Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2006-2013 Solarflare Communications Inc.
6 */
7
8#include <linux/bitops.h>
9#include <linux/delay.h>
10#include <linux/interrupt.h>
11#include <linux/pci.h>
12#include <linux/module.h>
13#include <linux/seq_file.h>
14#include <linux/cpu_rmap.h>
15#include "net_driver.h"
16#include "bitfield.h"
17#include "efx.h"
18#include "nic.h"
19#include "ef10_regs.h"
20#include "io.h"
21#include "workarounds.h"
22#include "mcdi_pcol.h"
23
24/**************************************************************************
25 *
26 * Generic buffer handling
27 * These buffers are used for interrupt status, MAC stats, etc.
28 *
29 **************************************************************************/
30
31int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
32 unsigned int len, gfp_t gfp_flags)
33{
34 buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
35 &buffer->dma_addr, gfp_flags);
36 if (!buffer->addr)
37 return -ENOMEM;
38 buffer->len = len;
39 return 0;
40}
41
42void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
43{
44 if (buffer->addr) {
45 dma_free_coherent(&efx->pci_dev->dev, buffer->len,
46 buffer->addr, buffer->dma_addr);
47 buffer->addr = NULL;
48 }
49}
50
51/* Check whether an event is present in the eventq at the current
52 * read pointer. Only useful for self-test.
53 */
54bool efx_nic_event_present(struct efx_channel *channel)
55{
56 return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
57}
58
59void efx_nic_event_test_start(struct efx_channel *channel)
60{
61 channel->event_test_cpu = -1;
62 smp_wmb();
63 channel->efx->type->ev_test_generate(channel);
64}
65
66int efx_nic_irq_test_start(struct efx_nic *efx)
67{
68 efx->last_irq_cpu = -1;
69 smp_wmb();
70 return efx->type->irq_test_generate(efx);
71}
72
73/* Hook interrupt handler(s)
74 * Try MSI and then legacy interrupts.
75 */
76int efx_nic_init_interrupt(struct efx_nic *efx)
77{
78 struct efx_channel *channel;
79 unsigned int n_irqs;
80 int rc;
81
82 if (!EFX_INT_MODE_USE_MSI(efx)) {
83 rc = request_irq(efx->legacy_irq,
84 efx->type->irq_handle_legacy, IRQF_SHARED,
85 efx->name, efx);
86 if (rc) {
87 netif_err(efx, drv, efx->net_dev,
88 "failed to hook legacy IRQ %d\n",
89 efx->pci_dev->irq);
90 goto fail1;
91 }
92 efx->irqs_hooked = true;
93 return 0;
94 }
95
96#ifdef CONFIG_RFS_ACCEL
97 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
98 efx->net_dev->rx_cpu_rmap =
99 alloc_irq_cpu_rmap(efx->n_rx_channels);
100 if (!efx->net_dev->rx_cpu_rmap) {
101 rc = -ENOMEM;
102 goto fail1;
103 }
104 }
105#endif
106
107 /* Hook MSI or MSI-X interrupt */
108 n_irqs = 0;
109 efx_for_each_channel(channel, efx) {
110 rc = request_irq(channel->irq, efx->type->irq_handle_msi,
111 IRQF_PROBE_SHARED, /* Not shared */
112 efx->msi_context[channel->channel].name,
113 &efx->msi_context[channel->channel]);
114 if (rc) {
115 netif_err(efx, drv, efx->net_dev,
116 "failed to hook IRQ %d\n", channel->irq);
117 goto fail2;
118 }
119 ++n_irqs;
120
121#ifdef CONFIG_RFS_ACCEL
122 if (efx->interrupt_mode == EFX_INT_MODE_MSIX &&
123 channel->channel < efx->n_rx_channels) {
124 rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
125 channel->irq);
126 if (rc)
127 goto fail2;
128 }
129#endif
130 }
131
132 efx->irqs_hooked = true;
133 return 0;
134
135 fail2:
136#ifdef CONFIG_RFS_ACCEL
137 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
138 efx->net_dev->rx_cpu_rmap = NULL;
139#endif
140 efx_for_each_channel(channel, efx) {
141 if (n_irqs-- == 0)
142 break;
143 free_irq(channel->irq, &efx->msi_context[channel->channel]);
144 }
145 fail1:
146 return rc;
147}
148
149void efx_nic_fini_interrupt(struct efx_nic *efx)
150{
151 struct efx_channel *channel;
152
153#ifdef CONFIG_RFS_ACCEL
154 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
155 efx->net_dev->rx_cpu_rmap = NULL;
156#endif
157
158 if (!efx->irqs_hooked)
159 return;
160 if (EFX_INT_MODE_USE_MSI(efx)) {
161 /* Disable MSI/MSI-X interrupts */
162 efx_for_each_channel(channel, efx)
