Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018-2023, Intel Corporation. */
   3
   4/* Intel(R) Ethernet Connection E800 Series Linux Driver */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <generated/utsrelease.h>
   9#include <linux/crash_dump.h>
  10#include "ice.h"
  11#include "ice_base.h"
  12#include "ice_lib.h"
  13#include "ice_fltr.h"
  14#include "ice_dcb_lib.h"
  15#include "ice_dcb_nl.h"
  16#include "ice_devlink.h"
  17#include "ice_hwmon.h"
  18/* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
  19 * ice tracepoint functions. This must be done exactly once across the
  20 * ice driver.
  21 */
  22#define CREATE_TRACE_POINTS
  23#include "ice_trace.h"
  24#include "ice_eswitch.h"
  25#include "ice_tc_lib.h"
  26#include "ice_vsi_vlan_ops.h"
  27#include <net/xdp_sock_drv.h>
  28
  29#define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
  30static const char ice_driver_string[] = DRV_SUMMARY;
  31static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
  32
  33/* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
  34#define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
  35#define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
  36
  37MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  38MODULE_DESCRIPTION(DRV_SUMMARY);
  39MODULE_LICENSE("GPL v2");
  40MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
  41
  42static int debug = -1;
  43module_param(debug, int, 0644);
  44#ifndef CONFIG_DYNAMIC_DEBUG
  45MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
  46#else
  47MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
  48#endif /* !CONFIG_DYNAMIC_DEBUG */
  49
  50DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
  51EXPORT_SYMBOL(ice_xdp_locking_key);
  52
  53/**
  54 * ice_hw_to_dev - Get device pointer from the hardware structure
  55 * @hw: pointer to the device HW structure
  56 *
  57 * Used to access the device pointer from compilation units which can't easily
  58 * include the definition of struct ice_pf without leading to circular header
  59 * dependencies.
  60 */
  61struct device *ice_hw_to_dev(struct ice_hw *hw)
  62{
  63	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
  64
  65	return &pf->pdev->dev;
  66}
  67
  68static struct workqueue_struct *ice_wq;
  69struct workqueue_struct *ice_lag_wq;
  70static const struct net_device_ops ice_netdev_safe_mode_ops;
  71static const struct net_device_ops ice_netdev_ops;
 
  72
  73static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
  74
  75static void ice_vsi_release_all(struct ice_pf *pf);
  76
  77static int ice_rebuild_channels(struct ice_pf *pf);
  78static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
  79
  80static int
  81ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
  82		     void *cb_priv, enum tc_setup_type type, void *type_data,
  83		     void *data,
  84		     void (*cleanup)(struct flow_block_cb *block_cb));
  85
  86bool netif_is_ice(const struct net_device *dev)
  87{
  88	return dev && (dev->netdev_ops == &ice_netdev_ops);
  89}
  90
  91/**
  92 * ice_get_tx_pending - returns number of Tx descriptors not processed
  93 * @ring: the ring of descriptors
  94 */
  95static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
  96{
  97	u16 head, tail;
  98
  99	head = ring->next_to_clean;
 100	tail = ring->next_to_use;
 101
 102	if (head != tail)
 103		return (head < tail) ?
 104			tail - head : (tail + ring->count - head);
 105	return 0;
 106}
 107
 108/**
 109 * ice_check_for_hang_subtask - check for and recover hung queues
 110 * @pf: pointer to PF struct
 111 */
 112static void ice_check_for_hang_subtask(struct ice_pf *pf)
 113{
 114	struct ice_vsi *vsi = NULL;
 115	struct ice_hw *hw;
 116	unsigned int i;
 117	int packets;
 118	u32 v;
 119
 120	ice_for_each_vsi(pf, v)
 121		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
 122			vsi = pf->vsi[v];
 123			break;
 124		}
 125
 126	if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
 127		return;
 128
 129	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
 130		return;
 131
 132	hw = &vsi->back->hw;
 133
 134	ice_for_each_txq(vsi, i) {
 135		struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
 136		struct ice_ring_stats *ring_stats;
 137
 138		if (!tx_ring)
 139			continue;
 140		if (ice_ring_ch_enabled(tx_ring))
 141			continue;
 142
 143		ring_stats = tx_ring->ring_stats;
 144		if (!ring_stats)
 145			continue;
 146
 147		if (tx_ring->desc) {
 148			/* If packet counter has not changed the queue is
 149			 * likely stalled, so force an interrupt for this
 150			 * queue.
 151			 *
 152			 * prev_pkt would be negative if there was no
 153			 * pending work.
 154			 */
 155			packets = ring_stats->stats.pkts & INT_MAX;
 156			if (ring_stats->tx_stats.prev_pkt == packets) {
 157				/* Trigger sw interrupt to revive the queue */
 158				ice_trigger_sw_intr(hw, tx_ring->q_vector);
 159				continue;
 160			}
 161
 162			/* Memory barrier between read of packet count and call
 163			 * to ice_get_tx_pending()
 164			 */
 165			smp_rmb();
 166			ring_stats->tx_stats.prev_pkt =
 167			    ice_get_tx_pending(tx_ring) ? packets : -1;
 168		}
 169	}
 170}
 171
 172/**
 173 * ice_init_mac_fltr - Set initial MAC filters
 174 * @pf: board private structure
 175 *
 176 * Set initial set of MAC filters for PF VSI; configure filters for permanent
 177 * address and broadcast address. If an error is encountered, netdevice will be
 178 * unregistered.
 179 */
 180static int ice_init_mac_fltr(struct ice_pf *pf)
 181{
 
 182	struct ice_vsi *vsi;
 183	u8 *perm_addr;
 184
 185	vsi = ice_get_main_vsi(pf);
 186	if (!vsi)
 187		return -EINVAL;
 188
 189	perm_addr = vsi->port_info->mac.perm_addr;
 190	return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191}
 192
 193/**
 194 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
 195 * @netdev: the net device on which the sync is happening
 196 * @addr: MAC address to sync
 197 *
 198 * This is a callback function which is called by the in kernel device sync
 199 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
 200 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
 201 * MAC filters from the hardware.
 202 */
 203static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
 204{
 205	struct ice_netdev_priv *np = netdev_priv(netdev);
 206	struct ice_vsi *vsi = np->vsi;
 207
 208	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
 209				     ICE_FWD_TO_VSI))
 210		return -EINVAL;
 211
 212	return 0;
 213}
 214
 215/**
 216 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
 217 * @netdev: the net device on which the unsync is happening
 218 * @addr: MAC address to unsync
 219 *
 220 * This is a callback function which is called by the in kernel device unsync
 221 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
 222 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
 223 * delete the MAC filters from the hardware.
 224 */
 225static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
 226{
 227	struct ice_netdev_priv *np = netdev_priv(netdev);
 228	struct ice_vsi *vsi = np->vsi;
 229
 230	/* Under some circumstances, we might receive a request to delete our
 231	 * own device address from our uc list. Because we store the device
 232	 * address in the VSI's MAC filter list, we need to ignore such
 233	 * requests and not delete our device address from this list.
 234	 */
 235	if (ether_addr_equal(addr, netdev->dev_addr))
 236		return 0;
 237
 238	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
 239				     ICE_FWD_TO_VSI))
 240		return -EINVAL;
 241
 242	return 0;
 243}
 244
 245/**
 246 * ice_vsi_fltr_changed - check if filter state changed
 247 * @vsi: VSI to be checked
 248 *
 249 * returns true if filter state has changed, false otherwise.
 250 */
 251static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
 252{
 253	return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
 254	       test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
 
 255}
 256
 257/**
 258 * ice_set_promisc - Enable promiscuous mode for a given PF
 259 * @vsi: the VSI being configured
 260 * @promisc_m: mask of promiscuous config bits
 
 261 *
 262 */
 263static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
 264{
 265	int status;
 
 266
 267	if (vsi->type != ICE_VSI_PF)
 268		return 0;
 269
 270	if (ice_vsi_has_non_zero_vlans(vsi)) {
 271		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
 272		status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
 273						       promisc_m);
 274	} else {
 275		status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
 276						  promisc_m, 0);
 
 
 
 
 277	}
 278	if (status && status != -EEXIST)
 279		return status;
 280
 281	netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n",
 282		   vsi->vsi_num, promisc_m);
 283	return 0;
 284}
 285
 286/**
 287 * ice_clear_promisc - Disable promiscuous mode for a given PF
 288 * @vsi: the VSI being configured
 289 * @promisc_m: mask of promiscuous config bits
 290 *
 291 */
 292static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
 293{
 294	int status;
 295
 296	if (vsi->type != ICE_VSI_PF)
 297		return 0;
 298
 299	if (ice_vsi_has_non_zero_vlans(vsi)) {
 300		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
 301		status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
 302							 promisc_m);
 303	} else {
 304		status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
 305						    promisc_m, 0);
 306	}
 307
 308	netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n",
 309		   vsi->vsi_num, promisc_m);
 310	return status;
 311}
 312
 313/**
 314 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
 315 * @vsi: ptr to the VSI
 316 *
 317 * Push any outstanding VSI filter changes through the AdminQ.
 318 */
 319static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
 320{
 321	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
 322	struct device *dev = ice_pf_to_dev(vsi->back);
 323	struct net_device *netdev = vsi->netdev;
 324	bool promisc_forced_on = false;
 325	struct ice_pf *pf = vsi->back;
 326	struct ice_hw *hw = &pf->hw;
 
 327	u32 changed_flags = 0;
 328	int err;
 
 329
 330	if (!vsi->netdev)
 331		return -EINVAL;
 332
 333	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
 334		usleep_range(1000, 2000);
 335
 336	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
 337	vsi->current_netdev_flags = vsi->netdev->flags;
 338
 339	INIT_LIST_HEAD(&vsi->tmp_sync_list);
 340	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
 341
 342	if (ice_vsi_fltr_changed(vsi)) {
 343		clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
 344		clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
 
 345
 346		/* grab the netdev's addr_list_lock */
 347		netif_addr_lock_bh(netdev);
 348		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
 349			      ice_add_mac_to_unsync_list);
 350		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
 351			      ice_add_mac_to_unsync_list);
 352		/* our temp lists are populated. release lock */
 353		netif_addr_unlock_bh(netdev);
 354	}
 355
 356	/* Remove MAC addresses in the unsync list */
 357	err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
 358	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
 359	if (err) {
 360		netdev_err(netdev, "Failed to delete MAC filters\n");
 361		/* if we failed because of alloc failures, just bail */
 362		if (err == -ENOMEM)
 
 363			goto out;
 
 364	}
 365
 366	/* Add MAC addresses in the sync list */
 367	err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
 368	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
 369	/* If filter is added successfully or already exists, do not go into
 370	 * 'if' condition and report it as error. Instead continue processing
 371	 * rest of the function.
 372	 */
 373	if (err && err != -EEXIST) {
 374		netdev_err(netdev, "Failed to add MAC filters\n");
 375		/* If there is no more space for new umac filters, VSI
 376		 * should go into promiscuous mode. There should be some
 377		 * space reserved for promiscuous filters.
 378		 */
 379		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
 380		    !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
 381				      vsi->state)) {
 382			promisc_forced_on = true;
 383			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
 384				    vsi->vsi_num);
 385		} else {
 
 386			goto out;
 387		}
 388	}
 389	err = 0;
 390	/* check for changes in promiscuous modes */
 391	if (changed_flags & IFF_ALLMULTI) {
 392		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
 393			err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
 
 
 
 
 
 394			if (err) {
 
 
 395				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
 396				goto out_promisc;
 397			}
 398		} else {
 399			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
 400			err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
 
 
 
 
 
 401			if (err) {
 
 
 402				vsi->current_netdev_flags |= IFF_ALLMULTI;
 403				goto out_promisc;
 404			}
 405		}
 406	}
 407
 408	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
 409	    test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
 410		clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
 411		if (vsi->current_netdev_flags & IFF_PROMISC) {
 412			/* Apply Rx filter rule to get traffic from wire */
 413			if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
 414				err = ice_set_dflt_vsi(vsi);
 415				if (err && err != -EEXIST) {
 416					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
 417						   err, vsi->vsi_num);
 418					vsi->current_netdev_flags &=
 419						~IFF_PROMISC;
 420					goto out_promisc;
 421				}
 422				err = 0;
 423				vlan_ops->dis_rx_filtering(vsi);
 424
 425				/* promiscuous mode implies allmulticast so
 426				 * that VSIs that are in promiscuous mode are
 427				 * subscribed to multicast packets coming to
 428				 * the port
 429				 */
 430				err = ice_set_promisc(vsi,
 431						      ICE_MCAST_PROMISC_BITS);
 432				if (err)
 433					goto out_promisc;
 434			}
 435		} else {
 436			/* Clear Rx filter to remove traffic from wire */
 437			if (ice_is_vsi_dflt_vsi(vsi)) {
 438				err = ice_clear_dflt_vsi(vsi);
 439				if (err) {
 440					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
 441						   err, vsi->vsi_num);
 442					vsi->current_netdev_flags |=
 443						IFF_PROMISC;
 444					goto out_promisc;
 445				}
 446				if (vsi->netdev->features &
 447				    NETIF_F_HW_VLAN_CTAG_FILTER)
 448					vlan_ops->ena_rx_filtering(vsi);
 449			}
 450
 451			/* disable allmulti here, but only if allmulti is not
 452			 * still enabled for the netdev
 453			 */
 454			if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
 455				err = ice_clear_promisc(vsi,
 456							ICE_MCAST_PROMISC_BITS);
 457				if (err) {
 458					netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n",
 459						   err, vsi->vsi_num);
 460				}
 461			}
 462		}
 463	}
 464	goto exit;
 465
 466out_promisc:
 467	set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
 468	goto exit;
 469out:
 470	/* if something went wrong then set the changed flag so we try again */
 471	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
 472	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
 473exit:
 474	clear_bit(ICE_CFG_BUSY, vsi->state);
 475	return err;
 476}
 477
 478/**
 479 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
 480 * @pf: board private structure
 481 */
 482static void ice_sync_fltr_subtask(struct ice_pf *pf)
 483{
 484	int v;
 485
 486	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
 487		return;
 488
 489	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
 490
 491	ice_for_each_vsi(pf, v)
 492		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
 493		    ice_vsi_sync_fltr(pf->vsi[v])) {
 494			/* come back and try again later */
 495			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
 496			break;
 497		}
 498}
 499
 500/**
 501 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
 502 * @pf: the PF
 503 * @locked: is the rtnl_lock already held
 504 */
 505static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
 506{
 507	int node;
 508	int v;
 509
 510	ice_for_each_vsi(pf, v)
 511		if (pf->vsi[v])
 512			ice_dis_vsi(pf->vsi[v], locked);
 513
 514	for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
 515		pf->pf_agg_node[node].num_vsis = 0;
 516
 517	for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
 518		pf->vf_agg_node[node].num_vsis = 0;
 519}
 520
 521/**
 522 * ice_clear_sw_switch_recipes - clear switch recipes
 523 * @pf: board private structure
 524 *
 525 * Mark switch recipes as not created in sw structures. There are cases where
 526 * rules (especially advanced rules) need to be restored, either re-read from
 527 * hardware or added again. For example after the reset. 'recp_created' flag
 528 * prevents from doing that and need to be cleared upfront.
 529 */
 530static void ice_clear_sw_switch_recipes(struct ice_pf *pf)
 531{
 532	struct ice_sw_recipe *recp;
 533	u8 i;
 534
 535	recp = pf->hw.switch_info->recp_list;
 536	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
 537		recp[i].recp_created = false;
 538}
 539
 540/**
 541 * ice_prepare_for_reset - prep for reset
 542 * @pf: board private structure
 543 * @reset_type: reset type requested
 544 *
 545 * Inform or close all dependent features in prep for reset.
 546 */
 547static void
 548ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
 549{
 550	struct ice_hw *hw = &pf->hw;
 551	struct ice_vsi *vsi;
 552	struct ice_vf *vf;
 553	unsigned int bkt;
 554
 555	dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
 556
 557	/* already prepared for reset */
 558	if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
 559		return;
 560
 561	ice_unplug_aux_dev(pf);
 562
 563	/* Notify VFs of impending reset */
 564	if (ice_check_sq_alive(hw, &hw->mailboxq))
 565		ice_vc_notify_reset(pf);
 566
 567	/* Disable VFs until reset is completed */
 568	mutex_lock(&pf->vfs.table_lock);
 569	ice_for_each_vf(pf, bkt, vf)
 570		ice_set_vf_state_dis(vf);
 571	mutex_unlock(&pf->vfs.table_lock);
 572
 573	if (ice_is_eswitch_mode_switchdev(pf)) {
 574		if (reset_type != ICE_RESET_PFR)
 575			ice_clear_sw_switch_recipes(pf);
 576	}
 577
 578	/* release ADQ specific HW and SW resources */
 579	vsi = ice_get_main_vsi(pf);
 580	if (!vsi)
 581		goto skip;
 582
 583	/* to be on safe side, reset orig_rss_size so that normal flow
 584	 * of deciding rss_size can take precedence
 585	 */
 586	vsi->orig_rss_size = 0;
 587
 588	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
 589		if (reset_type == ICE_RESET_PFR) {
 590			vsi->old_ena_tc = vsi->all_enatc;
 591			vsi->old_numtc = vsi->all_numtc;
 592		} else {
 593			ice_remove_q_channels(vsi, true);
 594
 595			/* for other reset type, do not support channel rebuild
 596			 * hence reset needed info
 597			 */
 598			vsi->old_ena_tc = 0;
 599			vsi->all_enatc = 0;
 600			vsi->old_numtc = 0;
 601			vsi->all_numtc = 0;
 602			vsi->req_txq = 0;
 603			vsi->req_rxq = 0;
 604			clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
 605			memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
 606		}
 607	}
 608skip:
 609
 610	/* clear SW filtering DB */
 611	ice_clear_hw_tbls(hw);
 612	/* disable the VSIs and their queues that are not already DOWN */
 613	ice_pf_dis_all_vsi(pf, false);
 614
 615	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
 616		ice_ptp_prepare_for_reset(pf);
 617
 618	if (ice_is_feature_supported(pf, ICE_F_GNSS))
 619		ice_gnss_exit(pf);
 620
 621	if (hw->port_info)
 622		ice_sched_clear_port(hw->port_info);
 623
 624	ice_shutdown_all_ctrlq(hw);
 625
 626	set_bit(ICE_PREPARED_FOR_RESET, pf->state);
 627}
 628
 629/**
 630 * ice_do_reset - Initiate one of many types of resets
 631 * @pf: board private structure
 632 * @reset_type: reset type requested before this function was called.
 
 633 */
 634static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
 635{
 636	struct device *dev = ice_pf_to_dev(pf);
 637	struct ice_hw *hw = &pf->hw;
 638
 639	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
 
 640
 641	if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) {
 642		dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n");
 643		reset_type = ICE_RESET_CORER;
 644	}
 645
 646	ice_prepare_for_reset(pf, reset_type);
 647
 648	/* trigger the reset */
 649	if (ice_reset(hw, reset_type)) {
 650		dev_err(dev, "reset %d failed\n", reset_type);
 651		set_bit(ICE_RESET_FAILED, pf->state);
 652		clear_bit(ICE_RESET_OICR_RECV, pf->state);
 653		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
 654		clear_bit(ICE_PFR_REQ, pf->state);
 655		clear_bit(ICE_CORER_REQ, pf->state);
 656		clear_bit(ICE_GLOBR_REQ, pf->state);
 657		wake_up(&pf->reset_wait_queue);
 658		return;
 659	}
 660
 661	/* PFR is a bit of a special case because it doesn't result in an OICR
 662	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
 663	 * associated state bits.
 664	 */
 665	if (reset_type == ICE_RESET_PFR) {
 666		pf->pfr_count++;
 667		ice_rebuild(pf, reset_type);
 668		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
 669		clear_bit(ICE_PFR_REQ, pf->state);
 670		wake_up(&pf->reset_wait_queue);
 671		ice_reset_all_vfs(pf);
 672	}
 673}
 674
 675/**
 676 * ice_reset_subtask - Set up for resetting the device and driver
 677 * @pf: board private structure
 678 */
 679static void ice_reset_subtask(struct ice_pf *pf)
 680{
 681	enum ice_reset_req reset_type = ICE_RESET_INVAL;
 682
 683	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
 684	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
 685	 * of reset is pending and sets bits in pf->state indicating the reset
 686	 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
 687	 * prepare for pending reset if not already (for PF software-initiated
 688	 * global resets the software should already be prepared for it as
 689	 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
 690	 * by firmware or software on other PFs, that bit is not set so prepare
 691	 * for the reset now), poll for reset done, rebuild and return.
 692	 */
 693	if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
 694		/* Perform the largest reset requested */
 695		if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
 696			reset_type = ICE_RESET_CORER;
 697		if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
 698			reset_type = ICE_RESET_GLOBR;
 699		if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
 700			reset_type = ICE_RESET_EMPR;
 701		/* return if no valid reset type requested */
 702		if (reset_type == ICE_RESET_INVAL)
 703			return;
 704		ice_prepare_for_reset(pf, reset_type);
 705
 706		/* make sure we are ready to rebuild */
 707		if (ice_check_reset(&pf->hw)) {
 708			set_bit(ICE_RESET_FAILED, pf->state);
 709		} else {
 710			/* done with reset. start rebuild */
 711			pf->hw.reset_ongoing = false;
 712			ice_rebuild(pf, reset_type);
 713			/* clear bit to resume normal operations, but
 714			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
 715			 */
 716			clear_bit(ICE_RESET_OICR_RECV, pf->state);
 717			clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
 718			clear_bit(ICE_PFR_REQ, pf->state);
 719			clear_bit(ICE_CORER_REQ, pf->state);
 720			clear_bit(ICE_GLOBR_REQ, pf->state);
 721			wake_up(&pf->reset_wait_queue);
 722			ice_reset_all_vfs(pf);
 723		}
 724
 725		return;
 726	}
 727
 728	/* No pending resets to finish processing. Check for new resets */
 729	if (test_bit(ICE_PFR_REQ, pf->state)) {
 730		reset_type = ICE_RESET_PFR;
 731		if (pf->lag && pf->lag->bonded) {
 732			dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n");
 733			reset_type = ICE_RESET_CORER;
 734		}
 735	}
 736	if (test_bit(ICE_CORER_REQ, pf->state))
 737		reset_type = ICE_RESET_CORER;
 738	if (test_bit(ICE_GLOBR_REQ, pf->state))
 739		reset_type = ICE_RESET_GLOBR;
 740	/* If no valid reset type requested just return */
 741	if (reset_type == ICE_RESET_INVAL)
 742		return;
 743
 744	/* reset if not already down or busy */
 745	if (!test_bit(ICE_DOWN, pf->state) &&
 746	    !test_bit(ICE_CFG_BUSY, pf->state)) {
 747		ice_do_reset(pf, reset_type);
 748	}
 749}
 750
 751/**
 752 * ice_print_topo_conflict - print topology conflict message
 753 * @vsi: the VSI whose topology status is being checked
 754 */
 755static void ice_print_topo_conflict(struct ice_vsi *vsi)
 756{
 757	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
 758	case ICE_AQ_LINK_TOPO_CONFLICT:
 759	case ICE_AQ_LINK_MEDIA_CONFLICT:
 760	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
 761	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
 762	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
 763		netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
 764		break;
 765	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
 766		if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
 767			netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
 768		else
 769			netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
 770		break;
 771	default:
 772		break;
 773	}
 774}
 775
 776/**
 777 * ice_print_link_msg - print link up or down message
 778 * @vsi: the VSI whose link status is being queried
 779 * @isup: boolean for if the link is now up or down
 780 */
 781void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
 782{
 783	struct ice_aqc_get_phy_caps_data *caps;
 784	const char *an_advertised;
 
 785	const char *fec_req;
 786	const char *speed;
 787	const char *fec;
 788	const char *fc;
 789	const char *an;
 790	int status;
 791
 792	if (!vsi)
 793		return;
 794
 795	if (vsi->current_isup == isup)
 796		return;
 797
 798	vsi->current_isup = isup;
 799
 800	if (!isup) {
 801		netdev_info(vsi->netdev, "NIC Link is Down\n");
 802		return;
 803	}
 804
 805	switch (vsi->port_info->phy.link_info.link_speed) {
 806	case ICE_AQ_LINK_SPEED_100GB:
 807		speed = "100 G";
 808		break;
 809	case ICE_AQ_LINK_SPEED_50GB:
 810		speed = "50 G";
 811		break;
 812	case ICE_AQ_LINK_SPEED_40GB:
 813		speed = "40 G";
 814		break;
 815	case ICE_AQ_LINK_SPEED_25GB:
 816		speed = "25 G";
 817		break;
 818	case ICE_AQ_LINK_SPEED_20GB:
 819		speed = "20 G";
 820		break;
 821	case ICE_AQ_LINK_SPEED_10GB:
 822		speed = "10 G";
 823		break;
 824	case ICE_AQ_LINK_SPEED_5GB:
 825		speed = "5 G";
 826		break;
 827	case ICE_AQ_LINK_SPEED_2500MB:
 828		speed = "2.5 G";
 829		break;
 830	case ICE_AQ_LINK_SPEED_1000MB:
 831		speed = "1 G";
 832		break;
 833	case ICE_AQ_LINK_SPEED_100MB:
 834		speed = "100 M";
 835		break;
 836	default:
 837		speed = "Unknown ";
 838		break;
 839	}
 840
 841	switch (vsi->port_info->fc.current_mode) {
 842	case ICE_FC_FULL:
 843		fc = "Rx/Tx";
 844		break;
 845	case ICE_FC_TX_PAUSE:
 846		fc = "Tx";
 847		break;
 848	case ICE_FC_RX_PAUSE:
 849		fc = "Rx";
 850		break;
 851	case ICE_FC_NONE:
 852		fc = "None";
 853		break;
 854	default:
 855		fc = "Unknown";
 856		break;
 857	}
 858
 859	/* Get FEC mode based on negotiated link info */
 860	switch (vsi->port_info->phy.link_info.fec_info) {
 861	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
 862	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
 863		fec = "RS-FEC";
 864		break;
 865	case ICE_AQ_LINK_25G_KR_FEC_EN:
 866		fec = "FC-FEC/BASE-R";
 867		break;
 868	default:
 869		fec = "NONE";
 870		break;
 871	}
 872
 873	/* check if autoneg completed, might be false due to not supported */
 874	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
 875		an = "True";
 876	else
 877		an = "False";
 878
 879	/* Get FEC mode requested based on PHY caps last SW configuration */
 880	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
 881	if (!caps) {
 882		fec_req = "Unknown";
 883		an_advertised = "Unknown";
 884		goto done;
 885	}
 886
 887	status = ice_aq_get_phy_caps(vsi->port_info, false,
 888				     ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
 889	if (status)
 890		netdev_info(vsi->netdev, "Get phy capability failed.\n");
 891
 892	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
 893
 894	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
 895	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
 896		fec_req = "RS-FEC";
 897	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
 898		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
 899		fec_req = "FC-FEC/BASE-R";
 900	else
 901		fec_req = "NONE";
 902
 903	kfree(caps);
 904
 905done:
 906	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
 907		    speed, fec_req, fec, an_advertised, an, fc);
 908	ice_print_topo_conflict(vsi);
 909}
 910
 911/**
 912 * ice_vsi_link_event - update the VSI's netdev
 913 * @vsi: the VSI on which the link event occurred
 914 * @link_up: whether or not the VSI needs to be set up or down
 915 */
 916static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
 917{
 918	if (!vsi)
 919		return;
 920
 921	if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
 922		return;
 923
 924	if (vsi->type == ICE_VSI_PF) {
 925		if (link_up == netif_carrier_ok(vsi->netdev))
 926			return;
 927
 928		if (link_up) {
 929			netif_carrier_on(vsi->netdev);
 930			netif_tx_wake_all_queues(vsi->netdev);
 931		} else {
 932			netif_carrier_off(vsi->netdev);
 933			netif_tx_stop_all_queues(vsi->netdev);
 934		}
 935	}
 936}
 937
 938/**
 939 * ice_set_dflt_mib - send a default config MIB to the FW
 940 * @pf: private PF struct
 941 *
 942 * This function sends a default configuration MIB to the FW.
 943 *
 944 * If this function errors out at any point, the driver is still able to
 945 * function.  The main impact is that LFC may not operate as expected.
 946 * Therefore an error state in this function should be treated with a DBG
 947 * message and continue on with driver rebuild/reenable.
 948 */
 949static void ice_set_dflt_mib(struct ice_pf *pf)
 950{
 951	struct device *dev = ice_pf_to_dev(pf);
 952	u8 mib_type, *buf, *lldpmib = NULL;
 953	u16 len, typelen, offset = 0;
 954	struct ice_lldp_org_tlv *tlv;
 955	struct ice_hw *hw = &pf->hw;
 956	u32 ouisubtype;
 957
 
 
 
 
 
 
 958	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
 959	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
 960	if (!lldpmib) {
 961		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
 962			__func__);
 963		return;
 964	}
 965
 966	/* Add ETS CFG TLV */
 967	tlv = (struct ice_lldp_org_tlv *)lldpmib;
 968	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
 969		   ICE_IEEE_ETS_TLV_LEN);
 970	tlv->typelen = htons(typelen);
 971	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
 972		      ICE_IEEE_SUBTYPE_ETS_CFG);
 973	tlv->ouisubtype = htonl(ouisubtype);
 974
 975	buf = tlv->tlvinfo;
 976	buf[0] = 0;
 977
 978	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
 979	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
 980	 * Octets 13 - 20 are TSA values - leave as zeros
 981	 */
 982	buf[5] = 0x64;
 983	len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
 984	offset += len + 2;
 985	tlv = (struct ice_lldp_org_tlv *)
 986		((char *)tlv + sizeof(tlv->typelen) + len);
 987
 988	/* Add ETS REC TLV */
 989	buf = tlv->tlvinfo;
 990	tlv->typelen = htons(typelen);
 991
 992	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
 993		      ICE_IEEE_SUBTYPE_ETS_REC);
 994	tlv->ouisubtype = htonl(ouisubtype);
 995
 996	/* First octet of buf is reserved
 997	 * Octets 1 - 4 map UP to TC - all UPs map to zero
 998	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
 999	 * Octets 13 - 20 are TSA value - leave as zeros
1000	 */
1001	buf[5] = 0x64;
1002	offset += len + 2;
1003	tlv = (struct ice_lldp_org_tlv *)
1004		((char *)tlv + sizeof(tlv->typelen) + len);
1005
1006	/* Add PFC CFG TLV */
1007	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
1008		   ICE_IEEE_PFC_TLV_LEN);
1009	tlv->typelen = htons(typelen);
1010
1011	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
1012		      ICE_IEEE_SUBTYPE_PFC_CFG);
1013	tlv->ouisubtype = htonl(ouisubtype);
1014
1015	/* Octet 1 left as all zeros - PFC disabled */
1016	buf[0] = 0x08;
1017	len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
1018	offset += len + 2;
1019
1020	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
1021		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
1022
1023	kfree(lldpmib);
1024}
1025
1026/**
1027 * ice_check_phy_fw_load - check if PHY FW load failed
1028 * @pf: pointer to PF struct
1029 * @link_cfg_err: bitmap from the link info structure
1030 *
1031 * check if external PHY FW load failed and print an error message if it did
1032 */
1033static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1034{
1035	if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1036		clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1037		return;
1038	}
1039
1040	if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1041		return;
1042
1043	if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1044		dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1045		set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1046	}
1047}
1048
1049/**
1050 * ice_check_module_power
1051 * @pf: pointer to PF struct
1052 * @link_cfg_err: bitmap from the link info structure
1053 *
1054 * check module power level returned by a previous call to aq_get_link_info
1055 * and print error messages if module power level is not supported
1056 */
1057static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1058{
1059	/* if module power level is supported, clear the flag */
1060	if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1061			      ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1062		clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1063		return;
1064	}
1065
1066	/* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1067	 * above block didn't clear this bit, there's nothing to do
1068	 */
1069	if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1070		return;
1071
1072	if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1073		dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1074		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1075	} else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1076		dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1077		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1078	}
1079}
1080
1081/**
1082 * ice_check_link_cfg_err - check if link configuration failed
1083 * @pf: pointer to the PF struct
1084 * @link_cfg_err: bitmap from the link info structure
1085 *
1086 * print if any link configuration failure happens due to the value in the
1087 * link_cfg_err parameter in the link info structure
1088 */
1089static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1090{
1091	ice_check_module_power(pf, link_cfg_err);
1092	ice_check_phy_fw_load(pf, link_cfg_err);
1093}
1094
1095/**
1096 * ice_link_event - process the link event
1097 * @pf: PF that the link event is associated with
1098 * @pi: port_info for the port that the link event is associated with
1099 * @link_up: true if the physical link is up and false if it is down
1100 * @link_speed: current link speed received from the link event
1101 *
1102 * Returns 0 on success and negative on failure
1103 */
1104static int
1105ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1106	       u16 link_speed)
1107{
1108	struct device *dev = ice_pf_to_dev(pf);
1109	struct ice_phy_info *phy_info;
1110	struct ice_vsi *vsi;
1111	u16 old_link_speed;
1112	bool old_link;
1113	int status;
1114
1115	phy_info = &pi->phy;
1116	phy_info->link_info_old = phy_info->link_info;
1117
1118	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1119	old_link_speed = phy_info->link_info_old.link_speed;
1120
1121	/* update the link info structures and re-enable link events,
1122	 * don't bail on failure due to other book keeping needed
1123	 */
1124	status = ice_update_link_info(pi);
1125	if (status)
1126		dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1127			pi->lport, status,
1128			ice_aq_str(pi->hw->adminq.sq_last_status));
1129
1130	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1131
1132	/* Check if the link state is up after updating link info, and treat
1133	 * this event as an UP event since the link is actually UP now.
1134	 */
1135	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1136		link_up = true;
1137
1138	vsi = ice_get_main_vsi(pf);
1139	if (!vsi || !vsi->port_info)
1140		return -EINVAL;
1141
1142	/* turn off PHY if media was removed */
1143	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1144	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1145		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1146		ice_set_link(vsi, false);
 
 
 
 
 
 
1147	}
1148
1149	/* if the old link up/down and speed is the same as the new */
1150	if (link_up == old_link && link_speed == old_link_speed)
1151		return 0;
1152
1153	ice_ptp_link_change(pf, pf->hw.pf_id, link_up);
1154
1155	if (ice_is_dcb_active(pf)) {
1156		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1157			ice_dcb_rebuild(pf);
1158	} else {
1159		if (link_up)
1160			ice_set_dflt_mib(pf);
1161	}
1162	ice_vsi_link_event(vsi, link_up);
1163	ice_print_link_msg(vsi, link_up);
1164
1165	ice_vc_notify_link_state(pf);
1166
1167	return 0;
1168}
1169
1170/**
1171 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1172 * @pf: board private structure
1173 */
1174static void ice_watchdog_subtask(struct ice_pf *pf)
1175{
1176	int i;
1177
1178	/* if interface is down do nothing */
1179	if (test_bit(ICE_DOWN, pf->state) ||
1180	    test_bit(ICE_CFG_BUSY, pf->state))
1181		return;
1182
1183	/* make sure we don't do these things too often */
1184	if (time_before(jiffies,
1185			pf->serv_tmr_prev + pf->serv_tmr_period))
1186		return;
1187
1188	pf->serv_tmr_prev = jiffies;
1189
1190	/* Update the stats for active netdevs so the network stack
1191	 * can look at updated numbers whenever it cares to
1192	 */
1193	ice_update_pf_stats(pf);
1194	ice_for_each_vsi(pf, i)
1195		if (pf->vsi[i] && pf->vsi[i]->netdev)
1196			ice_update_vsi_stats(pf->vsi[i]);
1197}
1198
1199/**
1200 * ice_init_link_events - enable/initialize link events
1201 * @pi: pointer to the port_info instance
1202 *
1203 * Returns -EIO on failure, 0 on success
1204 */
1205static int ice_init_link_events(struct ice_port_info *pi)
1206{
1207	u16 mask;
1208
1209	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1210		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1211		       ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1212
1213	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1214		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1215			pi->lport);
1216		return -EIO;
1217	}
1218
1219	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1220		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1221			pi->lport);
1222		return -EIO;
1223	}
1224
1225	return 0;
1226}
1227
1228/**
1229 * ice_handle_link_event - handle link event via ARQ
1230 * @pf: PF that the link event is associated with
1231 * @event: event structure containing link status info
1232 */
1233static int
1234ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1235{
1236	struct ice_aqc_get_link_status_data *link_data;
1237	struct ice_port_info *port_info;
1238	int status;
1239
1240	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1241	port_info = pf->hw.port_info;
1242	if (!port_info)
1243		return -EINVAL;
1244
1245	status = ice_link_event(pf, port_info,
1246				!!(link_data->link_info & ICE_AQ_LINK_UP),
1247				le16_to_cpu(link_data->link_speed));
1248	if (status)
1249		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1250			status);
1251
1252	return status;
1253}
1254
1255/**
1256 * ice_get_fwlog_data - copy the FW log data from ARQ event
1257 * @pf: PF that the FW log event is associated with
1258 * @event: event structure containing FW log data
1259 */
1260static void
1261ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event)
1262{
1263	struct ice_fwlog_data *fwlog;
1264	struct ice_hw *hw = &pf->hw;
1265
1266	fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail];
1267
1268	memset(fwlog->data, 0, PAGE_SIZE);
1269	fwlog->data_size = le16_to_cpu(event->desc.datalen);
1270
1271	memcpy(fwlog->data, event->msg_buf, fwlog->data_size);
1272	ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size);
1273
1274	if (ice_fwlog_ring_full(&hw->fwlog_ring)) {
1275		/* the rings are full so bump the head to create room */
1276		ice_fwlog_ring_increment(&hw->fwlog_ring.head,
1277					 hw->fwlog_ring.size);
1278	}
1279}
1280
1281/**
1282 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware
1283 * @pf: pointer to the PF private structure
1284 * @task: intermediate helper storage and identifier for waiting
1285 * @opcode: the opcode to wait for
 
 
1286 *
1287 * Prepares to wait for a specific AdminQ completion event on the ARQ for
1288 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event().
1289 *
1290 * Calls are separated to allow caller registering for event before sending
1291 * the command, which mitigates a race between registering and FW responding.
1292 *
1293 * To obtain only the descriptor contents, pass an task->event with null
1294 * msg_buf. If the complete data buffer is desired, allocate the
1295 * task->event.msg_buf with enough space ahead of time.
 
 
1296 */
1297void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1298			   u16 opcode)
1299{
 
 
 
 
 
 
 
 
1300	INIT_HLIST_NODE(&task->entry);
1301	task->opcode = opcode;
 
1302	task->state = ICE_AQ_TASK_WAITING;
1303
1304	spin_lock_bh(&pf->aq_wait_lock);
1305	hlist_add_head(&task->entry, &pf->aq_wait_list);
1306	spin_unlock_bh(&pf->aq_wait_lock);
1307}
1308
1309/**
1310 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1311 * @pf: pointer to the PF private structure
1312 * @task: ptr prepared by ice_aq_prep_for_event()
1313 * @timeout: how long to wait, in jiffies
1314 *
1315 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1316 * current thread will be put to sleep until the specified event occurs or
1317 * until the given timeout is reached.
1318 *
1319 * Returns: zero on success, or a negative error code on failure.
1320 */
1321int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1322			  unsigned long timeout)
1323{
1324	enum ice_aq_task_state *state = &task->state;
1325	struct device *dev = ice_pf_to_dev(pf);
1326	unsigned long start = jiffies;
1327	long ret;
1328	int err;
1329
1330	ret = wait_event_interruptible_timeout(pf->aq_wait_queue,
1331					       *state != ICE_AQ_TASK_WAITING,
1332					       timeout);
1333	switch (*state) {
1334	case ICE_AQ_TASK_NOT_PREPARED:
1335		WARN(1, "call to %s without ice_aq_prep_for_event()", __func__);
1336		err = -EINVAL;
1337		break;
1338	case ICE_AQ_TASK_WAITING:
1339		err = ret < 0 ? ret : -ETIMEDOUT;
1340		break;
1341	case ICE_AQ_TASK_CANCELED:
1342		err = ret < 0 ? ret : -ECANCELED;
1343		break;
1344	case ICE_AQ_TASK_COMPLETE:
1345		err = ret < 0 ? ret : 0;
1346		break;
1347	default:
1348		WARN(1, "Unexpected AdminQ wait task state %u", *state);
1349		err = -EINVAL;
1350		break;
1351	}
1352
1353	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1354		jiffies_to_msecs(jiffies - start),
1355		jiffies_to_msecs(timeout),
1356		task->opcode);
1357
1358	spin_lock_bh(&pf->aq_wait_lock);
1359	hlist_del(&task->entry);
1360	spin_unlock_bh(&pf->aq_wait_lock);
 
1361
1362	return err;
1363}
1364
1365/**
1366 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1367 * @pf: pointer to the PF private structure
1368 * @opcode: the opcode of the event
1369 * @event: the event to check
1370 *
1371 * Loops over the current list of pending threads waiting for an AdminQ event.
1372 * For each matching task, copy the contents of the event into the task
1373 * structure and wake up the thread.
1374 *
1375 * If multiple threads wait for the same opcode, they will all be woken up.
1376 *
1377 * Note that event->msg_buf will only be duplicated if the event has a buffer
1378 * with enough space already allocated. Otherwise, only the descriptor and
1379 * message length will be copied.
1380 *
1381 * Returns: true if an event was found, false otherwise
1382 */
1383static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1384				struct ice_rq_event_info *event)
1385{
1386	struct ice_rq_event_info *task_ev;
1387	struct ice_aq_task *task;
1388	bool found = false;
1389
1390	spin_lock_bh(&pf->aq_wait_lock);
1391	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1392		if (task->state != ICE_AQ_TASK_WAITING)
1393			continue;
1394		if (task->opcode != opcode)
1395			continue;
1396
1397		task_ev = &task->event;
1398		memcpy(&task_ev->desc, &event->desc, sizeof(event->desc));
1399		task_ev->msg_len = event->msg_len;
1400
1401		/* Only copy the data buffer if a destination was set */
1402		if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) {
1403			memcpy(task_ev->msg_buf, event->msg_buf,
 
1404			       event->buf_len);
1405			task_ev->buf_len = event->buf_len;
1406		}
1407
1408		task->state = ICE_AQ_TASK_COMPLETE;
1409		found = true;
1410	}
1411	spin_unlock_bh(&pf->aq_wait_lock);
1412
1413	if (found)
1414		wake_up(&pf->aq_wait_queue);
1415}
1416
1417/**
1418 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1419 * @pf: the PF private structure
1420 *
1421 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1422 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1423 */
1424static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1425{
1426	struct ice_aq_task *task;
1427
1428	spin_lock_bh(&pf->aq_wait_lock);
1429	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1430		task->state = ICE_AQ_TASK_CANCELED;
1431	spin_unlock_bh(&pf->aq_wait_lock);
1432
1433	wake_up(&pf->aq_wait_queue);
1434}
1435
1436#define ICE_MBX_OVERFLOW_WATERMARK 64
1437
1438/**
1439 * __ice_clean_ctrlq - helper function to clean controlq rings
1440 * @pf: ptr to struct ice_pf
1441 * @q_type: specific Control queue type
1442 */
1443static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1444{
1445	struct device *dev = ice_pf_to_dev(pf);
1446	struct ice_rq_event_info event;
1447	struct ice_hw *hw = &pf->hw;
1448	struct ice_ctl_q_info *cq;
1449	u16 pending, i = 0;
1450	const char *qtype;
1451	u32 oldval, val;
1452
1453	/* Do not clean control queue if/when PF reset fails */
1454	if (test_bit(ICE_RESET_FAILED, pf->state))
1455		return 0;
1456
1457	switch (q_type) {
1458	case ICE_CTL_Q_ADMIN:
1459		cq = &hw->adminq;
1460		qtype = "Admin";
1461		break;
1462	case ICE_CTL_Q_SB:
1463		cq = &hw->sbq;
1464		qtype = "Sideband";
1465		break;
1466	case ICE_CTL_Q_MAILBOX:
1467		cq = &hw->mailboxq;
1468		qtype = "Mailbox";
1469		/* we are going to try to detect a malicious VF, so set the
1470		 * state to begin detection
1471		 */
1472		hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1473		break;
1474	default:
1475		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1476		return 0;
1477	}
1478
1479	/* check for error indications - PF_xx_AxQLEN register layout for
1480	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1481	 */
1482	val = rd32(hw, cq->rq.len);
1483	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1484		   PF_FW_ARQLEN_ARQCRIT_M)) {
1485		oldval = val;
1486		if (val & PF_FW_ARQLEN_ARQVFE_M)
1487			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1488				qtype);
1489		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1490			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1491				qtype);
1492		}
1493		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1494			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1495				qtype);
1496		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1497			 PF_FW_ARQLEN_ARQCRIT_M);
1498		if (oldval != val)
1499			wr32(hw, cq->rq.len, val);
1500	}
1501
1502	val = rd32(hw, cq->sq.len);
1503	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1504		   PF_FW_ATQLEN_ATQCRIT_M)) {
1505		oldval = val;
1506		if (val & PF_FW_ATQLEN_ATQVFE_M)
1507			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1508				qtype);
1509		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1510			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1511				qtype);
1512		}
1513		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1514			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1515				qtype);
1516		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1517			 PF_FW_ATQLEN_ATQCRIT_M);
1518		if (oldval != val)
1519			wr32(hw, cq->sq.len, val);
1520	}
1521
1522	event.buf_len = cq->rq_buf_size;
1523	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1524	if (!event.msg_buf)
1525		return 0;
1526
1527	do {
1528		struct ice_mbx_data data = {};
1529		u16 opcode;
1530		int ret;
1531
1532		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1533		if (ret == -EALREADY)
1534			break;
1535		if (ret) {
1536			dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1537				ret);
1538			break;
1539		}
1540
1541		opcode = le16_to_cpu(event.desc.opcode);
1542
1543		/* Notify any thread that might be waiting for this event */
1544		ice_aq_check_events(pf, opcode, &event);
1545
1546		switch (opcode) {
1547		case ice_aqc_opc_get_link_status:
1548			if (ice_handle_link_event(pf, &event))
1549				dev_err(dev, "Could not handle link event\n");
1550			break;
1551		case ice_aqc_opc_event_lan_overflow:
1552			ice_vf_lan_overflow_event(pf, &event);
1553			break;
1554		case ice_mbx_opc_send_msg_to_pf:
1555			data.num_msg_proc = i;
1556			data.num_pending_arq = pending;
1557			data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries;
1558			data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK;
1559
1560			ice_vc_process_vf_msg(pf, &event, &data);
1561			break;
1562		case ice_aqc_opc_fw_logs_event:
1563			ice_get_fwlog_data(pf, &event);
1564			break;
1565		case ice_aqc_opc_lldp_set_mib_change:
1566			ice_dcb_process_lldp_set_mib_change(pf, &event);
1567			break;
1568		default:
1569			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1570				qtype, opcode);
1571			break;
1572		}
1573	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1574
1575	kfree(event.msg_buf);
1576
1577	return pending && (i == ICE_DFLT_IRQ_WORK);
1578}
1579
1580/**
1581 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1582 * @hw: pointer to hardware info
1583 * @cq: control queue information
1584 *
1585 * returns true if there are pending messages in a queue, false if there aren't
1586 */
1587static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1588{
1589	u16 ntu;
1590
1591	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1592	return cq->rq.next_to_clean != ntu;
1593}
1594
1595/**
1596 * ice_clean_adminq_subtask - clean the AdminQ rings
1597 * @pf: board private structure
1598 */
1599static void ice_clean_adminq_subtask(struct ice_pf *pf)
1600{
1601	struct ice_hw *hw = &pf->hw;
1602
1603	if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1604		return;
1605
1606	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1607		return;
1608
1609	clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1610
1611	/* There might be a situation where new messages arrive to a control
1612	 * queue between processing the last message and clearing the
1613	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1614	 * ice_ctrlq_pending) and process new messages if any.
1615	 */
1616	if (ice_ctrlq_pending(hw, &hw->adminq))
1617		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1618
1619	ice_flush(hw);
1620}
1621
1622/**
1623 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1624 * @pf: board private structure
1625 */
1626static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1627{
1628	struct ice_hw *hw = &pf->hw;
1629
1630	if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1631		return;
1632
1633	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1634		return;
1635
1636	clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1637
1638	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1639		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1640
1641	ice_flush(hw);
1642}
1643
1644/**
1645 * ice_clean_sbq_subtask - clean the Sideband Queue rings
1646 * @pf: board private structure
1647 */
1648static void ice_clean_sbq_subtask(struct ice_pf *pf)
1649{
1650	struct ice_hw *hw = &pf->hw;
1651
1652	/* Nothing to do here if sideband queue is not supported */
1653	if (!ice_is_sbq_supported(hw)) {
1654		clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1655		return;
1656	}
1657
1658	if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1659		return;
1660
1661	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1662		return;
1663
1664	clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1665
1666	if (ice_ctrlq_pending(hw, &hw->sbq))
1667		__ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1668
1669	ice_flush(hw);
1670}
1671
1672/**
1673 * ice_service_task_schedule - schedule the service task to wake up
1674 * @pf: board private structure
1675 *
1676 * If not already scheduled, this puts the task into the work queue.
1677 */
1678void ice_service_task_schedule(struct ice_pf *pf)
1679{
1680	if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1681	    !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1682	    !test_bit(ICE_NEEDS_RESTART, pf->state))
1683		queue_work(ice_wq, &pf->serv_task);
1684}
1685
1686/**
1687 * ice_service_task_complete - finish up the service task
1688 * @pf: board private structure
1689 */
1690static void ice_service_task_complete(struct ice_pf *pf)
1691{
1692	WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1693
1694	/* force memory (pf->state) to sync before next service task */
1695	smp_mb__before_atomic();
1696	clear_bit(ICE_SERVICE_SCHED, pf->state);
1697}
1698
1699/**
1700 * ice_service_task_stop - stop service task and cancel works
1701 * @pf: board private structure
1702 *
1703 * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1704 * 1 otherwise.
1705 */
1706static int ice_service_task_stop(struct ice_pf *pf)
1707{
1708	int ret;
1709
1710	ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1711
1712	if (pf->serv_tmr.function)
1713		del_timer_sync(&pf->serv_tmr);
1714	if (pf->serv_task.func)
1715		cancel_work_sync(&pf->serv_task);
1716
1717	clear_bit(ICE_SERVICE_SCHED, pf->state);
1718	return ret;
1719}
1720
1721/**
1722 * ice_service_task_restart - restart service task and schedule works
1723 * @pf: board private structure
1724 *
1725 * This function is needed for suspend and resume works (e.g WoL scenario)
1726 */
1727static void ice_service_task_restart(struct ice_pf *pf)
1728{
1729	clear_bit(ICE_SERVICE_DIS, pf->state);
1730	ice_service_task_schedule(pf);
1731}
1732
1733/**
1734 * ice_service_timer - timer callback to schedule service task
1735 * @t: pointer to timer_list
1736 */
1737static void ice_service_timer(struct timer_list *t)
1738{
1739	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1740
1741	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1742	ice_service_task_schedule(pf);
1743}
1744
1745/**
1746 * ice_handle_mdd_event - handle malicious driver detect event
1747 * @pf: pointer to the PF structure
1748 *
1749 * Called from service task. OICR interrupt handler indicates MDD event.
1750 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1751 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1752 * disable the queue, the PF can be configured to reset the VF using ethtool
1753 * private flag mdd-auto-reset-vf.
1754 */
1755static void ice_handle_mdd_event(struct ice_pf *pf)
1756{
1757	struct device *dev = ice_pf_to_dev(pf);
1758	struct ice_hw *hw = &pf->hw;
1759	struct ice_vf *vf;
1760	unsigned int bkt;
1761	u32 reg;
1762
1763	if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1764		/* Since the VF MDD event logging is rate limited, check if
1765		 * there are pending MDD events.
1766		 */
1767		ice_print_vfs_mdd_events(pf);
1768		return;
1769	}
1770
1771	/* find what triggered an MDD event */
1772	reg = rd32(hw, GL_MDET_TX_PQM);
1773	if (reg & GL_MDET_TX_PQM_VALID_M) {
1774		u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg);
1775		u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg);
1776		u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg);
1777		u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg);
 
 
 
 
1778
1779		if (netif_msg_tx_err(pf))
1780			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1781				 event, queue, pf_num, vf_num);
1782		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1783	}
1784
1785	reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw));
1786	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1787		u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg);
1788		u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg);
1789		u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg);
1790		u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg);
 
 
 
 
1791
1792		if (netif_msg_tx_err(pf))
1793			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1794				 event, queue, pf_num, vf_num);
1795		wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX);
1796	}
1797
1798	reg = rd32(hw, GL_MDET_RX);
1799	if (reg & GL_MDET_RX_VALID_M) {
1800		u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg);
1801		u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg);
1802		u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg);
1803		u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg);
 
 
 
 
1804
1805		if (netif_msg_rx_err(pf))
1806			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1807				 event, queue, pf_num, vf_num);
1808		wr32(hw, GL_MDET_RX, 0xffffffff);
1809	}
1810
1811	/* check to see if this PF caused an MDD event */
1812	reg = rd32(hw, PF_MDET_TX_PQM);
1813	if (reg & PF_MDET_TX_PQM_VALID_M) {
1814		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1815		if (netif_msg_tx_err(pf))
1816			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1817	}
1818
1819	reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw));
1820	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1821		wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff);
1822		if (netif_msg_tx_err(pf))
1823			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1824	}
1825
1826	reg = rd32(hw, PF_MDET_RX);
1827	if (reg & PF_MDET_RX_VALID_M) {
1828		wr32(hw, PF_MDET_RX, 0xFFFF);
1829		if (netif_msg_rx_err(pf))
1830			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1831	}
1832
1833	/* Check to see if one of the VFs caused an MDD event, and then
1834	 * increment counters and set print pending
1835	 */
1836	mutex_lock(&pf->vfs.table_lock);
1837	ice_for_each_vf(pf, bkt, vf) {
1838		reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
 
1839		if (reg & VP_MDET_TX_PQM_VALID_M) {
1840			wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1841			vf->mdd_tx_events.count++;
1842			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1843			if (netif_msg_tx_err(pf))
1844				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1845					 vf->vf_id);
1846		}
1847
1848		reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1849		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1850			wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1851			vf->mdd_tx_events.count++;
1852			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1853			if (netif_msg_tx_err(pf))
1854				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1855					 vf->vf_id);
1856		}
1857
1858		reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1859		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1860			wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1861			vf->mdd_tx_events.count++;
1862			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1863			if (netif_msg_tx_err(pf))
1864				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1865					 vf->vf_id);
1866		}
1867
1868		reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1869		if (reg & VP_MDET_RX_VALID_M) {
1870			wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1871			vf->mdd_rx_events.count++;
1872			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1873			if (netif_msg_rx_err(pf))
1874				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1875					 vf->vf_id);
1876
1877			/* Since the queue is disabled on VF Rx MDD events, the
1878			 * PF can be configured to reset the VF through ethtool
1879			 * private flag mdd-auto-reset-vf.
1880			 */
1881			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1882				/* VF MDD event counters will be cleared by
1883				 * reset, so print the event prior to reset.
1884				 */
1885				ice_print_vf_rx_mdd_event(vf);
1886				ice_reset_vf(vf, ICE_VF_RESET_LOCK);
1887			}
1888		}
1889	}
1890	mutex_unlock(&pf->vfs.table_lock);
1891
1892	ice_print_vfs_mdd_events(pf);
1893}
1894
1895/**
1896 * ice_force_phys_link_state - Force the physical link state
1897 * @vsi: VSI to force the physical link state to up/down
1898 * @link_up: true/false indicates to set the physical link to up/down
1899 *
1900 * Force the physical link state by getting the current PHY capabilities from
1901 * hardware and setting the PHY config based on the determined capabilities. If
1902 * link changes a link event will be triggered because both the Enable Automatic
1903 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1904 *
1905 * Returns 0 on success, negative on failure
1906 */
1907static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1908{
1909	struct ice_aqc_get_phy_caps_data *pcaps;
1910	struct ice_aqc_set_phy_cfg_data *cfg;
1911	struct ice_port_info *pi;
1912	struct device *dev;
1913	int retcode;
1914
1915	if (!vsi || !vsi->port_info || !vsi->back)
1916		return -EINVAL;
1917	if (vsi->type != ICE_VSI_PF)
1918		return 0;
1919
1920	dev = ice_pf_to_dev(vsi->back);
1921
1922	pi = vsi->port_info;
1923
1924	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1925	if (!pcaps)
1926		return -ENOMEM;
1927
1928	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1929				      NULL);
1930	if (retcode) {
1931		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1932			vsi->vsi_num, retcode);
1933		retcode = -EIO;
1934		goto out;
1935	}
1936
1937	/* No change in link */
1938	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1939	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1940		goto out;
1941
1942	/* Use the current user PHY configuration. The current user PHY
1943	 * configuration is initialized during probe from PHY capabilities
1944	 * software mode, and updated on set PHY configuration.
1945	 */
1946	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1947	if (!cfg) {
1948		retcode = -ENOMEM;
1949		goto out;
1950	}
1951
1952	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1953	if (link_up)
1954		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1955	else
1956		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1957
1958	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1959	if (retcode) {
1960		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1961			vsi->vsi_num, retcode);
1962		retcode = -EIO;
1963	}
1964
1965	kfree(cfg);
1966out:
1967	kfree(pcaps);
1968	return retcode;
1969}
1970
1971/**
1972 * ice_init_nvm_phy_type - Initialize the NVM PHY type
1973 * @pi: port info structure
1974 *
1975 * Initialize nvm_phy_type_[low|high] for link lenient mode support
1976 */
1977static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1978{
1979	struct ice_aqc_get_phy_caps_data *pcaps;
1980	struct ice_pf *pf = pi->hw->back;
1981	int err;
 
1982
1983	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1984	if (!pcaps)
1985		return -ENOMEM;
1986
1987	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
1988				  pcaps, NULL);
1989
1990	if (err) {
1991		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
 
1992		goto out;
1993	}
1994
1995	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1996	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1997
1998out:
1999	kfree(pcaps);
2000	return err;
2001}
2002
2003/**
2004 * ice_init_link_dflt_override - Initialize link default override
2005 * @pi: port info structure
2006 *
2007 * Initialize link default override and PHY total port shutdown during probe
2008 */
2009static void ice_init_link_dflt_override(struct ice_port_info *pi)
2010{
2011	struct ice_link_default_override_tlv *ldo;
2012	struct ice_pf *pf = pi->hw->back;
2013
2014	ldo = &pf->link_dflt_override;
2015	if (ice_get_link_default_override(ldo, pi))
2016		return;
2017
2018	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
2019		return;
2020
2021	/* Enable Total Port Shutdown (override/replace link-down-on-close
2022	 * ethtool private flag) for ports with Port Disable bit set.
2023	 */
2024	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
2025	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
2026}
2027
2028/**
2029 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
2030 * @pi: port info structure
2031 *
2032 * If default override is enabled, initialize the user PHY cfg speed and FEC
2033 * settings using the default override mask from the NVM.
2034 *
2035 * The PHY should only be configured with the default override settings the
2036 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
2037 * is used to indicate that the user PHY cfg default override is initialized
2038 * and the PHY has not been configured with the default override settings. The
2039 * state is set here, and cleared in ice_configure_phy the first time the PHY is
2040 * configured.
2041 *
2042 * This function should be called only if the FW doesn't support default
2043 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
2044 */
2045static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
2046{
2047	struct ice_link_default_override_tlv *ldo;
2048	struct ice_aqc_set_phy_cfg_data *cfg;
2049	struct ice_phy_info *phy = &pi->phy;
2050	struct ice_pf *pf = pi->hw->back;
2051
2052	ldo = &pf->link_dflt_override;
2053
2054	/* If link default override is enabled, use to mask NVM PHY capabilities
2055	 * for speed and FEC default configuration.
2056	 */
2057	cfg = &phy->curr_user_phy_cfg;
2058
2059	if (ldo->phy_type_low || ldo->phy_type_high) {
2060		cfg->phy_type_low = pf->nvm_phy_type_lo &
2061				    cpu_to_le64(ldo->phy_type_low);
2062		cfg->phy_type_high = pf->nvm_phy_type_hi &
2063				     cpu_to_le64(ldo->phy_type_high);
2064	}
2065	cfg->link_fec_opt = ldo->fec_options;
2066	phy->curr_user_fec_req = ICE_FEC_AUTO;
2067
2068	set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2069}
2070
2071/**
2072 * ice_init_phy_user_cfg - Initialize the PHY user configuration
2073 * @pi: port info structure
2074 *
2075 * Initialize the current user PHY configuration, speed, FEC, and FC requested
2076 * mode to default. The PHY defaults are from get PHY capabilities topology
2077 * with media so call when media is first available. An error is returned if
2078 * called when media is not available. The PHY initialization completed state is
2079 * set here.
2080 *
2081 * These configurations are used when setting PHY
2082 * configuration. The user PHY configuration is updated on set PHY
2083 * configuration. Returns 0 on success, negative on failure
2084 */
2085static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2086{
2087	struct ice_aqc_get_phy_caps_data *pcaps;
2088	struct ice_phy_info *phy = &pi->phy;
2089	struct ice_pf *pf = pi->hw->back;
2090	int err;
 
 
2091
2092	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2093		return -EIO;
2094
 
 
 
 
2095	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2096	if (!pcaps)
2097		return -ENOMEM;
2098
2099	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2100		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2101					  pcaps, NULL);
2102	else
2103		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2104					  pcaps, NULL);
2105	if (err) {
2106		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
 
