Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Faraday FTGMAC100 Gigabit Ethernet
   4 *
   5 * (C) Copyright 2009-2011 Faraday Technology
   6 * Po-Yu Chuang <ratbert@faraday-tech.com>
   7 */
   8
   9#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
  10
  11#include <linux/clk.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/etherdevice.h>
  14#include <linux/ethtool.h>
  15#include <linux/interrupt.h>
  16#include <linux/io.h>
  17#include <linux/module.h>
  18#include <linux/netdevice.h>
  19#include <linux/of.h>
  20#include <linux/of_mdio.h>
  21#include <linux/phy.h>
  22#include <linux/platform_device.h>
  23#include <linux/property.h>
  24#include <linux/crc32.h>
  25#include <linux/if_vlan.h>
  26#include <linux/of_net.h>
  27#include <net/ip.h>
  28#include <net/ncsi.h>
  29
  30#include "ftgmac100.h"
  31
  32#define DRV_NAME	"ftgmac100"
  33
  34/* Arbitrary values, I am not sure the HW has limits */
  35#define MAX_RX_QUEUE_ENTRIES	1024
  36#define MAX_TX_QUEUE_ENTRIES	1024
  37#define MIN_RX_QUEUE_ENTRIES	32
  38#define MIN_TX_QUEUE_ENTRIES	32
  39
  40/* Defaults */
  41#define DEF_RX_QUEUE_ENTRIES	128
  42#define DEF_TX_QUEUE_ENTRIES	128
  43
  44#define MAX_PKT_SIZE		1536
  45#define RX_BUF_SIZE		MAX_PKT_SIZE	/* must be smaller than 0x3fff */
  46
  47/* Min number of tx ring entries before stopping queue */
  48#define TX_THRESHOLD		(MAX_SKB_FRAGS + 1)
  49
  50#define FTGMAC_100MHZ		100000000
  51#define FTGMAC_25MHZ		25000000
  52
  53struct ftgmac100 {
  54	/* Registers */
  55	struct resource *res;
  56	void __iomem *base;
  57
  58	/* Rx ring */
  59	unsigned int rx_q_entries;
  60	struct ftgmac100_rxdes *rxdes;
  61	dma_addr_t rxdes_dma;
  62	struct sk_buff **rx_skbs;
  63	unsigned int rx_pointer;
  64	u32 rxdes0_edorr_mask;
  65
  66	/* Tx ring */
  67	unsigned int tx_q_entries;
  68	struct ftgmac100_txdes *txdes;
  69	dma_addr_t txdes_dma;
  70	struct sk_buff **tx_skbs;
  71	unsigned int tx_clean_pointer;
  72	unsigned int tx_pointer;
  73	u32 txdes0_edotr_mask;
  74
  75	/* Used to signal the reset task of ring change request */
  76	unsigned int new_rx_q_entries;
  77	unsigned int new_tx_q_entries;
  78
  79	/* Scratch page to use when rx skb alloc fails */
  80	void *rx_scratch;
  81	dma_addr_t rx_scratch_dma;
  82
  83	/* Component structures */
  84	struct net_device *netdev;
  85	struct device *dev;
  86	struct ncsi_dev *ndev;
  87	struct napi_struct napi;
  88	struct work_struct reset_task;
  89	struct mii_bus *mii_bus;
  90	struct clk *clk;
  91
  92	/* AST2500/AST2600 RMII ref clock gate */
  93	struct clk *rclk;
  94
  95	/* Link management */
  96	int cur_speed;
  97	int cur_duplex;
  98	bool use_ncsi;
  99
 100	/* Multicast filter settings */
 101	u32 maht0;
 102	u32 maht1;
 103
 104	/* Flow control settings */
 105	bool tx_pause;
 106	bool rx_pause;
 107	bool aneg_pause;
 108
 109	/* Misc */
 110	bool need_mac_restart;
 111	bool is_aspeed;
 112};
 113
 114static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
 115{
 116	struct net_device *netdev = priv->netdev;
 117	int i;
 118
 119	/* NOTE: reset clears all registers */
 120	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
 121	iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
 122		  priv->base + FTGMAC100_OFFSET_MACCR);
 123	for (i = 0; i < 200; i++) {
 124		unsigned int maccr;
 125
 126		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
 127		if (!(maccr & FTGMAC100_MACCR_SW_RST))
 128			return 0;
 129
 130		udelay(1);
 131	}
 132
 133	netdev_err(netdev, "Hardware reset failed\n");
 134	return -EIO;
 135}
 136
 137static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
 138{
 139	u32 maccr = 0;
 140
 141	switch (priv->cur_speed) {
 142	case SPEED_10:
 143	case 0: /* no link */
 144		break;
 145
 146	case SPEED_100:
 147		maccr |= FTGMAC100_MACCR_FAST_MODE;
 148		break;
 149
 150	case SPEED_1000:
 151		maccr |= FTGMAC100_MACCR_GIGA_MODE;
 152		break;
 153	default:
 154		netdev_err(priv->netdev, "Unknown speed %d !\n",
 155			   priv->cur_speed);
 156		break;
 157	}
 158
 159	/* (Re)initialize the queue pointers */
 160	priv->rx_pointer = 0;
 161	priv->tx_clean_pointer = 0;
 162	priv->tx_pointer = 0;
 163
 164	/* The doc says reset twice with 10us interval */
 165	if (ftgmac100_reset_mac(priv, maccr))
 166		return -EIO;
 167	usleep_range(10, 1000);
 168	return ftgmac100_reset_mac(priv, maccr);
 169}
 170
 171static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
 172{
 173	unsigned int maddr = mac[0] << 8 | mac[1];
 174	unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
 175
 176	iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
 177	iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
 178}
 179
 180static int ftgmac100_initial_mac(struct ftgmac100 *priv)
 181{
 182	u8 mac[ETH_ALEN];
 183	unsigned int m;
 184	unsigned int l;
 185	int err;
 186
 187	err = of_get_ethdev_address(priv->dev->of_node, priv->netdev);
 188	if (err == -EPROBE_DEFER)
 189		return err;
 190	if (!err) {
 191		dev_info(priv->dev, "Read MAC address %pM from device tree\n",
 192			 priv->netdev->dev_addr);
 193		return 0;
 194	}
 195
 196	m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
 197	l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);
 198
 199	mac[0] = (m >> 8) & 0xff;
 200	mac[1] = m & 0xff;
 201	mac[2] = (l >> 24) & 0xff;
 202	mac[3] = (l >> 16) & 0xff;
 203	mac[4] = (l >> 8) & 0xff;
 204	mac[5] = l & 0xff;
 205
 206	if (is_valid_ether_addr(mac)) {
 207		eth_hw_addr_set(priv->netdev, mac);
 208		dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
 209	} else {
 210		eth_hw_addr_random(priv->netdev);
 211		dev_info(priv->dev, "Generated random MAC address %pM\n",
 212			 priv->netdev->dev_addr);
 213	}
 214
 215	return 0;
 216}
 217
 218static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
 219{
 220	int ret;
 221
 222	ret = eth_prepare_mac_addr_change(dev, p);
 223	if (ret < 0)
 224		return ret;
 225
 226	eth_commit_mac_addr_change(dev, p);
 227	ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
 228
 229	return 0;
 230}
 231
 232static void ftgmac100_config_pause(struct ftgmac100 *priv)
 233{
 234	u32 fcr = FTGMAC100_FCR_PAUSE_TIME(16);
 235
 236	/* Throttle tx queue when receiving pause frames */
 237	if (priv->rx_pause)
 238		fcr |= FTGMAC100_FCR_FC_EN;
 239
 240	/* Enables sending pause frames when the RX queue is past a
 241	 * certain threshold.
 242	 */
 243	if (priv->tx_pause)
 244		fcr |= FTGMAC100_FCR_FCTHR_EN;
 245
 246	iowrite32(fcr, priv->base + FTGMAC100_OFFSET_FCR);
 247}
 248
 249static void ftgmac100_init_hw(struct ftgmac100 *priv)
 250{
 251	u32 reg, rfifo_sz, tfifo_sz;
 252
 253	/* Clear stale interrupts */
 254	reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
 255	iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR);
 256
 257	/* Setup RX ring buffer base */
 258	iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR);
 259
 260	/* Setup TX ring buffer base */
 261	iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
 262
 263	/* Configure RX buffer size */
 264	iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE),
 265		  priv->base + FTGMAC100_OFFSET_RBSR);
 266
 267	/* Set RX descriptor autopoll */
 268	iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1),
 269		  priv->base + FTGMAC100_OFFSET_APTC);
 270
 271	/* Write MAC address */
 272	ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
 273
 274	/* Write multicast filter */
 275	iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
 276	iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
 277
 278	/* Configure descriptor sizes and increase burst sizes according
 279	 * to values in Aspeed SDK. The FIFO arbitration is enabled and
 280	 * the thresholds set based on the recommended values in the
 281	 * AST2400 specification.
 282	 */
 283	iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) |   /* 2*8 bytes RX descs */
 284		  FTGMAC100_DBLAC_TXDES_SIZE(2) |   /* 2*8 bytes TX descs */
 285		  FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */
 286		  FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */
 287		  FTGMAC100_DBLAC_RX_THR_EN |       /* Enable fifo threshold arb */
 288		  FTGMAC100_DBLAC_RXFIFO_HTHR(6) |  /* 6/8 of FIFO high threshold */
 289		  FTGMAC100_DBLAC_RXFIFO_LTHR(2),   /* 2/8 of FIFO low threshold */
 290		  priv->base + FTGMAC100_OFFSET_DBLAC);
 291
 292	/* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt
 293	 * mitigation doesn't seem to provide any benefit with NAPI so leave
 294	 * it at that.
 295	 */
 296	iowrite32(FTGMAC100_ITC_RXINT_THR(1) |
 297		  FTGMAC100_ITC_TXINT_THR(1),
 298		  priv->base + FTGMAC100_OFFSET_ITC);
 299
 300	/* Configure FIFO sizes in the TPAFCR register */
 301	reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR);
 302	rfifo_sz = reg & 0x00000007;
 303	tfifo_sz = (reg >> 3) & 0x00000007;
 304	reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR);
 305	reg &= ~0x3f000000;
 306	reg |= (tfifo_sz << 27);
 307	reg |= (rfifo_sz << 24);
 308	iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR);
 309}
 310
 311static void ftgmac100_start_hw(struct ftgmac100 *priv)
 312{
 313	u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
 314
 315	/* Keep the original GMAC and FAST bits */
 316	maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
 317
 318	/* Add all the main enable bits */
 319	maccr |= FTGMAC100_MACCR_TXDMA_EN	|
 320		 FTGMAC100_MACCR_RXDMA_EN	|
 321		 FTGMAC100_MACCR_TXMAC_EN	|
 322		 FTGMAC100_MACCR_RXMAC_EN	|
 323		 FTGMAC100_MACCR_CRC_APD	|
 324		 FTGMAC100_MACCR_PHY_LINK_LEVEL	|
 325		 FTGMAC100_MACCR_RX_RUNT	|
 326		 FTGMAC100_MACCR_RX_BROADPKT;
 327
 328	/* Add other bits as needed */
 329	if (priv->cur_duplex == DUPLEX_FULL)
 330		maccr |= FTGMAC100_MACCR_FULLDUP;
 331	if (priv->netdev->flags & IFF_PROMISC)
 332		maccr |= FTGMAC100_MACCR_RX_ALL;
 333	if (priv->netdev->flags & IFF_ALLMULTI)
 334		maccr |= FTGMAC100_MACCR_RX_MULTIPKT;
 335	else if (netdev_mc_count(priv->netdev))
 336		maccr |= FTGMAC100_MACCR_HT_MULTI_EN;
 337
 338	/* Vlan filtering enabled */
 339	if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
 340		maccr |= FTGMAC100_MACCR_RM_VLAN;
 341
 342	/* Hit the HW */
 343	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
 344}
 345
 346static void ftgmac100_stop_hw(struct ftgmac100 *priv)
 347{
 348	iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
 349}
 350
 351static void ftgmac100_calc_mc_hash(struct ftgmac100 *priv)
 352{
 353	struct netdev_hw_addr *ha;
 354
 355	priv->maht1 = 0;
 356	priv->maht0 = 0;
 357	netdev_for_each_mc_addr(ha, priv->netdev) {
 358		u32 crc_val = ether_crc_le(ETH_ALEN, ha->addr);
 359
 360		crc_val = (~(crc_val >> 2)) & 0x3f;
 361		if (crc_val >= 32)
 362			priv->maht1 |= 1ul << (crc_val - 32);
 363		else
 364			priv->maht0 |= 1ul << (crc_val);
 365	}
 366}
 367
 368static void ftgmac100_set_rx_mode(struct net_device *netdev)
 369{
 370	struct ftgmac100 *priv = netdev_priv(netdev);
 371
 372	/* Setup the hash filter */
 373	ftgmac100_calc_mc_hash(priv);
 374
 375	/* Interface down ? that's all there is to do */
 376	if (!netif_running(netdev))
 377		return;
 378
 379	/* Update the HW */
 380	iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
 381	iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
 382
 383	/* Reconfigure MACCR */
 384	ftgmac100_start_hw(priv);
 385}
 386
 387static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
 388				  struct ftgmac100_rxdes *rxdes, gfp_t gfp)
 389{
 390	struct net_device *netdev = priv->netdev;
 391	struct sk_buff *skb;
 392	dma_addr_t map;
 393	int err = 0;
 394
 395	skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
 396	if (unlikely(!skb)) {
 397		if (net_ratelimit())
 398			netdev_warn(netdev, "failed to allocate rx skb\n");
 399		err = -ENOMEM;
 400		map = priv->rx_scratch_dma;
 401	} else {
 402		map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
 403				     DMA_FROM_DEVICE);
 404		if (unlikely(dma_mapping_error(priv->dev, map))) {
 405			if (net_ratelimit())
 406				netdev_err(netdev, "failed to map rx page\n");
 407			dev_kfree_skb_any(skb);
 408			map = priv->rx_scratch_dma;
 409			skb = NULL;
 410			err = -ENOMEM;
 411		}
 412	}
 413
 414	/* Store skb */
 415	priv->rx_skbs[entry] = skb;
 416
 417	/* Store DMA address into RX desc */
 418	rxdes->rxdes3 = cpu_to_le32(map);
 419
 420	/* Ensure the above is ordered vs clearing the OWN bit */
 421	dma_wmb();
 422
 423	/* Clean status (which resets own bit) */
 424	if (entry == (priv->rx_q_entries - 1))
 425		rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
 426	else
 427		rxdes->rxdes0 = 0;
 428
 429	return err;
 430}
 431
 432static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv,
 433					      unsigned int pointer)
 434{
 435	return (pointer + 1) & (priv->rx_q_entries - 1);
 436}
 437
 438static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
 439{
 440	struct net_device *netdev = priv->netdev;
 441
 442	if (status & FTGMAC100_RXDES0_RX_ERR)
 443		netdev->stats.rx_errors++;
 444
 445	if (status & FTGMAC100_RXDES0_CRC_ERR)
 446		netdev->stats.rx_crc_errors++;
 447
 448	if (status & (FTGMAC100_RXDES0_FTL |
 449		      FTGMAC100_RXDES0_RUNT |
 450		      FTGMAC100_RXDES0_RX_ODD_NB))
 451		netdev->stats.rx_length_errors++;
 452}
 453
 454static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
 455{
 456	struct net_device *netdev = priv->netdev;
 457	struct ftgmac100_rxdes *rxdes;
 458	struct sk_buff *skb;
 459	unsigned int pointer, size;
 460	u32 status, csum_vlan;
 461	dma_addr_t map;
 462
 463	/* Grab next RX descriptor */
 464	pointer = priv->rx_pointer;
 465	rxdes = &priv->rxdes[pointer];
 466
 467	/* Grab descriptor status */
 468	status = le32_to_cpu(rxdes->rxdes0);
 469
 470	/* Do we have a packet ? */
 471	if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
 472		return false;
 473
 474	/* Order subsequent reads with the test for the ready bit */
 475	dma_rmb();
 476
 477	/* We don't cope with fragmented RX packets */
 478	if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
 479		     !(status & FTGMAC100_RXDES0_LRS)))
 480		goto drop;
 481
 482	/* Grab received size and csum vlan field in the descriptor */
 483	size = status & FTGMAC100_RXDES0_VDBC;
 484	csum_vlan = le32_to_cpu(rxdes->rxdes1);
 485
 486	/* Any error (other than csum offload) flagged ? */
 487	if (unlikely(status & RXDES0_ANY_ERROR)) {
 488		/* Correct for incorrect flagging of runt packets
 489		 * with vlan tags... Just accept a runt packet that
 490		 * has been flagged as vlan and whose size is at
 491		 * least 60 bytes.
 492		 */
 493		if ((status & FTGMAC100_RXDES0_RUNT) &&
 494		    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
 495		    (size >= 60))
 496			status &= ~FTGMAC100_RXDES0_RUNT;
 497
 498		/* Any error still in there ? */
 499		if (status & RXDES0_ANY_ERROR) {
 500			ftgmac100_rx_packet_error(priv, status);
 501			goto drop;
 502		}
 503	}
 504
 505	/* If the packet had no skb (failed to allocate earlier)
 506	 * then try to allocate one and skip
 507	 */
 508	skb = priv->rx_skbs[pointer];
 509	if (!unlikely(skb)) {
 510		ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
 511		goto drop;
 512	}
 513
 514	if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
 515		netdev->stats.multicast++;
 516
 517	/* If the HW found checksum errors, bounce it to software.
 518	 *
 519	 * If we didn't, we need to see if the packet was recognized
 520	 * by HW as one of the supported checksummed protocols before
 521	 * we accept the HW test results.
 522	 */
 523	if (netdev->features & NETIF_F_RXCSUM) {
 524		u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
 525			FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
 526			FTGMAC100_RXDES1_IP_CHKSUM_ERR;
 527		if ((csum_vlan & err_bits) ||
 528		    !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
 529			skb->ip_summed = CHECKSUM_NONE;
 530		else
 531			skb->ip_summed = CHECKSUM_UNNECESSARY;
 532	}
 533
 534	/* Transfer received size to skb */
 535	skb_put(skb, size);
 536
 537	/* Extract vlan tag */
 538	if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
 539	    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL))
 540		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 541				       csum_vlan & 0xffff);
 542
 543	/* Tear down DMA mapping, do necessary cache management */
 544	map = le32_to_cpu(rxdes->rxdes3);
 545
 546#if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
 547	/* When we don't have an iommu, we can save cycles by not
 548	 * invalidating the cache for the part of the packet that
 549	 * wasn't received.
 550	 */
 551	dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
 552#else
 553	dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
 554#endif
 555
 556
 557	/* Resplenish rx ring */
 558	ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
 559	priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
 560
 561	skb->protocol = eth_type_trans(skb, netdev);
 562
 563	netdev->stats.rx_packets++;
 564	netdev->stats.rx_bytes += size;
 565
 566	/* push packet to protocol stack */
 567	if (skb->ip_summed == CHECKSUM_NONE)
 568		netif_receive_skb(skb);
 569	else
 570		napi_gro_receive(&priv->napi, skb);
 571
 572	(*processed)++;
 573	return true;
 574
 575 drop:
 576	/* Clean rxdes0 (which resets own bit) */
 577	rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
 578	priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
 579	netdev->stats.rx_dropped++;
 580	return true;
 581}
 582
 583static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
 584				     unsigned int index)
 585{
 586	if (index == (priv->tx_q_entries - 1))
 587		return priv->txdes0_edotr_mask;
 588	else
 589		return 0;
 590}
 591
 592static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv,
 593					      unsigned int pointer)
 594{
 595	return (pointer + 1) & (priv->tx_q_entries - 1);
 596}
 597
 598static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
 599{
 600	/* Returns the number of available slots in the TX queue
 601	 *
 602	 * This always leaves one free slot so we don't have to
 603	 * worry about empty vs. full, and this simplifies the
 604	 * test for ftgmac100_tx_buf_cleanable() below
 605	 */
 606	return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
 607		(priv->tx_q_entries - 1);
 608}
 609
 610static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
 611{
 612	return priv->tx_pointer != priv->tx_clean_pointer;
 613}
 614
 615static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
 616				     unsigned int pointer,
 617				     struct sk_buff *skb,
 618				     struct ftgmac100_txdes *txdes,
 619				     u32 ctl_stat)
 620{
 621	dma_addr_t map = le32_to_cpu(txdes->txdes3);
 622	size_t len;
 623
 624	if (ctl_stat & FTGMAC100_TXDES0_FTS) {
 625		len = skb_headlen(skb);
 626		dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
 627	} else {
 628		len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
 629		dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
 630	}
 631
 632	/* Free SKB on last segment */
 633	if (ctl_stat & FTGMAC100_TXDES0_LTS)
 634		dev_kfree_skb(skb);
 635	priv->tx_skbs[pointer] = NULL;
 636}
 637
 638static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
 639{
 640	struct net_device *netdev = priv->netdev;
 641	struct ftgmac100_txdes *txdes;
 642	struct sk_buff *skb;
 643	unsigned int pointer;
 644	u32 ctl_stat;
 645
 646	pointer = priv->tx_clean_pointer;
 647	txdes = &priv->txdes[pointer];
 648
 649	ctl_stat = le32_to_cpu(txdes->txdes0);
 650	if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
 651		return false;
 652
 653	skb = priv->tx_skbs[pointer];
 654	netdev->stats.tx_packets++;
 655	netdev->stats.tx_bytes += skb->len;
 656	ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
 657	txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
 658
 659	priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer);
 660
 661	return true;
 662}
 663
 664static void ftgmac100_tx_complete(struct ftgmac100 *priv)
 665{
 666	struct net_device *netdev = priv->netdev;
 667
 668	/* Process all completed packets */
 669	while (ftgmac100_tx_buf_cleanable(priv) &&
 670	       ftgmac100_tx_complete_packet(priv))
 671		;
 672
 673	/* Restart queue if needed */
 674	smp_mb();
 675	if (unlikely(netif_queue_stopped(netdev) &&
 676		     ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
 677		struct netdev_queue *txq;
 678
 679		txq = netdev_get_tx_queue(netdev, 0);
 680		__netif_tx_lock(txq, smp_processor_id());
 681		if (netif_queue_stopped(netdev) &&
 682		    ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
 683			netif_wake_queue(netdev);
 684		__netif_tx_unlock(txq);
 685	}
 686}
 687
 688static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
 689{
 690	if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
 691		u8 ip_proto = ip_hdr(skb)->protocol;
 692
 693		*csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
 694		switch(ip_proto) {
 695		case IPPROTO_TCP:
 696			*csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
 697			return true;
 698		case IPPROTO_UDP:
 699			*csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
 700			return true;
 701		case IPPROTO_IP:
 702			return true;
 703		}
 704	}
 705	return skb_checksum_help(skb) == 0;
 706}
 707
 708static netdev_tx_t ftgmac100_hard_start_xmit(struct sk_buff *skb,
 709					     struct net_device *netdev)
 710{
 711	struct ftgmac100 *priv = netdev_priv(netdev);
 712	struct ftgmac100_txdes *txdes, *first;
 713	unsigned int pointer, nfrags, len, i, j;
 714	u32 f_ctl_stat, ctl_stat, csum_vlan;
 715	dma_addr_t map;
 716
 717	/* The HW doesn't pad small frames */
 718	if (eth_skb_pad(skb)) {
 719		netdev->stats.tx_dropped++;
 720		return NETDEV_TX_OK;
 721	}
 722
 723	/* Reject oversize packets */
 724	if (unlikely(skb->len > MAX_PKT_SIZE)) {
 725		if (net_ratelimit())
 726			netdev_dbg(netdev, "tx packet too big\n");
 727		goto drop;
 728	}
 729
 730	/* Do we have a limit on #fragments ? I yet have to get a reply
 731	 * from Aspeed. If there's one I haven't hit it.
 732	 */
 733	nfrags = skb_shinfo(skb)->nr_frags;
 734
 735	/* Setup HW checksumming */
 736	csum_vlan = 0;
 737	if (skb->ip_summed == CHECKSUM_PARTIAL &&
 738	    !ftgmac100_prep_tx_csum(skb, &csum_vlan))
 739		goto drop;
 740
 741	/* Add VLAN tag */
 742	if (skb_vlan_tag_present(skb)) {
 743		csum_vlan |= FTGMAC100_TXDES1_INS_VLANTAG;
 744		csum_vlan |= skb_vlan_tag_get(skb) & 0xffff;
 745	}
 746
 747	/* Get header len */
 748	len = skb_headlen(skb);
 749
 750	/* Map the packet head */
 751	map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
 752	if (dma_mapping_error(priv->dev, map)) {
 753		if (net_ratelimit())
 754			netdev_err(netdev, "map tx packet head failed\n");
 755		goto drop;
 756	}
 757
 758	/* Grab the next free tx descriptor */
 759	pointer = priv->tx_pointer;
 760	txdes = first = &priv->txdes[pointer];
 761
 762	/* Setup it up with the packet head. Don't write the head to the
 763	 * ring just yet
 764	 */
 765	priv->tx_skbs[pointer] = skb;
 766	f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
 767	f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
 768	f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
 769	f_ctl_stat |= FTGMAC100_TXDES0_FTS;
 770	if (nfrags == 0)
 771		f_ctl_stat |= FTGMAC100_TXDES0_LTS;
 772	txdes->txdes3 = cpu_to_le32(map);
 773	txdes->txdes1 = cpu_to_le32(csum_vlan);
 774
 775	/* Next descriptor */
 776	pointer = ftgmac100_next_tx_pointer(priv, pointer);
 777
 778	/* Add the fragments */
 779	for (i = 0; i < nfrags; i++) {
 780		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 781
 782		len = skb_frag_size(frag);
 783
 784		/* Map it */
 785		map = skb_frag_dma_map(priv->dev, frag, 0, len,
 786				       DMA_TO_DEVICE);
 787		if (dma_mapping_error(priv->dev, map))
 788			goto dma_err;
 789
 790		/* Setup descriptor */
 791		priv->tx_skbs[pointer] = skb;
 792		txdes = &priv->txdes[pointer];
 793		ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
 794		ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
 795		ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
 796		if (i == (nfrags - 1))
 797			ctl_stat |= FTGMAC100_TXDES0_LTS;
 798		txdes->txdes0 = cpu_to_le32(ctl_stat);
 799		txdes->txdes1 = 0;
 800		txdes->txdes3 = cpu_to_le32(map);
 801
 802		/* Next one */
 803		pointer = ftgmac100_next_tx_pointer(priv, pointer);
 804	}
 805
 806	/* Order the previous packet and descriptor udpates
 807	 * before setting the OWN bit on the first descriptor.
 808	 */
 809	dma_wmb();
 810	first->txdes0 = cpu_to_le32(f_ctl_stat);
 811
 812	/* Update next TX pointer */
 813	priv->tx_pointer = pointer;
 814
 815	/* If there isn't enough room for all the fragments of a new packet
 816	 * in the TX ring, stop the queue. The sequence below is race free
 817	 * vs. a concurrent restart in ftgmac100_poll()
 818	 */
 819	if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
 820		netif_stop_queue(netdev);
 821		/* Order the queue stop with the test below */
 822		smp_mb();
 823		if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
 824			netif_wake_queue(netdev);
 825	}
 826
 827	/* Poke transmitter to read the updated TX descriptors */
 828	iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
 829
 830	return NETDEV_TX_OK;
 831
 832 dma_err:
 833	if (net_ratelimit())
 834		netdev_err(netdev, "map tx fragment failed\n");
 835
 836	/* Free head */
 837	pointer = priv->tx_pointer;
 838	ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
 839	first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
 840
 841	/* Then all fragments */
 842	for (j = 0; j < i; j++) {
 843		pointer = ftgmac100_next_tx_pointer(priv, pointer);
 844		txdes = &priv->txdes[pointer];
 845		ctl_stat = le32_to_cpu(txdes->txdes0);
 846		ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
 847		txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
 848	}
 849
 850	/* This cannot be reached if we successfully mapped the
 851	 * last fragment, so we know ftgmac100_free_tx_packet()
 852	 * hasn't freed the skb yet.
 853	 */
 854 drop:
 855	/* Drop the packet */
 856	dev_kfree_skb_any(skb);
 857	netdev->stats.tx_dropped++;
 858
 859	return NETDEV_TX_OK;
 860}
 861
 862static void ftgmac100_free_buffers(struct ftgmac100 *priv)
 863{
 864	int i;
 865
 866	/* Free all RX buffers */
 867	for (i = 0; i < priv->rx_q_entries; i++) {
 868		struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
 869		struct sk_buff *skb = priv->rx_skbs[i];
 870		dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
 871
 872		if (!skb)
 873			continue;
 874
 875		priv->rx_skbs[i] = NULL;
 876		dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
 877		dev_kfree_skb_any(skb);
 878	}
 879
 880	/* Free all TX buffers */
 881	for (i = 0; i < priv->tx_q_entries; i++) {
 882		struct ftgmac100_txdes *txdes = &priv->txdes[i];
 883		struct sk_buff *skb = priv->tx_skbs[i];
 884
 885		if (!skb)
 886			continue;
 887		ftgmac100_free_tx_packet(priv, i, skb, txdes,
 888					 le32_to_cpu(txdes->txdes0));
 889	}
 890}
 891
 892static void ftgmac100_free_rings(struct ftgmac100 *priv)
 893{
 894	/* Free skb arrays */
 895	kfree(priv->rx_skbs);
 896	kfree(priv->tx_skbs);
 897
 898	/* Free descriptors */
 899	if (priv->rxdes)
 900		dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES *
 901				  sizeof(struct ftgmac100_rxdes),
 902				  priv->rxdes, priv->rxdes_dma);
 903	priv->rxdes = NULL;
 904
 905	if (priv->txdes)
 906		dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES *
 907				  sizeof(struct ftgmac100_txdes),
 908				  priv->txdes, priv->txdes_dma);
 909	priv->txdes = NULL;
 910
 911	/* Free scratch packet buffer */
 912	if (priv->rx_scratch)
 913		dma_free_coherent(priv->dev, RX_BUF_SIZE,
 914				  priv->rx_scratch, priv->rx_scratch_dma);
 915}
 916
 917static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
 918{
 919	/* Allocate skb arrays */
 920	priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *),
 921				GFP_KERNEL);
 922	if (!priv->rx_skbs)
 923		return -ENOMEM;
 924	priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *),
 925				GFP_KERNEL);
 926	if (!priv->tx_skbs)
 927		return -ENOMEM;
 928
 929	/* Allocate descriptors */
 930	priv->rxdes = dma_alloc_coherent(priv->dev,
 931					 MAX_RX_QUEUE_ENTRIES * sizeof(struct ftgmac100_rxdes),
 932					 &priv->rxdes_dma, GFP_KERNEL);
 933	if (!priv->rxdes)
 934		return -ENOMEM;
 935	priv->txdes = dma_alloc_coherent(priv->dev,
 936					 MAX_TX_QUEUE_ENTRIES * sizeof(struct ftgmac100_txdes),
 937					 &priv->txdes_dma, GFP_KERNEL);
 938	if (!priv->txdes)
 939		return -ENOMEM;
 940
 941	/* Allocate scratch packet buffer */
 942	priv->rx_scratch = dma_alloc_coherent(priv->dev,
 943					      RX_BUF_SIZE,
 944					      &priv->rx_scratch_dma,
 945					      GFP_KERNEL);
 946	if (!priv->rx_scratch)
 947		return -ENOMEM;
 948
 949	return 0;
 950}
 951
 952static void ftgmac100_init_rings(struct ftgmac100 *priv)
 953{
 954	struct ftgmac100_rxdes *rxdes = NULL;
 955	struct ftgmac100_txdes *txdes = NULL;
 956	int i;
 957
 958	/* Update entries counts */
 959	priv->rx_q_entries = priv->new_rx_q_entries;
 960	priv->tx_q_entries = priv->new_tx_q_entries;
 961
 962	if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES))
 963		return;
 964
 965	/* Initialize RX ring */
 966	for (i = 0; i < priv->rx_q_entries; i++) {
 967		rxdes = &priv->rxdes[i];
 968		rxdes->rxdes0 = 0;
 969		rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
 970	}
 971	/* Mark the end of the ring */
 972	rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
 973
 974	if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES))
 975		return;
 976
 977	/* Initialize TX ring */
 978	for (i = 0; i < priv->tx_q_entries; i++) {
 979		txdes = &priv->txdes[i];
 980		txdes->txdes0 = 0;
 981	}
 982	txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
 983}
 984
 985static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
 986{
 987	int i;
 988
 989	for (i = 0; i < priv->rx_q_entries; i++) {
 990		struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
 991
 992		if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
 993			return -ENOMEM;
 994	}
 995	return 0;
 996}
 997
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 998static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
 999{
1000	struct net_device *netdev = bus->priv;
1001	struct ftgmac100 *priv = netdev_priv(netdev);
1002	unsigned int phycr;
1003	int i;
1004
1005	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1006
1007	/* preserve MDC cycle threshold */
1008	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1009
1010	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1011		 FTGMAC100_PHYCR_REGAD(regnum) |
1012		 FTGMAC100_PHYCR_MIIRD;
1013
1014	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1015
1016	for (i = 0; i < 10; i++) {
1017		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1018
1019		if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
1020			int data;
1021
1022			data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
1023			return FTGMAC100_PHYDATA_MIIRDATA(data);
1024		}
1025
1026		udelay(100);
1027	}
1028
1029	netdev_err(netdev, "mdio read timed out\n");
1030	return -EIO;
1031}
1032
1033static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
1034				   int regnum, u16 value)
1035{
1036	struct net_device *netdev = bus->priv;
1037	struct ftgmac100 *priv = netdev_priv(netdev);
1038	unsigned int phycr;
1039	int data;
1040	int i;
1041
1042	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1043
1044	/* preserve MDC cycle threshold */
1045	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1046
1047	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1048		 FTGMAC100_PHYCR_REGAD(regnum) |
1049		 FTGMAC100_PHYCR_MIIWR;
1050
1051	data = FTGMAC100_PHYDATA_MIIWDATA(value);
1052
1053	iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
1054	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1055
1056	for (i = 0; i < 10; i++) {
1057		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1058
1059		if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
1060			return 0;
1061
1062		udelay(100);
1063	}
1064
1065	netdev_err(netdev, "mdio write timed out\n");
1066	return -EIO;
1067}
1068
1069static void ftgmac100_get_drvinfo(struct net_device *netdev,
1070				  struct ethtool_drvinfo *info)
1071{
1072	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1073	strscpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
1074}
1075
1076static void
1077ftgmac100_get_ringparam(struct net_device *netdev,
1078			struct ethtool_ringparam *ering,
1079			struct kernel_ethtool_ringparam *kernel_ering,
1080			struct netlink_ext_ack *extack)
1081{
1082	struct ftgmac100 *priv = netdev_priv(netdev);
1083
1084	memset(ering, 0, sizeof(*ering));
1085	ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES;
1086	ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES;
1087	ering->rx_pending = priv->rx_q_entries;
1088	ering->tx_pending = priv->tx_q_entries;
1089}
1090
1091static int
1092ftgmac100_set_ringparam(struct net_device *netdev,
1093			struct ethtool_ringparam *ering,
1094			struct kernel_ethtool_ringparam *kernel_ering,
1095			struct netlink_ext_ack *extack)
1096{
1097	struct ftgmac100 *priv = netdev_priv(netdev);
1098
1099	if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES ||
1100	    ering->tx_pending > MAX_TX_QUEUE_ENTRIES ||
1101	    ering->rx_pending < MIN_RX_QUEUE_ENTRIES ||
1102	    ering->tx_pending < MIN_TX_QUEUE_ENTRIES ||
1103	    !is_power_of_2(ering->rx_pending) ||
1104	    !is_power_of_2(ering->tx_pending))
1105		return -EINVAL;
1106
1107	priv->new_rx_q_entries = ering->rx_pending;
1108	priv->new_tx_q_entries = ering->tx_pending;
1109	if (netif_running(netdev))
1110		schedule_work(&priv->reset_task);
1111
1112	return 0;
1113}
1114
1115static void ftgmac100_get_pauseparam(struct net_device *netdev,
1116				     struct ethtool_pauseparam *pause)
1117{
1118	struct ftgmac100 *priv = netdev_priv(netdev);
1119
1120	pause->autoneg = priv->aneg_pause;
1121	pause->tx_pause = priv->tx_pause;
1122	pause->rx_pause = priv->rx_pause;
1123}
1124
1125static int ftgmac100_set_pauseparam(struct net_device *netdev,
1126				    struct ethtool_pauseparam *pause)
1127{
1128	struct ftgmac100 *priv = netdev_priv(netdev);
1129	struct phy_device *phydev = netdev->phydev;
1130
1131	priv->aneg_pause = pause->autoneg;
1132	priv->tx_pause = pause->tx_pause;
1133	priv->rx_pause = pause->rx_pause;
1134
1135	if (phydev)
1136		phy_set_asym_pause(phydev, pause->rx_pause, pause->tx_pause);
1137
1138	if (netif_running(netdev)) {
1139		if (!(phydev && priv->aneg_pause))
1140			ftgmac100_config_pause(priv);
1141	}
1142
1143	return 0;
1144}
1145
1146static const struct ethtool_ops ftgmac100_ethtool_ops = {
1147	.get_drvinfo		= ftgmac100_get_drvinfo,
1148	.get_link		= ethtool_op_get_link,
1149	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1150	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1151	.nway_reset		= phy_ethtool_nway_reset,
1152	.get_ringparam		= ftgmac100_get_ringparam,
1153	.set_ringparam		= ftgmac100_set_ringparam,
1154	.get_pauseparam		= ftgmac100_get_pauseparam,
1155	.set_pauseparam		= ftgmac100_set_pauseparam,
1156};
1157
1158static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
1159{
1160	struct net_device *netdev = dev_id;
1161	struct ftgmac100 *priv = netdev_priv(netdev);
1162	unsigned int status, new_mask = FTGMAC100_INT_BAD;
1163
1164	/* Fetch and clear interrupt bits, process abnormal ones */
1165	status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1166	iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
1167	if (unlikely(status & FTGMAC100_INT_BAD)) {
1168
1169		/* RX buffer unavailable */
1170		if (status & FTGMAC100_INT_NO_RXBUF)
1171			netdev->stats.rx_over_errors++;
1172
1173		/* received packet lost due to RX FIFO full */
1174		if (status & FTGMAC100_INT_RPKT_LOST)
1175			netdev->stats.rx_fifo_errors++;
1176
1177		/* sent packet lost due to excessive TX collision */
1178		if (status & FTGMAC100_INT_XPKT_LOST)
1179			netdev->stats.tx_fifo_errors++;
1180
1181		/* AHB error -> Reset the chip */
1182		if (status & FTGMAC100_INT_AHB_ERR) {
1183			if (net_ratelimit())
1184				netdev_warn(netdev,
1185					   "AHB bus error ! Resetting chip.\n");
1186			iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1187			schedule_work(&priv->reset_task);
1188			return IRQ_HANDLED;
1189		}
1190
1191		/* We may need to restart the MAC after such errors, delay
1192		 * this until after we have freed some Rx buffers though
1193		 */
1194		priv->need_mac_restart = true;
1195
1196		/* Disable those errors until we restart */
1197		new_mask &= ~status;
1198	}
1199
1200	/* Only enable "bad" interrupts while NAPI is on */
1201	iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);
1202
1203	/* Schedule NAPI bh */
1204	napi_schedule_irqoff(&priv->napi);
1205
1206	return IRQ_HANDLED;
1207}
1208
1209static bool ftgmac100_check_rx(struct ftgmac100 *priv)
1210{
1211	struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer];
1212
1213	/* Do we have a packet ? */
1214	return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
1215}
1216
1217static int ftgmac100_poll(struct napi_struct *napi, int budget)
1218{
1219	struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1220	int work_done = 0;
1221	bool more;
1222
1223	/* Handle TX completions */
1224	if (ftgmac100_tx_buf_cleanable(priv))
1225		ftgmac100_tx_complete(priv);
1226
1227	/* Handle RX packets */
1228	do {
1229		more = ftgmac100_rx_packet(priv, &work_done);
1230	} while (more && work_done < budget);
1231
1232
1233	/* The interrupt is telling us to kick the MAC back to life
1234	 * after an RX overflow
1235	 */
1236	if (unlikely(priv->need_mac_restart)) {
1237		ftgmac100_start_hw(priv);
1238		priv->need_mac_restart = false;
1239
1240		/* Re-enable "bad" interrupts */
1241		iowrite32(FTGMAC100_INT_BAD,
1242			  priv->base + FTGMAC100_OFFSET_IER);
1243	}
1244
1245	/* As long as we are waiting for transmit packets to be
1246	 * completed we keep NAPI going
1247	 */
1248	if (ftgmac100_tx_buf_cleanable(priv))
1249		work_done = budget;
1250
1251	if (work_done < budget) {
1252		/* We are about to re-enable all interrupts. However
1253		 * the HW has been latching RX/TX packet interrupts while
1254		 * they were masked. So we clear them first, then we need
1255		 * to re-check if there's something to process
1256		 */
1257		iowrite32(FTGMAC100_INT_RXTX,
1258			  priv->base + FTGMAC100_OFFSET_ISR);
1259
1260		/* Push the above (and provides a barrier vs. subsequent
1261		 * reads of the descriptor).
1262		 */
1263		ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1264
1265		/* Check RX and TX descriptors for more work to do */
1266		if (ftgmac100_check_rx(priv) ||
1267		    ftgmac100_tx_buf_cleanable(priv))
1268			return budget;
1269
1270		/* deschedule NAPI */
1271		napi_complete(napi);
1272
1273		/* enable all interrupts */
1274		iowrite32(FTGMAC100_INT_ALL,
1275			  priv->base + FTGMAC100_OFFSET_IER);
1276	}
1277
1278	return work_done;
1279}
1280
1281static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
1282{
1283	int err = 0;
1284
1285	/* Re-init descriptors (adjust queue sizes) */
1286	ftgmac100_init_rings(priv);
1287
1288	/* Realloc rx descriptors */
1289	err = ftgmac100_alloc_rx_buffers(priv);
1290	if (err && !ignore_alloc_err)
1291		return err;
1292
1293	/* Reinit and restart HW */
1294	ftgmac100_init_hw(priv);
1295	ftgmac100_config_pause(priv);
1296	ftgmac100_start_hw(priv);
1297
1298	/* Re-enable the device */
1299	napi_enable(&priv->napi);
1300	netif_start_queue(priv->netdev);
1301
1302	/* Enable all interrupts */
1303	iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1304
1305	return err;
1306}
1307
1308static void ftgmac100_reset(struct ftgmac100 *priv)
1309{
 
