Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * drivers/of/property.c - Procedures for accessing and interpreting
4 * Devicetree properties and graphs.
5 *
6 * Initially created by copying procedures from drivers/of/base.c. This
7 * file contains the OF property as well as the OF graph interface
8 * functions.
9 *
10 * Paul Mackerras August 1996.
11 * Copyright (C) 1996-2005 Paul Mackerras.
12 *
13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
14 * {engebret|bergner}@us.ibm.com
15 *
16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
17 *
18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
19 * Grant Likely.
20 */
21
22#define pr_fmt(fmt) "OF: " fmt
23
24#include <linux/of.h>
25#include <linux/of_address.h>
26#include <linux/of_device.h>
27#include <linux/of_graph.h>
28#include <linux/of_irq.h>
29#include <linux/string.h>
30#include <linux/moduleparam.h>
31
32#include "of_private.h"
33
34/**
35 * of_graph_is_present() - check graph's presence
36 * @node: pointer to device_node containing graph port
37 *
38 * Return: True if @node has a port or ports (with a port) sub-node,
39 * false otherwise.
40 */
41bool of_graph_is_present(const struct device_node *node)
42{
43 struct device_node *ports, *port;
44
45 ports = of_get_child_by_name(node, "ports");
46 if (ports)
47 node = ports;
48
49 port = of_get_child_by_name(node, "port");
50 of_node_put(ports);
51 of_node_put(port);
52
53 return !!port;
54}
55EXPORT_SYMBOL(of_graph_is_present);
56
57/**
58 * of_property_count_elems_of_size - Count the number of elements in a property
59 *
60 * @np: device node from which the property value is to be read.
61 * @propname: name of the property to be searched.
62 * @elem_size: size of the individual element
63 *
64 * Search for a property in a device node and count the number of elements of
65 * size elem_size in it.
66 *
67 * Return: The number of elements on sucess, -EINVAL if the property does not
68 * exist or its length does not match a multiple of elem_size and -ENODATA if
69 * the property does not have a value.
70 */
71int of_property_count_elems_of_size(const struct device_node *np,
72 const char *propname, int elem_size)
73{
74 struct property *prop = of_find_property(np, propname, NULL);
75
76 if (!prop)
77 return -EINVAL;
78 if (!prop->value)
79 return -ENODATA;
80
81 if (prop->length % elem_size != 0) {
82 pr_err("size of %s in node %pOF is not a multiple of %d\n",
83 propname, np, elem_size);
84 return -EINVAL;
85 }
86
87 return prop->length / elem_size;
88}
89EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
90
91/**
92 * of_find_property_value_of_size
93 *
94 * @np: device node from which the property value is to be read.
95 * @propname: name of the property to be searched.
96 * @min: minimum allowed length of property value
97 * @max: maximum allowed length of property value (0 means unlimited)
98 * @len: if !=NULL, actual length is written to here
99 *
100 * Search for a property in a device node and valid the requested size.
101 *
102 * Return: The property value on success, -EINVAL if the property does not
103 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
104 * property data is too small or too large.
105 *
106 */
107static void *of_find_property_value_of_size(const struct device_node *np,
108 const char *propname, u32 min, u32 max, size_t *len)
109{
110 struct property *prop = of_find_property(np, propname, NULL);
111
112 if (!prop)
113 return ERR_PTR(-EINVAL);
114 if (!prop->value)
115 return ERR_PTR(-ENODATA);
116 if (prop->length < min)
117 return ERR_PTR(-EOVERFLOW);
118 if (max && prop->length > max)
119 return ERR_PTR(-EOVERFLOW);
120
121 if (len)
122 *len = prop->length;
123
124 return prop->value;
125}
126
127/**
128 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
129 *
130 * @np: device node from which the property value is to be read.
131 * @propname: name of the property to be searched.
132 * @index: index of the u32 in the list of values
133 * @out_value: pointer to return value, modified only if no error.
134 *
135 * Search for a property in a device node and read nth 32-bit value from
136 * it.
137 *
138 * Return: 0 on success, -EINVAL if the property does not exist,
139 * -ENODATA if property does not have a value, and -EOVERFLOW if the
140 * property data isn't large enough.
141 *
142 * The out_value is modified only if a valid u32 value can be decoded.
143 */
144int of_property_read_u32_index(const struct device_node *np,
145 const char *propname,
146 u32 index, u32 *out_value)
147{
148 const u32 *val = of_find_property_value_of_size(np, propname,
149 ((index + 1) * sizeof(*out_value)),
150 0,
151 NULL);
152
153 if (IS_ERR(val))
154 return PTR_ERR(val);
155
156 *out_value = be32_to_cpup(((__be32 *)val) + index);
157 return 0;
158}
159EXPORT_SYMBOL_GPL(of_property_read_u32_index);
160
161/**
162 * of_property_read_u64_index - Find and read a u64 from a multi-value property.
163 *
164 * @np: device node from which the property value is to be read.
165 * @propname: name of the property to be searched.
166 * @index: index of the u64 in the list of values
167 * @out_value: pointer to return value, modified only if no error.
168 *
169 * Search for a property in a device node and read nth 64-bit value from
170 * it.
171 *
172 * Return: 0 on success, -EINVAL if the property does not exist,
173 * -ENODATA if property does not have a value, and -EOVERFLOW if the
174 * property data isn't large enough.
175 *
176 * The out_value is modified only if a valid u64 value can be decoded.
177 */
178int of_property_read_u64_index(const struct device_node *np,
179 const char *propname,
180 u32 index, u64 *out_value)
181{
182 const u64 *val = of_find_property_value_of_size(np, propname,
183 ((index + 1) * sizeof(*out_value)),
184 0, NULL);
185
186 if (IS_ERR(val))
187 return PTR_ERR(val);
188
189 *out_value = be64_to_cpup(((__be64 *)val) + index);
190 return 0;
191}
192EXPORT_SYMBOL_GPL(of_property_read_u64_index);
193
194/**
195 * of_property_read_variable_u8_array - Find and read an array of u8 from a
196 * property, with bounds on the minimum and maximum array size.
197 *
198 * @np: device node from which the property value is to be read.
199 * @propname: name of the property to be searched.
200 * @out_values: pointer to found values.
201 * @sz_min: minimum number of array elements to read
202 * @sz_max: maximum number of array elements to read, if zero there is no
203 * upper limit on the number of elements in the dts entry but only
204 * sz_min will be read.
205 *
206 * Search for a property in a device node and read 8-bit value(s) from
207 * it.
208 *
209 * dts entry of array should be like:
210 * ``property = /bits/ 8 <0x50 0x60 0x70>;``
211 *
212 * Return: The number of elements read on success, -EINVAL if the property
213 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
214 * if the property data is smaller than sz_min or longer than sz_max.
215 *
216 * The out_values is modified only if a valid u8 value can be decoded.
217 */
218int of_property_read_variable_u8_array(const struct device_node *np,
219 const char *propname, u8 *out_values,
220 size_t sz_min, size_t sz_max)
221{
222 size_t sz, count;
223 const u8 *val = of_find_property_value_of_size(np, propname,
224 (sz_min * sizeof(*out_values)),
225 (sz_max * sizeof(*out_values)),
226 &sz);
227
228 if (IS_ERR(val))
229 return PTR_ERR(val);
230
231 if (!sz_max)
232 sz = sz_min;
233 else
234 sz /= sizeof(*out_values);
235
236 count = sz;
237 while (count--)
238 *out_values++ = *val++;
239
240 return sz;
241}
242EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
243
244/**
245 * of_property_read_variable_u16_array - Find and read an array of u16 from a
246 * property, with bounds on the minimum and maximum array size.
247 *
248 * @np: device node from which the property value is to be read.
249 * @propname: name of the property to be searched.
250 * @out_values: pointer to found values.
251 * @sz_min: minimum number of array elements to read
252 * @sz_max: maximum number of array elements to read, if zero there is no
253 * upper limit on the number of elements in the dts entry but only
254 * sz_min will be read.
255 *
256 * Search for a property in a device node and read 16-bit value(s) from
257 * it.
258 *
259 * dts entry of array should be like:
260 * ``property = /bits/ 16 <0x5000 0x6000 0x7000>;``
261 *
262 * Return: The number of elements read on success, -EINVAL if the property
263 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
264 * if the property data is smaller than sz_min or longer than sz_max.
265 *
266 * The out_values is modified only if a valid u16 value can be decoded.
267 */
268int of_property_read_variable_u16_array(const struct device_node *np,
269 const char *propname, u16 *out_values,
270 size_t sz_min, size_t sz_max)
271{
272 size_t sz, count;
273 const __be16 *val = of_find_property_value_of_size(np, propname,
274 (sz_min * sizeof(*out_values)),
275 (sz_max * sizeof(*out_values)),
276 &sz);
277
278 if (IS_ERR(val))
279 return PTR_ERR(val);
280
281 if (!sz_max)
282 sz = sz_min;
283 else
284 sz /= sizeof(*out_values);
285
286 count = sz;
287 while (count--)
288 *out_values++ = be16_to_cpup(val++);
289
290 return sz;
291}
292EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
293
294/**
295 * of_property_read_variable_u32_array - Find and read an array of 32 bit
296 * integers from a property, with bounds on the minimum and maximum array size.
297 *
298 * @np: device node from which the property value is to be read.
299 * @propname: name of the property to be searched.
300 * @out_values: pointer to return found values.
301 * @sz_min: minimum number of array elements to read
302 * @sz_max: maximum number of array elements to read, if zero there is no
303 * upper limit on the number of elements in the dts entry but only
304 * sz_min will be read.
305 *
306 * Search for a property in a device node and read 32-bit value(s) from
307 * it.
308 *
309 * Return: The number of elements read on success, -EINVAL if the property
310 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
311 * if the property data is smaller than sz_min or longer than sz_max.
312 *
313 * The out_values is modified only if a valid u32 value can be decoded.
314 */
315int of_property_read_variable_u32_array(const struct device_node *np,
316 const char *propname, u32 *out_values,
317 size_t sz_min, size_t sz_max)
318{
319 size_t sz, count;
320 const __be32 *val = of_find_property_value_of_size(np, propname,
321 (sz_min * sizeof(*out_values)),
322 (sz_max * sizeof(*out_values)),
323 &sz);
324
325 if (IS_ERR(val))
326 return PTR_ERR(val);
327
328 if (!sz_max)
329 sz = sz_min;
330 else
331 sz /= sizeof(*out_values);
332
333 count = sz;
334 while (count--)
335 *out_values++ = be32_to_cpup(val++);
336
337 return sz;
338}
339EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
340
341/**
342 * of_property_read_u64 - Find and read a 64 bit integer from a property
343 * @np: device node from which the property value is to be read.
344 * @propname: name of the property to be searched.
345 * @out_value: pointer to return value, modified only if return value is 0.
346 *
347 * Search for a property in a device node and read a 64-bit value from
348 * it.
349 *
350 * Return: 0 on success, -EINVAL if the property does not exist,
351 * -ENODATA if property does not have a value, and -EOVERFLOW if the
352 * property data isn't large enough.
353 *
354 * The out_value is modified only if a valid u64 value can be decoded.
