Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * A power allocator to manage temperature
  4 *
  5 * Copyright (C) 2014 ARM Ltd.
  6 *
  7 */
  8
  9#define pr_fmt(fmt) "Power allocator: " fmt
 10
 
 11#include <linux/slab.h>
 12#include <linux/thermal.h>
 13
 14#define CREATE_TRACE_POINTS
 15#include "thermal_trace_ipa.h"
 16
 17#include "thermal_core.h"
 18
 
 
 19#define FRAC_BITS 10
 20#define int_to_frac(x) ((x) << FRAC_BITS)
 21#define frac_to_int(x) ((x) >> FRAC_BITS)
 22
 23/**
 24 * mul_frac() - multiply two fixed-point numbers
 25 * @x:	first multiplicand
 26 * @y:	second multiplicand
 27 *
 28 * Return: the result of multiplying two fixed-point numbers.  The
 29 * result is also a fixed-point number.
 30 */
 31static inline s64 mul_frac(s64 x, s64 y)
 32{
 33	return (x * y) >> FRAC_BITS;
 34}
 35
 36/**
 37 * div_frac() - divide two fixed-point numbers
 38 * @x:	the dividend
 39 * @y:	the divisor
 40 *
 41 * Return: the result of dividing two fixed-point numbers.  The
 42 * result is also a fixed-point number.
 43 */
 44static inline s64 div_frac(s64 x, s64 y)
 45{
 46	return div_s64(x << FRAC_BITS, y);
 47}
 48
 49/**
 50 * struct power_actor - internal power information for power actor
 51 * @req_power:		requested power value (not weighted)
 52 * @max_power:		max allocatable power for this actor
 53 * @granted_power:	granted power for this actor
 54 * @extra_actor_power:	extra power that this actor can receive
 55 * @weighted_req_power:	weighted requested power as input to IPA
 56 */
 57struct power_actor {
 58	u32 req_power;
 59	u32 max_power;
 60	u32 granted_power;
 61	u32 extra_actor_power;
 62	u32 weighted_req_power;
 63};
 64
 65/**
 66 * struct power_allocator_params - parameters for the power allocator governor
 67 * @allocated_tzp:	whether we have allocated tzp for this thermal zone and
 68 *			it needs to be freed on unbind
 69 * @err_integral:	accumulated error in the PID controller.
 70 * @prev_err:	error in the previous iteration of the PID controller.
 71 *		Used to calculate the derivative term.
 72 * @sustainable_power:	Sustainable power (heat) that this thermal zone can
 73 *			dissipate
 74 * @trip_switch_on:	first passive trip point of the thermal zone.  The
 75 *			governor switches on when this trip point is crossed.
 76 *			If the thermal zone only has one passive trip point,
 77 *			@trip_switch_on should be NULL.
 78 * @trip_max:		last passive trip point of the thermal zone. The
 79 *			temperature we are controlling for.
 80 * @total_weight:	Sum of all thermal instances weights
 81 * @num_actors:		number of cooling devices supporting IPA callbacks
 82 * @buffer_size:	internal buffer size, to avoid runtime re-calculation
 83 * @power:		buffer for all power actors internal power information
 84 */
 85struct power_allocator_params {
 86	bool allocated_tzp;
 87	s64 err_integral;
 88	s32 prev_err;
 89	u32 sustainable_power;
 90	const struct thermal_trip *trip_switch_on;
 91	const struct thermal_trip *trip_max;
 92	int total_weight;
 93	unsigned int num_actors;
 94	unsigned int buffer_size;
 95	struct power_actor *power;
 96};
 97
 98static bool power_actor_is_valid(struct power_allocator_params *params,
 99				 struct thermal_instance *instance)
100{
101	return (instance->trip == params->trip_max &&
102		 cdev_is_power_actor(instance->cdev));
103}
104
105/**
106 * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone
107 * @tz: thermal zone we are operating in
108 *
109 * For thermal zones that don't provide a sustainable_power in their
110 * thermal_zone_params, estimate one.  Calculate it using the minimum
111 * power of all the cooling devices as that gives a valid value that
112 * can give some degree of functionality.  For optimal performance of
113 * this governor, provide a sustainable_power in the thermal zone's
114 * thermal_zone_params.
115 */
116static u32 estimate_sustainable_power(struct thermal_zone_device *tz)
117{
118	struct power_allocator_params *params = tz->governor_data;
119	struct thermal_cooling_device *cdev;
120	struct thermal_instance *instance;
121	u32 sustainable_power = 0;
122	u32 min_power;
 
123
124	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
125		if (!power_actor_is_valid(params, instance))
 
 
 
126			continue;
127
128		cdev = instance->cdev;
129		if (cdev->ops->state2power(cdev, instance->upper, &min_power))
130			continue;
131
132		sustainable_power += min_power;
133	}
134
135	return sustainable_power;
136}
137
138/**
139 * estimate_pid_constants() - Estimate the constants for the PID controller
140 * @tz:		thermal zone for which to estimate the constants
141 * @sustainable_power:	sustainable power for the thermal zone
142 * @trip_switch_on:	trip point for the switch on temperature
143 * @control_temp:	target temperature for the power allocator governor
 
144 *
145 * This function is used to update the estimation of the PID
146 * controller constants in struct thermal_zone_parameters.
 
