Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/* drivers/net/ethernet/micrel/ks8851.c
3 *
4 * Copyright 2009 Simtec Electronics
5 * http://www.simtec.co.uk/
6 * Ben Dooks <ben@simtec.co.uk>
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/interrupt.h>
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/netdevice.h>
15#include <linux/etherdevice.h>
16#include <linux/ethtool.h>
17#include <linux/cache.h>
18#include <linux/crc32.h>
19#include <linux/mii.h>
20#include <linux/gpio/consumer.h>
21#include <linux/regulator/consumer.h>
22
23#include <linux/of_mdio.h>
24#include <linux/of_net.h>
25
26#include "ks8851.h"
27
28/**
29 * ks8851_lock - register access lock
30 * @ks: The chip state
31 * @flags: Spinlock flags
32 *
33 * Claim chip register access lock
34 */
35static void ks8851_lock(struct ks8851_net *ks, unsigned long *flags)
36{
37 ks->lock(ks, flags);
38}
39
40/**
41 * ks8851_unlock - register access unlock
42 * @ks: The chip state
43 * @flags: Spinlock flags
44 *
45 * Release chip register access lock
46 */
47static void ks8851_unlock(struct ks8851_net *ks, unsigned long *flags)
48{
49 ks->unlock(ks, flags);
50}
51
52/**
53 * ks8851_wrreg16 - write 16bit register value to chip
54 * @ks: The chip state
55 * @reg: The register address
56 * @val: The value to write
57 *
58 * Issue a write to put the value @val into the register specified in @reg.
59 */
60static void ks8851_wrreg16(struct ks8851_net *ks, unsigned int reg,
61 unsigned int val)
62{
63 ks->wrreg16(ks, reg, val);
64}
65
66/**
67 * ks8851_rdreg16 - read 16 bit register from device
68 * @ks: The chip information
69 * @reg: The register address
70 *
71 * Read a 16bit register from the chip, returning the result
72 */
73static unsigned int ks8851_rdreg16(struct ks8851_net *ks,
74 unsigned int reg)
75{
76 return ks->rdreg16(ks, reg);
77}
78
79/**
80 * ks8851_soft_reset - issue one of the soft reset to the device
81 * @ks: The device state.
82 * @op: The bit(s) to set in the GRR
83 *
84 * Issue the relevant soft-reset command to the device's GRR register
85 * specified by @op.
86 *
87 * Note, the delays are in there as a caution to ensure that the reset
88 * has time to take effect and then complete. Since the datasheet does
89 * not currently specify the exact sequence, we have chosen something
90 * that seems to work with our device.
91 */
92static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
93{
94 ks8851_wrreg16(ks, KS_GRR, op);
95 mdelay(1); /* wait a short time to effect reset */
96 ks8851_wrreg16(ks, KS_GRR, 0);
97 mdelay(1); /* wait for condition to clear */
98}
99
100/**
101 * ks8851_set_powermode - set power mode of the device
102 * @ks: The device state
103 * @pwrmode: The power mode value to write to KS_PMECR.
104 *
105 * Change the power mode of the chip.
106 */
107static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
108{
109 unsigned pmecr;
110
111 netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
112
113 pmecr = ks8851_rdreg16(ks, KS_PMECR);
114 pmecr &= ~PMECR_PM_MASK;
115 pmecr |= pwrmode;
116
117 ks8851_wrreg16(ks, KS_PMECR, pmecr);
118}
119
120/**
121 * ks8851_write_mac_addr - write mac address to device registers
122 * @dev: The network device
123 *
124 * Update the KS8851 MAC address registers from the address in @dev.
125 *
126 * This call assumes that the chip is not running, so there is no need to
127 * shutdown the RXQ process whilst setting this.
128*/
129static int ks8851_write_mac_addr(struct net_device *dev)
130{
131 struct ks8851_net *ks = netdev_priv(dev);
132 unsigned long flags;
133 u16 val;
134 int i;
135
136 ks8851_lock(ks, &flags);
137
138 /*
139 * Wake up chip in case it was powered off when stopped; otherwise,
140 * the first write to the MAC address does not take effect.
141 */
142 ks8851_set_powermode(ks, PMECR_PM_NORMAL);
143
144 for (i = 0; i < ETH_ALEN; i += 2) {
145 val = (dev->dev_addr[i] << 8) | dev->dev_addr[i + 1];
146 ks8851_wrreg16(ks, KS_MAR(i), val);
147 }
148
149 if (!netif_running(dev))
150 ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
151
152 ks8851_unlock(ks, &flags);
153
154 return 0;
155}
156
157/**
158 * ks8851_read_mac_addr - read mac address from device registers
159 * @dev: The network device
160 *
161 * Update our copy of the KS8851 MAC address from the registers of @dev.
162*/
163static void ks8851_read_mac_addr(struct net_device *dev)
164{
165 struct ks8851_net *ks = netdev_priv(dev);
166 unsigned long flags;
167 u8 addr[ETH_ALEN];
168 u16 reg;
169 int i;
170
171 ks8851_lock(ks, &flags);
172
173 for (i = 0; i < ETH_ALEN; i += 2) {
174 reg = ks8851_rdreg16(ks, KS_MAR(i));
175 addr[i] = reg >> 8;
176 addr[i + 1] = reg & 0xff;
177 }
178 eth_hw_addr_set(dev, addr);
179
180 ks8851_unlock(ks, &flags);
181}
182
183/**
184 * ks8851_init_mac - initialise the mac address
185 * @ks: The device structure
186 * @np: The device node pointer
187 *
188 * Get or create the initial mac address for the device and then set that
189 * into the station address register. A mac address supplied in the device
190 * tree takes precedence. Otherwise, if there is an EEPROM present, then
191 * we try that. If no valid mac address is found we use eth_random_addr()
192 * to create a new one.
193 */
194static void ks8851_init_mac(struct ks8851_net *ks, struct device_node *np)
195{
196 struct net_device *dev = ks->netdev;
197 int ret;
198
199 ret = of_get_ethdev_address(np, dev);
200 if (!ret) {
201 ks8851_write_mac_addr(dev);
202 return;
203 }
204
205 if (ks->rc_ccr & CCR_EEPROM) {
206 ks8851_read_mac_addr(dev);
207 if (is_valid_ether_addr(dev->dev_addr))
208 return;
209
210 netdev_err(ks->netdev, "invalid mac address read %pM\n",
211 dev->dev_addr);
212 }
213
214 eth_hw_addr_random(dev);
215 ks8851_write_mac_addr(dev);
216}
217
218/**
219 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
220 * @ks: The device state
221 * @rxpkt: The data for the received packet
222 *
223 * Dump the initial data from the packet to dev_dbg().
224 */
225static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
226{
227 netdev_dbg(ks->netdev,
228 "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
229 rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
230 rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
231 rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
232}
233
234/**
235 * ks8851_rx_skb - receive skbuff
236 * @ks: The device state.
237 * @skb: The skbuff
238 */
239static void ks8851_rx_skb(struct ks8851_net *ks, struct sk_buff *skb)
240{
241 ks->rx_skb(ks, skb);
242}
243
244/**
245 * ks8851_rx_pkts - receive packets from the host
246 * @ks: The device information.
247 *
248 * This is called from the IRQ work queue when the system detects that there
249 * are packets in the receive queue. Find out how many packets there are and
250 * read them from the FIFO.
251 */
252static void ks8851_rx_pkts(struct ks8851_net *ks)
253{
254 struct sk_buff *skb;
255 unsigned rxfc;
256 unsigned rxlen;
257 unsigned rxstat;
258 u8 *rxpkt;
259
260 rxfc = (ks8851_rdreg16(ks, KS_RXFCTR) >> 8) & 0xff;
261
262 netif_dbg(ks, rx_status, ks->netdev,
263 "%s: %d packets\n", __func__, rxfc);
264
265 /* Currently we're issuing a read per packet, but we could possibly
266 * improve the code by issuing a single read, getting the receive
267 * header, allocating the packet and then reading the packet data
268 * out in one go.
269 *
270 * This form of operation would require us to hold the SPI bus'
271 * chipselect low during the entie transaction to avoid any
272 * reset to the data stream coming from the chip.
273 */
274
275 for (; rxfc != 0; rxfc--) {
276 rxstat = ks8851_rdreg16(ks, KS_RXFHSR);
277 rxlen = ks8851_rdreg16(ks, KS_RXFHBCR) & RXFHBCR_CNT_MASK;
278
279 netif_dbg(ks, rx_status, ks->netdev,
280 "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
281
282 /* the length of the packet includes the 32bit CRC */
283
284 /* set dma read address */
285 ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
286
287 /* start DMA access */
288 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
289
290 if (rxlen > 4) {
291 unsigned int rxalign;
292
293 rxlen -= 4;
294 rxalign = ALIGN(rxlen, 4);
295 skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
296 if (skb) {
297
298 /* 4 bytes of status header + 4 bytes of
299 * garbage: we put them before ethernet
300 * header, so that they are copied,
301 * but ignored.
302 */
303
304 rxpkt = skb_put(skb, rxlen) - 8;
305
306 ks->rdfifo(ks, rxpkt, rxalign + 8);
307
308 if (netif_msg_pktdata(ks))
309 ks8851_dbg_dumpkkt(ks, rxpkt);
310
311 skb->protocol = eth_type_trans(skb, ks->netdev);
312 ks8851_rx_skb(ks, skb);
313
314 ks->netdev->stats.rx_packets++;
315 ks->netdev->stats.rx_bytes += rxlen;
316 }
317 }
318
319 /* end DMA access and dequeue packet */
320 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_RRXEF);
321 }
322}
323
324/**
325 * ks8851_irq - IRQ handler for dealing with interrupt requests
326 * @irq: IRQ number
327 * @_ks: cookie
328 *
329 * This handler is invoked when the IRQ line asserts to find out what happened.