 
1310	struct net_device *netdev = priv->netdev;
1311	int err;
1312
1313	netdev_dbg(netdev, "Resetting NIC...\n");
1314
1315	/* Lock the world */
1316	rtnl_lock();
1317	if (netdev->phydev)
1318		mutex_lock(&netdev->phydev->lock);
1319	if (priv->mii_bus)
1320		mutex_lock(&priv->mii_bus->mdio_lock);
1321
1322
1323	/* Check if the interface is still up */
1324	if (!netif_running(netdev))
1325		goto bail;
1326
1327	/* Stop the network stack */
1328	netif_trans_update(netdev);
1329	napi_disable(&priv->napi);
1330	netif_tx_disable(netdev);
1331
1332	/* Stop and reset the MAC */
1333	ftgmac100_stop_hw(priv);
1334	err = ftgmac100_reset_and_config_mac(priv);
1335	if (err) {
1336		/* Not much we can do ... it might come back... */
1337		netdev_err(netdev, "attempting to continue...\n");
1338	}
1339
1340	/* Free all rx and tx buffers */
1341	ftgmac100_free_buffers(priv);
1342
1343	/* Setup everything again and restart chip */
1344	ftgmac100_init_all(priv, true);
1345
1346	netdev_dbg(netdev, "Reset done !\n");
1347 bail:
1348	if (priv->mii_bus)
1349		mutex_unlock(&priv->mii_bus->mdio_lock);
1350	if (netdev->phydev)
1351		mutex_unlock(&netdev->phydev->lock);
1352	rtnl_unlock();
1353}
1354
1355static void ftgmac100_reset_task(struct work_struct *work)
1356{
1357	struct ftgmac100 *priv = container_of(work, struct ftgmac100,
1358					      reset_task);
1359
1360	ftgmac100_reset(priv);
1361}
1362
1363static void ftgmac100_adjust_link(struct net_device *netdev)
1364{
1365	struct ftgmac100 *priv = netdev_priv(netdev);
1366	struct phy_device *phydev = netdev->phydev;
1367	bool tx_pause, rx_pause;
1368	int new_speed;
1369
1370	/* We store "no link" as speed 0 */
1371	if (!phydev->link)
1372		new_speed = 0;
1373	else
1374		new_speed = phydev->speed;
1375
1376	/* Grab pause settings from PHY if configured to do so */
1377	if (priv->aneg_pause) {
1378		rx_pause = tx_pause = phydev->pause;
1379		if (phydev->asym_pause)
1380			tx_pause = !rx_pause;
1381	} else {
1382		rx_pause = priv->rx_pause;
1383		tx_pause = priv->tx_pause;
1384	}
1385
1386	/* Link hasn't changed, do nothing */
1387	if (phydev->speed == priv->cur_speed &&
1388	    phydev->duplex == priv->cur_duplex &&
1389	    rx_pause == priv->rx_pause &&
1390	    tx_pause == priv->tx_pause)
1391		return;
1392
1393	/* Print status if we have a link or we had one and just lost it,
1394	 * don't print otherwise.
1395	 */
1396	if (new_speed || priv->cur_speed)
1397		phy_print_status(phydev);
1398
1399	priv->cur_speed = new_speed;
1400	priv->cur_duplex = phydev->duplex;
1401	priv->rx_pause = rx_pause;
1402	priv->tx_pause = tx_pause;
1403
1404	/* Link is down, do nothing else */
1405	if (!new_speed)
1406		return;
1407
1408	/* Disable all interrupts */
1409	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1410
1411	/* Release phy lock to allow ftgmac100_reset to aquire it, keeping lock
1412	 * order consistent to prevent dead lock.
1413	 */
1414	if (netdev->phydev)
1415		mutex_unlock(&netdev->phydev->lock);
1416
1417	ftgmac100_reset(priv);
1418
1419	if (netdev->phydev)
1420		mutex_lock(&netdev->phydev->lock);
1421
1422}
1423
1424static int ftgmac100_mii_probe(struct net_device *netdev)
1425{
1426	struct ftgmac100 *priv = netdev_priv(netdev);
1427	struct platform_device *pdev = to_platform_device(priv->dev);
1428	struct device_node *np = pdev->dev.of_node;
1429	struct phy_device *phydev;
1430	phy_interface_t phy_intf;
1431	int err;
1432
1433	/* Default to RGMII. It's a gigabit part after all */
1434	err = of_get_phy_mode(np, &phy_intf);
1435	if (err)
1436		phy_intf = PHY_INTERFACE_MODE_RGMII;
1437
1438	/* Aspeed only supports these. I don't know about other IP
1439	 * block vendors so I'm going to just let them through for
1440	 * now. Note that this is only a warning if for some obscure
1441	 * reason the DT really means to lie about it or it's a newer
1442	 * part we don't know about.
1443	 *
1444	 * On the Aspeed SoC there are additionally straps and SCU
1445	 * control bits that could tell us what the interface is
1446	 * (or allow us to configure it while the IP block is held
1447	 * in reset). For now I chose to keep this driver away from
1448	 * those SoC specific bits and assume the device-tree is
1449	 * right and the SCU has been configured properly by pinmux
1450	 * or the firmware.
1451	 */
1452	if (priv->is_aspeed && !(phy_interface_mode_is_rgmii(phy_intf))) {
1453		netdev_warn(netdev,
1454			    "Unsupported PHY mode %s !\n",
1455			    phy_modes(phy_intf));
1456	}
1457
1458	phydev = phy_find_first(priv->mii_bus);
1459	if (!phydev) {
1460		netdev_info(netdev, "%s: no PHY found\n", netdev->name);
1461		return -ENODEV;
1462	}
1463
1464	phydev = phy_connect(netdev, phydev_name(phydev),
1465			     &ftgmac100_adjust_link, phy_intf);
1466
1467	if (IS_ERR(phydev)) {
1468		netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
1469		return PTR_ERR(phydev);
1470	}
1471
1472	/* Indicate that we support PAUSE frames (see comment in
1473	 * Documentation/networking/phy.rst)
1474	 */
1475	phy_support_asym_pause(phydev);
1476
1477	/* Display what we found */
1478	phy_attached_info(phydev);
1479
1480	return 0;
1481}
1482
1483static int ftgmac100_open(struct net_device *netdev)
1484{
1485	struct ftgmac100 *priv = netdev_priv(netdev);
1486	int err;
1487
1488	/* Allocate ring buffers  */
1489	err = ftgmac100_alloc_rings(priv);
1490	if (err) {
1491		netdev_err(netdev, "Failed to allocate descriptors\n");
1492		return err;
1493	}
1494
1495	/* When using NC-SI we force the speed to 100Mbit/s full duplex,
1496	 *
1497	 * Otherwise we leave it set to 0 (no link), the link
1498	 * message from the PHY layer will handle setting it up to
1499	 * something else if needed.
1500	 */
1501	if (priv->use_ncsi) {
1502		priv->cur_duplex = DUPLEX_FULL;
1503		priv->cur_speed = SPEED_100;
1504	} else {
1505		priv->cur_duplex = 0;
1506		priv->cur_speed = 0;
1507	}
1508
1509	/* Reset the hardware */
1510	err = ftgmac100_reset_and_config_mac(priv);
1511	if (err)
1512		goto err_hw;
1513
1514	/* Initialize NAPI */
1515	netif_napi_add(netdev, &priv->napi, ftgmac100_poll);
1516
1517	/* Grab our interrupt */
1518	err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
1519	if (err) {
1520		netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
1521		goto err_irq;
1522	}
1523
1524	/* Start things up */
1525	err = ftgmac100_init_all(priv, false);
1526	if (err) {
1527		netdev_err(netdev, "Failed to allocate packet buffers\n");
1528		goto err_alloc;
1529	}
1530
1531	if (netdev->phydev) {
1532		/* If we have a PHY, start polling */
1533		phy_start(netdev->phydev);
1534	} else if (priv->use_ncsi) {
1535		/* If using NC-SI, set our carrier on and start the stack */
1536		netif_carrier_on(netdev);
1537
1538		/* Start the NCSI device */
1539		err = ncsi_start_dev(priv->ndev);
1540		if (err)
1541			goto err_ncsi;
1542	}
1543
1544	return 0;
1545
1546 err_ncsi:
1547	napi_disable(&priv->napi);
1548	netif_stop_queue(netdev);
1549 err_alloc:
1550	ftgmac100_free_buffers(priv);
1551	free_irq(netdev->irq, netdev);
1552 err_irq:
1553	netif_napi_del(&priv->napi);
1554 err_hw:
1555	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1556	ftgmac100_free_rings(priv);
1557	return err;
1558}
1559
1560static int ftgmac100_stop(struct net_device *netdev)
1561{
1562	struct ftgmac100 *priv = netdev_priv(netdev);
1563
1564	/* Note about the reset task: We are called with the rtnl lock
1565	 * held, so we are synchronized against the core of the reset
1566	 * task. We must not try to synchronously cancel it otherwise
1567	 * we can deadlock. But since it will test for netif_running()
1568	 * which has already been cleared by the net core, we don't
1569	 * anything special to do.
1570	 */
1571
1572	/* disable all interrupts */
1573	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1574
1575	netif_stop_queue(netdev);
1576	napi_disable(&priv->napi);
1577	netif_napi_del(&priv->napi);
1578	if (netdev->phydev)
1579		phy_stop(netdev->phydev);
1580	else if (priv->use_ncsi)
1581		ncsi_stop_dev(priv->ndev);
1582
1583	ftgmac100_stop_hw(priv);
1584	free_irq(netdev->irq, netdev);
1585	ftgmac100_free_buffers(priv);
1586	ftgmac100_free_rings(priv);
1587
1588	return 0;
1589}
1590
1591static void ftgmac100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
1592{
1593	struct ftgmac100 *priv = netdev_priv(netdev);
1594
1595	/* Disable all interrupts */
1596	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1597
1598	/* Do the reset outside of interrupt context */
1599	schedule_work(&priv->reset_task);
1600}
1601
1602static int ftgmac100_set_features(struct net_device *netdev,
1603				  netdev_features_t features)
1604{
1605	struct ftgmac100 *priv = netdev_priv(netdev);
1606	netdev_features_t changed = netdev->features ^ features;
1607
1608	if (!netif_running(netdev))
1609		return 0;
1610
1611	/* Update the vlan filtering bit */
1612	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
1613		u32 maccr;
1614
1615		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
1616		if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
1617			maccr |= FTGMAC100_MACCR_RM_VLAN;
1618		else
1619			maccr &= ~FTGMAC100_MACCR_RM_VLAN;
1620		iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
1621	}
1622
1623	return 0;
1624}
1625
1626#ifdef CONFIG_NET_POLL_CONTROLLER
1627static void ftgmac100_poll_controller(struct net_device *netdev)
1628{
1629	unsigned long flags;
1630
1631	local_irq_save(flags);
1632	ftgmac100_interrupt(netdev->irq, netdev);
1633	local_irq_restore(flags);
1634}
1635#endif
1636
1637static const struct net_device_ops ftgmac100_netdev_ops = {
1638	.ndo_open		= ftgmac100_open,
1639	.ndo_stop		= ftgmac100_stop,
1640	.ndo_start_xmit		= ftgmac100_hard_start_xmit,
1641	.ndo_set_mac_address	= ftgmac100_set_mac_addr,
1642	.ndo_validate_addr	= eth_validate_addr,
1643	.ndo_eth_ioctl		= phy_do_ioctl,
1644	.ndo_tx_timeout		= ftgmac100_tx_timeout,
1645	.ndo_set_rx_mode	= ftgmac100_set_rx_mode,
1646	.ndo_set_features	= ftgmac100_set_features,
1647#ifdef CONFIG_NET_POLL_CONTROLLER
1648	.ndo_poll_controller	= ftgmac100_poll_controller,
1649#endif
1650	.ndo_vlan_rx_add_vid	= ncsi_vlan_rx_add_vid,
1651	.ndo_vlan_rx_kill_vid	= ncsi_vlan_rx_kill_vid,
1652};
1653
1654static int ftgmac100_setup_mdio(struct net_device *netdev)
1655{
1656	struct ftgmac100 *priv = netdev_priv(netdev);
1657	struct platform_device *pdev = to_platform_device(priv->dev);
 