163 free_irq(channel->irq,
164 &efx->msi_context[channel->channel]);
165 } else {
166 /* Disable legacy interrupt */
167 free_irq(efx->legacy_irq, efx);
168 }
169 efx->irqs_hooked = false;
170}
171
172/* Register dump */
173
174#define REGISTER_REVISION_ED 4
175#define REGISTER_REVISION_EZ 4 /* latest EF10 revision */
176
177struct efx_nic_reg {
178 u32 offset:24;
179 u32 min_revision:3, max_revision:3;
180};
181
182#define REGISTER(name, arch, min_rev, max_rev) { \
183 arch ## R_ ## min_rev ## max_rev ## _ ## name, \
184 REGISTER_REVISION_ ## arch ## min_rev, \
185 REGISTER_REVISION_ ## arch ## max_rev \
186}
187#define REGISTER_DZ(name) REGISTER(name, E, D, Z)
188
189static const struct efx_nic_reg efx_nic_regs[] = {
190 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
191 /* XX_CORE_STAT is partly RC */
192 REGISTER_DZ(BIU_HW_REV_ID),
193 REGISTER_DZ(MC_DB_LWRD),
194 REGISTER_DZ(MC_DB_HWRD),
195};
196
197struct efx_nic_reg_table {
198 u32 offset:24;
199 u32 min_revision:3, max_revision:3;
200 u32 step:6, rows:21;
201};
202
203#define REGISTER_TABLE_DIMENSIONS(_, offset, arch, min_rev, max_rev, step, rows) { \
204 offset, \
205 REGISTER_REVISION_ ## arch ## min_rev, \
206 REGISTER_REVISION_ ## arch ## max_rev, \
207 step, rows \
208}
209#define REGISTER_TABLE(name, arch, min_rev, max_rev) \
210 REGISTER_TABLE_DIMENSIONS( \
211 name, arch ## R_ ## min_rev ## max_rev ## _ ## name, \
212 arch, min_rev, max_rev, \
213 arch ## R_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
214 arch ## R_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
215#define REGISTER_TABLE_DZ(name) REGISTER_TABLE(name, E, D, Z)
216
217static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
218 REGISTER_TABLE_DZ(BIU_MC_SFT_STATUS),
219};
220
221size_t efx_nic_get_regs_len(struct efx_nic *efx)
222{
223 const struct efx_nic_reg *reg;
224 const struct efx_nic_reg_table *table;
225 size_t len = 0;
226
227 for (reg = efx_nic_regs;
228 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
229 reg++)
230 if (efx->type->revision >= reg->min_revision &&
231 efx->type->revision <= reg->max_revision)
232 len += sizeof(efx_oword_t);
233
234 for (table = efx_nic_reg_tables;
235 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
236 table++)
237 if (efx->type->revision >= table->min_revision &&
238 efx->type->revision <= table->max_revision)
239 len += table->rows * min_t(size_t, table->step, 16);
240
241 return len;
242}
243
244void efx_nic_get_regs(struct efx_nic *efx, void *buf)
245{
246 const struct efx_nic_reg *reg;
247 const struct efx_nic_reg_table *table;
248
249 for (reg = efx_nic_regs;
250 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
251 reg++) {
252 if (efx->type->revision >= reg->min_revision &&
253 efx->type->revision <= reg->max_revision) {
254 efx_reado(efx, (efx_oword_t *)buf, reg->offset);
255 buf += sizeof(efx_oword_t);
256 }
257 }
258
259 for (table = efx_nic_reg_tables;
260 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
261 table++) {
262 size_t size, i;
263
264 if (!(efx->type->revision >= table->min_revision &&
265 efx->type->revision <= table->max_revision))
266 continue;
267
268 size = min_t(size_t, table->step, 16);
269
270 for (i = 0; i < table->rows; i++) {
271 switch (table->step) {
272 case 4: /* 32-bit SRAM */
273 efx_readd(efx, buf, table->offset + 4 * i);
274 break;
275 case 16: /* 128-bit-readable register */
276 efx_reado_table(efx, buf, table->offset, i);
277 break;
278 case 32: /* 128-bit register, interleaved */
279 efx_reado_table(efx, buf, table->offset, 2 * i);
280 break;
281 default:
282 WARN_ON(1);
283 return;
284 }
285 buf += size;
286 }
287 }
288}
289
290/**
291 * efx_nic_describe_stats - Describe supported statistics for ethtool
292 * @desc: Array of &struct efx_hw_stat_desc describing the statistics
293 * @count: Length of the @desc array
294 * @mask: Bitmask of which elements of @desc are enabled
295 * @names: Buffer to copy names to, or %NULL. The names are copied
296 * starting at intervals of %ETH_GSTRING_LEN bytes.