2107		goto err_out;
2108	}
2109
2110	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2111
2112	/* check if lenient mode is supported and enabled */
2113	if (ice_fw_supports_link_override(pi->hw) &&
2114	    !(pcaps->module_compliance_enforcement &
2115	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2116		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2117
2118		/* if the FW supports default PHY configuration mode, then the driver
2119		 * does not have to apply link override settings. If not,
2120		 * initialize user PHY configuration with link override values
2121		 */
2122		if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2123		    (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2124			ice_init_phy_cfg_dflt_override(pi);
2125			goto out;
2126		}
2127	}
2128
2129	/* if link default override is not enabled, set user flow control and
2130	 * FEC settings based on what get_phy_caps returned
2131	 */
2132	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2133						      pcaps->link_fec_options);
2134	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2135
2136out:
2137	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2138	set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2139err_out:
2140	kfree(pcaps);
2141	return err;
2142}
2143
2144/**
2145 * ice_configure_phy - configure PHY
2146 * @vsi: VSI of PHY
2147 *
2148 * Set the PHY configuration. If the current PHY configuration is the same as
2149 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2150 * configure the based get PHY capabilities for topology with media.
2151 */
2152static int ice_configure_phy(struct ice_vsi *vsi)
2153{
2154	struct device *dev = ice_pf_to_dev(vsi->back);
2155	struct ice_port_info *pi = vsi->port_info;
2156	struct ice_aqc_get_phy_caps_data *pcaps;
2157	struct ice_aqc_set_phy_cfg_data *cfg;
2158	struct ice_phy_info *phy = &pi->phy;
2159	struct ice_pf *pf = vsi->back;
2160	int err;
 
 
 
 
2161
2162	/* Ensure we have media as we cannot configure a medialess port */
2163	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2164		return -ENOMEDIUM;
2165
2166	ice_print_topo_conflict(vsi);
2167
2168	if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2169	    phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2170		return -EPERM;
2171
2172	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2173		return ice_force_phys_link_state(vsi, true);
2174
2175	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2176	if (!pcaps)
2177		return -ENOMEM;
2178
2179	/* Get current PHY config */
2180	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2181				  NULL);
2182	if (err) {
2183		dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2184			vsi->vsi_num, err);
 
2185		goto done;
2186	}
2187
2188	/* If PHY enable link is configured and configuration has not changed,
2189	 * there's nothing to do
2190	 */
2191	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2192	    ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2193		goto done;
2194
2195	/* Use PHY topology as baseline for configuration */
2196	memset(pcaps, 0, sizeof(*pcaps));
2197	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2198		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2199					  pcaps, NULL);
2200	else
2201		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2202					  pcaps, NULL);
2203	if (err) {
2204		dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2205			vsi->vsi_num, err);
2206		goto done;
2207	}
2208
2209	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2210	if (!cfg) {
2211		err = -ENOMEM;
2212		goto done;
2213	}
2214
2215	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2216
2217	/* Speed - If default override pending, use curr_user_phy_cfg set in
2218	 * ice_init_phy_user_cfg_ldo.
2219	 */
2220	if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2221			       vsi->back->state)) {
2222		cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2223		cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2224	} else {
2225		u64 phy_low = 0, phy_high = 0;
2226
2227		ice_update_phy_type(&phy_low, &phy_high,
2228				    pi->phy.curr_user_speed_req);
2229		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2230		cfg->phy_type_high = pcaps->phy_type_high &
2231				     cpu_to_le64(phy_high);
2232	}
2233
2234	/* Can't provide what was requested; use PHY capabilities */
2235	if (!cfg->phy_type_low && !cfg->phy_type_high) {
2236		cfg->phy_type_low = pcaps->phy_type_low;
2237		cfg->phy_type_high = pcaps->phy_type_high;
2238	}
2239
2240	/* FEC */
2241	ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2242
2243	/* Can't provide what was requested; use PHY capabilities */
2244	if (cfg->link_fec_opt !=
2245	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
2246		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2247		cfg->link_fec_opt = pcaps->link_fec_options;
2248	}
2249
2250	/* Flow Control - always supported; no need to check against
2251	 * capabilities
2252	 */
2253	ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2254
2255	/* Enable link and link update */
2256	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2257
2258	err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2259	if (err)
2260		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2261			vsi->vsi_num, err);
 
 
2262
2263	kfree(cfg);
2264done:
2265	kfree(pcaps);
2266	return err;
2267}
2268
2269/**
2270 * ice_check_media_subtask - Check for media
2271 * @pf: pointer to PF struct
2272 *
2273 * If media is available, then initialize PHY user configuration if it is not
2274 * been, and configure the PHY if the interface is up.
2275 */
2276static void ice_check_media_subtask(struct ice_pf *pf)
2277{
2278	struct ice_port_info *pi;
2279	struct ice_vsi *vsi;
2280	int err;
2281
2282	/* No need to check for media if it's already present */
2283	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2284		return;
2285
2286	vsi = ice_get_main_vsi(pf);
2287	if (!vsi)
2288		return;
2289
2290	/* Refresh link info and check if media is present */
2291	pi = vsi->port_info;
2292	err = ice_update_link_info(pi);
2293	if (err)
2294		return;
2295
2296	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2297
2298	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2299		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2300			ice_init_phy_user_cfg(pi);
2301
2302		/* PHY settings are reset on media insertion, reconfigure
2303		 * PHY to preserve settings.
2304		 */
2305		if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2306		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2307			return;
2308
2309		err = ice_configure_phy(vsi);
2310		if (!err)
2311			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2312
2313		/* A Link Status Event will be generated; the event handler
2314		 * will complete bringing the interface up
2315		 */
2316	}
2317}
2318
2319/**
2320 * ice_service_task - manage and run subtasks
2321 * @work: pointer to work_struct contained by the PF struct
2322 */
2323static void ice_service_task(struct work_struct *work)
2324{
2325	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2326	unsigned long start_time = jiffies;
2327
2328	/* subtasks */
2329
2330	/* process reset requests first */
2331	ice_reset_subtask(pf);
2332
2333	/* bail if a reset/recovery cycle is pending or rebuild failed */
2334	if (ice_is_reset_in_progress(pf->state) ||
2335	    test_bit(ICE_SUSPENDED, pf->state) ||
2336	    test_bit(ICE_NEEDS_RESTART, pf->state)) {
2337		ice_service_task_complete(pf);
2338		return;
2339	}
2340
2341	if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2342		struct iidc_event *event;
2343
2344		event = kzalloc(sizeof(*event), GFP_KERNEL);
2345		if (event) {
2346			set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2347			/* report the entire OICR value to AUX driver */
2348			swap(event->reg, pf->oicr_err_reg);
2349			ice_send_event_to_aux(pf, event);
2350			kfree(event);
2351		}
2352	}
2353
2354	/* unplug aux dev per request, if an unplug request came in
2355	 * while processing a plug request, this will handle it
2356	 */
2357	if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags))
2358		ice_unplug_aux_dev(pf);
2359
2360	/* Plug aux device per request */
2361	if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2362		ice_plug_aux_dev(pf);
2363
2364	if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2365		struct iidc_event *event;
2366
2367		event = kzalloc(sizeof(*event), GFP_KERNEL);
2368		if (event) {
2369			set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2370			ice_send_event_to_aux(pf, event);
2371			kfree(event);
2372		}
2373	}
2374
2375	ice_clean_adminq_subtask(pf);
2376	ice_check_media_subtask(pf);
2377	ice_check_for_hang_subtask(pf);
2378	ice_sync_fltr_subtask(pf);
2379	ice_handle_mdd_event(pf);
2380	ice_watchdog_subtask(pf);
2381
2382	if (ice_is_safe_mode(pf)) {
2383		ice_service_task_complete(pf);
2384		return;
2385	}
2386
2387	ice_process_vflr_event(pf);
2388	ice_clean_mailboxq_subtask(pf);
2389	ice_clean_sbq_subtask(pf);
2390	ice_sync_arfs_fltrs(pf);
2391	ice_flush_fdir_ctx(pf);
2392
2393	/* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2394	ice_service_task_complete(pf);
2395
2396	/* If the tasks have taken longer than one service timer period
2397	 * or there is more work to be done, reset the service timer to
2398	 * schedule the service task now.
2399	 */
2400	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2401	    test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2402	    test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2403	    test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2404	    test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2405	    test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2406	    test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2407		mod_timer(&pf->serv_tmr, jiffies);
2408}
2409
2410/**
2411 * ice_set_ctrlq_len - helper function to set controlq length
2412 * @hw: pointer to the HW instance
2413 */
2414static void ice_set_ctrlq_len(struct ice_hw *hw)
2415{
2416	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2417	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2418	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2419	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2420	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2421	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2422	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2423	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2424	hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2425	hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2426	hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2427	hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2428}
2429
2430/**
2431 * ice_schedule_reset - schedule a reset
2432 * @pf: board private structure
2433 * @reset: reset being requested
2434 */
2435int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2436{
2437	struct device *dev = ice_pf_to_dev(pf);
2438
2439	/* bail out if earlier reset has failed */
2440	if (test_bit(ICE_RESET_FAILED, pf->state)) {
2441		dev_dbg(dev, "earlier reset has failed\n");
2442		return -EIO;
2443	}
2444	/* bail if reset/recovery already in progress */
2445	if (ice_is_reset_in_progress(pf->state)) {
2446		dev_dbg(dev, "Reset already in progress\n");
2447		return -EBUSY;
2448	}
2449
2450	switch (reset) {
2451	case ICE_RESET_PFR:
2452		set_bit(ICE_PFR_REQ, pf->state);
2453		break;
2454	case ICE_RESET_CORER:
2455		set_bit(ICE_CORER_REQ, pf->state);
2456		break;
2457	case ICE_RESET_GLOBR:
2458		set_bit(ICE_GLOBR_REQ, pf->state);
2459		break;
2460	default:
2461		return -EINVAL;
2462	}
2463
2464	ice_service_task_schedule(pf);
2465	return 0;
2466}
2467
2468/**
2469 * ice_irq_affinity_notify - Callback for affinity changes
2470 * @notify: context as to what irq was changed
2471 * @mask: the new affinity mask
2472 *
2473 * This is a callback function used by the irq_set_affinity_notifier function
2474 * so that we may register to receive changes to the irq affinity masks.
2475 */
2476static void
2477ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2478			const cpumask_t *mask)
2479{
2480	struct ice_q_vector *q_vector =
2481		container_of(notify, struct ice_q_vector, affinity_notify);
2482
2483	cpumask_copy(&q_vector->affinity_mask, mask);
2484}
2485
2486/**
2487 * ice_irq_affinity_release - Callback for affinity notifier release
2488 * @ref: internal core kernel usage
2489 *
2490 * This is a callback function used by the irq_set_affinity_notifier function
2491 * to inform the current notification subscriber that they will no longer
2492 * receive notifications.
2493 */
2494static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2495
2496/**
2497 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2498 * @vsi: the VSI being configured
2499 */
2500static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2501{
2502	struct ice_hw *hw = &vsi->back->hw;
2503	int i;
2504
2505	ice_for_each_q_vector(vsi, i)
2506		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2507
2508	ice_flush(hw);
2509	return 0;
2510}
2511
2512/**
2513 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2514 * @vsi: the VSI being configured
2515 * @basename: name for the vector
2516 */
2517static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2518{
2519	int q_vectors = vsi->num_q_vectors;
2520	struct ice_pf *pf = vsi->back;
 
2521	struct device *dev;
2522	int rx_int_idx = 0;
2523	int tx_int_idx = 0;
2524	int vector, err;
2525	int irq_num;
2526
2527	dev = ice_pf_to_dev(pf);
2528	for (vector = 0; vector < q_vectors; vector++) {
2529		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2530
2531		irq_num = q_vector->irq.virq;
2532
2533		if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2534			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2535				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2536			tx_int_idx++;
2537		} else if (q_vector->rx.rx_ring) {
2538			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2539				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2540		} else if (q_vector->tx.tx_ring) {
2541			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2542				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2543		} else {
2544			/* skip this unused q_vector */
2545			continue;
2546		}
2547		if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2548			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2549					       IRQF_SHARED, q_vector->name,
2550					       q_vector);
2551		else
2552			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2553					       0, q_vector->name, q_vector);
2554		if (err) {
2555			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2556				   err);
2557			goto free_q_irqs;
2558		}
2559
2560		/* register for affinity change notifications */
2561		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2562			struct irq_affinity_notify *affinity_notify;
2563
2564			affinity_notify = &q_vector->affinity_notify;
2565			affinity_notify->notify = ice_irq_affinity_notify;
2566			affinity_notify->release = ice_irq_affinity_release;
2567			irq_set_affinity_notifier(irq_num, affinity_notify);
2568		}
2569
2570		/* assign the mask for this irq */
2571		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2572	}
2573
2574	err = ice_set_cpu_rx_rmap(vsi);
2575	if (err) {
2576		netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2577			   vsi->vsi_num, ERR_PTR(err));
2578		goto free_q_irqs;
2579	}
2580
2581	vsi->irqs_ready = true;
2582	return 0;
2583
2584free_q_irqs:
2585	while (vector--) {
2586		irq_num = vsi->q_vectors[vector]->irq.virq;
 
2587		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2588			irq_set_affinity_notifier(irq_num, NULL);
2589		irq_set_affinity_hint(irq_num, NULL);
2590		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2591	}
2592	return err;
2593}
2594
2595/**
2596 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2597 * @vsi: VSI to setup Tx rings used by XDP
2598 *
2599 * Return 0 on success and negative value on error
2600 */
2601static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2602{
2603	struct device *dev = ice_pf_to_dev(vsi->back);
2604	struct ice_tx_desc *tx_desc;
2605	int i, j;
2606
2607	ice_for_each_xdp_txq(vsi, i) {
2608		u16 xdp_q_idx = vsi->alloc_txq + i;
2609		struct ice_ring_stats *ring_stats;
2610		struct ice_tx_ring *xdp_ring;
2611
2612		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2613		if (!xdp_ring)
2614			goto free_xdp_rings;
2615
2616		ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
2617		if (!ring_stats) {
2618			ice_free_tx_ring(xdp_ring);
2619			goto free_xdp_rings;
2620		}
2621
2622		xdp_ring->ring_stats = ring_stats;
2623		xdp_ring->q_index = xdp_q_idx;
2624		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
 
2625		xdp_ring->vsi = vsi;
2626		xdp_ring->netdev = NULL;
2627		xdp_ring->dev = dev;
2628		xdp_ring->count = vsi->num_tx_desc;
2629		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2630		if (ice_setup_tx_ring(xdp_ring))
2631			goto free_xdp_rings;
2632		ice_set_ring_xdp(xdp_ring);
2633		spin_lock_init(&xdp_ring->tx_lock);
2634		for (j = 0; j < xdp_ring->count; j++) {
2635			tx_desc = ICE_TX_DESC(xdp_ring, j);
2636			tx_desc->cmd_type_offset_bsz = 0;
2637		}
2638	}
2639
2640	return 0;
2641
2642free_xdp_rings:
2643	for (; i >= 0; i--) {
2644		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
2645			kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2646			vsi->xdp_rings[i]->ring_stats = NULL;
2647			ice_free_tx_ring(vsi->xdp_rings[i]);
2648		}
2649	}
2650	return -ENOMEM;
2651}
2652
2653/**
2654 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2655 * @vsi: VSI to set the bpf prog on
2656 * @prog: the bpf prog pointer
2657 */
2658static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2659{
2660	struct bpf_prog *old_prog;
2661	int i;
2662
2663	old_prog = xchg(&vsi->xdp_prog, prog);
2664	ice_for_each_rxq(vsi, i)
2665		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2666
2667	if (old_prog)
2668		bpf_prog_put(old_prog);
 
 
 
2669}
2670
2671/**
2672 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2673 * @vsi: VSI to bring up Tx rings used by XDP
2674 * @prog: bpf program that will be assigned to VSI
2675 *
2676 * Return 0 on success and negative value on error
2677 */
2678int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2679{
2680	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2681	int xdp_rings_rem = vsi->num_xdp_txq;
2682	struct ice_pf *pf = vsi->back;
2683	struct ice_qs_cfg xdp_qs_cfg = {
2684		.qs_mutex = &pf->avail_q_mutex,
2685		.pf_map = pf->avail_txqs,
2686		.pf_map_size = pf->max_pf_txqs,
2687		.q_count = vsi->num_xdp_txq,
2688		.scatter_count = ICE_MAX_SCATTER_TXQS,
2689		.vsi_map = vsi->txq_map,
2690		.vsi_map_offset = vsi->alloc_txq,
2691		.mapping_mode = ICE_VSI_MAP_CONTIG
2692	};
 
2693	struct device *dev;
2694	int i, v_idx;
2695	int status;
2696
2697	dev = ice_pf_to_dev(pf);
2698	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2699				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2700	if (!vsi->xdp_rings)
2701		return -ENOMEM;
2702
2703	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2704	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2705		goto err_map_xdp;
2706
2707	if (static_key_enabled(&ice_xdp_locking_key))
2708		netdev_warn(vsi->netdev,
2709			    "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2710
2711	if (ice_xdp_alloc_setup_rings(vsi))
2712		goto clear_xdp_rings;
2713
2714	/* follow the logic from ice_vsi_map_rings_to_vectors */
2715	ice_for_each_q_vector(vsi, v_idx) {
2716		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2717		int xdp_rings_per_v, q_id, q_base;
2718
2719		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2720					       vsi->num_q_vectors - v_idx);
2721		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2722
2723		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2724			struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2725
2726			xdp_ring->q_vector = q_vector;
2727			xdp_ring->next = q_vector->tx.tx_ring;
2728			q_vector->tx.tx_ring = xdp_ring;
2729		}
2730		xdp_rings_rem -= xdp_rings_per_v;
2731	}
2732
2733	ice_for_each_rxq(vsi, i) {
2734		if (static_key_enabled(&ice_xdp_locking_key)) {
2735			vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq];
2736		} else {
2737			struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector;
2738			struct ice_tx_ring *ring;
2739
2740			ice_for_each_tx_ring(ring, q_vector->tx) {
2741				if (ice_ring_is_xdp(ring)) {
2742					vsi->rx_rings[i]->xdp_ring = ring;
2743					break;
2744				}
2745			}
2746		}
2747		ice_tx_xsk_pool(vsi, i);
2748	}
2749
2750	/* omit the scheduler update if in reset path; XDP queues will be
2751	 * taken into account at the end of ice_vsi_rebuild, where
2752	 * ice_cfg_vsi_lan is being called
2753	 */
2754	if (ice_is_reset_in_progress(pf->state))
2755		return 0;
2756
2757	/* tell the Tx scheduler that right now we have
2758	 * additional queues
2759	 */
2760	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2761		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2762
2763	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2764				 max_txqs);
2765	if (status) {
2766		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2767			status);
2768		goto clear_xdp_rings;
2769	}
2770
2771	/* assign the prog only when it's not already present on VSI;
2772	 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2773	 * VSI rebuild that happens under ethtool -L can expose us to
2774	 * the bpf_prog refcount issues as we would be swapping same
2775	 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2776	 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2777	 * this is not harmful as dev_xdp_install bumps the refcount
2778	 * before calling the op exposed by the driver;
2779	 */
2780	if (!ice_is_xdp_ena_vsi(vsi))
2781		ice_vsi_assign_bpf_prog(vsi, prog);
2782
2783	return 0;
2784clear_xdp_rings:
2785	ice_for_each_xdp_txq(vsi, i)
2786		if (vsi->xdp_rings[i]) {
2787			kfree_rcu(vsi->xdp_rings[i], rcu);
2788			vsi->xdp_rings[i] = NULL;
2789		}
2790
2791err_map_xdp:
2792	mutex_lock(&pf->avail_q_mutex);
2793	ice_for_each_xdp_txq(vsi, i) {
2794		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2795		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2796	}
2797	mutex_unlock(&pf->avail_q_mutex);
2798
2799	devm_kfree(dev, vsi->xdp_rings);
2800	return -ENOMEM;
2801}
2802
2803/**
2804 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2805 * @vsi: VSI to remove XDP rings
2806 *
2807 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2808 * resources
2809 */
2810int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2811{
2812	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2813	struct ice_pf *pf = vsi->back;
2814	int i, v_idx;
2815
2816	/* q_vectors are freed in reset path so there's no point in detaching
2817	 * rings; in case of rebuild being triggered not from reset bits
2818	 * in pf->state won't be set, so additionally check first q_vector
2819	 * against NULL
2820	 */
2821	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2822		goto free_qmap;
2823
2824	ice_for_each_q_vector(vsi, v_idx) {
2825		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2826		struct ice_tx_ring *ring;
2827
2828		ice_for_each_tx_ring(ring, q_vector->tx)
2829			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2830				break;
2831
2832		/* restore the value of last node prior to XDP setup */
2833		q_vector->tx.tx_ring = ring;
2834	}
2835
2836free_qmap:
2837	mutex_lock(&pf->avail_q_mutex);
2838	ice_for_each_xdp_txq(vsi, i) {
2839		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2840		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2841	}
2842	mutex_unlock(&pf->avail_q_mutex);
2843
2844	ice_for_each_xdp_txq(vsi, i)
2845		if (vsi->xdp_rings[i]) {
2846			if (vsi->xdp_rings[i]->desc) {
2847				synchronize_rcu();
2848				ice_free_tx_ring(vsi->xdp_rings[i]);
2849			}
2850			kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2851			vsi->xdp_rings[i]->ring_stats = NULL;
2852			kfree_rcu(vsi->xdp_rings[i], rcu);
2853			vsi->xdp_rings[i] = NULL;
2854		}
2855
2856	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2857	vsi->xdp_rings = NULL;
2858
2859	if (static_key_enabled(&ice_xdp_locking_key))
2860		static_branch_dec(&ice_xdp_locking_key);
2861
2862	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2863		return 0;
2864
2865	ice_vsi_assign_bpf_prog(vsi, NULL);
2866
2867	/* notify Tx scheduler that we destroyed XDP queues and bring
2868	 * back the old number of child nodes
2869	 */
2870	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2871		max_txqs[i] = vsi->num_txq;
2872
2873	/* change number of XDP Tx queues to 0 */
2874	vsi->num_xdp_txq = 0;
2875
2876	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2877			       max_txqs);
2878}
2879
2880/**
2881 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2882 * @vsi: VSI to schedule napi on
2883 */
2884static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2885{
2886	int i;
2887
2888	ice_for_each_rxq(vsi, i) {
2889		struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2890
2891		if (rx_ring->xsk_pool)
2892			napi_schedule(&rx_ring->q_vector->napi);
2893	}
2894}
2895
2896/**
2897 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2898 * @vsi: VSI to determine the count of XDP Tx qs
2899 *
2900 * returns 0 if Tx qs count is higher than at least half of CPU count,
2901 * -ENOMEM otherwise
2902 */
2903int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2904{
2905	u16 avail = ice_get_avail_txq_count(vsi->back);
2906	u16 cpus = num_possible_cpus();
2907
2908	if (avail < cpus / 2)
2909		return -ENOMEM;
2910
2911	vsi->num_xdp_txq = min_t(u16, avail, cpus);
2912
2913	if (vsi->num_xdp_txq < cpus)
2914		static_branch_inc(&ice_xdp_locking_key);
2915
2916	return 0;
2917}
2918
2919/**
2920 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
2921 * @vsi: Pointer to VSI structure
2922 */
2923static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
2924{
2925	if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
2926		return ICE_RXBUF_1664;
2927	else
2928		return ICE_RXBUF_3072;
2929}
2930
2931/**
2932 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2933 * @vsi: VSI to setup XDP for
2934 * @prog: XDP program
2935 * @extack: netlink extended ack
2936 */
2937static int
2938ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2939		   struct netlink_ext_ack *extack)
2940{
2941	unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2942	bool if_running = netif_running(vsi->netdev);
2943	int ret = 0, xdp_ring_err = 0;
2944
2945	if (prog && !prog->aux->xdp_has_frags) {
2946		if (frame_size > ice_max_xdp_frame_size(vsi)) {
2947			NL_SET_ERR_MSG_MOD(extack,
2948					   "MTU is too large for linear frames and XDP prog does not support frags");
2949			return -EOPNOTSUPP;
2950		}
2951	}
2952
2953	/* hot swap progs and avoid toggling link */
2954	if (ice_is_xdp_ena_vsi(vsi) == !!prog) {
2955		ice_vsi_assign_bpf_prog(vsi, prog);
2956		return 0;
2957	}
2958
2959	/* need to stop netdev while setting up the program for Rx rings */
2960	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2961		ret = ice_down(vsi);
2962		if (ret) {
2963			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2964			return ret;
2965		}
2966	}
2967
2968	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2969		xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
2970		if (xdp_ring_err) {
2971			NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
2972		} else {
2973			xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2974			if (xdp_ring_err)
2975				NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2976		}
2977		xdp_features_set_redirect_target(vsi->netdev, true);
2978		/* reallocate Rx queues that are used for zero-copy */
2979		xdp_ring_err = ice_realloc_zc_buf(vsi, true);
2980		if (xdp_ring_err)
2981			NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
2982	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2983		xdp_features_clear_redirect_target(vsi->netdev);
2984		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2985		if (xdp_ring_err)
2986			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2987		/* reallocate Rx queues that were used for zero-copy */
2988		xdp_ring_err = ice_realloc_zc_buf(vsi, false);
2989		if (xdp_ring_err)
2990			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
2991	}
2992
2993	if (if_running)
2994		ret = ice_up(vsi);
2995
2996	if (!ret && prog)
2997		ice_vsi_rx_napi_schedule(vsi);
2998
2999	return (ret || xdp_ring_err) ? -ENOMEM : 0;
3000}
3001
3002/**
3003 * ice_xdp_safe_mode - XDP handler for safe mode
3004 * @dev: netdevice
3005 * @xdp: XDP command
3006 */
3007static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
3008			     struct netdev_bpf *xdp)
3009{
3010	NL_SET_ERR_MSG_MOD(xdp->extack,
3011			   "Please provide working DDP firmware package in order to use XDP\n"
3012			   "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
3013	return -EOPNOTSUPP;
3014}
3015
3016/**
3017 * ice_xdp - implements XDP handler
3018 * @dev: netdevice
3019 * @xdp: XDP command
3020 */
3021static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
3022{
3023	struct ice_netdev_priv *np = netdev_priv(dev);
3024	struct ice_vsi *vsi = np->vsi;
3025
3026	if (vsi->type != ICE_VSI_PF) {
3027		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
3028		return -EINVAL;
3029	}
3030
3031	switch (xdp->command) {
3032	case XDP_SETUP_PROG:
3033		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
3034	case XDP_SETUP_XSK_POOL:
3035		return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
3036					  xdp->xsk.queue_id);
3037	default:
3038		return -EINVAL;
3039	}
3040}
3041
3042/**
3043 * ice_ena_misc_vector - enable the non-queue interrupts
3044 * @pf: board private structure
3045 */
3046static void ice_ena_misc_vector(struct ice_pf *pf)
3047{
3048	struct ice_hw *hw = &pf->hw;
3049	u32 pf_intr_start_offset;
3050	u32 val;
3051
3052	/* Disable anti-spoof detection interrupt to prevent spurious event
3053	 * interrupts during a function reset. Anti-spoof functionally is
3054	 * still supported.
3055	 */
3056	val = rd32(hw, GL_MDCK_TX_TDPU);
3057	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
3058	wr32(hw, GL_MDCK_TX_TDPU, val);
3059
3060	/* clear things first */
3061	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
3062	rd32(hw, PFINT_OICR);		/* read to clear */
3063
3064	val = (PFINT_OICR_ECC_ERR_M |
3065	       PFINT_OICR_MAL_DETECT_M |
3066	       PFINT_OICR_GRST_M |
3067	       PFINT_OICR_PCI_EXCEPTION_M |
3068	       PFINT_OICR_VFLR_M |
3069	       PFINT_OICR_HMC_ERR_M |
3070	       PFINT_OICR_PE_PUSH_M |
3071	       PFINT_OICR_PE_CRITERR_M);
3072
3073	wr32(hw, PFINT_OICR_ENA, val);
3074
3075	/* SW_ITR_IDX = 0, but don't change INTENA */
3076	wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
3077	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3078
3079	if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3080		return;
3081	pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3082	wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3083	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3084}
3085
3086/**
3087 * ice_ll_ts_intr - ll_ts interrupt handler
3088 * @irq: interrupt number
3089 * @data: pointer to a q_vector
3090 */
3091static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data)
3092{
3093	struct ice_pf *pf = data;
3094	u32 pf_intr_start_offset;
3095	struct ice_ptp_tx *tx;
3096	unsigned long flags;
3097	struct ice_hw *hw;
3098	u32 val;
3099	u8 idx;
3100
3101	hw = &pf->hw;
3102	tx = &pf->ptp.port.tx;
3103	spin_lock_irqsave(&tx->lock, flags);
3104	ice_ptp_complete_tx_single_tstamp(tx);
3105
3106	idx = find_next_bit_wrap(tx->in_use, tx->len,
3107				 tx->last_ll_ts_idx_read + 1);
3108	if (idx != tx->len)
3109		ice_ptp_req_tx_single_tstamp(tx, idx);
3110	spin_unlock_irqrestore(&tx->lock, flags);
3111
3112	val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
3113	      (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
3114	pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3115	wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3116	     val);
3117
3118	return IRQ_HANDLED;
3119}
3120
3121/**
3122 * ice_misc_intr - misc interrupt handler
3123 * @irq: interrupt number
3124 * @data: pointer to a q_vector
3125 */
3126static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3127{
3128	struct ice_pf *pf = (struct ice_pf *)data;
3129	irqreturn_t ret = IRQ_HANDLED;
3130	struct ice_hw *hw = &pf->hw;
 
3131	struct device *dev;
3132	u32 oicr, ena_mask;
3133
3134	dev = ice_pf_to_dev(pf);
3135	set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3136	set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3137	set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3138
3139	oicr = rd32(hw, PFINT_OICR);
3140	ena_mask = rd32(hw, PFINT_OICR_ENA);
3141
3142	if (oicr & PFINT_OICR_SWINT_M) {
3143		ena_mask &= ~PFINT_OICR_SWINT_M;
3144		pf->sw_int_count++;
3145	}
3146
3147	if (oicr & PFINT_OICR_MAL_DETECT_M) {
3148		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3149		set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3150	}
3151	if (oicr & PFINT_OICR_VFLR_M) {
3152		/* disable any further VFLR event notifications */
3153		if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3154			u32 reg = rd32(hw, PFINT_OICR_ENA);
3155
3156			reg &= ~PFINT_OICR_VFLR_M;
3157			wr32(hw, PFINT_OICR_ENA, reg);
3158		} else {
3159			ena_mask &= ~PFINT_OICR_VFLR_M;
3160			set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3161		}
3162	}
3163
3164	if (oicr & PFINT_OICR_GRST_M) {
3165		u32 reset;
3166
3167		/* we have a reset warning */
3168		ena_mask &= ~PFINT_OICR_GRST_M;
3169		reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M,
3170				  rd32(hw, GLGEN_RSTAT));
3171
3172		if (reset == ICE_RESET_CORER)
3173			pf->corer_count++;
3174		else if (reset == ICE_RESET_GLOBR)
3175			pf->globr_count++;
3176		else if (reset == ICE_RESET_EMPR)
3177			pf->empr_count++;
3178		else
3179			dev_dbg(dev, "Invalid reset type %d\n", reset);
3180
3181		/* If a reset cycle isn't already in progress, we set a bit in
3182		 * pf->state so that the service task can start a reset/rebuild.
 
 
3183		 */
3184		if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3185			if (reset == ICE_RESET_CORER)
3186				set_bit(ICE_CORER_RECV, pf->state);
3187			else if (reset == ICE_RESET_GLOBR)
3188				set_bit(ICE_GLOBR_RECV, pf->state);
3189			else
3190				set_bit(ICE_EMPR_RECV, pf->state);
3191
3192			/* There are couple of different bits at play here.
3193			 * hw->reset_ongoing indicates whether the hardware is
3194			 * in reset. This is set to true when a reset interrupt
3195			 * is received and set back to false after the driver
3196			 * has determined that the hardware is out of reset.
3197			 *
3198			 * ICE_RESET_OICR_RECV in pf->state indicates
3199			 * that a post reset rebuild is required before the
3200			 * driver is operational again. This is set above.
3201			 *
3202			 * As this is the start of the reset/rebuild cycle, set
3203			 * both to indicate that.
3204			 */
3205			hw->reset_ongoing = true;
3206		}
3207	}
3208
3209	if (oicr & PFINT_OICR_TSYN_TX_M) {
3210		ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3211		if (ice_pf_state_is_nominal(pf) &&
3212		    pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) {
3213			struct ice_ptp_tx *tx = &pf->ptp.port.tx;
3214			unsigned long flags;
3215			u8 idx;
3216
3217			spin_lock_irqsave(&tx->lock, flags);
3218			idx = find_next_bit_wrap(tx->in_use, tx->len,
3219						 tx->last_ll_ts_idx_read + 1);
3220			if (idx != tx->len)
3221				ice_ptp_req_tx_single_tstamp(tx, idx);
3222			spin_unlock_irqrestore(&tx->lock, flags);
3223		} else if (ice_ptp_pf_handles_tx_interrupt(pf)) {
3224			set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread);
3225			ret = IRQ_WAKE_THREAD;
3226		}
3227	}
3228
3229	if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3230		u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3231		u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3232
3233		ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3234
3235		if (ice_pf_src_tmr_owned(pf)) {
3236			/* Save EVENTs from GLTSYN register */
3237			pf->ptp.ext_ts_irq |= gltsyn_stat &
3238					      (GLTSYN_STAT_EVENT0_M |
3239					       GLTSYN_STAT_EVENT1_M |
3240					       GLTSYN_STAT_EVENT2_M);
3241
3242			ice_ptp_extts_event(pf);
3243		}
3244	}
3245
3246#define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3247	if (oicr & ICE_AUX_CRIT_ERR) {
3248		pf->oicr_err_reg |= oicr;
3249		set_bit(ICE_AUX_ERR_PENDING, pf->state);
3250		ena_mask &= ~ICE_AUX_CRIT_ERR;
3251	}
3252
3253	/* Report any remaining unexpected interrupts */
3254	oicr &= ena_mask;
3255	if (oicr) {
3256		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3257		/* If a critical error is pending there is no choice but to
3258		 * reset the device.
3259		 */
3260		if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
 
3261			    PFINT_OICR_ECC_ERR_M)) {
3262			set_bit(ICE_PFR_REQ, pf->state);
 
3263		}
3264	}
3265	ice_service_task_schedule(pf);
3266	if (ret == IRQ_HANDLED)
3267		ice_irq_dynamic_ena(hw, NULL, NULL);
3268
3269	return ret;
3270}
3271
3272/**
3273 * ice_misc_intr_thread_fn - misc interrupt thread function
3274 * @irq: interrupt number
3275 * @data: pointer to a q_vector
3276 */
3277static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3278{
3279	struct ice_pf *pf = data;
3280	struct ice_hw *hw;
3281
3282	hw = &pf->hw;
3283
3284	if (ice_is_reset_in_progress(pf->state))
3285		goto skip_irq;
3286
3287	if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) {
3288		/* Process outstanding Tx timestamps. If there is more work,
3289		 * re-arm the interrupt to trigger again.
3290		 */
3291		if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) {
3292			wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
3293			ice_flush(hw);
3294		}
3295	}
3296
3297skip_irq:
3298	ice_irq_dynamic_ena(hw, NULL, NULL);
3299
3300	return IRQ_HANDLED;
3301}
3302
3303/**
3304 * ice_dis_ctrlq_interrupts - disable control queue interrupts
3305 * @hw: pointer to HW structure
3306 */
3307static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3308{
3309	/* disable Admin queue Interrupt causes */
3310	wr32(hw, PFINT_FW_CTL,
3311	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3312
3313	/* disable Mailbox queue Interrupt causes */
3314	wr32(hw, PFINT_MBX_CTL,
3315	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3316
3317	wr32(hw, PFINT_SB_CTL,
3318	     rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3319
3320	/* disable Control queue Interrupt causes */
3321	wr32(hw, PFINT_OICR_CTL,
3322	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3323
3324	ice_flush(hw);
3325}
3326
3327/**
3328 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup
3329 * @pf: board private structure
3330 */
3331static void ice_free_irq_msix_ll_ts(struct ice_pf *pf)
3332{
3333	int irq_num = pf->ll_ts_irq.virq;
3334
3335	synchronize_irq(irq_num);
3336	devm_free_irq(ice_pf_to_dev(pf), irq_num, pf);
3337
3338	ice_free_irq(pf, pf->ll_ts_irq);
3339}
3340
3341/**
3342 * ice_free_irq_msix_misc - Unroll misc vector setup
3343 * @pf: board private structure
3344 */
3345static void ice_free_irq_msix_misc(struct ice_pf *pf)
3346{
3347	int misc_irq_num = pf->oicr_irq.virq;
3348	struct ice_hw *hw = &pf->hw;
3349
3350	ice_dis_ctrlq_interrupts(hw);
3351
3352	/* disable OICR interrupt */
3353	wr32(hw, PFINT_OICR_ENA, 0);
3354	ice_flush(hw);
3355
3356	synchronize_irq(misc_irq_num);
3357	devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf);
 
 
 
3358
3359	ice_free_irq(pf, pf->oicr_irq);
3360	if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3361		ice_free_irq_msix_ll_ts(pf);
3362}
3363
3364/**
3365 * ice_ena_ctrlq_interrupts - enable control queue interrupts
3366 * @hw: pointer to HW structure
3367 * @reg_idx: HW vector index to associate the control queue interrupts with
3368 */
3369static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3370{
3371	u32 val;
3372
3373	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3374	       PFINT_OICR_CTL_CAUSE_ENA_M);
3375	wr32(hw, PFINT_OICR_CTL, val);
3376
3377	/* enable Admin queue Interrupt causes */
3378	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3379	       PFINT_FW_CTL_CAUSE_ENA_M);
3380	wr32(hw, PFINT_FW_CTL, val);
3381
3382	/* enable Mailbox queue Interrupt causes */
3383	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3384	       PFINT_MBX_CTL_CAUSE_ENA_M);
3385	wr32(hw, PFINT_MBX_CTL, val);
3386
3387	if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) {
3388		/* enable Sideband queue Interrupt causes */
3389		val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3390		       PFINT_SB_CTL_CAUSE_ENA_M);
3391		wr32(hw, PFINT_SB_CTL, val);
3392	}
3393
3394	ice_flush(hw);
3395}
3396
3397/**
3398 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3399 * @pf: board private structure
3400 *
3401 * This sets up the handler for MSIX 0, which is used to manage the
3402 * non-queue interrupts, e.g. AdminQ and errors. This is not used
3403 * when in MSI or Legacy interrupt mode.
3404 */
3405static int ice_req_irq_msix_misc(struct ice_pf *pf)
3406{
3407	struct device *dev = ice_pf_to_dev(pf);
3408	struct ice_hw *hw = &pf->hw;
3409	u32 pf_intr_start_offset;
3410	struct msi_map irq;
3411	int err = 0;
3412
3413	if (!pf->int_name[0])
3414		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3415			 dev_driver_string(dev), dev_name(dev));
3416
3417	if (!pf->int_name_ll_ts[0])
3418		snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1,
3419			 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev));
3420	/* Do not request IRQ but do enable OICR interrupt since settings are
3421	 * lost during reset. Note that this function is called only during
3422	 * rebuild path and not while reset is in progress.
3423	 */
3424	if (ice_is_reset_in_progress(pf->state))
3425		goto skip_req_irq;
3426
3427	/* reserve one vector in irq_tracker for misc interrupts */
3428	irq = ice_alloc_irq(pf, false);
3429	if (irq.index < 0)
3430		return irq.index;
3431
3432	pf->oicr_irq = irq;
3433	err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr,
3434					ice_misc_intr_thread_fn, 0,
3435					pf->int_name, pf);
3436	if (err) {
3437		dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3438			pf->int_name, err);
3439		ice_free_irq(pf, pf->oicr_irq);
3440		return err;
3441	}
3442
3443	/* reserve one vector in irq_tracker for ll_ts interrupt */
3444	if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3445		goto skip_req_irq;
3446
3447	irq = ice_alloc_irq(pf, false);
3448	if (irq.index < 0)
3449		return irq.index;
3450
3451	pf->ll_ts_irq = irq;
3452	err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0,
3453			       pf->int_name_ll_ts, pf);
3454	if (err) {
3455		dev_err(dev, "devm_request_irq for %s failed: %d\n",
3456			pf->int_name_ll_ts, err);
3457		ice_free_irq(pf, pf->ll_ts_irq);
 
3458		return err;
3459	}
3460
3461skip_req_irq:
3462	ice_ena_misc_vector(pf);
3463
3464	ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index);
3465	/* This enables LL TS interrupt */
3466	pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3467	if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3468		wr32(hw, PFINT_SB_CTL,
3469		     ((pf->ll_ts_irq.index + pf_intr_start_offset) &
3470		      PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M);
3471	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index),
3472	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3473
3474	ice_flush(hw);
3475	ice_irq_dynamic_ena(hw, NULL, NULL);
3476
3477	return 0;
3478}
3479
3480/**
3481 * ice_napi_add - register NAPI handler for the VSI
3482 * @vsi: VSI for which NAPI handler is to be registered
3483 *
3484 * This function is only called in the driver's load path. Registering the NAPI
3485 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3486 * reset/rebuild, etc.)
3487 */
3488static void ice_napi_add(struct ice_vsi *vsi)
3489{
3490	int v_idx;
3491
3492	if (!vsi->netdev)
3493		return;
3494
3495	ice_for_each_q_vector(vsi, v_idx) {
3496		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3497			       ice_napi_poll);
3498		__ice_q_vector_set_napi_queues(vsi->q_vectors[v_idx], false);
3499	}
3500}
3501
3502/**
3503 * ice_set_ops - set netdev and ethtools ops for the given netdev
3504 * @vsi: the VSI associated with the new netdev
3505 */
3506static void ice_set_ops(struct ice_vsi *vsi)
3507{
3508	struct net_device *netdev = vsi->netdev;
3509	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3510
3511	if (ice_is_safe_mode(pf)) {
3512		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3513		ice_set_ethtool_safe_mode_ops(netdev);
3514		return;
3515	}
3516
3517	netdev->netdev_ops = &ice_netdev_ops;
3518	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3519	netdev->xdp_metadata_ops = &ice_xdp_md_ops;
3520	ice_set_ethtool_ops(netdev);
3521
3522	if (vsi->type != ICE_VSI_PF)
3523		return;
3524
3525	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3526			       NETDEV_XDP_ACT_XSK_ZEROCOPY |
3527			       NETDEV_XDP_ACT_RX_SG;
3528	netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD;
3529}
3530
3531/**
3532 * ice_set_netdev_features - set features for the given netdev
3533 * @netdev: netdev instance
3534 */
3535static void ice_set_netdev_features(struct net_device *netdev)
3536{
3537	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3538	bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3539	netdev_features_t csumo_features;
3540	netdev_features_t vlano_features;
3541	netdev_features_t dflt_features;
3542	netdev_features_t tso_features;
3543
3544	if (ice_is_safe_mode(pf)) {
3545		/* safe mode */
3546		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3547		netdev->hw_features = netdev->features;
3548		return;
3549	}
3550
3551	dflt_features = NETIF_F_SG	|
3552			NETIF_F_HIGHDMA	|
3553			NETIF_F_NTUPLE	|
3554			NETIF_F_RXHASH;
3555
3556	csumo_features = NETIF_F_RXCSUM	  |
3557			 NETIF_F_IP_CSUM  |
3558			 NETIF_F_SCTP_CRC |
3559			 NETIF_F_IPV6_CSUM;
3560
3561	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3562			 NETIF_F_HW_VLAN_CTAG_TX     |
3563			 NETIF_F_HW_VLAN_CTAG_RX;
3564
3565	/* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3566	if (is_dvm_ena)
3567		vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3568
3569	tso_features = NETIF_F_TSO			|
3570		       NETIF_F_TSO_ECN			|
3571		       NETIF_F_TSO6			|
3572		       NETIF_F_GSO_GRE			|
3573		       NETIF_F_GSO_UDP_TUNNEL		|
3574		       NETIF_F_GSO_GRE_CSUM		|
3575		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3576		       NETIF_F_GSO_PARTIAL		|
3577		       NETIF_F_GSO_IPXIP4		|
3578		       NETIF_F_GSO_IPXIP6		|
3579		       NETIF_F_GSO_UDP_L4;
3580
3581	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3582					NETIF_F_GSO_GRE_CSUM;
3583	/* set features that user can change */
3584	netdev->hw_features = dflt_features | csumo_features |
3585			      vlano_features | tso_features;
3586
3587	/* add support for HW_CSUM on packets with MPLS header */
3588	netdev->mpls_features =  NETIF_F_HW_CSUM |
3589				 NETIF_F_TSO     |
3590				 NETIF_F_TSO6;
3591
3592	/* enable features */
3593	netdev->features |= netdev->hw_features;
3594
3595	netdev->hw_features |= NETIF_F_HW_TC;
3596	netdev->hw_features |= NETIF_F_LOOPBACK;
3597
3598	/* encap and VLAN devices inherit default, csumo and tso features */
3599	netdev->hw_enc_features |= dflt_features | csumo_features |
3600				   tso_features;
3601	netdev->vlan_features |= dflt_features | csumo_features |
3602				 tso_features;
 
3603
3604	/* advertise support but don't enable by default since only one type of
3605	 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3606	 * type turns on the other has to be turned off. This is enforced by the
3607	 * ice_fix_features() ndo callback.
3608	 */
3609	if (is_dvm_ena)
3610		netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3611			NETIF_F_HW_VLAN_STAG_TX;
 
 
 
 
 
3612
3613	/* Leave CRC / FCS stripping enabled by default, but allow the value to
3614	 * be changed at runtime
3615	 */
3616	netdev->hw_features |= NETIF_F_RXFCS;
 
 
 
 
 
 
3617
3618	netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3619}
3620
3621/**
3622 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3623 * @lut: Lookup table
3624 * @rss_table_size: Lookup table size
3625 * @rss_size: Range of queue number for hashing
3626 */
3627void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3628{
3629	u16 i;
3630
3631	for (i = 0; i < rss_table_size; i++)
3632		lut[i] = i % rss_size;
3633}
3634
3635/**
3636 * ice_pf_vsi_setup - Set up a PF VSI
3637 * @pf: board private structure
3638 * @pi: pointer to the port_info instance
3639 *
3640 * Returns pointer to the successfully allocated VSI software struct
3641 * on success, otherwise returns NULL on failure.
3642 */
3643static struct ice_vsi *
3644ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3645{
3646	struct ice_vsi_cfg_params params = {};
3647
3648	params.type = ICE_VSI_PF;
3649	params.pi = pi;
3650	params.flags = ICE_VSI_FLAG_INIT;
3651
3652	return ice_vsi_setup(pf, &params);
3653}
3654
3655static struct ice_vsi *
3656ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3657		   struct ice_channel *ch)
3658{
3659	struct ice_vsi_cfg_params params = {};
3660
3661	params.type = ICE_VSI_CHNL;
3662	params.pi = pi;
3663	params.ch = ch;
3664	params.flags = ICE_VSI_FLAG_INIT;
3665
3666	return ice_vsi_setup(pf, &params);
3667}
3668
3669/**
3670 * ice_ctrl_vsi_setup - Set up a control VSI
3671 * @pf: board private structure
3672 * @pi: pointer to the port_info instance
3673 *
3674 * Returns pointer to the successfully allocated VSI software struct
3675 * on success, otherwise returns NULL on failure.
3676 */
3677static struct ice_vsi *
3678ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3679{
3680	struct ice_vsi_cfg_params params = {};
3681
3682	params.type = ICE_VSI_CTRL;
3683	params.pi = pi;
3684	params.flags = ICE_VSI_FLAG_INIT;
3685
3686	return ice_vsi_setup(pf, &params);
3687}
3688
3689/**
3690 * ice_lb_vsi_setup - Set up a loopback VSI
3691 * @pf: board private structure
3692 * @pi: pointer to the port_info instance
3693 *
3694 * Returns pointer to the successfully allocated VSI software struct
3695 * on success, otherwise returns NULL on failure.
3696 */
3697struct ice_vsi *
3698ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3699{
3700	struct ice_vsi_cfg_params params = {};
3701
3702	params.type = ICE_VSI_LB;
3703	params.pi = pi;
3704	params.flags = ICE_VSI_FLAG_INIT;
3705
3706	return ice_vsi_setup(pf, &params);
3707}
3708
3709/**
3710 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3711 * @netdev: network interface to be adjusted
3712 * @proto: VLAN TPID
3713 * @vid: VLAN ID to be added
3714 *
3715 * net_device_ops implementation for adding VLAN IDs
3716 */
3717static int
3718ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
 
3719{
3720	struct ice_netdev_priv *np = netdev_priv(netdev);
3721	struct ice_vsi_vlan_ops *vlan_ops;
3722	struct ice_vsi *vsi = np->vsi;
3723	struct ice_vlan vlan;
3724	int ret;
3725
 
 
 
 
 
 
 
 
 
3726	/* VLAN 0 is added by default during load/reset */
3727	if (!vid)
3728		return 0;
3729
3730	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3731		usleep_range(1000, 2000);
3732
3733	/* Add multicast promisc rule for the VLAN ID to be added if
3734	 * all-multicast is currently enabled.
3735	 */
3736	if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3737		ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3738					       ICE_MCAST_VLAN_PROMISC_BITS,
3739					       vid);
3740		if (ret)
3741			goto finish;
3742	}
3743
3744	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3745
3746	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3747	 * packets aren't pruned by the device's internal switch on Rx
3748	 */
3749	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3750	ret = vlan_ops->add_vlan(vsi, &vlan);
3751	if (ret)
3752		goto finish;
3753
3754	/* If all-multicast is currently enabled and this VLAN ID is only one
3755	 * besides VLAN-0 we have to update look-up type of multicast promisc
3756	 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3757	 */
3758	if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3759	    ice_vsi_num_non_zero_vlans(vsi) == 1) {
3760		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3761					   ICE_MCAST_PROMISC_BITS, 0);
3762		ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3763					 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3764	}
3765
3766finish:
3767	clear_bit(ICE_CFG_BUSY, vsi->state);
3768
3769	return ret;
3770}
3771
3772/**
3773 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3774 * @netdev: network interface to be adjusted
3775 * @proto: VLAN TPID
3776 * @vid: VLAN ID to be removed
3777 *
3778 * net_device_ops implementation for removing VLAN IDs
3779 */
3780static int
3781ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
 
3782{
3783	struct ice_netdev_priv *np = netdev_priv(netdev);
3784	struct ice_vsi_vlan_ops *vlan_ops;
3785	struct ice_vsi *vsi = np->vsi;
3786	struct ice_vlan vlan;
3787	int ret;
3788
 
 
 
3789	/* don't allow removal of VLAN 0 */
3790	if (!vid)
3791		return 0;
3792
3793	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3794		usleep_range(1000, 2000);
3795
3796	ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3797				    ICE_MCAST_VLAN_PROMISC_BITS, vid);
3798	if (ret) {
3799		netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3800			   vsi->vsi_num);
3801		vsi->current_netdev_flags |= IFF_ALLMULTI;
3802	}
3803
3804	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3805
3806	/* Make sure VLAN delete is successful before updating VLAN
3807	 * information
3808	 */
3809	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3810	ret = vlan_ops->del_vlan(vsi, &vlan);
3811	if (ret)
3812		goto finish;
3813
3814	/* Remove multicast promisc rule for the removed VLAN ID if
3815	 * all-multicast is enabled.
3816	 */
3817	if (vsi->current_netdev_flags & IFF_ALLMULTI)
3818		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3819					   ICE_MCAST_VLAN_PROMISC_BITS, vid);
3820
3821	if (!ice_vsi_has_non_zero_vlans(vsi)) {
3822		/* Update look-up type of multicast promisc rule for VLAN 0
3823		 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3824		 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3825		 */
3826		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3827			ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3828						   ICE_MCAST_VLAN_PROMISC_BITS,
3829						   0);
3830			ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3831						 ICE_MCAST_PROMISC_BITS, 0);
3832		}
3833	}
3834
3835finish:
3836	clear_bit(ICE_CFG_BUSY, vsi->state);
 
3837
 
 
3838	return ret;
3839}
3840
3841/**
3842 * ice_rep_indr_tc_block_unbind
3843 * @cb_priv: indirection block private data
 
 
3844 */
3845static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3846{
3847	struct ice_indr_block_priv *indr_priv = cb_priv;
 
3848
3849	list_del(&indr_priv->list);
3850	kfree(indr_priv);
3851}
3852
3853/**
3854 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3855 * @vsi: VSI struct which has the netdev
3856 */
3857static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3858{
3859	struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3860
3861	flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3862				 ice_rep_indr_tc_block_unbind);
3863}
 
 
 
 
3864
3865/**
3866 * ice_tc_indir_block_register - Register TC indirect block notifications
3867 * @vsi: VSI struct which has the netdev
3868 *
3869 * Returns 0 on success, negative value on failure
3870 */
3871static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3872{
3873	struct ice_netdev_priv *np;
3874
3875	if (!vsi || !vsi->netdev)
3876		return -EINVAL;
 
 
 
3877
3878	np = netdev_priv(vsi->netdev);
 
 
 
 
 
 
 
 
 
3879
3880	INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3881	return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3882}
3883
3884/**
3885 * ice_get_avail_q_count - Get count of queues in use
3886 * @pf_qmap: bitmap to get queue use count from
3887 * @lock: pointer to a mutex that protects access to pf_qmap
3888 * @size: size of the bitmap
3889 */
3890static u16
3891ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3892{
3893	unsigned long bit;
3894	u16 count = 0;
3895
3896	mutex_lock(lock);
3897	for_each_clear_bit(bit, pf_qmap, size)
3898		count++;
3899	mutex_unlock(lock);
3900
3901	return count;
3902}
3903
3904/**
3905 * ice_get_avail_txq_count - Get count of Tx queues in use
3906 * @pf: pointer to an ice_pf instance
3907 */
3908u16 ice_get_avail_txq_count(struct ice_pf *pf)
3909{
3910	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3911				     pf->max_pf_txqs);
3912}
3913
3914/**
3915 * ice_get_avail_rxq_count - Get count of Rx queues in use
3916 * @pf: pointer to an ice_pf instance
3917 */
3918u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3919{
3920	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3921				     pf->max_pf_rxqs);
3922}
3923
3924/**
3925 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3926 * @pf: board private structure to initialize
3927 */
3928static void ice_deinit_pf(struct ice_pf *pf)
3929{
3930	ice_service_task_stop(pf);
3931	mutex_destroy(&pf->lag_mutex);
3932	mutex_destroy(&pf->adev_mutex);
3933	mutex_destroy(&pf->sw_mutex);
3934	mutex_destroy(&pf->tc_mutex);
3935	mutex_destroy(&pf->avail_q_mutex);
3936	mutex_destroy(&pf->vfs.table_lock);
3937
3938	if (pf->avail_txqs) {
3939		bitmap_free(pf->avail_txqs);
3940		pf->avail_txqs = NULL;
3941	}
3942
3943	if (pf->avail_rxqs) {
3944		bitmap_free(pf->avail_rxqs);
3945		pf->avail_rxqs = NULL;
3946	}
3947
3948	if (pf->ptp.clock)
3949		ptp_clock_unregister(pf->ptp.clock);
3950}
3951
3952/**
3953 * ice_set_pf_caps - set PFs capability flags
3954 * @pf: pointer to the PF instance
3955 */
3956static void ice_set_pf_caps(struct ice_pf *pf)
3957{
3958	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3959
3960	clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3961	if (func_caps->common_cap.rdma)
3962		set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3963	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3964	if (func_caps->common_cap.dcb)
3965		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3966	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3967	if (func_caps->common_cap.sr_iov_1_1) {
3968		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3969		pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
3970					      ICE_MAX_SRIOV_VFS);
3971	}
3972	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3973	if (func_caps->common_cap.rss_table_size)
3974		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3975
3976	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3977	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3978		u16 unused;
3979
3980		/* ctrl_vsi_idx will be set to a valid value when flow director
3981		 * is setup by ice_init_fdir
3982		 */
3983		pf->ctrl_vsi_idx = ICE_NO_VSI;
3984		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3985		/* force guaranteed filter pool for PF */
3986		ice_alloc_fd_guar_item(&pf->hw, &unused,
3987				       func_caps->fd_fltr_guar);
3988		/* force shared filter pool for PF */
3989		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3990				       func_caps->fd_fltr_best_effort);
3991	}
3992
3993	clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3994	if (func_caps->common_cap.ieee_1588 &&
3995	    !(pf->hw.mac_type == ICE_MAC_E830))
3996		set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3997
3998	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3999	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
4000}
4001
4002/**
4003 * ice_init_pf - Initialize general software structures (struct ice_pf)
4004 * @pf: board private structure to initialize
4005 */
4006static int ice_init_pf(struct ice_pf *pf)
4007{
4008	ice_set_pf_caps(pf);
4009
4010	mutex_init(&pf->sw_mutex);
4011	mutex_init(&pf->tc_mutex);
4012	mutex_init(&pf->adev_mutex);
4013	mutex_init(&pf->lag_mutex);
4014
4015	INIT_HLIST_HEAD(&pf->aq_wait_list);
4016	spin_lock_init(&pf->aq_wait_lock);
4017	init_waitqueue_head(&pf->aq_wait_queue);
4018
4019	init_waitqueue_head(&pf->reset_wait_queue);
4020
4021	/* setup service timer and periodic service task */
4022	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
4023	pf->serv_tmr_period = HZ;
4024	INIT_WORK(&pf->serv_task, ice_service_task);
4025	clear_bit(ICE_SERVICE_SCHED, pf->state);
4026
4027	mutex_init(&pf->avail_q_mutex);
4028	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
4029	if (!pf->avail_txqs)
4030		return -ENOMEM;
4031
4032	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
4033	if (!pf->avail_rxqs) {
4034		bitmap_free(pf->avail_txqs);
4035		pf->avail_txqs = NULL;
4036		return -ENOMEM;
4037	}
4038
4039	mutex_init(&pf->vfs.table_lock);
4040	hash_init(pf->vfs.table);
4041	ice_mbx_init_snapshot(&pf->hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4042
4043	return 0;
4044}
4045
4046/**
4047 * ice_is_wol_supported - check if WoL is supported
4048 * @hw: pointer to hardware info
4049 *
4050 * Check if WoL is supported based on the HW configuration.
4051 * Returns true if NVM supports and enables WoL for this port, false otherwise
4052 */
4053bool ice_is_wol_supported(struct ice_hw *hw)
4054{
 
4055	u16 wol_ctrl;
4056
4057	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4058	 * word) indicates WoL is not supported on the corresponding PF ID.
4059	 */
4060	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4061		return false;
4062
4063	return !(BIT(hw->port_info->lport) & wol_ctrl);
4064}
4065
4066/**
4067 * ice_vsi_recfg_qs - Change the number of queues on a VSI
4068 * @vsi: VSI being changed
4069 * @new_rx: new number of Rx queues
4070 * @new_tx: new number of Tx queues
4071 * @locked: is adev device_lock held
4072 *
4073 * Only change the number of queues if new_tx, or new_rx is non-0.
4074 *
4075 * Returns 0 on success.
4076 */
4077int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
4078{
4079	struct ice_pf *pf = vsi->back;
4080	int err = 0, timeout = 50;
4081
4082	if (!new_rx && !new_tx)
4083		return -EINVAL;
4084
4085	while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4086		timeout--;
4087		if (!timeout)
4088			return -EBUSY;
4089		usleep_range(1000, 2000);
4090	}
4091
4092	if (new_tx)
4093		vsi->req_txq = (u16)new_tx;
4094	if (new_rx)
4095		vsi->req_rxq = (u16)new_rx;
4096
4097	/* set for the next time the netdev is started */
4098	if (!netif_running(vsi->netdev)) {
4099		ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4100		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4101		goto done;
4102	}
4103
4104	ice_vsi_close(vsi);
4105	ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4106	ice_pf_dcb_recfg(pf, locked);
4107	ice_vsi_open(vsi);
4108done:
4109	clear_bit(ICE_CFG_BUSY, pf->state);
4110	return err;
4111}
4112
4113/**
4114 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4115 * @pf: PF to configure
4116 *
4117 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4118 * VSI can still Tx/Rx VLAN tagged packets.
4119 */
4120static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4121{
4122	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4123	struct ice_vsi_ctx *ctxt;
 
4124	struct ice_hw *hw;
4125	int status;
4126
4127	if (!vsi)
4128		return;
4129
4130	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4131	if (!ctxt)
4132		return;
4133
4134	hw = &pf->hw;
4135	ctxt->info = vsi->info;
4136
4137	ctxt->info.valid_sections =
4138		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4139			    ICE_AQ_VSI_PROP_SECURITY_VALID |
4140			    ICE_AQ_VSI_PROP_SW_VALID);
4141
4142	/* disable VLAN anti-spoof */
4143	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4144				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4145
4146	/* disable VLAN pruning and keep all other settings */
4147	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4148
4149	/* allow all VLANs on Tx and don't strip on Rx */
4150	ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4151		ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4152
4153	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4154	if (status) {
4155		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4156			status, ice_aq_str(hw->adminq.sq_last_status));
 
4157	} else {
4158		vsi->info.sec_flags = ctxt->info.sec_flags;
4159		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4160		vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4161	}
4162
4163	kfree(ctxt);
4164}
4165
4166/**
4167 * ice_log_pkg_init - log result of DDP package load
4168 * @hw: pointer to hardware info
4169 * @state: state of package load
4170 */
4171static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
 
4172{
4173	struct ice_pf *pf = hw->back;
4174	struct device *dev;
4175
4176	dev = ice_pf_to_dev(pf);
4177
4178	switch (state) {
4179	case ICE_DDP_PKG_SUCCESS:
4180		dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4181			 hw->active_pkg_name,
4182			 hw->active_pkg_ver.major,
4183			 hw->active_pkg_ver.minor,
4184			 hw->active_pkg_ver.update,
4185			 hw->active_pkg_ver.draft);
4186		break;
4187	case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4188		dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4189			 hw->active_pkg_name,
4190			 hw->active_pkg_ver.major,
4191			 hw->active_pkg_ver.minor,
4192			 hw->active_pkg_ver.update,
4193			 hw->active_pkg_ver.draft);
4194		break;
4195	case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4196		dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
4197			hw->active_pkg_name,
4198			hw->active_pkg_ver.major,
4199			hw->active_pkg_ver.minor,
4200			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4201		break;
4202	case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4203		dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4204			 hw->active_pkg_name,
4205			 hw->active_pkg_ver.major,
4206			 hw->active_pkg_ver.minor,
4207			 hw->active_pkg_ver.update,
4208			 hw->active_pkg_ver.draft,
4209			 hw->pkg_name,
4210			 hw->pkg_ver.major,
4211			 hw->pkg_ver.minor,
4212			 hw->pkg_ver.update,
4213			 hw->pkg_ver.draft);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4214		break;
4215	case ICE_DDP_PKG_FW_MISMATCH:
4216		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
4217		break;
4218	case ICE_DDP_PKG_INVALID_FILE:
 