355 */
356int of_property_read_u64(const struct device_node *np, const char *propname,
357 u64 *out_value)
358{
359 const __be32 *val = of_find_property_value_of_size(np, propname,
360 sizeof(*out_value),
361 0,
362 NULL);
363
364 if (IS_ERR(val))
365 return PTR_ERR(val);
366
367 *out_value = of_read_number(val, 2);
368 return 0;
369}
370EXPORT_SYMBOL_GPL(of_property_read_u64);
371
372/**
373 * of_property_read_variable_u64_array - Find and read an array of 64 bit
374 * integers from a property, with bounds on the minimum and maximum array size.
375 *
376 * @np: device node from which the property value is to be read.
377 * @propname: name of the property to be searched.
378 * @out_values: pointer to found values.
379 * @sz_min: minimum number of array elements to read
380 * @sz_max: maximum number of array elements to read, if zero there is no
381 * upper limit on the number of elements in the dts entry but only
382 * sz_min will be read.
383 *
384 * Search for a property in a device node and read 64-bit value(s) from
385 * it.
386 *
387 * Return: The number of elements read on success, -EINVAL if the property
388 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
389 * if the property data is smaller than sz_min or longer than sz_max.
390 *
391 * The out_values is modified only if a valid u64 value can be decoded.
392 */
393int of_property_read_variable_u64_array(const struct device_node *np,
394 const char *propname, u64 *out_values,
395 size_t sz_min, size_t sz_max)
396{
397 size_t sz, count;
398 const __be32 *val = of_find_property_value_of_size(np, propname,
399 (sz_min * sizeof(*out_values)),
400 (sz_max * sizeof(*out_values)),
401 &sz);
402
403 if (IS_ERR(val))
404 return PTR_ERR(val);
405
406 if (!sz_max)
407 sz = sz_min;
408 else
409 sz /= sizeof(*out_values);
410
411 count = sz;
412 while (count--) {
413 *out_values++ = of_read_number(val, 2);
414 val += 2;
415 }
416
417 return sz;
418}
419EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
420
421/**
422 * of_property_read_string - Find and read a string from a property
423 * @np: device node from which the property value is to be read.
424 * @propname: name of the property to be searched.
425 * @out_string: pointer to null terminated return string, modified only if
426 * return value is 0.
427 *
428 * Search for a property in a device tree node and retrieve a null
429 * terminated string value (pointer to data, not a copy).
430 *
431 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if
432 * property does not have a value, and -EILSEQ if the string is not
433 * null-terminated within the length of the property data.
434 *
435 * Note that the empty string "" has length of 1, thus -ENODATA cannot
436 * be interpreted as an empty string.
437 *
438 * The out_string pointer is modified only if a valid string can be decoded.
439 */
440int of_property_read_string(const struct device_node *np, const char *propname,
441 const char **out_string)
442{
443 const struct property *prop = of_find_property(np, propname, NULL);
444
445 if (!prop)
446 return -EINVAL;
447 if (!prop->length)
448 return -ENODATA;
449 if (strnlen(prop->value, prop->length) >= prop->length)
450 return -EILSEQ;
451 *out_string = prop->value;
452 return 0;
453}
454EXPORT_SYMBOL_GPL(of_property_read_string);
455
456/**
457 * of_property_match_string() - Find string in a list and return index
458 * @np: pointer to node containing string list property
459 * @propname: string list property name
460 * @string: pointer to string to search for in string list
461 *
462 * This function searches a string list property and returns the index
463 * of a specific string value.
464 */
465int of_property_match_string(const struct device_node *np, const char *propname,
466 const char *string)
467{
468 const struct property *prop = of_find_property(np, propname, NULL);
469 size_t l;
470 int i;
471 const char *p, *end;
472
473 if (!prop)
474 return -EINVAL;
475 if (!prop->value)
476 return -ENODATA;
477
478 p = prop->value;
479 end = p + prop->length;
480
481 for (i = 0; p < end; i++, p += l) {
482 l = strnlen(p, end - p) + 1;
483 if (p + l > end)
484 return -EILSEQ;
485 pr_debug("comparing %s with %s\n", string, p);
486 if (strcmp(string, p) == 0)
487 return i; /* Found it; return index */
488 }
489 return -ENODATA;
490}
491EXPORT_SYMBOL_GPL(of_property_match_string);
492
493/**
494 * of_property_read_string_helper() - Utility helper for parsing string properties
495 * @np: device node from which the property value is to be read.
496 * @propname: name of the property to be searched.
497 * @out_strs: output array of string pointers.
498 * @sz: number of array elements to read.
499 * @skip: Number of strings to skip over at beginning of list.
500 *
501 * Don't call this function directly. It is a utility helper for the
502 * of_property_read_string*() family of functions.
503 */
504int of_property_read_string_helper(const struct device_node *np,
505 const char *propname, const char **out_strs,
506 size_t sz, int skip)
507{
508 const struct property *prop = of_find_property(np, propname, NULL);
509 int l = 0, i = 0;
510 const char *p, *end;
511
512 if (!prop)
513 return -EINVAL;
514 if (!prop->value)
515 return -ENODATA;
516 p = prop->value;
517 end = p + prop->length;
518
519 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
520 l = strnlen(p, end - p) + 1;
521 if (p + l > end)
522 return -EILSEQ;
523 if (out_strs && i >= skip)
524 *out_strs++ = p;
525 }
526 i -= skip;
527 return i <= 0 ? -ENODATA : i;
528}
529EXPORT_SYMBOL_GPL(of_property_read_string_helper);
530
531const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
532 u32 *pu)
533{
534 const void *curv = cur;
535
536 if (!prop)
537 return NULL;
538
539 if (!cur) {
540 curv = prop->value;
541 goto out_val;
542 }
543
544 curv += sizeof(*cur);
545 if (curv >= prop->value + prop->length)
546 return NULL;
547
548out_val:
549 *pu = be32_to_cpup(curv);
550 return curv;
551}
552EXPORT_SYMBOL_GPL(of_prop_next_u32);
553
554const char *of_prop_next_string(struct property *prop, const char *cur)
555{
556 const void *curv = cur;
557
558 if (!prop)
559 return NULL;
560
561 if (!cur)
562 return prop->value;
563
564 curv += strlen(cur) + 1;
565 if (curv >= prop->value + prop->length)
566 return NULL;
567
568 return curv;
569}
570EXPORT_SYMBOL_GPL(of_prop_next_string);
571
572/**
573 * of_graph_parse_endpoint() - parse common endpoint node properties
574 * @node: pointer to endpoint device_node
575 * @endpoint: pointer to the OF endpoint data structure
576 *
577 * The caller should hold a reference to @node.
578 */
579int of_graph_parse_endpoint(const struct device_node *node,
580 struct of_endpoint *endpoint)
581{
582 struct device_node *port_node = of_get_parent(node);
583
584 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
585 __func__, node);
586
587 memset(endpoint, 0, sizeof(*endpoint));
588
589 endpoint->local_node = node;
590 /*
591 * It doesn't matter whether the two calls below succeed.
592 * If they don't then the default value 0 is used.
593 */
594 of_property_read_u32(port_node, "reg", &endpoint->port);
595 of_property_read_u32(node, "reg", &endpoint->id);
596
597 of_node_put(port_node);
598
599 return 0;
600}
601EXPORT_SYMBOL(of_graph_parse_endpoint);
602
603/**
604 * of_graph_get_port_by_id() - get the port matching a given id
605 * @parent: pointer to the parent device node
606 * @id: id of the port
607 *
608 * Return: A 'port' node pointer with refcount incremented. The caller
609 * has to use of_node_put() on it when done.
610 */
611struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
612{
613 struct device_node *node, *port;
614
615 node = of_get_child_by_name(parent, "ports");
616 if (node)
617 parent = node;
618
619 for_each_child_of_node(parent, port) {
620 u32 port_id = 0;
621
622 if (!of_node_name_eq(port, "port"))
623 continue;
624 of_property_read_u32(port, "reg", &port_id);
625 if (id == port_id)
626 break;
627 }
628
629 of_node_put(node);
630
631 return port;
632}
633EXPORT_SYMBOL(of_graph_get_port_by_id);
634
635/**
636 * of_graph_get_next_endpoint() - get next endpoint node
637 * @parent: pointer to the parent device node
638 * @prev: previous endpoint node, or NULL to get first
639 *
640 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
641 * of the passed @prev node is decremented.
642 */
643struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
644 struct device_node *prev)
645{
646 struct device_node *endpoint;
647 struct device_node *port;
648
649 if (!parent)
650 return NULL;
651
652 /*
653 * Start by locating the port node. If no previous endpoint is specified
654 * search for the first port node, otherwise get the previous endpoint
655 * parent port node.
656 */
657 if (!prev) {
658 struct device_node *node;
659
660 node = of_get_child_by_name(parent, "ports");
661 if (node)
662 parent = node;
663
664 port = of_get_child_by_name(parent, "port");
665 of_node_put(node);
666
667 if (!port) {
668 pr_err("graph: no port node found in %pOF\n", parent);
669 return NULL;
670 }
671 } else {
672 port = of_get_parent(prev);
673 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
674 __func__, prev))
675 return NULL;
676 }
677
678 while (1) {
679 /*
680 * Now that we have a port node, get the next endpoint by
681 * getting the next child. If the previous endpoint is NULL this
682 * will return the first child.
683 */
684 endpoint = of_get_next_child(port, prev);
685 if (endpoint) {
686 of_node_put(port);
687 return endpoint;
688 }
689
690 /* No more endpoints under this port, try the next one. */
691 prev = NULL;
692
693 do {
694 port = of_get_next_child(parent, port);
695 if (!port)
696 return NULL;
697 } while (!of_node_name_eq(port, "port"));
698 }
699}
700EXPORT_SYMBOL(of_graph_get_next_endpoint);
701
702/**
703 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
704 * @parent: pointer to the parent device node
705 * @port_reg: identifier (value of reg property) of the parent port node
706 * @reg: identifier (value of reg property) of the endpoint node
707 *
708 * Return: An 'endpoint' node pointer which is identified by reg and at the same
709 * is the child of a port node identified by port_reg. reg and port_reg are
710 * ignored when they are -1. Use of_node_put() on the pointer when done.
711 */
712struct device_node *of_graph_get_endpoint_by_regs(
713 const struct device_node *parent, int port_reg, int reg)
714{
715 struct of_endpoint endpoint;
716 struct device_node *node = NULL;
717
718 for_each_endpoint_of_node(parent, node) {
719 of_graph_parse_endpoint(node, &endpoint);
720 if (((port_reg == -1) || (endpoint.port == port_reg)) &&
721 ((reg == -1) || (endpoint.id == reg)))
722 return node;
723 }
724
725 return NULL;
726}
727EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
728
729/**
730 * of_graph_get_remote_endpoint() - get remote endpoint node
731 * @node: pointer to a local endpoint device_node
732 *
733 * Return: Remote endpoint node associated with remote endpoint node linked
734 * to @node. Use of_node_put() on it when done.