1658	struct device_node *np = pdev->dev.of_node;
1659	struct device_node *mdio_np;
1660	int i, err = 0;
1661	u32 reg;
1662
1663	/* initialize mdio bus */
1664	priv->mii_bus = mdiobus_alloc();
1665	if (!priv->mii_bus)
1666		return -EIO;
1667
1668	if (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1669	    of_device_is_compatible(np, "aspeed,ast2500-mac")) {
1670		/* The AST2600 has a separate MDIO controller */
1671
1672		/* For the AST2400 and AST2500 this driver only supports the
1673		 * old MDIO interface
1674		 */
1675		reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
1676		reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
1677		iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
1678	}
1679
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1680	priv->mii_bus->name = "ftgmac100_mdio";
1681	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1682		 pdev->name, pdev->id);
1683	priv->mii_bus->parent = priv->dev;
1684	priv->mii_bus->priv = priv->netdev;
1685	priv->mii_bus->read = ftgmac100_mdiobus_read;
1686	priv->mii_bus->write = ftgmac100_mdiobus_write;
1687
1688	for (i = 0; i < PHY_MAX_ADDR; i++)
1689		priv->mii_bus->irq[i] = PHY_POLL;
1690
1691	mdio_np = of_get_child_by_name(np, "mdio");
1692
1693	err = of_mdiobus_register(priv->mii_bus, mdio_np);
1694	if (err) {
1695		dev_err(priv->dev, "Cannot register MDIO bus!\n");
1696		goto err_register_mdiobus;
1697	}
1698
1699	of_node_put(mdio_np);
 
