{
3797 swp_entry_t swp;
3798
3799 if (huge_pte_none(pte) || pte_present(pte))
3800 return false;
3801 swp = pte_to_swp_entry(pte);
3802 if (non_swap_entry(swp) && is_migration_entry(swp))
3803 return true;
3804 else
3805 return false;
3806}
3807
3808static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3809{
3810 swp_entry_t swp;
3811
3812 if (huge_pte_none(pte) || pte_present(pte))
3813 return 0;
3814 swp = pte_to_swp_entry(pte);
3815 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3816 return 1;
3817 else
3818 return 0;
3819}
3820
3821int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3822 struct vm_area_struct *vma)
3823{
3824 pte_t *src_pte, *dst_pte, entry, dst_entry;
3825 struct page *ptepage;
3826 unsigned long addr;
3827 int cow;
3828 struct hstate *h = hstate_vma(vma);
3829 unsigned long sz = huge_page_size(h);
3830 struct address_space *mapping = vma->vm_file->f_mapping;
3831 struct mmu_notifier_range range;
3832 int ret = 0;
3833
3834 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3835
3836 if (cow) {
3837 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3838 vma->vm_start,
3839 vma->vm_end);
3840 mmu_notifier_invalidate_range_start(&range);
3841 } else {
3842 /*
3843 * For shared mappings i_mmap_rwsem must be held to call
3844 * huge_pte_alloc, otherwise the returned ptep could go
3845 * away if part of a shared pmd and another thread calls
3846 * huge_pmd_unshare.
3847 */
3848 i_mmap_lock_read(mapping);
3849 }
3850
3851 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3852 spinlock_t *src_ptl, *dst_ptl;
3853 src_pte = huge_pte_offset(src, addr, sz);
3854 if (!src_pte)
3855 continue;
3856 dst_pte = huge_pte_alloc(dst, addr, sz);
3857 if (!dst_pte) {
3858 ret = -ENOMEM;
3859 break;
3860 }
3861
3862 /*
3863 * If the pagetables are shared don't copy or take references.
3864 * dst_pte == src_pte is the common case of src/dest sharing.
3865 *
3866 * However, src could have 'unshared' and dst shares with
3867 * another vma. If dst_pte !none, this implies sharing.
3868 * Check here before taking page table lock, and once again
3869 * after taking the lock below.
3870 */
3871 dst_entry = huge_ptep_get(dst_pte);
3872 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3873 continue;
3874
3875 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3876 src_ptl = huge_pte_lockptr(h, src, src_pte);
3877 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3878 entry = huge_ptep_get(src_pte);
3879 dst_entry = huge_ptep_get(dst_pte);
3880 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3881 /*
3882 * Skip if src entry none. Also, skip in the
3883 * unlikely case dst entry !none as this implies
3884 * sharing with another vma.
3885 */
3886 ;
3887 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3888 is_hugetlb_entry_hwpoisoned(entry))) {
3889 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3890
3891 if (is_write_migration_entry(swp_entry) && cow) {
3892 /*
3893 * COW mappings require pages in both
3894 * parent and child to be set to read.
3895 */
3896 make_migration_entry_read(&swp_entry);
3897 entry = swp_entry_to_pte(swp_entry);
3898 set_huge_swap_pte_at(src, addr, src_pte,
3899 entry, sz);
3900 }
3901 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3902 } else {
3903 if (cow) {
3904 /*
3905 * No need to notify as we are downgrading page
3906 * table protection not changing it to point
3907 * to a new page.
3908 *
3909 * See Documentation/vm/mmu_notifier.rst
3910 */
3911 huge_ptep_set_wrprotect(src, addr, src_pte);
3912 }
3913 entry = huge_ptep_get(src_pte);
3914 ptepage = pte_page(entry);
3915 get_page(ptepage);
3916 page_dup_rmap(ptepage, true);
3917 set_huge_pte_at(dst, addr, dst_pte, entry);
3918 hugetlb_count_add(pages_per_huge_page(h), dst);
3919 }
3920 spin_unlock(src_ptl);
3921 spin_unlock(dst_ptl);
3922 }
3923
3924 if (cow)
3925 mmu_notifier_invalidate_range_end(&range);
3926 else
3927 i_mmap_unlock_read(mapping);
3928
3929 return ret;
3930}
3931
3932void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3933 unsigned long start, unsigned long end,
3934 struct page *ref_page)
3935{
3936 struct mm_struct *mm = vma->vm_mm;
3937 unsigned long address;
3938 pte_t *ptep;
3939 pte_t pte;
3940 spinlock_t *ptl;
3941 struct page *page;
3942 struct hstate *h = hstate_vma(vma);
3943 unsigned long sz = huge_page_size(h);
3944 struct mmu_notifier_range range;
3945
3946 WARN_ON(!is_vm_hugetlb_page(vma));
3947 BUG_ON(start & ~huge_page_mask(h));
3948 BUG_ON(end & ~huge_page_mask(h));
3949
3950 /*
3951 * This is a hugetlb vma, all the pte entries should point
3952 * to huge page.
3953 */
3954 tlb_change_page_size(tlb, sz);
3955 tlb_start_vma(tlb, vma);
3956
3957 /*
3958 * If sharing possible, alert mmu notifiers of worst case.
3959 */
3960 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3961 end);
3962 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3963 mmu_notifier_invalidate_range_start(&range);
3964 address = start;
3965 for (; address < end; address += sz) {
3966 ptep = huge_pte_offset(mm, address, sz);
3967 if (!ptep)
3968 continue;
3969
3970 ptl = huge_pte_lock(h, mm, ptep);
3971 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3972 spin_unlock(ptl);
3973 /*
3974 * We just unmapped a page of PMDs by clearing a PUD.
3975 * The caller's TLB flush range should cover this area.
3976 */
3977 continue;
3978 }
3979
3980 pte = huge_ptep_get(ptep);
3981 if (huge_pte_none(pte)) {
3982 spin_unlock(ptl);
3983 continue;
3984 }
3985
3986 /*
3987 * Migrating hugepage or HWPoisoned hugepage is already
3988 * unmapped and its refcount is dropped, so just clear pte here.
3989 */
3990 if (unlikely(!pte_present(pte))) {
3991 huge_pte_clear(mm, address, ptep, sz);
3992 spin_unlock(ptl);
3993 continue;
3994 }
3995
3996 page = pte_page(pte);
3997 /*
3998 * If a reference page is supplied, it is because a specific
3999 * page is being unmapped, not a range. Ensure the page we
4000 * are about to unmap is the actual page of interest.
4001 */
4002 if (ref_page) {
4003 if (page != ref_page) {
4004 spin_unlock(ptl);
4005 continue;
4006 }
4007 /*
4008 * Mark the VMA as having unmapped its page so that
4009 * future faults in this VMA will fail rather than
4010 * looking like data was lost
4011 */
4012 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4013 }
4014
4015 pte = huge_ptep_get_and_clear(mm, address, ptep);
4016 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4017 if (huge_pte_dirty(pte))
4018 set_page_dirty(page);
4019
4020 hugetlb_count_sub(pages_per_huge_page(h), mm);
4021 page_remove_rmap(page, true);
4022
4023 spin_unlock(ptl);
4024 tlb_remove_page_size(tlb, page, huge_page_size(h));
4025 /*
4026 * Bail out after unmapping reference page if supplied
4027 */
4028 if (ref_page)
4029 break;
4030 }
4031 mmu_notifier_invalidate_range_end(&range);
4032 tlb_end_vma(tlb, vma);
4033}
4034
4035void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4036 struct vm_area_struct *vma, unsigned long start,
4037 unsigned long end, struct page *ref_page)
4038{
4039 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4040
4041 /*
4042 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4043 * test will fail on a vma being torn down, and not grab a page table
4044 * on its way out. We're lucky that the flag has such an appropriate
4045 * name, and can in fact be safely cleared here. We could clear it
4046 * before the __unmap_hugepage_range above, but all that's necessary
4047 * is to clear it before releasing the i_mmap_rwsem. This works
4048 * because in the context this is called, the VMA is about to be
4049 * destroyed and the i_mmap_rwsem is held.