330 * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs
331 * in thread context.
332 *
333 * Read the interrupt status, work out what needs to be done and then clear
334 * any of the interrupts that are not needed.
335 */
336static irqreturn_t ks8851_irq(int irq, void *_ks)
337{
338 struct ks8851_net *ks = _ks;
339 unsigned handled = 0;
340 unsigned long flags;
341 unsigned int status;
342
343 ks8851_lock(ks, &flags);
344
345 status = ks8851_rdreg16(ks, KS_ISR);
346
347 netif_dbg(ks, intr, ks->netdev,
348 "%s: status 0x%04x\n", __func__, status);
349
350 if (status & IRQ_LCI)
351 handled |= IRQ_LCI;
352
353 if (status & IRQ_LDI) {
354 u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
355 pmecr &= ~PMECR_WKEVT_MASK;
356 ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
357
358 handled |= IRQ_LDI;
359 }
360
361 if (status & IRQ_RXPSI)
362 handled |= IRQ_RXPSI;
363
364 if (status & IRQ_TXI) {
365 unsigned short tx_space = ks8851_rdreg16(ks, KS_TXMIR);
366
367 netif_dbg(ks, intr, ks->netdev,
368 "%s: txspace %d\n", __func__, tx_space);
369
370 spin_lock(&ks->statelock);
371 ks->tx_space = tx_space;
372 if (netif_queue_stopped(ks->netdev))
373 netif_wake_queue(ks->netdev);
374 spin_unlock(&ks->statelock);
375
376 handled |= IRQ_TXI;
377 }
378
379 if (status & IRQ_RXI)
380 handled |= IRQ_RXI;
381
382 if (status & IRQ_SPIBEI) {
383 netdev_err(ks->netdev, "%s: spi bus error\n", __func__);
384 handled |= IRQ_SPIBEI;
385 }
386
387 ks8851_wrreg16(ks, KS_ISR, handled);
388
389 if (status & IRQ_RXI) {
390 /* the datasheet says to disable the rx interrupt during
391 * packet read-out, however we're masking the interrupt
392 * from the device so do not bother masking just the RX
393 * from the device. */
394
395 ks8851_rx_pkts(ks);
396 }
397
398 /* if something stopped the rx process, probably due to wanting
399 * to change the rx settings, then do something about restarting
400 * it. */
401 if (status & IRQ_RXPSI) {
402 struct ks8851_rxctrl *rxc = &ks->rxctrl;
403
404 /* update the multicast hash table */
405 ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
406 ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
407 ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
408 ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
409
410 ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
411 ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
412 }
413
414 ks8851_unlock(ks, &flags);
415
416 if (status & IRQ_LCI)
417 mii_check_link(&ks->mii);
418
419 return IRQ_HANDLED;
420}
421
422/**
423 * ks8851_flush_tx_work - flush outstanding TX work
424 * @ks: The device state
425 */
426static void ks8851_flush_tx_work(struct ks8851_net *ks)
427{
428 if (ks->flush_tx_work)
429 ks->flush_tx_work(ks);
430}
431
432/**
433 * ks8851_net_open - open network device
434 * @dev: The network device being opened.
435 *
436 * Called when the network device is marked active, such as a user executing
437 * 'ifconfig up' on the device.
438 */
439static int ks8851_net_open(struct net_device *dev)
440{
441 struct ks8851_net *ks = netdev_priv(dev);
442 unsigned long flags;
443 int ret;
444
445 ret = request_threaded_irq(dev->irq, NULL, ks8851_irq,
446 IRQF_TRIGGER_LOW | IRQF_ONESHOT,
447 dev->name, ks);
448 if (ret < 0) {
449 netdev_err(dev, "failed to get irq\n");
450 return ret;
451 }
452
453 /* lock the card, even if we may not actually be doing anything
454 * else at the moment */
455 ks8851_lock(ks, &flags);
456
457 netif_dbg(ks, ifup, ks->netdev, "opening\n");
458
459 /* bring chip out of any power saving mode it was in */
460 ks8851_set_powermode(ks, PMECR_PM_NORMAL);
461
462 /* issue a soft reset to the RX/TX QMU to put it into a known
463 * state. */
464 ks8851_soft_reset(ks, GRR_QMU);
465
466 /* setup transmission parameters */
467
468 ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
469 TXCR_TXPE | /* pad to min length */
470 TXCR_TXCRC | /* add CRC */
471 TXCR_TXFCE)); /* enable flow control */
472
473 /* auto-increment tx data, reset tx pointer */
474 ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
475
476 /* setup receiver control */
477
478 ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /* from mac filter */
479 RXCR1_RXFCE | /* enable flow control */
480 RXCR1_RXBE | /* broadcast enable */
481 RXCR1_RXUE | /* unicast enable */
482 RXCR1_RXE)); /* enable rx block */
483
484 /* transfer entire frames out in one go */
485 ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
486
487 /* set receive counter timeouts */
488 ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
489 ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
490 ks8851_wrreg16(ks, KS_RXFCTR, 10); /* 10 frames to IRQ */
491
492 ks->rc_rxqcr = (RXQCR_RXFCTE | /* IRQ on frame count exceeded */
493 RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
494 RXQCR_RXDTTE); /* IRQ on time exceeded */
495
496 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
497
498 /* clear then enable interrupts */
499 ks8851_wrreg16(ks, KS_ISR, ks->rc_ier);
500 ks8851_wrreg16(ks, KS_IER, ks->rc_ier);
501
502 ks->queued_len = 0;
503 netif_start_queue(ks->netdev);
504
505 netif_dbg(ks, ifup, ks->netdev, "network device up\n");
506
507 ks8851_unlock(ks, &flags);
508 mii_check_link(&ks->mii);
509 return 0;
510}
511
512/**
513 * ks8851_net_stop - close network device
514 * @dev: The device being closed.
515 *
516 * Called to close down a network device which has been active. Cancell any
517 * work, shutdown the RX and TX process and then place the chip into a low
518 * power state whilst it is not being used.
519 */
520static int ks8851_net_stop(struct net_device *dev)
521{
522 struct ks8851_net *ks = netdev_priv(dev);
523 unsigned long flags;
524
525 netif_info(ks, ifdown, dev, "shutting down\n");
526
527 netif_stop_queue(dev);
528
529 ks8851_lock(ks, &flags);
530 /* turn off the IRQs and ack any outstanding */
531 ks8851_wrreg16(ks, KS_IER, 0x0000);
532 ks8851_wrreg16(ks, KS_ISR, 0xffff);
533 ks8851_unlock(ks, &flags);
534
535 /* stop any outstanding work */
536 ks8851_flush_tx_work(ks);
537 flush_work(&ks->rxctrl_work);
538
539 ks8851_lock(ks, &flags);
540 /* shutdown RX process */
541 ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
542
543 /* shutdown TX process */
544 ks8851_wrreg16(ks, KS_TXCR, 0x0000);
545
546 /* set powermode to soft power down to save power */
547 ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
548 ks8851_unlock(ks, &flags);
549
550 /* ensure any queued tx buffers are dumped */
551 while (!skb_queue_empty(&ks->txq)) {
552 struct sk_buff *txb = skb_dequeue(&ks->txq);
553
554 netif_dbg(ks, ifdown, ks->netdev,
555 "%s: freeing txb %p\n", __func__, txb);
556
557 dev_kfree_skb(txb);
558 }
559
560 free_irq(dev->irq, ks);
561
562 return 0;
563}
564
565/**
566 * ks8851_start_xmit - transmit packet
567 * @skb: The buffer to transmit
568 * @dev: The device used to transmit the packet.
569 *
570 * Called by the network layer to transmit the @skb. Queue the packet for
571 * the device and schedule the necessary work to transmit the packet when
572 * it is free.
573 *
574 * We do this to firstly avoid sleeping with the network device locked,
575 * and secondly so we can round up more than one packet to transmit which
576 * means we can try and avoid generating too many transmit done interrupts.
577 */
578static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
579 struct net_device *dev)
580{
581 struct ks8851_net *ks = netdev_priv(dev);
582
583 return ks->start_xmit(skb, dev);
584}
585
586/**
587 * ks8851_rxctrl_work - work handler to change rx mode
588 * @work: The work structure this belongs to.
589 *
590 * Lock the device and issue the necessary changes to the receive mode from
591 * the network device layer. This is done so that we can do this without
592 * having to sleep whilst holding the network device lock.
593 *
594 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
595 * receive parameters are programmed, we issue a write to disable the RXQ and
596 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
597 * complete. The interrupt handler then writes the new values into the chip.