4219		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4220		break;
4221	case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4222		dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
4223		break;
4224	case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4225		dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
4226			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4227		break;
4228	case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4229		dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
4230		break;
4231	case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4232		dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
4233		break;
4234	case ICE_DDP_PKG_LOAD_ERROR:
4235		dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
4236		/* poll for reset to complete */
4237		if (ice_check_reset(hw))
4238			dev_err(dev, "Error resetting device. Please reload the driver\n");
4239		break;
4240	case ICE_DDP_PKG_ERR:
 
 
 
 
 
 
 
 
 
 
 
 
4241	default:
4242		dev_err(dev, "An unknown error occurred when loading the DDP package.  Entering Safe Mode.\n");
 
4243		break;
4244	}
4245}
4246
4247/**
4248 * ice_load_pkg - load/reload the DDP Package file
4249 * @firmware: firmware structure when firmware requested or NULL for reload
4250 * @pf: pointer to the PF instance
4251 *
4252 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4253 * initialize HW tables.
4254 */
4255static void
4256ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4257{
4258	enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4259	struct device *dev = ice_pf_to_dev(pf);
4260	struct ice_hw *hw = &pf->hw;
4261
4262	/* Load DDP Package */
4263	if (firmware && !hw->pkg_copy) {
4264		state = ice_copy_and_init_pkg(hw, firmware->data,
4265					      firmware->size);
4266		ice_log_pkg_init(hw, state);
4267	} else if (!firmware && hw->pkg_copy) {
4268		/* Reload package during rebuild after CORER/GLOBR reset */
4269		state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4270		ice_log_pkg_init(hw, state);
4271	} else {
4272		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4273	}
4274
4275	if (!ice_is_init_pkg_successful(state)) {
4276		/* Safe Mode */
4277		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4278		return;
4279	}
4280
4281	/* Successful download package is the precondition for advanced
4282	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4283	 */
4284	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4285}
4286
4287/**
4288 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4289 * @pf: pointer to the PF structure
4290 *
4291 * There is no error returned here because the driver should be able to handle
4292 * 128 Byte cache lines, so we only print a warning in case issues are seen,
4293 * specifically with Tx.
4294 */
4295static void ice_verify_cacheline_size(struct ice_pf *pf)
4296{
4297	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4298		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4299			 ICE_CACHE_LINE_BYTES);
4300}
4301
4302/**
4303 * ice_send_version - update firmware with driver version
4304 * @pf: PF struct
4305 *
4306 * Returns 0 on success, else error code
4307 */
4308static int ice_send_version(struct ice_pf *pf)
4309{
4310	struct ice_driver_ver dv;
4311
4312	dv.major_ver = 0xff;
4313	dv.minor_ver = 0xff;
4314	dv.build_ver = 0xff;
4315	dv.subbuild_ver = 0;
4316	strscpy((char *)dv.driver_string, UTS_RELEASE,
4317		sizeof(dv.driver_string));
4318	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4319}
4320
4321/**
4322 * ice_init_fdir - Initialize flow director VSI and configuration
4323 * @pf: pointer to the PF instance
4324 *
4325 * returns 0 on success, negative on error
4326 */
4327static int ice_init_fdir(struct ice_pf *pf)
4328{
4329	struct device *dev = ice_pf_to_dev(pf);
4330	struct ice_vsi *ctrl_vsi;
4331	int err;
4332
4333	/* Side Band Flow Director needs to have a control VSI.
4334	 * Allocate it and store it in the PF.
4335	 */
4336	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4337	if (!ctrl_vsi) {
4338		dev_dbg(dev, "could not create control VSI\n");
4339		return -ENOMEM;
4340	}
4341
4342	err = ice_vsi_open_ctrl(ctrl_vsi);
4343	if (err) {
4344		dev_dbg(dev, "could not open control VSI\n");
4345		goto err_vsi_open;
4346	}
4347
4348	mutex_init(&pf->hw.fdir_fltr_lock);
4349
4350	err = ice_fdir_create_dflt_rules(pf);
4351	if (err)
4352		goto err_fdir_rule;
4353
4354	return 0;
4355
4356err_fdir_rule:
4357	ice_fdir_release_flows(&pf->hw);
4358	ice_vsi_close(ctrl_vsi);
4359err_vsi_open:
4360	ice_vsi_release(ctrl_vsi);
4361	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4362		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4363		pf->ctrl_vsi_idx = ICE_NO_VSI;
4364	}
4365	return err;
4366}
4367
4368static void ice_deinit_fdir(struct ice_pf *pf)
4369{
4370	struct ice_vsi *vsi = ice_get_ctrl_vsi(pf);
4371
4372	if (!vsi)
4373		return;
4374
4375	ice_vsi_manage_fdir(vsi, false);
4376	ice_vsi_release(vsi);
4377	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4378		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4379		pf->ctrl_vsi_idx = ICE_NO_VSI;
4380	}
4381
4382	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4383}
4384
4385/**
4386 * ice_get_opt_fw_name - return optional firmware file name or NULL
4387 * @pf: pointer to the PF instance
4388 */
4389static char *ice_get_opt_fw_name(struct ice_pf *pf)
4390{
4391	/* Optional firmware name same as default with additional dash
4392	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4393	 */
4394	struct pci_dev *pdev = pf->pdev;
4395	char *opt_fw_filename;
4396	u64 dsn;
4397
4398	/* Determine the name of the optional file using the DSN (two
4399	 * dwords following the start of the DSN Capability).
4400	 */
4401	dsn = pci_get_dsn(pdev);
4402	if (!dsn)
4403		return NULL;
4404
4405	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4406	if (!opt_fw_filename)
4407		return NULL;
4408
4409	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4410		 ICE_DDP_PKG_PATH, dsn);
4411
4412	return opt_fw_filename;
4413}
4414
4415/**
4416 * ice_request_fw - Device initialization routine
4417 * @pf: pointer to the PF instance
4418 */
4419static void ice_request_fw(struct ice_pf *pf)
4420{
4421	char *opt_fw_filename = ice_get_opt_fw_name(pf);
4422	const struct firmware *firmware = NULL;
4423	struct device *dev = ice_pf_to_dev(pf);
4424	int err = 0;
4425
4426	/* optional device-specific DDP (if present) overrides the default DDP
4427	 * package file. kernel logs a debug message if the file doesn't exist,
4428	 * and warning messages for other errors.
4429	 */
4430	if (opt_fw_filename) {
4431		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4432		if (err) {
4433			kfree(opt_fw_filename);
4434			goto dflt_pkg_load;
4435		}
4436
4437		/* request for firmware was successful. Download to device */
4438		ice_load_pkg(firmware, pf);
4439		kfree(opt_fw_filename);
4440		release_firmware(firmware);
4441		return;
4442	}
4443
4444dflt_pkg_load:
4445	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4446	if (err) {
4447		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4448		return;
4449	}
4450
4451	/* request for firmware was successful. Download to device */
4452	ice_load_pkg(firmware, pf);
4453	release_firmware(firmware);
4454}
4455
4456/**
4457 * ice_print_wake_reason - show the wake up cause in the log
4458 * @pf: pointer to the PF struct
4459 */
4460static void ice_print_wake_reason(struct ice_pf *pf)
4461{
4462	u32 wus = pf->wakeup_reason;
4463	const char *wake_str;
4464
4465	/* if no wake event, nothing to print */
4466	if (!wus)
4467		return;
4468
4469	if (wus & PFPM_WUS_LNKC_M)
4470		wake_str = "Link\n";
4471	else if (wus & PFPM_WUS_MAG_M)
4472		wake_str = "Magic Packet\n";
4473	else if (wus & PFPM_WUS_MNG_M)
4474		wake_str = "Management\n";
4475	else if (wus & PFPM_WUS_FW_RST_WK_M)
4476		wake_str = "Firmware Reset\n";
4477	else
4478		wake_str = "Unknown\n";
4479
4480	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4481}
4482
4483/**
4484 * ice_pf_fwlog_update_module - update 1 module
4485 * @pf: pointer to the PF struct
4486 * @log_level: log_level to use for the @module
4487 * @module: module to update
4488 */
4489void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module)
4490{
4491	struct ice_hw *hw = &pf->hw;
4492
4493	hw->fwlog_cfg.module_entries[module].log_level = log_level;
4494}
4495
4496/**
4497 * ice_register_netdev - register netdev
4498 * @vsi: pointer to the VSI struct
4499 */
4500static int ice_register_netdev(struct ice_vsi *vsi)
4501{
4502	int err;
4503
4504	if (!vsi || !vsi->netdev)
4505		return -EIO;
4506
4507	err = register_netdev(vsi->netdev);
4508	if (err)
4509		return err;
4510
4511	set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4512	netif_carrier_off(vsi->netdev);
4513	netif_tx_stop_all_queues(vsi->netdev);
4514
4515	return 0;
4516}
4517
4518static void ice_unregister_netdev(struct ice_vsi *vsi)
4519{
4520	if (!vsi || !vsi->netdev)
4521		return;
4522
4523	unregister_netdev(vsi->netdev);
4524	clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4525}
4526
4527/**
4528 * ice_cfg_netdev - Allocate, configure and register a netdev
4529 * @vsi: the VSI associated with the new netdev
4530 *
4531 * Returns 0 on success, negative value on failure
4532 */
4533static int ice_cfg_netdev(struct ice_vsi *vsi)
4534{
4535	struct ice_netdev_priv *np;
4536	struct net_device *netdev;
4537	u8 mac_addr[ETH_ALEN];
4538
4539	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
4540				    vsi->alloc_rxq);
4541	if (!netdev)
4542		return -ENOMEM;
4543
4544	set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4545	vsi->netdev = netdev;
4546	np = netdev_priv(netdev);
4547	np->vsi = vsi;
4548
4549	ice_set_netdev_features(netdev);
4550	ice_set_ops(vsi);
4551
4552	if (vsi->type == ICE_VSI_PF) {
4553		SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
4554		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4555		eth_hw_addr_set(netdev, mac_addr);
4556	}
4557
4558	netdev->priv_flags |= IFF_UNICAST_FLT;
4559
4560	/* Setup netdev TC information */
4561	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
4562
4563	netdev->max_mtu = ICE_MAX_MTU;
4564
4565	return 0;
4566}
4567
4568static void ice_decfg_netdev(struct ice_vsi *vsi)
4569{
4570	clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4571	free_netdev(vsi->netdev);
4572	vsi->netdev = NULL;
4573}
4574
4575static int ice_start_eth(struct ice_vsi *vsi)
4576{
 
 
 
4577	int err;
4578
4579	err = ice_init_mac_fltr(vsi->back);
 
 
 
4580	if (err)
4581		return err;
4582
4583	err = ice_vsi_open(vsi);
4584	if (err)
4585		ice_fltr_remove_all(vsi);
4586
4587	return err;
4588}
4589
4590static void ice_stop_eth(struct ice_vsi *vsi)
4591{
4592	ice_fltr_remove_all(vsi);
4593	ice_vsi_close(vsi);
4594}
4595
4596static int ice_init_eth(struct ice_pf *pf)
4597{
4598	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4599	int err;
4600
4601	if (!vsi)
4602		return -EINVAL;
4603
4604	/* init channel list */
4605	INIT_LIST_HEAD(&vsi->ch_list);
4606
4607	err = ice_cfg_netdev(vsi);
4608	if (err)
4609		return err;
4610	/* Setup DCB netlink interface */
4611	ice_dcbnl_setup(vsi);
4612
4613	err = ice_init_mac_fltr(pf);
4614	if (err)
4615		goto err_init_mac_fltr;
4616
4617	err = ice_devlink_create_pf_port(pf);
4618	if (err)
4619		goto err_devlink_create_pf_port;
4620
4621	SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
4622
4623	err = ice_register_netdev(vsi);
4624	if (err)
4625		goto err_register_netdev;
4626
4627	err = ice_tc_indir_block_register(vsi);
 
4628	if (err)
4629		goto err_tc_indir_block_register;
4630
4631	ice_napi_add(vsi);
4632
4633	return 0;
4634
4635err_tc_indir_block_register:
4636	ice_unregister_netdev(vsi);
4637err_register_netdev:
4638	ice_devlink_destroy_pf_port(pf);
4639err_devlink_create_pf_port:
4640err_init_mac_fltr:
4641	ice_decfg_netdev(vsi);
4642	return err;
4643}
4644
4645static void ice_deinit_eth(struct ice_pf *pf)
4646{
4647	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4648
4649	if (!vsi)
4650		return;
 
 
 
4651
4652	ice_vsi_close(vsi);
4653	ice_unregister_netdev(vsi);
4654	ice_devlink_destroy_pf_port(pf);
4655	ice_tc_indir_block_unregister(vsi);
4656	ice_decfg_netdev(vsi);
4657}
4658
4659/**
4660 * ice_wait_for_fw - wait for full FW readiness
4661 * @hw: pointer to the hardware structure
4662 * @timeout: milliseconds that can elapse before timing out
4663 */
4664static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout)
4665{
4666	int fw_loading;
4667	u32 elapsed = 0;
4668
4669	while (elapsed <= timeout) {
4670		fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M;
4671
4672		/* firmware was not yet loaded, we have to wait more */
4673		if (fw_loading) {
4674			elapsed += 100;
4675			msleep(100);
4676			continue;
4677		}
4678		return 0;
4679	}
4680
4681	return -ETIMEDOUT;
4682}
4683
4684static int ice_init_dev(struct ice_pf *pf)
4685{
4686	struct device *dev = ice_pf_to_dev(pf);
4687	struct ice_hw *hw = &pf->hw;
4688	int err;
4689
4690	err = ice_init_hw(hw);
4691	if (err) {
4692		dev_err(dev, "ice_init_hw failed: %d\n", err);
4693		return err;
4694	}
4695
4696	/* Some cards require longer initialization times
4697	 * due to necessity of loading FW from an external source.
4698	 * This can take even half a minute.
4699	 */
4700	if (ice_is_pf_c827(hw)) {
4701		err = ice_wait_for_fw(hw, 30000);
4702		if (err) {
4703			dev_err(dev, "ice_wait_for_fw timed out");
4704			return err;
4705		}
4706	}
4707
4708	ice_init_feature_support(pf);
4709
4710	ice_request_fw(pf);
4711
4712	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4713	 * set in pf->state, which will cause ice_is_safe_mode to return
4714	 * true
4715	 */
4716	if (ice_is_safe_mode(pf)) {
 
4717		/* we already got function/device capabilities but these don't
4718		 * reflect what the driver needs to do in safe mode. Instead of
4719		 * adding conditional logic everywhere to ignore these
4720		 * device/function capabilities, override them.
4721		 */
4722		ice_set_safe_mode_caps(hw);
4723	}
4724
4725	err = ice_init_pf(pf);
4726	if (err) {
4727		dev_err(dev, "ice_init_pf failed: %d\n", err);
4728		goto err_init_pf;
4729	}
4730
4731	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4732	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4733	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4734	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4735	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4736		pf->hw.udp_tunnel_nic.tables[0].n_entries =
4737			pf->hw.tnl.valid_count[TNL_VXLAN];
4738		pf->hw.udp_tunnel_nic.tables[0].tunnel_types =
4739			UDP_TUNNEL_TYPE_VXLAN;
4740	}
4741	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4742		pf->hw.udp_tunnel_nic.tables[1].n_entries =
4743			pf->hw.tnl.valid_count[TNL_GENEVE];
4744		pf->hw.udp_tunnel_nic.tables[1].tunnel_types =
4745			UDP_TUNNEL_TYPE_GENEVE;
4746	}
4747
4748	err = ice_init_interrupt_scheme(pf);
4749	if (err) {
4750		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4751		err = -EIO;
4752		goto err_init_interrupt_scheme;
4753	}
4754
4755	/* In case of MSIX we are going to setup the misc vector right here
4756	 * to handle admin queue events etc. In case of legacy and MSI
4757	 * the misc functionality and queue processing is combined in
4758	 * the same vector and that gets setup at open.
4759	 */
4760	err = ice_req_irq_msix_misc(pf);
4761	if (err) {
4762		dev_err(dev, "setup of misc vector failed: %d\n", err);
4763		goto err_req_irq_msix_misc;
4764	}
4765
4766	return 0;
4767
4768err_req_irq_msix_misc:
4769	ice_clear_interrupt_scheme(pf);
4770err_init_interrupt_scheme:
4771	ice_deinit_pf(pf);
4772err_init_pf:
4773	ice_deinit_hw(hw);
4774	return err;
4775}
4776
4777static void ice_deinit_dev(struct ice_pf *pf)
4778{
4779	ice_free_irq_msix_misc(pf);
4780	ice_deinit_pf(pf);
4781	ice_deinit_hw(&pf->hw);
4782
4783	/* Service task is already stopped, so call reset directly. */
4784	ice_reset(&pf->hw, ICE_RESET_PFR);
4785	pci_wait_for_pending_transaction(pf->pdev);
4786	ice_clear_interrupt_scheme(pf);
4787}
4788
4789static void ice_init_features(struct ice_pf *pf)
4790{
4791	struct device *dev = ice_pf_to_dev(pf);
4792
4793	if (ice_is_safe_mode(pf))
4794		return;
4795
4796	/* initialize DDP driven features */
4797	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4798		ice_ptp_init(pf);
4799
4800	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4801		ice_gnss_init(pf);
4802
4803	if (ice_is_feature_supported(pf, ICE_F_CGU) ||
4804	    ice_is_feature_supported(pf, ICE_F_PHY_RCLK))
4805		ice_dpll_init(pf);
4806
4807	/* Note: Flow director init failure is non-fatal to load */
4808	if (ice_init_fdir(pf))
4809		dev_err(dev, "could not initialize flow director\n");
4810
4811	/* Note: DCB init failure is non-fatal to load */
4812	if (ice_init_pf_dcb(pf, false)) {
4813		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4814		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4815	} else {
4816		ice_cfg_lldp_mib_change(&pf->hw, true);
4817	}
4818
4819	if (ice_init_lag(pf))
4820		dev_warn(dev, "Failed to init link aggregation support\n");
4821
4822	ice_hwmon_init(pf);
4823}
4824
4825static void ice_deinit_features(struct ice_pf *pf)
4826{
4827	if (ice_is_safe_mode(pf))
4828		return;
4829
4830	ice_deinit_lag(pf);
4831	if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags))
4832		ice_cfg_lldp_mib_change(&pf->hw, false);
4833	ice_deinit_fdir(pf);
4834	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4835		ice_gnss_exit(pf);
4836	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4837		ice_ptp_release(pf);
4838	if (test_bit(ICE_FLAG_DPLL, pf->flags))
4839		ice_dpll_deinit(pf);
4840	if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV)
4841		xa_destroy(&pf->eswitch.reprs);
4842}
4843
4844static void ice_init_wakeup(struct ice_pf *pf)
4845{
4846	/* Save wakeup reason register for later use */
4847	pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS);
4848
4849	/* check for a power management event */
4850	ice_print_wake_reason(pf);
 
 
 
4851
4852	/* clear wake status, all bits */
4853	wr32(&pf->hw, PFPM_WUS, U32_MAX);
4854
4855	/* Disable WoL at init, wait for user to enable */
4856	device_set_wakeup_enable(ice_pf_to_dev(pf), false);
4857}
 
 
 
 
4858
4859static int ice_init_link(struct ice_pf *pf)
4860{
4861	struct device *dev = ice_pf_to_dev(pf);
4862	int err;
4863
4864	err = ice_init_link_events(pf->hw.port_info);
4865	if (err) {
4866		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4867		return err;
4868	}
4869
4870	/* not a fatal error if this fails */
4871	err = ice_init_nvm_phy_type(pf->hw.port_info);
4872	if (err)
4873		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
 
 
4874
4875	/* not a fatal error if this fails */
4876	err = ice_update_link_info(pf->hw.port_info);
4877	if (err)
4878		dev_err(dev, "ice_update_link_info failed: %d\n", err);
 
 
4879
4880	ice_init_link_dflt_override(pf->hw.port_info);
4881
4882	ice_check_link_cfg_err(pf,
4883			       pf->hw.port_info->phy.link_info.link_cfg_err);
4884
4885	/* if media available, initialize PHY settings */
4886	if (pf->hw.port_info->phy.link_info.link_info &
4887	    ICE_AQ_MEDIA_AVAILABLE) {
4888		/* not a fatal error if this fails */
4889		err = ice_init_phy_user_cfg(pf->hw.port_info);
4890		if (err)
4891			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
 
 
4892
4893		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4894			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4895
4896			if (vsi)
4897				ice_configure_phy(vsi);
4898		}
4899	} else {
4900		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4901	}
4902
4903	return err;
4904}
4905
4906static int ice_init_pf_sw(struct ice_pf *pf)
4907{
4908	bool dvm = ice_is_dvm_ena(&pf->hw);
4909	struct ice_vsi *vsi;
4910	int err;
4911
4912	/* create switch struct for the switch element created by FW on boot */
4913	pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL);
4914	if (!pf->first_sw)
4915		return -ENOMEM;
4916
4917	if (pf->hw.evb_veb)
4918		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4919	else
4920		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4921
4922	pf->first_sw->pf = pf;
4923
4924	/* record the sw_id available for later use */
4925	pf->first_sw->sw_id = pf->hw.port_info->sw_id;
4926
4927	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
4928	if (err)
4929		goto err_aq_set_port_params;
4930
4931	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
4932	if (!vsi) {
4933		err = -ENOMEM;
4934		goto err_pf_vsi_setup;
4935	}
4936
4937	return 0;
4938
4939err_pf_vsi_setup:
4940err_aq_set_port_params:
4941	kfree(pf->first_sw);
4942	return err;
4943}
4944
4945static void ice_deinit_pf_sw(struct ice_pf *pf)
4946{
4947	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4948
4949	if (!vsi)
4950		return;
4951
4952	ice_vsi_release(vsi);
4953	kfree(pf->first_sw);
4954}
4955
4956static int ice_alloc_vsis(struct ice_pf *pf)
4957{
4958	struct device *dev = ice_pf_to_dev(pf);
4959
4960	pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi;
4961	if (!pf->num_alloc_vsi)
4962		return -EIO;
4963
4964	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4965		dev_warn(dev,
4966			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4967			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4968		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4969	}
4970
4971	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4972			       GFP_KERNEL);
4973	if (!pf->vsi)
4974		return -ENOMEM;
4975
4976	pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
4977				     sizeof(*pf->vsi_stats), GFP_KERNEL);
4978	if (!pf->vsi_stats) {
4979		devm_kfree(dev, pf->vsi);
4980		return -ENOMEM;
4981	}
4982
4983	return 0;
4984}
4985
4986static void ice_dealloc_vsis(struct ice_pf *pf)
4987{
4988	devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats);
4989	pf->vsi_stats = NULL;
4990
4991	pf->num_alloc_vsi = 0;
4992	devm_kfree(ice_pf_to_dev(pf), pf->vsi);
4993	pf->vsi = NULL;
4994}
4995
4996static int ice_init_devlink(struct ice_pf *pf)
4997{
4998	int err;
4999
5000	err = ice_devlink_register_params(pf);
5001	if (err)
5002		return err;
5003
5004	ice_devlink_init_regions(pf);
5005	ice_devlink_register(pf);
5006
5007	return 0;
5008}
5009
5010static void ice_deinit_devlink(struct ice_pf *pf)
5011{
5012	ice_devlink_unregister(pf);
5013	ice_devlink_destroy_regions(pf);
5014	ice_devlink_unregister_params(pf);
5015}
5016
5017static int ice_init(struct ice_pf *pf)
5018{
5019	int err;
5020
5021	err = ice_init_dev(pf);
5022	if (err)
5023		return err;
5024
5025	err = ice_alloc_vsis(pf);
5026	if (err)
5027		goto err_alloc_vsis;
5028
5029	err = ice_init_pf_sw(pf);
5030	if (err)
5031		goto err_init_pf_sw;
5032
5033	ice_init_wakeup(pf);
5034
5035	err = ice_init_link(pf);
5036	if (err)
5037		goto err_init_link;
5038
5039	err = ice_send_version(pf);
5040	if (err)
5041		goto err_init_link;
5042
5043	ice_verify_cacheline_size(pf);
5044
5045	if (ice_is_safe_mode(pf))
5046		ice_set_safe_mode_vlan_cfg(pf);
5047	else
5048		/* print PCI link speed and width */
5049		pcie_print_link_status(pf->pdev);
5050
5051	/* ready to go, so clear down state bit */
5052	clear_bit(ICE_DOWN, pf->state);
5053	clear_bit(ICE_SERVICE_DIS, pf->state);
5054
5055	/* since everything is good, start the service timer */
5056	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5057
5058	return 0;
5059
5060err_init_link:
5061	ice_deinit_pf_sw(pf);
5062err_init_pf_sw:
5063	ice_dealloc_vsis(pf);
5064err_alloc_vsis:
5065	ice_deinit_dev(pf);
5066	return err;
5067}
5068
5069static void ice_deinit(struct ice_pf *pf)
5070{
5071	set_bit(ICE_SERVICE_DIS, pf->state);
5072	set_bit(ICE_DOWN, pf->state);
5073
5074	ice_deinit_pf_sw(pf);
5075	ice_dealloc_vsis(pf);
5076	ice_deinit_dev(pf);
5077}
5078
5079/**
5080 * ice_load - load pf by init hw and starting VSI
5081 * @pf: pointer to the pf instance
5082 */
5083int ice_load(struct ice_pf *pf)
5084{
5085	struct ice_vsi_cfg_params params = {};
5086	struct ice_vsi *vsi;
5087	int err;
5088
5089	err = ice_init_dev(pf);
5090	if (err)
5091		return err;
5092
5093	vsi = ice_get_main_vsi(pf);
5094
5095	params = ice_vsi_to_params(vsi);
5096	params.flags = ICE_VSI_FLAG_INIT;
5097
5098	rtnl_lock();
5099	err = ice_vsi_cfg(vsi, &params);
5100	if (err)
5101		goto err_vsi_cfg;
5102
5103	err = ice_start_eth(ice_get_main_vsi(pf));
5104	if (err)
5105		goto err_start_eth;
5106	rtnl_unlock();
5107
5108	err = ice_init_rdma(pf);
5109	if (err)
5110		goto err_init_rdma;
5111
5112	ice_init_features(pf);
5113	ice_service_task_restart(pf);
5114
5115	clear_bit(ICE_DOWN, pf->state);
5116
5117	return 0;
5118
5119err_init_rdma:
5120	ice_vsi_close(ice_get_main_vsi(pf));
5121	rtnl_lock();
5122err_start_eth:
5123	ice_vsi_decfg(ice_get_main_vsi(pf));
5124err_vsi_cfg:
5125	rtnl_unlock();
5126	ice_deinit_dev(pf);
5127	return err;
5128}
5129
5130/**
5131 * ice_unload - unload pf by stopping VSI and deinit hw
5132 * @pf: pointer to the pf instance
5133 */
5134void ice_unload(struct ice_pf *pf)
5135{
5136	ice_deinit_features(pf);
5137	ice_deinit_rdma(pf);
5138	rtnl_lock();
5139	ice_stop_eth(ice_get_main_vsi(pf));
5140	ice_vsi_decfg(ice_get_main_vsi(pf));
5141	rtnl_unlock();
5142	ice_deinit_dev(pf);
5143}
5144
5145/**
5146 * ice_probe - Device initialization routine
5147 * @pdev: PCI device information struct
5148 * @ent: entry in ice_pci_tbl
5149 *
5150 * Returns 0 on success, negative on failure
5151 */
5152static int
5153ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
5154{
5155	struct device *dev = &pdev->dev;
5156	struct ice_pf *pf;
5157	struct ice_hw *hw;
5158	int err;
5159
5160	if (pdev->is_virtfn) {
5161		dev_err(dev, "can't probe a virtual function\n");
5162		return -EINVAL;
5163	}
5164
5165	/* when under a kdump kernel initiate a reset before enabling the
5166	 * device in order to clear out any pending DMA transactions. These
5167	 * transactions can cause some systems to machine check when doing
5168	 * the pcim_enable_device() below.
5169	 */
5170	if (is_kdump_kernel()) {
5171		pci_save_state(pdev);
5172		pci_clear_master(pdev);
5173		err = pcie_flr(pdev);
5174		if (err)
5175			return err;
5176		pci_restore_state(pdev);
5177	}
5178
5179	/* this driver uses devres, see
5180	 * Documentation/driver-api/driver-model/devres.rst
5181	 */
5182	err = pcim_enable_device(pdev);
5183	if (err)
5184		return err;
5185
5186	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
5187	if (err) {
5188		dev_err(dev, "BAR0 I/O map error %d\n", err);
5189		return err;
5190	}
5191
5192	pf = ice_allocate_pf(dev);
5193	if (!pf)
5194		return -ENOMEM;
5195
5196	/* initialize Auxiliary index to invalid value */
5197	pf->aux_idx = -1;
 
5198
5199	/* set up for high or low DMA */
5200	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5201	if (err) {
5202		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
5203		return err;
 
5204	}
5205
5206	pci_set_master(pdev);
5207
5208	pf->pdev = pdev;
5209	pci_set_drvdata(pdev, pf);
5210	set_bit(ICE_DOWN, pf->state);
5211	/* Disable service task until DOWN bit is cleared */
5212	set_bit(ICE_SERVICE_DIS, pf->state);
5213
5214	hw = &pf->hw;
5215	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
5216	pci_save_state(pdev);
5217
5218	hw->back = pf;
5219	hw->port_info = NULL;
5220	hw->vendor_id = pdev->vendor;
5221	hw->device_id = pdev->device;
5222	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5223	hw->subsystem_vendor_id = pdev->subsystem_vendor;
5224	hw->subsystem_device_id = pdev->subsystem_device;
5225	hw->bus.device = PCI_SLOT(pdev->devfn);
5226	hw->bus.func = PCI_FUNC(pdev->devfn);
5227	ice_set_ctrlq_len(hw);
5228
5229	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
5230
5231#ifndef CONFIG_DYNAMIC_DEBUG
5232	if (debug < -1)
5233		hw->debug_mask = debug;
5234#endif
5235
5236	err = ice_init(pf);
5237	if (err)
5238		goto err_init;
5239
5240	err = ice_init_eth(pf);
5241	if (err)
5242		goto err_init_eth;
5243
5244	err = ice_init_rdma(pf);
5245	if (err)
5246		goto err_init_rdma;
5247
5248	err = ice_init_devlink(pf);
5249	if (err)
5250		goto err_init_devlink;
5251
5252	ice_init_features(pf);
5253
 
 
 
5254	return 0;
5255
5256err_init_devlink:
5257	ice_deinit_rdma(pf);
5258err_init_rdma:
5259	ice_deinit_eth(pf);
5260err_init_eth:
5261	ice_deinit(pf);
5262err_init:
 
 
 
 
 
 
 
 
 
 
 
 
 
5263	pci_disable_device(pdev);
5264	return err;
5265}
5266
5267/**
5268 * ice_set_wake - enable or disable Wake on LAN
5269 * @pf: pointer to the PF struct
5270 *
5271 * Simple helper for WoL control
5272 */
5273static void ice_set_wake(struct ice_pf *pf)
5274{
5275	struct ice_hw *hw = &pf->hw;
5276	bool wol = pf->wol_ena;
5277
5278	/* clear wake state, otherwise new wake events won't fire */
5279	wr32(hw, PFPM_WUS, U32_MAX);
5280
5281	/* enable / disable APM wake up, no RMW needed */
5282	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
5283
5284	/* set magic packet filter enabled */
5285	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
5286}
5287
5288/**
5289 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
5290 * @pf: pointer to the PF struct
5291 *
5292 * Issue firmware command to enable multicast magic wake, making
5293 * sure that any locally administered address (LAA) is used for
5294 * wake, and that PF reset doesn't undo the LAA.
5295 */
5296static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5297{
5298	struct device *dev = ice_pf_to_dev(pf);
5299	struct ice_hw *hw = &pf->hw;
 
5300	u8 mac_addr[ETH_ALEN];
5301	struct ice_vsi *vsi;
5302	int status;
5303	u8 flags;
5304
5305	if (!pf->wol_ena)
5306		return;
5307
5308	vsi = ice_get_main_vsi(pf);
5309	if (!vsi)
5310		return;
5311
5312	/* Get current MAC address in case it's an LAA */
5313	if (vsi->netdev)
5314		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5315	else
5316		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5317
5318	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5319		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5320		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5321
5322	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5323	if (status)
5324		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5325			status, ice_aq_str(hw->adminq.sq_last_status));
 
5326}
5327
5328/**
5329 * ice_remove - Device removal routine
5330 * @pdev: PCI device information struct
5331 */
5332static void ice_remove(struct pci_dev *pdev)
5333{
5334	struct ice_pf *pf = pci_get_drvdata(pdev);
5335	int i;
5336
 
 
 
5337	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5338		if (!ice_is_reset_in_progress(pf->state))
5339			break;
5340		msleep(100);
5341	}
5342
5343	ice_debugfs_exit();
5344
5345	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5346		set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5347		ice_free_vfs(pf);
5348	}
5349
5350	ice_hwmon_exit(pf);
5351
5352	ice_service_task_stop(pf);
 
5353	ice_aq_cancel_waiting_tasks(pf);
5354	set_bit(ICE_DOWN, pf->state);
5355
 
5356	if (!ice_is_safe_mode(pf))
5357		ice_remove_arfs(pf);
5358	ice_deinit_features(pf);
5359	ice_deinit_devlink(pf);
5360	ice_deinit_rdma(pf);
5361	ice_deinit_eth(pf);
5362	ice_deinit(pf);
5363
5364	ice_vsi_release_all(pf);
5365
5366	ice_setup_mc_magic_wake(pf);
 
 
5367	ice_set_wake(pf);
 
 
 
 
 
 
 
 
 
 
5368
 
 
 
 
 
 
 
 
5369	pci_disable_device(pdev);
5370}
5371
5372/**
5373 * ice_shutdown - PCI callback for shutting down device
5374 * @pdev: PCI device information struct
5375 */
5376static void ice_shutdown(struct pci_dev *pdev)
5377{
5378	struct ice_pf *pf = pci_get_drvdata(pdev);
5379
5380	ice_remove(pdev);
5381
5382	if (system_state == SYSTEM_POWER_OFF) {
5383		pci_wake_from_d3(pdev, pf->wol_ena);
5384		pci_set_power_state(pdev, PCI_D3hot);
5385	}
5386}
5387
5388#ifdef CONFIG_PM
5389/**
5390 * ice_prepare_for_shutdown - prep for PCI shutdown
5391 * @pf: board private structure
5392 *
5393 * Inform or close all dependent features in prep for PCI device shutdown
5394 */
5395static void ice_prepare_for_shutdown(struct ice_pf *pf)
5396{
5397	struct ice_hw *hw = &pf->hw;
5398	u32 v;
5399
5400	/* Notify VFs of impending reset */
5401	if (ice_check_sq_alive(hw, &hw->mailboxq))
5402		ice_vc_notify_reset(pf);
5403
5404	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5405
5406	/* disable the VSIs and their queues that are not already DOWN */
5407	ice_pf_dis_all_vsi(pf, false);
5408
5409	ice_for_each_vsi(pf, v)
5410		if (pf->vsi[v])
5411			pf->vsi[v]->vsi_num = 0;
5412
5413	ice_shutdown_all_ctrlq(hw);
5414}
5415
5416/**
5417 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5418 * @pf: board private structure to reinitialize
5419 *
5420 * This routine reinitialize interrupt scheme that was cleared during
5421 * power management suspend callback.
5422 *
5423 * This should be called during resume routine to re-allocate the q_vectors
5424 * and reacquire interrupts.
5425 */
5426static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5427{
5428	struct device *dev = ice_pf_to_dev(pf);
5429	int ret, v;
5430
5431	/* Since we clear MSIX flag during suspend, we need to
5432	 * set it back during resume...
5433	 */
5434
5435	ret = ice_init_interrupt_scheme(pf);
5436	if (ret) {
5437		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5438		return ret;
5439	}
5440
5441	/* Remap vectors and rings, after successful re-init interrupts */
5442	ice_for_each_vsi(pf, v) {
5443		if (!pf->vsi[v])
5444			continue;
5445
5446		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5447		if (ret)
5448			goto err_reinit;
5449		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5450		ice_vsi_set_napi_queues(pf->vsi[v]);
5451	}
5452
5453	ret = ice_req_irq_msix_misc(pf);
5454	if (ret) {
5455		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5456			ret);
5457		goto err_reinit;
5458	}
5459
5460	return 0;
5461
5462err_reinit:
5463	while (v--)
5464		if (pf->vsi[v])
5465			ice_vsi_free_q_vectors(pf->vsi[v]);
5466
5467	return ret;
5468}
5469
5470/**
5471 * ice_suspend
5472 * @dev: generic device information structure
5473 *
5474 * Power Management callback to quiesce the device and prepare
5475 * for D3 transition.
5476 */
5477static int __maybe_unused ice_suspend(struct device *dev)
5478{
5479	struct pci_dev *pdev = to_pci_dev(dev);
5480	struct ice_pf *pf;
5481	int disabled, v;
5482
5483	pf = pci_get_drvdata(pdev);
5484
5485	if (!ice_pf_state_is_nominal(pf)) {
5486		dev_err(dev, "Device is not ready, no need to suspend it\n");
5487		return -EBUSY;
5488	}
5489
5490	/* Stop watchdog tasks until resume completion.
5491	 * Even though it is most likely that the service task is
5492	 * disabled if the device is suspended or down, the service task's
5493	 * state is controlled by a different state bit, and we should
5494	 * store and honor whatever state that bit is in at this point.
5495	 */
5496	disabled = ice_service_task_stop(pf);
5497
5498	ice_unplug_aux_dev(pf);
5499
5500	/* Already suspended?, then there is nothing to do */
5501	if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5502		if (!disabled)
5503			ice_service_task_restart(pf);
5504		return 0;
5505	}
5506
5507	if (test_bit(ICE_DOWN, pf->state) ||
5508	    ice_is_reset_in_progress(pf->state)) {
5509		dev_err(dev, "can't suspend device in reset or already down\n");
5510		if (!disabled)
5511			ice_service_task_restart(pf);
5512		return 0;
5513	}
5514
5515	ice_setup_mc_magic_wake(pf);
5516
5517	ice_prepare_for_shutdown(pf);
5518
5519	ice_set_wake(pf);
5520
5521	/* Free vectors, clear the interrupt scheme and release IRQs
5522	 * for proper hibernation, especially with large number of CPUs.
5523	 * Otherwise hibernation might fail when mapping all the vectors back
5524	 * to CPU0.
5525	 */
5526	ice_free_irq_msix_misc(pf);
5527	ice_for_each_vsi(pf, v) {
5528		if (!pf->vsi[v])
5529			continue;
5530		ice_vsi_free_q_vectors(pf->vsi[v]);
5531	}
5532	ice_clear_interrupt_scheme(pf);
5533
5534	pci_save_state(pdev);
5535	pci_wake_from_d3(pdev, pf->wol_ena);
5536	pci_set_power_state(pdev, PCI_D3hot);
5537	return 0;
5538}
5539
5540/**
5541 * ice_resume - PM callback for waking up from D3
5542 * @dev: generic device information structure
5543 */
5544static int __maybe_unused ice_resume(struct device *dev)
5545{
5546	struct pci_dev *pdev = to_pci_dev(dev);
5547	enum ice_reset_req reset_type;
5548	struct ice_pf *pf;
5549	struct ice_hw *hw;
5550	int ret;
5551
5552	pci_set_power_state(pdev, PCI_D0);
5553	pci_restore_state(pdev);
5554	pci_save_state(pdev);
5555
5556	if (!pci_device_is_present(pdev))
5557		return -ENODEV;
5558
5559	ret = pci_enable_device_mem(pdev);
5560	if (ret) {
5561		dev_err(dev, "Cannot enable device after suspend\n");
5562		return ret;
5563	}
5564
5565	pf = pci_get_drvdata(pdev);
5566	hw = &pf->hw;
5567
5568	pf->wakeup_reason = rd32(hw, PFPM_WUS);
5569	ice_print_wake_reason(pf);
5570
5571	/* We cleared the interrupt scheme when we suspended, so we need to
5572	 * restore it now to resume device functionality.
5573	 */
5574	ret = ice_reinit_interrupt_scheme(pf);
5575	if (ret)
5576		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5577
5578	clear_bit(ICE_DOWN, pf->state);
5579	/* Now perform PF reset and rebuild */
5580	reset_type = ICE_RESET_PFR;
5581	/* re-enable service task for reset, but allow reset to schedule it */
5582	clear_bit(ICE_SERVICE_DIS, pf->state);
5583
5584	if (ice_schedule_reset(pf, reset_type))
5585		dev_err(dev, "Reset during resume failed.\n");
5586
5587	clear_bit(ICE_SUSPENDED, pf->state);
5588	ice_service_task_restart(pf);
5589
5590	/* Restart the service task */
5591	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5592
5593	return 0;
5594}
5595#endif /* CONFIG_PM */
5596
5597/**
5598 * ice_pci_err_detected - warning that PCI error has been detected
5599 * @pdev: PCI device information struct
5600 * @err: the type of PCI error
5601 *
5602 * Called to warn that something happened on the PCI bus and the error handling
5603 * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
5604 */
5605static pci_ers_result_t
5606ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5607{
5608	struct ice_pf *pf = pci_get_drvdata(pdev);
5609
5610	if (!pf) {
5611		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5612			__func__, err);
5613		return PCI_ERS_RESULT_DISCONNECT;
5614	}
5615
5616	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5617		ice_service_task_stop(pf);
5618
5619		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5620			set_bit(ICE_PFR_REQ, pf->state);
5621			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5622		}
5623	}
5624
5625	return PCI_ERS_RESULT_NEED_RESET;
5626}
5627
5628/**
5629 * ice_pci_err_slot_reset - a PCI slot reset has just happened
5630 * @pdev: PCI device information struct
5631 *
5632 * Called to determine if the driver can recover from the PCI slot reset by
5633 * using a register read to determine if the device is recoverable.
5634 */
5635static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5636{
5637	struct ice_pf *pf = pci_get_drvdata(pdev);
5638	pci_ers_result_t result;
5639	int err;
5640	u32 reg;
5641
5642	err = pci_enable_device_mem(pdev);
5643	if (err) {
5644		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5645			err);
5646		result = PCI_ERS_RESULT_DISCONNECT;
5647	} else {
5648		pci_set_master(pdev);
5649		pci_restore_state(pdev);
5650		pci_save_state(pdev);
5651		pci_wake_from_d3(pdev, false);
5652
5653		/* Check for life */
5654		reg = rd32(&pf->hw, GLGEN_RTRIG);
5655		if (!reg)
5656			result = PCI_ERS_RESULT_RECOVERED;
5657		else
5658			result = PCI_ERS_RESULT_DISCONNECT;
5659	}
5660
 
 
 
 
 
 
5661	return result;
5662}
5663
5664/**
5665 * ice_pci_err_resume - restart operations after PCI error recovery
5666 * @pdev: PCI device information struct
5667 *
5668 * Called to allow the driver to bring things back up after PCI error and/or
5669 * reset recovery have finished
5670 */
5671static void ice_pci_err_resume(struct pci_dev *pdev)
5672{
5673	struct ice_pf *pf = pci_get_drvdata(pdev);
5674
5675	if (!pf) {
5676		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5677			__func__);
5678		return;
5679	}
5680
5681	if (test_bit(ICE_SUSPENDED, pf->state)) {
5682		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5683			__func__);
5684		return;
5685	}
5686
5687	ice_restore_all_vfs_msi_state(pf);
5688
5689	ice_do_reset(pf, ICE_RESET_PFR);
5690	ice_service_task_restart(pf);
5691	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5692}
5693
5694/**
5695 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5696 * @pdev: PCI device information struct
5697 */
5698static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5699{
5700	struct ice_pf *pf = pci_get_drvdata(pdev);
5701
5702	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5703		ice_service_task_stop(pf);
5704
5705		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5706			set_bit(ICE_PFR_REQ, pf->state);
5707			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5708		}
5709	}
5710}
5711
5712/**
5713 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5714 * @pdev: PCI device information struct
5715 */
5716static void ice_pci_err_reset_done(struct pci_dev *pdev)
5717{
5718	ice_pci_err_resume(pdev);
5719}
5720
5721/* ice_pci_tbl - PCI Device ID Table
5722 *
5723 * Wildcard entries (PCI_ANY_ID) should come last
5724 * Last entry must be all 0s
5725 *
5726 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5727 *   Class, Class Mask, private data (not used) }
5728 */
5729static const struct pci_device_id ice_pci_tbl[] = {
5730	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) },
5731	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) },
5732	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) },
5733	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) },
5734	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) },
5735	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) },
5736	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) },
5737	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) },
5738	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) },
5739	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) },
5740	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) },
5741	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) },
5742	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) },
5743	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) },
5744	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) },
5745	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) },
5746	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) },
5747	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) },
5748	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) },
5749	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) },
5750	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) },
5751	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) },
5752	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) },
5753	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) },
5754	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) },
5755	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) },
5756	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_BACKPLANE) },
5757	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_QSFP56) },
5758	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP) },
5759	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP_DD) },
5760	/* required last entry */
5761	{}
5762};
5763MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5764
5765static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5766
5767static const struct pci_error_handlers ice_pci_err_handler = {
5768	.error_detected = ice_pci_err_detected,
5769	.slot_reset = ice_pci_err_slot_reset,
5770	.reset_prepare = ice_pci_err_reset_prepare,
5771	.reset_done = ice_pci_err_reset_done,
5772	.resume = ice_pci_err_resume
5773};
5774
5775static struct pci_driver ice_driver = {
5776	.name = KBUILD_MODNAME,
5777	.id_table = ice_pci_tbl,
5778	.probe = ice_probe,
5779	.remove = ice_remove,
5780#ifdef CONFIG_PM
5781	.driver.pm = &ice_pm_ops,
5782#endif /* CONFIG_PM */
5783	.shutdown = ice_shutdown,
5784	.sriov_configure = ice_sriov_configure,
5785	.sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix,
5786	.sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count,
5787	.err_handler = &ice_pci_err_handler
5788};
5789
5790/**
5791 * ice_module_init - Driver registration routine
5792 *
5793 * ice_module_init is the first routine called when the driver is
5794 * loaded. All it does is register with the PCI subsystem.
5795 */
5796static int __init ice_module_init(void)
5797{
5798	int status = -ENOMEM;
5799
5800	pr_info("%s\n", ice_driver_string);
5801	pr_info("%s\n", ice_copyright);
5802
5803	ice_adv_lnk_speed_maps_init();
5804
5805	ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME);
5806	if (!ice_wq) {
5807		pr_err("Failed to create workqueue\n");
5808		return status;
5809	}
5810
5811	ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0);
5812	if (!ice_lag_wq) {
5813		pr_err("Failed to create LAG workqueue\n");
5814		goto err_dest_wq;
5815	}
5816
5817	ice_debugfs_init();
5818
5819	status = pci_register_driver(&ice_driver);
5820	if (status) {
5821		pr_err("failed to register PCI driver, err %d\n", status);
5822		goto err_dest_lag_wq;
5823	}
5824
5825	return 0;
5826
5827err_dest_lag_wq:
5828	destroy_workqueue(ice_lag_wq);
5829	ice_debugfs_exit();
5830err_dest_wq:
5831	destroy_workqueue(ice_wq);
5832	return status;
5833}
5834module_init(ice_module_init);
5835
5836/**
5837 * ice_module_exit - Driver exit cleanup routine
5838 *
5839 * ice_module_exit is called just before the driver is removed
5840 * from memory.
5841 */
5842static void __exit ice_module_exit(void)
5843{
5844	pci_unregister_driver(&ice_driver);
5845	destroy_workqueue(ice_wq);
5846	destroy_workqueue(ice_lag_wq);
5847	pr_info("module unloaded\n");
5848}
5849module_exit(ice_module_exit);
5850
5851/**
5852 * ice_set_mac_address - NDO callback to set MAC address
5853 * @netdev: network interface device structure
5854 * @pi: pointer to an address structure
5855 *
5856 * Returns 0 on success, negative on failure
5857 */
5858static int ice_set_mac_address(struct net_device *netdev, void *pi)
5859{
5860	struct ice_netdev_priv *np = netdev_priv(netdev);
5861	struct ice_vsi *vsi = np->vsi;
5862	struct ice_pf *pf = vsi->back;
5863	struct ice_hw *hw = &pf->hw;
5864	struct sockaddr *addr = pi;
5865	u8 old_mac[ETH_ALEN];
5866	u8 flags = 0;
 
5867	u8 *mac;
5868	int err;
5869
5870	mac = (u8 *)addr->sa_data;
5871
5872	if (!is_valid_ether_addr(mac))
5873		return -EADDRNOTAVAIL;
5874
5875	if (test_bit(ICE_DOWN, pf->state) ||
 
 
 
 
 
5876	    ice_is_reset_in_progress(pf->state)) {
5877		netdev_err(netdev, "can't set mac %pM. device not ready\n",
5878			   mac);
5879		return -EBUSY;
5880	}
5881
5882	if (ice_chnl_dmac_fltr_cnt(pf)) {
5883		netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
5884			   mac);
5885		return -EAGAIN;
5886	}
5887
5888	netif_addr_lock_bh(netdev);
5889	ether_addr_copy(old_mac, netdev->dev_addr);
5890	/* change the netdev's MAC address */
5891	eth_hw_addr_set(netdev, mac);
5892	netif_addr_unlock_bh(netdev);
5893
5894	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
5895	err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5896	if (err && err != -ENOENT) {
5897		err = -EADDRNOTAVAIL;
5898		goto err_update_filters;
5899	}
5900
5901	/* Add filter for new MAC. If filter exists, return success */
5902	err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5903	if (err == -EEXIST) {
5904		/* Although this MAC filter is already present in hardware it's
5905		 * possible in some cases (e.g. bonding) that dev_addr was
5906		 * modified outside of the driver and needs to be restored back
5907		 * to this value.
5908		 */
5909		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5910
5911		return 0;
5912	} else if (err) {
5913		/* error if the new filter addition failed */
5914		err = -EADDRNOTAVAIL;
5915	}
5916
 
 
 
 
5917err_update_filters:
5918	if (err) {
5919		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5920			   mac);
5921		netif_addr_lock_bh(netdev);
5922		eth_hw_addr_set(netdev, old_mac);
5923		netif_addr_unlock_bh(netdev);
5924		return err;
5925	}
5926
 
 
5927	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5928		   netdev->dev_addr);
5929
5930	/* write new MAC address to the firmware */
5931	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5932	err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5933	if (err) {
5934		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
5935			   mac, err);
5936	}
5937	return 0;
5938}
5939
5940/**
5941 * ice_set_rx_mode - NDO callback to set the netdev filters
5942 * @netdev: network interface device structure
5943 */
5944static void ice_set_rx_mode(struct net_device *netdev)
5945{
5946	struct ice_netdev_priv *np = netdev_priv(netdev);
5947	struct ice_vsi *vsi = np->vsi;
5948
5949	if (!vsi || ice_is_switchdev_running(vsi->back))
5950		return;
5951
5952	/* Set the flags to synchronize filters
5953	 * ndo_set_rx_mode may be triggered even without a change in netdev
5954	 * flags
5955	 */
5956	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5957	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5958	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5959
5960	/* schedule our worker thread which will take care of
5961	 * applying the new filter changes
5962	 */
5963	ice_service_task_schedule(vsi->back);
5964}
5965
5966/**
5967 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5968 * @netdev: network interface device structure
5969 * @queue_index: Queue ID
5970 * @maxrate: maximum bandwidth in Mbps
5971 */
5972static int
5973ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5974{
5975	struct ice_netdev_priv *np = netdev_priv(netdev);
5976	struct ice_vsi *vsi = np->vsi;
 
5977	u16 q_handle;
5978	int status;
5979	u8 tc;
5980
5981	/* Validate maxrate requested is within permitted range */
5982	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5983		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5984			   maxrate, queue_index);
5985		return -EINVAL;
5986	}
5987
5988	q_handle = vsi->tx_rings[queue_index]->q_handle;
5989	tc = ice_dcb_get_tc(vsi, queue_index);
5990
5991	vsi = ice_locate_vsi_using_queue(vsi, queue_index);
5992	if (!vsi) {
5993		netdev_err(netdev, "Invalid VSI for given queue %d\n",
5994			   queue_index);
5995		return -EINVAL;
5996	}
5997
5998	/* Set BW back to default, when user set maxrate to 0 */
5999	if (!maxrate)
6000		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
6001					       q_handle, ICE_MAX_BW);
6002	else
6003		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
6004					  q_handle, ICE_MAX_BW, maxrate * 1000);
6005	if (status)
6006		netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
6007			   status);
 
 
6008
6009	return status;
6010}
6011
6012/**
6013 * ice_fdb_add - add an entry to the hardware database
6014 * @ndm: the input from the stack
6015 * @tb: pointer to array of nladdr (unused)
6016 * @dev: the net device pointer
6017 * @addr: the MAC address entry being added
6018 * @vid: VLAN ID
6019 * @flags: instructions from stack about fdb operation
6020 * @extack: netlink extended ack
6021 */
6022static int
6023ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
6024	    struct net_device *dev, const unsigned char *addr, u16 vid,
6025	    u16 flags, struct netlink_ext_ack __always_unused *extack)
6026{
6027	int err;
6028
6029	if (vid) {
6030		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
6031		return -EINVAL;
6032	}
6033	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
6034		netdev_err(dev, "FDB only supports static addresses\n");
6035		return -EINVAL;
6036	}
6037
6038	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
6039		err = dev_uc_add_excl(dev, addr);
6040	else if (is_multicast_ether_addr(addr))
6041		err = dev_mc_add_excl(dev, addr);
6042	else
6043		err = -EINVAL;
6044
6045	/* Only return duplicate errors if NLM_F_EXCL is set */
6046	if (err == -EEXIST && !(flags & NLM_F_EXCL))
6047		err = 0;
6048
6049	return err;
6050}
6051
6052/**
6053 * ice_fdb_del - delete an entry from the hardware database
6054 * @ndm: the input from the stack
6055 * @tb: pointer to array of nladdr (unused)
6056 * @dev: the net device pointer
6057 * @addr: the MAC address entry being added
6058 * @vid: VLAN ID
6059 * @extack: netlink extended ack
6060 */
6061static int
6062ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
6063	    struct net_device *dev, const unsigned char *addr,
6064	    __always_unused u16 vid, struct netlink_ext_ack *extack)
6065{
6066	int err;
6067
6068	if (ndm->ndm_state & NUD_PERMANENT) {
6069		netdev_err(dev, "FDB only supports static addresses\n");
6070		return -EINVAL;
6071	}
6072
6073	if (is_unicast_ether_addr(addr))
6074		err = dev_uc_del(dev, addr);
6075	else if (is_multicast_ether_addr(addr))
6076		err = dev_mc_del(dev, addr);
6077	else
6078		err = -EINVAL;
6079
6080	return err;
6081}
6082
6083#define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
6084					 NETIF_F_HW_VLAN_CTAG_TX | \
6085					 NETIF_F_HW_VLAN_STAG_RX | \
6086					 NETIF_F_HW_VLAN_STAG_TX)
6087
6088#define NETIF_VLAN_STRIPPING_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
6089					 NETIF_F_HW_VLAN_STAG_RX)
6090
6091#define NETIF_VLAN_FILTERING_FEATURES	(NETIF_F_HW_VLAN_CTAG_FILTER | \
6092					 NETIF_F_HW_VLAN_STAG_FILTER)
6093
6094/**
6095 * ice_fix_features - fix the netdev features flags based on device limitations
6096 * @netdev: ptr to the netdev that flags are being fixed on
6097 * @features: features that need to be checked and possibly fixed
6098 *
6099 * Make sure any fixups are made to features in this callback. This enables the
6100 * driver to not have to check unsupported configurations throughout the driver
6101 * because that's the responsiblity of this callback.
6102 *
6103 * Single VLAN Mode (SVM) Supported Features:
6104 *	NETIF_F_HW_VLAN_CTAG_FILTER
6105 *	NETIF_F_HW_VLAN_CTAG_RX
6106 *	NETIF_F_HW_VLAN_CTAG_TX
6107 *
6108 * Double VLAN Mode (DVM) Supported Features:
6109 *	NETIF_F_HW_VLAN_CTAG_FILTER
6110 *	NETIF_F_HW_VLAN_CTAG_RX
6111 *	NETIF_F_HW_VLAN_CTAG_TX
6112 *
6113 *	NETIF_F_HW_VLAN_STAG_FILTER
6114 *	NETIF_HW_VLAN_STAG_RX
6115 *	NETIF_HW_VLAN_STAG_TX
6116 *
6117 * Features that need fixing:
6118 *	Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
6119 *	These are mutually exlusive as the VSI context cannot support multiple
6120 *	VLAN ethertypes simultaneously for stripping and/or insertion. If this
6121 *	is not done, then default to clearing the requested STAG offload
6122 *	settings.
6123 *
6124 *	All supported filtering has to be enabled or disabled together. For
6125 *	example, in DVM, CTAG and STAG filtering have to be enabled and disabled
6126 *	together. If this is not done, then default to VLAN filtering disabled.
6127 *	These are mutually exclusive as there is currently no way to
6128 *	enable/disable VLAN filtering based on VLAN ethertype when using VLAN
6129 *	prune rules.
6130 */
6131static netdev_features_t
6132ice_fix_features(struct net_device *netdev, netdev_features_t features)
6133{
6134	struct ice_netdev_priv *np = netdev_priv(netdev);
6135	netdev_features_t req_vlan_fltr, cur_vlan_fltr;
6136	bool cur_ctag, cur_stag, req_ctag, req_stag;
6137
6138	cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
6139	cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6140	cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6141
6142	req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
6143	req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6144	req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6145
6146	if (req_vlan_fltr != cur_vlan_fltr) {
6147		if (ice_is_dvm_ena(&np->vsi->back->hw)) {
6148			if (req_ctag && req_stag) {
6149				features |= NETIF_VLAN_FILTERING_FEATURES;
6150			} else if (!req_ctag && !req_stag) {
6151				features &= ~NETIF_VLAN_FILTERING_FEATURES;
6152			} else if ((!cur_ctag && req_ctag && !cur_stag) ||
6153				   (!cur_stag && req_stag && !cur_ctag)) {
6154				features |= NETIF_VLAN_FILTERING_FEATURES;
6155				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
6156			} else if ((cur_ctag && !req_ctag && cur_stag) ||
6157				   (cur_stag && !req_stag && cur_ctag)) {
6158				features &= ~NETIF_VLAN_FILTERING_FEATURES;
6159				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
6160			}
6161		} else {
6162			if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
6163				netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
6164
6165			if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
6166				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6167		}
6168	}
6169
6170	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
6171	    (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
6172		netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
6173		features &= ~(NETIF_F_HW_VLAN_STAG_RX |
6174			      NETIF_F_HW_VLAN_STAG_TX);
6175	}
6176
6177	if (!(netdev->features & NETIF_F_RXFCS) &&
6178	    (features & NETIF_F_RXFCS) &&
6179	    (features & NETIF_VLAN_STRIPPING_FEATURES) &&
6180	    !ice_vsi_has_non_zero_vlans(np->vsi)) {
6181		netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
6182		features &= ~NETIF_VLAN_STRIPPING_FEATURES;
6183	}
6184
6185	return features;
6186}
6187
6188/**
6189 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto
6190 * @vsi: PF's VSI
6191 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order
6192 *
6193 * Store current stripped VLAN proto in ring packet context,
6194 * so it can be accessed more efficiently by packet processing code.
6195 */
6196static void
6197ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype)
6198{
6199	u16 i;
6200
6201	ice_for_each_alloc_rxq(vsi, i)
6202		vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype;
6203}
6204
6205/**
6206 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
6207 * @vsi: PF's VSI
6208 * @features: features used to determine VLAN offload settings
6209 *
6210 * First, determine the vlan_ethertype based on the VLAN offload bits in
6211 * features. Then determine if stripping and insertion should be enabled or
6212 * disabled. Finally enable or disable VLAN stripping and insertion.
6213 */
6214static int
6215ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
6216{
6217	bool enable_stripping = true, enable_insertion = true;
6218	struct ice_vsi_vlan_ops *vlan_ops;
6219	int strip_err = 0, insert_err = 0;
6220	u16 vlan_ethertype = 0;
6221
6222	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6223
6224	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
6225		vlan_ethertype = ETH_P_8021AD;
6226	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
6227		vlan_ethertype = ETH_P_8021Q;
6228
6229	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
6230		enable_stripping = false;
6231	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
6232		enable_insertion = false;
6233
6234	if (enable_stripping)
6235		strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
6236	else
6237		strip_err = vlan_ops->dis_stripping(vsi);
6238
6239	if (enable_insertion)
6240		insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
6241	else
6242		insert_err = vlan_ops->dis_insertion(vsi);
6243
6244	if (strip_err || insert_err)
6245		return -EIO;
6246
6247	ice_set_rx_rings_vlan_proto(vsi, enable_stripping ?
6248				    htons(vlan_ethertype) : 0);
6249
6250	return 0;
6251}
6252
6253/**
6254 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
6255 * @vsi: PF's VSI
6256 * @features: features used to determine VLAN filtering settings
6257 *
6258 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
6259 * features.
6260 */
6261static int
6262ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
6263{
6264	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6265	int err = 0;
6266
6267	/* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
6268	 * if either bit is set
6269	 */
6270	if (features &
6271	    (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER))
6272		err = vlan_ops->ena_rx_filtering(vsi);
6273	else
6274		err = vlan_ops->dis_rx_filtering(vsi);
6275
6276	return err;
6277}
6278
6279/**
6280 * ice_set_vlan_features - set VLAN settings based on suggested feature set
6281 * @netdev: ptr to the netdev being adjusted
6282 * @features: the feature set that the stack is suggesting
6283 *
6284 * Only update VLAN settings if the requested_vlan_features are different than
6285 * the current_vlan_features.
6286 */
6287static int
6288ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
6289{
6290	netdev_features_t current_vlan_features, requested_vlan_features;
6291	struct ice_netdev_priv *np = netdev_priv(netdev);
6292	struct ice_vsi *vsi = np->vsi;
6293	int err;
6294
6295	current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
6296	requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
6297	if (current_vlan_features ^ requested_vlan_features) {
6298		if ((features & NETIF_F_RXFCS) &&
6299		    (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6300			dev_err(ice_pf_to_dev(vsi->back),
6301				"To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
6302			return -EIO;
6303		}
6304
6305		err = ice_set_vlan_offload_features(vsi, features);
6306		if (err)
6307			return err;
6308	}
6309
6310	current_vlan_features = netdev->features &
6311		NETIF_VLAN_FILTERING_FEATURES;
6312	requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
6313	if (current_vlan_features ^ requested_vlan_features) {
6314		err = ice_set_vlan_filtering_features(vsi, features);
6315		if (err)
6316			return err;
6317	}
6318
6319	return 0;
6320}
6321
6322/**
6323 * ice_set_loopback - turn on/off loopback mode on underlying PF
6324 * @vsi: ptr to VSI
6325 * @ena: flag to indicate the on/off setting
6326 */
6327static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6328{
6329	bool if_running = netif_running(vsi->netdev);
6330	int ret;
6331
6332	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6333		ret = ice_down(vsi);
6334		if (ret) {
6335			netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6336			return ret;
6337		}
6338	}
6339	ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6340	if (ret)
6341		netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6342	if (if_running)
6343		ret = ice_up(vsi);
6344
6345	return ret;
6346}
6347
6348/**
6349 * ice_set_features - set the netdev feature flags
6350 * @netdev: ptr to the netdev being adjusted
6351 * @features: the feature set that the stack is suggesting
6352 */
6353static int
6354ice_set_features(struct net_device *netdev, netdev_features_t features)
6355{
6356	netdev_features_t changed = netdev->features ^ features;
6357	struct ice_netdev_priv *np = netdev_priv(netdev);
6358	struct ice_vsi *vsi = np->vsi;
6359	struct ice_pf *pf = vsi->back;
6360	int ret = 0;
6361
6362	/* Don't set any netdev advanced features with device in Safe Mode */
6363	if (ice_is_safe_mode(pf)) {
6364		dev_err(ice_pf_to_dev(pf),
6365			"Device is in Safe Mode - not enabling advanced netdev features\n");
6366		return ret;
6367	}
6368
6369	/* Do not change setting during reset */
6370	if (ice_is_reset_in_progress(pf->state)) {
6371		dev_err(ice_pf_to_dev(pf),
6372			"Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6373		return -EBUSY;
6374	}
6375
6376	/* Multiple features can be changed in one call so keep features in
6377	 * separate if/else statements to guarantee each feature is checked
6378	 */
6379	if (changed & NETIF_F_RXHASH)
6380		ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6381
6382	ret = ice_set_vlan_features(netdev, features);
6383	if (ret)
6384		return ret;
6385
6386	/* Turn on receive of FCS aka CRC, and after setting this
6387	 * flag the packet data will have the 4 byte CRC appended
6388	 */
6389	if (changed & NETIF_F_RXFCS) {
6390		if ((features & NETIF_F_RXFCS) &&
6391		    (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6392			dev_err(ice_pf_to_dev(vsi->back),
6393				"To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6394			return -EIO;
6395		}
6396
6397		ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6398		ret = ice_down_up(vsi);
6399		if (ret)
6400			return ret;
6401	}
6402
6403	if (changed & NETIF_F_NTUPLE) {
6404		bool ena = !!(features & NETIF_F_NTUPLE);
6405
6406		ice_vsi_manage_fdir(vsi, ena);
6407		ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
 