 
 
 
1700
1701	return 0;
1702
 
 
1703err_register_mdiobus:
1704	mdiobus_free(priv->mii_bus);
1705	return err;
1706}
1707
1708static void ftgmac100_phy_disconnect(struct net_device *netdev)
1709{
1710	struct ftgmac100 *priv = netdev_priv(netdev);
1711
1712	if (!netdev->phydev)
1713		return;
1714
1715	phy_disconnect(netdev->phydev);
1716	if (of_phy_is_fixed_link(priv->dev->of_node))
1717		of_phy_deregister_fixed_link(priv->dev->of_node);
1718}
1719
1720static void ftgmac100_destroy_mdio(struct net_device *netdev)
1721{
1722	struct ftgmac100 *priv = netdev_priv(netdev);
1723
1724	if (!priv->mii_bus)
1725		return;
1726
1727	mdiobus_unregister(priv->mii_bus);
1728	mdiobus_free(priv->mii_bus);
1729}
1730
1731static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
1732{
1733	if (unlikely(nd->state != ncsi_dev_state_functional))
1734		return;
1735
1736	netdev_dbg(nd->dev, "NCSI interface %s\n",
1737		   nd->link_up ? "up" : "down");
1738}
1739
1740static int ftgmac100_setup_clk(struct ftgmac100 *priv)
1741{
1742	struct clk *clk;
1743	int rc;
1744
1745	clk = devm_clk_get(priv->dev, NULL /* MACCLK */);
1746	if (IS_ERR(clk))
1747		return PTR_ERR(clk);
1748	priv->clk = clk;
1749	rc = clk_prepare_enable(priv->clk);
1750	if (rc)
1751		return rc;
1752
1753	/* Aspeed specifies a 100MHz clock is required for up to
1754	 * 1000Mbit link speeds. As NCSI is limited to 100Mbit, 25MHz
1755	 * is sufficient
1756	 */
1757	rc = clk_set_rate(priv->clk, priv->use_ncsi ? FTGMAC_25MHZ :
1758			  FTGMAC_100MHZ);
1759	if (rc)
1760		goto cleanup_clk;
1761
1762	/* RCLK is for RMII, typically used for NCSI. Optional because it's not
1763	 * necessary if it's the AST2400 MAC, or the MAC is configured for
1764	 * RGMII, or the controller is not an ASPEED-based controller.
1765	 */
1766	priv->rclk = devm_clk_get_optional(priv->dev, "RCLK");
1767	rc = clk_prepare_enable(priv->rclk);
1768	if (!rc)
1769		return 0;
1770
1771cleanup_clk:
1772	clk_disable_unprepare(priv->clk);
1773
1774	return rc;
1775}
1776
1777static bool ftgmac100_has_child_node(struct device_node *np, const char *name)
1778{
1779	struct device_node *child_np = of_get_child_by_name(np, name);
1780	bool ret = false;
1781
1782	if (child_np) {
1783		ret = true;
1784		of_node_put(child_np);
1785	}
1786
1787	return ret;
1788}
1789
1790static int ftgmac100_probe(struct platform_device *pdev)
1791{
1792	struct resource *res;
1793	int irq;
1794	struct net_device *netdev;
1795	struct ftgmac100 *priv;
1796	struct device_node *np;
1797	int err = 0;
1798
1799	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1800	if (!res)
1801		return -ENXIO;
1802
1803	irq = platform_get_irq(pdev, 0);
1804	if (irq < 0)
1805		return irq;
1806
1807	/* setup net_device */
1808	netdev = alloc_etherdev(sizeof(*priv));
1809	if (!netdev) {
1810		err = -ENOMEM;
1811		goto err_alloc_etherdev;
1812	}
1813
1814	SET_NETDEV_DEV(netdev, &pdev->dev);
1815
1816	netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1817	netdev->netdev_ops = &ftgmac100_netdev_ops;
1818	netdev->watchdog_timeo = 5 * HZ;
1819
1820	platform_set_drvdata(pdev, netdev);
1821
1822	/* setup private data */
1823	priv = netdev_priv(netdev);
1824	priv->netdev = netdev;
1825	priv->dev = &pdev->dev;
1826	INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1827
1828	/* map io memory */
1829	priv->res = request_mem_region(res->start, resource_size(res),
1830				       dev_name(&pdev->dev));
1831	if (!priv->res) {
1832		dev_err(&pdev->dev, "Could not reserve memory region\n");
1833		err = -ENOMEM;
1834		goto err_req_mem;
1835	}
1836
1837	priv->base = ioremap(res->start, resource_size(res));
1838	if (!priv->base) {
1839		dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
1840		err = -EIO;
1841		goto err_ioremap;
1842	}
1843
1844	netdev->irq = irq;
1845
1846	/* Enable pause */
1847	priv->tx_pause = true;
1848	priv->rx_pause = true;
1849	priv->aneg_pause = true;
1850
1851	/* MAC address from chip or random one */
1852	err = ftgmac100_initial_mac(priv);
1853	if (err)
1854		goto err_phy_connect;
1855
1856	np = pdev->dev.of_node;
1857	if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1858		   of_device_is_compatible(np, "aspeed,ast2500-mac") ||
1859		   of_device_is_compatible(np, "aspeed,ast2600-mac"))) {
1860		priv->rxdes0_edorr_mask = BIT(30);
1861		priv->txdes0_edotr_mask = BIT(30);
1862		priv->is_aspeed = true;
1863	} else {
1864		priv->rxdes0_edorr_mask = BIT(15);
1865		priv->txdes0_edotr_mask = BIT(15);
1866	}
1867
1868	if (np && of_get_property(np, "use-ncsi", NULL)) {
1869		if (!IS_ENABLED(CONFIG_NET_NCSI)) {
1870			dev_err(&pdev->dev, "NCSI stack not enabled\n");
1871			err = -EINVAL;
1872			goto err_phy_connect;
1873		}
1874
1875		dev_info(&pdev->dev, "Using NCSI interface\n");
1876		priv->use_ncsi = true;
1877		priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
1878		if (!priv->ndev) {
1879			err = -EINVAL;
1880			goto err_phy_connect;
1881		}
1882	} else if (np && of_phy_is_fixed_link(np)) {
1883		struct phy_device *phy;
1884
1885		err = of_phy_register_fixed_link(np);
1886		if (err) {
1887			dev_err(&pdev->dev, "Failed to register fixed PHY\n");
1888			goto err_phy_connect;
1889		}
1890
1891		phy = of_phy_get_and_connect(priv->netdev, np,
1892					     &ftgmac100_adjust_link);
1893		if (!phy) {
1894			dev_err(&pdev->dev, "Failed to connect to fixed PHY\n");
1895			of_phy_deregister_fixed_link(np);
1896			err = -EINVAL;
1897			goto err_phy_connect;
1898		}
1899
1900		/* Display what we found */
1901		phy_attached_info(phy);
1902	} else if (np && of_get_property(np, "phy-handle", NULL)) {
1903		struct phy_device *phy;
1904
1905		/* Support "mdio"/"phy" child nodes for ast2400/2500 with
1906		 * an embedded MDIO controller. Automatically scan the DTS for
1907		 * available PHYs and register them.
1908		 */
1909		if (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1910		    of_device_is_compatible(np, "aspeed,ast2500-mac")) {
1911			err = ftgmac100_setup_mdio(netdev);
1912			if (err)
1913				goto err_setup_mdio;
1914		}
1915
1916		phy = of_phy_get_and_connect(priv->netdev, np,
1917					     &ftgmac100_adjust_link);
1918		if (!phy) {
1919			dev_err(&pdev->dev, "Failed to connect to phy\n");
1920			err = -EINVAL;
1921			goto err_phy_connect;
1922		}
1923
1924		/* Indicate that we support PAUSE frames (see comment in
1925		 * Documentation/networking/phy.rst)
1926		 */
1927		phy_support_asym_pause(phy);
1928
1929		/* Display what we found */
1930		phy_attached_info(phy);
1931	} else if (np && !ftgmac100_has_child_node(np, "mdio")) {
1932		/* Support legacy ASPEED devicetree descriptions that decribe a
1933		 * MAC with an embedded MDIO controller but have no "mdio"
1934		 * child node. Automatically scan the MDIO bus for available
1935		 * PHYs.
1936		 */
1937		priv->use_ncsi = false;
1938		err = ftgmac100_setup_mdio(netdev);
1939		if (err)
1940			goto err_setup_mdio;
1941
1942		err = ftgmac100_mii_probe(netdev);
1943		if (err) {
1944			dev_err(priv->dev, "MII probe failed!\n");
1945			goto err_ncsi_dev;
1946		}
1947
1948	}
1949
1950	if (priv->is_aspeed) {
1951		err = ftgmac100_setup_clk(priv);
1952		if (err)
1953			goto err_phy_connect;
1954
1955		/* Disable ast2600 problematic HW arbitration */
1956		if (of_device_is_compatible(np, "aspeed,ast2600-mac"))
1957			iowrite32(FTGMAC100_TM_DEFAULT,
1958				  priv->base + FTGMAC100_OFFSET_TM);
1959	}
1960
1961	/* Default ring sizes */
1962	priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES;
1963	priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES;
1964
1965	/* Base feature set */
1966	netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
1967		NETIF_F_GRO | NETIF_F_SG | NETIF_F_HW_VLAN_CTAG_RX |
1968		NETIF_F_HW_VLAN_CTAG_TX;
1969
1970	if (priv->use_ncsi)
1971		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1972
1973	/* AST2400  doesn't have working HW checksum generation */
1974	if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
1975		netdev->hw_features &= ~NETIF_F_HW_CSUM;
1976
1977	/* AST2600 tx checksum with NCSI is broken */
1978	if (priv->use_ncsi && of_device_is_compatible(np, "aspeed,ast2600-mac"))
1979		netdev->hw_features &= ~NETIF_F_HW_CSUM;
1980
1981	if (np && of_get_property(np, "no-hw-checksum", NULL))
1982		netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
1983	netdev->features |= netdev->hw_features;
1984
1985	/* register network device */
1986	err = register_netdev(netdev);
1987	if (err) {
1988		dev_err(&pdev->dev, "Failed to register netdev\n");
1989		goto err_register_netdev;
1990	}
1991
1992	netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1993
1994	return 0;
1995
1996err_register_netdev:
1997	clk_disable_unprepare(priv->rclk);
1998	clk_disable_unprepare(priv->clk);
1999err_phy_connect:
2000	ftgmac100_phy_disconnect(netdev);
2001err_ncsi_dev:
2002	if (priv->ndev)
2003		ncsi_unregister_dev(priv->ndev);
2004	ftgmac100_destroy_mdio(netdev);
2005err_setup_mdio:
2006	iounmap(priv->base);
2007err_ioremap:
2008	release_resource(priv->res);
2009err_req_mem:
2010	free_netdev(netdev);
2011err_alloc_etherdev:
2012	return err;
2013}
2014
2015static void ftgmac100_remove(struct platform_device *pdev)
2016{
2017	struct net_device *netdev;
2018	struct ftgmac100 *priv;
2019
2020	netdev = platform_get_drvdata(pdev);
2021	priv = netdev_priv(netdev);
2022
2023	if (priv->ndev)
2024		ncsi_unregister_dev(priv->ndev);
2025	unregister_netdev(netdev);
2026
2027	clk_disable_unprepare(priv->rclk);
2028	clk_disable_unprepare(priv->clk);
2029
2030	/* There's a small chance the reset task will have been re-queued,
2031	 * during stop, make sure it's gone before we free the structure.
2032	 */
2033	cancel_work_sync(&priv->reset_task);
2034
2035	ftgmac100_phy_disconnect(netdev);
2036	ftgmac100_destroy_mdio(netdev);
2037
2038	iounmap(priv->base);
2039	release_resource(priv->res);
2040
2041	netif_napi_del(&priv->napi);
2042	free_netdev(netdev);
 