735 */
736struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
737{
738 /* Get remote endpoint node. */
739 return of_parse_phandle(node, "remote-endpoint", 0);
740}
741EXPORT_SYMBOL(of_graph_get_remote_endpoint);
742
743/**
744 * of_graph_get_port_parent() - get port's parent node
745 * @node: pointer to a local endpoint device_node
746 *
747 * Return: device node associated with endpoint node linked
748 * to @node. Use of_node_put() on it when done.
749 */
750struct device_node *of_graph_get_port_parent(struct device_node *node)
751{
752 unsigned int depth;
753
754 if (!node)
755 return NULL;
756
757 /*
758 * Preserve usecount for passed in node as of_get_next_parent()
759 * will do of_node_put() on it.
760 */
761 of_node_get(node);
762
763 /* Walk 3 levels up only if there is 'ports' node. */
764 for (depth = 3; depth && node; depth--) {
765 node = of_get_next_parent(node);
766 if (depth == 2 && !of_node_name_eq(node, "ports") &&
767 !of_node_name_eq(node, "in-ports") &&
768 !of_node_name_eq(node, "out-ports"))
769 break;
770 }
771 return node;
772}
773EXPORT_SYMBOL(of_graph_get_port_parent);
774
775/**
776 * of_graph_get_remote_port_parent() - get remote port's parent node
777 * @node: pointer to a local endpoint device_node
778 *
779 * Return: Remote device node associated with remote endpoint node linked
780 * to @node. Use of_node_put() on it when done.
781 */
782struct device_node *of_graph_get_remote_port_parent(
783 const struct device_node *node)
784{
785 struct device_node *np, *pp;
786
787 /* Get remote endpoint node. */
788 np = of_graph_get_remote_endpoint(node);
789
790 pp = of_graph_get_port_parent(np);
791
792 of_node_put(np);
793
794 return pp;
795}
796EXPORT_SYMBOL(of_graph_get_remote_port_parent);
797
798/**
799 * of_graph_get_remote_port() - get remote port node
800 * @node: pointer to a local endpoint device_node
801 *
802 * Return: Remote port node associated with remote endpoint node linked
803 * to @node. Use of_node_put() on it when done.
804 */
805struct device_node *of_graph_get_remote_port(const struct device_node *node)
806{
807 struct device_node *np;
808
809 /* Get remote endpoint node. */
810 np = of_graph_get_remote_endpoint(node);
811 if (!np)
812 return NULL;
813 return of_get_next_parent(np);
814}
815EXPORT_SYMBOL(of_graph_get_remote_port);
816
817int of_graph_get_endpoint_count(const struct device_node *np)
818{
819 struct device_node *endpoint;
820 int num = 0;
821
822 for_each_endpoint_of_node(np, endpoint)
823 num++;
824
825 return num;
826}
827EXPORT_SYMBOL(of_graph_get_endpoint_count);
828
829/**
830 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
831 * @node: pointer to parent device_node containing graph port/endpoint
832 * @port: identifier (value of reg property) of the parent port node
833 * @endpoint: identifier (value of reg property) of the endpoint node
834 *
835 * Return: Remote device node associated with remote endpoint node linked
836 * to @node. Use of_node_put() on it when done.
837 */
838struct device_node *of_graph_get_remote_node(const struct device_node *node,
839 u32 port, u32 endpoint)
840{
841 struct device_node *endpoint_node, *remote;
842
843 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
844 if (!endpoint_node) {
845 pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
846 port, endpoint, node);
847 return NULL;
848 }
849
850 remote = of_graph_get_remote_port_parent(endpoint_node);
851 of_node_put(endpoint_node);
852 if (!remote) {
853 pr_debug("no valid remote node\n");
854 return NULL;
855 }
856
857 if (!of_device_is_available(remote)) {
858 pr_debug("not available for remote node\n");
859 of_node_put(remote);
860 return NULL;
861 }
862
863 return remote;
864}
865EXPORT_SYMBOL(of_graph_get_remote_node);
866
867static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
868{
869 return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
870}
871
872static void of_fwnode_put(struct fwnode_handle *fwnode)
873{
874 of_node_put(to_of_node(fwnode));
875}
876
877static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
878{
879 return of_device_is_available(to_of_node(fwnode));
880}
881
882static bool of_fwnode_device_dma_supported(const struct fwnode_handle *fwnode)
883{
884 return true;
885}
886
887static enum dev_dma_attr
888of_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode)
889{
890 if (of_dma_is_coherent(to_of_node(fwnode)))
891 return DEV_DMA_COHERENT;
892 else
893 return DEV_DMA_NON_COHERENT;
894}
895
896static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
897 const char *propname)
898{
899 return of_property_read_bool(to_of_node(fwnode), propname);
900}
901
902static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
903 const char *propname,
904 unsigned int elem_size, void *val,
905 size_t nval)
906{
907 const struct device_node *node = to_of_node(fwnode);
908
909 if (!val)
910 return of_property_count_elems_of_size(node, propname,
911 elem_size);
912
913 switch (elem_size) {
914 case sizeof(u8):
915 return of_property_read_u8_array(node, propname, val, nval);
916 case sizeof(u16):
917 return of_property_read_u16_array(node, propname, val, nval);
918 case sizeof(u32):
919 return of_property_read_u32_array(node, propname, val, nval);
920 case sizeof(u64):
921 return of_property_read_u64_array(node, propname, val, nval);
922 }
923
924 return -ENXIO;
925}
926
927static int
928of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
929 const char *propname, const char **val,
930 size_t nval)
931{
932 const struct device_node *node = to_of_node(fwnode);
933
934 return val ?
935 of_property_read_string_array(node, propname, val, nval) :
936 of_property_count_strings(node, propname);
937}
938
939static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
940{
941 return kbasename(to_of_node(fwnode)->full_name);
942}
943
944static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
945{
946 /* Root needs no prefix here (its name is "/"). */
947 if (!to_of_node(fwnode)->parent)
948 return "";
949
950 return "/";
951}
952
953static struct fwnode_handle *
954of_fwnode_get_parent(const struct fwnode_handle *fwnode)
955{
956 return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
957}
958
959static struct fwnode_handle *
960of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
961 struct fwnode_handle *child)
962{
963 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
964 to_of_node(child)));
965}
966
967static struct fwnode_handle *
968of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
969 const char *childname)
970{
971 const struct device_node *node = to_of_node(fwnode);
972 struct device_node *child;
973
974 for_each_available_child_of_node(node, child)
975 if (of_node_name_eq(child, childname))
976 return of_fwnode_handle(child);
977
978 return NULL;
979}
980
981static int
982of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
983 const char *prop, const char *nargs_prop,
984 unsigned int nargs, unsigned int index,
985 struct fwnode_reference_args *args)
986{
987 struct of_phandle_args of_args;
988 unsigned int i;
989 int ret;
990
991 if (nargs_prop)
992 ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
993 nargs_prop, index, &of_args);
994 else
995 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
996 nargs, index, &of_args);
997 if (ret < 0)
998 return ret;
999 if (!args) {
1000 of_node_put(of_args.np);
1001 return 0;
1002 }
1003
1004 args->nargs = of_args.args_count;
1005 args->fwnode = of_fwnode_handle(of_args.np);
1006
1007 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
1008 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
1009
1010 return 0;
1011}
1012
1013static struct fwnode_handle *
1014of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1015 struct fwnode_handle *prev)
1016{
1017 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
1018 to_of_node(prev)));
1019}
1020
1021static struct fwnode_handle *
1022of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1023{
1024 return of_fwnode_handle(
1025 of_graph_get_remote_endpoint(to_of_node(fwnode)));
1026}
1027
1028static struct fwnode_handle *
1029of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
1030{
1031 struct device_node *np;
1032
1033 /* Get the parent of the port */
1034 np = of_get_parent(to_of_node(fwnode));
1035 if (!np)
1036 return NULL;
1037
1038 /* Is this the "ports" node? If not, it's the port parent. */
1039 if (!of_node_name_eq(np, "ports"))
1040 return of_fwnode_handle(np);
1041
1042 return of_fwnode_handle(of_get_next_parent(np));
1043}
1044
1045static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1046 struct fwnode_endpoint *endpoint)
1047{
1048 const struct device_node *node = to_of_node(fwnode);
1049 struct device_node *port_node = of_get_parent(node);
1050
1051 endpoint->local_fwnode = fwnode;
1052
1053 of_property_read_u32(port_node, "reg", &endpoint->port);
1054 of_property_read_u32(node, "reg", &endpoint->id);
1055
1056 of_node_put(port_node);
1057
1058 return 0;
1059}
1060
1061static const void *
1062of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1063 const struct device *dev)
1064{
1065 return of_device_get_match_data(dev);
1066}
1067
1068static void of_link_to_phandle(struct device_node *con_np,
1069 struct device_node *sup_np)
1070{
1071 struct device_node *tmp_np = of_node_get(sup_np);
1072
1073 /* Check that sup_np and its ancestors are available. */
1074 while (tmp_np) {
1075 if (of_fwnode_handle(tmp_np)->dev) {
1076 of_node_put(tmp_np);
1077 break;
1078 }
1079
1080 if (!of_device_is_available(tmp_np)) {
1081 of_node_put(tmp_np);
1082 return;
1083 }
1084
1085 tmp_np = of_get_next_parent(tmp_np);
1086 }
1087
1088 fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np));
1089}
1090
1091/**
1092 * parse_prop_cells - Property parsing function for suppliers
1093 *
1094 * @np: Pointer to device tree node containing a list
1095 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1096 * @index: For properties holding a list of phandles, this is the index
1097 * into the list.
1098 * @list_name: Property name that is known to contain list of phandle(s) to
1099 * supplier(s)
1100 * @cells_name: property name that specifies phandles' arguments count
1101 *
1102 * This is a helper function to parse properties that have a known fixed name
1103 * and are a list of phandles and phandle arguments.
1104 *
1105 * Returns:
1106 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1107 * on it when done.
1108 * - NULL if no phandle found at index
1109 */
1110static struct device_node *parse_prop_cells(struct device_node *np,
1111 const char *prop_name, int index,
1112 const char *list_name,
1113 const char *cells_name)
1114{
1115 struct of_phandle_args sup_args;
1116
1117 if (strcmp(prop_name, list_name))
1118 return NULL;
1119
1120 if (__of_parse_phandle_with_args(np, list_name, cells_name, 0, index,
1121 &sup_args))
1122 return NULL;
1123
1124 return sup_args.np;
1125}
1126
1127#define DEFINE_SIMPLE_PROP(fname, name, cells) \
1128static struct device_node *parse_##fname(struct device_node *np, \
1129 const char *prop_name, int index) \
1130{ \
1131 return parse_prop_cells(np, prop_name, index, name, cells); \
1132}
1133
1134static int strcmp_suffix(const char *str, const char *suffix)
1135{
1136 unsigned int len, suffix_len;
1137
1138 len = strlen(str);
1139 suffix_len = strlen(suffix);
1140 if (len <= suffix_len)
1141 return -1;
1142 return strcmp(str + len - suffix_len, suffix);
1143}
1144
1145/**
1146 * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1147 *
1148 * @np: Pointer to device tree node containing a list
1149 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1150 * @index: For properties holding a list of phandles, this is the index
1151 * into the list.