598 */
599static void ks8851_rxctrl_work(struct work_struct *work)
600{
601 struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
602 unsigned long flags;
603
604 ks8851_lock(ks, &flags);
605
606 /* need to shutdown RXQ before modifying filter parameters */
607 ks8851_wrreg16(ks, KS_RXCR1, 0x00);
608
609 ks8851_unlock(ks, &flags);
610}
611
612static void ks8851_set_rx_mode(struct net_device *dev)
613{
614 struct ks8851_net *ks = netdev_priv(dev);
615 struct ks8851_rxctrl rxctrl;
616
617 memset(&rxctrl, 0, sizeof(rxctrl));
618
619 if (dev->flags & IFF_PROMISC) {
620 /* interface to receive everything */
621
622 rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
623 } else if (dev->flags & IFF_ALLMULTI) {
624 /* accept all multicast packets */
625
626 rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
627 RXCR1_RXPAFMA | RXCR1_RXMAFMA);
628 } else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
629 struct netdev_hw_addr *ha;
630 u32 crc;
631
632 /* accept some multicast */
633
634 netdev_for_each_mc_addr(ha, dev) {
635 crc = ether_crc(ETH_ALEN, ha->addr);
636 crc >>= (32 - 6); /* get top six bits */
637
638 rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
639 }
640
641 rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
642 } else {
643 /* just accept broadcast / unicast */
644 rxctrl.rxcr1 = RXCR1_RXPAFMA;
645 }
646
647 rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
648 RXCR1_RXBE | /* broadcast enable */
649 RXCR1_RXE | /* RX process enable */
650 RXCR1_RXFCE); /* enable flow control */
651
652 rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
653
654 /* schedule work to do the actual set of the data if needed */
655
656 spin_lock(&ks->statelock);
657
658 if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
659 memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
660 schedule_work(&ks->rxctrl_work);
661 }
662
663 spin_unlock(&ks->statelock);
664}
665
666static int ks8851_set_mac_address(struct net_device *dev, void *addr)
667{
668 struct sockaddr *sa = addr;
669
670 if (netif_running(dev))
671 return -EBUSY;
672
673 if (!is_valid_ether_addr(sa->sa_data))
674 return -EADDRNOTAVAIL;
675
676 eth_hw_addr_set(dev, sa->sa_data);
677 return ks8851_write_mac_addr(dev);
678}
679
680static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
681{
682 struct ks8851_net *ks = netdev_priv(dev);
683
684 if (!netif_running(dev))
685 return -EINVAL;
686
687 return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
688}
689
690static const struct net_device_ops ks8851_netdev_ops = {
691 .ndo_open = ks8851_net_open,
692 .ndo_stop = ks8851_net_stop,
693 .ndo_eth_ioctl = ks8851_net_ioctl,
694 .ndo_start_xmit = ks8851_start_xmit,
695 .ndo_set_mac_address = ks8851_set_mac_address,
696 .ndo_set_rx_mode = ks8851_set_rx_mode,
697 .ndo_validate_addr = eth_validate_addr,
698};
699
700/* ethtool support */
701
702static void ks8851_get_drvinfo(struct net_device *dev,
703 struct ethtool_drvinfo *di)
704{
705 strscpy(di->driver, "KS8851", sizeof(di->driver));
706 strscpy(di->version, "1.00", sizeof(di->version));
707 strscpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
708}
709
710static u32 ks8851_get_msglevel(struct net_device *dev)
711{
712 struct ks8851_net *ks = netdev_priv(dev);
713 return ks->msg_enable;
714}
715
716static void ks8851_set_msglevel(struct net_device *dev, u32 to)
717{
718 struct ks8851_net *ks = netdev_priv(dev);
719 ks->msg_enable = to;
720}
721
722static int ks8851_get_link_ksettings(struct net_device *dev,
723 struct ethtool_link_ksettings *cmd)
724{
725 struct ks8851_net *ks = netdev_priv(dev);
726
727 mii_ethtool_get_link_ksettings(&ks->mii, cmd);
728
729 return 0;
730}
731
732static int ks8851_set_link_ksettings(struct net_device *dev,
733 const struct ethtool_link_ksettings *cmd)
734{
735 struct ks8851_net *ks = netdev_priv(dev);
736 return mii_ethtool_set_link_ksettings(&ks->mii, cmd);
737}
738
739static u32 ks8851_get_link(struct net_device *dev)
740{
741 struct ks8851_net *ks = netdev_priv(dev);
742 return mii_link_ok(&ks->mii);
743}
744
745static int ks8851_nway_reset(struct net_device *dev)
746{
747 struct ks8851_net *ks = netdev_priv(dev);
748 return mii_nway_restart(&ks->mii);
749}
750
751/* EEPROM support */
752
753static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
754{
755 struct ks8851_net *ks = ee->data;
756 unsigned val;
757
758 val = ks8851_rdreg16(ks, KS_EEPCR);
759
760 ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
761 ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
762 ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
763}
764
765static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
766{
767 struct ks8851_net *ks = ee->data;
768 unsigned val = EEPCR_EESA; /* default - eeprom access on */
769
770 if (ee->drive_data)
771 val |= EEPCR_EESRWA;
772 if (ee->reg_data_in)
773 val |= EEPCR_EEDO;
774 if (ee->reg_data_clock)
775 val |= EEPCR_EESCK;
776 if (ee->reg_chip_select)
777 val |= EEPCR_EECS;
778
779 ks8851_wrreg16(ks, KS_EEPCR, val);
780}
781
782/**
783 * ks8851_eeprom_claim - claim device EEPROM and activate the interface
784 * @ks: The network device state.
785 *
786 * Check for the presence of an EEPROM, and then activate software access
787 * to the device.
788 */
789static int ks8851_eeprom_claim(struct ks8851_net *ks)
790{
791 /* start with clock low, cs high */
792 ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
793 return 0;
794}
795
796/**
797 * ks8851_eeprom_release - release the EEPROM interface
798 * @ks: The device state
799 *
800 * Release the software access to the device EEPROM
801 */
802static void ks8851_eeprom_release(struct ks8851_net *ks)
803{
804 unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
805
806 ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
807}
808
809#define KS_EEPROM_MAGIC (0x00008851)
810
811static int ks8851_set_eeprom(struct net_device *dev,
812 struct ethtool_eeprom *ee, u8 *data)
813{
814 struct ks8851_net *ks = netdev_priv(dev);
815 int offset = ee->offset;
816 unsigned long flags;
817 int len = ee->len;
818 u16 tmp;
819
820 /* currently only support byte writing */
821 if (len != 1)
822 return -EINVAL;
823
824 if (ee->magic != KS_EEPROM_MAGIC)
825 return -EINVAL;
826
827 if (!(ks->rc_ccr & CCR_EEPROM))
828 return -ENOENT;
829
830 ks8851_lock(ks, &flags);
831
832 ks8851_eeprom_claim(ks);
833
834 eeprom_93cx6_wren(&ks->eeprom, true);
835
836 /* ethtool currently only supports writing bytes, which means
837 * we have to read/modify/write our 16bit EEPROMs */
838
839 eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
840
841 if (offset & 1) {
842 tmp &= 0xff;
843 tmp |= *data << 8;
844 } else {
845 tmp &= 0xff00;
846 tmp |= *data;
847 }
848
849 eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
850 eeprom_93cx6_wren(&ks->eeprom, false);
851
852 ks8851_eeprom_release(ks);
853 ks8851_unlock(ks, &flags);
854
855 return 0;
856}
857
858static int ks8851_get_eeprom(struct net_device *dev,
859 struct ethtool_eeprom *ee, u8 *data)
860{
861 struct ks8851_net *ks = netdev_priv(dev);
862 int offset = ee->offset;
863 unsigned long flags;
864 int len = ee->len;
865
866 /* must be 2 byte aligned */
867 if (len & 1 || offset & 1)
868 return -EINVAL;
869
870 if (!(ks->rc_ccr & CCR_EEPROM))
871 return -ENOENT;
872
873 ks8851_lock(ks, &flags);
874
875 ks8851_eeprom_claim(ks);
876
877 ee->magic = KS_EEPROM_MAGIC;
878
879 eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
880 ks8851_eeprom_release(ks);
881 ks8851_unlock(ks, &flags);
882
883 return 0;
884}
885
886static int ks8851_get_eeprom_len(struct net_device *dev)
887{
888 struct ks8851_net *ks = netdev_priv(dev);
889
890 /* currently, we assume it is an 93C46 attached, so return 128 */
891 return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
892}
893
894static const struct ethtool_ops ks8851_ethtool_ops = {
895 .get_drvinfo = ks8851_get_drvinfo,
896 .get_msglevel = ks8851_get_msglevel,
897 .set_msglevel = ks8851_set_msglevel,
898 .get_link = ks8851_get_link,
899 .nway_reset = ks8851_nway_reset,
900 .get_eeprom_len = ks8851_get_eeprom_len,
901 .get_eeprom = ks8851_get_eeprom,
902 .set_eeprom = ks8851_set_eeprom,
903 .get_link_ksettings = ks8851_get_link_ksettings,
904 .set_link_ksettings = ks8851_set_link_ksettings,
905};
906
907/* MII interface controls */
908
909/**
910 * ks8851_phy_reg - convert MII register into a KS8851 register
911 * @reg: MII register number.
912 *
913 * Return the KS8851 register number for the corresponding MII PHY register
914 * if possible. Return zero if the MII register has no direct mapping to the
915 * KS8851 register set.
916 */
917static int ks8851_phy_reg(int reg)
918{
919 switch (reg) {
920 case MII_BMCR:
921 return KS_P1MBCR;
922 case MII_BMSR:
923 return KS_P1MBSR;
924 case MII_PHYSID1:
925 return KS_PHY1ILR;
926 case MII_PHYSID2:
927 return KS_PHY1IHR;
928 case MII_ADVERTISE:
929 return KS_P1ANAR;
930 case MII_LPA:
931 return KS_P1ANLPR;
932 }
933
934 return -EOPNOTSUPP;
935}
936
937static int ks8851_phy_read_common(struct net_device *dev, int phy_addr, int reg)
938{
939 struct ks8851_net *ks = netdev_priv(dev);
940 unsigned long flags;
941 int result;
942 int ksreg;
943
944 ksreg = ks8851_phy_reg(reg);
945 if (ksreg < 0)
946 return ksreg;
947
948 ks8851_lock(ks, &flags);
949 result = ks8851_rdreg16(ks, ksreg);
950 ks8851_unlock(ks, &flags);
951
952 return result;
953}
954
955/**
956 * ks8851_phy_read - MII interface PHY register read.
