Loading...
1/* sundance.c: A Linux device driver for the Sundance ST201 "Alta". */
2/*
3 Written 1999-2000 by Donald Becker.
4
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
11
12 The author may be reached as becker@scyld.com, or C/O
13 Scyld Computing Corporation
14 410 Severn Ave., Suite 210
15 Annapolis MD 21403
16
17 Support and updates available at
18 http://www.scyld.com/network/sundance.html
19 [link no longer provides useful info -jgarzik]
20 Archives of the mailing list are still available at
21 https://www.beowulf.org/pipermail/netdrivers/
22
23*/
24
25#define DRV_NAME "sundance"
26
27/* The user-configurable values.
28 These may be modified when a driver module is loaded.*/
29static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
30/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
31 Typical is a 64 element hash table based on the Ethernet CRC. */
32static const int multicast_filter_limit = 32;
33
34/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
35 Setting to > 1518 effectively disables this feature.
36 This chip can receive into offset buffers, so the Alpha does not
37 need a copy-align. */
38static int rx_copybreak;
39static int flowctrl=1;
40
41/* media[] specifies the media type the NIC operates at.
42 autosense Autosensing active media.
43 10mbps_hd 10Mbps half duplex.
44 10mbps_fd 10Mbps full duplex.
45 100mbps_hd 100Mbps half duplex.
46 100mbps_fd 100Mbps full duplex.
47 0 Autosensing active media.
48 1 10Mbps half duplex.
49 2 10Mbps full duplex.
50 3 100Mbps half duplex.
51 4 100Mbps full duplex.
52*/
53#define MAX_UNITS 8
54static char *media[MAX_UNITS];
55
56
57/* Operational parameters that are set at compile time. */
58
59/* Keep the ring sizes a power of two for compile efficiency.
60 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
61 Making the Tx ring too large decreases the effectiveness of channel
62 bonding and packet priority, and more than 128 requires modifying the
63 Tx error recovery.
64 Large receive rings merely waste memory. */
65#define TX_RING_SIZE 32
66#define TX_QUEUE_LEN (TX_RING_SIZE - 1) /* Limit ring entries actually used. */
67#define RX_RING_SIZE 64
68#define RX_BUDGET 32
69#define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct netdev_desc)
70#define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct netdev_desc)
71
72/* Operational parameters that usually are not changed. */
73/* Time in jiffies before concluding the transmitter is hung. */
74#define TX_TIMEOUT (4*HZ)
75#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
76
77/* Include files, designed to support most kernel versions 2.0.0 and later. */
78#include <linux/module.h>
79#include <linux/kernel.h>
80#include <linux/string.h>
81#include <linux/timer.h>
82#include <linux/errno.h>
83#include <linux/ioport.h>
84#include <linux/interrupt.h>
85#include <linux/pci.h>
86#include <linux/netdevice.h>
87#include <linux/etherdevice.h>
88#include <linux/skbuff.h>
89#include <linux/init.h>
90#include <linux/bitops.h>
91#include <linux/uaccess.h>
92#include <asm/processor.h> /* Processor type for cache alignment. */
93#include <asm/io.h>
94#include <linux/delay.h>
95#include <linux/spinlock.h>
96#include <linux/dma-mapping.h>
97#include <linux/crc32.h>
98#include <linux/ethtool.h>
99#include <linux/mii.h>
100
101MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
102MODULE_DESCRIPTION("Sundance Alta Ethernet driver");
103MODULE_LICENSE("GPL");
104
105module_param(debug, int, 0);
106module_param(rx_copybreak, int, 0);
107module_param_array(media, charp, NULL, 0);
108module_param(flowctrl, int, 0);
109MODULE_PARM_DESC(debug, "Sundance Alta debug level (0-5)");
110MODULE_PARM_DESC(rx_copybreak, "Sundance Alta copy breakpoint for copy-only-tiny-frames");
111MODULE_PARM_DESC(flowctrl, "Sundance Alta flow control [0|1]");
112
113/*
114 Theory of Operation
115
116I. Board Compatibility
117
118This driver is designed for the Sundance Technologies "Alta" ST201 chip.
119
120II. Board-specific settings
121
122III. Driver operation
123
124IIIa. Ring buffers
125
126This driver uses two statically allocated fixed-size descriptor lists
127formed into rings by a branch from the final descriptor to the beginning of
128the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
129Some chips explicitly use only 2^N sized rings, while others use a
130'next descriptor' pointer that the driver forms into rings.
131
132IIIb/c. Transmit/Receive Structure
133
134This driver uses a zero-copy receive and transmit scheme.
135The driver allocates full frame size skbuffs for the Rx ring buffers at
136open() time and passes the skb->data field to the chip as receive data
137buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
138a fresh skbuff is allocated and the frame is copied to the new skbuff.
139When the incoming frame is larger, the skbuff is passed directly up the
140protocol stack. Buffers consumed this way are replaced by newly allocated
141skbuffs in a later phase of receives.
142
143The RX_COPYBREAK value is chosen to trade-off the memory wasted by
144using a full-sized skbuff for small frames vs. the copying costs of larger
145frames. New boards are typically used in generously configured machines
146and the underfilled buffers have negligible impact compared to the benefit of
147a single allocation size, so the default value of zero results in never
148copying packets. When copying is done, the cost is usually mitigated by using
149a combined copy/checksum routine. Copying also preloads the cache, which is
150most useful with small frames.
151
152A subtle aspect of the operation is that the IP header at offset 14 in an
153ethernet frame isn't longword aligned for further processing.
154Unaligned buffers are permitted by the Sundance hardware, so
155frames are received into the skbuff at an offset of "+2", 16-byte aligning
156the IP header.
157
158IIId. Synchronization
159
160The driver runs as two independent, single-threaded flows of control. One
161is the send-packet routine, which enforces single-threaded use by the
162dev->tbusy flag. The other thread is the interrupt handler, which is single
163threaded by the hardware and interrupt handling software.
164
165The send packet thread has partial control over the Tx ring and 'dev->tbusy'
166flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
167queue slot is empty, it clears the tbusy flag when finished otherwise it sets
168the 'lp->tx_full' flag.
169
170The interrupt handler has exclusive control over the Rx ring and records stats
171from the Tx ring. After reaping the stats, it marks the Tx queue entry as
172empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it
173clears both the tx_full and tbusy flags.
174
175IV. Notes
176
177IVb. References
178
179The Sundance ST201 datasheet, preliminary version.
180The Kendin KS8723 datasheet, preliminary version.
181The ICplus IP100 datasheet, preliminary version.
182http://www.scyld.com/expert/100mbps.html
183http://www.scyld.com/expert/NWay.html
184
185IVc. Errata
186
187*/
188
189/* Work-around for Kendin chip bugs. */
190#ifndef CONFIG_SUNDANCE_MMIO
191#define USE_IO_OPS 1
192#endif
193
194static const struct pci_device_id sundance_pci_tbl[] = {
195 { 0x1186, 0x1002, 0x1186, 0x1002, 0, 0, 0 },
196 { 0x1186, 0x1002, 0x1186, 0x1003, 0, 0, 1 },
197 { 0x1186, 0x1002, 0x1186, 0x1012, 0, 0, 2 },
198 { 0x1186, 0x1002, 0x1186, 0x1040, 0, 0, 3 },
199 { 0x1186, 0x1002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 4 },
200 { 0x13F0, 0x0201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 5 },
201 { 0x13F0, 0x0200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 6 },
202 { }
203};
204MODULE_DEVICE_TABLE(pci, sundance_pci_tbl);
205
206enum {
207 netdev_io_size = 128
208};
209
210struct pci_id_info {
211 const char *name;
212};
213static const struct pci_id_info pci_id_tbl[] = {
214 {"D-Link DFE-550TX FAST Ethernet Adapter"},
215 {"D-Link DFE-550FX 100Mbps Fiber-optics Adapter"},
216 {"D-Link DFE-580TX 4 port Server Adapter"},
217 {"D-Link DFE-530TXS FAST Ethernet Adapter"},
218 {"D-Link DL10050-based FAST Ethernet Adapter"},
219 {"Sundance Technology Alta"},
220 {"IC Plus Corporation IP100A FAST Ethernet Adapter"},
221 { } /* terminate list. */
222};
223
224/* This driver was written to use PCI memory space, however x86-oriented
225 hardware often uses I/O space accesses. */
226
227/* Offsets to the device registers.
228 Unlike software-only systems, device drivers interact with complex hardware.
229 It's not useful to define symbolic names for every register bit in the
230 device. The name can only partially document the semantics and make
231 the driver longer and more difficult to read.
232 In general, only the important configuration values or bits changed
233 multiple times should be defined symbolically.