 
 
 
 
 
 
 
147 */
148static void estimate_pid_constants(struct thermal_zone_device *tz,
149				   u32 sustainable_power,
150				   const struct thermal_trip *trip_switch_on,
151				   int control_temp)
152{
153	u32 temperature_threshold = control_temp;
154	s32 k_i;
 
155
156	if (trip_switch_on)
157		temperature_threshold -= trip_switch_on->temperature;
 
158
 
159	/*
160	 * estimate_pid_constants() tries to find appropriate default
161	 * values for thermal zones that don't provide them. If a
162	 * system integrator has configured a thermal zone with two
163	 * passive trip points at the same temperature, that person
164	 * hasn't put any effort to set up the thermal zone properly
165	 * so just give up.
166	 */
167	if (!temperature_threshold)
168		return;
169
170	tz->tzp->k_po = int_to_frac(sustainable_power) /
171		temperature_threshold;
172
173	tz->tzp->k_pu = int_to_frac(2 * sustainable_power) /
174		temperature_threshold;
175
176	k_i = tz->tzp->k_pu / 10;
177	tz->tzp->k_i = k_i > 0 ? k_i : 1;
178
 
 
179	/*
180	 * The default for k_d and integral_cutoff is 0, so we can
181	 * leave them as they are.
182	 */
183}
184
185/**
186 * get_sustainable_power() - Get the right sustainable power
187 * @tz:		thermal zone for which to estimate the constants
188 * @params:	parameters for the power allocator governor
189 * @control_temp:	target temperature for the power allocator governor
190 *
191 * This function is used for getting the proper sustainable power value based
192 * on variables which might be updated by the user sysfs interface. If that
193 * happen the new value is going to be estimated and updated. It is also used
194 * after thermal zone binding, where the initial values where set to 0.
195 */
196static u32 get_sustainable_power(struct thermal_zone_device *tz,
197				 struct power_allocator_params *params,
198				 int control_temp)
199{
200	u32 sustainable_power;
201
202	if (!tz->tzp->sustainable_power)
203		sustainable_power = estimate_sustainable_power(tz);
204	else
205		sustainable_power = tz->tzp->sustainable_power;
206
207	/* Check if it's init value 0 or there was update via sysfs */
208	if (sustainable_power != params->sustainable_power) {
209		estimate_pid_constants(tz, sustainable_power,
210				       params->trip_switch_on, control_temp);
211
212		/* Do the estimation only once and make available in sysfs */
213		tz->tzp->sustainable_power = sustainable_power;
214		params->sustainable_power = sustainable_power;
215	}
216
217	return sustainable_power;
218}
219
220/**
221 * pid_controller() - PID controller
222 * @tz:	thermal zone we are operating in
223 * @control_temp:	the target temperature in millicelsius
224 * @max_allocatable_power:	maximum allocatable power for this thermal zone
225 *
226 * This PID controller increases the available power budget so that the
227 * temperature of the thermal zone gets as close as possible to
228 * @control_temp and limits the power if it exceeds it.  k_po is the
229 * proportional term when we are overshooting, k_pu is the
230 * proportional term when we are undershooting.  integral_cutoff is a
231 * threshold below which we stop accumulating the error.  The
232 * accumulated error is only valid if the requested power will make
233 * the system warmer.  If the system is mostly idle, there's no point
234 * in accumulating positive error.
235 *
236 * Return: The power budget for the next period.
237 */
238static u32 pid_controller(struct thermal_zone_device *tz,
239			  int control_temp,
240			  u32 max_allocatable_power)
241{
242	struct power_allocator_params *params = tz->governor_data;
243	s64 p, i, d, power_range;
244	s32 err, max_power_frac;
245	u32 sustainable_power;
 
246
247	max_power_frac = int_to_frac(max_allocatable_power);
248
249	sustainable_power = get_sustainable_power(tz, params, control_temp);
 
 
 
 
 
 
 
250
251	err = control_temp - tz->temperature;
252	err = int_to_frac(err);
253
254	/* Calculate the proportional term */
255	p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err);
256
257	/*
258	 * Calculate the integral term
259	 *
260	 * if the error is less than cut off allow integration (but
261	 * the integral is limited to max power)
262	 */
263	i = mul_frac(tz->tzp->k_i, params->err_integral);
264
265	if (err < int_to_frac(tz->tzp->integral_cutoff)) {
266		s64 i_next = i + mul_frac(tz->tzp->k_i, err);
267
268		if (abs(i_next) < max_power_frac) {
269			i = i_next;
270			params->err_integral += err;
271		}
272	}
273
274	/*
275	 * Calculate the derivative term
276	 *
277	 * We do err - prev_err, so with a positive k_d, a decreasing
278	 * error (i.e. driving closer to the line) results in less
279	 * power being applied, slowing down the controller)
280	 */
281	d = mul_frac(tz->tzp->k_d, err - params->prev_err);
282	d = div_frac(d, jiffies_to_msecs(tz->passive_delay_jiffies));
283	params->prev_err = err;
284
285	power_range = p + i + d;
286
287	/* feed-forward the known sustainable dissipatable power */
288	power_range = sustainable_power + frac_to_int(power_range);
289
290	power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power);
291
292	trace_thermal_power_allocator_pid(tz, frac_to_int(err),
293					  frac_to_int(params->err_integral),
294					  frac_to_int(p), frac_to_int(i),
295					  frac_to_int(d), power_range);
296
297	return power_range;
298}
299
300/**
301 * power_actor_set_power() - limit the maximum power a cooling device consumes
302 * @cdev:	pointer to &thermal_cooling_device
303 * @instance:	thermal instance to update
304 * @power:	the power in milliwatts
305 *
306 * Set the cooling device to consume at most @power milliwatts. The limit is
307 * expected to be a cap at the maximum power consumption.
308 *
309 * Return: 0 on success, -EINVAL if the cooling device does not
310 * implement the power actor API or -E* for other failures.
311 */
312static int
313power_actor_set_power(struct thermal_cooling_device *cdev,
314		      struct thermal_instance *instance, u32 power)
315{
316	unsigned long state;
317	int ret;
318
319	ret = cdev->ops->power2state(cdev, power, &state);
320	if (ret)
321		return ret;
322
323	instance->target = clamp_val(state, instance->lower, instance->upper);
324	mutex_lock(&cdev->lock);
325	__thermal_cdev_update(cdev);
326	mutex_unlock(&cdev->lock);
327
328	return 0;
329}
330
331/**
332 * divvy_up_power() - divvy the allocated power between the actors
333 * @power:		buffer for all power actors internal power information
334 * @num_actors:		number of power actors in this thermal zone
335 * @total_req_power:	sum of all weighted requested power for all actors
 
336 * @power_range:	total allocated power
 
 
 
 
337 *
338 * This function divides the total allocated power (@power_range)
339 * fairly between the actors.  It first tries to give each actor a
340 * share of the @power_range according to how much power it requested
341 * compared to the rest of the actors.  For example, if only one actor
342 * requests power, then it receives all the @power_range.  If
343 * three actors each requests 1mW, each receives a third of the
344 * @power_range.
345 *
346 * If any actor received more than their maximum power, then that
347 * surplus is re-divvied among the actors based on how far they are
348 * from their respective maximums.
 