1152 * @suffix: Property suffix that is known to contain list of phandle(s) to
1153 * supplier(s)
1154 * @cells_name: property name that specifies phandles' arguments count
1155 *
1156 * This is a helper function to parse properties that have a known fixed suffix
1157 * and are a list of phandles and phandle arguments.
1158 *
1159 * Returns:
1160 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1161 * on it when done.
1162 * - NULL if no phandle found at index
1163 */
1164static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1165 const char *prop_name, int index,
1166 const char *suffix,
1167 const char *cells_name)
1168{
1169 struct of_phandle_args sup_args;
1170
1171 if (strcmp_suffix(prop_name, suffix))
1172 return NULL;
1173
1174 if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1175 &sup_args))
1176 return NULL;
1177
1178 return sup_args.np;
1179}
1180
1181#define DEFINE_SUFFIX_PROP(fname, suffix, cells) \
1182static struct device_node *parse_##fname(struct device_node *np, \
1183 const char *prop_name, int index) \
1184{ \
1185 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1186}
1187
1188/**
1189 * struct supplier_bindings - Property parsing functions for suppliers
1190 *
1191 * @parse_prop: function name
1192 * parse_prop() finds the node corresponding to a supplier phandle
1193 * parse_prop.np: Pointer to device node holding supplier phandle property
1194 * parse_prop.prop_name: Name of property holding a phandle value
1195 * parse_prop.index: For properties holding a list of phandles, this is the
1196 * index into the list
1197 * @get_con_dev: If the consumer node containing the property is never converted
1198 * to a struct device, implement this ops so fw_devlink can use it
1199 * to find the true consumer.
1200 * @optional: Describes whether a supplier is mandatory or not
1201 *
1202 * Returns:
1203 * parse_prop() return values are
1204 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1205 * on it when done.
1206 * - NULL if no phandle found at index
1207 */
1208struct supplier_bindings {
1209 struct device_node *(*parse_prop)(struct device_node *np,
1210 const char *prop_name, int index);
1211 struct device_node *(*get_con_dev)(struct device_node *np);
1212 bool optional;
1213};
1214
1215DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1216DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1217DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1218DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1219DEFINE_SIMPLE_PROP(io_channels, "io-channels", "#io-channel-cells")
1220DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL)
1221DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1222DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1223DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1224DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1225DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", "#nvmem-cell-cells")
1226DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1227DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1228DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1229DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1230DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1231DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1232DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1233DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1234DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1235DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1236DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
1237DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells")
1238DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells")
1239DEFINE_SIMPLE_PROP(leds, "leds", NULL)
1240DEFINE_SIMPLE_PROP(backlight, "backlight", NULL)
1241DEFINE_SIMPLE_PROP(panel, "panel", NULL)
1242DEFINE_SIMPLE_PROP(msi_parent, "msi-parent", "#msi-cells")
1243DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1244DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1245
1246static struct device_node *parse_gpios(struct device_node *np,
1247 const char *prop_name, int index)
1248{
1249 if (!strcmp_suffix(prop_name, ",nr-gpios"))
1250 return NULL;
1251
1252 return parse_suffix_prop_cells(np, prop_name, index, "-gpios",
1253 "#gpio-cells");
1254}
1255
1256static struct device_node *parse_iommu_maps(struct device_node *np,
1257 const char *prop_name, int index)
1258{
1259 if (strcmp(prop_name, "iommu-map"))
1260 return NULL;
1261
1262 return of_parse_phandle(np, prop_name, (index * 4) + 1);
1263}
1264
1265static struct device_node *parse_gpio_compat(struct device_node *np,
1266 const char *prop_name, int index)
1267{
1268 struct of_phandle_args sup_args;
1269
1270 if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios"))
1271 return NULL;
1272
1273 /*
1274 * Ignore node with gpio-hog property since its gpios are all provided
1275 * by its parent.
1276 */
1277 if (of_property_read_bool(np, "gpio-hog"))
1278 return NULL;
1279
1280 if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index,
1281 &sup_args))
1282 return NULL;
1283
1284 return sup_args.np;
1285}
1286
1287static struct device_node *parse_interrupts(struct device_node *np,
1288 const char *prop_name, int index)
1289{
1290 struct of_phandle_args sup_args;
1291
1292 if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC))
1293 return NULL;
1294
1295 if (strcmp(prop_name, "interrupts") &&
1296 strcmp(prop_name, "interrupts-extended"))
1297 return NULL;
1298
1299 return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np;
1300}
1301
1302static struct device_node *parse_remote_endpoint(struct device_node *np,
1303 const char *prop_name,
1304 int index)
1305{
1306 /* Return NULL for index > 0 to signify end of remote-endpoints. */
1307 if (index > 0 || strcmp(prop_name, "remote-endpoint"))
1308 return NULL;
1309
1310 return of_graph_get_remote_port_parent(np);
1311}
1312
1313static const struct supplier_bindings of_supplier_bindings[] = {
1314 { .parse_prop = parse_clocks, },
1315 { .parse_prop = parse_interconnects, },
1316 { .parse_prop = parse_iommus, .optional = true, },
1317 { .parse_prop = parse_iommu_maps, .optional = true, },
1318 { .parse_prop = parse_mboxes, },
1319 { .parse_prop = parse_io_channels, },
1320 { .parse_prop = parse_interrupt_parent, },
1321 { .parse_prop = parse_dmas, .optional = true, },
1322 { .parse_prop = parse_power_domains, },
1323 { .parse_prop = parse_hwlocks, },
1324 { .parse_prop = parse_extcon, },
1325 { .parse_prop = parse_nvmem_cells, },
1326 { .parse_prop = parse_phys, },
1327 { .parse_prop = parse_wakeup_parent, },
1328 { .parse_prop = parse_pinctrl0, },
1329 { .parse_prop = parse_pinctrl1, },
1330 { .parse_prop = parse_pinctrl2, },
1331 { .parse_prop = parse_pinctrl3, },
1332 { .parse_prop = parse_pinctrl4, },
1333 { .parse_prop = parse_pinctrl5, },
1334 { .parse_prop = parse_pinctrl6, },
1335 { .parse_prop = parse_pinctrl7, },
1336 { .parse_prop = parse_pinctrl8, },
1337 {
1338 .parse_prop = parse_remote_endpoint,
1339 .get_con_dev = of_graph_get_port_parent,
1340 },
1341 { .parse_prop = parse_pwms, },
1342 { .parse_prop = parse_resets, },
1343 { .parse_prop = parse_leds, },
1344 { .parse_prop = parse_backlight, },
1345 { .parse_prop = parse_panel, },
1346 { .parse_prop = parse_msi_parent, },
1347 { .parse_prop = parse_gpio_compat, },
1348 { .parse_prop = parse_interrupts, },
1349 { .parse_prop = parse_regulators, },
1350 { .parse_prop = parse_gpio, },
1351 { .parse_prop = parse_gpios, },
1352 {}
1353};
1354
1355/**
1356 * of_link_property - Create device links to suppliers listed in a property
1357 * @con_np: The consumer device tree node which contains the property
1358 * @prop_name: Name of property to be parsed
1359 *
1360 * This function checks if the property @prop_name that is present in the
1361 * @con_np device tree node is one of the known common device tree bindings
1362 * that list phandles to suppliers. If @prop_name isn't one, this function
1363 * doesn't do anything.
1364 *
1365 * If @prop_name is one, this function attempts to create fwnode links from the
1366 * consumer device tree node @con_np to all the suppliers device tree nodes
1367 * listed in @prop_name.
1368 *
1369 * Any failed attempt to create a fwnode link will NOT result in an immediate
1370 * return. of_link_property() must create links to all the available supplier
1371 * device tree nodes even when attempts to create a link to one or more
1372 * suppliers fail.
1373 */
1374static int of_link_property(struct device_node *con_np, const char *prop_name)
1375{
1376 struct device_node *phandle;
1377 const struct supplier_bindings *s = of_supplier_bindings;
1378 unsigned int i = 0;
1379 bool matched = false;
1380
1381 /* Do not stop at first failed link, link all available suppliers. */
1382 while (!matched && s->parse_prop) {
1383 if (s->optional && !fw_devlink_is_strict()) {
1384 s++;
1385 continue;
1386 }
1387
1388 while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1389 struct device_node *con_dev_np;
1390
1391 con_dev_np = s->get_con_dev
1392 ? s->get_con_dev(con_np)
1393 : of_node_get(con_np);
1394 matched = true;
1395 i++;
1396 of_link_to_phandle(con_dev_np, phandle);
1397 of_node_put(phandle);
1398 of_node_put(con_dev_np);
1399 }
1400 s++;
1401 }
1402 return 0;
1403}
1404
1405static void __iomem *of_fwnode_iomap(struct fwnode_handle *fwnode, int index)
1406{
1407#ifdef CONFIG_OF_ADDRESS
1408 return of_iomap(to_of_node(fwnode), index);
1409#else
1410 return NULL;
1411#endif
1412}
1413
1414static int of_fwnode_irq_get(const struct fwnode_handle *fwnode,
1415 unsigned int index)
1416{
1417 return of_irq_get(to_of_node(fwnode), index);
1418}
1419
1420static int of_fwnode_add_links(struct fwnode_handle *fwnode)
1421{
1422 struct property *p;
1423 struct device_node *con_np = to_of_node(fwnode);
1424
1425 if (IS_ENABLED(CONFIG_X86))
1426 return 0;
1427
1428 if (!con_np)
1429 return -EINVAL;
1430
1431 for_each_property_of_node(con_np, p)
1432 of_link_property(con_np, p->name);
1433
1434 return 0;
1435}
1436
1437const struct fwnode_operations of_fwnode_ops = {
1438 .get = of_fwnode_get,
1439 .put = of_fwnode_put,
1440 .device_is_available = of_fwnode_device_is_available,
1441 .device_get_match_data = of_fwnode_device_get_match_data,
1442 .device_dma_supported = of_fwnode_device_dma_supported,
1443 .device_get_dma_attr = of_fwnode_device_get_dma_attr,
1444 .property_present = of_fwnode_property_present,
1445 .property_read_int_array = of_fwnode_property_read_int_array,
1446 .property_read_string_array = of_fwnode_property_read_string_array,
1447 .get_name = of_fwnode_get_name,
1448 .get_name_prefix = of_fwnode_get_name_prefix,
1449 .get_parent = of_fwnode_get_parent,
1450 .get_next_child_node = of_fwnode_get_next_child_node,
1451 .get_named_child_node = of_fwnode_get_named_child_node,
1452 .get_reference_args = of_fwnode_get_reference_args,
1453 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1454 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1455 .graph_get_port_parent = of_fwnode_graph_get_port_parent,
1456 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1457 .iomap = of_fwnode_iomap,
1458 .irq_get = of_fwnode_irq_get,
1459 .add_links = of_fwnode_add_links,
1460};
1461EXPORT_SYMBOL_GPL(of_fwnode_ops);
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * drivers/of/property.c - Procedures for accessing and interpreting
4 * Devicetree properties and graphs.