234*/
235enum alta_offsets {
236 DMACtrl = 0x00,
237 TxListPtr = 0x04,
238 TxDMABurstThresh = 0x08,
239 TxDMAUrgentThresh = 0x09,
240 TxDMAPollPeriod = 0x0a,
241 RxDMAStatus = 0x0c,
242 RxListPtr = 0x10,
243 DebugCtrl0 = 0x1a,
244 DebugCtrl1 = 0x1c,
245 RxDMABurstThresh = 0x14,
246 RxDMAUrgentThresh = 0x15,
247 RxDMAPollPeriod = 0x16,
248 LEDCtrl = 0x1a,
249 ASICCtrl = 0x30,
250 EEData = 0x34,
251 EECtrl = 0x36,
252 FlashAddr = 0x40,
253 FlashData = 0x44,
254 WakeEvent = 0x45,
255 TxStatus = 0x46,
256 TxFrameId = 0x47,
257 DownCounter = 0x18,
258 IntrClear = 0x4a,
259 IntrEnable = 0x4c,
260 IntrStatus = 0x4e,
261 MACCtrl0 = 0x50,
262 MACCtrl1 = 0x52,
263 StationAddr = 0x54,
264 MaxFrameSize = 0x5A,
265 RxMode = 0x5c,
266 MIICtrl = 0x5e,
267 MulticastFilter0 = 0x60,
268 MulticastFilter1 = 0x64,
269 RxOctetsLow = 0x68,
270 RxOctetsHigh = 0x6a,
271 TxOctetsLow = 0x6c,
272 TxOctetsHigh = 0x6e,
273 TxFramesOK = 0x70,
274 RxFramesOK = 0x72,
275 StatsCarrierError = 0x74,
276 StatsLateColl = 0x75,
277 StatsMultiColl = 0x76,
278 StatsOneColl = 0x77,
279 StatsTxDefer = 0x78,
280 RxMissed = 0x79,
281 StatsTxXSDefer = 0x7a,
282 StatsTxAbort = 0x7b,
283 StatsBcastTx = 0x7c,
284 StatsBcastRx = 0x7d,
285 StatsMcastTx = 0x7e,
286 StatsMcastRx = 0x7f,
287 /* Aliased and bogus values! */
288 RxStatus = 0x0c,
289};
290
291#define ASIC_HI_WORD(x) ((x) + 2)
292
293enum ASICCtrl_HiWord_bit {
294 GlobalReset = 0x0001,
295 RxReset = 0x0002,
296 TxReset = 0x0004,
297 DMAReset = 0x0008,
298 FIFOReset = 0x0010,
299 NetworkReset = 0x0020,
300 HostReset = 0x0040,
301 ResetBusy = 0x0400,
302};
303
304/* Bits in the interrupt status/mask registers. */
305enum intr_status_bits {
306 IntrSummary=0x0001, IntrPCIErr=0x0002, IntrMACCtrl=0x0008,
307 IntrTxDone=0x0004, IntrRxDone=0x0010, IntrRxStart=0x0020,
308 IntrDrvRqst=0x0040,
309 StatsMax=0x0080, LinkChange=0x0100,
310 IntrTxDMADone=0x0200, IntrRxDMADone=0x0400,
311};
312
313/* Bits in the RxMode register. */
314enum rx_mode_bits {
315 AcceptAllIPMulti=0x20, AcceptMultiHash=0x10, AcceptAll=0x08,
316 AcceptBroadcast=0x04, AcceptMulticast=0x02, AcceptMyPhys=0x01,
317};
318/* Bits in MACCtrl. */
319enum mac_ctrl0_bits {
320 EnbFullDuplex=0x20, EnbRcvLargeFrame=0x40,
321 EnbFlowCtrl=0x100, EnbPassRxCRC=0x200,
322};
323enum mac_ctrl1_bits {
324 StatsEnable=0x0020, StatsDisable=0x0040, StatsEnabled=0x0080,
325 TxEnable=0x0100, TxDisable=0x0200, TxEnabled=0x0400,
326 RxEnable=0x0800, RxDisable=0x1000, RxEnabled=0x2000,
327};
328
329/* Bits in WakeEvent register. */
330enum wake_event_bits {
331 WakePktEnable = 0x01,
332 MagicPktEnable = 0x02,
333 LinkEventEnable = 0x04,
334 WolEnable = 0x80,
335};
336
337/* The Rx and Tx buffer descriptors. */
338/* Note that using only 32 bit fields simplifies conversion to big-endian
339 architectures. */
340struct netdev_desc {
341 __le32 next_desc;
342 __le32 status;
343 struct desc_frag { __le32 addr, length; } frag;
344};
345
346/* Bits in netdev_desc.status */
347enum desc_status_bits {
348 DescOwn=0x8000,
349 DescEndPacket=0x4000,
350 DescEndRing=0x2000,
351 LastFrag=0x80000000,
352 DescIntrOnTx=0x8000,
353 DescIntrOnDMADone=0x80000000,
354 DisableAlign = 0x00000001,
355};
356
357#define PRIV_ALIGN 15 /* Required alignment mask */
358/* Use __attribute__((aligned (L1_CACHE_BYTES))) to maintain alignment
359 within the structure. */
360#define MII_CNT 4
361struct netdev_private {
362 /* Descriptor rings first for alignment. */
363 struct netdev_desc *rx_ring;
364 struct netdev_desc *tx_ring;
365 struct sk_buff* rx_skbuff[RX_RING_SIZE];
366 struct sk_buff* tx_skbuff[TX_RING_SIZE];
367 dma_addr_t tx_ring_dma;
368 dma_addr_t rx_ring_dma;
369 struct timer_list timer; /* Media monitoring timer. */
370 struct net_device *ndev; /* backpointer */
371 /* ethtool extra stats */
372 struct {
373 u64 tx_multiple_collisions;
374 u64 tx_single_collisions;
375 u64 tx_late_collisions;
376 u64 tx_deferred;
377 u64 tx_deferred_excessive;
378 u64 tx_aborted;
379 u64 tx_bcasts;
380 u64 rx_bcasts;
381 u64 tx_mcasts;
382 u64 rx_mcasts;
383 } xstats;
384 /* Frequently used values: keep some adjacent for cache effect. */
385 spinlock_t lock;
386 int msg_enable;
387 int chip_id;
388 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
389 unsigned int rx_buf_sz; /* Based on MTU+slack. */
390 struct netdev_desc *last_tx; /* Last Tx descriptor used. */
391 unsigned int cur_tx, dirty_tx;
392 /* These values are keep track of the transceiver/media in use. */
393 unsigned int flowctrl:1;
394 unsigned int default_port:4; /* Last dev->if_port value. */
395 unsigned int an_enable:1;
396 unsigned int speed;
397 unsigned int wol_enabled:1; /* Wake on LAN enabled */
398 struct tasklet_struct rx_tasklet;
399 struct tasklet_struct tx_tasklet;
400 int budget;
401 int cur_task;
402 /* Multicast and receive mode. */
403 spinlock_t mcastlock; /* SMP lock multicast updates. */
404 u16 mcast_filter[4];
405 /* MII transceiver section. */
406 struct mii_if_info mii_if;
407 int mii_preamble_required;
408 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used. */
409 struct pci_dev *pci_dev;
410 void __iomem *base;
411 spinlock_t statlock;
412};
413
414/* The station address location in the EEPROM. */
415#define EEPROM_SA_OFFSET 0x10
416#define DEFAULT_INTR (IntrRxDMADone | IntrPCIErr | \
417 IntrDrvRqst | IntrTxDone | StatsMax | \
418 LinkChange)
419
420static int change_mtu(struct net_device *dev, int new_mtu);
421static int eeprom_read(void __iomem *ioaddr, int location);
422static int mdio_read(struct net_device *dev, int phy_id, int location);
423static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
424static int mdio_wait_link(struct net_device *dev, int wait);
425static int netdev_open(struct net_device *dev);
426static void check_duplex(struct net_device *dev);
427static void netdev_timer(struct timer_list *t);
428static void tx_timeout(struct net_device *dev, unsigned int txqueue);
429static void init_ring(struct net_device *dev);
430static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
431static int reset_tx (struct net_device *dev);
432static irqreturn_t intr_handler(int irq, void *dev_instance);
433static void rx_poll(struct tasklet_struct *t);
434static void tx_poll(struct tasklet_struct *t);
435static void refill_rx (struct net_device *dev);
436static void netdev_error(struct net_device *dev, int intr_status);
437static void netdev_error(struct net_device *dev, int intr_status);
438static void set_rx_mode(struct net_device *dev);
439static int __set_mac_addr(struct net_device *dev);
440static int sundance_set_mac_addr(struct net_device *dev, void *data);
441static struct net_device_stats *get_stats(struct net_device *dev);
442static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
443static int netdev_close(struct net_device *dev);
444static const struct ethtool_ops ethtool_ops;
445
446static void sundance_reset(struct net_device *dev, unsigned long reset_cmd)
447{
448 struct netdev_private *np = netdev_priv(dev);
449 void __iomem *ioaddr = np->base + ASICCtrl;
450 int countdown;
451
452 /* ST201 documentation states ASICCtrl is a 32bit register */
453 iowrite32 (reset_cmd | ioread32 (ioaddr), ioaddr);
454 /* ST201 documentation states reset can take up to 1 ms */
455 countdown = 10 + 1;
456 while (ioread32 (ioaddr) & (ResetBusy << 16)) {
457 if (--countdown == 0) {
458 printk(KERN_WARNING "%s : reset not completed !!\n", dev->name);
459 break;
460 }
461 udelay(100);
462 }
463}
464
465#ifdef CONFIG_NET_POLL_CONTROLLER
466static void sundance_poll_controller(struct net_device *dev)
467{
468 struct netdev_private *np = netdev_priv(dev);
469
470 disable_irq(np->pci_dev->irq);
471 intr_handler(np->pci_dev->irq, dev);
472 enable_irq(np->pci_dev->irq);
473}
474#endif
475
476static const struct net_device_ops netdev_ops = {
477 .ndo_open = netdev_open,
478 .ndo_stop = netdev_close,
479 .ndo_start_xmit = start_tx,
480 .ndo_get_stats = get_stats,
481 .ndo_set_rx_mode = set_rx_mode,
482 .ndo_eth_ioctl = netdev_ioctl,
483 .ndo_tx_timeout = tx_timeout,
484 .ndo_change_mtu = change_mtu,
485 .ndo_set_mac_address = sundance_set_mac_addr,
486 .ndo_validate_addr = eth_validate_addr,
487#ifdef CONFIG_NET_POLL_CONTROLLER
488 .ndo_poll_controller = sundance_poll_controller,
489#endif
490};
491
492static int sundance_probe1(struct pci_dev *pdev,
493 const struct pci_device_id *ent)
494{
495 struct net_device *dev;
496 struct netdev_private *np;
497 static int card_idx;
498 int chip_idx = ent->driver_data;
499 int irq;
500 int i;
501 void __iomem *ioaddr;
502 u16 mii_ctl;
503 void *ring_space;
504 dma_addr_t ring_dma;
505#ifdef USE_IO_OPS
506 int bar = 0;
507#else
508 int bar = 1;
509#endif
510 int phy, phy_end, phy_idx = 0;
511 __le16 addr[ETH_ALEN / 2];
512
513 if (pci_enable_device(pdev))