 
 
 
 
 
6408	}
6409
6410	/* don't turn off hw_tc_offload when ADQ is already enabled */
6411	if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6412		dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6413		return -EACCES;
6414	}
6415
6416	if (changed & NETIF_F_HW_TC) {
6417		bool ena = !!(features & NETIF_F_HW_TC);
6418
6419		ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) :
6420		      clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
6421	}
6422
6423	if (changed & NETIF_F_LOOPBACK)
6424		ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6425
6426	return ret;
6427}
6428
6429/**
6430 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6431 * @vsi: VSI to setup VLAN properties for
6432 */
6433static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6434{
6435	int err;
6436
6437	err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6438	if (err)
6439		return err;
6440
6441	err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6442	if (err)
6443		return err;
 
6444
6445	return ice_vsi_add_vlan_zero(vsi);
6446}
6447
6448/**
6449 * ice_vsi_cfg_lan - Setup the VSI lan related config
6450 * @vsi: the VSI being configured
6451 *
6452 * Return 0 on success and negative value on error
6453 */
6454int ice_vsi_cfg_lan(struct ice_vsi *vsi)
6455{
6456	int err;
6457
6458	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6459		ice_set_rx_mode(vsi->netdev);
6460
6461		err = ice_vsi_vlan_setup(vsi);
 
6462		if (err)
6463			return err;
6464	}
6465	ice_vsi_cfg_dcb_rings(vsi);
6466
6467	err = ice_vsi_cfg_lan_txqs(vsi);
6468	if (!err && ice_is_xdp_ena_vsi(vsi))
6469		err = ice_vsi_cfg_xdp_txqs(vsi);
6470	if (!err)
6471		err = ice_vsi_cfg_rxqs(vsi);
6472
6473	return err;
6474}
6475
6476/* THEORY OF MODERATION:
6477 * The ice driver hardware works differently than the hardware that DIMLIB was
6478 * originally made for. ice hardware doesn't have packet count limits that
6479 * can trigger an interrupt, but it *does* have interrupt rate limit support,
6480 * which is hard-coded to a limit of 250,000 ints/second.
6481 * If not using dynamic moderation, the INTRL value can be modified
6482 * by ethtool rx-usecs-high.
6483 */
6484struct ice_dim {
6485	/* the throttle rate for interrupts, basically worst case delay before
6486	 * an initial interrupt fires, value is stored in microseconds.
6487	 */
6488	u16 itr;
6489};
6490
6491/* Make a different profile for Rx that doesn't allow quite so aggressive
6492 * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6493 * second.
6494 */
6495static const struct ice_dim rx_profile[] = {
6496	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6497	{8},    /* 125,000 ints/s */
6498	{16},   /*  62,500 ints/s */
6499	{62},   /*  16,129 ints/s */
6500	{126}   /*   7,936 ints/s */
6501};
6502
6503/* The transmit profile, which has the same sorts of values
6504 * as the previous struct
6505 */
6506static const struct ice_dim tx_profile[] = {
6507	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6508	{8},    /* 125,000 ints/s */
6509	{40},   /*  16,125 ints/s */
6510	{128},  /*   7,812 ints/s */
6511	{256}   /*   3,906 ints/s */
6512};
6513
6514static void ice_tx_dim_work(struct work_struct *work)
6515{
6516	struct ice_ring_container *rc;
6517	struct dim *dim;
6518	u16 itr;
6519
6520	dim = container_of(work, struct dim, work);
6521	rc = dim->priv;
6522
6523	WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6524
6525	/* look up the values in our local table */
6526	itr = tx_profile[dim->profile_ix].itr;
6527
6528	ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6529	ice_write_itr(rc, itr);
6530
6531	dim->state = DIM_START_MEASURE;
6532}
6533
6534static void ice_rx_dim_work(struct work_struct *work)
6535{
6536	struct ice_ring_container *rc;
6537	struct dim *dim;
6538	u16 itr;
6539
6540	dim = container_of(work, struct dim, work);
6541	rc = dim->priv;
6542
6543	WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6544
6545	/* look up the values in our local table */
6546	itr = rx_profile[dim->profile_ix].itr;
6547
6548	ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6549	ice_write_itr(rc, itr);
6550
6551	dim->state = DIM_START_MEASURE;
6552}
6553
6554#define ICE_DIM_DEFAULT_PROFILE_IX 1
6555
6556/**
6557 * ice_init_moderation - set up interrupt moderation
6558 * @q_vector: the vector containing rings to be configured
6559 *
6560 * Set up interrupt moderation registers, with the intent to do the right thing
6561 * when called from reset or from probe, and whether or not dynamic moderation
6562 * is enabled or not. Take special care to write all the registers in both
6563 * dynamic moderation mode or not in order to make sure hardware is in a known
6564 * state.
6565 */
6566static void ice_init_moderation(struct ice_q_vector *q_vector)
6567{
6568	struct ice_ring_container *rc;
6569	bool tx_dynamic, rx_dynamic;
6570
6571	rc = &q_vector->tx;
6572	INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6573	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6574	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6575	rc->dim.priv = rc;
6576	tx_dynamic = ITR_IS_DYNAMIC(rc);
6577
6578	/* set the initial TX ITR to match the above */
6579	ice_write_itr(rc, tx_dynamic ?
6580		      tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6581
6582	rc = &q_vector->rx;
6583	INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6584	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6585	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6586	rc->dim.priv = rc;
6587	rx_dynamic = ITR_IS_DYNAMIC(rc);
6588
6589	/* set the initial RX ITR to match the above */
6590	ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6591				       rc->itr_setting);
6592
6593	ice_set_q_vector_intrl(q_vector);
6594}
6595
6596/**
6597 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6598 * @vsi: the VSI being configured
6599 */
6600static void ice_napi_enable_all(struct ice_vsi *vsi)
6601{
6602	int q_idx;
6603
6604	if (!vsi->netdev)
6605		return;
6606
6607	ice_for_each_q_vector(vsi, q_idx) {
6608		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6609
6610		ice_init_moderation(q_vector);
6611
6612		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6613			napi_enable(&q_vector->napi);
6614	}
6615}
6616
6617/**
6618 * ice_up_complete - Finish the last steps of bringing up a connection
6619 * @vsi: The VSI being configured
6620 *
6621 * Return 0 on success and negative value on error
6622 */
6623static int ice_up_complete(struct ice_vsi *vsi)
6624{
6625	struct ice_pf *pf = vsi->back;
6626	int err;
6627
6628	ice_vsi_cfg_msix(vsi);
6629
6630	/* Enable only Rx rings, Tx rings were enabled by the FW when the
6631	 * Tx queue group list was configured and the context bits were
6632	 * programmed using ice_vsi_cfg_txqs
6633	 */
6634	err = ice_vsi_start_all_rx_rings(vsi);
6635	if (err)
6636		return err;
6637
6638	clear_bit(ICE_VSI_DOWN, vsi->state);
6639	ice_napi_enable_all(vsi);
6640	ice_vsi_ena_irq(vsi);
6641
6642	if (vsi->port_info &&
6643	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6644	    vsi->netdev && vsi->type == ICE_VSI_PF) {
6645		ice_print_link_msg(vsi, true);
6646		netif_tx_start_all_queues(vsi->netdev);
6647		netif_carrier_on(vsi->netdev);
6648		ice_ptp_link_change(pf, pf->hw.pf_id, true);
6649	}
6650
6651	/* Perform an initial read of the statistics registers now to
6652	 * set the baseline so counters are ready when interface is up
6653	 */
6654	ice_update_eth_stats(vsi);
6655
6656	if (vsi->type == ICE_VSI_PF)
6657		ice_service_task_schedule(pf);
6658
6659	return 0;
6660}
6661
6662/**
6663 * ice_up - Bring the connection back up after being down
6664 * @vsi: VSI being configured
6665 */
6666int ice_up(struct ice_vsi *vsi)
6667{
6668	int err;
6669
6670	err = ice_vsi_cfg_lan(vsi);
6671	if (!err)
6672		err = ice_up_complete(vsi);
6673
6674	return err;
6675}
6676
6677/**
6678 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6679 * @syncp: pointer to u64_stats_sync
6680 * @stats: stats that pkts and bytes count will be taken from
6681 * @pkts: packets stats counter
6682 * @bytes: bytes stats counter
6683 *
6684 * This function fetches stats from the ring considering the atomic operations
6685 * that needs to be performed to read u64 values in 32 bit machine.
6686 */
6687void
6688ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6689			     struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6690{
6691	unsigned int start;
 
 
6692
 
 
6693	do {
6694		start = u64_stats_fetch_begin(syncp);
6695		*pkts = stats.pkts;
6696		*bytes = stats.bytes;
6697	} while (u64_stats_fetch_retry(syncp, start));
6698}
6699
6700/**
6701 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6702 * @vsi: the VSI to be updated
6703 * @vsi_stats: the stats struct to be updated
6704 * @rings: rings to work on
6705 * @count: number of rings
6706 */
6707static void
6708ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6709			     struct rtnl_link_stats64 *vsi_stats,
6710			     struct ice_tx_ring **rings, u16 count)
6711{
 
6712	u16 i;
6713
6714	for (i = 0; i < count; i++) {
6715		struct ice_tx_ring *ring;
6716		u64 pkts = 0, bytes = 0;
6717
6718		ring = READ_ONCE(rings[i]);
6719		if (!ring || !ring->ring_stats)
6720			continue;
6721		ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
6722					     ring->ring_stats->stats, &pkts,
6723					     &bytes);
6724		vsi_stats->tx_packets += pkts;
6725		vsi_stats->tx_bytes += bytes;
6726		vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
6727		vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
6728		vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
6729	}
6730}
6731
6732/**
6733 * ice_update_vsi_ring_stats - Update VSI stats counters
6734 * @vsi: the VSI to be updated
6735 */
6736static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6737{
6738	struct rtnl_link_stats64 *net_stats, *stats_prev;
6739	struct rtnl_link_stats64 *vsi_stats;
6740	u64 pkts, bytes;
6741	int i;
6742
6743	vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6744	if (!vsi_stats)
6745		return;
 
 
6746
6747	/* reset non-netdev (extended) stats */
6748	vsi->tx_restart = 0;
6749	vsi->tx_busy = 0;
6750	vsi->tx_linearize = 0;
6751	vsi->rx_buf_failed = 0;
6752	vsi->rx_page_failed = 0;
 
6753
6754	rcu_read_lock();
6755
6756	/* update Tx rings counters */
6757	ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6758				     vsi->num_txq);
6759
6760	/* update Rx rings counters */
6761	ice_for_each_rxq(vsi, i) {
6762		struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6763		struct ice_ring_stats *ring_stats;
6764
6765		ring_stats = ring->ring_stats;
6766		ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
6767					     ring_stats->stats, &pkts,
6768					     &bytes);
6769		vsi_stats->rx_packets += pkts;
6770		vsi_stats->rx_bytes += bytes;
6771		vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
6772		vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
 
6773	}
6774
6775	/* update XDP Tx rings counters */
6776	if (ice_is_xdp_ena_vsi(vsi))
6777		ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6778					     vsi->num_xdp_txq);
6779
6780	rcu_read_unlock();
6781
6782	net_stats = &vsi->net_stats;
6783	stats_prev = &vsi->net_stats_prev;
6784
6785	/* clear prev counters after reset */
6786	if (vsi_stats->tx_packets < stats_prev->tx_packets ||
6787	    vsi_stats->rx_packets < stats_prev->rx_packets) {
6788		stats_prev->tx_packets = 0;
6789		stats_prev->tx_bytes = 0;
6790		stats_prev->rx_packets = 0;
6791		stats_prev->rx_bytes = 0;
6792	}
6793
6794	/* update netdev counters */
6795	net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
6796	net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
6797	net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
6798	net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
6799
6800	stats_prev->tx_packets = vsi_stats->tx_packets;
6801	stats_prev->tx_bytes = vsi_stats->tx_bytes;
6802	stats_prev->rx_packets = vsi_stats->rx_packets;
6803	stats_prev->rx_bytes = vsi_stats->rx_bytes;
6804
6805	kfree(vsi_stats);
6806}
6807
6808/**
6809 * ice_update_vsi_stats - Update VSI stats counters
6810 * @vsi: the VSI to be updated
6811 */
6812void ice_update_vsi_stats(struct ice_vsi *vsi)
6813{
6814	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6815	struct ice_eth_stats *cur_es = &vsi->eth_stats;
6816	struct ice_pf *pf = vsi->back;
6817
6818	if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6819	    test_bit(ICE_CFG_BUSY, pf->state))
6820		return;
6821
6822	/* get stats as recorded by Tx/Rx rings */
6823	ice_update_vsi_ring_stats(vsi);
6824
6825	/* get VSI stats as recorded by the hardware */
6826	ice_update_eth_stats(vsi);
6827
6828	cur_ns->tx_errors = cur_es->tx_errors;
6829	cur_ns->rx_dropped = cur_es->rx_discards;
6830	cur_ns->tx_dropped = cur_es->tx_discards;
6831	cur_ns->multicast = cur_es->rx_multicast;
6832
6833	/* update some more netdev stats if this is main VSI */
6834	if (vsi->type == ICE_VSI_PF) {
6835		cur_ns->rx_crc_errors = pf->stats.crc_errors;
6836		cur_ns->rx_errors = pf->stats.crc_errors +
6837				    pf->stats.illegal_bytes +
 
6838				    pf->stats.rx_undersize +
6839				    pf->hw_csum_rx_error +
6840				    pf->stats.rx_jabber +
6841				    pf->stats.rx_fragments +
6842				    pf->stats.rx_oversize;
 
6843		/* record drops from the port level */
6844		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6845	}
6846}
6847
6848/**
6849 * ice_update_pf_stats - Update PF port stats counters
6850 * @pf: PF whose stats needs to be updated
6851 */
6852void ice_update_pf_stats(struct ice_pf *pf)
6853{
6854	struct ice_hw_port_stats *prev_ps, *cur_ps;
6855	struct ice_hw *hw = &pf->hw;
6856	u16 fd_ctr_base;
6857	u8 port;
6858
6859	port = hw->port_info->lport;
6860	prev_ps = &pf->stats_prev;
6861	cur_ps = &pf->stats;
6862
6863	if (ice_is_reset_in_progress(pf->state))
6864		pf->stat_prev_loaded = false;
6865
6866	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
6867			  &prev_ps->eth.rx_bytes,
6868			  &cur_ps->eth.rx_bytes);
6869
6870	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
6871			  &prev_ps->eth.rx_unicast,
6872			  &cur_ps->eth.rx_unicast);
6873
6874	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
6875			  &prev_ps->eth.rx_multicast,
6876			  &cur_ps->eth.rx_multicast);
6877
6878	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
6879			  &prev_ps->eth.rx_broadcast,
6880			  &cur_ps->eth.rx_broadcast);
6881
6882	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
6883			  &prev_ps->eth.rx_discards,
6884			  &cur_ps->eth.rx_discards);
6885
6886	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
6887			  &prev_ps->eth.tx_bytes,
6888			  &cur_ps->eth.tx_bytes);
6889
6890	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
6891			  &prev_ps->eth.tx_unicast,
6892			  &cur_ps->eth.tx_unicast);
6893
6894	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
6895			  &prev_ps->eth.tx_multicast,
6896			  &cur_ps->eth.tx_multicast);
6897
6898	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
6899			  &prev_ps->eth.tx_broadcast,
6900			  &cur_ps->eth.tx_broadcast);
6901
6902	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
6903			  &prev_ps->tx_dropped_link_down,
6904			  &cur_ps->tx_dropped_link_down);
6905
6906	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
6907			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
6908
6909	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
6910			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
6911
6912	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
6913			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
6914
6915	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
6916			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
6917
6918	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
6919			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
6920
6921	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
6922			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
6923
6924	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
6925			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
6926
6927	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
6928			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
6929
6930	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
6931			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
6932
6933	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
6934			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
6935
6936	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
6937			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
6938
6939	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
6940			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
6941
6942	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
6943			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
6944
6945	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
6946			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
6947
6948	fd_ctr_base = hw->fd_ctr_base;
6949
6950	ice_stat_update40(hw,
6951			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
6952			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
6953			  &cur_ps->fd_sb_match);
6954	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
6955			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
6956
6957	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
6958			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
6959
6960	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
6961			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
6962
6963	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
6964			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
6965
6966	ice_update_dcb_stats(pf);
6967
6968	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
6969			  &prev_ps->crc_errors, &cur_ps->crc_errors);
6970
6971	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
6972			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
6973
6974	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
6975			  &prev_ps->mac_local_faults,
6976			  &cur_ps->mac_local_faults);
6977
6978	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
6979			  &prev_ps->mac_remote_faults,
6980			  &cur_ps->mac_remote_faults);
6981
 
 
 
6982	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
6983			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
6984
6985	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
6986			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
6987
6988	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
6989			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
6990
6991	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
6992			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
6993
6994	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
6995
6996	pf->stat_prev_loaded = true;
6997}
6998
6999/**
7000 * ice_get_stats64 - get statistics for network device structure
7001 * @netdev: network interface device structure
7002 * @stats: main device statistics structure
7003 */
7004static
7005void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
7006{
7007	struct ice_netdev_priv *np = netdev_priv(netdev);
7008	struct rtnl_link_stats64 *vsi_stats;
7009	struct ice_vsi *vsi = np->vsi;
7010
7011	vsi_stats = &vsi->net_stats;
7012
7013	if (!vsi->num_txq || !vsi->num_rxq)
7014		return;
7015
7016	/* netdev packet/byte stats come from ring counter. These are obtained
7017	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
7018	 * But, only call the update routine and read the registers if VSI is
7019	 * not down.
7020	 */
7021	if (!test_bit(ICE_VSI_DOWN, vsi->state))
7022		ice_update_vsi_ring_stats(vsi);
7023	stats->tx_packets = vsi_stats->tx_packets;
7024	stats->tx_bytes = vsi_stats->tx_bytes;
7025	stats->rx_packets = vsi_stats->rx_packets;
7026	stats->rx_bytes = vsi_stats->rx_bytes;
7027
7028	/* The rest of the stats can be read from the hardware but instead we
7029	 * just return values that the watchdog task has already obtained from
7030	 * the hardware.
7031	 */
7032	stats->multicast = vsi_stats->multicast;
7033	stats->tx_errors = vsi_stats->tx_errors;
7034	stats->tx_dropped = vsi_stats->tx_dropped;
7035	stats->rx_errors = vsi_stats->rx_errors;
7036	stats->rx_dropped = vsi_stats->rx_dropped;
7037	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
7038	stats->rx_length_errors = vsi_stats->rx_length_errors;
7039}
7040
7041/**
7042 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
7043 * @vsi: VSI having NAPI disabled
7044 */
7045static void ice_napi_disable_all(struct ice_vsi *vsi)
7046{
7047	int q_idx;
7048
7049	if (!vsi->netdev)
7050		return;
7051
7052	ice_for_each_q_vector(vsi, q_idx) {
7053		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
7054
7055		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
7056			napi_disable(&q_vector->napi);
7057
7058		cancel_work_sync(&q_vector->tx.dim.work);
7059		cancel_work_sync(&q_vector->rx.dim.work);
7060	}
7061}
7062
7063/**
7064 * ice_down - Shutdown the connection
7065 * @vsi: The VSI being stopped
7066 *
7067 * Caller of this function is expected to set the vsi->state ICE_DOWN bit
7068 */
7069int ice_down(struct ice_vsi *vsi)
7070{
7071	int i, tx_err, rx_err, vlan_err = 0;
7072
7073	WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
7074
7075	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
7076		vlan_err = ice_vsi_del_vlan_zero(vsi);
7077		ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false);
 
7078		netif_carrier_off(vsi->netdev);
7079		netif_tx_disable(vsi->netdev);
7080	} else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
7081		ice_eswitch_stop_all_tx_queues(vsi->back);
7082	}
7083
7084	ice_vsi_dis_irq(vsi);
7085
7086	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
7087	if (tx_err)
7088		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
7089			   vsi->vsi_num, tx_err);
7090	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
7091		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
7092		if (tx_err)
7093			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
7094				   vsi->vsi_num, tx_err);
7095	}
7096
7097	rx_err = ice_vsi_stop_all_rx_rings(vsi);
7098	if (rx_err)
7099		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
7100			   vsi->vsi_num, rx_err);
7101
7102	ice_napi_disable_all(vsi);
7103
 
 
 
 
 
 
 
7104	ice_for_each_txq(vsi, i)
7105		ice_clean_tx_ring(vsi->tx_rings[i]);
7106
7107	if (ice_is_xdp_ena_vsi(vsi))
7108		ice_for_each_xdp_txq(vsi, i)
7109			ice_clean_tx_ring(vsi->xdp_rings[i]);
7110
7111	ice_for_each_rxq(vsi, i)
7112		ice_clean_rx_ring(vsi->rx_rings[i]);
7113
7114	if (tx_err || rx_err || vlan_err) {
7115		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
7116			   vsi->vsi_num, vsi->vsw->sw_id);
7117		return -EIO;
7118	}
7119
7120	return 0;
7121}
7122
7123/**
7124 * ice_down_up - shutdown the VSI connection and bring it up
7125 * @vsi: the VSI to be reconnected
7126 */
7127int ice_down_up(struct ice_vsi *vsi)
7128{
7129	int ret;
7130
7131	/* if DOWN already set, nothing to do */
7132	if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
7133		return 0;
7134
7135	ret = ice_down(vsi);
7136	if (ret)
7137		return ret;
7138
7139	ret = ice_up(vsi);
7140	if (ret) {
7141		netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
7142		return ret;
7143	}
7144
7145	return 0;
7146}
7147
7148/**
7149 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
7150 * @vsi: VSI having resources allocated
7151 *
7152 * Return 0 on success, negative on failure
7153 */
7154int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
7155{
7156	int i, err = 0;
7157
7158	if (!vsi->num_txq) {
7159		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
7160			vsi->vsi_num);
7161		return -EINVAL;
7162	}
7163
7164	ice_for_each_txq(vsi, i) {
7165		struct ice_tx_ring *ring = vsi->tx_rings[i];
7166
7167		if (!ring)
7168			return -EINVAL;
7169
7170		if (vsi->netdev)
7171			ring->netdev = vsi->netdev;
7172		err = ice_setup_tx_ring(ring);
7173		if (err)
7174			break;
7175	}
7176
7177	return err;
7178}
7179
7180/**
7181 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
7182 * @vsi: VSI having resources allocated
7183 *
7184 * Return 0 on success, negative on failure
7185 */
7186int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
7187{
7188	int i, err = 0;
7189
7190	if (!vsi->num_rxq) {
7191		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
7192			vsi->vsi_num);
7193		return -EINVAL;
7194	}
7195
7196	ice_for_each_rxq(vsi, i) {
7197		struct ice_rx_ring *ring = vsi->rx_rings[i];
7198
7199		if (!ring)
7200			return -EINVAL;
7201
7202		if (vsi->netdev)
7203			ring->netdev = vsi->netdev;
7204		err = ice_setup_rx_ring(ring);
7205		if (err)
7206			break;
7207	}
7208
7209	return err;
7210}
7211
7212/**
7213 * ice_vsi_open_ctrl - open control VSI for use
7214 * @vsi: the VSI to open
7215 *
7216 * Initialization of the Control VSI
7217 *
7218 * Returns 0 on success, negative value on error
7219 */
7220int ice_vsi_open_ctrl(struct ice_vsi *vsi)
7221{
7222	char int_name[ICE_INT_NAME_STR_LEN];
7223	struct ice_pf *pf = vsi->back;
7224	struct device *dev;
7225	int err;
7226
7227	dev = ice_pf_to_dev(pf);
7228	/* allocate descriptors */
7229	err = ice_vsi_setup_tx_rings(vsi);
7230	if (err)
7231		goto err_setup_tx;
7232
7233	err = ice_vsi_setup_rx_rings(vsi);
7234	if (err)
7235		goto err_setup_rx;
7236
7237	err = ice_vsi_cfg_lan(vsi);
7238	if (err)
7239		goto err_setup_rx;
7240
7241	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
7242		 dev_driver_string(dev), dev_name(dev));
7243	err = ice_vsi_req_irq_msix(vsi, int_name);
7244	if (err)
7245		goto err_setup_rx;
7246
7247	ice_vsi_cfg_msix(vsi);
7248
7249	err = ice_vsi_start_all_rx_rings(vsi);
7250	if (err)
7251		goto err_up_complete;
7252
7253	clear_bit(ICE_VSI_DOWN, vsi->state);
7254	ice_vsi_ena_irq(vsi);
7255
7256	return 0;
7257
7258err_up_complete:
7259	ice_down(vsi);
7260err_setup_rx:
7261	ice_vsi_free_rx_rings(vsi);
7262err_setup_tx:
7263	ice_vsi_free_tx_rings(vsi);
7264
7265	return err;
7266}
7267
7268/**
7269 * ice_vsi_open - Called when a network interface is made active
7270 * @vsi: the VSI to open
7271 *
7272 * Initialization of the VSI
7273 *
7274 * Returns 0 on success, negative value on error
7275 */
7276int ice_vsi_open(struct ice_vsi *vsi)
7277{
7278	char int_name[ICE_INT_NAME_STR_LEN];
7279	struct ice_pf *pf = vsi->back;
7280	int err;
7281
7282	/* allocate descriptors */
7283	err = ice_vsi_setup_tx_rings(vsi);
7284	if (err)
7285		goto err_setup_tx;
7286
7287	err = ice_vsi_setup_rx_rings(vsi);
7288	if (err)
7289		goto err_setup_rx;
7290
7291	err = ice_vsi_cfg_lan(vsi);
7292	if (err)
7293		goto err_setup_rx;
7294
7295	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
7296		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
7297	err = ice_vsi_req_irq_msix(vsi, int_name);
7298	if (err)
7299		goto err_setup_rx;
7300
7301	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
7302
7303	if (vsi->type == ICE_VSI_PF) {
7304		/* Notify the stack of the actual queue counts. */
7305		err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
7306		if (err)
7307			goto err_set_qs;
7308
7309		err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
7310		if (err)
7311			goto err_set_qs;
7312	}
7313
7314	err = ice_up_complete(vsi);
7315	if (err)
7316		goto err_up_complete;
7317
7318	return 0;
7319
7320err_up_complete:
7321	ice_down(vsi);
7322err_set_qs:
7323	ice_vsi_free_irq(vsi);
7324err_setup_rx:
7325	ice_vsi_free_rx_rings(vsi);
7326err_setup_tx:
7327	ice_vsi_free_tx_rings(vsi);
7328
7329	return err;
7330}
7331
7332/**
7333 * ice_vsi_release_all - Delete all VSIs
7334 * @pf: PF from which all VSIs are being removed
7335 */
7336static void ice_vsi_release_all(struct ice_pf *pf)
7337{
7338	int err, i;
7339
7340	if (!pf->vsi)
7341		return;
7342
7343	ice_for_each_vsi(pf, i) {
7344		if (!pf->vsi[i])
7345			continue;
7346
7347		if (pf->vsi[i]->type == ICE_VSI_CHNL)
7348			continue;
7349
7350		err = ice_vsi_release(pf->vsi[i]);
7351		if (err)
7352			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7353				i, err, pf->vsi[i]->vsi_num);
7354	}
7355}
7356
7357/**
7358 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7359 * @pf: pointer to the PF instance
7360 * @type: VSI type to rebuild
7361 *
7362 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7363 */
7364static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7365{
7366	struct device *dev = ice_pf_to_dev(pf);
 
7367	int i, err;
7368
7369	ice_for_each_vsi(pf, i) {
7370		struct ice_vsi *vsi = pf->vsi[i];
7371
7372		if (!vsi || vsi->type != type)
7373			continue;
7374
7375		/* rebuild the VSI */
7376		err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
7377		if (err) {
7378			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7379				err, vsi->idx, ice_vsi_type_str(type));
7380			return err;
7381		}
7382
7383		/* replay filters for the VSI */
7384		err = ice_replay_vsi(&pf->hw, vsi->idx);
7385		if (err) {
7386			dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7387				err, vsi->idx, ice_vsi_type_str(type));
7388			return err;
 
7389		}
7390
7391		/* Re-map HW VSI number, using VSI handle that has been
7392		 * previously validated in ice_replay_vsi() call above
7393		 */
7394		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7395
7396		/* enable the VSI */
7397		err = ice_ena_vsi(vsi, false);
7398		if (err) {
7399			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7400				err, vsi->idx, ice_vsi_type_str(type));
7401			return err;
7402		}
7403
7404		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7405			 ice_vsi_type_str(type));
7406	}
7407
7408	return 0;
7409}
7410
7411/**
7412 * ice_update_pf_netdev_link - Update PF netdev link status
7413 * @pf: pointer to the PF instance
7414 */
7415static void ice_update_pf_netdev_link(struct ice_pf *pf)
7416{
7417	bool link_up;
7418	int i;
7419
7420	ice_for_each_vsi(pf, i) {
7421		struct ice_vsi *vsi = pf->vsi[i];
7422
7423		if (!vsi || vsi->type != ICE_VSI_PF)
7424			return;
7425
7426		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7427		if (link_up) {
7428			netif_carrier_on(pf->vsi[i]->netdev);
7429			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7430		} else {
7431			netif_carrier_off(pf->vsi[i]->netdev);
7432			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7433		}
7434	}
7435}
7436
7437/**
7438 * ice_rebuild - rebuild after reset
7439 * @pf: PF to rebuild
7440 * @reset_type: type of reset
7441 *
7442 * Do not rebuild VF VSI in this flow because that is already handled via
7443 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7444 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7445 * to reset/rebuild all the VF VSI twice.
7446 */
7447static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7448{
7449	struct device *dev = ice_pf_to_dev(pf);
7450	struct ice_hw *hw = &pf->hw;
7451	bool dvm;
7452	int err;
7453
7454	if (test_bit(ICE_DOWN, pf->state))
7455		goto clear_recovery;
7456
7457	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7458
7459#define ICE_EMP_RESET_SLEEP_MS 5000
7460	if (reset_type == ICE_RESET_EMPR) {
7461		/* If an EMP reset has occurred, any previously pending flash
7462		 * update will have completed. We no longer know whether or
7463		 * not the NVM update EMP reset is restricted.
7464		 */
7465		pf->fw_emp_reset_disabled = false;
7466
7467		msleep(ICE_EMP_RESET_SLEEP_MS);
7468	}
7469
7470	err = ice_init_all_ctrlq(hw);
7471	if (err) {
7472		dev_err(dev, "control queues init failed %d\n", err);
7473		goto err_init_ctrlq;
7474	}
7475
7476	/* if DDP was previously loaded successfully */
7477	if (!ice_is_safe_mode(pf)) {
7478		/* reload the SW DB of filter tables */
7479		if (reset_type == ICE_RESET_PFR)
7480			ice_fill_blk_tbls(hw);
7481		else
7482			/* Reload DDP Package after CORER/GLOBR reset */
7483			ice_load_pkg(NULL, pf);
7484	}
7485
7486	err = ice_clear_pf_cfg(hw);
7487	if (err) {
7488		dev_err(dev, "clear PF configuration failed %d\n", err);
 
7489		goto err_init_ctrlq;
7490	}
7491
7492	ice_clear_pxe_mode(hw);
 
 
 
 
7493
7494	err = ice_init_nvm(hw);
7495	if (err) {
7496		dev_err(dev, "ice_init_nvm failed %d\n", err);
7497		goto err_init_ctrlq;
7498	}
7499
7500	err = ice_get_caps(hw);
7501	if (err) {
7502		dev_err(dev, "ice_get_caps failed %d\n", err);
7503		goto err_init_ctrlq;
7504	}
7505
7506	err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7507	if (err) {
7508		dev_err(dev, "set_mac_cfg failed %d\n", err);
7509		goto err_init_ctrlq;
7510	}
7511
7512	dvm = ice_is_dvm_ena(hw);
7513
7514	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7515	if (err)
7516		goto err_init_ctrlq;
7517
7518	err = ice_sched_init_port(hw->port_info);
7519	if (err)
7520		goto err_sched_init_port;
7521
7522	/* start misc vector */
7523	err = ice_req_irq_msix_misc(pf);
7524	if (err) {
7525		dev_err(dev, "misc vector setup failed: %d\n", err);
7526		goto err_sched_init_port;
7527	}
7528
7529	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7530		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7531		if (!rd32(hw, PFQF_FD_SIZE)) {
7532			u16 unused, guar, b_effort;
7533
7534			guar = hw->func_caps.fd_fltr_guar;
7535			b_effort = hw->func_caps.fd_fltr_best_effort;
7536
7537			/* force guaranteed filter pool for PF */
7538			ice_alloc_fd_guar_item(hw, &unused, guar);
7539			/* force shared filter pool for PF */
7540			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7541		}
7542	}
7543
7544	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7545		ice_dcb_rebuild(pf);
7546
7547	/* If the PF previously had enabled PTP, PTP init needs to happen before
7548	 * the VSI rebuild. If not, this causes the PTP link status events to
7549	 * fail.
7550	 */
7551	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7552		ice_ptp_reset(pf);
7553
7554	if (ice_is_feature_supported(pf, ICE_F_GNSS))
7555		ice_gnss_init(pf);
7556
7557	/* rebuild PF VSI */
7558	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7559	if (err) {
7560		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7561		goto err_vsi_rebuild;
7562	}
7563
7564	err = ice_eswitch_rebuild(pf);
7565	if (err) {
7566		dev_err(dev, "Switchdev rebuild failed: %d\n", err);
7567		goto err_vsi_rebuild;
7568	}
7569
7570	if (reset_type == ICE_RESET_PFR) {
7571		err = ice_rebuild_channels(pf);
7572		if (err) {
7573			dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7574				err);
7575			goto err_vsi_rebuild;
7576		}
7577	}
7578
7579	/* If Flow Director is active */
7580	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7581		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7582		if (err) {
7583			dev_err(dev, "control VSI rebuild failed: %d\n", err);
7584			goto err_vsi_rebuild;
7585		}
7586
7587		/* replay HW Flow Director recipes */
7588		if (hw->fdir_prof)
7589			ice_fdir_replay_flows(hw);
7590
7591		/* replay Flow Director filters */
7592		ice_fdir_replay_fltrs(pf);
7593
7594		ice_rebuild_arfs(pf);
7595	}
7596
7597	ice_update_pf_netdev_link(pf);
7598
7599	/* tell the firmware we are up */
7600	err = ice_send_version(pf);
7601	if (err) {
7602		dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7603			err);
7604		goto err_vsi_rebuild;
7605	}
7606
7607	ice_replay_post(hw);
7608
7609	/* if we get here, reset flow is successful */
7610	clear_bit(ICE_RESET_FAILED, pf->state);
7611
7612	ice_plug_aux_dev(pf);
7613	if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG))
7614		ice_lag_rebuild(pf);
7615
7616	/* Restore timestamp mode settings after VSI rebuild */
7617	ice_ptp_restore_timestamp_mode(pf);
7618	return;
7619
7620err_vsi_rebuild:
7621err_sched_init_port:
7622	ice_sched_cleanup_all(hw);
7623err_init_ctrlq:
7624	ice_shutdown_all_ctrlq(hw);
7625	set_bit(ICE_RESET_FAILED, pf->state);
7626clear_recovery:
7627	/* set this bit in PF state to control service task scheduling */
7628	set_bit(ICE_NEEDS_RESTART, pf->state);
7629	dev_err(dev, "Rebuild failed, unload and reload driver\n");
7630}
7631
7632/**
 
 
 
 
 
 
 
 
 
 
 
 
7633 * ice_change_mtu - NDO callback to change the MTU
7634 * @netdev: network interface device structure
7635 * @new_mtu: new value for maximum frame size
7636 *
7637 * Returns 0 on success, negative on failure
7638 */
7639static int ice_change_mtu(struct net_device *netdev, int new_mtu)
7640{
7641	struct ice_netdev_priv *np = netdev_priv(netdev);
7642	struct ice_vsi *vsi = np->vsi;
7643	struct ice_pf *pf = vsi->back;
7644	struct bpf_prog *prog;
7645	u8 count = 0;
7646	int err = 0;
7647
7648	if (new_mtu == (int)netdev->mtu) {
7649		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7650		return 0;
7651	}
7652
7653	prog = vsi->xdp_prog;
7654	if (prog && !prog->aux->xdp_has_frags) {
7655		int frame_size = ice_max_xdp_frame_size(vsi);
7656
7657		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7658			netdev_err(netdev, "max MTU for XDP usage is %d\n",
7659				   frame_size - ICE_ETH_PKT_HDR_PAD);
7660			return -EINVAL;
7661		}
7662	} else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) {
7663		if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) {
7664			netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n",
7665				   ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD);
7666			return -EINVAL;
7667		}
7668	}
7669
 
 
 
 
 
 
 
 
 
7670	/* if a reset is in progress, wait for some time for it to complete */
7671	do {
7672		if (ice_is_reset_in_progress(pf->state)) {
7673			count++;
7674			usleep_range(1000, 2000);
7675		} else {
7676			break;
7677		}
7678
7679	} while (count < 100);
7680
7681	if (count == 100) {
7682		netdev_err(netdev, "can't change MTU. Device is busy\n");
7683		return -EBUSY;
7684	}
7685
7686	netdev->mtu = (unsigned int)new_mtu;
7687	err = ice_down_up(vsi);
7688	if (err)
7689		return err;
7690
7691	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7692	set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
 
7693
7694	return err;
7695}
7696
7697/**
7698 * ice_eth_ioctl - Access the hwtstamp interface
7699 * @netdev: network interface device structure
7700 * @ifr: interface request data
7701 * @cmd: ioctl command
7702 */
7703static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7704{
7705	struct ice_netdev_priv *np = netdev_priv(netdev);
7706	struct ice_pf *pf = np->vsi->back;
7707
7708	switch (cmd) {
7709	case SIOCGHWTSTAMP:
7710		return ice_ptp_get_ts_config(pf, ifr);
7711	case SIOCSHWTSTAMP:
7712		return ice_ptp_set_ts_config(pf, ifr);
7713	default:
7714		return -EOPNOTSUPP;
7715	}
 
 
 
7716}
7717
7718/**
7719 * ice_aq_str - convert AQ err code to a string
7720 * @aq_err: the AQ error code to convert
7721 */
7722const char *ice_aq_str(enum ice_aq_err aq_err)
7723{
7724	switch (aq_err) {
7725	case ICE_AQ_RC_OK:
7726		return "OK";
7727	case ICE_AQ_RC_EPERM:
7728		return "ICE_AQ_RC_EPERM";
7729	case ICE_AQ_RC_ENOENT:
7730		return "ICE_AQ_RC_ENOENT";
7731	case ICE_AQ_RC_ENOMEM:
7732		return "ICE_AQ_RC_ENOMEM";
7733	case ICE_AQ_RC_EBUSY:
7734		return "ICE_AQ_RC_EBUSY";
7735	case ICE_AQ_RC_EEXIST:
7736		return "ICE_AQ_RC_EEXIST";
7737	case ICE_AQ_RC_EINVAL:
7738		return "ICE_AQ_RC_EINVAL";
7739	case ICE_AQ_RC_ENOSPC:
7740		return "ICE_AQ_RC_ENOSPC";
7741	case ICE_AQ_RC_ENOSYS:
7742		return "ICE_AQ_RC_ENOSYS";
7743	case ICE_AQ_RC_EMODE:
7744		return "ICE_AQ_RC_EMODE";
7745	case ICE_AQ_RC_ENOSEC:
7746		return "ICE_AQ_RC_ENOSEC";
7747	case ICE_AQ_RC_EBADSIG:
7748		return "ICE_AQ_RC_EBADSIG";
7749	case ICE_AQ_RC_ESVN:
7750		return "ICE_AQ_RC_ESVN";
7751	case ICE_AQ_RC_EBADMAN:
7752		return "ICE_AQ_RC_EBADMAN";
7753	case ICE_AQ_RC_EBADBUF:
7754		return "ICE_AQ_RC_EBADBUF";
7755	}
7756
7757	return "ICE_AQ_RC_UNKNOWN";
7758}
7759
7760/**
7761 * ice_set_rss_lut - Set RSS LUT
7762 * @vsi: Pointer to VSI structure
7763 * @lut: Lookup table
7764 * @lut_size: Lookup table size
7765 *
7766 * Returns 0 on success, negative on failure
7767 */
7768int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7769{
7770	struct ice_aq_get_set_rss_lut_params params = {};
7771	struct ice_hw *hw = &vsi->back->hw;
7772	int status;
7773
7774	if (!lut)
7775		return -EINVAL;
7776
7777	params.vsi_handle = vsi->idx;
7778	params.lut_size = lut_size;
7779	params.lut_type = vsi->rss_lut_type;
7780	params.lut = lut;
7781
7782	status = ice_aq_set_rss_lut(hw, &params);
7783	if (status)
7784		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7785			status, ice_aq_str(hw->adminq.sq_last_status));
7786
7787	return status;
7788}
7789
7790/**
7791 * ice_set_rss_key - Set RSS key
7792 * @vsi: Pointer to the VSI structure
7793 * @seed: RSS hash seed
7794 *
7795 * Returns 0 on success, negative on failure
7796 */
7797int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7798{
7799	struct ice_hw *hw = &vsi->back->hw;
7800	int status;
7801
7802	if (!seed)
7803		return -EINVAL;
7804
7805	status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7806	if (status)
7807		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7808			status, ice_aq_str(hw->adminq.sq_last_status));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7809
7810	return status;
7811}
7812
7813/**
7814 * ice_get_rss_lut - Get RSS LUT
7815 * @vsi: Pointer to VSI structure
7816 * @lut: Buffer to store the lookup table entries
7817 * @lut_size: Size of buffer to store the lookup table entries
 
7818 *
7819 * Returns 0 on success, negative on failure
7820 */
7821int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7822{
7823	struct ice_aq_get_set_rss_lut_params params = {};
7824	struct ice_hw *hw = &vsi->back->hw;
7825	int status;
7826
7827	if (!lut)
7828		return -EINVAL;
7829
7830	params.vsi_handle = vsi->idx;
7831	params.lut_size = lut_size;
7832	params.lut_type = vsi->rss_lut_type;
7833	params.lut = lut;
7834
7835	status = ice_aq_get_rss_lut(hw, &params);
7836	if (status)
7837		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7838			status, ice_aq_str(hw->adminq.sq_last_status));
7839
7840	return status;
7841}
 
 
7842
7843/**
7844 * ice_get_rss_key - Get RSS key
7845 * @vsi: Pointer to VSI structure
7846 * @seed: Buffer to store the key in
7847 *
7848 * Returns 0 on success, negative on failure
7849 */
7850int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7851{
7852	struct ice_hw *hw = &vsi->back->hw;
7853	int status;
7854
7855	if (!seed)
7856		return -EINVAL;
 
 
 
 
 
7857
7858	status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7859	if (status)
7860		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
7861			status, ice_aq_str(hw->adminq.sq_last_status));
 
 
 
 
 
 
7862
7863	return status;
7864}
7865
7866/**
7867 * ice_set_rss_hfunc - Set RSS HASH function
7868 * @vsi: Pointer to VSI structure
7869 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*)
 
 
7870 *
7871 * Returns 0 on success, negative on failure
7872 */
7873int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc)
7874{
7875	struct ice_hw *hw = &vsi->back->hw;
7876	struct ice_vsi_ctx *ctx;
7877	bool symm;
7878	int err;
7879
7880	if (hfunc == vsi->rss_hfunc)
7881		return 0;
7882
7883	if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ &&
7884	    hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ)
7885		return -EOPNOTSUPP;
7886
7887	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
7888	if (!ctx)
7889		return -ENOMEM;
 
7890
7891	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
7892	ctx->info.q_opt_rss = vsi->info.q_opt_rss;
7893	ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M;
7894	ctx->info.q_opt_rss |=
7895		FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc);
7896	ctx->info.q_opt_tc = vsi->info.q_opt_tc;
7897	ctx->info.q_opt_flags = vsi->info.q_opt_rss;
 
7898
7899	err = ice_update_vsi(hw, vsi->idx, ctx, NULL);
7900	if (err) {
7901		dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n",
7902			vsi->vsi_num, err);
7903	} else {
7904		vsi->info.q_opt_rss = ctx->info.q_opt_rss;
7905		vsi->rss_hfunc = hfunc;
7906		netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n",
7907			    hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ?
7908			    "Symmetric " : "");
7909	}
7910	kfree(ctx);
7911	if (err)
7912		return err;
7913
7914	/* Fix the symmetry setting for all existing RSS configurations */
7915	symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ);
7916	return ice_set_rss_cfg_symm(hw, vsi, symm);
7917}
7918
7919/**
7920 * ice_bridge_getlink - Get the hardware bridge mode
7921 * @skb: skb buff
7922 * @pid: process ID
7923 * @seq: RTNL message seq
7924 * @dev: the netdev being configured
7925 * @filter_mask: filter mask passed in
7926 * @nlflags: netlink flags passed in
7927 *
7928 * Return the bridge mode (VEB/VEPA)
7929 */
7930static int
7931ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7932		   struct net_device *dev, u32 filter_mask, int nlflags)
7933{
7934	struct ice_netdev_priv *np = netdev_priv(dev);
7935	struct ice_vsi *vsi = np->vsi;
7936	struct ice_pf *pf = vsi->back;
7937	u16 bmode;
7938
7939	bmode = pf->first_sw->bridge_mode;
7940
7941	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
7942				       filter_mask, NULL);
7943}
7944
7945/**
7946 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
7947 * @vsi: Pointer to VSI structure
7948 * @bmode: Hardware bridge mode (VEB/VEPA)
7949 *
7950 * Returns 0 on success, negative on failure
7951 */
7952static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
7953{
7954	struct ice_aqc_vsi_props *vsi_props;
7955	struct ice_hw *hw = &vsi->back->hw;
7956	struct ice_vsi_ctx *ctxt;
7957	int ret;
 
7958
7959	vsi_props = &vsi->info;
7960
7961	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
7962	if (!ctxt)
7963		return -ENOMEM;
7964
7965	ctxt->info = vsi->info;
7966
7967	if (bmode == BRIDGE_MODE_VEB)
7968		/* change from VEPA to VEB mode */
7969		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7970	else
7971		/* change from VEB to VEPA mode */
7972		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7973	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
7974
7975	ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
7976	if (ret) {
7977		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
7978			bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
 
 
7979		goto out;
7980	}
7981	/* Update sw flags for book keeping */
7982	vsi_props->sw_flags = ctxt->info.sw_flags;
7983
7984out:
7985	kfree(ctxt);
7986	return ret;
7987}
7988
7989/**
7990 * ice_bridge_setlink - Set the hardware bridge mode
7991 * @dev: the netdev being configured
7992 * @nlh: RTNL message
7993 * @flags: bridge setlink flags
7994 * @extack: netlink extended ack
7995 *
7996 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
7997 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
7998 * not already set for all VSIs connected to this switch. And also update the
7999 * unicast switch filter rules for the corresponding switch of the netdev.
8000 */
8001static int
8002ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
8003		   u16 __always_unused flags,
8004		   struct netlink_ext_ack __always_unused *extack)
8005{
8006	struct ice_netdev_priv *np = netdev_priv(dev);
8007	struct ice_pf *pf = np->vsi->back;
8008	struct nlattr *attr, *br_spec;
8009	struct ice_hw *hw = &pf->hw;
 
8010	struct ice_sw *pf_sw;
8011	int rem, v, err = 0;
8012
8013	pf_sw = pf->first_sw;
8014	/* find the attribute in the netlink message */
8015	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
8016	if (!br_spec)
8017		return -EINVAL;
8018
8019	nla_for_each_nested(attr, br_spec, rem) {
8020		__u16 mode;
8021
8022		if (nla_type(attr) != IFLA_BRIDGE_MODE)
8023			continue;
8024		mode = nla_get_u16(attr);
8025		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
8026			return -EINVAL;
8027		/* Continue  if bridge mode is not being flipped */
8028		if (mode == pf_sw->bridge_mode)
8029			continue;
8030		/* Iterates through the PF VSI list and update the loopback
8031		 * mode of the VSI
8032		 */
8033		ice_for_each_vsi(pf, v) {
8034			if (!pf->vsi[v])
8035				continue;
8036			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
8037			if (err)
8038				return err;
8039		}
8040
8041		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
8042		/* Update the unicast switch filter rules for the corresponding
8043		 * switch of the netdev
8044		 */
8045		err = ice_update_sw_rule_bridge_mode(hw);
8046		if (err) {
8047			netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
8048				   mode, err,
8049				   ice_aq_str(hw->adminq.sq_last_status));
8050			/* revert hw->evb_veb */
8051			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
8052			return err;
8053		}
8054
8055		pf_sw->bridge_mode = mode;
8056	}
8057
8058	return 0;
8059}
8060
8061/**
8062 * ice_tx_timeout - Respond to a Tx Hang
8063 * @netdev: network interface device structure
8064 * @txqueue: Tx queue
8065 */
8066static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
8067{
8068	struct ice_netdev_priv *np = netdev_priv(netdev);
8069	struct ice_tx_ring *tx_ring = NULL;
8070	struct ice_vsi *vsi = np->vsi;
8071	struct ice_pf *pf = vsi->back;
8072	u32 i;
8073
8074	pf->tx_timeout_count++;
8075
8076	/* Check if PFC is enabled for the TC to which the queue belongs
8077	 * to. If yes then Tx timeout is not caused by a hung queue, no
8078	 * need to reset and rebuild
8079	 */
8080	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
8081		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
8082			 txqueue);
8083		return;
8084	}
8085
8086	/* now that we have an index, find the tx_ring struct */
8087	ice_for_each_txq(vsi, i)
8088		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
8089			if (txqueue == vsi->tx_rings[i]->q_index) {
8090				tx_ring = vsi->tx_rings[i];
8091				break;
8092			}
8093
8094	/* Reset recovery level if enough time has elapsed after last timeout.
8095	 * Also ensure no new reset action happens before next timeout period.
8096	 */
8097	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
8098		pf->tx_timeout_recovery_level = 1;
8099	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
8100				       netdev->watchdog_timeo)))
8101		return;
8102
8103	if (tx_ring) {
8104		struct ice_hw *hw = &pf->hw;
8105		u32 head, val = 0;
8106
8107		head = FIELD_GET(QTX_COMM_HEAD_HEAD_M,
8108				 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])));
8109		/* Read interrupt register */
8110		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
8111
8112		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
8113			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
8114			    head, tx_ring->next_to_use, val);
8115	}
8116
8117	pf->tx_timeout_last_recovery = jiffies;
8118	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
8119		    pf->tx_timeout_recovery_level, txqueue);
8120
8121	switch (pf->tx_timeout_recovery_level) {
8122	case 1:
8123		set_bit(ICE_PFR_REQ, pf->state);
8124		break;
8125	case 2:
8126		set_bit(ICE_CORER_REQ, pf->state);
8127		break;
8128	case 3:
8129		set_bit(ICE_GLOBR_REQ, pf->state);
8130		break;
8131	default:
8132		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
8133		set_bit(ICE_DOWN, pf->state);
8134		set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
8135		set_bit(ICE_SERVICE_DIS, pf->state);
8136		break;
8137	}
8138
8139	ice_service_task_schedule(pf);
8140	pf->tx_timeout_recovery_level++;
8141}
8142
8143/**
8144 * ice_setup_tc_cls_flower - flower classifier offloads
8145 * @np: net device to configure
8146 * @filter_dev: device on which filter is added
8147 * @cls_flower: offload data
8148 */
8149static int
8150ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
8151			struct net_device *filter_dev,
8152			struct flow_cls_offload *cls_flower)
8153{
 
8154	struct ice_vsi *vsi = np->vsi;
8155
8156	if (cls_flower->common.chain_index)
8157		return -EOPNOTSUPP;
8158
8159	switch (cls_flower->command) {
8160	case FLOW_CLS_REPLACE:
8161		return ice_add_cls_flower(filter_dev, vsi, cls_flower);
8162	case FLOW_CLS_DESTROY:
8163		return ice_del_cls_flower(vsi, cls_flower);
8164	default:
8165		return -EINVAL;
8166	}
8167}
8168
8169/**
8170 * ice_setup_tc_block_cb - callback handler registered for TC block
8171 * @type: TC SETUP type
8172 * @type_data: TC flower offload data that contains user input
8173 * @cb_priv: netdev private data
8174 */
8175static int
8176ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
8177{
8178	struct ice_netdev_priv *np = cb_priv;
8179
8180	switch (type) {
8181	case TC_SETUP_CLSFLOWER:
8182		return ice_setup_tc_cls_flower(np, np->vsi->netdev,
8183					       type_data);
8184	default:
8185		return -EOPNOTSUPP;
8186	}
8187}
8188
8189/**
8190 * ice_validate_mqprio_qopt - Validate TCF input parameters
8191 * @vsi: Pointer to VSI
8192 * @mqprio_qopt: input parameters for mqprio queue configuration
8193 *
8194 * This function validates MQPRIO params, such as qcount (power of 2 wherever
8195 * needed), and make sure user doesn't specify qcount and BW rate limit
8196 * for TCs, which are more than "num_tc"
8197 */
8198static int
8199ice_validate_mqprio_qopt(struct ice_vsi *vsi,
8200			 struct tc_mqprio_qopt_offload *mqprio_qopt)
8201{
8202	int non_power_of_2_qcount = 0;
8203	struct ice_pf *pf = vsi->back;
8204	int max_rss_q_cnt = 0;
8205	u64 sum_min_rate = 0;
8206	struct device *dev;
8207	int i, speed;
8208	u8 num_tc;
8209
8210	if (vsi->type != ICE_VSI_PF)
8211		return -EINVAL;
8212
8213	if (mqprio_qopt->qopt.offset[0] != 0 ||
8214	    mqprio_qopt->qopt.num_tc < 1 ||
8215	    mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
8216		return -EINVAL;
8217
8218	dev = ice_pf_to_dev(pf);
8219	vsi->ch_rss_size = 0;
8220	num_tc = mqprio_qopt->qopt.num_tc;
8221	speed = ice_get_link_speed_kbps(vsi);
8222
8223	for (i = 0; num_tc; i++) {
8224		int qcount = mqprio_qopt->qopt.count[i];
8225		u64 max_rate, min_rate, rem;
8226
8227		if (!qcount)
8228			return -EINVAL;
8229
8230		if (is_power_of_2(qcount)) {
8231			if (non_power_of_2_qcount &&
8232			    qcount > non_power_of_2_qcount) {
8233				dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
8234					qcount, non_power_of_2_qcount);
8235				return -EINVAL;
8236			}
8237			if (qcount > max_rss_q_cnt)
8238				max_rss_q_cnt = qcount;
8239		} else {
8240			if (non_power_of_2_qcount &&
8241			    qcount != non_power_of_2_qcount) {
8242				dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
8243					qcount, non_power_of_2_qcount);
8244				return -EINVAL;
8245			}
8246			if (qcount < max_rss_q_cnt) {
8247				dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
8248					qcount, max_rss_q_cnt);
8249				return -EINVAL;
8250			}
8251			max_rss_q_cnt = qcount;
8252			non_power_of_2_qcount = qcount;
8253		}
8254
8255		/* TC command takes input in K/N/Gbps or K/M/Gbit etc but
8256		 * converts the bandwidth rate limit into Bytes/s when
8257		 * passing it down to the driver. So convert input bandwidth
8258		 * from Bytes/s to Kbps
8259		 */
8260		max_rate = mqprio_qopt->max_rate[i];
8261		max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
8262
8263		/* min_rate is minimum guaranteed rate and it can't be zero */
8264		min_rate = mqprio_qopt->min_rate[i];
8265		min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
8266		sum_min_rate += min_rate;
8267
8268		if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
8269			dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
8270				min_rate, ICE_MIN_BW_LIMIT);
8271			return -EINVAL;
8272		}
8273
8274		if (max_rate && max_rate > speed) {
8275			dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n",
8276				i, max_rate, speed);
8277			return -EINVAL;
8278		}
8279
8280		iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
8281		if (rem) {
8282			dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
8283				i, ICE_MIN_BW_LIMIT);
8284			return -EINVAL;
8285		}
8286
8287		iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
8288		if (rem) {
8289			dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
8290				i, ICE_MIN_BW_LIMIT);
8291			return -EINVAL;
8292		}
8293
8294		/* min_rate can't be more than max_rate, except when max_rate
8295		 * is zero (implies max_rate sought is max line rate). In such
8296		 * a case min_rate can be more than max.
8297		 */
8298		if (max_rate && min_rate > max_rate) {
8299			dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
8300				min_rate, max_rate);
8301			return -EINVAL;
8302		}
8303
8304		if (i >= mqprio_qopt->qopt.num_tc - 1)
8305			break;
8306		if (mqprio_qopt->qopt.offset[i + 1] !=
8307		    (mqprio_qopt->qopt.offset[i] + qcount))
8308			return -EINVAL;
8309	}
8310	if (vsi->num_rxq <
8311	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8312		return -EINVAL;
8313	if (vsi->num_txq <
8314	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8315		return -EINVAL;
8316
8317	if (sum_min_rate && sum_min_rate > (u64)speed) {
8318		dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
8319			sum_min_rate, speed);
8320		return -EINVAL;
8321	}
8322
8323	/* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
8324	vsi->ch_rss_size = max_rss_q_cnt;
8325
8326	return 0;
8327}
8328
8329/**
8330 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
8331 * @pf: ptr to PF device
8332 * @vsi: ptr to VSI
8333 */
8334static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
8335{
8336	struct device *dev = ice_pf_to_dev(pf);
8337	bool added = false;
8338	struct ice_hw *hw;
8339	int flow;
8340
8341	if (!(vsi->num_gfltr || vsi->num_bfltr))
8342		return -EINVAL;
8343
8344	hw = &pf->hw;
8345	for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
8346		struct ice_fd_hw_prof *prof;
8347		int tun, status;
8348		u64 entry_h;
8349
8350		if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
8351		      hw->fdir_prof[flow]->cnt))
8352			continue;
8353
8354		for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
8355			enum ice_flow_priority prio;
8356
8357			/* add this VSI to FDir profile for this flow */
8358			prio = ICE_FLOW_PRIO_NORMAL;
8359			prof = hw->fdir_prof[flow];
8360			status = ice_flow_add_entry(hw, ICE_BLK_FD,
8361						    prof->prof_id[tun],
8362						    prof->vsi_h[0], vsi->idx,
8363						    prio, prof->fdir_seg[tun],
8364						    &entry_h);
8365			if (status) {
8366				dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
8367					vsi->idx, flow);
8368				continue;
8369			}
8370
8371			prof->entry_h[prof->cnt][tun] = entry_h;
8372		}
8373
8374		/* store VSI for filter replay and delete */
8375		prof->vsi_h[prof->cnt] = vsi->idx;
8376		prof->cnt++;
8377
8378		added = true;
8379		dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
8380			flow);
8381	}
8382
8383	if (!added)
8384		dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
8385
8386	return 0;
8387}
8388
8389/**
8390 * ice_add_channel - add a channel by adding VSI
8391 * @pf: ptr to PF device
8392 * @sw_id: underlying HW switching element ID
8393 * @ch: ptr to channel structure
8394 *
8395 * Add a channel (VSI) using add_vsi and queue_map
8396 */
8397static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8398{
8399	struct device *dev = ice_pf_to_dev(pf);
8400	struct ice_vsi *vsi;
8401
8402	if (ch->type != ICE_VSI_CHNL) {
8403		dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8404		return -EINVAL;
8405	}
8406
8407	vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8408	if (!vsi || vsi->type != ICE_VSI_CHNL) {
8409		dev_err(dev, "create chnl VSI failure\n");
8410		return -EINVAL;
8411	}
8412
8413	ice_add_vsi_to_fdir(pf, vsi);
8414
8415	ch->sw_id = sw_id;
8416	ch->vsi_num = vsi->vsi_num;
8417	ch->info.mapping_flags = vsi->info.mapping_flags;
8418	ch->ch_vsi = vsi;
8419	/* set the back pointer of channel for newly created VSI */
8420	vsi->ch = ch;
8421
8422	memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8423	       sizeof(vsi->info.q_mapping));
8424	memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8425	       sizeof(vsi->info.tc_mapping));
8426
8427	return 0;
8428}
8429
8430/**
8431 * ice_chnl_cfg_res
8432 * @vsi: the VSI being setup
8433 * @ch: ptr to channel structure
8434 *
8435 * Configure channel specific resources such as rings, vector.
8436 */
8437static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8438{
8439	int i;
8440
8441	for (i = 0; i < ch->num_txq; i++) {
8442		struct ice_q_vector *tx_q_vector, *rx_q_vector;
8443		struct ice_ring_container *rc;
8444		struct ice_tx_ring *tx_ring;
8445		struct ice_rx_ring *rx_ring;
8446
8447		tx_ring = vsi->tx_rings[ch->base_q + i];
8448		rx_ring = vsi->rx_rings[ch->base_q + i];
8449		if (!tx_ring || !rx_ring)
8450			continue;
8451
8452		/* setup ring being channel enabled */
8453		tx_ring->ch = ch;
8454		rx_ring->ch = ch;
8455
8456		/* following code block sets up vector specific attributes */
8457		tx_q_vector = tx_ring->q_vector;
8458		rx_q_vector = rx_ring->q_vector;
8459		if (!tx_q_vector && !rx_q_vector)
8460			continue;
8461
8462		if (tx_q_vector) {
8463			tx_q_vector->ch = ch;
8464			/* setup Tx and Rx ITR setting if DIM is off */
8465			rc = &tx_q_vector->tx;
8466			if (!ITR_IS_DYNAMIC(rc))
8467				ice_write_itr(rc, rc->itr_setting);
8468		}
8469		if (rx_q_vector) {
8470			rx_q_vector->ch = ch;
8471			/* setup Tx and Rx ITR setting if DIM is off */
8472			rc = &rx_q_vector->rx;
8473			if (!ITR_IS_DYNAMIC(rc))
8474				ice_write_itr(rc, rc->itr_setting);
8475		}
8476	}
8477
8478	/* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8479	 * GLINT_ITR register would have written to perform in-context
8480	 * update, hence perform flush
8481	 */
8482	if (ch->num_txq || ch->num_rxq)
8483		ice_flush(&vsi->back->hw);
 