 
 
349 */
350static void divvy_up_power(struct power_actor *power, int num_actors,
351			   u32 total_req_power, u32 power_range)
 
352{
353	u32 capped_extra_power = 0;
354	u32 extra_power = 0;
355	int i;
356
357	/*
358	 * Prevent division by 0 if none of the actors request power.
359	 */
360	if (!total_req_power)
361		total_req_power = 1;
362
 
 
363	for (i = 0; i < num_actors; i++) {
364		struct power_actor *pa = &power[i];
365		u64 req_range = (u64)pa->req_power * power_range;
366
367		pa->granted_power = DIV_ROUND_CLOSEST_ULL(req_range,
368							  total_req_power);
369
370		if (pa->granted_power > pa->max_power) {
371			extra_power += pa->granted_power - pa->max_power;
372			pa->granted_power = pa->max_power;
373		}
374
375		pa->extra_actor_power = pa->max_power - pa->granted_power;
376		capped_extra_power += pa->extra_actor_power;
377	}
378
379	if (!extra_power || !capped_extra_power)
380		return;
381
382	/*
383	 * Re-divvy the reclaimed extra among actors based on
384	 * how far they are from the max
385	 */
386	extra_power = min(extra_power, capped_extra_power);
387
388	for (i = 0; i < num_actors; i++) {
389		struct power_actor *pa = &power[i];
390		u64 extra_range = pa->extra_actor_power;
391
392		extra_range *= extra_power;
393		pa->granted_power += DIV_ROUND_CLOSEST_ULL(extra_range,
394						capped_extra_power);
395	}
396}
397
398static int allocate_power(struct thermal_zone_device *tz, int control_temp)
 
399{
400	struct power_allocator_params *params = tz->governor_data;
401	unsigned int num_actors = params->num_actors;
402	struct power_actor *power = params->power;
403	struct thermal_cooling_device *cdev;
404	struct thermal_instance *instance;
405	u32 total_weighted_req_power = 0;
406	u32 max_allocatable_power = 0;
407	u32 total_granted_power = 0;
408	u32 total_req_power = 0;
409	u32 power_range, weight;
410	int i = 0, ret;
 
 
 
411
412	if (!num_actors)
413		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
414
415	/* Clean all buffers for new power estimations */
416	memset(power, 0, params->buffer_size);
 
 
 
 
 
 
 
417
418	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
419		struct power_actor *pa = &power[i];
 
420
421		if (!power_actor_is_valid(params, instance))
422			continue;
423
424		cdev = instance->cdev;
 
425
426		ret = cdev->ops->get_requested_power(cdev, &pa->req_power);
427		if (ret)
428			continue;
429
430		if (!params->total_weight)
431			weight = 1 << FRAC_BITS;
432		else
433			weight = instance->weight;
434
435		pa->weighted_req_power = frac_to_int(weight * pa->req_power);
436
437		ret = cdev->ops->state2power(cdev, instance->lower,
438					     &pa->max_power);
439		if (ret)
440			continue;
441
442		total_req_power += pa->req_power;
443		max_allocatable_power += pa->max_power;
444		total_weighted_req_power += pa->weighted_req_power;
445
446		i++;
447	}
448
449	power_range = pid_controller(tz, control_temp, max_allocatable_power);
450
451	divvy_up_power(power, num_actors, total_weighted_req_power,
452		       power_range);
 
453
 
454	i = 0;
455	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
456		struct power_actor *pa = &power[i];
 
457
458		if (!power_actor_is_valid(params, instance))
459			continue;
460
461		power_actor_set_power(instance->cdev, instance,
462				      pa->granted_power);
463		total_granted_power += pa->granted_power;
464
465		trace_thermal_power_actor(tz, i, pa->req_power,
466					  pa->granted_power);
467		i++;
468	}
469
470	trace_thermal_power_allocator(tz, total_req_power, total_granted_power,
 
471				      num_actors, power_range,
472				      max_allocatable_power, tz->temperature,
473				      control_temp - tz->temperature);
474
475	return 0;
 
 
 
 
476}
477
478/**
479 * get_governor_trips() - get the two trip points that are key for this governor
480 * @tz:	thermal zone to operate on
481 * @params:	pointer to private data for this governor
482 *
483 * The power allocator governor works optimally with two trips points:
484 * a "switch on" trip point and a "maximum desired temperature".  These
485 * are defined as the first and last passive trip points.
486 *
487 * If there is only one trip point, then that's considered to be the
488 * "maximum desired temperature" trip point and the governor is always
489 * on.  If there are no passive or active trip points, then the
490 * governor won't do anything.  In fact, its throttle function
491 * won't be called at all.
492 */
493static void get_governor_trips(struct thermal_zone_device *tz,
494			       struct power_allocator_params *params)
495{
496	const struct thermal_trip *first_passive = NULL;
497	const struct thermal_trip *last_passive = NULL;
498	const struct thermal_trip *last_active = NULL;
499	const struct thermal_trip *trip;
500
501	for_each_trip(tz, trip) {
502		switch (trip->type) {
503		case THERMAL_TRIP_PASSIVE:
504			if (!first_passive) {
505				first_passive = trip;
506				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
507			}
508			last_passive = trip;
509			break;
510		case THERMAL_TRIP_ACTIVE:
511			last_active = trip;
512			break;
513		default:
514			break;
515		}
516	}
517
518	if (last_passive) {
519		params->trip_switch_on = first_passive;
520		params->trip_max = last_passive;
521	} else if (first_passive) {
522		params->trip_switch_on = NULL;
523		params->trip_max = first_passive;
524	} else {
525		params->trip_switch_on = NULL;
526		params->trip_max = last_active;
527	}
528}
529
530static void reset_pid_controller(struct power_allocator_params *params)
531{
532	params->err_integral = 0;
533	params->prev_err = 0;
534}
535
536static void allow_maximum_power(struct thermal_zone_device *tz, bool update)
537{
538	struct power_allocator_params *params = tz->governor_data;
539	struct thermal_cooling_device *cdev;
540	struct thermal_instance *instance;
541	u32 req_power;
542
 
