Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic hugetlb support.
   4 * (C) Nadia Yvette Chambers, April 2004
   5 */
   6#include <linux/list.h>
   7#include <linux/init.h>
   8#include <linux/mm.h>
   9#include <linux/seq_file.h>
  10#include <linux/sysctl.h>
  11#include <linux/highmem.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/nodemask.h>
  14#include <linux/pagemap.h>
  15#include <linux/mempolicy.h>
  16#include <linux/compiler.h>
  17#include <linux/cpuset.h>
  18#include <linux/mutex.h>
  19#include <linux/memblock.h>
  20#include <linux/sysfs.h>
  21#include <linux/slab.h>
  22#include <linux/sched/mm.h>
  23#include <linux/mmdebug.h>
  24#include <linux/sched/signal.h>
  25#include <linux/rmap.h>
  26#include <linux/string_helpers.h>
  27#include <linux/swap.h>
  28#include <linux/swapops.h>
  29#include <linux/jhash.h>
  30#include <linux/numa.h>
  31#include <linux/llist.h>
  32#include <linux/cma.h>
  33#include <linux/migrate.h>
  34#include <linux/nospec.h>
  35#include <linux/delayacct.h>
  36#include <linux/memory.h>
  37#include <linux/mm_inline.h>
  38
  39#include <asm/page.h>
  40#include <asm/pgalloc.h>
  41#include <asm/tlb.h>
  42
  43#include <linux/io.h>
  44#include <linux/hugetlb.h>
  45#include <linux/hugetlb_cgroup.h>
  46#include <linux/node.h>
 
  47#include <linux/page_owner.h>
  48#include "internal.h"
  49#include "hugetlb_vmemmap.h"
  50
  51int hugetlb_max_hstate __read_mostly;
  52unsigned int default_hstate_idx;
  53struct hstate hstates[HUGE_MAX_HSTATE];
  54
  55#ifdef CONFIG_CMA
  56static struct cma *hugetlb_cma[MAX_NUMNODES];
  57static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
  58static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
  59{
  60	return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
  61				1 << order);
  62}
  63#else
  64static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
  65{
  66	return false;
  67}
  68#endif
  69static unsigned long hugetlb_cma_size __initdata;
  70
 
 
 
 
 
 
  71__initdata LIST_HEAD(huge_boot_pages);
  72
  73/* for command line parsing */
  74static struct hstate * __initdata parsed_hstate;
  75static unsigned long __initdata default_hstate_max_huge_pages;
  76static bool __initdata parsed_valid_hugepagesz = true;
  77static bool __initdata parsed_default_hugepagesz;
  78static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
  79
  80/*
  81 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  82 * free_huge_pages, and surplus_huge_pages.
  83 */
  84DEFINE_SPINLOCK(hugetlb_lock);
  85
  86/*
  87 * Serializes faults on the same logical page.  This is used to
  88 * prevent spurious OOMs when the hugepage pool is fully utilized.
  89 */
  90static int num_fault_mutexes;
  91struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  92
  93/* Forward declaration */
  94static int hugetlb_acct_memory(struct hstate *h, long delta);
  95static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
  96static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
  97static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
  98static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
  99		unsigned long start, unsigned long end);
 100static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
 101
 102static inline bool subpool_is_free(struct hugepage_subpool *spool)
 103{
 104	if (spool->count)
 105		return false;
 106	if (spool->max_hpages != -1)
 107		return spool->used_hpages == 0;
 108	if (spool->min_hpages != -1)
 109		return spool->rsv_hpages == spool->min_hpages;
 110
 111	return true;
 112}
 113
 114static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
 115						unsigned long irq_flags)
 116{
 117	spin_unlock_irqrestore(&spool->lock, irq_flags);
 118
 119	/* If no pages are used, and no other handles to the subpool
 120	 * remain, give up any reservations based on minimum size and
 121	 * free the subpool */
 122	if (subpool_is_free(spool)) {
 123		if (spool->min_hpages != -1)
 124			hugetlb_acct_memory(spool->hstate,
 125						-spool->min_hpages);
 126		kfree(spool);
 127	}
 128}
 129
 130struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
 131						long min_hpages)
 132{
 133	struct hugepage_subpool *spool;
 134
 135	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
 136	if (!spool)
 137		return NULL;
 138
 139	spin_lock_init(&spool->lock);
 140	spool->count = 1;
 141	spool->max_hpages = max_hpages;
 142	spool->hstate = h;
 143	spool->min_hpages = min_hpages;
 144
 145	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 146		kfree(spool);
 147		return NULL;
 148	}
 149	spool->rsv_hpages = min_hpages;
 150
 151	return spool;
 152}
 153
 154void hugepage_put_subpool(struct hugepage_subpool *spool)
 155{
 156	unsigned long flags;
 157
 158	spin_lock_irqsave(&spool->lock, flags);
 159	BUG_ON(!spool->count);
 160	spool->count--;
 161	unlock_or_release_subpool(spool, flags);
 162}
 163
 164/*
 165 * Subpool accounting for allocating and reserving pages.
 166 * Return -ENOMEM if there are not enough resources to satisfy the
 167 * request.  Otherwise, return the number of pages by which the
 168 * global pools must be adjusted (upward).  The returned value may
 169 * only be different than the passed value (delta) in the case where
 170 * a subpool minimum size must be maintained.
 171 */
 172static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 173				      long delta)
 174{
 175	long ret = delta;
 176
 177	if (!spool)
 178		return ret;
 179
 180	spin_lock_irq(&spool->lock);
 181
 182	if (spool->max_hpages != -1) {		/* maximum size accounting */
 183		if ((spool->used_hpages + delta) <= spool->max_hpages)
 184			spool->used_hpages += delta;
 185		else {
 186			ret = -ENOMEM;
 187			goto unlock_ret;
 188		}
 189	}
 190
 191	/* minimum size accounting */
 192	if (spool->min_hpages != -1 && spool->rsv_hpages) {
 193		if (delta > spool->rsv_hpages) {
 194			/*
 195			 * Asking for more reserves than those already taken on
 196			 * behalf of subpool.  Return difference.
 197			 */
 198			ret = delta - spool->rsv_hpages;
 199			spool->rsv_hpages = 0;
 200		} else {
 201			ret = 0;	/* reserves already accounted for */
 202			spool->rsv_hpages -= delta;
 203		}
 204	}
 205
 206unlock_ret:
 207	spin_unlock_irq(&spool->lock);
 208	return ret;
 209}
 210
 211/*
 212 * Subpool accounting for freeing and unreserving pages.
 213 * Return the number of global page reservations that must be dropped.
 214 * The return value may only be different than the passed value (delta)
 215 * in the case where a subpool minimum size must be maintained.
 216 */
 217static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 218				       long delta)
 219{
 220	long ret = delta;
 221	unsigned long flags;
 222
 223	if (!spool)
 224		return delta;
 225
 226	spin_lock_irqsave(&spool->lock, flags);
 227
 228	if (spool->max_hpages != -1)		/* maximum size accounting */
 229		spool->used_hpages -= delta;
 230
 231	 /* minimum size accounting */
 232	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
 233		if (spool->rsv_hpages + delta <= spool->min_hpages)
 234			ret = 0;
 235		else
 236			ret = spool->rsv_hpages + delta - spool->min_hpages;
 237
 238		spool->rsv_hpages += delta;
 239		if (spool->rsv_hpages > spool->min_hpages)
 240			spool->rsv_hpages = spool->min_hpages;
 241	}
 242
 243	/*
 244	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
 245	 * quota reference, free it now.
 246	 */
 247	unlock_or_release_subpool(spool, flags);
 248
 249	return ret;
 250}
 251
 252static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 253{
 254	return HUGETLBFS_SB(inode->i_sb)->spool;
 255}
 256
 257static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 258{
 259	return subpool_inode(file_inode(vma->vm_file));
 260}
 261
 262/*
 263 * hugetlb vma_lock helper routines
 264 */
 265void hugetlb_vma_lock_read(struct vm_area_struct *vma)
 266{
 267	if (__vma_shareable_lock(vma)) {
 268		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 269
 270		down_read(&vma_lock->rw_sema);
 271	} else if (__vma_private_lock(vma)) {
 272		struct resv_map *resv_map = vma_resv_map(vma);
 273
 274		down_read(&resv_map->rw_sema);
 275	}
 276}
 277
 278void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
 279{
 280	if (__vma_shareable_lock(vma)) {
 281		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 282
 283		up_read(&vma_lock->rw_sema);
 284	} else if (__vma_private_lock(vma)) {
 285		struct resv_map *resv_map = vma_resv_map(vma);
 286
 287		up_read(&resv_map->rw_sema);
 288	}
 289}
 290
 291void hugetlb_vma_lock_write(struct vm_area_struct *vma)
 292{
 293	if (__vma_shareable_lock(vma)) {
 294		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 295
 296		down_write(&vma_lock->rw_sema);
 297	} else if (__vma_private_lock(vma)) {
 298		struct resv_map *resv_map = vma_resv_map(vma);
 299
 300		down_write(&resv_map->rw_sema);
 301	}
 302}
 303
 304void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
 305{
 306	if (__vma_shareable_lock(vma)) {
 307		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 308
 309		up_write(&vma_lock->rw_sema);
 310	} else if (__vma_private_lock(vma)) {
 311		struct resv_map *resv_map = vma_resv_map(vma);
 312
 313		up_write(&resv_map->rw_sema);
 314	}
 315}
 316
 317int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
 318{
 319
 320	if (__vma_shareable_lock(vma)) {
 321		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 322
 323		return down_write_trylock(&vma_lock->rw_sema);
 324	} else if (__vma_private_lock(vma)) {
 325		struct resv_map *resv_map = vma_resv_map(vma);
 326
 327		return down_write_trylock(&resv_map->rw_sema);
 328	}
 329
 330	return 1;
 331}
 332
 333void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
 334{
 335	if (__vma_shareable_lock(vma)) {
 336		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 337
 338		lockdep_assert_held(&vma_lock->rw_sema);
 339	} else if (__vma_private_lock(vma)) {
 340		struct resv_map *resv_map = vma_resv_map(vma);
 341
 342		lockdep_assert_held(&resv_map->rw_sema);
 343	}
 344}
 345
 346void hugetlb_vma_lock_release(struct kref *kref)
 347{
 348	struct hugetlb_vma_lock *vma_lock = container_of(kref,
 349			struct hugetlb_vma_lock, refs);
 350
 351	kfree(vma_lock);
 352}
 353
 354static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
 355{
 356	struct vm_area_struct *vma = vma_lock->vma;
 357
 358	/*
 359	 * vma_lock structure may or not be released as a result of put,
 360	 * it certainly will no longer be attached to vma so clear pointer.
 361	 * Semaphore synchronizes access to vma_lock->vma field.
 362	 */
 363	vma_lock->vma = NULL;
 364	vma->vm_private_data = NULL;
 365	up_write(&vma_lock->rw_sema);
 366	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
 367}
 368
 369static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
 370{
 371	if (__vma_shareable_lock(vma)) {
 372		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 373
 374		__hugetlb_vma_unlock_write_put(vma_lock);
 375	} else if (__vma_private_lock(vma)) {
 376		struct resv_map *resv_map = vma_resv_map(vma);
 377
 378		/* no free for anon vmas, but still need to unlock */
 379		up_write(&resv_map->rw_sema);
 380	}
 381}
 382
 383static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
 384{
 385	/*
 386	 * Only present in sharable vmas.
 387	 */
 388	if (!vma || !__vma_shareable_lock(vma))
 389		return;
 390
 391	if (vma->vm_private_data) {
 392		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 393
 394		down_write(&vma_lock->rw_sema);
 395		__hugetlb_vma_unlock_write_put(vma_lock);
 396	}
 397}
 398
 399static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
 400{
 401	struct hugetlb_vma_lock *vma_lock;
 402
 403	/* Only establish in (flags) sharable vmas */
 404	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
 405		return;
 406
 407	/* Should never get here with non-NULL vm_private_data */
 408	if (vma->vm_private_data)
 409		return;
 410
 411	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
 412	if (!vma_lock) {
 413		/*
 414		 * If we can not allocate structure, then vma can not
 415		 * participate in pmd sharing.  This is only a possible
 416		 * performance enhancement and memory saving issue.
 417		 * However, the lock is also used to synchronize page
 418		 * faults with truncation.  If the lock is not present,
 419		 * unlikely races could leave pages in a file past i_size
 420		 * until the file is removed.  Warn in the unlikely case of
 421		 * allocation failure.
 422		 */
 423		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
 424		return;
 425	}
 426
 427	kref_init(&vma_lock->refs);
 428	init_rwsem(&vma_lock->rw_sema);
 429	vma_lock->vma = vma;
 430	vma->vm_private_data = vma_lock;
 431}
 432
 433/* Helper that removes a struct file_region from the resv_map cache and returns
 434 * it for use.
 435 */
 436static struct file_region *
 437get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
 438{
 439	struct file_region *nrg;
 440
 441	VM_BUG_ON(resv->region_cache_count <= 0);
 442
 443	resv->region_cache_count--;
 444	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
 
 445	list_del(&nrg->link);
 446
 447	nrg->from = from;
 448	nrg->to = to;
 449
 450	return nrg;
 451}
 452
 453static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
 454					      struct file_region *rg)
 455{
 456#ifdef CONFIG_CGROUP_HUGETLB
 457	nrg->reservation_counter = rg->reservation_counter;
 458	nrg->css = rg->css;
 459	if (rg->css)
 460		css_get(rg->css);
 461#endif
 462}
 463
 464/* Helper that records hugetlb_cgroup uncharge info. */
 465static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
 466						struct hstate *h,
 467						struct resv_map *resv,
 468						struct file_region *nrg)
 469{
 470#ifdef CONFIG_CGROUP_HUGETLB
 471	if (h_cg) {
 472		nrg->reservation_counter =
 473			&h_cg->rsvd_hugepage[hstate_index(h)];
 474		nrg->css = &h_cg->css;
 475		/*
 476		 * The caller will hold exactly one h_cg->css reference for the
 477		 * whole contiguous reservation region. But this area might be
 478		 * scattered when there are already some file_regions reside in
 479		 * it. As a result, many file_regions may share only one css
 480		 * reference. In order to ensure that one file_region must hold
 481		 * exactly one h_cg->css reference, we should do css_get for
 482		 * each file_region and leave the reference held by caller
 483		 * untouched.
 484		 */
 485		css_get(&h_cg->css);
 486		if (!resv->pages_per_hpage)
 487			resv->pages_per_hpage = pages_per_huge_page(h);
 488		/* pages_per_hpage should be the same for all entries in
 489		 * a resv_map.
 490		 */
 491		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
 492	} else {
 493		nrg->reservation_counter = NULL;
 494		nrg->css = NULL;
 495	}
 496#endif
 497}
 498
 499static void put_uncharge_info(struct file_region *rg)
 500{
 501#ifdef CONFIG_CGROUP_HUGETLB
 502	if (rg->css)
 503		css_put(rg->css);
 504#endif
 505}
 506
 507static bool has_same_uncharge_info(struct file_region *rg,
 508				   struct file_region *org)
 509{
 510#ifdef CONFIG_CGROUP_HUGETLB
 511	return rg->reservation_counter == org->reservation_counter &&
 
 512	       rg->css == org->css;
 513
 514#else
 515	return true;
 516#endif
 517}
 518
 519static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
 520{
 521	struct file_region *nrg, *prg;
 522
 523	prg = list_prev_entry(rg, link);
 524	if (&prg->link != &resv->regions && prg->to == rg->from &&
 525	    has_same_uncharge_info(prg, rg)) {
 526		prg->to = rg->to;
 527
 528		list_del(&rg->link);
 529		put_uncharge_info(rg);
 530		kfree(rg);
 531
 532		rg = prg;
 
 533	}
 534
 535	nrg = list_next_entry(rg, link);
 536	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
 537	    has_same_uncharge_info(nrg, rg)) {
 538		nrg->from = rg->from;
 539
 540		list_del(&rg->link);
 541		put_uncharge_info(rg);
 542		kfree(rg);
 543	}
 544}
 545
 546static inline long
 547hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
 548		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
 549		     long *regions_needed)
 550{
 551	struct file_region *nrg;
 552
 553	if (!regions_needed) {
 554		nrg = get_file_region_entry_from_cache(map, from, to);
 555		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
 556		list_add(&nrg->link, rg);
 557		coalesce_file_region(map, nrg);
 558	} else
 559		*regions_needed += 1;
 560
 561	return to - from;
 562}
 563
 564/*
 565 * Must be called with resv->lock held.
 566 *
 567 * Calling this with regions_needed != NULL will count the number of pages
 568 * to be added but will not modify the linked list. And regions_needed will
 569 * indicate the number of file_regions needed in the cache to carry out to add
 570 * the regions for this range.
 571 */
 572static long add_reservation_in_range(struct resv_map *resv, long f, long t,
 573				     struct hugetlb_cgroup *h_cg,
 574				     struct hstate *h, long *regions_needed)
 
 575{
 576	long add = 0;
 577	struct list_head *head = &resv->regions;
 578	long last_accounted_offset = f;
 579	struct file_region *iter, *trg = NULL;
 580	struct list_head *rg = NULL;
 581
 582	if (regions_needed)
 583		*regions_needed = 0;
 584
 585	/* In this loop, we essentially handle an entry for the range
 586	 * [last_accounted_offset, iter->from), at every iteration, with some
 587	 * bounds checking.
 588	 */
 589	list_for_each_entry_safe(iter, trg, head, link) {
 590		/* Skip irrelevant regions that start before our range. */
 591		if (iter->from < f) {
 592			/* If this region ends after the last accounted offset,
 593			 * then we need to update last_accounted_offset.
 594			 */
 595			if (iter->to > last_accounted_offset)
 596				last_accounted_offset = iter->to;
 597			continue;
 598		}
 599
 600		/* When we find a region that starts beyond our range, we've
 601		 * finished.
 602		 */
 603		if (iter->from >= t) {
 604			rg = iter->link.prev;
 605			break;
 606		}
 607
 608		/* Add an entry for last_accounted_offset -> iter->from, and
 609		 * update last_accounted_offset.
 610		 */
 611		if (iter->from > last_accounted_offset)
 612			add += hugetlb_resv_map_add(resv, iter->link.prev,
 613						    last_accounted_offset,
 614						    iter->from, h, h_cg,
 615						    regions_needed);
 
 
 
 
 
 
 
 616
 617		last_accounted_offset = iter->to;
 618	}
 619
 620	/* Handle the case where our range extends beyond
 621	 * last_accounted_offset.
 622	 */
 623	if (!rg)
 624		rg = head->prev;
 625	if (last_accounted_offset < t)
 626		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
 627					    t, h, h_cg, regions_needed);
 
 
 
 
 
 
 628
 
 629	return add;
 630}
 631
 632/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
 633 */
 634static int allocate_file_region_entries(struct resv_map *resv,
 635					int regions_needed)
 636	__must_hold(&resv->lock)
 637{
 638	LIST_HEAD(allocated_regions);
 639	int to_allocate = 0, i = 0;
 640	struct file_region *trg = NULL, *rg = NULL;
 641
 642	VM_BUG_ON(regions_needed < 0);
 643
 
 
 644	/*
 645	 * Check for sufficient descriptors in the cache to accommodate
 646	 * the number of in progress add operations plus regions_needed.
 647	 *
 648	 * This is a while loop because when we drop the lock, some other call
 649	 * to region_add or region_del may have consumed some region_entries,
 650	 * so we keep looping here until we finally have enough entries for
 651	 * (adds_in_progress + regions_needed).
 652	 */
 653	while (resv->region_cache_count <
 654	       (resv->adds_in_progress + regions_needed)) {
 655		to_allocate = resv->adds_in_progress + regions_needed -
 656			      resv->region_cache_count;
 657
 658		/* At this point, we should have enough entries in the cache
 659		 * for all the existing adds_in_progress. We should only be
 660		 * needing to allocate for regions_needed.
 661		 */
 662		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
 663
 664		spin_unlock(&resv->lock);
 665		for (i = 0; i < to_allocate; i++) {
 666			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 667			if (!trg)
 668				goto out_of_memory;
 669			list_add(&trg->link, &allocated_regions);
 670		}
 671
 672		spin_lock(&resv->lock);
 673
 674		list_splice(&allocated_regions, &resv->region_cache);
 675		resv->region_cache_count += to_allocate;
 
 
 
 676	}
 677
 678	return 0;
 679
 680out_of_memory:
 681	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
 682		list_del(&rg->link);
 683		kfree(rg);
 684	}
 685	return -ENOMEM;
 686}
 687
 688/*
 689 * Add the huge page range represented by [f, t) to the reserve
 690 * map.  Regions will be taken from the cache to fill in this range.
 691 * Sufficient regions should exist in the cache due to the previous
 692 * call to region_chg with the same range, but in some cases the cache will not
 693 * have sufficient entries due to races with other code doing region_add or
 694 * region_del.  The extra needed entries will be allocated.
 695 *
 696 * regions_needed is the out value provided by a previous call to region_chg.
 697 *
 698 * Return the number of new huge pages added to the map.  This number is greater
 699 * than or equal to zero.  If file_region entries needed to be allocated for
 700 * this operation and we were not able to allocate, it returns -ENOMEM.
 701 * region_add of regions of length 1 never allocate file_regions and cannot
 702 * fail; region_chg will always allocate at least 1 entry and a region_add for
 703 * 1 page will only require at most 1 entry.
 704 */
 705static long region_add(struct resv_map *resv, long f, long t,
 706		       long in_regions_needed, struct hstate *h,
 707		       struct hugetlb_cgroup *h_cg)
 708{
 709	long add = 0, actual_regions_needed = 0;
 710
 711	spin_lock(&resv->lock);
 712retry:
 713
 714	/* Count how many regions are actually needed to execute this add. */
 715	add_reservation_in_range(resv, f, t, NULL, NULL,
 716				 &actual_regions_needed);
 717
 718	/*
 719	 * Check for sufficient descriptors in the cache to accommodate
 720	 * this add operation. Note that actual_regions_needed may be greater
 721	 * than in_regions_needed, as the resv_map may have been modified since
 722	 * the region_chg call. In this case, we need to make sure that we
 723	 * allocate extra entries, such that we have enough for all the
 724	 * existing adds_in_progress, plus the excess needed for this
 725	 * operation.
 726	 */
 727	if (actual_regions_needed > in_regions_needed &&
 728	    resv->region_cache_count <
 729		    resv->adds_in_progress +
 730			    (actual_regions_needed - in_regions_needed)) {
 731		/* region_add operation of range 1 should never need to
 732		 * allocate file_region entries.
 733		 */
 734		VM_BUG_ON(t - f <= 1);
 735
 736		if (allocate_file_region_entries(
 737			    resv, actual_regions_needed - in_regions_needed)) {
 738			return -ENOMEM;
 739		}
 740
 741		goto retry;
 742	}
 743
 744	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
 745
 746	resv->adds_in_progress -= in_regions_needed;
 747
 748	spin_unlock(&resv->lock);
 
 749	return add;
 750}
 751
 752/*
 753 * Examine the existing reserve map and determine how many
 754 * huge pages in the specified range [f, t) are NOT currently
 755 * represented.  This routine is called before a subsequent
 756 * call to region_add that will actually modify the reserve
 757 * map to add the specified range [f, t).  region_chg does
 758 * not change the number of huge pages represented by the
 759 * map.  A number of new file_region structures is added to the cache as a
 760 * placeholder, for the subsequent region_add call to use. At least 1
 761 * file_region structure is added.
 762 *
 763 * out_regions_needed is the number of regions added to the
 764 * resv->adds_in_progress.  This value needs to be provided to a follow up call
 765 * to region_add or region_abort for proper accounting.
 766 *
 767 * Returns the number of huge pages that need to be added to the existing
 768 * reservation map for the range [f, t).  This number is greater or equal to
 769 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 770 * is needed and can not be allocated.
 771 */
 772static long region_chg(struct resv_map *resv, long f, long t,
 773		       long *out_regions_needed)
 774{
 775	long chg = 0;
 776
 777	spin_lock(&resv->lock);
 778
 779	/* Count how many hugepages in this range are NOT represented. */
 780	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
 781				       out_regions_needed);
 782
 783	if (*out_regions_needed == 0)
 784		*out_regions_needed = 1;
 785
 786	if (allocate_file_region_entries(resv, *out_regions_needed))
 787		return -ENOMEM;
 788
 789	resv->adds_in_progress += *out_regions_needed;
 790
 791	spin_unlock(&resv->lock);
 792	return chg;
 793}
 794
 795/*
 796 * Abort the in progress add operation.  The adds_in_progress field
 797 * of the resv_map keeps track of the operations in progress between
 798 * calls to region_chg and region_add.  Operations are sometimes
 799 * aborted after the call to region_chg.  In such cases, region_abort
 800 * is called to decrement the adds_in_progress counter. regions_needed
 801 * is the value returned by the region_chg call, it is used to decrement
 802 * the adds_in_progress counter.
 803 *
 804 * NOTE: The range arguments [f, t) are not needed or used in this
 805 * routine.  They are kept to make reading the calling code easier as
 806 * arguments will match the associated region_chg call.
 807 */
 808static void region_abort(struct resv_map *resv, long f, long t,
 809			 long regions_needed)
 810{
 811	spin_lock(&resv->lock);
 812	VM_BUG_ON(!resv->region_cache_count);
 813	resv->adds_in_progress -= regions_needed;
 814	spin_unlock(&resv->lock);
 815}
 816
 817/*
 818 * Delete the specified range [f, t) from the reserve map.  If the
 819 * t parameter is LONG_MAX, this indicates that ALL regions after f
 820 * should be deleted.  Locate the regions which intersect [f, t)
 821 * and either trim, delete or split the existing regions.
 822 *
 823 * Returns the number of huge pages deleted from the reserve map.
 824 * In the normal case, the return value is zero or more.  In the
 825 * case where a region must be split, a new region descriptor must
 826 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 827 * NOTE: If the parameter t == LONG_MAX, then we will never split
 828 * a region and possibly return -ENOMEM.  Callers specifying
 829 * t == LONG_MAX do not need to check for -ENOMEM error.
 830 */
 831static long region_del(struct resv_map *resv, long f, long t)
 832{
 833	struct list_head *head = &resv->regions;
 834	struct file_region *rg, *trg;
 835	struct file_region *nrg = NULL;
 836	long del = 0;
 837
 838retry:
 839	spin_lock(&resv->lock);
 840	list_for_each_entry_safe(rg, trg, head, link) {
 841		/*
 842		 * Skip regions before the range to be deleted.  file_region
 843		 * ranges are normally of the form [from, to).  However, there
 844		 * may be a "placeholder" entry in the map which is of the form
 845		 * (from, to) with from == to.  Check for placeholder entries
 846		 * at the beginning of the range to be deleted.
 847		 */
 848		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 849			continue;
 850
 851		if (rg->from >= t)
 852			break;
 853
 854		if (f > rg->from && t < rg->to) { /* Must split region */
 855			/*
 856			 * Check for an entry in the cache before dropping
 857			 * lock and attempting allocation.
 858			 */
 859			if (!nrg &&
 860			    resv->region_cache_count > resv->adds_in_progress) {
 861				nrg = list_first_entry(&resv->region_cache,
 862							struct file_region,
 863							link);
 864				list_del(&nrg->link);
 865				resv->region_cache_count--;
 866			}
 867
 868			if (!nrg) {
 869				spin_unlock(&resv->lock);
 870				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 871				if (!nrg)
 872					return -ENOMEM;
 873				goto retry;
 874			}
 875
 876			del += t - f;
 877			hugetlb_cgroup_uncharge_file_region(
 878				resv, rg, t - f, false);
 879
 880			/* New entry for end of split region */
 881			nrg->from = t;
 882			nrg->to = rg->to;
 883
 884			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
 885
 886			INIT_LIST_HEAD(&nrg->link);
 887
 888			/* Original entry is trimmed */
 889			rg->to = f;
 890
 
 
 
 891			list_add(&nrg->link, &rg->link);
 892			nrg = NULL;
 893			break;
 894		}
 895
 896		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 897			del += rg->to - rg->from;
 898			hugetlb_cgroup_uncharge_file_region(resv, rg,
 899							    rg->to - rg->from, true);
 900			list_del(&rg->link);
 901			kfree(rg);
 902			continue;
 903		}
 904
 905		if (f <= rg->from) {	/* Trim beginning of region */
 906			hugetlb_cgroup_uncharge_file_region(resv, rg,
 907							    t - rg->from, false);
 908
 909			del += t - rg->from;
 910			rg->from = t;
 911		} else {		/* Trim end of region */
 912			hugetlb_cgroup_uncharge_file_region(resv, rg,
 913							    rg->to - f, false);
 914
 
 
 
 915			del += rg->to - f;
 916			rg->to = f;
 
 
 
 917		}
 918	}
 919
 920	spin_unlock(&resv->lock);
 921	kfree(nrg);
 922	return del;
 923}
 924
 925/*
 926 * A rare out of memory error was encountered which prevented removal of
 927 * the reserve map region for a page.  The huge page itself was free'ed
 928 * and removed from the page cache.  This routine will adjust the subpool
 929 * usage count, and the global reserve count if needed.  By incrementing
 930 * these counts, the reserve map entry which could not be deleted will
 931 * appear as a "reserved" entry instead of simply dangling with incorrect
 932 * counts.
 933 */
 934void hugetlb_fix_reserve_counts(struct inode *inode)
 935{
 936	struct hugepage_subpool *spool = subpool_inode(inode);
 937	long rsv_adjust;
 938	bool reserved = false;
 939
 940	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 941	if (rsv_adjust > 0) {
 942		struct hstate *h = hstate_inode(inode);
 943
 944		if (!hugetlb_acct_memory(h, 1))
 945			reserved = true;
 946	} else if (!rsv_adjust) {
 947		reserved = true;
 948	}
 949
 950	if (!reserved)
 951		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
 952}
 953
 954/*
 955 * Count and return the number of huge pages in the reserve map
 956 * that intersect with the range [f, t).
 957 */
 958static long region_count(struct resv_map *resv, long f, long t)
 959{
 960	struct list_head *head = &resv->regions;
 961	struct file_region *rg;
 962	long chg = 0;
 963
 964	spin_lock(&resv->lock);
 965	/* Locate each segment we overlap with, and count that overlap. */
 966	list_for_each_entry(rg, head, link) {
 967		long seg_from;
 968		long seg_to;
 969
 970		if (rg->to <= f)
 971			continue;
 972		if (rg->from >= t)
 973			break;
 974
 975		seg_from = max(rg->from, f);
 976		seg_to = min(rg->to, t);
 977
 978		chg += seg_to - seg_from;
 979	}
 980	spin_unlock(&resv->lock);
 981
 982	return chg;
 983}
 984
 985/*
 986 * Convert the address within this vma to the page offset within
 987 * the mapping, huge page units here.
 988 */
 989static pgoff_t vma_hugecache_offset(struct hstate *h,
 990			struct vm_area_struct *vma, unsigned long address)
 991{
 992	return ((address - vma->vm_start) >> huge_page_shift(h)) +
 993			(vma->vm_pgoff >> huge_page_order(h));
 994}
 995
 996/**
 997 * vma_kernel_pagesize - Page size granularity for this VMA.
 998 * @vma: The user mapping.
 999 *
1000 * Folios in this VMA will be aligned to, and at least the size of the
1001 * number of bytes returned by this function.
1002 *
1003 * Return: The default size of the folios allocated when backing a VMA.
 
 
1004 */
1005unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1006{
1007	if (vma->vm_ops && vma->vm_ops->pagesize)
1008		return vma->vm_ops->pagesize(vma);
1009	return PAGE_SIZE;
1010}
1011EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1012
1013/*
1014 * Return the page size being used by the MMU to back a VMA. In the majority
1015 * of cases, the page size used by the kernel matches the MMU size. On
1016 * architectures where it differs, an architecture-specific 'strong'
1017 * version of this symbol is required.
1018 */
1019__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1020{
1021	return vma_kernel_pagesize(vma);
1022}
1023
1024/*
1025 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1026 * bits of the reservation map pointer, which are always clear due to
1027 * alignment.
1028 */
1029#define HPAGE_RESV_OWNER    (1UL << 0)
1030#define HPAGE_RESV_UNMAPPED (1UL << 1)
1031#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1032
1033/*
1034 * These helpers are used to track how many pages are reserved for
1035 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1036 * is guaranteed to have their future faults succeed.
1037 *
1038 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1039 * the reserve counters are updated with the hugetlb_lock held. It is safe
1040 * to reset the VMA at fork() time as it is not in use yet and there is no
1041 * chance of the global counters getting corrupted as a result of the values.
1042 *
1043 * The private mapping reservation is represented in a subtly different
1044 * manner to a shared mapping.  A shared mapping has a region map associated
1045 * with the underlying file, this region map represents the backing file
1046 * pages which have ever had a reservation assigned which this persists even
1047 * after the page is instantiated.  A private mapping has a region map
1048 * associated with the original mmap which is attached to all VMAs which
1049 * reference it, this region map represents those offsets which have consumed
1050 * reservation ie. where pages have been instantiated.
1051 */
1052static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1053{
1054	return (unsigned long)vma->vm_private_data;
1055}
1056
1057static void set_vma_private_data(struct vm_area_struct *vma,
1058							unsigned long value)
1059{
1060	vma->vm_private_data = (void *)value;
1061}
1062
1063static void
1064resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1065					  struct hugetlb_cgroup *h_cg,
1066					  struct hstate *h)
1067{
1068#ifdef CONFIG_CGROUP_HUGETLB
1069	if (!h_cg || !h) {
1070		resv_map->reservation_counter = NULL;
1071		resv_map->pages_per_hpage = 0;
1072		resv_map->css = NULL;
1073	} else {
1074		resv_map->reservation_counter =
1075			&h_cg->rsvd_hugepage[hstate_index(h)];
1076		resv_map->pages_per_hpage = pages_per_huge_page(h);
1077		resv_map->css = &h_cg->css;
1078	}
1079#endif
1080}
1081
1082struct resv_map *resv_map_alloc(void)
1083{
1084	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1085	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1086
1087	if (!resv_map || !rg) {
1088		kfree(resv_map);
1089		kfree(rg);
1090		return NULL;
1091	}
1092
1093	kref_init(&resv_map->refs);
1094	spin_lock_init(&resv_map->lock);
1095	INIT_LIST_HEAD(&resv_map->regions);
1096	init_rwsem(&resv_map->rw_sema);
1097
1098	resv_map->adds_in_progress = 0;
1099	/*
1100	 * Initialize these to 0. On shared mappings, 0's here indicate these
1101	 * fields don't do cgroup accounting. On private mappings, these will be
1102	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1103	 * reservations are to be un-charged from here.
1104	 */
1105	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1106
1107	INIT_LIST_HEAD(&resv_map->region_cache);
1108	list_add(&rg->link, &resv_map->region_cache);
1109	resv_map->region_cache_count = 1;
1110
1111	return resv_map;
1112}
1113
1114void resv_map_release(struct kref *ref)
1115{
1116	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1117	struct list_head *head = &resv_map->region_cache;
1118	struct file_region *rg, *trg;
1119
1120	/* Clear out any active regions before we release the map. */
1121	region_del(resv_map, 0, LONG_MAX);
1122
1123	/* ... and any entries left in the cache */
1124	list_for_each_entry_safe(rg, trg, head, link) {
1125		list_del(&rg->link);
1126		kfree(rg);
1127	}
1128
1129	VM_BUG_ON(resv_map->adds_in_progress);
1130
1131	kfree(resv_map);
1132}
1133
1134static inline struct resv_map *inode_resv_map(struct inode *inode)
1135{
1136	/*
1137	 * At inode evict time, i_mapping may not point to the original
1138	 * address space within the inode.  This original address space
1139	 * contains the pointer to the resv_map.  So, always use the
1140	 * address space embedded within the inode.
1141	 * The VERY common case is inode->mapping == &inode->i_data but,
1142	 * this may not be true for device special inodes.
1143	 */
1144	return (struct resv_map *)(&inode->i_data)->i_private_data;
1145}
1146
1147static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1148{
1149	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1150	if (vma->vm_flags & VM_MAYSHARE) {
1151		struct address_space *mapping = vma->vm_file->f_mapping;
1152		struct inode *inode = mapping->host;
1153
1154		return inode_resv_map(inode);
1155
1156	} else {
1157		return (struct resv_map *)(get_vma_private_data(vma) &
1158							~HPAGE_RESV_MASK);
1159	}
1160}
1161
1162static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1163{
1164	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1165	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1166
1167	set_vma_private_data(vma, (unsigned long)map);
 
1168}
1169
1170static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1171{
1172	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1173	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1174
1175	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1176}
1177
1178static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1179{
1180	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1181
1182	return (get_vma_private_data(vma) & flag) != 0;
1183}
1184
1185bool __vma_private_lock(struct vm_area_struct *vma)
1186{
1187	return !(vma->vm_flags & VM_MAYSHARE) &&
1188		get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1189		is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1190}
1191
1192void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1193{
1194	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1195	/*
1196	 * Clear vm_private_data
1197	 * - For shared mappings this is a per-vma semaphore that may be
1198	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1199	 *   Before clearing, make sure pointer is not associated with vma
1200	 *   as this will leak the structure.  This is the case when called
1201	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1202	 *   been called to allocate a new structure.
1203	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1204	 *   not apply to children.  Faults generated by the children are
1205	 *   not guaranteed to succeed, even if read-only.
1206	 */
1207	if (vma->vm_flags & VM_MAYSHARE) {
1208		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1209
1210		if (vma_lock && vma_lock->vma != vma)
1211			vma->vm_private_data = NULL;
1212	} else
1213		vma->vm_private_data = NULL;
1214}
1215
1216/*
1217 * Reset and decrement one ref on hugepage private reservation.
1218 * Called with mm->mmap_lock writer semaphore held.
1219 * This function should be only used by move_vma() and operate on
1220 * same sized vma. It should never come here with last ref on the
1221 * reservation.
1222 */
1223void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1224{
1225	/*
1226	 * Clear the old hugetlb private page reservation.
1227	 * It has already been transferred to new_vma.
1228	 *
1229	 * During a mremap() operation of a hugetlb vma we call move_vma()
1230	 * which copies vma into new_vma and unmaps vma. After the copy
1231	 * operation both new_vma and vma share a reference to the resv_map
1232	 * struct, and at that point vma is about to be unmapped. We don't
1233	 * want to return the reservation to the pool at unmap of vma because
1234	 * the reservation still lives on in new_vma, so simply decrement the
1235	 * ref here and remove the resv_map reference from this vma.
1236	 */
1237	struct resv_map *reservations = vma_resv_map(vma);
1238
1239	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1240		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1241		kref_put(&reservations->refs, resv_map_release);
1242	}
1243
1244	hugetlb_dup_vma_private(vma);
1245}
1246
1247/* Returns true if the VMA has associated reserve pages */
1248static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1249{
1250	if (vma->vm_flags & VM_NORESERVE) {
1251		/*
1252		 * This address is already reserved by other process(chg == 0),
1253		 * so, we should decrement reserved count. Without decrementing,
1254		 * reserve count remains after releasing inode, because this
1255		 * allocated page will go into page cache and is regarded as
1256		 * coming from reserved pool in releasing step.  Currently, we
1257		 * don't have any other solution to deal with this situation
1258		 * properly, so add work-around here.
1259		 */
1260		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1261			return true;
1262		else
1263			return false;
1264	}
1265
1266	/* Shared mappings always use reserves */
1267	if (vma->vm_flags & VM_MAYSHARE) {
1268		/*
1269		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1270		 * be a region map for all pages.  The only situation where
1271		 * there is no region map is if a hole was punched via
1272		 * fallocate.  In this case, there really are no reserves to
1273		 * use.  This situation is indicated if chg != 0.
1274		 */
1275		if (chg)
1276			return false;
1277		else
1278			return true;
1279	}
1280
1281	/*
1282	 * Only the process that called mmap() has reserves for
1283	 * private mappings.
1284	 */
1285	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1286		/*
1287		 * Like the shared case above, a hole punch or truncate
1288		 * could have been performed on the private mapping.
1289		 * Examine the value of chg to determine if reserves
1290		 * actually exist or were previously consumed.
1291		 * Very Subtle - The value of chg comes from a previous
1292		 * call to vma_needs_reserves().  The reserve map for
1293		 * private mappings has different (opposite) semantics
1294		 * than that of shared mappings.  vma_needs_reserves()
1295		 * has already taken this difference in semantics into
1296		 * account.  Therefore, the meaning of chg is the same
1297		 * as in the shared case above.  Code could easily be
1298		 * combined, but keeping it separate draws attention to
1299		 * subtle differences.
1300		 */
1301		if (chg)
1302			return false;
1303		else
1304			return true;
1305	}
1306
1307	return false;
1308}
1309
1310static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1311{
1312	int nid = folio_nid(folio);
1313
1314	lockdep_assert_held(&hugetlb_lock);
1315	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1316
1317	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1318	h->free_huge_pages++;
1319	h->free_huge_pages_node[nid]++;
1320	folio_set_hugetlb_freed(folio);
1321}
1322
1323static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1324								int nid)
1325{
1326	struct folio *folio;
1327	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1328
1329	lockdep_assert_held(&hugetlb_lock);
1330	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1331		if (pin && !folio_is_longterm_pinnable(folio))
1332			continue;
1333
1334		if (folio_test_hwpoison(folio))
 
1335			continue;
1336
1337		list_move(&folio->lru, &h->hugepage_activelist);
1338		folio_ref_unfreeze(folio, 1);
1339		folio_clear_hugetlb_freed(folio);
1340		h->free_huge_pages--;
1341		h->free_huge_pages_node[nid]--;
1342		return folio;
1343	}
1344
1345	return NULL;
 
 
 
 
 
 
 
 
 
 
1346}
1347
1348static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1349							int nid, nodemask_t *nmask)
1350{
1351	unsigned int cpuset_mems_cookie;
1352	struct zonelist *zonelist;
1353	struct zone *zone;
1354	struct zoneref *z;
1355	int node = NUMA_NO_NODE;
1356
1357	zonelist = node_zonelist(nid, gfp_mask);
1358
1359retry_cpuset:
1360	cpuset_mems_cookie = read_mems_allowed_begin();
1361	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1362		struct folio *folio;
1363
1364		if (!cpuset_zone_allowed(zone, gfp_mask))
1365			continue;
1366		/*
1367		 * no need to ask again on the same node. Pool is node rather than
1368		 * zone aware
1369		 */
1370		if (zone_to_nid(zone) == node)
1371			continue;
1372		node = zone_to_nid(zone);
1373
1374		folio = dequeue_hugetlb_folio_node_exact(h, node);
1375		if (folio)
1376			return folio;
1377	}
1378	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1379		goto retry_cpuset;
1380
1381	return NULL;
1382}
1383
1384static unsigned long available_huge_pages(struct hstate *h)
1385{
1386	return h->free_huge_pages - h->resv_huge_pages;
1387}
1388
1389static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1390				struct vm_area_struct *vma,
1391				unsigned long address, int avoid_reserve,
1392				long chg)
1393{
1394	struct folio *folio = NULL;
1395	struct mempolicy *mpol;
1396	gfp_t gfp_mask;
1397	nodemask_t *nodemask;
1398	int nid;
1399
1400	/*
1401	 * A child process with MAP_PRIVATE mappings created by their parent
1402	 * have no page reserves. This check ensures that reservations are
1403	 * not "stolen". The child may still get SIGKILLed
1404	 */
1405	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
 
1406		goto err;
1407
1408	/* If reserves cannot be used, ensure enough pages are in the pool */
1409	if (avoid_reserve && !available_huge_pages(h))
1410		goto err;
1411
1412	gfp_mask = htlb_alloc_mask(h);
1413	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1414
1415	if (mpol_is_preferred_many(mpol)) {
1416		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1417							nid, nodemask);
1418
1419		/* Fallback to all nodes if page==NULL */
1420		nodemask = NULL;
1421	}
1422
1423	if (!folio)
1424		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1425							nid, nodemask);
1426
1427	if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1428		folio_set_hugetlb_restore_reserve(folio);
1429		h->resv_huge_pages--;
1430	}
1431
1432	mpol_cond_put(mpol);
1433	return folio;
1434
1435err:
1436	return NULL;
1437}
1438
1439/*
1440 * common helper functions for hstate_next_node_to_{alloc|free}.
1441 * We may have allocated or freed a huge page based on a different
1442 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1443 * be outside of *nodes_allowed.  Ensure that we use an allowed
1444 * node for alloc or free.
1445 */
1446static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1447{
1448	nid = next_node_in(nid, *nodes_allowed);
1449	VM_BUG_ON(nid >= MAX_NUMNODES);
1450
1451	return nid;
1452}
1453
1454static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1455{
1456	if (!node_isset(nid, *nodes_allowed))
1457		nid = next_node_allowed(nid, nodes_allowed);
1458	return nid;
1459}
1460
1461/*
1462 * returns the previously saved node ["this node"] from which to
1463 * allocate a persistent huge page for the pool and advance the
1464 * next node from which to allocate, handling wrap at end of node
1465 * mask.
1466 */
1467static int hstate_next_node_to_alloc(struct hstate *h,
1468					nodemask_t *nodes_allowed)
1469{
1470	int nid;
1471
1472	VM_BUG_ON(!nodes_allowed);
1473
1474	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1475	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1476
1477	return nid;
1478}
1479
1480/*
1481 * helper for remove_pool_hugetlb_folio() - return the previously saved
1482 * node ["this node"] from which to free a huge page.  Advance the
1483 * next node id whether or not we find a free huge page to free so
1484 * that the next attempt to free addresses the next node.
1485 */
1486static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1487{
1488	int nid;
1489
1490	VM_BUG_ON(!nodes_allowed);
1491
1492	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1493	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1494
1495	return nid;
1496}
1497
1498#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1499	for (nr_nodes = nodes_weight(*mask);				\
1500		nr_nodes > 0 &&						\
1501		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1502		nr_nodes--)
1503
1504#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1505	for (nr_nodes = nodes_weight(*mask);				\
1506		nr_nodes > 0 &&						\
1507		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1508		nr_nodes--)
1509
1510/* used to demote non-gigantic_huge pages as well */
1511static void __destroy_compound_gigantic_folio(struct folio *folio,
1512					unsigned int order, bool demote)
1513{
1514	int i;
1515	int nr_pages = 1 << order;
1516	struct page *p;
 
 
 
 
1517
1518	atomic_set(&folio->_entire_mapcount, 0);
1519	atomic_set(&folio->_nr_pages_mapped, 0);
1520	atomic_set(&folio->_pincount, 0);
1521
1522	for (i = 1; i < nr_pages; i++) {
1523		p = folio_page(folio, i);
1524		p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1525		p->mapping = NULL;
1526		clear_compound_head(p);
1527		if (!demote)
1528			set_page_refcounted(p);
1529	}
1530
1531	__folio_clear_head(folio);
 
1532}
1533
1534static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1535					unsigned int order)
1536{
1537	__destroy_compound_gigantic_folio(folio, order, true);
1538}
1539
1540#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1541static void destroy_compound_gigantic_folio(struct folio *folio,
1542					unsigned int order)
1543{
1544	__destroy_compound_gigantic_folio(folio, order, false);
1545}
1546
1547static void free_gigantic_folio(struct folio *folio, unsigned int order)
1548{
1549	/*
1550	 * If the page isn't allocated using the cma allocator,
1551	 * cma_release() returns false.
1552	 */
1553#ifdef CONFIG_CMA
1554	int nid = folio_nid(folio);
1555
1556	if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1557		return;
1558#endif
1559
1560	free_contig_range(folio_pfn(folio), 1 << order);
1561}
1562
1563#ifdef CONFIG_CONTIG_ALLOC
1564static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1565		int nid, nodemask_t *nodemask)
1566{
1567	struct page *page;
1568	unsigned long nr_pages = pages_per_huge_page(h);
1569	if (nid == NUMA_NO_NODE)
1570		nid = numa_mem_id();
1571
1572#ifdef CONFIG_CMA
1573	{
 
1574		int node;
1575
1576		if (hugetlb_cma[nid]) {
1577			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1578					huge_page_order(h), true);
1579			if (page)
1580				return page_folio(page);
1581		}
1582
1583		if (!(gfp_mask & __GFP_THISNODE)) {
1584			for_each_node_mask(node, *nodemask) {
1585				if (node == nid || !hugetlb_cma[node])
1586					continue;
1587
1588				page = cma_alloc(hugetlb_cma[node], nr_pages,
1589						huge_page_order(h), true);
1590				if (page)
1591					return page_folio(page);
1592			}
1593		}
1594	}
1595#endif
1596
1597	page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1598	return page ? page_folio(page) : NULL;
1599}
1600
 
 
1601#else /* !CONFIG_CONTIG_ALLOC */
1602static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1603					int nid, nodemask_t *nodemask)
1604{
1605	return NULL;
1606}
1607#endif /* CONFIG_CONTIG_ALLOC */
1608
1609#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1610static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1611					int nid, nodemask_t *nodemask)
1612{
1613	return NULL;
1614}
1615static inline void free_gigantic_folio(struct folio *folio,
1616						unsigned int order) { }
1617static inline void destroy_compound_gigantic_folio(struct folio *folio,
1618						unsigned int order) { }
1619#endif
1620
1621static inline void __clear_hugetlb_destructor(struct hstate *h,
1622						struct folio *folio)
1623{
1624	lockdep_assert_held(&hugetlb_lock);
1625
1626	folio_clear_hugetlb(folio);
1627}
1628
1629/*
1630 * Remove hugetlb folio from lists.
1631 * If vmemmap exists for the folio, update dtor so that the folio appears
1632 * as just a compound page.  Otherwise, wait until after allocating vmemmap
1633 * to update dtor.
1634 *
1635 * A reference is held on the folio, except in the case of demote.
1636 *
1637 * Must be called with hugetlb lock held.
1638 */
1639static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1640							bool adjust_surplus,
1641							bool demote)
1642{
1643	int nid = folio_nid(folio);
1644
1645	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1646	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1647
1648	lockdep_assert_held(&hugetlb_lock);
1649	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1650		return;
1651
1652	list_del(&folio->lru);
1653
1654	if (folio_test_hugetlb_freed(folio)) {
1655		h->free_huge_pages--;
1656		h->free_huge_pages_node[nid]--;
1657	}
1658	if (adjust_surplus) {
1659		h->surplus_huge_pages--;
1660		h->surplus_huge_pages_node[nid]--;
1661	}
1662
1663	/*
1664	 * We can only clear the hugetlb destructor after allocating vmemmap
1665	 * pages.  Otherwise, someone (memory error handling) may try to write
1666	 * to tail struct pages.
1667	 */
1668	if (!folio_test_hugetlb_vmemmap_optimized(folio))
1669		__clear_hugetlb_destructor(h, folio);
1670
1671	 /*
1672	  * In the case of demote we do not ref count the page as it will soon
1673	  * be turned into a page of smaller size.
1674	 */
1675	if (!demote)
1676		folio_ref_unfreeze(folio, 1);
1677
1678	h->nr_huge_pages--;
1679	h->nr_huge_pages_node[nid]--;
1680}
1681
1682static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1683							bool adjust_surplus)
1684{
1685	__remove_hugetlb_folio(h, folio, adjust_surplus, false);
1686}
1687
1688static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1689							bool adjust_surplus)
1690{
1691	__remove_hugetlb_folio(h, folio, adjust_surplus, true);
1692}
1693
1694static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1695			     bool adjust_surplus)
1696{
1697	int zeroed;
1698	int nid = folio_nid(folio);
1699
1700	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1701
1702	lockdep_assert_held(&hugetlb_lock);
1703
1704	INIT_LIST_HEAD(&folio->lru);
1705	h->nr_huge_pages++;
1706	h->nr_huge_pages_node[nid]++;
1707
1708	if (adjust_surplus) {
1709		h->surplus_huge_pages++;
1710		h->surplus_huge_pages_node[nid]++;
1711	}
1712
1713	folio_set_hugetlb(folio);
1714	folio_change_private(folio, NULL);
1715	/*
1716	 * We have to set hugetlb_vmemmap_optimized again as above
1717	 * folio_change_private(folio, NULL) cleared it.
1718	 */
1719	folio_set_hugetlb_vmemmap_optimized(folio);
1720
1721	/*
1722	 * This folio is about to be managed by the hugetlb allocator and
1723	 * should have no users.  Drop our reference, and check for others
1724	 * just in case.
1725	 */
1726	zeroed = folio_put_testzero(folio);
1727	if (unlikely(!zeroed))
1728		/*
1729		 * It is VERY unlikely soneone else has taken a ref
1730		 * on the folio.  In this case, we simply return as
1731		 * free_huge_folio() will be called when this other ref
1732		 * is dropped.
1733		 */
1734		return;
1735
1736	arch_clear_hugepage_flags(&folio->page);
1737	enqueue_hugetlb_folio(h, folio);
 
 
 
