Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * drivers/of/property.c - Procedures for accessing and interpreting
   4 *			   Devicetree properties and graphs.
   5 *
   6 * Initially created by copying procedures from drivers/of/base.c. This
   7 * file contains the OF property as well as the OF graph interface
   8 * functions.
   9 *
  10 * Paul Mackerras	August 1996.
  11 * Copyright (C) 1996-2005 Paul Mackerras.
  12 *
  13 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
  14 *    {engebret|bergner}@us.ibm.com
  15 *
  16 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
  17 *
  18 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
  19 *  Grant Likely.
  20 */
  21
  22#define pr_fmt(fmt)	"OF: " fmt
  23
  24#include <linux/of.h>
  25#include <linux/of_address.h>
  26#include <linux/of_device.h>
  27#include <linux/of_graph.h>
  28#include <linux/of_irq.h>
  29#include <linux/string.h>
  30#include <linux/moduleparam.h>
  31
  32#include "of_private.h"
  33
  34/**
  35 * of_graph_is_present() - check graph's presence
  36 * @node: pointer to device_node containing graph port
  37 *
  38 * Return: True if @node has a port or ports (with a port) sub-node,
  39 * false otherwise.
  40 */
  41bool of_graph_is_present(const struct device_node *node)
  42{
  43	struct device_node *ports, *port;
  44
  45	ports = of_get_child_by_name(node, "ports");
  46	if (ports)
  47		node = ports;
  48
  49	port = of_get_child_by_name(node, "port");
  50	of_node_put(ports);
  51	of_node_put(port);
  52
  53	return !!port;
  54}
  55EXPORT_SYMBOL(of_graph_is_present);
  56
  57/**
  58 * of_property_count_elems_of_size - Count the number of elements in a property
  59 *
  60 * @np:		device node from which the property value is to be read.
  61 * @propname:	name of the property to be searched.
  62 * @elem_size:	size of the individual element
  63 *
  64 * Search for a property in a device node and count the number of elements of
  65 * size elem_size in it.
  66 *
  67 * Return: The number of elements on sucess, -EINVAL if the property does not
  68 * exist or its length does not match a multiple of elem_size and -ENODATA if
  69 * the property does not have a value.
  70 */
  71int of_property_count_elems_of_size(const struct device_node *np,
  72				const char *propname, int elem_size)
  73{
  74	struct property *prop = of_find_property(np, propname, NULL);
  75
  76	if (!prop)
  77		return -EINVAL;
  78	if (!prop->value)
  79		return -ENODATA;
  80
  81	if (prop->length % elem_size != 0) {
  82		pr_err("size of %s in node %pOF is not a multiple of %d\n",
  83		       propname, np, elem_size);
  84		return -EINVAL;
  85	}
  86
  87	return prop->length / elem_size;
  88}
  89EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
  90
  91/**
  92 * of_find_property_value_of_size
  93 *
  94 * @np:		device node from which the property value is to be read.
  95 * @propname:	name of the property to be searched.
  96 * @min:	minimum allowed length of property value
  97 * @max:	maximum allowed length of property value (0 means unlimited)
  98 * @len:	if !=NULL, actual length is written to here
  99 *
 100 * Search for a property in a device node and valid the requested size.
 101 *
 102 * Return: The property value on success, -EINVAL if the property does not
 103 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
 104 * property data is too small or too large.
 105 *
 106 */
 107static void *of_find_property_value_of_size(const struct device_node *np,
 108			const char *propname, u32 min, u32 max, size_t *len)
 109{
 110	struct property *prop = of_find_property(np, propname, NULL);
 111
 112	if (!prop)
 113		return ERR_PTR(-EINVAL);
 114	if (!prop->value)
 115		return ERR_PTR(-ENODATA);
 116	if (prop->length < min)
 117		return ERR_PTR(-EOVERFLOW);
 118	if (max && prop->length > max)
 119		return ERR_PTR(-EOVERFLOW);
 120
 121	if (len)
 122		*len = prop->length;
 123
 124	return prop->value;
 125}
 126
 127/**
 128 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
 129 *
 130 * @np:		device node from which the property value is to be read.
 131 * @propname:	name of the property to be searched.
 132 * @index:	index of the u32 in the list of values
 133 * @out_value:	pointer to return value, modified only if no error.
 134 *
 135 * Search for a property in a device node and read nth 32-bit value from
 136 * it.
 137 *
 138 * Return: 0 on success, -EINVAL if the property does not exist,
 139 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 140 * property data isn't large enough.
 141 *
 142 * The out_value is modified only if a valid u32 value can be decoded.
 143 */
 144int of_property_read_u32_index(const struct device_node *np,
 145				       const char *propname,
 146				       u32 index, u32 *out_value)
 147{
 148	const u32 *val = of_find_property_value_of_size(np, propname,
 149					((index + 1) * sizeof(*out_value)),
 150					0,
 151					NULL);
 152
 153	if (IS_ERR(val))
 154		return PTR_ERR(val);
 155
 156	*out_value = be32_to_cpup(((__be32 *)val) + index);
 157	return 0;
 158}
 159EXPORT_SYMBOL_GPL(of_property_read_u32_index);
 160
 161/**
 162 * of_property_read_u64_index - Find and read a u64 from a multi-value property.
 163 *
 164 * @np:		device node from which the property value is to be read.
 165 * @propname:	name of the property to be searched.
 166 * @index:	index of the u64 in the list of values
 167 * @out_value:	pointer to return value, modified only if no error.
 168 *
 169 * Search for a property in a device node and read nth 64-bit value from
 170 * it.
 171 *
 172 * Return: 0 on success, -EINVAL if the property does not exist,
 173 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 174 * property data isn't large enough.
 175 *
 176 * The out_value is modified only if a valid u64 value can be decoded.
 177 */
 178int of_property_read_u64_index(const struct device_node *np,
 179				       const char *propname,
 180				       u32 index, u64 *out_value)
 181{
 182	const u64 *val = of_find_property_value_of_size(np, propname,
 183					((index + 1) * sizeof(*out_value)),
 184					0, NULL);
 185
 186	if (IS_ERR(val))
 187		return PTR_ERR(val);
 188
 189	*out_value = be64_to_cpup(((__be64 *)val) + index);
 190	return 0;
 191}
 192EXPORT_SYMBOL_GPL(of_property_read_u64_index);
 193
 194/**
 195 * of_property_read_variable_u8_array - Find and read an array of u8 from a
 196 * property, with bounds on the minimum and maximum array size.
 197 *
 198 * @np:		device node from which the property value is to be read.
 199 * @propname:	name of the property to be searched.
 200 * @out_values:	pointer to found values.
 201 * @sz_min:	minimum number of array elements to read
 202 * @sz_max:	maximum number of array elements to read, if zero there is no
 203 *		upper limit on the number of elements in the dts entry but only
 204 *		sz_min will be read.
 205 *
 206 * Search for a property in a device node and read 8-bit value(s) from
 207 * it.
 208 *
 209 * dts entry of array should be like:
 210 *  ``property = /bits/ 8 <0x50 0x60 0x70>;``
 211 *
 212 * Return: The number of elements read on success, -EINVAL if the property
 213 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 214 * if the property data is smaller than sz_min or longer than sz_max.
 215 *
 
 
 
 216 * The out_values is modified only if a valid u8 value can be decoded.
 217 */
 218int of_property_read_variable_u8_array(const struct device_node *np,
 219					const char *propname, u8 *out_values,
 220					size_t sz_min, size_t sz_max)
 221{
 222	size_t sz, count;
 223	const u8 *val = of_find_property_value_of_size(np, propname,
 224						(sz_min * sizeof(*out_values)),
 225						(sz_max * sizeof(*out_values)),
 226						&sz);
 227
 228	if (IS_ERR(val))
 229		return PTR_ERR(val);
 230
 231	if (!sz_max)
 232		sz = sz_min;
 233	else
 234		sz /= sizeof(*out_values);
 235
 236	count = sz;
 237	while (count--)
 238		*out_values++ = *val++;
 239
 240	return sz;
 241}
 242EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
 243
 244/**
 245 * of_property_read_variable_u16_array - Find and read an array of u16 from a
 246 * property, with bounds on the minimum and maximum array size.
 247 *
 248 * @np:		device node from which the property value is to be read.
 249 * @propname:	name of the property to be searched.
 250 * @out_values:	pointer to found values.
 251 * @sz_min:	minimum number of array elements to read
 252 * @sz_max:	maximum number of array elements to read, if zero there is no
 253 *		upper limit on the number of elements in the dts entry but only
 254 *		sz_min will be read.
 255 *
 256 * Search for a property in a device node and read 16-bit value(s) from
 257 * it.
 258 *
 259 * dts entry of array should be like:
 260 *  ``property = /bits/ 16 <0x5000 0x6000 0x7000>;``
 261 *
 262 * Return: The number of elements read on success, -EINVAL if the property
 263 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 264 * if the property data is smaller than sz_min or longer than sz_max.
 265 *
 
 
 