514 return -EIO;
515 pci_set_master(pdev);
516
517 irq = pdev->irq;
518
519 dev = alloc_etherdev(sizeof(*np));
520 if (!dev)
521 return -ENOMEM;
522 SET_NETDEV_DEV(dev, &pdev->dev);
523
524 if (pci_request_regions(pdev, DRV_NAME))
525 goto err_out_netdev;
526
527 ioaddr = pci_iomap(pdev, bar, netdev_io_size);
528 if (!ioaddr)
529 goto err_out_res;
530
531 for (i = 0; i < 3; i++)
532 addr[i] =
533 cpu_to_le16(eeprom_read(ioaddr, i + EEPROM_SA_OFFSET));
534 eth_hw_addr_set(dev, (u8 *)addr);
535
536 np = netdev_priv(dev);
537 np->ndev = dev;
538 np->base = ioaddr;
539 np->pci_dev = pdev;
540 np->chip_id = chip_idx;
541 np->msg_enable = (1 << debug) - 1;
542 spin_lock_init(&np->lock);
543 spin_lock_init(&np->statlock);
544 tasklet_setup(&np->rx_tasklet, rx_poll);
545 tasklet_setup(&np->tx_tasklet, tx_poll);
546
547 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE,
548 &ring_dma, GFP_KERNEL);
549 if (!ring_space)
550 goto err_out_cleardev;
551 np->tx_ring = (struct netdev_desc *)ring_space;
552 np->tx_ring_dma = ring_dma;
553
554 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE,
555 &ring_dma, GFP_KERNEL);
556 if (!ring_space)
557 goto err_out_unmap_tx;
558 np->rx_ring = (struct netdev_desc *)ring_space;
559 np->rx_ring_dma = ring_dma;
560
561 np->mii_if.dev = dev;
562 np->mii_if.mdio_read = mdio_read;
563 np->mii_if.mdio_write = mdio_write;
564 np->mii_if.phy_id_mask = 0x1f;
565 np->mii_if.reg_num_mask = 0x1f;
566
567 /* The chip-specific entries in the device structure. */
568 dev->netdev_ops = &netdev_ops;
569 dev->ethtool_ops = ðtool_ops;
570 dev->watchdog_timeo = TX_TIMEOUT;
571
572 /* MTU range: 68 - 8191 */
573 dev->min_mtu = ETH_MIN_MTU;
574 dev->max_mtu = 8191;
575
576 pci_set_drvdata(pdev, dev);
577
578 i = register_netdev(dev);
579 if (i)
580 goto err_out_unmap_rx;
581
582 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
583 dev->name, pci_id_tbl[chip_idx].name, ioaddr,
584 dev->dev_addr, irq);
585
586 np->phys[0] = 1; /* Default setting */
587 np->mii_preamble_required++;
588
589 /*
590 * It seems some phys doesn't deal well with address 0 being accessed
591 * first
592 */
593 if (sundance_pci_tbl[np->chip_id].device == 0x0200) {
594 phy = 0;
595 phy_end = 31;
596 } else {
597 phy = 1;
598 phy_end = 32; /* wraps to zero, due to 'phy & 0x1f' */
599 }
600 for (; phy <= phy_end && phy_idx < MII_CNT; phy++) {
601 int phyx = phy & 0x1f;
602 int mii_status = mdio_read(dev, phyx, MII_BMSR);
603 if (mii_status != 0xffff && mii_status != 0x0000) {
604 np->phys[phy_idx++] = phyx;
605 np->mii_if.advertising = mdio_read(dev, phyx, MII_ADVERTISE);
606 if ((mii_status & 0x0040) == 0)
607 np->mii_preamble_required++;
608 printk(KERN_INFO "%s: MII PHY found at address %d, status "
609 "0x%4.4x advertising %4.4x.\n",
610 dev->name, phyx, mii_status, np->mii_if.advertising);
611 }
612 }
613 np->mii_preamble_required--;
614
615 if (phy_idx == 0) {
616 printk(KERN_INFO "%s: No MII transceiver found, aborting. ASIC status %x\n",
617 dev->name, ioread32(ioaddr + ASICCtrl));
618 goto err_out_unregister;
619 }
620
621 np->mii_if.phy_id = np->phys[0];
622
623 /* Parse override configuration */
624 np->an_enable = 1;
625 if (card_idx < MAX_UNITS) {
626 if (media[card_idx] != NULL) {
627 np->an_enable = 0;
628 if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
629 strcmp (media[card_idx], "4") == 0) {
630 np->speed = 100;
631 np->mii_if.full_duplex = 1;
632 } else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
633 strcmp (media[card_idx], "3") == 0) {
634 np->speed = 100;
635 np->mii_if.full_duplex = 0;
636 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
637 strcmp (media[card_idx], "2") == 0) {
638 np->speed = 10;
639 np->mii_if.full_duplex = 1;
640 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
641 strcmp (media[card_idx], "1") == 0) {
642 np->speed = 10;
643 np->mii_if.full_duplex = 0;
644 } else {
645 np->an_enable = 1;
646 }
647 }
648 if (flowctrl == 1)
649 np->flowctrl = 1;
650 }
651
652 /* Fibre PHY? */
653 if (ioread32 (ioaddr + ASICCtrl) & 0x80) {
654 /* Default 100Mbps Full */
655 if (np->an_enable) {
656 np->speed = 100;
657 np->mii_if.full_duplex = 1;
658 np->an_enable = 0;
659 }
660 }
661 /* Reset PHY */
662 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_RESET);
663 mdelay (300);
664 /* If flow control enabled, we need to advertise it.*/
665 if (np->flowctrl)
666 mdio_write (dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising | 0x0400);
667 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART);
668 /* Force media type */
669 if (!np->an_enable) {
670 mii_ctl = 0;
671 mii_ctl |= (np->speed == 100) ? BMCR_SPEED100 : 0;
672 mii_ctl |= (np->mii_if.full_duplex) ? BMCR_FULLDPLX : 0;
673 mdio_write (dev, np->phys[0], MII_BMCR, mii_ctl);
674 printk (KERN_INFO "Override speed=%d, %s duplex\n",
675 np->speed, np->mii_if.full_duplex ? "Full" : "Half");
676
677 }
678
679 /* Perhaps move the reset here? */
680 /* Reset the chip to erase previous misconfiguration. */
681 if (netif_msg_hw(np))
682 printk("ASIC Control is %x.\n", ioread32(ioaddr + ASICCtrl));
683 sundance_reset(dev, 0x00ff << 16);
684 if (netif_msg_hw(np))
685 printk("ASIC Control is now %x.\n", ioread32(ioaddr + ASICCtrl));
686
687 card_idx++;
688 return 0;
689
690err_out_unregister:
691 unregister_netdev(dev);
692err_out_unmap_rx:
693 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE,
694 np->rx_ring, np->rx_ring_dma);
695err_out_unmap_tx:
696 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE,
697 np->tx_ring, np->tx_ring_dma);
698err_out_cleardev:
699 pci_iounmap(pdev, ioaddr);
700err_out_res:
701 pci_release_regions(pdev);
702err_out_netdev:
703 free_netdev (dev);
704 return -ENODEV;
705}
706
707static int change_mtu(struct net_device *dev, int new_mtu)
708{
709 if (netif_running(dev))
710 return -EBUSY;
711 dev->mtu = new_mtu;
712 return 0;
713}
714
715#define eeprom_delay(ee_addr) ioread32(ee_addr)
716/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. */
717static int eeprom_read(void __iomem *ioaddr, int location)
718{
719 int boguscnt = 10000; /* Typical 1900 ticks. */
720 iowrite16(0x0200 | (location & 0xff), ioaddr + EECtrl);
721 do {
722 eeprom_delay(ioaddr + EECtrl);
723 if (! (ioread16(ioaddr + EECtrl) & 0x8000)) {
724 return ioread16(ioaddr + EEData);
725 }
726 } while (--boguscnt > 0);
727 return 0;
728}
729
730/* MII transceiver control section.
731 Read and write the MII registers using software-generated serial
732 MDIO protocol. See the MII specifications or DP83840A data sheet
733 for details.
734
735 The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
736 met by back-to-back 33Mhz PCI cycles. */
737#define mdio_delay() ioread8(mdio_addr)
738
739enum mii_reg_bits {
740 MDIO_ShiftClk=0x0001, MDIO_Data=0x0002, MDIO_EnbOutput=0x0004,
741};
742#define MDIO_EnbIn (0)
743#define MDIO_WRITE0 (MDIO_EnbOutput)
744#define MDIO_WRITE1 (MDIO_Data | MDIO_EnbOutput)
745
746/* Generate the preamble required for initial synchronization and
747 a few older transceivers. */
748static void mdio_sync(void __iomem *mdio_addr)
749{
750 int bits = 32;
751
752 /* Establish sync by sending at least 32 logic ones. */
753 while (--bits >= 0) {
754 iowrite8(MDIO_WRITE1, mdio_addr);
755 mdio_delay();
756 iowrite8(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
757 mdio_delay();
758 }
759}
760
761static int mdio_read(struct net_device *dev, int phy_id, int location)
762{
763 struct netdev_private *np = netdev_priv(dev);
764 void __iomem *mdio_addr = np->base + MIICtrl;
765 int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
766 int i, retval = 0;
767
768 if (np->mii_preamble_required)
769 mdio_sync(mdio_addr);
770
771 /* Shift the read command bits out. */
772 for (i = 15; i >= 0; i--) {
773 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
774
775 iowrite8(dataval, mdio_addr);
776 mdio_delay();
777 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
778 mdio_delay();
779 }
780 /* Read the two transition, 16 data, and wire-idle bits. */
781 for (i = 19; i > 0; i--) {
782 iowrite8(MDIO_EnbIn, mdio_addr);
783 mdio_delay();
784 retval = (retval << 1) | ((ioread8(mdio_addr) & MDIO_Data) ? 1 : 0);
785 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
786 mdio_delay();
787 }
788 return (retval>>1) & 0xffff;
789}
790
791static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
792{
793 struct netdev_private *np = netdev_priv(dev);
794 void __iomem *mdio_addr = np->base + MIICtrl;
795 int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
796 int i;
797
798 if (np->mii_preamble_required)
799 mdio_sync(mdio_addr);
800
801 /* Shift the command bits out. */
802 for (i = 31; i >= 0; i--) {
803 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
804
805 iowrite8(dataval, mdio_addr);