297 *
298 * Returns the number of visible statistics, i.e. the number of set
299 * bits in the first @count bits of @mask for which a name is defined.
300 */
301size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
302 const unsigned long *mask, u8 *names)
303{
304 size_t visible = 0;
305 size_t index;
306
307 for_each_set_bit(index, mask, count) {
308 if (desc[index].name) {
309 if (names) {
310 strscpy(names, desc[index].name,
311 ETH_GSTRING_LEN);
312 names += ETH_GSTRING_LEN;
313 }
314 ++visible;
315 }
316 }
317
318 return visible;
319}
320
321/**
322 * efx_nic_copy_stats - Copy stats from the DMA buffer in to an
323 * intermediate buffer. This is used to get a consistent
324 * set of stats while the DMA buffer can be written at any time
325 * by the NIC.
326 * @efx: The associated NIC.
327 * @dest: Destination buffer. Must be the same size as the DMA buffer.
328 */
329int efx_nic_copy_stats(struct efx_nic *efx, __le64 *dest)
330{
331 __le64 *dma_stats = efx->stats_buffer.addr;
332 __le64 generation_start, generation_end;
333 int rc = 0, retry;
334
335 if (!dest)
336 return 0;
337
338 if (!dma_stats)
339 goto return_zeroes;
340
341 /* If we're unlucky enough to read statistics during the DMA, wait
342 * up to 10ms for it to finish (typically takes <500us)
343 */
344 for (retry = 0; retry < 100; ++retry) {
345 generation_end = dma_stats[efx->num_mac_stats - 1];
346 if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
347 goto return_zeroes;
348 rmb();
349 memcpy(dest, dma_stats, efx->num_mac_stats * sizeof(__le64));
350 rmb();
351 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
352 if (generation_end == generation_start)
353 return 0; /* return good data */
354 udelay(100);
355 }
356
357 rc = -EIO;
358
359return_zeroes:
360 memset(dest, 0, efx->num_mac_stats * sizeof(u64));
361 return rc;
362}
363
364/**
365 * efx_nic_update_stats - Convert statistics DMA buffer to array of u64
366 * @desc: Array of &struct efx_hw_stat_desc describing the DMA buffer
367 * layout. DMA widths of 0, 16, 32 and 64 are supported; where
368 * the width is specified as 0 the corresponding element of
369 * @stats is not updated.
370 * @count: Length of the @desc array
371 * @mask: Bitmask of which elements of @desc are enabled
372 * @stats: Buffer to update with the converted statistics. The length
373 * of this array must be at least @count.
374 * @dma_buf: DMA buffer containing hardware statistics
375 * @accumulate: If set, the converted values will be added rather than
376 * directly stored to the corresponding elements of @stats
377 */
378void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
379 const unsigned long *mask,
380 u64 *stats, const void *dma_buf, bool accumulate)
381{
382 size_t index;
383
384 for_each_set_bit(index, mask, count) {
385 if (desc[index].dma_width) {
386 const void *addr = dma_buf + desc[index].offset;
387 u64 val;
388
389 switch (desc[index].dma_width) {
390 case 16:
391 val = le16_to_cpup((__le16 *)addr);
392 break;
393 case 32:
394 val = le32_to_cpup((__le32 *)addr);
395 break;
396 case 64:
397 val = le64_to_cpup((__le64 *)addr);
398 break;
399 default:
400 WARN_ON(1);
401 val = 0;
402 break;
403 }
404
405 if (accumulate)
406 stats[index] += val;
407 else
408 stats[index] = val;
409 }
410 }
411}
412
413void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *rx_nodesc_drops)
414{
415 /* if down, or this is the first update after coming up */
416 if (!(efx->net_dev->flags & IFF_UP) || !efx->rx_nodesc_drops_prev_state)
417 efx->rx_nodesc_drops_while_down +=
418 *rx_nodesc_drops - efx->rx_nodesc_drops_total;
419 efx->rx_nodesc_drops_total = *rx_nodesc_drops;
420 efx->rx_nodesc_drops_prev_state = !!(efx->net_dev->flags & IFF_UP);
421 *rx_nodesc_drops -= efx->rx_nodesc_drops_while_down;
422}
1// SPDX-License-Identifier: GPL-2.0-only
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2006-2013 Solarflare Communications Inc.