 266 * The out_values is modified only if a valid u16 value can be decoded.
 267 */
 268int of_property_read_variable_u16_array(const struct device_node *np,
 269					const char *propname, u16 *out_values,
 270					size_t sz_min, size_t sz_max)
 271{
 272	size_t sz, count;
 273	const __be16 *val = of_find_property_value_of_size(np, propname,
 274						(sz_min * sizeof(*out_values)),
 275						(sz_max * sizeof(*out_values)),
 276						&sz);
 277
 278	if (IS_ERR(val))
 279		return PTR_ERR(val);
 280
 281	if (!sz_max)
 282		sz = sz_min;
 283	else
 284		sz /= sizeof(*out_values);
 285
 286	count = sz;
 287	while (count--)
 288		*out_values++ = be16_to_cpup(val++);
 289
 290	return sz;
 291}
 292EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
 293
 294/**
 295 * of_property_read_variable_u32_array - Find and read an array of 32 bit
 296 * integers from a property, with bounds on the minimum and maximum array size.
 297 *
 298 * @np:		device node from which the property value is to be read.
 299 * @propname:	name of the property to be searched.
 300 * @out_values:	pointer to return found values.
 301 * @sz_min:	minimum number of array elements to read
 302 * @sz_max:	maximum number of array elements to read, if zero there is no
 303 *		upper limit on the number of elements in the dts entry but only
 304 *		sz_min will be read.
 305 *
 306 * Search for a property in a device node and read 32-bit value(s) from
 307 * it.
 308 *
 309 * Return: The number of elements read on success, -EINVAL if the property
 310 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 311 * if the property data is smaller than sz_min or longer than sz_max.
 312 *
 313 * The out_values is modified only if a valid u32 value can be decoded.
 314 */
 315int of_property_read_variable_u32_array(const struct device_node *np,
 316			       const char *propname, u32 *out_values,
 317			       size_t sz_min, size_t sz_max)
 318{
 319	size_t sz, count;
 320	const __be32 *val = of_find_property_value_of_size(np, propname,
 321						(sz_min * sizeof(*out_values)),
 322						(sz_max * sizeof(*out_values)),
 323						&sz);
 324
 325	if (IS_ERR(val))
 326		return PTR_ERR(val);
 327
 328	if (!sz_max)
 329		sz = sz_min;
 330	else
 331		sz /= sizeof(*out_values);
 332
 333	count = sz;
 334	while (count--)
 335		*out_values++ = be32_to_cpup(val++);
 336
 337	return sz;
 338}
 339EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
 340
 341/**
 342 * of_property_read_u64 - Find and read a 64 bit integer from a property
 343 * @np:		device node from which the property value is to be read.
 344 * @propname:	name of the property to be searched.
 345 * @out_value:	pointer to return value, modified only if return value is 0.
 346 *
 347 * Search for a property in a device node and read a 64-bit value from
 348 * it.
 349 *
 350 * Return: 0 on success, -EINVAL if the property does not exist,
 351 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 352 * property data isn't large enough.
 353 *
 354 * The out_value is modified only if a valid u64 value can be decoded.
 355 */
 356int of_property_read_u64(const struct device_node *np, const char *propname,
 357			 u64 *out_value)
 358{
 359	const __be32 *val = of_find_property_value_of_size(np, propname,
 360						sizeof(*out_value),
 361						0,
 362						NULL);
 363
 364	if (IS_ERR(val))
 365		return PTR_ERR(val);
 366
 367	*out_value = of_read_number(val, 2);
 368	return 0;
 369}
 370EXPORT_SYMBOL_GPL(of_property_read_u64);
 371
 372/**
 373 * of_property_read_variable_u64_array - Find and read an array of 64 bit
 374 * integers from a property, with bounds on the minimum and maximum array size.
 375 *
 376 * @np:		device node from which the property value is to be read.
 377 * @propname:	name of the property to be searched.
 378 * @out_values:	pointer to found values.
 379 * @sz_min:	minimum number of array elements to read
 380 * @sz_max:	maximum number of array elements to read, if zero there is no
 381 *		upper limit on the number of elements in the dts entry but only
 382 *		sz_min will be read.
 383 *
 384 * Search for a property in a device node and read 64-bit value(s) from
 385 * it.
 386 *
 387 * Return: The number of elements read on success, -EINVAL if the property
 388 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 389 * if the property data is smaller than sz_min or longer than sz_max.
 390 *
 391 * The out_values is modified only if a valid u64 value can be decoded.
 392 */
 393int of_property_read_variable_u64_array(const struct device_node *np,
 394			       const char *propname, u64 *out_values,
 395			       size_t sz_min, size_t sz_max)
 396{
 397	size_t sz, count;
 398	const __be32 *val = of_find_property_value_of_size(np, propname,
 399						(sz_min * sizeof(*out_values)),
 400						(sz_max * sizeof(*out_values)),
 401						&sz);
 402
 403	if (IS_ERR(val))
 404		return PTR_ERR(val);
 405
 406	if (!sz_max)
 407		sz = sz_min;
 408	else
 409		sz /= sizeof(*out_values);
 410
 411	count = sz;
 412	while (count--) {
 413		*out_values++ = of_read_number(val, 2);
 414		val += 2;
 415	}
 416
 417	return sz;
 418}
 419EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
 420
 421/**
 422 * of_property_read_string - Find and read a string from a property
 423 * @np:		device node from which the property value is to be read.
 424 * @propname:	name of the property to be searched.
 425 * @out_string:	pointer to null terminated return string, modified only if
 426 *		return value is 0.
 427 *
 428 * Search for a property in a device tree node and retrieve a null
 429 * terminated string value (pointer to data, not a copy).
 430 *
 431 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if
 432 * property does not have a value, and -EILSEQ if the string is not
 433 * null-terminated within the length of the property data.
 434 *
 435 * Note that the empty string "" has length of 1, thus -ENODATA cannot
 436 * be interpreted as an empty string.
 437 *
 438 * The out_string pointer is modified only if a valid string can be decoded.
 439 */
 440int of_property_read_string(const struct device_node *np, const char *propname,
 441				const char **out_string)
 442{
 443	const struct property *prop = of_find_property(np, propname, NULL);
 444
 445	if (!prop)
 446		return -EINVAL;
 447	if (!prop->length)
 448		return -ENODATA;
 449	if (strnlen(prop->value, prop->length) >= prop->length)
 450		return -EILSEQ;
 451	*out_string = prop->value;
 452	return 0;
 453}
 454EXPORT_SYMBOL_GPL(of_property_read_string);
 455
 456/**
 457 * of_property_match_string() - Find string in a list and return index
 458 * @np: pointer to node containing string list property
 459 * @propname: string list property name
 460 * @string: pointer to string to search for in string list
 461 *
 462 * This function searches a string list property and returns the index
 463 * of a specific string value.
 464 */
 465int of_property_match_string(const struct device_node *np, const char *propname,
 466			     const char *string)
 467{
 468	const struct property *prop = of_find_property(np, propname, NULL);
 469	size_t l;
 470	int i;
 471	const char *p, *end;
 472
 473	if (!prop)
 474		return -EINVAL;
 475	if (!prop->value)
 476		return -ENODATA;
 477
 478	p = prop->value;
 479	end = p + prop->length;
 480
 481	for (i = 0; p < end; i++, p += l) {
 482		l = strnlen(p, end - p) + 1;
 483		if (p + l > end)
 484			return -EILSEQ;
 485		pr_debug("comparing %s with %s\n", string, p);
 486		if (strcmp(string, p) == 0)
 487			return i; /* Found it; return index */
 488	}
 489	return -ENODATA;
 490}
 491EXPORT_SYMBOL_GPL(of_property_match_string);
 492
 493/**
 494 * of_property_read_string_helper() - Utility helper for parsing string properties
 495 * @np:		device node from which the property value is to be read.
 496 * @propname:	name of the property to be searched.
 497 * @out_strs:	output array of string pointers.
 498 * @sz:		number of array elements to read.
 499 * @skip:	Number of strings to skip over at beginning of list.
 500 *
 501 * Don't call this function directly. It is a utility helper for the
 502 * of_property_read_string*() family of functions.
 503 */
 504int of_property_read_string_helper(const struct device_node *np,
 505				   const char *propname, const char **out_strs,
 506				   size_t sz, int skip)
 507{
 508	const struct property *prop = of_find_property(np, propname, NULL);
 509	int l = 0, i = 0;
 510	const char *p, *end;
 511
 512	if (!prop)
 513		return -EINVAL;
 514	if (!prop->value)
 515		return -ENODATA;
 516	p = prop->value;
 517	end = p + prop->length;
 518
 519	for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
 520		l = strnlen(p, end - p) + 1;
 521		if (p + l > end)
 522			return -EILSEQ;
 523		if (out_strs && i >= skip)
 524			*out_strs++ = p;
 525	}
 526	i -= skip;
 527	return i <= 0 ? -ENODATA : i;
 528}
 529EXPORT_SYMBOL_GPL(of_property_read_string_helper);
 530
 531const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
 532			       u32 *pu)
 533{
 534	const void *curv = cur;
 535
 536	if (!prop)
 537		return NULL;
 538
 539	if (!cur) {
 540		curv = prop->value;
 541		goto out_val;
 542	}
 543
 544	curv += sizeof(*cur);
 545	if (curv >= prop->value + prop->length)
 546		return NULL;
 547
 548out_val:
 549	*pu = be32_to_cpup(curv);
 550	return curv;
 551}
 552EXPORT_SYMBOL_GPL(of_prop_next_u32);
 553
 554const char *of_prop_next_string(struct property *prop, const char *cur)
 555{
 556	const void *curv = cur;
 557
 558	if (!prop)
 559		return NULL;
 560
 561	if (!cur)
 562		return prop->value;
 563
 564	curv += strlen(cur) + 1;
 565	if (curv >= prop->value + prop->length)
 566		return NULL;
 567
 568	return curv;
 569}
 570EXPORT_SYMBOL_GPL(of_prop_next_string);
 571
 572/**
 573 * of_graph_parse_endpoint() - parse common endpoint node properties
 574 * @node: pointer to endpoint device_node
 575 * @endpoint: pointer to the OF endpoint data structure
 576 *
 577 * The caller should hold a reference to @node.
 578 */
 579int of_graph_parse_endpoint(const struct device_node *node,
 580			    struct of_endpoint *endpoint)
 581{
 582	struct device_node *port_node = of_get_parent(node);
 583
 584	WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
 585		  __func__, node);
 586
 587	memset(endpoint, 0, sizeof(*endpoint));
 588
 589	endpoint->local_node = node;
 590	/*
 591	 * It doesn't matter whether the two calls below succeed.
 592	 * If they don't then the default value 0 is used.
 593	 */
 594	of_property_read_u32(port_node, "reg", &endpoint->port);
 595	of_property_read_u32(node, "reg", &endpoint->id);
 596
 597	of_node_put(port_node);
 598
 599	return 0;
 600}
 601EXPORT_SYMBOL(of_graph_parse_endpoint);
 602
 603/**
 604 * of_graph_get_port_by_id() - get the port matching a given id
 605 * @parent: pointer to the parent device node
 606 * @id: id of the port
 607 *
 608 * Return: A 'port' node pointer with refcount incremented. The caller
 609 * has to use of_node_put() on it when done.
 610 */
 611struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
 612{
 613	struct device_node *node, *port;
 614
 615	node = of_get_child_by_name(parent, "ports");
 616	if (node)
 617		parent = node;
 618
 619	for_each_child_of_node(parent, port) {
 620		u32 port_id = 0;
 621
 622		if (!of_node_name_eq(port, "port"))
 623			continue;
 624		of_property_read_u32(port, "reg", &port_id);
 625		if (id == port_id)
 626			break;
 627	}
 628
 629	of_node_put(node);
 630
 631	return port;
 632}
 633EXPORT_SYMBOL(of_graph_get_port_by_id);
 634
 635/**
 636 * of_graph_get_next_endpoint() - get next endpoint node
 637 * @parent: pointer to the parent device node
 638 * @prev: previous endpoint node, or NULL to get first
 639 *
 640 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
 641 * of the passed @prev node is decremented.
 642 */
 643struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
 644					struct device_node *prev)
 645{
 646	struct device_node *endpoint;
 647	struct device_node *port;
 648
 649	if (!parent)
 650		return NULL;
 651
 652	/*
 653	 * Start by locating the port node. If no previous endpoint is specified
 654	 * search for the first port node, otherwise get the previous endpoint
 655	 * parent port node.
 656	 */
 657	if (!prev) {
 658		struct device_node *node;
 659
 660		node = of_get_child_by_name(parent, "ports");
 661		if (node)