957 * @dev: The network device the PHY is on.
958 * @phy_addr: Address of PHY (ignored as we only have one)
959 * @reg: The register to read.
960 *
961 * This call reads data from the PHY register specified in @reg. Since the
962 * device does not support all the MII registers, the non-existent values
963 * are always returned as zero.
964 *
965 * We return zero for unsupported registers as the MII code does not check
966 * the value returned for any error status, and simply returns it to the
967 * caller. The mii-tool that the driver was tested with takes any -ve error
968 * as real PHY capabilities, thus displaying incorrect data to the user.
969 */
970static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
971{
972 int ret;
973
974 ret = ks8851_phy_read_common(dev, phy_addr, reg);
975 if (ret < 0)
976 return 0x0; /* no error return allowed, so use zero */
977
978 return ret;
979}
980
981static void ks8851_phy_write(struct net_device *dev,
982 int phy, int reg, int value)
983{
984 struct ks8851_net *ks = netdev_priv(dev);
985 unsigned long flags;
986 int ksreg;
987
988 ksreg = ks8851_phy_reg(reg);
989 if (ksreg >= 0) {
990 ks8851_lock(ks, &flags);
991 ks8851_wrreg16(ks, ksreg, value);
992 ks8851_unlock(ks, &flags);
993 }
994}
995
996static int ks8851_mdio_read(struct mii_bus *bus, int phy_id, int reg)
997{
998 struct ks8851_net *ks = bus->priv;
999
1000 if (phy_id != 0)
1001 return -EOPNOTSUPP;
1002
1003 /* KS8851 PHY ID registers are swapped in HW, swap them back. */
1004 if (reg == MII_PHYSID1)
1005 reg = MII_PHYSID2;
1006 else if (reg == MII_PHYSID2)
1007 reg = MII_PHYSID1;
1008
1009 return ks8851_phy_read_common(ks->netdev, phy_id, reg);
1010}
1011
1012static int ks8851_mdio_write(struct mii_bus *bus, int phy_id, int reg, u16 val)
1013{
1014 struct ks8851_net *ks = bus->priv;
1015
1016 ks8851_phy_write(ks->netdev, phy_id, reg, val);
1017 return 0;
1018}
1019
1020/**
1021 * ks8851_read_selftest - read the selftest memory info.
1022 * @ks: The device state
1023 *
1024 * Read and check the TX/RX memory selftest information.
1025 */
1026static void ks8851_read_selftest(struct ks8851_net *ks)
1027{
1028 unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1029 unsigned rd;
1030
1031 rd = ks8851_rdreg16(ks, KS_MBIR);
1032
1033 if ((rd & both_done) != both_done) {
1034 netdev_warn(ks->netdev, "Memory selftest not finished\n");
1035 return;
1036 }
1037
1038 if (rd & MBIR_TXMBFA)
1039 netdev_err(ks->netdev, "TX memory selftest fail\n");
1040
1041 if (rd & MBIR_RXMBFA)
1042 netdev_err(ks->netdev, "RX memory selftest fail\n");
1043}
1044
1045/* driver bus management functions */
1046
1047#ifdef CONFIG_PM_SLEEP
1048
1049int ks8851_suspend(struct device *dev)
1050{
1051 struct ks8851_net *ks = dev_get_drvdata(dev);
1052 struct net_device *netdev = ks->netdev;
1053
1054 if (netif_running(netdev)) {
1055 netif_device_detach(netdev);
1056 ks8851_net_stop(netdev);
1057 }
1058
1059 return 0;
1060}
1061EXPORT_SYMBOL_GPL(ks8851_suspend);
1062
1063int ks8851_resume(struct device *dev)
1064{
1065 struct ks8851_net *ks = dev_get_drvdata(dev);
1066 struct net_device *netdev = ks->netdev;
1067
1068 if (netif_running(netdev)) {
1069 ks8851_net_open(netdev);
1070 netif_device_attach(netdev);
1071 }
1072
1073 return 0;
1074}
1075EXPORT_SYMBOL_GPL(ks8851_resume);
1076#endif
1077
1078static int ks8851_register_mdiobus(struct ks8851_net *ks, struct device *dev)
1079{
1080 struct mii_bus *mii_bus;
1081 int ret;
1082
1083 mii_bus = mdiobus_alloc();
1084 if (!mii_bus)
1085 return -ENOMEM;
1086
1087 mii_bus->name = "ks8851_eth_mii";
1088 mii_bus->read = ks8851_mdio_read;
1089 mii_bus->write = ks8851_mdio_write;
1090 mii_bus->priv = ks;
1091 mii_bus->parent = dev;
1092 mii_bus->phy_mask = ~((u32)BIT(0));
1093 snprintf(mii_bus->id, MII_BUS_ID_SIZE, "%s", dev_name(dev));
1094
1095 ret = mdiobus_register(mii_bus);
1096 if (ret)
1097 goto err_mdiobus_register;
1098
1099 ks->mii_bus = mii_bus;
1100
1101 return 0;
1102
1103err_mdiobus_register:
1104 mdiobus_free(mii_bus);
1105 return ret;
1106}
1107
1108static void ks8851_unregister_mdiobus(struct ks8851_net *ks)
1109{
1110 mdiobus_unregister(ks->mii_bus);
1111 mdiobus_free(ks->mii_bus);
1112}
1113
1114int ks8851_probe_common(struct net_device *netdev, struct device *dev,
1115 int msg_en)
1116{
1117 struct ks8851_net *ks = netdev_priv(netdev);
1118 unsigned cider;
1119 int ret;
1120
1121 ks->netdev = netdev;
1122 ks->tx_space = 6144;
1123
1124 ks->gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
1125 ret = PTR_ERR_OR_ZERO(ks->gpio);
1126 if (ret) {
1127 if (ret != -EPROBE_DEFER)
1128 dev_err(dev, "reset gpio request failed: %d\n", ret);
1129 return ret;
1130 }
1131
1132 ret = gpiod_set_consumer_name(ks->gpio, "ks8851_rst_n");
1133 if (ret) {
1134 dev_err(dev, "failed to set reset gpio name: %d\n", ret);
1135 return ret;
1136 }
1137
1138 ks->vdd_io = devm_regulator_get(dev, "vdd-io");
1139 if (IS_ERR(ks->vdd_io)) {
1140 ret = PTR_ERR(ks->vdd_io);
1141 goto err_reg_io;
1142 }
1143
1144 ret = regulator_enable(ks->vdd_io);
1145 if (ret) {
1146 dev_err(dev, "regulator vdd_io enable fail: %d\n", ret);
1147 goto err_reg_io;
1148 }
1149
1150 ks->vdd_reg = devm_regulator_get(dev, "vdd");
1151 if (IS_ERR(ks->vdd_reg)) {
1152 ret = PTR_ERR(ks->vdd_reg);
1153 goto err_reg;
1154 }
1155
1156 ret = regulator_enable(ks->vdd_reg);
1157 if (ret) {
1158 dev_err(dev, "regulator vdd enable fail: %d\n", ret);
1159 goto err_reg;
1160 }
1161
1162 if (ks->gpio) {
1163 usleep_range(10000, 11000);
1164 gpiod_set_value_cansleep(ks->gpio, 0);
1165 }
1166
1167 spin_lock_init(&ks->statelock);
1168
1169 INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1170
1171 SET_NETDEV_DEV(netdev, dev);
1172
1173 /* setup EEPROM state */
1174 ks->eeprom.data = ks;
1175 ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
1176 ks->eeprom.register_read = ks8851_eeprom_regread;
1177 ks->eeprom.register_write = ks8851_eeprom_regwrite;
1178
1179 /* setup mii state */
1180 ks->mii.dev = netdev;
1181 ks->mii.phy_id = 1;
1182 ks->mii.phy_id_mask = 1;
1183 ks->mii.reg_num_mask = 0xf;
1184 ks->mii.mdio_read = ks8851_phy_read;
1185 ks->mii.mdio_write = ks8851_phy_write;
1186
1187 dev_info(dev, "message enable is %d\n", msg_en);
1188
1189 ret = ks8851_register_mdiobus(ks, dev);
1190 if (ret)
1191 goto err_mdio;
1192
1193 /* set the default message enable */
1194 ks->msg_enable = netif_msg_init(msg_en, NETIF_MSG_DRV |
1195 NETIF_MSG_PROBE |
1196 NETIF_MSG_LINK);
1197
1198 skb_queue_head_init(&ks->txq);
1199
1200 netdev->ethtool_ops = &ks8851_ethtool_ops;
1201
1202 dev_set_drvdata(dev, ks);
1203
1204 netif_carrier_off(ks->netdev);
1205 netdev->if_port = IF_PORT_100BASET;
1206 netdev->netdev_ops = &ks8851_netdev_ops;
1207
1208 /* issue a global soft reset to reset the device. */
1209 ks8851_soft_reset(ks, GRR_GSR);
1210
1211 /* simple check for a valid chip being connected to the bus */
1212 cider = ks8851_rdreg16(ks, KS_CIDER);
1213 if ((cider & ~CIDER_REV_MASK) != CIDER_ID) {
1214 dev_err(dev, "failed to read device ID\n");
1215 ret = -ENODEV;
1216 goto err_id;
1217 }
1218
1219 /* cache the contents of the CCR register for EEPROM, etc. */
1220 ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1221
1222 ks8851_read_selftest(ks);
1223 ks8851_init_mac(ks, dev->of_node);
1224
1225 ret = register_netdev(netdev);
1226 if (ret) {
1227 dev_err(dev, "failed to register network device\n");
1228 goto err_id;
1229 }
1230
1231 netdev_info(netdev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
1232 CIDER_REV_GET(cider), netdev->dev_addr, netdev->irq,
1233 ks->rc_ccr & CCR_EEPROM ? "has" : "no");
1234
1235 return 0;
1236
1237err_id:
1238 ks8851_unregister_mdiobus(ks);
1239err_mdio:
1240 if (ks->gpio)
1241 gpiod_set_value_cansleep(ks->gpio, 1);
1242 regulator_disable(ks->vdd_reg);
1243err_reg:
1244 regulator_disable(ks->vdd_io);
1245err_reg_io:
1246 return ret;
1247}
1248EXPORT_SYMBOL_GPL(ks8851_probe_common);
1249
1250void ks8851_remove_common(struct device *dev)