6 */
7
8#include <linux/bitops.h>
9#include <linux/delay.h>
10#include <linux/interrupt.h>
11#include <linux/pci.h>
12#include <linux/module.h>
13#include <linux/seq_file.h>
14#include <linux/cpu_rmap.h>
15#include "net_driver.h"
16#include "bitfield.h"
17#include "efx.h"
18#include "nic.h"
19#include "ef10_regs.h"
20#include "farch_regs.h"
21#include "io.h"
22#include "workarounds.h"
23#include "mcdi_pcol.h"
24
25/**************************************************************************
26 *
27 * Generic buffer handling
28 * These buffers are used for interrupt status, MAC stats, etc.
29 *
30 **************************************************************************/
31
32int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
33 unsigned int len, gfp_t gfp_flags)
34{
35 buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
36 &buffer->dma_addr, gfp_flags);
37 if (!buffer->addr)
38 return -ENOMEM;
39 buffer->len = len;
40 return 0;
41}
42
43void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
44{
45 if (buffer->addr) {
46 dma_free_coherent(&efx->pci_dev->dev, buffer->len,
47 buffer->addr, buffer->dma_addr);
48 buffer->addr = NULL;
49 }
50}
51
52/* Check whether an event is present in the eventq at the current
53 * read pointer. Only useful for self-test.
54 */
55bool efx_nic_event_present(struct efx_channel *channel)
56{
57 return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
58}
59
60void efx_nic_event_test_start(struct efx_channel *channel)
61{
62 channel->event_test_cpu = -1;
63 smp_wmb();
64 channel->efx->type->ev_test_generate(channel);
65}
66
67int efx_nic_irq_test_start(struct efx_nic *efx)
68{
69 efx->last_irq_cpu = -1;
70 smp_wmb();
71 return efx->type->irq_test_generate(efx);
72}
73
74/* Hook interrupt handler(s)
75 * Try MSI and then legacy interrupts.
76 */
77int efx_nic_init_interrupt(struct efx_nic *efx)
78{
79 struct efx_channel *channel;
80 unsigned int n_irqs;
81 int rc;
82
83 if (!EFX_INT_MODE_USE_MSI(efx)) {
84 rc = request_irq(efx->legacy_irq,
85 efx->type->irq_handle_legacy, IRQF_SHARED,
86 efx->name, efx);
87 if (rc) {
88 netif_err(efx, drv, efx->net_dev,
89 "failed to hook legacy IRQ %d\n",
90 efx->pci_dev->irq);
91 goto fail1;
92 }
93 return 0;
94 }
95
96#ifdef CONFIG_RFS_ACCEL
97 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
98 efx->net_dev->rx_cpu_rmap =
99 alloc_irq_cpu_rmap(efx->n_rx_channels);
100 if (!efx->net_dev->rx_cpu_rmap) {
101 rc = -ENOMEM;
102 goto fail1;
103 }
104 }
105#endif
106
107 /* Hook MSI or MSI-X interrupt */
108 n_irqs = 0;
109 efx_for_each_channel(channel, efx) {
110 rc = request_irq(channel->irq, efx->type->irq_handle_msi,
111 IRQF_PROBE_SHARED, /* Not shared */
112 efx->msi_context[channel->channel].name,
113 &efx->msi_context[channel->channel]);
114 if (rc) {
115 netif_err(efx, drv, efx->net_dev,
116 "failed to hook IRQ %d\n", channel->irq);
117 goto fail2;
118 }
119 ++n_irqs;
120
121#ifdef CONFIG_RFS_ACCEL
122 if (efx->interrupt_mode == EFX_INT_MODE_MSIX &&
123 channel->channel < efx->n_rx_channels) {
124 rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
125 channel->irq);
126 if (rc)
127 goto fail2;
128 }
129#endif
130 }
131
132 efx->irqs_hooked = true;
133 return 0;
134
135 fail2:
136#ifdef CONFIG_RFS_ACCEL
137 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
138 efx->net_dev->rx_cpu_rmap = NULL;
139#endif
140 efx_for_each_channel(channel, efx) {
141 if (n_irqs-- == 0)
142 break;
143 free_irq(channel->irq, &efx->msi_context[channel->channel]);
144 }