 662			parent = node;
 663
 664		port = of_get_child_by_name(parent, "port");
 665		of_node_put(node);
 666
 667		if (!port) {
 668			pr_err("graph: no port node found in %pOF\n", parent);
 669			return NULL;
 670		}
 671	} else {
 672		port = of_get_parent(prev);
 673		if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
 674			      __func__, prev))
 675			return NULL;
 676	}
 677
 678	while (1) {
 679		/*
 680		 * Now that we have a port node, get the next endpoint by
 681		 * getting the next child. If the previous endpoint is NULL this
 682		 * will return the first child.
 683		 */
 684		endpoint = of_get_next_child(port, prev);
 685		if (endpoint) {
 686			of_node_put(port);
 687			return endpoint;
 688		}
 689
 690		/* No more endpoints under this port, try the next one. */
 691		prev = NULL;
 692
 693		do {
 694			port = of_get_next_child(parent, port);
 695			if (!port)
 696				return NULL;
 697		} while (!of_node_name_eq(port, "port"));
 698	}
 699}
 700EXPORT_SYMBOL(of_graph_get_next_endpoint);
 701
 702/**
 703 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
 704 * @parent: pointer to the parent device node
 705 * @port_reg: identifier (value of reg property) of the parent port node
 706 * @reg: identifier (value of reg property) of the endpoint node
 707 *
 708 * Return: An 'endpoint' node pointer which is identified by reg and at the same
 709 * is the child of a port node identified by port_reg. reg and port_reg are
 710 * ignored when they are -1. Use of_node_put() on the pointer when done.
 711 */
 712struct device_node *of_graph_get_endpoint_by_regs(
 713	const struct device_node *parent, int port_reg, int reg)
 714{
 715	struct of_endpoint endpoint;
 716	struct device_node *node = NULL;
 717
 718	for_each_endpoint_of_node(parent, node) {
 719		of_graph_parse_endpoint(node, &endpoint);
 720		if (((port_reg == -1) || (endpoint.port == port_reg)) &&
 721			((reg == -1) || (endpoint.id == reg)))
 722			return node;
 723	}
 724
 725	return NULL;
 726}
 727EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
 728
 729/**
 730 * of_graph_get_remote_endpoint() - get remote endpoint node
 731 * @node: pointer to a local endpoint device_node
 732 *
 733 * Return: Remote endpoint node associated with remote endpoint node linked
 734 *	   to @node. Use of_node_put() on it when done.
 735 */
 736struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
 737{
 738	/* Get remote endpoint node. */
 739	return of_parse_phandle(node, "remote-endpoint", 0);
 740}
 741EXPORT_SYMBOL(of_graph_get_remote_endpoint);
 742
 743/**
 744 * of_graph_get_port_parent() - get port's parent node
 745 * @node: pointer to a local endpoint device_node
 746 *
 747 * Return: device node associated with endpoint node linked
 748 *	   to @node. Use of_node_put() on it when done.
 749 */
 750struct device_node *of_graph_get_port_parent(struct device_node *node)
 751{
 752	unsigned int depth;
 753
 754	if (!node)
 755		return NULL;
 756
 757	/*
 758	 * Preserve usecount for passed in node as of_get_next_parent()
 759	 * will do of_node_put() on it.
 760	 */
 761	of_node_get(node);
 762
 763	/* Walk 3 levels up only if there is 'ports' node. */
 764	for (depth = 3; depth && node; depth--) {
 765		node = of_get_next_parent(node);
 766		if (depth == 2 && !of_node_name_eq(node, "ports") &&
 767		    !of_node_name_eq(node, "in-ports") &&
 768		    !of_node_name_eq(node, "out-ports"))
 769			break;
 770	}
 771	return node;
 772}
 773EXPORT_SYMBOL(of_graph_get_port_parent);
 774
 775/**
 776 * of_graph_get_remote_port_parent() - get remote port's parent node
 777 * @node: pointer to a local endpoint device_node
 778 *
 779 * Return: Remote device node associated with remote endpoint node linked
 780 *	   to @node. Use of_node_put() on it when done.
 781 */
 782struct device_node *of_graph_get_remote_port_parent(
 783			       const struct device_node *node)
 784{
 785	struct device_node *np, *pp;
 786
 787	/* Get remote endpoint node. */
 788	np = of_graph_get_remote_endpoint(node);
 789
 790	pp = of_graph_get_port_parent(np);
 791
 792	of_node_put(np);
 793
 794	return pp;
 795}
 796EXPORT_SYMBOL(of_graph_get_remote_port_parent);
 797
 798/**
 799 * of_graph_get_remote_port() - get remote port node
 800 * @node: pointer to a local endpoint device_node
 801 *
 802 * Return: Remote port node associated with remote endpoint node linked
 803 * to @node. Use of_node_put() on it when done.
 804 */
 805struct device_node *of_graph_get_remote_port(const struct device_node *node)
 806{
 807	struct device_node *np;
 808
 809	/* Get remote endpoint node. */
 810	np = of_graph_get_remote_endpoint(node);
 811	if (!np)
 812		return NULL;
 813	return of_get_next_parent(np);
 814}
 815EXPORT_SYMBOL(of_graph_get_remote_port);
 816
 817int of_graph_get_endpoint_count(const struct device_node *np)
 818{
 819	struct device_node *endpoint;
 820	int num = 0;
 821
 822	for_each_endpoint_of_node(np, endpoint)
 823		num++;
 824
 825	return num;
 826}
 827EXPORT_SYMBOL(of_graph_get_endpoint_count);
 828
 829/**
 830 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
 831 * @node: pointer to parent device_node containing graph port/endpoint
 832 * @port: identifier (value of reg property) of the parent port node
 833 * @endpoint: identifier (value of reg property) of the endpoint node
 834 *
 835 * Return: Remote device node associated with remote endpoint node linked
 836 * to @node. Use of_node_put() on it when done.
 837 */
 838struct device_node *of_graph_get_remote_node(const struct device_node *node,
 839					     u32 port, u32 endpoint)
 840{
 841	struct device_node *endpoint_node, *remote;
 842
 843	endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
 844	if (!endpoint_node) {
 845		pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
 846			 port, endpoint, node);
 847		return NULL;
 848	}
 849
 850	remote = of_graph_get_remote_port_parent(endpoint_node);
 851	of_node_put(endpoint_node);
 852	if (!remote) {
 853		pr_debug("no valid remote node\n");
 854		return NULL;
 855	}
 856
 857	if (!of_device_is_available(remote)) {
 858		pr_debug("not available for remote node\n");
 859		of_node_put(remote);
 860		return NULL;
 861	}
 862
 863	return remote;
 864}
 865EXPORT_SYMBOL(of_graph_get_remote_node);
 866
 867static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
 868{
 869	return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
 870}
 871
 872static void of_fwnode_put(struct fwnode_handle *fwnode)
 873{
 874	of_node_put(to_of_node(fwnode));
 875}
 876
 877static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
 878{
 879	return of_device_is_available(to_of_node(fwnode));
 880}
 881
 882static bool of_fwnode_device_dma_supported(const struct fwnode_handle *fwnode)
 883{
 884	return true;
 885}
 886
 887static enum dev_dma_attr
 888of_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode)
 889{
 890	if (of_dma_is_coherent(to_of_node(fwnode)))
 891		return DEV_DMA_COHERENT;
 892	else
 893		return DEV_DMA_NON_COHERENT;
 894}
 895
 896static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
 897				       const char *propname)
 898{
 899	return of_property_read_bool(to_of_node(fwnode), propname);
 900}
 901
 902static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
 903					     const char *propname,
 904					     unsigned int elem_size, void *val,
 905					     size_t nval)
 906{
 907	const struct device_node *node = to_of_node(fwnode);
 908
 909	if (!val)
 910		return of_property_count_elems_of_size(node, propname,
 911						       elem_size);
 912
 913	switch (elem_size) {
 914	case sizeof(u8):
 915		return of_property_read_u8_array(node, propname, val, nval);
 916	case sizeof(u16):
 917		return of_property_read_u16_array(node, propname, val, nval);
 918	case sizeof(u32):
 919		return of_property_read_u32_array(node, propname, val, nval);
 920	case sizeof(u64):
 921		return of_property_read_u64_array(node, propname, val, nval);
 922	}
 923
 924	return -ENXIO;
 925}
 926
 927static int
 928of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
 929				     const char *propname, const char **val,
 930				     size_t nval)
 931{
 932	const struct device_node *node = to_of_node(fwnode);
 933
 934	return val ?
 935		of_property_read_string_array(node, propname, val, nval) :
 936		of_property_count_strings(node, propname);
 937}
 938
 939static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
 940{
 941	return kbasename(to_of_node(fwnode)->full_name);
 942}
 943
 944static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
 945{
 946	/* Root needs no prefix here (its name is "/"). */
 947	if (!to_of_node(fwnode)->parent)
 948		return "";
 949
 950	return "/";
 951}
 952
 953static struct fwnode_handle *
 954of_fwnode_get_parent(const struct fwnode_handle *fwnode)
 955{
 956	return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
 957}
 958
 959static struct fwnode_handle *
 960of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
 961			      struct fwnode_handle *child)
 962{
 963	return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
 964							    to_of_node(child)));
 965}
 966
 967static struct fwnode_handle *
 968of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
 969			       const char *childname)
 970{
 971	const struct device_node *node = to_of_node(fwnode);
 972	struct device_node *child;
 973
 974	for_each_available_child_of_node(node, child)
 975		if (of_node_name_eq(child, childname))
 976			return of_fwnode_handle(child);
 977
 978	return NULL;
 979}
 980
 981static int
 982of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
 983			     const char *prop, const char *nargs_prop,
 984			     unsigned int nargs, unsigned int index,
 985			     struct fwnode_reference_args *args)
 986{
 987	struct of_phandle_args of_args;
 988	unsigned int i;
 989	int ret;
 990
 991	if (nargs_prop)
 992		ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
 993						 nargs_prop, index, &of_args);
 994	else
 995		ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
 996						       nargs, index, &of_args);
 997	if (ret < 0)
 998		return ret;
 999	if (!args) {
1000		of_node_put(of_args.np);
1001		return 0;
1002	}
1003
1004	args->nargs = of_args.args_count;
1005	args->fwnode = of_fwnode_handle(of_args.np);
1006
1007	for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
1008		args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
1009
1010	return 0;
1011}
1012
1013static struct fwnode_handle *
1014of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1015				  struct fwnode_handle *prev)
1016{
1017	return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
1018							   to_of_node(prev)));
1019}
1020
1021static struct fwnode_handle *
1022of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1023{
1024	return of_fwnode_handle(
1025		of_graph_get_remote_endpoint(to_of_node(fwnode)));
1026}
1027
1028static struct fwnode_handle *
1029of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
1030{
1031	struct device_node *np;
1032
1033	/* Get the parent of the port */
1034	np = of_get_parent(to_of_node(fwnode));
1035	if (!np)
1036		return NULL;
1037
1038	/* Is this the "ports" node? If not, it's the port parent. */
1039	if (!of_node_name_eq(np, "ports"))
1040		return of_fwnode_handle(np);
1041
1042	return of_fwnode_handle(of_get_next_parent(np));
1043}
1044
1045static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1046					  struct fwnode_endpoint *endpoint)
1047{
1048	const struct device_node *node = to_of_node(fwnode);
1049	struct device_node *port_node = of_get_parent(node);
1050
1051	endpoint->local_fwnode = fwnode;
1052
1053	of_property_read_u32(port_node, "reg", &endpoint->port);
1054	of_property_read_u32(node, "reg", &endpoint->id);
1055
1056	of_node_put(port_node);
1057
1058	return 0;
1059}
1060
1061static const void *
1062of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1063				const struct device *dev)
1064{
1065	return of_device_get_match_data(dev);
1066}
1067
1068static void of_link_to_phandle(struct device_node *con_np,
1069			      struct device_node *sup_np)
1070{
1071	struct device_node *tmp_np = of_node_get(sup_np);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072
1073	/* Check that sup_np and its ancestors are available. */
1074	while (tmp_np) {
1075		if (of_fwnode_handle(tmp_np)->dev) {
1076			of_node_put(tmp_np);
 