5 *
6 * Initially created by copying procedures from drivers/of/base.c. This
7 * file contains the OF property as well as the OF graph interface
8 * functions.
9 *
10 * Paul Mackerras August 1996.
11 * Copyright (C) 1996-2005 Paul Mackerras.
12 *
13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
14 * {engebret|bergner}@us.ibm.com
15 *
16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
17 *
18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
19 * Grant Likely.
20 */
21
22#define pr_fmt(fmt) "OF: " fmt
23
24#include <linux/of.h>
25#include <linux/of_device.h>
26#include <linux/of_graph.h>
27#include <linux/string.h>
28#include <linux/moduleparam.h>
29
30#include "of_private.h"
31
32/**
33 * of_graph_is_present() - check graph's presence
34 * @node: pointer to device_node containing graph port
35 *
36 * Return: True if @node has a port or ports (with a port) sub-node,
37 * false otherwise.
38 */
39bool of_graph_is_present(const struct device_node *node)
40{
41 struct device_node *ports, *port;
42
43 ports = of_get_child_by_name(node, "ports");
44 if (ports)
45 node = ports;
46
47 port = of_get_child_by_name(node, "port");
48 of_node_put(ports);
49 of_node_put(port);
50
51 return !!port;
52}
53EXPORT_SYMBOL(of_graph_is_present);
54
55/**
56 * of_property_count_elems_of_size - Count the number of elements in a property
57 *
58 * @np: device node from which the property value is to be read.
59 * @propname: name of the property to be searched.
60 * @elem_size: size of the individual element
61 *
62 * Search for a property in a device node and count the number of elements of
63 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
64 * property does not exist or its length does not match a multiple of elem_size
65 * and -ENODATA if the property does not have a value.
66 */
67int of_property_count_elems_of_size(const struct device_node *np,
68 const char *propname, int elem_size)
69{
70 struct property *prop = of_find_property(np, propname, NULL);
71
72 if (!prop)
73 return -EINVAL;
74 if (!prop->value)
75 return -ENODATA;
76
77 if (prop->length % elem_size != 0) {
78 pr_err("size of %s in node %pOF is not a multiple of %d\n",
79 propname, np, elem_size);
80 return -EINVAL;
81 }
82
83 return prop->length / elem_size;
84}
85EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
86
87/**
88 * of_find_property_value_of_size
89 *
90 * @np: device node from which the property value is to be read.
91 * @propname: name of the property to be searched.
92 * @min: minimum allowed length of property value
93 * @max: maximum allowed length of property value (0 means unlimited)
94 * @len: if !=NULL, actual length is written to here
95 *
96 * Search for a property in a device node and valid the requested size.
97 * Returns the property value on success, -EINVAL if the property does not
98 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
99 * property data is too small or too large.
100 *
101 */
102static void *of_find_property_value_of_size(const struct device_node *np,
103 const char *propname, u32 min, u32 max, size_t *len)
104{
105 struct property *prop = of_find_property(np, propname, NULL);
106
107 if (!prop)
108 return ERR_PTR(-EINVAL);
109 if (!prop->value)
110 return ERR_PTR(-ENODATA);
111 if (prop->length < min)
112 return ERR_PTR(-EOVERFLOW);
113 if (max && prop->length > max)
114 return ERR_PTR(-EOVERFLOW);
115
116 if (len)
117 *len = prop->length;
118
119 return prop->value;
120}
121
122/**
123 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
124 *
125 * @np: device node from which the property value is to be read.
126 * @propname: name of the property to be searched.
127 * @index: index of the u32 in the list of values
128 * @out_value: pointer to return value, modified only if no error.
129 *
130 * Search for a property in a device node and read nth 32-bit value from
131 * it. Returns 0 on success, -EINVAL if the property does not exist,
132 * -ENODATA if property does not have a value, and -EOVERFLOW if the
133 * property data isn't large enough.
134 *
135 * The out_value is modified only if a valid u32 value can be decoded.
136 */
137int of_property_read_u32_index(const struct device_node *np,
138 const char *propname,
139 u32 index, u32 *out_value)
140{
141 const u32 *val = of_find_property_value_of_size(np, propname,
142 ((index + 1) * sizeof(*out_value)),
143 0,
144 NULL);
145
146 if (IS_ERR(val))
147 return PTR_ERR(val);
148
149 *out_value = be32_to_cpup(((__be32 *)val) + index);
150 return 0;
151}
152EXPORT_SYMBOL_GPL(of_property_read_u32_index);
153
154/**
155 * of_property_read_u64_index - Find and read a u64 from a multi-value property.
156 *
157 * @np: device node from which the property value is to be read.
158 * @propname: name of the property to be searched.
159 * @index: index of the u64 in the list of values
160 * @out_value: pointer to return value, modified only if no error.
161 *
162 * Search for a property in a device node and read nth 64-bit value from
163 * it. Returns 0 on success, -EINVAL if the property does not exist,
164 * -ENODATA if property does not have a value, and -EOVERFLOW if the
165 * property data isn't large enough.
166 *
167 * The out_value is modified only if a valid u64 value can be decoded.
168 */
169int of_property_read_u64_index(const struct device_node *np,
170 const char *propname,
171 u32 index, u64 *out_value)
172{
173 const u64 *val = of_find_property_value_of_size(np, propname,
174 ((index + 1) * sizeof(*out_value)),
175 0, NULL);
176
177 if (IS_ERR(val))
178 return PTR_ERR(val);
179
180 *out_value = be64_to_cpup(((__be64 *)val) + index);
181 return 0;
182}
183EXPORT_SYMBOL_GPL(of_property_read_u64_index);
184
185/**
186 * of_property_read_variable_u8_array - Find and read an array of u8 from a
187 * property, with bounds on the minimum and maximum array size.
188 *
189 * @np: device node from which the property value is to be read.
190 * @propname: name of the property to be searched.
191 * @out_values: pointer to found values.
192 * @sz_min: minimum number of array elements to read
193 * @sz_max: maximum number of array elements to read, if zero there is no
194 * upper limit on the number of elements in the dts entry but only
195 * sz_min will be read.
196 *
197 * Search for a property in a device node and read 8-bit value(s) from
198 * it. Returns number of elements read on success, -EINVAL if the property
199 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
200 * if the property data is smaller than sz_min or longer than sz_max.
201 *
202 * dts entry of array should be like:
203 * property = /bits/ 8 <0x50 0x60 0x70>;
204 *
205 * The out_values is modified only if a valid u8 value can be decoded.
206 */
207int of_property_read_variable_u8_array(const struct device_node *np,
208 const char *propname, u8 *out_values,
209 size_t sz_min, size_t sz_max)
210{
211 size_t sz, count;
212 const u8 *val = of_find_property_value_of_size(np, propname,
213 (sz_min * sizeof(*out_values)),
214 (sz_max * sizeof(*out_values)),
215 &sz);
216
217 if (IS_ERR(val))
218 return PTR_ERR(val);
219
220 if (!sz_max)
221 sz = sz_min;
222 else
223 sz /= sizeof(*out_values);
224
225 count = sz;
226 while (count--)
227 *out_values++ = *val++;
228
229 return sz;
230}
231EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
232
233/**
234 * of_property_read_variable_u16_array - Find and read an array of u16 from a
235 * property, with bounds on the minimum and maximum array size.
236 *
237 * @np: device node from which the property value is to be read.
238 * @propname: name of the property to be searched.
239 * @out_values: pointer to found values.
240 * @sz_min: minimum number of array elements to read
241 * @sz_max: maximum number of array elements to read, if zero there is no
242 * upper limit on the number of elements in the dts entry but only
243 * sz_min will be read.
244 *
245 * Search for a property in a device node and read 16-bit value(s) from
246 * it. Returns number of elements read on success, -EINVAL if the property
247 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
248 * if the property data is smaller than sz_min or longer than sz_max.
249 *
250 * dts entry of array should be like:
251 * property = /bits/ 16 <0x5000 0x6000 0x7000>;
252 *
253 * The out_values is modified only if a valid u16 value can be decoded.
254 */
255int of_property_read_variable_u16_array(const struct device_node *np,
256 const char *propname, u16 *out_values,
257 size_t sz_min, size_t sz_max)
258{
259 size_t sz, count;
260 const __be16 *val = of_find_property_value_of_size(np, propname,
261 (sz_min * sizeof(*out_values)),
262 (sz_max * sizeof(*out_values)),
263 &sz);
264
265 if (IS_ERR(val))
266 return PTR_ERR(val);
267
268 if (!sz_max)
269 sz = sz_min;
270 else
271 sz /= sizeof(*out_values);
272
273 count = sz;
274 while (count--)
275 *out_values++ = be16_to_cpup(val++);
276
277 return sz;
278}
279EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
280
281/**
282 * of_property_read_variable_u32_array - Find and read an array of 32 bit
283 * integers from a property, with bounds on the minimum and maximum array size.
284 *
285 * @np: device node from which the property value is to be read.
286 * @propname: name of the property to be searched.
287 * @out_values: pointer to return found values.
288 * @sz_min: minimum number of array elements to read
289 * @sz_max: maximum number of array elements to read, if zero there is no
290 * upper limit on the number of elements in the dts entry but only
291 * sz_min will be read.
292 *
293 * Search for a property in a device node and read 32-bit value(s) from
294 * it. Returns number of elements read on success, -EINVAL if the property
295 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
296 * if the property data is smaller than sz_min or longer than sz_max.
297 *
298 * The out_values is modified only if a valid u32 value can be decoded.
299 */
300int of_property_read_variable_u32_array(const struct device_node *np,
301 const char *propname, u32 *out_values,
302 size_t sz_min, size_t sz_max)
303{
304 size_t sz, count;
305 const __be32 *val = of_find_property_value_of_size(np, propname,
306 (sz_min * sizeof(*out_values)),
307 (sz_max * sizeof(*out_values)),
308 &sz);
309
310 if (IS_ERR(val))
311 return PTR_ERR(val);
312
313 if (!sz_max)
314 sz = sz_min;
315 else
316 sz /= sizeof(*out_values);
317
318 count = sz;
319 while (count--)
320 *out_values++ = be32_to_cpup(val++);
321
322 return sz;
323}
324EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
325
326/**
327 * of_property_read_u64 - Find and read a 64 bit integer from a property
328 * @np: device node from which the property value is to be read.
329 * @propname: name of the property to be searched.
330 * @out_value: pointer to return value, modified only if return value is 0.
331 *
332 * Search for a property in a device node and read a 64-bit value from
333 * it. Returns 0 on success, -EINVAL if the property does not exist,
334 * -ENODATA if property does not have a value, and -EOVERFLOW if the
335 * property data isn't large enough.
336 *
337 * The out_value is modified only if a valid u64 value can be decoded.
338 */
339int of_property_read_u64(const struct device_node *np, const char *propname,
340 u64 *out_value)
341{
342 const __be32 *val = of_find_property_value_of_size(np, propname,
343 sizeof(*out_value),
344 0,
345 NULL);
346
347 if (IS_ERR(val))
348 return PTR_ERR(val);
349
350 *out_value = of_read_number(val, 2);
351 return 0;
352}
353EXPORT_SYMBOL_GPL(of_property_read_u64);
354
355/**
356 * of_property_read_variable_u64_array - Find and read an array of 64 bit
357 * integers from a property, with bounds on the minimum and maximum array size.