145 fail1:
146 return rc;
147}
148
149void efx_nic_fini_interrupt(struct efx_nic *efx)
150{
151 struct efx_channel *channel;
152
153#ifdef CONFIG_RFS_ACCEL
154 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
155 efx->net_dev->rx_cpu_rmap = NULL;
156#endif
157
158 if (!efx->irqs_hooked)
159 return;
160 if (EFX_INT_MODE_USE_MSI(efx)) {
161 /* Disable MSI/MSI-X interrupts */
162 efx_for_each_channel(channel, efx)
163 free_irq(channel->irq,
164 &efx->msi_context[channel->channel]);
165 } else {
166 /* Disable legacy interrupt */
167 free_irq(efx->legacy_irq, efx);
168 }
169 efx->irqs_hooked = false;
170}
171
172/* Register dump */
173
174#define REGISTER_REVISION_FA 1
175#define REGISTER_REVISION_FB 2
176#define REGISTER_REVISION_FC 3
177#define REGISTER_REVISION_FZ 3 /* last Falcon arch revision */
178#define REGISTER_REVISION_ED 4
179#define REGISTER_REVISION_EZ 4 /* latest EF10 revision */
180
181struct efx_nic_reg {
182 u32 offset:24;
183 u32 min_revision:3, max_revision:3;
184};
185
186#define REGISTER(name, arch, min_rev, max_rev) { \
187 arch ## R_ ## min_rev ## max_rev ## _ ## name, \
188 REGISTER_REVISION_ ## arch ## min_rev, \
189 REGISTER_REVISION_ ## arch ## max_rev \
190}
191#define REGISTER_AA(name) REGISTER(name, F, A, A)
192#define REGISTER_AB(name) REGISTER(name, F, A, B)
193#define REGISTER_AZ(name) REGISTER(name, F, A, Z)
194#define REGISTER_BB(name) REGISTER(name, F, B, B)
195#define REGISTER_BZ(name) REGISTER(name, F, B, Z)
196#define REGISTER_CZ(name) REGISTER(name, F, C, Z)
197#define REGISTER_DZ(name) REGISTER(name, E, D, Z)
198
199static const struct efx_nic_reg efx_nic_regs[] = {
200 REGISTER_AZ(ADR_REGION),
201 REGISTER_AZ(INT_EN_KER),
202 REGISTER_BZ(INT_EN_CHAR),
203 REGISTER_AZ(INT_ADR_KER),
204 REGISTER_BZ(INT_ADR_CHAR),
205 /* INT_ACK_KER is WO */
206 /* INT_ISR0 is RC */
207 REGISTER_AZ(HW_INIT),
208 REGISTER_CZ(USR_EV_CFG),
209 REGISTER_AB(EE_SPI_HCMD),
210 REGISTER_AB(EE_SPI_HADR),
211 REGISTER_AB(EE_SPI_HDATA),
212 REGISTER_AB(EE_BASE_PAGE),
213 REGISTER_AB(EE_VPD_CFG0),
214 /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
215 /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
216 /* PCIE_CORE_INDIRECT is indirect */
217 REGISTER_AB(NIC_STAT),
218 REGISTER_AB(GPIO_CTL),
219 REGISTER_AB(GLB_CTL),
220 /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
221 REGISTER_BZ(DP_CTRL),
222 REGISTER_AZ(MEM_STAT),
223 REGISTER_AZ(CS_DEBUG),
224 REGISTER_AZ(ALTERA_BUILD),
225 REGISTER_AZ(CSR_SPARE),
226 REGISTER_AB(PCIE_SD_CTL0123),
227 REGISTER_AB(PCIE_SD_CTL45),
228 REGISTER_AB(PCIE_PCS_CTL_STAT),
229 /* DEBUG_DATA_OUT is not used */
230 /* DRV_EV is WO */
231 REGISTER_AZ(EVQ_CTL),
232 REGISTER_AZ(EVQ_CNT1),
233 REGISTER_AZ(EVQ_CNT2),
234 REGISTER_AZ(BUF_TBL_CFG),
235 REGISTER_AZ(SRM_RX_DC_CFG),
236 REGISTER_AZ(SRM_TX_DC_CFG),
237 REGISTER_AZ(SRM_CFG),
238 /* BUF_TBL_UPD is WO */
239 REGISTER_AZ(SRM_UPD_EVQ),
240 REGISTER_AZ(SRAM_PARITY),
241 REGISTER_AZ(RX_CFG),
242 REGISTER_BZ(RX_FILTER_CTL),
243 /* RX_FLUSH_DESCQ is WO */
244 REGISTER_AZ(RX_DC_CFG),
245 REGISTER_AZ(RX_DC_PF_WM),
246 REGISTER_BZ(RX_RSS_TKEY),
247 /* RX_NODESC_DROP is RC */
248 REGISTER_AA(RX_SELF_RST),
249 /* RX_DEBUG, RX_PUSH_DROP are not used */
250 REGISTER_CZ(RX_RSS_IPV6_REG1),
251 REGISTER_CZ(RX_RSS_IPV6_REG2),
252 REGISTER_CZ(RX_RSS_IPV6_REG3),
253 /* TX_FLUSH_DESCQ is WO */
254 REGISTER_AZ(TX_DC_CFG),
255 REGISTER_AA(TX_CHKSM_CFG),
256 REGISTER_AZ(TX_CFG),
257 /* TX_PUSH_DROP is not used */
258 REGISTER_AZ(TX_RESERVED),