 
 
 
 
 
 
 
 
 
1077			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078		}
1079
1080		if (!of_device_is_available(tmp_np)) {
1081			of_node_put(tmp_np);
1082			return;
 
 
 
 
 
 
 
 
 
 
1083		}
1084
1085		tmp_np = of_get_next_parent(tmp_np);
 
 
1086	}
1087
1088	fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np));
 
 
 
1089}
1090
1091/**
1092 * parse_prop_cells - Property parsing function for suppliers
1093 *
1094 * @np:		Pointer to device tree node containing a list
1095 * @prop_name:	Name of property to be parsed. Expected to hold phandle values
1096 * @index:	For properties holding a list of phandles, this is the index
1097 *		into the list.
1098 * @list_name:	Property name that is known to contain list of phandle(s) to
1099 *		supplier(s)
1100 * @cells_name:	property name that specifies phandles' arguments count
1101 *
1102 * This is a helper function to parse properties that have a known fixed name
1103 * and are a list of phandles and phandle arguments.
1104 *
1105 * Returns:
1106 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1107 *   on it when done.
1108 * - NULL if no phandle found at index
1109 */
1110static struct device_node *parse_prop_cells(struct device_node *np,
1111					    const char *prop_name, int index,
1112					    const char *list_name,
1113					    const char *cells_name)
1114{
1115	struct of_phandle_args sup_args;
1116
1117	if (strcmp(prop_name, list_name))
1118		return NULL;
1119
1120	if (__of_parse_phandle_with_args(np, list_name, cells_name, 0, index,
1121					 &sup_args))
1122		return NULL;
1123
1124	return sup_args.np;
1125}
1126
1127#define DEFINE_SIMPLE_PROP(fname, name, cells)				  \
1128static struct device_node *parse_##fname(struct device_node *np,	  \
1129					const char *prop_name, int index) \
1130{									  \
1131	return parse_prop_cells(np, prop_name, index, name, cells);	  \
1132}
1133
1134static int strcmp_suffix(const char *str, const char *suffix)
1135{
1136	unsigned int len, suffix_len;
1137
1138	len = strlen(str);
1139	suffix_len = strlen(suffix);
1140	if (len <= suffix_len)
1141		return -1;
1142	return strcmp(str + len - suffix_len, suffix);
1143}
1144
1145/**
1146 * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1147 *
1148 * @np:		Pointer to device tree node containing a list
1149 * @prop_name:	Name of property to be parsed. Expected to hold phandle values
1150 * @index:	For properties holding a list of phandles, this is the index
1151 *		into the list.
1152 * @suffix:	Property suffix that is known to contain list of phandle(s) to
1153 *		supplier(s)
1154 * @cells_name:	property name that specifies phandles' arguments count
1155 *
1156 * This is a helper function to parse properties that have a known fixed suffix
1157 * and are a list of phandles and phandle arguments.
1158 *
1159 * Returns:
1160 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1161 *   on it when done.
1162 * - NULL if no phandle found at index
1163 */
1164static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1165					    const char *prop_name, int index,
1166					    const char *suffix,
1167					    const char *cells_name)
1168{
1169	struct of_phandle_args sup_args;
1170
1171	if (strcmp_suffix(prop_name, suffix))
1172		return NULL;
1173
1174	if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1175				       &sup_args))
1176		return NULL;
1177
1178	return sup_args.np;
1179}
1180
1181#define DEFINE_SUFFIX_PROP(fname, suffix, cells)			     \
1182static struct device_node *parse_##fname(struct device_node *np,	     \
1183					const char *prop_name, int index)    \
1184{									     \
1185	return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1186}
1187
1188/**
1189 * struct supplier_bindings - Property parsing functions for suppliers
1190 *
1191 * @parse_prop: function name
1192 *	parse_prop() finds the node corresponding to a supplier phandle
1193 *  parse_prop.np: Pointer to device node holding supplier phandle property
1194 *  parse_prop.prop_name: Name of property holding a phandle value
1195 *  parse_prop.index: For properties holding a list of phandles, this is the
1196 *		      index into the list
1197 * @get_con_dev: If the consumer node containing the property is never converted
1198 *		 to a struct device, implement this ops so fw_devlink can use it
1199 *		 to find the true consumer.
1200 * @optional: Describes whether a supplier is mandatory or not
1201 *
1202 * Returns:
1203 * parse_prop() return values are
1204 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1205 *   on it when done.
1206 * - NULL if no phandle found at index
1207 */
1208struct supplier_bindings {
1209	struct device_node *(*parse_prop)(struct device_node *np,
1210					  const char *prop_name, int index);
1211	struct device_node *(*get_con_dev)(struct device_node *np);
1212	bool optional;
1213};
1214
1215DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1216DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1217DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1218DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1219DEFINE_SIMPLE_PROP(io_channels, "io-channels", "#io-channel-cells")
1220DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL)
1221DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1222DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1223DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1224DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1225DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", "#nvmem-cell-cells")
 
 
1226DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1227DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1228DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1229DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1230DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1231DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1232DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1233DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1234DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1235DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1236DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
1237DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells")
1238DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells")
1239DEFINE_SIMPLE_PROP(leds, "leds", NULL)
1240DEFINE_SIMPLE_PROP(backlight, "backlight", NULL)
1241DEFINE_SIMPLE_PROP(panel, "panel", NULL)
1242DEFINE_SIMPLE_PROP(msi_parent, "msi-parent", "#msi-cells")
1243DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1244DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1245
1246static struct device_node *parse_gpios(struct device_node *np,
1247				       const char *prop_name, int index)
1248{
1249	if (!strcmp_suffix(prop_name, ",nr-gpios"))
1250		return NULL;
1251
1252	return parse_suffix_prop_cells(np, prop_name, index, "-gpios",
1253				       "#gpio-cells");
1254}
1255
1256static struct device_node *parse_iommu_maps(struct device_node *np,
1257					    const char *prop_name, int index)
1258{
1259	if (strcmp(prop_name, "iommu-map"))
1260		return NULL;
1261
1262	return of_parse_phandle(np, prop_name, (index * 4) + 1);
1263}
1264
1265static struct device_node *parse_gpio_compat(struct device_node *np,
1266					     const char *prop_name, int index)
1267{
1268	struct of_phandle_args sup_args;
1269
1270	if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios"))
1271		return NULL;
1272
1273	/*
1274	 * Ignore node with gpio-hog property since its gpios are all provided
1275	 * by its parent.
1276	 */
1277	if (of_property_read_bool(np, "gpio-hog"))
1278		return NULL;
1279
1280	if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index,
1281				       &sup_args))
1282		return NULL;
1283
1284	return sup_args.np;
1285}
1286
1287static struct device_node *parse_interrupts(struct device_node *np,
1288					    const char *prop_name, int index)
1289{
1290	struct of_phandle_args sup_args;
1291
1292	if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC))
1293		return NULL;
1294
1295	if (strcmp(prop_name, "interrupts") &&
1296	    strcmp(prop_name, "interrupts-extended"))
1297		return NULL;
1298
1299	return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np;
1300}
1301
1302static struct device_node *parse_remote_endpoint(struct device_node *np,
1303						 const char *prop_name,
1304						 int index)
1305{
1306	/* Return NULL for index > 0 to signify end of remote-endpoints. */
1307	if (index > 0 || strcmp(prop_name, "remote-endpoint"))
1308		return NULL;
1309
1310	return of_graph_get_remote_port_parent(np);
1311}
1312
1313static const struct supplier_bindings of_supplier_bindings[] = {
1314	{ .parse_prop = parse_clocks, },
1315	{ .parse_prop = parse_interconnects, },
1316	{ .parse_prop = parse_iommus, .optional = true, },
1317	{ .parse_prop = parse_iommu_maps, .optional = true, },
1318	{ .parse_prop = parse_mboxes, },
1319	{ .parse_prop = parse_io_channels, },
1320	{ .parse_prop = parse_interrupt_parent, },
1321	{ .parse_prop = parse_dmas, .optional = true, },
1322	{ .parse_prop = parse_power_domains, },
1323	{ .parse_prop = parse_hwlocks, },
1324	{ .parse_prop = parse_extcon, },
 
1325	{ .parse_prop = parse_nvmem_cells, },
1326	{ .parse_prop = parse_phys, },
1327	{ .parse_prop = parse_wakeup_parent, },
1328	{ .parse_prop = parse_pinctrl0, },
1329	{ .parse_prop = parse_pinctrl1, },
1330	{ .parse_prop = parse_pinctrl2, },
1331	{ .parse_prop = parse_pinctrl3, },
1332	{ .parse_prop = parse_pinctrl4, },
1333	{ .parse_prop = parse_pinctrl5, },
1334	{ .parse_prop = parse_pinctrl6, },
1335	{ .parse_prop = parse_pinctrl7, },
1336	{ .parse_prop = parse_pinctrl8, },
1337	{
1338		.parse_prop = parse_remote_endpoint,
1339		.get_con_dev = of_graph_get_port_parent,
1340	},
1341	{ .parse_prop = parse_pwms, },
1342	{ .parse_prop = parse_resets, },
1343	{ .parse_prop = parse_leds, },
1344	{ .parse_prop = parse_backlight, },
1345	{ .parse_prop = parse_panel, },
1346	{ .parse_prop = parse_msi_parent, },
1347	{ .parse_prop = parse_gpio_compat, },
1348	{ .parse_prop = parse_interrupts, },
1349	{ .parse_prop = parse_regulators, },
1350	{ .parse_prop = parse_gpio, },
1351	{ .parse_prop = parse_gpios, },
1352	{}
1353};
1354
1355/**
1356 * of_link_property - Create device links to suppliers listed in a property
 
1357 * @con_np: The consumer device tree node which contains the property
1358 * @prop_name: Name of property to be parsed
1359 *
1360 * This function checks if the property @prop_name that is present in the
1361 * @con_np device tree node is one of the known common device tree bindings
1362 * that list phandles to suppliers. If @prop_name isn't one, this function
1363 * doesn't do anything.
1364 *
1365 * If @prop_name is one, this function attempts to create fwnode links from the
1366 * consumer device tree node @con_np to all the suppliers device tree nodes
1367 * listed in @prop_name.
1368 *
1369 * Any failed attempt to create a fwnode link will NOT result in an immediate
1370 * return.  of_link_property() must create links to all the available supplier
1371 * device tree nodes even when attempts to create a link to one or more
1372 * suppliers fail.
1373 */
1374static int of_link_property(struct device_node *con_np, const char *prop_name)
 
1375{
1376	struct device_node *phandle;
1377	const struct supplier_bindings *s = of_supplier_bindings;
1378	unsigned int i = 0;
1379	bool matched = false;
 
 
 
 
 
 
 
1380
1381	/* Do not stop at first failed link, link all available suppliers. */
1382	while (!matched && s->parse_prop) {
1383		if (s->optional && !fw_devlink_is_strict()) {
1384			s++;
1385			continue;
1386		}
1387
1388		while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1389			struct device_node *con_dev_np;
1390
1391			con_dev_np = s->get_con_dev
1392					? s->get_con_dev(con_np)
1393					: of_node_get(con_np);
1394			matched = true;
1395			i++;
1396			of_link_to_phandle(con_dev_np, phandle);
 
 
1397			of_node_put(phandle);
1398			of_node_put(con_dev_np);
1399		}
1400		s++;
1401	}
1402	return 0;
1403}
1404
1405static void __iomem *of_fwnode_iomap(struct fwnode_handle *fwnode, int index)
 
1406{
1407#ifdef CONFIG_OF_ADDRESS
1408	return of_iomap(to_of_node(fwnode), index);
1409#else
1410	return NULL;
1411#endif
1412}
1413
1414static int of_fwnode_irq_get(const struct fwnode_handle *fwnode,
1415			     unsigned int index)
1416{
1417	return of_irq_get(to_of_node(fwnode), index);
 
 
 
 
 
1418}
1419
1420static int of_fwnode_add_links(struct fwnode_handle *fwnode)
 
1421{
1422	struct property *p;
1423	struct device_node *con_np = to_of_node(fwnode);
1424
1425	if (IS_ENABLED(CONFIG_X86))
1426		return 0;
1427
1428	if (!con_np)
1429		return -EINVAL;
1430
1431	for_each_property_of_node(con_np, p)
1432		of_link_property(con_np, p->name);
1433
1434	return 0;
1435}
1436
1437const struct fwnode_operations of_fwnode_ops = {
1438	.get = of_fwnode_get,
1439	.put = of_fwnode_put,
1440	.device_is_available = of_fwnode_device_is_available,
1441	.device_get_match_data = of_fwnode_device_get_match_data,
1442	.device_dma_supported = of_fwnode_device_dma_supported,
1443	.device_get_dma_attr = of_fwnode_device_get_dma_attr,
1444	.property_present = of_fwnode_property_present,
1445	.property_read_int_array = of_fwnode_property_read_int_array,
1446	.property_read_string_array = of_fwnode_property_read_string_array,
1447	.get_name = of_fwnode_get_name,
1448	.get_name_prefix = of_fwnode_get_name_prefix,
1449	.get_parent = of_fwnode_get_parent,
1450	.get_next_child_node = of_fwnode_get_next_child_node,
1451	.get_named_child_node = of_fwnode_get_named_child_node,
1452	.get_reference_args = of_fwnode_get_reference_args,
1453	.graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1454	.graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1455	.graph_get_port_parent = of_fwnode_graph_get_port_parent,
1456	.graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1457	.iomap = of_fwnode_iomap,
1458	.irq_get = of_fwnode_irq_get,
1459	.add_links = of_fwnode_add_links,
1460};
1461EXPORT_SYMBOL_GPL(of_fwnode_ops);
v5.9
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * drivers/of/property.c - Procedures for accessing and interpreting
   4 *			   Devicetree properties and graphs.
   5 *
   6 * Initially created by copying procedures from drivers/of/base.c. This
   7 * file contains the OF property as well as the OF graph interface
   8 * functions.
   9 *
  10 * Paul Mackerras	August 1996.
  11 * Copyright (C) 1996-2005 Paul Mackerras.
  12 *
  13 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
  14 *    {engebret|bergner}@us.ibm.com
  15 *
  16 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
  17 *
  18 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
  19 *  Grant Likely.
  20 */
  21
  22#define pr_fmt(fmt)	"OF: " fmt
  23
  24#include <linux/of.h>
 
  25#include <linux/of_device.h>
  26#include <linux/of_graph.h>
 
  27#include <linux/string.h>
  28#include <linux/moduleparam.h>
  29
  30#include "of_private.h"
  31
  32/**
  33 * of_graph_is_present() - check graph's presence
  34 * @node: pointer to device_node containing graph port
  35 *
  36 * Return: True if @node has a port or ports (with a port) sub-node,
  37 * false otherwise.
  38 */
  39bool of_graph_is_present(const struct device_node *node)
  40{
  41	struct device_node *ports, *port;
  42
  43	ports = of_get_child_by_name(node, "ports");
  44	if (ports)
  45		node = ports;
  46
  47	port = of_get_child_by_name(node, "port");
  48	of_node_put(ports);
  49	of_node_put(port);
  50
  51	return !!port;
  52}
  53EXPORT_SYMBOL(of_graph_is_present);
  54
  55/**
  56 * of_property_count_elems_of_size - Count the number of elements in a property
  57 *
  58 * @np:		device node from which the property value is to be read.
  59 * @propname:	name of the property to be searched.
  60 * @elem_size:	size of the individual element
  61 *
  62 * Search for a property in a device node and count the number of elements of
  63 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
  64 * property does not exist or its length does not match a multiple of elem_size
  65 * and -ENODATA if the property does not have a value.
 