1251{
1252 struct ks8851_net *priv = dev_get_drvdata(dev);
1253
1254 ks8851_unregister_mdiobus(priv);
1255
1256 if (netif_msg_drv(priv))
1257 dev_info(dev, "remove\n");
1258
1259 unregister_netdev(priv->netdev);
1260 if (priv->gpio)
1261 gpiod_set_value_cansleep(priv->gpio, 1);
1262 regulator_disable(priv->vdd_reg);
1263 regulator_disable(priv->vdd_io);
1264}
1265EXPORT_SYMBOL_GPL(ks8851_remove_common);
1266
1267MODULE_DESCRIPTION("KS8851 Network driver");
1268MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1269MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-only
2/* drivers/net/ethernet/micrel/ks8851.c
3 *
4 * Copyright 2009 Simtec Electronics
5 * http://www.simtec.co.uk/
6 * Ben Dooks <ben@simtec.co.uk>
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#define DEBUG
12
13#include <linux/interrupt.h>
14#include <linux/module.h>
15#include <linux/kernel.h>
16#include <linux/netdevice.h>
17#include <linux/etherdevice.h>
18#include <linux/ethtool.h>
19#include <linux/cache.h>
20#include <linux/crc32.h>
21#include <linux/mii.h>
22#include <linux/regulator/consumer.h>
23
24#include <linux/gpio.h>
25#include <linux/of_gpio.h>
26#include <linux/of_net.h>
27
28#include "ks8851.h"
29
30/**
31 * ks8851_lock - register access lock
32 * @ks: The chip state
33 * @flags: Spinlock flags
34 *
35 * Claim chip register access lock
36 */
37static void ks8851_lock(struct ks8851_net *ks, unsigned long *flags)
38{
39 ks->lock(ks, flags);
40}
41
42/**
43 * ks8851_unlock - register access unlock
44 * @ks: The chip state
45 * @flags: Spinlock flags
46 *
47 * Release chip register access lock
48 */
49static void ks8851_unlock(struct ks8851_net *ks, unsigned long *flags)
50{
51 ks->unlock(ks, flags);
52}
53
54/**
55 * ks8851_wrreg16 - write 16bit register value to chip
56 * @ks: The chip state
57 * @reg: The register address
58 * @val: The value to write
59 *
60 * Issue a write to put the value @val into the register specified in @reg.
61 */
62static void ks8851_wrreg16(struct ks8851_net *ks, unsigned int reg,
63 unsigned int val)
64{
65 ks->wrreg16(ks, reg, val);
66}
67
68/**
69 * ks8851_rdreg16 - read 16 bit register from device
70 * @ks: The chip information
71 * @reg: The register address
72 *
73 * Read a 16bit register from the chip, returning the result
74 */
75static unsigned int ks8851_rdreg16(struct ks8851_net *ks,
76 unsigned int reg)
77{
78 return ks->rdreg16(ks, reg);
79}
80
81/**
82 * ks8851_soft_reset - issue one of the soft reset to the device
83 * @ks: The device state.
84 * @op: The bit(s) to set in the GRR
85 *
86 * Issue the relevant soft-reset command to the device's GRR register
87 * specified by @op.
88 *
89 * Note, the delays are in there as a caution to ensure that the reset
90 * has time to take effect and then complete. Since the datasheet does
91 * not currently specify the exact sequence, we have chosen something
92 * that seems to work with our device.
93 */
94static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
95{
96 ks8851_wrreg16(ks, KS_GRR, op);
97 mdelay(1); /* wait a short time to effect reset */
98 ks8851_wrreg16(ks, KS_GRR, 0);
99 mdelay(1); /* wait for condition to clear */
100}
101
102/**
103 * ks8851_set_powermode - set power mode of the device
104 * @ks: The device state
105 * @pwrmode: The power mode value to write to KS_PMECR.
106 *
107 * Change the power mode of the chip.
108 */
109static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
110{
111 unsigned pmecr;
112
113 netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
114
115 pmecr = ks8851_rdreg16(ks, KS_PMECR);
116 pmecr &= ~PMECR_PM_MASK;
117 pmecr |= pwrmode;
118
119 ks8851_wrreg16(ks, KS_PMECR, pmecr);
120}
121
122/**
123 * ks8851_write_mac_addr - write mac address to device registers
124 * @dev: The network device
125 *
126 * Update the KS8851 MAC address registers from the address in @dev.
127 *
128 * This call assumes that the chip is not running, so there is no need to
129 * shutdown the RXQ process whilst setting this.
130*/
131static int ks8851_write_mac_addr(struct net_device *dev)
132{
133 struct ks8851_net *ks = netdev_priv(dev);
134 unsigned long flags;
135 u16 val;
136 int i;
137
138 ks8851_lock(ks, &flags);
139
140 /*
141 * Wake up chip in case it was powered off when stopped; otherwise,
142 * the first write to the MAC address does not take effect.
143 */
144 ks8851_set_powermode(ks, PMECR_PM_NORMAL);
145
146 for (i = 0; i < ETH_ALEN; i += 2) {
147 val = (dev->dev_addr[i] << 8) | dev->dev_addr[i + 1];
148 ks8851_wrreg16(ks, KS_MAR(i), val);
149 }
150
151 if (!netif_running(dev))
152 ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
153
154 ks8851_unlock(ks, &flags);
155
156 return 0;
157}
158
159/**
160 * ks8851_read_mac_addr - read mac address from device registers
161 * @dev: The network device
162 *
163 * Update our copy of the KS8851 MAC address from the registers of @dev.
164*/
165static void ks8851_read_mac_addr(struct net_device *dev)
166{
167 struct ks8851_net *ks = netdev_priv(dev);
168 unsigned long flags;
169 u16 reg;
170 int i;
171
172 ks8851_lock(ks, &flags);
173
174 for (i = 0; i < ETH_ALEN; i += 2) {
175 reg = ks8851_rdreg16(ks, KS_MAR(i));
176 dev->dev_addr[i] = reg >> 8;
177 dev->dev_addr[i + 1] = reg & 0xff;
178 }
179
180 ks8851_unlock(ks, &flags);
181}
182
183/**
184 * ks8851_init_mac - initialise the mac address
185 * @ks: The device structure
186 * @np: The device node pointer
187 *
188 * Get or create the initial mac address for the device and then set that
189 * into the station address register. A mac address supplied in the device
190 * tree takes precedence. Otherwise, if there is an EEPROM present, then
191 * we try that. If no valid mac address is found we use eth_random_addr()
192 * to create a new one.
193 */
194static void ks8851_init_mac(struct ks8851_net *ks, struct device_node *np)
195{
196 struct net_device *dev = ks->netdev;
197 const u8 *mac_addr;
198
199 mac_addr = of_get_mac_address(np);
200 if (!IS_ERR(mac_addr)) {
201 ether_addr_copy(dev->dev_addr, mac_addr);
202 ks8851_write_mac_addr(dev);
203 return;
204 }
205
206 if (ks->rc_ccr & CCR_EEPROM) {
207 ks8851_read_mac_addr(dev);
208 if (is_valid_ether_addr(dev->dev_addr))
209 return;
210
211 netdev_err(ks->netdev, "invalid mac address read %pM\n",
212 dev->dev_addr);
213 }
214
215 eth_hw_addr_random(dev);
216 ks8851_write_mac_addr(dev);
217}
218
219/**
220 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
221 * @ks: The device state
222 * @rxpkt: The data for the received packet
223 *
224 * Dump the initial data from the packet to dev_dbg().
225 */
226static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
227{
228 netdev_dbg(ks->netdev,
229 "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
230 rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
231 rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
232 rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
233}
234
235/**
236 * ks8851_rx_skb - receive skbuff
237 * @ks: The device state.
238 * @skb: The skbuff
239 */
240static void ks8851_rx_skb(struct ks8851_net *ks, struct sk_buff *skb)
241{
242 ks->rx_skb(ks, skb);
243}
244
245/**
246 * ks8851_rx_pkts - receive packets from the host
247 * @ks: The device information.
248 *
249 * This is called from the IRQ work queue when the system detects that there
250 * are packets in the receive queue. Find out how many packets there are and
251 * read them from the FIFO.
252 */
253static void ks8851_rx_pkts(struct ks8851_net *ks)
254{
255 struct sk_buff *skb;
256 unsigned rxfc;
257 unsigned rxlen;
258 unsigned rxstat;
259 u8 *rxpkt;
260
261 rxfc = (ks8851_rdreg16(ks, KS_RXFCTR) >> 8) & 0xff;
262
263 netif_dbg(ks, rx_status, ks->netdev,
264 "%s: %d packets\n", __func__, rxfc);
265
266 /* Currently we're issuing a read per packet, but we could possibly
267 * improve the code by issuing a single read, getting the receive
268 * header, allocating the packet and then reading the packet data
269 * out in one go.