806 mdio_delay();
807 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
808 mdio_delay();
809 }
810 /* Clear out extra bits. */
811 for (i = 2; i > 0; i--) {
812 iowrite8(MDIO_EnbIn, mdio_addr);
813 mdio_delay();
814 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
815 mdio_delay();
816 }
817}
818
819static int mdio_wait_link(struct net_device *dev, int wait)
820{
821 int bmsr;
822 int phy_id;
823 struct netdev_private *np;
824
825 np = netdev_priv(dev);
826 phy_id = np->phys[0];
827
828 do {
829 bmsr = mdio_read(dev, phy_id, MII_BMSR);
830 if (bmsr & 0x0004)
831 return 0;
832 mdelay(1);
833 } while (--wait > 0);
834 return -1;
835}
836
837static int netdev_open(struct net_device *dev)
838{
839 struct netdev_private *np = netdev_priv(dev);
840 void __iomem *ioaddr = np->base;
841 const int irq = np->pci_dev->irq;
842 unsigned long flags;
843 int i;
844
845 sundance_reset(dev, 0x00ff << 16);
846
847 i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
848 if (i)
849 return i;
850
851 if (netif_msg_ifup(np))
852 printk(KERN_DEBUG "%s: netdev_open() irq %d\n", dev->name, irq);
853
854 init_ring(dev);
855
856 iowrite32(np->rx_ring_dma, ioaddr + RxListPtr);
857 /* The Tx list pointer is written as packets are queued. */
858
859 /* Initialize other registers. */
860 __set_mac_addr(dev);
861#if IS_ENABLED(CONFIG_VLAN_8021Q)
862 iowrite16(dev->mtu + 18, ioaddr + MaxFrameSize);
863#else
864 iowrite16(dev->mtu + 14, ioaddr + MaxFrameSize);
865#endif
866 if (dev->mtu > 2047)
867 iowrite32(ioread32(ioaddr + ASICCtrl) | 0x0C, ioaddr + ASICCtrl);
868
869 /* Configure the PCI bus bursts and FIFO thresholds. */
870
871 if (dev->if_port == 0)
872 dev->if_port = np->default_port;
873
874 spin_lock_init(&np->mcastlock);
875
876 set_rx_mode(dev);
877 iowrite16(0, ioaddr + IntrEnable);
878 iowrite16(0, ioaddr + DownCounter);
879 /* Set the chip to poll every N*320nsec. */
880 iowrite8(100, ioaddr + RxDMAPollPeriod);
881 iowrite8(127, ioaddr + TxDMAPollPeriod);
882 /* Fix DFE-580TX packet drop issue */
883 if (np->pci_dev->revision >= 0x14)
884 iowrite8(0x01, ioaddr + DebugCtrl1);
885 netif_start_queue(dev);
886
887 spin_lock_irqsave(&np->lock, flags);
888 reset_tx(dev);
889 spin_unlock_irqrestore(&np->lock, flags);
890
891 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
892
893 /* Disable Wol */
894 iowrite8(ioread8(ioaddr + WakeEvent) | 0x00, ioaddr + WakeEvent);
895 np->wol_enabled = 0;
896
897 if (netif_msg_ifup(np))
898 printk(KERN_DEBUG "%s: Done netdev_open(), status: Rx %x Tx %x "
899 "MAC Control %x, %4.4x %4.4x.\n",
900 dev->name, ioread32(ioaddr + RxStatus), ioread8(ioaddr + TxStatus),
901 ioread32(ioaddr + MACCtrl0),
902 ioread16(ioaddr + MACCtrl1), ioread16(ioaddr + MACCtrl0));
903
904 /* Set the timer to check for link beat. */
905 timer_setup(&np->timer, netdev_timer, 0);
906 np->timer.expires = jiffies + 3*HZ;
907 add_timer(&np->timer);
908
909 /* Enable interrupts by setting the interrupt mask. */
910 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
911
912 return 0;
913}
914
915static void check_duplex(struct net_device *dev)
916{
917 struct netdev_private *np = netdev_priv(dev);
918 void __iomem *ioaddr = np->base;
919 int mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
920 int negotiated = mii_lpa & np->mii_if.advertising;
921 int duplex;
922
923 /* Force media */
924 if (!np->an_enable || mii_lpa == 0xffff) {
925 if (np->mii_if.full_duplex)
926 iowrite16 (ioread16 (ioaddr + MACCtrl0) | EnbFullDuplex,
927 ioaddr + MACCtrl0);
928 return;
929 }
930
931 /* Autonegotiation */
932 duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
933 if (np->mii_if.full_duplex != duplex) {
934 np->mii_if.full_duplex = duplex;
935 if (netif_msg_link(np))
936 printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d "
937 "negotiated capability %4.4x.\n", dev->name,
938 duplex ? "full" : "half", np->phys[0], negotiated);
939 iowrite16(ioread16(ioaddr + MACCtrl0) | (duplex ? 0x20 : 0), ioaddr + MACCtrl0);
940 }
941}
942
943static void netdev_timer(struct timer_list *t)
944{
945 struct netdev_private *np = from_timer(np, t, timer);
946 struct net_device *dev = np->mii_if.dev;
947 void __iomem *ioaddr = np->base;
948 int next_tick = 10*HZ;
949
950 if (netif_msg_timer(np)) {
951 printk(KERN_DEBUG "%s: Media selection timer tick, intr status %4.4x, "
952 "Tx %x Rx %x.\n",
953 dev->name, ioread16(ioaddr + IntrEnable),
954 ioread8(ioaddr + TxStatus), ioread32(ioaddr + RxStatus));
955 }
956 check_duplex(dev);
957 np->timer.expires = jiffies + next_tick;
958 add_timer(&np->timer);
959}
960
961static void tx_timeout(struct net_device *dev, unsigned int txqueue)
962{
963 struct netdev_private *np = netdev_priv(dev);
964 void __iomem *ioaddr = np->base;
965 unsigned long flag;
966
967 netif_stop_queue(dev);
968 tasklet_disable_in_atomic(&np->tx_tasklet);
969 iowrite16(0, ioaddr + IntrEnable);
970 printk(KERN_WARNING "%s: Transmit timed out, TxStatus %2.2x "
971 "TxFrameId %2.2x,"
972 " resetting...\n", dev->name, ioread8(ioaddr + TxStatus),
973 ioread8(ioaddr + TxFrameId));
974
975 {
976 int i;
977 for (i=0; i<TX_RING_SIZE; i++) {
978 printk(KERN_DEBUG "%02x %08llx %08x %08x(%02x) %08x %08x\n", i,
979 (unsigned long long)(np->tx_ring_dma + i*sizeof(*np->tx_ring)),
980 le32_to_cpu(np->tx_ring[i].next_desc),
981 le32_to_cpu(np->tx_ring[i].status),
982 (le32_to_cpu(np->tx_ring[i].status) >> 2) & 0xff,
983 le32_to_cpu(np->tx_ring[i].frag.addr),
984 le32_to_cpu(np->tx_ring[i].frag.length));
985 }
986 printk(KERN_DEBUG "TxListPtr=%08x netif_queue_stopped=%d\n",
987 ioread32(np->base + TxListPtr),
988 netif_queue_stopped(dev));
989 printk(KERN_DEBUG "cur_tx=%d(%02x) dirty_tx=%d(%02x)\n",
990 np->cur_tx, np->cur_tx % TX_RING_SIZE,
991 np->dirty_tx, np->dirty_tx % TX_RING_SIZE);
992 printk(KERN_DEBUG "cur_rx=%d dirty_rx=%d\n", np->cur_rx, np->dirty_rx);
993 printk(KERN_DEBUG "cur_task=%d\n", np->cur_task);
994 }
995 spin_lock_irqsave(&np->lock, flag);
996
997 /* Stop and restart the chip's Tx processes . */
998 reset_tx(dev);
999 spin_unlock_irqrestore(&np->lock, flag);
1000
1001 dev->if_port = 0;
1002
1003 netif_trans_update(dev); /* prevent tx timeout */
1004 dev->stats.tx_errors++;
1005 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
1006 netif_wake_queue(dev);
1007 }
1008 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
1009 tasklet_enable(&np->tx_tasklet);
1010}
1011
1012
1013/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1014static void init_ring(struct net_device *dev)
1015{
1016 struct netdev_private *np = netdev_priv(dev);
1017 int i;
1018
1019 np->cur_rx = np->cur_tx = 0;
1020 np->dirty_rx = np->dirty_tx = 0;
1021 np->cur_task = 0;
1022
1023 np->rx_buf_sz = (dev->mtu <= 1520 ? PKT_BUF_SZ : dev->mtu + 16);
1024
1025 /* Initialize all Rx descriptors. */
1026 for (i = 0; i < RX_RING_SIZE; i++) {
1027 np->rx_ring[i].next_desc = cpu_to_le32(np->rx_ring_dma +
1028 ((i+1)%RX_RING_SIZE)*sizeof(*np->rx_ring));
1029 np->rx_ring[i].status = 0;
1030 np->rx_ring[i].frag.length = 0;
1031 np->rx_skbuff[i] = NULL;
1032 }
1033
1034 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1035 for (i = 0; i < RX_RING_SIZE; i++) {
1036 struct sk_buff *skb =
1037 netdev_alloc_skb(dev, np->rx_buf_sz + 2);
1038 np->rx_skbuff[i] = skb;
1039 if (skb == NULL)
1040 break;
1041 skb_reserve(skb, 2); /* 16 byte align the IP header. */
1042 np->rx_ring[i].frag.addr = cpu_to_le32(
1043 dma_map_single(&np->pci_dev->dev, skb->data,
1044 np->rx_buf_sz, DMA_FROM_DEVICE));
1045 if (dma_mapping_error(&np->pci_dev->dev,
1046 np->rx_ring[i].frag.addr)) {
1047 dev_kfree_skb(skb);
1048 np->rx_skbuff[i] = NULL;
1049 break;
1050 }
1051 np->rx_ring[i].frag.length = cpu_to_le32(np->rx_buf_sz | LastFrag);
1052 }
1053 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1054
1055 for (i = 0; i < TX_RING_SIZE; i++) {
1056 np->tx_skbuff[i] = NULL;
1057 np->tx_ring[i].status = 0;
1058 }
1059}
1060
1061static void tx_poll(struct tasklet_struct *t)
1062{
1063 struct netdev_private *np = from_tasklet(np, t, tx_tasklet);
1064 unsigned head = np->cur_task % TX_RING_SIZE;
1065 struct netdev_desc *txdesc =
1066 &np->tx_ring[(np->cur_tx - 1) % TX_RING_SIZE];
1067
1068 /* Chain the next pointer */
1069 for (; np->cur_tx - np->cur_task > 0; np->cur_task++) {
1070 int entry = np->cur_task % TX_RING_SIZE;
1071 txdesc = &np->tx_ring[entry];
1072 if (np->last_tx) {
1073 np->last_tx->next_desc = cpu_to_le32(np->tx_ring_dma +
1074 entry*sizeof(struct netdev_desc));
1075 }
1076 np->last_tx = txdesc;
1077 }
1078 /* Indicate the latest descriptor of tx ring */
1079 txdesc->status |= cpu_to_le32(DescIntrOnTx);
1080
1081 if (ioread32 (np->base + TxListPtr) == 0)
1082 iowrite32 (np->tx_ring_dma + head * sizeof(struct netdev_desc),
1083 np->base + TxListPtr);