1738}
1739
1740static void __update_and_free_hugetlb_folio(struct hstate *h,
1741						struct folio *folio)
1742{
1743	bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
1744
1745	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1746		return;
1747
1748	/*
1749	 * If we don't know which subpages are hwpoisoned, we can't free
1750	 * the hugepage, so it's leaked intentionally.
1751	 */
1752	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1753		return;
1754
1755	/*
1756	 * If folio is not vmemmap optimized (!clear_dtor), then the folio
1757	 * is no longer identified as a hugetlb page.  hugetlb_vmemmap_restore_folio
1758	 * can only be passed hugetlb pages and will BUG otherwise.
1759	 */
1760	if (clear_dtor && hugetlb_vmemmap_restore_folio(h, folio)) {
1761		spin_lock_irq(&hugetlb_lock);
1762		/*
1763		 * If we cannot allocate vmemmap pages, just refuse to free the
1764		 * page and put the page back on the hugetlb free list and treat
1765		 * as a surplus page.
1766		 */
1767		add_hugetlb_folio(h, folio, true);
1768		spin_unlock_irq(&hugetlb_lock);
1769		return;
1770	}
1771
1772	/*
1773	 * Move PageHWPoison flag from head page to the raw error pages,
1774	 * which makes any healthy subpages reusable.
1775	 */
1776	if (unlikely(folio_test_hwpoison(folio)))
1777		folio_clear_hugetlb_hwpoison(folio);
1778
1779	/*
1780	 * If vmemmap pages were allocated above, then we need to clear the
1781	 * hugetlb destructor under the hugetlb lock.
1782	 */
1783	if (clear_dtor) {
1784		spin_lock_irq(&hugetlb_lock);
1785		__clear_hugetlb_destructor(h, folio);
1786		spin_unlock_irq(&hugetlb_lock);
1787	}
1788
1789	/*
1790	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1791	 * need to be given back to CMA in free_gigantic_folio.
1792	 */
1793	if (hstate_is_gigantic(h) ||
1794	    hugetlb_cma_folio(folio, huge_page_order(h))) {
1795		destroy_compound_gigantic_folio(folio, huge_page_order(h));
1796		free_gigantic_folio(folio, huge_page_order(h));
1797	} else {
1798		__free_pages(&folio->page, huge_page_order(h));
1799	}
 
1800}
1801
1802/*
1803 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1804 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1805 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1806 * the vmemmap pages.
1807 *
1808 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1809 * freed and frees them one-by-one. As the page->mapping pointer is going
1810 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1811 * structure of a lockless linked list of huge pages to be freed.
1812 */
1813static LLIST_HEAD(hpage_freelist);
1814
1815static void free_hpage_workfn(struct work_struct *work)
1816{
1817	struct llist_node *node;
1818
1819	node = llist_del_all(&hpage_freelist);
1820
1821	while (node) {
1822		struct folio *folio;
1823		struct hstate *h;
1824
1825		folio = container_of((struct address_space **)node,
1826				     struct folio, mapping);
1827		node = node->next;
1828		folio->mapping = NULL;
1829		/*
1830		 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1831		 * folio_hstate() is going to trigger because a previous call to
1832		 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1833		 * not use folio_hstate() directly.
1834		 */
1835		h = size_to_hstate(folio_size(folio));
1836
1837		__update_and_free_hugetlb_folio(h, folio);
1838
1839		cond_resched();
1840	}
1841}
1842static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1843
1844static inline void flush_free_hpage_work(struct hstate *h)
 
1845{
1846	if (hugetlb_vmemmap_optimizable(h))
1847		flush_work(&free_hpage_work);
1848}
1849
1850static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1851				 bool atomic)
1852{
1853	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1854		__update_and_free_hugetlb_folio(h, folio);
1855		return;
1856	}
1857
1858	/*
1859	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1860	 *
1861	 * Only call schedule_work() if hpage_freelist is previously
1862	 * empty. Otherwise, schedule_work() had been called but the workfn
1863	 * hasn't retrieved the list yet.
1864	 */
1865	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1866		schedule_work(&free_hpage_work);
1867}
1868
1869static void bulk_vmemmap_restore_error(struct hstate *h,
1870					struct list_head *folio_list,
1871					struct list_head *non_hvo_folios)
1872{
1873	struct folio *folio, *t_folio;
1874
1875	if (!list_empty(non_hvo_folios)) {
1876		/*
1877		 * Free any restored hugetlb pages so that restore of the
1878		 * entire list can be retried.
1879		 * The idea is that in the common case of ENOMEM errors freeing
1880		 * hugetlb pages with vmemmap we will free up memory so that we
1881		 * can allocate vmemmap for more hugetlb pages.
1882		 */
1883		list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1884			list_del(&folio->lru);
1885			spin_lock_irq(&hugetlb_lock);
1886			__clear_hugetlb_destructor(h, folio);
1887			spin_unlock_irq(&hugetlb_lock);
1888			update_and_free_hugetlb_folio(h, folio, false);
1889			cond_resched();
1890		}
1891	} else {
1892		/*
1893		 * In the case where there are no folios which can be
1894		 * immediately freed, we loop through the list trying to restore
1895		 * vmemmap individually in the hope that someone elsewhere may
1896		 * have done something to cause success (such as freeing some
1897		 * memory).  If unable to restore a hugetlb page, the hugetlb
1898		 * page is made a surplus page and removed from the list.
1899		 * If are able to restore vmemmap and free one hugetlb page, we
1900		 * quit processing the list to retry the bulk operation.
1901		 */
1902		list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1903			if (hugetlb_vmemmap_restore_folio(h, folio)) {
1904				list_del(&folio->lru);
1905				spin_lock_irq(&hugetlb_lock);
1906				add_hugetlb_folio(h, folio, true);
1907				spin_unlock_irq(&hugetlb_lock);
1908			} else {
1909				list_del(&folio->lru);
1910				spin_lock_irq(&hugetlb_lock);
1911				__clear_hugetlb_destructor(h, folio);
1912				spin_unlock_irq(&hugetlb_lock);
1913				update_and_free_hugetlb_folio(h, folio, false);
1914				cond_resched();
1915				break;
1916			}
1917	}
1918}
1919
1920static void update_and_free_pages_bulk(struct hstate *h,
1921						struct list_head *folio_list)
 
 
 
1922{
1923	long ret;
1924	struct folio *folio, *t_folio;
1925	LIST_HEAD(non_hvo_folios);
1926
1927	/*
1928	 * First allocate required vmemmmap (if necessary) for all folios.
1929	 * Carefully handle errors and free up any available hugetlb pages
1930	 * in an effort to make forward progress.
1931	 */
1932retry:
1933	ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1934	if (ret < 0) {
1935		bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1936		goto retry;
1937	}
1938
1939	/*
1940	 * At this point, list should be empty, ret should be >= 0 and there
1941	 * should only be pages on the non_hvo_folios list.
1942	 * Do note that the non_hvo_folios list could be empty.
1943	 * Without HVO enabled, ret will be 0 and there is no need to call
1944	 * __clear_hugetlb_destructor as this was done previously.
1945	 */
1946	VM_WARN_ON(!list_empty(folio_list));
1947	VM_WARN_ON(ret < 0);
1948	if (!list_empty(&non_hvo_folios) && ret) {
1949		spin_lock_irq(&hugetlb_lock);
1950		list_for_each_entry(folio, &non_hvo_folios, lru)
1951			__clear_hugetlb_destructor(h, folio);
1952		spin_unlock_irq(&hugetlb_lock);
1953	}
1954
1955	list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1956		update_and_free_hugetlb_folio(h, folio, false);
1957		cond_resched();
1958	}
1959}
1960
1961struct hstate *size_to_hstate(unsigned long size)
1962{
1963	struct hstate *h;
 
1964
1965	for_each_hstate(h) {
1966		if (huge_page_size(h) == size)
1967			return h;
1968	}
1969	return NULL;
1970}
1971
1972void free_huge_folio(struct folio *folio)
1973{
1974	/*
1975	 * Can't pass hstate in here because it is called from the
1976	 * compound page destructor.
1977	 */
1978	struct hstate *h = folio_hstate(folio);
1979	int nid = folio_nid(folio);
1980	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
 
1981	bool restore_reserve;
1982	unsigned long flags;
1983
1984	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1985	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1986
1987	hugetlb_set_folio_subpool(folio, NULL);
1988	if (folio_test_anon(folio))
1989		__ClearPageAnonExclusive(&folio->page);
1990	folio->mapping = NULL;
1991	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1992	folio_clear_hugetlb_restore_reserve(folio);
1993
1994	/*
1995	 * If HPageRestoreReserve was set on page, page allocation consumed a
1996	 * reservation.  If the page was associated with a subpool, there
1997	 * would have been a page reserved in the subpool before allocation
1998	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1999	 * reservation, do not call hugepage_subpool_put_pages() as this will
2000	 * remove the reserved page from the subpool.
2001	 */
2002	if (!restore_reserve) {
2003		/*
2004		 * A return code of zero implies that the subpool will be
2005		 * under its minimum size if the reservation is not restored
2006		 * after page is free.  Therefore, force restore_reserve
2007		 * operation.
2008		 */
2009		if (hugepage_subpool_put_pages(spool, 1) == 0)
2010			restore_reserve = true;
2011	}
2012
2013	spin_lock_irqsave(&hugetlb_lock, flags);
2014	folio_clear_hugetlb_migratable(folio);
2015	hugetlb_cgroup_uncharge_folio(hstate_index(h),
2016				     pages_per_huge_page(h), folio);
2017	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
2018					  pages_per_huge_page(h), folio);
2019	mem_cgroup_uncharge(folio);
2020	if (restore_reserve)
2021		h->resv_huge_pages++;
2022
2023	if (folio_test_hugetlb_temporary(folio)) {
2024		remove_hugetlb_folio(h, folio, false);
2025		spin_unlock_irqrestore(&hugetlb_lock, flags);
2026		update_and_free_hugetlb_folio(h, folio, true);
2027	} else if (h->surplus_huge_pages_node[nid]) {
2028		/* remove the page from active list */
2029		remove_hugetlb_folio(h, folio, true);
2030		spin_unlock_irqrestore(&hugetlb_lock, flags);
2031		update_and_free_hugetlb_folio(h, folio, true);
 
2032	} else {
2033		arch_clear_hugepage_flags(&folio->page);
2034		enqueue_hugetlb_folio(h, folio);
2035		spin_unlock_irqrestore(&hugetlb_lock, flags);
2036	}
 
2037}
2038
2039/*
2040 * Must be called with the hugetlb lock held
 
 
 
 
 
 
 
2041 */
2042static void __prep_account_new_huge_page(struct hstate *h, int nid)
2043{
2044	lockdep_assert_held(&hugetlb_lock);
2045	h->nr_huge_pages++;
2046	h->nr_huge_pages_node[nid]++;
2047}
2048
2049static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2050{
2051	folio_set_hugetlb(folio);
2052	INIT_LIST_HEAD(&folio->lru);
2053	hugetlb_set_folio_subpool(folio, NULL);
2054	set_hugetlb_cgroup(folio, NULL);
2055	set_hugetlb_cgroup_rsvd(folio, NULL);
 
 
 
 
 
 
2056}
 
2057
2058static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2059{
2060	init_new_hugetlb_folio(h, folio);
2061	hugetlb_vmemmap_optimize_folio(h, folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2062}
2063
2064static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
2065{
2066	__prep_new_hugetlb_folio(h, folio);
2067	spin_lock_irq(&hugetlb_lock);
2068	__prep_account_new_huge_page(h, nid);
2069	spin_unlock_irq(&hugetlb_lock);
 
 
 
 
2070}
2071
2072static bool __prep_compound_gigantic_folio(struct folio *folio,
2073					unsigned int order, bool demote)
2074{
2075	int i, j;
2076	int nr_pages = 1 << order;
2077	struct page *p;
2078
2079	__folio_clear_reserved(folio);
2080	for (i = 0; i < nr_pages; i++) {
2081		p = folio_page(folio, i);
2082
 
 
 
 
 
2083		/*
2084		 * For gigantic hugepages allocated through bootmem at
2085		 * boot, it's safer to be consistent with the not-gigantic
2086		 * hugepages and clear the PG_reserved bit from all tail pages
2087		 * too.  Otherwise drivers using get_user_pages() to access tail
2088		 * pages may get the reference counting wrong if they see
2089		 * PG_reserved set on a tail page (despite the head page not
2090		 * having PG_reserved set).  Enforcing this consistency between
2091		 * head and tail pages allows drivers to optimize away a check
2092		 * on the head page when they need know if put_page() is needed
2093		 * after get_user_pages().
2094		 */
2095		if (i != 0)	/* head page cleared above */
2096			__ClearPageReserved(p);
2097		/*
2098		 * Subtle and very unlikely
2099		 *
2100		 * Gigantic 'page allocators' such as memblock or cma will
2101		 * return a set of pages with each page ref counted.  We need
2102		 * to turn this set of pages into a compound page with tail
2103		 * page ref counts set to zero.  Code such as speculative page
2104		 * cache adding could take a ref on a 'to be' tail page.
2105		 * We need to respect any increased ref count, and only set
2106		 * the ref count to zero if count is currently 1.  If count
2107		 * is not 1, we return an error.  An error return indicates
2108		 * the set of pages can not be converted to a gigantic page.
2109		 * The caller who allocated the pages should then discard the
2110		 * pages using the appropriate free interface.
2111		 *
2112		 * In the case of demote, the ref count will be zero.
2113		 */
2114		if (!demote) {
2115			if (!page_ref_freeze(p, 1)) {
2116				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2117				goto out_error;
2118			}
2119		} else {
2120			VM_BUG_ON_PAGE(page_count(p), p);
2121		}
2122		if (i != 0)
2123			set_compound_head(p, &folio->page);
2124	}
2125	__folio_set_head(folio);
2126	/* we rely on prep_new_hugetlb_folio to set the destructor */
2127	folio_set_order(folio, order);
2128	atomic_set(&folio->_entire_mapcount, -1);
2129	atomic_set(&folio->_nr_pages_mapped, 0);
2130	atomic_set(&folio->_pincount, 0);
2131	return true;
2132
2133out_error:
2134	/* undo page modifications made above */
2135	for (j = 0; j < i; j++) {
2136		p = folio_page(folio, j);
2137		if (j != 0)
2138			clear_compound_head(p);
2139		set_page_refcounted(p);
2140	}
2141	/* need to clear PG_reserved on remaining tail pages  */
2142	for (; j < nr_pages; j++) {
2143		p = folio_page(folio, j);
2144		__ClearPageReserved(p);
 
 
2145	}
2146	return false;
2147}
2148
2149static bool prep_compound_gigantic_folio(struct folio *folio,
2150							unsigned int order)
2151{
2152	return __prep_compound_gigantic_folio(folio, order, false);
2153}
2154
2155static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2156							unsigned int order)
2157{
2158	return __prep_compound_gigantic_folio(folio, order, true);
2159}
2160
2161/*
2162 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2163 * transparent huge pages.  See the PageTransHuge() documentation for more
2164 * details.
2165 */
2166int PageHuge(struct page *page)
2167{
2168	struct folio *folio;
2169
2170	if (!PageCompound(page))
2171		return 0;
2172	folio = page_folio(page);
2173	return folio_test_hugetlb(folio);
 
2174}
2175EXPORT_SYMBOL_GPL(PageHuge);
2176
2177/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2178 * Find and lock address space (mapping) in write mode.
2179 *
2180 * Upon entry, the page is locked which means that page_mapping() is
2181 * stable.  Due to locking order, we can only trylock_write.  If we can
2182 * not get the lock, simply return NULL to caller.
 
 
 
 
2183 */
2184struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2185{
2186	struct address_space *mapping = page_mapping(hpage);
2187
 
 
2188	if (!mapping)
2189		return mapping;
2190
 
 
 
2191	if (i_mmap_trylock_write(mapping))
2192		return mapping;
2193
2194	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2195}
2196
2197static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2198		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2199		nodemask_t *node_alloc_noretry)
2200{
2201	int order = huge_page_order(h);
2202	struct page *page;
2203	bool alloc_try_hard = true;
2204	bool retry = true;
2205
2206	/*
2207	 * By default we always try hard to allocate the page with
2208	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2209	 * a loop (to adjust global huge page counts) and previous allocation
2210	 * failed, do not continue to try hard on the same node.  Use the
2211	 * node_alloc_noretry bitmap to manage this state information.
2212	 */
2213	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2214		alloc_try_hard = false;
2215	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2216	if (alloc_try_hard)
2217		gfp_mask |= __GFP_RETRY_MAYFAIL;
2218	if (nid == NUMA_NO_NODE)
2219		nid = numa_mem_id();
2220retry:
2221	page = __alloc_pages(gfp_mask, order, nid, nmask);
2222
2223	/* Freeze head page */
2224	if (page && !page_ref_freeze(page, 1)) {
2225		__free_pages(page, order);
2226		if (retry) {	/* retry once */
2227			retry = false;
2228			goto retry;
2229		}
2230		/* WOW!  twice in a row. */
2231		pr_warn("HugeTLB head page unexpected inflated ref count\n");
2232		page = NULL;
2233	}
2234
2235	/*
2236	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2237	 * indicates an overall state change.  Clear bit so that we resume
2238	 * normal 'try hard' allocations.
2239	 */
2240	if (node_alloc_noretry && page && !alloc_try_hard)
2241		node_clear(nid, *node_alloc_noretry);
2242
2243	/*
2244	 * If we tried hard to get a page but failed, set bit so that
2245	 * subsequent attempts will not try as hard until there is an
2246	 * overall state change.
2247	 */
2248	if (node_alloc_noretry && !page && alloc_try_hard)
2249		node_set(nid, *node_alloc_noretry);
2250
2251	if (!page) {
2252		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2253		return NULL;
2254	}
2255
2256	__count_vm_event(HTLB_BUDDY_PGALLOC);
2257	return page_folio(page);
2258}
2259
2260static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h,
2261				gfp_t gfp_mask, int nid, nodemask_t *nmask,
2262				nodemask_t *node_alloc_noretry)
2263{
2264	struct folio *folio;
2265	bool retry = false;
2266
2267retry:
2268	if (hstate_is_gigantic(h))
2269		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2270	else
2271		folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2272				nid, nmask, node_alloc_noretry);
2273	if (!folio)
2274		return NULL;
2275
2276	if (hstate_is_gigantic(h)) {
2277		if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2278			/*
2279			 * Rare failure to convert pages to compound page.
2280			 * Free pages and try again - ONCE!
2281			 */
2282			free_gigantic_folio(folio, huge_page_order(h));
2283			if (!retry) {
2284				retry = true;
2285				goto retry;
2286			}
2287			return NULL;
2288		}
2289	}
2290
2291	return folio;
2292}
2293
2294static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2295		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2296		nodemask_t *node_alloc_noretry)
2297{
2298	struct folio *folio;
2299
2300	folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2301						node_alloc_noretry);
2302	if (folio)
2303		init_new_hugetlb_folio(h, folio);
2304	return folio;
2305}
2306
2307/*
2308 * Common helper to allocate a fresh hugetlb page. All specific allocators
2309 * should use this function to get new hugetlb pages
2310 *
2311 * Note that returned page is 'frozen':  ref count of head page and all tail
2312 * pages is zero.
2313 */
2314static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2315		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2316		nodemask_t *node_alloc_noretry)
2317{
2318	struct folio *folio;
2319
2320	folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2321						node_alloc_noretry);
2322	if (!folio)
 
 
 
2323		return NULL;
2324
2325	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2326	return folio;
2327}
2328
2329static void prep_and_add_allocated_folios(struct hstate *h,
2330					struct list_head *folio_list)
2331{
2332	unsigned long flags;
2333	struct folio *folio, *tmp_f;
2334
2335	/* Send list for bulk vmemmap optimization processing */
2336	hugetlb_vmemmap_optimize_folios(h, folio_list);
2337
2338	/* Add all new pool pages to free lists in one lock cycle */
2339	spin_lock_irqsave(&hugetlb_lock, flags);
2340	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2341		__prep_account_new_huge_page(h, folio_nid(folio));
2342		enqueue_hugetlb_folio(h, folio);
2343	}
2344	spin_unlock_irqrestore(&hugetlb_lock, flags);
2345}
2346
2347/*
2348 * Allocates a fresh hugetlb page in a node interleaved manner.  The page
2349 * will later be added to the appropriate hugetlb pool.
2350 */
2351static struct folio *alloc_pool_huge_folio(struct hstate *h,
2352					nodemask_t *nodes_allowed,
2353					nodemask_t *node_alloc_noretry)
2354{
2355	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2356	int nr_nodes, node;
 
2357
2358	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2359		struct folio *folio;
2360
2361		folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2362					nodes_allowed, node_alloc_noretry);
2363		if (folio)
2364			return folio;
2365	}
2366
2367	return NULL;
 
 
 
 
 
2368}
2369
2370/*
2371 * Remove huge page from pool from next node to free.  Attempt to keep
2372 * persistent huge pages more or less balanced over allowed nodes.
2373 * This routine only 'removes' the hugetlb page.  The caller must make
2374 * an additional call to free the page to low level allocators.
2375 * Called with hugetlb_lock locked.
2376 */
2377static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2378		nodemask_t *nodes_allowed, bool acct_surplus)
2379{
2380	int nr_nodes, node;
2381	struct folio *folio = NULL;
2382
2383	lockdep_assert_held(&hugetlb_lock);
2384	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2385		/*
2386		 * If we're returning unused surplus pages, only examine
2387		 * nodes with surplus pages.
2388		 */
2389		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2390		    !list_empty(&h->hugepage_freelists[node])) {
2391			folio = list_entry(h->hugepage_freelists[node].next,
2392					  struct folio, lru);
2393			remove_hugetlb_folio(h, folio, acct_surplus);
 
 
 
 
 
 
 
 
 
2394			break;
2395		}
2396	}
2397
2398	return folio;
2399}
2400
2401/*
2402 * Dissolve a given free hugepage into free buddy pages. This function does
2403 * nothing for in-use hugepages and non-hugepages.
2404 * This function returns values like below:
2405 *
2406 *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2407 *           when the system is under memory pressure and the feature of
2408 *           freeing unused vmemmap pages associated with each hugetlb page
2409 *           is enabled.
2410 *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2411 *           (allocated or reserved.)
2412 *       0:  successfully dissolved free hugepages or the page is not a
2413 *           hugepage (considered as already dissolved)
2414 */
2415int dissolve_free_huge_page(struct page *page)
2416{
2417	int rc = -EBUSY;
2418	struct folio *folio = page_folio(page);
2419
2420retry:
2421	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2422	if (!folio_test_hugetlb(folio))
2423		return 0;
2424
2425	spin_lock_irq(&hugetlb_lock);
2426	if (!folio_test_hugetlb(folio)) {
2427		rc = 0;
2428		goto out;
2429	}
2430
2431	if (!folio_ref_count(folio)) {
2432		struct hstate *h = folio_hstate(folio);
2433		if (!available_huge_pages(h))
 
 
2434			goto out;
2435
2436		/*
2437		 * We should make sure that the page is already on the free list
2438		 * when it is dissolved.
2439		 */
2440		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2441			spin_unlock_irq(&hugetlb_lock);
2442			cond_resched();
2443
2444			/*
2445			 * Theoretically, we should return -EBUSY when we
2446			 * encounter this race. In fact, we have a chance
2447			 * to successfully dissolve the page if we do a
2448			 * retry. Because the race window is quite small.
2449			 * If we seize this opportunity, it is an optimization
2450			 * for increasing the success rate of dissolving page.
2451			 */
2452			goto retry;
2453		}
2454
2455		remove_hugetlb_folio(h, folio, false);
 
2456		h->max_huge_pages--;
2457		spin_unlock_irq(&hugetlb_lock);
2458
2459		/*
2460		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2461		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2462		 * free the page if it can not allocate required vmemmap.  We
2463		 * need to adjust max_huge_pages if the page is not freed.
2464		 * Attempt to allocate vmemmmap here so that we can take
2465		 * appropriate action on failure.
2466		 *
2467		 * The folio_test_hugetlb check here is because
2468		 * remove_hugetlb_folio will clear hugetlb folio flag for
2469		 * non-vmemmap optimized hugetlb folios.
2470		 */
2471		if (folio_test_hugetlb(folio)) {
2472			rc = hugetlb_vmemmap_restore_folio(h, folio);
2473			if (rc) {
2474				spin_lock_irq(&hugetlb_lock);
2475				add_hugetlb_folio(h, folio, false);
2476				h->max_huge_pages++;
2477				goto out;
2478			}
2479		} else
2480			rc = 0;
2481
2482		update_and_free_hugetlb_folio(h, folio, false);
2483		return rc;
2484	}
2485out:
2486	spin_unlock_irq(&hugetlb_lock);
2487	return rc;
2488}
2489
2490/*
2491 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2492 * make specified memory blocks removable from the system.
2493 * Note that this will dissolve a free gigantic hugepage completely, if any
2494 * part of it lies within the given range.
2495 * Also note that if dissolve_free_huge_page() returns with an error, all
2496 * free hugepages that were dissolved before that error are lost.
2497 */
2498int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2499{
2500	unsigned long pfn;
2501	struct page *page;
2502	int rc = 0;
2503	unsigned int order;
2504	struct hstate *h;
2505
2506	if (!hugepages_supported())
2507		return rc;
2508
2509	order = huge_page_order(&default_hstate);
2510	for_each_hstate(h)
2511		order = min(order, huge_page_order(h));
2512
2513	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2514		page = pfn_to_page(pfn);
2515		rc = dissolve_free_huge_page(page);
2516		if (rc)
2517			break;
2518	}
2519
2520	return rc;
2521}
2522
2523/*
2524 * Allocates a fresh surplus page from the page allocator.
2525 */
2526static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2527				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
2528{
2529	struct folio *folio = NULL;
2530
2531	if (hstate_is_gigantic(h))
2532		return NULL;
2533
2534	spin_lock_irq(&hugetlb_lock);
2535	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2536		goto out_unlock;
2537	spin_unlock_irq(&hugetlb_lock);
2538
2539	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2540	if (!folio)
2541		return NULL;
2542
2543	spin_lock_irq(&hugetlb_lock);
2544	/*
2545	 * We could have raced with the pool size change.
2546	 * Double check that and simply deallocate the new page
2547	 * if we would end up overcommiting the surpluses. Abuse
2548	 * temporary page to workaround the nasty free_huge_folio
2549	 * codeflow
2550	 */
2551	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2552		folio_set_hugetlb_temporary(folio);
2553		spin_unlock_irq(&hugetlb_lock);
2554		free_huge_folio(folio);
2555		return NULL;
 
 
 
2556	}
2557
2558	h->surplus_huge_pages++;
2559	h->surplus_huge_pages_node[folio_nid(folio)]++;
2560
2561out_unlock:
2562	spin_unlock_irq(&hugetlb_lock);
2563
2564	return folio;
2565}
2566
2567static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2568				     int nid, nodemask_t *nmask)
2569{
2570	struct folio *folio;
2571
2572	if (hstate_is_gigantic(h))
2573		return NULL;
2574
2575	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2576	if (!folio)
2577		return NULL;
2578
2579	/* fresh huge pages are frozen */
2580	folio_ref_unfreeze(folio, 1);
2581	/*
2582	 * We do not account these pages as surplus because they are only
2583	 * temporary and will be released properly on the last reference
2584	 */
2585	folio_set_hugetlb_temporary(folio);
2586
2587	return folio;
2588}
2589
2590/*
2591 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2592 */
2593static
2594struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2595		struct vm_area_struct *vma, unsigned long addr)
2596{
2597	struct folio *folio = NULL;
2598	struct mempolicy *mpol;
2599	gfp_t gfp_mask = htlb_alloc_mask(h);
2600	int nid;
2601	nodemask_t *nodemask;
2602
2603	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2604	if (mpol_is_preferred_many(mpol)) {
2605		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2606
2607		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2608		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2609
2610		/* Fallback to all nodes if page==NULL */
2611		nodemask = NULL;
2612	}
2613
2614	if (!folio)
2615		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2616	mpol_cond_put(mpol);
2617	return folio;
 
2618}
2619
2620/* folio migration callback function */
2621struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2622		nodemask_t *nmask, gfp_t gfp_mask)
2623{
2624	spin_lock_irq(&hugetlb_lock);
2625	if (available_huge_pages(h)) {
2626		struct folio *folio;
2627
2628		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2629						preferred_nid, nmask);
2630		if (folio) {
2631			spin_unlock_irq(&hugetlb_lock);
2632			return folio;
2633		}
2634	}
2635	spin_unlock_irq(&hugetlb_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
2636
2637	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
 
 
 
 
 
2638}
2639
2640/*
2641 * Increase the hugetlb pool such that it can accommodate a reservation
2642 * of size 'delta'.
2643 */
2644static int gather_surplus_pages(struct hstate *h, long delta)
2645	__must_hold(&hugetlb_lock)
2646{
2647	LIST_HEAD(surplus_list);
2648	struct folio *folio, *tmp;
2649	int ret;
2650	long i;
2651	long needed, allocated;
2652	bool alloc_ok = true;
2653
2654	lockdep_assert_held(&hugetlb_lock);
2655	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2656	if (needed <= 0) {
2657		h->resv_huge_pages += delta;
2658		return 0;
2659	}
2660
2661	allocated = 0;
 
2662
2663	ret = -ENOMEM;
2664retry:
2665	spin_unlock_irq(&hugetlb_lock);
2666	for (i = 0; i < needed; i++) {
2667		folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2668				NUMA_NO_NODE, NULL);
2669		if (!folio) {
2670			alloc_ok = false;
2671			break;
2672		}
2673		list_add(&folio->lru, &surplus_list);
2674		cond_resched();
2675	}
2676	allocated += i;
2677
2678	/*
2679	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2680	 * because either resv_huge_pages or free_huge_pages may have changed.
2681	 */
2682	spin_lock_irq(&hugetlb_lock);
2683	needed = (h->resv_huge_pages + delta) -
2684			(h->free_huge_pages + allocated);
2685	if (needed > 0) {
2686		if (alloc_ok)
2687			goto retry;
2688		/*
2689		 * We were not able to allocate enough pages to
2690		 * satisfy the entire reservation so we free what
2691		 * we've allocated so far.
2692		 */
2693		goto free;
2694	}
2695	/*
2696	 * The surplus_list now contains _at_least_ the number of extra pages
2697	 * needed to accommodate the reservation.  Add the appropriate number
2698	 * of pages to the hugetlb pool and free the extras back to the buddy
2699	 * allocator.  Commit the entire reservation here to prevent another
2700	 * process from stealing the pages as they are added to the pool but
2701	 * before they are reserved.
2702	 */
2703	needed += allocated;
2704	h->resv_huge_pages += delta;
2705	ret = 0;
2706
2707	/* Free the needed pages to the hugetlb pool */
2708	list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2709		if ((--needed) < 0)
2710			break;
2711		/* Add the page to the hugetlb allocator */
2712		enqueue_hugetlb_folio(h, folio);
 
 
 
 
 
2713	}
2714free:
2715	spin_unlock_irq(&hugetlb_lock);
2716
2717	/*
2718	 * Free unnecessary surplus pages to the buddy allocator.
2719	 * Pages have no ref count, call free_huge_folio directly.
2720	 */
2721	list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2722		free_huge_folio(folio);
2723	spin_lock_irq(&hugetlb_lock);
2724
2725	return ret;
2726}
2727
2728/*
2729 * This routine has two main purposes:
2730 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2731 *    in unused_resv_pages.  This corresponds to the prior adjustments made
2732 *    to the associated reservation map.
2733 * 2) Free any unused surplus pages that may have been allocated to satisfy
2734 *    the reservation.  As many as unused_resv_pages may be freed.
 
 
 
 
 
 
2735 */
2736static void return_unused_surplus_pages(struct hstate *h,
2737					unsigned long unused_resv_pages)
2738{
2739	unsigned long nr_pages;
2740	LIST_HEAD(page_list);
2741
2742	lockdep_assert_held(&hugetlb_lock);
2743	/* Uncommit the reservation */
2744	h->resv_huge_pages -= unused_resv_pages;
2745
2746	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
 
2747		goto out;
2748
2749	/*
2750	 * Part (or even all) of the reservation could have been backed
2751	 * by pre-allocated pages. Only free surplus pages.
2752	 */
2753	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2754
2755	/*
2756	 * We want to release as many surplus pages as possible, spread
2757	 * evenly across all nodes with memory. Iterate across these nodes
2758	 * until we can no longer free unreserved surplus pages. This occurs
2759	 * when the nodes with surplus pages have no free pages.
2760	 * remove_pool_hugetlb_folio() will balance the freed pages across the
2761	 * on-line nodes with memory and will handle the hstate accounting.
 
 
 
 
2762	 */
2763	while (nr_pages--) {
2764		struct folio *folio;
2765
2766		folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2767		if (!folio)
2768			goto out;
2769
2770		list_add(&folio->lru, &page_list);
2771	}
2772
2773out:
2774	spin_unlock_irq(&hugetlb_lock);
2775	update_and_free_pages_bulk(h, &page_list);
2776	spin_lock_irq(&hugetlb_lock);
2777}
2778
2779
2780/*
2781 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2782 * are used by the huge page allocation routines to manage reservations.
2783 *
2784 * vma_needs_reservation is called to determine if the huge page at addr
2785 * within the vma has an associated reservation.  If a reservation is
2786 * needed, the value 1 is returned.  The caller is then responsible for
2787 * managing the global reservation and subpool usage counts.  After
2788 * the huge page has been allocated, vma_commit_reservation is called
2789 * to add the page to the reservation map.  If the page allocation fails,
2790 * the reservation must be ended instead of committed.  vma_end_reservation
2791 * is called in such cases.
2792 *
2793 * In the normal case, vma_commit_reservation returns the same value
2794 * as the preceding vma_needs_reservation call.  The only time this
2795 * is not the case is if a reserve map was changed between calls.  It
2796 * is the responsibility of the caller to notice the difference and
2797 * take appropriate action.
2798 *
2799 * vma_add_reservation is used in error paths where a reservation must
2800 * be restored when a newly allocated huge page must be freed.  It is
2801 * to be called after calling vma_needs_reservation to determine if a
2802 * reservation exists.
2803 *
2804 * vma_del_reservation is used in error paths where an entry in the reserve
2805 * map was created during huge page allocation and must be removed.  It is to
2806 * be called after calling vma_needs_reservation to determine if a reservation
2807 * exists.
2808 */
2809enum vma_resv_mode {
2810	VMA_NEEDS_RESV,
2811	VMA_COMMIT_RESV,
2812	VMA_END_RESV,
2813	VMA_ADD_RESV,
2814	VMA_DEL_RESV,
2815};
2816static long __vma_reservation_common(struct hstate *h,
2817				struct vm_area_struct *vma, unsigned long addr,
2818				enum vma_resv_mode mode)
2819{
2820	struct resv_map *resv;
2821	pgoff_t idx;
2822	long ret;
2823	long dummy_out_regions_needed;
2824
2825	resv = vma_resv_map(vma);
2826	if (!resv)
2827		return 1;
2828
2829	idx = vma_hugecache_offset(h, vma, addr);
2830	switch (mode) {
2831	case VMA_NEEDS_RESV:
2832		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2833		/* We assume that vma_reservation_* routines always operate on
2834		 * 1 page, and that adding to resv map a 1 page entry can only
2835		 * ever require 1 region.
2836		 */
2837		VM_BUG_ON(dummy_out_regions_needed != 1);
2838		break;
2839	case VMA_COMMIT_RESV:
2840		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2841		/* region_add calls of range 1 should never fail. */
2842		VM_BUG_ON(ret < 0);
2843		break;
2844	case VMA_END_RESV:
2845		region_abort(resv, idx, idx + 1, 1);
2846		ret = 0;
2847		break;
2848	case VMA_ADD_RESV:
2849		if (vma->vm_flags & VM_MAYSHARE) {
2850			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2851			/* region_add calls of range 1 should never fail. */
2852			VM_BUG_ON(ret < 0);
2853		} else {
2854			region_abort(resv, idx, idx + 1, 1);
2855			ret = region_del(resv, idx, idx + 1);
2856		}
2857		break;
2858	case VMA_DEL_RESV:
2859		if (vma->vm_flags & VM_MAYSHARE) {
2860			region_abort(resv, idx, idx + 1, 1);
2861			ret = region_del(resv, idx, idx + 1);
2862		} else {
2863			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2864			/* region_add calls of range 1 should never fail. */
2865			VM_BUG_ON(ret < 0);
2866		}
2867		break;
2868	default:
2869		BUG();
2870	}
2871
2872	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2873		return ret;
2874	/*
2875	 * We know private mapping must have HPAGE_RESV_OWNER set.
2876	 *
2877	 * In most cases, reserves always exist for private mappings.
2878	 * However, a file associated with mapping could have been
2879	 * hole punched or truncated after reserves were consumed.
2880	 * As subsequent fault on such a range will not use reserves.
2881	 * Subtle - The reserve map for private mappings has the
2882	 * opposite meaning than that of shared mappings.  If NO
2883	 * entry is in the reserve map, it means a reservation exists.
2884	 * If an entry exists in the reserve map, it means the
2885	 * reservation has already been consumed.  As a result, the
2886	 * return value of this routine is the opposite of the
2887	 * value returned from reserve map manipulation routines above.
2888	 */
2889	if (ret > 0)
2890		return 0;
2891	if (ret == 0)
2892		return 1;
2893	return ret;
 
2894}
2895
2896static long vma_needs_reservation(struct hstate *h,
2897			struct vm_area_struct *vma, unsigned long addr)
2898{
2899	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2900}
2901
2902static long vma_commit_reservation(struct hstate *h,
2903			struct vm_area_struct *vma, unsigned long addr)
2904{
2905	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2906}
2907
2908static void vma_end_reservation(struct hstate *h,
2909			struct vm_area_struct *vma, unsigned long addr)
2910{
2911	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2912}
2913
2914static long vma_add_reservation(struct hstate *h,
2915			struct vm_area_struct *vma, unsigned long addr)
2916{
2917	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2918}
2919
2920static long vma_del_reservation(struct hstate *h,
2921			struct vm_area_struct *vma, unsigned long addr)
2922{
2923	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2924}
2925
2926/*
2927 * This routine is called to restore reservation information on error paths.
2928 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2929 * and the hugetlb mutex should remain held when calling this routine.
2930 *
2931 * It handles two specific cases:
2932 * 1) A reservation was in place and the folio consumed the reservation.
2933 *    hugetlb_restore_reserve is set in the folio.
2934 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2935 *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2936 *
2937 * In case 1, free_huge_folio later in the error path will increment the
2938 * global reserve count.  But, free_huge_folio does not have enough context
2939 * to adjust the reservation map.  This case deals primarily with private
2940 * mappings.  Adjust the reserve map here to be consistent with global
2941 * reserve count adjustments to be made by free_huge_folio.  Make sure the
2942 * reserve map indicates there is a reservation present.
2943 *
2944 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2945 */
2946void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2947			unsigned long address, struct folio *folio)
2948{
2949	long rc = vma_needs_reservation(h, vma, address);
 
2950
2951	if (folio_test_hugetlb_restore_reserve(folio)) {
2952		if (unlikely(rc < 0))
2953			/*
2954			 * Rare out of memory condition in reserve map
2955			 * manipulation.  Clear hugetlb_restore_reserve so
2956			 * that global reserve count will not be incremented
2957			 * by free_huge_folio.  This will make it appear
2958			 * as though the reservation for this folio was
2959			 * consumed.  This may prevent the task from
2960			 * faulting in the folio at a later time.  This
2961			 * is better than inconsistent global huge page
2962			 * accounting of reserve counts.
2963			 */
2964			folio_clear_hugetlb_restore_reserve(folio);
2965		else if (rc)
2966			(void)vma_add_reservation(h, vma, address);
2967		else
2968			vma_end_reservation(h, vma, address);
2969	} else {
2970		if (!rc) {
2971			/*
2972			 * This indicates there is an entry in the reserve map
2973			 * not added by alloc_hugetlb_folio.  We know it was added
2974			 * before the alloc_hugetlb_folio call, otherwise
2975			 * hugetlb_restore_reserve would be set on the folio.
2976			 * Remove the entry so that a subsequent allocation
2977			 * does not consume a reservation.
2978			 */
2979			rc = vma_del_reservation(h, vma, address);
2980			if (rc < 0)
2981				/*
2982				 * VERY rare out of memory condition.  Since
2983				 * we can not delete the entry, set
2984				 * hugetlb_restore_reserve so that the reserve
2985				 * count will be incremented when the folio
2986				 * is freed.  This reserve will be consumed
2987				 * on a subsequent allocation.
2988				 */
2989				folio_set_hugetlb_restore_reserve(folio);
2990		} else if (rc < 0) {
2991			/*
2992			 * Rare out of memory condition from
2993			 * vma_needs_reservation call.  Memory allocation is
2994			 * only attempted if a new entry is needed.  Therefore,
2995			 * this implies there is not an entry in the
2996			 * reserve map.
2997			 *
2998			 * For shared mappings, no entry in the map indicates
2999			 * no reservation.  We are done.
3000			 */
3001			if (!(vma->vm_flags & VM_MAYSHARE))
3002				/*
3003				 * For private mappings, no entry indicates
3004				 * a reservation is present.  Since we can
3005				 * not add an entry, set hugetlb_restore_reserve
3006				 * on the folio so reserve count will be
3007				 * incremented when freed.  This reserve will
3008				 * be consumed on a subsequent allocation.
3009				 */
3010				folio_set_hugetlb_restore_reserve(folio);
3011		} else
3012			/*
3013			 * No reservation present, do nothing
3014			 */
3015			 vma_end_reservation(h, vma, address);
3016	}
3017}
3018
3019/*
3020 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
3021 * the old one
3022 * @h: struct hstate old page belongs to
3023 * @old_folio: Old folio to dissolve
3024 * @list: List to isolate the page in case we need to
3025 * Returns 0 on success, otherwise negated error.
3026 */
3027static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
3028			struct folio *old_folio, struct list_head *list)
3029{
3030	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3031	int nid = folio_nid(old_folio);
3032	struct folio *new_folio;
3033	int ret = 0;
3034
3035	/*
3036	 * Before dissolving the folio, we need to allocate a new one for the
3037	 * pool to remain stable.  Here, we allocate the folio and 'prep' it
3038	 * by doing everything but actually updating counters and adding to
3039	 * the pool.  This simplifies and let us do most of the processing
3040	 * under the lock.
3041	 */
3042	new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
3043	if (!new_folio)
3044		return -ENOMEM;
3045	__prep_new_hugetlb_folio(h, new_folio);
3046
3047retry:
3048	spin_lock_irq(&hugetlb_lock);
3049	if (!folio_test_hugetlb(old_folio)) {
3050		/*
3051		 * Freed from under us. Drop new_folio too.
3052		 */
3053		goto free_new;
3054	} else if (folio_ref_count(old_folio)) {
3055		bool isolated;
3056
3057		/*
3058		 * Someone has grabbed the folio, try to isolate it here.
3059		 * Fail with -EBUSY if not possible.
3060		 */
3061		spin_unlock_irq(&hugetlb_lock);
3062		isolated = isolate_hugetlb(old_folio, list);
3063		ret = isolated ? 0 : -EBUSY;
3064		spin_lock_irq(&hugetlb_lock);
3065		goto free_new;
3066	} else if (!folio_test_hugetlb_freed(old_folio)) {
3067		/*
3068		 * Folio's refcount is 0 but it has not been enqueued in the
3069		 * freelist yet. Race window is small, so we can succeed here if
3070		 * we retry.
3071		 */
3072		spin_unlock_irq(&hugetlb_lock);
3073		cond_resched();
3074		goto retry;
3075	} else {
3076		/*
3077		 * Ok, old_folio is still a genuine free hugepage. Remove it from
3078		 * the freelist and decrease the counters. These will be
3079		 * incremented again when calling __prep_account_new_huge_page()
3080		 * and enqueue_hugetlb_folio() for new_folio. The counters will
3081		 * remain stable since this happens under the lock.
3082		 */
3083		remove_hugetlb_folio(h, old_folio, false);
3084
3085		/*
3086		 * Ref count on new_folio is already zero as it was dropped
3087		 * earlier.  It can be directly added to the pool free list.
3088		 */
3089		__prep_account_new_huge_page(h, nid);
3090		enqueue_hugetlb_folio(h, new_folio);
3091
3092		/*
3093		 * Folio has been replaced, we can safely free the old one.
3094		 */
3095		spin_unlock_irq(&hugetlb_lock);
3096		update_and_free_hugetlb_folio(h, old_folio, false);
3097	}
3098
3099	return ret;
3100
3101free_new:
3102	spin_unlock_irq(&hugetlb_lock);
3103	/* Folio has a zero ref count, but needs a ref to be freed */
3104	folio_ref_unfreeze(new_folio, 1);
3105	update_and_free_hugetlb_folio(h, new_folio, false);
3106
3107	return ret;
3108}
3109
3110int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3111{
3112	struct hstate *h;
3113	struct folio *folio = page_folio(page);
3114	int ret = -EBUSY;
3115
3116	/*
3117	 * The page might have been dissolved from under our feet, so make sure
3118	 * to carefully check the state under the lock.
3119	 * Return success when racing as if we dissolved the page ourselves.
3120	 */
3121	spin_lock_irq(&hugetlb_lock);
3122	if (folio_test_hugetlb(folio)) {
3123		h = folio_hstate(folio);
3124	} else {
3125		spin_unlock_irq(&hugetlb_lock);
3126		return 0;
3127	}
3128	spin_unlock_irq(&hugetlb_lock);
3129
3130	/*
3131	 * Fence off gigantic pages as there is a cyclic dependency between
3132	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3133	 * of bailing out right away without further retrying.
3134	 */
3135	if (hstate_is_gigantic(h))
3136		return -ENOMEM;
3137
3138	if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3139		ret = 0;
3140	else if (!folio_ref_count(folio))
3141		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3142
3143	return ret;
3144}
3145
3146struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3147				    unsigned long addr, int avoid_reserve)
3148{
3149	struct hugepage_subpool *spool = subpool_vma(vma);
3150	struct hstate *h = hstate_vma(vma);
3151	struct folio *folio;
3152	long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
3153	long gbl_chg;
3154	int memcg_charge_ret, ret, idx;
3155	struct hugetlb_cgroup *h_cg = NULL;
3156	struct mem_cgroup *memcg;
3157	bool deferred_reserve;
3158	gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
3159
3160	memcg = get_mem_cgroup_from_current();
3161	memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
3162	if (memcg_charge_ret == -ENOMEM) {
3163		mem_cgroup_put(memcg);
3164		return ERR_PTR(-ENOMEM);
3165	}
3166
3167	idx = hstate_index(h);
3168	/*
3169	 * Examine the region/reserve map to determine if the process
3170	 * has a reservation for the page to be allocated.  A return
3171	 * code of zero indicates a reservation exists (no change).
3172	 */
3173	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3174	if (map_chg < 0) {
3175		if (!memcg_charge_ret)
3176			mem_cgroup_cancel_charge(memcg, nr_pages);
3177		mem_cgroup_put(memcg);
3178		return ERR_PTR(-ENOMEM);
3179	}
3180
3181	/*
3182	 * Processes that did not create the mapping will have no
3183	 * reserves as indicated by the region/reserve map. Check
3184	 * that the allocation will not exceed the subpool limit.
3185	 * Allocations for MAP_NORESERVE mappings also need to be
3186	 * checked against any subpool limit.
3187	 */
3188	if (map_chg || avoid_reserve) {
3189		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3190		if (gbl_chg < 0)
3191			goto out_end_reservation;
 
 
3192
3193		/*
3194		 * Even though there was no reservation in the region/reserve
3195		 * map, there could be reservations associated with the
3196		 * subpool that can be used.  This would be indicated if the
3197		 * return value of hugepage_subpool_get_pages() is zero.
3198		 * However, if avoid_reserve is specified we still avoid even
3199		 * the subpool reservations.
3200		 */
3201		if (avoid_reserve)
3202			gbl_chg = 1;
3203	}
3204
3205	/* If this allocation is not consuming a reservation, charge it now.
3206	 */
3207	deferred_reserve = map_chg || avoid_reserve;
3208	if (deferred_reserve) {
3209		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3210			idx, pages_per_huge_page(h), &h_cg);
3211		if (ret)
3212			goto out_subpool_put;
3213	}
3214
3215	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3216	if (ret)
3217		goto out_uncharge_cgroup_reservation;
3218
3219	spin_lock_irq(&hugetlb_lock);
3220	/*
3221	 * glb_chg is passed to indicate whether or not a page must be taken
3222	 * from the global free pool (global change).  gbl_chg == 0 indicates
3223	 * a reservation exists for the allocation.
3224	 */
3225	folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3226	if (!folio) {
3227		spin_unlock_irq(&hugetlb_lock);
3228		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3229		if (!folio)
3230			goto out_uncharge_cgroup;
3231		spin_lock_irq(&hugetlb_lock);
3232		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3233			folio_set_hugetlb_restore_reserve(folio);
3234			h->resv_huge_pages--;
3235		}
3236		list_add(&folio->lru, &h->hugepage_activelist);
3237		folio_ref_unfreeze(folio, 1);
3238		/* Fall through */
3239	}
3240
3241	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3242	/* If allocation is not consuming a reservation, also store the
3243	 * hugetlb_cgroup pointer on the page.
3244	 */
3245	if (deferred_reserve) {
3246		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3247						  h_cg, folio);
3248	}
3249
3250	spin_unlock_irq(&hugetlb_lock);
3251
3252	hugetlb_set_folio_subpool(folio, spool);
3253
3254	map_commit = vma_commit_reservation(h, vma, addr);
3255	if (unlikely(map_chg > map_commit)) {
3256		/*
3257		 * The page was added to the reservation map between
3258		 * vma_needs_reservation and vma_commit_reservation.
3259		 * This indicates a race with hugetlb_reserve_pages.
3260		 * Adjust for the subpool count incremented above AND
3261		 * in hugetlb_reserve_pages for the same page.  Also,
3262		 * the reservation count added in hugetlb_reserve_pages
3263		 * no longer applies.
3264		 */
3265		long rsv_adjust;
3266
3267		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3268		hugetlb_acct_memory(h, -rsv_adjust);
3269		if (deferred_reserve)
3270			hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3271					pages_per_huge_page(h), folio);
3272	}
3273
3274	if (!memcg_charge_ret)
3275		mem_cgroup_commit_charge(folio, memcg);
3276	mem_cgroup_put(memcg);
3277
3278	return folio;
3279
3280out_uncharge_cgroup:
3281	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3282out_uncharge_cgroup_reservation:
3283	if (deferred_reserve)
3284		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3285						    h_cg);
3286out_subpool_put:
3287	if (map_chg || avoid_reserve)
3288		hugepage_subpool_put_pages(spool, 1);
3289out_end_reservation:
3290	vma_end_reservation(h, vma, addr);
3291	if (!memcg_charge_ret)
3292		mem_cgroup_cancel_charge(memcg, nr_pages);
3293	mem_cgroup_put(memcg);
3294	return ERR_PTR(-ENOSPC);
3295}
3296
3297int alloc_bootmem_huge_page(struct hstate *h, int nid)
3298	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3299int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3300{
3301	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3302	int nr_nodes, node;
3303
3304	/* do node specific alloc */
3305	if (nid != NUMA_NO_NODE) {
3306		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3307				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3308		if (!m)
3309			return 0;
3310		goto found;
3311	}
3312	/* allocate from next node when distributing huge pages */
3313	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3314		m = memblock_alloc_try_nid_raw(
 
 
3315				huge_page_size(h), huge_page_size(h),
3316				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3317		/*
3318		 * Use the beginning of the huge page to store the
3319		 * huge_bootmem_page struct (until gather_bootmem
3320		 * puts them into the mem_map).
3321		 */
3322		if (!m)
3323			return 0;
3324		goto found;
 
3325	}
 
3326
3327found:
3328
3329	/*
3330	 * Only initialize the head struct page in memmap_init_reserved_pages,
3331	 * rest of the struct pages will be initialized by the HugeTLB
3332	 * subsystem itself.
3333	 * The head struct page is used to get folio information by the HugeTLB
3334	 * subsystem like zone id and node id.
3335	 */
3336	memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3337		huge_page_size(h) - PAGE_SIZE);
3338	/* Put them into a private list first because mem_map is not up yet */
3339	INIT_LIST_HEAD(&m->list);
3340	list_add(&m->list, &huge_boot_pages);
3341	m->hstate = h;
3342	return 1;
3343}
3344
3345/* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3346static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3347					unsigned long start_page_number,
3348					unsigned long end_page_number)
3349{
3350	enum zone_type zone = zone_idx(folio_zone(folio));
3351	int nid = folio_nid(folio);
3352	unsigned long head_pfn = folio_pfn(folio);
3353	unsigned long pfn, end_pfn = head_pfn + end_page_number;
3354	int ret;
3355
3356	for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3357		struct page *page = pfn_to_page(pfn);
3358
3359		__init_single_page(page, pfn, zone, nid);
3360		prep_compound_tail((struct page *)folio, pfn - head_pfn);
3361		ret = page_ref_freeze(page, 1);
3362		VM_BUG_ON(!ret);
3363	}
3364}
3365
3366static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3367					      struct hstate *h,
3368					      unsigned long nr_pages)
3369{
3370	int ret;
3371
3372	/* Prepare folio head */
3373	__folio_clear_reserved(folio);
3374	__folio_set_head(folio);
3375	ret = folio_ref_freeze(folio, 1);
3376	VM_BUG_ON(!ret);
3377	/* Initialize the necessary tail struct pages */
3378	hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3379	prep_compound_head((struct page *)folio, huge_page_order(h));
3380}
3381
3382static void __init prep_and_add_bootmem_folios(struct hstate *h,
3383					struct list_head *folio_list)
3384{
3385	unsigned long flags;
3386	struct folio *folio, *tmp_f;
3387
3388	/* Send list for bulk vmemmap optimization processing */
3389	hugetlb_vmemmap_optimize_folios(h, folio_list);
3390
3391	/* Add all new pool pages to free lists in one lock cycle */
3392	spin_lock_irqsave(&hugetlb_lock, flags);
3393	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3394		if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3395			/*
3396			 * If HVO fails, initialize all tail struct pages
3397			 * We do not worry about potential long lock hold
3398			 * time as this is early in boot and there should
3399			 * be no contention.
3400			 */
3401			hugetlb_folio_init_tail_vmemmap(folio,
3402					HUGETLB_VMEMMAP_RESERVE_PAGES,
3403					pages_per_huge_page(h));
3404		}
3405		__prep_account_new_huge_page(h, folio_nid(folio));
3406		enqueue_hugetlb_folio(h, folio);
3407	}
3408	spin_unlock_irqrestore(&hugetlb_lock, flags);
3409}
3410
3411/*
3412 * Put bootmem huge pages into the standard lists after mem_map is up.
3413 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3414 */
3415static void __init gather_bootmem_prealloc(void)
3416{
3417	LIST_HEAD(folio_list);
3418	struct huge_bootmem_page *m;
3419	struct hstate *h = NULL, *prev_h = NULL;
3420
3421	list_for_each_entry(m, &huge_boot_pages, list) {
3422		struct page *page = virt_to_page(m);
3423		struct folio *folio = (void *)page;
3424
3425		h = m->hstate;
3426		/*
3427		 * It is possible to have multiple huge page sizes (hstates)
3428		 * in this list.  If so, process each size separately.
 