 
  66 */
  67int of_property_count_elems_of_size(const struct device_node *np,
  68				const char *propname, int elem_size)
  69{
  70	struct property *prop = of_find_property(np, propname, NULL);
  71
  72	if (!prop)
  73		return -EINVAL;
  74	if (!prop->value)
  75		return -ENODATA;
  76
  77	if (prop->length % elem_size != 0) {
  78		pr_err("size of %s in node %pOF is not a multiple of %d\n",
  79		       propname, np, elem_size);
  80		return -EINVAL;
  81	}
  82
  83	return prop->length / elem_size;
  84}
  85EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
  86
  87/**
  88 * of_find_property_value_of_size
  89 *
  90 * @np:		device node from which the property value is to be read.
  91 * @propname:	name of the property to be searched.
  92 * @min:	minimum allowed length of property value
  93 * @max:	maximum allowed length of property value (0 means unlimited)
  94 * @len:	if !=NULL, actual length is written to here
  95 *
  96 * Search for a property in a device node and valid the requested size.
  97 * Returns the property value on success, -EINVAL if the property does not
  98 *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
 
  99 * property data is too small or too large.
 100 *
 101 */
 102static void *of_find_property_value_of_size(const struct device_node *np,
 103			const char *propname, u32 min, u32 max, size_t *len)
 104{
 105	struct property *prop = of_find_property(np, propname, NULL);
 106
 107	if (!prop)
 108		return ERR_PTR(-EINVAL);
 109	if (!prop->value)
 110		return ERR_PTR(-ENODATA);
 111	if (prop->length < min)
 112		return ERR_PTR(-EOVERFLOW);
 113	if (max && prop->length > max)
 114		return ERR_PTR(-EOVERFLOW);
 115
 116	if (len)
 117		*len = prop->length;
 118
 119	return prop->value;
 120}
 121
 122/**
 123 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
 124 *
 125 * @np:		device node from which the property value is to be read.
 126 * @propname:	name of the property to be searched.
 127 * @index:	index of the u32 in the list of values
 128 * @out_value:	pointer to return value, modified only if no error.
 129 *
 130 * Search for a property in a device node and read nth 32-bit value from
 131 * it. Returns 0 on success, -EINVAL if the property does not exist,
 
 
 132 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 133 * property data isn't large enough.
 134 *
 135 * The out_value is modified only if a valid u32 value can be decoded.
 136 */
 137int of_property_read_u32_index(const struct device_node *np,
 138				       const char *propname,
 139				       u32 index, u32 *out_value)
 140{
 141	const u32 *val = of_find_property_value_of_size(np, propname,
 142					((index + 1) * sizeof(*out_value)),
 143					0,
 144					NULL);
 145
 146	if (IS_ERR(val))
 147		return PTR_ERR(val);
 148
 149	*out_value = be32_to_cpup(((__be32 *)val) + index);
 150	return 0;
 151}
 152EXPORT_SYMBOL_GPL(of_property_read_u32_index);
 153
 154/**
 155 * of_property_read_u64_index - Find and read a u64 from a multi-value property.
 156 *
 157 * @np:		device node from which the property value is to be read.
 158 * @propname:	name of the property to be searched.
 159 * @index:	index of the u64 in the list of values
 160 * @out_value:	pointer to return value, modified only if no error.
 161 *
 162 * Search for a property in a device node and read nth 64-bit value from
 163 * it. Returns 0 on success, -EINVAL if the property does not exist,
 
 
 164 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 165 * property data isn't large enough.
 166 *
 167 * The out_value is modified only if a valid u64 value can be decoded.
 168 */
 169int of_property_read_u64_index(const struct device_node *np,
 170				       const char *propname,
 171				       u32 index, u64 *out_value)
 172{
 173	const u64 *val = of_find_property_value_of_size(np, propname,
 174					((index + 1) * sizeof(*out_value)),
 175					0, NULL);
 176
 177	if (IS_ERR(val))
 178		return PTR_ERR(val);
 179
 180	*out_value = be64_to_cpup(((__be64 *)val) + index);
 181	return 0;
 182}
 183EXPORT_SYMBOL_GPL(of_property_read_u64_index);
 184
 185/**
 186 * of_property_read_variable_u8_array - Find and read an array of u8 from a
 187 * property, with bounds on the minimum and maximum array size.
 188 *
 189 * @np:		device node from which the property value is to be read.
 190 * @propname:	name of the property to be searched.
 191 * @out_values:	pointer to found values.
 192 * @sz_min:	minimum number of array elements to read
 193 * @sz_max:	maximum number of array elements to read, if zero there is no
 194 *		upper limit on the number of elements in the dts entry but only
 195 *		sz_min will be read.
 196 *
 197 * Search for a property in a device node and read 8-bit value(s) from
 198 * it. Returns number of elements read on success, -EINVAL if the property
 
 
 
 
 
 199 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 200 * if the property data is smaller than sz_min or longer than sz_max.
 201 *
 202 * dts entry of array should be like:
 203 *	property = /bits/ 8 <0x50 0x60 0x70>;
 204 *
 205 * The out_values is modified only if a valid u8 value can be decoded.
 206 */
 207int of_property_read_variable_u8_array(const struct device_node *np,
 208					const char *propname, u8 *out_values,
 209					size_t sz_min, size_t sz_max)
 210{
 211	size_t sz, count;
 212	const u8 *val = of_find_property_value_of_size(np, propname,
 213						(sz_min * sizeof(*out_values)),
 214						(sz_max * sizeof(*out_values)),
 215						&sz);
 216
 217	if (IS_ERR(val))
 218		return PTR_ERR(val);
 219
 220	if (!sz_max)
 221		sz = sz_min;
 222	else
 223		sz /= sizeof(*out_values);
 224
 225	count = sz;
 226	while (count--)
 227		*out_values++ = *val++;
 228
 229	return sz;
 230}
 231EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
 232
 233/**
 234 * of_property_read_variable_u16_array - Find and read an array of u16 from a
 235 * property, with bounds on the minimum and maximum array size.
 236 *
 237 * @np:		device node from which the property value is to be read.
 238 * @propname:	name of the property to be searched.
 239 * @out_values:	pointer to found values.
 240 * @sz_min:	minimum number of array elements to read
 241 * @sz_max:	maximum number of array elements to read, if zero there is no
 242 *		upper limit on the number of elements in the dts entry but only
 243 *		sz_min will be read.
 244 *
 245 * Search for a property in a device node and read 16-bit value(s) from
 246 * it. Returns number of elements read on success, -EINVAL if the property
 
 
 
 
 
 247 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 248 * if the property data is smaller than sz_min or longer than sz_max.
 249 *
 250 * dts entry of array should be like:
 251 *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
 252 *
 253 * The out_values is modified only if a valid u16 value can be decoded.
 254 */
 255int of_property_read_variable_u16_array(const struct device_node *np,
 256					const char *propname, u16 *out_values,
 257					size_t sz_min, size_t sz_max)
 258{
 259	size_t sz, count;
 260	const __be16 *val = of_find_property_value_of_size(np, propname,
 261						(sz_min * sizeof(*out_values)),
 262						(sz_max * sizeof(*out_values)),
 263						&sz);
 264
 265	if (IS_ERR(val))
 266		return PTR_ERR(val);
 267
 268	if (!sz_max)
 269		sz = sz_min;
 270	else
 271		sz /= sizeof(*out_values);
 272
 273	count = sz;
 274	while (count--)
 275		*out_values++ = be16_to_cpup(val++);
 276
 277	return sz;
 278}
 279EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
 280
 281/**
 282 * of_property_read_variable_u32_array - Find and read an array of 32 bit
 283 * integers from a property, with bounds on the minimum and maximum array size.
 284 *
 285 * @np:		device node from which the property value is to be read.
 286 * @propname:	name of the property to be searched.
 287 * @out_values:	pointer to return found values.
 288 * @sz_min:	minimum number of array elements to read
 289 * @sz_max:	maximum number of array elements to read, if zero there is no
 290 *		upper limit on the number of elements in the dts entry but only
 291 *		sz_min will be read.
 292 *
 293 * Search for a property in a device node and read 32-bit value(s) from
 294 * it. Returns number of elements read on success, -EINVAL if the property
 
 
 295 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 296 * if the property data is smaller than sz_min or longer than sz_max.
 297 *
 298 * The out_values is modified only if a valid u32 value can be decoded.
 299 */
 300int of_property_read_variable_u32_array(const struct device_node *np,
 301			       const char *propname, u32 *out_values,
 302			       size_t sz_min, size_t sz_max)
 303{
 304	size_t sz, count;
 305	const __be32 *val = of_find_property_value_of_size(np, propname,
 306						(sz_min * sizeof(*out_values)),
 307						(sz_max * sizeof(*out_values)),
 308						&sz);
 309
 310	if (IS_ERR(val))
 311		return PTR_ERR(val);
 312
 313	if (!sz_max)
 314		sz = sz_min;
 315	else
 316		sz /= sizeof(*out_values);
 317
 318	count = sz;
 319	while (count--)
 320		*out_values++ = be32_to_cpup(val++);
 321
 322	return sz;
 323}
 324EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
 325
 326/**
 327 * of_property_read_u64 - Find and read a 64 bit integer from a property
 328 * @np:		device node from which the property value is to be read.
 329 * @propname:	name of the property to be searched.
 330 * @out_value:	pointer to return value, modified only if return value is 0.
 331 *
 332 * Search for a property in a device node and read a 64-bit value from
 333 * it. Returns 0 on success, -EINVAL if the property does not exist,
 