1084}
1085
1086static netdev_tx_t
1087start_tx (struct sk_buff *skb, struct net_device *dev)
1088{
1089 struct netdev_private *np = netdev_priv(dev);
1090 struct netdev_desc *txdesc;
1091 unsigned entry;
1092
1093 /* Calculate the next Tx descriptor entry. */
1094 entry = np->cur_tx % TX_RING_SIZE;
1095 np->tx_skbuff[entry] = skb;
1096 txdesc = &np->tx_ring[entry];
1097
1098 txdesc->next_desc = 0;
1099 txdesc->status = cpu_to_le32 ((entry << 2) | DisableAlign);
1100 txdesc->frag.addr = cpu_to_le32(dma_map_single(&np->pci_dev->dev,
1101 skb->data, skb->len, DMA_TO_DEVICE));
1102 if (dma_mapping_error(&np->pci_dev->dev,
1103 txdesc->frag.addr))
1104 goto drop_frame;
1105 txdesc->frag.length = cpu_to_le32 (skb->len | LastFrag);
1106
1107 /* Increment cur_tx before tasklet_schedule() */
1108 np->cur_tx++;
1109 mb();
1110 /* Schedule a tx_poll() task */
1111 tasklet_schedule(&np->tx_tasklet);
1112
1113 /* On some architectures: explicitly flush cache lines here. */
1114 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 1 &&
1115 !netif_queue_stopped(dev)) {
1116 /* do nothing */
1117 } else {
1118 netif_stop_queue (dev);
1119 }
1120 if (netif_msg_tx_queued(np)) {
1121 printk (KERN_DEBUG
1122 "%s: Transmit frame #%d queued in slot %d.\n",
1123 dev->name, np->cur_tx, entry);
1124 }
1125 return NETDEV_TX_OK;
1126
1127drop_frame:
1128 dev_kfree_skb_any(skb);
1129 np->tx_skbuff[entry] = NULL;
1130 dev->stats.tx_dropped++;
1131 return NETDEV_TX_OK;
1132}
1133
1134/* Reset hardware tx and free all of tx buffers */
1135static int
1136reset_tx (struct net_device *dev)
1137{
1138 struct netdev_private *np = netdev_priv(dev);
1139 void __iomem *ioaddr = np->base;
1140 struct sk_buff *skb;
1141 int i;
1142
1143 /* Reset tx logic, TxListPtr will be cleaned */
1144 iowrite16 (TxDisable, ioaddr + MACCtrl1);
1145 sundance_reset(dev, (NetworkReset|FIFOReset|DMAReset|TxReset) << 16);
1146
1147 /* free all tx skbuff */
1148 for (i = 0; i < TX_RING_SIZE; i++) {
1149 np->tx_ring[i].next_desc = 0;
1150
1151 skb = np->tx_skbuff[i];
1152 if (skb) {
1153 dma_unmap_single(&np->pci_dev->dev,
1154 le32_to_cpu(np->tx_ring[i].frag.addr),
1155 skb->len, DMA_TO_DEVICE);
1156 dev_kfree_skb_any(skb);
1157 np->tx_skbuff[i] = NULL;
1158 dev->stats.tx_dropped++;
1159 }
1160 }
1161 np->cur_tx = np->dirty_tx = 0;
1162 np->cur_task = 0;
1163
1164 np->last_tx = NULL;
1165 iowrite8(127, ioaddr + TxDMAPollPeriod);
1166
1167 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
1168 return 0;
1169}
1170
1171/* The interrupt handler cleans up after the Tx thread,
1172 and schedule a Rx thread work */
1173static irqreturn_t intr_handler(int irq, void *dev_instance)
1174{
1175 struct net_device *dev = (struct net_device *)dev_instance;
1176 struct netdev_private *np = netdev_priv(dev);
1177 void __iomem *ioaddr = np->base;
1178 int hw_frame_id;
1179 int tx_cnt;
1180 int tx_status;
1181 int handled = 0;
1182 int i;
1183
1184 do {
1185 int intr_status = ioread16(ioaddr + IntrStatus);
1186 iowrite16(intr_status, ioaddr + IntrStatus);
1187
1188 if (netif_msg_intr(np))
1189 printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n",
1190 dev->name, intr_status);
1191
1192 if (!(intr_status & DEFAULT_INTR))
1193 break;
1194
1195 handled = 1;
1196
1197 if (intr_status & (IntrRxDMADone)) {
1198 iowrite16(DEFAULT_INTR & ~(IntrRxDone|IntrRxDMADone),
1199 ioaddr + IntrEnable);
1200 if (np->budget < 0)
1201 np->budget = RX_BUDGET;
1202 tasklet_schedule(&np->rx_tasklet);
1203 }
1204 if (intr_status & (IntrTxDone | IntrDrvRqst)) {
1205 tx_status = ioread16 (ioaddr + TxStatus);
1206 for (tx_cnt=32; tx_status & 0x80; --tx_cnt) {
1207 if (netif_msg_tx_done(np))
1208 printk
1209 ("%s: Transmit status is %2.2x.\n",
1210 dev->name, tx_status);
1211 if (tx_status & 0x1e) {
1212 if (netif_msg_tx_err(np))
1213 printk("%s: Transmit error status %4.4x.\n",
1214 dev->name, tx_status);
1215 dev->stats.tx_errors++;
1216 if (tx_status & 0x10)
1217 dev->stats.tx_fifo_errors++;
1218 if (tx_status & 0x08)
1219 dev->stats.collisions++;
1220 if (tx_status & 0x04)
1221 dev->stats.tx_fifo_errors++;
1222 if (tx_status & 0x02)
1223 dev->stats.tx_window_errors++;
1224
1225 /*
1226 ** This reset has been verified on
1227 ** DFE-580TX boards ! phdm@macqel.be.
1228 */
1229 if (tx_status & 0x10) { /* TxUnderrun */
1230 /* Restart Tx FIFO and transmitter */
1231 sundance_reset(dev, (NetworkReset|FIFOReset|TxReset) << 16);
1232 /* No need to reset the Tx pointer here */
1233 }
1234 /* Restart the Tx. Need to make sure tx enabled */
1235 i = 10;
1236 do {
1237 iowrite16(ioread16(ioaddr + MACCtrl1) | TxEnable, ioaddr + MACCtrl1);
1238 if (ioread16(ioaddr + MACCtrl1) & TxEnabled)
1239 break;
1240 mdelay(1);
1241 } while (--i);
1242 }
1243 /* Yup, this is a documentation bug. It cost me *hours*. */
1244 iowrite16 (0, ioaddr + TxStatus);
1245 if (tx_cnt < 0) {
1246 iowrite32(5000, ioaddr + DownCounter);
1247 break;
1248 }
1249 tx_status = ioread16 (ioaddr + TxStatus);
1250 }
1251 hw_frame_id = (tx_status >> 8) & 0xff;
1252 } else {
1253 hw_frame_id = ioread8(ioaddr + TxFrameId);
1254 }
1255
1256 if (np->pci_dev->revision >= 0x14) {
1257 spin_lock(&np->lock);
1258 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1259 int entry = np->dirty_tx % TX_RING_SIZE;
1260 struct sk_buff *skb;
1261 int sw_frame_id;
1262 sw_frame_id = (le32_to_cpu(
1263 np->tx_ring[entry].status) >> 2) & 0xff;
1264 if (sw_frame_id == hw_frame_id &&
1265 !(le32_to_cpu(np->tx_ring[entry].status)
1266 & 0x00010000))
1267 break;
1268 if (sw_frame_id == (hw_frame_id + 1) %
1269 TX_RING_SIZE)
1270 break;
1271 skb = np->tx_skbuff[entry];
1272 /* Free the original skb. */
1273 dma_unmap_single(&np->pci_dev->dev,
1274 le32_to_cpu(np->tx_ring[entry].frag.addr),
1275 skb->len, DMA_TO_DEVICE);
1276 dev_consume_skb_irq(np->tx_skbuff[entry]);
1277 np->tx_skbuff[entry] = NULL;
1278 np->tx_ring[entry].frag.addr = 0;
1279 np->tx_ring[entry].frag.length = 0;
1280 }
1281 spin_unlock(&np->lock);
1282 } else {
1283 spin_lock(&np->lock);
1284 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1285 int entry = np->dirty_tx % TX_RING_SIZE;
1286 struct sk_buff *skb;
1287 if (!(le32_to_cpu(np->tx_ring[entry].status)
1288 & 0x00010000))
1289 break;
1290 skb = np->tx_skbuff[entry];
1291 /* Free the original skb. */
1292 dma_unmap_single(&np->pci_dev->dev,
1293 le32_to_cpu(np->tx_ring[entry].frag.addr),
1294 skb->len, DMA_TO_DEVICE);
1295 dev_consume_skb_irq(np->tx_skbuff[entry]);
1296 np->tx_skbuff[entry] = NULL;
1297 np->tx_ring[entry].frag.addr = 0;
1298 np->tx_ring[entry].frag.length = 0;
1299 }
1300 spin_unlock(&np->lock);
1301 }
1302
1303 if (netif_queue_stopped(dev) &&
1304 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
1305 /* The ring is no longer full, clear busy flag. */
1306 netif_wake_queue (dev);
1307 }
1308 /* Abnormal error summary/uncommon events handlers. */
1309 if (intr_status & (IntrPCIErr | LinkChange | StatsMax))
1310 netdev_error(dev, intr_status);
1311 } while (0);
1312 if (netif_msg_intr(np))
1313 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1314 dev->name, ioread16(ioaddr + IntrStatus));
1315 return IRQ_RETVAL(handled);
1316}
1317
1318static void rx_poll(struct tasklet_struct *t)
1319{
1320 struct netdev_private *np = from_tasklet(np, t, rx_tasklet);
1321 struct net_device *dev = np->ndev;
1322 int entry = np->cur_rx % RX_RING_SIZE;
1323 int boguscnt = np->budget;
1324 void __iomem *ioaddr = np->base;
1325 int received = 0;
1326
1327 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1328 while (1) {
1329 struct netdev_desc *desc = &(np->rx_ring[entry]);
1330 u32 frame_status = le32_to_cpu(desc->status);
1331 int pkt_len;
1332
1333 if (--boguscnt < 0) {
1334 goto not_done;
1335 }
1336 if (!(frame_status & DescOwn))
1337 break;
1338 pkt_len = frame_status & 0x1fff; /* Chip omits the CRC. */
1339 if (netif_msg_rx_status(np))
1340 printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n",
1341 frame_status);
1342 if (frame_status & 0x001f4000) {
1343 /* There was a error. */
1344 if (netif_msg_rx_err(np))
1345 printk(KERN_DEBUG " netdev_rx() Rx error was %8.8x.\n",
1346 frame_status);
1347 dev->stats.rx_errors++;
1348 if (frame_status & 0x00100000)
1349 dev->stats.rx_length_errors++;
1350 if (frame_status & 0x00010000)
1351 dev->stats.rx_fifo_errors++;
1352 if (frame_status & 0x00060000)
1353 dev->stats.rx_frame_errors++;
1354 if (frame_status & 0x00080000)
1355 dev->stats.rx_crc_errors++;
1356 if (frame_status & 0x00100000) {
1357 printk(KERN_WARNING "%s: Oversized Ethernet frame,"
1358 " status %8.8x.\n",
1359 dev->name, frame_status);
1360 }
1361 } else {
1362 struct sk_buff *skb;
1363#ifndef final_version
1364 if (netif_msg_rx_status(np))
1365 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d"