543	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
544		if (!power_actor_is_valid(params, instance))
 
545			continue;
546
547		cdev = instance->cdev;
548
549		instance->target = 0;
550		mutex_lock(&cdev->lock);
551		/*
552		 * Call for updating the cooling devices local stats and avoid
553		 * periods of dozen of seconds when those have not been
554		 * maintained.
555		 */
556		cdev->ops->get_requested_power(cdev, &req_power);
557
558		if (update)
559			__thermal_cdev_update(cdev);
560
561		mutex_unlock(&cdev->lock);
562	}
563}
564
565/**
566 * check_power_actors() - Check all cooling devices and warn when they are
567 *			not power actors
568 * @tz:		thermal zone to operate on
569 * @params:	power allocator private data
570 *
571 * Check all cooling devices in the @tz and warn every time they are missing
572 * power actor API. The warning should help to investigate the issue, which
573 * could be e.g. lack of Energy Model for a given device.
574 *
575 * If all of the cooling devices currently attached to @tz implement the power
576 * actor API, return the number of them (which may be 0, because some cooling
577 * devices may be attached later). Otherwise, return -EINVAL.
578 */
579static int check_power_actors(struct thermal_zone_device *tz,
580			      struct power_allocator_params *params)
581{
582	struct thermal_instance *instance;
583	int ret = 0;
584
585	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
586		if (instance->trip != params->trip_max)
587			continue;
588
589		if (!cdev_is_power_actor(instance->cdev)) {
590			dev_warn(&tz->device, "power_allocator: %s is not a power actor\n",
591				 instance->cdev->type);
592			return -EINVAL;
593		}
594		ret++;
595	}
596
597	return ret;
598}
599
600static int allocate_actors_buffer(struct power_allocator_params *params,
601				  int num_actors)
602{
603	int ret;
604
605	kfree(params->power);
606
607	/* There might be no cooling devices yet. */
608	if (!num_actors) {
609		ret = -EINVAL;
610		goto clean_state;
611	}
612
613	params->power = kcalloc(num_actors, sizeof(struct power_actor),
614				GFP_KERNEL);
615	if (!params->power) {
616		ret = -ENOMEM;
617		goto clean_state;
618	}
619
620	params->num_actors = num_actors;
621	params->buffer_size = num_actors * sizeof(struct power_actor);
622
623	return 0;
624
625clean_state:
626	params->num_actors = 0;
627	params->buffer_size = 0;
628	params->power = NULL;
629	return ret;
630}
631
632static void power_allocator_update_tz(struct thermal_zone_device *tz,
633				      enum thermal_notify_event reason)
634{
635	struct power_allocator_params *params = tz->governor_data;
636	struct thermal_instance *instance;
637	int num_actors = 0;
638
639	switch (reason) {
640	case THERMAL_TZ_BIND_CDEV:
641	case THERMAL_TZ_UNBIND_CDEV:
642		list_for_each_entry(instance, &tz->thermal_instances, tz_node)
643			if (power_actor_is_valid(params, instance))
644				num_actors++;
645
646		if (num_actors == params->num_actors)
647			return;
648
649		allocate_actors_buffer(params, num_actors);
650		break;
651	case THERMAL_INSTANCE_WEIGHT_CHANGED:
652		params->total_weight = 0;
653		list_for_each_entry(instance, &tz->thermal_instances, tz_node)
654			if (power_actor_is_valid(params, instance))
655				params->total_weight += instance->weight;
656		break;
657	default:
658		break;
659	}
 
660}
661
662/**
663 * power_allocator_bind() - bind the power_allocator governor to a thermal zone
664 * @tz:	thermal zone to bind it to
665 *
666 * Initialize the PID controller parameters and bind it to the thermal
667 * zone.
668 *
669 * Return: 0 on success, or -ENOMEM if we ran out of memory, or -EINVAL
670 * when there are unsupported cooling devices in the @tz.
671 */
672static int power_allocator_bind(struct thermal_zone_device *tz)
673{
674	struct power_allocator_params *params;
675	int ret;
 
 
676
677	params = kzalloc(sizeof(*params), GFP_KERNEL);
678	if (!params)
679		return -ENOMEM;
680
681	get_governor_trips(tz, params);
682	if (!params->trip_max) {
683		dev_warn(&tz->device, "power_allocator: missing trip_max\n");
684		kfree(params);
685		return -EINVAL;
686	}
687
688	ret = check_power_actors(tz, params);
689	if (ret < 0) {
690		dev_warn(&tz->device, "power_allocator: binding failed\n");
691		kfree(params);
692		return ret;
693	}
694
695	ret = allocate_actors_buffer(params, ret);
696	if (ret) {
697		dev_warn(&tz->device, "power_allocator: allocation failed\n");
698		kfree(params);
699		return ret;
700	}
701
702	if (!tz->tzp) {
703		tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL);
704		if (!tz->tzp) {
705			ret = -ENOMEM;
706			goto free_params;
707		}
708
709		params->allocated_tzp = true;
710	}
711
712	if (!tz->tzp->sustainable_power)
713		dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n");
714
715	estimate_pid_constants(tz, tz->tzp->sustainable_power,
716			       params->trip_switch_on,
717			       params->trip_max->temperature);
 