259 REGISTER_BZ(TX_PACE),
260 /* TX_PACE_DROP_QID is RC */
261 REGISTER_BB(TX_VLAN),
262 REGISTER_BZ(TX_IPFIL_PORTEN),
263 REGISTER_AB(MD_TXD),
264 REGISTER_AB(MD_RXD),
265 REGISTER_AB(MD_CS),
266 REGISTER_AB(MD_PHY_ADR),
267 REGISTER_AB(MD_ID),
268 /* MD_STAT is RC */
269 REGISTER_AB(MAC_STAT_DMA),
270 REGISTER_AB(MAC_CTRL),
271 REGISTER_BB(GEN_MODE),
272 REGISTER_AB(MAC_MC_HASH_REG0),
273 REGISTER_AB(MAC_MC_HASH_REG1),
274 REGISTER_AB(GM_CFG1),
275 REGISTER_AB(GM_CFG2),
276 /* GM_IPG and GM_HD are not used */
277 REGISTER_AB(GM_MAX_FLEN),
278 /* GM_TEST is not used */
279 REGISTER_AB(GM_ADR1),
280 REGISTER_AB(GM_ADR2),
281 REGISTER_AB(GMF_CFG0),
282 REGISTER_AB(GMF_CFG1),
283 REGISTER_AB(GMF_CFG2),
284 REGISTER_AB(GMF_CFG3),
285 REGISTER_AB(GMF_CFG4),
286 REGISTER_AB(GMF_CFG5),
287 REGISTER_BB(TX_SRC_MAC_CTL),
288 REGISTER_AB(XM_ADR_LO),
289 REGISTER_AB(XM_ADR_HI),
290 REGISTER_AB(XM_GLB_CFG),
291 REGISTER_AB(XM_TX_CFG),
292 REGISTER_AB(XM_RX_CFG),
293 REGISTER_AB(XM_MGT_INT_MASK),
294 REGISTER_AB(XM_FC),
295 REGISTER_AB(XM_PAUSE_TIME),
296 REGISTER_AB(XM_TX_PARAM),
297 REGISTER_AB(XM_RX_PARAM),
298 /* XM_MGT_INT_MSK (note no 'A') is RC */
299 REGISTER_AB(XX_PWR_RST),
300 REGISTER_AB(XX_SD_CTL),
301 REGISTER_AB(XX_TXDRV_CTL),
302 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
303 /* XX_CORE_STAT is partly RC */
304 REGISTER_DZ(BIU_HW_REV_ID),
305 REGISTER_DZ(MC_DB_LWRD),
306 REGISTER_DZ(MC_DB_HWRD),
307};
308
309struct efx_nic_reg_table {
310 u32 offset:24;
311 u32 min_revision:3, max_revision:3;
312 u32 step:6, rows:21;
313};
314
315#define REGISTER_TABLE_DIMENSIONS(_, offset, arch, min_rev, max_rev, step, rows) { \
316 offset, \
317 REGISTER_REVISION_ ## arch ## min_rev, \
318 REGISTER_REVISION_ ## arch ## max_rev, \
319 step, rows \
320}
321#define REGISTER_TABLE(name, arch, min_rev, max_rev) \
322 REGISTER_TABLE_DIMENSIONS( \
323 name, arch ## R_ ## min_rev ## max_rev ## _ ## name, \
324 arch, min_rev, max_rev, \
325 arch ## R_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
326 arch ## R_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
327#define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, F, A, A)
328#define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, F, A, Z)
329#define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, F, B, B)
330#define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, F, B, Z)
331#define REGISTER_TABLE_BB_CZ(name) \
332 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, F, B, B, \
333 FR_BZ_ ## name ## _STEP, \
334 FR_BB_ ## name ## _ROWS), \
335 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, F, C, Z, \
336 FR_BZ_ ## name ## _STEP, \
337 FR_CZ_ ## name ## _ROWS)
338#define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, F, C, Z)
339#define REGISTER_TABLE_DZ(name) REGISTER_TABLE(name, E, D, Z)
340
341static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
342 /* DRIVER is not used */
343 /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
344 REGISTER_TABLE_BB(TX_IPFIL_TBL),
345 REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
346 REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
347 REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
348 REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
349 REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
350 REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
351 REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
352 /* We can't reasonably read all of the buffer table (up to 8MB!).