1366 ", bogus_cnt %d.\n",
1367 pkt_len, boguscnt);
1368#endif
1369 /* Check if the packet is long enough to accept without copying
1370 to a minimally-sized skbuff. */
1371 if (pkt_len < rx_copybreak &&
1372 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1373 skb_reserve(skb, 2); /* 16 byte align the IP header */
1374 dma_sync_single_for_cpu(&np->pci_dev->dev,
1375 le32_to_cpu(desc->frag.addr),
1376 np->rx_buf_sz, DMA_FROM_DEVICE);
1377 skb_copy_to_linear_data(skb, np->rx_skbuff[entry]->data, pkt_len);
1378 dma_sync_single_for_device(&np->pci_dev->dev,
1379 le32_to_cpu(desc->frag.addr),
1380 np->rx_buf_sz, DMA_FROM_DEVICE);
1381 skb_put(skb, pkt_len);
1382 } else {
1383 dma_unmap_single(&np->pci_dev->dev,
1384 le32_to_cpu(desc->frag.addr),
1385 np->rx_buf_sz, DMA_FROM_DEVICE);
1386 skb_put(skb = np->rx_skbuff[entry], pkt_len);
1387 np->rx_skbuff[entry] = NULL;
1388 }
1389 skb->protocol = eth_type_trans(skb, dev);
1390 /* Note: checksum -> skb->ip_summed = CHECKSUM_UNNECESSARY; */
1391 netif_rx(skb);
1392 }
1393 entry = (entry + 1) % RX_RING_SIZE;
1394 received++;
1395 }
1396 np->cur_rx = entry;
1397 refill_rx (dev);
1398 np->budget -= received;
1399 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
1400 return;
1401
1402not_done:
1403 np->cur_rx = entry;
1404 refill_rx (dev);
1405 if (!received)
1406 received = 1;
1407 np->budget -= received;
1408 if (np->budget <= 0)
1409 np->budget = RX_BUDGET;
1410 tasklet_schedule(&np->rx_tasklet);
1411}
1412
1413static void refill_rx (struct net_device *dev)
1414{
1415 struct netdev_private *np = netdev_priv(dev);
1416 int entry;
1417
1418 /* Refill the Rx ring buffers. */
1419 for (;(np->cur_rx - np->dirty_rx + RX_RING_SIZE) % RX_RING_SIZE > 0;
1420 np->dirty_rx = (np->dirty_rx + 1) % RX_RING_SIZE) {
1421 struct sk_buff *skb;
1422 entry = np->dirty_rx % RX_RING_SIZE;
1423 if (np->rx_skbuff[entry] == NULL) {
1424 skb = netdev_alloc_skb(dev, np->rx_buf_sz + 2);
1425 np->rx_skbuff[entry] = skb;
1426 if (skb == NULL)
1427 break; /* Better luck next round. */
1428 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1429 np->rx_ring[entry].frag.addr = cpu_to_le32(
1430 dma_map_single(&np->pci_dev->dev, skb->data,
1431 np->rx_buf_sz, DMA_FROM_DEVICE));
1432 if (dma_mapping_error(&np->pci_dev->dev,
1433 np->rx_ring[entry].frag.addr)) {
1434 dev_kfree_skb_irq(skb);
1435 np->rx_skbuff[entry] = NULL;
1436 break;
1437 }
1438 }
1439 /* Perhaps we need not reset this field. */
1440 np->rx_ring[entry].frag.length =
1441 cpu_to_le32(np->rx_buf_sz | LastFrag);
1442 np->rx_ring[entry].status = 0;
1443 }
1444}
1445static void netdev_error(struct net_device *dev, int intr_status)
1446{
1447 struct netdev_private *np = netdev_priv(dev);
1448 void __iomem *ioaddr = np->base;
1449 u16 mii_ctl, mii_advertise, mii_lpa;
1450 int speed;
1451
1452 if (intr_status & LinkChange) {
1453 if (mdio_wait_link(dev, 10) == 0) {
1454 printk(KERN_INFO "%s: Link up\n", dev->name);
1455 if (np->an_enable) {
1456 mii_advertise = mdio_read(dev, np->phys[0],
1457 MII_ADVERTISE);
1458 mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
1459 mii_advertise &= mii_lpa;
1460 printk(KERN_INFO "%s: Link changed: ",
1461 dev->name);
1462 if (mii_advertise & ADVERTISE_100FULL) {
1463 np->speed = 100;
1464 printk("100Mbps, full duplex\n");
1465 } else if (mii_advertise & ADVERTISE_100HALF) {
1466 np->speed = 100;
1467 printk("100Mbps, half duplex\n");
1468 } else if (mii_advertise & ADVERTISE_10FULL) {
1469 np->speed = 10;
1470 printk("10Mbps, full duplex\n");
1471 } else if (mii_advertise & ADVERTISE_10HALF) {
1472 np->speed = 10;
1473 printk("10Mbps, half duplex\n");
1474 } else
1475 printk("\n");
1476
1477 } else {
1478 mii_ctl = mdio_read(dev, np->phys[0], MII_BMCR);
1479 speed = (mii_ctl & BMCR_SPEED100) ? 100 : 10;
1480 np->speed = speed;
1481 printk(KERN_INFO "%s: Link changed: %dMbps ,",
1482 dev->name, speed);
1483 printk("%s duplex.\n",
1484 (mii_ctl & BMCR_FULLDPLX) ?
1485 "full" : "half");
1486 }
1487 check_duplex(dev);
1488 if (np->flowctrl && np->mii_if.full_duplex) {
1489 iowrite16(ioread16(ioaddr + MulticastFilter1+2) | 0x0200,
1490 ioaddr + MulticastFilter1+2);
1491 iowrite16(ioread16(ioaddr + MACCtrl0) | EnbFlowCtrl,
1492 ioaddr + MACCtrl0);
1493 }
1494 netif_carrier_on(dev);
1495 } else {
1496 printk(KERN_INFO "%s: Link down\n", dev->name);
1497 netif_carrier_off(dev);
1498 }
1499 }
1500 if (intr_status & StatsMax) {
1501 get_stats(dev);
1502 }
1503 if (intr_status & IntrPCIErr) {
1504 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1505 dev->name, intr_status);
1506 /* We must do a global reset of DMA to continue. */
1507 }
1508}
1509
1510static struct net_device_stats *get_stats(struct net_device *dev)
1511{
1512 struct netdev_private *np = netdev_priv(dev);
1513 void __iomem *ioaddr = np->base;
1514 unsigned long flags;
1515 u8 late_coll, single_coll, mult_coll;
1516
1517 spin_lock_irqsave(&np->statlock, flags);
1518 /* The chip only need report frame silently dropped. */
1519 dev->stats.rx_missed_errors += ioread8(ioaddr + RxMissed);
1520 dev->stats.tx_packets += ioread16(ioaddr + TxFramesOK);
1521 dev->stats.rx_packets += ioread16(ioaddr + RxFramesOK);
1522 dev->stats.tx_carrier_errors += ioread8(ioaddr + StatsCarrierError);
1523
1524 mult_coll = ioread8(ioaddr + StatsMultiColl);
1525 np->xstats.tx_multiple_collisions += mult_coll;
1526 single_coll = ioread8(ioaddr + StatsOneColl);
1527 np->xstats.tx_single_collisions += single_coll;
1528 late_coll = ioread8(ioaddr + StatsLateColl);
1529 np->xstats.tx_late_collisions += late_coll;
1530 dev->stats.collisions += mult_coll
1531 + single_coll
1532 + late_coll;
1533
1534 np->xstats.tx_deferred += ioread8(ioaddr + StatsTxDefer);
1535 np->xstats.tx_deferred_excessive += ioread8(ioaddr + StatsTxXSDefer);
1536 np->xstats.tx_aborted += ioread8(ioaddr + StatsTxAbort);
1537 np->xstats.tx_bcasts += ioread8(ioaddr + StatsBcastTx);
1538 np->xstats.rx_bcasts += ioread8(ioaddr + StatsBcastRx);
1539 np->xstats.tx_mcasts += ioread8(ioaddr + StatsMcastTx);
1540 np->xstats.rx_mcasts += ioread8(ioaddr + StatsMcastRx);
1541
1542 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsLow);
1543 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsHigh) << 16;
1544 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsLow);
1545 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsHigh) << 16;
1546
1547 spin_unlock_irqrestore(&np->statlock, flags);
1548
1549 return &dev->stats;
1550}
1551
1552static void set_rx_mode(struct net_device *dev)
1553{
1554 struct netdev_private *np = netdev_priv(dev);
1555 void __iomem *ioaddr = np->base;
1556 u16 mc_filter[4]; /* Multicast hash filter */
1557 u32 rx_mode;
1558 int i;
1559
1560 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1561 memset(mc_filter, 0xff, sizeof(mc_filter));
1562 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptAll | AcceptMyPhys;
1563 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1564 (dev->flags & IFF_ALLMULTI)) {
1565 /* Too many to match, or accept all multicasts. */
1566 memset(mc_filter, 0xff, sizeof(mc_filter));
1567 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1568 } else if (!netdev_mc_empty(dev)) {
1569 struct netdev_hw_addr *ha;
1570 int bit;
1571 int index;
1572 int crc;
1573 memset (mc_filter, 0, sizeof (mc_filter));
1574 netdev_for_each_mc_addr(ha, dev) {
1575 crc = ether_crc_le(ETH_ALEN, ha->addr);
1576 for (index=0, bit=0; bit < 6; bit++, crc <<= 1)
1577 if (crc & 0x80000000) index |= 1 << bit;
1578 mc_filter[index/16] |= (1 << (index % 16));
1579 }
1580 rx_mode = AcceptBroadcast | AcceptMultiHash | AcceptMyPhys;
1581 } else {
1582 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
1583 return;
1584 }
1585 if (np->mii_if.full_duplex && np->flowctrl)
1586 mc_filter[3] |= 0x0200;
1587
1588 for (i = 0; i < 4; i++)
1589 iowrite16(mc_filter[i], ioaddr + MulticastFilter0 + i*2);
1590 iowrite8(rx_mode, ioaddr + RxMode);
1591}
1592
1593static int __set_mac_addr(struct net_device *dev)
1594{
1595 struct netdev_private *np = netdev_priv(dev);
1596 u16 addr16;
1597
1598 addr16 = (dev->dev_addr[0] | (dev->dev_addr[1] << 8));
1599 iowrite16(addr16, np->base + StationAddr);
1600 addr16 = (dev->dev_addr[2] | (dev->dev_addr[3] << 8));
1601 iowrite16(addr16, np->base + StationAddr+2);
1602 addr16 = (dev->dev_addr[4] | (dev->dev_addr[5] << 8));
1603 iowrite16(addr16, np->base + StationAddr+4);
1604 return 0;
1605}
1606
1607/* Invoked with rtnl_lock held */
1608static int sundance_set_mac_addr(struct net_device *dev, void *data)
1609{
1610 const struct sockaddr *addr = data;
1611
1612 if (!is_valid_ether_addr(addr->sa_data))
1613 return -EADDRNOTAVAIL;
1614 eth_hw_addr_set(dev, addr->sa_data);
1615 __set_mac_addr(dev);
1616
1617 return 0;
1618}
1619
1620static const struct {