8484}
8485
8486/**
8487 * ice_cfg_chnl_all_res - configure channel resources
8488 * @vsi: pte to main_vsi
8489 * @ch: ptr to channel structure
8490 *
8491 * This function configures channel specific resources such as flow-director
8492 * counter index, and other resources such as queues, vectors, ITR settings
8493 */
8494static void
8495ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8496{
8497	/* configure channel (aka ADQ) resources such as queues, vectors,
8498	 * ITR settings for channel specific vectors and anything else
8499	 */
8500	ice_chnl_cfg_res(vsi, ch);
8501}
8502
8503/**
8504 * ice_setup_hw_channel - setup new channel
8505 * @pf: ptr to PF device
8506 * @vsi: the VSI being setup
8507 * @ch: ptr to channel structure
8508 * @sw_id: underlying HW switching element ID
8509 * @type: type of channel to be created (VMDq2/VF)
8510 *
8511 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8512 * and configures Tx rings accordingly
8513 */
8514static int
8515ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8516		     struct ice_channel *ch, u16 sw_id, u8 type)
8517{
8518	struct device *dev = ice_pf_to_dev(pf);
8519	int ret;
8520
8521	ch->base_q = vsi->next_base_q;
8522	ch->type = type;
8523
8524	ret = ice_add_channel(pf, sw_id, ch);
8525	if (ret) {
8526		dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8527		return ret;
8528	}
8529
8530	/* configure/setup ADQ specific resources */
8531	ice_cfg_chnl_all_res(vsi, ch);
8532
8533	/* make sure to update the next_base_q so that subsequent channel's
8534	 * (aka ADQ) VSI queue map is correct
8535	 */
8536	vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8537	dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8538		ch->num_rxq);
8539
8540	return 0;
8541}
8542
8543/**
8544 * ice_setup_channel - setup new channel using uplink element
8545 * @pf: ptr to PF device
8546 * @vsi: the VSI being setup
8547 * @ch: ptr to channel structure
8548 *
8549 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8550 * and uplink switching element
8551 */
8552static bool
8553ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8554		  struct ice_channel *ch)
8555{
8556	struct device *dev = ice_pf_to_dev(pf);
8557	u16 sw_id;
8558	int ret;
8559
8560	if (vsi->type != ICE_VSI_PF) {
8561		dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8562		return false;
8563	}
8564
8565	sw_id = pf->first_sw->sw_id;
8566
8567	/* create channel (VSI) */
8568	ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8569	if (ret) {
8570		dev_err(dev, "failed to setup hw_channel\n");
8571		return false;
8572	}
8573	dev_dbg(dev, "successfully created channel()\n");
8574
8575	return ch->ch_vsi ? true : false;
8576}
8577
8578/**
8579 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8580 * @vsi: VSI to be configured
8581 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8582 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8583 */
8584static int
8585ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8586{
8587	int err;
8588
8589	err = ice_set_min_bw_limit(vsi, min_tx_rate);
8590	if (err)
8591		return err;
8592
8593	return ice_set_max_bw_limit(vsi, max_tx_rate);
8594}
8595
8596/**
8597 * ice_create_q_channel - function to create channel
8598 * @vsi: VSI to be configured
8599 * @ch: ptr to channel (it contains channel specific params)
8600 *
8601 * This function creates channel (VSI) using num_queues specified by user,
8602 * reconfigs RSS if needed.
8603 */
8604static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8605{
8606	struct ice_pf *pf = vsi->back;
8607	struct device *dev;
8608
8609	if (!ch)
8610		return -EINVAL;
8611
8612	dev = ice_pf_to_dev(pf);
8613	if (!ch->num_txq || !ch->num_rxq) {
8614		dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8615		return -EINVAL;
8616	}
8617
8618	if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8619		dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8620			vsi->cnt_q_avail, ch->num_txq);
8621		return -EINVAL;
8622	}
8623
8624	if (!ice_setup_channel(pf, vsi, ch)) {
8625		dev_info(dev, "Failed to setup channel\n");
8626		return -EINVAL;
8627	}
8628	/* configure BW rate limit */
8629	if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8630		int ret;
8631
8632		ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8633				       ch->min_tx_rate);
8634		if (ret)
8635			dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8636				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8637		else
8638			dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8639				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8640	}
8641
8642	vsi->cnt_q_avail -= ch->num_txq;
8643
8644	return 0;
8645}
8646
8647/**
8648 * ice_rem_all_chnl_fltrs - removes all channel filters
8649 * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8650 *
8651 * Remove all advanced switch filters only if they are channel specific
8652 * tc-flower based filter
8653 */
8654static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8655{
8656	struct ice_tc_flower_fltr *fltr;
8657	struct hlist_node *node;
8658
8659	/* to remove all channel filters, iterate an ordered list of filters */
8660	hlist_for_each_entry_safe(fltr, node,
8661				  &pf->tc_flower_fltr_list,
8662				  tc_flower_node) {
8663		struct ice_rule_query_data rule;
8664		int status;
8665
8666		/* for now process only channel specific filters */
8667		if (!ice_is_chnl_fltr(fltr))
8668			continue;
8669
8670		rule.rid = fltr->rid;
8671		rule.rule_id = fltr->rule_id;
8672		rule.vsi_handle = fltr->dest_vsi_handle;
8673		status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8674		if (status) {
8675			if (status == -ENOENT)
8676				dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8677					rule.rule_id);
8678			else
8679				dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8680					status);
8681		} else if (fltr->dest_vsi) {
8682			/* update advanced switch filter count */
8683			if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8684				u32 flags = fltr->flags;
8685
8686				fltr->dest_vsi->num_chnl_fltr--;
8687				if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8688					     ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8689					pf->num_dmac_chnl_fltrs--;
8690			}
8691		}
8692
8693		hlist_del(&fltr->tc_flower_node);
8694		kfree(fltr);
8695	}
8696}
8697
8698/**
8699 * ice_remove_q_channels - Remove queue channels for the TCs
8700 * @vsi: VSI to be configured
8701 * @rem_fltr: delete advanced switch filter or not
8702 *
8703 * Remove queue channels for the TCs
8704 */
8705static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8706{
8707	struct ice_channel *ch, *ch_tmp;
8708	struct ice_pf *pf = vsi->back;
8709	int i;
8710
8711	/* remove all tc-flower based filter if they are channel filters only */
8712	if (rem_fltr)
8713		ice_rem_all_chnl_fltrs(pf);
8714
8715	/* remove ntuple filters since queue configuration is being changed */
8716	if  (vsi->netdev->features & NETIF_F_NTUPLE) {
8717		struct ice_hw *hw = &pf->hw;
8718
8719		mutex_lock(&hw->fdir_fltr_lock);
8720		ice_fdir_del_all_fltrs(vsi);
8721		mutex_unlock(&hw->fdir_fltr_lock);
8722	}
8723
8724	/* perform cleanup for channels if they exist */
8725	list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8726		struct ice_vsi *ch_vsi;
8727
8728		list_del(&ch->list);
8729		ch_vsi = ch->ch_vsi;
8730		if (!ch_vsi) {
8731			kfree(ch);
8732			continue;
8733		}
8734
8735		/* Reset queue contexts */
8736		for (i = 0; i < ch->num_rxq; i++) {
8737			struct ice_tx_ring *tx_ring;
8738			struct ice_rx_ring *rx_ring;
8739
8740			tx_ring = vsi->tx_rings[ch->base_q + i];
8741			rx_ring = vsi->rx_rings[ch->base_q + i];
8742			if (tx_ring) {
8743				tx_ring->ch = NULL;
8744				if (tx_ring->q_vector)
8745					tx_ring->q_vector->ch = NULL;
8746			}
8747			if (rx_ring) {
8748				rx_ring->ch = NULL;
8749				if (rx_ring->q_vector)
8750					rx_ring->q_vector->ch = NULL;
8751			}
8752		}
8753
8754		/* Release FD resources for the channel VSI */
8755		ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8756
8757		/* clear the VSI from scheduler tree */
8758		ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8759
8760		/* Delete VSI from FW, PF and HW VSI arrays */
8761		ice_vsi_delete(ch->ch_vsi);
8762
8763		/* free the channel */
8764		kfree(ch);
8765	}
8766
8767	/* clear the channel VSI map which is stored in main VSI */
8768	ice_for_each_chnl_tc(i)
8769		vsi->tc_map_vsi[i] = NULL;
8770
8771	/* reset main VSI's all TC information */
8772	vsi->all_enatc = 0;
8773	vsi->all_numtc = 0;
8774}
8775
8776/**
8777 * ice_rebuild_channels - rebuild channel
8778 * @pf: ptr to PF
8779 *
8780 * Recreate channel VSIs and replay filters
8781 */
8782static int ice_rebuild_channels(struct ice_pf *pf)
8783{
8784	struct device *dev = ice_pf_to_dev(pf);
8785	struct ice_vsi *main_vsi;
8786	bool rem_adv_fltr = true;
8787	struct ice_channel *ch;
8788	struct ice_vsi *vsi;
8789	int tc_idx = 1;
8790	int i, err;
8791
8792	main_vsi = ice_get_main_vsi(pf);
8793	if (!main_vsi)
8794		return 0;
8795
8796	if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8797	    main_vsi->old_numtc == 1)
8798		return 0; /* nothing to be done */
8799
8800	/* reconfigure main VSI based on old value of TC and cached values
8801	 * for MQPRIO opts
8802	 */
8803	err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8804	if (err) {
8805		dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8806			main_vsi->old_ena_tc, main_vsi->vsi_num);
8807		return err;
8808	}
8809
8810	/* rebuild ADQ VSIs */
8811	ice_for_each_vsi(pf, i) {
8812		enum ice_vsi_type type;
8813
8814		vsi = pf->vsi[i];
8815		if (!vsi || vsi->type != ICE_VSI_CHNL)
8816			continue;
8817
8818		type = vsi->type;
8819
8820		/* rebuild ADQ VSI */
8821		err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
8822		if (err) {
8823			dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
8824				ice_vsi_type_str(type), vsi->idx, err);
8825			goto cleanup;
8826		}
8827
8828		/* Re-map HW VSI number, using VSI handle that has been
8829		 * previously validated in ice_replay_vsi() call above
8830		 */
8831		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
8832
8833		/* replay filters for the VSI */
8834		err = ice_replay_vsi(&pf->hw, vsi->idx);
8835		if (err) {
8836			dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
8837				ice_vsi_type_str(type), err, vsi->idx);
8838			rem_adv_fltr = false;
8839			goto cleanup;
8840		}
8841		dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
8842			 ice_vsi_type_str(type), vsi->idx);
8843
8844		/* store ADQ VSI at correct TC index in main VSI's
8845		 * map of TC to VSI
8846		 */
8847		main_vsi->tc_map_vsi[tc_idx++] = vsi;
8848	}
8849
8850	/* ADQ VSI(s) has been rebuilt successfully, so setup
8851	 * channel for main VSI's Tx and Rx rings
8852	 */
8853	list_for_each_entry(ch, &main_vsi->ch_list, list) {
8854		struct ice_vsi *ch_vsi;
8855
8856		ch_vsi = ch->ch_vsi;
8857		if (!ch_vsi)
8858			continue;
8859
8860		/* reconfig channel resources */
8861		ice_cfg_chnl_all_res(main_vsi, ch);
8862
8863		/* replay BW rate limit if it is non-zero */
8864		if (!ch->max_tx_rate && !ch->min_tx_rate)
8865			continue;
8866
8867		err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
8868				       ch->min_tx_rate);
8869		if (err)
8870			dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8871				err, ch->max_tx_rate, ch->min_tx_rate,
8872				ch_vsi->vsi_num);
8873		else
8874			dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8875				ch->max_tx_rate, ch->min_tx_rate,
8876				ch_vsi->vsi_num);
8877	}
8878
8879	/* reconfig RSS for main VSI */
8880	if (main_vsi->ch_rss_size)
8881		ice_vsi_cfg_rss_lut_key(main_vsi);
8882
8883	return 0;
8884
8885cleanup:
8886	ice_remove_q_channels(main_vsi, rem_adv_fltr);
8887	return err;
8888}
8889
8890/**
8891 * ice_create_q_channels - Add queue channel for the given TCs
8892 * @vsi: VSI to be configured
8893 *
8894 * Configures queue channel mapping to the given TCs
8895 */
8896static int ice_create_q_channels(struct ice_vsi *vsi)
8897{
8898	struct ice_pf *pf = vsi->back;
8899	struct ice_channel *ch;
8900	int ret = 0, i;
8901
8902	ice_for_each_chnl_tc(i) {
8903		if (!(vsi->all_enatc & BIT(i)))
8904			continue;
8905
8906		ch = kzalloc(sizeof(*ch), GFP_KERNEL);
8907		if (!ch) {
8908			ret = -ENOMEM;
8909			goto err_free;
8910		}
8911		INIT_LIST_HEAD(&ch->list);
8912		ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
8913		ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
8914		ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
8915		ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
8916		ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
8917
8918		/* convert to Kbits/s */
8919		if (ch->max_tx_rate)
8920			ch->max_tx_rate = div_u64(ch->max_tx_rate,
8921						  ICE_BW_KBPS_DIVISOR);
8922		if (ch->min_tx_rate)
8923			ch->min_tx_rate = div_u64(ch->min_tx_rate,
8924						  ICE_BW_KBPS_DIVISOR);
8925
8926		ret = ice_create_q_channel(vsi, ch);
8927		if (ret) {
8928			dev_err(ice_pf_to_dev(pf),
8929				"failed creating channel TC:%d\n", i);
8930			kfree(ch);
8931			goto err_free;
8932		}
8933		list_add_tail(&ch->list, &vsi->ch_list);
8934		vsi->tc_map_vsi[i] = ch->ch_vsi;
8935		dev_dbg(ice_pf_to_dev(pf),
8936			"successfully created channel: VSI %pK\n", ch->ch_vsi);
8937	}
8938	return 0;
8939
8940err_free:
8941	ice_remove_q_channels(vsi, false);
8942
8943	return ret;
8944}
8945
8946/**
8947 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
8948 * @netdev: net device to configure
8949 * @type_data: TC offload data
8950 */
8951static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
8952{
8953	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
8954	struct ice_netdev_priv *np = netdev_priv(netdev);
8955	struct ice_vsi *vsi = np->vsi;
8956	struct ice_pf *pf = vsi->back;
8957	u16 mode, ena_tc_qdisc = 0;
8958	int cur_txq, cur_rxq;
8959	u8 hw = 0, num_tcf;
8960	struct device *dev;
8961	int ret, i;
8962
8963	dev = ice_pf_to_dev(pf);
8964	num_tcf = mqprio_qopt->qopt.num_tc;
8965	hw = mqprio_qopt->qopt.hw;
8966	mode = mqprio_qopt->mode;
8967	if (!hw) {
8968		clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8969		vsi->ch_rss_size = 0;
8970		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8971		goto config_tcf;
8972	}
8973
8974	/* Generate queue region map for number of TCF requested */
8975	for (i = 0; i < num_tcf; i++)
8976		ena_tc_qdisc |= BIT(i);
8977
8978	switch (mode) {
8979	case TC_MQPRIO_MODE_CHANNEL:
8980
8981		if (pf->hw.port_info->is_custom_tx_enabled) {
8982			dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
8983			return -EBUSY;
8984		}
8985		ice_tear_down_devlink_rate_tree(pf);
8986
8987		ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
8988		if (ret) {
8989			netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
8990				   ret);
8991			return ret;
8992		}
8993		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8994		set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8995		/* don't assume state of hw_tc_offload during driver load
8996		 * and set the flag for TC flower filter if hw_tc_offload
8997		 * already ON
8998		 */
8999		if (vsi->netdev->features & NETIF_F_HW_TC)
9000			set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
9001		break;
9002	default:
9003		return -EINVAL;
9004	}
9005
9006config_tcf:
9007
9008	/* Requesting same TCF configuration as already enabled */
9009	if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
9010	    mode != TC_MQPRIO_MODE_CHANNEL)
9011		return 0;
9012
9013	/* Pause VSI queues */
9014	ice_dis_vsi(vsi, true);
9015
9016	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
9017		ice_remove_q_channels(vsi, true);
9018
9019	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9020		vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
9021				     num_online_cpus());
9022		vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
9023				     num_online_cpus());
9024	} else {
9025		/* logic to rebuild VSI, same like ethtool -L */
9026		u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
9027
9028		for (i = 0; i < num_tcf; i++) {
9029			if (!(ena_tc_qdisc & BIT(i)))
9030				continue;
9031
9032			offset = vsi->mqprio_qopt.qopt.offset[i];
9033			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
9034			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
9035		}
9036		vsi->req_txq = offset + qcount_tx;
9037		vsi->req_rxq = offset + qcount_rx;
9038
9039		/* store away original rss_size info, so that it gets reused
9040		 * form ice_vsi_rebuild during tc-qdisc delete stage - to
9041		 * determine, what should be the rss_sizefor main VSI
9042		 */
9043		vsi->orig_rss_size = vsi->rss_size;
9044	}
9045
9046	/* save current values of Tx and Rx queues before calling VSI rebuild
9047	 * for fallback option
9048	 */
9049	cur_txq = vsi->num_txq;
9050	cur_rxq = vsi->num_rxq;
9051
9052	/* proceed with rebuild main VSI using correct number of queues */
9053	ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
9054	if (ret) {
9055		/* fallback to current number of queues */
9056		dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
9057		vsi->req_txq = cur_txq;
9058		vsi->req_rxq = cur_rxq;
9059		clear_bit(ICE_RESET_FAILED, pf->state);
9060		if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
9061			dev_err(dev, "Rebuild of main VSI failed again\n");
9062			return ret;
9063		}
9064	}
9065
9066	vsi->all_numtc = num_tcf;
9067	vsi->all_enatc = ena_tc_qdisc;
9068	ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
9069	if (ret) {
9070		netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
9071			   vsi->vsi_num);
9072		goto exit;
9073	}
9074
9075	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9076		u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
9077		u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
9078
9079		/* set TC0 rate limit if specified */
9080		if (max_tx_rate || min_tx_rate) {
9081			/* convert to Kbits/s */
9082			if (max_tx_rate)
9083				max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
9084			if (min_tx_rate)
9085				min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
9086
9087			ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
9088			if (!ret) {
9089				dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
9090					max_tx_rate, min_tx_rate, vsi->vsi_num);
9091			} else {
9092				dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
9093					max_tx_rate, min_tx_rate, vsi->vsi_num);
9094				goto exit;
9095			}
9096		}
9097		ret = ice_create_q_channels(vsi);
9098		if (ret) {
9099			netdev_err(netdev, "failed configuring queue channels\n");
9100			goto exit;
9101		} else {
9102			netdev_dbg(netdev, "successfully configured channels\n");
9103		}
9104	}
9105
9106	if (vsi->ch_rss_size)
9107		ice_vsi_cfg_rss_lut_key(vsi);
9108
9109exit:
9110	/* if error, reset the all_numtc and all_enatc */
9111	if (ret) {
9112		vsi->all_numtc = 0;
9113		vsi->all_enatc = 0;
9114	}
9115	/* resume VSI */
9116	ice_ena_vsi(vsi, true);
9117
9118	return ret;
9119}
9120
9121static LIST_HEAD(ice_block_cb_list);
9122
9123static int
9124ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
9125	     void *type_data)
9126{
9127	struct ice_netdev_priv *np = netdev_priv(netdev);
9128	struct ice_pf *pf = np->vsi->back;
9129	bool locked = false;
9130	int err;
9131
9132	switch (type) {
9133	case TC_SETUP_BLOCK:
9134		return flow_block_cb_setup_simple(type_data,
9135						  &ice_block_cb_list,
9136						  ice_setup_tc_block_cb,
9137						  np, np, true);
9138	case TC_SETUP_QDISC_MQPRIO:
9139		if (ice_is_eswitch_mode_switchdev(pf)) {
9140			netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n");
9141			return -EOPNOTSUPP;
9142		}
9143
9144		if (pf->adev) {
9145			mutex_lock(&pf->adev_mutex);
9146			device_lock(&pf->adev->dev);
9147			locked = true;
9148			if (pf->adev->dev.driver) {
9149				netdev_err(netdev, "Cannot change qdisc when RDMA is active\n");
9150				err = -EBUSY;
9151				goto adev_unlock;
9152			}
9153		}
9154
9155		/* setup traffic classifier for receive side */
9156		mutex_lock(&pf->tc_mutex);
9157		err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
9158		mutex_unlock(&pf->tc_mutex);
9159
9160adev_unlock:
9161		if (locked) {
9162			device_unlock(&pf->adev->dev);
9163			mutex_unlock(&pf->adev_mutex);
9164		}
9165		return err;
9166	default:
9167		return -EOPNOTSUPP;
9168	}
9169	return -EOPNOTSUPP;
9170}
9171
9172static struct ice_indr_block_priv *
9173ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
9174			   struct net_device *netdev)
9175{
9176	struct ice_indr_block_priv *cb_priv;
9177
9178	list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
9179		if (!cb_priv->netdev)
9180			return NULL;
9181		if (cb_priv->netdev == netdev)
9182			return cb_priv;
9183	}
9184	return NULL;
9185}
9186
9187static int
9188ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
9189			void *indr_priv)
9190{
9191	struct ice_indr_block_priv *priv = indr_priv;
9192	struct ice_netdev_priv *np = priv->np;
9193
9194	switch (type) {
9195	case TC_SETUP_CLSFLOWER:
9196		return ice_setup_tc_cls_flower(np, priv->netdev,
9197					       (struct flow_cls_offload *)
9198					       type_data);
9199	default:
9200		return -EOPNOTSUPP;
9201	}
9202}
9203
9204static int
9205ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
9206			struct ice_netdev_priv *np,
9207			struct flow_block_offload *f, void *data,
9208			void (*cleanup)(struct flow_block_cb *block_cb))
9209{
9210	struct ice_indr_block_priv *indr_priv;
9211	struct flow_block_cb *block_cb;
9212
9213	if (!ice_is_tunnel_supported(netdev) &&
9214	    !(is_vlan_dev(netdev) &&
9215	      vlan_dev_real_dev(netdev) == np->vsi->netdev))
9216		return -EOPNOTSUPP;
9217
9218	if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
9219		return -EOPNOTSUPP;
9220
9221	switch (f->command) {
9222	case FLOW_BLOCK_BIND:
9223		indr_priv = ice_indr_block_priv_lookup(np, netdev);
9224		if (indr_priv)
9225			return -EEXIST;
9226
9227		indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
9228		if (!indr_priv)
9229			return -ENOMEM;
9230
9231		indr_priv->netdev = netdev;
9232		indr_priv->np = np;
9233		list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
9234
9235		block_cb =
9236			flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
9237						 indr_priv, indr_priv,
9238						 ice_rep_indr_tc_block_unbind,
9239						 f, netdev, sch, data, np,
9240						 cleanup);
9241
9242		if (IS_ERR(block_cb)) {
9243			list_del(&indr_priv->list);
9244			kfree(indr_priv);
9245			return PTR_ERR(block_cb);
9246		}
9247		flow_block_cb_add(block_cb, f);
9248		list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
9249		break;
9250	case FLOW_BLOCK_UNBIND:
9251		indr_priv = ice_indr_block_priv_lookup(np, netdev);
9252		if (!indr_priv)
9253			return -ENOENT;
9254
9255		block_cb = flow_block_cb_lookup(f->block,
9256						ice_indr_setup_block_cb,
9257						indr_priv);
9258		if (!block_cb)
9259			return -ENOENT;
9260
9261		flow_indr_block_cb_remove(block_cb, f);
9262
9263		list_del(&block_cb->driver_list);
9264		break;
9265	default:
9266		return -EOPNOTSUPP;
9267	}
9268	return 0;
9269}
9270
9271static int
9272ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
9273		     void *cb_priv, enum tc_setup_type type, void *type_data,
9274		     void *data,
9275		     void (*cleanup)(struct flow_block_cb *block_cb))
9276{
9277	switch (type) {
9278	case TC_SETUP_BLOCK:
9279		return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
9280					       data, cleanup);
9281
9282	default:
9283		return -EOPNOTSUPP;
9284	}
 
9285}
9286
9287/**
9288 * ice_open - Called when a network interface becomes active
9289 * @netdev: network interface device structure
9290 *
9291 * The open entry point is called when a network interface is made
9292 * active by the system (IFF_UP). At this point all resources needed
9293 * for transmit and receive operations are allocated, the interrupt
9294 * handler is registered with the OS, the netdev watchdog is enabled,
9295 * and the stack is notified that the interface is ready.
9296 *
9297 * Returns 0 on success, negative value on failure
9298 */
9299int ice_open(struct net_device *netdev)
9300{
9301	struct ice_netdev_priv *np = netdev_priv(netdev);
9302	struct ice_pf *pf = np->vsi->back;
9303
9304	if (ice_is_reset_in_progress(pf->state)) {
9305		netdev_err(netdev, "can't open net device while reset is in progress");
9306		return -EBUSY;
9307	}
9308
9309	return ice_open_internal(netdev);
9310}
9311
9312/**
9313 * ice_open_internal - Called when a network interface becomes active
9314 * @netdev: network interface device structure
9315 *
9316 * Internal ice_open implementation. Should not be used directly except for ice_open and reset
9317 * handling routine
9318 *
9319 * Returns 0 on success, negative value on failure
9320 */
9321int ice_open_internal(struct net_device *netdev)
9322{
9323	struct ice_netdev_priv *np = netdev_priv(netdev);
9324	struct ice_vsi *vsi = np->vsi;
9325	struct ice_pf *pf = vsi->back;
9326	struct ice_port_info *pi;
9327	int err;
9328
9329	if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
9330		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
9331		return -EIO;
9332	}
9333
 
 
 
 
 
9334	netif_carrier_off(netdev);
9335
9336	pi = vsi->port_info;
9337	err = ice_update_link_info(pi);
9338	if (err) {
9339		netdev_err(netdev, "Failed to get link info, error %d\n", err);
 
9340		return err;
9341	}
9342
9343	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
9344
9345	/* Set PHY if there is media, otherwise, turn off PHY */
9346	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
9347		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9348		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
9349			err = ice_init_phy_user_cfg(pi);
9350			if (err) {
9351				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
9352					   err);
9353				return err;
9354			}
9355		}
9356
9357		err = ice_configure_phy(vsi);
9358		if (err) {
9359			netdev_err(netdev, "Failed to set physical link up, error %d\n",
9360				   err);
9361			return err;
9362		}
9363	} else {
9364		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9365		ice_set_link(vsi, false);
 
 
 
 
 
9366	}
9367
9368	err = ice_vsi_open(vsi);
9369	if (err)
9370		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
9371			   vsi->vsi_num, vsi->vsw->sw_id);
9372
9373	/* Update existing tunnels information */
9374	udp_tunnel_get_rx_info(netdev);
9375
9376	return err;
9377}
9378
9379/**
9380 * ice_stop - Disables a network interface
9381 * @netdev: network interface device structure
9382 *
9383 * The stop entry point is called when an interface is de-activated by the OS,
9384 * and the netdevice enters the DOWN state. The hardware is still under the
9385 * driver's control, but the netdev interface is disabled.
9386 *
9387 * Returns success only - not allowed to fail
9388 */
9389int ice_stop(struct net_device *netdev)
9390{
9391	struct ice_netdev_priv *np = netdev_priv(netdev);
9392	struct ice_vsi *vsi = np->vsi;
9393	struct ice_pf *pf = vsi->back;
9394
9395	if (ice_is_reset_in_progress(pf->state)) {
9396		netdev_err(netdev, "can't stop net device while reset is in progress");
9397		return -EBUSY;
9398	}
9399
9400	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
9401		int link_err = ice_force_phys_link_state(vsi, false);
9402
9403		if (link_err) {
9404			if (link_err == -ENOMEDIUM)
9405				netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n",
9406					    vsi->vsi_num);
9407			else
9408				netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
9409					   vsi->vsi_num, link_err);
9410
9411			ice_vsi_close(vsi);
9412			return -EIO;
9413		}
9414	}
9415
9416	ice_vsi_close(vsi);
9417
9418	return 0;
9419}
9420
9421/**
9422 * ice_features_check - Validate encapsulated packet conforms to limits
9423 * @skb: skb buffer
9424 * @netdev: This port's netdev
9425 * @features: Offload features that the stack believes apply
9426 */
9427static netdev_features_t
9428ice_features_check(struct sk_buff *skb,
9429		   struct net_device __always_unused *netdev,
9430		   netdev_features_t features)
9431{
9432	bool gso = skb_is_gso(skb);
9433	size_t len;
9434
9435	/* No point in doing any of this if neither checksum nor GSO are
9436	 * being requested for this frame. We can rule out both by just
9437	 * checking for CHECKSUM_PARTIAL
9438	 */
9439	if (skb->ip_summed != CHECKSUM_PARTIAL)
9440		return features;
9441
9442	/* We cannot support GSO if the MSS is going to be less than
9443	 * 64 bytes. If it is then we need to drop support for GSO.
9444	 */
9445	if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9446		features &= ~NETIF_F_GSO_MASK;
9447
9448	len = skb_network_offset(skb);
9449	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9450		goto out_rm_features;
9451
9452	len = skb_network_header_len(skb);
9453	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9454		goto out_rm_features;
9455
9456	if (skb->encapsulation) {
9457		/* this must work for VXLAN frames AND IPIP/SIT frames, and in
9458		 * the case of IPIP frames, the transport header pointer is
9459		 * after the inner header! So check to make sure that this
9460		 * is a GRE or UDP_TUNNEL frame before doing that math.
9461		 */
9462		if (gso && (skb_shinfo(skb)->gso_type &
9463			    (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9464			len = skb_inner_network_header(skb) -
9465			      skb_transport_header(skb);
9466			if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9467				goto out_rm_features;
9468		}
9469
9470		len = skb_inner_network_header_len(skb);
 
9471		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9472			goto out_rm_features;
9473	}
9474
9475	return features;
9476out_rm_features:
9477	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9478}
9479
9480static const struct net_device_ops ice_netdev_safe_mode_ops = {
9481	.ndo_open = ice_open,
9482	.ndo_stop = ice_stop,
9483	.ndo_start_xmit = ice_start_xmit,
9484	.ndo_set_mac_address = ice_set_mac_address,
9485	.ndo_validate_addr = eth_validate_addr,
9486	.ndo_change_mtu = ice_change_mtu,
9487	.ndo_get_stats64 = ice_get_stats64,
9488	.ndo_tx_timeout = ice_tx_timeout,
9489	.ndo_bpf = ice_xdp_safe_mode,
9490};
9491
9492static const struct net_device_ops ice_netdev_ops = {
9493	.ndo_open = ice_open,
9494	.ndo_stop = ice_stop,
9495	.ndo_start_xmit = ice_start_xmit,
9496	.ndo_select_queue = ice_select_queue,
9497	.ndo_features_check = ice_features_check,
9498	.ndo_fix_features = ice_fix_features,
9499	.ndo_set_rx_mode = ice_set_rx_mode,
9500	.ndo_set_mac_address = ice_set_mac_address,
9501	.ndo_validate_addr = eth_validate_addr,
9502	.ndo_change_mtu = ice_change_mtu,
9503	.ndo_get_stats64 = ice_get_stats64,
9504	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
9505	.ndo_eth_ioctl = ice_eth_ioctl,
9506	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9507	.ndo_set_vf_mac = ice_set_vf_mac,
9508	.ndo_get_vf_config = ice_get_vf_cfg,
9509	.ndo_set_vf_trust = ice_set_vf_trust,
9510	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
9511	.ndo_set_vf_link_state = ice_set_vf_link_state,
9512	.ndo_get_vf_stats = ice_get_vf_stats,
9513	.ndo_set_vf_rate = ice_set_vf_bw,
9514	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9515	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9516	.ndo_setup_tc = ice_setup_tc,
9517	.ndo_set_features = ice_set_features,
9518	.ndo_bridge_getlink = ice_bridge_getlink,
9519	.ndo_bridge_setlink = ice_bridge_setlink,
9520	.ndo_fdb_add = ice_fdb_add,
9521	.ndo_fdb_del = ice_fdb_del,
9522#ifdef CONFIG_RFS_ACCEL
9523	.ndo_rx_flow_steer = ice_rx_flow_steer,
9524#endif
9525	.ndo_tx_timeout = ice_tx_timeout,
9526	.ndo_bpf = ice_xdp,
9527	.ndo_xdp_xmit = ice_xdp_xmit,
9528	.ndo_xsk_wakeup = ice_xsk_wakeup,
 
 
9529};
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4/* Intel(R) Ethernet Connection E800 Series Linux Driver */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <generated/utsrelease.h>
 
   9#include "ice.h"
  10#include "ice_base.h"
  11#include "ice_lib.h"
  12#include "ice_fltr.h"
  13#include "ice_dcb_lib.h"
  14#include "ice_dcb_nl.h"
  15#include "ice_devlink.h"
 
 
 
 
 
 
 
 
 
 
 
  16
  17#define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
  18static const char ice_driver_string[] = DRV_SUMMARY;
  19static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
  20
  21/* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
  22#define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
  23#define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
  24
  25MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  26MODULE_DESCRIPTION(DRV_SUMMARY);
  27MODULE_LICENSE("GPL v2");
  28MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
  29
  30static int debug = -1;
  31module_param(debug, int, 0644);
  32#ifndef CONFIG_DYNAMIC_DEBUG
  33MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
  34#else
  35MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
  36#endif /* !CONFIG_DYNAMIC_DEBUG */
  37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  38static struct workqueue_struct *ice_wq;
 
  39static const struct net_device_ops ice_netdev_safe_mode_ops;
  40static const struct net_device_ops ice_netdev_ops;
  41static int ice_vsi_open(struct ice_vsi *vsi);
  42
  43static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
  44
  45static void ice_vsi_release_all(struct ice_pf *pf);
  46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  47/**
  48 * ice_get_tx_pending - returns number of Tx descriptors not processed
  49 * @ring: the ring of descriptors
  50 */
  51static u16 ice_get_tx_pending(struct ice_ring *ring)
  52{
  53	u16 head, tail;
  54
  55	head = ring->next_to_clean;
  56	tail = ring->next_to_use;
  57
  58	if (head != tail)
  59		return (head < tail) ?
  60			tail - head : (tail + ring->count - head);
  61	return 0;
  62}
  63
  64/**
  65 * ice_check_for_hang_subtask - check for and recover hung queues
  66 * @pf: pointer to PF struct
  67 */
  68static void ice_check_for_hang_subtask(struct ice_pf *pf)
  69{
  70	struct ice_vsi *vsi = NULL;
  71	struct ice_hw *hw;
  72	unsigned int i;
  73	int packets;
  74	u32 v;
  75
  76	ice_for_each_vsi(pf, v)
  77		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
  78			vsi = pf->vsi[v];
  79			break;
  80		}
  81
  82	if (!vsi || test_bit(__ICE_DOWN, vsi->state))
  83		return;
  84
  85	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
  86		return;
  87
  88	hw = &vsi->back->hw;
  89
  90	for (i = 0; i < vsi->num_txq; i++) {
  91		struct ice_ring *tx_ring = vsi->tx_rings[i];
 
  92
  93		if (tx_ring && tx_ring->desc) {
 
 
 
 
 
 
 
 
 
  94			/* If packet counter has not changed the queue is
  95			 * likely stalled, so force an interrupt for this
  96			 * queue.
  97			 *
  98			 * prev_pkt would be negative if there was no
  99			 * pending work.
 100			 */
 101			packets = tx_ring->stats.pkts & INT_MAX;
 102			if (tx_ring->tx_stats.prev_pkt == packets) {
 103				/* Trigger sw interrupt to revive the queue */
 104				ice_trigger_sw_intr(hw, tx_ring->q_vector);
 105				continue;
 106			}
 107
 108			/* Memory barrier between read of packet count and call
 109			 * to ice_get_tx_pending()
 110			 */
 111			smp_rmb();
 112			tx_ring->tx_stats.prev_pkt =
 113			    ice_get_tx_pending(tx_ring) ? packets : -1;
 114		}
 115	}
 116}
 117
 118/**
 119 * ice_init_mac_fltr - Set initial MAC filters
 120 * @pf: board private structure
 121 *
 122 * Set initial set of MAC filters for PF VSI; configure filters for permanent
 123 * address and broadcast address. If an error is encountered, netdevice will be
 124 * unregistered.
 125 */
 126static int ice_init_mac_fltr(struct ice_pf *pf)
 127{
 128	enum ice_status status;
 129	struct ice_vsi *vsi;
 130	u8 *perm_addr;
 131
 132	vsi = ice_get_main_vsi(pf);
 133	if (!vsi)
 134		return -EINVAL;
 135
 136	perm_addr = vsi->port_info->mac.perm_addr;
 137	status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
 138	if (!status)
 139		return 0;
 140
 141	/* We aren't useful with no MAC filters, so unregister if we
 142	 * had an error
 143	 */
 144	if (vsi->netdev->reg_state == NETREG_REGISTERED) {
 145		dev_err(ice_pf_to_dev(pf), "Could not add MAC filters error %s. Unregistering device\n",
 146			ice_stat_str(status));
 147		unregister_netdev(vsi->netdev);
 148		free_netdev(vsi->netdev);
 149		vsi->netdev = NULL;
 150	}
 151
 152	return -EIO;
 153}
 154
 155/**
 156 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
 157 * @netdev: the net device on which the sync is happening
 158 * @addr: MAC address to sync
 159 *
 160 * This is a callback function which is called by the in kernel device sync
 161 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
 162 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
 163 * MAC filters from the hardware.
 164 */
 165static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
 166{
 167	struct ice_netdev_priv *np = netdev_priv(netdev);
 168	struct ice_vsi *vsi = np->vsi;
 169
 170	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
 171				     ICE_FWD_TO_VSI))
 172		return -EINVAL;
 173
 174	return 0;
 175}
 176
 177/**
 178 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
 179 * @netdev: the net device on which the unsync is happening
 180 * @addr: MAC address to unsync
 181 *
 182 * This is a callback function which is called by the in kernel device unsync
 183 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
 184 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
 185 * delete the MAC filters from the hardware.
 186 */
 187static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
 188{
 189	struct ice_netdev_priv *np = netdev_priv(netdev);
 190	struct ice_vsi *vsi = np->vsi;
 191
 
 
 
 
 
 
 
 
 192	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
 193				     ICE_FWD_TO_VSI))
 194		return -EINVAL;
 195
 196	return 0;
 197}
 198
 199/**
 200 * ice_vsi_fltr_changed - check if filter state changed
 201 * @vsi: VSI to be checked
 202 *
 203 * returns true if filter state has changed, false otherwise.
 204 */
 205static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
 206{
 207	return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
 208	       test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
 209	       test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
 210}
 211
 212/**
 213 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
 214 * @vsi: the VSI being configured
 215 * @promisc_m: mask of promiscuous config bits
 216 * @set_promisc: enable or disable promisc flag request
 217 *
 218 */
 219static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
 220{
 221	struct ice_hw *hw = &vsi->back->hw;
 222	enum ice_status status = 0;
 223
 224	if (vsi->type != ICE_VSI_PF)
 225		return 0;
 226
 227	if (vsi->vlan_ena) {
 228		status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
 229						  set_promisc);
 
 230	} else {
 231		if (set_promisc)
 232			status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
 233						     0);
 234		else
 235			status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
 236						       0);
 237	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 238
 239	if (status)
 240		return -EIO;
 
 
 
 
 
 
 
 
 
 241
 242	return 0;
 
 
 243}
 244
 245/**
 246 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
 247 * @vsi: ptr to the VSI
 248 *
 249 * Push any outstanding VSI filter changes through the AdminQ.
 250 */
 251static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
 252{
 
 253	struct device *dev = ice_pf_to_dev(vsi->back);
 254	struct net_device *netdev = vsi->netdev;
 255	bool promisc_forced_on = false;
 256	struct ice_pf *pf = vsi->back;
 257	struct ice_hw *hw = &pf->hw;
 258	enum ice_status status = 0;
 259	u32 changed_flags = 0;
 260	u8 promisc_m;
 261	int err = 0;
 262
 263	if (!vsi->netdev)
 264		return -EINVAL;
 265
 266	while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
 267		usleep_range(1000, 2000);
 268
 269	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
 270	vsi->current_netdev_flags = vsi->netdev->flags;
 271
 272	INIT_LIST_HEAD(&vsi->tmp_sync_list);
 273	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
 274
 275	if (ice_vsi_fltr_changed(vsi)) {
 276		clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
 277		clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
 278		clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
 279
 280		/* grab the netdev's addr_list_lock */
 281		netif_addr_lock_bh(netdev);
 282		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
 283			      ice_add_mac_to_unsync_list);
 284		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
 285			      ice_add_mac_to_unsync_list);
 286		/* our temp lists are populated. release lock */
 287		netif_addr_unlock_bh(netdev);
 288	}
 289
 290	/* Remove MAC addresses in the unsync list */
 291	status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
 292	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
 293	if (status) {
 294		netdev_err(netdev, "Failed to delete MAC filters\n");
 295		/* if we failed because of alloc failures, just bail */
 296		if (status == ICE_ERR_NO_MEMORY) {
 297			err = -ENOMEM;
 298			goto out;
 299		}
 300	}
 301
 302	/* Add MAC addresses in the sync list */
 303	status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
 304	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
 305	/* If filter is added successfully or already exists, do not go into
 306	 * 'if' condition and report it as error. Instead continue processing
 307	 * rest of the function.
 308	 */
 309	if (status && status != ICE_ERR_ALREADY_EXISTS) {
 310		netdev_err(netdev, "Failed to add MAC filters\n");
 311		/* If there is no more space for new umac filters, VSI
 312		 * should go into promiscuous mode. There should be some
 313		 * space reserved for promiscuous filters.
 314		 */
 315		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
 316		    !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
 317				      vsi->state)) {
 318			promisc_forced_on = true;
 319			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
 320				    vsi->vsi_num);
 321		} else {
 322			err = -EIO;
 323			goto out;
 324		}
 325	}
 
 326	/* check for changes in promiscuous modes */
 327	if (changed_flags & IFF_ALLMULTI) {
 328		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
 329			if (vsi->vlan_ena)
 330				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
 331			else
 332				promisc_m = ICE_MCAST_PROMISC_BITS;
 333
 334			err = ice_cfg_promisc(vsi, promisc_m, true);
 335			if (err) {
 336				netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
 337					   vsi->vsi_num);
 338				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
 339				goto out_promisc;
 340			}
 341		} else {
 342			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
 343			if (vsi->vlan_ena)
 344				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
 345			else
 346				promisc_m = ICE_MCAST_PROMISC_BITS;
 347
 348			err = ice_cfg_promisc(vsi, promisc_m, false);
 349			if (err) {
 350				netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
 351					   vsi->vsi_num);
 352				vsi->current_netdev_flags |= IFF_ALLMULTI;
 353				goto out_promisc;
 354			}
 355		}
 356	}
 357
 358	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
 359	    test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
 360		clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
 361		if (vsi->current_netdev_flags & IFF_PROMISC) {
 362			/* Apply Rx filter rule to get traffic from wire */
 363			if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
 364				err = ice_set_dflt_vsi(pf->first_sw, vsi);
 365				if (err && err != -EEXIST) {
 366					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
 367						   err, vsi->vsi_num);
 368					vsi->current_netdev_flags &=
 369						~IFF_PROMISC;
 370					goto out_promisc;
 371				}
 372				ice_cfg_vlan_pruning(vsi, false, false);
 
 
 
 
 
 
 
 
 
 
 
 373			}
 374		} else {
 375			/* Clear Rx filter to remove traffic from wire */
 376			if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
 377				err = ice_clear_dflt_vsi(pf->first_sw);
 378				if (err) {
 379					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
 380						   err, vsi->vsi_num);
 381					vsi->current_netdev_flags |=
 382						IFF_PROMISC;
 383					goto out_promisc;
 384				}
 385				if (vsi->num_vlan > 1)
 386					ice_cfg_vlan_pruning(vsi, true, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 387			}
 388		}
 389	}
 390	goto exit;
 391
 392out_promisc:
 393	set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
 394	goto exit;
 395out:
 396	/* if something went wrong then set the changed flag so we try again */
 397	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
 398	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
 399exit:
 400	clear_bit(__ICE_CFG_BUSY, vsi->state);
 401	return err;
 402}
 403
 404/**
 405 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
 406 * @pf: board private structure
 407 */
 408static void ice_sync_fltr_subtask(struct ice_pf *pf)
 409{
 410	int v;
 411
 412	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
 413		return;
 414
 415	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
 416
 417	ice_for_each_vsi(pf, v)
 418		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
 419		    ice_vsi_sync_fltr(pf->vsi[v])) {
 420			/* come back and try again later */
 421			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
 422			break;
 423		}
 424}
 425
 426/**
 427 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
 428 * @pf: the PF
 429 * @locked: is the rtnl_lock already held
 430 */
 431static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
 432{
 
 433	int v;
 434
 435	ice_for_each_vsi(pf, v)
 436		if (pf->vsi[v])
 437			ice_dis_vsi(pf->vsi[v], locked);
 
 
 
 
 
 
 438}
 439
 440/**
 441 * ice_prepare_for_reset - prep for the core to reset
 442 * @pf: board private structure
 443 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 444 * Inform or close all dependent features in prep for reset.
 445 */
 446static void
 447ice_prepare_for_reset(struct ice_pf *pf)
 448{
 449	struct ice_hw *hw = &pf->hw;
 450	unsigned int i;
 
 
 
 
 451
 452	/* already prepared for reset */
 453	if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state))
 454		return;
 455
 
 
 456	/* Notify VFs of impending reset */
 457	if (ice_check_sq_alive(hw, &hw->mailboxq))
 458		ice_vc_notify_reset(pf);
 459
 460	/* Disable VFs until reset is completed */
 461	ice_for_each_vf(pf, i)
 462		ice_set_vf_state_qs_dis(&pf->vf[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 463
 464	/* clear SW filtering DB */
 465	ice_clear_hw_tbls(hw);
 466	/* disable the VSIs and their queues that are not already DOWN */
 467	ice_pf_dis_all_vsi(pf, false);
 468
 
 
 
 
 
 
 469	if (hw->port_info)
 470		ice_sched_clear_port(hw->port_info);
 471
 472	ice_shutdown_all_ctrlq(hw);
 473
 474	set_bit(__ICE_PREPARED_FOR_RESET, pf->state);
 475}
 476
 477/**
 478 * ice_do_reset - Initiate one of many types of resets
 479 * @pf: board private structure
 480 * @reset_type: reset type requested
 481 * before this function was called.
 482 */
 483static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
 484{
 485	struct device *dev = ice_pf_to_dev(pf);
 486	struct ice_hw *hw = &pf->hw;
 487
 488	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
 489	WARN_ON(in_interrupt());
 490
 491	ice_prepare_for_reset(pf);
 
 
 
 
 
 492
 493	/* trigger the reset */
 494	if (ice_reset(hw, reset_type)) {
 495		dev_err(dev, "reset %d failed\n", reset_type);
 496		set_bit(__ICE_RESET_FAILED, pf->state);
 497		clear_bit(__ICE_RESET_OICR_RECV, pf->state);
 498		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
 499		clear_bit(__ICE_PFR_REQ, pf->state);
 500		clear_bit(__ICE_CORER_REQ, pf->state);
 501		clear_bit(__ICE_GLOBR_REQ, pf->state);
 
 502		return;
 503	}
 504
 505	/* PFR is a bit of a special case because it doesn't result in an OICR
 506	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
 507	 * associated state bits.
 508	 */
 509	if (reset_type == ICE_RESET_PFR) {
 510		pf->pfr_count++;
 511		ice_rebuild(pf, reset_type);
 512		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
 513		clear_bit(__ICE_PFR_REQ, pf->state);
 514		ice_reset_all_vfs(pf, true);
 
 515	}
 516}
 517
 518/**
 519 * ice_reset_subtask - Set up for resetting the device and driver
 520 * @pf: board private structure
 521 */
 522static void ice_reset_subtask(struct ice_pf *pf)
 523{
 524	enum ice_reset_req reset_type = ICE_RESET_INVAL;
 525
 526	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
 527	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
 528	 * of reset is pending and sets bits in pf->state indicating the reset
 529	 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set
 530	 * prepare for pending reset if not already (for PF software-initiated
 531	 * global resets the software should already be prepared for it as
 532	 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated
 533	 * by firmware or software on other PFs, that bit is not set so prepare
 534	 * for the reset now), poll for reset done, rebuild and return.
 535	 */
 536	if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) {
 537		/* Perform the largest reset requested */
 538		if (test_and_clear_bit(__ICE_CORER_RECV, pf->state))
 539			reset_type = ICE_RESET_CORER;
 540		if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state))
 541			reset_type = ICE_RESET_GLOBR;
 542		if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state))
 543			reset_type = ICE_RESET_EMPR;
 544		/* return if no valid reset type requested */
 545		if (reset_type == ICE_RESET_INVAL)
 546			return;
 547		ice_prepare_for_reset(pf);
 548
 549		/* make sure we are ready to rebuild */
 550		if (ice_check_reset(&pf->hw)) {
 551			set_bit(__ICE_RESET_FAILED, pf->state);
 552		} else {
 553			/* done with reset. start rebuild */
 554			pf->hw.reset_ongoing = false;
 555			ice_rebuild(pf, reset_type);
 556			/* clear bit to resume normal operations, but
 557			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
 558			 */
 559			clear_bit(__ICE_RESET_OICR_RECV, pf->state);
 560			clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
 561			clear_bit(__ICE_PFR_REQ, pf->state);
 562			clear_bit(__ICE_CORER_REQ, pf->state);
 563			clear_bit(__ICE_GLOBR_REQ, pf->state);
 564			ice_reset_all_vfs(pf, true);
 
 565		}
 566
 567		return;
 568	}
 569
 570	/* No pending resets to finish processing. Check for new resets */
 571	if (test_bit(__ICE_PFR_REQ, pf->state))
 572		reset_type = ICE_RESET_PFR;
 573	if (test_bit(__ICE_CORER_REQ, pf->state))
 
 
 
 
 
 574		reset_type = ICE_RESET_CORER;
 575	if (test_bit(__ICE_GLOBR_REQ, pf->state))
 576		reset_type = ICE_RESET_GLOBR;
 577	/* If no valid reset type requested just return */
 578	if (reset_type == ICE_RESET_INVAL)
 579		return;
 580
 581	/* reset if not already down or busy */
 582	if (!test_bit(__ICE_DOWN, pf->state) &&
 583	    !test_bit(__ICE_CFG_BUSY, pf->state)) {
 584		ice_do_reset(pf, reset_type);
 585	}
 586}
 587
 588/**
 589 * ice_print_topo_conflict - print topology conflict message
 590 * @vsi: the VSI whose topology status is being checked
 591 */
 592static void ice_print_topo_conflict(struct ice_vsi *vsi)
 593{
 594	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
 595	case ICE_AQ_LINK_TOPO_CONFLICT:
 596	case ICE_AQ_LINK_MEDIA_CONFLICT:
 597	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
 598	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
 599	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
 600		netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n");
 601		break;
 602	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
 603		netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
 
 
 
 604		break;
 605	default:
 606		break;
 607	}
 608}
 609
 610/**
 611 * ice_print_link_msg - print link up or down message
 612 * @vsi: the VSI whose link status is being queried
 613 * @isup: boolean for if the link is now up or down
 614 */
 615void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
 616{
 617	struct ice_aqc_get_phy_caps_data *caps;
 618	const char *an_advertised;
 619	enum ice_status status;
 620	const char *fec_req;
 621	const char *speed;
 622	const char *fec;
 623	const char *fc;
 624	const char *an;
 
 625
 626	if (!vsi)
 627		return;
 628
 629	if (vsi->current_isup == isup)
 630		return;
 631
 632	vsi->current_isup = isup;
 633
 634	if (!isup) {
 635		netdev_info(vsi->netdev, "NIC Link is Down\n");
 636		return;
 637	}
 638
 639	switch (vsi->port_info->phy.link_info.link_speed) {
 640	case ICE_AQ_LINK_SPEED_100GB:
 641		speed = "100 G";
 642		break;
 643	case ICE_AQ_LINK_SPEED_50GB:
 644		speed = "50 G";
 645		break;
 646	case ICE_AQ_LINK_SPEED_40GB:
 647		speed = "40 G";
 648		break;
 649	case ICE_AQ_LINK_SPEED_25GB:
 650		speed = "25 G";
 651		break;
 652	case ICE_AQ_LINK_SPEED_20GB:
 653		speed = "20 G";
 654		break;
 655	case ICE_AQ_LINK_SPEED_10GB:
 656		speed = "10 G";
 657		break;
 658	case ICE_AQ_LINK_SPEED_5GB:
 659		speed = "5 G";
 660		break;
 661	case ICE_AQ_LINK_SPEED_2500MB:
 662		speed = "2.5 G";
 663		break;
 664	case ICE_AQ_LINK_SPEED_1000MB:
 665		speed = "1 G";
 666		break;
 667	case ICE_AQ_LINK_SPEED_100MB:
 668		speed = "100 M";
 669		break;
 670	default:
 671		speed = "Unknown";
 672		break;
 673	}
 674
 675	switch (vsi->port_info->fc.current_mode) {
 676	case ICE_FC_FULL:
 677		fc = "Rx/Tx";
 678		break;
 679	case ICE_FC_TX_PAUSE:
 680		fc = "Tx";
 681		break;
 682	case ICE_FC_RX_PAUSE:
 683		fc = "Rx";
 684		break;
 685	case ICE_FC_NONE:
 686		fc = "None";
 687		break;
 688	default:
 689		fc = "Unknown";
 690		break;
 691	}
 692
 693	/* Get FEC mode based on negotiated link info */
 694	switch (vsi->port_info->phy.link_info.fec_info) {
 695	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
 696	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
 697		fec = "RS-FEC";
 698		break;
 699	case ICE_AQ_LINK_25G_KR_FEC_EN:
 700		fec = "FC-FEC/BASE-R";
 701		break;
 702	default:
 703		fec = "NONE";
 704		break;
 705	}
 706
 707	/* check if autoneg completed, might be false due to not supported */
 708	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
 709		an = "True";
 710	else
 711		an = "False";
 712
 713	/* Get FEC mode requested based on PHY caps last SW configuration */
 714	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
 715	if (!caps) {
 716		fec_req = "Unknown";
 717		an_advertised = "Unknown";
 718		goto done;
 719	}
 720
 721	status = ice_aq_get_phy_caps(vsi->port_info, false,
 722				     ICE_AQC_REPORT_SW_CFG, caps, NULL);
 723	if (status)
 724		netdev_info(vsi->netdev, "Get phy capability failed.\n");
 725
 726	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
 727
 728	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
 729	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
 730		fec_req = "RS-FEC";
 731	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
 732		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
 733		fec_req = "FC-FEC/BASE-R";
 734	else
 735		fec_req = "NONE";
 736
 737	kfree(caps);
 738
 739done:
 740	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
 741		    speed, fec_req, fec, an_advertised, an, fc);
 742	ice_print_topo_conflict(vsi);
 743}
 744
 745/**
 746 * ice_vsi_link_event - update the VSI's netdev
 747 * @vsi: the VSI on which the link event occurred
 748 * @link_up: whether or not the VSI needs to be set up or down
 749 */
 750static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
 751{
 752	if (!vsi)
 753		return;
 754
 755	if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev)
 756		return;
 757
 758	if (vsi->type == ICE_VSI_PF) {
 759		if (link_up == netif_carrier_ok(vsi->netdev))
 760			return;
 761
 762		if (link_up) {
 763			netif_carrier_on(vsi->netdev);
 764			netif_tx_wake_all_queues(vsi->netdev);
 765		} else {
 766			netif_carrier_off(vsi->netdev);
 767			netif_tx_stop_all_queues(vsi->netdev);
 768		}
 769	}
 770}
 771
 772/**
 773 * ice_set_dflt_mib - send a default config MIB to the FW
 774 * @pf: private PF struct
 775 *
 776 * This function sends a default configuration MIB to the FW.
 777 *
 778 * If this function errors out at any point, the driver is still able to
 779 * function.  The main impact is that LFC may not operate as expected.
 780 * Therefore an error state in this function should be treated with a DBG
 781 * message and continue on with driver rebuild/reenable.
 782 */
 783static void ice_set_dflt_mib(struct ice_pf *pf)
 784{
 785	struct device *dev = ice_pf_to_dev(pf);
 786	u8 mib_type, *buf, *lldpmib = NULL;
 787	u16 len, typelen, offset = 0;
 788	struct ice_lldp_org_tlv *tlv;
 789	struct ice_hw *hw;
 790	u32 ouisubtype;
 791
 792	if (!pf) {
 793		dev_dbg(dev, "%s NULL pf pointer\n", __func__);
 794		return;
 795	}
 796
 797	hw = &pf->hw;
 798	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
 799	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
 800	if (!lldpmib) {
 801		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
 802			__func__);
 803		return;
 804	}
 805
 806	/* Add ETS CFG TLV */
 807	tlv = (struct ice_lldp_org_tlv *)lldpmib;
 808	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
 809		   ICE_IEEE_ETS_TLV_LEN);
 810	tlv->typelen = htons(typelen);
 811	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
 812		      ICE_IEEE_SUBTYPE_ETS_CFG);
 813	tlv->ouisubtype = htonl(ouisubtype);
 814
 815	buf = tlv->tlvinfo;
 816	buf[0] = 0;
 817
 818	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
 819	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
 820	 * Octets 13 - 20 are TSA values - leave as zeros
 821	 */
 822	buf[5] = 0x64;
 823	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
 824	offset += len + 2;
 825	tlv = (struct ice_lldp_org_tlv *)
 826		((char *)tlv + sizeof(tlv->typelen) + len);
 827
 828	/* Add ETS REC TLV */
 829	buf = tlv->tlvinfo;
 830	tlv->typelen = htons(typelen);
 831
 832	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
 833		      ICE_IEEE_SUBTYPE_ETS_REC);
 834	tlv->ouisubtype = htonl(ouisubtype);
 835
 836	/* First octet of buf is reserved
 837	 * Octets 1 - 4 map UP to TC - all UPs map to zero
 838	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
 839	 * Octets 13 - 20 are TSA value - leave as zeros
 840	 */
 841	buf[5] = 0x64;
 842	offset += len + 2;
 843	tlv = (struct ice_lldp_org_tlv *)
 844		((char *)tlv + sizeof(tlv->typelen) + len);
 845
 846	/* Add PFC CFG TLV */
 847	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
 848		   ICE_IEEE_PFC_TLV_LEN);
 849	tlv->typelen = htons(typelen);
 850
 851	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
 852		      ICE_IEEE_SUBTYPE_PFC_CFG);
 853	tlv->ouisubtype = htonl(ouisubtype);
 854
 855	/* Octet 1 left as all zeros - PFC disabled */
 856	buf[0] = 0x08;
 857	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
 858	offset += len + 2;
 859
 860	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
 861		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
 862
 863	kfree(lldpmib);
 864}
 865
 866/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 867 * ice_link_event - process the link event
 868 * @pf: PF that the link event is associated with
 869 * @pi: port_info for the port that the link event is associated with
 870 * @link_up: true if the physical link is up and false if it is down
 871 * @link_speed: current link speed received from the link event
 872 *
 873 * Returns 0 on success and negative on failure
 874 */
 875static int
 876ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
 877	       u16 link_speed)
 878{
 879	struct device *dev = ice_pf_to_dev(pf);
 880	struct ice_phy_info *phy_info;
 881	struct ice_vsi *vsi;
 882	u16 old_link_speed;
 883	bool old_link;
 884	int result;
 885
 886	phy_info = &pi->phy;
 887	phy_info->link_info_old = phy_info->link_info;
 888
 889	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
 890	old_link_speed = phy_info->link_info_old.link_speed;
 891
 892	/* update the link info structures and re-enable link events,
 893	 * don't bail on failure due to other book keeping needed
 894	 */
 895	result = ice_update_link_info(pi);
 896	if (result)
 897		dev_dbg(dev, "Failed to update link status and re-enable link events for port %d\n",
 898			pi->lport);
 
 
 
 899
 900	/* Check if the link state is up after updating link info, and treat
 901	 * this event as an UP event since the link is actually UP now.
 902	 */
 903	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
 904		link_up = true;
 905
 906	vsi = ice_get_main_vsi(pf);
 907	if (!vsi || !vsi->port_info)
 908		return -EINVAL;
 909
 910	/* turn off PHY if media was removed */
 911	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
 912	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
 913		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
 914
 915		result = ice_aq_set_link_restart_an(pi, false, NULL);
 916		if (result) {
 917			dev_dbg(dev, "Failed to set link down, VSI %d error %d\n",
 918				vsi->vsi_num, result);
 919			return result;
 920		}
 921	}
 922
 923	/* if the old link up/down and speed is the same as the new */
 924	if (link_up == old_link && link_speed == old_link_speed)
 925		return result;
 
 
 926
 927	if (ice_is_dcb_active(pf)) {
 928		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
 929			ice_dcb_rebuild(pf);
 930	} else {
 931		if (link_up)
 932			ice_set_dflt_mib(pf);
 933	}
 934	ice_vsi_link_event(vsi, link_up);
 935	ice_print_link_msg(vsi, link_up);
 936
 937	ice_vc_notify_link_state(pf);
 938
 939	return result;
 940}
 941
 942/**
 943 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
 944 * @pf: board private structure
 945 */
 946static void ice_watchdog_subtask(struct ice_pf *pf)
 947{
 948	int i;
 949
 950	/* if interface is down do nothing */
 951	if (test_bit(__ICE_DOWN, pf->state) ||
 952	    test_bit(__ICE_CFG_BUSY, pf->state))
 953		return;
 954
 955	/* make sure we don't do these things too often */
 956	if (time_before(jiffies,
 957			pf->serv_tmr_prev + pf->serv_tmr_period))
 958		return;
 959
 960	pf->serv_tmr_prev = jiffies;
 961
 962	/* Update the stats for active netdevs so the network stack
 963	 * can look at updated numbers whenever it cares to
 964	 */
 965	ice_update_pf_stats(pf);
 966	ice_for_each_vsi(pf, i)
 967		if (pf->vsi[i] && pf->vsi[i]->netdev)
 968			ice_update_vsi_stats(pf->vsi[i]);
 969}
 970
 971/**
 972 * ice_init_link_events - enable/initialize link events
 973 * @pi: pointer to the port_info instance
 974 *
 975 * Returns -EIO on failure, 0 on success
 976 */
 977static int ice_init_link_events(struct ice_port_info *pi)
 978{
 979	u16 mask;
 980
 981	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
 982		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
 
 983
 984	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
 985		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
 986			pi->lport);
 987		return -EIO;
 988	}
 989
 990	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
 991		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
 992			pi->lport);
 993		return -EIO;
 994	}
 995
 996	return 0;
 997}
 998
 999/**
1000 * ice_handle_link_event - handle link event via ARQ
1001 * @pf: PF that the link event is associated with
1002 * @event: event structure containing link status info
1003 */
1004static int
1005ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1006{
1007	struct ice_aqc_get_link_status_data *link_data;
1008	struct ice_port_info *port_info;
1009	int status;
1010
1011	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1012	port_info = pf->hw.port_info;
1013	if (!port_info)
1014		return -EINVAL;
1015
1016	status = ice_link_event(pf, port_info,
1017				!!(link_data->link_info & ICE_AQ_LINK_UP),
1018				le16_to_cpu(link_data->link_speed));
1019	if (status)
1020		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1021			status);
1022
1023	return status;
1024}
1025
1026enum ice_aq_task_state {
1027	ICE_AQ_TASK_WAITING = 0,
1028	ICE_AQ_TASK_COMPLETE,
1029	ICE_AQ_TASK_CANCELED,
1030};
 
 
 
 
 
 
 
 
 
 
1031
1032struct ice_aq_task {
1033	struct hlist_node entry;
1034
1035	u16 opcode;
1036	struct ice_rq_event_info *event;
1037	enum ice_aq_task_state state;
1038};
 
 
1039
1040/**
1041 * ice_wait_for_aq_event - Wait for an AdminQ event from firmware
1042 * @pf: pointer to the PF private structure
 
1043 * @opcode: the opcode to wait for
1044 * @timeout: how long to wait, in jiffies
1045 * @event: storage for the event info
1046 *
1047 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1048 * current thread will be put to sleep until the specified event occurs or
1049 * until the given timeout is reached.
 