4050 */
4051 vma->vm_flags &= ~VM_MAYSHARE;
4052}
4053
4054void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4055 unsigned long end, struct page *ref_page)
4056{
4057 struct mm_struct *mm;
4058 struct mmu_gather tlb;
4059 unsigned long tlb_start = start;
4060 unsigned long tlb_end = end;
4061
4062 /*
4063 * If shared PMDs were possibly used within this vma range, adjust
4064 * start/end for worst case tlb flushing.
4065 * Note that we can not be sure if PMDs are shared until we try to
4066 * unmap pages. However, we want to make sure TLB flushing covers
4067 * the largest possible range.
4068 */
4069 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4070
4071 mm = vma->vm_mm;
4072
4073 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4074 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4075 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4076}
4077
4078/*
4079 * This is called when the original mapper is failing to COW a MAP_PRIVATE
4080 * mappping it owns the reserve page for. The intention is to unmap the page
4081 * from other VMAs and let the children be SIGKILLed if they are faulting the
4082 * same region.
4083 */
4084static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4085 struct page *page, unsigned long address)
4086{
4087 struct hstate *h = hstate_vma(vma);
4088 struct vm_area_struct *iter_vma;
4089 struct address_space *mapping;
4090 pgoff_t pgoff;
4091
4092 /*
4093 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4094 * from page cache lookup which is in HPAGE_SIZE units.
4095 */
4096 address = address & huge_page_mask(h);
4097 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4098 vma->vm_pgoff;
4099 mapping = vma->vm_file->f_mapping;
4100
4101 /*
4102 * Take the mapping lock for the duration of the table walk. As
4103 * this mapping should be shared between all the VMAs,
4104 * __unmap_hugepage_range() is called as the lock is already held
4105 */
4106 i_mmap_lock_write(mapping);
4107 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4108 /* Do not unmap the current VMA */
4109 if (iter_vma == vma)
4110 continue;
4111
4112 /*
4113 * Shared VMAs have their own reserves and do not affect
4114 * MAP_PRIVATE accounting but it is possible that a shared
4115 * VMA is using the same page so check and skip such VMAs.
4116 */
4117 if (iter_vma->vm_flags & VM_MAYSHARE)
4118 continue;
4119
4120 /*
4121 * Unmap the page from other VMAs without their own reserves.
4122 * They get marked to be SIGKILLed if they fault in these
4123 * areas. This is because a future no-page fault on this VMA
4124 * could insert a zeroed page instead of the data existing
4125 * from the time of fork. This would look like data corruption
4126 */
4127 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4128 unmap_hugepage_range(iter_vma, address,
4129 address + huge_page_size(h), page);
4130 }
4131 i_mmap_unlock_write(mapping);
4132}
4133
4134/*
4135 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4136 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4137 * cannot race with other handlers or page migration.
4138 * Keep the pte_same checks anyway to make transition from the mutex easier.
4139 */
4140static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4141 unsigned long address, pte_t *ptep,
4142 struct page *pagecache_page, spinlock_t *ptl)
4143{
4144 pte_t pte;
4145 struct hstate *h = hstate_vma(vma);
4146 struct page *old_page, *new_page;
4147 int outside_reserve = 0;
4148 vm_fault_t ret = 0;
4149 unsigned long haddr = address & huge_page_mask(h);
4150 struct mmu_notifier_range range;
4151
4152 pte = huge_ptep_get(ptep);
4153 old_page = pte_page(pte);
4154
4155retry_avoidcopy:
4156 /* If no-one else is actually using this page, avoid the copy
4157 * and just make the page writable */
4158 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4159 page_move_anon_rmap(old_page, vma);
4160 set_huge_ptep_writable(vma, haddr, ptep);
4161 return 0;
4162 }
4163
4164 /*
4165 * If the process that created a MAP_PRIVATE mapping is about to
4166 * perform a COW due to a shared page count, attempt to satisfy
4167 * the allocation without using the existing reserves. The pagecache
4168 * page is used to determine if the reserve at this address was
4169 * consumed or not. If reserves were used, a partial faulted mapping
4170 * at the time of fork() could consume its reserves on COW instead
4171 * of the full address range.
4172 */
4173 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4174 old_page != pagecache_page)
4175 outside_reserve = 1;
4176
4177 get_page(old_page);
4178
4179 /*
4180 * Drop page table lock as buddy allocator may be called. It will
4181 * be acquired again before returning to the caller, as expected.
4182 */
4183 spin_unlock(ptl);
4184 new_page = alloc_huge_page(vma, haddr, outside_reserve);
4185
4186 if (IS_ERR(new_page)) {
4187 /*
4188 * If a process owning a MAP_PRIVATE mapping fails to COW,
4189 * it is due to references held by a child and an insufficient
4190 * huge page pool. To guarantee the original mappers
4191 * reliability, unmap the page from child processes. The child
4192 * may get SIGKILLed if it later faults.
4193 */
4194 if (outside_reserve) {
4195 put_page(old_page);
4196 BUG_ON(huge_pte_none(pte));
4197 unmap_ref_private(mm, vma, old_page, haddr);
4198 BUG_ON(huge_pte_none(pte));
4199 spin_lock(ptl);
4200 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4201 if (likely(ptep &&
4202 pte_same(huge_ptep_get(ptep), pte)))
4203 goto retry_avoidcopy;
4204 /*
4205 * race occurs while re-acquiring page table
4206 * lock, and our job is done.
4207 */
4208 return 0;
4209 }
4210
4211 ret = vmf_error(PTR_ERR(new_page));
4212 goto out_release_old;
4213 }
4214
4215 /*
4216 * When the original hugepage is shared one, it does not have
4217 * anon_vma prepared.
4218 */
4219 if (unlikely(anon_vma_prepare(vma))) {
4220 ret = VM_FAULT_OOM;
4221 goto out_release_all;
4222 }
4223
4224 copy_user_huge_page(new_page, old_page, address, vma,
4225 pages_per_huge_page(h));
4226 __SetPageUptodate(new_page);
4227
4228 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4229 haddr + huge_page_size(h));
4230 mmu_notifier_invalidate_range_start(&range);
4231
4232 /*
4233 * Retake the page table lock to check for racing updates
4234 * before the page tables are altered
4235 */
4236 spin_lock(ptl);
4237 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4238 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4239 ClearPagePrivate(new_page);
4240
4241 /* Break COW */
4242 huge_ptep_clear_flush(vma, haddr, ptep);
4243 mmu_notifier_invalidate_range(mm, range.start, range.end);
4244 set_huge_pte_at(mm, haddr, ptep,
4245 make_huge_pte(vma, new_page, 1));
4246 page_remove_rmap(old_page, true);
4247 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4248 set_page_huge_active(new_page);
4249 /* Make the old page be freed below */
4250 new_page = old_page;
4251 }
4252 spin_unlock(ptl);
4253 mmu_notifier_invalidate_range_end(&range);
4254out_release_all:
4255 restore_reserve_on_error(h, vma, haddr, new_page);
4256 put_page(new_page);
4257out_release_old:
4258 put_page(old_page);
4259
4260 spin_lock(ptl); /* Caller expects lock to be held */
4261 return ret;
4262}
4263
4264/* Return the pagecache page at a given address within a VMA */
4265static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4266 struct vm_area_struct *vma, unsigned long address)
4267{
4268 struct address_space *mapping;
4269 pgoff_t idx;
4270
4271 mapping = vma->vm_file->f_mapping;
4272 idx = vma_hugecache_offset(h, vma, address);
4273
4274 return find_lock_page(mapping, idx);
4275}
4276
4277/*
4278 * Return whether there is a pagecache page to back given address within VMA.