1621 const char name[ETH_GSTRING_LEN];
1622} sundance_stats[] = {
1623 { "tx_multiple_collisions" },
1624 { "tx_single_collisions" },
1625 { "tx_late_collisions" },
1626 { "tx_deferred" },
1627 { "tx_deferred_excessive" },
1628 { "tx_aborted" },
1629 { "tx_bcasts" },
1630 { "rx_bcasts" },
1631 { "tx_mcasts" },
1632 { "rx_mcasts" },
1633};
1634
1635static int check_if_running(struct net_device *dev)
1636{
1637 if (!netif_running(dev))
1638 return -EINVAL;
1639 return 0;
1640}
1641
1642static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1643{
1644 struct netdev_private *np = netdev_priv(dev);
1645 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1646 strscpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1647}
1648
1649static int get_link_ksettings(struct net_device *dev,
1650 struct ethtool_link_ksettings *cmd)
1651{
1652 struct netdev_private *np = netdev_priv(dev);
1653 spin_lock_irq(&np->lock);
1654 mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1655 spin_unlock_irq(&np->lock);
1656 return 0;
1657}
1658
1659static int set_link_ksettings(struct net_device *dev,
1660 const struct ethtool_link_ksettings *cmd)
1661{
1662 struct netdev_private *np = netdev_priv(dev);
1663 int res;
1664 spin_lock_irq(&np->lock);
1665 res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1666 spin_unlock_irq(&np->lock);
1667 return res;
1668}
1669
1670static int nway_reset(struct net_device *dev)
1671{
1672 struct netdev_private *np = netdev_priv(dev);
1673 return mii_nway_restart(&np->mii_if);
1674}
1675
1676static u32 get_link(struct net_device *dev)
1677{
1678 struct netdev_private *np = netdev_priv(dev);
1679 return mii_link_ok(&np->mii_if);
1680}
1681
1682static u32 get_msglevel(struct net_device *dev)
1683{
1684 struct netdev_private *np = netdev_priv(dev);
1685 return np->msg_enable;
1686}
1687
1688static void set_msglevel(struct net_device *dev, u32 val)
1689{
1690 struct netdev_private *np = netdev_priv(dev);
1691 np->msg_enable = val;
1692}
1693
1694static void get_strings(struct net_device *dev, u32 stringset,
1695 u8 *data)
1696{
1697 if (stringset == ETH_SS_STATS)
1698 memcpy(data, sundance_stats, sizeof(sundance_stats));
1699}
1700
1701static int get_sset_count(struct net_device *dev, int sset)
1702{
1703 switch (sset) {
1704 case ETH_SS_STATS:
1705 return ARRAY_SIZE(sundance_stats);
1706 default:
1707 return -EOPNOTSUPP;
1708 }
1709}
1710
1711static void get_ethtool_stats(struct net_device *dev,
1712 struct ethtool_stats *stats, u64 *data)
1713{
1714 struct netdev_private *np = netdev_priv(dev);
1715 int i = 0;
1716
1717 get_stats(dev);
1718 data[i++] = np->xstats.tx_multiple_collisions;
1719 data[i++] = np->xstats.tx_single_collisions;
1720 data[i++] = np->xstats.tx_late_collisions;
1721 data[i++] = np->xstats.tx_deferred;
1722 data[i++] = np->xstats.tx_deferred_excessive;
1723 data[i++] = np->xstats.tx_aborted;
1724 data[i++] = np->xstats.tx_bcasts;
1725 data[i++] = np->xstats.rx_bcasts;
1726 data[i++] = np->xstats.tx_mcasts;
1727 data[i++] = np->xstats.rx_mcasts;
1728}
1729
1730#ifdef CONFIG_PM
1731
1732static void sundance_get_wol(struct net_device *dev,
1733 struct ethtool_wolinfo *wol)
1734{
1735 struct netdev_private *np = netdev_priv(dev);
1736 void __iomem *ioaddr = np->base;
1737 u8 wol_bits;
1738
1739 wol->wolopts = 0;
1740
1741 wol->supported = (WAKE_PHY | WAKE_MAGIC);
1742 if (!np->wol_enabled)
1743 return;
1744
1745 wol_bits = ioread8(ioaddr + WakeEvent);
1746 if (wol_bits & MagicPktEnable)
1747 wol->wolopts |= WAKE_MAGIC;
1748 if (wol_bits & LinkEventEnable)
1749 wol->wolopts |= WAKE_PHY;
1750}
1751
1752static int sundance_set_wol(struct net_device *dev,
1753 struct ethtool_wolinfo *wol)
1754{
1755 struct netdev_private *np = netdev_priv(dev);
1756 void __iomem *ioaddr = np->base;
1757 u8 wol_bits;
1758
1759 if (!device_can_wakeup(&np->pci_dev->dev))
1760 return -EOPNOTSUPP;
1761
1762 np->wol_enabled = !!(wol->wolopts);
1763 wol_bits = ioread8(ioaddr + WakeEvent);
1764 wol_bits &= ~(WakePktEnable | MagicPktEnable |
1765 LinkEventEnable | WolEnable);
1766
1767 if (np->wol_enabled) {
1768 if (wol->wolopts & WAKE_MAGIC)
1769 wol_bits |= (MagicPktEnable | WolEnable);
1770 if (wol->wolopts & WAKE_PHY)
1771 wol_bits |= (LinkEventEnable | WolEnable);
1772 }
1773 iowrite8(wol_bits, ioaddr + WakeEvent);
1774
1775 device_set_wakeup_enable(&np->pci_dev->dev, np->wol_enabled);
1776
1777 return 0;
1778}
1779#else
1780#define sundance_get_wol NULL
1781#define sundance_set_wol NULL
1782#endif /* CONFIG_PM */
1783
1784static const struct ethtool_ops ethtool_ops = {
1785 .begin = check_if_running,
1786 .get_drvinfo = get_drvinfo,
1787 .nway_reset = nway_reset,
1788 .get_link = get_link,
1789 .get_wol = sundance_get_wol,
1790 .set_wol = sundance_set_wol,
1791 .get_msglevel = get_msglevel,
1792 .set_msglevel = set_msglevel,
1793 .get_strings = get_strings,
1794 .get_sset_count = get_sset_count,
1795 .get_ethtool_stats = get_ethtool_stats,
1796 .get_link_ksettings = get_link_ksettings,
1797 .set_link_ksettings = set_link_ksettings,
1798};
1799
1800static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1801{
1802 struct netdev_private *np = netdev_priv(dev);
1803 int rc;
1804
1805 if (!netif_running(dev))
1806 return -EINVAL;
1807
1808 spin_lock_irq(&np->lock);
1809 rc = generic_mii_ioctl(&np->mii_if, if_mii(rq), cmd, NULL);
1810 spin_unlock_irq(&np->lock);
1811
1812 return rc;
1813}
1814
1815static int netdev_close(struct net_device *dev)
1816{
1817 struct netdev_private *np = netdev_priv(dev);
1818 void __iomem *ioaddr = np->base;
1819 struct sk_buff *skb;
1820 int i;
1821
1822 /* Wait and kill tasklet */
1823 tasklet_kill(&np->rx_tasklet);
1824 tasklet_kill(&np->tx_tasklet);
1825 np->cur_tx = 0;
1826 np->dirty_tx = 0;
1827 np->cur_task = 0;
1828 np->last_tx = NULL;
1829
1830 netif_stop_queue(dev);
1831
1832 if (netif_msg_ifdown(np)) {
1833 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %2.2x "
1834 "Rx %4.4x Int %2.2x.\n",
1835 dev->name, ioread8(ioaddr + TxStatus),
1836 ioread32(ioaddr + RxStatus), ioread16(ioaddr + IntrStatus));
1837 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1838 dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx);
1839 }
1840
1841 /* Disable interrupts by clearing the interrupt mask. */
1842 iowrite16(0x0000, ioaddr + IntrEnable);
1843
1844 /* Disable Rx and Tx DMA for safely release resource */
1845 iowrite32(0x500, ioaddr + DMACtrl);
1846
1847 /* Stop the chip's Tx and Rx processes. */
1848 iowrite16(TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl1);
1849
1850 for (i = 2000; i > 0; i--) {
1851 if ((ioread32(ioaddr + DMACtrl) & 0xc000) == 0)
1852 break;
1853 mdelay(1);
1854 }
1855
1856 iowrite16(GlobalReset | DMAReset | FIFOReset | NetworkReset,
1857 ioaddr + ASIC_HI_WORD(ASICCtrl));
1858
1859 for (i = 2000; i > 0; i--) {
1860 if ((ioread16(ioaddr + ASIC_HI_WORD(ASICCtrl)) & ResetBusy) == 0)
1861 break;
1862 mdelay(1);
1863 }
1864
1865#ifdef __i386__
1866 if (netif_msg_hw(np)) {
1867 printk(KERN_DEBUG " Tx ring at %8.8x:\n",
1868 (int)(np->tx_ring_dma));
1869 for (i = 0; i < TX_RING_SIZE; i++)
1870 printk(KERN_DEBUG " #%d desc. %4.4x %8.8x %8.8x.\n",
1871 i, np->tx_ring[i].status, np->tx_ring[i].frag.addr,
1872 np->tx_ring[i].frag.length);
1873 printk(KERN_DEBUG " Rx ring %8.8x:\n",
1874 (int)(np->rx_ring_dma));
1875 for (i = 0; i < /*RX_RING_SIZE*/4 ; i++) {
1876 printk(KERN_DEBUG " #%d desc. %4.4x %4.4x %8.8x\n",
1877 i, np->rx_ring[i].status, np->rx_ring[i].frag.addr,
1878 np->rx_ring[i].frag.length);
1879 }
1880 }
1881#endif /* __i386__ debugging only */
1882
1883 free_irq(np->pci_dev->irq, dev);
1884
1885 del_timer_sync(&np->timer);
1886
1887 /* Free all the skbuffs in the Rx queue. */
1888 for (i = 0; i < RX_RING_SIZE; i++) {
1889 np->rx_ring[i].status = 0;
1890 skb = np->rx_skbuff[i];
1891 if (skb) {
1892 dma_unmap_single(&np->pci_dev->dev,
1893 le32_to_cpu(np->rx_ring[i].frag.addr),
1894 np->rx_buf_sz, DMA_FROM_DEVICE);
1895 dev_kfree_skb(skb);
1896 np->rx_skbuff[i] = NULL;
1897 }
1898 np->rx_ring[i].frag.addr = cpu_to_le32(0xBADF00D0); /* poison */
1899 }
1900 for (i = 0; i < TX_RING_SIZE; i++) {
1901 np->tx_ring[i].next_desc = 0;
1902 skb = np->tx_skbuff[i];
1903 if (skb) {
1904 dma_unmap_single(&np->pci_dev->dev,
1905 le32_to_cpu(np->tx_ring[i].frag.addr),
1906 skb->len, DMA_TO_DEVICE);
1907 dev_kfree_skb(skb);
1908 np->tx_skbuff[i] = NULL;
1909 }
1910 }
1911
1912 return 0;
1913}
1914
1915static void sundance_remove1(struct pci_dev *pdev)
1916{
1917 struct net_device *dev = pci_get_drvdata(pdev);
1918
1919 if (dev) {
1920 struct netdev_private *np = netdev_priv(dev);
1921 unregister_netdev(dev);
1922 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE,
1923 np->rx_ring, np->rx_ring_dma);
1924 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE,