2043}
2044
2045static const struct of_device_id ftgmac100_of_match[] = {
2046	{ .compatible = "faraday,ftgmac100" },
2047	{ }
2048};
2049MODULE_DEVICE_TABLE(of, ftgmac100_of_match);
2050
2051static struct platform_driver ftgmac100_driver = {
2052	.probe	= ftgmac100_probe,
2053	.remove_new = ftgmac100_remove,
2054	.driver	= {
2055		.name		= DRV_NAME,
2056		.of_match_table	= ftgmac100_of_match,
2057	},
2058};
2059module_platform_driver(ftgmac100_driver);
2060
2061MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
2062MODULE_DESCRIPTION("FTGMAC100 driver");
2063MODULE_LICENSE("GPL");
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Faraday FTGMAC100 Gigabit Ethernet
   4 *
   5 * (C) Copyright 2009-2011 Faraday Technology
   6 * Po-Yu Chuang <ratbert@faraday-tech.com>
   7 */
   8
   9#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
  10
  11#include <linux/clk.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/etherdevice.h>
  14#include <linux/ethtool.h>
  15#include <linux/interrupt.h>
  16#include <linux/io.h>
  17#include <linux/module.h>
  18#include <linux/netdevice.h>
  19#include <linux/of.h>
  20#include <linux/of_mdio.h>
  21#include <linux/phy.h>
  22#include <linux/platform_device.h>
  23#include <linux/property.h>
  24#include <linux/crc32.h>
  25#include <linux/if_vlan.h>
  26#include <linux/of_net.h>
  27#include <net/ip.h>
  28#include <net/ncsi.h>
  29
  30#include "ftgmac100.h"
  31
  32#define DRV_NAME	"ftgmac100"
  33
  34/* Arbitrary values, I am not sure the HW has limits */
  35#define MAX_RX_QUEUE_ENTRIES	1024
  36#define MAX_TX_QUEUE_ENTRIES	1024
  37#define MIN_RX_QUEUE_ENTRIES	32
  38#define MIN_TX_QUEUE_ENTRIES	32
  39
  40/* Defaults */
  41#define DEF_RX_QUEUE_ENTRIES	128
  42#define DEF_TX_QUEUE_ENTRIES	128
  43
  44#define MAX_PKT_SIZE		1536
  45#define RX_BUF_SIZE		MAX_PKT_SIZE	/* must be smaller than 0x3fff */
  46
  47/* Min number of tx ring entries before stopping queue */
  48#define TX_THRESHOLD		(MAX_SKB_FRAGS + 1)
  49
  50#define FTGMAC_100MHZ		100000000
  51#define FTGMAC_25MHZ		25000000
  52
  53struct ftgmac100 {
  54	/* Registers */
  55	struct resource *res;
  56	void __iomem *base;
  57
  58	/* Rx ring */
  59	unsigned int rx_q_entries;
  60	struct ftgmac100_rxdes *rxdes;
  61	dma_addr_t rxdes_dma;
  62	struct sk_buff **rx_skbs;
  63	unsigned int rx_pointer;
  64	u32 rxdes0_edorr_mask;
  65
  66	/* Tx ring */
  67	unsigned int tx_q_entries;
  68	struct ftgmac100_txdes *txdes;
  69	dma_addr_t txdes_dma;
  70	struct sk_buff **tx_skbs;
  71	unsigned int tx_clean_pointer;
  72	unsigned int tx_pointer;
  73	u32 txdes0_edotr_mask;
  74
  75	/* Used to signal the reset task of ring change request */
  76	unsigned int new_rx_q_entries;
  77	unsigned int new_tx_q_entries;
  78
  79	/* Scratch page to use when rx skb alloc fails */
  80	void *rx_scratch;
  81	dma_addr_t rx_scratch_dma;
  82
  83	/* Component structures */
  84	struct net_device *netdev;
  85	struct device *dev;
  86	struct ncsi_dev *ndev;
  87	struct napi_struct napi;
  88	struct work_struct reset_task;
  89	struct mii_bus *mii_bus;
  90	struct clk *clk;
  91
  92	/* AST2500/AST2600 RMII ref clock gate */
  93	struct clk *rclk;
  94
  95	/* Link management */
  96	int cur_speed;
  97	int cur_duplex;
  98	bool use_ncsi;
  99
 100	/* Multicast filter settings */
 101	u32 maht0;
 102	u32 maht1;
 103
 104	/* Flow control settings */
 105	bool tx_pause;
 106	bool rx_pause;
 107	bool aneg_pause;
 108
 109	/* Misc */
 110	bool need_mac_restart;
 111	bool is_aspeed;
 112};
 113
 114static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
 115{
 116	struct net_device *netdev = priv->netdev;
 117	int i;
 118
 119	/* NOTE: reset clears all registers */
 120	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
 121	iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
 122		  priv->base + FTGMAC100_OFFSET_MACCR);
 123	for (i = 0; i < 200; i++) {
 124		unsigned int maccr;
 125
 126		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
 127		if (!(maccr & FTGMAC100_MACCR_SW_RST))
 128			return 0;
 129
 130		udelay(1);
 131	}
 132
 133	netdev_err(netdev, "Hardware reset failed\n");
 134	return -EIO;
 135}
 136
 137static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
 138{
 139	u32 maccr = 0;
 140
 141	switch (priv->cur_speed) {
 142	case SPEED_10:
 143	case 0: /* no link */
 144		break;
 145
 146	case SPEED_100:
 147		maccr |= FTGMAC100_MACCR_FAST_MODE;
 148		break;
 149
 150	case SPEED_1000:
 151		maccr |= FTGMAC100_MACCR_GIGA_MODE;
 152		break;
 153	default:
 154		netdev_err(priv->netdev, "Unknown speed %d !\n",
 155			   priv->cur_speed);
 156		break;
 157	}
 158
 159	/* (Re)initialize the queue pointers */
 160	priv->rx_pointer = 0;
 161	priv->tx_clean_pointer = 0;
 162	priv->tx_pointer = 0;
 163
 164	/* The doc says reset twice with 10us interval */
 165	if (ftgmac100_reset_mac(priv, maccr))
 166		return -EIO;
 167	usleep_range(10, 1000);
 168	return ftgmac100_reset_mac(priv, maccr);
 169}
 170
 171static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
 172{
 173	unsigned int maddr = mac[0] << 8 | mac[1];
 174	unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
 175
 176	iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
 177	iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
 178}
 179
 180static void ftgmac100_initial_mac(struct ftgmac100 *priv)
 181{
 182	u8 mac[ETH_ALEN];
 183	unsigned int m;
 184	unsigned int l;
 185	void *addr;
 186
 187	addr = device_get_mac_address(priv->dev, mac, ETH_ALEN);
 188	if (addr) {
 189		ether_addr_copy(priv->netdev->dev_addr, mac);
 
 190		dev_info(priv->dev, "Read MAC address %pM from device tree\n",
 191			 mac);
 192		return;
 193	}
 194
 195	m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
 196	l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);
 197
 198	mac[0] = (m >> 8) & 0xff;
 199	mac[1] = m & 0xff;
 200	mac[2] = (l >> 24) & 0xff;
 201	mac[3] = (l >> 16) & 0xff;
 202	mac[4] = (l >> 8) & 0xff;
 203	mac[5] = l & 0xff;
 204
 205	if (is_valid_ether_addr(mac)) {
 206		ether_addr_copy(priv->netdev->dev_addr, mac);
 207		dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
 208	} else {
 209		eth_hw_addr_random(priv->netdev);
 210		dev_info(priv->dev, "Generated random MAC address %pM\n",
 211			 priv->netdev->dev_addr);
 212	}
 