4279 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4280 */
4281static bool hugetlbfs_pagecache_present(struct hstate *h,
4282 struct vm_area_struct *vma, unsigned long address)
4283{
4284 struct address_space *mapping;
4285 pgoff_t idx;
4286 struct page *page;
4287
4288 mapping = vma->vm_file->f_mapping;
4289 idx = vma_hugecache_offset(h, vma, address);
4290
4291 page = find_get_page(mapping, idx);
4292 if (page)
4293 put_page(page);
4294 return page != NULL;
4295}
4296
4297int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4298 pgoff_t idx)
4299{
4300 struct inode *inode = mapping->host;
4301 struct hstate *h = hstate_inode(inode);
4302 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4303
4304 if (err)
4305 return err;
4306 ClearPagePrivate(page);
4307
4308 /*
4309 * set page dirty so that it will not be removed from cache/file
4310 * by non-hugetlbfs specific code paths.
4311 */
4312 set_page_dirty(page);
4313
4314 spin_lock(&inode->i_lock);
4315 inode->i_blocks += blocks_per_huge_page(h);
4316 spin_unlock(&inode->i_lock);
4317 return 0;
4318}
4319
4320static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4321 struct vm_area_struct *vma,
4322 struct address_space *mapping, pgoff_t idx,
4323 unsigned long address, pte_t *ptep, unsigned int flags)
4324{
4325 struct hstate *h = hstate_vma(vma);
4326 vm_fault_t ret = VM_FAULT_SIGBUS;
4327 int anon_rmap = 0;
4328 unsigned long size;
4329 struct page *page;
4330 pte_t new_pte;
4331 spinlock_t *ptl;
4332 unsigned long haddr = address & huge_page_mask(h);
4333 bool new_page = false;
4334
4335 /*
4336 * Currently, we are forced to kill the process in the event the
4337 * original mapper has unmapped pages from the child due to a failed
4338 * COW. Warn that such a situation has occurred as it may not be obvious
4339 */
4340 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4341 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4342 current->pid);
4343 return ret;
4344 }
4345
4346 /*
4347 * We can not race with truncation due to holding i_mmap_rwsem.
4348 * i_size is modified when holding i_mmap_rwsem, so check here
4349 * once for faults beyond end of file.
4350 */
4351 size = i_size_read(mapping->host) >> huge_page_shift(h);
4352 if (idx >= size)
4353 goto out;
4354
4355retry:
4356 page = find_lock_page(mapping, idx);
4357 if (!page) {
4358 /*
4359 * Check for page in userfault range
4360 */
4361 if (userfaultfd_missing(vma)) {
4362 u32 hash;
4363 struct vm_fault vmf = {
4364 .vma = vma,
4365 .address = haddr,
4366 .flags = flags,
4367 /*
4368 * Hard to debug if it ends up being
4369 * used by a callee that assumes
4370 * something about the other
4371 * uninitialized fields... same as in
4372 * memory.c
4373 */
4374 };
4375
4376 /*
4377 * hugetlb_fault_mutex and i_mmap_rwsem must be
4378 * dropped before handling userfault. Reacquire
4379 * after handling fault to make calling code simpler.
4380 */
4381 hash = hugetlb_fault_mutex_hash(mapping, idx);
4382 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4383 i_mmap_unlock_read(mapping);
4384 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4385 i_mmap_lock_read(mapping);
4386 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4387 goto out;
4388 }
4389
4390 page = alloc_huge_page(vma, haddr, 0);
4391 if (IS_ERR(page)) {
4392 /*
4393 * Returning error will result in faulting task being
4394 * sent SIGBUS. The hugetlb fault mutex prevents two
4395 * tasks from racing to fault in the same page which
4396 * could result in false unable to allocate errors.
4397 * Page migration does not take the fault mutex, but
4398 * does a clear then write of pte's under page table
4399 * lock. Page fault code could race with migration,
4400 * notice the clear pte and try to allocate a page
4401 * here. Before returning error, get ptl and make
4402 * sure there really is no pte entry.
4403 */
4404 ptl = huge_pte_lock(h, mm, ptep);
4405 if (!huge_pte_none(huge_ptep_get(ptep))) {
4406 ret = 0;
4407 spin_unlock(ptl);
4408 goto out;
4409 }
4410 spin_unlock(ptl);
4411 ret = vmf_error(PTR_ERR(page));
4412 goto out;
4413 }
4414 clear_huge_page(page, address, pages_per_huge_page(h));
4415 __SetPageUptodate(page);
4416 new_page = true;
4417
4418 if (vma->vm_flags & VM_MAYSHARE) {
4419 int err = huge_add_to_page_cache(page, mapping, idx);
4420 if (err) {
4421 put_page(page);
4422 if (err == -EEXIST)
4423 goto retry;
4424 goto out;
4425 }
4426 } else {
4427 lock_page(page);
4428 if (unlikely(anon_vma_prepare(vma))) {
4429 ret = VM_FAULT_OOM;
4430 goto backout_unlocked;
4431 }
4432 anon_rmap = 1;
4433 }
4434 } else {
4435 /*
4436 * If memory error occurs between mmap() and fault, some process
4437 * don't have hwpoisoned swap entry for errored virtual address.
4438 * So we need to block hugepage fault by PG_hwpoison bit check.
4439 */
4440 if (unlikely(PageHWPoison(page))) {
4441 ret = VM_FAULT_HWPOISON |
4442 VM_FAULT_SET_HINDEX(hstate_index(h));
4443 goto backout_unlocked;
4444 }
4445 }
4446
4447 /*
4448 * If we are going to COW a private mapping later, we examine the
4449 * pending reservations for this page now. This will ensure that
4450 * any allocations necessary to record that reservation occur outside
4451 * the spinlock.
4452 */
4453 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4454 if (vma_needs_reservation(h, vma, haddr) < 0) {
4455 ret = VM_FAULT_OOM;
4456 goto backout_unlocked;
4457 }
4458 /* Just decrements count, does not deallocate */
4459 vma_end_reservation(h, vma, haddr);
4460 }
4461
4462 ptl = huge_pte_lock(h, mm, ptep);
4463 ret = 0;
4464 if (!huge_pte_none(huge_ptep_get(ptep)))
4465 goto backout;
4466
4467 if (anon_rmap) {
4468 ClearPagePrivate(page);
4469 hugepage_add_new_anon_rmap(page, vma, haddr);
4470 } else
4471 page_dup_rmap(page, true);
4472 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4473 && (vma->vm_flags & VM_SHARED)));
4474 set_huge_pte_at(mm, haddr, ptep, new_pte);
4475
4476 hugetlb_count_add(pages_per_huge_page(h), mm);
4477 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4478 /* Optimization, do the COW without a second fault */
4479 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4480 }
4481
4482 spin_unlock(ptl);
4483
4484 /*
4485 * Only make newly allocated pages active. Existing pages found
4486 * in the pagecache could be !page_huge_active() if they have been
4487 * isolated for migration.
4488 */
4489 if (new_page)
4490 set_page_huge_active(page);
4491
4492 unlock_page(page);
4493out:
4494 return ret;
4495
4496backout:
4497 spin_unlock(ptl);
4498backout_unlocked:
4499 unlock_page(page);
4500 restore_reserve_on_error(h, vma, haddr, page);
4501 put_page(page);
4502 goto out;
4503}
4504
4505#ifdef CONFIG_SMP
4506u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4507{
4508 unsigned long key[2];
4509 u32 hash;
4510
4511 key[0] = (unsigned long) mapping;
4512 key[1] = idx;
4513
4514 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4515
4516 return hash & (num_fault_mutexes - 1);
4517}
4518#else
4519/*
4520 * For uniprocesor systems we always use a single mutex, so just
4521 * return 0 and avoid the hashing overhead.
4522 */
4523u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4524{
4525 return 0;
4526}
4527#endif
4528
4529vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4530 unsigned long address, unsigned int flags)
4531{
4532 pte_t *ptep, entry;
4533 spinlock_t *ptl;
4534 vm_fault_t ret;
4535 u32 hash;
4536 pgoff_t idx;
4537 struct page *page = NULL;
4538 struct page *pagecache_page = NULL;
4539 struct hstate *h = hstate_vma(vma);
4540 struct address_space *mapping;
4541 int need_wait_lock = 0;
4542 unsigned long haddr = address & huge_page_mask(h);
4543
4544 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4545 if (ptep) {
4546 /*
4547 * Since we hold no locks, ptep could be stale. That is
4548 * OK as we are only making decisions based on content and
4549 * not actually modifying content here.
4550 */
4551 entry = huge_ptep_get(ptep);
4552 if (unlikely(is_hugetlb_entry_migration(entry))) {
4553 migration_entry_wait_huge(vma, mm, ptep);
4554 return 0;
4555 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4556 return VM_FAULT_HWPOISON_LARGE |
4557 VM_FAULT_SET_HINDEX(hstate_index(h));
4558 }
4559
4560 /*
4561 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4562 * until finished with ptep. This serves two purposes:
4563 * 1) It prevents huge_pmd_unshare from being called elsewhere
4564 * and making the ptep no longer valid.
4565 * 2) It synchronizes us with i_size modifications during truncation.
4566 *
4567 * ptep could have already be assigned via huge_pte_offset. That
4568 * is OK, as huge_pte_alloc will return the same value unless
4569 * something has changed.
4570 */
4571 mapping = vma->vm_file->f_mapping;
4572 i_mmap_lock_read(mapping);
4573 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4574 if (!ptep) {
4575 i_mmap_unlock_read(mapping);
4576 return VM_FAULT_OOM;
4577 }
4578
4579 /*
4580 * Serialize hugepage allocation and instantiation, so that we don't
4581 * get spurious allocation failures if two CPUs race to instantiate
4582 * the same page in the page cache.
4583 */
4584 idx = vma_hugecache_offset(h, vma, haddr);
4585 hash = hugetlb_fault_mutex_hash(mapping, idx);
4586 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4587
4588 entry = huge_ptep_get(ptep);
4589 if (huge_pte_none(entry)) {
4590 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4591 goto out_mutex;
4592 }
4593
4594 ret = 0;
4595
4596 /*
4597 * entry could be a migration/hwpoison entry at this point, so this
4598 * check prevents the kernel from going below assuming that we have
4599 * an active hugepage in pagecache. This goto expects the 2nd page
4600 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4601 * properly handle it.
4602 */
4603 if (!pte_present(entry))
4604 goto out_mutex;
4605
4606 /*
4607 * If we are going to COW the mapping later, we examine the pending
4608 * reservations for this page now. This will ensure that any
4609 * allocations necessary to record that reservation occur outside the
4610 * spinlock. For private mappings, we also lookup the pagecache
4611 * page now as it is used to determine if a reservation has been
4612 * consumed.
4613 */
4614 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4615 if (vma_needs_reservation(h, vma, haddr) < 0) {
4616 ret = VM_FAULT_OOM;
4617 goto out_mutex;
4618 }
4619 /* Just decrements count, does not deallocate */
4620 vma_end_reservation(h, vma, haddr);
4621
4622 if (!(vma->vm_flags & VM_MAYSHARE))
4623 pagecache_page = hugetlbfs_pagecache_page(h,
4624 vma, haddr);
4625 }
4626
4627 ptl = huge_pte_lock(h, mm, ptep);
4628
4629 /* Check for a racing update before calling hugetlb_cow */
4630 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4631 goto out_ptl;
4632
4633 /*
4634 * hugetlb_cow() requires page locks of pte_page(entry) and
4635 * pagecache_page, so here we need take the former one
4636 * when page != pagecache_page or !pagecache_page.
4637 */
4638 page = pte_page(entry);
4639 if (page != pagecache_page)
4640 if (!trylock_page(page)) {
4641 need_wait_lock = 1;
4642 goto out_ptl;
4643 }
4644
4645 get_page(page);
4646
4647 if (flags & FAULT_FLAG_WRITE) {
4648 if (!huge_pte_write(entry)) {
4649 ret = hugetlb_cow(mm, vma, address, ptep,
4650 pagecache_page, ptl);
4651 goto out_put_page;
4652 }
4653 entry = huge_pte_mkdirty(entry);
4654 }
4655 entry = pte_mkyoung(entry);
4656 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4657 flags & FAULT_FLAG_WRITE))
4658 update_mmu_cache(vma, haddr, ptep);
4659out_put_page:
4660 if (page != pagecache_page)
4661 unlock_page(page);
4662 put_page(page);
4663out_ptl:
4664 spin_unlock(ptl);
4665
4666 if (pagecache_page) {
4667 unlock_page(pagecache_page);
4668 put_page(pagecache_page);
4669 }
4670out_mutex:
4671 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4672 i_mmap_unlock_read(mapping);
4673 /*
4674 * Generally it's safe to hold refcount during waiting page lock. But
4675 * here we just wait to defer the next page fault to avoid busy loop and
4676 * the page is not used after unlocked before returning from the current
4677 * page fault. So we are safe from accessing freed page, even if we wait
4678 * here without taking refcount.
4679 */
4680 if (need_wait_lock)
4681 wait_on_page_locked(page);
4682 return ret;
4683}
4684
4685/*
4686 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4687 * modifications for huge pages.
4688 */
4689int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4690 pte_t *dst_pte,
4691 struct vm_area_struct *dst_vma,
4692 unsigned long dst_addr,
4693 unsigned long src_addr,
4694 struct page **pagep)
4695{
4696 struct address_space *mapping;
4697 pgoff_t idx;
4698 unsigned long size;
4699 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4700 struct hstate *h = hstate_vma(dst_vma);
4701 pte_t _dst_pte;
4702 spinlock_t *ptl;
4703 int ret;
4704 struct page *page;
4705
4706 if (!*pagep) {
4707 ret = -ENOMEM;
4708 page = alloc_huge_page(dst_vma, dst_addr, 0);
4709 if (IS_ERR(page))
4710 goto out;
4711
4712 ret = copy_huge_page_from_user(page,
4713 (const void __user *) src_addr,
4714 pages_per_huge_page(h), false);
4715
4716 /* fallback to copy_from_user outside mmap_lock */
4717 if (unlikely(ret)) {
4718 ret = -ENOENT;
4719 *pagep = page;
4720 /* don't free the page */
4721 goto out;
4722 }
4723 } else {
4724 page = *pagep;
4725 *pagep = NULL;
4726 }
4727
4728 /*
4729 * The memory barrier inside __SetPageUptodate makes sure that
4730 * preceding stores to the page contents become visible before
4731 * the set_pte_at() write.
4732 */
4733 __SetPageUptodate(page);
4734
4735 mapping = dst_vma->vm_file->f_mapping;
4736 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4737
4738 /*
4739 * If shared, add to page cache
4740 */
4741 if (vm_shared) {
4742 size = i_size_read(mapping->host) >> huge_page_shift(h);
4743 ret = -EFAULT;
4744 if (idx >= size)
4745 goto out_release_nounlock;
4746
4747 /*
4748 * Serialization between remove_inode_hugepages() and
4749 * huge_add_to_page_cache() below happens through the
4750 * hugetlb_fault_mutex_table that here must be hold by
4751 * the caller.
4752 */
4753 ret = huge_add_to_page_cache(page, mapping, idx);
4754 if (ret)
4755 goto out_release_nounlock;
4756 }
4757
4758 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4759 spin_lock(ptl);
4760
4761 /*
4762 * Recheck the i_size after holding PT lock to make sure not
4763 * to leave any page mapped (as page_mapped()) beyond the end
4764 * of the i_size (remove_inode_hugepages() is strict about
4765 * enforcing that). If we bail out here, we'll also leave a
4766 * page in the radix tree in the vm_shared case beyond the end
4767 * of the i_size, but remove_inode_hugepages() will take care
4768 * of it as soon as we drop the hugetlb_fault_mutex_table.
4769 */
4770 size = i_size_read(mapping->host) >> huge_page_shift(h);
4771 ret = -EFAULT;
4772 if (idx >= size)
4773 goto out_release_unlock;
4774
4775 ret = -EEXIST;
4776 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4777 goto out_release_unlock;
4778
4779 if (vm_shared) {
4780 page_dup_rmap(page, true);
4781 } else {
4782 ClearPagePrivate(page);
4783 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4784 }
4785
4786 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4787 if (dst_vma->vm_flags & VM_WRITE)
4788 _dst_pte = huge_pte_mkdirty(_dst_pte);
4789 _dst_pte = pte_mkyoung(_dst_pte);
4790
4791 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4792
4793 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4794 dst_vma->vm_flags & VM_WRITE);
4795 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4796
4797 /* No need to invalidate - it was non-present before */
4798 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4799
4800 spin_unlock(ptl);
4801 set_page_huge_active(page);
4802 if (vm_shared)
4803 unlock_page(page);
4804 ret = 0;
4805out:
4806 return ret;
4807out_release_unlock:
4808 spin_unlock(ptl);
4809 if (vm_shared)
4810 unlock_page(page);
4811out_release_nounlock:
4812 put_page(page);
4813 goto out;
4814}
4815
4816long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4817 struct page **pages, struct vm_area_struct **vmas,
4818 unsigned long *position, unsigned long *nr_pages,
4819 long i, unsigned int flags, int *locked)
4820{
4821 unsigned long pfn_offset;
4822 unsigned long vaddr = *position;
4823 unsigned long remainder = *nr_pages;
4824 struct hstate *h = hstate_vma(vma);
4825 int err = -EFAULT;
4826
4827 while (vaddr < vma->vm_end && remainder) {
4828 pte_t *pte;
4829 spinlock_t *ptl = NULL;
4830 int absent;
4831 struct page *page;
4832
4833 /*
4834 * If we have a pending SIGKILL, don't keep faulting pages and
4835 * potentially allocating memory.
4836 */
4837 if (fatal_signal_pending(current)) {
4838 remainder = 0;
4839 break;
4840 }
4841
4842 /*
4843 * Some archs (sparc64, sh*) have multiple pte_ts to
4844 * each hugepage. We have to make sure we get the
4845 * first, for the page indexing below to work.
4846 *
4847 * Note that page table lock is not held when pte is null.
4848 */
4849 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4850 huge_page_size(h));
4851 if (pte)
4852 ptl = huge_pte_lock(h, mm, pte);
4853 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4854
4855 /*
4856 * When coredumping, it suits get_dump_page if we just return
4857 * an error where there's an empty slot with no huge pagecache
4858 * to back it. This way, we avoid allocating a hugepage, and
4859 * the sparse dumpfile avoids allocating disk blocks, but its
4860 * huge holes still show up with zeroes where they need to be.
4861 */
4862 if (absent && (flags & FOLL_DUMP) &&
4863 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4864 if (pte)
4865 spin_unlock(ptl);
4866 remainder = 0;
4867 break;
4868 }
4869
4870 /*
4871 * We need call hugetlb_fault for both hugepages under migration
4872 * (in which case hugetlb_fault waits for the migration,) and
4873 * hwpoisoned hugepages (in which case we need to prevent the
4874 * caller from accessing to them.) In order to do this, we use
4875 * here is_swap_pte instead of is_hugetlb_entry_migration and
4876 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4877 * both cases, and because we can't follow correct pages
4878 * directly from any kind of swap entries.
4879 */
4880 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4881 ((flags & FOLL_WRITE) &&
4882 !huge_pte_write(huge_ptep_get(pte)))) {
4883 vm_fault_t ret;
4884 unsigned int fault_flags = 0;
4885
4886 if (pte)
4887 spin_unlock(ptl);
4888 if (flags & FOLL_WRITE)
4889 fault_flags |= FAULT_FLAG_WRITE;
4890 if (locked)
4891 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4892 FAULT_FLAG_KILLABLE;
4893 if (flags & FOLL_NOWAIT)
4894 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4895 FAULT_FLAG_RETRY_NOWAIT;
4896 if (flags & FOLL_TRIED) {
4897 /*
4898 * Note: FAULT_FLAG_ALLOW_RETRY and
4899 * FAULT_FLAG_TRIED can co-exist
4900 */
4901 fault_flags |= FAULT_FLAG_TRIED;
4902 }
4903 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4904 if (ret & VM_FAULT_ERROR) {
4905 err = vm_fault_to_errno(ret, flags);
4906 remainder = 0;
4907 break;
4908 }
4909 if (ret & VM_FAULT_RETRY) {
4910 if (locked &&
4911 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4912 *locked = 0;
4913 *nr_pages = 0;
4914 /*
4915 * VM_FAULT_RETRY must not return an
4916 * error, it will return zero
4917 * instead.
4918 *
4919 * No need to update "position" as the
4920 * caller will not check it after
4921 * *nr_pages is set to 0.
4922 */
4923 return i;
4924 }
4925 continue;
4926 }
4927
4928 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4929 page = pte_page(huge_ptep_get(pte));
4930
4931 /*
4932 * If subpage information not requested, update counters
4933 * and skip the same_page loop below.
4934 */
4935 if (!pages && !vmas && !pfn_offset &&
4936 (vaddr + huge_page_size(h) < vma->vm_end) &&
4937 (remainder >= pages_per_huge_page(h))) {
4938 vaddr += huge_page_size(h);
4939 remainder -= pages_per_huge_page(h);
4940 i += pages_per_huge_page(h);
4941 spin_unlock(ptl);
4942 continue;
4943 }
4944
4945same_page:
4946 if (pages) {
4947 pages[i] = mem_map_offset(page, pfn_offset);
4948 /*
4949 * try_grab_page() should always succeed here, because:
4950 * a) we hold the ptl lock, and b) we've just checked
4951 * that the huge page is present in the page tables. If
4952 * the huge page is present, then the tail pages must
4953 * also be present. The ptl prevents the head page and
4954 * tail pages from being rearranged in any way. So this
4955 * page must be available at this point, unless the page
4956 * refcount overflowed:
4957 */
4958 if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4959 spin_unlock(ptl);
4960 remainder = 0;
4961 err = -ENOMEM;
4962 break;
4963 }
4964 }
4965
4966 if (vmas)
4967 vmas[i] = vma;
4968
4969 vaddr += PAGE_SIZE;
4970 ++pfn_offset;
4971 --remainder;
4972 ++i;
4973 if (vaddr < vma->vm_end && remainder &&
4974 pfn_offset < pages_per_huge_page(h)) {
4975 /*
4976 * We use pfn_offset to avoid touching the pageframes
4977 * of this compound page.
4978 */
4979 goto same_page;
4980 }
4981 spin_unlock(ptl);
4982 }
4983 *nr_pages = remainder;
4984 /*
4985 * setting position is actually required only if remainder is
4986 * not zero but it's faster not to add a "if (remainder)"
4987 * branch.
4988 */
4989 *position = vaddr;
4990
4991 return i ? i : err;
4992}
4993
4994#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4995/*
4996 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4997 * implement this.
4998 */
4999#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
5000#endif
5001
5002unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5003 unsigned long address, unsigned long end, pgprot_t newprot)
5004{
5005 struct mm_struct *mm = vma->vm_mm;
5006 unsigned long start = address;
5007 pte_t *ptep;
5008 pte_t pte;
5009 struct hstate *h = hstate_vma(vma);
5010 unsigned long pages = 0;
5011 bool shared_pmd = false;
5012 struct mmu_notifier_range range;
5013
5014 /*
5015 * In the case of shared PMDs, the area to flush could be beyond
5016 * start/end. Set range.start/range.end to cover the maximum possible
5017 * range if PMD sharing is possible.
5018 */
5019 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5020 0, vma, mm, start, end);
5021 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5022
5023 BUG_ON(address >= end);
5024 flush_cache_range(vma, range.start, range.end);
5025
5026 mmu_notifier_invalidate_range_start(&range);
5027 i_mmap_lock_write(vma->vm_file->f_mapping);
5028 for (; address < end; address += huge_page_size(h)) {
5029 spinlock_t *ptl;
5030 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5031 if (!ptep)
5032 continue;
5033 ptl = huge_pte_lock(h, mm, ptep);
5034 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5035 pages++;
5036 spin_unlock(ptl);
5037 shared_pmd = true;
5038 continue;
5039 }
5040 pte = huge_ptep_get(ptep);
5041 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5042 spin_unlock(ptl);
5043 continue;
5044 }
5045 if (unlikely(is_hugetlb_entry_migration(pte))) {
5046 swp_entry_t entry = pte_to_swp_entry(pte);
5047
5048 if (is_write_migration_entry(entry)) {
5049 pte_t newpte;
5050
5051 make_migration_entry_read(&entry);
5052 newpte = swp_entry_to_pte(entry);
5053 set_huge_swap_pte_at(mm, address, ptep,
5054 newpte, huge_page_size(h));
5055 pages++;
5056 }
5057 spin_unlock(ptl);
5058 continue;
5059 }
5060 if (!huge_pte_none(pte)) {
5061 pte_t old_pte;
5062
5063 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5064 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5065 pte = arch_make_huge_pte(pte, vma, NULL, 0);
5066 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5067 pages++;
5068 }
5069 spin_unlock(ptl);
5070 }
5071 /*
5072 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5073 * may have cleared our pud entry and done put_page on the page table:
5074 * once we release i_mmap_rwsem, another task can do the final put_page
5075 * and that page table be reused and filled with junk. If we actually
5076 * did unshare a page of pmds, flush the range corresponding to the pud.
5077 */
5078 if (shared_pmd)
5079 flush_hugetlb_tlb_range(vma, range.start, range.end);
5080 else
5081 flush_hugetlb_tlb_range(vma, start, end);
5082 /*
5083 * No need to call mmu_notifier_invalidate_range() we are downgrading
5084 * page table protection not changing it to point to a new page.
5085 *
5086 * See Documentation/vm/mmu_notifier.rst
5087 */
5088 i_mmap_unlock_write(vma->vm_file->f_mapping);
5089 mmu_notifier_invalidate_range_end(&range);
5090
5091 return pages << h->order;
5092}
5093
5094int hugetlb_reserve_pages(struct inode *inode,
5095 long from, long to,
5096 struct vm_area_struct *vma,
5097 vm_flags_t vm_flags)
5098{
5099 long ret, chg, add = -1;
5100 struct hstate *h = hstate_inode(inode);
5101 struct hugepage_subpool *spool = subpool_inode(inode);
5102 struct resv_map *resv_map;
5103 struct hugetlb_cgroup *h_cg = NULL;
5104 long gbl_reserve, regions_needed = 0;
5105
5106 /* This should never happen */
5107 if (from > to) {
5108 VM_WARN(1, "%s called with a negative range\n", __func__);
5109 return -EINVAL;
5110 }
5111
5112 /*
5113 * Only apply hugepage reservation if asked. At fault time, an
5114 * attempt will be made for VM_NORESERVE to allocate a page
5115 * without using reserves
5116 */
5117 if (vm_flags & VM_NORESERVE)
5118 return 0;
5119
5120 /*
5121 * Shared mappings base their reservation on the number of pages that
5122 * are already allocated on behalf of the file. Private mappings need
5123 * to reserve the full area even if read-only as mprotect() may be
5124 * called to make the mapping read-write. Assume !vma is a shm mapping
5125 */
5126 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5127 /*
5128 * resv_map can not be NULL as hugetlb_reserve_pages is only
5129 * called for inodes for which resv_maps were created (see
5130 * hugetlbfs_get_inode).
5131 */
5132 resv_map = inode_resv_map(inode);
5133
5134 chg = region_chg(resv_map, from, to, ®ions_needed);
5135
5136 } else {
5137 /* Private mapping. */
5138 resv_map = resv_map_alloc();
5139 if (!resv_map)
5140 return -ENOMEM;
5141
5142 chg = to - from;
5143
5144 set_vma_resv_map(vma, resv_map);
5145 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5146 }
5147
5148 if (chg < 0) {
5149 ret = chg;
5150 goto out_err;
5151 }
5152
5153 ret = hugetlb_cgroup_charge_cgroup_rsvd(
5154 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5155
5156 if (ret < 0) {
5157 ret = -ENOMEM;
5158 goto out_err;
5159 }
5160
5161 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5162 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5163 * of the resv_map.
5164 */
5165 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5166 }
5167
5168 /*
5169 * There must be enough pages in the subpool for the mapping. If
5170 * the subpool has a minimum size, there may be some global
5171 * reservations already in place (gbl_reserve).
5172 */
5173 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5174 if (gbl_reserve < 0) {
5175 ret = -ENOSPC;
5176 goto out_uncharge_cgroup;
5177 }
5178
5179 /*
5180 * Check enough hugepages are available for the reservation.
5181 * Hand the pages back to the subpool if there are not
5182 */
5183 ret = hugetlb_acct_memory(h, gbl_reserve);
5184 if (ret < 0) {
5185 goto out_put_pages;
5186 }
5187
5188 /*
5189 * Account for the reservations made. Shared mappings record regions
5190 * that have reservations as they are shared by multiple VMAs.
5191 * When the last VMA disappears, the region map says how much
5192 * the reservation was and the page cache tells how much of
5193 * the reservation was consumed. Private mappings are per-VMA and
5194 * only the consumed reservations are tracked. When the VMA
5195 * disappears, the original reservation is the VMA size and the
5196 * consumed reservations are stored in the map. Hence, nothing
5197 * else has to be done for private mappings here
5198 */
5199 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5200 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5201
5202 if (unlikely(add < 0)) {
5203 hugetlb_acct_memory(h, -gbl_reserve);
5204 goto out_put_pages;
5205 } else if (unlikely(chg > add)) {
5206 /*
5207 * pages in this range were added to the reserve
5208 * map between region_chg and region_add. This
5209 * indicates a race with alloc_huge_page. Adjust
5210 * the subpool and reserve counts modified above
5211 * based on the difference.
5212 */
5213 long rsv_adjust;
5214
5215 hugetlb_cgroup_uncharge_cgroup_rsvd(
5216 hstate_index(h),
5217 (chg - add) * pages_per_huge_page(h), h_cg);
5218
5219 rsv_adjust = hugepage_subpool_put_pages(spool,
5220 chg - add);
5221 hugetlb_acct_memory(h, -rsv_adjust);
5222 }
5223 }
5224 return 0;
5225out_put_pages:
5226 /* put back original number of pages, chg */
5227 (void)hugepage_subpool_put_pages(spool, chg);
5228out_uncharge_cgroup:
5229 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5230 chg * pages_per_huge_page(h), h_cg);
5231out_err:
5232 if (!vma || vma->vm_flags & VM_MAYSHARE)
5233 /* Only call region_abort if the region_chg succeeded but the
5234 * region_add failed or didn't run.
5235 */
5236 if (chg >= 0 && add < 0)
5237 region_abort(resv_map, from, to, regions_needed);
5238 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5239 kref_put(&resv_map->refs, resv_map_release);
5240 return ret;
5241}
5242
5243long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5244 long freed)
5245{
5246 struct hstate *h = hstate_inode(inode);
5247 struct resv_map *resv_map = inode_resv_map(inode);
5248 long chg = 0;
5249 struct hugepage_subpool *spool = subpool_inode(inode);
5250 long gbl_reserve;
5251
5252 /*
5253 * Since this routine can be called in the evict inode path for all
5254 * hugetlbfs inodes, resv_map could be NULL.
5255 */
5256 if (resv_map) {
5257 chg = region_del(resv_map, start, end);
5258 /*
5259 * region_del() can fail in the rare case where a region
5260 * must be split and another region descriptor can not be
5261 * allocated. If end == LONG_MAX, it will not fail.
5262 */
5263 if (chg < 0)
5264 return chg;
5265 }
5266
5267 spin_lock(&inode->i_lock);
5268 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5269 spin_unlock(&inode->i_lock);
5270
5271 /*
5272 * If the subpool has a minimum size, the number of global
5273 * reservations to be released may be adjusted.
5274 */
5275 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5276 hugetlb_acct_memory(h, -gbl_reserve);
5277
5278 return 0;
5279}
5280
5281#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5282static unsigned long page_table_shareable(struct vm_area_struct *svma,
5283 struct vm_area_struct *vma,
5284 unsigned long addr, pgoff_t idx)
5285{
5286 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5287 svma->vm_start;
5288 unsigned long sbase = saddr & PUD_MASK;
5289 unsigned long s_end = sbase + PUD_SIZE;
5290
5291 /* Allow segments to share if only one is marked locked */
5292 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5293 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5294
5295 /*
5296 * match the virtual addresses, permission and the alignment of the
5297 * page table page.
5298 */
5299 if (pmd_index(addr) != pmd_index(saddr) ||
5300 vm_flags != svm_flags ||
5301 sbase < svma->vm_start || svma->vm_end < s_end)
5302 return 0;
5303
5304 return saddr;
5305}
5306
5307static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5308{
5309 unsigned long base = addr & PUD_MASK;
5310 unsigned long end = base + PUD_SIZE;
5311
5312 /*
5313 * check on proper vm_flags and page table alignment
5314 */
5315 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5316 return true;
5317 return false;
5318}
5319
5320/*
5321 * Determine if start,end range within vma could be mapped by shared pmd.
5322 * If yes, adjust start and end to cover range associated with possible
5323 * shared pmd mappings.
5324 */
5325void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5326 unsigned long *start, unsigned long *end)
5327{
5328 unsigned long a_start, a_end;
5329
5330 if (!(vma->vm_flags & VM_MAYSHARE))
5331 return;
5332
5333 /* Extend the range to be PUD aligned for a worst case scenario */
5334 a_start = ALIGN_DOWN(*start, PUD_SIZE);
5335 a_end = ALIGN(*end, PUD_SIZE);
5336
5337 /*
5338 * Intersect the range with the vma range, since pmd sharing won't be
5339 * across vma after all
5340 */
5341 *start = max(vma->vm_start, a_start);
5342 *end = min(vma->vm_end, a_end);
5343}
5344
5345/*
5346 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5347 * and returns the corresponding pte. While this is not necessary for the
5348 * !shared pmd case because we can allocate the pmd later as well, it makes the
5349 * code much cleaner.
5350 *
5351 * This routine must be called with i_mmap_rwsem held in at least read mode.
5352 * For hugetlbfs, this prevents removal of any page table entries associated
5353 * with the address space. This is important as we are setting up sharing
5354 * based on existing page table entries (mappings).
5355 */
5356pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5357{
5358 struct vm_area_struct *vma = find_vma(mm, addr);
5359 struct address_space *mapping = vma->vm_file->f_mapping;
5360 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5361 vma->vm_pgoff;
5362 struct vm_area_struct *svma;
5363 unsigned long saddr;
5364 pte_t *spte = NULL;
5365 pte_t *pte;
5366 spinlock_t *ptl;
5367
5368 if (!vma_shareable(vma, addr))
5369 return (pte_t *)pmd_alloc(mm, pud, addr);
5370
5371 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5372 if (svma == vma)
5373 continue;
5374
5375 saddr = page_table_shareable(svma, vma, addr, idx);
5376 if (saddr) {
5377 spte = huge_pte_offset(svma->vm_mm, saddr,
5378 vma_mmu_pagesize(svma));
5379 if (spte) {
5380 get_page(virt_to_page(spte));
5381 break;
5382 }
5383 }
5384 }
5385
5386 if (!spte)
5387 goto out;
5388
5389 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5390 if (pud_none(*pud)) {
5391 pud_populate(mm, pud,
5392 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5393 mm_inc_nr_pmds(mm);
5394 } else {
5395 put_page(virt_to_page(spte));
5396 }
5397 spin_unlock(ptl);
5398out:
5399 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5400 return pte;
5401}
5402
5403/*
5404 * unmap huge page backed by shared pte.
5405 *
5406 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5407 * indicated by page_count > 1, unmap is achieved by clearing pud and
5408 * decrementing the ref count. If count == 1, the pte page is not shared.
5409 *
5410 * Called with page table lock held and i_mmap_rwsem held in write mode.
5411 *
5412 * returns: 1 successfully unmapped a shared pte page
5413 * 0 the underlying pte page is not shared, or it is the last user
5414 */
5415int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5416 unsigned long *addr, pte_t *ptep)
5417{
5418 pgd_t *pgd = pgd_offset(mm, *addr);
5419 p4d_t *p4d = p4d_offset(pgd, *addr);
5420 pud_t *pud = pud_offset(p4d, *addr);
5421
5422 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5423 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5424 if (page_count(virt_to_page(ptep)) == 1)
5425 return 0;
5426
5427 pud_clear(pud);
5428 put_page(virt_to_page(ptep));
5429 mm_dec_nr_pmds(mm);
5430 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5431 return 1;
5432}
5433#define want_pmd_share() (1)
5434#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5435pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5436{
5437 return NULL;
5438}
5439
5440int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5441 unsigned long *addr, pte_t *ptep)
5442{
5443 return 0;
5444}
5445
5446void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5447 unsigned long *start, unsigned long *end)
5448{
5449}
5450#define want_pmd_share() (0)
5451#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5452
5453#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5454pte_t *huge_pte_alloc(struct mm_struct *mm,
5455 unsigned long addr, unsigned long sz)
5456{
5457 pgd_t *pgd;
5458 p4d_t *p4d;
5459 pud_t *pud;
5460 pte_t *pte = NULL;
5461
5462 pgd = pgd_offset(mm, addr);
5463 p4d = p4d_alloc(mm, pgd, addr);
5464 if (!p4d)
5465 return NULL;
5466 pud = pud_alloc(mm, p4d, addr);
5467 if (pud) {
5468 if (sz == PUD_SIZE) {
5469 pte = (pte_t *)pud;
5470 } else {
5471 BUG_ON(sz != PMD_SIZE);
5472 if (want_pmd_share() && pud_none(*pud))
5473 pte = huge_pmd_share(mm, addr, pud);
5474 else
5475 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5476 }
5477 }
5478 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5479
5480 return pte;
5481}
5482
5483/*
5484 * huge_pte_offset() - Walk the page table to resolve the hugepage
5485 * entry at address @addr
5486 *
5487 * Return: Pointer to page table entry (PUD or PMD) for
5488 * address @addr, or NULL if a !p*d_present() entry is encountered and the
5489 * size @sz doesn't match the hugepage size at this level of the page
5490 * table.
5491 */
5492pte_t *huge_pte_offset(struct mm_struct *mm,
5493 unsigned long addr, unsigned long sz)
5494{
5495 pgd_t *pgd;
5496 p4d_t *p4d;
5497 pud_t *pud;
5498 pmd_t *pmd;
5499
5500 pgd = pgd_offset(mm, addr);
5501 if (!pgd_present(*pgd))
5502 return NULL;
5503 p4d = p4d_offset(pgd, addr);
5504 if (!p4d_present(*p4d))
5505 return NULL;
5506
5507 pud = pud_offset(p4d, addr);
5508 if (sz == PUD_SIZE)
5509 /* must be pud huge, non-present or none */
5510 return (pte_t *)pud;
5511 if (!pud_present(*pud))
5512 return NULL;
5513 /* must have a valid entry and size to go further */
5514
5515 pmd = pmd_offset(pud, addr);
5516 /* must be pmd huge, non-present or none */
5517 return (pte_t *)pmd;
5518}
5519
5520#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5521
5522/*
5523 * These functions are overwritable if your architecture needs its own
5524 * behavior.
5525 */
5526struct page * __weak
5527follow_huge_addr(struct mm_struct *mm, unsigned long address,
5528 int write)
5529{
5530 return ERR_PTR(-EINVAL);
5531}
5532
5533struct page * __weak
5534follow_huge_pd(struct vm_area_struct *vma,
5535 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5536{
5537 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5538 return NULL;
5539}
5540
5541struct page * __weak
5542follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5543 pmd_t *pmd, int flags)
5544{
5545 struct page *page = NULL;
5546 spinlock_t *ptl;
5547 pte_t pte;
5548
5549 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5550 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5551 (FOLL_PIN | FOLL_GET)))
5552 return NULL;
5553
5554retry:
5555 ptl = pmd_lockptr(mm, pmd);
5556 spin_lock(ptl);
5557 /*
5558 * make sure that the address range covered by this pmd is not
5559 * unmapped from other threads.
5560 */
5561 if (!pmd_huge(*pmd))
5562 goto out;
5563 pte = huge_ptep_get((pte_t *)pmd);
5564 if (pte_present(pte)) {
5565 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5566 /*
5567 * try_grab_page() should always succeed here, because: a) we
5568 * hold the pmd (ptl) lock, and b) we've just checked that the
5569 * huge pmd (head) page is present in the page tables. The ptl
5570 * prevents the head page and tail pages from being rearranged
5571 * in any way. So this page must be available at this point,
5572 * unless the page refcount overflowed:
5573 */
5574 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5575 page = NULL;
5576 goto out;
5577 }
5578 } else {
5579 if (is_hugetlb_entry_migration(pte)) {
5580 spin_unlock(ptl);
5581 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5582 goto retry;
5583 }
5584 /*
5585 * hwpoisoned entry is treated as no_page_table in
5586 * follow_page_mask().
5587 */
5588 }
5589out:
5590 spin_unlock(ptl);
5591 return page;
5592}
5593
5594struct page * __weak
5595follow_huge_pud(struct mm_struct *mm, unsigned long address,
5596 pud_t *pud, int flags)
5597{
5598 if (flags & (FOLL_GET | FOLL_PIN))
5599 return NULL;
5600
5601 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5602}
5603
5604struct page * __weak
5605follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5606{
5607 if (flags & (FOLL_GET | FOLL_PIN))
5608 return NULL;
5609
5610 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5611}
5612
5613bool isolate_huge_page(struct page *page, struct list_head *list)
5614{
5615 bool ret = true;
5616
5617 VM_BUG_ON_PAGE(!PageHead(page), page);
5618 spin_lock(&hugetlb_lock);
5619 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5620 ret = false;
5621 goto unlock;
5622 }
5623 clear_page_huge_active(page);
5624 list_move_tail(&page->lru, list);
5625unlock:
5626 spin_unlock(&hugetlb_lock);
5627 return ret;
5628}
5629
5630void putback_active_hugepage(struct page *page)
5631{
5632 VM_BUG_ON_PAGE(!PageHead(page), page);
5633 spin_lock(&hugetlb_lock);
5634 set_page_huge_active(page);
5635 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5636 spin_unlock(&hugetlb_lock);
5637 put_page(page);
5638}
5639
5640void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5641{
5642 struct hstate *h = page_hstate(oldpage);
5643
5644 hugetlb_cgroup_migrate(oldpage, newpage);
5645 set_page_owner_migrate_reason(newpage, reason);
5646
5647 /*
5648 * transfer temporary state of the new huge page. This is
5649 * reverse to other transitions because the newpage is going to
5650 * be final while the old one will be freed so it takes over
5651 * the temporary status.
5652 *
5653 * Also note that we have to transfer the per-node surplus state
5654 * here as well otherwise the global surplus count will not match
5655 * the per-node's.
5656 */
5657 if (PageHugeTemporary(newpage)) {
5658 int old_nid = page_to_nid(oldpage);
5659 int new_nid = page_to_nid(newpage);
5660
5661 SetPageHugeTemporary(oldpage);
5662 ClearPageHugeTemporary(newpage);
5663
5664 spin_lock(&hugetlb_lock);
5665 if (h->surplus_huge_pages_node[old_nid]) {
5666 h->surplus_huge_pages_node[old_nid]--;
5667 h->surplus_huge_pages_node[new_nid]++;
5668 }
5669 spin_unlock(&hugetlb_lock);
5670 }
5671}
5672
5673#ifdef CONFIG_CMA
5674static bool cma_reserve_called __initdata;
5675
5676static int __init cmdline_parse_hugetlb_cma(char *p)
5677{
5678 hugetlb_cma_size = memparse(p, &p);
5679 return 0;
5680}
5681
5682early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5683
5684void __init hugetlb_cma_reserve(int order)
5685{
5686 unsigned long size, reserved, per_node;
5687 int nid;
5688
5689 cma_reserve_called = true;
5690
5691 if (!hugetlb_cma_size)
5692 return;
5693
5694 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5695 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5696 (PAGE_SIZE << order) / SZ_1M);
5697 return;
5698 }
5699
5700 /*
5701 * If 3 GB area is requested on a machine with 4 numa nodes,
5702 * let's allocate 1 GB on first three nodes and ignore the last one.
5703 */
5704 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5705 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5706 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5707
5708 reserved = 0;
5709 for_each_node_state(nid, N_ONLINE) {
5710 int res;
5711 char name[20];
5712
5713 size = min(per_node, hugetlb_cma_size - reserved);
5714 size = round_up(size, PAGE_SIZE << order);
5715
5716 snprintf(name, 20, "hugetlb%d", nid);
5717 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5718 0, false, name,
5719 &hugetlb_cma[nid], nid);
5720 if (res) {
5721 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5722 res, nid);
5723 continue;
5724 }
5725
5726 reserved += size;
5727 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5728 size / SZ_1M, nid);
5729
5730 if (reserved >= hugetlb_cma_size)
5731 break;
5732 }
5733}
5734
5735void __init hugetlb_cma_check(void)
5736{
5737 if (!hugetlb_cma_size || cma_reserve_called)
5738 return;
5739
5740 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5741}
5742
5743#endif /* CONFIG_CMA */