 
1050 *
1051 * To obtain only the descriptor contents, pass an event without an allocated
1052 * msg_buf. If the complete data buffer is desired, allocate the
1053 * event->msg_buf with enough space ahead of time.
1054 *
1055 * Returns: zero on success, or a negative error code on failure.
1056 */
1057int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1058			  struct ice_rq_event_info *event)
1059{
1060	struct ice_aq_task *task;
1061	long ret;
1062	int err;
1063
1064	task = kzalloc(sizeof(*task), GFP_KERNEL);
1065	if (!task)
1066		return -ENOMEM;
1067
1068	INIT_HLIST_NODE(&task->entry);
1069	task->opcode = opcode;
1070	task->event = event;
1071	task->state = ICE_AQ_TASK_WAITING;
1072
1073	spin_lock_bh(&pf->aq_wait_lock);
1074	hlist_add_head(&task->entry, &pf->aq_wait_list);
1075	spin_unlock_bh(&pf->aq_wait_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1076
1077	ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
 
1078					       timeout);
1079	switch (task->state) {
 
 
 
 
1080	case ICE_AQ_TASK_WAITING:
1081		err = ret < 0 ? ret : -ETIMEDOUT;
1082		break;
1083	case ICE_AQ_TASK_CANCELED:
1084		err = ret < 0 ? ret : -ECANCELED;
1085		break;
1086	case ICE_AQ_TASK_COMPLETE:
1087		err = ret < 0 ? ret : 0;
1088		break;
1089	default:
1090		WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1091		err = -EINVAL;
1092		break;
1093	}
1094
 
 
 
 
 
1095	spin_lock_bh(&pf->aq_wait_lock);
1096	hlist_del(&task->entry);
1097	spin_unlock_bh(&pf->aq_wait_lock);
1098	kfree(task);
1099
1100	return err;
1101}
1102
1103/**
1104 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1105 * @pf: pointer to the PF private structure
1106 * @opcode: the opcode of the event
1107 * @event: the event to check
1108 *
1109 * Loops over the current list of pending threads waiting for an AdminQ event.
1110 * For each matching task, copy the contents of the event into the task
1111 * structure and wake up the thread.
1112 *
1113 * If multiple threads wait for the same opcode, they will all be woken up.
1114 *
1115 * Note that event->msg_buf will only be duplicated if the event has a buffer
1116 * with enough space already allocated. Otherwise, only the descriptor and
1117 * message length will be copied.
1118 *
1119 * Returns: true if an event was found, false otherwise
1120 */
1121static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1122				struct ice_rq_event_info *event)
1123{
 
1124	struct ice_aq_task *task;
1125	bool found = false;
1126
1127	spin_lock_bh(&pf->aq_wait_lock);
1128	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1129		if (task->state || task->opcode != opcode)
 
 
1130			continue;
1131
1132		memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1133		task->event->msg_len = event->msg_len;
 
1134
1135		/* Only copy the data buffer if a destination was set */
1136		if (task->event->msg_buf &&
1137		    task->event->buf_len > event->buf_len) {
1138			memcpy(task->event->msg_buf, event->msg_buf,
1139			       event->buf_len);
1140			task->event->buf_len = event->buf_len;
1141		}
1142
1143		task->state = ICE_AQ_TASK_COMPLETE;
1144		found = true;
1145	}
1146	spin_unlock_bh(&pf->aq_wait_lock);
1147
1148	if (found)
1149		wake_up(&pf->aq_wait_queue);
1150}
1151
1152/**
1153 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1154 * @pf: the PF private structure
1155 *
1156 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1157 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1158 */
1159static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1160{
1161	struct ice_aq_task *task;
1162
1163	spin_lock_bh(&pf->aq_wait_lock);
1164	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1165		task->state = ICE_AQ_TASK_CANCELED;
1166	spin_unlock_bh(&pf->aq_wait_lock);
1167
1168	wake_up(&pf->aq_wait_queue);
1169}
1170
 
 
1171/**
1172 * __ice_clean_ctrlq - helper function to clean controlq rings
1173 * @pf: ptr to struct ice_pf
1174 * @q_type: specific Control queue type
1175 */
1176static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1177{
1178	struct device *dev = ice_pf_to_dev(pf);
1179	struct ice_rq_event_info event;
1180	struct ice_hw *hw = &pf->hw;
1181	struct ice_ctl_q_info *cq;
1182	u16 pending, i = 0;
1183	const char *qtype;
1184	u32 oldval, val;
1185
1186	/* Do not clean control queue if/when PF reset fails */
1187	if (test_bit(__ICE_RESET_FAILED, pf->state))
1188		return 0;
1189
1190	switch (q_type) {
1191	case ICE_CTL_Q_ADMIN:
1192		cq = &hw->adminq;
1193		qtype = "Admin";
1194		break;
 
 
 
 
1195	case ICE_CTL_Q_MAILBOX:
1196		cq = &hw->mailboxq;
1197		qtype = "Mailbox";
 
 
 
 
1198		break;
1199	default:
1200		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1201		return 0;
1202	}
1203
1204	/* check for error indications - PF_xx_AxQLEN register layout for
1205	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1206	 */
1207	val = rd32(hw, cq->rq.len);
1208	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1209		   PF_FW_ARQLEN_ARQCRIT_M)) {
1210		oldval = val;
1211		if (val & PF_FW_ARQLEN_ARQVFE_M)
1212			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1213				qtype);
1214		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1215			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1216				qtype);
1217		}
1218		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1219			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1220				qtype);
1221		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1222			 PF_FW_ARQLEN_ARQCRIT_M);
1223		if (oldval != val)
1224			wr32(hw, cq->rq.len, val);
1225	}
1226
1227	val = rd32(hw, cq->sq.len);
1228	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1229		   PF_FW_ATQLEN_ATQCRIT_M)) {
1230		oldval = val;
1231		if (val & PF_FW_ATQLEN_ATQVFE_M)
1232			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1233				qtype);
1234		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1235			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1236				qtype);
1237		}
1238		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1239			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1240				qtype);
1241		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1242			 PF_FW_ATQLEN_ATQCRIT_M);
1243		if (oldval != val)
1244			wr32(hw, cq->sq.len, val);
1245	}
1246
1247	event.buf_len = cq->rq_buf_size;
1248	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1249	if (!event.msg_buf)
1250		return 0;
1251
1252	do {
1253		enum ice_status ret;
1254		u16 opcode;
 
1255
1256		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1257		if (ret == ICE_ERR_AQ_NO_WORK)
1258			break;
1259		if (ret) {
1260			dev_err(dev, "%s Receive Queue event error %s\n", qtype,
1261				ice_stat_str(ret));
1262			break;
1263		}
1264
1265		opcode = le16_to_cpu(event.desc.opcode);
1266
1267		/* Notify any thread that might be waiting for this event */
1268		ice_aq_check_events(pf, opcode, &event);
1269
1270		switch (opcode) {
1271		case ice_aqc_opc_get_link_status:
1272			if (ice_handle_link_event(pf, &event))
1273				dev_err(dev, "Could not handle link event\n");
1274			break;
1275		case ice_aqc_opc_event_lan_overflow:
1276			ice_vf_lan_overflow_event(pf, &event);
1277			break;
1278		case ice_mbx_opc_send_msg_to_pf:
1279			ice_vc_process_vf_msg(pf, &event);
 
 
 
 
 
1280			break;
1281		case ice_aqc_opc_fw_logging:
1282			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1283			break;
1284		case ice_aqc_opc_lldp_set_mib_change:
1285			ice_dcb_process_lldp_set_mib_change(pf, &event);
1286			break;
1287		default:
1288			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1289				qtype, opcode);
1290			break;
1291		}
1292	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1293
1294	kfree(event.msg_buf);
1295
1296	return pending && (i == ICE_DFLT_IRQ_WORK);
1297}
1298
1299/**
1300 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1301 * @hw: pointer to hardware info
1302 * @cq: control queue information
1303 *
1304 * returns true if there are pending messages in a queue, false if there aren't
1305 */
1306static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1307{
1308	u16 ntu;
1309
1310	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1311	return cq->rq.next_to_clean != ntu;
1312}
1313
1314/**
1315 * ice_clean_adminq_subtask - clean the AdminQ rings
1316 * @pf: board private structure
1317 */
1318static void ice_clean_adminq_subtask(struct ice_pf *pf)
1319{
1320	struct ice_hw *hw = &pf->hw;
1321
1322	if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1323		return;
1324
1325	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1326		return;
1327
1328	clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1329
1330	/* There might be a situation where new messages arrive to a control
1331	 * queue between processing the last message and clearing the
1332	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1333	 * ice_ctrlq_pending) and process new messages if any.
1334	 */
1335	if (ice_ctrlq_pending(hw, &hw->adminq))
1336		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1337
1338	ice_flush(hw);
1339}
1340
1341/**
1342 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1343 * @pf: board private structure
1344 */
1345static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1346{
1347	struct ice_hw *hw = &pf->hw;
1348
1349	if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1350		return;
1351
1352	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1353		return;
1354
1355	clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1356
1357	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1358		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1359
1360	ice_flush(hw);
1361}
1362
1363/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1364 * ice_service_task_schedule - schedule the service task to wake up
1365 * @pf: board private structure
1366 *
1367 * If not already scheduled, this puts the task into the work queue.
1368 */
1369void ice_service_task_schedule(struct ice_pf *pf)
1370{
1371	if (!test_bit(__ICE_SERVICE_DIS, pf->state) &&
1372	    !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) &&
1373	    !test_bit(__ICE_NEEDS_RESTART, pf->state))
1374		queue_work(ice_wq, &pf->serv_task);
1375}
1376
1377/**
1378 * ice_service_task_complete - finish up the service task
1379 * @pf: board private structure
1380 */
1381static void ice_service_task_complete(struct ice_pf *pf)
1382{
1383	WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
1384
1385	/* force memory (pf->state) to sync before next service task */
1386	smp_mb__before_atomic();
1387	clear_bit(__ICE_SERVICE_SCHED, pf->state);
1388}
1389
1390/**
1391 * ice_service_task_stop - stop service task and cancel works
1392 * @pf: board private structure
1393 *
1394 * Return 0 if the __ICE_SERVICE_DIS bit was not already set,
1395 * 1 otherwise.
1396 */
1397static int ice_service_task_stop(struct ice_pf *pf)
1398{
1399	int ret;
1400
1401	ret = test_and_set_bit(__ICE_SERVICE_DIS, pf->state);
1402
1403	if (pf->serv_tmr.function)
1404		del_timer_sync(&pf->serv_tmr);
1405	if (pf->serv_task.func)
1406		cancel_work_sync(&pf->serv_task);
1407
1408	clear_bit(__ICE_SERVICE_SCHED, pf->state);
1409	return ret;
1410}
1411
1412/**
1413 * ice_service_task_restart - restart service task and schedule works
1414 * @pf: board private structure
1415 *
1416 * This function is needed for suspend and resume works (e.g WoL scenario)
1417 */
1418static void ice_service_task_restart(struct ice_pf *pf)
1419{
1420	clear_bit(__ICE_SERVICE_DIS, pf->state);
1421	ice_service_task_schedule(pf);
1422}
1423
1424/**
1425 * ice_service_timer - timer callback to schedule service task
1426 * @t: pointer to timer_list
1427 */
1428static void ice_service_timer(struct timer_list *t)
1429{
1430	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1431
1432	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1433	ice_service_task_schedule(pf);
1434}
1435
1436/**
1437 * ice_handle_mdd_event - handle malicious driver detect event
1438 * @pf: pointer to the PF structure
1439 *
1440 * Called from service task. OICR interrupt handler indicates MDD event.
1441 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1442 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1443 * disable the queue, the PF can be configured to reset the VF using ethtool
1444 * private flag mdd-auto-reset-vf.
1445 */
1446static void ice_handle_mdd_event(struct ice_pf *pf)
1447{
1448	struct device *dev = ice_pf_to_dev(pf);
1449	struct ice_hw *hw = &pf->hw;
1450	unsigned int i;
 
1451	u32 reg;
1452
1453	if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) {
1454		/* Since the VF MDD event logging is rate limited, check if
1455		 * there are pending MDD events.
1456		 */
1457		ice_print_vfs_mdd_events(pf);
1458		return;
1459	}
1460
1461	/* find what triggered an MDD event */
1462	reg = rd32(hw, GL_MDET_TX_PQM);
1463	if (reg & GL_MDET_TX_PQM_VALID_M) {
1464		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1465				GL_MDET_TX_PQM_PF_NUM_S;
1466		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1467				GL_MDET_TX_PQM_VF_NUM_S;
1468		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1469				GL_MDET_TX_PQM_MAL_TYPE_S;
1470		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1471				GL_MDET_TX_PQM_QNUM_S);
1472
1473		if (netif_msg_tx_err(pf))
1474			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1475				 event, queue, pf_num, vf_num);
1476		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1477	}
1478
1479	reg = rd32(hw, GL_MDET_TX_TCLAN);
1480	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1481		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1482				GL_MDET_TX_TCLAN_PF_NUM_S;
1483		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1484				GL_MDET_TX_TCLAN_VF_NUM_S;
1485		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1486				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1487		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1488				GL_MDET_TX_TCLAN_QNUM_S);
1489
1490		if (netif_msg_tx_err(pf))
1491			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1492				 event, queue, pf_num, vf_num);
1493		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1494	}
1495
1496	reg = rd32(hw, GL_MDET_RX);
1497	if (reg & GL_MDET_RX_VALID_M) {
1498		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1499				GL_MDET_RX_PF_NUM_S;
1500		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1501				GL_MDET_RX_VF_NUM_S;
1502		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1503				GL_MDET_RX_MAL_TYPE_S;
1504		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1505				GL_MDET_RX_QNUM_S);
1506
1507		if (netif_msg_rx_err(pf))
1508			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1509				 event, queue, pf_num, vf_num);
1510		wr32(hw, GL_MDET_RX, 0xffffffff);
1511	}
1512
1513	/* check to see if this PF caused an MDD event */
1514	reg = rd32(hw, PF_MDET_TX_PQM);
1515	if (reg & PF_MDET_TX_PQM_VALID_M) {
1516		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1517		if (netif_msg_tx_err(pf))
1518			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1519	}
1520
1521	reg = rd32(hw, PF_MDET_TX_TCLAN);
1522	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1523		wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1524		if (netif_msg_tx_err(pf))
1525			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1526	}
1527
1528	reg = rd32(hw, PF_MDET_RX);
1529	if (reg & PF_MDET_RX_VALID_M) {
1530		wr32(hw, PF_MDET_RX, 0xFFFF);
1531		if (netif_msg_rx_err(pf))
1532			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1533	}
1534
1535	/* Check to see if one of the VFs caused an MDD event, and then
1536	 * increment counters and set print pending
1537	 */
1538	ice_for_each_vf(pf, i) {
1539		struct ice_vf *vf = &pf->vf[i];
1540
1541		reg = rd32(hw, VP_MDET_TX_PQM(i));
1542		if (reg & VP_MDET_TX_PQM_VALID_M) {
1543			wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1544			vf->mdd_tx_events.count++;
1545			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1546			if (netif_msg_tx_err(pf))
1547				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1548					 i);
1549		}
1550
1551		reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1552		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1553			wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1554			vf->mdd_tx_events.count++;
1555			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1556			if (netif_msg_tx_err(pf))
1557				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1558					 i);
1559		}
1560
1561		reg = rd32(hw, VP_MDET_TX_TDPU(i));
1562		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1563			wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1564			vf->mdd_tx_events.count++;
1565			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1566			if (netif_msg_tx_err(pf))
1567				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1568					 i);
1569		}
1570
1571		reg = rd32(hw, VP_MDET_RX(i));
1572		if (reg & VP_MDET_RX_VALID_M) {
1573			wr32(hw, VP_MDET_RX(i), 0xFFFF);
1574			vf->mdd_rx_events.count++;
1575			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1576			if (netif_msg_rx_err(pf))
1577				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1578					 i);
1579
1580			/* Since the queue is disabled on VF Rx MDD events, the
1581			 * PF can be configured to reset the VF through ethtool
1582			 * private flag mdd-auto-reset-vf.
1583			 */
1584			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1585				/* VF MDD event counters will be cleared by
1586				 * reset, so print the event prior to reset.
1587				 */
1588				ice_print_vf_rx_mdd_event(vf);
1589				ice_reset_vf(&pf->vf[i], false);
1590			}
1591		}
1592	}
 
1593
1594	ice_print_vfs_mdd_events(pf);
1595}
1596
1597/**
1598 * ice_force_phys_link_state - Force the physical link state
1599 * @vsi: VSI to force the physical link state to up/down
1600 * @link_up: true/false indicates to set the physical link to up/down
1601 *
1602 * Force the physical link state by getting the current PHY capabilities from
1603 * hardware and setting the PHY config based on the determined capabilities. If
1604 * link changes a link event will be triggered because both the Enable Automatic
1605 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1606 *
1607 * Returns 0 on success, negative on failure
1608 */
1609static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1610{
1611	struct ice_aqc_get_phy_caps_data *pcaps;
1612	struct ice_aqc_set_phy_cfg_data *cfg;
1613	struct ice_port_info *pi;
1614	struct device *dev;
1615	int retcode;
1616
1617	if (!vsi || !vsi->port_info || !vsi->back)
1618		return -EINVAL;
1619	if (vsi->type != ICE_VSI_PF)
1620		return 0;
1621
1622	dev = ice_pf_to_dev(vsi->back);
1623
1624	pi = vsi->port_info;
1625
1626	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1627	if (!pcaps)
1628		return -ENOMEM;
1629
1630	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1631				      NULL);
1632	if (retcode) {
1633		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1634			vsi->vsi_num, retcode);
1635		retcode = -EIO;
1636		goto out;
1637	}
1638
1639	/* No change in link */
1640	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1641	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1642		goto out;
1643
1644	/* Use the current user PHY configuration. The current user PHY
1645	 * configuration is initialized during probe from PHY capabilities
1646	 * software mode, and updated on set PHY configuration.
1647	 */
1648	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1649	if (!cfg) {
1650		retcode = -ENOMEM;
1651		goto out;
1652	}
1653
1654	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1655	if (link_up)
1656		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1657	else
1658		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1659
1660	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1661	if (retcode) {
1662		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1663			vsi->vsi_num, retcode);
1664		retcode = -EIO;
1665	}
1666
1667	kfree(cfg);
1668out:
1669	kfree(pcaps);
1670	return retcode;
1671}
1672
1673/**
1674 * ice_init_nvm_phy_type - Initialize the NVM PHY type
1675 * @pi: port info structure
1676 *
1677 * Initialize nvm_phy_type_[low|high] for link lenient mode support
1678 */
1679static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1680{
1681	struct ice_aqc_get_phy_caps_data *pcaps;
1682	struct ice_pf *pf = pi->hw->back;
1683	enum ice_status status;
1684	int err = 0;
1685
1686	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1687	if (!pcaps)
1688		return -ENOMEM;
1689
1690	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_NVM_CAP, pcaps,
1691				     NULL);
1692
1693	if (status) {
1694		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1695		err = -EIO;
1696		goto out;
1697	}
1698
1699	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1700	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1701
1702out:
1703	kfree(pcaps);
1704	return err;
1705}
1706
1707/**
1708 * ice_init_link_dflt_override - Initialize link default override
1709 * @pi: port info structure
1710 *
1711 * Initialize link default override and PHY total port shutdown during probe
1712 */
1713static void ice_init_link_dflt_override(struct ice_port_info *pi)
1714{
1715	struct ice_link_default_override_tlv *ldo;
1716	struct ice_pf *pf = pi->hw->back;
1717
1718	ldo = &pf->link_dflt_override;
1719	if (ice_get_link_default_override(ldo, pi))
1720		return;
1721
1722	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1723		return;
1724
1725	/* Enable Total Port Shutdown (override/replace link-down-on-close
1726	 * ethtool private flag) for ports with Port Disable bit set.
1727	 */
1728	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1729	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1730}
1731
1732/**
1733 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1734 * @pi: port info structure
1735 *
1736 * If default override is enabled, initialized the user PHY cfg speed and FEC
1737 * settings using the default override mask from the NVM.
1738 *
1739 * The PHY should only be configured with the default override settings the
1740 * first time media is available. The __ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1741 * is used to indicate that the user PHY cfg default override is initialized
1742 * and the PHY has not been configured with the default override settings. The
1743 * state is set here, and cleared in ice_configure_phy the first time the PHY is
1744 * configured.
 
 
 
1745 */
1746static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1747{
1748	struct ice_link_default_override_tlv *ldo;
1749	struct ice_aqc_set_phy_cfg_data *cfg;
1750	struct ice_phy_info *phy = &pi->phy;
1751	struct ice_pf *pf = pi->hw->back;
1752
1753	ldo = &pf->link_dflt_override;
1754
1755	/* If link default override is enabled, use to mask NVM PHY capabilities
1756	 * for speed and FEC default configuration.
1757	 */
1758	cfg = &phy->curr_user_phy_cfg;
1759
1760	if (ldo->phy_type_low || ldo->phy_type_high) {
1761		cfg->phy_type_low = pf->nvm_phy_type_lo &
1762				    cpu_to_le64(ldo->phy_type_low);
1763		cfg->phy_type_high = pf->nvm_phy_type_hi &
1764				     cpu_to_le64(ldo->phy_type_high);
1765	}
1766	cfg->link_fec_opt = ldo->fec_options;
1767	phy->curr_user_fec_req = ICE_FEC_AUTO;
1768
1769	set_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
1770}
1771
1772/**
1773 * ice_init_phy_user_cfg - Initialize the PHY user configuration
1774 * @pi: port info structure
1775 *
1776 * Initialize the current user PHY configuration, speed, FEC, and FC requested
1777 * mode to default. The PHY defaults are from get PHY capabilities topology
1778 * with media so call when media is first available. An error is returned if
1779 * called when media is not available. The PHY initialization completed state is
1780 * set here.
1781 *
1782 * These configurations are used when setting PHY
1783 * configuration. The user PHY configuration is updated on set PHY
1784 * configuration. Returns 0 on success, negative on failure
1785 */
1786static int ice_init_phy_user_cfg(struct ice_port_info *pi)
1787{
1788	struct ice_aqc_get_phy_caps_data *pcaps;
1789	struct ice_phy_info *phy = &pi->phy;
1790	struct ice_pf *pf = pi->hw->back;
1791	enum ice_status status;
1792	struct ice_vsi *vsi;
1793	int err = 0;
1794
1795	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1796		return -EIO;
1797
1798	vsi = ice_get_main_vsi(pf);
1799	if (!vsi)
1800		return -EINVAL;
1801
1802	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1803	if (!pcaps)
1804		return -ENOMEM;
1805
1806	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps,
1807				     NULL);
1808	if (status) {
 
 
 
 
1809		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1810		err = -EIO;
1811		goto err_out;
1812	}
1813
1814	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
1815
1816	/* check if lenient mode is supported and enabled */
1817	if (ice_fw_supports_link_override(&vsi->back->hw) &&
1818	    !(pcaps->module_compliance_enforcement &
1819	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
1820		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
1821
1822		/* if link default override is enabled, initialize user PHY
1823		 * configuration with link default override values
 
1824		 */
1825		if (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN) {
 
1826			ice_init_phy_cfg_dflt_override(pi);
1827			goto out;
1828		}
1829	}
1830
1831	/* if link default override is not enabled, initialize PHY using
1832	 * topology with media
1833	 */
1834	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
1835						      pcaps->link_fec_options);
1836	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
1837
1838out:
1839	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
1840	set_bit(__ICE_PHY_INIT_COMPLETE, pf->state);
1841err_out:
1842	kfree(pcaps);
1843	return err;
1844}
1845
1846/**
1847 * ice_configure_phy - configure PHY
1848 * @vsi: VSI of PHY
1849 *
1850 * Set the PHY configuration. If the current PHY configuration is the same as
1851 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
1852 * configure the based get PHY capabilities for topology with media.
1853 */
1854static int ice_configure_phy(struct ice_vsi *vsi)
1855{
1856	struct device *dev = ice_pf_to_dev(vsi->back);
 
1857	struct ice_aqc_get_phy_caps_data *pcaps;
1858	struct ice_aqc_set_phy_cfg_data *cfg;
1859	struct ice_port_info *pi;
1860	enum ice_status status;
1861	int err = 0;
1862
1863	pi = vsi->port_info;
1864	if (!pi)
1865		return -EINVAL;
1866
1867	/* Ensure we have media as we cannot configure a medialess port */
1868	if (!(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1869		return -EPERM;
1870
1871	ice_print_topo_conflict(vsi);
1872
1873	if (vsi->port_info->phy.link_info.topo_media_conflict ==
1874	    ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
1875		return -EPERM;
1876
1877	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
1878		return ice_force_phys_link_state(vsi, true);
1879
1880	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1881	if (!pcaps)
1882		return -ENOMEM;
1883
1884	/* Get current PHY config */
1885	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1886				     NULL);
1887	if (status) {
1888		dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n",
1889			vsi->vsi_num, ice_stat_str(status));
1890		err = -EIO;
1891		goto done;
1892	}
1893
1894	/* If PHY enable link is configured and configuration has not changed,
1895	 * there's nothing to do
1896	 */
1897	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
1898	    ice_phy_caps_equals_cfg(pcaps, &pi->phy.curr_user_phy_cfg))
1899		goto done;
1900
1901	/* Use PHY topology as baseline for configuration */
1902	memset(pcaps, 0, sizeof(*pcaps));
1903	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps,
1904				     NULL);
1905	if (status) {
1906		dev_err(dev, "Failed to get PHY topology, VSI %d error %s\n",
1907			vsi->vsi_num, ice_stat_str(status));
1908		err = -EIO;
 
 
 
1909		goto done;
1910	}
1911
1912	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1913	if (!cfg) {
1914		err = -ENOMEM;
1915		goto done;
1916	}
1917
1918	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
1919
1920	/* Speed - If default override pending, use curr_user_phy_cfg set in
1921	 * ice_init_phy_user_cfg_ldo.
1922	 */
1923	if (test_and_clear_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING,
1924			       vsi->back->state)) {
1925		cfg->phy_type_low = pi->phy.curr_user_phy_cfg.phy_type_low;
1926		cfg->phy_type_high = pi->phy.curr_user_phy_cfg.phy_type_high;
1927	} else {
1928		u64 phy_low = 0, phy_high = 0;
1929
1930		ice_update_phy_type(&phy_low, &phy_high,
1931				    pi->phy.curr_user_speed_req);
1932		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
1933		cfg->phy_type_high = pcaps->phy_type_high &
1934				     cpu_to_le64(phy_high);
1935	}
1936
1937	/* Can't provide what was requested; use PHY capabilities */
1938	if (!cfg->phy_type_low && !cfg->phy_type_high) {
1939		cfg->phy_type_low = pcaps->phy_type_low;
1940		cfg->phy_type_high = pcaps->phy_type_high;
1941	}
1942
1943	/* FEC */
1944	ice_cfg_phy_fec(pi, cfg, pi->phy.curr_user_fec_req);
1945
1946	/* Can't provide what was requested; use PHY capabilities */
1947	if (cfg->link_fec_opt !=
1948	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
1949		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
1950		cfg->link_fec_opt = pcaps->link_fec_options;
1951	}
1952
1953	/* Flow Control - always supported; no need to check against
1954	 * capabilities
1955	 */
1956	ice_cfg_phy_fc(pi, cfg, pi->phy.curr_user_fc_req);
1957
1958	/* Enable link and link update */
1959	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
1960
1961	status = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1962	if (status) {
1963		dev_err(dev, "Failed to set phy config, VSI %d error %s\n",
1964			vsi->vsi_num, ice_stat_str(status));
1965		err = -EIO;
1966	}
1967
1968	kfree(cfg);
1969done:
1970	kfree(pcaps);
1971	return err;
1972}
1973
1974/**
1975 * ice_check_media_subtask - Check for media
1976 * @pf: pointer to PF struct
1977 *
1978 * If media is available, then initialize PHY user configuration if it is not
1979 * been, and configure the PHY if the interface is up.
1980 */
1981static void ice_check_media_subtask(struct ice_pf *pf)
1982{
1983	struct ice_port_info *pi;
1984	struct ice_vsi *vsi;
1985	int err;
1986
1987	/* No need to check for media if it's already present */
1988	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
1989		return;
1990
1991	vsi = ice_get_main_vsi(pf);
1992	if (!vsi)
1993		return;
1994
1995	/* Refresh link info and check if media is present */
1996	pi = vsi->port_info;
1997	err = ice_update_link_info(pi);
1998	if (err)
1999		return;
2000
 
 
2001	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2002		if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state))
2003			ice_init_phy_user_cfg(pi);
2004
2005		/* PHY settings are reset on media insertion, reconfigure
2006		 * PHY to preserve settings.
2007		 */
2008		if (test_bit(__ICE_DOWN, vsi->state) &&
2009		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2010			return;
2011
2012		err = ice_configure_phy(vsi);
2013		if (!err)
2014			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2015
2016		/* A Link Status Event will be generated; the event handler
2017		 * will complete bringing the interface up
2018		 */
2019	}
2020}
2021
2022/**
2023 * ice_service_task - manage and run subtasks
2024 * @work: pointer to work_struct contained by the PF struct
2025 */
2026static void ice_service_task(struct work_struct *work)
2027{
2028	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2029	unsigned long start_time = jiffies;
2030
2031	/* subtasks */
2032
2033	/* process reset requests first */
2034	ice_reset_subtask(pf);
2035
2036	/* bail if a reset/recovery cycle is pending or rebuild failed */
2037	if (ice_is_reset_in_progress(pf->state) ||
2038	    test_bit(__ICE_SUSPENDED, pf->state) ||
2039	    test_bit(__ICE_NEEDS_RESTART, pf->state)) {
2040		ice_service_task_complete(pf);
2041		return;
2042	}
2043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2044	ice_clean_adminq_subtask(pf);
2045	ice_check_media_subtask(pf);
2046	ice_check_for_hang_subtask(pf);
2047	ice_sync_fltr_subtask(pf);
2048	ice_handle_mdd_event(pf);
2049	ice_watchdog_subtask(pf);
2050
2051	if (ice_is_safe_mode(pf)) {
2052		ice_service_task_complete(pf);
2053		return;
2054	}
2055
2056	ice_process_vflr_event(pf);
2057	ice_clean_mailboxq_subtask(pf);
 
2058	ice_sync_arfs_fltrs(pf);
2059	/* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
 
 
2060	ice_service_task_complete(pf);
2061
2062	/* If the tasks have taken longer than one service timer period
2063	 * or there is more work to be done, reset the service timer to
2064	 * schedule the service task now.
2065	 */
2066	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2067	    test_bit(__ICE_MDD_EVENT_PENDING, pf->state) ||
2068	    test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
2069	    test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2070	    test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
 
 
2071		mod_timer(&pf->serv_tmr, jiffies);
2072}
2073
2074/**
2075 * ice_set_ctrlq_len - helper function to set controlq length
2076 * @hw: pointer to the HW instance
2077 */
2078static void ice_set_ctrlq_len(struct ice_hw *hw)
2079{
2080	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2081	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2082	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2083	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2084	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2085	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2086	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2087	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
 
 
 
 
2088}
2089
2090/**
2091 * ice_schedule_reset - schedule a reset
2092 * @pf: board private structure
2093 * @reset: reset being requested
2094 */
2095int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2096{
2097	struct device *dev = ice_pf_to_dev(pf);
2098
2099	/* bail out if earlier reset has failed */
2100	if (test_bit(__ICE_RESET_FAILED, pf->state)) {
2101		dev_dbg(dev, "earlier reset has failed\n");
2102		return -EIO;
2103	}
2104	/* bail if reset/recovery already in progress */
2105	if (ice_is_reset_in_progress(pf->state)) {
2106		dev_dbg(dev, "Reset already in progress\n");
2107		return -EBUSY;
2108	}
2109
2110	switch (reset) {
2111	case ICE_RESET_PFR:
2112		set_bit(__ICE_PFR_REQ, pf->state);
2113		break;
2114	case ICE_RESET_CORER:
2115		set_bit(__ICE_CORER_REQ, pf->state);
2116		break;
2117	case ICE_RESET_GLOBR:
2118		set_bit(__ICE_GLOBR_REQ, pf->state);
2119		break;
2120	default:
2121		return -EINVAL;
2122	}
2123
2124	ice_service_task_schedule(pf);
2125	return 0;
2126}
2127
2128/**
2129 * ice_irq_affinity_notify - Callback for affinity changes
2130 * @notify: context as to what irq was changed
2131 * @mask: the new affinity mask
2132 *
2133 * This is a callback function used by the irq_set_affinity_notifier function
2134 * so that we may register to receive changes to the irq affinity masks.
2135 */
2136static void
2137ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2138			const cpumask_t *mask)
2139{
2140	struct ice_q_vector *q_vector =
2141		container_of(notify, struct ice_q_vector, affinity_notify);
2142
2143	cpumask_copy(&q_vector->affinity_mask, mask);
2144}
2145
2146/**
2147 * ice_irq_affinity_release - Callback for affinity notifier release
2148 * @ref: internal core kernel usage
2149 *
2150 * This is a callback function used by the irq_set_affinity_notifier function
2151 * to inform the current notification subscriber that they will no longer
2152 * receive notifications.
2153 */
2154static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2155
2156/**
2157 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2158 * @vsi: the VSI being configured
2159 */
2160static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2161{
2162	struct ice_hw *hw = &vsi->back->hw;
2163	int i;
2164
2165	ice_for_each_q_vector(vsi, i)
2166		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2167
2168	ice_flush(hw);
2169	return 0;
2170}
2171
2172/**
2173 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2174 * @vsi: the VSI being configured
2175 * @basename: name for the vector
2176 */
2177static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2178{
2179	int q_vectors = vsi->num_q_vectors;
2180	struct ice_pf *pf = vsi->back;
2181	int base = vsi->base_vector;
2182	struct device *dev;
2183	int rx_int_idx = 0;
2184	int tx_int_idx = 0;
2185	int vector, err;
2186	int irq_num;
2187
2188	dev = ice_pf_to_dev(pf);
2189	for (vector = 0; vector < q_vectors; vector++) {
2190		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2191
2192		irq_num = pf->msix_entries[base + vector].vector;
2193
2194		if (q_vector->tx.ring && q_vector->rx.ring) {
2195			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2196				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2197			tx_int_idx++;
2198		} else if (q_vector->rx.ring) {
2199			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2200				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2201		} else if (q_vector->tx.ring) {
2202			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2203				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2204		} else {
2205			/* skip this unused q_vector */
2206			continue;
2207		}
2208		err = devm_request_irq(dev, irq_num, vsi->irq_handler, 0,
2209				       q_vector->name, q_vector);
 
 
 
 
 
2210		if (err) {
2211			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2212				   err);
2213			goto free_q_irqs;
2214		}
2215
2216		/* register for affinity change notifications */
2217		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2218			struct irq_affinity_notify *affinity_notify;
2219
2220			affinity_notify = &q_vector->affinity_notify;
2221			affinity_notify->notify = ice_irq_affinity_notify;
2222			affinity_notify->release = ice_irq_affinity_release;
2223			irq_set_affinity_notifier(irq_num, affinity_notify);
2224		}
2225
2226		/* assign the mask for this irq */
2227		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2228	}
2229
 
 
 
 
 
 
 
2230	vsi->irqs_ready = true;
2231	return 0;
2232
2233free_q_irqs:
2234	while (vector) {
2235		vector--;
2236		irq_num = pf->msix_entries[base + vector].vector;
2237		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2238			irq_set_affinity_notifier(irq_num, NULL);
2239		irq_set_affinity_hint(irq_num, NULL);
2240		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2241	}
2242	return err;
2243}
2244
2245/**
2246 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2247 * @vsi: VSI to setup Tx rings used by XDP
2248 *
2249 * Return 0 on success and negative value on error
2250 */
2251static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2252{
2253	struct device *dev = ice_pf_to_dev(vsi->back);
2254	int i;
 
2255
2256	for (i = 0; i < vsi->num_xdp_txq; i++) {
2257		u16 xdp_q_idx = vsi->alloc_txq + i;
2258		struct ice_ring *xdp_ring;
 
2259
2260		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
 
 
2261
2262		if (!xdp_ring)
 
 
2263			goto free_xdp_rings;
 
2264
 
2265		xdp_ring->q_index = xdp_q_idx;
2266		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2267		xdp_ring->ring_active = false;
2268		xdp_ring->vsi = vsi;
2269		xdp_ring->netdev = NULL;
2270		xdp_ring->dev = dev;
2271		xdp_ring->count = vsi->num_tx_desc;
2272		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2273		if (ice_setup_tx_ring(xdp_ring))
2274			goto free_xdp_rings;
2275		ice_set_ring_xdp(xdp_ring);
2276		xdp_ring->xsk_umem = ice_xsk_umem(xdp_ring);
 
 
 
 
2277	}
2278
2279	return 0;
2280
2281free_xdp_rings:
2282	for (; i >= 0; i--)
2283		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
 
 
2284			ice_free_tx_ring(vsi->xdp_rings[i]);
 
 
2285	return -ENOMEM;
2286}
2287
2288/**
2289 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2290 * @vsi: VSI to set the bpf prog on
2291 * @prog: the bpf prog pointer
2292 */
2293static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2294{
2295	struct bpf_prog *old_prog;
2296	int i;
2297
2298	old_prog = xchg(&vsi->xdp_prog, prog);
 
 
 
2299	if (old_prog)
2300		bpf_prog_put(old_prog);
2301
2302	ice_for_each_rxq(vsi, i)
2303		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2304}
2305
2306/**
2307 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2308 * @vsi: VSI to bring up Tx rings used by XDP
2309 * @prog: bpf program that will be assigned to VSI
2310 *
2311 * Return 0 on success and negative value on error
2312 */
2313int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2314{
2315	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2316	int xdp_rings_rem = vsi->num_xdp_txq;
2317	struct ice_pf *pf = vsi->back;
2318	struct ice_qs_cfg xdp_qs_cfg = {
2319		.qs_mutex = &pf->avail_q_mutex,
2320		.pf_map = pf->avail_txqs,
2321		.pf_map_size = pf->max_pf_txqs,
2322		.q_count = vsi->num_xdp_txq,
2323		.scatter_count = ICE_MAX_SCATTER_TXQS,
2324		.vsi_map = vsi->txq_map,
2325		.vsi_map_offset = vsi->alloc_txq,
2326		.mapping_mode = ICE_VSI_MAP_CONTIG
2327	};
2328	enum ice_status status;
2329	struct device *dev;
2330	int i, v_idx;
 
2331
2332	dev = ice_pf_to_dev(pf);
2333	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2334				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2335	if (!vsi->xdp_rings)
2336		return -ENOMEM;
2337
2338	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2339	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2340		goto err_map_xdp;
2341
 
 
 
 
2342	if (ice_xdp_alloc_setup_rings(vsi))
2343		goto clear_xdp_rings;
2344
2345	/* follow the logic from ice_vsi_map_rings_to_vectors */
2346	ice_for_each_q_vector(vsi, v_idx) {
2347		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2348		int xdp_rings_per_v, q_id, q_base;
2349
2350		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2351					       vsi->num_q_vectors - v_idx);
2352		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2353
2354		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2355			struct ice_ring *xdp_ring = vsi->xdp_rings[q_id];
2356
2357			xdp_ring->q_vector = q_vector;
2358			xdp_ring->next = q_vector->tx.ring;
2359			q_vector->tx.ring = xdp_ring;
2360		}
2361		xdp_rings_rem -= xdp_rings_per_v;
2362	}
2363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2364	/* omit the scheduler update if in reset path; XDP queues will be
2365	 * taken into account at the end of ice_vsi_rebuild, where
2366	 * ice_cfg_vsi_lan is being called
2367	 */
2368	if (ice_is_reset_in_progress(pf->state))
2369		return 0;
2370
2371	/* tell the Tx scheduler that right now we have
2372	 * additional queues
2373	 */
2374	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2375		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2376
2377	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2378				 max_txqs);
2379	if (status) {
2380		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n",
2381			ice_stat_str(status));
2382		goto clear_xdp_rings;
2383	}
2384	ice_vsi_assign_bpf_prog(vsi, prog);
 
 
 
 
 
 
 
 
 
 
 
2385
2386	return 0;
2387clear_xdp_rings:
2388	for (i = 0; i < vsi->num_xdp_txq; i++)
2389		if (vsi->xdp_rings[i]) {
2390			kfree_rcu(vsi->xdp_rings[i], rcu);
2391			vsi->xdp_rings[i] = NULL;
2392		}
2393
2394err_map_xdp:
2395	mutex_lock(&pf->avail_q_mutex);
2396	for (i = 0; i < vsi->num_xdp_txq; i++) {
2397		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2398		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2399	}
2400	mutex_unlock(&pf->avail_q_mutex);
2401
2402	devm_kfree(dev, vsi->xdp_rings);
2403	return -ENOMEM;
2404}
2405
2406/**
2407 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2408 * @vsi: VSI to remove XDP rings
2409 *
2410 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2411 * resources
2412 */
2413int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2414{
2415	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2416	struct ice_pf *pf = vsi->back;
2417	int i, v_idx;
2418
2419	/* q_vectors are freed in reset path so there's no point in detaching
2420	 * rings; in case of rebuild being triggered not from reset reset bits
2421	 * in pf->state won't be set, so additionally check first q_vector
2422	 * against NULL
2423	 */
2424	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2425		goto free_qmap;
2426
2427	ice_for_each_q_vector(vsi, v_idx) {
2428		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2429		struct ice_ring *ring;
2430
2431		ice_for_each_ring(ring, q_vector->tx)
2432			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2433				break;
2434
2435		/* restore the value of last node prior to XDP setup */
2436		q_vector->tx.ring = ring;
2437	}
2438
2439free_qmap:
2440	mutex_lock(&pf->avail_q_mutex);
2441	for (i = 0; i < vsi->num_xdp_txq; i++) {
2442		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2443		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2444	}
2445	mutex_unlock(&pf->avail_q_mutex);
2446
2447	for (i = 0; i < vsi->num_xdp_txq; i++)
2448		if (vsi->xdp_rings[i]) {
2449			if (vsi->xdp_rings[i]->desc)
 
2450				ice_free_tx_ring(vsi->xdp_rings[i]);
 
 
 
2451			kfree_rcu(vsi->xdp_rings[i], rcu);
2452			vsi->xdp_rings[i] = NULL;
2453		}
2454
2455	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2456	vsi->xdp_rings = NULL;
2457
 
 
 
2458	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2459		return 0;
2460
2461	ice_vsi_assign_bpf_prog(vsi, NULL);
2462
2463	/* notify Tx scheduler that we destroyed XDP queues and bring
2464	 * back the old number of child nodes
2465	 */
2466	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2467		max_txqs[i] = vsi->num_txq;
2468
2469	/* change number of XDP Tx queues to 0 */
2470	vsi->num_xdp_txq = 0;
2471
2472	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2473			       max_txqs);
2474}
2475
2476/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2477 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2478 * @vsi: VSI to setup XDP for
2479 * @prog: XDP program
2480 * @extack: netlink extended ack
2481 */
2482static int
2483ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2484		   struct netlink_ext_ack *extack)
2485{
2486	int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2487	bool if_running = netif_running(vsi->netdev);
2488	int ret = 0, xdp_ring_err = 0;
2489
2490	if (frame_size > vsi->rx_buf_len) {
2491		NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2492		return -EOPNOTSUPP;
 
 
 
 
 
 
 
 
 
2493	}
2494
2495	/* need to stop netdev while setting up the program for Rx rings */
2496	if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) {
2497		ret = ice_down(vsi);
2498		if (ret) {
2499			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2500			return ret;
2501		}
2502	}
2503
2504	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2505		vsi->num_xdp_txq = vsi->alloc_rxq;
2506		xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
 
 
 
 
 
 
 
 
 
2507		if (xdp_ring_err)
2508			NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2509	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
 
2510		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2511		if (xdp_ring_err)
2512			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2513	} else {
2514		ice_vsi_assign_bpf_prog(vsi, prog);
 
 
2515	}
2516
2517	if (if_running)
2518		ret = ice_up(vsi);
2519
2520	if (!ret && prog && vsi->xsk_umems) {
2521		int i;
2522
2523		ice_for_each_rxq(vsi, i) {
2524			struct ice_ring *rx_ring = vsi->rx_rings[i];
2525
2526			if (rx_ring->xsk_umem)
2527				napi_schedule(&rx_ring->q_vector->napi);
2528		}
2529	}
2530
2531	return (ret || xdp_ring_err) ? -ENOMEM : 0;
 
 
 
 
 
 
2532}
2533
2534/**
2535 * ice_xdp - implements XDP handler
2536 * @dev: netdevice
2537 * @xdp: XDP command
2538 */
2539static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2540{
2541	struct ice_netdev_priv *np = netdev_priv(dev);
2542	struct ice_vsi *vsi = np->vsi;
2543
2544	if (vsi->type != ICE_VSI_PF) {
2545		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2546		return -EINVAL;
2547	}
2548
2549	switch (xdp->command) {
2550	case XDP_SETUP_PROG:
2551		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2552	case XDP_SETUP_XSK_UMEM:
2553		return ice_xsk_umem_setup(vsi, xdp->xsk.umem,
2554					  xdp->xsk.queue_id);
2555	default:
2556		return -EINVAL;
2557	}
2558}
2559
2560/**
2561 * ice_ena_misc_vector - enable the non-queue interrupts
2562 * @pf: board private structure
2563 */
2564static void ice_ena_misc_vector(struct ice_pf *pf)
2565{
2566	struct ice_hw *hw = &pf->hw;
 
2567	u32 val;
2568
2569	/* Disable anti-spoof detection interrupt to prevent spurious event
2570	 * interrupts during a function reset. Anti-spoof functionally is
2571	 * still supported.
2572	 */
2573	val = rd32(hw, GL_MDCK_TX_TDPU);
2574	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2575	wr32(hw, GL_MDCK_TX_TDPU, val);
2576
2577	/* clear things first */
2578	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
2579	rd32(hw, PFINT_OICR);		/* read to clear */
2580
2581	val = (PFINT_OICR_ECC_ERR_M |
2582	       PFINT_OICR_MAL_DETECT_M |
2583	       PFINT_OICR_GRST_M |
2584	       PFINT_OICR_PCI_EXCEPTION_M |
2585	       PFINT_OICR_VFLR_M |
2586	       PFINT_OICR_HMC_ERR_M |
 
2587	       PFINT_OICR_PE_CRITERR_M);
2588
2589	wr32(hw, PFINT_OICR_ENA, val);
2590
2591	/* SW_ITR_IDX = 0, but don't change INTENA */
2592	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
 
 
 
 
 
 
2593	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2594}
2595
2596/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2597 * ice_misc_intr - misc interrupt handler
2598 * @irq: interrupt number
2599 * @data: pointer to a q_vector
2600 */
2601static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2602{
2603	struct ice_pf *pf = (struct ice_pf *)data;
 
2604	struct ice_hw *hw = &pf->hw;
2605	irqreturn_t ret = IRQ_NONE;
2606	struct device *dev;
2607	u32 oicr, ena_mask;
2608
2609	dev = ice_pf_to_dev(pf);
2610	set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
2611	set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
 
2612
2613	oicr = rd32(hw, PFINT_OICR);
2614	ena_mask = rd32(hw, PFINT_OICR_ENA);
2615
2616	if (oicr & PFINT_OICR_SWINT_M) {
2617		ena_mask &= ~PFINT_OICR_SWINT_M;
2618		pf->sw_int_count++;
2619	}
2620
2621	if (oicr & PFINT_OICR_MAL_DETECT_M) {
2622		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
2623		set_bit(__ICE_MDD_EVENT_PENDING, pf->state);
2624	}
2625	if (oicr & PFINT_OICR_VFLR_M) {
2626		/* disable any further VFLR event notifications */
2627		if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) {
2628			u32 reg = rd32(hw, PFINT_OICR_ENA);
2629
2630			reg &= ~PFINT_OICR_VFLR_M;
2631			wr32(hw, PFINT_OICR_ENA, reg);
2632		} else {
2633			ena_mask &= ~PFINT_OICR_VFLR_M;
2634			set_bit(__ICE_VFLR_EVENT_PENDING, pf->state);
2635		}
2636	}
2637
2638	if (oicr & PFINT_OICR_GRST_M) {
2639		u32 reset;
2640
2641		/* we have a reset warning */
2642		ena_mask &= ~PFINT_OICR_GRST_M;
2643		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
2644			GLGEN_RSTAT_RESET_TYPE_S;
2645
2646		if (reset == ICE_RESET_CORER)
2647			pf->corer_count++;
2648		else if (reset == ICE_RESET_GLOBR)
2649			pf->globr_count++;
2650		else if (reset == ICE_RESET_EMPR)
2651			pf->empr_count++;
2652		else
2653			dev_dbg(dev, "Invalid reset type %d\n", reset);
2654
2655		/* If a reset cycle isn't already in progress, we set a bit in
2656		 * pf->state so that the service task can start a reset/rebuild.
2657		 * We also make note of which reset happened so that peer
2658		 * devices/drivers can be informed.
2659		 */
2660		if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) {
2661			if (reset == ICE_RESET_CORER)
2662				set_bit(__ICE_CORER_RECV, pf->state);
2663			else if (reset == ICE_RESET_GLOBR)
2664				set_bit(__ICE_GLOBR_RECV, pf->state);
2665			else
2666				set_bit(__ICE_EMPR_RECV, pf->state);
2667
2668			/* There are couple of different bits at play here.
2669			 * hw->reset_ongoing indicates whether the hardware is
2670			 * in reset. This is set to true when a reset interrupt
2671			 * is received and set back to false after the driver
2672			 * has determined that the hardware is out of reset.
2673			 *
2674			 * __ICE_RESET_OICR_RECV in pf->state indicates
2675			 * that a post reset rebuild is required before the
2676			 * driver is operational again. This is set above.
2677			 *
2678			 * As this is the start of the reset/rebuild cycle, set
2679			 * both to indicate that.
2680			 */
2681			hw->reset_ongoing = true;
2682		}
2683	}
2684
2685	if (oicr & PFINT_OICR_HMC_ERR_M) {
2686		ena_mask &= ~PFINT_OICR_HMC_ERR_M;
2687		dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n",
2688			rd32(hw, PFHMC_ERRORINFO),
2689			rd32(hw, PFHMC_ERRORDATA));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2690	}
2691
2692	/* Report any remaining unexpected interrupts */
2693	oicr &= ena_mask;
2694	if (oicr) {
2695		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
2696		/* If a critical error is pending there is no choice but to
2697		 * reset the device.
2698		 */
2699		if (oicr & (PFINT_OICR_PE_CRITERR_M |
2700			    PFINT_OICR_PCI_EXCEPTION_M |
2701			    PFINT_OICR_ECC_ERR_M)) {
2702			set_bit(__ICE_PFR_REQ, pf->state);
2703			ice_service_task_schedule(pf);
2704		}
2705	}
2706	ret = IRQ_HANDLED;
 
 
2707
2708	ice_service_task_schedule(pf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2709	ice_irq_dynamic_ena(hw, NULL, NULL);
2710
2711	return ret;
2712}
2713
2714/**
2715 * ice_dis_ctrlq_interrupts - disable control queue interrupts
2716 * @hw: pointer to HW structure
2717 */
2718static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
2719{
2720	/* disable Admin queue Interrupt causes */
2721	wr32(hw, PFINT_FW_CTL,
2722	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
2723
2724	/* disable Mailbox queue Interrupt causes */
2725	wr32(hw, PFINT_MBX_CTL,
2726	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
2727
 
 
 
2728	/* disable Control queue Interrupt causes */
2729	wr32(hw, PFINT_OICR_CTL,
2730	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
2731
2732	ice_flush(hw);
2733}
2734
2735/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2736 * ice_free_irq_msix_misc - Unroll misc vector setup
2737 * @pf: board private structure
2738 */
2739static void ice_free_irq_msix_misc(struct ice_pf *pf)
2740{
 
2741	struct ice_hw *hw = &pf->hw;
2742
2743	ice_dis_ctrlq_interrupts(hw);
2744
2745	/* disable OICR interrupt */
2746	wr32(hw, PFINT_OICR_ENA, 0);
2747	ice_flush(hw);
2748
2749	if (pf->msix_entries) {
2750		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
2751		devm_free_irq(ice_pf_to_dev(pf),
2752			      pf->msix_entries[pf->oicr_idx].vector, pf);
2753	}
2754
2755	pf->num_avail_sw_msix += 1;
2756	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
 
2757}
2758
2759/**
2760 * ice_ena_ctrlq_interrupts - enable control queue interrupts
2761 * @hw: pointer to HW structure
2762 * @reg_idx: HW vector index to associate the control queue interrupts with
2763 */
2764static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
2765{
2766	u32 val;
2767
2768	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
2769	       PFINT_OICR_CTL_CAUSE_ENA_M);
2770	wr32(hw, PFINT_OICR_CTL, val);
2771
2772	/* enable Admin queue Interrupt causes */
2773	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
2774	       PFINT_FW_CTL_CAUSE_ENA_M);
2775	wr32(hw, PFINT_FW_CTL, val);
2776
2777	/* enable Mailbox queue Interrupt causes */
2778	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
2779	       PFINT_MBX_CTL_CAUSE_ENA_M);
2780	wr32(hw, PFINT_MBX_CTL, val);
2781
 
 
 
 
 
 
 
2782	ice_flush(hw);
2783}
2784
2785/**
2786 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
2787 * @pf: board private structure
2788 *
2789 * This sets up the handler for MSIX 0, which is used to manage the
2790 * non-queue interrupts, e.g. AdminQ and errors. This is not used
2791 * when in MSI or Legacy interrupt mode.
2792 */
2793static int ice_req_irq_msix_misc(struct ice_pf *pf)
2794{
2795	struct device *dev = ice_pf_to_dev(pf);
2796	struct ice_hw *hw = &pf->hw;
2797	int oicr_idx, err = 0;
 
 
2798
2799	if (!pf->int_name[0])
2800		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
2801			 dev_driver_string(dev), dev_name(dev));
2802
 
 
 
2803	/* Do not request IRQ but do enable OICR interrupt since settings are
2804	 * lost during reset. Note that this function is called only during
2805	 * rebuild path and not while reset is in progress.
2806	 */
2807	if (ice_is_reset_in_progress(pf->state))
2808		goto skip_req_irq;
2809
2810	/* reserve one vector in irq_tracker for misc interrupts */
2811	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2812	if (oicr_idx < 0)
2813		return oicr_idx;
 
 
 
 
 
 
 
 
 
 
 
2814
2815	pf->num_avail_sw_msix -= 1;
2816	pf->oicr_idx = (u16)oicr_idx;
 
2817
2818	err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
2819			       ice_misc_intr, 0, pf->int_name, pf);
 
 
 
 
 
2820	if (err) {
2821		dev_err(dev, "devm_request_irq for %s failed: %d\n",
2822			pf->int_name, err);
2823		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2824		pf->num_avail_sw_msix += 1;
2825		return err;
2826	}
2827
2828skip_req_irq:
2829	ice_ena_misc_vector(pf);
2830
2831	ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
2832	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
 
 
 
 
 
 
2833	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
2834
2835	ice_flush(hw);
2836	ice_irq_dynamic_ena(hw, NULL, NULL);
2837
2838	return 0;
2839}
2840
2841/**
2842 * ice_napi_add - register NAPI handler for the VSI
2843 * @vsi: VSI for which NAPI handler is to be registered
2844 *
2845 * This function is only called in the driver's load path. Registering the NAPI
2846 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
2847 * reset/rebuild, etc.)
2848 */
2849static void ice_napi_add(struct ice_vsi *vsi)
2850{
2851	int v_idx;
2852
2853	if (!vsi->netdev)
2854		return;
2855
2856	ice_for_each_q_vector(vsi, v_idx)
2857		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
2858			       ice_napi_poll, NAPI_POLL_WEIGHT);
 
 
2859}
2860
2861/**
2862 * ice_set_ops - set netdev and ethtools ops for the given netdev
2863 * @netdev: netdev instance
2864 */
2865static void ice_set_ops(struct net_device *netdev)
2866{
 