353 * However this driver will only use a few entries. Reading
354 * 1K entries allows for some expansion of queue count and
355 * size before we need to change the version. */
356 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
357 F, A, A, 8, 1024),
358 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
359 F, B, Z, 8, 1024),
360 REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
361 REGISTER_TABLE_BB_CZ(TIMER_TBL),
362 REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
363 REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
364 /* TX_FILTER_TBL0 is huge and not used by this driver */
365 REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
366 REGISTER_TABLE_CZ(MC_TREG_SMEM),
367 /* MSIX_PBA_TABLE is not mapped */
368 /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
369 REGISTER_TABLE_BZ(RX_FILTER_TBL0),
370 REGISTER_TABLE_DZ(BIU_MC_SFT_STATUS),
371};
372
373size_t efx_nic_get_regs_len(struct efx_nic *efx)
374{
375 const struct efx_nic_reg *reg;
376 const struct efx_nic_reg_table *table;
377 size_t len = 0;
378
379 for (reg = efx_nic_regs;
380 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
381 reg++)
382 if (efx->type->revision >= reg->min_revision &&
383 efx->type->revision <= reg->max_revision)
384 len += sizeof(efx_oword_t);
385
386 for (table = efx_nic_reg_tables;
387 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
388 table++)
389 if (efx->type->revision >= table->min_revision &&
390 efx->type->revision <= table->max_revision)
391 len += table->rows * min_t(size_t, table->step, 16);
392
393 return len;
394}
395
396void efx_nic_get_regs(struct efx_nic *efx, void *buf)
397{
398 const struct efx_nic_reg *reg;
399 const struct efx_nic_reg_table *table;
400
401 for (reg = efx_nic_regs;
402 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
403 reg++) {
404 if (efx->type->revision >= reg->min_revision &&
405 efx->type->revision <= reg->max_revision) {
406 efx_reado(efx, (efx_oword_t *)buf, reg->offset);
407 buf += sizeof(efx_oword_t);
408 }
409 }
410
411 for (table = efx_nic_reg_tables;
412 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
413 table++) {
414 size_t size, i;
415
416 if (!(efx->type->revision >= table->min_revision &&
417 efx->type->revision <= table->max_revision))
418 continue;
419
420 size = min_t(size_t, table->step, 16);
421
422 for (i = 0; i < table->rows; i++) {
423 switch (table->step) {
424 case 4: /* 32-bit SRAM */
425 efx_readd(efx, buf, table->offset + 4 * i);
426 break;
427 case 8: /* 64-bit SRAM */
428 efx_sram_readq(efx,
429 efx->membase + table->offset,
430 buf, i);
431 break;
432 case 16: /* 128-bit-readable register */
433 efx_reado_table(efx, buf, table->offset, i);
434 break;
435 case 32: /* 128-bit register, interleaved */
436 efx_reado_table(efx, buf, table->offset, 2 * i);
437 break;
438 default:
439 WARN_ON(1);
440 return;
441 }
442 buf += size;
443 }
444 }
445}
446
447/**
448 * efx_nic_describe_stats - Describe supported statistics for ethtool
449 * @desc: Array of &struct efx_hw_stat_desc describing the statistics
450 * @count: Length of the @desc array
451 * @mask: Bitmask of which elements of @desc are enabled
452 * @names: Buffer to copy names to, or %NULL. The names are copied
453 * starting at intervals of %ETH_GSTRING_LEN bytes.