270 *
271 * This form of operation would require us to hold the SPI bus'
272 * chipselect low during the entie transaction to avoid any
273 * reset to the data stream coming from the chip.
274 */
275
276 for (; rxfc != 0; rxfc--) {
277 rxstat = ks8851_rdreg16(ks, KS_RXFHSR);
278 rxlen = ks8851_rdreg16(ks, KS_RXFHBCR) & RXFHBCR_CNT_MASK;
279
280 netif_dbg(ks, rx_status, ks->netdev,
281 "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
282
283 /* the length of the packet includes the 32bit CRC */
284
285 /* set dma read address */
286 ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
287
288 /* start DMA access */
289 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
290
291 if (rxlen > 4) {
292 unsigned int rxalign;
293
294 rxlen -= 4;
295 rxalign = ALIGN(rxlen, 4);
296 skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
297 if (skb) {
298
299 /* 4 bytes of status header + 4 bytes of
300 * garbage: we put them before ethernet
301 * header, so that they are copied,
302 * but ignored.
303 */
304
305 rxpkt = skb_put(skb, rxlen) - 8;
306
307 ks->rdfifo(ks, rxpkt, rxalign + 8);
308
309 if (netif_msg_pktdata(ks))
310 ks8851_dbg_dumpkkt(ks, rxpkt);
311
312 skb->protocol = eth_type_trans(skb, ks->netdev);
313 ks8851_rx_skb(ks, skb);
314
315 ks->netdev->stats.rx_packets++;
316 ks->netdev->stats.rx_bytes += rxlen;
317 }
318 }
319
320 /* end DMA access and dequeue packet */
321 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_RRXEF);
322 }
323}
324
325/**
326 * ks8851_irq - IRQ handler for dealing with interrupt requests
327 * @irq: IRQ number
328 * @_ks: cookie
329 *
330 * This handler is invoked when the IRQ line asserts to find out what happened.
331 * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs
332 * in thread context.
333 *
334 * Read the interrupt status, work out what needs to be done and then clear
335 * any of the interrupts that are not needed.
336 */
337static irqreturn_t ks8851_irq(int irq, void *_ks)
338{
339 struct ks8851_net *ks = _ks;
340 unsigned handled = 0;
341 unsigned long flags;
342 unsigned int status;
343
344 ks8851_lock(ks, &flags);
345
346 status = ks8851_rdreg16(ks, KS_ISR);
347
348 netif_dbg(ks, intr, ks->netdev,
349 "%s: status 0x%04x\n", __func__, status);
350
351 if (status & IRQ_LCI)
352 handled |= IRQ_LCI;
353
354 if (status & IRQ_LDI) {
355 u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
356 pmecr &= ~PMECR_WKEVT_MASK;
357 ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
358
359 handled |= IRQ_LDI;
360 }
361
362 if (status & IRQ_RXPSI)
363 handled |= IRQ_RXPSI;
364
365 if (status & IRQ_TXI) {
366 handled |= IRQ_TXI;
367
368 /* no lock here, tx queue should have been stopped */
369
370 /* update our idea of how much tx space is available to the
371 * system */
372 ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
373
374 netif_dbg(ks, intr, ks->netdev,
375 "%s: txspace %d\n", __func__, ks->tx_space);
376 }
377
378 if (status & IRQ_RXI)
379 handled |= IRQ_RXI;
380
381 if (status & IRQ_SPIBEI) {
382 netdev_err(ks->netdev, "%s: spi bus error\n", __func__);
383 handled |= IRQ_SPIBEI;
384 }
385
386 ks8851_wrreg16(ks, KS_ISR, handled);
387
388 if (status & IRQ_RXI) {
389 /* the datasheet says to disable the rx interrupt during
390 * packet read-out, however we're masking the interrupt
391 * from the device so do not bother masking just the RX
392 * from the device. */
393
394 ks8851_rx_pkts(ks);
395 }
396
397 /* if something stopped the rx process, probably due to wanting
398 * to change the rx settings, then do something about restarting
399 * it. */
400 if (status & IRQ_RXPSI) {
401 struct ks8851_rxctrl *rxc = &ks->rxctrl;
402
403 /* update the multicast hash table */
404 ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
405 ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
406 ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
407 ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
408
409 ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
410 ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
411 }
412
413 ks8851_unlock(ks, &flags);
414
415 if (status & IRQ_LCI)
416 mii_check_link(&ks->mii);
417
418 if (status & IRQ_TXI)
419 netif_wake_queue(ks->netdev);
420
421 return IRQ_HANDLED;
422}
423
424/**
425 * ks8851_flush_tx_work - flush outstanding TX work
426 * @ks: The device state
427 */
428static void ks8851_flush_tx_work(struct ks8851_net *ks)
429{
430 if (ks->flush_tx_work)
431 ks->flush_tx_work(ks);
432}
433
434/**
435 * ks8851_net_open - open network device
436 * @dev: The network device being opened.
437 *
438 * Called when the network device is marked active, such as a user executing
439 * 'ifconfig up' on the device.
440 */
441static int ks8851_net_open(struct net_device *dev)
442{
443 struct ks8851_net *ks = netdev_priv(dev);
444 unsigned long flags;
445 int ret;
446
447 ret = request_threaded_irq(dev->irq, NULL, ks8851_irq,
448 IRQF_TRIGGER_LOW | IRQF_ONESHOT,
449 dev->name, ks);
450 if (ret < 0) {
451 netdev_err(dev, "failed to get irq\n");
452 return ret;
453 }
454
455 /* lock the card, even if we may not actually be doing anything
456 * else at the moment */
457 ks8851_lock(ks, &flags);
458
459 netif_dbg(ks, ifup, ks->netdev, "opening\n");
460
461 /* bring chip out of any power saving mode it was in */
462 ks8851_set_powermode(ks, PMECR_PM_NORMAL);
463
464 /* issue a soft reset to the RX/TX QMU to put it into a known
465 * state. */
466 ks8851_soft_reset(ks, GRR_QMU);
467
468 /* setup transmission parameters */
469
470 ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
471 TXCR_TXPE | /* pad to min length */
472 TXCR_TXCRC | /* add CRC */
473 TXCR_TXFCE)); /* enable flow control */
474
475 /* auto-increment tx data, reset tx pointer */
476 ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
477
478 /* setup receiver control */
479
480 ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /* from mac filter */
481 RXCR1_RXFCE | /* enable flow control */
482 RXCR1_RXBE | /* broadcast enable */
483 RXCR1_RXUE | /* unicast enable */
484 RXCR1_RXE)); /* enable rx block */
485
486 /* transfer entire frames out in one go */
487 ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
488
489 /* set receive counter timeouts */
490 ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
491 ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
492 ks8851_wrreg16(ks, KS_RXFCTR, 10); /* 10 frames to IRQ */
493
494 ks->rc_rxqcr = (RXQCR_RXFCTE | /* IRQ on frame count exceeded */
495 RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
496 RXQCR_RXDTTE); /* IRQ on time exceeded */
497
498 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
499
500 /* clear then enable interrupts */
501 ks8851_wrreg16(ks, KS_ISR, ks->rc_ier);
502 ks8851_wrreg16(ks, KS_IER, ks->rc_ier);
503
504 netif_start_queue(ks->netdev);
505
506 netif_dbg(ks, ifup, ks->netdev, "network device up\n");
507
508 ks8851_unlock(ks, &flags);
509 mii_check_link(&ks->mii);
510 return 0;
511}
512
513/**
514 * ks8851_net_stop - close network device
515 * @dev: The device being closed.
516 *
517 * Called to close down a network device which has been active. Cancell any
518 * work, shutdown the RX and TX process and then place the chip into a low
519 * power state whilst it is not being used.
520 */
521static int ks8851_net_stop(struct net_device *dev)
522{
523 struct ks8851_net *ks = netdev_priv(dev);
524 unsigned long flags;
525
526 netif_info(ks, ifdown, dev, "shutting down\n");
527
528 netif_stop_queue(dev);
529
530 ks8851_lock(ks, &flags);
531 /* turn off the IRQs and ack any outstanding */
532 ks8851_wrreg16(ks, KS_IER, 0x0000);
533 ks8851_wrreg16(ks, KS_ISR, 0xffff);
534 ks8851_unlock(ks, &flags);
535
536 /* stop any outstanding work */
537 ks8851_flush_tx_work(ks);
538 flush_work(&ks->rxctrl_work);
539
540 ks8851_lock(ks, &flags);
541 /* shutdown RX process */
542 ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
543
544 /* shutdown TX process */
545 ks8851_wrreg16(ks, KS_TXCR, 0x0000);
546
547 /* set powermode to soft power down to save power */
548 ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
549 ks8851_unlock(ks, &flags);
550
551 /* ensure any queued tx buffers are dumped */
552 while (!skb_queue_empty(&ks->txq)) {
553 struct sk_buff *txb = skb_dequeue(&ks->txq);
554
555 netif_dbg(ks, ifdown, ks->netdev,
556 "%s: freeing txb %p\n", __func__, txb);
557
558 dev_kfree_skb(txb);
559 }
560
561 free_irq(dev->irq, ks);
562
563 return 0;
564}
565
566/**
567 * ks8851_start_xmit - transmit packet
568 * @skb: The buffer to transmit
569 * @dev: The device used to transmit the packet.
570 *
571 * Called by the network layer to transmit the @skb. Queue the packet for
572 * the device and schedule the necessary work to transmit the packet when
573 * it is free.
574 *
575 * We do this to firstly avoid sleeping with the network device locked,
576 * and secondly so we can round up more than one packet to transmit which
577 * means we can try and avoid generating too many transmit done interrupts.