 
 213}
 214
 215static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
 216{
 217	int ret;
 218
 219	ret = eth_prepare_mac_addr_change(dev, p);
 220	if (ret < 0)
 221		return ret;
 222
 223	eth_commit_mac_addr_change(dev, p);
 224	ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
 225
 226	return 0;
 227}
 228
 229static void ftgmac100_config_pause(struct ftgmac100 *priv)
 230{
 231	u32 fcr = FTGMAC100_FCR_PAUSE_TIME(16);
 232
 233	/* Throttle tx queue when receiving pause frames */
 234	if (priv->rx_pause)
 235		fcr |= FTGMAC100_FCR_FC_EN;
 236
 237	/* Enables sending pause frames when the RX queue is past a
 238	 * certain threshold.
 239	 */
 240	if (priv->tx_pause)
 241		fcr |= FTGMAC100_FCR_FCTHR_EN;
 242
 243	iowrite32(fcr, priv->base + FTGMAC100_OFFSET_FCR);
 244}
 245
 246static void ftgmac100_init_hw(struct ftgmac100 *priv)
 247{
 248	u32 reg, rfifo_sz, tfifo_sz;
 249
 250	/* Clear stale interrupts */
 251	reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
 252	iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR);
 253
 254	/* Setup RX ring buffer base */
 255	iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR);
 256
 257	/* Setup TX ring buffer base */
 258	iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
 259
 260	/* Configure RX buffer size */
 261	iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE),
 262		  priv->base + FTGMAC100_OFFSET_RBSR);
 263
 264	/* Set RX descriptor autopoll */
 265	iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1),
 266		  priv->base + FTGMAC100_OFFSET_APTC);
 267
 268	/* Write MAC address */
 269	ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
 270
 271	/* Write multicast filter */
 272	iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
 273	iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
 274
 275	/* Configure descriptor sizes and increase burst sizes according
 276	 * to values in Aspeed SDK. The FIFO arbitration is enabled and
 277	 * the thresholds set based on the recommended values in the
 278	 * AST2400 specification.
 279	 */
 280	iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) |   /* 2*8 bytes RX descs */
 281		  FTGMAC100_DBLAC_TXDES_SIZE(2) |   /* 2*8 bytes TX descs */
 282		  FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */
 283		  FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */
 284		  FTGMAC100_DBLAC_RX_THR_EN |       /* Enable fifo threshold arb */
 285		  FTGMAC100_DBLAC_RXFIFO_HTHR(6) |  /* 6/8 of FIFO high threshold */
 286		  FTGMAC100_DBLAC_RXFIFO_LTHR(2),   /* 2/8 of FIFO low threshold */
 287		  priv->base + FTGMAC100_OFFSET_DBLAC);
 288
 289	/* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt
 290	 * mitigation doesn't seem to provide any benefit with NAPI so leave
 291	 * it at that.
 292	 */
 293	iowrite32(FTGMAC100_ITC_RXINT_THR(1) |
 294		  FTGMAC100_ITC_TXINT_THR(1),
 295		  priv->base + FTGMAC100_OFFSET_ITC);
 296
 297	/* Configure FIFO sizes in the TPAFCR register */
 298	reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR);
 299	rfifo_sz = reg & 0x00000007;
 300	tfifo_sz = (reg >> 3) & 0x00000007;
 301	reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR);
 302	reg &= ~0x3f000000;
 303	reg |= (tfifo_sz << 27);
 304	reg |= (rfifo_sz << 24);
 305	iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR);
 306}
 307
 308static void ftgmac100_start_hw(struct ftgmac100 *priv)
 309{
 310	u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
 311
 312	/* Keep the original GMAC and FAST bits */
 313	maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
 314
 315	/* Add all the main enable bits */
 316	maccr |= FTGMAC100_MACCR_TXDMA_EN	|
 317		 FTGMAC100_MACCR_RXDMA_EN	|
 318		 FTGMAC100_MACCR_TXMAC_EN	|
 319		 FTGMAC100_MACCR_RXMAC_EN	|
 320		 FTGMAC100_MACCR_CRC_APD	|
 321		 FTGMAC100_MACCR_PHY_LINK_LEVEL	|
 322		 FTGMAC100_MACCR_RX_RUNT	|
 323		 FTGMAC100_MACCR_RX_BROADPKT;
 324
 325	/* Add other bits as needed */
 326	if (priv->cur_duplex == DUPLEX_FULL)
 327		maccr |= FTGMAC100_MACCR_FULLDUP;
 328	if (priv->netdev->flags & IFF_PROMISC)
 329		maccr |= FTGMAC100_MACCR_RX_ALL;
 330	if (priv->netdev->flags & IFF_ALLMULTI)
 331		maccr |= FTGMAC100_MACCR_RX_MULTIPKT;
 332	else if (netdev_mc_count(priv->netdev))
 333		maccr |= FTGMAC100_MACCR_HT_MULTI_EN;
 334
 335	/* Vlan filtering enabled */
 336	if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
 337		maccr |= FTGMAC100_MACCR_RM_VLAN;
 338
 339	/* Hit the HW */
 340	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
 341}
 342
 343static void ftgmac100_stop_hw(struct ftgmac100 *priv)
 344{
 345	iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
 346}
 347
 348static void ftgmac100_calc_mc_hash(struct ftgmac100 *priv)
 349{
 350	struct netdev_hw_addr *ha;
 351
 352	priv->maht1 = 0;
 353	priv->maht0 = 0;
 354	netdev_for_each_mc_addr(ha, priv->netdev) {
 355		u32 crc_val = ether_crc_le(ETH_ALEN, ha->addr);
 356
 357		crc_val = (~(crc_val >> 2)) & 0x3f;
 358		if (crc_val >= 32)
 359			priv->maht1 |= 1ul << (crc_val - 32);
 360		else
 361			priv->maht0 |= 1ul << (crc_val);
 362	}
 363}
 364
 365static void ftgmac100_set_rx_mode(struct net_device *netdev)
 366{
 367	struct ftgmac100 *priv = netdev_priv(netdev);
 368
 369	/* Setup the hash filter */
 370	ftgmac100_calc_mc_hash(priv);
 371
 372	/* Interface down ? that's all there is to do */
 373	if (!netif_running(netdev))
 374		return;
 375
 376	/* Update the HW */
 377	iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
 378	iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
 379
 380	/* Reconfigure MACCR */
 381	ftgmac100_start_hw(priv);
 382}
 383
 384static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
 385				  struct ftgmac100_rxdes *rxdes, gfp_t gfp)
 386{
 387	struct net_device *netdev = priv->netdev;
 388	struct sk_buff *skb;
 389	dma_addr_t map;
 390	int err = 0;
 391
 392	skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
 393	if (unlikely(!skb)) {
 394		if (net_ratelimit())
 395			netdev_warn(netdev, "failed to allocate rx skb\n");
 396		err = -ENOMEM;
 397		map = priv->rx_scratch_dma;
 398	} else {
 399		map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
 400				     DMA_FROM_DEVICE);
 401		if (unlikely(dma_mapping_error(priv->dev, map))) {
 402			if (net_ratelimit())
 403				netdev_err(netdev, "failed to map rx page\n");
 404			dev_kfree_skb_any(skb);
 405			map = priv->rx_scratch_dma;
 406			skb = NULL;
 407			err = -ENOMEM;
 408		}
 409	}
 410
 411	/* Store skb */
 412	priv->rx_skbs[entry] = skb;
 413
 414	/* Store DMA address into RX desc */
 415	rxdes->rxdes3 = cpu_to_le32(map);
 416
 417	/* Ensure the above is ordered vs clearing the OWN bit */
 418	dma_wmb();
 419
 420	/* Clean status (which resets own bit) */
 421	if (entry == (priv->rx_q_entries - 1))
 422		rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
 423	else
 424		rxdes->rxdes0 = 0;
 425
 426	return err;
 427}
 428
 429static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv,
 430					      unsigned int pointer)
 431{
 432	return (pointer + 1) & (priv->rx_q_entries - 1);
 433}
 434
 435static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
 436{
 437	struct net_device *netdev = priv->netdev;
 438
 439	if (status & FTGMAC100_RXDES0_RX_ERR)
 440		netdev->stats.rx_errors++;
 441
 442	if (status & FTGMAC100_RXDES0_CRC_ERR)
 443		netdev->stats.rx_crc_errors++;
 444
 445	if (status & (FTGMAC100_RXDES0_FTL |
 446		      FTGMAC100_RXDES0_RUNT |
 447		      FTGMAC100_RXDES0_RX_ODD_NB))
 448		netdev->stats.rx_length_errors++;
 449}
 450
 451static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
 452{
 453	struct net_device *netdev = priv->netdev;
 454	struct ftgmac100_rxdes *rxdes;
 455	struct sk_buff *skb;
 456	unsigned int pointer, size;
 457	u32 status, csum_vlan;
 458	dma_addr_t map;
 459
 460	/* Grab next RX descriptor */
 461	pointer = priv->rx_pointer;
 462	rxdes = &priv->rxdes[pointer];
 463
 464	/* Grab descriptor status */
 465	status = le32_to_cpu(rxdes->rxdes0);
 466
 467	/* Do we have a packet ? */
 468	if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
 469		return false;
 470
 471	/* Order subsequent reads with the test for the ready bit */
 472	dma_rmb();
 473
 474	/* We don't cope with fragmented RX packets */
 475	if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
 476		     !(status & FTGMAC100_RXDES0_LRS)))
 477		goto drop;
 478
 479	/* Grab received size and csum vlan field in the descriptor */
 480	size = status & FTGMAC100_RXDES0_VDBC;
 481	csum_vlan = le32_to_cpu(rxdes->rxdes1);
 482
 483	/* Any error (other than csum offload) flagged ? */
 484	if (unlikely(status & RXDES0_ANY_ERROR)) {
 485		/* Correct for incorrect flagging of runt packets
 486		 * with vlan tags... Just accept a runt packet that
 487		 * has been flagged as vlan and whose size is at
 488		 * least 60 bytes.
 489		 */
 490		if ((status & FTGMAC100_RXDES0_RUNT) &&
 491		    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
 492		    (size >= 60))
 493			status &= ~FTGMAC100_RXDES0_RUNT;
 494
 495		/* Any error still in there ? */
 496		if (status & RXDES0_ANY_ERROR) {
 497			ftgmac100_rx_packet_error(priv, status);
 498			goto drop;
 499		}
 500	}
 501
 502	/* If the packet had no skb (failed to allocate earlier)
 503	 * then try to allocate one and skip
 504	 */
 505	skb = priv->rx_skbs[pointer];
 506	if (!unlikely(skb)) {
 507		ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
 508		goto drop;
 509	}
 510
 511	if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
 512		netdev->stats.multicast++;
 513
 514	/* If the HW found checksum errors, bounce it to software.
 515	 *
 516	 * If we didn't, we need to see if the packet was recognized
 517	 * by HW as one of the supported checksummed protocols before
 518	 * we accept the HW test results.
 519	 */
 520	if (netdev->features & NETIF_F_RXCSUM) {
 521		u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
 522			FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
 523			FTGMAC100_RXDES1_IP_CHKSUM_ERR;
 524		if ((csum_vlan & err_bits) ||
 525		    !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
 526			skb->ip_summed = CHECKSUM_NONE;
 527		else
 528			skb->ip_summed = CHECKSUM_UNNECESSARY;
 529	}
 530
 531	/* Transfer received size to skb */
 532	skb_put(skb, size);
 533
 534	/* Extract vlan tag */
 535	if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
 536	    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL))
 537		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 538				       csum_vlan & 0xffff);
 539
 540	/* Tear down DMA mapping, do necessary cache management */
 541	map = le32_to_cpu(rxdes->rxdes3);
 542
 543#if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
 544	/* When we don't have an iommu, we can save cycles by not
 545	 * invalidating the cache for the part of the packet that
 546	 * wasn't received.
 547	 */
 548	dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
 549#else
 550	dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
 551#endif
 552
 553
 554	/* Resplenish rx ring */
 555	ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
 556	priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
 557
 558	skb->protocol = eth_type_trans(skb, netdev);
 559
 560	netdev->stats.rx_packets++;
 561	netdev->stats.rx_bytes += size;
 562
 563	/* push packet to protocol stack */
 564	if (skb->ip_summed == CHECKSUM_NONE)
 565		netif_receive_skb(skb);
 566	else
 567		napi_gro_receive(&priv->napi, skb);
 568
 569	(*processed)++;
 570	return true;
 571
 572 drop:
 573	/* Clean rxdes0 (which resets own bit) */
 574	rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
 575	priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
 576	netdev->stats.rx_dropped++;
 577	return true;
 578}
 579
 580static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
 581				     unsigned int index)
 582{
 583	if (index == (priv->tx_q_entries - 1))
 584		return priv->txdes0_edotr_mask;
 585	else
 586		return 0;
 587}
 588
 589static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv,
 590					      unsigned int pointer)
 591{
 592	return (pointer + 1) & (priv->tx_q_entries - 1);
 593}
 594
 595static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
 596{
 597	/* Returns the number of available slots in the TX queue
 598	 *
 599	 * This always leaves one free slot so we don't have to
 600	 * worry about empty vs. full, and this simplifies the
 601	 * test for ftgmac100_tx_buf_cleanable() below
 602	 */
 603	return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
 604		(priv->tx_q_entries - 1);
 605}
 606
 607static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
 608{
 609	return priv->tx_pointer != priv->tx_clean_pointer;
 610}
 611
 612static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
 613				     unsigned int pointer,
 614				     struct sk_buff *skb,
 615				     struct ftgmac100_txdes *txdes,
 616				     u32 ctl_stat)
 617{
 618	dma_addr_t map = le32_to_cpu(txdes->txdes3);
 619	size_t len;
 620
 621	if (ctl_stat & FTGMAC100_TXDES0_FTS) {
 622		len = skb_headlen(skb);
 623		dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
 624	} else {
 625		len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
 626		dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
 627	}
 628
 629	/* Free SKB on last segment */
 630	if (ctl_stat & FTGMAC100_TXDES0_LTS)
 631		dev_kfree_skb(skb);
 632	priv->tx_skbs[pointer] = NULL;
 633}
 634
 635static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
 636{
 637	struct net_device *netdev = priv->netdev;
 638	struct ftgmac100_txdes *txdes;
 639	struct sk_buff *skb;
 640	unsigned int pointer;
 641	u32 ctl_stat;
 642
 643	pointer = priv->tx_clean_pointer;
 644	txdes = &priv->txdes[pointer];
 645
 646	ctl_stat = le32_to_cpu(txdes->txdes0);
 647	if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
 648		return false;
 649
 650	skb = priv->tx_skbs[pointer];
 651	netdev->stats.tx_packets++;
 652	netdev->stats.tx_bytes += skb->len;
 653	ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
 654	txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
 655
 656	priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer);
 657
 658	return true;
 659}
 660
 661static void ftgmac100_tx_complete(struct ftgmac100 *priv)
 662{
 663	struct net_device *netdev = priv->netdev;
 664
 665	/* Process all completed packets */
 666	while (ftgmac100_tx_buf_cleanable(priv) &&
 667	       ftgmac100_tx_complete_packet(priv))
 668		;
 669
 670	/* Restart queue if needed */
 671	smp_mb();
 672	if (unlikely(netif_queue_stopped(netdev) &&
 673		     ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
 674		struct netdev_queue *txq;
 675
 676		txq = netdev_get_tx_queue(netdev, 0);
 677		__netif_tx_lock(txq, smp_processor_id());
 678		if (netif_queue_stopped(netdev) &&
 679		    ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
 680			netif_wake_queue(netdev);
 681		__netif_tx_unlock(txq);
 682	}
 683}
 684
 685static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
 686{
 687	if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
 688		u8 ip_proto = ip_hdr(skb)->protocol;
 689
 690		*csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
 691		switch(ip_proto) {
 692		case IPPROTO_TCP:
 693			*csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
 694			return true;
 695		case IPPROTO_UDP:
 696			*csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
 697			return true;
 698		case IPPROTO_IP:
 699			return true;
 700		}
 701	}
 702	return skb_checksum_help(skb) == 0;
 703}
 704
 705static netdev_tx_t ftgmac100_hard_start_xmit(struct sk_buff *skb,
 706					     struct net_device *netdev)
 707{
 708	struct ftgmac100 *priv = netdev_priv(netdev);
 709	struct ftgmac100_txdes *txdes, *first;
 710	unsigned int pointer, nfrags, len, i, j;
 711	u32 f_ctl_stat, ctl_stat, csum_vlan;
 712	dma_addr_t map;
 713
 714	/* The HW doesn't pad small frames */
 715	if (eth_skb_pad(skb)) {
 716		netdev->stats.tx_dropped++;
 717		return NETDEV_TX_OK;
 718	}
 719
 720	/* Reject oversize packets */
 721	if (unlikely(skb->len > MAX_PKT_SIZE)) {
 722		if (net_ratelimit())
 723			netdev_dbg(netdev, "tx packet too big\n");
 724		goto drop;
 725	}
 726
 727	/* Do we have a limit on #fragments ? I yet have to get a reply
 728	 * from Aspeed. If there's one I haven't hit it.
 729	 */
 730	nfrags = skb_shinfo(skb)->nr_frags;
 731
 732	/* Setup HW checksumming */
 733	csum_vlan = 0;
 734	if (skb->ip_summed == CHECKSUM_PARTIAL &&
 735	    !ftgmac100_prep_tx_csum(skb, &csum_vlan))
 736		goto drop;
 737
 738	/* Add VLAN tag */
 739	if (skb_vlan_tag_present(skb)) {
 740		csum_vlan |= FTGMAC100_TXDES1_INS_VLANTAG;
 741		csum_vlan |= skb_vlan_tag_get(skb) & 0xffff;
 742	}
 743
 744	/* Get header len */
 745	len = skb_headlen(skb);
 746
 747	/* Map the packet head */
 748	map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
 749	if (dma_mapping_error(priv->dev, map)) {
 750		if (net_ratelimit())
 751			netdev_err(netdev, "map tx packet head failed\n");
 752		goto drop;
 753	}
 754
 755	/* Grab the next free tx descriptor */
 756	pointer = priv->tx_pointer;
 757	txdes = first = &priv->txdes[pointer];
 758
 759	/* Setup it up with the packet head. Don't write the head to the
 760	 * ring just yet
 761	 */
 762	priv->tx_skbs[pointer] = skb;
 763	f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
 764	f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
 765	f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
 766	f_ctl_stat |= FTGMAC100_TXDES0_FTS;
 767	if (nfrags == 0)
 768		f_ctl_stat |= FTGMAC100_TXDES0_LTS;
 769	txdes->txdes3 = cpu_to_le32(map);
 770	txdes->txdes1 = cpu_to_le32(csum_vlan);
 771
 772	/* Next descriptor */
 773	pointer = ftgmac100_next_tx_pointer(priv, pointer);
 774
 775	/* Add the fragments */
 776	for (i = 0; i < nfrags; i++) {
 777		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 778
 779		len = skb_frag_size(frag);
 780
 781		/* Map it */
 782		map = skb_frag_dma_map(priv->dev, frag, 0, len,
 783				       DMA_TO_DEVICE);
 784		if (dma_mapping_error(priv->dev, map))
 785			goto dma_err;
 786
 787		/* Setup descriptor */
 788		priv->tx_skbs[pointer] = skb;
 789		txdes = &priv->txdes[pointer];
 790		ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
 791		ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
 792		ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
 793		if (i == (nfrags - 1))
 794			ctl_stat |= FTGMAC100_TXDES0_LTS;
 795		txdes->txdes0 = cpu_to_le32(ctl_stat);
 796		txdes->txdes1 = 0;
 797		txdes->txdes3 = cpu_to_le32(map);
 798
 799		/* Next one */
 800		pointer = ftgmac100_next_tx_pointer(priv, pointer);
 801	}
 802
 803	/* Order the previous packet and descriptor udpates
 804	 * before setting the OWN bit on the first descriptor.
 805	 */
 806	dma_wmb();
 807	first->txdes0 = cpu_to_le32(f_ctl_stat);
 808
 809	/* Update next TX pointer */
 810	priv->tx_pointer = pointer;
 811
 812	/* If there isn't enough room for all the fragments of a new packet
 813	 * in the TX ring, stop the queue. The sequence below is race free
 814	 * vs. a concurrent restart in ftgmac100_poll()
 815	 */
 816	if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
 817		netif_stop_queue(netdev);
 818		/* Order the queue stop with the test below */
 819		smp_mb();
 820		if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
 821			netif_wake_queue(netdev);
 822	}
 823
 824	/* Poke transmitter to read the updated TX descriptors */
 825	iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
 826
 827	return NETDEV_TX_OK;
 828
 829 dma_err:
 830	if (net_ratelimit())
 831		netdev_err(netdev, "map tx fragment failed\n");
 832
 833	/* Free head */
 834	pointer = priv->tx_pointer;
 835	ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
 836	first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
 837
 838	/* Then all fragments */
 839	for (j = 0; j < i; j++) {
 840		pointer = ftgmac100_next_tx_pointer(priv, pointer);
 841		txdes = &priv->txdes[pointer];
 842		ctl_stat = le32_to_cpu(txdes->txdes0);
 843		ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
 844		txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
 845	}
 846
 847	/* This cannot be reached if we successfully mapped the
 848	 * last fragment, so we know ftgmac100_free_tx_packet()
 849	 * hasn't freed the skb yet.
 850	 */
 851 drop:
 852	/* Drop the packet */
 853	dev_kfree_skb_any(skb);
 854	netdev->stats.tx_dropped++;
 855
 856	return NETDEV_TX_OK;
 857}
 858
 859static void ftgmac100_free_buffers(struct ftgmac100 *priv)
 860{
 861	int i;
 862
 863	/* Free all RX buffers */
 864	for (i = 0; i < priv->rx_q_entries; i++) {
 865		struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
 866		struct sk_buff *skb = priv->rx_skbs[i];
 867		dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
 868
 869		if (!skb)
 870			continue;
 871
 872		priv->rx_skbs[i] = NULL;
 873		dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
 874		dev_kfree_skb_any(skb);
 875	}
 876
 877	/* Free all TX buffers */
 878	for (i = 0; i < priv->tx_q_entries; i++) {
 879		struct ftgmac100_txdes *txdes = &priv->txdes[i];
 880		struct sk_buff *skb = priv->tx_skbs[i];
 881
 882		if (!skb)
 883			continue;
 884		ftgmac100_free_tx_packet(priv, i, skb, txdes,
 885					 le32_to_cpu(txdes->txdes0));
 886	}
 887}
 888
 889static void ftgmac100_free_rings(struct ftgmac100 *priv)
 890{
 891	/* Free skb arrays */
 892	kfree(priv->rx_skbs);
 893	kfree(priv->tx_skbs);
 894
 895	/* Free descriptors */
 896	if (priv->rxdes)
 897		dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES *
 898				  sizeof(struct ftgmac100_rxdes),
 899				  priv->rxdes, priv->rxdes_dma);
 900	priv->rxdes = NULL;
 901
 902	if (priv->txdes)
 903		dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES *
 904				  sizeof(struct ftgmac100_txdes),
 905				  priv->txdes, priv->txdes_dma);
 906	priv->txdes = NULL;
 907
 908	/* Free scratch packet buffer */
 909	if (priv->rx_scratch)
 910		dma_free_coherent(priv->dev, RX_BUF_SIZE,
 911				  priv->rx_scratch, priv->rx_scratch_dma);
 912}
 913
 914static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
 915{
 916	/* Allocate skb arrays */
 917	priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *),
 918				GFP_KERNEL);
 919	if (!priv->rx_skbs)
 920		return -ENOMEM;
 921	priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *),
 922				GFP_KERNEL);
 923	if (!priv->tx_skbs)
 924		return -ENOMEM;
 925
 926	/* Allocate descriptors */
 927	priv->rxdes = dma_alloc_coherent(priv->dev,
 928					 MAX_RX_QUEUE_ENTRIES * sizeof(struct ftgmac100_rxdes),
 929					 &priv->rxdes_dma, GFP_KERNEL);
 930	if (!priv->rxdes)
 931		return -ENOMEM;
 932	priv->txdes = dma_alloc_coherent(priv->dev,
 933					 MAX_TX_QUEUE_ENTRIES * sizeof(struct ftgmac100_txdes),
 934					 &priv->txdes_dma, GFP_KERNEL);
 935	if (!priv->txdes)
 936		return -ENOMEM;
 937
 938	/* Allocate scratch packet buffer */
 939	priv->rx_scratch = dma_alloc_coherent(priv->dev,
 940					      RX_BUF_SIZE,
 941					      &priv->rx_scratch_dma,
 942					      GFP_KERNEL);
 943	if (!priv->rx_scratch)
 944		return -ENOMEM;
 945
 946	return 0;
 947}
 948
 949static void ftgmac100_init_rings(struct ftgmac100 *priv)
 950{
 951	struct ftgmac100_rxdes *rxdes = NULL;
 952	struct ftgmac100_txdes *txdes = NULL;
 953	int i;
 954
 955	/* Update entries counts */
 956	priv->rx_q_entries = priv->new_rx_q_entries;
 957	priv->tx_q_entries = priv->new_tx_q_entries;
 958
 959	if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES))
 960		return;
 961
 962	/* Initialize RX ring */
 963	for (i = 0; i < priv->rx_q_entries; i++) {
 964		rxdes = &priv->rxdes[i];
 965		rxdes->rxdes0 = 0;
 966		rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
 967	}
 968	/* Mark the end of the ring */
 969	rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
 970
 971	if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES))
 972		return;
 973
 974	/* Initialize TX ring */
 975	for (i = 0; i < priv->tx_q_entries; i++) {
 976		txdes = &priv->txdes[i];
 977		txdes->txdes0 = 0;
 978	}
 979	txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
 980}
 981
 982static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
 983{
 984	int i;
 985
 986	for (i = 0; i < priv->rx_q_entries; i++) {
 987		struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
 988
 989		if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
 990			return -ENOMEM;
 991	}
 992	return 0;
 993}
 994
 995static void ftgmac100_adjust_link(struct net_device *netdev)
 996{
 997	struct ftgmac100 *priv = netdev_priv(netdev);
 998	struct phy_device *phydev = netdev->phydev;
 999	bool tx_pause, rx_pause;
1000	int new_speed;
1001
1002	/* We store "no link" as speed 0 */
1003	if (!phydev->link)
1004		new_speed = 0;
1005	else
1006		new_speed = phydev->speed;
1007
1008	/* Grab pause settings from PHY if configured to do so */
1009	if (priv->aneg_pause) {
1010		rx_pause = tx_pause = phydev->pause;
1011		if (phydev->asym_pause)
1012			tx_pause = !rx_pause;
1013	} else {
1014		rx_pause = priv->rx_pause;
1015		tx_pause = priv->tx_pause;
1016	}
1017
1018	/* Link hasn't changed, do nothing */
1019	if (phydev->speed == priv->cur_speed &&
1020	    phydev->duplex == priv->cur_duplex &&
1021	    rx_pause == priv->rx_pause &&
1022	    tx_pause == priv->tx_pause)
1023		return;
1024
1025	/* Print status if we have a link or we had one and just lost it,
1026	 * don't print otherwise.
1027	 */
1028	if (new_speed || priv->cur_speed)
1029		phy_print_status(phydev);
1030
1031	priv->cur_speed = new_speed;
1032	priv->cur_duplex = phydev->duplex;
1033	priv->rx_pause = rx_pause;
1034	priv->tx_pause = tx_pause;
1035
1036	/* Link is down, do nothing else */
1037	if (!new_speed)
1038		return;
1039
1040	/* Disable all interrupts */
1041	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1042
1043	/* Reset the adapter asynchronously */
1044	schedule_work(&priv->reset_task);
1045}
1046
1047static int ftgmac100_mii_probe(struct ftgmac100 *priv, phy_interface_t intf)
1048{
1049	struct net_device *netdev = priv->netdev;
1050	struct phy_device *phydev;
1051
1052	phydev = phy_find_first(priv->mii_bus);
1053	if (!phydev) {
1054		netdev_info(netdev, "%s: no PHY found\n", netdev->name);
1055		return -ENODEV;
1056	}
1057
1058	phydev = phy_connect(netdev, phydev_name(phydev),
1059			     &ftgmac100_adjust_link, intf);
1060
1061	if (IS_ERR(phydev)) {
1062		netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
1063		return PTR_ERR(phydev);
1064	}
1065
1066	/* Indicate that we support PAUSE frames (see comment in
1067	 * Documentation/networking/phy.rst)
1068	 */
1069	phy_support_asym_pause(phydev);
1070
1071	/* Display what we found */
1072	phy_attached_info(phydev);
1073
1074	return 0;
1075}
1076
1077static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
1078{
1079	struct net_device *netdev = bus->priv;
1080	struct ftgmac100 *priv = netdev_priv(netdev);
1081	unsigned int phycr;
1082	int i;
1083
1084	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1085
1086	/* preserve MDC cycle threshold */
1087	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1088
1089	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1090		 FTGMAC100_PHYCR_REGAD(regnum) |
1091		 FTGMAC100_PHYCR_MIIRD;
1092
1093	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1094
1095	for (i = 0; i < 10; i++) {
1096		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1097
1098		if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
1099			int data;
1100
1101			data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
1102			return FTGMAC100_PHYDATA_MIIRDATA(data);
1103		}
1104
1105		udelay(100);
1106	}
1107
1108	netdev_err(netdev, "mdio read timed out\n");
1109	return -EIO;
1110}
1111
1112static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
1113				   int regnum, u16 value)
1114{
1115	struct net_device *netdev = bus->priv;
1116	struct ftgmac100 *priv = netdev_priv(netdev);
1117	unsigned int phycr;
1118	int data;
1119	int i;
1120
1121	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1122
1123	/* preserve MDC cycle threshold */
1124	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1125
1126	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1127		 FTGMAC100_PHYCR_REGAD(regnum) |
1128		 FTGMAC100_PHYCR_MIIWR;
1129
1130	data = FTGMAC100_PHYDATA_MIIWDATA(value);
1131
1132	iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
1133	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1134
1135	for (i = 0; i < 10; i++) {
1136		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1137
1138		if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
1139			return 0;
1140
1141		udelay(100);
1142	}
1143
1144	netdev_err(netdev, "mdio write timed out\n");
1145	return -EIO;
1146}
1147
1148static void ftgmac100_get_drvinfo(struct net_device *netdev,
1149				  struct ethtool_drvinfo *info)
1150{
1151	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1152	strlcpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
1153}
1154
1155static void ftgmac100_get_ringparam(struct net_device *netdev,
1156				    struct ethtool_ringparam *ering)
 