 
 334 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 335 * property data isn't large enough.
 336 *
 337 * The out_value is modified only if a valid u64 value can be decoded.
 338 */
 339int of_property_read_u64(const struct device_node *np, const char *propname,
 340			 u64 *out_value)
 341{
 342	const __be32 *val = of_find_property_value_of_size(np, propname,
 343						sizeof(*out_value),
 344						0,
 345						NULL);
 346
 347	if (IS_ERR(val))
 348		return PTR_ERR(val);
 349
 350	*out_value = of_read_number(val, 2);
 351	return 0;
 352}
 353EXPORT_SYMBOL_GPL(of_property_read_u64);
 354
 355/**
 356 * of_property_read_variable_u64_array - Find and read an array of 64 bit
 357 * integers from a property, with bounds on the minimum and maximum array size.
 358 *
 359 * @np:		device node from which the property value is to be read.
 360 * @propname:	name of the property to be searched.
 361 * @out_values:	pointer to found values.
 362 * @sz_min:	minimum number of array elements to read
 363 * @sz_max:	maximum number of array elements to read, if zero there is no
 364 *		upper limit on the number of elements in the dts entry but only
 365 *		sz_min will be read.
 366 *
 367 * Search for a property in a device node and read 64-bit value(s) from
 368 * it. Returns number of elements read on success, -EINVAL if the property
 
 
 369 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 370 * if the property data is smaller than sz_min or longer than sz_max.
 371 *
 372 * The out_values is modified only if a valid u64 value can be decoded.
 373 */
 374int of_property_read_variable_u64_array(const struct device_node *np,
 375			       const char *propname, u64 *out_values,
 376			       size_t sz_min, size_t sz_max)
 377{
 378	size_t sz, count;
 379	const __be32 *val = of_find_property_value_of_size(np, propname,
 380						(sz_min * sizeof(*out_values)),
 381						(sz_max * sizeof(*out_values)),
 382						&sz);
 383
 384	if (IS_ERR(val))
 385		return PTR_ERR(val);
 386
 387	if (!sz_max)
 388		sz = sz_min;
 389	else
 390		sz /= sizeof(*out_values);
 391
 392	count = sz;
 393	while (count--) {
 394		*out_values++ = of_read_number(val, 2);
 395		val += 2;
 396	}
 397
 398	return sz;
 399}
 400EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
 401
 402/**
 403 * of_property_read_string - Find and read a string from a property
 404 * @np:		device node from which the property value is to be read.
 405 * @propname:	name of the property to be searched.
 406 * @out_string:	pointer to null terminated return string, modified only if
 407 *		return value is 0.
 408 *
 409 * Search for a property in a device tree node and retrieve a null
 410 * terminated string value (pointer to data, not a copy). Returns 0 on
 411 * success, -EINVAL if the property does not exist, -ENODATA if property
 412 * does not have a value, and -EILSEQ if the string is not null-terminated
 413 * within the length of the property data.
 
 
 
 
 414 *
 415 * The out_string pointer is modified only if a valid string can be decoded.
 416 */
 417int of_property_read_string(const struct device_node *np, const char *propname,
 418				const char **out_string)
 419{
 420	const struct property *prop = of_find_property(np, propname, NULL);
 
 421	if (!prop)
 422		return -EINVAL;
 423	if (!prop->value)
 424		return -ENODATA;
 425	if (strnlen(prop->value, prop->length) >= prop->length)
 426		return -EILSEQ;
 427	*out_string = prop->value;
 428	return 0;
 429}
 430EXPORT_SYMBOL_GPL(of_property_read_string);
 431
 432/**
 433 * of_property_match_string() - Find string in a list and return index
 434 * @np: pointer to node containing string list property
 435 * @propname: string list property name
 436 * @string: pointer to string to search for in string list
 437 *
 438 * This function searches a string list property and returns the index
 439 * of a specific string value.
 440 */
 441int of_property_match_string(const struct device_node *np, const char *propname,
 442			     const char *string)
 443{
 444	const struct property *prop = of_find_property(np, propname, NULL);
 445	size_t l;
 446	int i;
 447	const char *p, *end;
 448
 449	if (!prop)
 450		return -EINVAL;
 451	if (!prop->value)
 452		return -ENODATA;
 453
 454	p = prop->value;
 455	end = p + prop->length;
 456
 457	for (i = 0; p < end; i++, p += l) {
 458		l = strnlen(p, end - p) + 1;
 459		if (p + l > end)
 460			return -EILSEQ;
 461		pr_debug("comparing %s with %s\n", string, p);
 462		if (strcmp(string, p) == 0)
 463			return i; /* Found it; return index */
 464	}
 465	return -ENODATA;
 466}
 467EXPORT_SYMBOL_GPL(of_property_match_string);
 468
 469/**
 470 * of_property_read_string_helper() - Utility helper for parsing string properties
 471 * @np:		device node from which the property value is to be read.
 472 * @propname:	name of the property to be searched.
 473 * @out_strs:	output array of string pointers.
 474 * @sz:		number of array elements to read.
 475 * @skip:	Number of strings to skip over at beginning of list.
 476 *
 477 * Don't call this function directly. It is a utility helper for the
 478 * of_property_read_string*() family of functions.
 479 */
 480int of_property_read_string_helper(const struct device_node *np,
 481				   const char *propname, const char **out_strs,
 482				   size_t sz, int skip)
 483{
 484	const struct property *prop = of_find_property(np, propname, NULL);
 485	int l = 0, i = 0;
 486	const char *p, *end;
 487
 488	if (!prop)
 489		return -EINVAL;
 490	if (!prop->value)
 491		return -ENODATA;
 492	p = prop->value;
 493	end = p + prop->length;
 494
 495	for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
 496		l = strnlen(p, end - p) + 1;
 497		if (p + l > end)
 498			return -EILSEQ;
 499		if (out_strs && i >= skip)
 500			*out_strs++ = p;
 501	}
 502	i -= skip;
 503	return i <= 0 ? -ENODATA : i;
 504}
 505EXPORT_SYMBOL_GPL(of_property_read_string_helper);
 506
 507const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
 508			       u32 *pu)
 509{
 510	const void *curv = cur;
 511
 512	if (!prop)
 513		return NULL;
 514
 515	if (!cur) {
 516		curv = prop->value;
 517		goto out_val;
 518	}
 519
 520	curv += sizeof(*cur);
 521	if (curv >= prop->value + prop->length)
 522		return NULL;
 523
 524out_val:
 525	*pu = be32_to_cpup(curv);
 526	return curv;
 527}
 528EXPORT_SYMBOL_GPL(of_prop_next_u32);
 529
 530const char *of_prop_next_string(struct property *prop, const char *cur)
 531{
 532	const void *curv = cur;
 533
 534	if (!prop)
 535		return NULL;
 536
 537	if (!cur)
 538		return prop->value;
 539
 540	curv += strlen(cur) + 1;
 541	if (curv >= prop->value + prop->length)
 542		return NULL;
 543
 544	return curv;
 545}
 546EXPORT_SYMBOL_GPL(of_prop_next_string);
 547
 548/**
 549 * of_graph_parse_endpoint() - parse common endpoint node properties
 550 * @node: pointer to endpoint device_node
 551 * @endpoint: pointer to the OF endpoint data structure
 552 *
 553 * The caller should hold a reference to @node.
 554 */
 555int of_graph_parse_endpoint(const struct device_node *node,
 556			    struct of_endpoint *endpoint)
 557{
 558	struct device_node *port_node = of_get_parent(node);
 559
 560	WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
 561		  __func__, node);
 562
 563	memset(endpoint, 0, sizeof(*endpoint));
 564
 565	endpoint->local_node = node;
 566	/*
 567	 * It doesn't matter whether the two calls below succeed.
 568	 * If they don't then the default value 0 is used.
 569	 */
 570	of_property_read_u32(port_node, "reg", &endpoint->port);
 571	of_property_read_u32(node, "reg", &endpoint->id);
 572
 573	of_node_put(port_node);
 574
 575	return 0;
 576}
 577EXPORT_SYMBOL(of_graph_parse_endpoint);
 578
 579/**
 580 * of_graph_get_port_by_id() - get the port matching a given id
 581 * @parent: pointer to the parent device node
 582 * @id: id of the port
 583 *
 584 * Return: A 'port' node pointer with refcount incremented. The caller
 585 * has to use of_node_put() on it when done.
 586 */
 587struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
 588{
 589	struct device_node *node, *port;
 590
 591	node = of_get_child_by_name(parent, "ports");
 592	if (node)
 593		parent = node;
 594
 595	for_each_child_of_node(parent, port) {
 596		u32 port_id = 0;
 597
 598		if (!of_node_name_eq(port, "port"))
 599			continue;
 600		of_property_read_u32(port, "reg", &port_id);
 601		if (id == port_id)
 602			break;
 603	}
 604
 605	of_node_put(node);
 606
 607	return port;
 608}
 609EXPORT_SYMBOL(of_graph_get_port_by_id);
 610
 611/**
 612 * of_graph_get_next_endpoint() - get next endpoint node
 613 * @parent: pointer to the parent device node
 614 * @prev: previous endpoint node, or NULL to get first
 615 *
 616 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
 617 * of the passed @prev node is decremented.
 618 */
 619struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
 620					struct device_node *prev)
 621{
 622	struct device_node *endpoint;
 623	struct device_node *port;
 624
 625	if (!parent)
 626		return NULL;
 627
 628	/*
 629	 * Start by locating the port node. If no previous endpoint is specified
 630	 * search for the first port node, otherwise get the previous endpoint
 631	 * parent port node.
 632	 */
 633	if (!prev) {
 634		struct device_node *node;
 635
 636		node = of_get_child_by_name(parent, "ports");
 637		if (node)
 638			parent = node;
 639
 640		port = of_get_child_by_name(parent, "port");
 641		of_node_put(node);
 642
 643		if (!port) {
 644			pr_err("graph: no port node found in %pOF\n", parent);
 645			return NULL;
 646		}
 647	} else {
 648		port = of_get_parent(prev);
 649		if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
 650			      __func__, prev))
 651			return NULL;
 652	}
 653
 654	while (1) {
 655		/*
 656		 * Now that we have a port node, get the next endpoint by
 657		 * getting the next child. If the previous endpoint is NULL this
 658		 * will return the first child.
 659		 */
 660		endpoint = of_get_next_child(port, prev);
 661		if (endpoint) {
 662			of_node_put(port);
 663			return endpoint;
 664		}
 665
 666		/* No more endpoints under this port, try the next one. */
 667		prev = NULL;
 668
 669		do {
 670			port = of_get_next_child(parent, port);
 671			if (!port)
 672				return NULL;
 673		} while (!of_node_name_eq(port, "port"));
 674	}
 675}
 676EXPORT_SYMBOL(of_graph_get_next_endpoint);
 677
 678/**
 679 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
 680 * @parent: pointer to the parent device node
 681 * @port_reg: identifier (value of reg property) of the parent port node
 682 * @reg: identifier (value of reg property) of the endpoint node
 683 *
 684 * Return: An 'endpoint' node pointer which is identified by reg and at the same
 685 * is the child of a port node identified by port_reg. reg and port_reg are
 686 * ignored when they are -1. Use of_node_put() on the pointer when done.
 687 */
 688struct device_node *of_graph_get_endpoint_by_regs(
 689	const struct device_node *parent, int port_reg, int reg)
 690{
 691	struct of_endpoint endpoint;
 692	struct device_node *node = NULL;
 693
 694	for_each_endpoint_of_node(parent, node) {
 695		of_graph_parse_endpoint(node, &endpoint);
 696		if (((port_reg == -1) || (endpoint.port == port_reg)) &&
 697			((reg == -1) || (endpoint.id == reg)))
 698			return node;
 699	}
 700
 701	return NULL;
 702}
 703EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
 704
 705/**
 706 * of_graph_get_remote_endpoint() - get remote endpoint node
 707 * @node: pointer to a local endpoint device_node
 708 *
 709 * Return: Remote endpoint node associated with remote endpoint node linked
 710 *	   to @node. Use of_node_put() on it when done.
 711 */
 712struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
 713{
 714	/* Get remote endpoint node. */
 715	return of_parse_phandle(node, "remote-endpoint", 0);
 716}
 717EXPORT_SYMBOL(of_graph_get_remote_endpoint);
 718
 719/**
 720 * of_graph_get_port_parent() - get port's parent node
 721 * @node: pointer to a local endpoint device_node
 722 *
 723 * Return: device node associated with endpoint node linked
 724 *	   to @node. Use of_node_put() on it when done.
 725 */
 726struct device_node *of_graph_get_port_parent(struct device_node *node)
 727{
 728	unsigned int depth;
 729
 730	if (!node)
 731		return NULL;
 732
 733	/*
 734	 * Preserve usecount for passed in node as of_get_next_parent()
 735	 * will do of_node_put() on it.
 736	 */
 737	of_node_get(node);
 738
 739	/* Walk 3 levels up only if there is 'ports' node. */
 740	for (depth = 3; depth && node; depth--) {
 741		node = of_get_next_parent(node);
 742		if (depth == 2 && !of_node_name_eq(node, "ports"))
 