 
 
 
 
 
 
 
718
719	reset_pid_controller(params);
720
721	tz->governor_data = params;
722
723	return 0;
724
725free_params:
726	kfree(params->power);
727	kfree(params);
728
729	return ret;
730}
731
732static void power_allocator_unbind(struct thermal_zone_device *tz)
733{
734	struct power_allocator_params *params = tz->governor_data;
735
736	dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id);
737
738	if (params->allocated_tzp) {
739		kfree(tz->tzp);
740		tz->tzp = NULL;
741	}
742
743	kfree(params->power);
744	kfree(tz->governor_data);
745	tz->governor_data = NULL;
746}
747
748static int power_allocator_throttle(struct thermal_zone_device *tz,
749				    const struct thermal_trip *trip)
750{
 
 
751	struct power_allocator_params *params = tz->governor_data;
752	bool update;
753
754	lockdep_assert_held(&tz->lock);
755
756	/*
757	 * We get called for every trip point but we only need to do
758	 * our calculations once
759	 */
760	if (trip != params->trip_max)
761		return 0;
762
763	trip = params->trip_switch_on;
764	if (trip && tz->temperature < trip->temperature) {
765		update = tz->passive;
766		tz->passive = 0;
767		reset_pid_controller(params);
768		allow_maximum_power(tz, update);
769		return 0;
770	}
771
772	tz->passive = 1;
773
774	return allocate_power(tz, params->trip_max->temperature);
 
 
 
 
 
 
 
 
 
775}
776
777static struct thermal_governor thermal_gov_power_allocator = {
778	.name		= "power_allocator",
779	.bind_to_tz	= power_allocator_bind,
780	.unbind_from_tz	= power_allocator_unbind,
781	.throttle	= power_allocator_throttle,
782	.update_tz	= power_allocator_update_tz,
783};
784THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator);
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * A power allocator to manage temperature
  4 *
  5 * Copyright (C) 2014 ARM Ltd.
  6 *
  7 */
  8
  9#define pr_fmt(fmt) "Power allocator: " fmt
 10
 11#include <linux/rculist.h>
 12#include <linux/slab.h>
 13#include <linux/thermal.h>
 14
 15#define CREATE_TRACE_POINTS
 16#include <trace/events/thermal_power_allocator.h>
 17
 18#include "thermal_core.h"
 19
 20#define INVALID_TRIP -1
 21
 22#define FRAC_BITS 10
 23#define int_to_frac(x) ((x) << FRAC_BITS)
 24#define frac_to_int(x) ((x) >> FRAC_BITS)
 25
 26/**
 27 * mul_frac() - multiply two fixed-point numbers
 28 * @x:	first multiplicand
 29 * @y:	second multiplicand
 30 *
 31 * Return: the result of multiplying two fixed-point numbers.  The
 32 * result is also a fixed-point number.
 33 */
 34static inline s64 mul_frac(s64 x, s64 y)
 35{
 36	return (x * y) >> FRAC_BITS;
 37}
 38
 39/**
 40 * div_frac() - divide two fixed-point numbers
 41 * @x:	the dividend
 42 * @y:	the divisor
 43 *
 44 * Return: the result of dividing two fixed-point numbers.  The
 45 * result is also a fixed-point number.
 46 */
 47static inline s64 div_frac(s64 x, s64 y)
 48{
 49	return div_s64(x << FRAC_BITS, y);
 50}
 51
 52/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 53 * struct power_allocator_params - parameters for the power allocator governor
 54 * @allocated_tzp:	whether we have allocated tzp for this thermal zone and
 55 *			it needs to be freed on unbind
 56 * @err_integral:	accumulated error in the PID controller.
 57 * @prev_err:	error in the previous iteration of the PID controller.
 58 *		Used to calculate the derivative term.
 
 
 59 * @trip_switch_on:	first passive trip point of the thermal zone.  The
 60 *			governor switches on when this trip point is crossed.
 61 *			If the thermal zone only has one passive trip point,
 62 *			@trip_switch_on should be INVALID_TRIP.
 63 * @trip_max_desired_temperature:	last passive trip point of the thermal
 64 *					zone.  The temperature we are
 65 *					controlling for.
 
 
 
 66 */
 67struct power_allocator_params {
 68	bool allocated_tzp;
 69	s64 err_integral;
 70	s32 prev_err;
 71	int trip_switch_on;
 72	int trip_max_desired_temperature;
 
 
 
 
 
 73};
 74
 
 
 
 
 
 
 
 75/**
 76 * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone
 77 * @tz: thermal zone we are operating in
 78 *
 79 * For thermal zones that don't provide a sustainable_power in their
 80 * thermal_zone_params, estimate one.  Calculate it using the minimum
 81 * power of all the cooling devices as that gives a valid value that
 82 * can give some degree of functionality.  For optimal performance of
 83 * this governor, provide a sustainable_power in the thermal zone's
 84 * thermal_zone_params.
 85 */
 86static u32 estimate_sustainable_power(struct thermal_zone_device *tz)
 87{
 
 
 
 88	u32 sustainable_power = 0;
 89	struct thermal_instance *instance;
 90	struct power_allocator_params *params = tz->governor_data;
 91
 92	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
 93		struct thermal_cooling_device *cdev = instance->cdev;
 94		u32 min_power;
 95
 96		if (instance->trip != params->trip_max_desired_temperature)
 97			continue;
 98
 99		if (power_actor_get_min_power(cdev, tz, &min_power))
 