578 */
579static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
580 struct net_device *dev)
581{
582 struct ks8851_net *ks = netdev_priv(dev);
583
584 return ks->start_xmit(skb, dev);
585}
586
587/**
588 * ks8851_rxctrl_work - work handler to change rx mode
589 * @work: The work structure this belongs to.
590 *
591 * Lock the device and issue the necessary changes to the receive mode from
592 * the network device layer. This is done so that we can do this without
593 * having to sleep whilst holding the network device lock.
594 *
595 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
596 * receive parameters are programmed, we issue a write to disable the RXQ and
597 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
598 * complete. The interrupt handler then writes the new values into the chip.
599 */
600static void ks8851_rxctrl_work(struct work_struct *work)
601{
602 struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
603 unsigned long flags;
604
605 ks8851_lock(ks, &flags);
606
607 /* need to shutdown RXQ before modifying filter parameters */
608 ks8851_wrreg16(ks, KS_RXCR1, 0x00);
609
610 ks8851_unlock(ks, &flags);
611}
612
613static void ks8851_set_rx_mode(struct net_device *dev)
614{
615 struct ks8851_net *ks = netdev_priv(dev);
616 struct ks8851_rxctrl rxctrl;
617
618 memset(&rxctrl, 0, sizeof(rxctrl));
619
620 if (dev->flags & IFF_PROMISC) {
621 /* interface to receive everything */
622
623 rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
624 } else if (dev->flags & IFF_ALLMULTI) {
625 /* accept all multicast packets */
626
627 rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
628 RXCR1_RXPAFMA | RXCR1_RXMAFMA);
629 } else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
630 struct netdev_hw_addr *ha;
631 u32 crc;
632
633 /* accept some multicast */
634
635 netdev_for_each_mc_addr(ha, dev) {
636 crc = ether_crc(ETH_ALEN, ha->addr);
637 crc >>= (32 - 6); /* get top six bits */
638
639 rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
640 }
641
642 rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
643 } else {
644 /* just accept broadcast / unicast */
645 rxctrl.rxcr1 = RXCR1_RXPAFMA;
646 }
647
648 rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
649 RXCR1_RXBE | /* broadcast enable */
650 RXCR1_RXE | /* RX process enable */
651 RXCR1_RXFCE); /* enable flow control */
652
653 rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
654
655 /* schedule work to do the actual set of the data if needed */
656
657 spin_lock(&ks->statelock);
658
659 if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
660 memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
661 schedule_work(&ks->rxctrl_work);
662 }
663
664 spin_unlock(&ks->statelock);
665}
666
667static int ks8851_set_mac_address(struct net_device *dev, void *addr)
668{
669 struct sockaddr *sa = addr;
670
671 if (netif_running(dev))
672 return -EBUSY;
673
674 if (!is_valid_ether_addr(sa->sa_data))
675 return -EADDRNOTAVAIL;
676
677 memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
678 return ks8851_write_mac_addr(dev);
679}
680
681static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
682{
683 struct ks8851_net *ks = netdev_priv(dev);
684
685 if (!netif_running(dev))
686 return -EINVAL;
687
688 return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
689}
690
691static const struct net_device_ops ks8851_netdev_ops = {
692 .ndo_open = ks8851_net_open,
693 .ndo_stop = ks8851_net_stop,
694 .ndo_do_ioctl = ks8851_net_ioctl,
695 .ndo_start_xmit = ks8851_start_xmit,
696 .ndo_set_mac_address = ks8851_set_mac_address,
697 .ndo_set_rx_mode = ks8851_set_rx_mode,
698 .ndo_validate_addr = eth_validate_addr,
699};
700
701/* ethtool support */
702
703static void ks8851_get_drvinfo(struct net_device *dev,
704 struct ethtool_drvinfo *di)
705{
706 strlcpy(di->driver, "KS8851", sizeof(di->driver));
707 strlcpy(di->version, "1.00", sizeof(di->version));
708 strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
709}
710
711static u32 ks8851_get_msglevel(struct net_device *dev)
712{
713 struct ks8851_net *ks = netdev_priv(dev);
714 return ks->msg_enable;
715}
716
717static void ks8851_set_msglevel(struct net_device *dev, u32 to)
718{
719 struct ks8851_net *ks = netdev_priv(dev);
720 ks->msg_enable = to;
721}
722
723static int ks8851_get_link_ksettings(struct net_device *dev,
724 struct ethtool_link_ksettings *cmd)
725{
726 struct ks8851_net *ks = netdev_priv(dev);
727
728 mii_ethtool_get_link_ksettings(&ks->mii, cmd);
729
730 return 0;
731}
732
733static int ks8851_set_link_ksettings(struct net_device *dev,
734 const struct ethtool_link_ksettings *cmd)
735{
736 struct ks8851_net *ks = netdev_priv(dev);
737 return mii_ethtool_set_link_ksettings(&ks->mii, cmd);
738}
739
740static u32 ks8851_get_link(struct net_device *dev)
741{
742 struct ks8851_net *ks = netdev_priv(dev);
743 return mii_link_ok(&ks->mii);
744}
745
746static int ks8851_nway_reset(struct net_device *dev)
747{
748 struct ks8851_net *ks = netdev_priv(dev);
749 return mii_nway_restart(&ks->mii);
750}
751
752/* EEPROM support */
753
754static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
755{
756 struct ks8851_net *ks = ee->data;
757 unsigned val;
758
759 val = ks8851_rdreg16(ks, KS_EEPCR);
760
761 ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
762 ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
763 ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
764}
765
766static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
767{
768 struct ks8851_net *ks = ee->data;
769 unsigned val = EEPCR_EESA; /* default - eeprom access on */
770
771 if (ee->drive_data)
772 val |= EEPCR_EESRWA;
773 if (ee->reg_data_in)
774 val |= EEPCR_EEDO;
775 if (ee->reg_data_clock)
776 val |= EEPCR_EESCK;
777 if (ee->reg_chip_select)
778 val |= EEPCR_EECS;
779
780 ks8851_wrreg16(ks, KS_EEPCR, val);
781}
782
783/**
784 * ks8851_eeprom_claim - claim device EEPROM and activate the interface
785 * @ks: The network device state.
786 *
787 * Check for the presence of an EEPROM, and then activate software access
788 * to the device.
789 */
790static int ks8851_eeprom_claim(struct ks8851_net *ks)
791{
792 /* start with clock low, cs high */
793 ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
794 return 0;
795}
796
797/**
798 * ks8851_eeprom_release - release the EEPROM interface
799 * @ks: The device state
800 *
801 * Release the software access to the device EEPROM
802 */
803static void ks8851_eeprom_release(struct ks8851_net *ks)
804{
805 unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
806
807 ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
808}
809
810#define KS_EEPROM_MAGIC (0x00008851)
811
812static int ks8851_set_eeprom(struct net_device *dev,
813 struct ethtool_eeprom *ee, u8 *data)
814{
815 struct ks8851_net *ks = netdev_priv(dev);
816 int offset = ee->offset;
817 unsigned long flags;
818 int len = ee->len;
819 u16 tmp;
820
821 /* currently only support byte writing */
822 if (len != 1)
823 return -EINVAL;
824
825 if (ee->magic != KS_EEPROM_MAGIC)
826 return -EINVAL;
827
828 if (!(ks->rc_ccr & CCR_EEPROM))
829 return -ENOENT;
830
831 ks8851_lock(ks, &flags);
832
833 ks8851_eeprom_claim(ks);
834
835 eeprom_93cx6_wren(&ks->eeprom, true);
836
837 /* ethtool currently only supports writing bytes, which means
838 * we have to read/modify/write our 16bit EEPROMs */
839
840 eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
841
842 if (offset & 1) {
843 tmp &= 0xff;
844 tmp |= *data << 8;
845 } else {
846 tmp &= 0xff00;
847 tmp |= *data;
848 }
849
850 eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
851 eeprom_93cx6_wren(&ks->eeprom, false);
852
853 ks8851_eeprom_release(ks);
854 ks8851_unlock(ks, &flags);
855
856 return 0;
857}
858
859static int ks8851_get_eeprom(struct net_device *dev,
860 struct ethtool_eeprom *ee, u8 *data)
861{
862 struct ks8851_net *ks = netdev_priv(dev);
863 int offset = ee->offset;
864 unsigned long flags;
865 int len = ee->len;
866
867 /* must be 2 byte aligned */
868 if (len & 1 || offset & 1)
869 return -EINVAL;
870
871 if (!(ks->rc_ccr & CCR_EEPROM))
872 return -ENOENT;
873
874 ks8851_lock(ks, &flags);
875
876 ks8851_eeprom_claim(ks);
877
878 ee->magic = KS_EEPROM_MAGIC;
879
880 eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
881 ks8851_eeprom_release(ks);
882 ks8851_unlock(ks, &flags);
883
884 return 0;
885}
886
887static int ks8851_get_eeprom_len(struct net_device *dev)
888{
889 struct ks8851_net *ks = netdev_priv(dev);
890
891 /* currently, we assume it is an 93C46 attached, so return 128 */
892 return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
893}
894
895static const struct ethtool_ops ks8851_ethtool_ops = {
896 .get_drvinfo = ks8851_get_drvinfo,
897 .get_msglevel = ks8851_get_msglevel,
898 .set_msglevel = ks8851_set_msglevel,
899 .get_link = ks8851_get_link,
900 .nway_reset = ks8851_nway_reset,
901 .get_eeprom_len = ks8851_get_eeprom_len,
902 .get_eeprom = ks8851_get_eeprom,
903 .set_eeprom = ks8851_set_eeprom,
904 .get_link_ksettings = ks8851_get_link_ksettings,
905 .set_link_ksettings = ks8851_set_link_ksettings,
906};
907
908/* MII interface controls */
909
910/**
911 * ks8851_phy_reg - convert MII register into a KS8851 register
912 * @reg: MII register number.