2867	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2868
2869	if (ice_is_safe_mode(pf)) {
2870		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
2871		ice_set_ethtool_safe_mode_ops(netdev);
2872		return;
2873	}
2874
2875	netdev->netdev_ops = &ice_netdev_ops;
 
 
2876	ice_set_ethtool_ops(netdev);
 
 
 
 
 
 
 
 
2877}
2878
2879/**
2880 * ice_set_netdev_features - set features for the given netdev
2881 * @netdev: netdev instance
2882 */
2883static void ice_set_netdev_features(struct net_device *netdev)
2884{
2885	struct ice_pf *pf = ice_netdev_to_pf(netdev);
 
2886	netdev_features_t csumo_features;
2887	netdev_features_t vlano_features;
2888	netdev_features_t dflt_features;
2889	netdev_features_t tso_features;
2890
2891	if (ice_is_safe_mode(pf)) {
2892		/* safe mode */
2893		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
2894		netdev->hw_features = netdev->features;
2895		return;
2896	}
2897
2898	dflt_features = NETIF_F_SG	|
2899			NETIF_F_HIGHDMA	|
2900			NETIF_F_NTUPLE	|
2901			NETIF_F_RXHASH;
2902
2903	csumo_features = NETIF_F_RXCSUM	  |
2904			 NETIF_F_IP_CSUM  |
2905			 NETIF_F_SCTP_CRC |
2906			 NETIF_F_IPV6_CSUM;
2907
2908	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
2909			 NETIF_F_HW_VLAN_CTAG_TX     |
2910			 NETIF_F_HW_VLAN_CTAG_RX;
2911
 
 
 
 
2912	tso_features = NETIF_F_TSO			|
2913		       NETIF_F_TSO_ECN			|
2914		       NETIF_F_TSO6			|
2915		       NETIF_F_GSO_GRE			|
2916		       NETIF_F_GSO_UDP_TUNNEL		|
2917		       NETIF_F_GSO_GRE_CSUM		|
2918		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
2919		       NETIF_F_GSO_PARTIAL		|
2920		       NETIF_F_GSO_IPXIP4		|
2921		       NETIF_F_GSO_IPXIP6		|
2922		       NETIF_F_GSO_UDP_L4;
2923
2924	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
2925					NETIF_F_GSO_GRE_CSUM;
2926	/* set features that user can change */
2927	netdev->hw_features = dflt_features | csumo_features |
2928			      vlano_features | tso_features;
2929
2930	/* add support for HW_CSUM on packets with MPLS header */
2931	netdev->mpls_features =  NETIF_F_HW_CSUM;
 
 
2932
2933	/* enable features */
2934	netdev->features |= netdev->hw_features;
 
 
 
 
2935	/* encap and VLAN devices inherit default, csumo and tso features */
2936	netdev->hw_enc_features |= dflt_features | csumo_features |
2937				   tso_features;
2938	netdev->vlan_features |= dflt_features | csumo_features |
2939				 tso_features;
2940}
2941
2942/**
2943 * ice_cfg_netdev - Allocate, configure and register a netdev
2944 * @vsi: the VSI associated with the new netdev
2945 *
2946 * Returns 0 on success, negative value on failure
2947 */
2948static int ice_cfg_netdev(struct ice_vsi *vsi)
2949{
2950	struct ice_pf *pf = vsi->back;
2951	struct ice_netdev_priv *np;
2952	struct net_device *netdev;
2953	u8 mac_addr[ETH_ALEN];
2954	int err;
2955
2956	err = ice_devlink_create_port(pf);
2957	if (err)
2958		return err;
2959
2960	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
2961				    vsi->alloc_rxq);
2962	if (!netdev) {
2963		err = -ENOMEM;
2964		goto err_destroy_devlink_port;
2965	}
2966
2967	vsi->netdev = netdev;
2968	np = netdev_priv(netdev);
2969	np->vsi = vsi;
2970
2971	ice_set_netdev_features(netdev);
2972
2973	ice_set_ops(netdev);
2974
2975	if (vsi->type == ICE_VSI_PF) {
2976		SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf));
2977		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
2978		ether_addr_copy(netdev->dev_addr, mac_addr);
2979		ether_addr_copy(netdev->perm_addr, mac_addr);
2980	}
2981
2982	netdev->priv_flags |= IFF_UNICAST_FLT;
2983
2984	/* Setup netdev TC information */
2985	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
2986
2987	/* setup watchdog timeout value to be 5 second */
2988	netdev->watchdog_timeo = 5 * HZ;
2989
2990	netdev->min_mtu = ETH_MIN_MTU;
2991	netdev->max_mtu = ICE_MAX_MTU;
2992
2993	err = register_netdev(vsi->netdev);
2994	if (err)
2995		goto err_free_netdev;
2996
2997	devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev);
2998
2999	netif_carrier_off(vsi->netdev);
3000
3001	/* make sure transmit queues start off as stopped */
3002	netif_tx_stop_all_queues(vsi->netdev);
3003
3004	return 0;
3005
3006err_free_netdev:
3007	free_netdev(vsi->netdev);
3008	vsi->netdev = NULL;
3009err_destroy_devlink_port:
3010	ice_devlink_destroy_port(pf);
3011	return err;
3012}
3013
3014/**
3015 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3016 * @lut: Lookup table
3017 * @rss_table_size: Lookup table size
3018 * @rss_size: Range of queue number for hashing
3019 */
3020void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3021{
3022	u16 i;
3023
3024	for (i = 0; i < rss_table_size; i++)
3025		lut[i] = i % rss_size;
3026}
3027
3028/**
3029 * ice_pf_vsi_setup - Set up a PF VSI
3030 * @pf: board private structure
3031 * @pi: pointer to the port_info instance
3032 *
3033 * Returns pointer to the successfully allocated VSI software struct
3034 * on success, otherwise returns NULL on failure.
3035 */
3036static struct ice_vsi *
3037ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3038{
3039	return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3040}
3041
3042/**
3043 * ice_ctrl_vsi_setup - Set up a control VSI
3044 * @pf: board private structure
3045 * @pi: pointer to the port_info instance
3046 *
3047 * Returns pointer to the successfully allocated VSI software struct
3048 * on success, otherwise returns NULL on failure.
3049 */
3050static struct ice_vsi *
3051ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3052{
3053	return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID);
 
 
 
 
 
 
3054}
3055
3056/**
3057 * ice_lb_vsi_setup - Set up a loopback VSI
3058 * @pf: board private structure
3059 * @pi: pointer to the port_info instance
3060 *
3061 * Returns pointer to the successfully allocated VSI software struct
3062 * on success, otherwise returns NULL on failure.
3063 */
3064struct ice_vsi *
3065ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3066{
3067	return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
 
 
 
 
 
 
3068}
3069
3070/**
3071 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3072 * @netdev: network interface to be adjusted
3073 * @proto: unused protocol
3074 * @vid: VLAN ID to be added
3075 *
3076 * net_device_ops implementation for adding VLAN IDs
3077 */
3078static int
3079ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
3080		    u16 vid)
3081{
3082	struct ice_netdev_priv *np = netdev_priv(netdev);
 
3083	struct ice_vsi *vsi = np->vsi;
 
3084	int ret;
3085
3086	if (vid >= VLAN_N_VID) {
3087		netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
3088			   vid, VLAN_N_VID);
3089		return -EINVAL;
3090	}
3091
3092	if (vsi->info.pvid)
3093		return -EINVAL;
3094
3095	/* VLAN 0 is added by default during load/reset */
3096	if (!vid)
3097		return 0;
3098
3099	/* Enable VLAN pruning when a VLAN other than 0 is added */
3100	if (!ice_vsi_is_vlan_pruning_ena(vsi)) {
3101		ret = ice_cfg_vlan_pruning(vsi, true, false);
 
 
 
 
 
 
 
3102		if (ret)
3103			return ret;
3104	}
3105
 
 
3106	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3107	 * packets aren't pruned by the device's internal switch on Rx
3108	 */
3109	ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI);
3110	if (!ret) {
3111		vsi->vlan_ena = true;
3112		set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
 
 
 
 
 
 
 
 
 
 
 
3113	}
3114
 
 
 
3115	return ret;
3116}
3117
3118/**
3119 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3120 * @netdev: network interface to be adjusted
3121 * @proto: unused protocol
3122 * @vid: VLAN ID to be removed
3123 *
3124 * net_device_ops implementation for removing VLAN IDs
3125 */
3126static int
3127ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
3128		     u16 vid)
3129{
3130	struct ice_netdev_priv *np = netdev_priv(netdev);
 
3131	struct ice_vsi *vsi = np->vsi;
 
3132	int ret;
3133
3134	if (vsi->info.pvid)
3135		return -EINVAL;
3136
3137	/* don't allow removal of VLAN 0 */
3138	if (!vid)
3139		return 0;
3140
3141	/* Make sure ice_vsi_kill_vlan is successful before updating VLAN
 
 
 
 
 
 
 
 
 
 
 
 
 
3142	 * information
3143	 */
3144	ret = ice_vsi_kill_vlan(vsi, vid);
 
3145	if (ret)
3146		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3147
3148	/* Disable pruning when VLAN 0 is the only VLAN rule */
3149	if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi))
3150		ret = ice_cfg_vlan_pruning(vsi, false, false);
3151
3152	vsi->vlan_ena = false;
3153	set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
3154	return ret;
3155}
3156
3157/**
3158 * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3159 * @pf: board private structure
3160 *
3161 * Returns 0 on success, negative value on failure
3162 */
3163static int ice_setup_pf_sw(struct ice_pf *pf)
3164{
3165	struct ice_vsi *vsi;
3166	int status = 0;
3167
3168	if (ice_is_reset_in_progress(pf->state))
3169		return -EBUSY;
 
3170
3171	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3172	if (!vsi)
3173		return -ENOMEM;
 
 
 
 
3174
3175	status = ice_cfg_netdev(vsi);
3176	if (status) {
3177		status = -ENODEV;
3178		goto unroll_vsi_setup;
3179	}
3180	/* netdev has to be configured before setting frame size */
3181	ice_vsi_cfg_frame_size(vsi);
3182
3183	/* Setup DCB netlink interface */
3184	ice_dcbnl_setup(vsi);
 
 
 
 
 
 
 
3185
3186	/* registering the NAPI handler requires both the queues and
3187	 * netdev to be created, which are done in ice_pf_vsi_setup()
3188	 * and ice_cfg_netdev() respectively
3189	 */
3190	ice_napi_add(vsi);
3191
3192	status = ice_set_cpu_rx_rmap(vsi);
3193	if (status) {
3194		dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n",
3195			vsi->vsi_num, status);
3196		status = -EINVAL;
3197		goto unroll_napi_add;
3198	}
3199	status = ice_init_mac_fltr(pf);
3200	if (status)
3201		goto free_cpu_rx_map;
3202
3203	return status;
3204
3205free_cpu_rx_map:
3206	ice_free_cpu_rx_rmap(vsi);
3207
3208unroll_napi_add:
3209	if (vsi) {
3210		ice_napi_del(vsi);
3211		if (vsi->netdev) {
3212			if (vsi->netdev->reg_state == NETREG_REGISTERED)
3213				unregister_netdev(vsi->netdev);
3214			free_netdev(vsi->netdev);
3215			vsi->netdev = NULL;
3216		}
3217	}
3218
3219unroll_vsi_setup:
3220	ice_vsi_release(vsi);
3221	return status;
3222}
3223
3224/**
3225 * ice_get_avail_q_count - Get count of queues in use
3226 * @pf_qmap: bitmap to get queue use count from
3227 * @lock: pointer to a mutex that protects access to pf_qmap
3228 * @size: size of the bitmap
3229 */
3230static u16
3231ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3232{
3233	unsigned long bit;
3234	u16 count = 0;
3235
3236	mutex_lock(lock);
3237	for_each_clear_bit(bit, pf_qmap, size)
3238		count++;
3239	mutex_unlock(lock);
3240
3241	return count;
3242}
3243
3244/**
3245 * ice_get_avail_txq_count - Get count of Tx queues in use
3246 * @pf: pointer to an ice_pf instance
3247 */
3248u16 ice_get_avail_txq_count(struct ice_pf *pf)
3249{
3250	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3251				     pf->max_pf_txqs);
3252}
3253
3254/**
3255 * ice_get_avail_rxq_count - Get count of Rx queues in use
3256 * @pf: pointer to an ice_pf instance
3257 */
3258u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3259{
3260	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3261				     pf->max_pf_rxqs);
3262}
3263
3264/**
3265 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3266 * @pf: board private structure to initialize
3267 */
3268static void ice_deinit_pf(struct ice_pf *pf)
3269{
3270	ice_service_task_stop(pf);
 
 
3271	mutex_destroy(&pf->sw_mutex);
3272	mutex_destroy(&pf->tc_mutex);
3273	mutex_destroy(&pf->avail_q_mutex);
 
3274
3275	if (pf->avail_txqs) {
3276		bitmap_free(pf->avail_txqs);
3277		pf->avail_txqs = NULL;
3278	}
3279
3280	if (pf->avail_rxqs) {
3281		bitmap_free(pf->avail_rxqs);
3282		pf->avail_rxqs = NULL;
3283	}
 
 
 
3284}
3285
3286/**
3287 * ice_set_pf_caps - set PFs capability flags
3288 * @pf: pointer to the PF instance
3289 */
3290static void ice_set_pf_caps(struct ice_pf *pf)
3291{
3292	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3293
 
 
 
3294	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3295	if (func_caps->common_cap.dcb)
3296		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3297	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3298	if (func_caps->common_cap.sr_iov_1_1) {
3299		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3300		pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
3301					      ICE_MAX_VF_COUNT);
3302	}
3303	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3304	if (func_caps->common_cap.rss_table_size)
3305		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3306
3307	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3308	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3309		u16 unused;
3310
3311		/* ctrl_vsi_idx will be set to a valid value when flow director
3312		 * is setup by ice_init_fdir
3313		 */
3314		pf->ctrl_vsi_idx = ICE_NO_VSI;
3315		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3316		/* force guaranteed filter pool for PF */
3317		ice_alloc_fd_guar_item(&pf->hw, &unused,
3318				       func_caps->fd_fltr_guar);
3319		/* force shared filter pool for PF */
3320		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3321				       func_caps->fd_fltr_best_effort);
3322	}
3323
 
 
 
 
 
3324	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3325	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3326}
3327
3328/**
3329 * ice_init_pf - Initialize general software structures (struct ice_pf)
3330 * @pf: board private structure to initialize
3331 */
3332static int ice_init_pf(struct ice_pf *pf)
3333{
3334	ice_set_pf_caps(pf);
3335
3336	mutex_init(&pf->sw_mutex);
3337	mutex_init(&pf->tc_mutex);
 
 
3338
3339	INIT_HLIST_HEAD(&pf->aq_wait_list);
3340	spin_lock_init(&pf->aq_wait_lock);
3341	init_waitqueue_head(&pf->aq_wait_queue);
3342
 
 
3343	/* setup service timer and periodic service task */
3344	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3345	pf->serv_tmr_period = HZ;
3346	INIT_WORK(&pf->serv_task, ice_service_task);
3347	clear_bit(__ICE_SERVICE_SCHED, pf->state);
3348
3349	mutex_init(&pf->avail_q_mutex);
3350	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3351	if (!pf->avail_txqs)
3352		return -ENOMEM;
3353
3354	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3355	if (!pf->avail_rxqs) {
3356		devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs);
3357		pf->avail_txqs = NULL;
3358		return -ENOMEM;
3359	}
3360
3361	return 0;
3362}
3363
3364/**
3365 * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3366 * @pf: board private structure
3367 *
3368 * compute the number of MSIX vectors required (v_budget) and request from
3369 * the OS. Return the number of vectors reserved or negative on failure
3370 */
3371static int ice_ena_msix_range(struct ice_pf *pf)
3372{
3373	struct device *dev = ice_pf_to_dev(pf);
3374	int v_left, v_actual, v_budget = 0;
3375	int needed, err, i;
3376
3377	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3378
3379	/* reserve one vector for miscellaneous handler */
3380	needed = 1;
3381	if (v_left < needed)
3382		goto no_hw_vecs_left_err;
3383	v_budget += needed;
3384	v_left -= needed;
3385
3386	/* reserve vectors for LAN traffic */
3387	needed = min_t(int, num_online_cpus(), v_left);
3388	if (v_left < needed)
3389		goto no_hw_vecs_left_err;
3390	pf->num_lan_msix = needed;
3391	v_budget += needed;
3392	v_left -= needed;
3393
3394	/* reserve one vector for flow director */
3395	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3396		needed = ICE_FDIR_MSIX;
3397		if (v_left < needed)
3398			goto no_hw_vecs_left_err;
3399		v_budget += needed;
3400		v_left -= needed;
3401	}
3402
3403	pf->msix_entries = devm_kcalloc(dev, v_budget,
3404					sizeof(*pf->msix_entries), GFP_KERNEL);
3405
3406	if (!pf->msix_entries) {
3407		err = -ENOMEM;
3408		goto exit_err;
3409	}
3410
3411	for (i = 0; i < v_budget; i++)
3412		pf->msix_entries[i].entry = i;
3413
3414	/* actually reserve the vectors */
3415	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3416					 ICE_MIN_MSIX, v_budget);
3417
3418	if (v_actual < 0) {
3419		dev_err(dev, "unable to reserve MSI-X vectors\n");
3420		err = v_actual;
3421		goto msix_err;
3422	}
3423
3424	if (v_actual < v_budget) {
3425		dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
3426			 v_budget, v_actual);
3427/* 2 vectors each for LAN and RDMA (traffic + OICR), one for flow director */
3428#define ICE_MIN_LAN_VECS 2
3429#define ICE_MIN_RDMA_VECS 2
3430#define ICE_MIN_VECS (ICE_MIN_LAN_VECS + ICE_MIN_RDMA_VECS + 1)
3431
3432		if (v_actual < ICE_MIN_LAN_VECS) {
3433			/* error if we can't get minimum vectors */
3434			pci_disable_msix(pf->pdev);
3435			err = -ERANGE;
3436			goto msix_err;
3437		} else {
3438			pf->num_lan_msix = ICE_MIN_LAN_VECS;
3439		}
3440	}
3441
3442	return v_actual;
3443
3444msix_err:
3445	devm_kfree(dev, pf->msix_entries);
3446	goto exit_err;
3447
3448no_hw_vecs_left_err:
3449	dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
3450		needed, v_left);
3451	err = -ERANGE;
3452exit_err:
3453	pf->num_lan_msix = 0;
3454	return err;
3455}
3456
3457/**
3458 * ice_dis_msix - Disable MSI-X interrupt setup in OS
3459 * @pf: board private structure
3460 */
3461static void ice_dis_msix(struct ice_pf *pf)
3462{
3463	pci_disable_msix(pf->pdev);
3464	devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
3465	pf->msix_entries = NULL;
3466}
3467
3468/**
3469 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
3470 * @pf: board private structure
3471 */
3472static void ice_clear_interrupt_scheme(struct ice_pf *pf)
3473{
3474	ice_dis_msix(pf);
3475
3476	if (pf->irq_tracker) {
3477		devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
3478		pf->irq_tracker = NULL;
3479	}
3480}
3481
3482/**
3483 * ice_init_interrupt_scheme - Determine proper interrupt scheme
3484 * @pf: board private structure to initialize
3485 */
3486static int ice_init_interrupt_scheme(struct ice_pf *pf)
3487{
3488	int vectors;
3489
3490	vectors = ice_ena_msix_range(pf);
3491
3492	if (vectors < 0)
3493		return vectors;
3494
3495	/* set up vector assignment tracking */
3496	pf->irq_tracker =
3497		devm_kzalloc(ice_pf_to_dev(pf), sizeof(*pf->irq_tracker) +
3498			     (sizeof(u16) * vectors), GFP_KERNEL);
3499	if (!pf->irq_tracker) {
3500		ice_dis_msix(pf);
3501		return -ENOMEM;
3502	}
3503
3504	/* populate SW interrupts pool with number of OS granted IRQs. */
3505	pf->num_avail_sw_msix = (u16)vectors;
3506	pf->irq_tracker->num_entries = (u16)vectors;
3507	pf->irq_tracker->end = pf->irq_tracker->num_entries;
3508
3509	return 0;
3510}
3511
3512/**
3513 * ice_is_wol_supported - get NVM state of WoL
3514 * @pf: board private structure
3515 *
3516 * Check if WoL is supported based on the HW configuration.
3517 * Returns true if NVM supports and enables WoL for this port, false otherwise
3518 */
3519bool ice_is_wol_supported(struct ice_pf *pf)
3520{
3521	struct ice_hw *hw = &pf->hw;
3522	u16 wol_ctrl;
3523
3524	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3525	 * word) indicates WoL is not supported on the corresponding PF ID.
3526	 */
3527	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3528		return false;
3529
3530	return !(BIT(hw->pf_id) & wol_ctrl);
3531}
3532
3533/**
3534 * ice_vsi_recfg_qs - Change the number of queues on a VSI
3535 * @vsi: VSI being changed
3536 * @new_rx: new number of Rx queues
3537 * @new_tx: new number of Tx queues
 
3538 *
3539 * Only change the number of queues if new_tx, or new_rx is non-0.
3540 *
3541 * Returns 0 on success.
3542 */
3543int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
3544{
3545	struct ice_pf *pf = vsi->back;
3546	int err = 0, timeout = 50;
3547
3548	if (!new_rx && !new_tx)
3549		return -EINVAL;
3550
3551	while (test_and_set_bit(__ICE_CFG_BUSY, pf->state)) {
3552		timeout--;
3553		if (!timeout)
3554			return -EBUSY;
3555		usleep_range(1000, 2000);
3556	}
3557
3558	if (new_tx)
3559		vsi->req_txq = (u16)new_tx;
3560	if (new_rx)
3561		vsi->req_rxq = (u16)new_rx;
3562
3563	/* set for the next time the netdev is started */
3564	if (!netif_running(vsi->netdev)) {
3565		ice_vsi_rebuild(vsi, false);
3566		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
3567		goto done;
3568	}
3569
3570	ice_vsi_close(vsi);
3571	ice_vsi_rebuild(vsi, false);
3572	ice_pf_dcb_recfg(pf);
3573	ice_vsi_open(vsi);
3574done:
3575	clear_bit(__ICE_CFG_BUSY, pf->state);
3576	return err;
3577}
3578
3579/**
3580 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
3581 * @pf: PF to configure
3582 *
3583 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
3584 * VSI can still Tx/Rx VLAN tagged packets.
3585 */
3586static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
3587{
3588	struct ice_vsi *vsi = ice_get_main_vsi(pf);
3589	struct ice_vsi_ctx *ctxt;
3590	enum ice_status status;
3591	struct ice_hw *hw;
 
3592
3593	if (!vsi)
3594		return;
3595
3596	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
3597	if (!ctxt)
3598		return;
3599
3600	hw = &pf->hw;
3601	ctxt->info = vsi->info;
3602
3603	ctxt->info.valid_sections =
3604		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
3605			    ICE_AQ_VSI_PROP_SECURITY_VALID |
3606			    ICE_AQ_VSI_PROP_SW_VALID);
3607
3608	/* disable VLAN anti-spoof */
3609	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3610				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3611
3612	/* disable VLAN pruning and keep all other settings */
3613	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
3614
3615	/* allow all VLANs on Tx and don't strip on Rx */
3616	ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL |
3617		ICE_AQ_VSI_VLAN_EMOD_NOTHING;
3618
3619	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
3620	if (status) {
3621		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n",
3622			ice_stat_str(status),
3623			ice_aq_str(hw->adminq.sq_last_status));
3624	} else {
3625		vsi->info.sec_flags = ctxt->info.sec_flags;
3626		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
3627		vsi->info.vlan_flags = ctxt->info.vlan_flags;
3628	}
3629
3630	kfree(ctxt);
3631}
3632
3633/**
3634 * ice_log_pkg_init - log result of DDP package load
3635 * @hw: pointer to hardware info
3636 * @status: status of package load
3637 */
3638static void
3639ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
3640{
3641	struct ice_pf *pf = (struct ice_pf *)hw->back;
3642	struct device *dev = ice_pf_to_dev(pf);
 
 
3643
3644	switch (*status) {
3645	case ICE_SUCCESS:
3646		/* The package download AdminQ command returned success because
3647		 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is
3648		 * already a package loaded on the device.
3649		 */
3650		if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
3651		    hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
3652		    hw->pkg_ver.update == hw->active_pkg_ver.update &&
3653		    hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
3654		    !memcmp(hw->pkg_name, hw->active_pkg_name,
3655			    sizeof(hw->pkg_name))) {
3656			if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST)
3657				dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
3658					 hw->active_pkg_name,
3659					 hw->active_pkg_ver.major,
3660					 hw->active_pkg_ver.minor,
3661					 hw->active_pkg_ver.update,
3662					 hw->active_pkg_ver.draft);
3663			else
3664				dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
3665					 hw->active_pkg_name,
3666					 hw->active_pkg_ver.major,
3667					 hw->active_pkg_ver.minor,
3668					 hw->active_pkg_ver.update,
3669					 hw->active_pkg_ver.draft);
3670		} else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
3671			   hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
3672			dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
3673				hw->active_pkg_name,
3674				hw->active_pkg_ver.major,
3675				hw->active_pkg_ver.minor,
3676				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3677			*status = ICE_ERR_NOT_SUPPORTED;
3678		} else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3679			   hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
3680			dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
3681				 hw->active_pkg_name,
3682				 hw->active_pkg_ver.major,
3683				 hw->active_pkg_ver.minor,
3684				 hw->active_pkg_ver.update,
3685				 hw->active_pkg_ver.draft,
3686				 hw->pkg_name,
3687				 hw->pkg_ver.major,
3688				 hw->pkg_ver.minor,
3689				 hw->pkg_ver.update,
3690				 hw->pkg_ver.draft);
3691		} else {
3692			dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system.  If the problem persists, update the NVM.  Entering Safe Mode.\n");
3693			*status = ICE_ERR_NOT_SUPPORTED;
3694		}
3695		break;
3696	case ICE_ERR_FW_DDP_MISMATCH:
3697		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
3698		break;
3699	case ICE_ERR_BUF_TOO_SHORT:
3700	case ICE_ERR_CFG:
3701		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
3702		break;
3703	case ICE_ERR_NOT_SUPPORTED:
3704		/* Package File version not supported */
3705		if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ ||
3706		    (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3707		     hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR))
3708			dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
3709		else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ ||
3710			 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3711			  hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR))
3712			dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
3713				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3714		break;
3715	case ICE_ERR_AQ_ERROR:
3716		switch (hw->pkg_dwnld_status) {
3717		case ICE_AQ_RC_ENOSEC:
3718		case ICE_AQ_RC_EBADSIG:
3719			dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
3720			return;
3721		case ICE_AQ_RC_ESVN:
3722			dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
3723			return;
3724		case ICE_AQ_RC_EBADMAN:
3725		case ICE_AQ_RC_EBADBUF:
3726			dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
3727			/* poll for reset to complete */
3728			if (ice_check_reset(hw))
3729				dev_err(dev, "Error resetting device. Please reload the driver\n");
3730			return;
3731		default:
3732			break;
3733		}
3734		fallthrough;
3735	default:
3736		dev_err(dev, "An unknown error (%d) occurred when loading the DDP package.  Entering Safe Mode.\n",
3737			*status);
3738		break;
3739	}
3740}
3741
3742/**
3743 * ice_load_pkg - load/reload the DDP Package file
3744 * @firmware: firmware structure when firmware requested or NULL for reload
3745 * @pf: pointer to the PF instance
3746 *
3747 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
3748 * initialize HW tables.
3749 */
3750static void
3751ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
3752{
3753	enum ice_status status = ICE_ERR_PARAM;
3754	struct device *dev = ice_pf_to_dev(pf);
3755	struct ice_hw *hw = &pf->hw;
3756
3757	/* Load DDP Package */
3758	if (firmware && !hw->pkg_copy) {
3759		status = ice_copy_and_init_pkg(hw, firmware->data,
3760					       firmware->size);
3761		ice_log_pkg_init(hw, &status);
3762	} else if (!firmware && hw->pkg_copy) {
3763		/* Reload package during rebuild after CORER/GLOBR reset */
3764		status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
3765		ice_log_pkg_init(hw, &status);
3766	} else {
3767		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
3768	}
3769
3770	if (status) {
3771		/* Safe Mode */
3772		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3773		return;
3774	}
3775
3776	/* Successful download package is the precondition for advanced
3777	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
3778	 */
3779	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3780}
3781
3782/**
3783 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
3784 * @pf: pointer to the PF structure
3785 *
3786 * There is no error returned here because the driver should be able to handle
3787 * 128 Byte cache lines, so we only print a warning in case issues are seen,
3788 * specifically with Tx.
3789 */
3790static void ice_verify_cacheline_size(struct ice_pf *pf)
3791{
3792	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
3793		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
3794			 ICE_CACHE_LINE_BYTES);
3795}
3796
3797/**
3798 * ice_send_version - update firmware with driver version
3799 * @pf: PF struct
3800 *
3801 * Returns ICE_SUCCESS on success, else error code
3802 */
3803static enum ice_status ice_send_version(struct ice_pf *pf)
3804{
3805	struct ice_driver_ver dv;
3806
3807	dv.major_ver = 0xff;
3808	dv.minor_ver = 0xff;
3809	dv.build_ver = 0xff;
3810	dv.subbuild_ver = 0;
3811	strscpy((char *)dv.driver_string, UTS_RELEASE,
3812		sizeof(dv.driver_string));
3813	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
3814}
3815
3816/**
3817 * ice_init_fdir - Initialize flow director VSI and configuration
3818 * @pf: pointer to the PF instance
3819 *
3820 * returns 0 on success, negative on error
3821 */
3822static int ice_init_fdir(struct ice_pf *pf)
3823{
3824	struct device *dev = ice_pf_to_dev(pf);
3825	struct ice_vsi *ctrl_vsi;
3826	int err;
3827
3828	/* Side Band Flow Director needs to have a control VSI.
3829	 * Allocate it and store it in the PF.
3830	 */
3831	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
3832	if (!ctrl_vsi) {
3833		dev_dbg(dev, "could not create control VSI\n");
3834		return -ENOMEM;
3835	}
3836
3837	err = ice_vsi_open_ctrl(ctrl_vsi);
3838	if (err) {
3839		dev_dbg(dev, "could not open control VSI\n");
3840		goto err_vsi_open;
3841	}
3842
3843	mutex_init(&pf->hw.fdir_fltr_lock);
3844
3845	err = ice_fdir_create_dflt_rules(pf);
3846	if (err)
3847		goto err_fdir_rule;
3848
3849	return 0;
3850
3851err_fdir_rule:
3852	ice_fdir_release_flows(&pf->hw);
3853	ice_vsi_close(ctrl_vsi);
3854err_vsi_open:
3855	ice_vsi_release(ctrl_vsi);
3856	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
3857		pf->vsi[pf->ctrl_vsi_idx] = NULL;
3858		pf->ctrl_vsi_idx = ICE_NO_VSI;
3859	}
3860	return err;
3861}
3862
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3863/**
3864 * ice_get_opt_fw_name - return optional firmware file name or NULL
3865 * @pf: pointer to the PF instance
3866 */
3867static char *ice_get_opt_fw_name(struct ice_pf *pf)
3868{
3869	/* Optional firmware name same as default with additional dash
3870	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
3871	 */
3872	struct pci_dev *pdev = pf->pdev;
3873	char *opt_fw_filename;
3874	u64 dsn;
3875
3876	/* Determine the name of the optional file using the DSN (two
3877	 * dwords following the start of the DSN Capability).
3878	 */
3879	dsn = pci_get_dsn(pdev);
3880	if (!dsn)
3881		return NULL;
3882
3883	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
3884	if (!opt_fw_filename)
3885		return NULL;
3886
3887	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
3888		 ICE_DDP_PKG_PATH, dsn);
3889
3890	return opt_fw_filename;
3891}
3892
3893/**
3894 * ice_request_fw - Device initialization routine
3895 * @pf: pointer to the PF instance
3896 */
3897static void ice_request_fw(struct ice_pf *pf)
3898{
3899	char *opt_fw_filename = ice_get_opt_fw_name(pf);
3900	const struct firmware *firmware = NULL;
3901	struct device *dev = ice_pf_to_dev(pf);
3902	int err = 0;
3903
3904	/* optional device-specific DDP (if present) overrides the default DDP
3905	 * package file. kernel logs a debug message if the file doesn't exist,
3906	 * and warning messages for other errors.
3907	 */
3908	if (opt_fw_filename) {
3909		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
3910		if (err) {
3911			kfree(opt_fw_filename);
3912			goto dflt_pkg_load;
3913		}
3914
3915		/* request for firmware was successful. Download to device */
3916		ice_load_pkg(firmware, pf);
3917		kfree(opt_fw_filename);
3918		release_firmware(firmware);
3919		return;
3920	}
3921
3922dflt_pkg_load:
3923	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
3924	if (err) {
3925		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
3926		return;
3927	}
3928
3929	/* request for firmware was successful. Download to device */
3930	ice_load_pkg(firmware, pf);
3931	release_firmware(firmware);
3932}
3933
3934/**
3935 * ice_print_wake_reason - show the wake up cause in the log
3936 * @pf: pointer to the PF struct
3937 */
3938static void ice_print_wake_reason(struct ice_pf *pf)
3939{
3940	u32 wus = pf->wakeup_reason;
3941	const char *wake_str;
3942
3943	/* if no wake event, nothing to print */
3944	if (!wus)
3945		return;
3946
3947	if (wus & PFPM_WUS_LNKC_M)
3948		wake_str = "Link\n";
3949	else if (wus & PFPM_WUS_MAG_M)
3950		wake_str = "Magic Packet\n";
3951	else if (wus & PFPM_WUS_MNG_M)
3952		wake_str = "Management\n";
3953	else if (wus & PFPM_WUS_FW_RST_WK_M)
3954		wake_str = "Firmware Reset\n";
3955	else
3956		wake_str = "Unknown\n";
3957
3958	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
3959}
3960
3961/**
3962 * ice_probe - Device initialization routine
3963 * @pdev: PCI device information struct
3964 * @ent: entry in ice_pci_tbl
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3965 *
3966 * Returns 0 on success, negative on failure
3967 */
3968static int
3969ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3970{
3971	struct device *dev = &pdev->dev;
3972	struct ice_pf *pf;
3973	struct ice_hw *hw;
3974	int err;
3975
3976	/* this driver uses devres, see
3977	 * Documentation/driver-api/driver-model/devres.rst
3978	 */
3979	err = pcim_enable_device(pdev);
3980	if (err)
3981		return err;
3982
3983	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
3984	if (err) {
3985		dev_err(dev, "BAR0 I/O map error %d\n", err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3986		return err;
3987	}
 
 
 
 
 
 
 
 
 
 
 
3988
3989	pf = ice_allocate_pf(dev);
3990	if (!pf)
3991		return -ENOMEM;
3992
3993	/* set up for high or low DMA */
3994	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
3995	if (err)
3996		err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
3997	if (err) {
3998		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
3999		return err;
4000	}
 
 
 
 
 
 
 
 
 
 
4001
4002	pci_enable_pcie_error_reporting(pdev);
4003	pci_set_master(pdev);
 
4004
4005	pf->pdev = pdev;
4006	pci_set_drvdata(pdev, pf);
4007	set_bit(__ICE_DOWN, pf->state);
4008	/* Disable service task until DOWN bit is cleared */
4009	set_bit(__ICE_SERVICE_DIS, pf->state);
4010
4011	hw = &pf->hw;
4012	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4013	pci_save_state(pdev);
 
 
 
4014
4015	hw->back = pf;
4016	hw->vendor_id = pdev->vendor;
4017	hw->device_id = pdev->device;
4018	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4019	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4020	hw->subsystem_device_id = pdev->subsystem_device;
4021	hw->bus.device = PCI_SLOT(pdev->devfn);
4022	hw->bus.func = PCI_FUNC(pdev->devfn);
4023	ice_set_ctrlq_len(hw);
4024
4025	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
 
4026
4027	err = ice_devlink_register(pf);
4028	if (err) {
4029		dev_err(dev, "ice_devlink_register failed: %d\n", err);
4030		goto err_exit_unroll;
 
 
 
4031	}
4032
4033#ifndef CONFIG_DYNAMIC_DEBUG
4034	if (debug < -1)
4035		hw->debug_mask = debug;
4036#endif
 
 
 
 
4037
4038	err = ice_init_hw(hw);
4039	if (err) {
4040		dev_err(dev, "ice_init_hw failed: %d\n", err);
4041		err = -EIO;
4042		goto err_exit_unroll;
 
 
 
 
 
 
 
 
 
 
 
4043	}
4044
 
 
4045	ice_request_fw(pf);
4046
4047	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4048	 * set in pf->state, which will cause ice_is_safe_mode to return
4049	 * true
4050	 */
4051	if (ice_is_safe_mode(pf)) {
4052		dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n");
4053		/* we already got function/device capabilities but these don't
4054		 * reflect what the driver needs to do in safe mode. Instead of
4055		 * adding conditional logic everywhere to ignore these
4056		 * device/function capabilities, override them.
4057		 */
4058		ice_set_safe_mode_caps(hw);
4059	}
4060
4061	err = ice_init_pf(pf);
4062	if (err) {
4063		dev_err(dev, "ice_init_pf failed: %d\n", err);
4064		goto err_init_pf_unroll;
4065	}
4066
4067	ice_devlink_init_regions(pf);
4068
4069	pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4070	if (!pf->num_alloc_vsi) {
4071		err = -EIO;
4072		goto err_init_pf_unroll;
4073	}
4074
4075	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4076			       GFP_KERNEL);
4077	if (!pf->vsi) {
4078		err = -ENOMEM;
4079		goto err_init_pf_unroll;
 
 
4080	}
4081
4082	err = ice_init_interrupt_scheme(pf);
4083	if (err) {
4084		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4085		err = -EIO;
4086		goto err_init_vsi_unroll;
4087	}
4088
4089	/* In case of MSIX we are going to setup the misc vector right here
4090	 * to handle admin queue events etc. In case of legacy and MSI
4091	 * the misc functionality and queue processing is combined in
4092	 * the same vector and that gets setup at open.
4093	 */
4094	err = ice_req_irq_msix_misc(pf);
4095	if (err) {
4096		dev_err(dev, "setup of misc vector failed: %d\n", err);
4097		goto err_init_interrupt_unroll;
4098	}
4099
4100	/* create switch struct for the switch element created by FW on boot */
4101	pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4102	if (!pf->first_sw) {
4103		err = -ENOMEM;
4104		goto err_msix_misc_unroll;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4105	}
4106
4107	if (hw->evb_veb)
4108		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4109	else
4110		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
 
 
 
 
 
 
4111
4112	pf->first_sw->pf = pf;
 
 
 
 
 
 
 
 
 
 
 
 
4113
4114	/* record the sw_id available for later use */
4115	pf->first_sw->sw_id = hw->port_info->sw_id;
 
 
4116
4117	err = ice_setup_pf_sw(pf);
4118	if (err) {
4119		dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4120		goto err_alloc_sw_unroll;
4121	}
4122
4123	clear_bit(__ICE_SERVICE_DIS, pf->state);
 
4124
4125	/* tell the firmware we are up */
4126	err = ice_send_version(pf);
4127	if (err) {
4128		dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4129			UTS_RELEASE, err);
4130		goto err_send_version_unroll;
4131	}
4132
4133	/* since everything is good, start the service timer */
4134	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
 
 
4135
4136	err = ice_init_link_events(pf->hw.port_info);
4137	if (err) {
4138		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4139		goto err_send_version_unroll;
4140	}
4141
 
4142	err = ice_init_nvm_phy_type(pf->hw.port_info);
4143	if (err) {
4144		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4145		goto err_send_version_unroll;
4146	}
4147
 
4148	err = ice_update_link_info(pf->hw.port_info);
4149	if (err) {
4150		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4151		goto err_send_version_unroll;
4152	}
4153
4154	ice_init_link_dflt_override(pf->hw.port_info);
4155
 
 
 
4156	/* if media available, initialize PHY settings */
4157	if (pf->hw.port_info->phy.link_info.link_info &
4158	    ICE_AQ_MEDIA_AVAILABLE) {
 
4159		err = ice_init_phy_user_cfg(pf->hw.port_info);
4160		if (err) {
4161			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4162			goto err_send_version_unroll;
4163		}
4164
4165		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4166			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4167
4168			if (vsi)
4169				ice_configure_phy(vsi);
4170		}
4171	} else {
4172		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4173	}
4174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4175	ice_verify_cacheline_size(pf);
4176
4177	/* Save wakeup reason register for later use */
4178	pf->wakeup_reason = rd32(hw, PFPM_WUS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4179
4180	/* check for a power management event */
4181	ice_print_wake_reason(pf);
 
 
4182
4183	/* clear wake status, all bits */
4184	wr32(hw, PFPM_WUS, U32_MAX);
 
 
 
 
 
 
 
 
 
 
 
4185
4186	/* Disable WoL at init, wait for user to enable */
4187	device_set_wakeup_enable(dev, false);
 
 
 
 
4188
4189	if (ice_is_safe_mode(pf)) {
4190		ice_set_safe_mode_vlan_cfg(pf);
4191		goto probe_done;
 
4192	}
4193
4194	/* initialize DDP driven features */
 
 
4195
4196	/* Note: Flow director init failure is non-fatal to load */
4197	if (ice_init_fdir(pf))
4198		dev_err(dev, "could not initialize flow director\n");
4199
4200	/* Note: DCB init failure is non-fatal to load */
4201	if (ice_init_pf_dcb(pf, false)) {
4202		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4203		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4204	} else {
4205		ice_cfg_lldp_mib_change(&pf->hw, true);
4206	}
4207
4208	/* print PCI link speed and width */
4209	pcie_print_link_status(pf->pdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4210
4211probe_done:
4212	/* ready to go, so clear down state bit */
4213	clear_bit(__ICE_DOWN, pf->state);
4214	return 0;
4215
4216err_send_version_unroll:
4217	ice_vsi_release_all(pf);
4218err_alloc_sw_unroll:
4219	ice_devlink_destroy_port(pf);
4220	set_bit(__ICE_SERVICE_DIS, pf->state);
4221	set_bit(__ICE_DOWN, pf->state);
4222	devm_kfree(dev, pf->first_sw);
4223err_msix_misc_unroll:
4224	ice_free_irq_msix_misc(pf);
4225err_init_interrupt_unroll:
4226	ice_clear_interrupt_scheme(pf);
4227err_init_vsi_unroll:
4228	devm_kfree(dev, pf->vsi);
4229err_init_pf_unroll:
4230	ice_deinit_pf(pf);
4231	ice_devlink_destroy_regions(pf);
4232	ice_deinit_hw(hw);
4233err_exit_unroll:
4234	ice_devlink_unregister(pf);
4235	pci_disable_pcie_error_reporting(pdev);
4236	pci_disable_device(pdev);
4237	return err;
4238}
4239
4240/**
4241 * ice_set_wake - enable or disable Wake on LAN
4242 * @pf: pointer to the PF struct
4243 *
4244 * Simple helper for WoL control
4245 */
4246static void ice_set_wake(struct ice_pf *pf)
4247{
4248	struct ice_hw *hw = &pf->hw;
4249	bool wol = pf->wol_ena;
4250
4251	/* clear wake state, otherwise new wake events won't fire */
4252	wr32(hw, PFPM_WUS, U32_MAX);
4253
4254	/* enable / disable APM wake up, no RMW needed */
4255	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4256
4257	/* set magic packet filter enabled */
4258	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4259}
4260
4261/**
4262 * ice_setup_magic_mc_wake - setup device to wake on multicast magic packet
4263 * @pf: pointer to the PF struct
4264 *
4265 * Issue firmware command to enable multicast magic wake, making
4266 * sure that any locally administered address (LAA) is used for
4267 * wake, and that PF reset doesn't undo the LAA.
4268 */
4269static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4270{
4271	struct device *dev = ice_pf_to_dev(pf);
4272	struct ice_hw *hw = &pf->hw;
4273	enum ice_status status;
4274	u8 mac_addr[ETH_ALEN];
4275	struct ice_vsi *vsi;
 
4276	u8 flags;
4277
4278	if (!pf->wol_ena)
4279		return;
4280
4281	vsi = ice_get_main_vsi(pf);
4282	if (!vsi)
4283		return;
4284
4285	/* Get current MAC address in case it's an LAA */
4286	if (vsi->netdev)
4287		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4288	else
4289		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4290
4291	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4292		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4293		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4294
4295	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4296	if (status)
4297		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n",
4298			ice_stat_str(status),
4299			ice_aq_str(hw->adminq.sq_last_status));
4300}
4301
4302/**
4303 * ice_remove - Device removal routine
4304 * @pdev: PCI device information struct
4305 */
4306static void ice_remove(struct pci_dev *pdev)
4307{
4308	struct ice_pf *pf = pci_get_drvdata(pdev);
4309	int i;
4310
4311	if (!pf)
4312		return;
4313
4314	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
4315		if (!ice_is_reset_in_progress(pf->state))
4316			break;
4317		msleep(100);
4318	}
4319
 
 
4320	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4321		set_bit(__ICE_VF_RESETS_DISABLED, pf->state);
4322		ice_free_vfs(pf);
4323	}
4324
4325	set_bit(__ICE_DOWN, pf->state);
 
4326	ice_service_task_stop(pf);
4327
4328	ice_aq_cancel_waiting_tasks(pf);
 
4329
4330	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4331	if (!ice_is_safe_mode(pf))
4332		ice_remove_arfs(pf);
 
 
 
 
 
 
 
 
4333	ice_setup_mc_magic_wake(pf);
4334	ice_devlink_destroy_port(pf);
4335	ice_vsi_release_all(pf);
4336	ice_set_wake(pf);
4337	ice_free_irq_msix_misc(pf);
4338	ice_for_each_vsi(pf, i) {
4339		if (!pf->vsi[i])
4340			continue;
4341		ice_vsi_free_q_vectors(pf->vsi[i]);
4342	}
4343	ice_deinit_pf(pf);
4344	ice_devlink_destroy_regions(pf);
4345	ice_deinit_hw(&pf->hw);
4346	ice_devlink_unregister(pf);
4347
4348	/* Issue a PFR as part of the prescribed driver unload flow.  Do not
4349	 * do it via ice_schedule_reset() since there is no need to rebuild
4350	 * and the service task is already stopped.
4351	 */
4352	ice_reset(&pf->hw, ICE_RESET_PFR);
4353	pci_wait_for_pending_transaction(pdev);
4354	ice_clear_interrupt_scheme(pf);
4355	pci_disable_pcie_error_reporting(pdev);
4356	pci_disable_device(pdev);
4357}
4358
4359/**
4360 * ice_shutdown - PCI callback for shutting down device
4361 * @pdev: PCI device information struct
4362 */
4363static void ice_shutdown(struct pci_dev *pdev)
4364{
4365	struct ice_pf *pf = pci_get_drvdata(pdev);
4366
4367	ice_remove(pdev);
4368
4369	if (system_state == SYSTEM_POWER_OFF) {
4370		pci_wake_from_d3(pdev, pf->wol_ena);
4371		pci_set_power_state(pdev, PCI_D3hot);
4372	}
4373}
4374
4375#ifdef CONFIG_PM
4376/**
4377 * ice_prepare_for_shutdown - prep for PCI shutdown
4378 * @pf: board private structure
4379 *
4380 * Inform or close all dependent features in prep for PCI device shutdown
4381 */
4382static void ice_prepare_for_shutdown(struct ice_pf *pf)
4383{
4384	struct ice_hw *hw = &pf->hw;
4385	u32 v;
4386
4387	/* Notify VFs of impending reset */
4388	if (ice_check_sq_alive(hw, &hw->mailboxq))
4389		ice_vc_notify_reset(pf);
4390
4391	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
4392
4393	/* disable the VSIs and their queues that are not already DOWN */
4394	ice_pf_dis_all_vsi(pf, false);
4395
4396	ice_for_each_vsi(pf, v)
4397		if (pf->vsi[v])
4398			pf->vsi[v]->vsi_num = 0;
4399
4400	ice_shutdown_all_ctrlq(hw);
4401}
4402
4403/**
4404 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
4405 * @pf: board private structure to reinitialize
4406 *
4407 * This routine reinitialize interrupt scheme that was cleared during
4408 * power management suspend callback.
4409 *
4410 * This should be called during resume routine to re-allocate the q_vectors
4411 * and reacquire interrupts.
4412 */
4413static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
4414{
4415	struct device *dev = ice_pf_to_dev(pf);
4416	int ret, v;
4417
4418	/* Since we clear MSIX flag during suspend, we need to
4419	 * set it back during resume...
4420	 */
4421
4422	ret = ice_init_interrupt_scheme(pf);
4423	if (ret) {
4424		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
4425		return ret;
4426	}
4427
4428	/* Remap vectors and rings, after successful re-init interrupts */
4429	ice_for_each_vsi(pf, v) {
4430		if (!pf->vsi[v])
4431			continue;
4432
4433		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
4434		if (ret)
4435			goto err_reinit;
4436		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
 
4437	}
4438
4439	ret = ice_req_irq_msix_misc(pf);
4440	if (ret) {
4441		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
4442			ret);
4443		goto err_reinit;
4444	}
4445
4446	return 0;
4447
4448err_reinit:
4449	while (v--)
4450		if (pf->vsi[v])
4451			ice_vsi_free_q_vectors(pf->vsi[v]);
4452
4453	return ret;
4454}
4455
4456/**
4457 * ice_suspend
4458 * @dev: generic device information structure
4459 *
4460 * Power Management callback to quiesce the device and prepare
4461 * for D3 transition.
4462 */
4463static int __maybe_unused ice_suspend(struct device *dev)
4464{
4465	struct pci_dev *pdev = to_pci_dev(dev);
4466	struct ice_pf *pf;
4467	int disabled, v;
4468
4469	pf = pci_get_drvdata(pdev);
4470
4471	if (!ice_pf_state_is_nominal(pf)) {
4472		dev_err(dev, "Device is not ready, no need to suspend it\n");
4473		return -EBUSY;
4474	}
4475
4476	/* Stop watchdog tasks until resume completion.
4477	 * Even though it is most likely that the service task is
4478	 * disabled if the device is suspended or down, the service task's
4479	 * state is controlled by a different state bit, and we should
4480	 * store and honor whatever state that bit is in at this point.
4481	 */
4482	disabled = ice_service_task_stop(pf);
4483
 
 
4484	/* Already suspended?, then there is nothing to do */
4485	if (test_and_set_bit(__ICE_SUSPENDED, pf->state)) {
4486		if (!disabled)
4487			ice_service_task_restart(pf);
4488		return 0;
4489	}
4490
4491	if (test_bit(__ICE_DOWN, pf->state) ||
4492	    ice_is_reset_in_progress(pf->state)) {
4493		dev_err(dev, "can't suspend device in reset or already down\n");
4494		if (!disabled)
4495			ice_service_task_restart(pf);
4496		return 0;
4497	}
4498
4499	ice_setup_mc_magic_wake(pf);
4500
4501	ice_prepare_for_shutdown(pf);
4502
4503	ice_set_wake(pf);
4504
4505	/* Free vectors, clear the interrupt scheme and release IRQs
4506	 * for proper hibernation, especially with large number of CPUs.
4507	 * Otherwise hibernation might fail when mapping all the vectors back
4508	 * to CPU0.
4509	 */
4510	ice_free_irq_msix_misc(pf);
4511	ice_for_each_vsi(pf, v) {
4512		if (!pf->vsi[v])
4513			continue;
4514		ice_vsi_free_q_vectors(pf->vsi[v]);
4515	}
4516	ice_clear_interrupt_scheme(pf);
4517
4518	pci_save_state(pdev);
4519	pci_wake_from_d3(pdev, pf->wol_ena);
4520	pci_set_power_state(pdev, PCI_D3hot);
4521	return 0;
4522}
4523
4524/**
4525 * ice_resume - PM callback for waking up from D3
4526 * @dev: generic device information structure
4527 */
4528static int __maybe_unused ice_resume(struct device *dev)
4529{
4530	struct pci_dev *pdev = to_pci_dev(dev);
4531	enum ice_reset_req reset_type;
4532	struct ice_pf *pf;
4533	struct ice_hw *hw;
4534	int ret;
4535
4536	pci_set_power_state(pdev, PCI_D0);
4537	pci_restore_state(pdev);
4538	pci_save_state(pdev);
4539
4540	if (!pci_device_is_present(pdev))
4541		return -ENODEV;
4542
4543	ret = pci_enable_device_mem(pdev);
4544	if (ret) {
4545		dev_err(dev, "Cannot enable device after suspend\n");
4546		return ret;
4547	}
4548
4549	pf = pci_get_drvdata(pdev);
4550	hw = &pf->hw;
4551
4552	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4553	ice_print_wake_reason(pf);
4554
4555	/* We cleared the interrupt scheme when we suspended, so we need to
4556	 * restore it now to resume device functionality.
4557	 */
4558	ret = ice_reinit_interrupt_scheme(pf);
4559	if (ret)
4560		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
4561
4562	clear_bit(__ICE_DOWN, pf->state);
4563	/* Now perform PF reset and rebuild */
4564	reset_type = ICE_RESET_PFR;
4565	/* re-enable service task for reset, but allow reset to schedule it */
4566	clear_bit(__ICE_SERVICE_DIS, pf->state);
4567
4568	if (ice_schedule_reset(pf, reset_type))
4569		dev_err(dev, "Reset during resume failed.\n");
4570
4571	clear_bit(__ICE_SUSPENDED, pf->state);
4572	ice_service_task_restart(pf);
4573
4574	/* Restart the service task */
4575	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4576
4577	return 0;
4578}
4579#endif /* CONFIG_PM */
4580
4581/**
4582 * ice_pci_err_detected - warning that PCI error has been detected
4583 * @pdev: PCI device information struct
4584 * @err: the type of PCI error
4585 *
4586 * Called to warn that something happened on the PCI bus and the error handling
4587 * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
4588 */
4589static pci_ers_result_t
4590ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
4591{
4592	struct ice_pf *pf = pci_get_drvdata(pdev);
4593
4594	if (!pf) {
4595		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
4596			__func__, err);
4597		return PCI_ERS_RESULT_DISCONNECT;
4598	}
4599
4600	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4601		ice_service_task_stop(pf);
4602
4603		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4604			set_bit(__ICE_PFR_REQ, pf->state);
4605			ice_prepare_for_reset(pf);
4606		}
4607	}
4608
4609	return PCI_ERS_RESULT_NEED_RESET;
4610}
4611
4612/**
4613 * ice_pci_err_slot_reset - a PCI slot reset has just happened
4614 * @pdev: PCI device information struct
4615 *
4616 * Called to determine if the driver can recover from the PCI slot reset by
4617 * using a register read to determine if the device is recoverable.
4618 */
4619static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
4620{
4621	struct ice_pf *pf = pci_get_drvdata(pdev);
4622	pci_ers_result_t result;
4623	int err;
4624	u32 reg;
4625
4626	err = pci_enable_device_mem(pdev);
4627	if (err) {
4628		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
4629			err);
4630		result = PCI_ERS_RESULT_DISCONNECT;
4631	} else {
4632		pci_set_master(pdev);
4633		pci_restore_state(pdev);
4634		pci_save_state(pdev);
4635		pci_wake_from_d3(pdev, false);
4636
4637		/* Check for life */
4638		reg = rd32(&pf->hw, GLGEN_RTRIG);
4639		if (!reg)
4640			result = PCI_ERS_RESULT_RECOVERED;
4641		else
4642			result = PCI_ERS_RESULT_DISCONNECT;
4643	}
4644
4645	err = pci_aer_clear_nonfatal_status(pdev);
4646	if (err)
4647		dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n",
4648			err);
4649		/* non-fatal, continue */
4650
4651	return result;
4652}
4653
4654/**
4655 * ice_pci_err_resume - restart operations after PCI error recovery
4656 * @pdev: PCI device information struct
4657 *
4658 * Called to allow the driver to bring things back up after PCI error and/or
4659 * reset recovery have finished
4660 */
4661static void ice_pci_err_resume(struct pci_dev *pdev)
4662{
4663	struct ice_pf *pf = pci_get_drvdata(pdev);
4664
4665	if (!pf) {
4666		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
4667			__func__);
4668		return;
4669	}
4670
4671	if (test_bit(__ICE_SUSPENDED, pf->state)) {
4672		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
4673			__func__);
4674		return;
4675	}
4676
4677	ice_restore_all_vfs_msi_state(pdev);
4678
4679	ice_do_reset(pf, ICE_RESET_PFR);
4680	ice_service_task_restart(pf);
4681	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4682}
4683
4684/**
4685 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
4686 * @pdev: PCI device information struct
4687 */
4688static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
4689{
4690	struct ice_pf *pf = pci_get_drvdata(pdev);
4691
4692	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4693		ice_service_task_stop(pf);
4694
4695		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4696			set_bit(__ICE_PFR_REQ, pf->state);
4697			ice_prepare_for_reset(pf);
4698		}
4699	}
4700}
4701
4702/**
4703 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
4704 * @pdev: PCI device information struct
4705 */
4706static void ice_pci_err_reset_done(struct pci_dev *pdev)
4707{
4708	ice_pci_err_resume(pdev);
4709}
4710
4711/* ice_pci_tbl - PCI Device ID Table
4712 *
4713 * Wildcard entries (PCI_ANY_ID) should come last
4714 * Last entry must be all 0s
4715 *
4716 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
4717 *   Class, Class Mask, private data (not used) }
4718 */
4719static const struct pci_device_id ice_pci_tbl[] = {
4720	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
4721	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
4722	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
4723	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
4724	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
4725	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
4726	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
4727	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
4728	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
4729	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
4730	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
4731	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
4732	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
4733	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
4734	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
4735	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
4736	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
4737	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
4738	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
4739	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
4740	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
4741	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
4742	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
 
 
 
 
 
 
 
4743	/* required last entry */
4744	{ 0, }
4745};
4746MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
4747
4748static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
4749
4750static const struct pci_error_handlers ice_pci_err_handler = {
4751	.error_detected = ice_pci_err_detected,
4752	.slot_reset = ice_pci_err_slot_reset,
4753	.reset_prepare = ice_pci_err_reset_prepare,
4754	.reset_done = ice_pci_err_reset_done,
4755	.resume = ice_pci_err_resume
4756};
4757
4758static struct pci_driver ice_driver = {
4759	.name = KBUILD_MODNAME,
4760	.id_table = ice_pci_tbl,
4761	.probe = ice_probe,
4762	.remove = ice_remove,
4763#ifdef CONFIG_PM
4764	.driver.pm = &ice_pm_ops,
4765#endif /* CONFIG_PM */
4766	.shutdown = ice_shutdown,
4767	.sriov_configure = ice_sriov_configure,
 
 
4768	.err_handler = &ice_pci_err_handler
4769};
4770
4771/**
4772 * ice_module_init - Driver registration routine
4773 *
4774 * ice_module_init is the first routine called when the driver is
4775 * loaded. All it does is register with the PCI subsystem.
4776 */
4777static int __init ice_module_init(void)
4778{
4779	int status;
4780
4781	pr_info("%s\n", ice_driver_string);
4782	pr_info("%s\n", ice_copyright);
4783
4784	ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
 
 
4785	if (!ice_wq) {
4786		pr_err("Failed to create workqueue\n");
4787		return -ENOMEM;
 
 
 
 
 
 
4788	}
4789
 
 
4790	status = pci_register_driver(&ice_driver);
4791	if (status) {
4792		pr_err("failed to register PCI driver, err %d\n", status);
4793		destroy_workqueue(ice_wq);
4794	}
4795
 
 
 
 
 
 
 
4796	return status;
4797}
4798module_init(ice_module_init);
4799
4800/**
4801 * ice_module_exit - Driver exit cleanup routine
4802 *
4803 * ice_module_exit is called just before the driver is removed
4804 * from memory.
4805 */
4806static void __exit ice_module_exit(void)
4807{
4808	pci_unregister_driver(&ice_driver);
4809	destroy_workqueue(ice_wq);
 
4810	pr_info("module unloaded\n");
4811}
4812module_exit(ice_module_exit);
4813
4814/**
4815 * ice_set_mac_address - NDO callback to set MAC address
4816 * @netdev: network interface device structure
4817 * @pi: pointer to an address structure
4818 *
4819 * Returns 0 on success, negative on failure
4820 */
4821static int ice_set_mac_address(struct net_device *netdev, void *pi)
4822{
4823	struct ice_netdev_priv *np = netdev_priv(netdev);
4824	struct ice_vsi *vsi = np->vsi;
4825	struct ice_pf *pf = vsi->back;
4826	struct ice_hw *hw = &pf->hw;
4827	struct sockaddr *addr = pi;
4828	enum ice_status status;
4829	u8 flags = 0;
4830	int err = 0;
4831	u8 *mac;
 
4832
4833	mac = (u8 *)addr->sa_data;
4834
4835	if (!is_valid_ether_addr(mac))
4836		return -EADDRNOTAVAIL;
4837
4838	if (ether_addr_equal(netdev->dev_addr, mac)) {
4839		netdev_warn(netdev, "already using mac %pM\n", mac);
4840		return 0;
4841	}
4842
4843	if (test_bit(__ICE_DOWN, pf->state) ||
4844	    ice_is_reset_in_progress(pf->state)) {
4845		netdev_err(netdev, "can't set mac %pM. device not ready\n",
4846			   mac);
4847		return -EBUSY;
4848	}
4849
 
 
 
 
 
 
 
 
 
 
 
 
4850	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
4851	status = ice_fltr_remove_mac(vsi, netdev->dev_addr, ICE_FWD_TO_VSI);
4852	if (status && status != ICE_ERR_DOES_NOT_EXIST) {
4853		err = -EADDRNOTAVAIL;
4854		goto err_update_filters;
4855	}
4856
4857	/* Add filter for new MAC. If filter exists, just return success */
4858	status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
4859	if (status == ICE_ERR_ALREADY_EXISTS) {
 
 
 
 
 
4860		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
 
4861		return 0;
 
 
 