100			continue;
101
102		sustainable_power += min_power;
103	}
104
105	return sustainable_power;
106}
107
108/**
109 * estimate_pid_constants() - Estimate the constants for the PID controller
110 * @tz:		thermal zone for which to estimate the constants
111 * @sustainable_power:	sustainable power for the thermal zone
112 * @trip_switch_on:	trip point number for the switch on temperature
113 * @control_temp:	target temperature for the power allocator governor
114 * @force:	whether to force the update of the constants
115 *
116 * This function is used to update the estimation of the PID
117 * controller constants in struct thermal_zone_parameters.
118 * Sustainable power is provided in case it was estimated.  The
119 * estimated sustainable_power should not be stored in the
120 * thermal_zone_parameters so it has to be passed explicitly to this
121 * function.
122 *
123 * If @force is not set, the values in the thermal zone's parameters
124 * are preserved if they are not zero.  If @force is set, the values
125 * in thermal zone's parameters are overwritten.
126 */
127static void estimate_pid_constants(struct thermal_zone_device *tz,
128				   u32 sustainable_power, int trip_switch_on,
129				   int control_temp, bool force)
 
130{
131	int ret;
132	int switch_on_temp;
133	u32 temperature_threshold;
134
135	ret = tz->ops->get_trip_temp(tz, trip_switch_on, &switch_on_temp);
136	if (ret)
137		switch_on_temp = 0;
138
139	temperature_threshold = control_temp - switch_on_temp;
140	/*
141	 * estimate_pid_constants() tries to find appropriate default
142	 * values for thermal zones that don't provide them. If a
143	 * system integrator has configured a thermal zone with two
144	 * passive trip points at the same temperature, that person
145	 * hasn't put any effort to set up the thermal zone properly
146	 * so just give up.
147	 */
148	if (!temperature_threshold)
149		return;
150
151	if (!tz->tzp->k_po || force)
152		tz->tzp->k_po = int_to_frac(sustainable_power) /
153			temperature_threshold;
154
155	if (!tz->tzp->k_pu || force)
156		tz->tzp->k_pu = int_to_frac(2 * sustainable_power) /
157			temperature_threshold;
 
158
159	if (!tz->tzp->k_i || force)
160		tz->tzp->k_i = int_to_frac(10) / 1000;
161	/*
162	 * The default for k_d and integral_cutoff is 0, so we can
163	 * leave them as they are.
164	 */
165}
166
167/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168 * pid_controller() - PID controller
169 * @tz:	thermal zone we are operating in
170 * @control_temp:	the target temperature in millicelsius
171 * @max_allocatable_power:	maximum allocatable power for this thermal zone
172 *
173 * This PID controller increases the available power budget so that the
174 * temperature of the thermal zone gets as close as possible to
175 * @control_temp and limits the power if it exceeds it.  k_po is the
176 * proportional term when we are overshooting, k_pu is the
177 * proportional term when we are undershooting.  integral_cutoff is a
178 * threshold below which we stop accumulating the error.  The
179 * accumulated error is only valid if the requested power will make
180 * the system warmer.  If the system is mostly idle, there's no point
181 * in accumulating positive error.
182 *
183 * Return: The power budget for the next period.
184 */
185static u32 pid_controller(struct thermal_zone_device *tz,
186			  int control_temp,
187			  u32 max_allocatable_power)
188{
 
189	s64 p, i, d, power_range;
190	s32 err, max_power_frac;
191	u32 sustainable_power;
192	struct power_allocator_params *params = tz->governor_data;
193
194	max_power_frac = int_to_frac(max_allocatable_power);
195
196	if (tz->tzp->sustainable_power) {
197		sustainable_power = tz->tzp->sustainable_power;
198	} else {
199		sustainable_power = estimate_sustainable_power(tz);
200		estimate_pid_constants(tz, sustainable_power,
201				       params->trip_switch_on, control_temp,
202				       true);
203	}
204
205	err = control_temp - tz->temperature;
206	err = int_to_frac(err);
207
208	/* Calculate the proportional term */
209	p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err);
210
211	/*
212	 * Calculate the integral term
213	 *
214	 * if the error is less than cut off allow integration (but
215	 * the integral is limited to max power)
216	 */
217	i = mul_frac(tz->tzp->k_i, params->err_integral);
218
219	if (err < int_to_frac(tz->tzp->integral_cutoff)) {
220		s64 i_next = i + mul_frac(tz->tzp->k_i, err);
221
222		if (abs(i_next) < max_power_frac) {
223			i = i_next;
224			params->err_integral += err;
225		}
226	}
227
228	/*
229	 * Calculate the derivative term
230	 *
231	 * We do err - prev_err, so with a positive k_d, a decreasing
232	 * error (i.e. driving closer to the line) results in less
233	 * power being applied, slowing down the controller)
234	 */
235	d = mul_frac(tz->tzp->k_d, err - params->prev_err);
236	d = div_frac(d, tz->passive_delay);
237	params->prev_err = err;
238
239	power_range = p + i + d;
240
241	/* feed-forward the known sustainable dissipatable power */
242	power_range = sustainable_power + frac_to_int(power_range);
243
244	power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power);
245
246	trace_thermal_power_allocator_pid(tz, frac_to_int(err),
247					  frac_to_int(params->err_integral),
248					  frac_to_int(p), frac_to_int(i),
249					  frac_to_int(d), power_range);
250
251	return power_range;
252}
253
254/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
255 * divvy_up_power() - divvy the allocated power between the actors
256 * @req_power:	each actor's requested power
257 * @max_power:	each actor's maximum available power
258 * @num_actors:	size of the @req_power, @max_power and @granted_power's array
259 * @total_req_power: sum of @req_power
260 * @power_range:	total allocated power
261 * @granted_power:	output array: each actor's granted power
262 * @extra_actor_power:	an appropriately sized array to be used in the
263 *			function as temporary storage of the extra power given
264 *			to the actors
265 *
266 * This function divides the total allocated power (@power_range)
267 * fairly between the actors.  It first tries to give each actor a
268 * share of the @power_range according to how much power it requested
269 * compared to the rest of the actors.  For example, if only one actor
270 * requests power, then it receives all the @power_range.  If
271 * three actors each requests 1mW, each receives a third of the
272 * @power_range.
273 *
274 * If any actor received more than their maximum power, then that
275 * surplus is re-divvied among the actors based on how far they are
276 * from their respective maximums.
277 *
278 * Granted power for each actor is written to @granted_power, which
279 * should've been allocated by the calling function.
280 */
281static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors,
282			   u32 total_req_power, u32 power_range,
283			   u32 *granted_power, u32 *extra_actor_power)
284{
285	u32 extra_power, capped_extra_power;
 