358 *
359 * @np: device node from which the property value is to be read.
360 * @propname: name of the property to be searched.
361 * @out_values: pointer to found values.
362 * @sz_min: minimum number of array elements to read
363 * @sz_max: maximum number of array elements to read, if zero there is no
364 * upper limit on the number of elements in the dts entry but only
365 * sz_min will be read.
366 *
367 * Search for a property in a device node and read 64-bit value(s) from
368 * it. Returns number of elements read on success, -EINVAL if the property
369 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
370 * if the property data is smaller than sz_min or longer than sz_max.
371 *
372 * The out_values is modified only if a valid u64 value can be decoded.
373 */
374int of_property_read_variable_u64_array(const struct device_node *np,
375 const char *propname, u64 *out_values,
376 size_t sz_min, size_t sz_max)
377{
378 size_t sz, count;
379 const __be32 *val = of_find_property_value_of_size(np, propname,
380 (sz_min * sizeof(*out_values)),
381 (sz_max * sizeof(*out_values)),
382 &sz);
383
384 if (IS_ERR(val))
385 return PTR_ERR(val);
386
387 if (!sz_max)
388 sz = sz_min;
389 else
390 sz /= sizeof(*out_values);
391
392 count = sz;
393 while (count--) {
394 *out_values++ = of_read_number(val, 2);
395 val += 2;
396 }
397
398 return sz;
399}
400EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
401
402/**
403 * of_property_read_string - Find and read a string from a property
404 * @np: device node from which the property value is to be read.
405 * @propname: name of the property to be searched.
406 * @out_string: pointer to null terminated return string, modified only if
407 * return value is 0.
408 *
409 * Search for a property in a device tree node and retrieve a null
410 * terminated string value (pointer to data, not a copy). Returns 0 on
411 * success, -EINVAL if the property does not exist, -ENODATA if property
412 * does not have a value, and -EILSEQ if the string is not null-terminated
413 * within the length of the property data.
414 *
415 * The out_string pointer is modified only if a valid string can be decoded.
416 */
417int of_property_read_string(const struct device_node *np, const char *propname,
418 const char **out_string)
419{
420 const struct property *prop = of_find_property(np, propname, NULL);
421 if (!prop)
422 return -EINVAL;
423 if (!prop->value)
424 return -ENODATA;
425 if (strnlen(prop->value, prop->length) >= prop->length)
426 return -EILSEQ;
427 *out_string = prop->value;
428 return 0;
429}
430EXPORT_SYMBOL_GPL(of_property_read_string);
431
432/**
433 * of_property_match_string() - Find string in a list and return index
434 * @np: pointer to node containing string list property
435 * @propname: string list property name
436 * @string: pointer to string to search for in string list
437 *
438 * This function searches a string list property and returns the index
439 * of a specific string value.
440 */
441int of_property_match_string(const struct device_node *np, const char *propname,
442 const char *string)
443{
444 const struct property *prop = of_find_property(np, propname, NULL);
445 size_t l;
446 int i;
447 const char *p, *end;
448
449 if (!prop)
450 return -EINVAL;
451 if (!prop->value)
452 return -ENODATA;
453
454 p = prop->value;
455 end = p + prop->length;
456
457 for (i = 0; p < end; i++, p += l) {
458 l = strnlen(p, end - p) + 1;
459 if (p + l > end)
460 return -EILSEQ;
461 pr_debug("comparing %s with %s\n", string, p);
462 if (strcmp(string, p) == 0)
463 return i; /* Found it; return index */
464 }
465 return -ENODATA;
466}
467EXPORT_SYMBOL_GPL(of_property_match_string);
468
469/**
470 * of_property_read_string_helper() - Utility helper for parsing string properties
471 * @np: device node from which the property value is to be read.
472 * @propname: name of the property to be searched.
473 * @out_strs: output array of string pointers.
474 * @sz: number of array elements to read.
475 * @skip: Number of strings to skip over at beginning of list.
476 *
477 * Don't call this function directly. It is a utility helper for the
478 * of_property_read_string*() family of functions.
479 */
480int of_property_read_string_helper(const struct device_node *np,
481 const char *propname, const char **out_strs,
482 size_t sz, int skip)
483{
484 const struct property *prop = of_find_property(np, propname, NULL);
485 int l = 0, i = 0;
486 const char *p, *end;
487
488 if (!prop)
489 return -EINVAL;
490 if (!prop->value)
491 return -ENODATA;
492 p = prop->value;
493 end = p + prop->length;
494
495 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
496 l = strnlen(p, end - p) + 1;
497 if (p + l > end)
498 return -EILSEQ;
499 if (out_strs && i >= skip)
500 *out_strs++ = p;
501 }
502 i -= skip;
503 return i <= 0 ? -ENODATA : i;
504}
505EXPORT_SYMBOL_GPL(of_property_read_string_helper);
506
507const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
508 u32 *pu)
509{
510 const void *curv = cur;
511
512 if (!prop)
513 return NULL;
514
515 if (!cur) {
516 curv = prop->value;
517 goto out_val;
518 }
519
520 curv += sizeof(*cur);
521 if (curv >= prop->value + prop->length)
522 return NULL;
523
524out_val:
525 *pu = be32_to_cpup(curv);
526 return curv;
527}
528EXPORT_SYMBOL_GPL(of_prop_next_u32);
529
530const char *of_prop_next_string(struct property *prop, const char *cur)
531{
532 const void *curv = cur;
533
534 if (!prop)
535 return NULL;
536
537 if (!cur)
538 return prop->value;
539
540 curv += strlen(cur) + 1;
541 if (curv >= prop->value + prop->length)
542 return NULL;
543
544 return curv;
545}
546EXPORT_SYMBOL_GPL(of_prop_next_string);
547
548/**
549 * of_graph_parse_endpoint() - parse common endpoint node properties
550 * @node: pointer to endpoint device_node
551 * @endpoint: pointer to the OF endpoint data structure
552 *
553 * The caller should hold a reference to @node.
554 */
555int of_graph_parse_endpoint(const struct device_node *node,
556 struct of_endpoint *endpoint)
557{
558 struct device_node *port_node = of_get_parent(node);
559
560 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
561 __func__, node);
562
563 memset(endpoint, 0, sizeof(*endpoint));
564
565 endpoint->local_node = node;
566 /*
567 * It doesn't matter whether the two calls below succeed.
568 * If they don't then the default value 0 is used.
569 */
570 of_property_read_u32(port_node, "reg", &endpoint->port);
571 of_property_read_u32(node, "reg", &endpoint->id);
572
573 of_node_put(port_node);
574
575 return 0;
576}
577EXPORT_SYMBOL(of_graph_parse_endpoint);
578
579/**
580 * of_graph_get_port_by_id() - get the port matching a given id
581 * @parent: pointer to the parent device node
582 * @id: id of the port
583 *
584 * Return: A 'port' node pointer with refcount incremented. The caller
585 * has to use of_node_put() on it when done.
586 */
587struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
588{
589 struct device_node *node, *port;
590
591 node = of_get_child_by_name(parent, "ports");
592 if (node)
593 parent = node;
594
595 for_each_child_of_node(parent, port) {
596 u32 port_id = 0;
597
598 if (!of_node_name_eq(port, "port"))
599 continue;
600 of_property_read_u32(port, "reg", &port_id);
601 if (id == port_id)
602 break;
603 }
604
605 of_node_put(node);
606
607 return port;
608}
609EXPORT_SYMBOL(of_graph_get_port_by_id);
610
611/**
612 * of_graph_get_next_endpoint() - get next endpoint node
613 * @parent: pointer to the parent device node
614 * @prev: previous endpoint node, or NULL to get first
615 *
616 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
617 * of the passed @prev node is decremented.
618 */
619struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
620 struct device_node *prev)
621{
622 struct device_node *endpoint;
623 struct device_node *port;
624
625 if (!parent)
626 return NULL;
627
628 /*
629 * Start by locating the port node. If no previous endpoint is specified
630 * search for the first port node, otherwise get the previous endpoint
631 * parent port node.
632 */
633 if (!prev) {
634 struct device_node *node;
635
636 node = of_get_child_by_name(parent, "ports");
637 if (node)
638 parent = node;
639
640 port = of_get_child_by_name(parent, "port");
641 of_node_put(node);
642
643 if (!port) {
644 pr_err("graph: no port node found in %pOF\n", parent);
645 return NULL;
646 }
647 } else {
648 port = of_get_parent(prev);
649 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
650 __func__, prev))
651 return NULL;
652 }
653
654 while (1) {
655 /*
656 * Now that we have a port node, get the next endpoint by
657 * getting the next child. If the previous endpoint is NULL this
658 * will return the first child.
659 */
660 endpoint = of_get_next_child(port, prev);
661 if (endpoint) {
662 of_node_put(port);
663 return endpoint;
664 }
665
666 /* No more endpoints under this port, try the next one. */
667 prev = NULL;
668
669 do {
670 port = of_get_next_child(parent, port);
671 if (!port)
672 return NULL;
673 } while (!of_node_name_eq(port, "port"));
674 }
675}
676EXPORT_SYMBOL(of_graph_get_next_endpoint);
677
678/**
679 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
680 * @parent: pointer to the parent device node
681 * @port_reg: identifier (value of reg property) of the parent port node
682 * @reg: identifier (value of reg property) of the endpoint node
683 *
684 * Return: An 'endpoint' node pointer which is identified by reg and at the same
685 * is the child of a port node identified by port_reg. reg and port_reg are
686 * ignored when they are -1. Use of_node_put() on the pointer when done.
687 */
688struct device_node *of_graph_get_endpoint_by_regs(
689 const struct device_node *parent, int port_reg, int reg)
690{
691 struct of_endpoint endpoint;
692 struct device_node *node = NULL;
693
694 for_each_endpoint_of_node(parent, node) {
695 of_graph_parse_endpoint(node, &endpoint);
696 if (((port_reg == -1) || (endpoint.port == port_reg)) &&
697 ((reg == -1) || (endpoint.id == reg)))
698 return node;
699 }
700
701 return NULL;
702}
703EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
704
705/**
706 * of_graph_get_remote_endpoint() - get remote endpoint node
707 * @node: pointer to a local endpoint device_node
708 *
709 * Return: Remote endpoint node associated with remote endpoint node linked
710 * to @node. Use of_node_put() on it when done.
711 */
712struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
713{
714 /* Get remote endpoint node. */
715 return of_parse_phandle(node, "remote-endpoint", 0);
716}
717EXPORT_SYMBOL(of_graph_get_remote_endpoint);
718
719/**
720 * of_graph_get_port_parent() - get port's parent node
721 * @node: pointer to a local endpoint device_node
722 *
723 * Return: device node associated with endpoint node linked
724 * to @node. Use of_node_put() on it when done.