 
 
1157{
1158	struct ftgmac100 *priv = netdev_priv(netdev);
1159
1160	memset(ering, 0, sizeof(*ering));
1161	ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES;
1162	ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES;
1163	ering->rx_pending = priv->rx_q_entries;
1164	ering->tx_pending = priv->tx_q_entries;
1165}
1166
1167static int ftgmac100_set_ringparam(struct net_device *netdev,
1168				   struct ethtool_ringparam *ering)
 
 
 
1169{
1170	struct ftgmac100 *priv = netdev_priv(netdev);
1171
1172	if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES ||
1173	    ering->tx_pending > MAX_TX_QUEUE_ENTRIES ||
1174	    ering->rx_pending < MIN_RX_QUEUE_ENTRIES ||
1175	    ering->tx_pending < MIN_TX_QUEUE_ENTRIES ||
1176	    !is_power_of_2(ering->rx_pending) ||
1177	    !is_power_of_2(ering->tx_pending))
1178		return -EINVAL;
1179
1180	priv->new_rx_q_entries = ering->rx_pending;
1181	priv->new_tx_q_entries = ering->tx_pending;
1182	if (netif_running(netdev))
1183		schedule_work(&priv->reset_task);
1184
1185	return 0;
1186}
1187
1188static void ftgmac100_get_pauseparam(struct net_device *netdev,
1189				     struct ethtool_pauseparam *pause)
1190{
1191	struct ftgmac100 *priv = netdev_priv(netdev);
1192
1193	pause->autoneg = priv->aneg_pause;
1194	pause->tx_pause = priv->tx_pause;
1195	pause->rx_pause = priv->rx_pause;
1196}
1197
1198static int ftgmac100_set_pauseparam(struct net_device *netdev,
1199				    struct ethtool_pauseparam *pause)
1200{
1201	struct ftgmac100 *priv = netdev_priv(netdev);
1202	struct phy_device *phydev = netdev->phydev;
1203
1204	priv->aneg_pause = pause->autoneg;
1205	priv->tx_pause = pause->tx_pause;
1206	priv->rx_pause = pause->rx_pause;
1207
1208	if (phydev)
1209		phy_set_asym_pause(phydev, pause->rx_pause, pause->tx_pause);
1210
1211	if (netif_running(netdev)) {
1212		if (!(phydev && priv->aneg_pause))
1213			ftgmac100_config_pause(priv);
1214	}
1215
1216	return 0;
1217}
1218
1219static const struct ethtool_ops ftgmac100_ethtool_ops = {
1220	.get_drvinfo		= ftgmac100_get_drvinfo,
1221	.get_link		= ethtool_op_get_link,
1222	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1223	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1224	.nway_reset		= phy_ethtool_nway_reset,
1225	.get_ringparam		= ftgmac100_get_ringparam,
1226	.set_ringparam		= ftgmac100_set_ringparam,
1227	.get_pauseparam		= ftgmac100_get_pauseparam,
1228	.set_pauseparam		= ftgmac100_set_pauseparam,
1229};
1230
1231static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
1232{
1233	struct net_device *netdev = dev_id;
1234	struct ftgmac100 *priv = netdev_priv(netdev);
1235	unsigned int status, new_mask = FTGMAC100_INT_BAD;
1236
1237	/* Fetch and clear interrupt bits, process abnormal ones */
1238	status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1239	iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
1240	if (unlikely(status & FTGMAC100_INT_BAD)) {
1241
1242		/* RX buffer unavailable */
1243		if (status & FTGMAC100_INT_NO_RXBUF)
1244			netdev->stats.rx_over_errors++;
1245
1246		/* received packet lost due to RX FIFO full */
1247		if (status & FTGMAC100_INT_RPKT_LOST)
1248			netdev->stats.rx_fifo_errors++;
1249
1250		/* sent packet lost due to excessive TX collision */
1251		if (status & FTGMAC100_INT_XPKT_LOST)
1252			netdev->stats.tx_fifo_errors++;
1253
1254		/* AHB error -> Reset the chip */
1255		if (status & FTGMAC100_INT_AHB_ERR) {
1256			if (net_ratelimit())
1257				netdev_warn(netdev,
1258					   "AHB bus error ! Resetting chip.\n");
1259			iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1260			schedule_work(&priv->reset_task);
1261			return IRQ_HANDLED;
1262		}
1263
1264		/* We may need to restart the MAC after such errors, delay
1265		 * this until after we have freed some Rx buffers though
1266		 */
1267		priv->need_mac_restart = true;
1268
1269		/* Disable those errors until we restart */
1270		new_mask &= ~status;
1271	}
1272
1273	/* Only enable "bad" interrupts while NAPI is on */
1274	iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);
1275
1276	/* Schedule NAPI bh */
1277	napi_schedule_irqoff(&priv->napi);
1278
1279	return IRQ_HANDLED;
1280}
1281
1282static bool ftgmac100_check_rx(struct ftgmac100 *priv)
1283{
1284	struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer];
1285
1286	/* Do we have a packet ? */
1287	return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
1288}
1289
1290static int ftgmac100_poll(struct napi_struct *napi, int budget)
1291{
1292	struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1293	int work_done = 0;
1294	bool more;
1295
1296	/* Handle TX completions */
1297	if (ftgmac100_tx_buf_cleanable(priv))
1298		ftgmac100_tx_complete(priv);
1299
1300	/* Handle RX packets */
1301	do {
1302		more = ftgmac100_rx_packet(priv, &work_done);
1303	} while (more && work_done < budget);
1304
1305
1306	/* The interrupt is telling us to kick the MAC back to life
1307	 * after an RX overflow
1308	 */
1309	if (unlikely(priv->need_mac_restart)) {
1310		ftgmac100_start_hw(priv);
 
1311
1312		/* Re-enable "bad" interrupts */
1313		iowrite32(FTGMAC100_INT_BAD,
1314			  priv->base + FTGMAC100_OFFSET_IER);
1315	}
1316
1317	/* As long as we are waiting for transmit packets to be
1318	 * completed we keep NAPI going
1319	 */
1320	if (ftgmac100_tx_buf_cleanable(priv))
1321		work_done = budget;
1322
1323	if (work_done < budget) {
1324		/* We are about to re-enable all interrupts. However
1325		 * the HW has been latching RX/TX packet interrupts while
1326		 * they were masked. So we clear them first, then we need
1327		 * to re-check if there's something to process
1328		 */
1329		iowrite32(FTGMAC100_INT_RXTX,
1330			  priv->base + FTGMAC100_OFFSET_ISR);
1331
1332		/* Push the above (and provides a barrier vs. subsequent
1333		 * reads of the descriptor).
1334		 */
1335		ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1336
1337		/* Check RX and TX descriptors for more work to do */
1338		if (ftgmac100_check_rx(priv) ||
1339		    ftgmac100_tx_buf_cleanable(priv))
1340			return budget;
1341
1342		/* deschedule NAPI */
1343		napi_complete(napi);
1344
1345		/* enable all interrupts */
1346		iowrite32(FTGMAC100_INT_ALL,
1347			  priv->base + FTGMAC100_OFFSET_IER);
1348	}
1349
1350	return work_done;
1351}
1352
1353static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
1354{
1355	int err = 0;
1356
1357	/* Re-init descriptors (adjust queue sizes) */
1358	ftgmac100_init_rings(priv);
1359
1360	/* Realloc rx descriptors */
1361	err = ftgmac100_alloc_rx_buffers(priv);
1362	if (err && !ignore_alloc_err)
1363		return err;
1364
1365	/* Reinit and restart HW */
1366	ftgmac100_init_hw(priv);
1367	ftgmac100_config_pause(priv);
1368	ftgmac100_start_hw(priv);
1369
1370	/* Re-enable the device */
1371	napi_enable(&priv->napi);
1372	netif_start_queue(priv->netdev);
1373
1374	/* Enable all interrupts */
1375	iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1376
1377	return err;
1378}
1379
1380static void ftgmac100_reset_task(struct work_struct *work)
1381{
1382	struct ftgmac100 *priv = container_of(work, struct ftgmac100,
1383					      reset_task);
1384	struct net_device *netdev = priv->netdev;
1385	int err;
1386
1387	netdev_dbg(netdev, "Resetting NIC...\n");
1388
1389	/* Lock the world */
1390	rtnl_lock();
1391	if (netdev->phydev)
1392		mutex_lock(&netdev->phydev->lock);
1393	if (priv->mii_bus)
1394		mutex_lock(&priv->mii_bus->mdio_lock);
1395
1396
1397	/* Check if the interface is still up */
1398	if (!netif_running(netdev))
1399		goto bail;
1400
1401	/* Stop the network stack */
1402	netif_trans_update(netdev);
1403	napi_disable(&priv->napi);
1404	netif_tx_disable(netdev);
1405
1406	/* Stop and reset the MAC */
1407	ftgmac100_stop_hw(priv);
1408	err = ftgmac100_reset_and_config_mac(priv);
1409	if (err) {
1410		/* Not much we can do ... it might come back... */
1411		netdev_err(netdev, "attempting to continue...\n");
1412	}
1413
1414	/* Free all rx and tx buffers */
1415	ftgmac100_free_buffers(priv);
1416
1417	/* Setup everything again and restart chip */
1418	ftgmac100_init_all(priv, true);
1419
1420	netdev_dbg(netdev, "Reset done !\n");
1421 bail:
1422	if (priv->mii_bus)
1423		mutex_unlock(&priv->mii_bus->mdio_lock);
1424	if (netdev->phydev)
1425		mutex_unlock(&netdev->phydev->lock);
1426	rtnl_unlock();
1427}
1428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1429static int ftgmac100_open(struct net_device *netdev)
1430{
1431	struct ftgmac100 *priv = netdev_priv(netdev);
1432	int err;
1433
1434	/* Allocate ring buffers  */
1435	err = ftgmac100_alloc_rings(priv);
1436	if (err) {
1437		netdev_err(netdev, "Failed to allocate descriptors\n");
1438		return err;
1439	}
1440
1441	/* When using NC-SI we force the speed to 100Mbit/s full duplex,
1442	 *
1443	 * Otherwise we leave it set to 0 (no link), the link
1444	 * message from the PHY layer will handle setting it up to
1445	 * something else if needed.
1446	 */
1447	if (priv->use_ncsi) {
1448		priv->cur_duplex = DUPLEX_FULL;
1449		priv->cur_speed = SPEED_100;
1450	} else {
1451		priv->cur_duplex = 0;
1452		priv->cur_speed = 0;
1453	}
1454
1455	/* Reset the hardware */
1456	err = ftgmac100_reset_and_config_mac(priv);
1457	if (err)
1458		goto err_hw;
1459
1460	/* Initialize NAPI */
1461	netif_napi_add(netdev, &priv->napi, ftgmac100_poll, 64);
1462
1463	/* Grab our interrupt */
1464	err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
1465	if (err) {
1466		netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
1467		goto err_irq;
1468	}
1469
1470	/* Start things up */
1471	err = ftgmac100_init_all(priv, false);
1472	if (err) {
1473		netdev_err(netdev, "Failed to allocate packet buffers\n");
1474		goto err_alloc;
1475	}
1476
1477	if (netdev->phydev) {
1478		/* If we have a PHY, start polling */
1479		phy_start(netdev->phydev);
1480	} else if (priv->use_ncsi) {
1481		/* If using NC-SI, set our carrier on and start the stack */
1482		netif_carrier_on(netdev);
1483
1484		/* Start the NCSI device */
1485		err = ncsi_start_dev(priv->ndev);
1486		if (err)
1487			goto err_ncsi;
1488	}
1489
1490	return 0;
1491
1492 err_ncsi:
1493	napi_disable(&priv->napi);
1494	netif_stop_queue(netdev);
1495 err_alloc:
1496	ftgmac100_free_buffers(priv);
1497	free_irq(netdev->irq, netdev);
1498 err_irq:
1499	netif_napi_del(&priv->napi);
1500 err_hw:
1501	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1502	ftgmac100_free_rings(priv);
1503	return err;
1504}
1505
1506static int ftgmac100_stop(struct net_device *netdev)
1507{
1508	struct ftgmac100 *priv = netdev_priv(netdev);
1509
1510	/* Note about the reset task: We are called with the rtnl lock
1511	 * held, so we are synchronized against the core of the reset
1512	 * task. We must not try to synchronously cancel it otherwise
1513	 * we can deadlock. But since it will test for netif_running()
1514	 * which has already been cleared by the net core, we don't
1515	 * anything special to do.
1516	 */
1517
1518	/* disable all interrupts */
1519	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1520
1521	netif_stop_queue(netdev);
1522	napi_disable(&priv->napi);
1523	netif_napi_del(&priv->napi);
1524	if (netdev->phydev)
1525		phy_stop(netdev->phydev);
1526	else if (priv->use_ncsi)
1527		ncsi_stop_dev(priv->ndev);
1528
1529	ftgmac100_stop_hw(priv);
1530	free_irq(netdev->irq, netdev);
1531	ftgmac100_free_buffers(priv);
1532	ftgmac100_free_rings(priv);
1533
1534	return 0;
1535}
1536
1537static void ftgmac100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
1538{
1539	struct ftgmac100 *priv = netdev_priv(netdev);
1540
1541	/* Disable all interrupts */
1542	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1543
1544	/* Do the reset outside of interrupt context */
1545	schedule_work(&priv->reset_task);
1546}
1547
1548static int ftgmac100_set_features(struct net_device *netdev,
1549				  netdev_features_t features)
1550{
1551	struct ftgmac100 *priv = netdev_priv(netdev);
1552	netdev_features_t changed = netdev->features ^ features;
1553
1554	if (!netif_running(netdev))
1555		return 0;
1556
1557	/* Update the vlan filtering bit */
1558	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
1559		u32 maccr;
1560
1561		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
1562		if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
1563			maccr |= FTGMAC100_MACCR_RM_VLAN;
1564		else
1565			maccr &= ~FTGMAC100_MACCR_RM_VLAN;
1566		iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
1567	}
1568
1569	return 0;
1570}
1571
1572#ifdef CONFIG_NET_POLL_CONTROLLER
1573static void ftgmac100_poll_controller(struct net_device *netdev)
1574{
1575	unsigned long flags;
1576
1577	local_irq_save(flags);
1578	ftgmac100_interrupt(netdev->irq, netdev);
1579	local_irq_restore(flags);
1580}
1581#endif
1582
1583static const struct net_device_ops ftgmac100_netdev_ops = {
1584	.ndo_open		= ftgmac100_open,
1585	.ndo_stop		= ftgmac100_stop,
1586	.ndo_start_xmit		= ftgmac100_hard_start_xmit,
1587	.ndo_set_mac_address	= ftgmac100_set_mac_addr,
1588	.ndo_validate_addr	= eth_validate_addr,
1589	.ndo_do_ioctl		= phy_do_ioctl,
1590	.ndo_tx_timeout		= ftgmac100_tx_timeout,
1591	.ndo_set_rx_mode	= ftgmac100_set_rx_mode,
1592	.ndo_set_features	= ftgmac100_set_features,
1593#ifdef CONFIG_NET_POLL_CONTROLLER
1594	.ndo_poll_controller	= ftgmac100_poll_controller,
1595#endif
1596	.ndo_vlan_rx_add_vid	= ncsi_vlan_rx_add_vid,
1597	.ndo_vlan_rx_kill_vid	= ncsi_vlan_rx_kill_vid,
1598};
1599
1600static int ftgmac100_setup_mdio(struct net_device *netdev)
1601{
1602	struct ftgmac100 *priv = netdev_priv(netdev);
1603	struct platform_device *pdev = to_platform_device(priv->dev);
1604	phy_interface_t phy_intf = PHY_INTERFACE_MODE_RGMII;
1605	struct device_node *np = pdev->dev.of_node;
 