 
 743			break;
 744	}
 745	return node;
 746}
 747EXPORT_SYMBOL(of_graph_get_port_parent);
 748
 749/**
 750 * of_graph_get_remote_port_parent() - get remote port's parent node
 751 * @node: pointer to a local endpoint device_node
 752 *
 753 * Return: Remote device node associated with remote endpoint node linked
 754 *	   to @node. Use of_node_put() on it when done.
 755 */
 756struct device_node *of_graph_get_remote_port_parent(
 757			       const struct device_node *node)
 758{
 759	struct device_node *np, *pp;
 760
 761	/* Get remote endpoint node. */
 762	np = of_graph_get_remote_endpoint(node);
 763
 764	pp = of_graph_get_port_parent(np);
 765
 766	of_node_put(np);
 767
 768	return pp;
 769}
 770EXPORT_SYMBOL(of_graph_get_remote_port_parent);
 771
 772/**
 773 * of_graph_get_remote_port() - get remote port node
 774 * @node: pointer to a local endpoint device_node
 775 *
 776 * Return: Remote port node associated with remote endpoint node linked
 777 *	   to @node. Use of_node_put() on it when done.
 778 */
 779struct device_node *of_graph_get_remote_port(const struct device_node *node)
 780{
 781	struct device_node *np;
 782
 783	/* Get remote endpoint node. */
 784	np = of_graph_get_remote_endpoint(node);
 785	if (!np)
 786		return NULL;
 787	return of_get_next_parent(np);
 788}
 789EXPORT_SYMBOL(of_graph_get_remote_port);
 790
 791int of_graph_get_endpoint_count(const struct device_node *np)
 792{
 793	struct device_node *endpoint;
 794	int num = 0;
 795
 796	for_each_endpoint_of_node(np, endpoint)
 797		num++;
 798
 799	return num;
 800}
 801EXPORT_SYMBOL(of_graph_get_endpoint_count);
 802
 803/**
 804 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
 805 * @node: pointer to parent device_node containing graph port/endpoint
 806 * @port: identifier (value of reg property) of the parent port node
 807 * @endpoint: identifier (value of reg property) of the endpoint node
 808 *
 809 * Return: Remote device node associated with remote endpoint node linked
 810 *	   to @node. Use of_node_put() on it when done.
 811 */
 812struct device_node *of_graph_get_remote_node(const struct device_node *node,
 813					     u32 port, u32 endpoint)
 814{
 815	struct device_node *endpoint_node, *remote;
 816
 817	endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
 818	if (!endpoint_node) {
 819		pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
 820			 port, endpoint, node);
 821		return NULL;
 822	}
 823
 824	remote = of_graph_get_remote_port_parent(endpoint_node);
 825	of_node_put(endpoint_node);
 826	if (!remote) {
 827		pr_debug("no valid remote node\n");
 828		return NULL;
 829	}
 830
 831	if (!of_device_is_available(remote)) {
 832		pr_debug("not available for remote node\n");
 833		of_node_put(remote);
 834		return NULL;
 835	}
 836
 837	return remote;
 838}
 839EXPORT_SYMBOL(of_graph_get_remote_node);
 840
 841static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
 842{
 843	return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
 844}
 845
 846static void of_fwnode_put(struct fwnode_handle *fwnode)
 847{
 848	of_node_put(to_of_node(fwnode));
 849}
 850
 851static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
 852{
 853	return of_device_is_available(to_of_node(fwnode));
 854}
 855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 856static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
 857				       const char *propname)
 858{
 859	return of_property_read_bool(to_of_node(fwnode), propname);
 860}
 861
 862static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
 863					     const char *propname,
 864					     unsigned int elem_size, void *val,
 865					     size_t nval)
 866{
 867	const struct device_node *node = to_of_node(fwnode);
 868
 869	if (!val)
 870		return of_property_count_elems_of_size(node, propname,
 871						       elem_size);
 872
 873	switch (elem_size) {
 874	case sizeof(u8):
 875		return of_property_read_u8_array(node, propname, val, nval);
 876	case sizeof(u16):
 877		return of_property_read_u16_array(node, propname, val, nval);
 878	case sizeof(u32):
 879		return of_property_read_u32_array(node, propname, val, nval);
 880	case sizeof(u64):
 881		return of_property_read_u64_array(node, propname, val, nval);
 882	}
 883
 884	return -ENXIO;
 885}
 886
 887static int
 888of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
 889				     const char *propname, const char **val,
 890				     size_t nval)
 891{
 892	const struct device_node *node = to_of_node(fwnode);
 893
 894	return val ?
 895		of_property_read_string_array(node, propname, val, nval) :
 896		of_property_count_strings(node, propname);
 897}
 898
 899static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
 900{
 901	return kbasename(to_of_node(fwnode)->full_name);
 902}
 903
 904static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
 905{
 906	/* Root needs no prefix here (its name is "/"). */
 907	if (!to_of_node(fwnode)->parent)
 908		return "";
 909
 910	return "/";
 911}
 912
 913static struct fwnode_handle *
 914of_fwnode_get_parent(const struct fwnode_handle *fwnode)
 915{
 916	return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
 917}
 918
 919static struct fwnode_handle *
 920of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
 921			      struct fwnode_handle *child)
 922{
 923	return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
 924							    to_of_node(child)));
 925}
 926
 927static struct fwnode_handle *
 928of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
 929			       const char *childname)
 930{
 931	const struct device_node *node = to_of_node(fwnode);
 932	struct device_node *child;
 933
 934	for_each_available_child_of_node(node, child)
 935		if (of_node_name_eq(child, childname))
 936			return of_fwnode_handle(child);
 937
 938	return NULL;
 939}
 940
 941static int
 942of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
 943			     const char *prop, const char *nargs_prop,
 944			     unsigned int nargs, unsigned int index,
 945			     struct fwnode_reference_args *args)
 946{
 947	struct of_phandle_args of_args;
 948	unsigned int i;
 949	int ret;
 950
 951	if (nargs_prop)
 952		ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
 953						 nargs_prop, index, &of_args);
 954	else
 955		ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
 956						       nargs, index, &of_args);
 957	if (ret < 0)
 958		return ret;
 959	if (!args)
 
 960		return 0;
 
 961
 962	args->nargs = of_args.args_count;
 963	args->fwnode = of_fwnode_handle(of_args.np);
 964
 965	for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
 966		args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
 967
 968	return 0;
 969}
 970
 971static struct fwnode_handle *
 972of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
 973				  struct fwnode_handle *prev)
 974{
 975	return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
 976							   to_of_node(prev)));
 977}
 978
 979static struct fwnode_handle *
 980of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
 981{
 982	return of_fwnode_handle(
 983		of_graph_get_remote_endpoint(to_of_node(fwnode)));
 984}
 985
 986static struct fwnode_handle *
 987of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
 988{
 989	struct device_node *np;
 990
 991	/* Get the parent of the port */
 992	np = of_get_parent(to_of_node(fwnode));
 993	if (!np)
 994		return NULL;
 995
 996	/* Is this the "ports" node? If not, it's the port parent. */
 997	if (!of_node_name_eq(np, "ports"))
 998		return of_fwnode_handle(np);
 999
1000	return of_fwnode_handle(of_get_next_parent(np));
1001}
1002
1003static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1004					  struct fwnode_endpoint *endpoint)
1005{
1006	const struct device_node *node = to_of_node(fwnode);
1007	struct device_node *port_node = of_get_parent(node);
1008
1009	endpoint->local_fwnode = fwnode;
1010
1011	of_property_read_u32(port_node, "reg", &endpoint->port);
1012	of_property_read_u32(node, "reg", &endpoint->id);
1013
1014	of_node_put(port_node);
1015
1016	return 0;
1017}
1018
1019static const void *
1020of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1021				const struct device *dev)
1022{
1023	return of_device_get_match_data(dev);
1024}
1025
1026static bool of_is_ancestor_of(struct device_node *test_ancestor,
1027			      struct device_node *child)
1028{
1029	of_node_get(child);
1030	while (child) {
1031		if (child == test_ancestor) {
1032			of_node_put(child);
1033			return true;
1034		}
1035		child = of_get_next_parent(child);
1036	}
1037	return false;
1038}
1039
1040/**
1041 * of_get_next_parent_dev - Add device link to supplier from supplier phandle
1042 * @np: device tree node
1043 *
1044 * Given a device tree node (@np), this function finds its closest ancestor
1045 * device tree node that has a corresponding struct device.
1046 *
1047 * The caller of this function is expected to call put_device() on the returned
1048 * device when they are done.
1049 */
1050static struct device *of_get_next_parent_dev(struct device_node *np)
1051{
1052	struct device *dev = NULL;
1053
1054	of_node_get(np);
1055	do {
1056		np = of_get_next_parent(np);
1057		if (np)
1058			dev = get_dev_from_fwnode(&np->fwnode);
1059	} while (np && !dev);
1060	of_node_put(np);
1061	return dev;
1062}
1063
1064/**
1065 * of_link_to_phandle - Add device link to supplier from supplier phandle
1066 * @dev: consumer device
1067 * @sup_np: phandle to supplier device tree node
1068 *
1069 * Given a phandle to a supplier device tree node (@sup_np), this function
1070 * finds the device that owns the supplier device tree node and creates a
1071 * device link from @dev consumer device to the supplier device. This function
1072 * doesn't create device links for invalid scenarios such as trying to create a
1073 * link with a parent device as the consumer of its child device. In such
1074 * cases, it returns an error.
1075 *
1076 * Returns:
1077 * - 0 if link successfully created to supplier
1078 * - -EAGAIN if linking to the supplier should be reattempted
1079 * - -EINVAL if the supplier link is invalid and should not be created
1080 * - -ENODEV if there is no device that corresponds to the supplier phandle
1081 */
1082static int of_link_to_phandle(struct device *dev, struct device_node *sup_np,
1083			      u32 dl_flags)
1084{
1085	struct device *sup_dev, *sup_par_dev;
1086	int ret = 0;
1087	struct device_node *tmp_np = sup_np;
1088
1089	of_node_get(sup_np);
1090	/*
1091	 * Find the device node that contains the supplier phandle.  It may be
1092	 * @sup_np or it may be an ancestor of @sup_np.
1093	 */
1094	while (sup_np) {
1095
1096		/* Don't allow linking to a disabled supplier */
1097		if (!of_device_is_available(sup_np)) {
1098			of_node_put(sup_np);
1099			sup_np = NULL;
1100		}
1101
1102		if (of_find_property(sup_np, "compatible", NULL))
1103			break;
1104
1105		sup_np = of_get_next_parent(sup_np);
1106	}
1107
1108	if (!sup_np) {
1109		dev_dbg(dev, "Not linking to %pOFP - No device\n", tmp_np);
1110		return -ENODEV;
1111	}
1112
1113	/*
1114	 * Don't allow linking a device node as a consumer of one of its
1115	 * descendant nodes. By definition, a child node can't be a functional
1116	 * dependency for the parent node.
1117	 */
1118	if (of_is_ancestor_of(dev->of_node, sup_np)) {
1119		dev_dbg(dev, "Not linking to %pOFP - is descendant\n", sup_np);
1120		of_node_put(sup_np);
1121		return -EINVAL;
1122	}
1123	sup_dev = get_dev_from_fwnode(&sup_np->fwnode);
1124	if (!sup_dev && of_node_check_flag(sup_np, OF_POPULATED)) {
1125		/* Early device without struct device. */
1126		dev_dbg(dev, "Not linking to %pOFP - No struct device\n",
1127			sup_np);
1128		of_node_put(sup_np);
1129		return -ENODEV;
1130	} else if (!sup_dev) {
1131		/*
1132		 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1133		 * cycles. So cycle detection isn't necessary and shouldn't be
1134		 * done.
1135		 */
1136		if (dl_flags & DL_FLAG_SYNC_STATE_ONLY) {
1137			of_node_put(sup_np);
1138			return -EAGAIN;
1139		}
1140
1141		sup_par_dev = of_get_next_parent_dev(sup_np);
1142
1143		if (sup_par_dev && device_is_dependent(dev, sup_par_dev)) {
1144			/* Cyclic dependency detected, don't try to link */
1145			dev_dbg(dev, "Not linking to %pOFP - cycle detected\n",
1146				sup_np);
1147			ret = -EINVAL;
1148		} else {
1149			/*
1150			 * Can't check for cycles or no cycles. So let's try
1151			 * again later.
1152			 */
1153			ret = -EAGAIN;
1154		}
1155
1156		of_node_put(sup_np);
1157		put_device(sup_par_dev);
1158		return ret;
1159	}
1160	of_node_put(sup_np);
1161	if (!device_link_add(dev, sup_dev, dl_flags))
1162		ret = -EINVAL;
1163	put_device(sup_dev);
1164	return ret;
1165}
1166
1167/**
1168 * parse_prop_cells - Property parsing function for suppliers
1169 *
1170 * @np:		Pointer to device tree node containing a list
1171 * @prop_name:	Name of property to be parsed. Expected to hold phandle values
1172 * @index:	For properties holding a list of phandles, this is the index
1173 *		into the list.
1174 * @list_name:	Property name that is known to contain list of phandle(s) to
1175 *		supplier(s)
1176 * @cells_name:	property name that specifies phandles' arguments count
1177 *
1178 * This is a helper function to parse properties that have a known fixed name
1179 * and are a list of phandles and phandle arguments.
1180 *
1181 * Returns:
1182 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1183 *   on it when done.
1184 * - NULL if no phandle found at index
1185 */
1186static struct device_node *parse_prop_cells(struct device_node *np,
1187					    const char *prop_name, int index,
1188					    const char *list_name,
1189					    const char *cells_name)
1190{
1191	struct of_phandle_args sup_args;
1192
1193	if (strcmp(prop_name, list_name))
1194		return NULL;
1195
1196	if (of_parse_phandle_with_args(np, list_name, cells_name, index,
1197				       &sup_args))
1198		return NULL;
1199
1200	return sup_args.np;
1201}
1202
1203#define DEFINE_SIMPLE_PROP(fname, name, cells)				  \
1204static struct device_node *parse_##fname(struct device_node *np,	  \
1205					const char *prop_name, int index) \
1206{									  \
1207	return parse_prop_cells(np, prop_name, index, name, cells);	  \
1208}
1209
1210static int strcmp_suffix(const char *str, const char *suffix)
1211{
1212	unsigned int len, suffix_len;
1213
1214	len = strlen(str);
1215	suffix_len = strlen(suffix);
1216	if (len <= suffix_len)
1217		return -1;
1218	return strcmp(str + len - suffix_len, suffix);
1219}
1220
1221/**
1222 * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1223 *
1224 * @np:		Pointer to device tree node containing a list
1225 * @prop_name:	Name of property to be parsed. Expected to hold phandle values
1226 * @index:	For properties holding a list of phandles, this is the index
1227 *		into the list.
1228 * @suffix:	Property suffix that is known to contain list of phandle(s) to
1229 *		supplier(s)
1230 * @cells_name:	property name that specifies phandles' arguments count
1231 *
1232 * This is a helper function to parse properties that have a known fixed suffix
1233 * and are a list of phandles and phandle arguments.
1234 *
1235 * Returns:
1236 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1237 *   on it when done.
1238 * - NULL if no phandle found at index
1239 */
1240static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1241					    const char *prop_name, int index,
1242					    const char *suffix,
1243					    const char *cells_name)
1244{
1245	struct of_phandle_args sup_args;
1246
1247	if (strcmp_suffix(prop_name, suffix))
1248		return NULL;
1249
1250	if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1251				       &sup_args))
1252		return NULL;
1253
1254	return sup_args.np;
1255}
1256
1257#define DEFINE_SUFFIX_PROP(fname, suffix, cells)			     \
1258static struct device_node *parse_##fname(struct device_node *np,	     \
1259					const char *prop_name, int index)    \
1260{									     \
1261	return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1262}
1263
1264/**
1265 * struct supplier_bindings - Property parsing functions for suppliers
1266 *
1267 * @parse_prop: function name
1268 *	parse_prop() finds the node corresponding to a supplier phandle
1269 * @parse_prop.np: Pointer to device node holding supplier phandle property
1270 * @parse_prop.prop_name: Name of property holding a phandle value
1271 * @parse_prop.index: For properties holding a list of phandles, this is the
1272 *		      index into the list
 