286	int i;
287
288	/*
289	 * Prevent division by 0 if none of the actors request power.
290	 */
291	if (!total_req_power)
292		total_req_power = 1;
293
294	capped_extra_power = 0;
295	extra_power = 0;
296	for (i = 0; i < num_actors; i++) {
297		u64 req_range = (u64)req_power[i] * power_range;
 
298
299		granted_power[i] = DIV_ROUND_CLOSEST_ULL(req_range,
300							 total_req_power);
301
302		if (granted_power[i] > max_power[i]) {
303			extra_power += granted_power[i] - max_power[i];
304			granted_power[i] = max_power[i];
305		}
306
307		extra_actor_power[i] = max_power[i] - granted_power[i];
308		capped_extra_power += extra_actor_power[i];
309	}
310
311	if (!extra_power)
312		return;
313
314	/*
315	 * Re-divvy the reclaimed extra among actors based on
316	 * how far they are from the max
317	 */
318	extra_power = min(extra_power, capped_extra_power);
319	if (capped_extra_power > 0)
320		for (i = 0; i < num_actors; i++)
321			granted_power[i] += (extra_actor_power[i] *
322					extra_power) / capped_extra_power;
 
 
 
 
 
323}
324
325static int allocate_power(struct thermal_zone_device *tz,
326			  int control_temp)
327{
 
 
 
 
328	struct thermal_instance *instance;
329	struct power_allocator_params *params = tz->governor_data;
330	u32 *req_power, *max_power, *granted_power, *extra_actor_power;
331	u32 *weighted_req_power;
332	u32 total_req_power, max_allocatable_power, total_weighted_req_power;
333	u32 total_granted_power, power_range;
334	int i, num_actors, total_weight, ret = 0;
335	int trip_max_desired_temperature = params->trip_max_desired_temperature;
336
337	mutex_lock(&tz->lock);
338
339	num_actors = 0;
340	total_weight = 0;
341	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
342		if ((instance->trip == trip_max_desired_temperature) &&
343		    cdev_is_power_actor(instance->cdev)) {
344			num_actors++;
345			total_weight += instance->weight;
346		}
347	}
348
349	if (!num_actors) {
350		ret = -ENODEV;
351		goto unlock;
352	}
353
354	/*
355	 * We need to allocate five arrays of the same size:
356	 * req_power, max_power, granted_power, extra_actor_power and
357	 * weighted_req_power.  They are going to be needed until this
358	 * function returns.  Allocate them all in one go to simplify
359	 * the allocation and deallocation logic.
360	 */
361	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power));
362	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power));
363	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power));
364	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*weighted_req_power));
365	req_power = kcalloc(num_actors * 5, sizeof(*req_power), GFP_KERNEL);
366	if (!req_power) {
367		ret = -ENOMEM;
368		goto unlock;
369	}
370
371	max_power = &req_power[num_actors];
372	granted_power = &req_power[2 * num_actors];
373	extra_actor_power = &req_power[3 * num_actors];
374	weighted_req_power = &req_power[4 * num_actors];
375
376	i = 0;
377	total_weighted_req_power = 0;
378	total_req_power = 0;
379	max_allocatable_power = 0;
380
381	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
382		int weight;
383		struct thermal_cooling_device *cdev = instance->cdev;
384
385		if (instance->trip != trip_max_desired_temperature)
386			continue;
387
388		if (!cdev_is_power_actor(cdev))
389			continue;
390
391		if (cdev->ops->get_requested_power(cdev, tz, &req_power[i]))
 
392			continue;
393
394		if (!total_weight)
395			weight = 1 << FRAC_BITS;
396		else
397			weight = instance->weight;
398
399		weighted_req_power[i] = frac_to_int(weight * req_power[i]);
400
401		if (power_actor_get_max_power(cdev, tz, &max_power[i]))
 
 
402			continue;
403
404		total_req_power += req_power[i];
405		max_allocatable_power += max_power[i];
406		total_weighted_req_power += weighted_req_power[i];
407
408		i++;
409	}
410
411	power_range = pid_controller(tz, control_temp, max_allocatable_power);
412
413	divvy_up_power(weighted_req_power, max_power, num_actors,
414		       total_weighted_req_power, power_range, granted_power,
415		       extra_actor_power);
416
417	total_granted_power = 0;
418	i = 0;
419	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
420		if (instance->trip != trip_max_desired_temperature)
421			continue;
422
423		if (!cdev_is_power_actor(instance->cdev))
424			continue;
425
426		power_actor_set_power(instance->cdev, instance,
427				      granted_power[i]);
428		total_granted_power += granted_power[i];
429
 