454 *
455 * Returns the number of visible statistics, i.e. the number of set
456 * bits in the first @count bits of @mask for which a name is defined.
457 */
458size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
459 const unsigned long *mask, u8 *names)
460{
461 size_t visible = 0;
462 size_t index;
463
464 for_each_set_bit(index, mask, count) {
465 if (desc[index].name) {
466 if (names) {
467 strlcpy(names, desc[index].name,
468 ETH_GSTRING_LEN);
469 names += ETH_GSTRING_LEN;
470 }
471 ++visible;
472 }
473 }
474
475 return visible;
476}
477
478/**
479 * efx_nic_copy_stats - Copy stats from the DMA buffer in to an
480 * intermediate buffer. This is used to get a consistent
481 * set of stats while the DMA buffer can be written at any time
482 * by the NIC.
483 * @efx: The associated NIC.
484 * @dest: Destination buffer. Must be the same size as the DMA buffer.
485 */
486int efx_nic_copy_stats(struct efx_nic *efx, __le64 *dest)
487{
488 __le64 *dma_stats = efx->stats_buffer.addr;
489 __le64 generation_start, generation_end;
490 int rc = 0, retry;
491
492 if (!dest)
493 return 0;
494
495 if (!dma_stats)
496 goto return_zeroes;
497
498 /* If we're unlucky enough to read statistics during the DMA, wait
499 * up to 10ms for it to finish (typically takes <500us)
500 */
501 for (retry = 0; retry < 100; ++retry) {
502 generation_end = dma_stats[efx->num_mac_stats - 1];
503 if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
504 goto return_zeroes;
505 rmb();
506 memcpy(dest, dma_stats, efx->num_mac_stats * sizeof(__le64));
507 rmb();
508 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
509 if (generation_end == generation_start)
510 return 0; /* return good data */
511 udelay(100);
512 }
513
514 rc = -EIO;
515
516return_zeroes:
517 memset(dest, 0, efx->num_mac_stats * sizeof(u64));
518 return rc;
519}
520
521/**
522 * efx_nic_update_stats - Convert statistics DMA buffer to array of u64
523 * @desc: Array of &struct efx_hw_stat_desc describing the DMA buffer
524 * layout. DMA widths of 0, 16, 32 and 64 are supported; where
525 * the width is specified as 0 the corresponding element of
526 * @stats is not updated.
527 * @count: Length of the @desc array
528 * @mask: Bitmask of which elements of @desc are enabled
529 * @stats: Buffer to update with the converted statistics. The length
530 * of this array must be at least @count.
531 * @dma_buf: DMA buffer containing hardware statistics
532 * @accumulate: If set, the converted values will be added rather than
533 * directly stored to the corresponding elements of @stats
534 */
535void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
536 const unsigned long *mask,
537 u64 *stats, const void *dma_buf, bool accumulate)
538{
539 size_t index;
540
541 for_each_set_bit(index, mask, count) {
542 if (desc[index].dma_width) {
543 const void *addr = dma_buf + desc[index].offset;
544 u64 val;
545
546 switch (desc[index].dma_width) {
547 case 16:
548 val = le16_to_cpup((__le16 *)addr);
549 break;
550 case 32:
551 val = le32_to_cpup((__le32 *)addr);
552 break;
553 case 64:
554 val = le64_to_cpup((__le64 *)addr);
555 break;
556 default:
557 WARN_ON(1);
558 val = 0;
559 break;
560 }
561
562 if (accumulate)
563 stats[index] += val;
564 else
565 stats[index] = val;
566 }
567 }
568}
569
570void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *rx_nodesc_drops)
571{
572 /* if down, or this is the first update after coming up */
573 if (!(efx->net_dev->flags & IFF_UP) || !efx->rx_nodesc_drops_prev_state)
574 efx->rx_nodesc_drops_while_down +=
575 *rx_nodesc_drops - efx->rx_nodesc_drops_total;
576 efx->rx_nodesc_drops_total = *rx_nodesc_drops;
577 efx->rx_nodesc_drops_prev_state = !!(efx->net_dev->flags & IFF_UP);
578 *rx_nodesc_drops -= efx->rx_nodesc_drops_while_down;
579}