1606	int i, err = 0;
1607	u32 reg;
1608
1609	/* initialize mdio bus */
1610	priv->mii_bus = mdiobus_alloc();
1611	if (!priv->mii_bus)
1612		return -EIO;
1613
1614	if (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1615	    of_device_is_compatible(np, "aspeed,ast2500-mac")) {
1616		/* The AST2600 has a separate MDIO controller */
1617
1618		/* For the AST2400 and AST2500 this driver only supports the
1619		 * old MDIO interface
1620		 */
1621		reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
1622		reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
1623		iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
1624	}
1625
1626	/* Get PHY mode from device-tree */
1627	if (np) {
1628		/* Default to RGMII. It's a gigabit part after all */
1629		err = of_get_phy_mode(np, &phy_intf);
1630		if (err)
1631			phy_intf = PHY_INTERFACE_MODE_RGMII;
1632
1633		/* Aspeed only supports these. I don't know about other IP
1634		 * block vendors so I'm going to just let them through for
1635		 * now. Note that this is only a warning if for some obscure
1636		 * reason the DT really means to lie about it or it's a newer
1637		 * part we don't know about.
1638		 *
1639		 * On the Aspeed SoC there are additionally straps and SCU
1640		 * control bits that could tell us what the interface is
1641		 * (or allow us to configure it while the IP block is held
1642		 * in reset). For now I chose to keep this driver away from
1643		 * those SoC specific bits and assume the device-tree is
1644		 * right and the SCU has been configured properly by pinmux
1645		 * or the firmware.
1646		 */
1647		if (priv->is_aspeed &&
1648		    phy_intf != PHY_INTERFACE_MODE_RMII &&
1649		    phy_intf != PHY_INTERFACE_MODE_RGMII &&
1650		    phy_intf != PHY_INTERFACE_MODE_RGMII_ID &&
1651		    phy_intf != PHY_INTERFACE_MODE_RGMII_RXID &&
1652		    phy_intf != PHY_INTERFACE_MODE_RGMII_TXID) {
1653			netdev_warn(netdev,
1654				   "Unsupported PHY mode %s !\n",
1655				   phy_modes(phy_intf));
1656		}
1657	}
1658
1659	priv->mii_bus->name = "ftgmac100_mdio";
1660	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1661		 pdev->name, pdev->id);
1662	priv->mii_bus->parent = priv->dev;
1663	priv->mii_bus->priv = priv->netdev;
1664	priv->mii_bus->read = ftgmac100_mdiobus_read;
1665	priv->mii_bus->write = ftgmac100_mdiobus_write;
1666
1667	for (i = 0; i < PHY_MAX_ADDR; i++)
1668		priv->mii_bus->irq[i] = PHY_POLL;
1669
1670	err = mdiobus_register(priv->mii_bus);
 
 
1671	if (err) {
1672		dev_err(priv->dev, "Cannot register MDIO bus!\n");
1673		goto err_register_mdiobus;
1674	}
1675
1676	err = ftgmac100_mii_probe(priv, phy_intf);
1677	if (err) {
1678		dev_err(priv->dev, "MII Probe failed!\n");
1679		goto err_mii_probe;
1680	}
1681
1682	return 0;
1683
1684err_mii_probe:
1685	mdiobus_unregister(priv->mii_bus);
1686err_register_mdiobus:
1687	mdiobus_free(priv->mii_bus);
1688	return err;
1689}
1690
1691static void ftgmac100_destroy_mdio(struct net_device *netdev)
1692{
1693	struct ftgmac100 *priv = netdev_priv(netdev);
1694
1695	if (!netdev->phydev)
1696		return;
1697
1698	phy_disconnect(netdev->phydev);
 
 
 
 
 
 
 
 
 
 
 
1699	mdiobus_unregister(priv->mii_bus);
1700	mdiobus_free(priv->mii_bus);
1701}
1702
1703static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
1704{
1705	if (unlikely(nd->state != ncsi_dev_state_functional))
1706		return;
1707
1708	netdev_dbg(nd->dev, "NCSI interface %s\n",
1709		   nd->link_up ? "up" : "down");
1710}
1711
1712static int ftgmac100_setup_clk(struct ftgmac100 *priv)
1713{
1714	struct clk *clk;
1715	int rc;
1716
1717	clk = devm_clk_get(priv->dev, NULL /* MACCLK */);
1718	if (IS_ERR(clk))
1719		return PTR_ERR(clk);
1720	priv->clk = clk;
1721	rc = clk_prepare_enable(priv->clk);
1722	if (rc)
1723		return rc;
1724
1725	/* Aspeed specifies a 100MHz clock is required for up to
1726	 * 1000Mbit link speeds. As NCSI is limited to 100Mbit, 25MHz
1727	 * is sufficient
1728	 */
1729	rc = clk_set_rate(priv->clk, priv->use_ncsi ? FTGMAC_25MHZ :
1730			  FTGMAC_100MHZ);
1731	if (rc)
1732		goto cleanup_clk;
1733
1734	/* RCLK is for RMII, typically used for NCSI. Optional because it's not
1735	 * necessary if it's the AST2400 MAC, or the MAC is configured for
1736	 * RGMII, or the controller is not an ASPEED-based controller.
1737	 */
1738	priv->rclk = devm_clk_get_optional(priv->dev, "RCLK");
1739	rc = clk_prepare_enable(priv->rclk);
1740	if (!rc)
1741		return 0;
1742
1743cleanup_clk:
1744	clk_disable_unprepare(priv->clk);
1745
1746	return rc;
1747}
1748
 
 
 
 
 
 
 
 
 
 
 
 
 
1749static int ftgmac100_probe(struct platform_device *pdev)
1750{
1751	struct resource *res;
1752	int irq;
1753	struct net_device *netdev;
1754	struct ftgmac100 *priv;
1755	struct device_node *np;
1756	int err = 0;
1757
1758	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1759	if (!res)
1760		return -ENXIO;
1761
1762	irq = platform_get_irq(pdev, 0);
1763	if (irq < 0)
1764		return irq;
1765
1766	/* setup net_device */
1767	netdev = alloc_etherdev(sizeof(*priv));
1768	if (!netdev) {
1769		err = -ENOMEM;
1770		goto err_alloc_etherdev;
1771	}
1772
1773	SET_NETDEV_DEV(netdev, &pdev->dev);
1774
1775	netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1776	netdev->netdev_ops = &ftgmac100_netdev_ops;
1777	netdev->watchdog_timeo = 5 * HZ;
1778
1779	platform_set_drvdata(pdev, netdev);
1780
1781	/* setup private data */
1782	priv = netdev_priv(netdev);
1783	priv->netdev = netdev;
1784	priv->dev = &pdev->dev;
1785	INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1786
1787	/* map io memory */
1788	priv->res = request_mem_region(res->start, resource_size(res),
1789				       dev_name(&pdev->dev));
1790	if (!priv->res) {
1791		dev_err(&pdev->dev, "Could not reserve memory region\n");
1792		err = -ENOMEM;
1793		goto err_req_mem;
1794	}
1795
1796	priv->base = ioremap(res->start, resource_size(res));
1797	if (!priv->base) {
1798		dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
1799		err = -EIO;
1800		goto err_ioremap;
1801	}
1802
1803	netdev->irq = irq;
1804
1805	/* Enable pause */
1806	priv->tx_pause = true;
1807	priv->rx_pause = true;
1808	priv->aneg_pause = true;
1809
1810	/* MAC address from chip or random one */
1811	ftgmac100_initial_mac(priv);
 
 
1812
1813	np = pdev->dev.of_node;
1814	if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1815		   of_device_is_compatible(np, "aspeed,ast2500-mac") ||
1816		   of_device_is_compatible(np, "aspeed,ast2600-mac"))) {
1817		priv->rxdes0_edorr_mask = BIT(30);
1818		priv->txdes0_edotr_mask = BIT(30);
1819		priv->is_aspeed = true;
1820	} else {
1821		priv->rxdes0_edorr_mask = BIT(15);
1822		priv->txdes0_edotr_mask = BIT(15);
1823	}
1824
1825	if (np && of_get_property(np, "use-ncsi", NULL)) {
1826		if (!IS_ENABLED(CONFIG_NET_NCSI)) {
1827			dev_err(&pdev->dev, "NCSI stack not enabled\n");
1828			goto err_ncsi_dev;
 
1829		}
1830
1831		dev_info(&pdev->dev, "Using NCSI interface\n");
1832		priv->use_ncsi = true;
1833		priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
1834		if (!priv->ndev)
1835			goto err_ncsi_dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1836	} else if (np && of_get_property(np, "phy-handle", NULL)) {
1837		struct phy_device *phy;
1838
 
 
 
 
 
 
 
 
 
 
 
1839		phy = of_phy_get_and_connect(priv->netdev, np,
1840					     &ftgmac100_adjust_link);
1841		if (!phy) {
1842			dev_err(&pdev->dev, "Failed to connect to phy\n");
1843			goto err_setup_mdio;
 
1844		}
1845
1846		/* Indicate that we support PAUSE frames (see comment in
1847		 * Documentation/networking/phy.rst)
1848		 */
1849		phy_support_asym_pause(phy);
1850
1851		/* Display what we found */
1852		phy_attached_info(phy);
1853	} else if (np && !of_get_child_by_name(np, "mdio")) {
1854		/* Support legacy ASPEED devicetree descriptions that decribe a
1855		 * MAC with an embedded MDIO controller but have no "mdio"
1856		 * child node. Automatically scan the MDIO bus for available
1857		 * PHYs.
1858		 */
1859		priv->use_ncsi = false;
1860		err = ftgmac100_setup_mdio(netdev);
1861		if (err)
1862			goto err_setup_mdio;
 
 
 
 
 
 
 
1863	}
1864
1865	if (priv->is_aspeed) {
1866		err = ftgmac100_setup_clk(priv);
1867		if (err)
1868			goto err_ncsi_dev;
 
 
 
 
 
1869	}
1870
1871	/* Default ring sizes */
1872	priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES;
1873	priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES;
1874
1875	/* Base feature set */
1876	netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
1877		NETIF_F_GRO | NETIF_F_SG | NETIF_F_HW_VLAN_CTAG_RX |
1878		NETIF_F_HW_VLAN_CTAG_TX;
1879
1880	if (priv->use_ncsi)
1881		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1882
1883	/* AST2400  doesn't have working HW checksum generation */
1884	if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
1885		netdev->hw_features &= ~NETIF_F_HW_CSUM;
 
 
 
 
 
1886	if (np && of_get_property(np, "no-hw-checksum", NULL))
1887		netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
1888	netdev->features |= netdev->hw_features;
1889
1890	/* register network device */
1891	err = register_netdev(netdev);
1892	if (err) {
1893		dev_err(&pdev->dev, "Failed to register netdev\n");
1894		goto err_register_netdev;
1895	}
1896
1897	netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1898
1899	return 0;
1900
1901err_register_netdev:
1902	clk_disable_unprepare(priv->rclk);
1903	clk_disable_unprepare(priv->clk);
 
 
1904err_ncsi_dev:
 
 
1905	ftgmac100_destroy_mdio(netdev);
1906err_setup_mdio:
1907	iounmap(priv->base);
1908err_ioremap:
1909	release_resource(priv->res);
1910err_req_mem:
1911	free_netdev(netdev);
1912err_alloc_etherdev:
1913	return err;
1914}
1915
1916static int ftgmac100_remove(struct platform_device *pdev)
1917{
1918	struct net_device *netdev;
1919	struct ftgmac100 *priv;
1920
1921	netdev = platform_get_drvdata(pdev);
1922	priv = netdev_priv(netdev);
1923
 
 
1924	unregister_netdev(netdev);
1925
1926	clk_disable_unprepare(priv->rclk);
1927	clk_disable_unprepare(priv->clk);
1928
1929	/* There's a small chance the reset task will have been re-queued,
1930	 * during stop, make sure it's gone before we free the structure.
1931	 */
1932	cancel_work_sync(&priv->reset_task);
1933
 
1934	ftgmac100_destroy_mdio(netdev);
1935
1936	iounmap(priv->base);
1937	release_resource(priv->res);
1938
1939	netif_napi_del(&priv->napi);
1940	free_netdev(netdev);
1941	return 0;
1942}
1943
1944static const struct of_device_id ftgmac100_of_match[] = {
1945	{ .compatible = "faraday,ftgmac100" },
1946	{ }
1947};
1948MODULE_DEVICE_TABLE(of, ftgmac100_of_match);
1949
1950static struct platform_driver ftgmac100_driver = {
1951	.probe	= ftgmac100_probe,
1952	.remove	= ftgmac100_remove,
1953	.driver	= {
1954		.name		= DRV_NAME,
1955		.of_match_table	= ftgmac100_of_match,
1956	},
1957};
1958module_platform_driver(ftgmac100_driver);
1959
1960MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
1961MODULE_DESCRIPTION("FTGMAC100 driver");
1962MODULE_LICENSE("GPL");