 
 
 
 
 
 
3429		 */
3430		if (h != prev_h && prev_h != NULL)
3431			prep_and_add_bootmem_folios(prev_h, &folio_list);
3432		prev_h = h;
3433
3434		VM_BUG_ON(!hstate_is_gigantic(h));
3435		WARN_ON(folio_ref_count(folio) != 1);
3436
3437		hugetlb_folio_init_vmemmap(folio, h,
3438					   HUGETLB_VMEMMAP_RESERVE_PAGES);
3439		init_new_hugetlb_folio(h, folio);
3440		list_add(&folio->lru, &folio_list);
3441
3442		/*
3443		 * We need to restore the 'stolen' pages to totalram_pages
3444		 * in order to fix confusing memory reports from free(1) and
3445		 * other side-effects, like CommitLimit going negative.
3446		 */
3447		adjust_managed_page_count(page, pages_per_huge_page(h));
3448		cond_resched();
3449	}
3450
3451	prep_and_add_bootmem_folios(h, &folio_list);
3452}
3453
3454static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3455{
3456	unsigned long i;
3457	char buf[32];
3458
3459	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3460		if (hstate_is_gigantic(h)) {
3461			if (!alloc_bootmem_huge_page(h, nid))
3462				break;
3463		} else {
3464			struct folio *folio;
3465			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3466
3467			folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3468					&node_states[N_MEMORY], NULL);
3469			if (!folio)
3470				break;
3471			free_huge_folio(folio); /* free it into the hugepage allocator */
3472		}
3473		cond_resched();
3474	}
3475	if (i == h->max_huge_pages_node[nid])
3476		return;
3477
3478	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3479	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3480		h->max_huge_pages_node[nid], buf, nid, i);
3481	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3482	h->max_huge_pages_node[nid] = i;
3483}
3484
3485/*
3486 * NOTE: this routine is called in different contexts for gigantic and
3487 * non-gigantic pages.
3488 * - For gigantic pages, this is called early in the boot process and
3489 *   pages are allocated from memblock allocated or something similar.
3490 *   Gigantic pages are actually added to pools later with the routine
3491 *   gather_bootmem_prealloc.
3492 * - For non-gigantic pages, this is called later in the boot process after
3493 *   all of mm is up and functional.  Pages are allocated from buddy and
3494 *   then added to hugetlb pools.
3495 */
3496static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3497{
3498	unsigned long i;
3499	struct folio *folio;
3500	LIST_HEAD(folio_list);
3501	nodemask_t *node_alloc_noretry;
3502	bool node_specific_alloc = false;
3503
3504	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3505	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3506		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3507		return;
3508	}
3509
3510	/* do node specific alloc */
3511	for_each_online_node(i) {
3512		if (h->max_huge_pages_node[i] > 0) {
3513			hugetlb_hstate_alloc_pages_onenode(h, i);
3514			node_specific_alloc = true;
3515		}
3516	}
3517
3518	if (node_specific_alloc)
3519		return;
3520
3521	/* below will do all node balanced alloc */
3522	if (!hstate_is_gigantic(h)) {
3523		/*
3524		 * Bit mask controlling how hard we retry per-node allocations.
3525		 * Ignore errors as lower level routines can deal with
3526		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3527		 * time, we are likely in bigger trouble.
3528		 */
3529		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3530						GFP_KERNEL);
3531	} else {
3532		/* allocations done at boot time */
3533		node_alloc_noretry = NULL;
3534	}
3535
3536	/* bit mask controlling how hard we retry per-node allocations */
3537	if (node_alloc_noretry)
3538		nodes_clear(*node_alloc_noretry);
3539
3540	for (i = 0; i < h->max_huge_pages; ++i) {
3541		if (hstate_is_gigantic(h)) {
3542			/*
3543			 * gigantic pages not added to list as they are not
3544			 * added to pools now.
3545			 */
3546			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3547				break;
3548		} else {
3549			folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3550							node_alloc_noretry);
3551			if (!folio)
3552				break;
3553			list_add(&folio->lru, &folio_list);
3554		}
 
 
3555		cond_resched();
3556	}
3557
3558	/* list will be empty if hstate_is_gigantic */
3559	prep_and_add_allocated_folios(h, &folio_list);
3560
3561	if (i < h->max_huge_pages) {
3562		char buf[32];
3563
3564		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3565		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3566			h->max_huge_pages, buf, i);
3567		h->max_huge_pages = i;
3568	}
 
3569	kfree(node_alloc_noretry);
3570}
3571
3572static void __init hugetlb_init_hstates(void)
3573{
3574	struct hstate *h, *h2;
3575
3576	for_each_hstate(h) {
 
 
 
3577		/* oversize hugepages were init'ed in early boot */
3578		if (!hstate_is_gigantic(h))
3579			hugetlb_hstate_alloc_pages(h);
3580
3581		/*
3582		 * Set demote order for each hstate.  Note that
3583		 * h->demote_order is initially 0.
3584		 * - We can not demote gigantic pages if runtime freeing
3585		 *   is not supported, so skip this.
3586		 * - If CMA allocation is possible, we can not demote
3587		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3588		 */
3589		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3590			continue;
3591		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3592			continue;
3593		for_each_hstate(h2) {
3594			if (h2 == h)
3595				continue;
3596			if (h2->order < h->order &&
3597			    h2->order > h->demote_order)
3598				h->demote_order = h2->order;
3599		}
3600	}
 
3601}
3602
3603static void __init report_hugepages(void)
3604{
3605	struct hstate *h;
3606
3607	for_each_hstate(h) {
3608		char buf[32];
3609
3610		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3611		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3612			buf, h->free_huge_pages);
3613		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3614			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3615	}
3616}
3617
3618#ifdef CONFIG_HIGHMEM
3619static void try_to_free_low(struct hstate *h, unsigned long count,
3620						nodemask_t *nodes_allowed)
3621{
3622	int i;
3623	LIST_HEAD(page_list);
3624
3625	lockdep_assert_held(&hugetlb_lock);
3626	if (hstate_is_gigantic(h))
3627		return;
3628
3629	/*
3630	 * Collect pages to be freed on a list, and free after dropping lock
3631	 */
3632	for_each_node_mask(i, *nodes_allowed) {
3633		struct folio *folio, *next;
3634		struct list_head *freel = &h->hugepage_freelists[i];
3635		list_for_each_entry_safe(folio, next, freel, lru) {
3636			if (count >= h->nr_huge_pages)
3637				goto out;
3638			if (folio_test_highmem(folio))
3639				continue;
3640			remove_hugetlb_folio(h, folio, false);
3641			list_add(&folio->lru, &page_list);
 
 
3642		}
3643	}
3644
3645out:
3646	spin_unlock_irq(&hugetlb_lock);
3647	update_and_free_pages_bulk(h, &page_list);
3648	spin_lock_irq(&hugetlb_lock);
3649}
3650#else
3651static inline void try_to_free_low(struct hstate *h, unsigned long count,
3652						nodemask_t *nodes_allowed)
3653{
3654}
3655#endif
3656
3657/*
3658 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3659 * balanced by operating on them in a round-robin fashion.
3660 * Returns 1 if an adjustment was made.
3661 */
3662static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3663				int delta)
3664{
3665	int nr_nodes, node;
3666
3667	lockdep_assert_held(&hugetlb_lock);
3668	VM_BUG_ON(delta != -1 && delta != 1);
3669
3670	if (delta < 0) {
3671		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3672			if (h->surplus_huge_pages_node[node])
3673				goto found;
3674		}
3675	} else {
3676		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3677			if (h->surplus_huge_pages_node[node] <
3678					h->nr_huge_pages_node[node])
3679				goto found;
3680		}
3681	}
3682	return 0;
3683
3684found:
3685	h->surplus_huge_pages += delta;
3686	h->surplus_huge_pages_node[node] += delta;
3687	return 1;
3688}
3689
3690#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3691static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3692			      nodemask_t *nodes_allowed)
3693{
3694	unsigned long min_count;
3695	unsigned long allocated;
3696	struct folio *folio;
3697	LIST_HEAD(page_list);
3698	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3699
3700	/*
3701	 * Bit mask controlling how hard we retry per-node allocations.
3702	 * If we can not allocate the bit mask, do not attempt to allocate
3703	 * the requested huge pages.
3704	 */
3705	if (node_alloc_noretry)
3706		nodes_clear(*node_alloc_noretry);
3707	else
3708		return -ENOMEM;
3709
3710	/*
3711	 * resize_lock mutex prevents concurrent adjustments to number of
3712	 * pages in hstate via the proc/sysfs interfaces.
3713	 */
3714	mutex_lock(&h->resize_lock);
3715	flush_free_hpage_work(h);
3716	spin_lock_irq(&hugetlb_lock);
3717
3718	/*
3719	 * Check for a node specific request.
3720	 * Changing node specific huge page count may require a corresponding
3721	 * change to the global count.  In any case, the passed node mask
3722	 * (nodes_allowed) will restrict alloc/free to the specified node.
3723	 */
3724	if (nid != NUMA_NO_NODE) {
3725		unsigned long old_count = count;
3726
3727		count += persistent_huge_pages(h) -
3728			 (h->nr_huge_pages_node[nid] -
3729			  h->surplus_huge_pages_node[nid]);
3730		/*
3731		 * User may have specified a large count value which caused the
3732		 * above calculation to overflow.  In this case, they wanted
3733		 * to allocate as many huge pages as possible.  Set count to
3734		 * largest possible value to align with their intention.
3735		 */
3736		if (count < old_count)
3737			count = ULONG_MAX;
3738	}
3739
3740	/*
3741	 * Gigantic pages runtime allocation depend on the capability for large
3742	 * page range allocation.
3743	 * If the system does not provide this feature, return an error when
3744	 * the user tries to allocate gigantic pages but let the user free the
3745	 * boottime allocated gigantic pages.
3746	 */
3747	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3748		if (count > persistent_huge_pages(h)) {
3749			spin_unlock_irq(&hugetlb_lock);
3750			mutex_unlock(&h->resize_lock);
3751			NODEMASK_FREE(node_alloc_noretry);
3752			return -EINVAL;
3753		}
3754		/* Fall through to decrease pool */
3755	}
3756
3757	/*
3758	 * Increase the pool size
3759	 * First take pages out of surplus state.  Then make up the
3760	 * remaining difference by allocating fresh huge pages.
3761	 *
3762	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3763	 * to convert a surplus huge page to a normal huge page. That is
3764	 * not critical, though, it just means the overall size of the
3765	 * pool might be one hugepage larger than it needs to be, but
3766	 * within all the constraints specified by the sysctls.
3767	 */
3768	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3769		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3770			break;
3771	}
3772
3773	allocated = 0;
3774	while (count > (persistent_huge_pages(h) + allocated)) {
3775		/*
3776		 * If this allocation races such that we no longer need the
3777		 * page, free_huge_folio will handle it by freeing the page
3778		 * and reducing the surplus.
3779		 */
3780		spin_unlock_irq(&hugetlb_lock);
3781
3782		/* yield cpu to avoid soft lockup */
3783		cond_resched();
3784
3785		folio = alloc_pool_huge_folio(h, nodes_allowed,
3786						node_alloc_noretry);
3787		if (!folio) {
3788			prep_and_add_allocated_folios(h, &page_list);
3789			spin_lock_irq(&hugetlb_lock);
3790			goto out;
3791		}
3792
3793		list_add(&folio->lru, &page_list);
3794		allocated++;
3795
3796		/* Bail for signals. Probably ctrl-c from user */
3797		if (signal_pending(current)) {
3798			prep_and_add_allocated_folios(h, &page_list);
3799			spin_lock_irq(&hugetlb_lock);
3800			goto out;
3801		}
3802
3803		spin_lock_irq(&hugetlb_lock);
3804	}
3805
3806	/* Add allocated pages to the pool */
3807	if (!list_empty(&page_list)) {
3808		spin_unlock_irq(&hugetlb_lock);
3809		prep_and_add_allocated_folios(h, &page_list);
3810		spin_lock_irq(&hugetlb_lock);
3811	}
3812
3813	/*
3814	 * Decrease the pool size
3815	 * First return free pages to the buddy allocator (being careful
3816	 * to keep enough around to satisfy reservations).  Then place
3817	 * pages into surplus state as needed so the pool will shrink
3818	 * to the desired size as pages become free.
3819	 *
3820	 * By placing pages into the surplus state independent of the
3821	 * overcommit value, we are allowing the surplus pool size to
3822	 * exceed overcommit. There are few sane options here. Since
3823	 * alloc_surplus_hugetlb_folio() is checking the global counter,
3824	 * though, we'll note that we're not allowed to exceed surplus
3825	 * and won't grow the pool anywhere else. Not until one of the
3826	 * sysctls are changed, or the surplus pages go out of use.
3827	 */
3828	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3829	min_count = max(count, min_count);
3830	try_to_free_low(h, min_count, nodes_allowed);
3831
3832	/*
3833	 * Collect pages to be removed on list without dropping lock
3834	 */
3835	while (min_count < persistent_huge_pages(h)) {
3836		folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3837		if (!folio)
3838			break;
3839
3840		list_add(&folio->lru, &page_list);
3841	}
3842	/* free the pages after dropping lock */
3843	spin_unlock_irq(&hugetlb_lock);
3844	update_and_free_pages_bulk(h, &page_list);
3845	flush_free_hpage_work(h);
3846	spin_lock_irq(&hugetlb_lock);
3847
3848	while (count < persistent_huge_pages(h)) {
3849		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3850			break;
3851	}
3852out:
3853	h->max_huge_pages = persistent_huge_pages(h);
3854	spin_unlock_irq(&hugetlb_lock);
3855	mutex_unlock(&h->resize_lock);
3856
3857	NODEMASK_FREE(node_alloc_noretry);
3858
3859	return 0;
3860}
3861
3862static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3863{
3864	int i, nid = folio_nid(folio);
3865	struct hstate *target_hstate;
3866	struct page *subpage;
3867	struct folio *inner_folio;
3868	int rc = 0;
3869
3870	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3871
3872	remove_hugetlb_folio_for_demote(h, folio, false);
3873	spin_unlock_irq(&hugetlb_lock);
3874
3875	/*
3876	 * If vmemmap already existed for folio, the remove routine above would
3877	 * have cleared the hugetlb folio flag.  Hence the folio is technically
3878	 * no longer a hugetlb folio.  hugetlb_vmemmap_restore_folio can only be
3879	 * passed hugetlb folios and will BUG otherwise.
3880	 */
3881	if (folio_test_hugetlb(folio)) {
3882		rc = hugetlb_vmemmap_restore_folio(h, folio);
3883		if (rc) {
3884			/* Allocation of vmemmmap failed, we can not demote folio */
3885			spin_lock_irq(&hugetlb_lock);
3886			folio_ref_unfreeze(folio, 1);
3887			add_hugetlb_folio(h, folio, false);
3888			return rc;
3889		}
3890	}
3891
3892	/*
3893	 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3894	 * sizes as it will not ref count folios.
3895	 */
3896	destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3897
3898	/*
3899	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3900	 * Without the mutex, pages added to target hstate could be marked
3901	 * as surplus.
3902	 *
3903	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3904	 * use the convention of always taking larger size hstate mutex first.
3905	 */
3906	mutex_lock(&target_hstate->resize_lock);
3907	for (i = 0; i < pages_per_huge_page(h);
3908				i += pages_per_huge_page(target_hstate)) {
3909		subpage = folio_page(folio, i);
3910		inner_folio = page_folio(subpage);
3911		if (hstate_is_gigantic(target_hstate))
3912			prep_compound_gigantic_folio_for_demote(inner_folio,
3913							target_hstate->order);
3914		else
3915			prep_compound_page(subpage, target_hstate->order);
3916		folio_change_private(inner_folio, NULL);
3917		prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3918		free_huge_folio(inner_folio);
3919	}
3920	mutex_unlock(&target_hstate->resize_lock);
3921
3922	spin_lock_irq(&hugetlb_lock);
3923
3924	/*
3925	 * Not absolutely necessary, but for consistency update max_huge_pages
3926	 * based on pool changes for the demoted page.
3927	 */
3928	h->max_huge_pages--;
3929	target_hstate->max_huge_pages +=
3930		pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3931
3932	return rc;
3933}
3934
3935static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3936	__must_hold(&hugetlb_lock)
3937{
3938	int nr_nodes, node;
3939	struct folio *folio;
3940
3941	lockdep_assert_held(&hugetlb_lock);
3942
3943	/* We should never get here if no demote order */
3944	if (!h->demote_order) {
3945		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3946		return -EINVAL;		/* internal error */
3947	}
3948
3949	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3950		list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3951			if (folio_test_hwpoison(folio))
3952				continue;
3953			return demote_free_hugetlb_folio(h, folio);
3954		}
3955	}
3956
3957	/*
3958	 * Only way to get here is if all pages on free lists are poisoned.
3959	 * Return -EBUSY so that caller will not retry.
3960	 */
3961	return -EBUSY;
3962}
3963
3964#define HSTATE_ATTR_RO(_name) \
3965	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3966
3967#define HSTATE_ATTR_WO(_name) \
3968	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3969
3970#define HSTATE_ATTR(_name) \
3971	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
 
3972
3973static struct kobject *hugepages_kobj;
3974static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3975
3976static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3977
3978static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3979{
3980	int i;
3981
3982	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3983		if (hstate_kobjs[i] == kobj) {
3984			if (nidp)
3985				*nidp = NUMA_NO_NODE;
3986			return &hstates[i];
3987		}
3988
3989	return kobj_to_node_hstate(kobj, nidp);
3990}
3991
3992static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3993					struct kobj_attribute *attr, char *buf)
3994{
3995	struct hstate *h;
3996	unsigned long nr_huge_pages;
3997	int nid;
3998
3999	h = kobj_to_hstate(kobj, &nid);
4000	if (nid == NUMA_NO_NODE)
4001		nr_huge_pages = h->nr_huge_pages;
4002	else
4003		nr_huge_pages = h->nr_huge_pages_node[nid];
4004
4005	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
4006}
4007
4008static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4009					   struct hstate *h, int nid,
4010					   unsigned long count, size_t len)
4011{
4012	int err;
4013	nodemask_t nodes_allowed, *n_mask;
4014
4015	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4016		return -EINVAL;
4017
4018	if (nid == NUMA_NO_NODE) {
4019		/*
4020		 * global hstate attribute
4021		 */
4022		if (!(obey_mempolicy &&
4023				init_nodemask_of_mempolicy(&nodes_allowed)))
4024			n_mask = &node_states[N_MEMORY];
4025		else
4026			n_mask = &nodes_allowed;
4027	} else {
4028		/*
4029		 * Node specific request.  count adjustment happens in
4030		 * set_max_huge_pages() after acquiring hugetlb_lock.
4031		 */
4032		init_nodemask_of_node(&nodes_allowed, nid);
4033		n_mask = &nodes_allowed;
4034	}
4035
4036	err = set_max_huge_pages(h, count, nid, n_mask);
4037
4038	return err ? err : len;
4039}
4040
4041static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4042					 struct kobject *kobj, const char *buf,
4043					 size_t len)
4044{
4045	struct hstate *h;
4046	unsigned long count;
4047	int nid;
4048	int err;
4049
4050	err = kstrtoul(buf, 10, &count);
4051	if (err)
4052		return err;
4053
4054	h = kobj_to_hstate(kobj, &nid);
4055	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4056}
4057
4058static ssize_t nr_hugepages_show(struct kobject *kobj,
4059				       struct kobj_attribute *attr, char *buf)
4060{
4061	return nr_hugepages_show_common(kobj, attr, buf);
4062}
4063
4064static ssize_t nr_hugepages_store(struct kobject *kobj,
4065	       struct kobj_attribute *attr, const char *buf, size_t len)
4066{
4067	return nr_hugepages_store_common(false, kobj, buf, len);
4068}
4069HSTATE_ATTR(nr_hugepages);
4070
4071#ifdef CONFIG_NUMA
4072
4073/*
4074 * hstate attribute for optionally mempolicy-based constraint on persistent
4075 * huge page alloc/free.
4076 */
4077static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4078					   struct kobj_attribute *attr,
4079					   char *buf)
4080{
4081	return nr_hugepages_show_common(kobj, attr, buf);
4082}
4083
4084static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4085	       struct kobj_attribute *attr, const char *buf, size_t len)
4086{
4087	return nr_hugepages_store_common(true, kobj, buf, len);
4088}
4089HSTATE_ATTR(nr_hugepages_mempolicy);
4090#endif
4091
4092
4093static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4094					struct kobj_attribute *attr, char *buf)
4095{
4096	struct hstate *h = kobj_to_hstate(kobj, NULL);
4097	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4098}
4099
4100static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4101		struct kobj_attribute *attr, const char *buf, size_t count)
4102{
4103	int err;
4104	unsigned long input;
4105	struct hstate *h = kobj_to_hstate(kobj, NULL);
4106
4107	if (hstate_is_gigantic(h))
4108		return -EINVAL;
4109
4110	err = kstrtoul(buf, 10, &input);
4111	if (err)
4112		return err;
4113
4114	spin_lock_irq(&hugetlb_lock);
4115	h->nr_overcommit_huge_pages = input;
4116	spin_unlock_irq(&hugetlb_lock);
4117
4118	return count;
4119}
4120HSTATE_ATTR(nr_overcommit_hugepages);
4121
4122static ssize_t free_hugepages_show(struct kobject *kobj,
4123					struct kobj_attribute *attr, char *buf)
4124{
4125	struct hstate *h;
4126	unsigned long free_huge_pages;
4127	int nid;
4128
4129	h = kobj_to_hstate(kobj, &nid);
4130	if (nid == NUMA_NO_NODE)
4131		free_huge_pages = h->free_huge_pages;
4132	else
4133		free_huge_pages = h->free_huge_pages_node[nid];
4134
4135	return sysfs_emit(buf, "%lu\n", free_huge_pages);
4136}
4137HSTATE_ATTR_RO(free_hugepages);
4138
4139static ssize_t resv_hugepages_show(struct kobject *kobj,
4140					struct kobj_attribute *attr, char *buf)
4141{
4142	struct hstate *h = kobj_to_hstate(kobj, NULL);
4143	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4144}
4145HSTATE_ATTR_RO(resv_hugepages);
4146
4147static ssize_t surplus_hugepages_show(struct kobject *kobj,
4148					struct kobj_attribute *attr, char *buf)
4149{
4150	struct hstate *h;
4151	unsigned long surplus_huge_pages;
4152	int nid;
4153
4154	h = kobj_to_hstate(kobj, &nid);
4155	if (nid == NUMA_NO_NODE)
4156		surplus_huge_pages = h->surplus_huge_pages;
4157	else
4158		surplus_huge_pages = h->surplus_huge_pages_node[nid];
4159
4160	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4161}
4162HSTATE_ATTR_RO(surplus_hugepages);
4163
4164static ssize_t demote_store(struct kobject *kobj,
4165	       struct kobj_attribute *attr, const char *buf, size_t len)
4166{
4167	unsigned long nr_demote;
4168	unsigned long nr_available;
4169	nodemask_t nodes_allowed, *n_mask;
4170	struct hstate *h;
4171	int err;
4172	int nid;
4173
4174	err = kstrtoul(buf, 10, &nr_demote);
4175	if (err)
4176		return err;
4177	h = kobj_to_hstate(kobj, &nid);
4178
4179	if (nid != NUMA_NO_NODE) {
4180		init_nodemask_of_node(&nodes_allowed, nid);
4181		n_mask = &nodes_allowed;
4182	} else {
4183		n_mask = &node_states[N_MEMORY];
4184	}
4185
4186	/* Synchronize with other sysfs operations modifying huge pages */
4187	mutex_lock(&h->resize_lock);
4188	spin_lock_irq(&hugetlb_lock);
4189
4190	while (nr_demote) {
4191		/*
4192		 * Check for available pages to demote each time thorough the
4193		 * loop as demote_pool_huge_page will drop hugetlb_lock.
4194		 */
4195		if (nid != NUMA_NO_NODE)
4196			nr_available = h->free_huge_pages_node[nid];
4197		else
4198			nr_available = h->free_huge_pages;
4199		nr_available -= h->resv_huge_pages;
4200		if (!nr_available)
4201			break;
4202
4203		err = demote_pool_huge_page(h, n_mask);
4204		if (err)
4205			break;
4206
4207		nr_demote--;
4208	}
4209
4210	spin_unlock_irq(&hugetlb_lock);
4211	mutex_unlock(&h->resize_lock);
4212
4213	if (err)
4214		return err;
4215	return len;
4216}
4217HSTATE_ATTR_WO(demote);
4218
4219static ssize_t demote_size_show(struct kobject *kobj,
4220					struct kobj_attribute *attr, char *buf)
4221{
4222	struct hstate *h = kobj_to_hstate(kobj, NULL);
4223	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4224
4225	return sysfs_emit(buf, "%lukB\n", demote_size);
4226}
4227
4228static ssize_t demote_size_store(struct kobject *kobj,
4229					struct kobj_attribute *attr,
4230					const char *buf, size_t count)
4231{
4232	struct hstate *h, *demote_hstate;
4233	unsigned long demote_size;
4234	unsigned int demote_order;
4235
4236	demote_size = (unsigned long)memparse(buf, NULL);
4237
4238	demote_hstate = size_to_hstate(demote_size);
4239	if (!demote_hstate)
4240		return -EINVAL;
4241	demote_order = demote_hstate->order;
4242	if (demote_order < HUGETLB_PAGE_ORDER)
4243		return -EINVAL;
4244
4245	/* demote order must be smaller than hstate order */
4246	h = kobj_to_hstate(kobj, NULL);
4247	if (demote_order >= h->order)
4248		return -EINVAL;
4249
4250	/* resize_lock synchronizes access to demote size and writes */
4251	mutex_lock(&h->resize_lock);
4252	h->demote_order = demote_order;
4253	mutex_unlock(&h->resize_lock);
4254
4255	return count;
4256}
4257HSTATE_ATTR(demote_size);
4258
4259static struct attribute *hstate_attrs[] = {
4260	&nr_hugepages_attr.attr,
4261	&nr_overcommit_hugepages_attr.attr,
4262	&free_hugepages_attr.attr,
4263	&resv_hugepages_attr.attr,
4264	&surplus_hugepages_attr.attr,
4265#ifdef CONFIG_NUMA
4266	&nr_hugepages_mempolicy_attr.attr,
4267#endif
4268	NULL,
4269};
4270
4271static const struct attribute_group hstate_attr_group = {
4272	.attrs = hstate_attrs,
4273};
4274
4275static struct attribute *hstate_demote_attrs[] = {
4276	&demote_size_attr.attr,
4277	&demote_attr.attr,
4278	NULL,
4279};
4280
4281static const struct attribute_group hstate_demote_attr_group = {
4282	.attrs = hstate_demote_attrs,
4283};
4284
4285static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4286				    struct kobject **hstate_kobjs,
4287				    const struct attribute_group *hstate_attr_group)
4288{
4289	int retval;
4290	int hi = hstate_index(h);
4291
4292	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4293	if (!hstate_kobjs[hi])
4294		return -ENOMEM;
4295
4296	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4297	if (retval) {
4298		kobject_put(hstate_kobjs[hi]);
4299		hstate_kobjs[hi] = NULL;
4300		return retval;
4301	}
4302
4303	if (h->demote_order) {
4304		retval = sysfs_create_group(hstate_kobjs[hi],
4305					    &hstate_demote_attr_group);
4306		if (retval) {
4307			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4308			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4309			kobject_put(hstate_kobjs[hi]);
4310			hstate_kobjs[hi] = NULL;
4311			return retval;
4312		}
4313	}
4314
4315	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4316}
4317
4318#ifdef CONFIG_NUMA
4319static bool hugetlb_sysfs_initialized __ro_after_init;
4320
4321/*
4322 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4323 * with node devices in node_devices[] using a parallel array.  The array
4324 * index of a node device or _hstate == node id.
4325 * This is here to avoid any static dependency of the node device driver, in
4326 * the base kernel, on the hugetlb module.
4327 */
4328struct node_hstate {
4329	struct kobject		*hugepages_kobj;
4330	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4331};
4332static struct node_hstate node_hstates[MAX_NUMNODES];
4333
4334/*
4335 * A subset of global hstate attributes for node devices
4336 */
4337static struct attribute *per_node_hstate_attrs[] = {
4338	&nr_hugepages_attr.attr,
4339	&free_hugepages_attr.attr,
4340	&surplus_hugepages_attr.attr,
4341	NULL,
4342};
4343
4344static const struct attribute_group per_node_hstate_attr_group = {
4345	.attrs = per_node_hstate_attrs,
4346};
4347
4348/*
4349 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4350 * Returns node id via non-NULL nidp.
4351 */
4352static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4353{
4354	int nid;
4355
4356	for (nid = 0; nid < nr_node_ids; nid++) {
4357		struct node_hstate *nhs = &node_hstates[nid];
4358		int i;
4359		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4360			if (nhs->hstate_kobjs[i] == kobj) {
4361				if (nidp)
4362					*nidp = nid;
4363				return &hstates[i];
4364			}
4365	}
4366
4367	BUG();
4368	return NULL;
4369}
4370
4371/*
4372 * Unregister hstate attributes from a single node device.
4373 * No-op if no hstate attributes attached.
4374 */
4375void hugetlb_unregister_node(struct node *node)
4376{
4377	struct hstate *h;
4378	struct node_hstate *nhs = &node_hstates[node->dev.id];
4379
4380	if (!nhs->hugepages_kobj)
4381		return;		/* no hstate attributes */
4382
4383	for_each_hstate(h) {
4384		int idx = hstate_index(h);
4385		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4386
4387		if (!hstate_kobj)
4388			continue;
4389		if (h->demote_order)
4390			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4391		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4392		kobject_put(hstate_kobj);
4393		nhs->hstate_kobjs[idx] = NULL;
4394	}
4395
4396	kobject_put(nhs->hugepages_kobj);
4397	nhs->hugepages_kobj = NULL;
4398}
4399
4400
4401/*
4402 * Register hstate attributes for a single node device.
4403 * No-op if attributes already registered.
4404 */
4405void hugetlb_register_node(struct node *node)
4406{
4407	struct hstate *h;
4408	struct node_hstate *nhs = &node_hstates[node->dev.id];
4409	int err;
4410
4411	if (!hugetlb_sysfs_initialized)
4412		return;
4413
4414	if (nhs->hugepages_kobj)
4415		return;		/* already allocated */
4416
4417	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4418							&node->dev.kobj);
4419	if (!nhs->hugepages_kobj)
4420		return;
4421
4422	for_each_hstate(h) {
4423		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4424						nhs->hstate_kobjs,
4425						&per_node_hstate_attr_group);
4426		if (err) {
4427			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4428				h->name, node->dev.id);
4429			hugetlb_unregister_node(node);
4430			break;
4431		}
4432	}
4433}
4434
4435/*
4436 * hugetlb init time:  register hstate attributes for all registered node
4437 * devices of nodes that have memory.  All on-line nodes should have
4438 * registered their associated device by this time.
4439 */
4440static void __init hugetlb_register_all_nodes(void)
4441{
4442	int nid;
4443
4444	for_each_online_node(nid)
4445		hugetlb_register_node(node_devices[nid]);
 
 
 
 
 
 
 
 
 
 
4446}
4447#else	/* !CONFIG_NUMA */
4448
4449static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4450{
4451	BUG();
4452	if (nidp)
4453		*nidp = -1;
4454	return NULL;
4455}
4456
4457static void hugetlb_register_all_nodes(void) { }
4458
4459#endif
4460
4461#ifdef CONFIG_CMA
4462static void __init hugetlb_cma_check(void);
4463#else
4464static inline __init void hugetlb_cma_check(void)
4465{
4466}
4467#endif
4468
4469static void __init hugetlb_sysfs_init(void)
4470{
4471	struct hstate *h;
4472	int err;
4473
4474	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4475	if (!hugepages_kobj)
4476		return;
4477
4478	for_each_hstate(h) {
4479		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4480					 hstate_kobjs, &hstate_attr_group);
4481		if (err)
4482			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4483	}
4484
4485#ifdef CONFIG_NUMA
4486	hugetlb_sysfs_initialized = true;
4487#endif
4488	hugetlb_register_all_nodes();
4489}
4490
4491#ifdef CONFIG_SYSCTL
4492static void hugetlb_sysctl_init(void);
4493#else
4494static inline void hugetlb_sysctl_init(void) { }
4495#endif
4496
4497static int __init hugetlb_init(void)
4498{
4499	int i;
4500
4501	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4502			__NR_HPAGEFLAGS);
4503
4504	if (!hugepages_supported()) {
4505		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4506			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4507		return 0;
4508	}
4509
4510	/*
4511	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4512	 * architectures depend on setup being done here.
4513	 */
4514	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4515	if (!parsed_default_hugepagesz) {
4516		/*
4517		 * If we did not parse a default huge page size, set
4518		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4519		 * number of huge pages for this default size was implicitly
4520		 * specified, set that here as well.
4521		 * Note that the implicit setting will overwrite an explicit
4522		 * setting.  A warning will be printed in this case.
4523		 */
4524		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4525		if (default_hstate_max_huge_pages) {
4526			if (default_hstate.max_huge_pages) {
4527				char buf[32];
4528
4529				string_get_size(huge_page_size(&default_hstate),
4530					1, STRING_UNITS_2, buf, 32);
4531				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4532					default_hstate.max_huge_pages, buf);
4533				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4534					default_hstate_max_huge_pages);
4535			}
4536			default_hstate.max_huge_pages =
4537				default_hstate_max_huge_pages;
4538
4539			for_each_online_node(i)
4540				default_hstate.max_huge_pages_node[i] =
4541					default_hugepages_in_node[i];
4542		}
4543	}
4544
4545	hugetlb_cma_check();
4546	hugetlb_init_hstates();
4547	gather_bootmem_prealloc();
4548	report_hugepages();
4549
4550	hugetlb_sysfs_init();
 
4551	hugetlb_cgroup_file_init();
4552	hugetlb_sysctl_init();
4553
4554#ifdef CONFIG_SMP
4555	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4556#else
4557	num_fault_mutexes = 1;
4558#endif
4559	hugetlb_fault_mutex_table =
4560		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4561			      GFP_KERNEL);
4562	BUG_ON(!hugetlb_fault_mutex_table);
4563
4564	for (i = 0; i < num_fault_mutexes; i++)
4565		mutex_init(&hugetlb_fault_mutex_table[i]);
4566	return 0;
4567}
4568subsys_initcall(hugetlb_init);
4569
4570/* Overwritten by architectures with more huge page sizes */
4571bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4572{
4573	return size == HPAGE_SIZE;
4574}
4575
4576void __init hugetlb_add_hstate(unsigned int order)
4577{
4578	struct hstate *h;
4579	unsigned long i;
4580
4581	if (size_to_hstate(PAGE_SIZE << order)) {
4582		return;
4583	}
4584	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4585	BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4586	h = &hstates[hugetlb_max_hstate++];
4587	mutex_init(&h->resize_lock);
4588	h->order = order;
4589	h->mask = ~(huge_page_size(h) - 1);
 
 
4590	for (i = 0; i < MAX_NUMNODES; ++i)
4591		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4592	INIT_LIST_HEAD(&h->hugepage_activelist);
4593	h->next_nid_to_alloc = first_memory_node;
4594	h->next_nid_to_free = first_memory_node;
4595	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4596					huge_page_size(h)/SZ_1K);
4597
4598	parsed_hstate = h;
4599}
4600
4601bool __init __weak hugetlb_node_alloc_supported(void)
4602{
4603	return true;
4604}
4605
4606static void __init hugepages_clear_pages_in_node(void)
4607{
4608	if (!hugetlb_max_hstate) {
4609		default_hstate_max_huge_pages = 0;
4610		memset(default_hugepages_in_node, 0,
4611			sizeof(default_hugepages_in_node));
4612	} else {
4613		parsed_hstate->max_huge_pages = 0;
4614		memset(parsed_hstate->max_huge_pages_node, 0,
4615			sizeof(parsed_hstate->max_huge_pages_node));
4616	}
4617}
4618
4619/*
4620 * hugepages command line processing
4621 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4622 * specification.  If not, ignore the hugepages value.  hugepages can also
4623 * be the first huge page command line  option in which case it implicitly
4624 * specifies the number of huge pages for the default size.
4625 */
4626static int __init hugepages_setup(char *s)
4627{
4628	unsigned long *mhp;
4629	static unsigned long *last_mhp;
4630	int node = NUMA_NO_NODE;
4631	int count;
4632	unsigned long tmp;
4633	char *p = s;
4634
4635	if (!parsed_valid_hugepagesz) {
4636		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4637		parsed_valid_hugepagesz = true;
4638		return 1;
4639	}
4640
4641	/*
4642	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4643	 * yet, so this hugepages= parameter goes to the "default hstate".
4644	 * Otherwise, it goes with the previously parsed hugepagesz or
4645	 * default_hugepagesz.
4646	 */
4647	else if (!hugetlb_max_hstate)
4648		mhp = &default_hstate_max_huge_pages;
4649	else
4650		mhp = &parsed_hstate->max_huge_pages;
4651
4652	if (mhp == last_mhp) {
4653		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4654		return 1;
4655	}
4656
4657	while (*p) {
4658		count = 0;
4659		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4660			goto invalid;
4661		/* Parameter is node format */
4662		if (p[count] == ':') {
4663			if (!hugetlb_node_alloc_supported()) {
4664				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4665				return 1;
4666			}
4667			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4668				goto invalid;
4669			node = array_index_nospec(tmp, MAX_NUMNODES);
4670			p += count + 1;
4671			/* Parse hugepages */
4672			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4673				goto invalid;
4674			if (!hugetlb_max_hstate)
4675				default_hugepages_in_node[node] = tmp;
4676			else
4677				parsed_hstate->max_huge_pages_node[node] = tmp;
4678			*mhp += tmp;
4679			/* Go to parse next node*/
4680			if (p[count] == ',')
4681				p += count + 1;
4682			else
4683				break;
4684		} else {
4685			if (p != s)
4686				goto invalid;
4687			*mhp = tmp;
4688			break;
4689		}
4690	}
4691
4692	/*
4693	 * Global state is always initialized later in hugetlb_init.
4694	 * But we need to allocate gigantic hstates here early to still
4695	 * use the bootmem allocator.
4696	 */
4697	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4698		hugetlb_hstate_alloc_pages(parsed_hstate);
4699
4700	last_mhp = mhp;
4701
4702	return 1;
4703
4704invalid:
4705	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4706	hugepages_clear_pages_in_node();
4707	return 1;
4708}
4709__setup("hugepages=", hugepages_setup);
4710
4711/*
4712 * hugepagesz command line processing
4713 * A specific huge page size can only be specified once with hugepagesz.
4714 * hugepagesz is followed by hugepages on the command line.  The global
4715 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4716 * hugepagesz argument was valid.
4717 */
4718static int __init hugepagesz_setup(char *s)
4719{
4720	unsigned long size;
4721	struct hstate *h;
4722
4723	parsed_valid_hugepagesz = false;
4724	size = (unsigned long)memparse(s, NULL);
4725
4726	if (!arch_hugetlb_valid_size(size)) {
4727		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4728		return 1;
4729	}
4730
4731	h = size_to_hstate(size);
4732	if (h) {
4733		/*
4734		 * hstate for this size already exists.  This is normally
4735		 * an error, but is allowed if the existing hstate is the
4736		 * default hstate.  More specifically, it is only allowed if
4737		 * the number of huge pages for the default hstate was not
4738		 * previously specified.
4739		 */
4740		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4741		    default_hstate.max_huge_pages) {
4742			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4743			return 1;
4744		}
4745
4746		/*
4747		 * No need to call hugetlb_add_hstate() as hstate already
4748		 * exists.  But, do set parsed_hstate so that a following
4749		 * hugepages= parameter will be applied to this hstate.
4750		 */
4751		parsed_hstate = h;
4752		parsed_valid_hugepagesz = true;
4753		return 1;
4754	}
4755
4756	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4757	parsed_valid_hugepagesz = true;
4758	return 1;
4759}
4760__setup("hugepagesz=", hugepagesz_setup);
4761
4762/*
4763 * default_hugepagesz command line input
4764 * Only one instance of default_hugepagesz allowed on command line.
4765 */
4766static int __init default_hugepagesz_setup(char *s)
4767{
4768	unsigned long size;
4769	int i;
4770
4771	parsed_valid_hugepagesz = false;
4772	if (parsed_default_hugepagesz) {
4773		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4774		return 1;
4775	}
4776
4777	size = (unsigned long)memparse(s, NULL);
4778
4779	if (!arch_hugetlb_valid_size(size)) {
4780		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4781		return 1;
4782	}
4783
4784	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4785	parsed_valid_hugepagesz = true;
4786	parsed_default_hugepagesz = true;
4787	default_hstate_idx = hstate_index(size_to_hstate(size));
4788
4789	/*
4790	 * The number of default huge pages (for this size) could have been
4791	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4792	 * then default_hstate_max_huge_pages is set.  If the default huge
4793	 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4794	 * allocated here from bootmem allocator.
4795	 */
4796	if (default_hstate_max_huge_pages) {
4797		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4798		for_each_online_node(i)
4799			default_hstate.max_huge_pages_node[i] =
4800				default_hugepages_in_node[i];
4801		if (hstate_is_gigantic(&default_hstate))
4802			hugetlb_hstate_alloc_pages(&default_hstate);
4803		default_hstate_max_huge_pages = 0;
4804	}
4805
4806	return 1;
4807}
4808__setup("default_hugepagesz=", default_hugepagesz_setup);
4809
4810static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4811{
4812#ifdef CONFIG_NUMA
4813	struct mempolicy *mpol = get_task_policy(current);
4814
4815	/*
4816	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4817	 * (from policy_nodemask) specifically for hugetlb case
4818	 */
4819	if (mpol->mode == MPOL_BIND &&
4820		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
4821		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4822		return &mpol->nodes;
4823#endif
4824	return NULL;
4825}
4826
4827static unsigned int allowed_mems_nr(struct hstate *h)
4828{
4829	int node;
4830	unsigned int nr = 0;
4831	nodemask_t *mbind_nodemask;
4832	unsigned int *array = h->free_huge_pages_node;
4833	gfp_t gfp_mask = htlb_alloc_mask(h);
4834
4835	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
 
4836	for_each_node_mask(node, cpuset_current_mems_allowed) {
4837		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
 
4838			nr += array[node];
4839	}
4840
4841	return nr;
4842}
4843
4844#ifdef CONFIG_SYSCTL
4845static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4846					  void *buffer, size_t *length,
4847					  loff_t *ppos, unsigned long *out)
4848{
4849	struct ctl_table dup_table;
4850
4851	/*
4852	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4853	 * can duplicate the @table and alter the duplicate of it.
4854	 */
4855	dup_table = *table;
4856	dup_table.data = out;
4857
4858	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4859}
4860
4861static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4862			 struct ctl_table *table, int write,
4863			 void *buffer, size_t *length, loff_t *ppos)
4864{
4865	struct hstate *h = &default_hstate;
4866	unsigned long tmp = h->max_huge_pages;
4867	int ret;
4868
4869	if (!hugepages_supported())
4870		return -EOPNOTSUPP;
4871
4872	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4873					     &tmp);
4874	if (ret)
4875		goto out;
4876
4877	if (write)
4878		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4879						  NUMA_NO_NODE, tmp, *length);
4880out:
4881	return ret;
4882}
4883
4884static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4885			  void *buffer, size_t *length, loff_t *ppos)
4886{
4887
4888	return hugetlb_sysctl_handler_common(false, table, write,
4889							buffer, length, ppos);
4890}
4891
4892#ifdef CONFIG_NUMA
4893static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4894			  void *buffer, size_t *length, loff_t *ppos)
4895{
4896	return hugetlb_sysctl_handler_common(true, table, write,
4897							buffer, length, ppos);
4898}
4899#endif /* CONFIG_NUMA */
4900
4901static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4902		void *buffer, size_t *length, loff_t *ppos)
4903{
4904	struct hstate *h = &default_hstate;
4905	unsigned long tmp;
4906	int ret;
4907
4908	if (!hugepages_supported())
4909		return -EOPNOTSUPP;
4910
4911	tmp = h->nr_overcommit_huge_pages;
4912
4913	if (write && hstate_is_gigantic(h))
4914		return -EINVAL;
4915
4916	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4917					     &tmp);
4918	if (ret)
4919		goto out;
4920
4921	if (write) {
4922		spin_lock_irq(&hugetlb_lock);
4923		h->nr_overcommit_huge_pages = tmp;
4924		spin_unlock_irq(&hugetlb_lock);
4925	}
4926out:
4927	return ret;
4928}
4929
4930static struct ctl_table hugetlb_table[] = {
4931	{
4932		.procname	= "nr_hugepages",
4933		.data		= NULL,
4934		.maxlen		= sizeof(unsigned long),
4935		.mode		= 0644,
4936		.proc_handler	= hugetlb_sysctl_handler,
4937	},
4938#ifdef CONFIG_NUMA
4939	{
4940		.procname       = "nr_hugepages_mempolicy",
4941		.data           = NULL,
4942		.maxlen         = sizeof(unsigned long),
4943		.mode           = 0644,
4944		.proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4945	},
4946#endif
4947	{
4948		.procname	= "hugetlb_shm_group",
4949		.data		= &sysctl_hugetlb_shm_group,
4950		.maxlen		= sizeof(gid_t),
4951		.mode		= 0644,
4952		.proc_handler	= proc_dointvec,
4953	},
4954	{
4955		.procname	= "nr_overcommit_hugepages",
4956		.data		= NULL,
4957		.maxlen		= sizeof(unsigned long),
4958		.mode		= 0644,
4959		.proc_handler	= hugetlb_overcommit_handler,
4960	},
4961	{ }
4962};
4963
4964static void hugetlb_sysctl_init(void)
4965{
4966	register_sysctl_init("vm", hugetlb_table);
4967}
4968#endif /* CONFIG_SYSCTL */
4969
4970void hugetlb_report_meminfo(struct seq_file *m)
4971{
4972	struct hstate *h;
4973	unsigned long total = 0;
4974
4975	if (!hugepages_supported())
4976		return;
4977
4978	for_each_hstate(h) {
4979		unsigned long count = h->nr_huge_pages;
4980
4981		total += huge_page_size(h) * count;
4982
4983		if (h == &default_hstate)
4984			seq_printf(m,
4985				   "HugePages_Total:   %5lu\n"
4986				   "HugePages_Free:    %5lu\n"
4987				   "HugePages_Rsvd:    %5lu\n"
4988				   "HugePages_Surp:    %5lu\n"
4989				   "Hugepagesize:   %8lu kB\n",
4990				   count,
4991				   h->free_huge_pages,
4992				   h->resv_huge_pages,
4993				   h->surplus_huge_pages,
4994				   huge_page_size(h) / SZ_1K);
4995	}
4996
4997	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4998}
4999
5000int hugetlb_report_node_meminfo(char *buf, int len, int nid)
5001{
5002	struct hstate *h = &default_hstate;
5003
5004	if (!hugepages_supported())
5005		return 0;
5006
5007	return sysfs_emit_at(buf, len,
5008			     "Node %d HugePages_Total: %5u\n"
5009			     "Node %d HugePages_Free:  %5u\n"
5010			     "Node %d HugePages_Surp:  %5u\n",
5011			     nid, h->nr_huge_pages_node[nid],
5012			     nid, h->free_huge_pages_node[nid],
5013			     nid, h->surplus_huge_pages_node[nid]);
5014}
5015
5016void hugetlb_show_meminfo_node(int nid)
5017{
5018	struct hstate *h;
 
5019
5020	if (!hugepages_supported())
5021		return;
5022
5023	for_each_hstate(h)
5024		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5025			nid,
5026			h->nr_huge_pages_node[nid],
5027			h->free_huge_pages_node[nid],
5028			h->surplus_huge_pages_node[nid],
5029			huge_page_size(h) / SZ_1K);
 
5030}
5031
5032void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5033{
5034	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5035		   K(atomic_long_read(&mm->hugetlb_usage)));
5036}
5037
5038/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
5039unsigned long hugetlb_total_pages(void)
5040{
5041	struct hstate *h;
5042	unsigned long nr_total_pages = 0;
5043
5044	for_each_hstate(h)
5045		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5046	return nr_total_pages;
5047}
5048
5049static int hugetlb_acct_memory(struct hstate *h, long delta)
5050{
5051	int ret = -ENOMEM;
5052
5053	if (!delta)
5054		return 0;
5055
5056	spin_lock_irq(&hugetlb_lock);
5057	/*
5058	 * When cpuset is configured, it breaks the strict hugetlb page
5059	 * reservation as the accounting is done on a global variable. Such
5060	 * reservation is completely rubbish in the presence of cpuset because
5061	 * the reservation is not checked against page availability for the
5062	 * current cpuset. Application can still potentially OOM'ed by kernel
5063	 * with lack of free htlb page in cpuset that the task is in.
5064	 * Attempt to enforce strict accounting with cpuset is almost
5065	 * impossible (or too ugly) because cpuset is too fluid that
5066	 * task or memory node can be dynamically moved between cpusets.
5067	 *
5068	 * The change of semantics for shared hugetlb mapping with cpuset is
5069	 * undesirable. However, in order to preserve some of the semantics,
5070	 * we fall back to check against current free page availability as
5071	 * a best attempt and hopefully to minimize the impact of changing
5072	 * semantics that cpuset has.
5073	 *
5074	 * Apart from cpuset, we also have memory policy mechanism that
5075	 * also determines from which node the kernel will allocate memory
5076	 * in a NUMA system. So similar to cpuset, we also should consider
5077	 * the memory policy of the current task. Similar to the description
5078	 * above.
5079	 */
5080	if (delta > 0) {
5081		if (gather_surplus_pages(h, delta) < 0)
5082			goto out;
5083
5084		if (delta > allowed_mems_nr(h)) {
5085			return_unused_surplus_pages(h, delta);
5086			goto out;
5087		}
5088	}
5089
5090	ret = 0;
5091	if (delta < 0)
5092		return_unused_surplus_pages(h, (unsigned long) -delta);
5093
5094out:
5095	spin_unlock_irq(&hugetlb_lock);
5096	return ret;
5097}
5098
5099static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5100{
5101	struct resv_map *resv = vma_resv_map(vma);
5102
5103	/*
5104	 * HPAGE_RESV_OWNER indicates a private mapping.
5105	 * This new VMA should share its siblings reservation map if present.
5106	 * The VMA will only ever have a valid reservation map pointer where
5107	 * it is being copied for another still existing VMA.  As that VMA
5108	 * has a reference to the reservation map it cannot disappear until
5109	 * after this open call completes.  It is therefore safe to take a
5110	 * new reference here without additional locking.
5111	 */
5112	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5113		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5114		kref_get(&resv->refs);
5115	}
5116
5117	/*
5118	 * vma_lock structure for sharable mappings is vma specific.
5119	 * Clear old pointer (if copied via vm_area_dup) and allocate
5120	 * new structure.  Before clearing, make sure vma_lock is not
5121	 * for this vma.
5122	 */
5123	if (vma->vm_flags & VM_MAYSHARE) {
5124		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5125
5126		if (vma_lock) {
5127			if (vma_lock->vma != vma) {
5128				vma->vm_private_data = NULL;
5129				hugetlb_vma_lock_alloc(vma);
5130			} else
5131				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5132		} else
5133			hugetlb_vma_lock_alloc(vma);
5134	}
5135}
5136
5137static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5138{
5139	struct hstate *h = hstate_vma(vma);
5140	struct resv_map *resv;
5141	struct hugepage_subpool *spool = subpool_vma(vma);
5142	unsigned long reserve, start, end;
5143	long gbl_reserve;
5144
5145	hugetlb_vma_lock_free(vma);
5146
5147	resv = vma_resv_map(vma);
5148	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5149		return;
5150
5151	start = vma_hugecache_offset(h, vma, vma->vm_start);
5152	end = vma_hugecache_offset(h, vma, vma->vm_end);
5153
5154	reserve = (end - start) - region_count(resv, start, end);
5155	hugetlb_cgroup_uncharge_counter(resv, start, end);
5156	if (reserve) {
5157		/*
5158		 * Decrement reserve counts.  The global reserve count may be
5159		 * adjusted if the subpool has a minimum size.
5160		 */
5161		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5162		hugetlb_acct_memory(h, -gbl_reserve);
5163	}
5164
5165	kref_put(&resv->refs, resv_map_release);
5166}
5167
5168static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5169{
5170	if (addr & ~(huge_page_mask(hstate_vma(vma))))
5171		return -EINVAL;
5172
5173	/*
5174	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5175	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5176	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5177	 */
5178	if (addr & ~PUD_MASK) {
5179		/*
5180		 * hugetlb_vm_op_split is called right before we attempt to
5181		 * split the VMA. We will need to unshare PMDs in the old and
5182		 * new VMAs, so let's unshare before we split.
5183		 */
5184		unsigned long floor = addr & PUD_MASK;
5185		unsigned long ceil = floor + PUD_SIZE;
5186
5187		if (floor >= vma->vm_start && ceil <= vma->vm_end)
5188			hugetlb_unshare_pmds(vma, floor, ceil);
5189	}
5190
5191	return 0;
5192}
5193
5194static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5195{
5196	return huge_page_size(hstate_vma(vma));
 
 
5197}
5198
5199/*
5200 * We cannot handle pagefaults against hugetlb pages at all.  They cause
5201 * handle_mm_fault() to try to instantiate regular-sized pages in the
5202 * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
5203 * this far.
5204 */
5205static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5206{
5207	BUG();
5208	return 0;
5209}
5210
5211/*
5212 * When a new function is introduced to vm_operations_struct and added
5213 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5214 * This is because under System V memory model, mappings created via
5215 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5216 * their original vm_ops are overwritten with shm_vm_ops.
5217 */
5218const struct vm_operations_struct hugetlb_vm_ops = {
5219	.fault = hugetlb_vm_op_fault,
5220	.open = hugetlb_vm_op_open,
5221	.close = hugetlb_vm_op_close,
5222	.may_split = hugetlb_vm_op_split,
5223	.pagesize = hugetlb_vm_op_pagesize,
5224};
5225
5226static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5227				int writable)
5228{
5229	pte_t entry;
5230	unsigned int shift = huge_page_shift(hstate_vma(vma));
5231
5232	if (writable) {
5233		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5234					 vma->vm_page_prot)));
5235	} else {
5236		entry = huge_pte_wrprotect(mk_huge_pte(page,
5237					   vma->vm_page_prot));
5238	}
5239	entry = pte_mkyoung(entry);
5240	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
 
5241
5242	return entry;
5243}
5244
5245static void set_huge_ptep_writable(struct vm_area_struct *vma,
5246				   unsigned long address, pte_t *ptep)
5247{
5248	pte_t entry;
5249
5250	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
5251	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5252		update_mmu_cache(vma, address, ptep);
5253}
5254
5255bool is_hugetlb_entry_migration(pte_t pte)
5256{
5257	swp_entry_t swp;
5258
5259	if (huge_pte_none(pte) || pte_present(pte))
5260		return false;
5261	swp = pte_to_swp_entry(pte);
5262	if (is_migration_entry(swp))
5263		return true;
5264	else
5265		return false;
5266}
5267
5268bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5269{
5270	swp_entry_t swp;
5271
5272	if (huge_pte_none(pte) || pte_present(pte))
5273		return false;
5274	swp = pte_to_swp_entry(pte);
5275	if (is_hwpoison_entry(swp))
5276		return true;
5277	else
5278		return false;
5279}
5280
5281static void
5282hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5283		      struct folio *new_folio, pte_t old, unsigned long sz)
5284{
5285	pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5286
5287	__folio_mark_uptodate(new_folio);
5288	hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5289	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5290		newpte = huge_pte_mkuffd_wp(newpte);
5291	set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5292	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5293	folio_set_hugetlb_migratable(new_folio);
5294}
5295
5296int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5297			    struct vm_area_struct *dst_vma,
5298			    struct vm_area_struct *src_vma)
5299{
5300	pte_t *src_pte, *dst_pte, entry;
5301	struct folio *pte_folio;
5302	unsigned long addr;
5303	bool cow = is_cow_mapping(src_vma->vm_flags);
5304	struct hstate *h = hstate_vma(src_vma);
5305	unsigned long sz = huge_page_size(h);
5306	unsigned long npages = pages_per_huge_page(h);
5307	struct mmu_notifier_range range;
5308	unsigned long last_addr_mask;
5309	int ret = 0;
5310
 
 
5311	if (cow) {
5312		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5313					src_vma->vm_start,
5314					src_vma->vm_end);
5315		mmu_notifier_invalidate_range_start(&range);
5316		vma_assert_write_locked(src_vma);
5317		raw_write_seqcount_begin(&src->write_protect_seq);
5318	} else {
5319		/*
5320		 * For shared mappings the vma lock must be held before
5321		 * calling hugetlb_walk() in the src vma. Otherwise, the
5322		 * returned ptep could go away if part of a shared pmd and
5323		 * another thread calls huge_pmd_unshare.
5324		 */
5325		hugetlb_vma_lock_read(src_vma);
5326	}
5327
5328	last_addr_mask = hugetlb_mask_last_page(h);
5329	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5330		spinlock_t *src_ptl, *dst_ptl;
5331		src_pte = hugetlb_walk(src_vma, addr, sz);
5332		if (!src_pte) {
5333			addr |= last_addr_mask;
5334			continue;
5335		}
5336		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5337		if (!dst_pte) {
5338			ret = -ENOMEM;
5339			break;
5340		}
5341
5342		/*
5343		 * If the pagetables are shared don't copy or take references.
5344		 *
5345		 * dst_pte == src_pte is the common case of src/dest sharing.
 