913 *
914 * Return the KS8851 register number for the corresponding MII PHY register
915 * if possible. Return zero if the MII register has no direct mapping to the
916 * KS8851 register set.
917 */
918static int ks8851_phy_reg(int reg)
919{
920 switch (reg) {
921 case MII_BMCR:
922 return KS_P1MBCR;
923 case MII_BMSR:
924 return KS_P1MBSR;
925 case MII_PHYSID1:
926 return KS_PHY1ILR;
927 case MII_PHYSID2:
928 return KS_PHY1IHR;
929 case MII_ADVERTISE:
930 return KS_P1ANAR;
931 case MII_LPA:
932 return KS_P1ANLPR;
933 }
934
935 return 0x0;
936}
937
938/**
939 * ks8851_phy_read - MII interface PHY register read.
940 * @dev: The network device the PHY is on.
941 * @phy_addr: Address of PHY (ignored as we only have one)
942 * @reg: The register to read.
943 *
944 * This call reads data from the PHY register specified in @reg. Since the
945 * device does not support all the MII registers, the non-existent values
946 * are always returned as zero.
947 *
948 * We return zero for unsupported registers as the MII code does not check
949 * the value returned for any error status, and simply returns it to the
950 * caller. The mii-tool that the driver was tested with takes any -ve error
951 * as real PHY capabilities, thus displaying incorrect data to the user.
952 */
953static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
954{
955 struct ks8851_net *ks = netdev_priv(dev);
956 unsigned long flags;
957 int ksreg;
958 int result;
959
960 ksreg = ks8851_phy_reg(reg);
961 if (!ksreg)
962 return 0x0; /* no error return allowed, so use zero */
963
964 ks8851_lock(ks, &flags);
965 result = ks8851_rdreg16(ks, ksreg);
966 ks8851_unlock(ks, &flags);
967
968 return result;
969}
970
971static void ks8851_phy_write(struct net_device *dev,
972 int phy, int reg, int value)
973{
974 struct ks8851_net *ks = netdev_priv(dev);
975 unsigned long flags;
976 int ksreg;
977
978 ksreg = ks8851_phy_reg(reg);
979 if (ksreg) {
980 ks8851_lock(ks, &flags);
981 ks8851_wrreg16(ks, ksreg, value);
982 ks8851_unlock(ks, &flags);
983 }
984}
985
986/**
987 * ks8851_read_selftest - read the selftest memory info.
988 * @ks: The device state
989 *
990 * Read and check the TX/RX memory selftest information.
991 */
992static int ks8851_read_selftest(struct ks8851_net *ks)
993{
994 unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
995 int ret = 0;
996 unsigned rd;
997
998 rd = ks8851_rdreg16(ks, KS_MBIR);
999
1000 if ((rd & both_done) != both_done) {
1001 netdev_warn(ks->netdev, "Memory selftest not finished\n");
1002 return 0;
1003 }
1004
1005 if (rd & MBIR_TXMBFA) {
1006 netdev_err(ks->netdev, "TX memory selftest fail\n");
1007 ret |= 1;
1008 }
1009
1010 if (rd & MBIR_RXMBFA) {
1011 netdev_err(ks->netdev, "RX memory selftest fail\n");
1012 ret |= 2;
1013 }
1014
1015 return 0;
1016}
1017
1018/* driver bus management functions */
1019
1020#ifdef CONFIG_PM_SLEEP
1021
1022int ks8851_suspend(struct device *dev)
1023{
1024 struct ks8851_net *ks = dev_get_drvdata(dev);
1025 struct net_device *netdev = ks->netdev;
1026
1027 if (netif_running(netdev)) {
1028 netif_device_detach(netdev);
1029 ks8851_net_stop(netdev);
1030 }
1031
1032 return 0;
1033}
1034
1035int ks8851_resume(struct device *dev)
1036{
1037 struct ks8851_net *ks = dev_get_drvdata(dev);
1038 struct net_device *netdev = ks->netdev;
1039
1040 if (netif_running(netdev)) {
1041 ks8851_net_open(netdev);
1042 netif_device_attach(netdev);
1043 }
1044
1045 return 0;
1046}
1047#endif
1048
1049int ks8851_probe_common(struct net_device *netdev, struct device *dev,
1050 int msg_en)
1051{
1052 struct ks8851_net *ks = netdev_priv(netdev);
1053 unsigned cider;
1054 int gpio;
1055 int ret;
1056
1057 ks->netdev = netdev;
1058 ks->tx_space = 6144;
1059
1060 gpio = of_get_named_gpio_flags(dev->of_node, "reset-gpios", 0, NULL);
1061 if (gpio == -EPROBE_DEFER)
1062 return gpio;
1063
1064 ks->gpio = gpio;
1065 if (gpio_is_valid(gpio)) {
1066 ret = devm_gpio_request_one(dev, gpio,
1067 GPIOF_OUT_INIT_LOW, "ks8851_rst_n");
1068 if (ret) {
1069 dev_err(dev, "reset gpio request failed\n");
1070 return ret;
1071 }
1072 }
1073
1074 ks->vdd_io = devm_regulator_get(dev, "vdd-io");
1075 if (IS_ERR(ks->vdd_io)) {
1076 ret = PTR_ERR(ks->vdd_io);
1077 goto err_reg_io;
1078 }
1079
1080 ret = regulator_enable(ks->vdd_io);
1081 if (ret) {
1082 dev_err(dev, "regulator vdd_io enable fail: %d\n", ret);
1083 goto err_reg_io;
1084 }
1085
1086 ks->vdd_reg = devm_regulator_get(dev, "vdd");
1087 if (IS_ERR(ks->vdd_reg)) {
1088 ret = PTR_ERR(ks->vdd_reg);
1089 goto err_reg;
1090 }
1091
1092 ret = regulator_enable(ks->vdd_reg);
1093 if (ret) {
1094 dev_err(dev, "regulator vdd enable fail: %d\n", ret);
1095 goto err_reg;
1096 }
1097
1098 if (gpio_is_valid(gpio)) {
1099 usleep_range(10000, 11000);
1100 gpio_set_value(gpio, 1);
1101 }
1102
1103 spin_lock_init(&ks->statelock);
1104
1105 INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1106
1107 /* setup EEPROM state */
1108 ks->eeprom.data = ks;
1109 ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
1110 ks->eeprom.register_read = ks8851_eeprom_regread;
1111 ks->eeprom.register_write = ks8851_eeprom_regwrite;
1112
1113 /* setup mii state */
1114 ks->mii.dev = netdev;
1115 ks->mii.phy_id = 1,
1116 ks->mii.phy_id_mask = 1;
1117 ks->mii.reg_num_mask = 0xf;
1118 ks->mii.mdio_read = ks8851_phy_read;
1119 ks->mii.mdio_write = ks8851_phy_write;
1120
1121 dev_info(dev, "message enable is %d\n", msg_en);
1122
1123 /* set the default message enable */
1124 ks->msg_enable = netif_msg_init(msg_en, NETIF_MSG_DRV |
1125 NETIF_MSG_PROBE |
1126 NETIF_MSG_LINK);
1127
1128 skb_queue_head_init(&ks->txq);
1129
1130 netdev->ethtool_ops = &ks8851_ethtool_ops;
1131 SET_NETDEV_DEV(netdev, dev);
1132
1133 dev_set_drvdata(dev, ks);
1134
1135 netif_carrier_off(ks->netdev);
1136 netdev->if_port = IF_PORT_100BASET;
1137 netdev->netdev_ops = &ks8851_netdev_ops;
1138
1139 /* issue a global soft reset to reset the device. */
1140 ks8851_soft_reset(ks, GRR_GSR);
1141
1142 /* simple check for a valid chip being connected to the bus */
1143 cider = ks8851_rdreg16(ks, KS_CIDER);
1144 if ((cider & ~CIDER_REV_MASK) != CIDER_ID) {
1145 dev_err(dev, "failed to read device ID\n");
1146 ret = -ENODEV;
1147 goto err_id;
1148 }
1149
1150 /* cache the contents of the CCR register for EEPROM, etc. */
1151 ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1152
1153 ks8851_read_selftest(ks);
1154 ks8851_init_mac(ks, dev->of_node);
1155
1156 ret = register_netdev(netdev);
1157 if (ret) {
1158 dev_err(dev, "failed to register network device\n");
1159 goto err_netdev;
1160 }
1161
1162 netdev_info(netdev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
1163 CIDER_REV_GET(cider), netdev->dev_addr, netdev->irq,
1164 ks->rc_ccr & CCR_EEPROM ? "has" : "no");
1165
1166 return 0;
1167
1168err_netdev:
1169err_id:
1170 if (gpio_is_valid(gpio))
1171 gpio_set_value(gpio, 0);
1172 regulator_disable(ks->vdd_reg);
1173err_reg:
1174 regulator_disable(ks->vdd_io);
1175err_reg_io:
1176 return ret;
1177}
1178
1179int ks8851_remove_common(struct device *dev)
1180{
1181 struct ks8851_net *priv = dev_get_drvdata(dev);
1182
1183 if (netif_msg_drv(priv))
1184 dev_info(dev, "remove\n");
1185
1186 unregister_netdev(priv->netdev);
1187 if (gpio_is_valid(priv->gpio))
1188 gpio_set_value(priv->gpio, 0);
1189 regulator_disable(priv->vdd_reg);
1190 regulator_disable(priv->vdd_io);
1191
1192 return 0;
1193}