725 */
726struct device_node *of_graph_get_port_parent(struct device_node *node)
727{
728 unsigned int depth;
729
730 if (!node)
731 return NULL;
732
733 /*
734 * Preserve usecount for passed in node as of_get_next_parent()
735 * will do of_node_put() on it.
736 */
737 of_node_get(node);
738
739 /* Walk 3 levels up only if there is 'ports' node. */
740 for (depth = 3; depth && node; depth--) {
741 node = of_get_next_parent(node);
742 if (depth == 2 && !of_node_name_eq(node, "ports"))
743 break;
744 }
745 return node;
746}
747EXPORT_SYMBOL(of_graph_get_port_parent);
748
749/**
750 * of_graph_get_remote_port_parent() - get remote port's parent node
751 * @node: pointer to a local endpoint device_node
752 *
753 * Return: Remote device node associated with remote endpoint node linked
754 * to @node. Use of_node_put() on it when done.
755 */
756struct device_node *of_graph_get_remote_port_parent(
757 const struct device_node *node)
758{
759 struct device_node *np, *pp;
760
761 /* Get remote endpoint node. */
762 np = of_graph_get_remote_endpoint(node);
763
764 pp = of_graph_get_port_parent(np);
765
766 of_node_put(np);
767
768 return pp;
769}
770EXPORT_SYMBOL(of_graph_get_remote_port_parent);
771
772/**
773 * of_graph_get_remote_port() - get remote port node
774 * @node: pointer to a local endpoint device_node
775 *
776 * Return: Remote port node associated with remote endpoint node linked
777 * to @node. Use of_node_put() on it when done.
778 */
779struct device_node *of_graph_get_remote_port(const struct device_node *node)
780{
781 struct device_node *np;
782
783 /* Get remote endpoint node. */
784 np = of_graph_get_remote_endpoint(node);
785 if (!np)
786 return NULL;
787 return of_get_next_parent(np);
788}
789EXPORT_SYMBOL(of_graph_get_remote_port);
790
791int of_graph_get_endpoint_count(const struct device_node *np)
792{
793 struct device_node *endpoint;
794 int num = 0;
795
796 for_each_endpoint_of_node(np, endpoint)
797 num++;
798
799 return num;
800}
801EXPORT_SYMBOL(of_graph_get_endpoint_count);
802
803/**
804 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
805 * @node: pointer to parent device_node containing graph port/endpoint
806 * @port: identifier (value of reg property) of the parent port node
807 * @endpoint: identifier (value of reg property) of the endpoint node
808 *
809 * Return: Remote device node associated with remote endpoint node linked
810 * to @node. Use of_node_put() on it when done.
811 */
812struct device_node *of_graph_get_remote_node(const struct device_node *node,
813 u32 port, u32 endpoint)
814{
815 struct device_node *endpoint_node, *remote;
816
817 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
818 if (!endpoint_node) {
819 pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
820 port, endpoint, node);
821 return NULL;
822 }
823
824 remote = of_graph_get_remote_port_parent(endpoint_node);
825 of_node_put(endpoint_node);
826 if (!remote) {
827 pr_debug("no valid remote node\n");
828 return NULL;
829 }
830
831 if (!of_device_is_available(remote)) {
832 pr_debug("not available for remote node\n");
833 of_node_put(remote);
834 return NULL;
835 }
836
837 return remote;
838}
839EXPORT_SYMBOL(of_graph_get_remote_node);
840
841static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
842{
843 return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
844}
845
846static void of_fwnode_put(struct fwnode_handle *fwnode)
847{
848 of_node_put(to_of_node(fwnode));
849}
850
851static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
852{
853 return of_device_is_available(to_of_node(fwnode));
854}
855
856static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
857 const char *propname)
858{
859 return of_property_read_bool(to_of_node(fwnode), propname);
860}
861
862static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
863 const char *propname,
864 unsigned int elem_size, void *val,
865 size_t nval)
866{
867 const struct device_node *node = to_of_node(fwnode);
868
869 if (!val)
870 return of_property_count_elems_of_size(node, propname,
871 elem_size);
872
873 switch (elem_size) {
874 case sizeof(u8):
875 return of_property_read_u8_array(node, propname, val, nval);
876 case sizeof(u16):
877 return of_property_read_u16_array(node, propname, val, nval);
878 case sizeof(u32):
879 return of_property_read_u32_array(node, propname, val, nval);
880 case sizeof(u64):
881 return of_property_read_u64_array(node, propname, val, nval);
882 }
883
884 return -ENXIO;
885}
886
887static int
888of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
889 const char *propname, const char **val,
890 size_t nval)
891{
892 const struct device_node *node = to_of_node(fwnode);
893
894 return val ?
895 of_property_read_string_array(node, propname, val, nval) :
896 of_property_count_strings(node, propname);
897}
898
899static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
900{
901 return kbasename(to_of_node(fwnode)->full_name);
902}
903
904static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
905{
906 /* Root needs no prefix here (its name is "/"). */
907 if (!to_of_node(fwnode)->parent)
908 return "";
909
910 return "/";
911}
912
913static struct fwnode_handle *
914of_fwnode_get_parent(const struct fwnode_handle *fwnode)
915{
916 return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
917}
918
919static struct fwnode_handle *
920of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
921 struct fwnode_handle *child)
922{
923 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
924 to_of_node(child)));
925}
926
927static struct fwnode_handle *
928of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
929 const char *childname)
930{
931 const struct device_node *node = to_of_node(fwnode);
932 struct device_node *child;
933
934 for_each_available_child_of_node(node, child)
935 if (of_node_name_eq(child, childname))
936 return of_fwnode_handle(child);
937
938 return NULL;
939}
940
941static int
942of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
943 const char *prop, const char *nargs_prop,
944 unsigned int nargs, unsigned int index,
945 struct fwnode_reference_args *args)
946{
947 struct of_phandle_args of_args;
948 unsigned int i;
949 int ret;
950
951 if (nargs_prop)
952 ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
953 nargs_prop, index, &of_args);
954 else
955 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
956 nargs, index, &of_args);
957 if (ret < 0)
958 return ret;
959 if (!args)
960 return 0;
961
962 args->nargs = of_args.args_count;
963 args->fwnode = of_fwnode_handle(of_args.np);
964
965 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
966 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
967
968 return 0;
969}
970
971static struct fwnode_handle *
972of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
973 struct fwnode_handle *prev)
974{
975 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
976 to_of_node(prev)));
977}
978
979static struct fwnode_handle *
980of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
981{
982 return of_fwnode_handle(
983 of_graph_get_remote_endpoint(to_of_node(fwnode)));
984}
985
986static struct fwnode_handle *
987of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
988{
989 struct device_node *np;
990
991 /* Get the parent of the port */
992 np = of_get_parent(to_of_node(fwnode));
993 if (!np)
994 return NULL;
995
996 /* Is this the "ports" node? If not, it's the port parent. */
997 if (!of_node_name_eq(np, "ports"))
998 return of_fwnode_handle(np);
999
1000 return of_fwnode_handle(of_get_next_parent(np));
1001}
1002
1003static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1004 struct fwnode_endpoint *endpoint)
1005{
1006 const struct device_node *node = to_of_node(fwnode);
1007 struct device_node *port_node = of_get_parent(node);
1008
1009 endpoint->local_fwnode = fwnode;
1010
1011 of_property_read_u32(port_node, "reg", &endpoint->port);
1012 of_property_read_u32(node, "reg", &endpoint->id);
1013
1014 of_node_put(port_node);
1015
1016 return 0;
1017}
1018
1019static const void *
1020of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1021 const struct device *dev)
1022{
1023 return of_device_get_match_data(dev);
1024}
1025
1026static bool of_is_ancestor_of(struct device_node *test_ancestor,
1027 struct device_node *child)
1028{
1029 of_node_get(child);
1030 while (child) {
1031 if (child == test_ancestor) {
1032 of_node_put(child);
1033 return true;
1034 }
1035 child = of_get_next_parent(child);
1036 }
1037 return false;
1038}
1039
1040/**
1041 * of_get_next_parent_dev - Add device link to supplier from supplier phandle
1042 * @np: device tree node
1043 *
1044 * Given a device tree node (@np), this function finds its closest ancestor
1045 * device tree node that has a corresponding struct device.
1046 *
1047 * The caller of this function is expected to call put_device() on the returned
1048 * device when they are done.
1049 */
1050static struct device *of_get_next_parent_dev(struct device_node *np)
1051{
1052 struct device *dev = NULL;
1053
1054 of_node_get(np);
1055 do {
1056 np = of_get_next_parent(np);
1057 if (np)
1058 dev = get_dev_from_fwnode(&np->fwnode);
1059 } while (np && !dev);
1060 of_node_put(np);
1061 return dev;
1062}
1063
1064/**
1065 * of_link_to_phandle - Add device link to supplier from supplier phandle
1066 * @dev: consumer device
1067 * @sup_np: phandle to supplier device tree node
1068 *
1069 * Given a phandle to a supplier device tree node (@sup_np), this function
1070 * finds the device that owns the supplier device tree node and creates a
1071 * device link from @dev consumer device to the supplier device. This function
1072 * doesn't create device links for invalid scenarios such as trying to create a
1073 * link with a parent device as the consumer of its child device. In such
1074 * cases, it returns an error.
1075 *
1076 * Returns:
1077 * - 0 if link successfully created to supplier
1078 * - -EAGAIN if linking to the supplier should be reattempted
1079 * - -EINVAL if the supplier link is invalid and should not be created
1080 * - -ENODEV if there is no device that corresponds to the supplier phandle
1081 */
1082static int of_link_to_phandle(struct device *dev, struct device_node *sup_np,
1083 u32 dl_flags)
1084{
1085 struct device *sup_dev, *sup_par_dev;
1086 int ret = 0;
1087 struct device_node *tmp_np = sup_np;
1088
1089 of_node_get(sup_np);
1090 /*
1091 * Find the device node that contains the supplier phandle. It may be
1092 * @sup_np or it may be an ancestor of @sup_np.
1093 */
1094 while (sup_np) {
1095
1096 /* Don't allow linking to a disabled supplier */
1097 if (!of_device_is_available(sup_np)) {
1098 of_node_put(sup_np);
1099 sup_np = NULL;
1100 }
1101
1102 if (of_find_property(sup_np, "compatible", NULL))
1103 break;
1104
1105 sup_np = of_get_next_parent(sup_np);
1106 }
1107
1108 if (!sup_np) {
1109 dev_dbg(dev, "Not linking to %pOFP - No device\n", tmp_np);
1110 return -ENODEV;
1111 }
1112
1113 /*
1114 * Don't allow linking a device node as a consumer of one of its
1115 * descendant nodes. By definition, a child node can't be a functional
1116 * dependency for the parent node.
1117 */
1118 if (of_is_ancestor_of(dev->of_node, sup_np)) {
1119 dev_dbg(dev, "Not linking to %pOFP - is descendant\n", sup_np);
1120 of_node_put(sup_np);
1121 return -EINVAL;
1122 }
1123 sup_dev = get_dev_from_fwnode(&sup_np->fwnode);
1124 if (!sup_dev && of_node_check_flag(sup_np, OF_POPULATED)) {
1125 /* Early device without struct device. */
1126 dev_dbg(dev, "Not linking to %pOFP - No struct device\n",
1127 sup_np);
1128 of_node_put(sup_np);
1129 return -ENODEV;
1130 } else if (!sup_dev) {
1131 /*
1132 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1133 * cycles. So cycle detection isn't necessary and shouldn't be
1134 * done.
1135 */
1136 if (dl_flags & DL_FLAG_SYNC_STATE_ONLY) {
1137 of_node_put(sup_np);
1138 return -EAGAIN;
1139 }
1140
1141 sup_par_dev = of_get_next_parent_dev(sup_np);
1142
1143 if (sup_par_dev && device_is_dependent(dev, sup_par_dev)) {
1144 /* Cyclic dependency detected, don't try to link */
1145 dev_dbg(dev, "Not linking to %pOFP - cycle detected\n",
1146 sup_np);
1147 ret = -EINVAL;
1148 } else {
1149 /*
1150 * Can't check for cycles or no cycles. So let's try
1151 * again later.
1152 */
1153 ret = -EAGAIN;
1154 }
1155
1156 of_node_put(sup_np);
1157 put_device(sup_par_dev);
1158 return ret;
1159 }
1160 of_node_put(sup_np);
1161 if (!device_link_add(dev, sup_dev, dl_flags))
1162 ret = -EINVAL;
1163 put_device(sup_dev);
1164 return ret;
1165}
1166
1167/**
1168 * parse_prop_cells - Property parsing function for suppliers
1169 *
1170 * @np: Pointer to device tree node containing a list
1171 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1172 * @index: For properties holding a list of phandles, this is the index
1173 * into the list.
1174 * @list_name: Property name that is known to contain list of phandle(s) to
1175 * supplier(s)
1176 * @cells_name: property name that specifies phandles' arguments count
1177 *
1178 * This is a helper function to parse properties that have a known fixed name
1179 * and are a list of phandles and phandle arguments.
1180 *
1181 * Returns:
1182 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1183 * on it when done.
1184 * - NULL if no phandle found at index
1185 */
1186static struct device_node *parse_prop_cells(struct device_node *np,
1187 const char *prop_name, int index,
1188 const char *list_name,
1189 const char *cells_name)
1190{
1191 struct of_phandle_args sup_args;
1192
1193 if (strcmp(prop_name, list_name))
1194 return NULL;
1195
1196 if (of_parse_phandle_with_args(np, list_name, cells_name, index,
1197 &sup_args))
1198 return NULL;
1199
1200 return sup_args.np;
1201}
1202
1203#define DEFINE_SIMPLE_PROP(fname, name, cells) \
1204static struct device_node *parse_##fname(struct device_node *np, \
1205 const char *prop_name, int index) \
1206{ \
1207 return parse_prop_cells(np, prop_name, index, name, cells); \
1208}
1209
1210static int strcmp_suffix(const char *str, const char *suffix)
1211{
1212 unsigned int len, suffix_len;
1213
1214 len = strlen(str);
1215 suffix_len = strlen(suffix);
1216 if (len <= suffix_len)
1217 return -1;
1218 return strcmp(str + len - suffix_len, suffix);
1219}
1220
1221/**
1222 * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1223 *
1224 * @np: Pointer to device tree node containing a list
1225 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1226 * @index: For properties holding a list of phandles, this is the index
1227 * into the list.
1228 * @suffix: Property suffix that is known to contain list of phandle(s) to
1229 * supplier(s)
1230 * @cells_name: property name that specifies phandles' arguments count
1231 *
1232 * This is a helper function to parse properties that have a known fixed suffix
1233 * and are a list of phandles and phandle arguments.
1234 *
1235 * Returns:
1236 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1237 * on it when done.
1238 * - NULL if no phandle found at index
1239 */
1240static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1241 const char *prop_name, int index,
1242 const char *suffix,
1243 const char *cells_name)
1244{
1245 struct of_phandle_args sup_args;
1246
1247 if (strcmp_suffix(prop_name, suffix))
1248 return NULL;
1249
1250 if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1251 &sup_args))
1252 return NULL;
1253
1254 return sup_args.np;
1255}
1256
1257#define DEFINE_SUFFIX_PROP(fname, suffix, cells) \
1258static struct device_node *parse_##fname(struct device_node *np, \
1259 const char *prop_name, int index) \
1260{ \
1261 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1262}
1263
1264/**
1265 * struct supplier_bindings - Property parsing functions for suppliers
1266 *
1267 * @parse_prop: function name
1268 * parse_prop() finds the node corresponding to a supplier phandle
1269 * @parse_prop.np: Pointer to device node holding supplier phandle property
1270 * @parse_prop.prop_name: Name of property holding a phandle value
1271 * @parse_prop.index: For properties holding a list of phandles, this is the
1272 * index into the list
1273 *
1274 * Returns:
1275 * parse_prop() return values are
1276 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1277 * on it when done.
1278 * - NULL if no phandle found at index
1279 */
1280struct supplier_bindings {
1281 struct device_node *(*parse_prop)(struct device_node *np,
1282 const char *prop_name, int index);
1283};
1284
1285DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1286DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1287DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1288DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1289DEFINE_SIMPLE_PROP(io_channels, "io-channel", "#io-channel-cells")
1290DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL)
1291DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1292DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1293DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1294DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1295DEFINE_SIMPLE_PROP(interrupts_extended, "interrupts-extended",
1296 "#interrupt-cells")
1297DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", NULL)
1298DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1299DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1300DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1301DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1302DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1303DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1304DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1305DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1306DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1307DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1308DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
1309DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1310DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1311DEFINE_SUFFIX_PROP(gpios, "-gpios", "#gpio-cells")
1312
1313static struct device_node *parse_iommu_maps(struct device_node *np,
1314 const char *prop_name, int index)
1315{
1316 if (strcmp(prop_name, "iommu-map"))
1317 return NULL;
1318
1319 return of_parse_phandle(np, prop_name, (index * 4) + 1);
1320}
1321
1322static const struct supplier_bindings of_supplier_bindings[] = {
1323 { .parse_prop = parse_clocks, },
1324 { .parse_prop = parse_interconnects, },
1325 { .parse_prop = parse_iommus, },
1326 { .parse_prop = parse_iommu_maps, },
1327 { .parse_prop = parse_mboxes, },
1328 { .parse_prop = parse_io_channels, },
1329 { .parse_prop = parse_interrupt_parent, },
1330 { .parse_prop = parse_dmas, },
1331 { .parse_prop = parse_power_domains, },
1332 { .parse_prop = parse_hwlocks, },
1333 { .parse_prop = parse_extcon, },
1334 { .parse_prop = parse_interrupts_extended, },
1335 { .parse_prop = parse_nvmem_cells, },
1336 { .parse_prop = parse_phys, },
1337 { .parse_prop = parse_wakeup_parent, },
1338 { .parse_prop = parse_pinctrl0, },
1339 { .parse_prop = parse_pinctrl1, },
1340 { .parse_prop = parse_pinctrl2, },
1341 { .parse_prop = parse_pinctrl3, },
1342 { .parse_prop = parse_pinctrl4, },
1343 { .parse_prop = parse_pinctrl5, },
1344 { .parse_prop = parse_pinctrl6, },
1345 { .parse_prop = parse_pinctrl7, },
1346 { .parse_prop = parse_pinctrl8, },
1347 { .parse_prop = parse_regulators, },
1348 { .parse_prop = parse_gpio, },
1349 { .parse_prop = parse_gpios, },
1350 {}
1351};
1352
1353/**
1354 * of_link_property - Create device links to suppliers listed in a property
1355 * @dev: Consumer device
1356 * @con_np: The consumer device tree node which contains the property
1357 * @prop_name: Name of property to be parsed
1358 *
1359 * This function checks if the property @prop_name that is present in the
1360 * @con_np device tree node is one of the known common device tree bindings
1361 * that list phandles to suppliers. If @prop_name isn't one, this function
1362 * doesn't do anything.
1363 *
1364 * If @prop_name is one, this function attempts to create device links from the
1365 * consumer device @dev to all the devices of the suppliers listed in
1366 * @prop_name.
1367 *
1368 * Any failed attempt to create a device link will NOT result in an immediate
1369 * return. of_link_property() must create links to all the available supplier
1370 * devices even when attempts to create a link to one or more suppliers fail.
1371 */
1372static int of_link_property(struct device *dev, struct device_node *con_np,
1373 const char *prop_name)
1374{
1375 struct device_node *phandle;
1376 const struct supplier_bindings *s = of_supplier_bindings;
1377 unsigned int i = 0;
1378 bool matched = false;
1379 int ret = 0;
1380 u32 dl_flags;
1381
1382 if (dev->of_node == con_np)
1383 dl_flags = fw_devlink_get_flags();
1384 else
1385 dl_flags = DL_FLAG_SYNC_STATE_ONLY;
1386
1387 /* Do not stop at first failed link, link all available suppliers. */
1388 while (!matched && s->parse_prop) {
1389 while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1390 matched = true;
1391 i++;
1392 if (of_link_to_phandle(dev, phandle, dl_flags)
1393 == -EAGAIN)
1394 ret = -EAGAIN;
1395 of_node_put(phandle);
1396 }
1397 s++;
1398 }
1399 return ret;
1400}
1401
1402static int of_link_to_suppliers(struct device *dev,
1403 struct device_node *con_np)
1404{
1405 struct device_node *child;
1406 struct property *p;
1407 int ret = 0;
1408
1409 for_each_property_of_node(con_np, p)
1410 if (of_link_property(dev, con_np, p->name))
1411 ret = -ENODEV;
1412
1413 for_each_available_child_of_node(con_np, child)
1414 if (of_link_to_suppliers(dev, child) && !ret)
1415 ret = -EAGAIN;
1416
1417 return ret;
1418}
1419
1420static int of_fwnode_add_links(const struct fwnode_handle *fwnode,
1421 struct device *dev)
1422{
1423 if (unlikely(!is_of_node(fwnode)))
1424 return 0;
1425
1426 return of_link_to_suppliers(dev, to_of_node(fwnode));
1427}
1428
1429const struct fwnode_operations of_fwnode_ops = {
1430 .get = of_fwnode_get,
1431 .put = of_fwnode_put,
1432 .device_is_available = of_fwnode_device_is_available,
1433 .device_get_match_data = of_fwnode_device_get_match_data,
1434 .property_present = of_fwnode_property_present,
1435 .property_read_int_array = of_fwnode_property_read_int_array,
1436 .property_read_string_array = of_fwnode_property_read_string_array,
1437 .get_name = of_fwnode_get_name,
1438 .get_name_prefix = of_fwnode_get_name_prefix,
1439 .get_parent = of_fwnode_get_parent,
1440 .get_next_child_node = of_fwnode_get_next_child_node,
1441 .get_named_child_node = of_fwnode_get_named_child_node,
1442 .get_reference_args = of_fwnode_get_reference_args,
1443 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1444 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1445 .graph_get_port_parent = of_fwnode_graph_get_port_parent,
1446 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1447 .add_links = of_fwnode_add_links,
1448};
1449EXPORT_SYMBOL_GPL(of_fwnode_ops);