5346		 * However, src could have 'unshared' and dst shares with
5347		 * another vma. So page_count of ptep page is checked instead
5348		 * to reliably determine whether pte is shared.
 
5349		 */
5350		if (page_count(virt_to_page(dst_pte)) > 1) {
5351			addr |= last_addr_mask;
5352			continue;
5353		}
5354
5355		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5356		src_ptl = huge_pte_lockptr(h, src, src_pte);
5357		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5358		entry = huge_ptep_get(src_pte);
5359again:
5360		if (huge_pte_none(entry)) {
5361			/*
5362			 * Skip if src entry none.
 
 
5363			 */
5364			;
5365		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5366			if (!userfaultfd_wp(dst_vma))
5367				entry = huge_pte_clear_uffd_wp(entry);
5368			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5369		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5370			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5371			bool uffd_wp = pte_swp_uffd_wp(entry);
5372
5373			if (!is_readable_migration_entry(swp_entry) && cow) {
5374				/*
5375				 * COW mappings require pages in both
5376				 * parent and child to be set to read.
5377				 */
5378				swp_entry = make_readable_migration_entry(
5379							swp_offset(swp_entry));
5380				entry = swp_entry_to_pte(swp_entry);
5381				if (userfaultfd_wp(src_vma) && uffd_wp)
5382					entry = pte_swp_mkuffd_wp(entry);
5383				set_huge_pte_at(src, addr, src_pte, entry, sz);
5384			}
5385			if (!userfaultfd_wp(dst_vma))
5386				entry = huge_pte_clear_uffd_wp(entry);
5387			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5388		} else if (unlikely(is_pte_marker(entry))) {
5389			pte_marker marker = copy_pte_marker(
5390				pte_to_swp_entry(entry), dst_vma);
5391
5392			if (marker)
5393				set_huge_pte_at(dst, addr, dst_pte,
5394						make_pte_marker(marker), sz);
5395		} else {
5396			entry = huge_ptep_get(src_pte);
5397			pte_folio = page_folio(pte_page(entry));
5398			folio_get(pte_folio);
5399
5400			/*
5401			 * Failing to duplicate the anon rmap is a rare case
5402			 * where we see pinned hugetlb pages while they're
5403			 * prone to COW. We need to do the COW earlier during
5404			 * fork.
5405			 *
5406			 * When pre-allocating the page or copying data, we
5407			 * need to be without the pgtable locks since we could
5408			 * sleep during the process.
5409			 */
5410			if (!folio_test_anon(pte_folio)) {
5411				hugetlb_add_file_rmap(pte_folio);
5412			} else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5413				pte_t src_pte_old = entry;
5414				struct folio *new_folio;
5415
5416				spin_unlock(src_ptl);
5417				spin_unlock(dst_ptl);
5418				/* Do not use reserve as it's private owned */
5419				new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5420				if (IS_ERR(new_folio)) {
5421					folio_put(pte_folio);
5422					ret = PTR_ERR(new_folio);
5423					break;
5424				}
5425				ret = copy_user_large_folio(new_folio,
5426							    pte_folio,
5427							    addr, dst_vma);
5428				folio_put(pte_folio);
5429				if (ret) {
5430					folio_put(new_folio);
5431					break;
5432				}
5433
5434				/* Install the new hugetlb folio if src pte stable */
5435				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5436				src_ptl = huge_pte_lockptr(h, src, src_pte);
5437				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5438				entry = huge_ptep_get(src_pte);
5439				if (!pte_same(src_pte_old, entry)) {
5440					restore_reserve_on_error(h, dst_vma, addr,
5441								new_folio);
5442					folio_put(new_folio);
5443					/* huge_ptep of dst_pte won't change as in child */
5444					goto again;
5445				}
5446				hugetlb_install_folio(dst_vma, dst_pte, addr,
5447						      new_folio, src_pte_old, sz);
5448				spin_unlock(src_ptl);
5449				spin_unlock(dst_ptl);
5450				continue;
5451			}
5452
5453			if (cow) {
5454				/*
5455				 * No need to notify as we are downgrading page
5456				 * table protection not changing it to point
5457				 * to a new page.
5458				 *
5459				 * See Documentation/mm/mmu_notifier.rst
5460				 */
5461				huge_ptep_set_wrprotect(src, addr, src_pte);
5462				entry = huge_pte_wrprotect(entry);
5463			}
5464
5465			if (!userfaultfd_wp(dst_vma))
5466				entry = huge_pte_clear_uffd_wp(entry);
5467
5468			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5469			hugetlb_count_add(npages, dst);
5470		}
5471		spin_unlock(src_ptl);
5472		spin_unlock(dst_ptl);
5473	}
5474
5475	if (cow) {
5476		raw_write_seqcount_end(&src->write_protect_seq);
5477		mmu_notifier_invalidate_range_end(&range);
5478	} else {
5479		hugetlb_vma_unlock_read(src_vma);
5480	}
5481
5482	return ret;
5483}
5484
5485static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5486			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5487			  unsigned long sz)
5488{
5489	struct hstate *h = hstate_vma(vma);
5490	struct mm_struct *mm = vma->vm_mm;
5491	spinlock_t *src_ptl, *dst_ptl;
5492	pte_t pte;
5493
5494	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5495	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5496
5497	/*
5498	 * We don't have to worry about the ordering of src and dst ptlocks
5499	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5500	 */
5501	if (src_ptl != dst_ptl)
5502		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5503
5504	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5505	set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5506
5507	if (src_ptl != dst_ptl)
5508		spin_unlock(src_ptl);
5509	spin_unlock(dst_ptl);
5510}
5511
5512int move_hugetlb_page_tables(struct vm_area_struct *vma,
5513			     struct vm_area_struct *new_vma,
5514			     unsigned long old_addr, unsigned long new_addr,
5515			     unsigned long len)
5516{
5517	struct hstate *h = hstate_vma(vma);
5518	struct address_space *mapping = vma->vm_file->f_mapping;
5519	unsigned long sz = huge_page_size(h);
5520	struct mm_struct *mm = vma->vm_mm;
5521	unsigned long old_end = old_addr + len;
5522	unsigned long last_addr_mask;
5523	pte_t *src_pte, *dst_pte;
5524	struct mmu_notifier_range range;
5525	bool shared_pmd = false;
5526
5527	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5528				old_end);
5529	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5530	/*
5531	 * In case of shared PMDs, we should cover the maximum possible
5532	 * range.
5533	 */
5534	flush_cache_range(vma, range.start, range.end);
5535
5536	mmu_notifier_invalidate_range_start(&range);
5537	last_addr_mask = hugetlb_mask_last_page(h);
5538	/* Prevent race with file truncation */
5539	hugetlb_vma_lock_write(vma);
5540	i_mmap_lock_write(mapping);
5541	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5542		src_pte = hugetlb_walk(vma, old_addr, sz);
5543		if (!src_pte) {
5544			old_addr |= last_addr_mask;
5545			new_addr |= last_addr_mask;
5546			continue;
5547		}
5548		if (huge_pte_none(huge_ptep_get(src_pte)))
5549			continue;
5550
5551		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5552			shared_pmd = true;
5553			old_addr |= last_addr_mask;
5554			new_addr |= last_addr_mask;
5555			continue;
5556		}
5557
5558		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5559		if (!dst_pte)
5560			break;
5561
5562		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5563	}
5564
5565	if (shared_pmd)
5566		flush_hugetlb_tlb_range(vma, range.start, range.end);
5567	else
5568		flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5569	mmu_notifier_invalidate_range_end(&range);
5570	i_mmap_unlock_write(mapping);
5571	hugetlb_vma_unlock_write(vma);
5572
5573	return len + old_addr - old_end;
5574}
5575
5576void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5577			    unsigned long start, unsigned long end,
5578			    struct page *ref_page, zap_flags_t zap_flags)
5579{
5580	struct mm_struct *mm = vma->vm_mm;
5581	unsigned long address;
5582	pte_t *ptep;
5583	pte_t pte;
5584	spinlock_t *ptl;
5585	struct page *page;
5586	struct hstate *h = hstate_vma(vma);
5587	unsigned long sz = huge_page_size(h);
5588	unsigned long last_addr_mask;
5589	bool force_flush = false;
5590
5591	WARN_ON(!is_vm_hugetlb_page(vma));
5592	BUG_ON(start & ~huge_page_mask(h));
5593	BUG_ON(end & ~huge_page_mask(h));
5594
5595	/*
5596	 * This is a hugetlb vma, all the pte entries should point
5597	 * to huge page.
5598	 */
5599	tlb_change_page_size(tlb, sz);
5600	tlb_start_vma(tlb, vma);
5601
5602	last_addr_mask = hugetlb_mask_last_page(h);
 
 
 
 
 
 
5603	address = start;
5604	for (; address < end; address += sz) {
5605		ptep = hugetlb_walk(vma, address, sz);
5606		if (!ptep) {
5607			address |= last_addr_mask;
5608			continue;
5609		}
5610
5611		ptl = huge_pte_lock(h, mm, ptep);
5612		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5613			spin_unlock(ptl);
5614			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5615			force_flush = true;
5616			address |= last_addr_mask;
 
5617			continue;
5618		}
5619
5620		pte = huge_ptep_get(ptep);
5621		if (huge_pte_none(pte)) {
5622			spin_unlock(ptl);
5623			continue;
5624		}
5625
5626		/*
5627		 * Migrating hugepage or HWPoisoned hugepage is already
5628		 * unmapped and its refcount is dropped, so just clear pte here.
5629		 */
5630		if (unlikely(!pte_present(pte))) {
5631			/*
5632			 * If the pte was wr-protected by uffd-wp in any of the
5633			 * swap forms, meanwhile the caller does not want to
5634			 * drop the uffd-wp bit in this zap, then replace the
5635			 * pte with a marker.
5636			 */
5637			if (pte_swp_uffd_wp_any(pte) &&
5638			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5639				set_huge_pte_at(mm, address, ptep,
5640						make_pte_marker(PTE_MARKER_UFFD_WP),
5641						sz);
5642			else
5643				huge_pte_clear(mm, address, ptep, sz);
5644			spin_unlock(ptl);
5645			continue;
5646		}
5647
5648		page = pte_page(pte);
5649		/*
5650		 * If a reference page is supplied, it is because a specific
5651		 * page is being unmapped, not a range. Ensure the page we
5652		 * are about to unmap is the actual page of interest.
5653		 */
5654		if (ref_page) {
5655			if (page != ref_page) {
5656				spin_unlock(ptl);
5657				continue;
5658			}
5659			/*
5660			 * Mark the VMA as having unmapped its page so that
5661			 * future faults in this VMA will fail rather than
5662			 * looking like data was lost
5663			 */
5664			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5665		}
5666
5667		pte = huge_ptep_get_and_clear(mm, address, ptep);
5668		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5669		if (huge_pte_dirty(pte))
5670			set_page_dirty(page);
5671		/* Leave a uffd-wp pte marker if needed */
5672		if (huge_pte_uffd_wp(pte) &&
5673		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5674			set_huge_pte_at(mm, address, ptep,
5675					make_pte_marker(PTE_MARKER_UFFD_WP),
5676					sz);
5677		hugetlb_count_sub(pages_per_huge_page(h), mm);
5678		hugetlb_remove_rmap(page_folio(page));
5679
5680		spin_unlock(ptl);
5681		tlb_remove_page_size(tlb, page, huge_page_size(h));
5682		/*
5683		 * Bail out after unmapping reference page if supplied
5684		 */
5685		if (ref_page)
5686			break;
5687	}
 
5688	tlb_end_vma(tlb, vma);
5689
5690	/*
5691	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5692	 * could defer the flush until now, since by holding i_mmap_rwsem we
5693	 * guaranteed that the last refernece would not be dropped. But we must
5694	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5695	 * dropped and the last reference to the shared PMDs page might be
5696	 * dropped as well.
5697	 *
5698	 * In theory we could defer the freeing of the PMD pages as well, but
5699	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5700	 * detect sharing, so we cannot defer the release of the page either.
5701	 * Instead, do flush now.
5702	 */
5703	if (force_flush)
5704		tlb_flush_mmu_tlbonly(tlb);
5705}
5706
5707void __hugetlb_zap_begin(struct vm_area_struct *vma,
5708			 unsigned long *start, unsigned long *end)
5709{
5710	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5711		return;
5712
5713	adjust_range_if_pmd_sharing_possible(vma, start, end);
5714	hugetlb_vma_lock_write(vma);
5715	if (vma->vm_file)
5716		i_mmap_lock_write(vma->vm_file->f_mapping);
5717}
5718
5719void __hugetlb_zap_end(struct vm_area_struct *vma,
5720		       struct zap_details *details)
5721{
5722	zap_flags_t zap_flags = details ? details->zap_flags : 0;
5723
5724	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5725		return;
5726
5727	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5728		/*
5729		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5730		 * When the vma_lock is freed, this makes the vma ineligible
5731		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5732		 * pmd sharing.  This is important as page tables for this
5733		 * unmapped range will be asynchrously deleted.  If the page
5734		 * tables are shared, there will be issues when accessed by
5735		 * someone else.
5736		 */
5737		__hugetlb_vma_unlock_write_free(vma);
5738	} else {
5739		hugetlb_vma_unlock_write(vma);
5740	}
5741
5742	if (vma->vm_file)
5743		i_mmap_unlock_write(vma->vm_file->f_mapping);
5744}
5745
5746void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5747			  unsigned long end, struct page *ref_page,
5748			  zap_flags_t zap_flags)
5749{
5750	struct mmu_notifier_range range;
5751	struct mmu_gather tlb;
 
 
5752
5753	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5754				start, end);
5755	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5756	mmu_notifier_invalidate_range_start(&range);
5757	tlb_gather_mmu(&tlb, vma->vm_mm);
 
 
 
5758
5759	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5760
5761	mmu_notifier_invalidate_range_end(&range);
5762	tlb_finish_mmu(&tlb);
 
5763}
5764
5765/*
5766 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5767 * mapping it owns the reserve page for. The intention is to unmap the page
5768 * from other VMAs and let the children be SIGKILLed if they are faulting the
5769 * same region.
5770 */
5771static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5772			      struct page *page, unsigned long address)
5773{
5774	struct hstate *h = hstate_vma(vma);
5775	struct vm_area_struct *iter_vma;
5776	struct address_space *mapping;
5777	pgoff_t pgoff;
5778
5779	/*
5780	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5781	 * from page cache lookup which is in HPAGE_SIZE units.
5782	 */
5783	address = address & huge_page_mask(h);
5784	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5785			vma->vm_pgoff;
5786	mapping = vma->vm_file->f_mapping;
5787
5788	/*
5789	 * Take the mapping lock for the duration of the table walk. As
5790	 * this mapping should be shared between all the VMAs,
5791	 * __unmap_hugepage_range() is called as the lock is already held
5792	 */
5793	i_mmap_lock_write(mapping);
5794	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5795		/* Do not unmap the current VMA */
5796		if (iter_vma == vma)
5797			continue;
5798
5799		/*
5800		 * Shared VMAs have their own reserves and do not affect
5801		 * MAP_PRIVATE accounting but it is possible that a shared
5802		 * VMA is using the same page so check and skip such VMAs.
5803		 */
5804		if (iter_vma->vm_flags & VM_MAYSHARE)
5805			continue;
5806
5807		/*
5808		 * Unmap the page from other VMAs without their own reserves.
5809		 * They get marked to be SIGKILLed if they fault in these
5810		 * areas. This is because a future no-page fault on this VMA
5811		 * could insert a zeroed page instead of the data existing
5812		 * from the time of fork. This would look like data corruption
5813		 */
5814		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5815			unmap_hugepage_range(iter_vma, address,
5816					     address + huge_page_size(h), page, 0);
5817	}
5818	i_mmap_unlock_write(mapping);
5819}
5820
5821/*
5822 * hugetlb_wp() should be called with page lock of the original hugepage held.
5823 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5824 * cannot race with other handlers or page migration.
5825 * Keep the pte_same checks anyway to make transition from the mutex easier.
5826 */
5827static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5828		       unsigned long address, pte_t *ptep, unsigned int flags,
5829		       struct folio *pagecache_folio, spinlock_t *ptl)
5830{
5831	const bool unshare = flags & FAULT_FLAG_UNSHARE;
5832	pte_t pte = huge_ptep_get(ptep);
5833	struct hstate *h = hstate_vma(vma);
5834	struct folio *old_folio;
5835	struct folio *new_folio;
5836	int outside_reserve = 0;
5837	vm_fault_t ret = 0;
5838	unsigned long haddr = address & huge_page_mask(h);
5839	struct mmu_notifier_range range;
5840
5841	/*
5842	 * Never handle CoW for uffd-wp protected pages.  It should be only
5843	 * handled when the uffd-wp protection is removed.
5844	 *
5845	 * Note that only the CoW optimization path (in hugetlb_no_page())
5846	 * can trigger this, because hugetlb_fault() will always resolve
5847	 * uffd-wp bit first.
5848	 */
5849	if (!unshare && huge_pte_uffd_wp(pte))
5850		return 0;
5851
5852	/*
5853	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5854	 * PTE mapped R/O such as maybe_mkwrite() would do.
5855	 */
5856	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5857		return VM_FAULT_SIGSEGV;
5858
5859	/* Let's take out MAP_SHARED mappings first. */
5860	if (vma->vm_flags & VM_MAYSHARE) {
5861		set_huge_ptep_writable(vma, haddr, ptep);
5862		return 0;
5863	}
5864
5865	old_folio = page_folio(pte_page(pte));
5866
5867	delayacct_wpcopy_start();
5868
5869retry_avoidcopy:
5870	/*
5871	 * If no-one else is actually using this page, we're the exclusive
5872	 * owner and can reuse this page.
5873	 */
5874	if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5875		if (!PageAnonExclusive(&old_folio->page)) {
5876			folio_move_anon_rmap(old_folio, vma);
5877			SetPageAnonExclusive(&old_folio->page);
5878		}
5879		if (likely(!unshare))
5880			set_huge_ptep_writable(vma, haddr, ptep);
5881
5882		delayacct_wpcopy_end();
5883		return 0;
5884	}
5885	VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5886		       PageAnonExclusive(&old_folio->page), &old_folio->page);
5887
5888	/*
5889	 * If the process that created a MAP_PRIVATE mapping is about to
5890	 * perform a COW due to a shared page count, attempt to satisfy
5891	 * the allocation without using the existing reserves. The pagecache
5892	 * page is used to determine if the reserve at this address was
5893	 * consumed or not. If reserves were used, a partial faulted mapping
5894	 * at the time of fork() could consume its reserves on COW instead
5895	 * of the full address range.
5896	 */
5897	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5898			old_folio != pagecache_folio)
5899		outside_reserve = 1;
5900
5901	folio_get(old_folio);
5902
5903	/*
5904	 * Drop page table lock as buddy allocator may be called. It will
5905	 * be acquired again before returning to the caller, as expected.
5906	 */
5907	spin_unlock(ptl);
5908	new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5909
5910	if (IS_ERR(new_folio)) {
5911		/*
5912		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5913		 * it is due to references held by a child and an insufficient
5914		 * huge page pool. To guarantee the original mappers
5915		 * reliability, unmap the page from child processes. The child
5916		 * may get SIGKILLed if it later faults.
5917		 */
5918		if (outside_reserve) {
5919			struct address_space *mapping = vma->vm_file->f_mapping;
5920			pgoff_t idx;
5921			u32 hash;
5922
5923			folio_put(old_folio);
5924			/*
5925			 * Drop hugetlb_fault_mutex and vma_lock before
5926			 * unmapping.  unmapping needs to hold vma_lock
5927			 * in write mode.  Dropping vma_lock in read mode
5928			 * here is OK as COW mappings do not interact with
5929			 * PMD sharing.
5930			 *
5931			 * Reacquire both after unmap operation.
5932			 */
5933			idx = vma_hugecache_offset(h, vma, haddr);
5934			hash = hugetlb_fault_mutex_hash(mapping, idx);
5935			hugetlb_vma_unlock_read(vma);
5936			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5937
5938			unmap_ref_private(mm, vma, &old_folio->page, haddr);
5939
5940			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5941			hugetlb_vma_lock_read(vma);
5942			spin_lock(ptl);
5943			ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5944			if (likely(ptep &&
5945				   pte_same(huge_ptep_get(ptep), pte)))
5946				goto retry_avoidcopy;
5947			/*
5948			 * race occurs while re-acquiring page table
5949			 * lock, and our job is done.
5950			 */
5951			delayacct_wpcopy_end();
5952			return 0;
5953		}
5954
5955		ret = vmf_error(PTR_ERR(new_folio));
5956		goto out_release_old;
5957	}
5958
5959	/*
5960	 * When the original hugepage is shared one, it does not have
5961	 * anon_vma prepared.
5962	 */
5963	if (unlikely(anon_vma_prepare(vma))) {
5964		ret = VM_FAULT_OOM;
5965		goto out_release_all;
5966	}
5967
5968	if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5969		ret = VM_FAULT_HWPOISON_LARGE;
5970		goto out_release_all;
5971	}
5972	__folio_mark_uptodate(new_folio);
5973
5974	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5975				haddr + huge_page_size(h));
5976	mmu_notifier_invalidate_range_start(&range);
5977
5978	/*
5979	 * Retake the page table lock to check for racing updates
5980	 * before the page tables are altered
5981	 */
5982	spin_lock(ptl);
5983	ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5984	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5985		pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5986
5987		/* Break COW or unshare */
5988		huge_ptep_clear_flush(vma, haddr, ptep);
5989		hugetlb_remove_rmap(old_folio);
5990		hugetlb_add_new_anon_rmap(new_folio, vma, haddr);
5991		if (huge_pte_uffd_wp(pte))
5992			newpte = huge_pte_mkuffd_wp(newpte);
5993		set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h));
5994		folio_set_hugetlb_migratable(new_folio);
5995		/* Make the old page be freed below */
5996		new_folio = old_folio;
5997	}
5998	spin_unlock(ptl);
5999	mmu_notifier_invalidate_range_end(&range);
6000out_release_all:
6001	/*
6002	 * No restore in case of successful pagetable update (Break COW or
6003	 * unshare)
6004	 */
6005	if (new_folio != old_folio)
6006		restore_reserve_on_error(h, vma, haddr, new_folio);
6007	folio_put(new_folio);
6008out_release_old:
6009	folio_put(old_folio);
6010
6011	spin_lock(ptl); /* Caller expects lock to be held */
6012
6013	delayacct_wpcopy_end();
6014	return ret;
6015}
6016
 
 
 
 
 
 
 
 
 
 
 
 
 
6017/*
6018 * Return whether there is a pagecache page to back given address within VMA.
 
6019 */
6020static bool hugetlbfs_pagecache_present(struct hstate *h,
6021			struct vm_area_struct *vma, unsigned long address)
6022{
6023	struct address_space *mapping = vma->vm_file->f_mapping;
6024	pgoff_t idx = linear_page_index(vma, address);
6025	struct folio *folio;
6026
6027	folio = filemap_get_folio(mapping, idx);
6028	if (IS_ERR(folio))
6029		return false;
6030	folio_put(folio);
6031	return true;
 
 
6032}
6033
6034int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6035			   pgoff_t idx)
6036{
6037	struct inode *inode = mapping->host;
6038	struct hstate *h = hstate_inode(inode);
6039	int err;
6040
6041	idx <<= huge_page_order(h);
6042	__folio_set_locked(folio);
6043	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6044
6045	if (unlikely(err)) {
6046		__folio_clear_locked(folio);
6047		return err;
6048	}
6049	folio_clear_hugetlb_restore_reserve(folio);
6050
6051	/*
6052	 * mark folio dirty so that it will not be removed from cache/file
6053	 * by non-hugetlbfs specific code paths.
6054	 */
6055	folio_mark_dirty(folio);
6056
6057	spin_lock(&inode->i_lock);
6058	inode->i_blocks += blocks_per_huge_page(h);
6059	spin_unlock(&inode->i_lock);
6060	return 0;
6061}
6062
6063static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
6064						  struct address_space *mapping,
6065						  pgoff_t idx,
6066						  unsigned int flags,
6067						  unsigned long haddr,
6068						  unsigned long addr,
6069						  unsigned long reason)
6070{
6071	u32 hash;
6072	struct vm_fault vmf = {
6073		.vma = vma,
6074		.address = haddr,
6075		.real_address = addr,
6076		.flags = flags,
6077
6078		/*
6079		 * Hard to debug if it ends up being
6080		 * used by a callee that assumes
6081		 * something about the other
6082		 * uninitialized fields... same as in
6083		 * memory.c
6084		 */
6085	};
6086
6087	/*
6088	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6089	 * userfault. Also mmap_lock could be dropped due to handling
6090	 * userfault, any vma operation should be careful from here.
6091	 */
6092	hugetlb_vma_unlock_read(vma);
6093	hash = hugetlb_fault_mutex_hash(mapping, idx);
6094	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6095	return handle_userfault(&vmf, reason);
6096}
6097
6098/*
6099 * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
6100 * false if pte changed or is changing.
6101 */
6102static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
6103			       pte_t *ptep, pte_t old_pte)
6104{
6105	spinlock_t *ptl;
6106	bool same;
6107
6108	ptl = huge_pte_lock(h, mm, ptep);
6109	same = pte_same(huge_ptep_get(ptep), old_pte);
6110	spin_unlock(ptl);
6111
6112	return same;
6113}
6114
6115static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
6116			struct vm_area_struct *vma,
6117			struct address_space *mapping, pgoff_t idx,
6118			unsigned long address, pte_t *ptep,
6119			pte_t old_pte, unsigned int flags)
6120{
6121	struct hstate *h = hstate_vma(vma);
6122	vm_fault_t ret = VM_FAULT_SIGBUS;
6123	int anon_rmap = 0;
6124	unsigned long size;
6125	struct folio *folio;
6126	pte_t new_pte;
6127	spinlock_t *ptl;
6128	unsigned long haddr = address & huge_page_mask(h);
6129	bool new_folio, new_pagecache_folio = false;
6130	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
6131
6132	/*
6133	 * Currently, we are forced to kill the process in the event the
6134	 * original mapper has unmapped pages from the child due to a failed
6135	 * COW/unsharing. Warn that such a situation has occurred as it may not
6136	 * be obvious.
6137	 */
6138	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6139		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6140			   current->pid);
6141		goto out;
6142	}
6143
6144	/*
6145	 * Use page lock to guard against racing truncation
6146	 * before we get page_table_lock.
 
6147	 */
6148	new_folio = false;
6149	folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6150	if (IS_ERR(folio)) {
6151		size = i_size_read(mapping->host) >> huge_page_shift(h);
6152		if (idx >= size)
6153			goto out;
6154		/* Check for page in userfault range */
 
 
 
6155		if (userfaultfd_missing(vma)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6156			/*
6157			 * Since hugetlb_no_page() was examining pte
6158			 * without pgtable lock, we need to re-test under
6159			 * lock because the pte may not be stable and could
6160			 * have changed from under us.  Try to detect
6161			 * either changed or during-changing ptes and retry
6162			 * properly when needed.
6163			 *
6164			 * Note that userfaultfd is actually fine with
6165			 * false positives (e.g. caused by pte changed),
6166			 * but not wrong logical events (e.g. caused by
6167			 * reading a pte during changing).  The latter can
6168			 * confuse the userspace, so the strictness is very
6169			 * much preferred.  E.g., MISSING event should
6170			 * never happen on the page after UFFDIO_COPY has
6171			 * correctly installed the page and returned.
6172			 */
6173			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
6174				ret = 0;
6175				goto out;
6176			}
6177
6178			return hugetlb_handle_userfault(vma, mapping, idx, flags,
6179							haddr, address,
6180							VM_UFFD_MISSING);
6181		}
6182
6183		folio = alloc_hugetlb_folio(vma, haddr, 0);
6184		if (IS_ERR(folio)) {
6185			/*
6186			 * Returning error will result in faulting task being
6187			 * sent SIGBUS.  The hugetlb fault mutex prevents two
6188			 * tasks from racing to fault in the same page which
6189			 * could result in false unable to allocate errors.
6190			 * Page migration does not take the fault mutex, but
6191			 * does a clear then write of pte's under page table
6192			 * lock.  Page fault code could race with migration,
6193			 * notice the clear pte and try to allocate a page
6194			 * here.  Before returning error, get ptl and make
6195			 * sure there really is no pte entry.
6196			 */
6197			if (hugetlb_pte_stable(h, mm, ptep, old_pte))
6198				ret = vmf_error(PTR_ERR(folio));
6199			else
6200				ret = 0;
 
 
 
 
 
6201			goto out;
6202		}
6203		clear_huge_page(&folio->page, address, pages_per_huge_page(h));
6204		__folio_mark_uptodate(folio);
6205		new_folio = true;
6206
6207		if (vma->vm_flags & VM_MAYSHARE) {
6208			int err = hugetlb_add_to_page_cache(folio, mapping, idx);
6209			if (err) {
6210				/*
6211				 * err can't be -EEXIST which implies someone
6212				 * else consumed the reservation since hugetlb
6213				 * fault mutex is held when add a hugetlb page
6214				 * to the page cache. So it's safe to call
6215				 * restore_reserve_on_error() here.
6216				 */
6217				restore_reserve_on_error(h, vma, haddr, folio);
6218				folio_put(folio);
6219				goto out;
6220			}
6221			new_pagecache_folio = true;
6222		} else {
6223			folio_lock(folio);
6224			if (unlikely(anon_vma_prepare(vma))) {
6225				ret = VM_FAULT_OOM;
6226				goto backout_unlocked;
6227			}
6228			anon_rmap = 1;
6229		}
6230	} else {
6231		/*
6232		 * If memory error occurs between mmap() and fault, some process
6233		 * don't have hwpoisoned swap entry for errored virtual address.
6234		 * So we need to block hugepage fault by PG_hwpoison bit check.
6235		 */
6236		if (unlikely(folio_test_hwpoison(folio))) {
6237			ret = VM_FAULT_HWPOISON_LARGE |
6238				VM_FAULT_SET_HINDEX(hstate_index(h));
6239			goto backout_unlocked;
6240		}
6241
6242		/* Check for page in userfault range. */
6243		if (userfaultfd_minor(vma)) {
6244			folio_unlock(folio);
6245			folio_put(folio);
6246			/* See comment in userfaultfd_missing() block above */
6247			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
6248				ret = 0;
6249				goto out;
6250			}
6251			return hugetlb_handle_userfault(vma, mapping, idx, flags,
6252							haddr, address,
6253							VM_UFFD_MINOR);
6254		}
6255	}
6256
6257	/*
6258	 * If we are going to COW a private mapping later, we examine the
6259	 * pending reservations for this page now. This will ensure that
6260	 * any allocations necessary to record that reservation occur outside
6261	 * the spinlock.
6262	 */
6263	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6264		if (vma_needs_reservation(h, vma, haddr) < 0) {
6265			ret = VM_FAULT_OOM;
6266			goto backout_unlocked;
6267		}
6268		/* Just decrements count, does not deallocate */
6269		vma_end_reservation(h, vma, haddr);
6270	}
6271
6272	ptl = huge_pte_lock(h, mm, ptep);
6273	ret = 0;
6274	/* If pte changed from under us, retry */
6275	if (!pte_same(huge_ptep_get(ptep), old_pte))
6276		goto backout;
6277
6278	if (anon_rmap)
6279		hugetlb_add_new_anon_rmap(folio, vma, haddr);
6280	else
6281		hugetlb_add_file_rmap(folio);
6282	new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
 
6283				&& (vma->vm_flags & VM_SHARED)));
6284	/*
6285	 * If this pte was previously wr-protected, keep it wr-protected even
6286	 * if populated.
6287	 */
6288	if (unlikely(pte_marker_uffd_wp(old_pte)))
6289		new_pte = huge_pte_mkuffd_wp(new_pte);
6290	set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h));
6291
6292	hugetlb_count_add(pages_per_huge_page(h), mm);
6293	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6294		/* Optimization, do the COW without a second fault */
6295		ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
6296	}
6297
6298	spin_unlock(ptl);
6299
6300	/*
6301	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6302	 * found in the pagecache may not have hugetlb_migratable if they have
6303	 * been isolated for migration.
6304	 */
6305	if (new_folio)
6306		folio_set_hugetlb_migratable(folio);
6307
6308	folio_unlock(folio);
6309out:
6310	hugetlb_vma_unlock_read(vma);
6311	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6312	return ret;
6313
6314backout:
6315	spin_unlock(ptl);
6316backout_unlocked:
6317	if (new_folio && !new_pagecache_folio)
6318		restore_reserve_on_error(h, vma, haddr, folio);
6319
6320	folio_unlock(folio);
6321	folio_put(folio);
6322	goto out;
6323}
6324
6325#ifdef CONFIG_SMP
6326u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6327{
6328	unsigned long key[2];
6329	u32 hash;
6330
6331	key[0] = (unsigned long) mapping;
6332	key[1] = idx;
6333
6334	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6335
6336	return hash & (num_fault_mutexes - 1);
6337}
6338#else
6339/*
6340 * For uniprocessor systems we always use a single mutex, so just
6341 * return 0 and avoid the hashing overhead.
6342 */
6343u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6344{
6345	return 0;
6346}
6347#endif
6348
6349vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6350			unsigned long address, unsigned int flags)
6351{
6352	pte_t *ptep, entry;
6353	spinlock_t *ptl;
6354	vm_fault_t ret;
6355	u32 hash;
6356	pgoff_t idx;
6357	struct folio *folio = NULL;
6358	struct folio *pagecache_folio = NULL;
6359	struct hstate *h = hstate_vma(vma);
6360	struct address_space *mapping;
6361	int need_wait_lock = 0;
6362	unsigned long haddr = address & huge_page_mask(h);
6363
6364	/* TODO: Handle faults under the VMA lock */
6365	if (flags & FAULT_FLAG_VMA_LOCK) {
6366		vma_end_read(vma);
6367		return VM_FAULT_RETRY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6368	}
6369
6370	/*
6371	 * Serialize hugepage allocation and instantiation, so that we don't
6372	 * get spurious allocation failures if two CPUs race to instantiate
6373	 * the same page in the page cache.
6374	 */
6375	mapping = vma->vm_file->f_mapping;
6376	idx = vma_hugecache_offset(h, vma, haddr);
6377	hash = hugetlb_fault_mutex_hash(mapping, idx);
6378	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6379
6380	/*
6381	 * Acquire vma lock before calling huge_pte_alloc and hold
6382	 * until finished with ptep.  This prevents huge_pmd_unshare from
6383	 * being called elsewhere and making the ptep no longer valid.
6384	 */
6385	hugetlb_vma_lock_read(vma);
6386	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6387	if (!ptep) {
6388		hugetlb_vma_unlock_read(vma);
6389		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6390		return VM_FAULT_OOM;
6391	}
6392
6393	entry = huge_ptep_get(ptep);
6394	if (huge_pte_none_mostly(entry)) {
6395		if (is_pte_marker(entry)) {
6396			pte_marker marker =
6397				pte_marker_get(pte_to_swp_entry(entry));
6398
6399			if (marker & PTE_MARKER_POISONED) {
6400				ret = VM_FAULT_HWPOISON_LARGE;
6401				goto out_mutex;
6402			}
6403		}
6404
6405		/*
6406		 * Other PTE markers should be handled the same way as none PTE.
6407		 *
6408		 * hugetlb_no_page will drop vma lock and hugetlb fault
6409		 * mutex internally, which make us return immediately.
6410		 */
6411		return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6412				      entry, flags);
6413	}
6414
6415	ret = 0;
6416
6417	/*
6418	 * entry could be a migration/hwpoison entry at this point, so this
6419	 * check prevents the kernel from going below assuming that we have
6420	 * an active hugepage in pagecache. This goto expects the 2nd page
6421	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6422	 * properly handle it.
6423	 */
6424	if (!pte_present(entry)) {
6425		if (unlikely(is_hugetlb_entry_migration(entry))) {
6426			/*
6427			 * Release the hugetlb fault lock now, but retain
6428			 * the vma lock, because it is needed to guard the
6429			 * huge_pte_lockptr() later in
6430			 * migration_entry_wait_huge(). The vma lock will
6431			 * be released there.
6432			 */
6433			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6434			migration_entry_wait_huge(vma, ptep);
6435			return 0;
6436		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6437			ret = VM_FAULT_HWPOISON_LARGE |
6438			    VM_FAULT_SET_HINDEX(hstate_index(h));
6439		goto out_mutex;
6440	}
6441
6442	/*
6443	 * If we are going to COW/unshare the mapping later, we examine the
6444	 * pending reservations for this page now. This will ensure that any
6445	 * allocations necessary to record that reservation occur outside the
6446	 * spinlock. Also lookup the pagecache page now as it is used to
6447	 * determine if a reservation has been consumed.
 
6448	 */
6449	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6450	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6451		if (vma_needs_reservation(h, vma, haddr) < 0) {
6452			ret = VM_FAULT_OOM;
6453			goto out_mutex;
6454		}
6455		/* Just decrements count, does not deallocate */
6456		vma_end_reservation(h, vma, haddr);
6457
6458		pagecache_folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6459		if (IS_ERR(pagecache_folio))
6460			pagecache_folio = NULL;
6461	}
6462
6463	ptl = huge_pte_lock(h, mm, ptep);
6464
6465	/* Check for a racing update before calling hugetlb_wp() */
6466	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6467		goto out_ptl;
6468
6469	/* Handle userfault-wp first, before trying to lock more pages */
6470	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6471	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6472		if (!userfaultfd_wp_async(vma)) {
6473			struct vm_fault vmf = {
6474				.vma = vma,
6475				.address = haddr,
6476				.real_address = address,
6477				.flags = flags,
6478			};
6479
6480			spin_unlock(ptl);
6481			if (pagecache_folio) {
6482				folio_unlock(pagecache_folio);
6483				folio_put(pagecache_folio);
6484			}
6485			hugetlb_vma_unlock_read(vma);
6486			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6487			return handle_userfault(&vmf, VM_UFFD_WP);
6488		}
6489
6490		entry = huge_pte_clear_uffd_wp(entry);
6491		set_huge_pte_at(mm, haddr, ptep, entry,
6492				huge_page_size(hstate_vma(vma)));
6493		/* Fallthrough to CoW */
6494	}
6495
6496	/*
6497	 * hugetlb_wp() requires page locks of pte_page(entry) and
6498	 * pagecache_folio, so here we need take the former one
6499	 * when folio != pagecache_folio or !pagecache_folio.
6500	 */
6501	folio = page_folio(pte_page(entry));
6502	if (folio != pagecache_folio)
6503		if (!folio_trylock(folio)) {
6504			need_wait_lock = 1;
6505			goto out_ptl;
6506		}
6507
6508	folio_get(folio);
6509
6510	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6511		if (!huge_pte_write(entry)) {
6512			ret = hugetlb_wp(mm, vma, address, ptep, flags,
6513					 pagecache_folio, ptl);
6514			goto out_put_page;
6515		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6516			entry = huge_pte_mkdirty(entry);
6517		}
 
6518	}
6519	entry = pte_mkyoung(entry);
6520	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6521						flags & FAULT_FLAG_WRITE))
6522		update_mmu_cache(vma, haddr, ptep);
6523out_put_page:
6524	if (folio != pagecache_folio)
6525		folio_unlock(folio);
6526	folio_put(folio);
6527out_ptl:
6528	spin_unlock(ptl);
6529
6530	if (pagecache_folio) {
6531		folio_unlock(pagecache_folio);
6532		folio_put(pagecache_folio);
6533	}
6534out_mutex:
6535	hugetlb_vma_unlock_read(vma);
6536	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 
6537	/*
6538	 * Generally it's safe to hold refcount during waiting page lock. But
6539	 * here we just wait to defer the next page fault to avoid busy loop and
6540	 * the page is not used after unlocked before returning from the current
6541	 * page fault. So we are safe from accessing freed page, even if we wait
6542	 * here without taking refcount.
6543	 */
6544	if (need_wait_lock)
6545		folio_wait_locked(folio);
6546	return ret;
6547}
6548
6549#ifdef CONFIG_USERFAULTFD
6550/*
6551 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
 
6552 */
6553static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6554		struct vm_area_struct *vma, unsigned long address)
6555{
6556	struct mempolicy *mpol;
6557	nodemask_t *nodemask;
6558	struct folio *folio;
6559	gfp_t gfp_mask;
6560	int node;
6561
6562	gfp_mask = htlb_alloc_mask(h);
6563	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6564	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
6565	mpol_cond_put(mpol);
6566
6567	return folio;
6568}
6569
6570/*
6571 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6572 * with modifications for hugetlb pages.
6573 */
6574int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6575			     struct vm_area_struct *dst_vma,
6576			     unsigned long dst_addr,
6577			     unsigned long src_addr,
6578			     uffd_flags_t flags,
6579			     struct folio **foliop)
6580{
6581	struct mm_struct *dst_mm = dst_vma->vm_mm;
6582	bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6583	bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6584	struct hstate *h = hstate_vma(dst_vma);
6585	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6586	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6587	unsigned long size;
6588	int vm_shared = dst_vma->vm_flags & VM_SHARED;
 
6589	pte_t _dst_pte;
6590	spinlock_t *ptl;
6591	int ret = -ENOMEM;
6592	struct folio *folio;
6593	int writable;
6594	bool folio_in_pagecache = false;
6595
6596	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6597		ptl = huge_pte_lock(h, dst_mm, dst_pte);
6598
6599		/* Don't overwrite any existing PTEs (even markers) */
6600		if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6601			spin_unlock(ptl);
6602			return -EEXIST;
6603		}
6604
6605		_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6606		set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6607				huge_page_size(h));
6608
6609		/* No need to invalidate - it was non-present before */
6610		update_mmu_cache(dst_vma, dst_addr, dst_pte);
6611
6612		spin_unlock(ptl);
6613		return 0;
6614	}
6615
6616	if (is_continue) {
6617		ret = -EFAULT;
6618		folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6619		if (IS_ERR(folio))
6620			goto out;
6621		folio_in_pagecache = true;
6622	} else if (!*foliop) {
6623		/* If a folio already exists, then it's UFFDIO_COPY for
6624		 * a non-missing case. Return -EEXIST.
6625		 */
6626		if (vm_shared &&
6627		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6628			ret = -EEXIST;
6629			goto out;
6630		}
6631
6632		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6633		if (IS_ERR(folio)) {
6634			ret = -ENOMEM;
 
6635			goto out;
6636		}
6637
6638		ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6639					   false);
 
6640
6641		/* fallback to copy_from_user outside mmap_lock */
6642		if (unlikely(ret)) {
6643			ret = -ENOENT;
6644			/* Free the allocated folio which may have
6645			 * consumed a reservation.
6646			 */
6647			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6648			folio_put(folio);
6649
6650			/* Allocate a temporary folio to hold the copied
6651			 * contents.
6652			 */
6653			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6654			if (!folio) {
6655				ret = -ENOMEM;
6656				goto out;
6657			}
6658			*foliop = folio;
6659			/* Set the outparam foliop and return to the caller to
6660			 * copy the contents outside the lock. Don't free the
6661			 * folio.
6662			 */
6663			goto out;
6664		}
6665	} else {
6666		if (vm_shared &&
6667		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6668			folio_put(*foliop);
6669			ret = -EEXIST;
6670			*foliop = NULL;
6671			goto out;
6672		}
6673
6674		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6675		if (IS_ERR(folio)) {
6676			folio_put(*foliop);
6677			ret = -ENOMEM;
6678			*foliop = NULL;
6679			goto out;
6680		}
6681		ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6682		folio_put(*foliop);
6683		*foliop = NULL;
6684		if (ret) {
6685			folio_put(folio);
6686			goto out;
6687		}
6688	}
6689
6690	/*
6691	 * The memory barrier inside __folio_mark_uptodate makes sure that
6692	 * preceding stores to the page contents become visible before
6693	 * the set_pte_at() write.
6694	 */
6695	__folio_mark_uptodate(folio);
 
 
 
6696
6697	/* Add shared, newly allocated pages to the page cache. */
6698	if (vm_shared && !is_continue) {
 
 
6699		size = i_size_read(mapping->host) >> huge_page_shift(h);
6700		ret = -EFAULT;
6701		if (idx >= size)
6702			goto out_release_nounlock;
6703
6704		/*
6705		 * Serialization between remove_inode_hugepages() and
6706		 * hugetlb_add_to_page_cache() below happens through the
6707		 * hugetlb_fault_mutex_table that here must be hold by
6708		 * the caller.
6709		 */
6710		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6711		if (ret)
6712			goto out_release_nounlock;
6713		folio_in_pagecache = true;
6714	}
6715
6716	ptl = huge_pte_lock(h, dst_mm, dst_pte);
 
6717
6718	ret = -EIO;
6719	if (folio_test_hwpoison(folio))
 
 
 
 
 
 
 
 
 
 
6720		goto out_release_unlock;
6721
6722	/*
6723	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6724	 * registered, we firstly wr-protect a none pte which has no page cache
6725	 * page backing it, then access the page.
6726	 */
6727	ret = -EEXIST;
6728	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6729		goto out_release_unlock;
6730
6731	if (folio_in_pagecache)
6732		hugetlb_add_file_rmap(folio);
6733	else
6734		hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6735
6736	/*
6737	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6738	 * with wp flag set, don't set pte write bit.
6739	 */
6740	if (wp_enabled || (is_continue && !vm_shared))
6741		writable = 0;
6742	else
6743		writable = dst_vma->vm_flags & VM_WRITE;
6744
6745	_dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6746	/*
6747	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6748	 * extremely important for hugetlbfs for now since swapping is not
6749	 * supported, but we should still be clear in that this page cannot be
6750	 * thrown away at will, even if write bit not set.
6751	 */
6752	_dst_pte = huge_pte_mkdirty(_dst_pte);
6753	_dst_pte = pte_mkyoung(_dst_pte);
6754
6755	if (wp_enabled)
6756		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6757
6758	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6759
 
 
6760	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6761
6762	/* No need to invalidate - it was non-present before */
6763	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6764
6765	spin_unlock(ptl);
6766	if (!is_continue)
6767		folio_set_hugetlb_migratable(folio);
6768	if (vm_shared || is_continue)
6769		folio_unlock(folio);
6770	ret = 0;
6771out:
6772	return ret;
6773out_release_unlock:
6774	spin_unlock(ptl);
6775	if (vm_shared || is_continue)
6776		folio_unlock(folio);
6777out_release_nounlock:
6778	if (!folio_in_pagecache)
6779		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6780	folio_put(folio);
6781	goto out;
6782}
6783#endif /* CONFIG_USERFAULTFD */
6784
6785struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6786				      unsigned long address, unsigned int flags,
6787				      unsigned int *page_mask)
6788{
 
 
 
 
6789	struct hstate *h = hstate_vma(vma);
6790	struct mm_struct *mm = vma->vm_mm;
6791	unsigned long haddr = address & huge_page_mask(h);
6792	struct page *page = NULL;
6793	spinlock_t *ptl;
6794	pte_t *pte, entry;
6795	int ret;
6796
6797	hugetlb_vma_lock_read(vma);
6798	pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6799	if (!pte)
6800		goto out_unlock;
 
6801
6802	ptl = huge_pte_lock(h, mm, pte);
6803	entry = huge_ptep_get(pte);
6804	if (pte_present(entry)) {
6805		page = pte_page(entry);
 
 
 
 
6806
6807		if (!huge_pte_write(entry)) {
6808			if (flags & FOLL_WRITE) {
6809				page = NULL;
6810				goto out;
6811			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6812
6813			if (gup_must_unshare(vma, flags, page)) {
6814				/* Tell the caller to do unsharing */
6815				page = ERR_PTR(-EMLINK);
6816				goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6817			}
 
6818		}
6819
6820		page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT));
 
6821
6822		/*
6823		 * Note that page may be a sub-page, and with vmemmap
6824		 * optimizations the page struct may be read only.
6825		 * try_grab_page() will increase the ref count on the
6826		 * head page, so this will be OK.
6827		 *
6828		 * try_grab_page() should always be able to get the page here,
6829		 * because we hold the ptl lock and have verified pte_present().
6830		 */
6831		ret = try_grab_page(page, flags);
 
 
 
 
 
 
 
 
6832
6833		if (WARN_ON_ONCE(ret)) {
6834			page = ERR_PTR(ret);
6835			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6836		}
6837
6838		*page_mask = (1U << huge_page_order(h)) - 1;
6839	}
6840out:
6841	spin_unlock(ptl);
6842out_unlock:
6843	hugetlb_vma_unlock_read(vma);
6844
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6845	/*
6846	 * Fixup retval for dump requests: if pagecache doesn't exist,
6847	 * don't try to allocate a new page but just skip it.
 
6848	 */
6849	if (!page && (flags & FOLL_DUMP) &&
6850	    !hugetlbfs_pagecache_present(h, vma, address))
6851		page = ERR_PTR(-EFAULT);
6852
6853	return page;
6854}
6855
6856long hugetlb_change_protection(struct vm_area_struct *vma,
6857		unsigned long address, unsigned long end,
6858		pgprot_t newprot, unsigned long cp_flags)
 
 
 
 
 
 
 
6859{
6860	struct mm_struct *mm = vma->vm_mm;
6861	unsigned long start = address;
6862	pte_t *ptep;
6863	pte_t pte;
6864	struct hstate *h = hstate_vma(vma);
6865	long pages = 0, psize = huge_page_size(h);
6866	bool shared_pmd = false;
6867	struct mmu_notifier_range range;
6868	unsigned long last_addr_mask;
6869	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6870	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6871
6872	/*
6873	 * In the case of shared PMDs, the area to flush could be beyond
6874	 * start/end.  Set range.start/range.end to cover the maximum possible
6875	 * range if PMD sharing is possible.
6876	 */
6877	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6878				0, mm, start, end);
6879	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6880
6881	BUG_ON(address >= end);
6882	flush_cache_range(vma, range.start, range.end);
6883
6884	mmu_notifier_invalidate_range_start(&range);
6885	hugetlb_vma_lock_write(vma);
6886	i_mmap_lock_write(vma->vm_file->f_mapping);
6887	last_addr_mask = hugetlb_mask_last_page(h);
6888	for (; address < end; address += psize) {
6889		spinlock_t *ptl;
6890		ptep = hugetlb_walk(vma, address, psize);
6891		if (!ptep) {
6892			if (!uffd_wp) {
6893				address |= last_addr_mask;
6894				continue;
6895			}
6896			/*
6897			 * Userfaultfd wr-protect requires pgtable
6898			 * pre-allocations to install pte markers.
6899			 */
6900			ptep = huge_pte_alloc(mm, vma, address, psize);
6901			if (!ptep) {
6902				pages = -ENOMEM;
6903				break;
6904			}
6905		}
6906		ptl = huge_pte_lock(h, mm, ptep);
6907		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6908			/*
6909			 * When uffd-wp is enabled on the vma, unshare
6910			 * shouldn't happen at all.  Warn about it if it
6911			 * happened due to some reason.
6912			 */
6913			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6914			pages++;
6915			spin_unlock(ptl);
6916			shared_pmd = true;
6917			address |= last_addr_mask;
6918			continue;
6919		}
6920		pte = huge_ptep_get(ptep);
6921		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6922			/* Nothing to do. */
6923		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
 
 
6924			swp_entry_t entry = pte_to_swp_entry(pte);
6925			struct page *page = pfn_swap_entry_to_page(entry);
6926			pte_t newpte = pte;
6927
6928			if (is_writable_migration_entry(entry)) {
6929				if (PageAnon(page))
6930					entry = make_readable_exclusive_migration_entry(
6931								swp_offset(entry));
6932				else
6933					entry = make_readable_migration_entry(
6934								swp_offset(entry));
6935				newpte = swp_entry_to_pte(entry);
 
 
6936				pages++;
6937			}
6938
6939			if (uffd_wp)
6940				newpte = pte_swp_mkuffd_wp(newpte);
6941			else if (uffd_wp_resolve)
6942				newpte = pte_swp_clear_uffd_wp(newpte);
6943			if (!pte_same(pte, newpte))
6944				set_huge_pte_at(mm, address, ptep, newpte, psize);
6945		} else if (unlikely(is_pte_marker(pte))) {
6946			/* No other markers apply for now. */
6947			WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6948			if (uffd_wp_resolve)
6949				/* Safe to modify directly (non-present->none). */
6950				huge_pte_clear(mm, address, ptep, psize);
6951		} else if (!huge_pte_none(pte)) {
6952			pte_t old_pte;
6953			unsigned int shift = huge_page_shift(hstate_vma(vma));
6954
6955			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6956			pte = huge_pte_modify(old_pte, newprot);
6957			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6958			if (uffd_wp)
6959				pte = huge_pte_mkuffd_wp(pte);
6960			else if (uffd_wp_resolve)
6961				pte = huge_pte_clear_uffd_wp(pte);
6962			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6963			pages++;
6964		} else {
6965			/* None pte */
6966			if (unlikely(uffd_wp))
6967				/* Safe to modify directly (none->non-present). */
6968				set_huge_pte_at(mm, address, ptep,
6969						make_pte_marker(PTE_MARKER_UFFD_WP),
6970						psize);
6971		}
6972		spin_unlock(ptl);
6973	}
6974	/*
6975	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6976	 * may have cleared our pud entry and done put_page on the page table:
6977	 * once we release i_mmap_rwsem, another task can do the final put_page
6978	 * and that page table be reused and filled with junk.  If we actually
6979	 * did unshare a page of pmds, flush the range corresponding to the pud.
6980	 */
6981	if (shared_pmd)
6982		flush_hugetlb_tlb_range(vma, range.start, range.end);
6983	else
6984		flush_hugetlb_tlb_range(vma, start, end);
6985	/*
6986	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6987	 * downgrading page table protection not changing it to point to a new
6988	 * page.
6989	 *
6990	 * See Documentation/mm/mmu_notifier.rst
6991	 */
6992	i_mmap_unlock_write(vma->vm_file->f_mapping);
6993	hugetlb_vma_unlock_write(vma);
6994	mmu_notifier_invalidate_range_end(&range);
6995
6996	return pages > 0 ? (pages << h->order) : pages;
6997}
6998
6999/* Return true if reservation was successful, false otherwise.  */
7000bool hugetlb_reserve_pages(struct inode *inode,
7001					long from, long to,
7002					struct vm_area_struct *vma,
7003					vm_flags_t vm_flags)
7004{
7005	long chg = -1, add = -1;
7006	struct hstate *h = hstate_inode(inode);
7007	struct hugepage_subpool *spool = subpool_inode(inode);
7008	struct resv_map *resv_map;
7009	struct hugetlb_cgroup *h_cg = NULL;
7010	long gbl_reserve, regions_needed = 0;
7011
7012	/* This should never happen */
7013	if (from > to) {
7014		VM_WARN(1, "%s called with a negative range\n", __func__);
7015		return false;
7016	}
7017
7018	/*
7019	 * vma specific semaphore used for pmd sharing and fault/truncation
7020	 * synchronization
7021	 */
7022	hugetlb_vma_lock_alloc(vma);
7023
7024	/*
7025	 * Only apply hugepage reservation if asked. At fault time, an
7026	 * attempt will be made for VM_NORESERVE to allocate a page
7027	 * without using reserves
7028	 */
7029	if (vm_flags & VM_NORESERVE)
7030		return true;
7031
7032	/*
7033	 * Shared mappings base their reservation on the number of pages that
7034	 * are already allocated on behalf of the file. Private mappings need
7035	 * to reserve the full area even if read-only as mprotect() may be
7036	 * called to make the mapping read-write. Assume !vma is a shm mapping
7037	 */
7038	if (!vma || vma->vm_flags & VM_MAYSHARE) {
7039		/*
7040		 * resv_map can not be NULL as hugetlb_reserve_pages is only
7041		 * called for inodes for which resv_maps were created (see
7042		 * hugetlbfs_get_inode).
7043		 */
7044		resv_map = inode_resv_map(inode);
7045
7046		chg = region_chg(resv_map, from, to, &regions_needed);
 
7047	} else {
7048		/* Private mapping. */
7049		resv_map = resv_map_alloc();
7050		if (!resv_map)
7051			goto out_err;
7052
7053		chg = to - from;
7054
7055		set_vma_resv_map(vma, resv_map);
7056		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7057	}
7058
7059	if (chg < 0)
 
7060		goto out_err;
 
7061
7062	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7063				chg * pages_per_huge_page(h), &h_cg) < 0)
 
 
 
7064		goto out_err;
 
7065
7066	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7067		/* For private mappings, the hugetlb_cgroup uncharge info hangs
7068		 * of the resv_map.
7069		 */
7070		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7071	}
7072
7073	/*
7074	 * There must be enough pages in the subpool for the mapping. If
7075	 * the subpool has a minimum size, there may be some global
7076	 * reservations already in place (gbl_reserve).
7077	 */
7078	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7079	if (gbl_reserve < 0)
 
7080		goto out_uncharge_cgroup;
 
7081
7082	/*
7083	 * Check enough hugepages are available for the reservation.
7084	 * Hand the pages back to the subpool if there are not
7085	 */
7086	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
 
7087		goto out_put_pages;
 
7088
7089	/*
7090	 * Account for the reservations made. Shared mappings record regions
7091	 * that have reservations as they are shared by multiple VMAs.
7092	 * When the last VMA disappears, the region map says how much
7093	 * the reservation was and the page cache tells how much of
7094	 * the reservation was consumed. Private mappings are per-VMA and
7095	 * only the consumed reservations are tracked. When the VMA
7096	 * disappears, the original reservation is the VMA size and the
7097	 * consumed reservations are stored in the map. Hence, nothing
7098	 * else has to be done for private mappings here
7099	 */
7100	if (!vma || vma->vm_flags & VM_MAYSHARE) {
7101		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7102
7103		if (unlikely(add < 0)) {
7104			hugetlb_acct_memory(h, -gbl_reserve);
7105			goto out_put_pages;
7106		} else if (unlikely(chg > add)) {
7107			/*
7108			 * pages in this range were added to the reserve
7109			 * map between region_chg and region_add.  This
7110			 * indicates a race with alloc_hugetlb_folio.  Adjust
7111			 * the subpool and reserve counts modified above
7112			 * based on the difference.
7113			 */
7114			long rsv_adjust;
7115
7116			/*
7117			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7118			 * reference to h_cg->css. See comment below for detail.
7119			 */
7120			hugetlb_cgroup_uncharge_cgroup_rsvd(
7121				hstate_index(h),
7122				(chg - add) * pages_per_huge_page(h), h_cg);
7123
7124			rsv_adjust = hugepage_subpool_put_pages(spool,
7125								chg - add);
7126			hugetlb_acct_memory(h, -rsv_adjust);
7127		} else if (h_cg) {
7128			/*
7129			 * The file_regions will hold their own reference to
7130			 * h_cg->css. So we should release the reference held
7131			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7132			 * done.
7133			 */
7134			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7135		}
7136	}
7137	return true;
7138
7139out_put_pages:
7140	/* put back original number of pages, chg */
7141	(void)hugepage_subpool_put_pages(spool, chg);
7142out_uncharge_cgroup:
7143	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7144					    chg * pages_per_huge_page(h), h_cg);
7145out_err:
7146	hugetlb_vma_lock_free(vma);
7147	if (!vma || vma->vm_flags & VM_MAYSHARE)
7148		/* Only call region_abort if the region_chg succeeded but the
7149		 * region_add failed or didn't run.
7150		 */
7151		if (chg >= 0 && add < 0)
7152			region_abort(resv_map, from, to, regions_needed);
7153	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7154		kref_put(&resv_map->refs, resv_map_release);
7155		set_vma_resv_map(vma, NULL);
7156	}
7157	return false;
7158}
7159
7160long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7161								long freed)
7162{
7163	struct hstate *h = hstate_inode(inode);
7164	struct resv_map *resv_map = inode_resv_map(inode);
7165	long chg = 0;
7166	struct hugepage_subpool *spool = subpool_inode(inode);
7167	long gbl_reserve;
7168
7169	/*
7170	 * Since this routine can be called in the evict inode path for all
7171	 * hugetlbfs inodes, resv_map could be NULL.
7172	 */
7173	if (resv_map) {
7174		chg = region_del(resv_map, start, end);
7175		/*
7176		 * region_del() can fail in the rare case where a region
7177		 * must be split and another region descriptor can not be
7178		 * allocated.  If end == LONG_MAX, it will not fail.
7179		 */
7180		if (chg < 0)
7181			return chg;
7182	}
7183
7184	spin_lock(&inode->i_lock);
7185	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7186	spin_unlock(&inode->i_lock);
7187
7188	/*
7189	 * If the subpool has a minimum size, the number of global
7190	 * reservations to be released may be adjusted.
7191	 *
7192	 * Note that !resv_map implies freed == 0. So (chg - freed)
7193	 * won't go negative.
7194	 */
7195	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7196	hugetlb_acct_memory(h, -gbl_reserve);
7197
7198	return 0;
7199}
7200
7201#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7202static unsigned long page_table_shareable(struct vm_area_struct *svma,
7203				struct vm_area_struct *vma,
7204				unsigned long addr, pgoff_t idx)
7205{
7206	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7207				svma->vm_start;
7208	unsigned long sbase = saddr & PUD_MASK;
7209	unsigned long s_end = sbase + PUD_SIZE;
7210
7211	/* Allow segments to share if only one is marked locked */
7212	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7213	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7214
7215	/*
7216	 * match the virtual addresses, permission and the alignment of the
7217	 * page table page.
7218	 *
7219	 * Also, vma_lock (vm_private_data) is required for sharing.
7220	 */
7221	if (pmd_index(addr) != pmd_index(saddr) ||
7222	    vm_flags != svm_flags ||
7223	    !range_in_vma(svma, sbase, s_end) ||
7224	    !svma->vm_private_data)
7225		return 0;
7226
7227	return saddr;
7228}
7229
7230bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7231{
7232	unsigned long start = addr & PUD_MASK;
7233	unsigned long end = start + PUD_SIZE;
7234
7235#ifdef CONFIG_USERFAULTFD
7236	if (uffd_disable_huge_pmd_share(vma))
7237		return false;
7238#endif
7239	/*
7240	 * check on proper vm_flags and page table alignment
7241	 */
7242	if (!(vma->vm_flags & VM_MAYSHARE))
7243		return false;
7244	if (!vma->vm_private_data)	/* vma lock required for sharing */
7245		return false;
7246	if (!range_in_vma(vma, start, end))
7247		return false;
7248	return true;
7249}
7250
7251/*
7252 * Determine if start,end range within vma could be mapped by shared pmd.
7253 * If yes, adjust start and end to cover range associated with possible
7254 * shared pmd mappings.
7255 */
7256void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7257				unsigned long *start, unsigned long *end)
7258{
7259	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7260		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7261
7262	/*
7263	 * vma needs to span at least one aligned PUD size, and the range
7264	 * must be at least partially within in.
7265	 */
7266	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7267		(*end <= v_start) || (*start >= v_end))
7268		return;
7269
7270	/* Extend the range to be PUD aligned for a worst case scenario */
7271	if (*start > v_start)
7272		*start = ALIGN_DOWN(*start, PUD_SIZE);
7273
7274	if (*end < v_end)
7275		*end = ALIGN(*end, PUD_SIZE);
 
 
 
 
7276}
7277
7278/*
7279 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7280 * and returns the corresponding pte. While this is not necessary for the
7281 * !shared pmd case because we can allocate the pmd later as well, it makes the
7282 * code much cleaner. pmd allocation is essential for the shared case because
7283 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7284 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7285 * bad pmd for sharing.
 
 
7286 */
7287pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7288		      unsigned long addr, pud_t *pud)
7289{
 
7290	struct address_space *mapping = vma->vm_file->f_mapping;
7291	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7292			vma->vm_pgoff;
7293	struct vm_area_struct *svma;
7294	unsigned long saddr;
7295	pte_t *spte = NULL;
7296	pte_t *pte;
 
 
 
 
7297
7298	i_mmap_lock_read(mapping);
7299	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7300		if (svma == vma)
7301			continue;
7302
7303		saddr = page_table_shareable(svma, vma, addr, idx);
7304		if (saddr) {
7305			spte = hugetlb_walk(svma, saddr,
7306					    vma_mmu_pagesize(svma));
7307			if (spte) {
7308				get_page(virt_to_page(spte));
7309				break;
7310			}
7311		}
7312	}
7313
7314	if (!spte)
7315		goto out;
7316
7317	spin_lock(&mm->page_table_lock);
7318	if (pud_none(*pud)) {
7319		pud_populate(mm, pud,
7320				(pmd_t *)((unsigned long)spte & PAGE_MASK));
7321		mm_inc_nr_pmds(mm);
7322	} else {
7323		put_page(virt_to_page(spte));
7324	}
7325	spin_unlock(&mm->page_table_lock);
7326out:
7327	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7328	i_mmap_unlock_read(mapping);
7329	return pte;
7330}
7331
7332/*
7333 * unmap huge page backed by shared pte.
7334 *
7335 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7336 * indicated by page_count > 1, unmap is achieved by clearing pud and
7337 * decrementing the ref count. If count == 1, the pte page is not shared.
7338 *
7339 * Called with page table lock held.
7340 *
7341 * returns: 1 successfully unmapped a shared pte page
7342 *	    0 the underlying pte page is not shared, or it is the last user
7343 */
7344int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7345					unsigned long addr, pte_t *ptep)
7346{
7347	pgd_t *pgd = pgd_offset(mm, addr);
7348	p4d_t *p4d = p4d_offset(pgd, addr);
7349	pud_t *pud = pud_offset(p4d, addr);
7350
7351	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7352	hugetlb_vma_assert_locked(vma);
7353	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7354	if (page_count(virt_to_page(ptep)) == 1)
7355		return 0;
7356
7357	pud_clear(pud);
7358	put_page(virt_to_page(ptep));
7359	mm_dec_nr_pmds(mm);
 
7360	return 1;
7361}
7362
7363#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7364
7365pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7366		      unsigned long addr, pud_t *pud)
7367{
7368	return NULL;
7369}
7370
7371int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7372				unsigned long addr, pte_t *ptep)
7373{
7374	return 0;
7375}
7376
7377void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7378				unsigned long *start, unsigned long *end)
7379{
7380}
7381
7382bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7383{
7384	return false;
7385}
7386#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7387
7388#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7389pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7390			unsigned long addr, unsigned long sz)
7391{
7392	pgd_t *pgd;
7393	p4d_t *p4d;
7394	pud_t *pud;
7395	pte_t *pte = NULL;
7396
7397	pgd = pgd_offset(mm, addr);
7398	p4d = p4d_alloc(mm, pgd, addr);
7399	if (!p4d)
7400		return NULL;
7401	pud = pud_alloc(mm, p4d, addr);
7402	if (pud) {
7403		if (sz == PUD_SIZE) {
7404			pte = (pte_t *)pud;
7405		} else {
7406			BUG_ON(sz != PMD_SIZE);
7407			if (want_pmd_share(vma, addr) && pud_none(*pud))
7408				pte = huge_pmd_share(mm, vma, addr, pud);
7409			else
7410				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7411		}
7412	}
7413
7414	if (pte) {
7415		pte_t pteval = ptep_get_lockless(pte);
7416
7417		BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7418	}
7419
7420	return pte;
7421}
7422
7423/*
7424 * huge_pte_offset() - Walk the page table to resolve the hugepage
7425 * entry at address @addr
7426 *
7427 * Return: Pointer to page table entry (PUD or PMD) for
7428 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7429 * size @sz doesn't match the hugepage size at this level of the page
7430 * table.
7431 */
7432pte_t *huge_pte_offset(struct mm_struct *mm,
7433		       unsigned long addr, unsigned long sz)
7434{
7435	pgd_t *pgd;
7436	p4d_t *p4d;
7437	pud_t *pud;
7438	pmd_t *pmd;
7439
7440	pgd = pgd_offset(mm, addr);
7441	if (!pgd_present(*pgd))
7442		return NULL;
7443	p4d = p4d_offset(pgd, addr);
7444	if (!p4d_present(*p4d))
7445		return NULL;
7446
7447	pud = pud_offset(p4d, addr);
7448	if (sz == PUD_SIZE)
7449		/* must be pud huge, non-present or none */
7450		return (pte_t *)pud;
7451	if (!pud_present(*pud))
7452		return NULL;
7453	/* must have a valid entry and size to go further */
7454
7455	pmd = pmd_offset(pud, addr);
7456	/* must be pmd huge, non-present or none */
7457	return (pte_t *)pmd;
7458}
7459
7460/*
7461 * Return a mask that can be used to update an address to the last huge
7462 * page in a page table page mapping size.  Used to skip non-present
7463 * page table entries when linearly scanning address ranges.  Architectures
7464 * with unique huge page to page table relationships can define their own
7465 * version of this routine.
7466 */
7467unsigned long hugetlb_mask_last_page(struct hstate *h)
7468{
7469	unsigned long hp_size = huge_page_size(h);
7470
7471	if (hp_size == PUD_SIZE)
7472		return P4D_SIZE - PUD_SIZE;
7473	else if (hp_size == PMD_SIZE)
7474		return PUD_SIZE - PMD_SIZE;
7475	else
7476		return 0UL;
7477}
7478
7479#else
7480
7481/* See description above.  Architectures can provide their own version. */
7482__weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7483{
7484#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7485	if (huge_page_size(h) == PMD_SIZE)
7486		return PUD_SIZE - PMD_SIZE;
7487#endif
7488	return 0UL;
7489}
7490
7491#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7492
7493/*
7494 * These functions are overwritable if your architecture needs its own
7495 * behavior.
7496 */
7497bool isolate_hugetlb(struct folio *folio, struct list_head *list)
 
 
7498{
7499	bool ret = true;
 
7500
7501	spin_lock_irq(&hugetlb_lock);
7502	if (!folio_test_hugetlb(folio) ||
7503	    !folio_test_hugetlb_migratable(folio) ||
7504	    !folio_try_get(folio)) {
7505		ret = false;
7506		goto unlock;
7507	}
7508	folio_clear_hugetlb_migratable(folio);
7509	list_move_tail(&folio->lru, list);
7510unlock:
7511	spin_unlock_irq(&hugetlb_lock);
7512	return ret;
7513}
7514
7515int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
 
 
7516{
7517	int ret = 0;
 
 
7518
7519	*hugetlb = false;
7520	spin_lock_irq(&hugetlb_lock);
7521	if (folio_test_hugetlb(folio)) {
7522		*hugetlb = true;
7523		if (folio_test_hugetlb_freed(folio))
7524			ret = 0;
7525		else if (folio_test_hugetlb_migratable(folio) || unpoison)
7526			ret = folio_try_get(folio);
7527		else
7528			ret = -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7529	}
7530	spin_unlock_irq(&hugetlb_lock);
7531	return ret;
 
7532}
7533
7534int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7535				bool *migratable_cleared)
 
7536{
7537	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
7538
7539	spin_lock_irq(&hugetlb_lock);
7540	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7541	spin_unlock_irq(&hugetlb_lock);
 
 
 
 
 
 
 
 
 
 
 
7542	return ret;
7543}
7544
7545void folio_putback_active_hugetlb(struct folio *folio)
7546{
7547	spin_lock_irq(&hugetlb_lock);
7548	folio_set_hugetlb_migratable(folio);
7549	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7550	spin_unlock_irq(&hugetlb_lock);
7551	folio_put(folio);
 
7552}
7553
7554void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7555{
7556	struct hstate *h = folio_hstate(old_folio);
7557
7558	hugetlb_cgroup_migrate(old_folio, new_folio);
7559	set_page_owner_migrate_reason(&new_folio->page, reason);
7560
7561	/*
7562	 * transfer temporary state of the new hugetlb folio. This is
7563	 * reverse to other transitions because the newpage is going to
7564	 * be final while the old one will be freed so it takes over
7565	 * the temporary status.
7566	 *
7567	 * Also note that we have to transfer the per-node surplus state
7568	 * here as well otherwise the global surplus count will not match
7569	 * the per-node's.
7570	 */
7571	if (folio_test_hugetlb_temporary(new_folio)) {
7572		int old_nid = folio_nid(old_folio);
7573		int new_nid = folio_nid(new_folio);
7574
7575		folio_set_hugetlb_temporary(old_folio);
7576		folio_clear_hugetlb_temporary(new_folio);
7577
7578
7579		/*
7580		 * There is no need to transfer the per-node surplus state
7581		 * when we do not cross the node.
7582		 */
7583		if (new_nid == old_nid)
7584			return;
7585		spin_lock_irq(&hugetlb_lock);
7586		if (h->surplus_huge_pages_node[old_nid]) {
7587			h->surplus_huge_pages_node[old_nid]--;
7588			h->surplus_huge_pages_node[new_nid]++;
7589		}
7590		spin_unlock_irq(&hugetlb_lock);
7591	}
7592}
7593
7594static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7595				   unsigned long start,
7596				   unsigned long end)
7597{
7598	struct hstate *h = hstate_vma(vma);
7599	unsigned long sz = huge_page_size(h);
7600	struct mm_struct *mm = vma->vm_mm;
7601	struct mmu_notifier_range range;
7602	unsigned long address;
7603	spinlock_t *ptl;
7604	pte_t *ptep;
7605
7606	if (!(vma->vm_flags & VM_MAYSHARE))
7607		return;
7608
7609	if (start >= end)
7610		return;
7611
7612	flush_cache_range(vma, start, end);
7613	/*
7614	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7615	 * we have already done the PUD_SIZE alignment.
7616	 */
7617	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7618				start, end);
7619	mmu_notifier_invalidate_range_start(&range);
7620	hugetlb_vma_lock_write(vma);
7621	i_mmap_lock_write(vma->vm_file->f_mapping);
7622	for (address = start; address < end; address += PUD_SIZE) {
7623		ptep = hugetlb_walk(vma, address, sz);
7624		if (!ptep)
7625			continue;
7626		ptl = huge_pte_lock(h, mm, ptep);
7627		huge_pmd_unshare(mm, vma, address, ptep);
7628		spin_unlock(ptl);
7629	}
7630	flush_hugetlb_tlb_range(vma, start, end);
7631	i_mmap_unlock_write(vma->vm_file->f_mapping);
7632	hugetlb_vma_unlock_write(vma);
7633	/*
7634	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7635	 * Documentation/mm/mmu_notifier.rst.
7636	 */
7637	mmu_notifier_invalidate_range_end(&range);
7638}
7639
7640/*
7641 * This function will unconditionally remove all the shared pmd pgtable entries
7642 * within the specific vma for a hugetlbfs memory range.
7643 */
7644void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7645{
7646	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7647			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7648}
7649
7650#ifdef CONFIG_CMA
7651static bool cma_reserve_called __initdata;
7652
7653static int __init cmdline_parse_hugetlb_cma(char *p)
7654{
7655	int nid, count = 0;
7656	unsigned long tmp;
7657	char *s = p;
7658
7659	while (*s) {
7660		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7661			break;
7662
7663		if (s[count] == ':') {
7664			if (tmp >= MAX_NUMNODES)
7665				break;
7666			nid = array_index_nospec(tmp, MAX_NUMNODES);
7667
7668			s += count + 1;
7669			tmp = memparse(s, &s);
7670			hugetlb_cma_size_in_node[nid] = tmp;
7671			hugetlb_cma_size += tmp;
7672
7673			/*
7674			 * Skip the separator if have one, otherwise
7675			 * break the parsing.
7676			 */
7677			if (*s == ',')
7678				s++;
7679			else
7680				break;
7681		} else {
7682			hugetlb_cma_size = memparse(p, &p);
7683			break;
7684		}
7685	}
7686
7687	return 0;
7688}
7689
7690early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7691
7692void __init hugetlb_cma_reserve(int order)
7693{
7694	unsigned long size, reserved, per_node;
7695	bool node_specific_cma_alloc = false;
7696	int nid;
7697
7698	cma_reserve_called = true;
7699
7700	if (!hugetlb_cma_size)
7701		return;
7702
7703	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7704		if (hugetlb_cma_size_in_node[nid] == 0)
7705			continue;
7706
7707		if (!node_online(nid)) {
7708			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7709			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7710			hugetlb_cma_size_in_node[nid] = 0;
7711			continue;
7712		}
7713
7714		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7715			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7716				nid, (PAGE_SIZE << order) / SZ_1M);
7717			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7718			hugetlb_cma_size_in_node[nid] = 0;
7719		} else {
7720			node_specific_cma_alloc = true;
7721		}
7722	}
7723
7724	/* Validate the CMA size again in case some invalid nodes specified. */
7725	if (!hugetlb_cma_size)
7726		return;
7727
7728	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7729		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7730			(PAGE_SIZE << order) / SZ_1M);
7731		hugetlb_cma_size = 0;
7732		return;
7733	}
7734
7735	if (!node_specific_cma_alloc) {
7736		/*
7737		 * If 3 GB area is requested on a machine with 4 numa nodes,
7738		 * let's allocate 1 GB on first three nodes and ignore the last one.
7739		 */
7740		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7741		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7742			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7743	}
7744
7745	reserved = 0;
7746	for_each_online_node(nid) {
7747		int res;
7748		char name[CMA_MAX_NAME];
7749
7750		if (node_specific_cma_alloc) {
7751			if (hugetlb_cma_size_in_node[nid] == 0)
7752				continue;
7753
7754			size = hugetlb_cma_size_in_node[nid];
7755		} else {
7756			size = min(per_node, hugetlb_cma_size - reserved);
7757		}
7758
 
7759		size = round_up(size, PAGE_SIZE << order);
7760
7761		snprintf(name, sizeof(name), "hugetlb%d", nid);
7762		/*
7763		 * Note that 'order per bit' is based on smallest size that
7764		 * may be returned to CMA allocator in the case of
7765		 * huge page demotion.
7766		 */
7767		res = cma_declare_contiguous_nid(0, size, 0,
7768						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7769						 0, false, name,
7770						 &hugetlb_cma[nid], nid);
7771		if (res) {
7772			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7773				res, nid);
7774			continue;
7775		}
7776
7777		reserved += size;
7778		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7779			size / SZ_1M, nid);
7780
7781		if (reserved >= hugetlb_cma_size)
7782			break;
7783	}
7784
7785	if (!reserved)
7786		/*
7787		 * hugetlb_cma_size is used to determine if allocations from
7788		 * cma are possible.  Set to zero if no cma regions are set up.
7789		 */
7790		hugetlb_cma_size = 0;
7791}
7792
7793static void __init hugetlb_cma_check(void)
7794{
7795	if (!hugetlb_cma_size || cma_reserve_called)
7796		return;
7797
7798	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7799}
7800
7801#endif /* CONFIG_CMA */
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic hugetlb support.
   4 * (C) Nadia Yvette Chambers, April 2004
   5 */
   6#include <linux/list.h>
   7#include <linux/init.h>
   8#include <linux/mm.h>
   9#include <linux/seq_file.h>
  10#include <linux/sysctl.h>
  11#include <linux/highmem.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/nodemask.h>
  14#include <linux/pagemap.h>
  15#include <linux/mempolicy.h>
  16#include <linux/compiler.h>
  17#include <linux/cpuset.h>
  18#include <linux/mutex.h>
  19#include <linux/memblock.h>
  20#include <linux/sysfs.h>
  21#include <linux/slab.h>
  22#include <linux/sched/mm.h>
  23#include <linux/mmdebug.h>
  24#include <linux/sched/signal.h>
  25#include <linux/rmap.h>
  26#include <linux/string_helpers.h>
  27#include <linux/swap.h>
  28#include <linux/swapops.h>
  29#include <linux/jhash.h>
  30#include <linux/numa.h>
  31#include <linux/llist.h>
  32#include <linux/cma.h>
 
 
 
 
 
  33
  34#include <asm/page.h>
  35#include <asm/pgalloc.h>
  36#include <asm/tlb.h>
  37
  38#include <linux/io.h>
  39#include <linux/hugetlb.h>
  40#include <linux/hugetlb_cgroup.h>
  41#include <linux/node.h>
  42#include <linux/userfaultfd_k.h>
  43#include <linux/page_owner.h>
  44#include "internal.h"
 
  45
  46int hugetlb_max_hstate __read_mostly;
  47unsigned int default_hstate_idx;
  48struct hstate hstates[HUGE_MAX_HSTATE];
  49
  50#ifdef CONFIG_CMA
  51static struct cma *hugetlb_cma[MAX_NUMNODES];
 
 
 
 
 
 
 
 
 
 
 
  52#endif
  53static unsigned long hugetlb_cma_size __initdata;
  54
  55/*
  56 * Minimum page order among possible hugepage sizes, set to a proper value
  57 * at boot time.
  58 */
  59static unsigned int minimum_order __read_mostly = UINT_MAX;
  60
  61__initdata LIST_HEAD(huge_boot_pages);
  62
  63/* for command line parsing */
  64static struct hstate * __initdata parsed_hstate;
  65static unsigned long __initdata default_hstate_max_huge_pages;
  66static bool __initdata parsed_valid_hugepagesz = true;
  67static bool __initdata parsed_default_hugepagesz;
 
  68
  69/*
  70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  71 * free_huge_pages, and surplus_huge_pages.
  72 */
  73DEFINE_SPINLOCK(hugetlb_lock);
  74
  75/*
  76 * Serializes faults on the same logical page.  This is used to
  77 * prevent spurious OOMs when the hugepage pool is fully utilized.
  78 */
  79static int num_fault_mutexes;
  80struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  81
  82/* Forward declaration */
  83static int hugetlb_acct_memory(struct hstate *h, long delta);
 
 
 
 
 
 
  84
  85static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  86{
  87	bool free = (spool->count == 0) && (spool->used_hpages == 0);
 
 
 
 
 
 
 
 
  88
  89	spin_unlock(&spool->lock);
 
 
 
  90
  91	/* If no pages are used, and no other handles to the subpool
  92	 * remain, give up any reservations based on minimum size and
  93	 * free the subpool */
  94	if (free) {
  95		if (spool->min_hpages != -1)
  96			hugetlb_acct_memory(spool->hstate,
  97						-spool->min_hpages);
  98		kfree(spool);
  99	}
 100}
 101
 102struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
 103						long min_hpages)
 104{
 105	struct hugepage_subpool *spool;
 106
 107	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
 108	if (!spool)
 109		return NULL;
 110
 111	spin_lock_init(&spool->lock);
 112	spool->count = 1;
 113	spool->max_hpages = max_hpages;
 114	spool->hstate = h;
 115	spool->min_hpages = min_hpages;
 116
 117	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 118		kfree(spool);
 119		return NULL;
 120	}
 121	spool->rsv_hpages = min_hpages;
 122
 123	return spool;
 124}
 125
 126void hugepage_put_subpool(struct hugepage_subpool *spool)
 127{
 128	spin_lock(&spool->lock);
 
 
 129	BUG_ON(!spool->count);
 130	spool->count--;
 131	unlock_or_release_subpool(spool);
 132}
 133
 134/*
 135 * Subpool accounting for allocating and reserving pages.
 136 * Return -ENOMEM if there are not enough resources to satisfy the
 137 * request.  Otherwise, return the number of pages by which the
 138 * global pools must be adjusted (upward).  The returned value may
 139 * only be different than the passed value (delta) in the case where
 140 * a subpool minimum size must be maintained.
 141 */
 142static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 143				      long delta)
 144{
 145	long ret = delta;
 146
 147	if (!spool)
 148		return ret;
 149
 150	spin_lock(&spool->lock);
 151
 152	if (spool->max_hpages != -1) {		/* maximum size accounting */
 153		if ((spool->used_hpages + delta) <= spool->max_hpages)
 154			spool->used_hpages += delta;
 155		else {
 156			ret = -ENOMEM;
 157			goto unlock_ret;
 158		}
 159	}
 160
 161	/* minimum size accounting */
 162	if (spool->min_hpages != -1 && spool->rsv_hpages) {
 163		if (delta > spool->rsv_hpages) {
 164			/*
 165			 * Asking for more reserves than those already taken on
 166			 * behalf of subpool.  Return difference.
 167			 */
 168			ret = delta - spool->rsv_hpages;
 169			spool->rsv_hpages = 0;
 170		} else {
 171			ret = 0;	/* reserves already accounted for */
 172			spool->rsv_hpages -= delta;
 173		}
 174	}
 175
 176unlock_ret:
 177	spin_unlock(&spool->lock);
 178	return ret;
 179}
 180
 181/*
 182 * Subpool accounting for freeing and unreserving pages.
 183 * Return the number of global page reservations that must be dropped.
 184 * The return value may only be different than the passed value (delta)
 185 * in the case where a subpool minimum size must be maintained.
 186 */
 187static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 188				       long delta)
 189{
 190	long ret = delta;
 
 191
 192	if (!spool)
 193		return delta;
 194
 195	spin_lock(&spool->lock);
 196
 197	if (spool->max_hpages != -1)		/* maximum size accounting */
 198		spool->used_hpages -= delta;
 199
 200	 /* minimum size accounting */
 201	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
 202		if (spool->rsv_hpages + delta <= spool->min_hpages)
 203			ret = 0;
 204		else
 205			ret = spool->rsv_hpages + delta - spool->min_hpages;
 206
 207		spool->rsv_hpages += delta;
 208		if (spool->rsv_hpages > spool->min_hpages)
 209			spool->rsv_hpages = spool->min_hpages;
 210	}
 211
 212	/*
 213	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
 214	 * quota reference, free it now.
 215	 */
 216	unlock_or_release_subpool(spool);
 217
 218	return ret;
 219}
 220
 221static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 222{
 223	return HUGETLBFS_SB(inode->i_sb)->spool;
 224}
 225
 226static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 227{
 228	return subpool_inode(file_inode(vma->vm_file));
 229}
 230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 231/* Helper that removes a struct file_region from the resv_map cache and returns
 232 * it for use.
 233 */
 234static struct file_region *
 235get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
 236{
 237	struct file_region *nrg = NULL;
 238
 239	VM_BUG_ON(resv->region_cache_count <= 0);
 240
 241	resv->region_cache_count--;
 242	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
 243	VM_BUG_ON(!nrg);
 244	list_del(&nrg->link);
 245
 246	nrg->from = from;
 247	nrg->to = to;
 248
 249	return nrg;
 250}
 251
 252static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
 253					      struct file_region *rg)
 254{
 255#ifdef CONFIG_CGROUP_HUGETLB
 256	nrg->reservation_counter = rg->reservation_counter;
 257	nrg->css = rg->css;
 258	if (rg->css)
 259		css_get(rg->css);
 260#endif
 261}
 262
 263/* Helper that records hugetlb_cgroup uncharge info. */
 264static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
 265						struct hstate *h,
 266						struct resv_map *resv,
 267						struct file_region *nrg)
 268{
 269#ifdef CONFIG_CGROUP_HUGETLB
 270	if (h_cg) {
 271		nrg->reservation_counter =
 272			&h_cg->rsvd_hugepage[hstate_index(h)];
 273		nrg->css = &h_cg->css;
 
 
 
 
 
 
 
 
 
 
 
 274		if (!resv->pages_per_hpage)
 275			resv->pages_per_hpage = pages_per_huge_page(h);
 276		/* pages_per_hpage should be the same for all entries in
 277		 * a resv_map.
 278		 */
 279		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
 280	} else {
 281		nrg->reservation_counter = NULL;
 282		nrg->css = NULL;
 283	}
 284#endif
 285}
 286
 
 
 
 
 
 
 
 
 287static bool has_same_uncharge_info(struct file_region *rg,
 288				   struct file_region *org)
 289{
 290#ifdef CONFIG_CGROUP_HUGETLB
 291	return rg && org &&
 292	       rg->reservation_counter == org->reservation_counter &&
 293	       rg->css == org->css;
 294
 295#else
 296	return true;
 297#endif
 298}
 299
 300static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
 301{
 302	struct file_region *nrg = NULL, *prg = NULL;
 303
 304	prg = list_prev_entry(rg, link);
 305	if (&prg->link != &resv->regions && prg->to == rg->from &&
 306	    has_same_uncharge_info(prg, rg)) {
 307		prg->to = rg->to;
 308
 309		list_del(&rg->link);
 
 310		kfree(rg);
 311
 312		coalesce_file_region(resv, prg);
 313		return;
 314	}
 315
 316	nrg = list_next_entry(rg, link);
 317	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
 318	    has_same_uncharge_info(nrg, rg)) {
 319		nrg->from = rg->from;
 320
 321		list_del(&rg->link);
 
 322		kfree(rg);
 
 
 323
 324		coalesce_file_region(resv, nrg);
 325		return;
 326	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 327}
 328
 329/* Must be called with resv->lock held. Calling this with count_only == true
 330 * will count the number of pages to be added but will not modify the linked
 331 * list. If regions_needed != NULL and count_only == true, then regions_needed
 332 * will indicate the number of file_regions needed in the cache to carry out to
 333 * add the regions for this range.
 
 
 334 */
 335static long add_reservation_in_range(struct resv_map *resv, long f, long t,
 336				     struct hugetlb_cgroup *h_cg,
 337				     struct hstate *h, long *regions_needed,
 338				     bool count_only)
 339{
 340	long add = 0;
 341	struct list_head *head = &resv->regions;
 342	long last_accounted_offset = f;
 343	struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
 
 344
 345	if (regions_needed)
 346		*regions_needed = 0;
 347
 348	/* In this loop, we essentially handle an entry for the range
 349	 * [last_accounted_offset, rg->from), at every iteration, with some
 350	 * bounds checking.
 351	 */
 352	list_for_each_entry_safe(rg, trg, head, link) {
 353		/* Skip irrelevant regions that start before our range. */
 354		if (rg->from < f) {
 355			/* If this region ends after the last accounted offset,
 356			 * then we need to update last_accounted_offset.
 357			 */
 358			if (rg->to > last_accounted_offset)
 359				last_accounted_offset = rg->to;
 360			continue;
 361		}
 362
 363		/* When we find a region that starts beyond our range, we've
 364		 * finished.
 365		 */
 366		if (rg->from > t)
 
 367			break;
 
 368
 369		/* Add an entry for last_accounted_offset -> rg->from, and
 370		 * update last_accounted_offset.
 371		 */
 372		if (rg->from > last_accounted_offset) {
 373			add += rg->from - last_accounted_offset;
 374			if (!count_only) {
 375				nrg = get_file_region_entry_from_cache(
 376					resv, last_accounted_offset, rg->from);
 377				record_hugetlb_cgroup_uncharge_info(h_cg, h,
 378								    resv, nrg);
 379				list_add(&nrg->link, rg->link.prev);
 380				coalesce_file_region(resv, nrg);
 381			} else if (regions_needed)
 382				*regions_needed += 1;
 383		}
 384
 385		last_accounted_offset = rg->to;
 386	}
 387
 388	/* Handle the case where our range extends beyond
 389	 * last_accounted_offset.
 390	 */
 391	if (last_accounted_offset < t) {
 392		add += t - last_accounted_offset;
 393		if (!count_only) {
 394			nrg = get_file_region_entry_from_cache(
 395				resv, last_accounted_offset, t);
 396			record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
 397			list_add(&nrg->link, rg->link.prev);
 398			coalesce_file_region(resv, nrg);
 399		} else if (regions_needed)
 400			*regions_needed += 1;
 401	}
 402
 403	VM_BUG_ON(add < 0);
 404	return add;
 405}
 406
 407/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
 408 */
 409static int allocate_file_region_entries(struct resv_map *resv,
 410					int regions_needed)
 411	__must_hold(&resv->lock)
 412{
 413	struct list_head allocated_regions;
 414	int to_allocate = 0, i = 0;
 415	struct file_region *trg = NULL, *rg = NULL;
 416
 417	VM_BUG_ON(regions_needed < 0);
 418
 419	INIT_LIST_HEAD(&allocated_regions);
 420
 421	/*
 422	 * Check for sufficient descriptors in the cache to accommodate
 423	 * the number of in progress add operations plus regions_needed.
 424	 *
 425	 * This is a while loop because when we drop the lock, some other call
 426	 * to region_add or region_del may have consumed some region_entries,
 427	 * so we keep looping here until we finally have enough entries for
 428	 * (adds_in_progress + regions_needed).
 429	 */
 430	while (resv->region_cache_count <
 431	       (resv->adds_in_progress + regions_needed)) {
 432		to_allocate = resv->adds_in_progress + regions_needed -
 433			      resv->region_cache_count;
 434
 435		/* At this point, we should have enough entries in the cache
 436		 * for all the existings adds_in_progress. We should only be
 437		 * needing to allocate for regions_needed.
 438		 */
 439		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
 440
 441		spin_unlock(&resv->lock);
 442		for (i = 0; i < to_allocate; i++) {
 443			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 444			if (!trg)
 445				goto out_of_memory;
 446			list_add(&trg->link, &allocated_regions);
 447		}
 448
 449		spin_lock(&resv->lock);
 450
 451		list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
 452			list_del(&rg->link);
 453			list_add(&rg->link, &resv->region_cache);
 454			resv->region_cache_count++;
 455		}
 456	}
 457
 458	return 0;
 459
 460out_of_memory:
 461	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
 462		list_del(&rg->link);
 463		kfree(rg);
 464	}
 465	return -ENOMEM;
 466}
 467
 468/*
 469 * Add the huge page range represented by [f, t) to the reserve
 470 * map.  Regions will be taken from the cache to fill in this range.
 471 * Sufficient regions should exist in the cache due to the previous
 472 * call to region_chg with the same range, but in some cases the cache will not
 473 * have sufficient entries due to races with other code doing region_add or
 474 * region_del.  The extra needed entries will be allocated.
 475 *
 476 * regions_needed is the out value provided by a previous call to region_chg.
 477 *
 478 * Return the number of new huge pages added to the map.  This number is greater
 479 * than or equal to zero.  If file_region entries needed to be allocated for
 480 * this operation and we were not able to allocate, it returns -ENOMEM.
 481 * region_add of regions of length 1 never allocate file_regions and cannot
 482 * fail; region_chg will always allocate at least 1 entry and a region_add for
 483 * 1 page will only require at most 1 entry.
 484 */
 485static long region_add(struct resv_map *resv, long f, long t,
 486		       long in_regions_needed, struct hstate *h,
 487		       struct hugetlb_cgroup *h_cg)
 488{
 489	long add = 0, actual_regions_needed = 0;
 490
 491	spin_lock(&resv->lock);
 492retry:
 493
 494	/* Count how many regions are actually needed to execute this add. */
 495	add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed,
 496				 true);
 497
 498	/*
 499	 * Check for sufficient descriptors in the cache to accommodate
 500	 * this add operation. Note that actual_regions_needed may be greater
 501	 * than in_regions_needed, as the resv_map may have been modified since
 502	 * the region_chg call. In this case, we need to make sure that we
 503	 * allocate extra entries, such that we have enough for all the
 504	 * existing adds_in_progress, plus the excess needed for this
 505	 * operation.
 506	 */
 507	if (actual_regions_needed > in_regions_needed &&
 508	    resv->region_cache_count <
 509		    resv->adds_in_progress +
 510			    (actual_regions_needed - in_regions_needed)) {
 511		/* region_add operation of range 1 should never need to
 512		 * allocate file_region entries.
 513		 */
 514		VM_BUG_ON(t - f <= 1);
 515
 516		if (allocate_file_region_entries(
 517			    resv, actual_regions_needed - in_regions_needed)) {
 518			return -ENOMEM;
 519		}
 520
 521		goto retry;
 522	}
 523
 524	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false);
 525
 526	resv->adds_in_progress -= in_regions_needed;
 527
 528	spin_unlock(&resv->lock);
 529	VM_BUG_ON(add < 0);
 530	return add;
 531}
 532
 533/*
 534 * Examine the existing reserve map and determine how many
 535 * huge pages in the specified range [f, t) are NOT currently
 536 * represented.  This routine is called before a subsequent
 537 * call to region_add that will actually modify the reserve
 538 * map to add the specified range [f, t).  region_chg does
 539 * not change the number of huge pages represented by the
 540 * map.  A number of new file_region structures is added to the cache as a
 541 * placeholder, for the subsequent region_add call to use. At least 1
 542 * file_region structure is added.
 543 *
 544 * out_regions_needed is the number of regions added to the
 545 * resv->adds_in_progress.  This value needs to be provided to a follow up call
 546 * to region_add or region_abort for proper accounting.
 547 *
 548 * Returns the number of huge pages that need to be added to the existing
 549 * reservation map for the range [f, t).  This number is greater or equal to
 550 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 551 * is needed and can not be allocated.
 552 */
 553static long region_chg(struct resv_map *resv, long f, long t,
 554		       long *out_regions_needed)
 555{
 556	long chg = 0;
 557
 558	spin_lock(&resv->lock);
 559
 560	/* Count how many hugepages in this range are NOT respresented. */
 561	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
 562				       out_regions_needed, true);
 563
 564	if (*out_regions_needed == 0)
 565		*out_regions_needed = 1;
 566
 567	if (allocate_file_region_entries(resv, *out_regions_needed))
 568		return -ENOMEM;
 569
 570	resv->adds_in_progress += *out_regions_needed;
 571
 572	spin_unlock(&resv->lock);
 573	return chg;
 574}
 575
 576/*
 577 * Abort the in progress add operation.  The adds_in_progress field
 578 * of the resv_map keeps track of the operations in progress between
 579 * calls to region_chg and region_add.  Operations are sometimes
 580 * aborted after the call to region_chg.  In such cases, region_abort
 581 * is called to decrement the adds_in_progress counter. regions_needed
 582 * is the value returned by the region_chg call, it is used to decrement
 583 * the adds_in_progress counter.
 584 *
 585 * NOTE: The range arguments [f, t) are not needed or used in this
 586 * routine.  They are kept to make reading the calling code easier as
 587 * arguments will match the associated region_chg call.
 588 */
 589static void region_abort(struct resv_map *resv, long f, long t,
 590			 long regions_needed)
 591{
 592	spin_lock(&resv->lock);
 593	VM_BUG_ON(!resv->region_cache_count);
 594	resv->adds_in_progress -= regions_needed;
 595	spin_unlock(&resv->lock);
 596}
 597
 598/*
 599 * Delete the specified range [f, t) from the reserve map.  If the
 600 * t parameter is LONG_MAX, this indicates that ALL regions after f
 601 * should be deleted.  Locate the regions which intersect [f, t)
 602 * and either trim, delete or split the existing regions.
 603 *
 604 * Returns the number of huge pages deleted from the reserve map.
 605 * In the normal case, the return value is zero or more.  In the
 606 * case where a region must be split, a new region descriptor must
 607 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 608 * NOTE: If the parameter t == LONG_MAX, then we will never split
 609 * a region and possibly return -ENOMEM.  Callers specifying
 610 * t == LONG_MAX do not need to check for -ENOMEM error.
 611 */
 612static long region_del(struct resv_map *resv, long f, long t)
 613{
 614	struct list_head *head = &resv->regions;
 615	struct file_region *rg, *trg;
 616	struct file_region *nrg = NULL;
 617	long del = 0;
 618
 619retry:
 620	spin_lock(&resv->lock);
 621	list_for_each_entry_safe(rg, trg, head, link) {
 622		/*
 623		 * Skip regions before the range to be deleted.  file_region
 624		 * ranges are normally of the form [from, to).  However, there
 625		 * may be a "placeholder" entry in the map which is of the form
 626		 * (from, to) with from == to.  Check for placeholder entries
 627		 * at the beginning of the range to be deleted.
 628		 */
 629		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 630			continue;
 631
 632		if (rg->from >= t)
 633			break;
 634
 635		if (f > rg->from && t < rg->to) { /* Must split region */
 636			/*
 637			 * Check for an entry in the cache before dropping
 638			 * lock and attempting allocation.
 639			 */
 640			if (!nrg &&
 641			    resv->region_cache_count > resv->adds_in_progress) {
 642				nrg = list_first_entry(&resv->region_cache,
 643							struct file_region,
 644							link);
 645				list_del(&nrg->link);
 646				resv->region_cache_count--;
 647			}
 648
 649			if (!nrg) {
 650				spin_unlock(&resv->lock);
 651				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 652				if (!nrg)
 653					return -ENOMEM;
 654				goto retry;
 655			}
 656
 657			del += t - f;
 
 
 658
 659			/* New entry for end of split region */
 660			nrg->from = t;
 661			nrg->to = rg->to;
 662
 663			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
 664
 665			INIT_LIST_HEAD(&nrg->link);
 666
 667			/* Original entry is trimmed */
 668			rg->to = f;
 669
 670			hugetlb_cgroup_uncharge_file_region(
 671				resv, rg, nrg->to - nrg->from);
 672
 673			list_add(&nrg->link, &rg->link);
 674			nrg = NULL;
 675			break;
 676		}
 677
 678		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 679			del += rg->to - rg->from;
 680			hugetlb_cgroup_uncharge_file_region(resv, rg,
 681							    rg->to - rg->from);
 682			list_del(&rg->link);
 683			kfree(rg);
 684			continue;
 685		}
 686
 687		if (f <= rg->from) {	/* Trim beginning of region */
 
 
 
 688			del += t - rg->from;
 689			rg->from = t;
 
 
 
 690
 691			hugetlb_cgroup_uncharge_file_region(resv, rg,
 692							    t - rg->from);
 693		} else {		/* Trim end of region */
 694			del += rg->to - f;
 695			rg->to = f;
 696
 697			hugetlb_cgroup_uncharge_file_region(resv, rg,
 698							    rg->to - f);
 699		}
 700	}
 701
 702	spin_unlock(&resv->lock);
 703	kfree(nrg);
 704	return del;
 705}
 706
 707/*
 708 * A rare out of memory error was encountered which prevented removal of
 709 * the reserve map region for a page.  The huge page itself was free'ed
 710 * and removed from the page cache.  This routine will adjust the subpool
 711 * usage count, and the global reserve count if needed.  By incrementing
 712 * these counts, the reserve map entry which could not be deleted will
 713 * appear as a "reserved" entry instead of simply dangling with incorrect
 714 * counts.
 715 */
 716void hugetlb_fix_reserve_counts(struct inode *inode)
 717{
 718	struct hugepage_subpool *spool = subpool_inode(inode);
 719	long rsv_adjust;
 
 720
 721	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 722	if (rsv_adjust) {
 723		struct hstate *h = hstate_inode(inode);
 724
 725		hugetlb_acct_memory(h, 1);
 
 
 
 726	}
 
 
 
 727}
 728
 729/*
 730 * Count and return the number of huge pages in the reserve map
 731 * that intersect with the range [f, t).
 732 */
 733static long region_count(struct resv_map *resv, long f, long t)
 734{
 735	struct list_head *head = &resv->regions;
 736	struct file_region *rg;
 737	long chg = 0;
 738
 739	spin_lock(&resv->lock);
 740	/* Locate each segment we overlap with, and count that overlap. */
 741	list_for_each_entry(rg, head, link) {
 742		long seg_from;
 743		long seg_to;
 744
 745		if (rg->to <= f)
 746			continue;
 747		if (rg->from >= t)
 748			break;
 749
 750		seg_from = max(rg->from, f);
 751		seg_to = min(rg->to, t);
 752
 753		chg += seg_to - seg_from;
 754	}
 755	spin_unlock(&resv->lock);
 756
 757	return chg;
 758}
 759
 760/*
 761 * Convert the address within this vma to the page offset within
 762 * the mapping, in pagecache page units; huge pages here.
 763 */
 764static pgoff_t vma_hugecache_offset(struct hstate *h,
 765			struct vm_area_struct *vma, unsigned long address)
 766{
 767	return ((address - vma->vm_start) >> huge_page_shift(h)) +
 768			(vma->vm_pgoff >> huge_page_order(h));
 769}
 770
 771pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 772				     unsigned long address)
 773{
 774	return vma_hugecache_offset(hstate_vma(vma), vma, address);
 775}
 776EXPORT_SYMBOL_GPL(linear_hugepage_index);
 777
 778/*
 779 * Return the size of the pages allocated when backing a VMA. In the majority
 780 * cases this will be same size as used by the page table entries.
 781 */
 782unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 783{
 784	if (vma->vm_ops && vma->vm_ops->pagesize)
 785		return vma->vm_ops->pagesize(vma);
 786	return PAGE_SIZE;
 787}
 788EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 789
 790/*
 791 * Return the page size being used by the MMU to back a VMA. In the majority
 792 * of cases, the page size used by the kernel matches the MMU size. On
 793 * architectures where it differs, an architecture-specific 'strong'
 794 * version of this symbol is required.
 795 */
 796__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 797{
 798	return vma_kernel_pagesize(vma);
 799}
 800
 801/*
 802 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 803 * bits of the reservation map pointer, which are always clear due to
 804 * alignment.
 805 */
 806#define HPAGE_RESV_OWNER    (1UL << 0)
 807#define HPAGE_RESV_UNMAPPED (1UL << 1)
 808#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 809
 810/*
 811 * These helpers are used to track how many pages are reserved for
 812 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 813 * is guaranteed to have their future faults succeed.
 814 *
 815 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 816 * the reserve counters are updated with the hugetlb_lock held. It is safe
 817 * to reset the VMA at fork() time as it is not in use yet and there is no
 818 * chance of the global counters getting corrupted as a result of the values.
 819 *
 820 * The private mapping reservation is represented in a subtly different
 821 * manner to a shared mapping.  A shared mapping has a region map associated
 822 * with the underlying file, this region map represents the backing file
 823 * pages which have ever had a reservation assigned which this persists even
 824 * after the page is instantiated.  A private mapping has a region map
 825 * associated with the original mmap which is attached to all VMAs which
 826 * reference it, this region map represents those offsets which have consumed
 827 * reservation ie. where pages have been instantiated.
 828 */
 829static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 830{
 831	return (unsigned long)vma->vm_private_data;
 832}
 833
 834static void set_vma_private_data(struct vm_area_struct *vma,
 835							unsigned long value)
 836{
 837	vma->vm_private_data = (void *)value;
 838}
 839
 840static void
 841resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
 842					  struct hugetlb_cgroup *h_cg,
 843					  struct hstate *h)
 844{
 845#ifdef CONFIG_CGROUP_HUGETLB
 846	if (!h_cg || !h) {
 847		resv_map->reservation_counter = NULL;
 848		resv_map->pages_per_hpage = 0;
 849		resv_map->css = NULL;
 850	} else {
 851		resv_map->reservation_counter =
 852			&h_cg->rsvd_hugepage[hstate_index(h)];
 853		resv_map->pages_per_hpage = pages_per_huge_page(h);
 854		resv_map->css = &h_cg->css;
 855	}
 856#endif
 857}
 858
 859struct resv_map *resv_map_alloc(void)
 860{
 861	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 862	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
 863
 864	if (!resv_map || !rg) {
 865		kfree(resv_map);
 866		kfree(rg);
 867		return NULL;
 868	}
 869
 870	kref_init(&resv_map->refs);
 871	spin_lock_init(&resv_map->lock);
 872	INIT_LIST_HEAD(&resv_map->regions);
 
 873
 874	resv_map->adds_in_progress = 0;
 875	/*
 876	 * Initialize these to 0. On shared mappings, 0's here indicate these
 877	 * fields don't do cgroup accounting. On private mappings, these will be
 878	 * re-initialized to the proper values, to indicate that hugetlb cgroup
 879	 * reservations are to be un-charged from here.
 880	 */
 881	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
 882
 883	INIT_LIST_HEAD(&resv_map->region_cache);
 884	list_add(&rg->link, &resv_map->region_cache);
 885	resv_map->region_cache_count = 1;
 886
 887	return resv_map;
 888}
 889
 890void resv_map_release(struct kref *ref)
 891{
 892	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 893	struct list_head *head = &resv_map->region_cache;
 894	struct file_region *rg, *trg;
 895
 896	/* Clear out any active regions before we release the map. */
 897	region_del(resv_map, 0, LONG_MAX);
 898
 899	/* ... and any entries left in the cache */
 900	list_for_each_entry_safe(rg, trg, head, link) {
 901		list_del(&rg->link);
 902		kfree(rg);
 903	}
 904
 905	VM_BUG_ON(resv_map->adds_in_progress);
 906
 907	kfree(resv_map);
 908}
 909
 910static inline struct resv_map *inode_resv_map(struct inode *inode)
 911{
 912	/*
 913	 * At inode evict time, i_mapping may not point to the original
 914	 * address space within the inode.  This original address space
 915	 * contains the pointer to the resv_map.  So, always use the
 916	 * address space embedded within the inode.
 917	 * The VERY common case is inode->mapping == &inode->i_data but,
 918	 * this may not be true for device special inodes.
 919	 */
 920	return (struct resv_map *)(&inode->i_data)->private_data;
 921}
 922
 923static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 924{
 925	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 926	if (vma->vm_flags & VM_MAYSHARE) {
 927		struct address_space *mapping = vma->vm_file->f_mapping;
 928		struct inode *inode = mapping->host;
 929
 930		return inode_resv_map(inode);
 931
 932	} else {
 933		return (struct resv_map *)(get_vma_private_data(vma) &
 934							~HPAGE_RESV_MASK);
 935	}
 936}
 937
 938static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 939{
 940	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 941	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 942
 943	set_vma_private_data(vma, (get_vma_private_data(vma) &
 944				HPAGE_RESV_MASK) | (unsigned long)map);
 945}
 946
 947static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 948{
 949	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 950	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 951
 952	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 953}
 954
 955static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 956{
 957	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 958
 959	return (get_vma_private_data(vma) & flag) != 0;
 960}
 961
 962/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
 963void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
 
 
 
 
 
 
 964{
 965	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 966	if (!(vma->vm_flags & VM_MAYSHARE))
 967		vma->vm_private_data = (void *)0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 968}
 969
 970/* Returns true if the VMA has associated reserve pages */
 971static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
 972{
 973	if (vma->vm_flags & VM_NORESERVE) {
 974		/*
 975		 * This address is already reserved by other process(chg == 0),
 976		 * so, we should decrement reserved count. Without decrementing,
 977		 * reserve count remains after releasing inode, because this
 978		 * allocated page will go into page cache and is regarded as
 979		 * coming from reserved pool in releasing step.  Currently, we
 980		 * don't have any other solution to deal with this situation
 981		 * properly, so add work-around here.
 982		 */
 983		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
 984			return true;
 985		else
 986			return false;
 987	}
 988
 989	/* Shared mappings always use reserves */
 990	if (vma->vm_flags & VM_MAYSHARE) {
 991		/*
 992		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
 993		 * be a region map for all pages.  The only situation where
 994		 * there is no region map is if a hole was punched via
 995		 * fallocate.  In this case, there really are no reserves to
 996		 * use.  This situation is indicated if chg != 0.
 997		 */
 998		if (chg)
 999			return false;
1000		else
1001			return true;
1002	}
1003
1004	/*
1005	 * Only the process that called mmap() has reserves for
1006	 * private mappings.
1007	 */
1008	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1009		/*
1010		 * Like the shared case above, a hole punch or truncate
1011		 * could have been performed on the private mapping.
1012		 * Examine the value of chg to determine if reserves
1013		 * actually exist or were previously consumed.
1014		 * Very Subtle - The value of chg comes from a previous
1015		 * call to vma_needs_reserves().  The reserve map for
1016		 * private mappings has different (opposite) semantics
1017		 * than that of shared mappings.  vma_needs_reserves()
1018		 * has already taken this difference in semantics into
1019		 * account.  Therefore, the meaning of chg is the same
1020		 * as in the shared case above.  Code could easily be
1021		 * combined, but keeping it separate draws attention to
1022		 * subtle differences.
1023		 */
1024		if (chg)
1025			return false;
1026		else
1027			return true;
1028	}
1029
1030	return false;
1031}
1032
1033static void enqueue_huge_page(struct hstate *h, struct page *page)
1034{
1035	int nid = page_to_nid(page);
1036	list_move(&page->lru, &h->hugepage_freelists[nid]);
 
 
 
 
1037	h->free_huge_pages++;
1038	h->free_huge_pages_node[nid]++;
 
1039}
1040
1041static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
 
1042{
1043	struct page *page;
1044	bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
 
 
 
 
 
1045
1046	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1047		if (nocma && is_migrate_cma_page(page))
1048			continue;
1049
1050		if (!PageHWPoison(page))
1051			break;
 
 
 
 
1052	}
1053
1054	/*
1055	 * if 'non-isolated free hugepage' not found on the list,
1056	 * the allocation fails.
1057	 */
1058	if (&h->hugepage_freelists[nid] == &page->lru)
1059		return NULL;
1060	list_move(&page->lru, &h->hugepage_activelist);
1061	set_page_refcounted(page);
1062	h->free_huge_pages--;
1063	h->free_huge_pages_node[nid]--;
1064	return page;
1065}
1066
1067static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1068		nodemask_t *nmask)
1069{
1070	unsigned int cpuset_mems_cookie;
1071	struct zonelist *zonelist;
1072	struct zone *zone;
1073	struct zoneref *z;
1074	int node = NUMA_NO_NODE;
1075
1076	zonelist = node_zonelist(nid, gfp_mask);
1077
1078retry_cpuset:
1079	cpuset_mems_cookie = read_mems_allowed_begin();
1080	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1081		struct page *page;
1082
1083		if (!cpuset_zone_allowed(zone, gfp_mask))
1084			continue;
1085		/*
1086		 * no need to ask again on the same node. Pool is node rather than
1087		 * zone aware
1088		 */
1089		if (zone_to_nid(zone) == node)
1090			continue;
1091		node = zone_to_nid(zone);
1092
1093		page = dequeue_huge_page_node_exact(h, node);
1094		if (page)
1095			return page;
1096	}
1097	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1098		goto retry_cpuset;
1099
1100	return NULL;
1101}
1102
1103static struct page *dequeue_huge_page_vma(struct hstate *h,
 
 
 
 
 
1104				struct vm_area_struct *vma,
1105				unsigned long address, int avoid_reserve,
1106				long chg)
1107{
1108	struct page *page;
1109	struct mempolicy *mpol;
1110	gfp_t gfp_mask;
1111	nodemask_t *nodemask;
1112	int nid;
1113
1114	/*
1115	 * A child process with MAP_PRIVATE mappings created by their parent
1116	 * have no page reserves. This check ensures that reservations are
1117	 * not "stolen". The child may still get SIGKILLed
1118	 */
1119	if (!vma_has_reserves(vma, chg) &&
1120			h->free_huge_pages - h->resv_huge_pages == 0)
1121		goto err;
1122
1123	/* If reserves cannot be used, ensure enough pages are in the pool */
1124	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1125		goto err;
1126
1127	gfp_mask = htlb_alloc_mask(h);
1128	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1129	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1130	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1131		SetPagePrivate(page);
 
 
 
 
 
 
 
 
 
 
 
 
1132		h->resv_huge_pages--;
1133	}
1134
1135	mpol_cond_put(mpol);
1136	return page;
1137
1138err:
1139	return NULL;
1140}
1141
1142/*
1143 * common helper functions for hstate_next_node_to_{alloc|free}.
1144 * We may have allocated or freed a huge page based on a different
1145 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1146 * be outside of *nodes_allowed.  Ensure that we use an allowed
1147 * node for alloc or free.
1148 */
1149static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1150{
1151	nid = next_node_in(nid, *nodes_allowed);
1152	VM_BUG_ON(nid >= MAX_NUMNODES);
1153
1154	return nid;
1155}
1156
1157static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1158{
1159	if (!node_isset(nid, *nodes_allowed))
1160		nid = next_node_allowed(nid, nodes_allowed);
1161	return nid;
1162}
1163
1164/*
1165 * returns the previously saved node ["this node"] from which to
1166 * allocate a persistent huge page for the pool and advance the
1167 * next node from which to allocate, handling wrap at end of node
1168 * mask.
1169 */
1170static int hstate_next_node_to_alloc(struct hstate *h,
1171					nodemask_t *nodes_allowed)
1172{
1173	int nid;
1174
1175	VM_BUG_ON(!nodes_allowed);
1176
1177	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1178	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1179
1180	return nid;
1181}
1182
1183/*
1184 * helper for free_pool_huge_page() - return the previously saved
1185 * node ["this node"] from which to free a huge page.  Advance the
1186 * next node id whether or not we find a free huge page to free so
1187 * that the next attempt to free addresses the next node.
1188 */
1189static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1190{
1191	int nid;
1192
1193	VM_BUG_ON(!nodes_allowed);
1194
1195	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1196	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1197
1198	return nid;
1199}
1200
1201#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1202	for (nr_nodes = nodes_weight(*mask);				\
1203		nr_nodes > 0 &&						\
1204		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1205		nr_nodes--)
1206
1207#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1208	for (nr_nodes = nodes_weight(*mask);				\
1209		nr_nodes > 0 &&						\
1210		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1211		nr_nodes--)
1212
1213#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1214static void destroy_compound_gigantic_page(struct page *page,
1215					unsigned int order)
1216{
1217	int i;
1218	int nr_pages = 1 << order;
1219	struct page *p = page + 1;
1220
1221	atomic_set(compound_mapcount_ptr(page), 0);
1222	if (hpage_pincount_available(page))
1223		atomic_set(compound_pincount_ptr(page), 0);
1224
1225	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
 
 
 
 
 
 
 
1226		clear_compound_head(p);
1227		set_page_refcounted(p);
 
1228	}
1229
1230	set_compound_order(page, 0);
1231	__ClearPageHead(page);
1232}
1233
1234static void free_gigantic_page(struct page *page, unsigned int order)
 
 
 
 
 
 
 
 
 
 
 
 
 
1235{
1236	/*
1237	 * If the page isn't allocated using the cma allocator,
1238	 * cma_release() returns false.
1239	 */
1240#ifdef CONFIG_CMA
1241	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
 
 
1242		return;
1243#endif
1244
1245	free_contig_range(page_to_pfn(page), 1 << order);
1246}
1247
1248#ifdef CONFIG_CONTIG_ALLOC
1249static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1250		int nid, nodemask_t *nodemask)
1251{
1252	unsigned long nr_pages = 1UL << huge_page_order(h);
 
1253	if (nid == NUMA_NO_NODE)
1254		nid = numa_mem_id();
1255
1256#ifdef CONFIG_CMA
1257	{
1258		struct page *page;
1259		int node;
1260
1261		if (hugetlb_cma[nid]) {
1262			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1263					huge_page_order(h), true);
1264			if (page)
1265				return page;
1266		}
1267
1268		if (!(gfp_mask & __GFP_THISNODE)) {
1269			for_each_node_mask(node, *nodemask) {
1270				if (node == nid || !hugetlb_cma[node])
1271					continue;
1272
1273				page = cma_alloc(hugetlb_cma[node], nr_pages,
1274						huge_page_order(h), true);
1275				if (page)
1276					return page;
1277			}
1278		}
1279	}
1280#endif
1281
1282	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
 
1283}
1284
1285static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1286static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1287#else /* !CONFIG_CONTIG_ALLOC */
1288static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1289					int nid, nodemask_t *nodemask)
1290{
1291	return NULL;
1292}
1293#endif /* CONFIG_CONTIG_ALLOC */
1294
1295#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1296static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1297					int nid, nodemask_t *nodemask)
1298{
1299	return NULL;
1300}
1301static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1302static inline void destroy_compound_gigantic_page(struct page *page,
 
1303						unsigned int order) { }
1304#endif
1305
1306static void update_and_free_page(struct hstate *h, struct page *page)
 
1307{
1308	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1309
 
1310	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1311		return;
1312
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1313	h->nr_huge_pages--;
1314	h->nr_huge_pages_node[page_to_nid(page)]--;
1315	for (i = 0; i < pages_per_huge_page(h); i++) {
1316		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1317				1 << PG_referenced | 1 << PG_dirty |
1318				1 << PG_active | 1 << PG_private |
1319				1 << PG_writeback);
1320	}
1321	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1322	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1323	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1324	set_page_refcounted(page);
1325	if (hstate_is_gigantic(h)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1326		/*
1327		 * Temporarily drop the hugetlb_lock, because
1328		 * we might block in free_gigantic_page().
 
 
1329		 */
1330		spin_unlock(&hugetlb_lock);
1331		destroy_compound_gigantic_page(page, huge_page_order(h));
1332		free_gigantic_page(page, huge_page_order(h));
1333		spin_lock(&hugetlb_lock);
1334	} else {
1335		__free_pages(page, huge_page_order(h));
1336	}
1337}
1338
1339struct hstate *size_to_hstate(unsigned long size)
 
1340{
1341	struct hstate *h;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1342
1343	for_each_hstate(h) {
1344		if (huge_page_size(h) == size)
1345			return h;
 
 
 
 
 
 
 
1346	}
1347	return NULL;
1348}
1349
1350/*
1351 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1352 * to hstate->hugepage_activelist.)
 
 
1353 *
1354 * This function can be called for tail pages, but never returns true for them.
 
 
 
1355 */
1356bool page_huge_active(struct page *page)
 
 
1357{
1358	VM_BUG_ON_PAGE(!PageHuge(page), page);
1359	return PageHead(page) && PagePrivate(&page[1]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1360}
 
1361
1362/* never called for tail page */
1363static void set_page_huge_active(struct page *page)
1364{
1365	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1366	SetPagePrivate(&page[1]);
1367}
1368
1369static void clear_page_huge_active(struct page *page)
 
1370{
1371	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1372	ClearPagePrivate(&page[1]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1373}
1374
1375/*
1376 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1377 * code
1378 */
1379static inline bool PageHugeTemporary(struct page *page)
1380{
1381	if (!PageHuge(page))
1382		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1383
1384	return (unsigned long)page[2].mapping == -1U;
 
 
 
1385}
1386
1387static inline void SetPageHugeTemporary(struct page *page)
1388{
1389	page[2].mapping = (void *)-1U;
1390}
1391
1392static inline void ClearPageHugeTemporary(struct page *page)
1393{
1394	page[2].mapping = NULL;
 
 
1395}
1396
1397static void __free_huge_page(struct page *page)
1398{
1399	/*
1400	 * Can't pass hstate in here because it is called from the
1401	 * compound page destructor.
1402	 */
1403	struct hstate *h = page_hstate(page);
1404	int nid = page_to_nid(page);
1405	struct hugepage_subpool *spool =
1406		(struct hugepage_subpool *)page_private(page);
1407	bool restore_reserve;
 
1408
1409	VM_BUG_ON_PAGE(page_count(page), page);
1410	VM_BUG_ON_PAGE(page_mapcount(page), page);
1411
1412	set_page_private(page, 0);
1413	page->mapping = NULL;
1414	restore_reserve = PagePrivate(page);
1415	ClearPagePrivate(page);
 
 
1416
1417	/*
1418	 * If PagePrivate() was set on page, page allocation consumed a
1419	 * reservation.  If the page was associated with a subpool, there
1420	 * would have been a page reserved in the subpool before allocation
1421	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1422	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1423	 * remove the reserved page from the subpool.
1424	 */
1425	if (!restore_reserve) {
1426		/*
1427		 * A return code of zero implies that the subpool will be
1428		 * under its minimum size if the reservation is not restored
1429		 * after page is free.  Therefore, force restore_reserve
1430		 * operation.
1431		 */
1432		if (hugepage_subpool_put_pages(spool, 1) == 0)
1433			restore_reserve = true;
1434	}
1435
1436	spin_lock(&hugetlb_lock);
1437	clear_page_huge_active(page);
1438	hugetlb_cgroup_uncharge_page(hstate_index(h),
1439				     pages_per_huge_page(h), page);
1440	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1441					  pages_per_huge_page(h), page);
 
1442	if (restore_reserve)
1443		h->resv_huge_pages++;
1444
1445	if (PageHugeTemporary(page)) {
1446		list_del(&page->lru);
1447		ClearPageHugeTemporary(page);
1448		update_and_free_page(h, page);
1449	} else if (h->surplus_huge_pages_node[nid]) {
1450		/* remove the page from active list */
1451		list_del(&page->lru);
1452		update_and_free_page(h, page);
1453		h->surplus_huge_pages--;
1454		h->surplus_huge_pages_node[nid]--;
1455	} else {
1456		arch_clear_hugepage_flags(page);
1457		enqueue_huge_page(h, page);
 
1458	}
1459	spin_unlock(&hugetlb_lock);
1460}
1461
1462/*
1463 * As free_huge_page() can be called from a non-task context, we have
1464 * to defer the actual freeing in a workqueue to prevent potential
1465 * hugetlb_lock deadlock.
1466 *
1467 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1468 * be freed and frees them one-by-one. As the page->mapping pointer is
1469 * going to be cleared in __free_huge_page() anyway, it is reused as the
1470 * llist_node structure of a lockless linked list of huge pages to be freed.
1471 */
1472static LLIST_HEAD(hpage_freelist);
 
 
 
 
 
1473
1474static void free_hpage_workfn(struct work_struct *work)
1475{
1476	struct llist_node *node;
1477	struct page *page;
1478
1479	node = llist_del_all(&hpage_freelist);
1480
1481	while (node) {
1482		page = container_of((struct address_space **)node,
1483				     struct page, mapping);
1484		node = node->next;
1485		__free_huge_page(page);
1486	}
1487}
1488static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1489
1490void free_huge_page(struct page *page)
1491{
1492	/*
1493	 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1494	 */
1495	if (!in_task()) {
1496		/*
1497		 * Only call schedule_work() if hpage_freelist is previously
1498		 * empty. Otherwise, schedule_work() had been called but the
1499		 * workfn hasn't retrieved the list yet.
1500		 */
1501		if (llist_add((struct llist_node *)&page->mapping,
1502			      &hpage_freelist))
1503			schedule_work(&free_hpage_work);
1504		return;
1505	}
1506
1507	__free_huge_page(page);
1508}
1509
1510static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1511{
1512	INIT_LIST_HEAD(&page->lru);
1513	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1514	spin_lock(&hugetlb_lock);
1515	set_hugetlb_cgroup(page, NULL);
1516	set_hugetlb_cgroup_rsvd(page, NULL);
1517	h->nr_huge_pages++;
1518	h->nr_huge_pages_node[nid]++;
1519	spin_unlock(&hugetlb_lock);
1520}
1521
1522static void prep_compound_gigantic_page(struct page *page, unsigned int order)
 
1523{
1524	int i;
1525	int nr_pages = 1 << order;
1526	struct page *p = page + 1;
 
 
 
 
1527
1528	/* we rely on prep_new_huge_page to set the destructor */
1529	set_compound_order(page, order);
1530	__ClearPageReserved(page);
1531	__SetPageHead(page);
1532	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1533		/*
1534		 * For gigantic hugepages allocated through bootmem at
1535		 * boot, it's safer to be consistent with the not-gigantic
1536		 * hugepages and clear the PG_reserved bit from all tail pages
1537		 * too.  Otherwise drivers using get_user_pages() to access tail
1538		 * pages may get the reference counting wrong if they see
1539		 * PG_reserved set on a tail page (despite the head page not
1540		 * having PG_reserved set).  Enforcing this consistency between
1541		 * head and tail pages allows drivers to optimize away a check
1542		 * on the head page when they need know if put_page() is needed
1543		 * after get_user_pages().
1544		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1545		__ClearPageReserved(p);
1546		set_page_count(p, 0);
1547		set_compound_head(p, page);
1548	}
1549	atomic_set(compound_mapcount_ptr(page), -1);
 
1550
1551	if (hpage_pincount_available(page))
1552		atomic_set(compound_pincount_ptr(page), 0);
 
 
 
 
 
 
 
 
1553}
1554
1555/*
1556 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1557 * transparent huge pages.  See the PageTransHuge() documentation for more
1558 * details.
1559 */
1560int PageHuge(struct page *page)
1561{
 
 
1562	if (!PageCompound(page))
1563		return 0;
1564
1565	page = compound_head(page);
1566	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1567}
1568EXPORT_SYMBOL_GPL(PageHuge);
1569
1570/*
1571 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1572 * normal or transparent huge pages.
1573 */
1574int PageHeadHuge(struct page *page_head)
1575{
1576	if (!PageHead(page_head))
1577		return 0;
1578
1579	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1580}
1581
1582/*
1583 * Find address_space associated with hugetlbfs page.
1584 * Upon entry page is locked and page 'was' mapped although mapped state
1585 * could change.  If necessary, use anon_vma to find vma and associated
1586 * address space.  The returned mapping may be stale, but it can not be
1587 * invalid as page lock (which is held) is required to destroy mapping.
1588 */
1589static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
1590{
1591	struct anon_vma *anon_vma;
1592	pgoff_t pgoff_start, pgoff_end;
1593	struct anon_vma_chain *avc;
1594	struct address_space *mapping = page_mapping(hpage);
1595
1596	/* Simple file based mapping */
1597	if (mapping)
1598		return mapping;
1599
1600	/*
1601	 * Even anonymous hugetlbfs mappings are associated with an
1602	 * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1603	 * code).  Find a vma associated with the anonymous vma, and
1604	 * use the file pointer to get address_space.
1605	 */
1606	anon_vma = page_lock_anon_vma_read(hpage);
1607	if (!anon_vma)
1608		return mapping;  /* NULL */
1609
1610	/* Use first found vma */
1611	pgoff_start = page_to_pgoff(hpage);
1612	pgoff_end = pgoff_start + pages_per_huge_page(page_hstate(hpage)) - 1;
1613	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1614					pgoff_start, pgoff_end) {
1615		struct vm_area_struct *vma = avc->vma;
1616
1617		mapping = vma->vm_file->f_mapping;
1618		break;
1619	}
1620
1621	anon_vma_unlock_read(anon_vma);
1622	return mapping;
1623}
1624
1625/*
1626 * Find and lock address space (mapping) in write mode.
1627 *
1628 * Upon entry, the page is locked which allows us to find the mapping
1629 * even in the case of an anon page.  However, locking order dictates
1630 * the i_mmap_rwsem be acquired BEFORE the page lock.  This is hugetlbfs
1631 * specific.  So, we first try to lock the sema while still holding the
1632 * page lock.  If this works, great!  If not, then we need to drop the
1633 * page lock and then acquire i_mmap_rwsem and reacquire page lock.  Of
1634 * course, need to revalidate state along the way.
1635 */
1636struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1637{
1638	struct address_space *mapping, *mapping2;
1639
1640	mapping = _get_hugetlb_page_mapping(hpage);
1641retry:
1642	if (!mapping)
1643		return mapping;
1644
1645	/*
1646	 * If no contention, take lock and return
1647	 */
1648	if (i_mmap_trylock_write(mapping))
1649		return mapping;
1650
1651	/*
1652	 * Must drop page lock and wait on mapping sema.
1653	 * Note:  Once page lock is dropped, mapping could become invalid.
1654	 * As a hack, increase map count until we lock page again.
1655	 */
1656	atomic_inc(&hpage->_mapcount);
1657	unlock_page(hpage);
1658	i_mmap_lock_write(mapping);
1659	lock_page(hpage);
1660	atomic_add_negative(-1, &hpage->_mapcount);
1661
1662	/* verify page is still mapped */
1663	if (!page_mapped(hpage)) {
1664		i_mmap_unlock_write(mapping);
1665		return NULL;
1666	}
1667
1668	/*
1669	 * Get address space again and verify it is the same one
1670	 * we locked.  If not, drop lock and retry.
1671	 */
1672	mapping2 = _get_hugetlb_page_mapping(hpage);
1673	if (mapping2 != mapping) {
1674		i_mmap_unlock_write(mapping);
1675		mapping = mapping2;
1676		goto retry;
1677	}
1678
1679	return mapping;
1680}
1681
1682pgoff_t __basepage_index(struct page *page)
1683{
1684	struct page *page_head = compound_head(page);
1685	pgoff_t index = page_index(page_head);
1686	unsigned long compound_idx;
1687
1688	if (!PageHuge(page_head))
1689		return page_index(page);
1690
1691	if (compound_order(page_head) >= MAX_ORDER)
1692		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1693	else
1694		compound_idx = page - page_head;
1695
1696	return (index << compound_order(page_head)) + compound_idx;
1697}
1698
1699static struct page *alloc_buddy_huge_page(struct hstate *h,
1700		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1701		nodemask_t *node_alloc_noretry)
1702{
1703	int order = huge_page_order(h);
1704	struct page *page;
1705	bool alloc_try_hard = true;
 
1706
1707	/*
1708	 * By default we always try hard to allocate the page with
1709	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1710	 * a loop (to adjust global huge page counts) and previous allocation
1711	 * failed, do not continue to try hard on the same node.  Use the
1712	 * node_alloc_noretry bitmap to manage this state information.
1713	 */
1714	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1715		alloc_try_hard = false;
1716	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1717	if (alloc_try_hard)
1718		gfp_mask |= __GFP_RETRY_MAYFAIL;
1719	if (nid == NUMA_NO_NODE)
1720		nid = numa_mem_id();
1721	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1722	if (page)
1723		__count_vm_event(HTLB_BUDDY_PGALLOC);
1724	else
1725		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
 
 
 
 
 
 
 
 
 
1726
1727	/*
1728	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1729	 * indicates an overall state change.  Clear bit so that we resume
1730	 * normal 'try hard' allocations.
1731	 */
1732	if (node_alloc_noretry && page && !alloc_try_hard)
1733		node_clear(nid, *node_alloc_noretry);
1734
1735	/*
1736	 * If we tried hard to get a page but failed, set bit so that
1737	 * subsequent attempts will not try as hard until there is an
1738	 * overall state change.
1739	 */
1740	if (node_alloc_noretry && !page && alloc_try_hard)
1741		node_set(nid, *node_alloc_noretry);
1742
1743	return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1744}
1745
1746/*
1747 * Common helper to allocate a fresh hugetlb page. All specific allocators
1748 * should use this function to get new hugetlb pages
 
 
 
1749 */
1750static struct page *alloc_fresh_huge_page(struct hstate *h,
1751		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1752		nodemask_t *node_alloc_noretry)
1753{
1754	struct page *page;
1755
1756	if (hstate_is_gigantic(h))
1757		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1758	else
1759		page = alloc_buddy_huge_page(h, gfp_mask,
1760				nid, nmask, node_alloc_noretry);
1761	if (!page)
1762		return NULL;
1763
1764	if (hstate_is_gigantic(h))
1765		prep_compound_gigantic_page(page, huge_page_order(h));
1766	prep_new_huge_page(h, page, page_to_nid(page));
 
 
 
 
 
 
 
 
 
1767
1768	return page;
 
 
 
 
 
 
1769}
1770
1771/*
1772 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1773 * manner.
1774 */
1775static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1776				nodemask_t *node_alloc_noretry)
 
1777{
1778	struct page *page;
1779	int nr_nodes, node;
1780	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1781
1782	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1783		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1784						node_alloc_noretry);
1785		if (page)
1786			break;
 
 
1787	}
1788
1789	if (!page)
1790		return 0;
1791
1792	put_page(page); /* free it into the hugepage allocator */
1793
1794	return 1;
1795}
1796
1797/*
1798 * Free huge page from pool from next node to free.
1799 * Attempt to keep persistent huge pages more or less
1800 * balanced over allowed nodes.
 
1801 * Called with hugetlb_lock locked.
1802 */
1803static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1804							 bool acct_surplus)
1805{
1806	int nr_nodes, node;
1807	int ret = 0;
1808
 
1809	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1810		/*
1811		 * If we're returning unused surplus pages, only examine
1812		 * nodes with surplus pages.
1813		 */
1814		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1815		    !list_empty(&h->hugepage_freelists[node])) {
1816			struct page *page =
1817				list_entry(h->hugepage_freelists[node].next,
1818					  struct page, lru);
1819			list_del(&page->lru);
1820			h->free_huge_pages--;
1821			h->free_huge_pages_node[node]--;
1822			if (acct_surplus) {
1823				h->surplus_huge_pages--;
1824				h->surplus_huge_pages_node[node]--;
1825			}
1826			update_and_free_page(h, page);
1827			ret = 1;
1828			break;
1829		}
1830	}
1831
1832	return ret;
1833}
1834
1835/*
1836 * Dissolve a given free hugepage into free buddy pages. This function does
1837 * nothing for in-use hugepages and non-hugepages.
1838 * This function returns values like below:
1839 *
1840 *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1841 *          (allocated or reserved.)
1842 *       0: successfully dissolved free hugepages or the page is not a
1843 *          hugepage (considered as already dissolved)
 
 
 
 
1844 */
1845int dissolve_free_huge_page(struct page *page)
1846{
1847	int rc = -EBUSY;
 
1848
 
1849	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1850	if (!PageHuge(page))
1851		return 0;
1852
1853	spin_lock(&hugetlb_lock);
1854	if (!PageHuge(page)) {
1855		rc = 0;
1856		goto out;
1857	}
1858
1859	if (!page_count(page)) {
1860		struct page *head = compound_head(page);
1861		struct hstate *h = page_hstate(head);
1862		int nid = page_to_nid(head);
1863		if (h->free_huge_pages - h->resv_huge_pages == 0)
1864			goto out;
 
1865		/*
1866		 * Move PageHWPoison flag from head page to the raw error page,
1867		 * which makes any subpages rather than the error page reusable.
1868		 */
1869		if (PageHWPoison(head) && page != head) {
1870			SetPageHWPoison(page);
1871			ClearPageHWPoison(head);
 
 
 
 
 
 
 
 
 
 
1872		}
1873		list_del(&head->lru);
1874		h->free_huge_pages--;
1875		h->free_huge_pages_node[nid]--;
1876		h->max_huge_pages--;
1877		update_and_free_page(h, head);
1878		rc = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1879	}
1880out:
1881	spin_unlock(&hugetlb_lock);
1882	return rc;
1883}
1884
1885/*
1886 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1887 * make specified memory blocks removable from the system.
1888 * Note that this will dissolve a free gigantic hugepage completely, if any
1889 * part of it lies within the given range.
1890 * Also note that if dissolve_free_huge_page() returns with an error, all
1891 * free hugepages that were dissolved before that error are lost.
1892 */
1893int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1894{
1895	unsigned long pfn;
1896	struct page *page;
1897	int rc = 0;
 
 
1898
1899	if (!hugepages_supported())
1900		return rc;
1901
1902	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
 
 
 
 
1903		page = pfn_to_page(pfn);
1904		rc = dissolve_free_huge_page(page);
1905		if (rc)
1906			break;
1907	}
1908
1909	return rc;
1910}
1911
1912/*
1913 * Allocates a fresh surplus page from the page allocator.
1914 */
1915static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1916		int nid, nodemask_t *nmask)
1917{
1918	struct page *page = NULL;
1919
1920	if (hstate_is_gigantic(h))
1921		return NULL;
1922
1923	spin_lock(&hugetlb_lock);
1924	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1925		goto out_unlock;
1926	spin_unlock(&hugetlb_lock);
1927
1928	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1929	if (!page)
1930		return NULL;
1931
1932	spin_lock(&hugetlb_lock);
1933	/*
1934	 * We could have raced with the pool size change.
1935	 * Double check that and simply deallocate the new page
1936	 * if we would end up overcommiting the surpluses. Abuse
1937	 * temporary page to workaround the nasty free_huge_page
1938	 * codeflow
1939	 */
1940	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1941		SetPageHugeTemporary(page);
1942		spin_unlock(&hugetlb_lock);
1943		put_page(page);
1944		return NULL;
1945	} else {
1946		h->surplus_huge_pages++;
1947		h->surplus_huge_pages_node[page_to_nid(page)]++;
1948	}
1949
 
 
 
1950out_unlock:
1951	spin_unlock(&hugetlb_lock);
1952
1953	return page;
1954}
1955
1956static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1957				     int nid, nodemask_t *nmask)
1958{
1959	struct page *page;
1960
1961	if (hstate_is_gigantic(h))
1962		return NULL;
1963
1964	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1965	if (!page)
1966		return NULL;
1967
 
 
1968	/*
1969	 * We do not account these pages as surplus because they are only
1970	 * temporary and will be released properly on the last reference
1971	 */
1972	SetPageHugeTemporary(page);
1973
1974	return page;
1975}
1976
1977/*
1978 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1979 */
1980static
1981struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1982		struct vm_area_struct *vma, unsigned long addr)
1983{
1984	struct page *page;
1985	struct mempolicy *mpol;
1986	gfp_t gfp_mask = htlb_alloc_mask(h);
1987	int nid;
1988	nodemask_t *nodemask;
1989
1990	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1991	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
 
 
 
 
 
 
 
 
 
 
 
1992	mpol_cond_put(mpol);
1993
1994	return page;
1995}
1996
1997/* page migration callback function */
1998struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1999		nodemask_t *nmask, gfp_t gfp_mask)
2000{
2001	spin_lock(&hugetlb_lock);
2002	if (h->free_huge_pages - h->resv_huge_pages > 0) {
2003		struct page *page;
2004
2005		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2006		if (page) {
2007			spin_unlock(&hugetlb_lock);
2008			return page;
 
2009		}
2010	}
2011	spin_unlock(&hugetlb_lock);
2012
2013	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2014}
2015
2016/* mempolicy aware migration callback */
2017struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2018		unsigned long address)
2019{
2020	struct mempolicy *mpol;
2021	nodemask_t *nodemask;
2022	struct page *page;
2023	gfp_t gfp_mask;
2024	int node;
2025
2026	gfp_mask = htlb_alloc_mask(h);
2027	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2028	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2029	mpol_cond_put(mpol);
2030
2031	return page;
2032}
2033
2034/*
2035 * Increase the hugetlb pool such that it can accommodate a reservation
2036 * of size 'delta'.
2037 */
2038static int gather_surplus_pages(struct hstate *h, int delta)
2039	__must_hold(&hugetlb_lock)
2040{
2041	struct list_head surplus_list;
2042	struct page *page, *tmp;
2043	int ret, i;
2044	int needed, allocated;
 
2045	bool alloc_ok = true;
2046
 
2047	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2048	if (needed <= 0) {
2049		h->resv_huge_pages += delta;
2050		return 0;
2051	}
2052
2053	allocated = 0;
2054	INIT_LIST_HEAD(&surplus_list);
2055
2056	ret = -ENOMEM;
2057retry:
2058	spin_unlock(&hugetlb_lock);
2059	for (i = 0; i < needed; i++) {
2060		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2061				NUMA_NO_NODE, NULL);
2062		if (!page) {
2063			alloc_ok = false;
2064			break;
2065		}
2066		list_add(&page->lru, &surplus_list);
2067		cond_resched();
2068	}
2069	allocated += i;
2070
2071	/*
2072	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2073	 * because either resv_huge_pages or free_huge_pages may have changed.
2074	 */
2075	spin_lock(&hugetlb_lock);
2076	needed = (h->resv_huge_pages + delta) -
2077			(h->free_huge_pages + allocated);
2078	if (needed > 0) {
2079		if (alloc_ok)
2080			goto retry;
2081		/*
2082		 * We were not able to allocate enough pages to
2083		 * satisfy the entire reservation so we free what
2084		 * we've allocated so far.
2085		 */
2086		goto free;
2087	}
2088	/*
2089	 * The surplus_list now contains _at_least_ the number of extra pages
2090	 * needed to accommodate the reservation.  Add the appropriate number
2091	 * of pages to the hugetlb pool and free the extras back to the buddy
2092	 * allocator.  Commit the entire reservation here to prevent another
2093	 * process from stealing the pages as they are added to the pool but
2094	 * before they are reserved.
2095	 */
2096	needed += allocated;
2097	h->resv_huge_pages += delta;
2098	ret = 0;
2099
2100	/* Free the needed pages to the hugetlb pool */
2101	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2102		if ((--needed) < 0)
2103			break;
2104		/*
2105		 * This page is now managed by the hugetlb allocator and has
2106		 * no users -- drop the buddy allocator's reference.
2107		 */
2108		put_page_testzero(page);
2109		VM_BUG_ON_PAGE(page_count(page), page);
2110		enqueue_huge_page(h, page);
2111	}
2112free:
2113	spin_unlock(&hugetlb_lock);
2114
2115	/* Free unnecessary surplus pages to the buddy allocator */
2116	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2117		put_page(page);
2118	spin_lock(&hugetlb_lock);
 
 
 
2119
2120	return ret;
2121}
2122
2123/*
2124 * This routine has two main purposes:
2125 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2126 *    in unused_resv_pages.  This corresponds to the prior adjustments made
2127 *    to the associated reservation map.
2128 * 2) Free any unused surplus pages that may have been allocated to satisfy
2129 *    the reservation.  As many as unused_resv_pages may be freed.
2130 *
2131 * Called with hugetlb_lock held.  However, the lock could be dropped (and
2132 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2133 * we must make sure nobody else can claim pages we are in the process of
2134 * freeing.  Do this by ensuring resv_huge_page always is greater than the
2135 * number of huge pages we plan to free when dropping the lock.
2136 */
2137static void return_unused_surplus_pages(struct hstate *h,
2138					unsigned long unused_resv_pages)
2139{
2140	unsigned long nr_pages;
 
 
 
 
 
2141
2142	/* Cannot return gigantic pages currently */
2143	if (hstate_is_gigantic(h))
2144		goto out;
2145
2146	/*
2147	 * Part (or even all) of the reservation could have been backed
2148	 * by pre-allocated pages. Only free surplus pages.
2149	 */
2150	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2151
2152	/*
2153	 * We want to release as many surplus pages as possible, spread
2154	 * evenly across all nodes with memory. Iterate across these nodes
2155	 * until we can no longer free unreserved surplus pages. This occurs
2156	 * when the nodes with surplus pages have no free pages.
2157	 * free_pool_huge_page() will balance the freed pages across the
2158	 * on-line nodes with memory and will handle the hstate accounting.
2159	 *
2160	 * Note that we decrement resv_huge_pages as we free the pages.  If
2161	 * we drop the lock, resv_huge_pages will still be sufficiently large
2162	 * to cover subsequent pages we may free.
2163	 */
2164	while (nr_pages--) {
2165		h->resv_huge_pages--;
2166		unused_resv_pages--;
2167		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
 
2168			goto out;
2169		cond_resched_lock(&hugetlb_lock);
 
2170	}
2171
2172out:
2173	/* Fully uncommit the reservation */
2174	h->resv_huge_pages -= unused_resv_pages;
 
2175}
2176
2177
2178/*
2179 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2180 * are used by the huge page allocation routines to manage reservations.
2181 *
2182 * vma_needs_reservation is called to determine if the huge page at addr
2183 * within the vma has an associated reservation.  If a reservation is
2184 * needed, the value 1 is returned.  The caller is then responsible for
2185 * managing the global reservation and subpool usage counts.  After
2186 * the huge page has been allocated, vma_commit_reservation is called
2187 * to add the page to the reservation map.  If the page allocation fails,
2188 * the reservation must be ended instead of committed.  vma_end_reservation
2189 * is called in such cases.
2190 *
2191 * In the normal case, vma_commit_reservation returns the same value
2192 * as the preceding vma_needs_reservation call.  The only time this
2193 * is not the case is if a reserve map was changed between calls.  It
2194 * is the responsibility of the caller to notice the difference and
2195 * take appropriate action.
2196 *
2197 * vma_add_reservation is used in error paths where a reservation must
2198 * be restored when a newly allocated huge page must be freed.  It is
2199 * to be called after calling vma_needs_reservation to determine if a
2200 * reservation exists.
 
 
 
 
 
2201 */
2202enum vma_resv_mode {
2203	VMA_NEEDS_RESV,
2204	VMA_COMMIT_RESV,
2205	VMA_END_RESV,
2206	VMA_ADD_RESV,
 
2207};
2208static long __vma_reservation_common(struct hstate *h,
2209				struct vm_area_struct *vma, unsigned long addr,
2210				enum vma_resv_mode mode)
2211{
2212	struct resv_map *resv;
2213	pgoff_t idx;
2214	long ret;
2215	long dummy_out_regions_needed;
2216
2217	resv = vma_resv_map(vma);
2218	if (!resv)
2219		return 1;
2220
2221	idx = vma_hugecache_offset(h, vma, addr);
2222	switch (mode) {
2223	case VMA_NEEDS_RESV:
2224		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2225		/* We assume that vma_reservation_* routines always operate on
2226		 * 1 page, and that adding to resv map a 1 page entry can only
2227		 * ever require 1 region.
2228		 */
2229		VM_BUG_ON(dummy_out_regions_needed != 1);
2230		break;
2231	case VMA_COMMIT_RESV:
2232		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2233		/* region_add calls of range 1 should never fail. */
2234		VM_BUG_ON(ret < 0);
2235		break;
2236	case VMA_END_RESV:
2237		region_abort(resv, idx, idx + 1, 1);
2238		ret = 0;
2239		break;
2240	case VMA_ADD_RESV:
2241		if (vma->vm_flags & VM_MAYSHARE) {
2242			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2243			/* region_add calls of range 1 should never fail. */
2244			VM_BUG_ON(ret < 0);
2245		} else {
2246			region_abort(resv, idx, idx + 1, 1);
2247			ret = region_del(resv, idx, idx + 1);
2248		}
2249		break;
 
 
 
 
 
 
 
 
 
 
2250	default:
2251		BUG();
2252	}
2253
2254	if (vma->vm_flags & VM_MAYSHARE)
2255		return ret;
2256	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2257		/*
2258		 * In most cases, reserves always exist for private mappings.
2259		 * However, a file associated with mapping could have been
2260		 * hole punched or truncated after reserves were consumed.
2261		 * As subsequent fault on such a range will not use reserves.
2262		 * Subtle - The reserve map for private mappings has the
2263		 * opposite meaning than that of shared mappings.  If NO
2264		 * entry is in the reserve map, it means a reservation exists.
2265		 * If an entry exists in the reserve map, it means the
2266		 * reservation has already been consumed.  As a result, the
2267		 * return value of this routine is the opposite of the
2268		 * value returned from reserve map manipulation routines above.
2269		 */
2270		if (ret)
2271			return 0;
2272		else
2273			return 1;
2274	}
2275	else
2276		return ret < 0 ? ret : 0;
2277}
2278
2279static long vma_needs_reservation(struct hstate *h,
2280			struct vm_area_struct *vma, unsigned long addr)
2281{
2282	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2283}
2284
2285static long vma_commit_reservation(struct hstate *h,
2286			struct vm_area_struct *vma, unsigned long addr)
2287{
2288	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2289}
2290
2291static void vma_end_reservation(struct hstate *h,
2292			struct vm_area_struct *vma, unsigned long addr)
2293{
2294	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2295}
2296
2297static long vma_add_reservation(struct hstate *h,
2298			struct vm_area_struct *vma, unsigned long addr)
2299{
2300	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2301}
2302
 
 
 
 
 
 
2303/*
2304 * This routine is called to restore a reservation on error paths.  In the
2305 * specific error paths, a huge page was allocated (via alloc_huge_page)
2306 * and is about to be freed.  If a reservation for the page existed,
2307 * alloc_huge_page would have consumed the reservation and set PagePrivate
2308 * in the newly allocated page.  When the page is freed via free_huge_page,
2309 * the global reservation count will be incremented if PagePrivate is set.
2310 * However, free_huge_page can not adjust the reserve map.  Adjust the
2311 * reserve map here to be consistent with global reserve count adjustments
2312 * to be made by free_huge_page.
2313 */
2314static void restore_reserve_on_error(struct hstate *h,
2315			struct vm_area_struct *vma, unsigned long address,
2316			struct page *page)
 
 
 
 
 
 
 
 
2317{
2318	if (unlikely(PagePrivate(page))) {
2319		long rc = vma_needs_reservation(h, vma, address);
2320
2321		if (unlikely(rc < 0)) {
 
2322			/*
2323			 * Rare out of memory condition in reserve map
2324			 * manipulation.  Clear PagePrivate so that
2325			 * global reserve count will not be incremented
2326			 * by free_huge_page.  This will make it appear
2327			 * as though the reservation for this page was
2328			 * consumed.  This may prevent the task from
2329			 * faulting in the page at a later time.  This
2330			 * is better than inconsistent global huge page
2331			 * accounting of reserve counts.
2332			 */
2333			ClearPagePrivate(page);
2334		} else if (rc) {
2335			rc = vma_add_reservation(h, vma, address);
2336			if (unlikely(rc < 0))
 
 
 
 
 
 
 
 
 
 
 
 
 
2337				/*
2338				 * See above comment about rare out of
2339				 * memory condition.
 
 
 
 
2340				 */
2341				ClearPagePrivate(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2342		} else
2343			vma_end_reservation(h, vma, address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2344	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2345}
2346
2347struct page *alloc_huge_page(struct vm_area_struct *vma,
2348				    unsigned long addr, int avoid_reserve)
2349{
2350	struct hugepage_subpool *spool = subpool_vma(vma);
2351	struct hstate *h = hstate_vma(vma);
2352	struct page *page;
2353	long map_chg, map_commit;
2354	long gbl_chg;
2355	int ret, idx;
2356	struct hugetlb_cgroup *h_cg;
 
2357	bool deferred_reserve;
 
 
 
 
 
 
 
 
2358
2359	idx = hstate_index(h);
2360	/*
2361	 * Examine the region/reserve map to determine if the process
2362	 * has a reservation for the page to be allocated.  A return
2363	 * code of zero indicates a reservation exists (no change).
2364	 */
2365	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2366	if (map_chg < 0)
 
 
 
2367		return ERR_PTR(-ENOMEM);
 
2368
2369	/*
2370	 * Processes that did not create the mapping will have no
2371	 * reserves as indicated by the region/reserve map. Check
2372	 * that the allocation will not exceed the subpool limit.
2373	 * Allocations for MAP_NORESERVE mappings also need to be
2374	 * checked against any subpool limit.
2375	 */
2376	if (map_chg || avoid_reserve) {
2377		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2378		if (gbl_chg < 0) {
2379			vma_end_reservation(h, vma, addr);
2380			return ERR_PTR(-ENOSPC);
2381		}
2382
2383		/*
2384		 * Even though there was no reservation in the region/reserve
2385		 * map, there could be reservations associated with the
2386		 * subpool that can be used.  This would be indicated if the
2387		 * return value of hugepage_subpool_get_pages() is zero.
2388		 * However, if avoid_reserve is specified we still avoid even
2389		 * the subpool reservations.
2390		 */
2391		if (avoid_reserve)
2392			gbl_chg = 1;
2393	}
2394
2395	/* If this allocation is not consuming a reservation, charge it now.
2396	 */
2397	deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2398	if (deferred_reserve) {
2399		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2400			idx, pages_per_huge_page(h), &h_cg);
2401		if (ret)
2402			goto out_subpool_put;
2403	}
2404
2405	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2406	if (ret)
2407		goto out_uncharge_cgroup_reservation;
2408
2409	spin_lock(&hugetlb_lock);
2410	/*
2411	 * glb_chg is passed to indicate whether or not a page must be taken
2412	 * from the global free pool (global change).  gbl_chg == 0 indicates
2413	 * a reservation exists for the allocation.
2414	 */
2415	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2416	if (!page) {
2417		spin_unlock(&hugetlb_lock);
2418		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2419		if (!page)
2420			goto out_uncharge_cgroup;
 
2421		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2422			SetPagePrivate(page);
2423			h->resv_huge_pages--;
2424		}
2425		spin_lock(&hugetlb_lock);
2426		list_move(&page->lru, &h->hugepage_activelist);
2427		/* Fall through */
2428	}
2429	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
 
2430	/* If allocation is not consuming a reservation, also store the
2431	 * hugetlb_cgroup pointer on the page.
2432	 */
2433	if (deferred_reserve) {
2434		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2435						  h_cg, page);
2436	}
2437
2438	spin_unlock(&hugetlb_lock);
2439
2440	set_page_private(page, (unsigned long)spool);
2441
2442	map_commit = vma_commit_reservation(h, vma, addr);
2443	if (unlikely(map_chg > map_commit)) {
2444		/*
2445		 * The page was added to the reservation map between
2446		 * vma_needs_reservation and vma_commit_reservation.
2447		 * This indicates a race with hugetlb_reserve_pages.
2448		 * Adjust for the subpool count incremented above AND
2449		 * in hugetlb_reserve_pages for the same page.  Also,
2450		 * the reservation count added in hugetlb_reserve_pages
2451		 * no longer applies.
2452		 */
2453		long rsv_adjust;
2454
2455		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2456		hugetlb_acct_memory(h, -rsv_adjust);
 
 
 
2457	}
2458	return page;
 
 
 
 
 
2459
2460out_uncharge_cgroup:
2461	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2462out_uncharge_cgroup_reservation:
2463	if (deferred_reserve)
2464		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2465						    h_cg);
2466out_subpool_put:
2467	if (map_chg || avoid_reserve)
2468		hugepage_subpool_put_pages(spool, 1);
 
2469	vma_end_reservation(h, vma, addr);
 
 
 
2470	return ERR_PTR(-ENOSPC);
2471}
2472
2473int alloc_bootmem_huge_page(struct hstate *h)
2474	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2475int __alloc_bootmem_huge_page(struct hstate *h)
2476{
2477	struct huge_bootmem_page *m;
2478	int nr_nodes, node;
2479
 
 
 
 
 
 
 
 
 
2480	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2481		void *addr;
2482
2483		addr = memblock_alloc_try_nid_raw(
2484				huge_page_size(h), huge_page_size(h),
2485				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2486		if (addr) {
2487			/*
2488			 * Use the beginning of the huge page to store the
2489			 * huge_bootmem_page struct (until gather_bootmem
2490			 * puts them into the mem_map).
2491			 */
2492			m = addr;
2493			goto found;
2494		}
2495	}
2496	return 0;
2497
2498found:
2499	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
 
 
 
 
 
 
 
 
 
2500	/* Put them into a private list first because mem_map is not up yet */
2501	INIT_LIST_HEAD(&m->list);
2502	list_add(&m->list, &huge_boot_pages);
2503	m->hstate = h;
2504	return 1;
2505}
2506
2507static void __init prep_compound_huge_page(struct page *page,
2508		unsigned int order)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2509{
2510	if (unlikely(order > (MAX_ORDER - 1)))
2511		prep_compound_gigantic_page(page, order);
2512	else
2513		prep_compound_page(page, order);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2514}
2515
2516/* Put bootmem huge pages into the standard lists after mem_map is up */
 
 
 
2517static void __init gather_bootmem_prealloc(void)
2518{
 
2519	struct huge_bootmem_page *m;
 
2520
2521	list_for_each_entry(m, &huge_boot_pages, list) {
2522		struct page *page = virt_to_page(m);
2523		struct hstate *h = m->hstate;
2524
2525		WARN_ON(page_count(page) != 1);
2526		prep_compound_huge_page(page, h->order);
2527		WARN_ON(PageReserved(page));
2528		prep_new_huge_page(h, page, page_to_nid(page));
2529		put_page(page); /* free it into the hugepage allocator */
2530
2531		/*
2532		 * If we had gigantic hugepages allocated at boot time, we need
2533		 * to restore the 'stolen' pages to totalram_pages in order to
2534		 * fix confusing memory reports from free(1) and another
2535		 * side-effects, like CommitLimit going negative.
2536		 */
2537		if (hstate_is_gigantic(h))
2538			adjust_managed_page_count(page, 1 << h->order);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2539		cond_resched();
2540	}
 
 
2541}
2542
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2543static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2544{
2545	unsigned long i;
 
 
2546	nodemask_t *node_alloc_noretry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2547
 
 
 
 
2548	if (!hstate_is_gigantic(h)) {
2549		/*
2550		 * Bit mask controlling how hard we retry per-node allocations.
2551		 * Ignore errors as lower level routines can deal with
2552		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2553		 * time, we are likely in bigger trouble.
2554		 */
2555		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2556						GFP_KERNEL);
2557	} else {
2558		/* allocations done at boot time */
2559		node_alloc_noretry = NULL;
2560	}
2561
2562	/* bit mask controlling how hard we retry per-node allocations */
2563	if (node_alloc_noretry)
2564		nodes_clear(*node_alloc_noretry);
2565
2566	for (i = 0; i < h->max_huge_pages; ++i) {
2567		if (hstate_is_gigantic(h)) {
2568			if (hugetlb_cma_size) {
2569				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
 
 
 
2570				break;
2571			}
2572			if (!alloc_bootmem_huge_page(h))
 
 
2573				break;
2574		} else if (!alloc_pool_huge_page(h,
2575					 &node_states[N_MEMORY],
2576					 node_alloc_noretry))
2577			break;
2578		cond_resched();
2579	}
 
 
 
 
2580	if (i < h->max_huge_pages) {
2581		char buf[32];
2582
2583		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2584		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2585			h->max_huge_pages, buf, i);
2586		h->max_huge_pages = i;
2587	}
2588
2589	kfree(node_alloc_noretry);
2590}
2591
2592static void __init hugetlb_init_hstates(void)
2593{
2594	struct hstate *h;
2595
2596	for_each_hstate(h) {
2597		if (minimum_order > huge_page_order(h))
2598			minimum_order = huge_page_order(h);
2599
2600		/* oversize hugepages were init'ed in early boot */
2601		if (!hstate_is_gigantic(h))
2602			hugetlb_hstate_alloc_pages(h);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2603	}
2604	VM_BUG_ON(minimum_order == UINT_MAX);
2605}
2606
2607static void __init report_hugepages(void)
2608{
2609	struct hstate *h;
2610
2611	for_each_hstate(h) {
2612		char buf[32];
2613
2614		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2615		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2616			buf, h->free_huge_pages);
 
 
2617	}
2618}
2619
2620#ifdef CONFIG_HIGHMEM
2621static void try_to_free_low(struct hstate *h, unsigned long count,
2622						nodemask_t *nodes_allowed)
2623{
2624	int i;
 
2625
 
2626	if (hstate_is_gigantic(h))
2627		return;
2628
 
 
 
2629	for_each_node_mask(i, *nodes_allowed) {
2630		struct page *page, *next;
2631		struct list_head *freel = &h->hugepage_freelists[i];
2632		list_for_each_entry_safe(page, next, freel, lru) {
2633			if (count >= h->nr_huge_pages)
2634				return;
2635			if (PageHighMem(page))
2636				continue;
2637			list_del(&page->lru);
2638			update_and_free_page(h, page);
2639			h->free_huge_pages--;
2640			h->free_huge_pages_node[page_to_nid(page)]--;
2641		}
2642	}
 
 
 
 
 
2643}
2644#else
2645static inline void try_to_free_low(struct hstate *h, unsigned long count,
2646						nodemask_t *nodes_allowed)
2647{
2648}
2649#endif
2650
2651/*
2652 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2653 * balanced by operating on them in a round-robin fashion.
2654 * Returns 1 if an adjustment was made.
2655 */
2656static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2657				int delta)
2658{
2659	int nr_nodes, node;
2660
 
2661	VM_BUG_ON(delta != -1 && delta != 1);
2662
2663	if (delta < 0) {
2664		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2665			if (h->surplus_huge_pages_node[node])
2666				goto found;
2667		}
2668	} else {
2669		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2670			if (h->surplus_huge_pages_node[node] <
2671					h->nr_huge_pages_node[node])
2672				goto found;
2673		}
2674	}
2675	return 0;
2676
2677found:
2678	h->surplus_huge_pages += delta;
2679	h->surplus_huge_pages_node[node] += delta;
2680	return 1;
2681}
2682
2683#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2684static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2685			      nodemask_t *nodes_allowed)
2686{
2687	unsigned long min_count, ret;
 
 
 
2688	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2689
2690	/*
2691	 * Bit mask controlling how hard we retry per-node allocations.
2692	 * If we can not allocate the bit mask, do not attempt to allocate
2693	 * the requested huge pages.
2694	 */
2695	if (node_alloc_noretry)
2696		nodes_clear(*node_alloc_noretry);
2697	else
2698		return -ENOMEM;
2699
2700	spin_lock(&hugetlb_lock);
 
 
 
 
 
 
2701
2702	/*
2703	 * Check for a node specific request.
2704	 * Changing node specific huge page count may require a corresponding
2705	 * change to the global count.  In any case, the passed node mask
2706	 * (nodes_allowed) will restrict alloc/free to the specified node.
2707	 */
2708	if (nid != NUMA_NO_NODE) {
2709		unsigned long old_count = count;
2710
2711		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
 
 
2712		/*
2713		 * User may have specified a large count value which caused the
2714		 * above calculation to overflow.  In this case, they wanted
2715		 * to allocate as many huge pages as possible.  Set count to
2716		 * largest possible value to align with their intention.
2717		 */
2718		if (count < old_count)
2719			count = ULONG_MAX;
2720	}
2721
2722	/*
2723	 * Gigantic pages runtime allocation depend on the capability for large
2724	 * page range allocation.
2725	 * If the system does not provide this feature, return an error when
2726	 * the user tries to allocate gigantic pages but let the user free the
2727	 * boottime allocated gigantic pages.
2728	 */
2729	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2730		if (count > persistent_huge_pages(h)) {
2731			spin_unlock(&hugetlb_lock);
 
2732			NODEMASK_FREE(node_alloc_noretry);
2733			return -EINVAL;
2734		}
2735		/* Fall through to decrease pool */
2736	}
2737
2738	/*
2739	 * Increase the pool size
2740	 * First take pages out of surplus state.  Then make up the
2741	 * remaining difference by allocating fresh huge pages.
2742	 *
2743	 * We might race with alloc_surplus_huge_page() here and be unable
2744	 * to convert a surplus huge page to a normal huge page. That is
2745	 * not critical, though, it just means the overall size of the
2746	 * pool might be one hugepage larger than it needs to be, but
2747	 * within all the constraints specified by the sysctls.
2748	 */
2749	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2750		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2751			break;
2752	}
2753
2754	while (count > persistent_huge_pages(h)) {
 
2755		/*
2756		 * If this allocation races such that we no longer need the
2757		 * page, free_huge_page will handle it by freeing the page
2758		 * and reducing the surplus.
2759		 */
2760		spin_unlock(&hugetlb_lock);
2761
2762		/* yield cpu to avoid soft lockup */
2763		cond_resched();
2764
2765		ret = alloc_pool_huge_page(h, nodes_allowed,
2766						node_alloc_noretry);
2767		spin_lock(&hugetlb_lock);
2768		if (!ret)
 
2769			goto out;
 
 
 
 
2770
2771		/* Bail for signals. Probably ctrl-c from user */
2772		if (signal_pending(current))
 
 
2773			goto out;
 
 
 
 
 
 
 
 
 
 
2774	}
2775
2776	/*
2777	 * Decrease the pool size
2778	 * First return free pages to the buddy allocator (being careful
2779	 * to keep enough around to satisfy reservations).  Then place
2780	 * pages into surplus state as needed so the pool will shrink
2781	 * to the desired size as pages become free.
2782	 *
2783	 * By placing pages into the surplus state independent of the
2784	 * overcommit value, we are allowing the surplus pool size to
2785	 * exceed overcommit. There are few sane options here. Since
2786	 * alloc_surplus_huge_page() is checking the global counter,
2787	 * though, we'll note that we're not allowed to exceed surplus
2788	 * and won't grow the pool anywhere else. Not until one of the
2789	 * sysctls are changed, or the surplus pages go out of use.
2790	 */
2791	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2792	min_count = max(count, min_count);
2793	try_to_free_low(h, min_count, nodes_allowed);
 
 
 
 
2794	while (min_count < persistent_huge_pages(h)) {
2795		if (!free_pool_huge_page(h, nodes_allowed, 0))
 
2796			break;
2797		cond_resched_lock(&hugetlb_lock);
 
2798	}
 
 
 
 
 
 
2799	while (count < persistent_huge_pages(h)) {
2800		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2801			break;
2802	}
2803out:
2804	h->max_huge_pages = persistent_huge_pages(h);
2805	spin_unlock(&hugetlb_lock);
 
2806
2807	NODEMASK_FREE(node_alloc_noretry);
2808
2809	return 0;
2810}
2811
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2812#define HSTATE_ATTR_RO(_name) \
2813	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2814
 
 
 
2815#define HSTATE_ATTR(_name) \
2816	static struct kobj_attribute _name##_attr = \
2817		__ATTR(_name, 0644, _name##_show, _name##_store)
2818
2819static struct kobject *hugepages_kobj;
2820static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2821
2822static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2823
2824static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2825{
2826	int i;
2827
2828	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2829		if (hstate_kobjs[i] == kobj) {
2830			if (nidp)
2831				*nidp = NUMA_NO_NODE;
2832			return &hstates[i];
2833		}
2834
2835	return kobj_to_node_hstate(kobj, nidp);
2836}
2837
2838static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2839					struct kobj_attribute *attr, char *buf)
2840{
2841	struct hstate *h;
2842	unsigned long nr_huge_pages;
2843	int nid;
2844
2845	h = kobj_to_hstate(kobj, &nid);
2846	if (nid == NUMA_NO_NODE)
2847		nr_huge_pages = h->nr_huge_pages;
2848	else
2849		nr_huge_pages = h->nr_huge_pages_node[nid];
2850
2851	return sprintf(buf, "%lu\n", nr_huge_pages);
2852}
2853
2854static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2855					   struct hstate *h, int nid,
2856					   unsigned long count, size_t len)
2857{
2858	int err;
2859	nodemask_t nodes_allowed, *n_mask;
2860
2861	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2862		return -EINVAL;
2863
2864	if (nid == NUMA_NO_NODE) {
2865		/*
2866		 * global hstate attribute
2867		 */
2868		if (!(obey_mempolicy &&
2869				init_nodemask_of_mempolicy(&nodes_allowed)))
2870			n_mask = &node_states[N_MEMORY];
2871		else
2872			n_mask = &nodes_allowed;
2873	} else {
2874		/*
2875		 * Node specific request.  count adjustment happens in
2876		 * set_max_huge_pages() after acquiring hugetlb_lock.
2877		 */
2878		init_nodemask_of_node(&nodes_allowed, nid);
2879		n_mask = &nodes_allowed;
2880	}
2881
2882	err = set_max_huge_pages(h, count, nid, n_mask);
2883
2884	return err ? err : len;
2885}
2886
2887static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2888					 struct kobject *kobj, const char *buf,
2889					 size_t len)
2890{
2891	struct hstate *h;
2892	unsigned long count;
2893	int nid;
2894	int err;
2895
2896	err = kstrtoul(buf, 10, &count);
2897	if (err)
2898		return err;
2899
2900	h = kobj_to_hstate(kobj, &nid);
2901	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2902}
2903
2904static ssize_t nr_hugepages_show(struct kobject *kobj,
2905				       struct kobj_attribute *attr, char *buf)
2906{
2907	return nr_hugepages_show_common(kobj, attr, buf);
2908}
2909
2910static ssize_t nr_hugepages_store(struct kobject *kobj,
2911	       struct kobj_attribute *attr, const char *buf, size_t len)
2912{
2913	return nr_hugepages_store_common(false, kobj, buf, len);
2914}
2915HSTATE_ATTR(nr_hugepages);
2916
2917#ifdef CONFIG_NUMA
2918
2919/*
2920 * hstate attribute for optionally mempolicy-based constraint on persistent
2921 * huge page alloc/free.
2922 */
2923static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2924				       struct kobj_attribute *attr, char *buf)
 
2925{
2926	return nr_hugepages_show_common(kobj, attr, buf);
2927}
2928
2929static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2930	       struct kobj_attribute *attr, const char *buf, size_t len)
2931{
2932	return nr_hugepages_store_common(true, kobj, buf, len);
2933}
2934HSTATE_ATTR(nr_hugepages_mempolicy);
2935#endif
2936
2937
2938static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2939					struct kobj_attribute *attr, char *buf)
2940{
2941	struct hstate *h = kobj_to_hstate(kobj, NULL);
2942	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2943}
2944
2945static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2946		struct kobj_attribute *attr, const char *buf, size_t count)
2947{
2948	int err;
2949	unsigned long input;
2950	struct hstate *h = kobj_to_hstate(kobj, NULL);
2951
2952	if (hstate_is_gigantic(h))
2953		return -EINVAL;
2954
2955	err = kstrtoul(buf, 10, &input);
2956	if (err)
2957		return err;
2958
2959	spin_lock(&hugetlb_lock);
2960	h->nr_overcommit_huge_pages = input;
2961	spin_unlock(&hugetlb_lock);
2962
2963	return count;
2964}
2965HSTATE_ATTR(nr_overcommit_hugepages);
2966
2967static ssize_t free_hugepages_show(struct kobject *kobj,
2968					struct kobj_attribute *attr, char *buf)
2969{
2970	struct hstate *h;
2971	unsigned long free_huge_pages;
2972	int nid;
2973
2974	h = kobj_to_hstate(kobj, &nid);
2975	if (nid == NUMA_NO_NODE)
2976		free_huge_pages = h->free_huge_pages;
2977	else
2978		free_huge_pages = h->free_huge_pages_node[nid];
2979
2980	return sprintf(buf, "%lu\n", free_huge_pages);
2981}
2982HSTATE_ATTR_RO(free_hugepages);
2983
2984static ssize_t resv_hugepages_show(struct kobject *kobj,
2985					struct kobj_attribute *attr, char *buf)
2986{
2987	struct hstate *h = kobj_to_hstate(kobj, NULL);
2988	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2989}
2990HSTATE_ATTR_RO(resv_hugepages);
2991
2992static ssize_t surplus_hugepages_show(struct kobject *kobj,
2993					struct kobj_attribute *attr, char *buf)
2994{
2995	struct hstate *h;
2996	unsigned long surplus_huge_pages;
2997	int nid;
2998
2999	h = kobj_to_hstate(kobj, &nid);
3000	if (nid == NUMA_NO_NODE)
3001		surplus_huge_pages = h->surplus_huge_pages;
3002	else
3003		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3004
3005	return sprintf(buf, "%lu\n", surplus_huge_pages);
3006}
3007HSTATE_ATTR_RO(surplus_hugepages);
3008
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3009static struct attribute *hstate_attrs[] = {
3010	&nr_hugepages_attr.attr,
3011	&nr_overcommit_hugepages_attr.attr,
3012	&free_hugepages_attr.attr,
3013	&resv_hugepages_attr.attr,
3014	&surplus_hugepages_attr.attr,
3015#ifdef CONFIG_NUMA
3016	&nr_hugepages_mempolicy_attr.attr,
3017#endif
3018	NULL,
3019};
3020
3021static const struct attribute_group hstate_attr_group = {
3022	.attrs = hstate_attrs,
3023};
3024
 
 
 
 
 
 
 
 
 
 
3025static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3026				    struct kobject **hstate_kobjs,
3027				    const struct attribute_group *hstate_attr_group)
3028{
3029	int retval;
3030	int hi = hstate_index(h);
3031
3032	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3033	if (!hstate_kobjs[hi])
3034		return -ENOMEM;
3035
3036	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3037	if (retval)
3038		kobject_put(hstate_kobjs[hi]);
 
 
 
3039
3040	return retval;
3041}
 
 
 
 
 
 
 
 
 
3042
3043static void __init hugetlb_sysfs_init(void)
3044{
3045	struct hstate *h;
3046	int err;
3047
3048	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3049	if (!hugepages_kobj)
3050		return;
3051
3052	for_each_hstate(h) {
3053		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3054					 hstate_kobjs, &hstate_attr_group);
3055		if (err)
3056			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3057	}
3058}
3059
3060#ifdef CONFIG_NUMA
 
3061
3062/*
3063 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3064 * with node devices in node_devices[] using a parallel array.  The array
3065 * index of a node device or _hstate == node id.
3066 * This is here to avoid any static dependency of the node device driver, in
3067 * the base kernel, on the hugetlb module.
3068 */
3069struct node_hstate {
3070	struct kobject		*hugepages_kobj;
3071	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3072};
3073static struct node_hstate node_hstates[MAX_NUMNODES];
3074
3075/*
3076 * A subset of global hstate attributes for node devices
3077 */
3078static struct attribute *per_node_hstate_attrs[] = {
3079	&nr_hugepages_attr.attr,
3080	&free_hugepages_attr.attr,
3081	&surplus_hugepages_attr.attr,
3082	NULL,
3083};
3084
3085static const struct attribute_group per_node_hstate_attr_group = {
3086	.attrs = per_node_hstate_attrs,
3087};
3088
3089/*
3090 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3091 * Returns node id via non-NULL nidp.
3092 */
3093static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3094{
3095	int nid;
3096
3097	for (nid = 0; nid < nr_node_ids; nid++) {
3098		struct node_hstate *nhs = &node_hstates[nid];
3099		int i;
3100		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3101			if (nhs->hstate_kobjs[i] == kobj) {
3102				if (nidp)
3103					*nidp = nid;
3104				return &hstates[i];
3105			}
3106	}
3107
3108	BUG();
3109	return NULL;
3110}
3111
3112/*
3113 * Unregister hstate attributes from a single node device.
3114 * No-op if no hstate attributes attached.
3115 */
3116static void hugetlb_unregister_node(struct node *node)
3117{
3118	struct hstate *h;
3119	struct node_hstate *nhs = &node_hstates[node->dev.id];
3120
3121	if (!nhs->hugepages_kobj)
3122		return;		/* no hstate attributes */
3123
3124	for_each_hstate(h) {
3125		int idx = hstate_index(h);
3126		if (nhs->hstate_kobjs[idx]) {
3127			kobject_put(nhs->hstate_kobjs[idx]);
3128			nhs->hstate_kobjs[idx] = NULL;
3129		}
 
 
 
 
 
3130	}
3131
3132	kobject_put(nhs->hugepages_kobj);
3133	nhs->hugepages_kobj = NULL;
3134}
3135
3136
3137/*
3138 * Register hstate attributes for a single node device.
3139 * No-op if attributes already registered.
3140 */
3141static void hugetlb_register_node(struct node *node)
3142{
3143	struct hstate *h;
3144	struct node_hstate *nhs = &node_hstates[node->dev.id];
3145	int err;
3146
 
 
 
3147	if (nhs->hugepages_kobj)
3148		return;		/* already allocated */
3149
3150	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3151							&node->dev.kobj);
3152	if (!nhs->hugepages_kobj)
3153		return;
3154
3155	for_each_hstate(h) {
3156		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3157						nhs->hstate_kobjs,
3158						&per_node_hstate_attr_group);
3159		if (err) {
3160			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3161				h->name, node->dev.id);
3162			hugetlb_unregister_node(node);
3163			break;
3164		}
3165	}
3166}
3167
3168/*
3169 * hugetlb init time:  register hstate attributes for all registered node
3170 * devices of nodes that have memory.  All on-line nodes should have
3171 * registered their associated device by this time.
3172 */
3173static void __init hugetlb_register_all_nodes(void)
3174{
3175	int nid;
3176
3177	for_each_node_state(nid, N_MEMORY) {
3178		struct node *node = node_devices[nid];
3179		if (node->dev.id == nid)
3180			hugetlb_register_node(node);
3181	}
3182
3183	/*
3184	 * Let the node device driver know we're here so it can
3185	 * [un]register hstate attributes on node hotplug.
3186	 */
3187	register_hugetlbfs_with_node(hugetlb_register_node,
3188				     hugetlb_unregister_node);
3189}
3190#else	/* !CONFIG_NUMA */
3191
3192static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3193{
3194	BUG();
3195	if (nidp)
3196		*nidp = -1;
3197	return NULL;
3198}
3199
3200static void hugetlb_register_all_nodes(void) { }
3201
3202#endif
3203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3204static int __init hugetlb_init(void)
3205{
3206	int i;
3207
 
 
 
3208	if (!hugepages_supported()) {
3209		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3210			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3211		return 0;
3212	}
3213
3214	/*
3215	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3216	 * architectures depend on setup being done here.
3217	 */
3218	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3219	if (!parsed_default_hugepagesz) {
3220		/*
3221		 * If we did not parse a default huge page size, set
3222		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3223		 * number of huge pages for this default size was implicitly
3224		 * specified, set that here as well.
3225		 * Note that the implicit setting will overwrite an explicit
3226		 * setting.  A warning will be printed in this case.
3227		 */
3228		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3229		if (default_hstate_max_huge_pages) {
3230			if (default_hstate.max_huge_pages) {
3231				char buf[32];
3232
3233				string_get_size(huge_page_size(&default_hstate),
3234					1, STRING_UNITS_2, buf, 32);
3235				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3236					default_hstate.max_huge_pages, buf);
3237				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3238					default_hstate_max_huge_pages);
3239			}
3240			default_hstate.max_huge_pages =
3241				default_hstate_max_huge_pages;
 
 
 
 
3242		}
3243	}
3244
3245	hugetlb_cma_check();
3246	hugetlb_init_hstates();
3247	gather_bootmem_prealloc();
3248	report_hugepages();
3249
3250	hugetlb_sysfs_init();
3251	hugetlb_register_all_nodes();
3252	hugetlb_cgroup_file_init();
 
3253
3254#ifdef CONFIG_SMP
3255	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3256#else
3257	num_fault_mutexes = 1;
3258#endif
3259	hugetlb_fault_mutex_table =
3260		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3261			      GFP_KERNEL);
3262	BUG_ON(!hugetlb_fault_mutex_table);
3263
3264	for (i = 0; i < num_fault_mutexes; i++)
3265		mutex_init(&hugetlb_fault_mutex_table[i]);
3266	return 0;
3267}
3268subsys_initcall(hugetlb_init);
3269
3270/* Overwritten by architectures with more huge page sizes */
3271bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3272{
3273	return size == HPAGE_SIZE;
3274}
3275
3276void __init hugetlb_add_hstate(unsigned int order)
3277{
3278	struct hstate *h;
3279	unsigned long i;
3280
3281	if (size_to_hstate(PAGE_SIZE << order)) {
3282		return;
3283	}
3284	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3285	BUG_ON(order == 0);
3286	h = &hstates[hugetlb_max_hstate++];
 
3287	h->order = order;
3288	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3289	h->nr_huge_pages = 0;
3290	h->free_huge_pages = 0;
3291	for (i = 0; i < MAX_NUMNODES; ++i)
3292		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3293	INIT_LIST_HEAD(&h->hugepage_activelist);
3294	h->next_nid_to_alloc = first_memory_node;
3295	h->next_nid_to_free = first_memory_node;
3296	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3297					huge_page_size(h)/1024);
3298
3299	parsed_hstate = h;
3300}
3301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3302/*
3303 * hugepages command line processing
3304 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3305 * specification.  If not, ignore the hugepages value.  hugepages can also
3306 * be the first huge page command line  option in which case it implicitly
3307 * specifies the number of huge pages for the default size.
3308 */
3309static int __init hugepages_setup(char *s)
3310{
3311	unsigned long *mhp;
3312	static unsigned long *last_mhp;
 
 
 
 
3313
3314	if (!parsed_valid_hugepagesz) {
3315		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3316		parsed_valid_hugepagesz = true;
3317		return 0;
3318	}
3319
3320	/*
3321	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3322	 * yet, so this hugepages= parameter goes to the "default hstate".
3323	 * Otherwise, it goes with the previously parsed hugepagesz or
3324	 * default_hugepagesz.
3325	 */
3326	else if (!hugetlb_max_hstate)
3327		mhp = &default_hstate_max_huge_pages;
3328	else
3329		mhp = &parsed_hstate->max_huge_pages;
3330
3331	if (mhp == last_mhp) {
3332		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3333		return 0;
3334	}
3335
3336	if (sscanf(s, "%lu", mhp) <= 0)
3337		*mhp = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3338
3339	/*
3340	 * Global state is always initialized later in hugetlb_init.
3341	 * But we need to allocate >= MAX_ORDER hstates here early to still
3342	 * use the bootmem allocator.
3343	 */
3344	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3345		hugetlb_hstate_alloc_pages(parsed_hstate);
3346
3347	last_mhp = mhp;
3348
3349	return 1;
 
 
 
 
 
3350}
3351__setup("hugepages=", hugepages_setup);
3352
3353/*
3354 * hugepagesz command line processing
3355 * A specific huge page size can only be specified once with hugepagesz.
3356 * hugepagesz is followed by hugepages on the command line.  The global
3357 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3358 * hugepagesz argument was valid.
3359 */
3360static int __init hugepagesz_setup(char *s)
3361{
3362	unsigned long size;
3363	struct hstate *h;
3364
3365	parsed_valid_hugepagesz = false;
3366	size = (unsigned long)memparse(s, NULL);
3367
3368	if (!arch_hugetlb_valid_size(size)) {
3369		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3370		return 0;
3371	}
3372
3373	h = size_to_hstate(size);
3374	if (h) {
3375		/*
3376		 * hstate for this size already exists.  This is normally
3377		 * an error, but is allowed if the existing hstate is the
3378		 * default hstate.  More specifically, it is only allowed if
3379		 * the number of huge pages for the default hstate was not
3380		 * previously specified.
3381		 */
3382		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3383		    default_hstate.max_huge_pages) {
3384			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3385			return 0;
3386		}
3387
3388		/*
3389		 * No need to call hugetlb_add_hstate() as hstate already
3390		 * exists.  But, do set parsed_hstate so that a following
3391		 * hugepages= parameter will be applied to this hstate.
3392		 */
3393		parsed_hstate = h;
3394		parsed_valid_hugepagesz = true;
3395		return 1;
3396	}
3397
3398	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3399	parsed_valid_hugepagesz = true;
3400	return 1;
3401}
3402__setup("hugepagesz=", hugepagesz_setup);
3403
3404/*
3405 * default_hugepagesz command line input
3406 * Only one instance of default_hugepagesz allowed on command line.
3407 */
3408static int __init default_hugepagesz_setup(char *s)
3409{
3410	unsigned long size;
 
3411
3412	parsed_valid_hugepagesz = false;
3413	if (parsed_default_hugepagesz) {
3414		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3415		return 0;
3416	}
3417
3418	size = (unsigned long)memparse(s, NULL);
3419
3420	if (!arch_hugetlb_valid_size(size)) {
3421		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3422		return 0;
3423	}
3424
3425	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3426	parsed_valid_hugepagesz = true;
3427	parsed_default_hugepagesz = true;
3428	default_hstate_idx = hstate_index(size_to_hstate(size));
3429
3430	/*
3431	 * The number of default huge pages (for this size) could have been
3432	 * specified as the first hugetlb parameter: hugepages=X.  If so,
3433	 * then default_hstate_max_huge_pages is set.  If the default huge
3434	 * page size is gigantic (>= MAX_ORDER), then the pages must be
3435	 * allocated here from bootmem allocator.
3436	 */
3437	if (default_hstate_max_huge_pages) {
3438		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
 
 
 
3439		if (hstate_is_gigantic(&default_hstate))
3440			hugetlb_hstate_alloc_pages(&default_hstate);
3441		default_hstate_max_huge_pages = 0;
3442	}
3443
3444	return 1;
3445}
3446__setup("default_hugepagesz=", default_hugepagesz_setup);
3447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3448static unsigned int allowed_mems_nr(struct hstate *h)
3449{
3450	int node;
3451	unsigned int nr = 0;
3452	nodemask_t *mpol_allowed;
3453	unsigned int *array = h->free_huge_pages_node;
3454	gfp_t gfp_mask = htlb_alloc_mask(h);
3455
3456	mpol_allowed = policy_nodemask_current(gfp_mask);
3457
3458	for_each_node_mask(node, cpuset_current_mems_allowed) {
3459		if (!mpol_allowed ||
3460		    (mpol_allowed && node_isset(node, *mpol_allowed)))
3461			nr += array[node];
3462	}
3463
3464	return nr;
3465}
3466
3467#ifdef CONFIG_SYSCTL
3468static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3469					  void *buffer, size_t *length,
3470					  loff_t *ppos, unsigned long *out)
3471{
3472	struct ctl_table dup_table;
3473
3474	/*
3475	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3476	 * can duplicate the @table and alter the duplicate of it.
3477	 */
3478	dup_table = *table;
3479	dup_table.data = out;
3480
3481	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3482}
3483
3484static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3485			 struct ctl_table *table, int write,
3486			 void *buffer, size_t *length, loff_t *ppos)
3487{
3488	struct hstate *h = &default_hstate;
3489	unsigned long tmp = h->max_huge_pages;
3490	int ret;
3491
3492	if (!hugepages_supported())
3493		return -EOPNOTSUPP;
3494
3495	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3496					     &tmp);
3497	if (ret)
3498		goto out;
3499
3500	if (write)
3501		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3502						  NUMA_NO_NODE, tmp, *length);
3503out:
3504	return ret;
3505}
3506
3507int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3508			  void *buffer, size_t *length, loff_t *ppos)
3509{
3510
3511	return hugetlb_sysctl_handler_common(false, table, write,
3512							buffer, length, ppos);
3513}
3514
3515#ifdef CONFIG_NUMA
3516int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3517			  void *buffer, size_t *length, loff_t *ppos)
3518{
3519	return hugetlb_sysctl_handler_common(true, table, write,
3520							buffer, length, ppos);
3521}
3522#endif /* CONFIG_NUMA */
3523
3524int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3525		void *buffer, size_t *length, loff_t *ppos)
3526{
3527	struct hstate *h = &default_hstate;
3528	unsigned long tmp;
3529	int ret;
3530
3531	if (!hugepages_supported())
3532		return -EOPNOTSUPP;
3533
3534	tmp = h->nr_overcommit_huge_pages;
3535
3536	if (write && hstate_is_gigantic(h))
3537		return -EINVAL;
3538
3539	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3540					     &tmp);
3541	if (ret)
3542		goto out;
3543
3544	if (write) {
3545		spin_lock(&hugetlb_lock);
3546		h->nr_overcommit_huge_pages = tmp;
3547		spin_unlock(&hugetlb_lock);
3548	}
3549out:
3550	return ret;
3551}
3552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3553#endif /* CONFIG_SYSCTL */
3554
3555void hugetlb_report_meminfo(struct seq_file *m)
3556{
3557	struct hstate *h;
3558	unsigned long total = 0;
3559
3560	if (!hugepages_supported())
3561		return;
3562
3563	for_each_hstate(h) {
3564		unsigned long count = h->nr_huge_pages;
3565
3566		total += (PAGE_SIZE << huge_page_order(h)) * count;
3567
3568		if (h == &default_hstate)
3569			seq_printf(m,
3570				   "HugePages_Total:   %5lu\n"
3571				   "HugePages_Free:    %5lu\n"
3572				   "HugePages_Rsvd:    %5lu\n"
3573				   "HugePages_Surp:    %5lu\n"
3574				   "Hugepagesize:   %8lu kB\n",
3575				   count,
3576				   h->free_huge_pages,
3577				   h->resv_huge_pages,
3578				   h->surplus_huge_pages,
3579				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3580	}
3581
3582	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3583}
3584
3585int hugetlb_report_node_meminfo(int nid, char *buf)
3586{
3587	struct hstate *h = &default_hstate;
 
3588	if (!hugepages_supported())
3589		return 0;
3590	return sprintf(buf,
3591		"Node %d HugePages_Total: %5u\n"
3592		"Node %d HugePages_Free:  %5u\n"
3593		"Node %d HugePages_Surp:  %5u\n",
3594		nid, h->nr_huge_pages_node[nid],
3595		nid, h->free_huge_pages_node[nid],
3596		nid, h->surplus_huge_pages_node[nid]);
 
3597}
3598
3599void hugetlb_show_meminfo(void)
3600{
3601	struct hstate *h;
3602	int nid;
3603
3604	if (!hugepages_supported())
3605		return;
3606
3607	for_each_node_state(nid, N_MEMORY)
3608		for_each_hstate(h)
3609			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3610				nid,
3611				h->nr_huge_pages_node[nid],
3612				h->free_huge_pages_node[nid],
3613				h->surplus_huge_pages_node[nid],
3614				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3615}
3616
3617void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3618{
3619	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3620		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3621}
3622
3623/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3624unsigned long hugetlb_total_pages(void)
3625{
3626	struct hstate *h;
3627	unsigned long nr_total_pages = 0;
3628
3629	for_each_hstate(h)
3630		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3631	return nr_total_pages;
3632}
3633
3634static int hugetlb_acct_memory(struct hstate *h, long delta)
3635{
3636	int ret = -ENOMEM;
3637
3638	spin_lock(&hugetlb_lock);
 
 
 
3639	/*
3640	 * When cpuset is configured, it breaks the strict hugetlb page
3641	 * reservation as the accounting is done on a global variable. Such
3642	 * reservation is completely rubbish in the presence of cpuset because
3643	 * the reservation is not checked against page availability for the
3644	 * current cpuset. Application can still potentially OOM'ed by kernel
3645	 * with lack of free htlb page in cpuset that the task is in.
3646	 * Attempt to enforce strict accounting with cpuset is almost
3647	 * impossible (or too ugly) because cpuset is too fluid that
3648	 * task or memory node can be dynamically moved between cpusets.
3649	 *
3650	 * The change of semantics for shared hugetlb mapping with cpuset is
3651	 * undesirable. However, in order to preserve some of the semantics,
3652	 * we fall back to check against current free page availability as
3653	 * a best attempt and hopefully to minimize the impact of changing
3654	 * semantics that cpuset has.
3655	 *
3656	 * Apart from cpuset, we also have memory policy mechanism that
3657	 * also determines from which node the kernel will allocate memory
3658	 * in a NUMA system. So similar to cpuset, we also should consider
3659	 * the memory policy of the current task. Similar to the description
3660	 * above.
3661	 */
3662	if (delta > 0) {
3663		if (gather_surplus_pages(h, delta) < 0)
3664			goto out;
3665
3666		if (delta > allowed_mems_nr(h)) {
3667			return_unused_surplus_pages(h, delta);
3668			goto out;
3669		}
3670	}
3671
3672	ret = 0;
3673	if (delta < 0)
3674		return_unused_surplus_pages(h, (unsigned long) -delta);
3675
3676out:
3677	spin_unlock(&hugetlb_lock);
3678	return ret;
3679}
3680
3681static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3682{
3683	struct resv_map *resv = vma_resv_map(vma);
3684
3685	/*
 
3686	 * This new VMA should share its siblings reservation map if present.
3687	 * The VMA will only ever have a valid reservation map pointer where
3688	 * it is being copied for another still existing VMA.  As that VMA
3689	 * has a reference to the reservation map it cannot disappear until
3690	 * after this open call completes.  It is therefore safe to take a
3691	 * new reference here without additional locking.
3692	 */
3693	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
 
3694		kref_get(&resv->refs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3695}
3696
3697static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3698{
3699	struct hstate *h = hstate_vma(vma);
3700	struct resv_map *resv = vma_resv_map(vma);
3701	struct hugepage_subpool *spool = subpool_vma(vma);
3702	unsigned long reserve, start, end;
3703	long gbl_reserve;
3704
 
 
 
3705	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3706		return;
3707
3708	start = vma_hugecache_offset(h, vma, vma->vm_start);
3709	end = vma_hugecache_offset(h, vma, vma->vm_end);
3710
3711	reserve = (end - start) - region_count(resv, start, end);
3712	hugetlb_cgroup_uncharge_counter(resv, start, end);
3713	if (reserve) {
3714		/*
3715		 * Decrement reserve counts.  The global reserve count may be
3716		 * adjusted if the subpool has a minimum size.
3717		 */
3718		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3719		hugetlb_acct_memory(h, -gbl_reserve);
3720	}
3721
3722	kref_put(&resv->refs, resv_map_release);
3723}
3724
3725static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3726{
3727	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3728		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3729	return 0;
3730}
3731
3732static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3733{
3734	struct hstate *hstate = hstate_vma(vma);
3735
3736	return 1UL << huge_page_shift(hstate);
3737}
3738
3739/*
3740 * We cannot handle pagefaults against hugetlb pages at all.  They cause
3741 * handle_mm_fault() to try to instantiate regular-sized pages in the
3742 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3743 * this far.
3744 */
3745static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3746{
3747	BUG();
3748	return 0;
3749}
3750
3751/*
3752 * When a new function is introduced to vm_operations_struct and added
3753 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3754 * This is because under System V memory model, mappings created via
3755 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3756 * their original vm_ops are overwritten with shm_vm_ops.
3757 */
3758const struct vm_operations_struct hugetlb_vm_ops = {
3759	.fault = hugetlb_vm_op_fault,
3760	.open = hugetlb_vm_op_open,
3761	.close = hugetlb_vm_op_close,
3762	.split = hugetlb_vm_op_split,
3763	.pagesize = hugetlb_vm_op_pagesize,
3764};
3765
3766static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3767				int writable)
3768{
3769	pte_t entry;
 
3770
3771	if (writable) {
3772		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3773					 vma->vm_page_prot)));
3774	} else {
3775		entry = huge_pte_wrprotect(mk_huge_pte(page,
3776					   vma->vm_page_prot));
3777	}
3778	entry = pte_mkyoung(entry);
3779	entry = pte_mkhuge(entry);
3780	entry = arch_make_huge_pte(entry, vma, page, writable);
3781
3782	return entry;
3783}
3784
3785static void set_huge_ptep_writable(struct vm_area_struct *vma,
3786				   unsigned long address, pte_t *ptep)
3787{
3788	pte_t entry;
3789
3790	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3791	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3792		update_mmu_cache(vma, address, ptep);
3793}
3794
3795bool is_hugetlb_entry_migration(pte_t pte)
3796{
3797	swp_entry_t swp;
3798
3799	if (huge_pte_none(pte) || pte_present(pte))
3800		return false;
3801	swp = pte_to_swp_entry(pte);
3802	if (non_swap_entry(swp) && is_migration_entry(swp))
3803		return true;
3804	else
3805		return false;
3806}
3807
3808static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3809{
3810	swp_entry_t swp;
3811
3812	if (huge_pte_none(pte) || pte_present(pte))
3813		return 0;
3814	swp = pte_to_swp_entry(pte);
3815	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3816		return 1;
3817	else
3818		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3819}
3820
3821int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3822			    struct vm_area_struct *vma)
 
3823{
3824	pte_t *src_pte, *dst_pte, entry, dst_entry;
3825	struct page *ptepage;
3826	unsigned long addr;
3827	int cow;
3828	struct hstate *h = hstate_vma(vma);
3829	unsigned long sz = huge_page_size(h);
3830	struct address_space *mapping = vma->vm_file->f_mapping;
3831	struct mmu_notifier_range range;
 
3832	int ret = 0;
3833
3834	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3835
3836	if (cow) {
3837		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3838					vma->vm_start,
3839					vma->vm_end);
3840		mmu_notifier_invalidate_range_start(&range);
 
 
3841	} else {
3842		/*
3843		 * For shared mappings i_mmap_rwsem must be held to call
3844		 * huge_pte_alloc, otherwise the returned ptep could go
3845		 * away if part of a shared pmd and another thread calls
3846		 * huge_pmd_unshare.
3847		 */
3848		i_mmap_lock_read(mapping);
3849	}
3850
3851	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
 
3852		spinlock_t *src_ptl, *dst_ptl;
3853		src_pte = huge_pte_offset(src, addr, sz);
3854		if (!src_pte)
 
3855			continue;
3856		dst_pte = huge_pte_alloc(dst, addr, sz);
 
3857		if (!dst_pte) {
3858			ret = -ENOMEM;
3859			break;
3860		}
3861
3862		/*
3863		 * If the pagetables are shared don't copy or take references.
 
3864		 * dst_pte == src_pte is the common case of src/dest sharing.
3865		 *
3866		 * However, src could have 'unshared' and dst shares with
3867		 * another vma.  If dst_pte !none, this implies sharing.
3868		 * Check here before taking page table lock, and once again
3869		 * after taking the lock below.
3870		 */
3871		dst_entry = huge_ptep_get(dst_pte);
3872		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3873			continue;
 
3874
3875		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3876		src_ptl = huge_pte_lockptr(h, src, src_pte);
3877		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3878		entry = huge_ptep_get(src_pte);
3879		dst_entry = huge_ptep_get(dst_pte);
3880		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3881			/*
3882			 * Skip if src entry none.  Also, skip in the
3883			 * unlikely case dst entry !none as this implies
3884			 * sharing with another vma.
3885			 */
3886			;
3887		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3888				    is_hugetlb_entry_hwpoisoned(entry))) {
 
 
 
3889			swp_entry_t swp_entry = pte_to_swp_entry(entry);
 
3890
3891			if (is_write_migration_entry(swp_entry) && cow) {
3892				/*
3893				 * COW mappings require pages in both
3894				 * parent and child to be set to read.
3895				 */
3896				make_migration_entry_read(&swp_entry);
 
3897				entry = swp_entry_to_pte(swp_entry);
3898				set_huge_swap_pte_at(src, addr, src_pte,
3899						     entry, sz);
 
3900			}
3901			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
 
 
 
 
 
 
 
 
 
3902		} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3903			if (cow) {
3904				/*
3905				 * No need to notify as we are downgrading page
3906				 * table protection not changing it to point
3907				 * to a new page.
3908				 *
3909				 * See Documentation/vm/mmu_notifier.rst
3910				 */
3911				huge_ptep_set_wrprotect(src, addr, src_pte);
 
3912			}
3913			entry = huge_ptep_get(src_pte);
3914			ptepage = pte_page(entry);
3915			get_page(ptepage);
3916			page_dup_rmap(ptepage, true);
3917			set_huge_pte_at(dst, addr, dst_pte, entry);
3918			hugetlb_count_add(pages_per_huge_page(h), dst);
3919		}
3920		spin_unlock(src_ptl);
3921		spin_unlock(dst_ptl);
3922	}
3923
3924	if (cow)
 
3925		mmu_notifier_invalidate_range_end(&range);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3926	else
3927		i_mmap_unlock_read(mapping);
 
 
 
3928
3929	return ret;
3930}
3931
3932void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3933			    unsigned long start, unsigned long end,
3934			    struct page *ref_page)
3935{
3936	struct mm_struct *mm = vma->vm_mm;
3937	unsigned long address;
3938	pte_t *ptep;
3939	pte_t pte;
3940	spinlock_t *ptl;
3941	struct page *page;
3942	struct hstate *h = hstate_vma(vma);
3943	unsigned long sz = huge_page_size(h);
3944	struct mmu_notifier_range range;
 
3945
3946	WARN_ON(!is_vm_hugetlb_page(vma));
3947	BUG_ON(start & ~huge_page_mask(h));
3948	BUG_ON(end & ~huge_page_mask(h));
3949
3950	/*
3951	 * This is a hugetlb vma, all the pte entries should point
3952	 * to huge page.
3953	 */
3954	tlb_change_page_size(tlb, sz);
3955	tlb_start_vma(tlb, vma);
3956
3957	/*
3958	 * If sharing possible, alert mmu notifiers of worst case.
3959	 */
3960	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3961				end);
3962	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3963	mmu_notifier_invalidate_range_start(&range);
3964	address = start;
3965	for (; address < end; address += sz) {
3966		ptep = huge_pte_offset(mm, address, sz);
3967		if (!ptep)
 
3968			continue;
 
3969
3970		ptl = huge_pte_lock(h, mm, ptep);
3971		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3972			spin_unlock(ptl);
3973			/*
3974			 * We just unmapped a page of PMDs by clearing a PUD.
3975			 * The caller's TLB flush range should cover this area.
3976			 */
3977			continue;
3978		}
3979
3980		pte = huge_ptep_get(ptep);
3981		if (huge_pte_none(pte)) {
3982			spin_unlock(ptl);
3983			continue;
3984		}
3985
3986		/*
3987		 * Migrating hugepage or HWPoisoned hugepage is already
3988		 * unmapped and its refcount is dropped, so just clear pte here.
3989		 */
3990		if (unlikely(!pte_present(pte))) {
3991			huge_pte_clear(mm, address, ptep, sz);
 
 
 
 
 
 
 
 
 
 
 
 
3992			spin_unlock(ptl);
3993			continue;
3994		}
3995
3996		page = pte_page(pte);
3997		/*
3998		 * If a reference page is supplied, it is because a specific
3999		 * page is being unmapped, not a range. Ensure the page we
4000		 * are about to unmap is the actual page of interest.
4001		 */
4002		if (ref_page) {
4003			if (page != ref_page) {
4004				spin_unlock(ptl);
4005				continue;
4006			}
4007			/*
4008			 * Mark the VMA as having unmapped its page so that
4009			 * future faults in this VMA will fail rather than
4010			 * looking like data was lost
4011			 */
4012			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4013		}
4014
4015		pte = huge_ptep_get_and_clear(mm, address, ptep);
4016		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4017		if (huge_pte_dirty(pte))
4018			set_page_dirty(page);
4019
 
 
 
 
 
4020		hugetlb_count_sub(pages_per_huge_page(h), mm);
4021		page_remove_rmap(page, true);
4022
4023		spin_unlock(ptl);
4024		tlb_remove_page_size(tlb, page, huge_page_size(h));
4025		/*
4026		 * Bail out after unmapping reference page if supplied
4027		 */
4028		if (ref_page)
4029			break;
4030	}
4031	mmu_notifier_invalidate_range_end(&range);
4032	tlb_end_vma(tlb, vma);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4033}
4034
4035void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4036			  struct vm_area_struct *vma, unsigned long start,
4037			  unsigned long end, struct page *ref_page)
4038{
4039	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
4040
4041	/*
4042	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4043	 * test will fail on a vma being torn down, and not grab a page table
4044	 * on its way out.  We're lucky that the flag has such an appropriate
4045	 * name, and can in fact be safely cleared here. We could clear it
4046	 * before the __unmap_hugepage_range above, but all that's necessary
4047	 * is to clear it before releasing the i_mmap_rwsem. This works
4048	 * because in the context this is called, the VMA is about to be
4049	 * destroyed and the i_mmap_rwsem is held.
4050	 */
4051	vma->vm_flags &= ~VM_MAYSHARE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4052}
4053
4054void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4055			  unsigned long end, struct page *ref_page)
 
4056{
4057	struct mm_struct *mm;
4058	struct mmu_gather tlb;
4059	unsigned long tlb_start = start;
4060	unsigned long tlb_end = end;
4061
4062	/*
4063	 * If shared PMDs were possibly used within this vma range, adjust
4064	 * start/end for worst case tlb flushing.
4065	 * Note that we can not be sure if PMDs are shared until we try to
4066	 * unmap pages.  However, we want to make sure TLB flushing covers
4067	 * the largest possible range.
4068	 */
4069	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4070
4071	mm = vma->vm_mm;
4072
4073	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4074	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4075	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4076}
4077
4078/*
4079 * This is called when the original mapper is failing to COW a MAP_PRIVATE
4080 * mappping it owns the reserve page for. The intention is to unmap the page
4081 * from other VMAs and let the children be SIGKILLed if they are faulting the
4082 * same region.
4083 */
4084static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4085			      struct page *page, unsigned long address)
4086{
4087	struct hstate *h = hstate_vma(vma);
4088	struct vm_area_struct *iter_vma;
4089	struct address_space *mapping;
4090	pgoff_t pgoff;
4091
4092	/*
4093	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4094	 * from page cache lookup which is in HPAGE_SIZE units.
4095	 */
4096	address = address & huge_page_mask(h);
4097	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4098			vma->vm_pgoff;
4099	mapping = vma->vm_file->f_mapping;
4100
4101	/*
4102	 * Take the mapping lock for the duration of the table walk. As
4103	 * this mapping should be shared between all the VMAs,
4104	 * __unmap_hugepage_range() is called as the lock is already held
4105	 */
4106	i_mmap_lock_write(mapping);
4107	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4108		/* Do not unmap the current VMA */
4109		if (iter_vma == vma)
4110			continue;
4111
4112		/*
4113		 * Shared VMAs have their own reserves and do not affect
4114		 * MAP_PRIVATE accounting but it is possible that a shared
4115		 * VMA is using the same page so check and skip such VMAs.
4116		 */
4117		if (iter_vma->vm_flags & VM_MAYSHARE)
4118			continue;
4119
4120		/*
4121		 * Unmap the page from other VMAs without their own reserves.
4122		 * They get marked to be SIGKILLed if they fault in these
4123		 * areas. This is because a future no-page fault on this VMA
4124		 * could insert a zeroed page instead of the data existing
4125		 * from the time of fork. This would look like data corruption
4126		 */
4127		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4128			unmap_hugepage_range(iter_vma, address,
4129					     address + huge_page_size(h), page);
4130	}
4131	i_mmap_unlock_write(mapping);
4132}
4133
4134/*
4135 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4136 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4137 * cannot race with other handlers or page migration.
4138 * Keep the pte_same checks anyway to make transition from the mutex easier.
4139 */
4140static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4141		       unsigned long address, pte_t *ptep,
4142		       struct page *pagecache_page, spinlock_t *ptl)
4143{
4144	pte_t pte;
 
4145	struct hstate *h = hstate_vma(vma);
4146	struct page *old_page, *new_page;
 
4147	int outside_reserve = 0;
4148	vm_fault_t ret = 0;
4149	unsigned long haddr = address & huge_page_mask(h);
4150	struct mmu_notifier_range range;
4151
4152	pte = huge_ptep_get(ptep);
4153	old_page = pte_page(pte);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4154
4155retry_avoidcopy:
4156	/* If no-one else is actually using this page, avoid the copy
4157	 * and just make the page writable */
4158	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4159		page_move_anon_rmap(old_page, vma);
4160		set_huge_ptep_writable(vma, haddr, ptep);
 
 
 
 
 
 
 
 
4161		return 0;
4162	}
 
 
4163
4164	/*
4165	 * If the process that created a MAP_PRIVATE mapping is about to
4166	 * perform a COW due to a shared page count, attempt to satisfy
4167	 * the allocation without using the existing reserves. The pagecache
4168	 * page is used to determine if the reserve at this address was
4169	 * consumed or not. If reserves were used, a partial faulted mapping
4170	 * at the time of fork() could consume its reserves on COW instead
4171	 * of the full address range.
4172	 */
4173	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4174			old_page != pagecache_page)
4175		outside_reserve = 1;
4176
4177	get_page(old_page);
4178
4179	/*
4180	 * Drop page table lock as buddy allocator may be called. It will
4181	 * be acquired again before returning to the caller, as expected.
4182	 */
4183	spin_unlock(ptl);
4184	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4185
4186	if (IS_ERR(new_page)) {
4187		/*
4188		 * If a process owning a MAP_PRIVATE mapping fails to COW,
4189		 * it is due to references held by a child and an insufficient
4190		 * huge page pool. To guarantee the original mappers
4191		 * reliability, unmap the page from child processes. The child
4192		 * may get SIGKILLed if it later faults.
4193		 */
4194		if (outside_reserve) {
4195			put_page(old_page);
4196			BUG_ON(huge_pte_none(pte));
4197			unmap_ref_private(mm, vma, old_page, haddr);
4198			BUG_ON(huge_pte_none(pte));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4199			spin_lock(ptl);
4200			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4201			if (likely(ptep &&
4202				   pte_same(huge_ptep_get(ptep), pte)))
4203				goto retry_avoidcopy;
4204			/*
4205			 * race occurs while re-acquiring page table
4206			 * lock, and our job is done.
4207			 */
 
4208			return 0;
4209		}
4210
4211		ret = vmf_error(PTR_ERR(new_page));
4212		goto out_release_old;
4213	}
4214
4215	/*
4216	 * When the original hugepage is shared one, it does not have
4217	 * anon_vma prepared.
4218	 */
4219	if (unlikely(anon_vma_prepare(vma))) {
4220		ret = VM_FAULT_OOM;
4221		goto out_release_all;
4222	}
4223
4224	copy_user_huge_page(new_page, old_page, address, vma,
4225			    pages_per_huge_page(h));
4226	__SetPageUptodate(new_page);
 
 
4227
4228	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4229				haddr + huge_page_size(h));
4230	mmu_notifier_invalidate_range_start(&range);
4231
4232	/*
4233	 * Retake the page table lock to check for racing updates
4234	 * before the page tables are altered
4235	 */
4236	spin_lock(ptl);
4237	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4238	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4239		ClearPagePrivate(new_page);
4240
4241		/* Break COW */
4242		huge_ptep_clear_flush(vma, haddr, ptep);
4243		mmu_notifier_invalidate_range(mm, range.start, range.end);
4244		set_huge_pte_at(mm, haddr, ptep,
4245				make_huge_pte(vma, new_page, 1));
4246		page_remove_rmap(old_page, true);
4247		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4248		set_page_huge_active(new_page);
4249		/* Make the old page be freed below */
4250		new_page = old_page;
4251	}
4252	spin_unlock(ptl);
4253	mmu_notifier_invalidate_range_end(&range);
4254out_release_all:
4255	restore_reserve_on_error(h, vma, haddr, new_page);
4256	put_page(new_page);
 
 
 
 
 
4257out_release_old:
4258	put_page(old_page);
4259
4260	spin_lock(ptl); /* Caller expects lock to be held */
 
 
4261	return ret;
4262}
4263
4264/* Return the pagecache page at a given address within a VMA */
4265static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4266			struct vm_area_struct *vma, unsigned long address)
4267{
4268	struct address_space *mapping;
4269	pgoff_t idx;
4270
4271	mapping = vma->vm_file->f_mapping;
4272	idx = vma_hugecache_offset(h, vma, address);
4273
4274	return find_lock_page(mapping, idx);
4275}
4276
4277/*
4278 * Return whether there is a pagecache page to back given address within VMA.
4279 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4280 */
4281static bool hugetlbfs_pagecache_present(struct hstate *h,
4282			struct vm_area_struct *vma, unsigned long address)
4283{
4284	struct address_space *mapping;
4285	pgoff_t idx;
4286	struct page *page;
4287
4288	mapping = vma->vm_file->f_mapping;
4289	idx = vma_hugecache_offset(h, vma, address);
4290
4291	page = find_get_page(mapping, idx);
4292	if (page)
4293		put_page(page);
4294	return page != NULL;
4295}
4296
4297int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4298			   pgoff_t idx)
4299{
4300	struct inode *inode = mapping->host;
4301	struct hstate *h = hstate_inode(inode);
4302	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
 
 
 
 
4303
4304	if (err)
 
4305		return err;
4306	ClearPagePrivate(page);
 
4307
4308	/*
4309	 * set page dirty so that it will not be removed from cache/file
4310	 * by non-hugetlbfs specific code paths.
4311	 */
4312	set_page_dirty(page);
4313
4314	spin_lock(&inode->i_lock);
4315	inode->i_blocks += blocks_per_huge_page(h);
4316	spin_unlock(&inode->i_lock);
4317	return 0;
4318}
4319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4320static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4321			struct vm_area_struct *vma,
4322			struct address_space *mapping, pgoff_t idx,
4323			unsigned long address, pte_t *ptep, unsigned int flags)
 
4324{
4325	struct hstate *h = hstate_vma(vma);
4326	vm_fault_t ret = VM_FAULT_SIGBUS;
4327	int anon_rmap = 0;
4328	unsigned long size;
4329	struct page *page;
4330	pte_t new_pte;
4331	spinlock_t *ptl;
4332	unsigned long haddr = address & huge_page_mask(h);
4333	bool new_page = false;
 
4334
4335	/*
4336	 * Currently, we are forced to kill the process in the event the
4337	 * original mapper has unmapped pages from the child due to a failed
4338	 * COW. Warn that such a situation has occurred as it may not be obvious
 
4339	 */
4340	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4341		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4342			   current->pid);
4343		return ret;
4344	}
4345
4346	/*
4347	 * We can not race with truncation due to holding i_mmap_rwsem.
4348	 * i_size is modified when holding i_mmap_rwsem, so check here
4349	 * once for faults beyond end of file.
4350	 */
4351	size = i_size_read(mapping->host) >> huge_page_shift(h);
4352	if (idx >= size)
4353		goto out;
4354
4355retry:
4356	page = find_lock_page(mapping, idx);
4357	if (!page) {
4358		/*
4359		 * Check for page in userfault range
4360		 */
4361		if (userfaultfd_missing(vma)) {
4362			u32 hash;
4363			struct vm_fault vmf = {
4364				.vma = vma,
4365				.address = haddr,
4366				.flags = flags,
4367				/*
4368				 * Hard to debug if it ends up being
4369				 * used by a callee that assumes
4370				 * something about the other
4371				 * uninitialized fields... same as in
4372				 * memory.c
4373				 */
4374			};
4375
4376			/*
4377			 * hugetlb_fault_mutex and i_mmap_rwsem must be
4378			 * dropped before handling userfault.  Reacquire
4379			 * after handling fault to make calling code simpler.
 
 
 
 
 
 
 
 
 
 
 
 
4380			 */
4381			hash = hugetlb_fault_mutex_hash(mapping, idx);
4382			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4383			i_mmap_unlock_read(mapping);
4384			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4385			i_mmap_lock_read(mapping);
4386			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4387			goto out;
 
4388		}
4389
4390		page = alloc_huge_page(vma, haddr, 0);
4391		if (IS_ERR(page)) {
4392			/*
4393			 * Returning error will result in faulting task being
4394			 * sent SIGBUS.  The hugetlb fault mutex prevents two
4395			 * tasks from racing to fault in the same page which
4396			 * could result in false unable to allocate errors.
4397			 * Page migration does not take the fault mutex, but
4398			 * does a clear then write of pte's under page table
4399			 * lock.  Page fault code could race with migration,
4400			 * notice the clear pte and try to allocate a page
4401			 * here.  Before returning error, get ptl and make
4402			 * sure there really is no pte entry.
4403			 */
4404			ptl = huge_pte_lock(h, mm, ptep);
4405			if (!huge_pte_none(huge_ptep_get(ptep))) {
 
4406				ret = 0;
4407				spin_unlock(ptl);
4408				goto out;
4409			}
4410			spin_unlock(ptl);
4411			ret = vmf_error(PTR_ERR(page));
4412			goto out;
4413		}
4414		clear_huge_page(page, address, pages_per_huge_page(h));
4415		__SetPageUptodate(page);
4416		new_page = true;
4417
4418		if (vma->vm_flags & VM_MAYSHARE) {
4419			int err = huge_add_to_page_cache(page, mapping, idx);
4420			if (err) {
4421				put_page(page);
4422				if (err == -EEXIST)
4423					goto retry;
 
 
 
 
 
 
4424				goto out;
4425			}
 
4426		} else {
4427			lock_page(page);
4428			if (unlikely(anon_vma_prepare(vma))) {
4429				ret = VM_FAULT_OOM;
4430				goto backout_unlocked;
4431			}
4432			anon_rmap = 1;
4433		}
4434	} else {
4435		/*
4436		 * If memory error occurs between mmap() and fault, some process
4437		 * don't have hwpoisoned swap entry for errored virtual address.
4438		 * So we need to block hugepage fault by PG_hwpoison bit check.
4439		 */
4440		if (unlikely(PageHWPoison(page))) {
4441			ret = VM_FAULT_HWPOISON |
4442				VM_FAULT_SET_HINDEX(hstate_index(h));
4443			goto backout_unlocked;
4444		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4445	}
4446
4447	/*
4448	 * If we are going to COW a private mapping later, we examine the
4449	 * pending reservations for this page now. This will ensure that
4450	 * any allocations necessary to record that reservation occur outside
4451	 * the spinlock.
4452	 */
4453	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4454		if (vma_needs_reservation(h, vma, haddr) < 0) {
4455			ret = VM_FAULT_OOM;
4456			goto backout_unlocked;
4457		}
4458		/* Just decrements count, does not deallocate */
4459		vma_end_reservation(h, vma, haddr);
4460	}
4461
4462	ptl = huge_pte_lock(h, mm, ptep);
4463	ret = 0;
4464	if (!huge_pte_none(huge_ptep_get(ptep)))
 
4465		goto backout;
4466
4467	if (anon_rmap) {
4468		ClearPagePrivate(page);
4469		hugepage_add_new_anon_rmap(page, vma, haddr);
4470	} else
4471		page_dup_rmap(page, true);
4472	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4473				&& (vma->vm_flags & VM_SHARED)));
4474	set_huge_pte_at(mm, haddr, ptep, new_pte);
 
 
 
 
 
 
4475
4476	hugetlb_count_add(pages_per_huge_page(h), mm);
4477	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4478		/* Optimization, do the COW without a second fault */
4479		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4480	}
4481
4482	spin_unlock(ptl);
4483
4484	/*
4485	 * Only make newly allocated pages active.  Existing pages found
4486	 * in the pagecache could be !page_huge_active() if they have been
4487	 * isolated for migration.
4488	 */
4489	if (new_page)
4490		set_page_huge_active(page);
4491
4492	unlock_page(page);
4493out:
 
 
4494	return ret;
4495
4496backout:
4497	spin_unlock(ptl);
4498backout_unlocked:
4499	unlock_page(page);
4500	restore_reserve_on_error(h, vma, haddr, page);
4501	put_page(page);
 
 
4502	goto out;
4503}
4504
4505#ifdef CONFIG_SMP
4506u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4507{
4508	unsigned long key[2];
4509	u32 hash;
4510
4511	key[0] = (unsigned long) mapping;
4512	key[1] = idx;
4513
4514	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4515
4516	return hash & (num_fault_mutexes - 1);
4517}
4518#else
4519/*
4520 * For uniprocesor systems we always use a single mutex, so just
4521 * return 0 and avoid the hashing overhead.
4522 */
4523u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4524{
4525	return 0;
4526}
4527#endif
4528
4529vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4530			unsigned long address, unsigned int flags)
4531{
4532	pte_t *ptep, entry;
4533	spinlock_t *ptl;
4534	vm_fault_t ret;
4535	u32 hash;
4536	pgoff_t idx;
4537	struct page *page = NULL;
4538	struct page *pagecache_page = NULL;
4539	struct hstate *h = hstate_vma(vma);
4540	struct address_space *mapping;
4541	int need_wait_lock = 0;
4542	unsigned long haddr = address & huge_page_mask(h);
4543
4544	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4545	if (ptep) {
4546		/*
4547		 * Since we hold no locks, ptep could be stale.  That is
4548		 * OK as we are only making decisions based on content and
4549		 * not actually modifying content here.
4550		 */
4551		entry = huge_ptep_get(ptep);
4552		if (unlikely(is_hugetlb_entry_migration(entry))) {
4553			migration_entry_wait_huge(vma, mm, ptep);
4554			return 0;
4555		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4556			return VM_FAULT_HWPOISON_LARGE |
4557				VM_FAULT_SET_HINDEX(hstate_index(h));
4558	}
4559
4560	/*
4561	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4562	 * until finished with ptep.  This serves two purposes:
4563	 * 1) It prevents huge_pmd_unshare from being called elsewhere
4564	 *    and making the ptep no longer valid.
4565	 * 2) It synchronizes us with i_size modifications during truncation.
4566	 *
4567	 * ptep could have already be assigned via huge_pte_offset.  That
4568	 * is OK, as huge_pte_alloc will return the same value unless
4569	 * something has changed.
4570	 */
4571	mapping = vma->vm_file->f_mapping;
4572	i_mmap_lock_read(mapping);
4573	ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4574	if (!ptep) {
4575		i_mmap_unlock_read(mapping);
4576		return VM_FAULT_OOM;
4577	}
4578
4579	/*
4580	 * Serialize hugepage allocation and instantiation, so that we don't
4581	 * get spurious allocation failures if two CPUs race to instantiate
4582	 * the same page in the page cache.
4583	 */
 
4584	idx = vma_hugecache_offset(h, vma, haddr);
4585	hash = hugetlb_fault_mutex_hash(mapping, idx);
4586	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4587
 
 
 
 
 
 
 
 
 
 
 
 
 
4588	entry = huge_ptep_get(ptep);
4589	if (huge_pte_none(entry)) {
4590		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4591		goto out_mutex;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4592	}
4593
4594	ret = 0;
4595
4596	/*
4597	 * entry could be a migration/hwpoison entry at this point, so this
4598	 * check prevents the kernel from going below assuming that we have
4599	 * an active hugepage in pagecache. This goto expects the 2nd page
4600	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4601	 * properly handle it.
4602	 */
4603	if (!pte_present(entry))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4604		goto out_mutex;
 
4605
4606	/*
4607	 * If we are going to COW the mapping later, we examine the pending
4608	 * reservations for this page now. This will ensure that any
4609	 * allocations necessary to record that reservation occur outside the
4610	 * spinlock. For private mappings, we also lookup the pagecache
4611	 * page now as it is used to determine if a reservation has been
4612	 * consumed.
4613	 */
4614	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
 
4615		if (vma_needs_reservation(h, vma, haddr) < 0) {
4616			ret = VM_FAULT_OOM;
4617			goto out_mutex;
4618		}
4619		/* Just decrements count, does not deallocate */
4620		vma_end_reservation(h, vma, haddr);
4621
4622		if (!(vma->vm_flags & VM_MAYSHARE))
4623			pagecache_page = hugetlbfs_pagecache_page(h,
4624								vma, haddr);
4625	}
4626
4627	ptl = huge_pte_lock(h, mm, ptep);
4628
4629	/* Check for a racing update before calling hugetlb_cow */
4630	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4631		goto out_ptl;
4632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4633	/*
4634	 * hugetlb_cow() requires page locks of pte_page(entry) and
4635	 * pagecache_page, so here we need take the former one
4636	 * when page != pagecache_page or !pagecache_page.
4637	 */
4638	page = pte_page(entry);
4639	if (page != pagecache_page)
4640		if (!trylock_page(page)) {
4641			need_wait_lock = 1;
4642			goto out_ptl;
4643		}
4644
4645	get_page(page);
4646
4647	if (flags & FAULT_FLAG_WRITE) {
4648		if (!huge_pte_write(entry)) {
4649			ret = hugetlb_cow(mm, vma, address, ptep,
4650					  pagecache_page, ptl);
4651			goto out_put_page;
 
 
4652		}
4653		entry = huge_pte_mkdirty(entry);
4654	}
4655	entry = pte_mkyoung(entry);
4656	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4657						flags & FAULT_FLAG_WRITE))
4658		update_mmu_cache(vma, haddr, ptep);
4659out_put_page:
4660	if (page != pagecache_page)
4661		unlock_page(page);
4662	put_page(page);
4663out_ptl:
4664	spin_unlock(ptl);
4665
4666	if (pagecache_page) {
4667		unlock_page(pagecache_page);
4668		put_page(pagecache_page);
4669	}
4670out_mutex:
 
4671	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4672	i_mmap_unlock_read(mapping);
4673	/*
4674	 * Generally it's safe to hold refcount during waiting page lock. But
4675	 * here we just wait to defer the next page fault to avoid busy loop and
4676	 * the page is not used after unlocked before returning from the current
4677	 * page fault. So we are safe from accessing freed page, even if we wait
4678	 * here without taking refcount.
4679	 */
4680	if (need_wait_lock)
4681		wait_on_page_locked(page);
4682	return ret;
4683}
4684
 
4685/*
4686 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4687 * modifications for huge pages.
4688 */
4689int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4690			    pte_t *dst_pte,
4691			    struct vm_area_struct *dst_vma,
4692			    unsigned long dst_addr,
4693			    unsigned long src_addr,
4694			    struct page **pagep)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4695{
4696	struct address_space *mapping;
4697	pgoff_t idx;
 
 
 
 
4698	unsigned long size;
4699	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4700	struct hstate *h = hstate_vma(dst_vma);
4701	pte_t _dst_pte;
4702	spinlock_t *ptl;
4703	int ret;
4704	struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4705
4706	if (!*pagep) {
4707		ret = -ENOMEM;
4708		page = alloc_huge_page(dst_vma, dst_addr, 0);
4709		if (IS_ERR(page))
4710			goto out;
 
4711
4712		ret = copy_huge_page_from_user(page,
4713						(const void __user *) src_addr,
4714						pages_per_huge_page(h), false);
4715
4716		/* fallback to copy_from_user outside mmap_lock */
4717		if (unlikely(ret)) {
4718			ret = -ENOENT;
4719			*pagep = page;
4720			/* don't free the page */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4721			goto out;
4722		}
4723	} else {
4724		page = *pagep;
4725		*pagep = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4726	}
4727
4728	/*
4729	 * The memory barrier inside __SetPageUptodate makes sure that
4730	 * preceding stores to the page contents become visible before
4731	 * the set_pte_at() write.
4732	 */
4733	__SetPageUptodate(page);
4734
4735	mapping = dst_vma->vm_file->f_mapping;
4736	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4737
4738	/*
4739	 * If shared, add to page cache
4740	 */
4741	if (vm_shared) {
4742		size = i_size_read(mapping->host) >> huge_page_shift(h);
4743		ret = -EFAULT;
4744		if (idx >= size)
4745			goto out_release_nounlock;
4746
4747		/*
4748		 * Serialization between remove_inode_hugepages() and
4749		 * huge_add_to_page_cache() below happens through the
4750		 * hugetlb_fault_mutex_table that here must be hold by
4751		 * the caller.
4752		 */
4753		ret = huge_add_to_page_cache(page, mapping, idx);
4754		if (ret)
4755			goto out_release_nounlock;
 
4756	}
4757
4758	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4759	spin_lock(ptl);
4760
4761	/*
4762	 * Recheck the i_size after holding PT lock to make sure not
4763	 * to leave any page mapped (as page_mapped()) beyond the end
4764	 * of the i_size (remove_inode_hugepages() is strict about
4765	 * enforcing that). If we bail out here, we'll also leave a
4766	 * page in the radix tree in the vm_shared case beyond the end
4767	 * of the i_size, but remove_inode_hugepages() will take care
4768	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4769	 */
4770	size = i_size_read(mapping->host) >> huge_page_shift(h);
4771	ret = -EFAULT;
4772	if (idx >= size)
4773		goto out_release_unlock;
4774
 
 
 
 
 
4775	ret = -EEXIST;
4776	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4777		goto out_release_unlock;
4778
4779	if (vm_shared) {
4780		page_dup_rmap(page, true);
4781	} else {
4782		ClearPagePrivate(page);
4783		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4784	}
 
 
 
 
 
 
 
4785
4786	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4787	if (dst_vma->vm_flags & VM_WRITE)
4788		_dst_pte = huge_pte_mkdirty(_dst_pte);
 
 
 
 
 
4789	_dst_pte = pte_mkyoung(_dst_pte);
4790
4791	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
 
 
 
4792
4793	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4794					dst_vma->vm_flags & VM_WRITE);
4795	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4796
4797	/* No need to invalidate - it was non-present before */
4798	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4799
4800	spin_unlock(ptl);
4801	set_page_huge_active(page);
4802	if (vm_shared)
4803		unlock_page(page);
 
4804	ret = 0;
4805out:
4806	return ret;
4807out_release_unlock:
4808	spin_unlock(ptl);
4809	if (vm_shared)
4810		unlock_page(page);
4811out_release_nounlock:
4812	put_page(page);
 
 
4813	goto out;
4814}
 
4815
4816long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4817			 struct page **pages, struct vm_area_struct **vmas,
4818			 unsigned long *position, unsigned long *nr_pages,
4819			 long i, unsigned int flags, int *locked)
4820{
4821	unsigned long pfn_offset;
4822	unsigned long vaddr = *position;
4823	unsigned long remainder = *nr_pages;
4824	struct hstate *h = hstate_vma(vma);
4825	int err = -EFAULT;
 
 
 
 
 
4826
4827	while (vaddr < vma->vm_end && remainder) {
4828		pte_t *pte;
4829		spinlock_t *ptl = NULL;
4830		int absent;
4831		struct page *page;
4832
4833		/*
4834		 * If we have a pending SIGKILL, don't keep faulting pages and
4835		 * potentially allocating memory.
4836		 */
4837		if (fatal_signal_pending(current)) {
4838			remainder = 0;
4839			break;
4840		}
4841
4842		/*
4843		 * Some archs (sparc64, sh*) have multiple pte_ts to
4844		 * each hugepage.  We have to make sure we get the
4845		 * first, for the page indexing below to work.
4846		 *
4847		 * Note that page table lock is not held when pte is null.
4848		 */
4849		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4850				      huge_page_size(h));
4851		if (pte)
4852			ptl = huge_pte_lock(h, mm, pte);
4853		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4854
4855		/*
4856		 * When coredumping, it suits get_dump_page if we just return
4857		 * an error where there's an empty slot with no huge pagecache
4858		 * to back it.  This way, we avoid allocating a hugepage, and
4859		 * the sparse dumpfile avoids allocating disk blocks, but its
4860		 * huge holes still show up with zeroes where they need to be.
4861		 */
4862		if (absent && (flags & FOLL_DUMP) &&
4863		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4864			if (pte)
4865				spin_unlock(ptl);
4866			remainder = 0;
4867			break;
4868		}
4869
4870		/*
4871		 * We need call hugetlb_fault for both hugepages under migration
4872		 * (in which case hugetlb_fault waits for the migration,) and
4873		 * hwpoisoned hugepages (in which case we need to prevent the
4874		 * caller from accessing to them.) In order to do this, we use
4875		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4876		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4877		 * both cases, and because we can't follow correct pages
4878		 * directly from any kind of swap entries.
4879		 */
4880		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4881		    ((flags & FOLL_WRITE) &&
4882		      !huge_pte_write(huge_ptep_get(pte)))) {
4883			vm_fault_t ret;
4884			unsigned int fault_flags = 0;
4885
4886			if (pte)
4887				spin_unlock(ptl);
4888			if (flags & FOLL_WRITE)
4889				fault_flags |= FAULT_FLAG_WRITE;
4890			if (locked)
4891				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4892					FAULT_FLAG_KILLABLE;
4893			if (flags & FOLL_NOWAIT)
4894				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4895					FAULT_FLAG_RETRY_NOWAIT;
4896			if (flags & FOLL_TRIED) {
4897				/*
4898				 * Note: FAULT_FLAG_ALLOW_RETRY and
4899				 * FAULT_FLAG_TRIED can co-exist
4900				 */
4901				fault_flags |= FAULT_FLAG_TRIED;
4902			}
4903			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4904			if (ret & VM_FAULT_ERROR) {
4905				err = vm_fault_to_errno(ret, flags);
4906				remainder = 0;
4907				break;
4908			}
4909			if (ret & VM_FAULT_RETRY) {
4910				if (locked &&
4911				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4912					*locked = 0;
4913				*nr_pages = 0;
4914				/*
4915				 * VM_FAULT_RETRY must not return an
4916				 * error, it will return zero
4917				 * instead.
4918				 *
4919				 * No need to update "position" as the
4920				 * caller will not check it after
4921				 * *nr_pages is set to 0.
4922				 */
4923				return i;
4924			}
4925			continue;
4926		}
4927
4928		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4929		page = pte_page(huge_ptep_get(pte));
4930
4931		/*
4932		 * If subpage information not requested, update counters
4933		 * and skip the same_page loop below.
 
 
 
 
 
4934		 */
4935		if (!pages && !vmas && !pfn_offset &&
4936		    (vaddr + huge_page_size(h) < vma->vm_end) &&
4937		    (remainder >= pages_per_huge_page(h))) {
4938			vaddr += huge_page_size(h);
4939			remainder -= pages_per_huge_page(h);
4940			i += pages_per_huge_page(h);
4941			spin_unlock(ptl);
4942			continue;
4943		}
4944
4945same_page:
4946		if (pages) {
4947			pages[i] = mem_map_offset(page, pfn_offset);
4948			/*
4949			 * try_grab_page() should always succeed here, because:
4950			 * a) we hold the ptl lock, and b) we've just checked
4951			 * that the huge page is present in the page tables. If
4952			 * the huge page is present, then the tail pages must
4953			 * also be present. The ptl prevents the head page and
4954			 * tail pages from being rearranged in any way. So this
4955			 * page must be available at this point, unless the page
4956			 * refcount overflowed:
4957			 */
4958			if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4959				spin_unlock(ptl);
4960				remainder = 0;
4961				err = -ENOMEM;
4962				break;
4963			}
4964		}
4965
4966		if (vmas)
4967			vmas[i] = vma;
 
 
 
 
4968
4969		vaddr += PAGE_SIZE;
4970		++pfn_offset;
4971		--remainder;
4972		++i;
4973		if (vaddr < vma->vm_end && remainder &&
4974				pfn_offset < pages_per_huge_page(h)) {
4975			/*
4976			 * We use pfn_offset to avoid touching the pageframes
4977			 * of this compound page.
4978			 */
4979			goto same_page;
4980		}
4981		spin_unlock(ptl);
4982	}
4983	*nr_pages = remainder;
4984	/*
4985	 * setting position is actually required only if remainder is
4986	 * not zero but it's faster not to add a "if (remainder)"
4987	 * branch.
4988	 */
4989	*position = vaddr;
 
 
4990
4991	return i ? i : err;
4992}
4993
4994#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4995/*
4996 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4997 * implement this.
4998 */
4999#define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
5000#endif
5001
5002unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5003		unsigned long address, unsigned long end, pgprot_t newprot)
5004{
5005	struct mm_struct *mm = vma->vm_mm;
5006	unsigned long start = address;
5007	pte_t *ptep;
5008	pte_t pte;
5009	struct hstate *h = hstate_vma(vma);
5010	unsigned long pages = 0;
5011	bool shared_pmd = false;
5012	struct mmu_notifier_range range;
 
 
 
5013
5014	/*
5015	 * In the case of shared PMDs, the area to flush could be beyond
5016	 * start/end.  Set range.start/range.end to cover the maximum possible
5017	 * range if PMD sharing is possible.
5018	 */
5019	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5020				0, vma, mm, start, end);
5021	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5022
5023	BUG_ON(address >= end);
5024	flush_cache_range(vma, range.start, range.end);
5025
5026	mmu_notifier_invalidate_range_start(&range);
 
5027	i_mmap_lock_write(vma->vm_file->f_mapping);
5028	for (; address < end; address += huge_page_size(h)) {
 
5029		spinlock_t *ptl;
5030		ptep = huge_pte_offset(mm, address, huge_page_size(h));
5031		if (!ptep)
5032			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
5033		ptl = huge_pte_lock(h, mm, ptep);
5034		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
 
 
 
 
 
 
5035			pages++;
5036			spin_unlock(ptl);
5037			shared_pmd = true;
 
5038			continue;
5039		}
5040		pte = huge_ptep_get(ptep);
5041		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5042			spin_unlock(ptl);
5043			continue;
5044		}
5045		if (unlikely(is_hugetlb_entry_migration(pte))) {
5046			swp_entry_t entry = pte_to_swp_entry(pte);
 
 
5047
5048			if (is_write_migration_entry(entry)) {
5049				pte_t newpte;
5050
5051				make_migration_entry_read(&entry);
 
 
 
5052				newpte = swp_entry_to_pte(entry);
5053				set_huge_swap_pte_at(mm, address, ptep,
5054						     newpte, huge_page_size(h));
5055				pages++;
5056			}
5057			spin_unlock(ptl);
5058			continue;
5059		}
5060		if (!huge_pte_none(pte)) {
 
 
 
 
 
 
 
 
 
 
5061			pte_t old_pte;
 
5062
5063			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5064			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5065			pte = arch_make_huge_pte(pte, vma, NULL, 0);
 
 
 
 
5066			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5067			pages++;
 
 
 
 
 
 
 
5068		}
5069		spin_unlock(ptl);
5070	}
5071	/*
5072	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5073	 * may have cleared our pud entry and done put_page on the page table:
5074	 * once we release i_mmap_rwsem, another task can do the final put_page
5075	 * and that page table be reused and filled with junk.  If we actually
5076	 * did unshare a page of pmds, flush the range corresponding to the pud.
5077	 */
5078	if (shared_pmd)
5079		flush_hugetlb_tlb_range(vma, range.start, range.end);
5080	else
5081		flush_hugetlb_tlb_range(vma, start, end);
5082	/*
5083	 * No need to call mmu_notifier_invalidate_range() we are downgrading
5084	 * page table protection not changing it to point to a new page.
 
5085	 *
5086	 * See Documentation/vm/mmu_notifier.rst
5087	 */
5088	i_mmap_unlock_write(vma->vm_file->f_mapping);
 
5089	mmu_notifier_invalidate_range_end(&range);
5090
5091	return pages << h->order;
5092}
5093
5094int hugetlb_reserve_pages(struct inode *inode,
 
5095					long from, long to,
5096					struct vm_area_struct *vma,
5097					vm_flags_t vm_flags)
5098{
5099	long ret, chg, add = -1;
5100	struct hstate *h = hstate_inode(inode);
5101	struct hugepage_subpool *spool = subpool_inode(inode);
5102	struct resv_map *resv_map;
5103	struct hugetlb_cgroup *h_cg = NULL;
5104	long gbl_reserve, regions_needed = 0;
5105
5106	/* This should never happen */
5107	if (from > to) {
5108		VM_WARN(1, "%s called with a negative range\n", __func__);
5109		return -EINVAL;
5110	}
5111
5112	/*
 
 
 
 
 
 
5113	 * Only apply hugepage reservation if asked. At fault time, an
5114	 * attempt will be made for VM_NORESERVE to allocate a page
5115	 * without using reserves
5116	 */
5117	if (vm_flags & VM_NORESERVE)
5118		return 0;
5119
5120	/*
5121	 * Shared mappings base their reservation on the number of pages that
5122	 * are already allocated on behalf of the file. Private mappings need
5123	 * to reserve the full area even if read-only as mprotect() may be
5124	 * called to make the mapping read-write. Assume !vma is a shm mapping
5125	 */
5126	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5127		/*
5128		 * resv_map can not be NULL as hugetlb_reserve_pages is only
5129		 * called for inodes for which resv_maps were created (see
5130		 * hugetlbfs_get_inode).
5131		 */
5132		resv_map = inode_resv_map(inode);
5133
5134		chg = region_chg(resv_map, from, to, &regions_needed);
5135
5136	} else {
5137		/* Private mapping. */
5138		resv_map = resv_map_alloc();
5139		if (!resv_map)
5140			return -ENOMEM;
5141
5142		chg = to - from;
5143
5144		set_vma_resv_map(vma, resv_map);
5145		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5146	}
5147
5148	if (chg < 0) {
5149		ret = chg;
5150		goto out_err;
5151	}
5152
5153	ret = hugetlb_cgroup_charge_cgroup_rsvd(
5154		hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5155
5156	if (ret < 0) {
5157		ret = -ENOMEM;
5158		goto out_err;
5159	}
5160
5161	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5162		/* For private mappings, the hugetlb_cgroup uncharge info hangs
5163		 * of the resv_map.
5164		 */
5165		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5166	}
5167
5168	/*
5169	 * There must be enough pages in the subpool for the mapping. If
5170	 * the subpool has a minimum size, there may be some global
5171	 * reservations already in place (gbl_reserve).
5172	 */
5173	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5174	if (gbl_reserve < 0) {
5175		ret = -ENOSPC;
5176		goto out_uncharge_cgroup;
5177	}
5178
5179	/*
5180	 * Check enough hugepages are available for the reservation.
5181	 * Hand the pages back to the subpool if there are not
5182	 */
5183	ret = hugetlb_acct_memory(h, gbl_reserve);
5184	if (ret < 0) {
5185		goto out_put_pages;
5186	}
5187
5188	/*
5189	 * Account for the reservations made. Shared mappings record regions
5190	 * that have reservations as they are shared by multiple VMAs.
5191	 * When the last VMA disappears, the region map says how much
5192	 * the reservation was and the page cache tells how much of
5193	 * the reservation was consumed. Private mappings are per-VMA and
5194	 * only the consumed reservations are tracked. When the VMA
5195	 * disappears, the original reservation is the VMA size and the
5196	 * consumed reservations are stored in the map. Hence, nothing
5197	 * else has to be done for private mappings here
5198	 */
5199	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5200		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5201
5202		if (unlikely(add < 0)) {
5203			hugetlb_acct_memory(h, -gbl_reserve);
5204			goto out_put_pages;
5205		} else if (unlikely(chg > add)) {
5206			/*
5207			 * pages in this range were added to the reserve
5208			 * map between region_chg and region_add.  This
5209			 * indicates a race with alloc_huge_page.  Adjust
5210			 * the subpool and reserve counts modified above
5211			 * based on the difference.
5212			 */
5213			long rsv_adjust;
5214
 
 
 
 
5215			hugetlb_cgroup_uncharge_cgroup_rsvd(
5216				hstate_index(h),
5217				(chg - add) * pages_per_huge_page(h), h_cg);
5218
5219			rsv_adjust = hugepage_subpool_put_pages(spool,
5220								chg - add);
5221			hugetlb_acct_memory(h, -rsv_adjust);
 
 
 
 
 
 
 
 
5222		}
5223	}
5224	return 0;
 
5225out_put_pages:
5226	/* put back original number of pages, chg */
5227	(void)hugepage_subpool_put_pages(spool, chg);
5228out_uncharge_cgroup:
5229	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5230					    chg * pages_per_huge_page(h), h_cg);
5231out_err:
 
5232	if (!vma || vma->vm_flags & VM_MAYSHARE)
5233		/* Only call region_abort if the region_chg succeeded but the
5234		 * region_add failed or didn't run.
5235		 */
5236		if (chg >= 0 && add < 0)
5237			region_abort(resv_map, from, to, regions_needed);
5238	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5239		kref_put(&resv_map->refs, resv_map_release);
5240	return ret;
 
 
5241}
5242
5243long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5244								long freed)
5245{
5246	struct hstate *h = hstate_inode(inode);
5247	struct resv_map *resv_map = inode_resv_map(inode);
5248	long chg = 0;
5249	struct hugepage_subpool *spool = subpool_inode(inode);
5250	long gbl_reserve;
5251
5252	/*
5253	 * Since this routine can be called in the evict inode path for all
5254	 * hugetlbfs inodes, resv_map could be NULL.
5255	 */
5256	if (resv_map) {
5257		chg = region_del(resv_map, start, end);
5258		/*
5259		 * region_del() can fail in the rare case where a region
5260		 * must be split and another region descriptor can not be
5261		 * allocated.  If end == LONG_MAX, it will not fail.
5262		 */
5263		if (chg < 0)
5264			return chg;
5265	}
5266
5267	spin_lock(&inode->i_lock);
5268	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5269	spin_unlock(&inode->i_lock);
5270
5271	/*
5272	 * If the subpool has a minimum size, the number of global
5273	 * reservations to be released may be adjusted.
 
 
 
5274	 */
5275	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5276	hugetlb_acct_memory(h, -gbl_reserve);
5277
5278	return 0;
5279}
5280
5281#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5282static unsigned long page_table_shareable(struct vm_area_struct *svma,
5283				struct vm_area_struct *vma,
5284				unsigned long addr, pgoff_t idx)
5285{
5286	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5287				svma->vm_start;
5288	unsigned long sbase = saddr & PUD_MASK;
5289	unsigned long s_end = sbase + PUD_SIZE;
5290
5291	/* Allow segments to share if only one is marked locked */
5292	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5293	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5294
5295	/*
5296	 * match the virtual addresses, permission and the alignment of the
5297	 * page table page.
 
 
5298	 */
5299	if (pmd_index(addr) != pmd_index(saddr) ||
5300	    vm_flags != svm_flags ||
5301	    sbase < svma->vm_start || svma->vm_end < s_end)
 
5302		return 0;
5303
5304	return saddr;
5305}
5306
5307static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5308{
5309	unsigned long base = addr & PUD_MASK;
5310	unsigned long end = base + PUD_SIZE;
5311
 
 
 
 
5312	/*
5313	 * check on proper vm_flags and page table alignment
5314	 */
5315	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5316		return true;
5317	return false;
 
 
 
 
5318}
5319
5320/*
5321 * Determine if start,end range within vma could be mapped by shared pmd.
5322 * If yes, adjust start and end to cover range associated with possible
5323 * shared pmd mappings.
5324 */
5325void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5326				unsigned long *start, unsigned long *end)
5327{
5328	unsigned long a_start, a_end;
 
5329
5330	if (!(vma->vm_flags & VM_MAYSHARE))
 
 
 
 
 
5331		return;
5332
5333	/* Extend the range to be PUD aligned for a worst case scenario */
5334	a_start = ALIGN_DOWN(*start, PUD_SIZE);
5335	a_end = ALIGN(*end, PUD_SIZE);
5336
5337	/*
5338	 * Intersect the range with the vma range, since pmd sharing won't be
5339	 * across vma after all
5340	 */
5341	*start = max(vma->vm_start, a_start);
5342	*end = min(vma->vm_end, a_end);
5343}
5344
5345/*
5346 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5347 * and returns the corresponding pte. While this is not necessary for the
5348 * !shared pmd case because we can allocate the pmd later as well, it makes the
5349 * code much cleaner.
5350 *
5351 * This routine must be called with i_mmap_rwsem held in at least read mode.
5352 * For hugetlbfs, this prevents removal of any page table entries associated
5353 * with the address space.  This is important as we are setting up sharing
5354 * based on existing page table entries (mappings).
5355 */
5356pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
 
5357{
5358	struct vm_area_struct *vma = find_vma(mm, addr);
5359	struct address_space *mapping = vma->vm_file->f_mapping;
5360	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5361			vma->vm_pgoff;
5362	struct vm_area_struct *svma;
5363	unsigned long saddr;
5364	pte_t *spte = NULL;
5365	pte_t *pte;
5366	spinlock_t *ptl;
5367
5368	if (!vma_shareable(vma, addr))
5369		return (pte_t *)pmd_alloc(mm, pud, addr);
5370
 
5371	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5372		if (svma == vma)
5373			continue;
5374
5375		saddr = page_table_shareable(svma, vma, addr, idx);
5376		if (saddr) {
5377			spte = huge_pte_offset(svma->vm_mm, saddr,
5378					       vma_mmu_pagesize(svma));
5379			if (spte) {
5380				get_page(virt_to_page(spte));
5381				break;
5382			}
5383		}
5384	}
5385
5386	if (!spte)
5387		goto out;
5388
5389	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5390	if (pud_none(*pud)) {
5391		pud_populate(mm, pud,
5392				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5393		mm_inc_nr_pmds(mm);
5394	} else {
5395		put_page(virt_to_page(spte));
5396	}
5397	spin_unlock(ptl);
5398out:
5399	pte = (pte_t *)pmd_alloc(mm, pud, addr);
 
5400	return pte;
5401}
5402
5403/*
5404 * unmap huge page backed by shared pte.
5405 *
5406 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5407 * indicated by page_count > 1, unmap is achieved by clearing pud and
5408 * decrementing the ref count. If count == 1, the pte page is not shared.
5409 *
5410 * Called with page table lock held and i_mmap_rwsem held in write mode.
5411 *
5412 * returns: 1 successfully unmapped a shared pte page
5413 *	    0 the underlying pte page is not shared, or it is the last user
5414 */
5415int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5416					unsigned long *addr, pte_t *ptep)
5417{
5418	pgd_t *pgd = pgd_offset(mm, *addr);
5419	p4d_t *p4d = p4d_offset(pgd, *addr);
5420	pud_t *pud = pud_offset(p4d, *addr);
5421
5422	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
 
5423	BUG_ON(page_count(virt_to_page(ptep)) == 0);
5424	if (page_count(virt_to_page(ptep)) == 1)
5425		return 0;
5426
5427	pud_clear(pud);
5428	put_page(virt_to_page(ptep));
5429	mm_dec_nr_pmds(mm);
5430	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5431	return 1;
5432}
5433#define want_pmd_share()	(1)
5434#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5435pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
 
 
5436{
5437	return NULL;
5438}
5439
5440int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5441				unsigned long *addr, pte_t *ptep)
5442{
5443	return 0;
5444}
5445
5446void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5447				unsigned long *start, unsigned long *end)
5448{
5449}
5450#define want_pmd_share()	(0)
 
 
 
 
5451#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5452
5453#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5454pte_t *huge_pte_alloc(struct mm_struct *mm,
5455			unsigned long addr, unsigned long sz)
5456{
5457	pgd_t *pgd;
5458	p4d_t *p4d;
5459	pud_t *pud;
5460	pte_t *pte = NULL;
5461
5462	pgd = pgd_offset(mm, addr);
5463	p4d = p4d_alloc(mm, pgd, addr);
5464	if (!p4d)
5465		return NULL;
5466	pud = pud_alloc(mm, p4d, addr);
5467	if (pud) {
5468		if (sz == PUD_SIZE) {
5469			pte = (pte_t *)pud;
5470		} else {
5471			BUG_ON(sz != PMD_SIZE);
5472			if (want_pmd_share() && pud_none(*pud))
5473				pte = huge_pmd_share(mm, addr, pud);
5474			else
5475				pte = (pte_t *)pmd_alloc(mm, pud, addr);
5476		}
5477	}
5478	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
 
 
 
 
 
5479
5480	return pte;
5481}
5482
5483/*
5484 * huge_pte_offset() - Walk the page table to resolve the hugepage
5485 * entry at address @addr
5486 *
5487 * Return: Pointer to page table entry (PUD or PMD) for
5488 * address @addr, or NULL if a !p*d_present() entry is encountered and the
5489 * size @sz doesn't match the hugepage size at this level of the page
5490 * table.
5491 */
5492pte_t *huge_pte_offset(struct mm_struct *mm,
5493		       unsigned long addr, unsigned long sz)
5494{
5495	pgd_t *pgd;
5496	p4d_t *p4d;
5497	pud_t *pud;
5498	pmd_t *pmd;
5499
5500	pgd = pgd_offset(mm, addr);
5501	if (!pgd_present(*pgd))
5502		return NULL;
5503	p4d = p4d_offset(pgd, addr);
5504	if (!p4d_present(*p4d))
5505		return NULL;
5506
5507	pud = pud_offset(p4d, addr);
5508	if (sz == PUD_SIZE)
5509		/* must be pud huge, non-present or none */
5510		return (pte_t *)pud;
5511	if (!pud_present(*pud))
5512		return NULL;
5513	/* must have a valid entry and size to go further */
5514
5515	pmd = pmd_offset(pud, addr);
5516	/* must be pmd huge, non-present or none */
5517	return (pte_t *)pmd;
5518}
5519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5520#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5521
5522/*
5523 * These functions are overwritable if your architecture needs its own
5524 * behavior.
5525 */
5526struct page * __weak
5527follow_huge_addr(struct mm_struct *mm, unsigned long address,
5528			      int write)
5529{
5530	return ERR_PTR(-EINVAL);
5531}
5532
5533struct page * __weak
5534follow_huge_pd(struct vm_area_struct *vma,
5535	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
5536{
5537	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5538	return NULL;
 
 
 
 
 
 
5539}
5540
5541struct page * __weak
5542follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5543		pmd_t *pmd, int flags)
5544{
5545	struct page *page = NULL;
5546	spinlock_t *ptl;
5547	pte_t pte;
5548
5549	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
5550	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5551			 (FOLL_PIN | FOLL_GET)))
5552		return NULL;
5553
5554retry:
5555	ptl = pmd_lockptr(mm, pmd);
5556	spin_lock(ptl);
5557	/*
5558	 * make sure that the address range covered by this pmd is not
5559	 * unmapped from other threads.
5560	 */
5561	if (!pmd_huge(*pmd))
5562		goto out;
5563	pte = huge_ptep_get((pte_t *)pmd);
5564	if (pte_present(pte)) {
5565		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5566		/*
5567		 * try_grab_page() should always succeed here, because: a) we
5568		 * hold the pmd (ptl) lock, and b) we've just checked that the
5569		 * huge pmd (head) page is present in the page tables. The ptl
5570		 * prevents the head page and tail pages from being rearranged
5571		 * in any way. So this page must be available at this point,
5572		 * unless the page refcount overflowed:
5573		 */
5574		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5575			page = NULL;
5576			goto out;
5577		}
5578	} else {
5579		if (is_hugetlb_entry_migration(pte)) {
5580			spin_unlock(ptl);
5581			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
5582			goto retry;
5583		}
5584		/*
5585		 * hwpoisoned entry is treated as no_page_table in
5586		 * follow_page_mask().
5587		 */
5588	}
5589out:
5590	spin_unlock(ptl);
5591	return page;
5592}
5593
5594struct page * __weak
5595follow_huge_pud(struct mm_struct *mm, unsigned long address,
5596		pud_t *pud, int flags)
5597{
5598	if (flags & (FOLL_GET | FOLL_PIN))
5599		return NULL;
5600
5601	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5602}
5603
5604struct page * __weak
5605follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5606{
5607	if (flags & (FOLL_GET | FOLL_PIN))
5608		return NULL;
5609
5610	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5611}
5612
5613bool isolate_huge_page(struct page *page, struct list_head *list)
5614{
5615	bool ret = true;
5616
5617	VM_BUG_ON_PAGE(!PageHead(page), page);
5618	spin_lock(&hugetlb_lock);
5619	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5620		ret = false;
5621		goto unlock;
5622	}
5623	clear_page_huge_active(page);
5624	list_move_tail(&page->lru, list);
5625unlock:
5626	spin_unlock(&hugetlb_lock);
5627	return ret;
5628}
5629
5630void putback_active_hugepage(struct page *page)
5631{
5632	VM_BUG_ON_PAGE(!PageHead(page), page);
5633	spin_lock(&hugetlb_lock);
5634	set_page_huge_active(page);
5635	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5636	spin_unlock(&hugetlb_lock);
5637	put_page(page);
5638}
5639
5640void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5641{
5642	struct hstate *h = page_hstate(oldpage);
5643
5644	hugetlb_cgroup_migrate(oldpage, newpage);
5645	set_page_owner_migrate_reason(newpage, reason);
5646
5647	/*
5648	 * transfer temporary state of the new huge page. This is
5649	 * reverse to other transitions because the newpage is going to
5650	 * be final while the old one will be freed so it takes over
5651	 * the temporary status.
5652	 *
5653	 * Also note that we have to transfer the per-node surplus state
5654	 * here as well otherwise the global surplus count will not match
5655	 * the per-node's.
5656	 */
5657	if (PageHugeTemporary(newpage)) {
5658		int old_nid = page_to_nid(oldpage);
5659		int new_nid = page_to_nid(newpage);
5660
5661		SetPageHugeTemporary(oldpage);
5662		ClearPageHugeTemporary(newpage);
5663
5664		spin_lock(&hugetlb_lock);
 
 
 
 
 
 
 
5665		if (h->surplus_huge_pages_node[old_nid]) {
5666			h->surplus_huge_pages_node[old_nid]--;
5667			h->surplus_huge_pages_node[new_nid]++;
5668		}
5669		spin_unlock(&hugetlb_lock);
5670	}
5671}
5672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5673#ifdef CONFIG_CMA
5674static bool cma_reserve_called __initdata;
5675
5676static int __init cmdline_parse_hugetlb_cma(char *p)
5677{
5678	hugetlb_cma_size = memparse(p, &p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5679	return 0;
5680}
5681
5682early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5683
5684void __init hugetlb_cma_reserve(int order)
5685{
5686	unsigned long size, reserved, per_node;
 
5687	int nid;
5688
5689	cma_reserve_called = true;
5690
5691	if (!hugetlb_cma_size)
5692		return;
5693
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5694	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5695		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5696			(PAGE_SIZE << order) / SZ_1M);
 
5697		return;
5698	}
5699
5700	/*
5701	 * If 3 GB area is requested on a machine with 4 numa nodes,
5702	 * let's allocate 1 GB on first three nodes and ignore the last one.
5703	 */
5704	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5705	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5706		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
 
 
5707
5708	reserved = 0;
5709	for_each_node_state(nid, N_ONLINE) {
5710		int res;
5711		char name[20];
 
 
 
 
 
 
 
 
 
5712
5713		size = min(per_node, hugetlb_cma_size - reserved);
5714		size = round_up(size, PAGE_SIZE << order);
5715
5716		snprintf(name, 20, "hugetlb%d", nid);
5717		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
 
 
 
 
 
 
5718						 0, false, name,
5719						 &hugetlb_cma[nid], nid);
5720		if (res) {
5721			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5722				res, nid);
5723			continue;
5724		}
5725
5726		reserved += size;
5727		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5728			size / SZ_1M, nid);
5729
5730		if (reserved >= hugetlb_cma_size)
5731			break;
5732	}
 
 
 
 
 
 
 
5733}
5734
5735void __init hugetlb_cma_check(void)
5736{
5737	if (!hugetlb_cma_size || cma_reserve_called)
5738		return;
5739
5740	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5741}
5742
5743#endif /* CONFIG_CMA */