 
 
 
1273 *
1274 * Returns:
1275 * parse_prop() return values are
1276 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1277 *   on it when done.
1278 * - NULL if no phandle found at index
1279 */
1280struct supplier_bindings {
1281	struct device_node *(*parse_prop)(struct device_node *np,
1282					  const char *prop_name, int index);
 
 
1283};
1284
1285DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1286DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1287DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1288DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1289DEFINE_SIMPLE_PROP(io_channels, "io-channel", "#io-channel-cells")
1290DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL)
1291DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1292DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1293DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1294DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1295DEFINE_SIMPLE_PROP(interrupts_extended, "interrupts-extended",
1296					"#interrupt-cells")
1297DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", NULL)
1298DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1299DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1300DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1301DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1302DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1303DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1304DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1305DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1306DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1307DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1308DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
 
 
 
 
 
 
1309DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1310DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1311DEFINE_SUFFIX_PROP(gpios, "-gpios", "#gpio-cells")
 
 
 
 
 
 
 
 
 
1312
1313static struct device_node *parse_iommu_maps(struct device_node *np,
1314					    const char *prop_name, int index)
1315{
1316	if (strcmp(prop_name, "iommu-map"))
1317		return NULL;
1318
1319	return of_parse_phandle(np, prop_name, (index * 4) + 1);
1320}
1321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1322static const struct supplier_bindings of_supplier_bindings[] = {
1323	{ .parse_prop = parse_clocks, },
1324	{ .parse_prop = parse_interconnects, },
1325	{ .parse_prop = parse_iommus, },
1326	{ .parse_prop = parse_iommu_maps, },
1327	{ .parse_prop = parse_mboxes, },
1328	{ .parse_prop = parse_io_channels, },
1329	{ .parse_prop = parse_interrupt_parent, },
1330	{ .parse_prop = parse_dmas, },
1331	{ .parse_prop = parse_power_domains, },
1332	{ .parse_prop = parse_hwlocks, },
1333	{ .parse_prop = parse_extcon, },
1334	{ .parse_prop = parse_interrupts_extended, },
1335	{ .parse_prop = parse_nvmem_cells, },
1336	{ .parse_prop = parse_phys, },
1337	{ .parse_prop = parse_wakeup_parent, },
1338	{ .parse_prop = parse_pinctrl0, },
1339	{ .parse_prop = parse_pinctrl1, },
1340	{ .parse_prop = parse_pinctrl2, },
1341	{ .parse_prop = parse_pinctrl3, },
1342	{ .parse_prop = parse_pinctrl4, },
1343	{ .parse_prop = parse_pinctrl5, },
1344	{ .parse_prop = parse_pinctrl6, },
1345	{ .parse_prop = parse_pinctrl7, },
1346	{ .parse_prop = parse_pinctrl8, },
 
 
 
 
 
 
 
 
 
 
 
 
1347	{ .parse_prop = parse_regulators, },
1348	{ .parse_prop = parse_gpio, },
1349	{ .parse_prop = parse_gpios, },
1350	{}
1351};
1352
1353/**
1354 * of_link_property - Create device links to suppliers listed in a property
1355 * @dev: Consumer device
1356 * @con_np: The consumer device tree node which contains the property
1357 * @prop_name: Name of property to be parsed
1358 *
1359 * This function checks if the property @prop_name that is present in the
1360 * @con_np device tree node is one of the known common device tree bindings
1361 * that list phandles to suppliers. If @prop_name isn't one, this function
1362 * doesn't do anything.
1363 *
1364 * If @prop_name is one, this function attempts to create device links from the
1365 * consumer device @dev to all the devices of the suppliers listed in
1366 * @prop_name.
1367 *
1368 * Any failed attempt to create a device link will NOT result in an immediate
1369 * return.  of_link_property() must create links to all the available supplier
1370 * devices even when attempts to create a link to one or more suppliers fail.
 
1371 */
1372static int of_link_property(struct device *dev, struct device_node *con_np,
1373			     const char *prop_name)
1374{
1375	struct device_node *phandle;
1376	const struct supplier_bindings *s = of_supplier_bindings;
1377	unsigned int i = 0;
1378	bool matched = false;
1379	int ret = 0;
1380	u32 dl_flags;
1381
1382	if (dev->of_node == con_np)
1383		dl_flags = fw_devlink_get_flags();
1384	else
1385		dl_flags = DL_FLAG_SYNC_STATE_ONLY;
1386
1387	/* Do not stop at first failed link, link all available suppliers. */
1388	while (!matched && s->parse_prop) {
 
 
 
 
 
1389		while ((phandle = s->parse_prop(con_np, prop_name, i))) {
 
 
 
 
 
1390			matched = true;
1391			i++;
1392			if (of_link_to_phandle(dev, phandle, dl_flags)
1393								== -EAGAIN)
1394				ret = -EAGAIN;
1395			of_node_put(phandle);
 
1396		}
1397		s++;
1398	}
1399	return ret;
1400}
1401
1402static int of_link_to_suppliers(struct device *dev,
1403				  struct device_node *con_np)
1404{
1405	struct device_node *child;
1406	struct property *p;
1407	int ret = 0;
 
 
 
1408
1409	for_each_property_of_node(con_np, p)
1410		if (of_link_property(dev, con_np, p->name))
1411			ret = -ENODEV;
1412
1413	for_each_available_child_of_node(con_np, child)
1414		if (of_link_to_suppliers(dev, child) && !ret)
1415			ret = -EAGAIN;
1416
1417	return ret;
1418}
1419
1420static int of_fwnode_add_links(const struct fwnode_handle *fwnode,
1421			       struct device *dev)
1422{
1423	if (unlikely(!is_of_node(fwnode)))
 
 
 
1424		return 0;
1425
1426	return of_link_to_suppliers(dev, to_of_node(fwnode));
 
 
 
 
 
 
1427}
1428
1429const struct fwnode_operations of_fwnode_ops = {
1430	.get = of_fwnode_get,
1431	.put = of_fwnode_put,
1432	.device_is_available = of_fwnode_device_is_available,
1433	.device_get_match_data = of_fwnode_device_get_match_data,
 
 
1434	.property_present = of_fwnode_property_present,
1435	.property_read_int_array = of_fwnode_property_read_int_array,
1436	.property_read_string_array = of_fwnode_property_read_string_array,
1437	.get_name = of_fwnode_get_name,
1438	.get_name_prefix = of_fwnode_get_name_prefix,
1439	.get_parent = of_fwnode_get_parent,
1440	.get_next_child_node = of_fwnode_get_next_child_node,
1441	.get_named_child_node = of_fwnode_get_named_child_node,
1442	.get_reference_args = of_fwnode_get_reference_args,
1443	.graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1444	.graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1445	.graph_get_port_parent = of_fwnode_graph_get_port_parent,
1446	.graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
 
 
1447	.add_links = of_fwnode_add_links,
1448};
1449EXPORT_SYMBOL_GPL(of_fwnode_ops);