 
430		i++;
431	}
432
433	trace_thermal_power_allocator(tz, req_power, total_req_power,
434				      granted_power, total_granted_power,
435				      num_actors, power_range,
436				      max_allocatable_power, tz->temperature,
437				      control_temp - tz->temperature);
438
439	kfree(req_power);
440unlock:
441	mutex_unlock(&tz->lock);
442
443	return ret;
444}
445
446/**
447 * get_governor_trips() - get the number of the two trip points that are key for this governor
448 * @tz:	thermal zone to operate on
449 * @params:	pointer to private data for this governor
450 *
451 * The power allocator governor works optimally with two trips points:
452 * a "switch on" trip point and a "maximum desired temperature".  These
453 * are defined as the first and last passive trip points.
454 *
455 * If there is only one trip point, then that's considered to be the
456 * "maximum desired temperature" trip point and the governor is always
457 * on.  If there are no passive or active trip points, then the
458 * governor won't do anything.  In fact, its throttle function
459 * won't be called at all.
460 */
461static void get_governor_trips(struct thermal_zone_device *tz,
462			       struct power_allocator_params *params)
463{
464	int i, last_active, last_passive;
465	bool found_first_passive;
466
467	found_first_passive = false;
468	last_active = INVALID_TRIP;
469	last_passive = INVALID_TRIP;
470
471	for (i = 0; i < tz->trips; i++) {
472		enum thermal_trip_type type;
473		int ret;
474
475		ret = tz->ops->get_trip_type(tz, i, &type);
476		if (ret) {
477			dev_warn(&tz->device,
478				 "Failed to get trip point %d type: %d\n", i,
479				 ret);
480			continue;
481		}
482
483		if (type == THERMAL_TRIP_PASSIVE) {
484			if (!found_first_passive) {
485				params->trip_switch_on = i;
486				found_first_passive = true;
487			} else  {
488				last_passive = i;
489			}
490		} else if (type == THERMAL_TRIP_ACTIVE) {
491			last_active = i;
492		} else {
 
 
 
493			break;
494		}
495	}
496
497	if (last_passive != INVALID_TRIP) {
498		params->trip_max_desired_temperature = last_passive;
499	} else if (found_first_passive) {
500		params->trip_max_desired_temperature = params->trip_switch_on;
501		params->trip_switch_on = INVALID_TRIP;
 
502	} else {
503		params->trip_switch_on = INVALID_TRIP;
504		params->trip_max_desired_temperature = last_active;
505	}
506}
507
508static void reset_pid_controller(struct power_allocator_params *params)
509{
510	params->err_integral = 0;
511	params->prev_err = 0;
512}
513
514static void allow_maximum_power(struct thermal_zone_device *tz)
515{
 
 
516	struct thermal_instance *instance;
517	struct power_allocator_params *params = tz->governor_data;
518
519	mutex_lock(&tz->lock);
520	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
521		if ((instance->trip != params->trip_max_desired_temperature) ||
522		    (!cdev_is_power_actor(instance->cdev)))
523			continue;
524
 
 
525		instance->target = 0;
526		mutex_lock(&instance->cdev->lock);
527		instance->cdev->updated = false;
528		mutex_unlock(&instance->cdev->lock);
529		thermal_cdev_update(instance->cdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
530	}
531	mutex_unlock(&tz->lock);
532}
533
534/**
535 * power_allocator_bind() - bind the power_allocator governor to a thermal zone
536 * @tz:	thermal zone to bind it to
537 *
538 * Initialize the PID controller parameters and bind it to the thermal
539 * zone.
540 *
541 * Return: 0 on success, or -ENOMEM if we ran out of memory.
 
542 */
543static int power_allocator_bind(struct thermal_zone_device *tz)
544{
 
545	int ret;
546	struct power_allocator_params *params;
547	int control_temp;
548
549	params = kzalloc(sizeof(*params), GFP_KERNEL);
550	if (!params)
551		return -ENOMEM;
552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
553	if (!tz->tzp) {
554		tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL);
555		if (!tz->tzp) {
556			ret = -ENOMEM;
557			goto free_params;
558		}
559
560		params->allocated_tzp = true;
561	}
562
563	if (!tz->tzp->sustainable_power)
564		dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n");
565
566	get_governor_trips(tz, params);
567
568	if (tz->trips > 0) {
569		ret = tz->ops->get_trip_temp(tz,
570					params->trip_max_desired_temperature,
571					&control_temp);
572		if (!ret)
573			estimate_pid_constants(tz, tz->tzp->sustainable_power,
574					       params->trip_switch_on,
575					       control_temp, false);
576	}
577
578	reset_pid_controller(params);
579
580	tz->governor_data = params;
581
582	return 0;
583
584free_params:
 
585	kfree(params);
586
587	return ret;
588}
589
590static void power_allocator_unbind(struct thermal_zone_device *tz)
591{
592	struct power_allocator_params *params = tz->governor_data;
593
594	dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id);
595
596	if (params->allocated_tzp) {
597		kfree(tz->tzp);
598		tz->tzp = NULL;
599	}
600
 
601	kfree(tz->governor_data);
602	tz->governor_data = NULL;
603}
604
605static int power_allocator_throttle(struct thermal_zone_device *tz, int trip)
 
606{
607	int ret;
608	int switch_on_temp, control_temp;
609	struct power_allocator_params *params = tz->governor_data;
 
 
 
610
611	/*
612	 * We get called for every trip point but we only need to do
613	 * our calculations once
614	 */
615	if (trip != params->trip_max_desired_temperature)
616		return 0;
617
618	ret = tz->ops->get_trip_temp(tz, params->trip_switch_on,
619				     &switch_on_temp);
620	if (!ret && (tz->temperature < switch_on_temp)) {
621		tz->passive = 0;
622		reset_pid_controller(params);
623		allow_maximum_power(tz);
624		return 0;
625	}
626
627	tz->passive = 1;
628
629	ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature,
630				&control_temp);
631	if (ret) {
632		dev_warn(&tz->device,
633			 "Failed to get the maximum desired temperature: %d\n",
634			 ret);
635		return ret;
636	}
637
638	return allocate_power(tz, control_temp);
639}
640
641static struct thermal_governor thermal_gov_power_allocator = {
642	.name		= "power_allocator",
643	.bind_to_tz	= power_allocator_bind,
644	.unbind_from_tz	= power_allocator_unbind,
645	.throttle	= power_allocator_throttle,
 
646};
647THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator);