Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Thunderbolt driver - NHI driver
   4 *
   5 * The NHI (native host interface) is the pci device that allows us to send and
   6 * receive frames from the thunderbolt bus.
   7 *
   8 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
   9 * Copyright (C) 2018, Intel Corporation
  10 */
  11
  12#include <linux/pm_runtime.h>
  13#include <linux/slab.h>
  14#include <linux/errno.h>
  15#include <linux/pci.h>
  16#include <linux/dma-mapping.h>
  17#include <linux/interrupt.h>
  18#include <linux/iommu.h>
  19#include <linux/module.h>
  20#include <linux/delay.h>
  21#include <linux/property.h>
  22#include <linux/string_helpers.h>
  23
  24#include "nhi.h"
  25#include "nhi_regs.h"
  26#include "tb.h"
  27
  28#define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
  29
  30#define RING_FIRST_USABLE_HOPID	1
  31/*
  32 * Used with QUIRK_E2E to specify an unused HopID the Rx credits are
  33 * transferred.
  34 */
  35#define RING_E2E_RESERVED_HOPID	RING_FIRST_USABLE_HOPID
  36/*
  37 * Minimal number of vectors when we use MSI-X. Two for control channel
  38 * Rx/Tx and the rest four are for cross domain DMA paths.
  39 */
  40#define MSIX_MIN_VECS		6
  41#define MSIX_MAX_VECS		16
  42
  43#define NHI_MAILBOX_TIMEOUT	500 /* ms */
  44
  45/* Host interface quirks */
  46#define QUIRK_AUTO_CLEAR_INT	BIT(0)
  47#define QUIRK_E2E		BIT(1)
  48
  49static bool host_reset = true;
  50module_param(host_reset, bool, 0444);
  51MODULE_PARM_DESC(host_reset, "reset USBv2 host router (default: true)");
  52
  53static int ring_interrupt_index(const struct tb_ring *ring)
  54{
  55	int bit = ring->hop;
  56	if (!ring->is_tx)
  57		bit += ring->nhi->hop_count;
  58	return bit;
  59}
  60
  61static void nhi_mask_interrupt(struct tb_nhi *nhi, int mask, int ring)
  62{
  63	if (nhi->quirks & QUIRK_AUTO_CLEAR_INT) {
  64		u32 val;
  65
  66		val = ioread32(nhi->iobase + REG_RING_INTERRUPT_BASE + ring);
  67		iowrite32(val & ~mask, nhi->iobase + REG_RING_INTERRUPT_BASE + ring);
  68	} else {
  69		iowrite32(mask, nhi->iobase + REG_RING_INTERRUPT_MASK_CLEAR_BASE + ring);
  70	}
  71}
  72
  73static void nhi_clear_interrupt(struct tb_nhi *nhi, int ring)
  74{
  75	if (nhi->quirks & QUIRK_AUTO_CLEAR_INT)
  76		ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + ring);
  77	else
  78		iowrite32(~0, nhi->iobase + REG_RING_INT_CLEAR + ring);
  79}
  80
  81/*
  82 * ring_interrupt_active() - activate/deactivate interrupts for a single ring
  83 *
  84 * ring->nhi->lock must be held.
  85 */
  86static void ring_interrupt_active(struct tb_ring *ring, bool active)
  87{
  88	int index = ring_interrupt_index(ring) / 32 * 4;
  89	int reg = REG_RING_INTERRUPT_BASE + index;
  90	int interrupt_bit = ring_interrupt_index(ring) & 31;
  91	int mask = 1 << interrupt_bit;
  92	u32 old, new;
  93
  94	if (ring->irq > 0) {
  95		u32 step, shift, ivr, misc;
  96		void __iomem *ivr_base;
  97		int auto_clear_bit;
  98		int index;
  99
 100		if (ring->is_tx)
 101			index = ring->hop;
 102		else
 103			index = ring->hop + ring->nhi->hop_count;
 104
 105		/*
 106		 * Intel routers support a bit that isn't part of
 107		 * the USB4 spec to ask the hardware to clear
 108		 * interrupt status bits automatically since
 109		 * we already know which interrupt was triggered.
 110		 *
 111		 * Other routers explicitly disable auto-clear
 112		 * to prevent conditions that may occur where two
 113		 * MSIX interrupts are simultaneously active and
 114		 * reading the register clears both of them.
 115		 */
 116		misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
 117		if (ring->nhi->quirks & QUIRK_AUTO_CLEAR_INT)
 118			auto_clear_bit = REG_DMA_MISC_INT_AUTO_CLEAR;
 119		else
 120			auto_clear_bit = REG_DMA_MISC_DISABLE_AUTO_CLEAR;
 121		if (!(misc & auto_clear_bit))
 122			iowrite32(misc | auto_clear_bit,
 123				  ring->nhi->iobase + REG_DMA_MISC);
 124
 125		ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
 126		step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
 127		shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
 128		ivr = ioread32(ivr_base + step);
 129		ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
 130		if (active)
 131			ivr |= ring->vector << shift;
 132		iowrite32(ivr, ivr_base + step);
 133	}
 134
 135	old = ioread32(ring->nhi->iobase + reg);
 136	if (active)
 137		new = old | mask;
 138	else
 139		new = old & ~mask;
 140
 141	dev_dbg(&ring->nhi->pdev->dev,
 142		"%s interrupt at register %#x bit %d (%#x -> %#x)\n",
 143		active ? "enabling" : "disabling", reg, interrupt_bit, old, new);
 144
 145	if (new == old)
 146		dev_WARN(&ring->nhi->pdev->dev,
 147					 "interrupt for %s %d is already %s\n",
 148					 RING_TYPE(ring), ring->hop,
 149					 active ? "enabled" : "disabled");
 150
 151	if (active)
 152		iowrite32(new, ring->nhi->iobase + reg);
 153	else
 154		nhi_mask_interrupt(ring->nhi, mask, index);
 155}
 156
 157/*
 158 * nhi_disable_interrupts() - disable interrupts for all rings
 159 *
 160 * Use only during init and shutdown.
 161 */
 162static void nhi_disable_interrupts(struct tb_nhi *nhi)
 163{
 164	int i = 0;
 165	/* disable interrupts */
 166	for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
 167		nhi_mask_interrupt(nhi, ~0, 4 * i);
 168
 169	/* clear interrupt status bits */
 170	for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
 171		nhi_clear_interrupt(nhi, 4 * i);
 172}
 173
 174/* ring helper methods */
 175
 176static void __iomem *ring_desc_base(struct tb_ring *ring)
 177{
 178	void __iomem *io = ring->nhi->iobase;
 179	io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
 180	io += ring->hop * 16;
 181	return io;
 182}
 183
 184static void __iomem *ring_options_base(struct tb_ring *ring)
 185{
 186	void __iomem *io = ring->nhi->iobase;
 187	io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
 188	io += ring->hop * 32;
 189	return io;
 190}
 191
 192static void ring_iowrite_cons(struct tb_ring *ring, u16 cons)
 193{
 194	/*
 195	 * The other 16-bits in the register is read-only and writes to it
 196	 * are ignored by the hardware so we can save one ioread32() by
 197	 * filling the read-only bits with zeroes.
 198	 */
 199	iowrite32(cons, ring_desc_base(ring) + 8);
 200}
 201
 202static void ring_iowrite_prod(struct tb_ring *ring, u16 prod)
 203{
 204	/* See ring_iowrite_cons() above for explanation */
 205	iowrite32(prod << 16, ring_desc_base(ring) + 8);
 206}
 207
 208static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
 209{
 210	iowrite32(value, ring_desc_base(ring) + offset);
 211}
 212
 213static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
 214{
 215	iowrite32(value, ring_desc_base(ring) + offset);
 216	iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
 217}
 218
 219static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
 220{
 221	iowrite32(value, ring_options_base(ring) + offset);
 222}
 223
 224static bool ring_full(struct tb_ring *ring)
 225{
 226	return ((ring->head + 1) % ring->size) == ring->tail;
 227}
 228
 229static bool ring_empty(struct tb_ring *ring)
 230{
 231	return ring->head == ring->tail;
 232}
 233
 234/*
 235 * ring_write_descriptors() - post frames from ring->queue to the controller
 236 *
 237 * ring->lock is held.
 238 */
 239static void ring_write_descriptors(struct tb_ring *ring)
 240{
 241	struct ring_frame *frame, *n;
 242	struct ring_desc *descriptor;
 243	list_for_each_entry_safe(frame, n, &ring->queue, list) {
 244		if (ring_full(ring))
 245			break;
 246		list_move_tail(&frame->list, &ring->in_flight);
 247		descriptor = &ring->descriptors[ring->head];
 248		descriptor->phys = frame->buffer_phy;
 249		descriptor->time = 0;
 250		descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
 251		if (ring->is_tx) {
 252			descriptor->length = frame->size;
 253			descriptor->eof = frame->eof;
 254			descriptor->sof = frame->sof;
 255		}
 256		ring->head = (ring->head + 1) % ring->size;
 257		if (ring->is_tx)
 258			ring_iowrite_prod(ring, ring->head);
 259		else
 260			ring_iowrite_cons(ring, ring->head);
 261	}
 262}
 263
 264/*
 265 * ring_work() - progress completed frames
 266 *
 267 * If the ring is shutting down then all frames are marked as canceled and
 268 * their callbacks are invoked.
 269 *
 270 * Otherwise we collect all completed frame from the ring buffer, write new
 271 * frame to the ring buffer and invoke the callbacks for the completed frames.
 272 */
 273static void ring_work(struct work_struct *work)
 274{
 275	struct tb_ring *ring = container_of(work, typeof(*ring), work);
 276	struct ring_frame *frame;
 277	bool canceled = false;
 278	unsigned long flags;
 279	LIST_HEAD(done);
 280
 281	spin_lock_irqsave(&ring->lock, flags);
 282
 283	if (!ring->running) {
 284		/*  Move all frames to done and mark them as canceled. */
 285		list_splice_tail_init(&ring->in_flight, &done);
 286		list_splice_tail_init(&ring->queue, &done);
 287		canceled = true;
 288		goto invoke_callback;
 289	}
 290
 291	while (!ring_empty(ring)) {
 292		if (!(ring->descriptors[ring->tail].flags
 293				& RING_DESC_COMPLETED))
 294			break;
 295		frame = list_first_entry(&ring->in_flight, typeof(*frame),
 296					 list);
 297		list_move_tail(&frame->list, &done);
 298		if (!ring->is_tx) {
 299			frame->size = ring->descriptors[ring->tail].length;
 300			frame->eof = ring->descriptors[ring->tail].eof;
 301			frame->sof = ring->descriptors[ring->tail].sof;
 302			frame->flags = ring->descriptors[ring->tail].flags;
 303		}
 304		ring->tail = (ring->tail + 1) % ring->size;
 305	}
 306	ring_write_descriptors(ring);
 307
 308invoke_callback:
 309	/* allow callbacks to schedule new work */
 310	spin_unlock_irqrestore(&ring->lock, flags);
 311	while (!list_empty(&done)) {
 312		frame = list_first_entry(&done, typeof(*frame), list);
 313		/*
 314		 * The callback may reenqueue or delete frame.
 315		 * Do not hold on to it.
 316		 */
 317		list_del_init(&frame->list);
 318		if (frame->callback)
 319			frame->callback(ring, frame, canceled);
 320	}
 321}
 322
 323int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
 324{
 325	unsigned long flags;
 326	int ret = 0;
 327
 328	spin_lock_irqsave(&ring->lock, flags);
 329	if (ring->running) {
 330		list_add_tail(&frame->list, &ring->queue);
 331		ring_write_descriptors(ring);
 332	} else {
 333		ret = -ESHUTDOWN;
 334	}
 335	spin_unlock_irqrestore(&ring->lock, flags);
 336	return ret;
 337}
 338EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
 339
 340/**
 341 * tb_ring_poll() - Poll one completed frame from the ring
 342 * @ring: Ring to poll
 343 *
 344 * This function can be called when @start_poll callback of the @ring
 345 * has been called. It will read one completed frame from the ring and
 346 * return it to the caller. Returns %NULL if there is no more completed
 347 * frames.
 348 */
 349struct ring_frame *tb_ring_poll(struct tb_ring *ring)
 350{
 351	struct ring_frame *frame = NULL;
 352	unsigned long flags;
 353
 354	spin_lock_irqsave(&ring->lock, flags);
 355	if (!ring->running)
 356		goto unlock;
 357	if (ring_empty(ring))
 358		goto unlock;
 359
 360	if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
 361		frame = list_first_entry(&ring->in_flight, typeof(*frame),
 362					 list);
 363		list_del_init(&frame->list);
 364
 365		if (!ring->is_tx) {
 366			frame->size = ring->descriptors[ring->tail].length;
 367			frame->eof = ring->descriptors[ring->tail].eof;
 368			frame->sof = ring->descriptors[ring->tail].sof;
 369			frame->flags = ring->descriptors[ring->tail].flags;
 370		}
 371
 372		ring->tail = (ring->tail + 1) % ring->size;
 373	}
 374
 375unlock:
 376	spin_unlock_irqrestore(&ring->lock, flags);
 377	return frame;
 378}
 379EXPORT_SYMBOL_GPL(tb_ring_poll);
 380
 381static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
 382{
 383	int idx = ring_interrupt_index(ring);
 384	int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
 385	int bit = idx % 32;
 386	u32 val;
 387
 388	val = ioread32(ring->nhi->iobase + reg);
 389	if (mask)
 390		val &= ~BIT(bit);
 391	else
 392		val |= BIT(bit);
 393	iowrite32(val, ring->nhi->iobase + reg);
 394}
 395
 396/* Both @nhi->lock and @ring->lock should be held */
 397static void __ring_interrupt(struct tb_ring *ring)
 398{
 399	if (!ring->running)
 400		return;
 401
 402	if (ring->start_poll) {
 403		__ring_interrupt_mask(ring, true);
 404		ring->start_poll(ring->poll_data);
 405	} else {
 406		schedule_work(&ring->work);
 407	}
 408}
 409
 410/**
 411 * tb_ring_poll_complete() - Re-start interrupt for the ring
 412 * @ring: Ring to re-start the interrupt
 413 *
 414 * This will re-start (unmask) the ring interrupt once the user is done
 415 * with polling.
 416 */
 417void tb_ring_poll_complete(struct tb_ring *ring)
 418{
 419	unsigned long flags;
 420
 421	spin_lock_irqsave(&ring->nhi->lock, flags);
 422	spin_lock(&ring->lock);
 423	if (ring->start_poll)
 424		__ring_interrupt_mask(ring, false);
 425	spin_unlock(&ring->lock);
 426	spin_unlock_irqrestore(&ring->nhi->lock, flags);
 427}
 428EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
 429
 430static void ring_clear_msix(const struct tb_ring *ring)
 431{
 432	int bit;
 433
 434	if (ring->nhi->quirks & QUIRK_AUTO_CLEAR_INT)
 435		return;
 436
 437	bit = ring_interrupt_index(ring) & 31;
 438	if (ring->is_tx)
 439		iowrite32(BIT(bit), ring->nhi->iobase + REG_RING_INT_CLEAR);
 440	else
 441		iowrite32(BIT(bit), ring->nhi->iobase + REG_RING_INT_CLEAR +
 442			  4 * (ring->nhi->hop_count / 32));
 443}
 444
 445static irqreturn_t ring_msix(int irq, void *data)
 446{
 447	struct tb_ring *ring = data;
 448
 449	spin_lock(&ring->nhi->lock);
 450	ring_clear_msix(ring);
 451	spin_lock(&ring->lock);
 452	__ring_interrupt(ring);
 453	spin_unlock(&ring->lock);
 454	spin_unlock(&ring->nhi->lock);
 455
 456	return IRQ_HANDLED;
 457}
 458
 459static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
 460{
 461	struct tb_nhi *nhi = ring->nhi;
 462	unsigned long irqflags;
 463	int ret;
 464
 465	if (!nhi->pdev->msix_enabled)
 466		return 0;
 467
 468	ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
 469	if (ret < 0)
 470		return ret;
 471
 472	ring->vector = ret;
 473
 474	ret = pci_irq_vector(ring->nhi->pdev, ring->vector);
 475	if (ret < 0)
 476		goto err_ida_remove;
 477
 478	ring->irq = ret;
 479
 480	irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
 481	ret = request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
 482	if (ret)
 483		goto err_ida_remove;
 484
 485	return 0;
 486
 487err_ida_remove:
 488	ida_simple_remove(&nhi->msix_ida, ring->vector);
 489
 490	return ret;
 491}
 492
 493static void ring_release_msix(struct tb_ring *ring)
 494{
 495	if (ring->irq <= 0)
 496		return;
 497
 498	free_irq(ring->irq, ring);
 499	ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
 500	ring->vector = 0;
 501	ring->irq = 0;
 502}
 503
 504static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
 505{
 506	unsigned int start_hop = RING_FIRST_USABLE_HOPID;
 507	int ret = 0;
 508
 509	if (nhi->quirks & QUIRK_E2E) {
 510		start_hop = RING_FIRST_USABLE_HOPID + 1;
 511		if (ring->flags & RING_FLAG_E2E && !ring->is_tx) {
 512			dev_dbg(&nhi->pdev->dev, "quirking E2E TX HopID %u -> %u\n",
 513				ring->e2e_tx_hop, RING_E2E_RESERVED_HOPID);
 514			ring->e2e_tx_hop = RING_E2E_RESERVED_HOPID;
 515		}
 516	}
 517
 518	spin_lock_irq(&nhi->lock);
 519
 520	if (ring->hop < 0) {
 521		unsigned int i;
 522
 523		/*
 524		 * Automatically allocate HopID from the non-reserved
 525		 * range 1 .. hop_count - 1.
 526		 */
 527		for (i = start_hop; i < nhi->hop_count; i++) {
 528			if (ring->is_tx) {
 529				if (!nhi->tx_rings[i]) {
 530					ring->hop = i;
 531					break;
 532				}
 533			} else {
 534				if (!nhi->rx_rings[i]) {
 535					ring->hop = i;
 536					break;
 537				}
 538			}
 539		}
 540	}
 541
 542	if (ring->hop > 0 && ring->hop < start_hop) {
 543		dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
 544		ret = -EINVAL;
 545		goto err_unlock;
 546	}
 547	if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
 548		dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
 549		ret = -EINVAL;
 550		goto err_unlock;
 551	}
 552	if (ring->is_tx && nhi->tx_rings[ring->hop]) {
 553		dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
 554			 ring->hop);
 555		ret = -EBUSY;
 556		goto err_unlock;
 557	}
 558	if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
 559		dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
 560			 ring->hop);
 561		ret = -EBUSY;
 562		goto err_unlock;
 563	}
 564
 565	if (ring->is_tx)
 566		nhi->tx_rings[ring->hop] = ring;
 567	else
 568		nhi->rx_rings[ring->hop] = ring;
 569
 570err_unlock:
 571	spin_unlock_irq(&nhi->lock);
 572
 573	return ret;
 574}
 575
 576static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
 577				     bool transmit, unsigned int flags,
 578				     int e2e_tx_hop, u16 sof_mask, u16 eof_mask,
 579				     void (*start_poll)(void *),
 580				     void *poll_data)
 581{
 582	struct tb_ring *ring = NULL;
 583
 584	dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
 585		transmit ? "TX" : "RX", hop, size);
 586
 587	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
 588	if (!ring)
 589		return NULL;
 590
 591	spin_lock_init(&ring->lock);
 592	INIT_LIST_HEAD(&ring->queue);
 593	INIT_LIST_HEAD(&ring->in_flight);
 594	INIT_WORK(&ring->work, ring_work);
 595
 596	ring->nhi = nhi;
 597	ring->hop = hop;
 598	ring->is_tx = transmit;
 599	ring->size = size;
 600	ring->flags = flags;
 601	ring->e2e_tx_hop = e2e_tx_hop;
 602	ring->sof_mask = sof_mask;
 603	ring->eof_mask = eof_mask;
 604	ring->head = 0;
 605	ring->tail = 0;
 606	ring->running = false;
 607	ring->start_poll = start_poll;
 608	ring->poll_data = poll_data;
 609
 610	ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
 611			size * sizeof(*ring->descriptors),
 612			&ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
 613	if (!ring->descriptors)
 614		goto err_free_ring;
 615
 616	if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
 617		goto err_free_descs;
 618
 619	if (nhi_alloc_hop(nhi, ring))
 620		goto err_release_msix;
 621
 622	return ring;
 623
 624err_release_msix:
 625	ring_release_msix(ring);
 626err_free_descs:
 627	dma_free_coherent(&ring->nhi->pdev->dev,
 628			  ring->size * sizeof(*ring->descriptors),
 629			  ring->descriptors, ring->descriptors_dma);
 630err_free_ring:
 631	kfree(ring);
 632
 633	return NULL;
 634}
 635
 636/**
 637 * tb_ring_alloc_tx() - Allocate DMA ring for transmit
 638 * @nhi: Pointer to the NHI the ring is to be allocated
 639 * @hop: HopID (ring) to allocate
 640 * @size: Number of entries in the ring
 641 * @flags: Flags for the ring
 642 */
 643struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
 644				 unsigned int flags)
 645{
 646	return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, 0, NULL, NULL);
 647}
 648EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
 649
 650/**
 651 * tb_ring_alloc_rx() - Allocate DMA ring for receive
 652 * @nhi: Pointer to the NHI the ring is to be allocated
 653 * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
 654 * @size: Number of entries in the ring
 655 * @flags: Flags for the ring
 656 * @e2e_tx_hop: Transmit HopID when E2E is enabled in @flags
 657 * @sof_mask: Mask of PDF values that start a frame
 658 * @eof_mask: Mask of PDF values that end a frame
 659 * @start_poll: If not %NULL the ring will call this function when an
 660 *		interrupt is triggered and masked, instead of callback
 661 *		in each Rx frame.
 662 * @poll_data: Optional data passed to @start_poll
 663 */
 664struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
 665				 unsigned int flags, int e2e_tx_hop,
 666				 u16 sof_mask, u16 eof_mask,
 667				 void (*start_poll)(void *), void *poll_data)
 668{
 669	return tb_ring_alloc(nhi, hop, size, false, flags, e2e_tx_hop, sof_mask, eof_mask,
 670			     start_poll, poll_data);
 671}
 672EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
 673
 674/**
 675 * tb_ring_start() - enable a ring
 676 * @ring: Ring to start
 677 *
 678 * Must not be invoked in parallel with tb_ring_stop().
 679 */
 680void tb_ring_start(struct tb_ring *ring)
 681{
 682	u16 frame_size;
 683	u32 flags;
 684
 685	spin_lock_irq(&ring->nhi->lock);
 686	spin_lock(&ring->lock);
 687	if (ring->nhi->going_away)
 688		goto err;
 689	if (ring->running) {
 690		dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
 691		goto err;
 692	}
 693	dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
 694		RING_TYPE(ring), ring->hop);
 695
 696	if (ring->flags & RING_FLAG_FRAME) {
 697		/* Means 4096 */
 698		frame_size = 0;
 699		flags = RING_FLAG_ENABLE;
 700	} else {
 701		frame_size = TB_FRAME_SIZE;
 702		flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
 703	}
 704
 705	ring_iowrite64desc(ring, ring->descriptors_dma, 0);
 706	if (ring->is_tx) {
 707		ring_iowrite32desc(ring, ring->size, 12);
 708		ring_iowrite32options(ring, 0, 4); /* time releated ? */
 709		ring_iowrite32options(ring, flags, 0);
 710	} else {
 711		u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
 712
 713		ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
 714		ring_iowrite32options(ring, sof_eof_mask, 4);
 715		ring_iowrite32options(ring, flags, 0);
 716	}
 717
 718	/*
 719	 * Now that the ring valid bit is set we can configure E2E if
 720	 * enabled for the ring.
 721	 */
 722	if (ring->flags & RING_FLAG_E2E) {
 723		if (!ring->is_tx) {
 724			u32 hop;
 725
 726			hop = ring->e2e_tx_hop << REG_RX_OPTIONS_E2E_HOP_SHIFT;
 727			hop &= REG_RX_OPTIONS_E2E_HOP_MASK;
 728			flags |= hop;
 729
 730			dev_dbg(&ring->nhi->pdev->dev,
 731				"enabling E2E for %s %d with TX HopID %d\n",
 732				RING_TYPE(ring), ring->hop, ring->e2e_tx_hop);
 733		} else {
 734			dev_dbg(&ring->nhi->pdev->dev, "enabling E2E for %s %d\n",
 735				RING_TYPE(ring), ring->hop);
 736		}
 737
 738		flags |= RING_FLAG_E2E_FLOW_CONTROL;
 739		ring_iowrite32options(ring, flags, 0);
 740	}
 741
 742	ring_interrupt_active(ring, true);
 743	ring->running = true;
 744err:
 745	spin_unlock(&ring->lock);
 746	spin_unlock_irq(&ring->nhi->lock);
 747}
 748EXPORT_SYMBOL_GPL(tb_ring_start);
 749
 750/**
 751 * tb_ring_stop() - shutdown a ring
 752 * @ring: Ring to stop
 753 *
 754 * Must not be invoked from a callback.
 755 *
 756 * This method will disable the ring. Further calls to
 757 * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
 758 * called.
 759 *
 760 * All enqueued frames will be canceled and their callbacks will be executed
 761 * with frame->canceled set to true (on the callback thread). This method
 762 * returns only after all callback invocations have finished.
 763 */
 764void tb_ring_stop(struct tb_ring *ring)
 765{
 766	spin_lock_irq(&ring->nhi->lock);
 767	spin_lock(&ring->lock);
 768	dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
 769		RING_TYPE(ring), ring->hop);
 770	if (ring->nhi->going_away)
 771		goto err;
 772	if (!ring->running) {
 773		dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
 774			 RING_TYPE(ring), ring->hop);
 775		goto err;
 776	}
 777	ring_interrupt_active(ring, false);
 778
 779	ring_iowrite32options(ring, 0, 0);
 780	ring_iowrite64desc(ring, 0, 0);
 781	ring_iowrite32desc(ring, 0, 8);
 782	ring_iowrite32desc(ring, 0, 12);
 783	ring->head = 0;
 784	ring->tail = 0;
 785	ring->running = false;
 786
 787err:
 788	spin_unlock(&ring->lock);
 789	spin_unlock_irq(&ring->nhi->lock);
 790
 791	/*
 792	 * schedule ring->work to invoke callbacks on all remaining frames.
 793	 */
 794	schedule_work(&ring->work);
 795	flush_work(&ring->work);
 796}
 797EXPORT_SYMBOL_GPL(tb_ring_stop);
 798
 799/*
 800 * tb_ring_free() - free ring
 801 *
 802 * When this method returns all invocations of ring->callback will have
 803 * finished.
 804 *
 805 * Ring must be stopped.
 806 *
 807 * Must NOT be called from ring_frame->callback!
 808 */
 809void tb_ring_free(struct tb_ring *ring)
 810{
 811	spin_lock_irq(&ring->nhi->lock);
 812	/*
 813	 * Dissociate the ring from the NHI. This also ensures that
 814	 * nhi_interrupt_work cannot reschedule ring->work.
 815	 */
 816	if (ring->is_tx)
 817		ring->nhi->tx_rings[ring->hop] = NULL;
 818	else
 819		ring->nhi->rx_rings[ring->hop] = NULL;
 820
 821	if (ring->running) {
 822		dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
 823			 RING_TYPE(ring), ring->hop);
 824	}
 825	spin_unlock_irq(&ring->nhi->lock);
 826
 827	ring_release_msix(ring);
 828
 829	dma_free_coherent(&ring->nhi->pdev->dev,
 830			  ring->size * sizeof(*ring->descriptors),
 831			  ring->descriptors, ring->descriptors_dma);
 832
 833	ring->descriptors = NULL;
 834	ring->descriptors_dma = 0;
 835
 836
 837	dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
 838		ring->hop);
 839
 840	/*
 841	 * ring->work can no longer be scheduled (it is scheduled only
 842	 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
 843	 * to finish before freeing the ring.
 844	 */
 845	flush_work(&ring->work);
 846	kfree(ring);
 847}
 848EXPORT_SYMBOL_GPL(tb_ring_free);
 849
 850/**
 851 * nhi_mailbox_cmd() - Send a command through NHI mailbox
 852 * @nhi: Pointer to the NHI structure
 853 * @cmd: Command to send
 854 * @data: Data to be send with the command
 855 *
 856 * Sends mailbox command to the firmware running on NHI. Returns %0 in
 857 * case of success and negative errno in case of failure.
 858 */
 859int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
 860{
 861	ktime_t timeout;
 862	u32 val;
 863
 864	iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
 865
 866	val = ioread32(nhi->iobase + REG_INMAIL_CMD);
 867	val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
 868	val |= REG_INMAIL_OP_REQUEST | cmd;
 869	iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
 870
 871	timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
 872	do {
 873		val = ioread32(nhi->iobase + REG_INMAIL_CMD);
 874		if (!(val & REG_INMAIL_OP_REQUEST))
 875			break;
 876		usleep_range(10, 20);
 877	} while (ktime_before(ktime_get(), timeout));
 878
 879	if (val & REG_INMAIL_OP_REQUEST)
 880		return -ETIMEDOUT;
 881	if (val & REG_INMAIL_ERROR)
 882		return -EIO;
 883
 884	return 0;
 885}
 886
 887/**
 888 * nhi_mailbox_mode() - Return current firmware operation mode
 889 * @nhi: Pointer to the NHI structure
 890 *
 891 * The function reads current firmware operation mode using NHI mailbox
 892 * registers and returns it to the caller.
 893 */
 894enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
 895{
 896	u32 val;
 897
 898	val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
 899	val &= REG_OUTMAIL_CMD_OPMODE_MASK;
 900	val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
 901
 902	return (enum nhi_fw_mode)val;
 903}
 904
 905static void nhi_interrupt_work(struct work_struct *work)
 906{
 907	struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
 908	int value = 0; /* Suppress uninitialized usage warning. */
 909	int bit;
 910	int hop = -1;
 911	int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
 912	struct tb_ring *ring;
 913
 914	spin_lock_irq(&nhi->lock);
 915
 916	/*
 917	 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
 918	 * (TX, RX, RX overflow). We iterate over the bits and read a new
 919	 * dwords as required. The registers are cleared on read.
 920	 */
 921	for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
 922		if (bit % 32 == 0)
 923			value = ioread32(nhi->iobase
 924					 + REG_RING_NOTIFY_BASE
 925					 + 4 * (bit / 32));
 926		if (++hop == nhi->hop_count) {
 927			hop = 0;
 928			type++;
 929		}
 930		if ((value & (1 << (bit % 32))) == 0)
 931			continue;
 932		if (type == 2) {
 933			dev_warn(&nhi->pdev->dev,
 934				 "RX overflow for ring %d\n",
 935				 hop);
 936			continue;
 937		}
 938		if (type == 0)
 939			ring = nhi->tx_rings[hop];
 940		else
 941			ring = nhi->rx_rings[hop];
 942		if (ring == NULL) {
 943			dev_warn(&nhi->pdev->dev,
 944				 "got interrupt for inactive %s ring %d\n",
 945				 type ? "RX" : "TX",
 946				 hop);
 947			continue;
 948		}
 949
 950		spin_lock(&ring->lock);
 951		__ring_interrupt(ring);
 952		spin_unlock(&ring->lock);
 953	}
 954	spin_unlock_irq(&nhi->lock);
 955}
 956
 957static irqreturn_t nhi_msi(int irq, void *data)
 958{
 959	struct tb_nhi *nhi = data;
 960	schedule_work(&nhi->interrupt_work);
 961	return IRQ_HANDLED;
 962}
 963
 964static int __nhi_suspend_noirq(struct device *dev, bool wakeup)
 965{
 966	struct pci_dev *pdev = to_pci_dev(dev);
 967	struct tb *tb = pci_get_drvdata(pdev);
 968	struct tb_nhi *nhi = tb->nhi;
 969	int ret;
 970
 971	ret = tb_domain_suspend_noirq(tb);
 972	if (ret)
 973		return ret;
 974
 975	if (nhi->ops && nhi->ops->suspend_noirq) {
 976		ret = nhi->ops->suspend_noirq(tb->nhi, wakeup);
 977		if (ret)
 978			return ret;
 979	}
 980
 981	return 0;
 982}
 983
 984static int nhi_suspend_noirq(struct device *dev)
 985{
 986	return __nhi_suspend_noirq(dev, device_may_wakeup(dev));
 987}
 988
 989static int nhi_freeze_noirq(struct device *dev)
 990{
 991	struct pci_dev *pdev = to_pci_dev(dev);
 992	struct tb *tb = pci_get_drvdata(pdev);
 993
 994	return tb_domain_freeze_noirq(tb);
 995}
 996
 997static int nhi_thaw_noirq(struct device *dev)
 998{
 999	struct pci_dev *pdev = to_pci_dev(dev);
1000	struct tb *tb = pci_get_drvdata(pdev);
1001
1002	return tb_domain_thaw_noirq(tb);
1003}
1004
1005static bool nhi_wake_supported(struct pci_dev *pdev)
1006{
1007	u8 val;
1008
1009	/*
1010	 * If power rails are sustainable for wakeup from S4 this
1011	 * property is set by the BIOS.
1012	 */
1013	if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val))
1014		return !!val;
1015
1016	return true;
1017}
1018
1019static int nhi_poweroff_noirq(struct device *dev)
1020{
1021	struct pci_dev *pdev = to_pci_dev(dev);
1022	bool wakeup;
1023
1024	wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev);
1025	return __nhi_suspend_noirq(dev, wakeup);
1026}
1027
1028static void nhi_enable_int_throttling(struct tb_nhi *nhi)
1029{
1030	/* Throttling is specified in 256ns increments */
1031	u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
1032	unsigned int i;
1033
1034	/*
1035	 * Configure interrupt throttling for all vectors even if we
1036	 * only use few.
1037	 */
1038	for (i = 0; i < MSIX_MAX_VECS; i++) {
1039		u32 reg = REG_INT_THROTTLING_RATE + i * 4;
1040		iowrite32(throttle, nhi->iobase + reg);
1041	}
1042}
1043
1044static int nhi_resume_noirq(struct device *dev)
1045{
1046	struct pci_dev *pdev = to_pci_dev(dev);
1047	struct tb *tb = pci_get_drvdata(pdev);
1048	struct tb_nhi *nhi = tb->nhi;
1049	int ret;
1050
1051	/*
1052	 * Check that the device is still there. It may be that the user
1053	 * unplugged last device which causes the host controller to go
1054	 * away on PCs.
1055	 */
1056	if (!pci_device_is_present(pdev)) {
1057		nhi->going_away = true;
1058	} else {
1059		if (nhi->ops && nhi->ops->resume_noirq) {
1060			ret = nhi->ops->resume_noirq(nhi);
1061			if (ret)
1062				return ret;
1063		}
1064		nhi_enable_int_throttling(tb->nhi);
1065	}
1066
1067	return tb_domain_resume_noirq(tb);
1068}
1069
1070static int nhi_suspend(struct device *dev)
1071{
1072	struct pci_dev *pdev = to_pci_dev(dev);
1073	struct tb *tb = pci_get_drvdata(pdev);
1074
1075	return tb_domain_suspend(tb);
1076}
1077
1078static void nhi_complete(struct device *dev)
1079{
1080	struct pci_dev *pdev = to_pci_dev(dev);
1081	struct tb *tb = pci_get_drvdata(pdev);
1082
1083	/*
1084	 * If we were runtime suspended when system suspend started,
1085	 * schedule runtime resume now. It should bring the domain back
1086	 * to functional state.
1087	 */
1088	if (pm_runtime_suspended(&pdev->dev))
1089		pm_runtime_resume(&pdev->dev);
1090	else
1091		tb_domain_complete(tb);
1092}
1093
1094static int nhi_runtime_suspend(struct device *dev)
1095{
1096	struct pci_dev *pdev = to_pci_dev(dev);
1097	struct tb *tb = pci_get_drvdata(pdev);
1098	struct tb_nhi *nhi = tb->nhi;
1099	int ret;
1100
1101	ret = tb_domain_runtime_suspend(tb);
1102	if (ret)
1103		return ret;
1104
1105	if (nhi->ops && nhi->ops->runtime_suspend) {
1106		ret = nhi->ops->runtime_suspend(tb->nhi);
1107		if (ret)
1108			return ret;
1109	}
1110	return 0;
1111}
1112
1113static int nhi_runtime_resume(struct device *dev)
1114{
1115	struct pci_dev *pdev = to_pci_dev(dev);
1116	struct tb *tb = pci_get_drvdata(pdev);
1117	struct tb_nhi *nhi = tb->nhi;
1118	int ret;
1119
1120	if (nhi->ops && nhi->ops->runtime_resume) {
1121		ret = nhi->ops->runtime_resume(nhi);
1122		if (ret)
1123			return ret;
1124	}
1125
1126	nhi_enable_int_throttling(nhi);
1127	return tb_domain_runtime_resume(tb);
1128}
1129
1130static void nhi_shutdown(struct tb_nhi *nhi)
1131{
1132	int i;
1133
1134	dev_dbg(&nhi->pdev->dev, "shutdown\n");
1135
1136	for (i = 0; i < nhi->hop_count; i++) {
1137		if (nhi->tx_rings[i])
1138			dev_WARN(&nhi->pdev->dev,
1139				 "TX ring %d is still active\n", i);
1140		if (nhi->rx_rings[i])
1141			dev_WARN(&nhi->pdev->dev,
1142				 "RX ring %d is still active\n", i);
1143	}
1144	nhi_disable_interrupts(nhi);
1145	/*
1146	 * We have to release the irq before calling flush_work. Otherwise an
1147	 * already executing IRQ handler could call schedule_work again.
1148	 */
1149	if (!nhi->pdev->msix_enabled) {
1150		devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
1151		flush_work(&nhi->interrupt_work);
1152	}
1153	ida_destroy(&nhi->msix_ida);
1154
1155	if (nhi->ops && nhi->ops->shutdown)
1156		nhi->ops->shutdown(nhi);
1157}
1158
1159static void nhi_check_quirks(struct tb_nhi *nhi)
1160{
1161	if (nhi->pdev->vendor == PCI_VENDOR_ID_INTEL) {
1162		/*
1163		 * Intel hardware supports auto clear of the interrupt
1164		 * status register right after interrupt is being
1165		 * issued.
1166		 */
1167		nhi->quirks |= QUIRK_AUTO_CLEAR_INT;
1168
1169		switch (nhi->pdev->device) {
1170		case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI:
1171		case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI:
1172			/*
1173			 * Falcon Ridge controller needs the end-to-end
1174			 * flow control workaround to avoid losing Rx
1175			 * packets when RING_FLAG_E2E is set.
1176			 */
1177			nhi->quirks |= QUIRK_E2E;
1178			break;
1179		}
1180	}
1181}
1182
1183static int nhi_check_iommu_pdev(struct pci_dev *pdev, void *data)
1184{
1185	if (!pdev->external_facing ||
1186	    !device_iommu_capable(&pdev->dev, IOMMU_CAP_PRE_BOOT_PROTECTION))
1187		return 0;
1188	*(bool *)data = true;
1189	return 1; /* Stop walking */
1190}
1191
1192static void nhi_check_iommu(struct tb_nhi *nhi)
1193{
1194	struct pci_bus *bus = nhi->pdev->bus;
1195	bool port_ok = false;
1196
1197	/*
1198	 * Ideally what we'd do here is grab every PCI device that
1199	 * represents a tunnelling adapter for this NHI and check their
1200	 * status directly, but unfortunately USB4 seems to make it
1201	 * obnoxiously difficult to reliably make any correlation.
1202	 *
1203	 * So for now we'll have to bodge it... Hoping that the system
1204	 * is at least sane enough that an adapter is in the same PCI
1205	 * segment as its NHI, if we can find *something* on that segment
1206	 * which meets the requirements for Kernel DMA Protection, we'll
1207	 * take that to imply that firmware is aware and has (hopefully)
1208	 * done the right thing in general. We need to know that the PCI
1209	 * layer has seen the ExternalFacingPort property which will then
1210	 * inform the IOMMU layer to enforce the complete "untrusted DMA"
1211	 * flow, but also that the IOMMU driver itself can be trusted not
1212	 * to have been subverted by a pre-boot DMA attack.
1213	 */
1214	while (bus->parent)
1215		bus = bus->parent;
1216
1217	pci_walk_bus(bus, nhi_check_iommu_pdev, &port_ok);
1218
1219	nhi->iommu_dma_protection = port_ok;
1220	dev_dbg(&nhi->pdev->dev, "IOMMU DMA protection is %s\n",
1221		str_enabled_disabled(port_ok));
1222}
1223
1224static void nhi_reset(struct tb_nhi *nhi)
1225{
1226	ktime_t timeout;
1227	u32 val;
1228
1229	val = ioread32(nhi->iobase + REG_CAPS);
1230	/* Reset only v2 and later routers */
1231	if (FIELD_GET(REG_CAPS_VERSION_MASK, val) < REG_CAPS_VERSION_2)
1232		return;
1233
1234	if (!host_reset) {
1235		dev_dbg(&nhi->pdev->dev, "skipping host router reset\n");
1236		return;
1237	}
1238
1239	iowrite32(REG_RESET_HRR, nhi->iobase + REG_RESET);
1240	msleep(100);
1241
1242	timeout = ktime_add_ms(ktime_get(), 500);
1243	do {
1244		val = ioread32(nhi->iobase + REG_RESET);
1245		if (!(val & REG_RESET_HRR)) {
1246			dev_warn(&nhi->pdev->dev, "host router reset successful\n");
1247			return;
1248		}
1249		usleep_range(10, 20);
1250	} while (ktime_before(ktime_get(), timeout));
1251
1252	dev_warn(&nhi->pdev->dev, "timeout resetting host router\n");
1253}
1254
1255static int nhi_init_msi(struct tb_nhi *nhi)
1256{
1257	struct pci_dev *pdev = nhi->pdev;
1258	struct device *dev = &pdev->dev;
1259	int res, irq, nvec;
1260
1261	/* In case someone left them on. */
1262	nhi_disable_interrupts(nhi);
1263
1264	nhi_enable_int_throttling(nhi);
1265
1266	ida_init(&nhi->msix_ida);
1267
1268	/*
1269	 * The NHI has 16 MSI-X vectors or a single MSI. We first try to
1270	 * get all MSI-X vectors and if we succeed, each ring will have
1271	 * one MSI-X. If for some reason that does not work out, we
1272	 * fallback to a single MSI.
1273	 */
1274	nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
1275				     PCI_IRQ_MSIX);
1276	if (nvec < 0) {
1277		nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
1278		if (nvec < 0)
1279			return nvec;
1280
1281		INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
1282
1283		irq = pci_irq_vector(nhi->pdev, 0);
1284		if (irq < 0)
1285			return irq;
1286
1287		res = devm_request_irq(&pdev->dev, irq, nhi_msi,
1288				       IRQF_NO_SUSPEND, "thunderbolt", nhi);
1289		if (res)
1290			return dev_err_probe(dev, res, "request_irq failed, aborting\n");
 
 
1291	}
1292
1293	return 0;
1294}
1295
1296static bool nhi_imr_valid(struct pci_dev *pdev)
1297{
1298	u8 val;
1299
1300	if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val))
1301		return !!val;
1302
1303	return true;
1304}
1305
1306static struct tb *nhi_select_cm(struct tb_nhi *nhi)
1307{
1308	struct tb *tb;
1309
1310	/*
1311	 * USB4 case is simple. If we got control of any of the
1312	 * capabilities, we use software CM.
1313	 */
1314	if (tb_acpi_is_native())
1315		return tb_probe(nhi);
1316
1317	/*
1318	 * Either firmware based CM is running (we did not get control
1319	 * from the firmware) or this is pre-USB4 PC so try first
1320	 * firmware CM and then fallback to software CM.
1321	 */
1322	tb = icm_probe(nhi);
1323	if (!tb)
1324		tb = tb_probe(nhi);
1325
1326	return tb;
1327}
1328
1329static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1330{
1331	struct device *dev = &pdev->dev;
1332	struct tb_nhi *nhi;
1333	struct tb *tb;
1334	int res;
1335
1336	if (!nhi_imr_valid(pdev))
1337		return dev_err_probe(dev, -ENODEV, "firmware image not valid, aborting\n");
 
 
1338
1339	res = pcim_enable_device(pdev);
1340	if (res)
1341		return dev_err_probe(dev, res, "cannot enable PCI device, aborting\n");
 
 
1342
1343	res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1344	if (res)
1345		return dev_err_probe(dev, res, "cannot obtain PCI resources, aborting\n");
 
 
1346
1347	nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1348	if (!nhi)
1349		return -ENOMEM;
1350
1351	nhi->pdev = pdev;
1352	nhi->ops = (const struct tb_nhi_ops *)id->driver_data;
1353	/* cannot fail - table is allocated in pcim_iomap_regions */
1354	nhi->iobase = pcim_iomap_table(pdev)[0];
1355	nhi->hop_count = ioread32(nhi->iobase + REG_CAPS) & 0x3ff;
1356	dev_dbg(dev, "total paths: %d\n", nhi->hop_count);
1357
1358	nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1359				     sizeof(*nhi->tx_rings), GFP_KERNEL);
1360	nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1361				     sizeof(*nhi->rx_rings), GFP_KERNEL);
1362	if (!nhi->tx_rings || !nhi->rx_rings)
1363		return -ENOMEM;
1364
1365	nhi_check_quirks(nhi);
1366	nhi_check_iommu(nhi);
1367
1368	nhi_reset(nhi);
1369
1370	res = nhi_init_msi(nhi);
1371	if (res)
1372		return dev_err_probe(dev, res, "cannot enable MSI, aborting\n");
 
 
1373
1374	spin_lock_init(&nhi->lock);
1375
1376	res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1377	if (res)
1378		return dev_err_probe(dev, res, "failed to set DMA mask\n");
 
 
 
 
1379
1380	pci_set_master(pdev);
1381
1382	if (nhi->ops && nhi->ops->init) {
1383		res = nhi->ops->init(nhi);
1384		if (res)
1385			return res;
1386	}
1387
1388	tb = nhi_select_cm(nhi);
1389	if (!tb)
1390		return dev_err_probe(dev, -ENODEV,
 
 
1391			"failed to determine connection manager, aborting\n");
 
 
1392
1393	dev_dbg(dev, "NHI initialized, starting thunderbolt\n");
1394
1395	res = tb_domain_add(tb);
1396	if (res) {
1397		/*
1398		 * At this point the RX/TX rings might already have been
1399		 * activated. Do a proper shutdown.
1400		 */
1401		tb_domain_put(tb);
1402		nhi_shutdown(nhi);
1403		return res;
1404	}
1405	pci_set_drvdata(pdev, tb);
1406
1407	device_wakeup_enable(&pdev->dev);
1408
1409	pm_runtime_allow(&pdev->dev);
1410	pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1411	pm_runtime_use_autosuspend(&pdev->dev);
1412	pm_runtime_put_autosuspend(&pdev->dev);
1413
1414	return 0;
1415}
1416
1417static void nhi_remove(struct pci_dev *pdev)
1418{
1419	struct tb *tb = pci_get_drvdata(pdev);
1420	struct tb_nhi *nhi = tb->nhi;
1421
1422	pm_runtime_get_sync(&pdev->dev);
1423	pm_runtime_dont_use_autosuspend(&pdev->dev);
1424	pm_runtime_forbid(&pdev->dev);
1425
1426	tb_domain_remove(tb);
1427	nhi_shutdown(nhi);
1428}
1429
1430/*
1431 * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1432 * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1433 * resume_noirq until we are done.
1434 */
1435static const struct dev_pm_ops nhi_pm_ops = {
1436	.suspend_noirq = nhi_suspend_noirq,
1437	.resume_noirq = nhi_resume_noirq,
1438	.freeze_noirq = nhi_freeze_noirq,  /*
1439					    * we just disable hotplug, the
1440					    * pci-tunnels stay alive.
1441					    */
1442	.thaw_noirq = nhi_thaw_noirq,
1443	.restore_noirq = nhi_resume_noirq,
1444	.suspend = nhi_suspend,
 
1445	.poweroff_noirq = nhi_poweroff_noirq,
1446	.poweroff = nhi_suspend,
1447	.complete = nhi_complete,
1448	.runtime_suspend = nhi_runtime_suspend,
1449	.runtime_resume = nhi_runtime_resume,
1450};
1451
1452static struct pci_device_id nhi_ids[] = {
1453	/*
1454	 * We have to specify class, the TB bridges use the same device and
1455	 * vendor (sub)id on gen 1 and gen 2 controllers.
1456	 */
1457	{
1458		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1459		.vendor = PCI_VENDOR_ID_INTEL,
1460		.device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1461		.subvendor = 0x2222, .subdevice = 0x1111,
1462	},
1463	{
1464		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1465		.vendor = PCI_VENDOR_ID_INTEL,
1466		.device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1467		.subvendor = 0x2222, .subdevice = 0x1111,
1468	},
1469	{
1470		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1471		.vendor = PCI_VENDOR_ID_INTEL,
1472		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1473		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1474	},
1475	{
1476		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1477		.vendor = PCI_VENDOR_ID_INTEL,
1478		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1479		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1480	},
1481
1482	/* Thunderbolt 3 */
1483	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1484	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1485	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1486	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1487	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1488	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1489	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1490	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1491	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1492	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1493	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0),
1494	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1495	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1),
1496	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1497	/* Thunderbolt 4 */
1498	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0),
1499	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1500	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1),
1501	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1502	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI0),
1503	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1504	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI1),
1505	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1506	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI0),
1507	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1508	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI1),
1509	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1510	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_RPL_NHI0),
1511	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1512	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_RPL_NHI1),
1513	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1514	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_MTL_M_NHI0),
1515	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1516	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_MTL_P_NHI0),
1517	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1518	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_MTL_P_NHI1),
1519	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1520	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_LNL_NHI0),
1521	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1522	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_LNL_NHI1),
1523	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1524	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_BARLOW_RIDGE_HOST_80G_NHI) },
1525	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_BARLOW_RIDGE_HOST_40G_NHI) },
1526
1527	/* Any USB4 compliant host */
1528	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) },
1529
1530	{ 0,}
1531};
1532
1533MODULE_DEVICE_TABLE(pci, nhi_ids);
1534MODULE_DESCRIPTION("Thunderbolt/USB4 core driver");
1535MODULE_LICENSE("GPL");
1536
1537static struct pci_driver nhi_driver = {
1538	.name = "thunderbolt",
1539	.id_table = nhi_ids,
1540	.probe = nhi_probe,
1541	.remove = nhi_remove,
1542	.shutdown = nhi_remove,
1543	.driver.pm = &nhi_pm_ops,
1544};
1545
1546static int __init nhi_init(void)
1547{
1548	int ret;
1549
1550	ret = tb_domain_init();
1551	if (ret)
1552		return ret;
1553	ret = pci_register_driver(&nhi_driver);
1554	if (ret)
1555		tb_domain_exit();
1556	return ret;
1557}
1558
1559static void __exit nhi_unload(void)
1560{
1561	pci_unregister_driver(&nhi_driver);
1562	tb_domain_exit();
1563}
1564
1565rootfs_initcall(nhi_init);
1566module_exit(nhi_unload);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Thunderbolt driver - NHI driver
   4 *
   5 * The NHI (native host interface) is the pci device that allows us to send and
   6 * receive frames from the thunderbolt bus.
   7 *
   8 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
   9 * Copyright (C) 2018, Intel Corporation
  10 */
  11
  12#include <linux/pm_runtime.h>
  13#include <linux/slab.h>
  14#include <linux/errno.h>
  15#include <linux/pci.h>
 
  16#include <linux/interrupt.h>
 
  17#include <linux/module.h>
  18#include <linux/delay.h>
  19#include <linux/property.h>
 
  20
  21#include "nhi.h"
  22#include "nhi_regs.h"
  23#include "tb.h"
  24
  25#define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
  26
  27#define RING_FIRST_USABLE_HOPID	1
  28
 
 
 
 
  29/*
  30 * Minimal number of vectors when we use MSI-X. Two for control channel
  31 * Rx/Tx and the rest four are for cross domain DMA paths.
  32 */
  33#define MSIX_MIN_VECS		6
  34#define MSIX_MAX_VECS		16
  35
  36#define NHI_MAILBOX_TIMEOUT	500 /* ms */
  37
  38static int ring_interrupt_index(struct tb_ring *ring)
 
 
 
 
 
 
 
 
  39{
  40	int bit = ring->hop;
  41	if (!ring->is_tx)
  42		bit += ring->nhi->hop_count;
  43	return bit;
  44}
  45
  46/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  47 * ring_interrupt_active() - activate/deactivate interrupts for a single ring
  48 *
  49 * ring->nhi->lock must be held.
  50 */
  51static void ring_interrupt_active(struct tb_ring *ring, bool active)
  52{
  53	int reg = REG_RING_INTERRUPT_BASE +
  54		  ring_interrupt_index(ring) / 32 * 4;
  55	int bit = ring_interrupt_index(ring) & 31;
  56	int mask = 1 << bit;
  57	u32 old, new;
  58
  59	if (ring->irq > 0) {
  60		u32 step, shift, ivr, misc;
  61		void __iomem *ivr_base;
 
  62		int index;
  63
  64		if (ring->is_tx)
  65			index = ring->hop;
  66		else
  67			index = ring->hop + ring->nhi->hop_count;
  68
  69		/*
  70		 * Ask the hardware to clear interrupt status bits automatically
  71		 * since we already know which interrupt was triggered.
 
 
 
 
 
 
 
  72		 */
  73		misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
  74		if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) {
  75			misc |= REG_DMA_MISC_INT_AUTO_CLEAR;
  76			iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC);
  77		}
 
 
 
  78
  79		ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
  80		step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
  81		shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
  82		ivr = ioread32(ivr_base + step);
  83		ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
  84		if (active)
  85			ivr |= ring->vector << shift;
  86		iowrite32(ivr, ivr_base + step);
  87	}
  88
  89	old = ioread32(ring->nhi->iobase + reg);
  90	if (active)
  91		new = old | mask;
  92	else
  93		new = old & ~mask;
  94
  95	dev_dbg(&ring->nhi->pdev->dev,
  96		"%s interrupt at register %#x bit %d (%#x -> %#x)\n",
  97		active ? "enabling" : "disabling", reg, bit, old, new);
  98
  99	if (new == old)
 100		dev_WARN(&ring->nhi->pdev->dev,
 101					 "interrupt for %s %d is already %s\n",
 102					 RING_TYPE(ring), ring->hop,
 103					 active ? "enabled" : "disabled");
 104	iowrite32(new, ring->nhi->iobase + reg);
 
 
 
 
 105}
 106
 107/**
 108 * nhi_disable_interrupts() - disable interrupts for all rings
 109 *
 110 * Use only during init and shutdown.
 111 */
 112static void nhi_disable_interrupts(struct tb_nhi *nhi)
 113{
 114	int i = 0;
 115	/* disable interrupts */
 116	for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
 117		iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i);
 118
 119	/* clear interrupt status bits */
 120	for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
 121		ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i);
 122}
 123
 124/* ring helper methods */
 125
 126static void __iomem *ring_desc_base(struct tb_ring *ring)
 127{
 128	void __iomem *io = ring->nhi->iobase;
 129	io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
 130	io += ring->hop * 16;
 131	return io;
 132}
 133
 134static void __iomem *ring_options_base(struct tb_ring *ring)
 135{
 136	void __iomem *io = ring->nhi->iobase;
 137	io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
 138	io += ring->hop * 32;
 139	return io;
 140}
 141
 142static void ring_iowrite_cons(struct tb_ring *ring, u16 cons)
 143{
 144	/*
 145	 * The other 16-bits in the register is read-only and writes to it
 146	 * are ignored by the hardware so we can save one ioread32() by
 147	 * filling the read-only bits with zeroes.
 148	 */
 149	iowrite32(cons, ring_desc_base(ring) + 8);
 150}
 151
 152static void ring_iowrite_prod(struct tb_ring *ring, u16 prod)
 153{
 154	/* See ring_iowrite_cons() above for explanation */
 155	iowrite32(prod << 16, ring_desc_base(ring) + 8);
 156}
 157
 158static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
 159{
 160	iowrite32(value, ring_desc_base(ring) + offset);
 161}
 162
 163static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
 164{
 165	iowrite32(value, ring_desc_base(ring) + offset);
 166	iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
 167}
 168
 169static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
 170{
 171	iowrite32(value, ring_options_base(ring) + offset);
 172}
 173
 174static bool ring_full(struct tb_ring *ring)
 175{
 176	return ((ring->head + 1) % ring->size) == ring->tail;
 177}
 178
 179static bool ring_empty(struct tb_ring *ring)
 180{
 181	return ring->head == ring->tail;
 182}
 183
 184/**
 185 * ring_write_descriptors() - post frames from ring->queue to the controller
 186 *
 187 * ring->lock is held.
 188 */
 189static void ring_write_descriptors(struct tb_ring *ring)
 190{
 191	struct ring_frame *frame, *n;
 192	struct ring_desc *descriptor;
 193	list_for_each_entry_safe(frame, n, &ring->queue, list) {
 194		if (ring_full(ring))
 195			break;
 196		list_move_tail(&frame->list, &ring->in_flight);
 197		descriptor = &ring->descriptors[ring->head];
 198		descriptor->phys = frame->buffer_phy;
 199		descriptor->time = 0;
 200		descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
 201		if (ring->is_tx) {
 202			descriptor->length = frame->size;
 203			descriptor->eof = frame->eof;
 204			descriptor->sof = frame->sof;
 205		}
 206		ring->head = (ring->head + 1) % ring->size;
 207		if (ring->is_tx)
 208			ring_iowrite_prod(ring, ring->head);
 209		else
 210			ring_iowrite_cons(ring, ring->head);
 211	}
 212}
 213
 214/**
 215 * ring_work() - progress completed frames
 216 *
 217 * If the ring is shutting down then all frames are marked as canceled and
 218 * their callbacks are invoked.
 219 *
 220 * Otherwise we collect all completed frame from the ring buffer, write new
 221 * frame to the ring buffer and invoke the callbacks for the completed frames.
 222 */
 223static void ring_work(struct work_struct *work)
 224{
 225	struct tb_ring *ring = container_of(work, typeof(*ring), work);
 226	struct ring_frame *frame;
 227	bool canceled = false;
 228	unsigned long flags;
 229	LIST_HEAD(done);
 230
 231	spin_lock_irqsave(&ring->lock, flags);
 232
 233	if (!ring->running) {
 234		/*  Move all frames to done and mark them as canceled. */
 235		list_splice_tail_init(&ring->in_flight, &done);
 236		list_splice_tail_init(&ring->queue, &done);
 237		canceled = true;
 238		goto invoke_callback;
 239	}
 240
 241	while (!ring_empty(ring)) {
 242		if (!(ring->descriptors[ring->tail].flags
 243				& RING_DESC_COMPLETED))
 244			break;
 245		frame = list_first_entry(&ring->in_flight, typeof(*frame),
 246					 list);
 247		list_move_tail(&frame->list, &done);
 248		if (!ring->is_tx) {
 249			frame->size = ring->descriptors[ring->tail].length;
 250			frame->eof = ring->descriptors[ring->tail].eof;
 251			frame->sof = ring->descriptors[ring->tail].sof;
 252			frame->flags = ring->descriptors[ring->tail].flags;
 253		}
 254		ring->tail = (ring->tail + 1) % ring->size;
 255	}
 256	ring_write_descriptors(ring);
 257
 258invoke_callback:
 259	/* allow callbacks to schedule new work */
 260	spin_unlock_irqrestore(&ring->lock, flags);
 261	while (!list_empty(&done)) {
 262		frame = list_first_entry(&done, typeof(*frame), list);
 263		/*
 264		 * The callback may reenqueue or delete frame.
 265		 * Do not hold on to it.
 266		 */
 267		list_del_init(&frame->list);
 268		if (frame->callback)
 269			frame->callback(ring, frame, canceled);
 270	}
 271}
 272
 273int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
 274{
 275	unsigned long flags;
 276	int ret = 0;
 277
 278	spin_lock_irqsave(&ring->lock, flags);
 279	if (ring->running) {
 280		list_add_tail(&frame->list, &ring->queue);
 281		ring_write_descriptors(ring);
 282	} else {
 283		ret = -ESHUTDOWN;
 284	}
 285	spin_unlock_irqrestore(&ring->lock, flags);
 286	return ret;
 287}
 288EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
 289
 290/**
 291 * tb_ring_poll() - Poll one completed frame from the ring
 292 * @ring: Ring to poll
 293 *
 294 * This function can be called when @start_poll callback of the @ring
 295 * has been called. It will read one completed frame from the ring and
 296 * return it to the caller. Returns %NULL if there is no more completed
 297 * frames.
 298 */
 299struct ring_frame *tb_ring_poll(struct tb_ring *ring)
 300{
 301	struct ring_frame *frame = NULL;
 302	unsigned long flags;
 303
 304	spin_lock_irqsave(&ring->lock, flags);
 305	if (!ring->running)
 306		goto unlock;
 307	if (ring_empty(ring))
 308		goto unlock;
 309
 310	if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
 311		frame = list_first_entry(&ring->in_flight, typeof(*frame),
 312					 list);
 313		list_del_init(&frame->list);
 314
 315		if (!ring->is_tx) {
 316			frame->size = ring->descriptors[ring->tail].length;
 317			frame->eof = ring->descriptors[ring->tail].eof;
 318			frame->sof = ring->descriptors[ring->tail].sof;
 319			frame->flags = ring->descriptors[ring->tail].flags;
 320		}
 321
 322		ring->tail = (ring->tail + 1) % ring->size;
 323	}
 324
 325unlock:
 326	spin_unlock_irqrestore(&ring->lock, flags);
 327	return frame;
 328}
 329EXPORT_SYMBOL_GPL(tb_ring_poll);
 330
 331static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
 332{
 333	int idx = ring_interrupt_index(ring);
 334	int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
 335	int bit = idx % 32;
 336	u32 val;
 337
 338	val = ioread32(ring->nhi->iobase + reg);
 339	if (mask)
 340		val &= ~BIT(bit);
 341	else
 342		val |= BIT(bit);
 343	iowrite32(val, ring->nhi->iobase + reg);
 344}
 345
 346/* Both @nhi->lock and @ring->lock should be held */
 347static void __ring_interrupt(struct tb_ring *ring)
 348{
 349	if (!ring->running)
 350		return;
 351
 352	if (ring->start_poll) {
 353		__ring_interrupt_mask(ring, true);
 354		ring->start_poll(ring->poll_data);
 355	} else {
 356		schedule_work(&ring->work);
 357	}
 358}
 359
 360/**
 361 * tb_ring_poll_complete() - Re-start interrupt for the ring
 362 * @ring: Ring to re-start the interrupt
 363 *
 364 * This will re-start (unmask) the ring interrupt once the user is done
 365 * with polling.
 366 */
 367void tb_ring_poll_complete(struct tb_ring *ring)
 368{
 369	unsigned long flags;
 370
 371	spin_lock_irqsave(&ring->nhi->lock, flags);
 372	spin_lock(&ring->lock);
 373	if (ring->start_poll)
 374		__ring_interrupt_mask(ring, false);
 375	spin_unlock(&ring->lock);
 376	spin_unlock_irqrestore(&ring->nhi->lock, flags);
 377}
 378EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
 379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 380static irqreturn_t ring_msix(int irq, void *data)
 381{
 382	struct tb_ring *ring = data;
 383
 384	spin_lock(&ring->nhi->lock);
 
 385	spin_lock(&ring->lock);
 386	__ring_interrupt(ring);
 387	spin_unlock(&ring->lock);
 388	spin_unlock(&ring->nhi->lock);
 389
 390	return IRQ_HANDLED;
 391}
 392
 393static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
 394{
 395	struct tb_nhi *nhi = ring->nhi;
 396	unsigned long irqflags;
 397	int ret;
 398
 399	if (!nhi->pdev->msix_enabled)
 400		return 0;
 401
 402	ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
 403	if (ret < 0)
 404		return ret;
 405
 406	ring->vector = ret;
 407
 408	ring->irq = pci_irq_vector(ring->nhi->pdev, ring->vector);
 409	if (ring->irq < 0)
 410		return ring->irq;
 
 
 411
 412	irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
 413	return request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
 
 
 
 
 
 
 
 
 
 414}
 415
 416static void ring_release_msix(struct tb_ring *ring)
 417{
 418	if (ring->irq <= 0)
 419		return;
 420
 421	free_irq(ring->irq, ring);
 422	ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
 423	ring->vector = 0;
 424	ring->irq = 0;
 425}
 426
 427static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
 428{
 
 429	int ret = 0;
 430
 
 
 
 
 
 
 
 
 
 431	spin_lock_irq(&nhi->lock);
 432
 433	if (ring->hop < 0) {
 434		unsigned int i;
 435
 436		/*
 437		 * Automatically allocate HopID from the non-reserved
 438		 * range 1 .. hop_count - 1.
 439		 */
 440		for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) {
 441			if (ring->is_tx) {
 442				if (!nhi->tx_rings[i]) {
 443					ring->hop = i;
 444					break;
 445				}
 446			} else {
 447				if (!nhi->rx_rings[i]) {
 448					ring->hop = i;
 449					break;
 450				}
 451			}
 452		}
 453	}
 454
 
 
 
 
 
 455	if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
 456		dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
 457		ret = -EINVAL;
 458		goto err_unlock;
 459	}
 460	if (ring->is_tx && nhi->tx_rings[ring->hop]) {
 461		dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
 462			 ring->hop);
 463		ret = -EBUSY;
 464		goto err_unlock;
 465	} else if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
 
 466		dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
 467			 ring->hop);
 468		ret = -EBUSY;
 469		goto err_unlock;
 470	}
 471
 472	if (ring->is_tx)
 473		nhi->tx_rings[ring->hop] = ring;
 474	else
 475		nhi->rx_rings[ring->hop] = ring;
 476
 477err_unlock:
 478	spin_unlock_irq(&nhi->lock);
 479
 480	return ret;
 481}
 482
 483static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
 484				     bool transmit, unsigned int flags,
 485				     u16 sof_mask, u16 eof_mask,
 486				     void (*start_poll)(void *),
 487				     void *poll_data)
 488{
 489	struct tb_ring *ring = NULL;
 490
 491	dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
 492		transmit ? "TX" : "RX", hop, size);
 493
 494	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
 495	if (!ring)
 496		return NULL;
 497
 498	spin_lock_init(&ring->lock);
 499	INIT_LIST_HEAD(&ring->queue);
 500	INIT_LIST_HEAD(&ring->in_flight);
 501	INIT_WORK(&ring->work, ring_work);
 502
 503	ring->nhi = nhi;
 504	ring->hop = hop;
 505	ring->is_tx = transmit;
 506	ring->size = size;
 507	ring->flags = flags;
 
 508	ring->sof_mask = sof_mask;
 509	ring->eof_mask = eof_mask;
 510	ring->head = 0;
 511	ring->tail = 0;
 512	ring->running = false;
 513	ring->start_poll = start_poll;
 514	ring->poll_data = poll_data;
 515
 516	ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
 517			size * sizeof(*ring->descriptors),
 518			&ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
 519	if (!ring->descriptors)
 520		goto err_free_ring;
 521
 522	if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
 523		goto err_free_descs;
 524
 525	if (nhi_alloc_hop(nhi, ring))
 526		goto err_release_msix;
 527
 528	return ring;
 529
 530err_release_msix:
 531	ring_release_msix(ring);
 532err_free_descs:
 533	dma_free_coherent(&ring->nhi->pdev->dev,
 534			  ring->size * sizeof(*ring->descriptors),
 535			  ring->descriptors, ring->descriptors_dma);
 536err_free_ring:
 537	kfree(ring);
 538
 539	return NULL;
 540}
 541
 542/**
 543 * tb_ring_alloc_tx() - Allocate DMA ring for transmit
 544 * @nhi: Pointer to the NHI the ring is to be allocated
 545 * @hop: HopID (ring) to allocate
 546 * @size: Number of entries in the ring
 547 * @flags: Flags for the ring
 548 */
 549struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
 550				 unsigned int flags)
 551{
 552	return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, NULL, NULL);
 553}
 554EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
 555
 556/**
 557 * tb_ring_alloc_rx() - Allocate DMA ring for receive
 558 * @nhi: Pointer to the NHI the ring is to be allocated
 559 * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
 560 * @size: Number of entries in the ring
 561 * @flags: Flags for the ring
 
 562 * @sof_mask: Mask of PDF values that start a frame
 563 * @eof_mask: Mask of PDF values that end a frame
 564 * @start_poll: If not %NULL the ring will call this function when an
 565 *		interrupt is triggered and masked, instead of callback
 566 *		in each Rx frame.
 567 * @poll_data: Optional data passed to @start_poll
 568 */
 569struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
 570				 unsigned int flags, u16 sof_mask, u16 eof_mask,
 
 571				 void (*start_poll)(void *), void *poll_data)
 572{
 573	return tb_ring_alloc(nhi, hop, size, false, flags, sof_mask, eof_mask,
 574			     start_poll, poll_data);
 575}
 576EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
 577
 578/**
 579 * tb_ring_start() - enable a ring
 
 580 *
 581 * Must not be invoked in parallel with tb_ring_stop().
 582 */
 583void tb_ring_start(struct tb_ring *ring)
 584{
 585	u16 frame_size;
 586	u32 flags;
 587
 588	spin_lock_irq(&ring->nhi->lock);
 589	spin_lock(&ring->lock);
 590	if (ring->nhi->going_away)
 591		goto err;
 592	if (ring->running) {
 593		dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
 594		goto err;
 595	}
 596	dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
 597		RING_TYPE(ring), ring->hop);
 598
 599	if (ring->flags & RING_FLAG_FRAME) {
 600		/* Means 4096 */
 601		frame_size = 0;
 602		flags = RING_FLAG_ENABLE;
 603	} else {
 604		frame_size = TB_FRAME_SIZE;
 605		flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
 606	}
 607
 608	ring_iowrite64desc(ring, ring->descriptors_dma, 0);
 609	if (ring->is_tx) {
 610		ring_iowrite32desc(ring, ring->size, 12);
 611		ring_iowrite32options(ring, 0, 4); /* time releated ? */
 612		ring_iowrite32options(ring, flags, 0);
 613	} else {
 614		u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
 615
 616		ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
 617		ring_iowrite32options(ring, sof_eof_mask, 4);
 618		ring_iowrite32options(ring, flags, 0);
 619	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 620	ring_interrupt_active(ring, true);
 621	ring->running = true;
 622err:
 623	spin_unlock(&ring->lock);
 624	spin_unlock_irq(&ring->nhi->lock);
 625}
 626EXPORT_SYMBOL_GPL(tb_ring_start);
 627
 628/**
 629 * tb_ring_stop() - shutdown a ring
 
 630 *
 631 * Must not be invoked from a callback.
 632 *
 633 * This method will disable the ring. Further calls to
 634 * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
 635 * called.
 636 *
 637 * All enqueued frames will be canceled and their callbacks will be executed
 638 * with frame->canceled set to true (on the callback thread). This method
 639 * returns only after all callback invocations have finished.
 640 */
 641void tb_ring_stop(struct tb_ring *ring)
 642{
 643	spin_lock_irq(&ring->nhi->lock);
 644	spin_lock(&ring->lock);
 645	dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
 646		RING_TYPE(ring), ring->hop);
 647	if (ring->nhi->going_away)
 648		goto err;
 649	if (!ring->running) {
 650		dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
 651			 RING_TYPE(ring), ring->hop);
 652		goto err;
 653	}
 654	ring_interrupt_active(ring, false);
 655
 656	ring_iowrite32options(ring, 0, 0);
 657	ring_iowrite64desc(ring, 0, 0);
 658	ring_iowrite32desc(ring, 0, 8);
 659	ring_iowrite32desc(ring, 0, 12);
 660	ring->head = 0;
 661	ring->tail = 0;
 662	ring->running = false;
 663
 664err:
 665	spin_unlock(&ring->lock);
 666	spin_unlock_irq(&ring->nhi->lock);
 667
 668	/*
 669	 * schedule ring->work to invoke callbacks on all remaining frames.
 670	 */
 671	schedule_work(&ring->work);
 672	flush_work(&ring->work);
 673}
 674EXPORT_SYMBOL_GPL(tb_ring_stop);
 675
 676/*
 677 * tb_ring_free() - free ring
 678 *
 679 * When this method returns all invocations of ring->callback will have
 680 * finished.
 681 *
 682 * Ring must be stopped.
 683 *
 684 * Must NOT be called from ring_frame->callback!
 685 */
 686void tb_ring_free(struct tb_ring *ring)
 687{
 688	spin_lock_irq(&ring->nhi->lock);
 689	/*
 690	 * Dissociate the ring from the NHI. This also ensures that
 691	 * nhi_interrupt_work cannot reschedule ring->work.
 692	 */
 693	if (ring->is_tx)
 694		ring->nhi->tx_rings[ring->hop] = NULL;
 695	else
 696		ring->nhi->rx_rings[ring->hop] = NULL;
 697
 698	if (ring->running) {
 699		dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
 700			 RING_TYPE(ring), ring->hop);
 701	}
 702	spin_unlock_irq(&ring->nhi->lock);
 703
 704	ring_release_msix(ring);
 705
 706	dma_free_coherent(&ring->nhi->pdev->dev,
 707			  ring->size * sizeof(*ring->descriptors),
 708			  ring->descriptors, ring->descriptors_dma);
 709
 710	ring->descriptors = NULL;
 711	ring->descriptors_dma = 0;
 712
 713
 714	dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
 715		ring->hop);
 716
 717	/**
 718	 * ring->work can no longer be scheduled (it is scheduled only
 719	 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
 720	 * to finish before freeing the ring.
 721	 */
 722	flush_work(&ring->work);
 723	kfree(ring);
 724}
 725EXPORT_SYMBOL_GPL(tb_ring_free);
 726
 727/**
 728 * nhi_mailbox_cmd() - Send a command through NHI mailbox
 729 * @nhi: Pointer to the NHI structure
 730 * @cmd: Command to send
 731 * @data: Data to be send with the command
 732 *
 733 * Sends mailbox command to the firmware running on NHI. Returns %0 in
 734 * case of success and negative errno in case of failure.
 735 */
 736int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
 737{
 738	ktime_t timeout;
 739	u32 val;
 740
 741	iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
 742
 743	val = ioread32(nhi->iobase + REG_INMAIL_CMD);
 744	val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
 745	val |= REG_INMAIL_OP_REQUEST | cmd;
 746	iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
 747
 748	timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
 749	do {
 750		val = ioread32(nhi->iobase + REG_INMAIL_CMD);
 751		if (!(val & REG_INMAIL_OP_REQUEST))
 752			break;
 753		usleep_range(10, 20);
 754	} while (ktime_before(ktime_get(), timeout));
 755
 756	if (val & REG_INMAIL_OP_REQUEST)
 757		return -ETIMEDOUT;
 758	if (val & REG_INMAIL_ERROR)
 759		return -EIO;
 760
 761	return 0;
 762}
 763
 764/**
 765 * nhi_mailbox_mode() - Return current firmware operation mode
 766 * @nhi: Pointer to the NHI structure
 767 *
 768 * The function reads current firmware operation mode using NHI mailbox
 769 * registers and returns it to the caller.
 770 */
 771enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
 772{
 773	u32 val;
 774
 775	val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
 776	val &= REG_OUTMAIL_CMD_OPMODE_MASK;
 777	val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
 778
 779	return (enum nhi_fw_mode)val;
 780}
 781
 782static void nhi_interrupt_work(struct work_struct *work)
 783{
 784	struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
 785	int value = 0; /* Suppress uninitialized usage warning. */
 786	int bit;
 787	int hop = -1;
 788	int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
 789	struct tb_ring *ring;
 790
 791	spin_lock_irq(&nhi->lock);
 792
 793	/*
 794	 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
 795	 * (TX, RX, RX overflow). We iterate over the bits and read a new
 796	 * dwords as required. The registers are cleared on read.
 797	 */
 798	for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
 799		if (bit % 32 == 0)
 800			value = ioread32(nhi->iobase
 801					 + REG_RING_NOTIFY_BASE
 802					 + 4 * (bit / 32));
 803		if (++hop == nhi->hop_count) {
 804			hop = 0;
 805			type++;
 806		}
 807		if ((value & (1 << (bit % 32))) == 0)
 808			continue;
 809		if (type == 2) {
 810			dev_warn(&nhi->pdev->dev,
 811				 "RX overflow for ring %d\n",
 812				 hop);
 813			continue;
 814		}
 815		if (type == 0)
 816			ring = nhi->tx_rings[hop];
 817		else
 818			ring = nhi->rx_rings[hop];
 819		if (ring == NULL) {
 820			dev_warn(&nhi->pdev->dev,
 821				 "got interrupt for inactive %s ring %d\n",
 822				 type ? "RX" : "TX",
 823				 hop);
 824			continue;
 825		}
 826
 827		spin_lock(&ring->lock);
 828		__ring_interrupt(ring);
 829		spin_unlock(&ring->lock);
 830	}
 831	spin_unlock_irq(&nhi->lock);
 832}
 833
 834static irqreturn_t nhi_msi(int irq, void *data)
 835{
 836	struct tb_nhi *nhi = data;
 837	schedule_work(&nhi->interrupt_work);
 838	return IRQ_HANDLED;
 839}
 840
 841static int __nhi_suspend_noirq(struct device *dev, bool wakeup)
 842{
 843	struct pci_dev *pdev = to_pci_dev(dev);
 844	struct tb *tb = pci_get_drvdata(pdev);
 845	struct tb_nhi *nhi = tb->nhi;
 846	int ret;
 847
 848	ret = tb_domain_suspend_noirq(tb);
 849	if (ret)
 850		return ret;
 851
 852	if (nhi->ops && nhi->ops->suspend_noirq) {
 853		ret = nhi->ops->suspend_noirq(tb->nhi, wakeup);
 854		if (ret)
 855			return ret;
 856	}
 857
 858	return 0;
 859}
 860
 861static int nhi_suspend_noirq(struct device *dev)
 862{
 863	return __nhi_suspend_noirq(dev, device_may_wakeup(dev));
 864}
 865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 866static bool nhi_wake_supported(struct pci_dev *pdev)
 867{
 868	u8 val;
 869
 870	/*
 871	 * If power rails are sustainable for wakeup from S4 this
 872	 * property is set by the BIOS.
 873	 */
 874	if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val))
 875		return !!val;
 876
 877	return true;
 878}
 879
 880static int nhi_poweroff_noirq(struct device *dev)
 881{
 882	struct pci_dev *pdev = to_pci_dev(dev);
 883	bool wakeup;
 884
 885	wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev);
 886	return __nhi_suspend_noirq(dev, wakeup);
 887}
 888
 889static void nhi_enable_int_throttling(struct tb_nhi *nhi)
 890{
 891	/* Throttling is specified in 256ns increments */
 892	u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
 893	unsigned int i;
 894
 895	/*
 896	 * Configure interrupt throttling for all vectors even if we
 897	 * only use few.
 898	 */
 899	for (i = 0; i < MSIX_MAX_VECS; i++) {
 900		u32 reg = REG_INT_THROTTLING_RATE + i * 4;
 901		iowrite32(throttle, nhi->iobase + reg);
 902	}
 903}
 904
 905static int nhi_resume_noirq(struct device *dev)
 906{
 907	struct pci_dev *pdev = to_pci_dev(dev);
 908	struct tb *tb = pci_get_drvdata(pdev);
 909	struct tb_nhi *nhi = tb->nhi;
 910	int ret;
 911
 912	/*
 913	 * Check that the device is still there. It may be that the user
 914	 * unplugged last device which causes the host controller to go
 915	 * away on PCs.
 916	 */
 917	if (!pci_device_is_present(pdev)) {
 918		nhi->going_away = true;
 919	} else {
 920		if (nhi->ops && nhi->ops->resume_noirq) {
 921			ret = nhi->ops->resume_noirq(nhi);
 922			if (ret)
 923				return ret;
 924		}
 925		nhi_enable_int_throttling(tb->nhi);
 926	}
 927
 928	return tb_domain_resume_noirq(tb);
 929}
 930
 931static int nhi_suspend(struct device *dev)
 932{
 933	struct pci_dev *pdev = to_pci_dev(dev);
 934	struct tb *tb = pci_get_drvdata(pdev);
 935
 936	return tb_domain_suspend(tb);
 937}
 938
 939static void nhi_complete(struct device *dev)
 940{
 941	struct pci_dev *pdev = to_pci_dev(dev);
 942	struct tb *tb = pci_get_drvdata(pdev);
 943
 944	/*
 945	 * If we were runtime suspended when system suspend started,
 946	 * schedule runtime resume now. It should bring the domain back
 947	 * to functional state.
 948	 */
 949	if (pm_runtime_suspended(&pdev->dev))
 950		pm_runtime_resume(&pdev->dev);
 951	else
 952		tb_domain_complete(tb);
 953}
 954
 955static int nhi_runtime_suspend(struct device *dev)
 956{
 957	struct pci_dev *pdev = to_pci_dev(dev);
 958	struct tb *tb = pci_get_drvdata(pdev);
 959	struct tb_nhi *nhi = tb->nhi;
 960	int ret;
 961
 962	ret = tb_domain_runtime_suspend(tb);
 963	if (ret)
 964		return ret;
 965
 966	if (nhi->ops && nhi->ops->runtime_suspend) {
 967		ret = nhi->ops->runtime_suspend(tb->nhi);
 968		if (ret)
 969			return ret;
 970	}
 971	return 0;
 972}
 973
 974static int nhi_runtime_resume(struct device *dev)
 975{
 976	struct pci_dev *pdev = to_pci_dev(dev);
 977	struct tb *tb = pci_get_drvdata(pdev);
 978	struct tb_nhi *nhi = tb->nhi;
 979	int ret;
 980
 981	if (nhi->ops && nhi->ops->runtime_resume) {
 982		ret = nhi->ops->runtime_resume(nhi);
 983		if (ret)
 984			return ret;
 985	}
 986
 987	nhi_enable_int_throttling(nhi);
 988	return tb_domain_runtime_resume(tb);
 989}
 990
 991static void nhi_shutdown(struct tb_nhi *nhi)
 992{
 993	int i;
 994
 995	dev_dbg(&nhi->pdev->dev, "shutdown\n");
 996
 997	for (i = 0; i < nhi->hop_count; i++) {
 998		if (nhi->tx_rings[i])
 999			dev_WARN(&nhi->pdev->dev,
1000				 "TX ring %d is still active\n", i);
1001		if (nhi->rx_rings[i])
1002			dev_WARN(&nhi->pdev->dev,
1003				 "RX ring %d is still active\n", i);
1004	}
1005	nhi_disable_interrupts(nhi);
1006	/*
1007	 * We have to release the irq before calling flush_work. Otherwise an
1008	 * already executing IRQ handler could call schedule_work again.
1009	 */
1010	if (!nhi->pdev->msix_enabled) {
1011		devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
1012		flush_work(&nhi->interrupt_work);
1013	}
1014	ida_destroy(&nhi->msix_ida);
1015
1016	if (nhi->ops && nhi->ops->shutdown)
1017		nhi->ops->shutdown(nhi);
1018}
1019
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1020static int nhi_init_msi(struct tb_nhi *nhi)
1021{
1022	struct pci_dev *pdev = nhi->pdev;
 
1023	int res, irq, nvec;
1024
1025	/* In case someone left them on. */
1026	nhi_disable_interrupts(nhi);
1027
1028	nhi_enable_int_throttling(nhi);
1029
1030	ida_init(&nhi->msix_ida);
1031
1032	/*
1033	 * The NHI has 16 MSI-X vectors or a single MSI. We first try to
1034	 * get all MSI-X vectors and if we succeed, each ring will have
1035	 * one MSI-X. If for some reason that does not work out, we
1036	 * fallback to a single MSI.
1037	 */
1038	nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
1039				     PCI_IRQ_MSIX);
1040	if (nvec < 0) {
1041		nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
1042		if (nvec < 0)
1043			return nvec;
1044
1045		INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
1046
1047		irq = pci_irq_vector(nhi->pdev, 0);
1048		if (irq < 0)
1049			return irq;
1050
1051		res = devm_request_irq(&pdev->dev, irq, nhi_msi,
1052				       IRQF_NO_SUSPEND, "thunderbolt", nhi);
1053		if (res) {
1054			dev_err(&pdev->dev, "request_irq failed, aborting\n");
1055			return res;
1056		}
1057	}
1058
1059	return 0;
1060}
1061
1062static bool nhi_imr_valid(struct pci_dev *pdev)
1063{
1064	u8 val;
1065
1066	if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val))
1067		return !!val;
1068
1069	return true;
1070}
1071
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1073{
 
1074	struct tb_nhi *nhi;
1075	struct tb *tb;
1076	int res;
1077
1078	if (!nhi_imr_valid(pdev)) {
1079		dev_warn(&pdev->dev, "firmware image not valid, aborting\n");
1080		return -ENODEV;
1081	}
1082
1083	res = pcim_enable_device(pdev);
1084	if (res) {
1085		dev_err(&pdev->dev, "cannot enable PCI device, aborting\n");
1086		return res;
1087	}
1088
1089	res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1090	if (res) {
1091		dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
1092		return res;
1093	}
1094
1095	nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1096	if (!nhi)
1097		return -ENOMEM;
1098
1099	nhi->pdev = pdev;
1100	nhi->ops = (const struct tb_nhi_ops *)id->driver_data;
1101	/* cannot fail - table is allocated bin pcim_iomap_regions */
1102	nhi->iobase = pcim_iomap_table(pdev)[0];
1103	nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
1104	dev_dbg(&pdev->dev, "total paths: %d\n", nhi->hop_count);
1105
1106	nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1107				     sizeof(*nhi->tx_rings), GFP_KERNEL);
1108	nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1109				     sizeof(*nhi->rx_rings), GFP_KERNEL);
1110	if (!nhi->tx_rings || !nhi->rx_rings)
1111		return -ENOMEM;
1112
 
 
 
 
 
1113	res = nhi_init_msi(nhi);
1114	if (res) {
1115		dev_err(&pdev->dev, "cannot enable MSI, aborting\n");
1116		return res;
1117	}
1118
1119	spin_lock_init(&nhi->lock);
1120
1121	res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1122	if (res)
1123		res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1124	if (res) {
1125		dev_err(&pdev->dev, "failed to set DMA mask\n");
1126		return res;
1127	}
1128
1129	pci_set_master(pdev);
1130
1131	if (nhi->ops && nhi->ops->init) {
1132		res = nhi->ops->init(nhi);
1133		if (res)
1134			return res;
1135	}
1136
1137	tb = icm_probe(nhi);
1138	if (!tb)
1139		tb = tb_probe(nhi);
1140	if (!tb) {
1141		dev_err(&nhi->pdev->dev,
1142			"failed to determine connection manager, aborting\n");
1143		return -ENODEV;
1144	}
1145
1146	dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n");
1147
1148	res = tb_domain_add(tb);
1149	if (res) {
1150		/*
1151		 * At this point the RX/TX rings might already have been
1152		 * activated. Do a proper shutdown.
1153		 */
1154		tb_domain_put(tb);
1155		nhi_shutdown(nhi);
1156		return res;
1157	}
1158	pci_set_drvdata(pdev, tb);
1159
 
 
1160	pm_runtime_allow(&pdev->dev);
1161	pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1162	pm_runtime_use_autosuspend(&pdev->dev);
1163	pm_runtime_put_autosuspend(&pdev->dev);
1164
1165	return 0;
1166}
1167
1168static void nhi_remove(struct pci_dev *pdev)
1169{
1170	struct tb *tb = pci_get_drvdata(pdev);
1171	struct tb_nhi *nhi = tb->nhi;
1172
1173	pm_runtime_get_sync(&pdev->dev);
1174	pm_runtime_dont_use_autosuspend(&pdev->dev);
1175	pm_runtime_forbid(&pdev->dev);
1176
1177	tb_domain_remove(tb);
1178	nhi_shutdown(nhi);
1179}
1180
1181/*
1182 * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1183 * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1184 * resume_noirq until we are done.
1185 */
1186static const struct dev_pm_ops nhi_pm_ops = {
1187	.suspend_noirq = nhi_suspend_noirq,
1188	.resume_noirq = nhi_resume_noirq,
1189	.freeze_noirq = nhi_suspend_noirq, /*
1190					    * we just disable hotplug, the
1191					    * pci-tunnels stay alive.
1192					    */
1193	.thaw_noirq = nhi_resume_noirq,
1194	.restore_noirq = nhi_resume_noirq,
1195	.suspend = nhi_suspend,
1196	.freeze = nhi_suspend,
1197	.poweroff_noirq = nhi_poweroff_noirq,
1198	.poweroff = nhi_suspend,
1199	.complete = nhi_complete,
1200	.runtime_suspend = nhi_runtime_suspend,
1201	.runtime_resume = nhi_runtime_resume,
1202};
1203
1204static struct pci_device_id nhi_ids[] = {
1205	/*
1206	 * We have to specify class, the TB bridges use the same device and
1207	 * vendor (sub)id on gen 1 and gen 2 controllers.
1208	 */
1209	{
1210		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1211		.vendor = PCI_VENDOR_ID_INTEL,
1212		.device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1213		.subvendor = 0x2222, .subdevice = 0x1111,
1214	},
1215	{
1216		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1217		.vendor = PCI_VENDOR_ID_INTEL,
1218		.device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1219		.subvendor = 0x2222, .subdevice = 0x1111,
1220	},
1221	{
1222		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1223		.vendor = PCI_VENDOR_ID_INTEL,
1224		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1225		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1226	},
1227	{
1228		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1229		.vendor = PCI_VENDOR_ID_INTEL,
1230		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1231		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1232	},
1233
1234	/* Thunderbolt 3 */
1235	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1236	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1237	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1238	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1239	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1240	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1241	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1242	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1243	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1244	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1245	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0),
1246	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1247	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1),
1248	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
 
1249	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0),
1250	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1251	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1),
1252	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1253
1254	/* Any USB4 compliant host */
1255	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) },
1256
1257	{ 0,}
1258};
1259
1260MODULE_DEVICE_TABLE(pci, nhi_ids);
 
1261MODULE_LICENSE("GPL");
1262
1263static struct pci_driver nhi_driver = {
1264	.name = "thunderbolt",
1265	.id_table = nhi_ids,
1266	.probe = nhi_probe,
1267	.remove = nhi_remove,
1268	.shutdown = nhi_remove,
1269	.driver.pm = &nhi_pm_ops,
1270};
1271
1272static int __init nhi_init(void)
1273{
1274	int ret;
1275
1276	ret = tb_domain_init();
1277	if (ret)
1278		return ret;
1279	ret = pci_register_driver(&nhi_driver);
1280	if (ret)
1281		tb_domain_exit();
1282	return ret;
1283}
1284
1285static void __exit nhi_unload(void)
1286{
1287	pci_unregister_driver(&nhi_driver);
1288	tb_domain_exit();
1289}
1290
1291rootfs_initcall(nhi_init);
1292module_exit(nhi_unload);