4862	}
4863
4864	/* error if the new filter addition failed */
4865	if (status)
4866		err = -EADDRNOTAVAIL;
4867
4868err_update_filters:
4869	if (err) {
4870		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
4871			   mac);
 
 
 
4872		return err;
4873	}
4874
4875	/* change the netdev's MAC address */
4876	memcpy(netdev->dev_addr, mac, netdev->addr_len);
4877	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
4878		   netdev->dev_addr);
4879
4880	/* write new MAC address to the firmware */
4881	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
4882	status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
4883	if (status) {
4884		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n",
4885			   mac, ice_stat_str(status));
4886	}
4887	return 0;
4888}
4889
4890/**
4891 * ice_set_rx_mode - NDO callback to set the netdev filters
4892 * @netdev: network interface device structure
4893 */
4894static void ice_set_rx_mode(struct net_device *netdev)
4895{
4896	struct ice_netdev_priv *np = netdev_priv(netdev);
4897	struct ice_vsi *vsi = np->vsi;
4898
4899	if (!vsi)
4900		return;
4901
4902	/* Set the flags to synchronize filters
4903	 * ndo_set_rx_mode may be triggered even without a change in netdev
4904	 * flags
4905	 */
4906	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
4907	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
4908	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
4909
4910	/* schedule our worker thread which will take care of
4911	 * applying the new filter changes
4912	 */
4913	ice_service_task_schedule(vsi->back);
4914}
4915
4916/**
4917 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
4918 * @netdev: network interface device structure
4919 * @queue_index: Queue ID
4920 * @maxrate: maximum bandwidth in Mbps
4921 */
4922static int
4923ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
4924{
4925	struct ice_netdev_priv *np = netdev_priv(netdev);
4926	struct ice_vsi *vsi = np->vsi;
4927	enum ice_status status;
4928	u16 q_handle;
 
4929	u8 tc;
4930
4931	/* Validate maxrate requested is within permitted range */
4932	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
4933		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
4934			   maxrate, queue_index);
4935		return -EINVAL;
4936	}
4937
4938	q_handle = vsi->tx_rings[queue_index]->q_handle;
4939	tc = ice_dcb_get_tc(vsi, queue_index);
4940
 
 
 
 
 
 
 
4941	/* Set BW back to default, when user set maxrate to 0 */
4942	if (!maxrate)
4943		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
4944					       q_handle, ICE_MAX_BW);
4945	else
4946		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
4947					  q_handle, ICE_MAX_BW, maxrate * 1000);
4948	if (status) {
4949		netdev_err(netdev, "Unable to set Tx max rate, error %s\n",
4950			   ice_stat_str(status));
4951		return -EIO;
4952	}
4953
4954	return 0;
4955}
4956
4957/**
4958 * ice_fdb_add - add an entry to the hardware database
4959 * @ndm: the input from the stack
4960 * @tb: pointer to array of nladdr (unused)
4961 * @dev: the net device pointer
4962 * @addr: the MAC address entry being added
4963 * @vid: VLAN ID
4964 * @flags: instructions from stack about fdb operation
4965 * @extack: netlink extended ack
4966 */
4967static int
4968ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
4969	    struct net_device *dev, const unsigned char *addr, u16 vid,
4970	    u16 flags, struct netlink_ext_ack __always_unused *extack)
4971{
4972	int err;
4973
4974	if (vid) {
4975		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
4976		return -EINVAL;
4977	}
4978	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
4979		netdev_err(dev, "FDB only supports static addresses\n");
4980		return -EINVAL;
4981	}
4982
4983	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
4984		err = dev_uc_add_excl(dev, addr);
4985	else if (is_multicast_ether_addr(addr))
4986		err = dev_mc_add_excl(dev, addr);
4987	else
4988		err = -EINVAL;
4989
4990	/* Only return duplicate errors if NLM_F_EXCL is set */
4991	if (err == -EEXIST && !(flags & NLM_F_EXCL))
4992		err = 0;
4993
4994	return err;
4995}
4996
4997/**
4998 * ice_fdb_del - delete an entry from the hardware database
4999 * @ndm: the input from the stack
5000 * @tb: pointer to array of nladdr (unused)
5001 * @dev: the net device pointer
5002 * @addr: the MAC address entry being added
5003 * @vid: VLAN ID
 
5004 */
5005static int
5006ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5007	    struct net_device *dev, const unsigned char *addr,
5008	    __always_unused u16 vid)
5009{
5010	int err;
5011
5012	if (ndm->ndm_state & NUD_PERMANENT) {
5013		netdev_err(dev, "FDB only supports static addresses\n");
5014		return -EINVAL;
5015	}
5016
5017	if (is_unicast_ether_addr(addr))
5018		err = dev_uc_del(dev, addr);
5019	else if (is_multicast_ether_addr(addr))
5020		err = dev_mc_del(dev, addr);
5021	else
5022		err = -EINVAL;
5023
5024	return err;
5025}
5026
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5027/**
5028 * ice_set_features - set the netdev feature flags
5029 * @netdev: ptr to the netdev being adjusted
5030 * @features: the feature set that the stack is suggesting
5031 */
5032static int
5033ice_set_features(struct net_device *netdev, netdev_features_t features)
5034{
 
5035	struct ice_netdev_priv *np = netdev_priv(netdev);
5036	struct ice_vsi *vsi = np->vsi;
5037	struct ice_pf *pf = vsi->back;
5038	int ret = 0;
5039
5040	/* Don't set any netdev advanced features with device in Safe Mode */
5041	if (ice_is_safe_mode(vsi->back)) {
5042		dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
 
5043		return ret;
5044	}
5045
5046	/* Do not change setting during reset */
5047	if (ice_is_reset_in_progress(pf->state)) {
5048		dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
 
5049		return -EBUSY;
5050	}
5051
5052	/* Multiple features can be changed in one call so keep features in
5053	 * separate if/else statements to guarantee each feature is checked
5054	 */
5055	if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
5056		ret = ice_vsi_manage_rss_lut(vsi, true);
5057	else if (!(features & NETIF_F_RXHASH) &&
5058		 netdev->features & NETIF_F_RXHASH)
5059		ret = ice_vsi_manage_rss_lut(vsi, false);
5060
5061	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
5062	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5063		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5064	else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
5065		 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5066		ret = ice_vsi_manage_vlan_stripping(vsi, false);
5067
5068	if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
5069	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5070		ret = ice_vsi_manage_vlan_insertion(vsi);
5071	else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
5072		 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5073		ret = ice_vsi_manage_vlan_insertion(vsi);
5074
5075	if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5076	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5077		ret = ice_cfg_vlan_pruning(vsi, true, false);
5078	else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5079		 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5080		ret = ice_cfg_vlan_pruning(vsi, false, false);
5081
5082	if ((features & NETIF_F_NTUPLE) &&
5083	    !(netdev->features & NETIF_F_NTUPLE)) {
5084		ice_vsi_manage_fdir(vsi, true);
5085		ice_init_arfs(vsi);
5086	} else if (!(features & NETIF_F_NTUPLE) &&
5087		 (netdev->features & NETIF_F_NTUPLE)) {
5088		ice_vsi_manage_fdir(vsi, false);
5089		ice_clear_arfs(vsi);
5090	}
5091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5092	return ret;
5093}
5094
5095/**
5096 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
5097 * @vsi: VSI to setup VLAN properties for
5098 */
5099static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
5100{
5101	int ret = 0;
 
 
 
 
5102
5103	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
5104		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5105	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
5106		ret = ice_vsi_manage_vlan_insertion(vsi);
5107
5108	return ret;
5109}
5110
5111/**
5112 * ice_vsi_cfg - Setup the VSI
5113 * @vsi: the VSI being configured
5114 *
5115 * Return 0 on success and negative value on error
5116 */
5117int ice_vsi_cfg(struct ice_vsi *vsi)
5118{
5119	int err;
5120
5121	if (vsi->netdev) {
5122		ice_set_rx_mode(vsi->netdev);
5123
5124		err = ice_vsi_vlan_setup(vsi);
5125
5126		if (err)
5127			return err;
5128	}
5129	ice_vsi_cfg_dcb_rings(vsi);
5130
5131	err = ice_vsi_cfg_lan_txqs(vsi);
5132	if (!err && ice_is_xdp_ena_vsi(vsi))
5133		err = ice_vsi_cfg_xdp_txqs(vsi);
5134	if (!err)
5135		err = ice_vsi_cfg_rxqs(vsi);
5136
5137	return err;
5138}
5139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5140/**
5141 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
5142 * @vsi: the VSI being configured
5143 */
5144static void ice_napi_enable_all(struct ice_vsi *vsi)
5145{
5146	int q_idx;
5147
5148	if (!vsi->netdev)
5149		return;
5150
5151	ice_for_each_q_vector(vsi, q_idx) {
5152		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5153
5154		if (q_vector->rx.ring || q_vector->tx.ring)
 
 
5155			napi_enable(&q_vector->napi);
5156	}
5157}
5158
5159/**
5160 * ice_up_complete - Finish the last steps of bringing up a connection
5161 * @vsi: The VSI being configured
5162 *
5163 * Return 0 on success and negative value on error
5164 */
5165static int ice_up_complete(struct ice_vsi *vsi)
5166{
5167	struct ice_pf *pf = vsi->back;
5168	int err;
5169
5170	ice_vsi_cfg_msix(vsi);
5171
5172	/* Enable only Rx rings, Tx rings were enabled by the FW when the
5173	 * Tx queue group list was configured and the context bits were
5174	 * programmed using ice_vsi_cfg_txqs
5175	 */
5176	err = ice_vsi_start_all_rx_rings(vsi);
5177	if (err)
5178		return err;
5179
5180	clear_bit(__ICE_DOWN, vsi->state);
5181	ice_napi_enable_all(vsi);
5182	ice_vsi_ena_irq(vsi);
5183
5184	if (vsi->port_info &&
5185	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
5186	    vsi->netdev) {
5187		ice_print_link_msg(vsi, true);
5188		netif_tx_start_all_queues(vsi->netdev);
5189		netif_carrier_on(vsi->netdev);
 
5190	}
5191
5192	ice_service_task_schedule(pf);
 
 
 
 
 
 
5193
5194	return 0;
5195}
5196
5197/**
5198 * ice_up - Bring the connection back up after being down
5199 * @vsi: VSI being configured
5200 */
5201int ice_up(struct ice_vsi *vsi)
5202{
5203	int err;
5204
5205	err = ice_vsi_cfg(vsi);
5206	if (!err)
5207		err = ice_up_complete(vsi);
5208
5209	return err;
5210}
5211
5212/**
5213 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
5214 * @ring: Tx or Rx ring to read stats from
 
5215 * @pkts: packets stats counter
5216 * @bytes: bytes stats counter
5217 *
5218 * This function fetches stats from the ring considering the atomic operations
5219 * that needs to be performed to read u64 values in 32 bit machine.
5220 */
5221static void
5222ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
 
5223{
5224	unsigned int start;
5225	*pkts = 0;
5226	*bytes = 0;
5227
5228	if (!ring)
5229		return;
5230	do {
5231		start = u64_stats_fetch_begin_irq(&ring->syncp);
5232		*pkts = ring->stats.pkts;
5233		*bytes = ring->stats.bytes;
5234	} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
5235}
5236
5237/**
5238 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
5239 * @vsi: the VSI to be updated
 
5240 * @rings: rings to work on
5241 * @count: number of rings
5242 */
5243static void
5244ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings,
5245			     u16 count)
 
5246{
5247	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5248	u16 i;
5249
5250	for (i = 0; i < count; i++) {
5251		struct ice_ring *ring;
5252		u64 pkts, bytes;
5253
5254		ring = READ_ONCE(rings[i]);
5255		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
 
 
 
 
5256		vsi_stats->tx_packets += pkts;
5257		vsi_stats->tx_bytes += bytes;
5258		vsi->tx_restart += ring->tx_stats.restart_q;
5259		vsi->tx_busy += ring->tx_stats.tx_busy;
5260		vsi->tx_linearize += ring->tx_stats.tx_linearize;
5261	}
5262}
5263
5264/**
5265 * ice_update_vsi_ring_stats - Update VSI stats counters
5266 * @vsi: the VSI to be updated
5267 */
5268static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
5269{
5270	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5271	struct ice_ring *ring;
5272	u64 pkts, bytes;
5273	int i;
5274
5275	/* reset netdev stats */
5276	vsi_stats->tx_packets = 0;
5277	vsi_stats->tx_bytes = 0;
5278	vsi_stats->rx_packets = 0;
5279	vsi_stats->rx_bytes = 0;
5280
5281	/* reset non-netdev (extended) stats */
5282	vsi->tx_restart = 0;
5283	vsi->tx_busy = 0;
5284	vsi->tx_linearize = 0;
5285	vsi->rx_buf_failed = 0;
5286	vsi->rx_page_failed = 0;
5287	vsi->rx_gro_dropped = 0;
5288
5289	rcu_read_lock();
5290
5291	/* update Tx rings counters */
5292	ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq);
 
5293
5294	/* update Rx rings counters */
5295	ice_for_each_rxq(vsi, i) {
5296		ring = READ_ONCE(vsi->rx_rings[i]);
5297		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
 
 
 
 
 
5298		vsi_stats->rx_packets += pkts;
5299		vsi_stats->rx_bytes += bytes;
5300		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
5301		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
5302		vsi->rx_gro_dropped += ring->rx_stats.gro_dropped;
5303	}
5304
5305	/* update XDP Tx rings counters */
5306	if (ice_is_xdp_ena_vsi(vsi))
5307		ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings,
5308					     vsi->num_xdp_txq);
5309
5310	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5311}
5312
5313/**
5314 * ice_update_vsi_stats - Update VSI stats counters
5315 * @vsi: the VSI to be updated
5316 */
5317void ice_update_vsi_stats(struct ice_vsi *vsi)
5318{
5319	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
5320	struct ice_eth_stats *cur_es = &vsi->eth_stats;
5321	struct ice_pf *pf = vsi->back;
5322
5323	if (test_bit(__ICE_DOWN, vsi->state) ||
5324	    test_bit(__ICE_CFG_BUSY, pf->state))
5325		return;
5326
5327	/* get stats as recorded by Tx/Rx rings */
5328	ice_update_vsi_ring_stats(vsi);
5329
5330	/* get VSI stats as recorded by the hardware */
5331	ice_update_eth_stats(vsi);
5332
5333	cur_ns->tx_errors = cur_es->tx_errors;
5334	cur_ns->rx_dropped = cur_es->rx_discards + vsi->rx_gro_dropped;
5335	cur_ns->tx_dropped = cur_es->tx_discards;
5336	cur_ns->multicast = cur_es->rx_multicast;
5337
5338	/* update some more netdev stats if this is main VSI */
5339	if (vsi->type == ICE_VSI_PF) {
5340		cur_ns->rx_crc_errors = pf->stats.crc_errors;
5341		cur_ns->rx_errors = pf->stats.crc_errors +
5342				    pf->stats.illegal_bytes +
5343				    pf->stats.rx_len_errors +
5344				    pf->stats.rx_undersize +
5345				    pf->hw_csum_rx_error +
5346				    pf->stats.rx_jabber +
5347				    pf->stats.rx_fragments +
5348				    pf->stats.rx_oversize;
5349		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
5350		/* record drops from the port level */
5351		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
5352	}
5353}
5354
5355/**
5356 * ice_update_pf_stats - Update PF port stats counters
5357 * @pf: PF whose stats needs to be updated
5358 */
5359void ice_update_pf_stats(struct ice_pf *pf)
5360{
5361	struct ice_hw_port_stats *prev_ps, *cur_ps;
5362	struct ice_hw *hw = &pf->hw;
5363	u16 fd_ctr_base;
5364	u8 port;
5365
5366	port = hw->port_info->lport;
5367	prev_ps = &pf->stats_prev;
5368	cur_ps = &pf->stats;
5369
 
 
 
5370	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
5371			  &prev_ps->eth.rx_bytes,
5372			  &cur_ps->eth.rx_bytes);
5373
5374	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
5375			  &prev_ps->eth.rx_unicast,
5376			  &cur_ps->eth.rx_unicast);
5377
5378	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
5379			  &prev_ps->eth.rx_multicast,
5380			  &cur_ps->eth.rx_multicast);
5381
5382	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
5383			  &prev_ps->eth.rx_broadcast,
5384			  &cur_ps->eth.rx_broadcast);
5385
5386	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
5387			  &prev_ps->eth.rx_discards,
5388			  &cur_ps->eth.rx_discards);
5389
5390	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
5391			  &prev_ps->eth.tx_bytes,
5392			  &cur_ps->eth.tx_bytes);
5393
5394	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
5395			  &prev_ps->eth.tx_unicast,
5396			  &cur_ps->eth.tx_unicast);
5397
5398	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
5399			  &prev_ps->eth.tx_multicast,
5400			  &cur_ps->eth.tx_multicast);
5401
5402	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
5403			  &prev_ps->eth.tx_broadcast,
5404			  &cur_ps->eth.tx_broadcast);
5405
5406	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
5407			  &prev_ps->tx_dropped_link_down,
5408			  &cur_ps->tx_dropped_link_down);
5409
5410	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
5411			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
5412
5413	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
5414			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
5415
5416	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
5417			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
5418
5419	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
5420			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
5421
5422	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
5423			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
5424
5425	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
5426			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
5427
5428	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
5429			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
5430
5431	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
5432			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
5433
5434	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
5435			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
5436
5437	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
5438			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
5439
5440	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
5441			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
5442
5443	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
5444			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
5445
5446	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
5447			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
5448
5449	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
5450			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
5451
5452	fd_ctr_base = hw->fd_ctr_base;
5453
5454	ice_stat_update40(hw,
5455			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
5456			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
5457			  &cur_ps->fd_sb_match);
5458	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
5459			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
5460
5461	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
5462			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
5463
5464	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
5465			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
5466
5467	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
5468			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
5469
5470	ice_update_dcb_stats(pf);
5471
5472	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
5473			  &prev_ps->crc_errors, &cur_ps->crc_errors);
5474
5475	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
5476			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
5477
5478	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
5479			  &prev_ps->mac_local_faults,
5480			  &cur_ps->mac_local_faults);
5481
5482	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
5483			  &prev_ps->mac_remote_faults,
5484			  &cur_ps->mac_remote_faults);
5485
5486	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
5487			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
5488
5489	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
5490			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
5491
5492	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
5493			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
5494
5495	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
5496			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
5497
5498	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
5499			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
5500
5501	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
5502
5503	pf->stat_prev_loaded = true;
5504}
5505
5506/**
5507 * ice_get_stats64 - get statistics for network device structure
5508 * @netdev: network interface device structure
5509 * @stats: main device statistics structure
5510 */
5511static
5512void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
5513{
5514	struct ice_netdev_priv *np = netdev_priv(netdev);
5515	struct rtnl_link_stats64 *vsi_stats;
5516	struct ice_vsi *vsi = np->vsi;
5517
5518	vsi_stats = &vsi->net_stats;
5519
5520	if (!vsi->num_txq || !vsi->num_rxq)
5521		return;
5522
5523	/* netdev packet/byte stats come from ring counter. These are obtained
5524	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
5525	 * But, only call the update routine and read the registers if VSI is
5526	 * not down.
5527	 */
5528	if (!test_bit(__ICE_DOWN, vsi->state))
5529		ice_update_vsi_ring_stats(vsi);
5530	stats->tx_packets = vsi_stats->tx_packets;
5531	stats->tx_bytes = vsi_stats->tx_bytes;
5532	stats->rx_packets = vsi_stats->rx_packets;
5533	stats->rx_bytes = vsi_stats->rx_bytes;
5534
5535	/* The rest of the stats can be read from the hardware but instead we
5536	 * just return values that the watchdog task has already obtained from
5537	 * the hardware.
5538	 */
5539	stats->multicast = vsi_stats->multicast;
5540	stats->tx_errors = vsi_stats->tx_errors;
5541	stats->tx_dropped = vsi_stats->tx_dropped;
5542	stats->rx_errors = vsi_stats->rx_errors;
5543	stats->rx_dropped = vsi_stats->rx_dropped;
5544	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
5545	stats->rx_length_errors = vsi_stats->rx_length_errors;
5546}
5547
5548/**
5549 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
5550 * @vsi: VSI having NAPI disabled
5551 */
5552static void ice_napi_disable_all(struct ice_vsi *vsi)
5553{
5554	int q_idx;
5555
5556	if (!vsi->netdev)
5557		return;
5558
5559	ice_for_each_q_vector(vsi, q_idx) {
5560		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5561
5562		if (q_vector->rx.ring || q_vector->tx.ring)
5563			napi_disable(&q_vector->napi);
 
 
 
5564	}
5565}
5566
5567/**
5568 * ice_down - Shutdown the connection
5569 * @vsi: The VSI being stopped
 
 
5570 */
5571int ice_down(struct ice_vsi *vsi)
5572{
5573	int i, tx_err, rx_err, link_err = 0;
 
 
5574
5575	/* Caller of this function is expected to set the
5576	 * vsi->state __ICE_DOWN bit
5577	 */
5578	if (vsi->netdev) {
5579		netif_carrier_off(vsi->netdev);
5580		netif_tx_disable(vsi->netdev);
 
 
5581	}
5582
5583	ice_vsi_dis_irq(vsi);
5584
5585	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
5586	if (tx_err)
5587		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
5588			   vsi->vsi_num, tx_err);
5589	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
5590		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
5591		if (tx_err)
5592			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
5593				   vsi->vsi_num, tx_err);
5594	}
5595
5596	rx_err = ice_vsi_stop_all_rx_rings(vsi);
5597	if (rx_err)
5598		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
5599			   vsi->vsi_num, rx_err);
5600
5601	ice_napi_disable_all(vsi);
5602
5603	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
5604		link_err = ice_force_phys_link_state(vsi, false);
5605		if (link_err)
5606			netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
5607				   vsi->vsi_num, link_err);
5608	}
5609
5610	ice_for_each_txq(vsi, i)
5611		ice_clean_tx_ring(vsi->tx_rings[i]);
5612
 
 
 
 
5613	ice_for_each_rxq(vsi, i)
5614		ice_clean_rx_ring(vsi->rx_rings[i]);
5615
5616	if (tx_err || rx_err || link_err) {
5617		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
5618			   vsi->vsi_num, vsi->vsw->sw_id);
5619		return -EIO;
5620	}
5621
5622	return 0;
5623}
5624
5625/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5626 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
5627 * @vsi: VSI having resources allocated
5628 *
5629 * Return 0 on success, negative on failure
5630 */
5631int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
5632{
5633	int i, err = 0;
5634
5635	if (!vsi->num_txq) {
5636		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
5637			vsi->vsi_num);
5638		return -EINVAL;
5639	}
5640
5641	ice_for_each_txq(vsi, i) {
5642		struct ice_ring *ring = vsi->tx_rings[i];
5643
5644		if (!ring)
5645			return -EINVAL;
5646
5647		ring->netdev = vsi->netdev;
 
5648		err = ice_setup_tx_ring(ring);
5649		if (err)
5650			break;
5651	}
5652
5653	return err;
5654}
5655
5656/**
5657 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
5658 * @vsi: VSI having resources allocated
5659 *
5660 * Return 0 on success, negative on failure
5661 */
5662int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
5663{
5664	int i, err = 0;
5665
5666	if (!vsi->num_rxq) {
5667		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
5668			vsi->vsi_num);
5669		return -EINVAL;
5670	}
5671
5672	ice_for_each_rxq(vsi, i) {
5673		struct ice_ring *ring = vsi->rx_rings[i];
5674
5675		if (!ring)
5676			return -EINVAL;
5677
5678		ring->netdev = vsi->netdev;
 
5679		err = ice_setup_rx_ring(ring);
5680		if (err)
5681			break;
5682	}
5683
5684	return err;
5685}
5686
5687/**
5688 * ice_vsi_open_ctrl - open control VSI for use
5689 * @vsi: the VSI to open
5690 *
5691 * Initialization of the Control VSI
5692 *
5693 * Returns 0 on success, negative value on error
5694 */
5695int ice_vsi_open_ctrl(struct ice_vsi *vsi)
5696{
5697	char int_name[ICE_INT_NAME_STR_LEN];
5698	struct ice_pf *pf = vsi->back;
5699	struct device *dev;
5700	int err;
5701
5702	dev = ice_pf_to_dev(pf);
5703	/* allocate descriptors */
5704	err = ice_vsi_setup_tx_rings(vsi);
5705	if (err)
5706		goto err_setup_tx;
5707
5708	err = ice_vsi_setup_rx_rings(vsi);
5709	if (err)
5710		goto err_setup_rx;
5711
5712	err = ice_vsi_cfg(vsi);
5713	if (err)
5714		goto err_setup_rx;
5715
5716	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
5717		 dev_driver_string(dev), dev_name(dev));
5718	err = ice_vsi_req_irq_msix(vsi, int_name);
5719	if (err)
5720		goto err_setup_rx;
5721
5722	ice_vsi_cfg_msix(vsi);
5723
5724	err = ice_vsi_start_all_rx_rings(vsi);
5725	if (err)
5726		goto err_up_complete;
5727
5728	clear_bit(__ICE_DOWN, vsi->state);
5729	ice_vsi_ena_irq(vsi);
5730
5731	return 0;
5732
5733err_up_complete:
5734	ice_down(vsi);
5735err_setup_rx:
5736	ice_vsi_free_rx_rings(vsi);
5737err_setup_tx:
5738	ice_vsi_free_tx_rings(vsi);
5739
5740	return err;
5741}
5742
5743/**
5744 * ice_vsi_open - Called when a network interface is made active
5745 * @vsi: the VSI to open
5746 *
5747 * Initialization of the VSI
5748 *
5749 * Returns 0 on success, negative value on error
5750 */
5751static int ice_vsi_open(struct ice_vsi *vsi)
5752{
5753	char int_name[ICE_INT_NAME_STR_LEN];
5754	struct ice_pf *pf = vsi->back;
5755	int err;
5756
5757	/* allocate descriptors */
5758	err = ice_vsi_setup_tx_rings(vsi);
5759	if (err)
5760		goto err_setup_tx;
5761
5762	err = ice_vsi_setup_rx_rings(vsi);
5763	if (err)
5764		goto err_setup_rx;
5765
5766	err = ice_vsi_cfg(vsi);
5767	if (err)
5768		goto err_setup_rx;
5769
5770	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
5771		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
5772	err = ice_vsi_req_irq_msix(vsi, int_name);
5773	if (err)
5774		goto err_setup_rx;
5775
5776	/* Notify the stack of the actual queue counts. */
5777	err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
5778	if (err)
5779		goto err_set_qs;
 
 
 
5780
5781	err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
5782	if (err)
5783		goto err_set_qs;
 
5784
5785	err = ice_up_complete(vsi);
5786	if (err)
5787		goto err_up_complete;
5788
5789	return 0;
5790
5791err_up_complete:
5792	ice_down(vsi);
5793err_set_qs:
5794	ice_vsi_free_irq(vsi);
5795err_setup_rx:
5796	ice_vsi_free_rx_rings(vsi);
5797err_setup_tx:
5798	ice_vsi_free_tx_rings(vsi);
5799
5800	return err;
5801}
5802
5803/**
5804 * ice_vsi_release_all - Delete all VSIs
5805 * @pf: PF from which all VSIs are being removed
5806 */
5807static void ice_vsi_release_all(struct ice_pf *pf)
5808{
5809	int err, i;
5810
5811	if (!pf->vsi)
5812		return;
5813
5814	ice_for_each_vsi(pf, i) {
5815		if (!pf->vsi[i])
5816			continue;
5817
 
 
 
5818		err = ice_vsi_release(pf->vsi[i]);
5819		if (err)
5820			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
5821				i, err, pf->vsi[i]->vsi_num);
5822	}
5823}
5824
5825/**
5826 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
5827 * @pf: pointer to the PF instance
5828 * @type: VSI type to rebuild
5829 *
5830 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
5831 */
5832static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
5833{
5834	struct device *dev = ice_pf_to_dev(pf);
5835	enum ice_status status;
5836	int i, err;
5837
5838	ice_for_each_vsi(pf, i) {
5839		struct ice_vsi *vsi = pf->vsi[i];
5840
5841		if (!vsi || vsi->type != type)
5842			continue;
5843
5844		/* rebuild the VSI */
5845		err = ice_vsi_rebuild(vsi, true);
5846		if (err) {
5847			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
5848				err, vsi->idx, ice_vsi_type_str(type));
5849			return err;
5850		}
5851
5852		/* replay filters for the VSI */
5853		status = ice_replay_vsi(&pf->hw, vsi->idx);
5854		if (status) {
5855			dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n",
5856				ice_stat_str(status), vsi->idx,
5857				ice_vsi_type_str(type));
5858			return -EIO;
5859		}
5860
5861		/* Re-map HW VSI number, using VSI handle that has been
5862		 * previously validated in ice_replay_vsi() call above
5863		 */
5864		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
5865
5866		/* enable the VSI */
5867		err = ice_ena_vsi(vsi, false);
5868		if (err) {
5869			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
5870				err, vsi->idx, ice_vsi_type_str(type));
5871			return err;
5872		}
5873
5874		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
5875			 ice_vsi_type_str(type));
5876	}
5877
5878	return 0;
5879}
5880
5881/**
5882 * ice_update_pf_netdev_link - Update PF netdev link status
5883 * @pf: pointer to the PF instance
5884 */
5885static void ice_update_pf_netdev_link(struct ice_pf *pf)
5886{
5887	bool link_up;
5888	int i;
5889
5890	ice_for_each_vsi(pf, i) {
5891		struct ice_vsi *vsi = pf->vsi[i];
5892
5893		if (!vsi || vsi->type != ICE_VSI_PF)
5894			return;
5895
5896		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
5897		if (link_up) {
5898			netif_carrier_on(pf->vsi[i]->netdev);
5899			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
5900		} else {
5901			netif_carrier_off(pf->vsi[i]->netdev);
5902			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
5903		}
5904	}
5905}
5906
5907/**
5908 * ice_rebuild - rebuild after reset
5909 * @pf: PF to rebuild
5910 * @reset_type: type of reset
5911 *
5912 * Do not rebuild VF VSI in this flow because that is already handled via
5913 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
5914 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
5915 * to reset/rebuild all the VF VSI twice.
5916 */
5917static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
5918{
5919	struct device *dev = ice_pf_to_dev(pf);
5920	struct ice_hw *hw = &pf->hw;
5921	enum ice_status ret;
5922	int err;
5923
5924	if (test_bit(__ICE_DOWN, pf->state))
5925		goto clear_recovery;
5926
5927	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
5928
5929	ret = ice_init_all_ctrlq(hw);
5930	if (ret) {
5931		dev_err(dev, "control queues init failed %s\n",
5932			ice_stat_str(ret));
 
 
 
 
 
 
 
 
 
 
5933		goto err_init_ctrlq;
5934	}
5935
5936	/* if DDP was previously loaded successfully */
5937	if (!ice_is_safe_mode(pf)) {
5938		/* reload the SW DB of filter tables */
5939		if (reset_type == ICE_RESET_PFR)
5940			ice_fill_blk_tbls(hw);
5941		else
5942			/* Reload DDP Package after CORER/GLOBR reset */
5943			ice_load_pkg(NULL, pf);
5944	}
5945
5946	ret = ice_clear_pf_cfg(hw);
5947	if (ret) {
5948		dev_err(dev, "clear PF configuration failed %s\n",
5949			ice_stat_str(ret));
5950		goto err_init_ctrlq;
5951	}
5952
5953	if (pf->first_sw->dflt_vsi_ena)
5954		dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
5955	/* clear the default VSI configuration if it exists */
5956	pf->first_sw->dflt_vsi = NULL;
5957	pf->first_sw->dflt_vsi_ena = false;
5958
5959	ice_clear_pxe_mode(hw);
 
 
 
 
5960
5961	ret = ice_get_caps(hw);
5962	if (ret) {
5963		dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret));
5964		goto err_init_ctrlq;
5965	}
5966
5967	ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
5968	if (ret) {
5969		dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret));
5970		goto err_init_ctrlq;
5971	}
5972
 
 
 
 
 
 
5973	err = ice_sched_init_port(hw->port_info);
5974	if (err)
5975		goto err_sched_init_port;
5976
5977	/* start misc vector */
5978	err = ice_req_irq_msix_misc(pf);
5979	if (err) {
5980		dev_err(dev, "misc vector setup failed: %d\n", err);
5981		goto err_sched_init_port;
5982	}
5983
5984	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
5985		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
5986		if (!rd32(hw, PFQF_FD_SIZE)) {
5987			u16 unused, guar, b_effort;
5988
5989			guar = hw->func_caps.fd_fltr_guar;
5990			b_effort = hw->func_caps.fd_fltr_best_effort;
5991
5992			/* force guaranteed filter pool for PF */
5993			ice_alloc_fd_guar_item(hw, &unused, guar);
5994			/* force shared filter pool for PF */
5995			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
5996		}
5997	}
5998
5999	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
6000		ice_dcb_rebuild(pf);
6001
 
 
 
 
 
 
 
 
 
 
6002	/* rebuild PF VSI */
6003	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
6004	if (err) {
6005		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
6006		goto err_vsi_rebuild;
6007	}
6008
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6009	/* If Flow Director is active */
6010	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6011		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
6012		if (err) {
6013			dev_err(dev, "control VSI rebuild failed: %d\n", err);
6014			goto err_vsi_rebuild;
6015		}
6016
6017		/* replay HW Flow Director recipes */
6018		if (hw->fdir_prof)
6019			ice_fdir_replay_flows(hw);
6020
6021		/* replay Flow Director filters */
6022		ice_fdir_replay_fltrs(pf);
6023
6024		ice_rebuild_arfs(pf);
6025	}
6026
6027	ice_update_pf_netdev_link(pf);
6028
6029	/* tell the firmware we are up */
6030	ret = ice_send_version(pf);
6031	if (ret) {
6032		dev_err(dev, "Rebuild failed due to error sending driver version: %s\n",
6033			ice_stat_str(ret));
6034		goto err_vsi_rebuild;
6035	}
6036
6037	ice_replay_post(hw);
6038
6039	/* if we get here, reset flow is successful */
6040	clear_bit(__ICE_RESET_FAILED, pf->state);
 
 
 
 
 
 
 
6041	return;
6042
6043err_vsi_rebuild:
6044err_sched_init_port:
6045	ice_sched_cleanup_all(hw);
6046err_init_ctrlq:
6047	ice_shutdown_all_ctrlq(hw);
6048	set_bit(__ICE_RESET_FAILED, pf->state);
6049clear_recovery:
6050	/* set this bit in PF state to control service task scheduling */
6051	set_bit(__ICE_NEEDS_RESTART, pf->state);
6052	dev_err(dev, "Rebuild failed, unload and reload driver\n");
6053}
6054
6055/**
6056 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
6057 * @vsi: Pointer to VSI structure
6058 */
6059static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
6060{
6061	if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
6062		return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
6063	else
6064		return ICE_RXBUF_3072;
6065}
6066
6067/**
6068 * ice_change_mtu - NDO callback to change the MTU
6069 * @netdev: network interface device structure
6070 * @new_mtu: new value for maximum frame size
6071 *
6072 * Returns 0 on success, negative on failure
6073 */
6074static int ice_change_mtu(struct net_device *netdev, int new_mtu)
6075{
6076	struct ice_netdev_priv *np = netdev_priv(netdev);
6077	struct ice_vsi *vsi = np->vsi;
6078	struct ice_pf *pf = vsi->back;
 
6079	u8 count = 0;
 
6080
6081	if (new_mtu == (int)netdev->mtu) {
6082		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
6083		return 0;
6084	}
6085
6086	if (ice_is_xdp_ena_vsi(vsi)) {
 
6087		int frame_size = ice_max_xdp_frame_size(vsi);
6088
6089		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
6090			netdev_err(netdev, "max MTU for XDP usage is %d\n",
6091				   frame_size - ICE_ETH_PKT_HDR_PAD);
6092			return -EINVAL;
6093		}
 
 
 
 
 
 
6094	}
6095
6096	if (new_mtu < (int)netdev->min_mtu) {
6097		netdev_err(netdev, "new MTU invalid. min_mtu is %d\n",
6098			   netdev->min_mtu);
6099		return -EINVAL;
6100	} else if (new_mtu > (int)netdev->max_mtu) {
6101		netdev_err(netdev, "new MTU invalid. max_mtu is %d\n",
6102			   netdev->min_mtu);
6103		return -EINVAL;
6104	}
6105	/* if a reset is in progress, wait for some time for it to complete */
6106	do {
6107		if (ice_is_reset_in_progress(pf->state)) {
6108			count++;
6109			usleep_range(1000, 2000);
6110		} else {
6111			break;
6112		}
6113
6114	} while (count < 100);
6115
6116	if (count == 100) {
6117		netdev_err(netdev, "can't change MTU. Device is busy\n");
6118		return -EBUSY;
6119	}
6120
6121	netdev->mtu = (unsigned int)new_mtu;
 
 
 
6122
6123	/* if VSI is up, bring it down and then back up */
6124	if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
6125		int err;
6126
6127		err = ice_down(vsi);
6128		if (err) {
6129			netdev_err(netdev, "change MTU if_up err %d\n", err);
6130			return err;
6131		}
 
 
 
 
 
 
 
 
6132
6133		err = ice_up(vsi);
6134		if (err) {
6135			netdev_err(netdev, "change MTU if_up err %d\n", err);
6136			return err;
6137		}
 
 
6138	}
6139
6140	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
6141	return 0;
6142}
6143
6144/**
6145 * ice_aq_str - convert AQ err code to a string
6146 * @aq_err: the AQ error code to convert
6147 */
6148const char *ice_aq_str(enum ice_aq_err aq_err)
6149{
6150	switch (aq_err) {
6151	case ICE_AQ_RC_OK:
6152		return "OK";
6153	case ICE_AQ_RC_EPERM:
6154		return "ICE_AQ_RC_EPERM";
6155	case ICE_AQ_RC_ENOENT:
6156		return "ICE_AQ_RC_ENOENT";
6157	case ICE_AQ_RC_ENOMEM:
6158		return "ICE_AQ_RC_ENOMEM";
6159	case ICE_AQ_RC_EBUSY:
6160		return "ICE_AQ_RC_EBUSY";
6161	case ICE_AQ_RC_EEXIST:
6162		return "ICE_AQ_RC_EEXIST";
6163	case ICE_AQ_RC_EINVAL:
6164		return "ICE_AQ_RC_EINVAL";
6165	case ICE_AQ_RC_ENOSPC:
6166		return "ICE_AQ_RC_ENOSPC";
6167	case ICE_AQ_RC_ENOSYS:
6168		return "ICE_AQ_RC_ENOSYS";
6169	case ICE_AQ_RC_EMODE:
6170		return "ICE_AQ_RC_EMODE";
6171	case ICE_AQ_RC_ENOSEC:
6172		return "ICE_AQ_RC_ENOSEC";
6173	case ICE_AQ_RC_EBADSIG:
6174		return "ICE_AQ_RC_EBADSIG";
6175	case ICE_AQ_RC_ESVN:
6176		return "ICE_AQ_RC_ESVN";
6177	case ICE_AQ_RC_EBADMAN:
6178		return "ICE_AQ_RC_EBADMAN";
6179	case ICE_AQ_RC_EBADBUF:
6180		return "ICE_AQ_RC_EBADBUF";
6181	}
6182
6183	return "ICE_AQ_RC_UNKNOWN";
6184}
6185
6186/**
6187 * ice_stat_str - convert status err code to a string
6188 * @stat_err: the status error code to convert
 
 
 
 
6189 */
6190const char *ice_stat_str(enum ice_status stat_err)
6191{
6192	switch (stat_err) {
6193	case ICE_SUCCESS:
6194		return "OK";
6195	case ICE_ERR_PARAM:
6196		return "ICE_ERR_PARAM";
6197	case ICE_ERR_NOT_IMPL:
6198		return "ICE_ERR_NOT_IMPL";
6199	case ICE_ERR_NOT_READY:
6200		return "ICE_ERR_NOT_READY";
6201	case ICE_ERR_NOT_SUPPORTED:
6202		return "ICE_ERR_NOT_SUPPORTED";
6203	case ICE_ERR_BAD_PTR:
6204		return "ICE_ERR_BAD_PTR";
6205	case ICE_ERR_INVAL_SIZE:
6206		return "ICE_ERR_INVAL_SIZE";
6207	case ICE_ERR_DEVICE_NOT_SUPPORTED:
6208		return "ICE_ERR_DEVICE_NOT_SUPPORTED";
6209	case ICE_ERR_RESET_FAILED:
6210		return "ICE_ERR_RESET_FAILED";
6211	case ICE_ERR_FW_API_VER:
6212		return "ICE_ERR_FW_API_VER";
6213	case ICE_ERR_NO_MEMORY:
6214		return "ICE_ERR_NO_MEMORY";
6215	case ICE_ERR_CFG:
6216		return "ICE_ERR_CFG";
6217	case ICE_ERR_OUT_OF_RANGE:
6218		return "ICE_ERR_OUT_OF_RANGE";
6219	case ICE_ERR_ALREADY_EXISTS:
6220		return "ICE_ERR_ALREADY_EXISTS";
6221	case ICE_ERR_NVM_CHECKSUM:
6222		return "ICE_ERR_NVM_CHECKSUM";
6223	case ICE_ERR_BUF_TOO_SHORT:
6224		return "ICE_ERR_BUF_TOO_SHORT";
6225	case ICE_ERR_NVM_BLANK_MODE:
6226		return "ICE_ERR_NVM_BLANK_MODE";
6227	case ICE_ERR_IN_USE:
6228		return "ICE_ERR_IN_USE";
6229	case ICE_ERR_MAX_LIMIT:
6230		return "ICE_ERR_MAX_LIMIT";
6231	case ICE_ERR_RESET_ONGOING:
6232		return "ICE_ERR_RESET_ONGOING";
6233	case ICE_ERR_HW_TABLE:
6234		return "ICE_ERR_HW_TABLE";
6235	case ICE_ERR_DOES_NOT_EXIST:
6236		return "ICE_ERR_DOES_NOT_EXIST";
6237	case ICE_ERR_FW_DDP_MISMATCH:
6238		return "ICE_ERR_FW_DDP_MISMATCH";
6239	case ICE_ERR_AQ_ERROR:
6240		return "ICE_ERR_AQ_ERROR";
6241	case ICE_ERR_AQ_TIMEOUT:
6242		return "ICE_ERR_AQ_TIMEOUT";
6243	case ICE_ERR_AQ_FULL:
6244		return "ICE_ERR_AQ_FULL";
6245	case ICE_ERR_AQ_NO_WORK:
6246		return "ICE_ERR_AQ_NO_WORK";
6247	case ICE_ERR_AQ_EMPTY:
6248		return "ICE_ERR_AQ_EMPTY";
6249	case ICE_ERR_AQ_FW_CRITICAL:
6250		return "ICE_ERR_AQ_FW_CRITICAL";
6251	}
6252
6253	return "ICE_ERR_UNKNOWN";
6254}
6255
6256/**
6257 * ice_set_rss - Set RSS keys and lut
6258 * @vsi: Pointer to VSI structure
6259 * @seed: RSS hash seed
6260 * @lut: Lookup table
6261 * @lut_size: Lookup table size
6262 *
6263 * Returns 0 on success, negative on failure
6264 */
6265int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6266{
6267	struct ice_pf *pf = vsi->back;
6268	struct ice_hw *hw = &pf->hw;
6269	enum ice_status status;
6270	struct device *dev;
 
 
 
 
 
 
 
 
 
 
 
 
6271
6272	dev = ice_pf_to_dev(pf);
6273	if (seed) {
6274		struct ice_aqc_get_set_rss_keys *buf =
6275				  (struct ice_aqc_get_set_rss_keys *)seed;
6276
6277		status = ice_aq_set_rss_key(hw, vsi->idx, buf);
 
 
 
 
 
 
 
 
 
 
6278
6279		if (status) {
6280			dev_err(dev, "Cannot set RSS key, err %s aq_err %s\n",
6281				ice_stat_str(status),
6282				ice_aq_str(hw->adminq.sq_last_status));
6283			return -EIO;
6284		}
6285	}
6286
6287	if (lut) {
6288		status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6289					    lut, lut_size);
6290		if (status) {
6291			dev_err(dev, "Cannot set RSS lut, err %s aq_err %s\n",
6292				ice_stat_str(status),
6293				ice_aq_str(hw->adminq.sq_last_status));
6294			return -EIO;
6295		}
6296	}
6297
6298	return 0;
6299}
6300
6301/**
6302 * ice_get_rss - Get RSS keys and lut
6303 * @vsi: Pointer to VSI structure
6304 * @seed: Buffer to store the keys
6305 * @lut: Buffer to store the lookup table entries
6306 * @lut_size: Size of buffer to store the lookup table entries
6307 *
6308 * Returns 0 on success, negative on failure
6309 */
6310int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6311{
6312	struct ice_pf *pf = vsi->back;
6313	struct ice_hw *hw = &pf->hw;
6314	enum ice_status status;
6315	struct device *dev;
 
 
 
 
 
 
 
6316
6317	dev = ice_pf_to_dev(pf);
6318	if (seed) {
6319		struct ice_aqc_get_set_rss_keys *buf =
6320				  (struct ice_aqc_get_set_rss_keys *)seed;
6321
6322		status = ice_aq_get_rss_key(hw, vsi->idx, buf);
6323		if (status) {
6324			dev_err(dev, "Cannot get RSS key, err %s aq_err %s\n",
6325				ice_stat_str(status),
6326				ice_aq_str(hw->adminq.sq_last_status));
6327			return -EIO;
6328		}
6329	}
6330
6331	if (lut) {
6332		status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6333					    lut, lut_size);
6334		if (status) {
6335			dev_err(dev, "Cannot get RSS lut, err %s aq_err %s\n",
6336				ice_stat_str(status),
6337				ice_aq_str(hw->adminq.sq_last_status));
6338			return -EIO;
6339		}
 
6340	}
 
 
 
6341
6342	return 0;
 
 
6343}
6344
6345/**
6346 * ice_bridge_getlink - Get the hardware bridge mode
6347 * @skb: skb buff
6348 * @pid: process ID
6349 * @seq: RTNL message seq
6350 * @dev: the netdev being configured
6351 * @filter_mask: filter mask passed in
6352 * @nlflags: netlink flags passed in
6353 *
6354 * Return the bridge mode (VEB/VEPA)
6355 */
6356static int
6357ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
6358		   struct net_device *dev, u32 filter_mask, int nlflags)
6359{
6360	struct ice_netdev_priv *np = netdev_priv(dev);
6361	struct ice_vsi *vsi = np->vsi;
6362	struct ice_pf *pf = vsi->back;
6363	u16 bmode;
6364
6365	bmode = pf->first_sw->bridge_mode;
6366
6367	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
6368				       filter_mask, NULL);
6369}
6370
6371/**
6372 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
6373 * @vsi: Pointer to VSI structure
6374 * @bmode: Hardware bridge mode (VEB/VEPA)
6375 *
6376 * Returns 0 on success, negative on failure
6377 */
6378static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
6379{
6380	struct ice_aqc_vsi_props *vsi_props;
6381	struct ice_hw *hw = &vsi->back->hw;
6382	struct ice_vsi_ctx *ctxt;
6383	enum ice_status status;
6384	int ret = 0;
6385
6386	vsi_props = &vsi->info;
6387
6388	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
6389	if (!ctxt)
6390		return -ENOMEM;
6391
6392	ctxt->info = vsi->info;
6393
6394	if (bmode == BRIDGE_MODE_VEB)
6395		/* change from VEPA to VEB mode */
6396		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6397	else
6398		/* change from VEB to VEPA mode */
6399		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6400	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
6401
6402	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
6403	if (status) {
6404		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n",
6405			bmode, ice_stat_str(status),
6406			ice_aq_str(hw->adminq.sq_last_status));
6407		ret = -EIO;
6408		goto out;
6409	}
6410	/* Update sw flags for book keeping */
6411	vsi_props->sw_flags = ctxt->info.sw_flags;
6412
6413out:
6414	kfree(ctxt);
6415	return ret;
6416}
6417
6418/**
6419 * ice_bridge_setlink - Set the hardware bridge mode
6420 * @dev: the netdev being configured
6421 * @nlh: RTNL message
6422 * @flags: bridge setlink flags
6423 * @extack: netlink extended ack
6424 *
6425 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
6426 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
6427 * not already set for all VSIs connected to this switch. And also update the
6428 * unicast switch filter rules for the corresponding switch of the netdev.
6429 */
6430static int
6431ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
6432		   u16 __always_unused flags,
6433		   struct netlink_ext_ack __always_unused *extack)
6434{
6435	struct ice_netdev_priv *np = netdev_priv(dev);
6436	struct ice_pf *pf = np->vsi->back;
6437	struct nlattr *attr, *br_spec;
6438	struct ice_hw *hw = &pf->hw;
6439	enum ice_status status;
6440	struct ice_sw *pf_sw;
6441	int rem, v, err = 0;
6442
6443	pf_sw = pf->first_sw;
6444	/* find the attribute in the netlink message */
6445	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
 
 
6446
6447	nla_for_each_nested(attr, br_spec, rem) {
6448		__u16 mode;
6449
6450		if (nla_type(attr) != IFLA_BRIDGE_MODE)
6451			continue;
6452		mode = nla_get_u16(attr);
6453		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
6454			return -EINVAL;
6455		/* Continue  if bridge mode is not being flipped */
6456		if (mode == pf_sw->bridge_mode)
6457			continue;
6458		/* Iterates through the PF VSI list and update the loopback
6459		 * mode of the VSI
6460		 */
6461		ice_for_each_vsi(pf, v) {
6462			if (!pf->vsi[v])
6463				continue;
6464			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
6465			if (err)
6466				return err;
6467		}
6468
6469		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
6470		/* Update the unicast switch filter rules for the corresponding
6471		 * switch of the netdev
6472		 */
6473		status = ice_update_sw_rule_bridge_mode(hw);
6474		if (status) {
6475			netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n",
6476				   mode, ice_stat_str(status),
6477				   ice_aq_str(hw->adminq.sq_last_status));
6478			/* revert hw->evb_veb */
6479			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
6480			return -EIO;
6481		}
6482
6483		pf_sw->bridge_mode = mode;
6484	}
6485
6486	return 0;
6487}
6488
6489/**
6490 * ice_tx_timeout - Respond to a Tx Hang
6491 * @netdev: network interface device structure
6492 * @txqueue: Tx queue
6493 */
6494static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
6495{
6496	struct ice_netdev_priv *np = netdev_priv(netdev);
6497	struct ice_ring *tx_ring = NULL;
6498	struct ice_vsi *vsi = np->vsi;
6499	struct ice_pf *pf = vsi->back;
6500	u32 i;
6501
6502	pf->tx_timeout_count++;
6503
6504	/* Check if PFC is enabled for the TC to which the queue belongs
6505	 * to. If yes then Tx timeout is not caused by a hung queue, no
6506	 * need to reset and rebuild
6507	 */
6508	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
6509		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
6510			 txqueue);
6511		return;
6512	}
6513
6514	/* now that we have an index, find the tx_ring struct */
6515	for (i = 0; i < vsi->num_txq; i++)
6516		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
6517			if (txqueue == vsi->tx_rings[i]->q_index) {
6518				tx_ring = vsi->tx_rings[i];
6519				break;
6520			}
6521
6522	/* Reset recovery level if enough time has elapsed after last timeout.
6523	 * Also ensure no new reset action happens before next timeout period.
6524	 */
6525	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
6526		pf->tx_timeout_recovery_level = 1;
6527	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
6528				       netdev->watchdog_timeo)))
6529		return;
6530
6531	if (tx_ring) {
6532		struct ice_hw *hw = &pf->hw;
6533		u32 head, val = 0;
6534
6535		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
6536			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
6537		/* Read interrupt register */
6538		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
6539
6540		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
6541			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
6542			    head, tx_ring->next_to_use, val);
6543	}
6544
6545	pf->tx_timeout_last_recovery = jiffies;
6546	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
6547		    pf->tx_timeout_recovery_level, txqueue);
6548
6549	switch (pf->tx_timeout_recovery_level) {
6550	case 1:
6551		set_bit(__ICE_PFR_REQ, pf->state);
6552		break;
6553	case 2:
6554		set_bit(__ICE_CORER_REQ, pf->state);
6555		break;
6556	case 3:
6557		set_bit(__ICE_GLOBR_REQ, pf->state);
6558		break;
6559	default:
6560		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
6561		set_bit(__ICE_DOWN, pf->state);
6562		set_bit(__ICE_NEEDS_RESTART, vsi->state);
6563		set_bit(__ICE_SERVICE_DIS, pf->state);
6564		break;
6565	}
6566
6567	ice_service_task_schedule(pf);
6568	pf->tx_timeout_recovery_level++;
6569}
6570
6571/**
6572 * ice_udp_tunnel_add - Get notifications about UDP tunnel ports that come up
6573 * @netdev: This physical port's netdev
6574 * @ti: Tunnel endpoint information
 
6575 */
6576static void
6577ice_udp_tunnel_add(struct net_device *netdev, struct udp_tunnel_info *ti)
 
 
6578{
6579	struct ice_netdev_priv *np = netdev_priv(netdev);
6580	struct ice_vsi *vsi = np->vsi;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6581	struct ice_pf *pf = vsi->back;
6582	enum ice_tunnel_type tnl_type;
6583	u16 port = ntohs(ti->port);
6584	enum ice_status status;
6585
6586	switch (ti->type) {
6587	case UDP_TUNNEL_TYPE_VXLAN:
6588		tnl_type = TNL_VXLAN;
6589		break;
6590	case UDP_TUNNEL_TYPE_GENEVE:
6591		tnl_type = TNL_GENEVE;
6592		break;
6593	default:
6594		netdev_err(netdev, "Unknown tunnel type\n");
6595		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6596	}
6597
6598	status = ice_create_tunnel(&pf->hw, tnl_type, port);
6599	if (status == ICE_ERR_OUT_OF_RANGE)
6600		netdev_info(netdev, "Max tunneled UDP ports reached, port %d not added\n",
6601			    port);
6602	else if (status)
6603		netdev_err(netdev, "Error adding UDP tunnel - %s\n",
6604			   ice_stat_str(status));
6605}
6606
6607/**
6608 * ice_udp_tunnel_del - Get notifications about UDP tunnel ports that go away
6609 * @netdev: This physical port's netdev
6610 * @ti: Tunnel endpoint information
 
 
 
6611 */
6612static void
6613ice_udp_tunnel_del(struct net_device *netdev, struct udp_tunnel_info *ti)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6614{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6615	struct ice_netdev_priv *np = netdev_priv(netdev);
6616	struct ice_vsi *vsi = np->vsi;
6617	struct ice_pf *pf = vsi->back;
6618	u16 port = ntohs(ti->port);
6619	enum ice_status status;
6620	bool retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6621
6622	retval = ice_tunnel_port_in_use(&pf->hw, port, NULL);
6623	if (!retval) {
6624		netdev_info(netdev, "port %d not found in UDP tunnels list\n",
6625			    port);
6626		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6627	}
 
 
 
 
 
 
 
 
 
 
 
 
 
6628
6629	status = ice_destroy_tunnel(&pf->hw, port, false);
6630	if (status)
6631		netdev_err(netdev, "error deleting port %d from UDP tunnels list\n",
6632			   port);
6633}
6634
6635/**
6636 * ice_open - Called when a network interface becomes active
6637 * @netdev: network interface device structure
6638 *
6639 * The open entry point is called when a network interface is made
6640 * active by the system (IFF_UP). At this point all resources needed
6641 * for transmit and receive operations are allocated, the interrupt
6642 * handler is registered with the OS, the netdev watchdog is enabled,
6643 * and the stack is notified that the interface is ready.
6644 *
6645 * Returns 0 on success, negative value on failure
6646 */
6647int ice_open(struct net_device *netdev)
6648{
6649	struct ice_netdev_priv *np = netdev_priv(netdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6650	struct ice_vsi *vsi = np->vsi;
6651	struct ice_pf *pf = vsi->back;
6652	struct ice_port_info *pi;
6653	int err;
6654
6655	if (test_bit(__ICE_NEEDS_RESTART, pf->state)) {
6656		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
6657		return -EIO;
6658	}
6659
6660	if (test_bit(__ICE_DOWN, pf->state)) {
6661		netdev_err(netdev, "device is not ready yet\n");
6662		return -EBUSY;
6663	}
6664
6665	netif_carrier_off(netdev);
6666
6667	pi = vsi->port_info;
6668	err = ice_update_link_info(pi);
6669	if (err) {
6670		netdev_err(netdev, "Failed to get link info, error %d\n",
6671			   err);
6672		return err;
6673	}
6674
 
 
6675	/* Set PHY if there is media, otherwise, turn off PHY */
6676	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
6677		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6678		if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state)) {
6679			err = ice_init_phy_user_cfg(pi);
6680			if (err) {
6681				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
6682					   err);
6683				return err;
6684			}
6685		}
6686
6687		err = ice_configure_phy(vsi);
6688		if (err) {
6689			netdev_err(netdev, "Failed to set physical link up, error %d\n",
6690				   err);
6691			return err;
6692		}
6693	} else {
6694		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6695		err = ice_aq_set_link_restart_an(pi, false, NULL);
6696		if (err) {
6697			netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n",
6698				   vsi->vsi_num, err);
6699			return err;
6700		}
6701	}
6702
6703	err = ice_vsi_open(vsi);
6704	if (err)
6705		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
6706			   vsi->vsi_num, vsi->vsw->sw_id);
6707
6708	/* Update existing tunnels information */
6709	udp_tunnel_get_rx_info(netdev);
6710
6711	return err;
6712}
6713
6714/**
6715 * ice_stop - Disables a network interface
6716 * @netdev: network interface device structure
6717 *
6718 * The stop entry point is called when an interface is de-activated by the OS,
6719 * and the netdevice enters the DOWN state. The hardware is still under the
6720 * driver's control, but the netdev interface is disabled.
6721 *
6722 * Returns success only - not allowed to fail
6723 */
6724int ice_stop(struct net_device *netdev)
6725{
6726	struct ice_netdev_priv *np = netdev_priv(netdev);
6727	struct ice_vsi *vsi = np->vsi;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6728
6729	ice_vsi_close(vsi);
6730
6731	return 0;
6732}
6733
6734/**
6735 * ice_features_check - Validate encapsulated packet conforms to limits
6736 * @skb: skb buffer
6737 * @netdev: This port's netdev
6738 * @features: Offload features that the stack believes apply
6739 */
6740static netdev_features_t
6741ice_features_check(struct sk_buff *skb,
6742		   struct net_device __always_unused *netdev,
6743		   netdev_features_t features)
6744{
 
6745	size_t len;
6746
6747	/* No point in doing any of this if neither checksum nor GSO are
6748	 * being requested for this frame. We can rule out both by just
6749	 * checking for CHECKSUM_PARTIAL
6750	 */
6751	if (skb->ip_summed != CHECKSUM_PARTIAL)
6752		return features;
6753
6754	/* We cannot support GSO if the MSS is going to be less than
6755	 * 64 bytes. If it is then we need to drop support for GSO.
6756	 */
6757	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
6758		features &= ~NETIF_F_GSO_MASK;
6759
6760	len = skb_network_header(skb) - skb->data;
6761	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
6762		goto out_rm_features;
6763
6764	len = skb_transport_header(skb) - skb_network_header(skb);
6765	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6766		goto out_rm_features;
6767
6768	if (skb->encapsulation) {
6769		len = skb_inner_network_header(skb) - skb_transport_header(skb);
6770		if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
6771			goto out_rm_features;
 
 
 
 
 
 
 
 
 
6772
6773		len = skb_inner_transport_header(skb) -
6774		      skb_inner_network_header(skb);
6775		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6776			goto out_rm_features;
6777	}
6778
6779	return features;
6780out_rm_features:
6781	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
6782}
6783
6784static const struct net_device_ops ice_netdev_safe_mode_ops = {
6785	.ndo_open = ice_open,
6786	.ndo_stop = ice_stop,
6787	.ndo_start_xmit = ice_start_xmit,
6788	.ndo_set_mac_address = ice_set_mac_address,
6789	.ndo_validate_addr = eth_validate_addr,
6790	.ndo_change_mtu = ice_change_mtu,
6791	.ndo_get_stats64 = ice_get_stats64,
6792	.ndo_tx_timeout = ice_tx_timeout,
 
6793};
6794
6795static const struct net_device_ops ice_netdev_ops = {
6796	.ndo_open = ice_open,
6797	.ndo_stop = ice_stop,
6798	.ndo_start_xmit = ice_start_xmit,
 
6799	.ndo_features_check = ice_features_check,
 
6800	.ndo_set_rx_mode = ice_set_rx_mode,
6801	.ndo_set_mac_address = ice_set_mac_address,
6802	.ndo_validate_addr = eth_validate_addr,
6803	.ndo_change_mtu = ice_change_mtu,
6804	.ndo_get_stats64 = ice_get_stats64,
6805	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
 
6806	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
6807	.ndo_set_vf_mac = ice_set_vf_mac,
6808	.ndo_get_vf_config = ice_get_vf_cfg,
6809	.ndo_set_vf_trust = ice_set_vf_trust,
6810	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
6811	.ndo_set_vf_link_state = ice_set_vf_link_state,
6812	.ndo_get_vf_stats = ice_get_vf_stats,
 
6813	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
6814	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
 
6815	.ndo_set_features = ice_set_features,
6816	.ndo_bridge_getlink = ice_bridge_getlink,
6817	.ndo_bridge_setlink = ice_bridge_setlink,
6818	.ndo_fdb_add = ice_fdb_add,
6819	.ndo_fdb_del = ice_fdb_del,
6820#ifdef CONFIG_RFS_ACCEL
6821	.ndo_rx_flow_steer = ice_rx_flow_steer,
6822#endif
6823	.ndo_tx_timeout = ice_tx_timeout,
6824	.ndo_bpf = ice_xdp,
6825	.ndo_xdp_xmit = ice_xdp_xmit,
6826	.ndo_xsk_wakeup = ice_xsk_wakeup,
6827	.ndo_udp_tunnel_add = ice_udp_tunnel_add,
6828	.ndo_udp_tunnel_del = ice_udp_tunnel_del,
6829};