1925 np->tx_ring, np->tx_ring_dma);
1926 pci_iounmap(pdev, np->base);
1927 pci_release_regions(pdev);
1928 free_netdev(dev);
1929 }
1930}
1931
1932static int __maybe_unused sundance_suspend(struct device *dev_d)
1933{
1934 struct net_device *dev = dev_get_drvdata(dev_d);
1935 struct netdev_private *np = netdev_priv(dev);
1936 void __iomem *ioaddr = np->base;
1937
1938 if (!netif_running(dev))
1939 return 0;
1940
1941 netdev_close(dev);
1942 netif_device_detach(dev);
1943
1944 if (np->wol_enabled) {
1945 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
1946 iowrite16(RxEnable, ioaddr + MACCtrl1);
1947 }
1948
1949 device_set_wakeup_enable(dev_d, np->wol_enabled);
1950
1951 return 0;
1952}
1953
1954static int __maybe_unused sundance_resume(struct device *dev_d)
1955{
1956 struct net_device *dev = dev_get_drvdata(dev_d);
1957 int err = 0;
1958
1959 if (!netif_running(dev))
1960 return 0;
1961
1962 err = netdev_open(dev);
1963 if (err) {
1964 printk(KERN_ERR "%s: Can't resume interface!\n",
1965 dev->name);
1966 goto out;
1967 }
1968
1969 netif_device_attach(dev);
1970
1971out:
1972 return err;
1973}
1974
1975static SIMPLE_DEV_PM_OPS(sundance_pm_ops, sundance_suspend, sundance_resume);
1976
1977static struct pci_driver sundance_driver = {
1978 .name = DRV_NAME,
1979 .id_table = sundance_pci_tbl,
1980 .probe = sundance_probe1,
1981 .remove = sundance_remove1,
1982 .driver.pm = &sundance_pm_ops,
1983};
1984
1985module_pci_driver(sundance_driver);
1/* sundance.c: A Linux device driver for the Sundance ST201 "Alta". */
2/*
3 Written 1999-2000 by Donald Becker.
4
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
11
12 The author may be reached as becker@scyld.com, or C/O
13 Scyld Computing Corporation
14 410 Severn Ave., Suite 210
15 Annapolis MD 21403
16
17 Support and updates available at
18 http://www.scyld.com/network/sundance.html
19 [link no longer provides useful info -jgarzik]
20 Archives of the mailing list are still available at
21 https://www.beowulf.org/pipermail/netdrivers/
22
23*/
24
25#define DRV_NAME "sundance"
26
27/* The user-configurable values.
28 These may be modified when a driver module is loaded.*/
29static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
30/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
31 Typical is a 64 element hash table based on the Ethernet CRC. */
32static const int multicast_filter_limit = 32;
33
34/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
35 Setting to > 1518 effectively disables this feature.
36 This chip can receive into offset buffers, so the Alpha does not
37 need a copy-align. */
38static int rx_copybreak;
39static int flowctrl=1;
40
41/* media[] specifies the media type the NIC operates at.
42 autosense Autosensing active media.
43 10mbps_hd 10Mbps half duplex.
44 10mbps_fd 10Mbps full duplex.
45 100mbps_hd 100Mbps half duplex.
46 100mbps_fd 100Mbps full duplex.
47 0 Autosensing active media.
48 1 10Mbps half duplex.
49 2 10Mbps full duplex.
50 3 100Mbps half duplex.
51 4 100Mbps full duplex.
52*/
53#define MAX_UNITS 8
54static char *media[MAX_UNITS];
55
56
57/* Operational parameters that are set at compile time. */
58
59/* Keep the ring sizes a power of two for compile efficiency.
60 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
61 Making the Tx ring too large decreases the effectiveness of channel
62 bonding and packet priority, and more than 128 requires modifying the
63 Tx error recovery.
64 Large receive rings merely waste memory. */
65#define TX_RING_SIZE 32
66#define TX_QUEUE_LEN (TX_RING_SIZE - 1) /* Limit ring entries actually used. */
67#define RX_RING_SIZE 64
68#define RX_BUDGET 32
69#define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct netdev_desc)
70#define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct netdev_desc)
71
72/* Operational parameters that usually are not changed. */
73/* Time in jiffies before concluding the transmitter is hung. */
74#define TX_TIMEOUT (4*HZ)
75#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
76
77/* Include files, designed to support most kernel versions 2.0.0 and later. */
78#include <linux/module.h>
79#include <linux/kernel.h>
80#include <linux/string.h>
81#include <linux/timer.h>
82#include <linux/errno.h>
83#include <linux/ioport.h>
84#include <linux/interrupt.h>
85#include <linux/pci.h>
86#include <linux/netdevice.h>
87#include <linux/etherdevice.h>
88#include <linux/skbuff.h>
89#include <linux/init.h>
90#include <linux/bitops.h>
91#include <linux/uaccess.h>
92#include <asm/processor.h> /* Processor type for cache alignment. */
93#include <asm/io.h>
94#include <linux/delay.h>
95#include <linux/spinlock.h>
96#include <linux/dma-mapping.h>
97#include <linux/crc32.h>
98#include <linux/ethtool.h>
99#include <linux/mii.h>
100
101MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
102MODULE_DESCRIPTION("Sundance Alta Ethernet driver");
103MODULE_LICENSE("GPL");
104
105module_param(debug, int, 0);
106module_param(rx_copybreak, int, 0);
107module_param_array(media, charp, NULL, 0);
108module_param(flowctrl, int, 0);
109MODULE_PARM_DESC(debug, "Sundance Alta debug level (0-5)");
110MODULE_PARM_DESC(rx_copybreak, "Sundance Alta copy breakpoint for copy-only-tiny-frames");
111MODULE_PARM_DESC(flowctrl, "Sundance Alta flow control [0|1]");
112
113/*
114 Theory of Operation
115
116I. Board Compatibility
117
118This driver is designed for the Sundance Technologies "Alta" ST201 chip.
119
120II. Board-specific settings
121
122III. Driver operation
123
124IIIa. Ring buffers
125
126This driver uses two statically allocated fixed-size descriptor lists
127formed into rings by a branch from the final descriptor to the beginning of
128the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
129Some chips explicitly use only 2^N sized rings, while others use a
130'next descriptor' pointer that the driver forms into rings.
131
132IIIb/c. Transmit/Receive Structure
133
134This driver uses a zero-copy receive and transmit scheme.
135The driver allocates full frame size skbuffs for the Rx ring buffers at
136open() time and passes the skb->data field to the chip as receive data
137buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
138a fresh skbuff is allocated and the frame is copied to the new skbuff.
139When the incoming frame is larger, the skbuff is passed directly up the
140protocol stack. Buffers consumed this way are replaced by newly allocated
141skbuffs in a later phase of receives.
142
143The RX_COPYBREAK value is chosen to trade-off the memory wasted by
144using a full-sized skbuff for small frames vs. the copying costs of larger
145frames. New boards are typically used in generously configured machines
146and the underfilled buffers have negligible impact compared to the benefit of
147a single allocation size, so the default value of zero results in never
148copying packets. When copying is done, the cost is usually mitigated by using
149a combined copy/checksum routine. Copying also preloads the cache, which is
150most useful with small frames.
151
152A subtle aspect of the operation is that the IP header at offset 14 in an
153ethernet frame isn't longword aligned for further processing.
154Unaligned buffers are permitted by the Sundance hardware, so
155frames are received into the skbuff at an offset of "+2", 16-byte aligning
156the IP header.
157
158IIId. Synchronization
159
160The driver runs as two independent, single-threaded flows of control. One
161is the send-packet routine, which enforces single-threaded use by the
162dev->tbusy flag. The other thread is the interrupt handler, which is single
163threaded by the hardware and interrupt handling software.
164
165The send packet thread has partial control over the Tx ring and 'dev->tbusy'
166flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
167queue slot is empty, it clears the tbusy flag when finished otherwise it sets
168the 'lp->tx_full' flag.
169
170The interrupt handler has exclusive control over the Rx ring and records stats
171from the Tx ring. After reaping the stats, it marks the Tx queue entry as
172empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it
173clears both the tx_full and tbusy flags.
174
175IV. Notes
176
177IVb. References
178
179The Sundance ST201 datasheet, preliminary version.
180The Kendin KS8723 datasheet, preliminary version.
181The ICplus IP100 datasheet, preliminary version.
182http://www.scyld.com/expert/100mbps.html
183http://www.scyld.com/expert/NWay.html
184
185IVc. Errata
186
187*/
188
189/* Work-around for Kendin chip bugs. */
190#ifndef CONFIG_SUNDANCE_MMIO
191#define USE_IO_OPS 1
192#endif
193
194static const struct pci_device_id sundance_pci_tbl[] = {
195 { 0x1186, 0x1002, 0x1186, 0x1002, 0, 0, 0 },
196 { 0x1186, 0x1002, 0x1186, 0x1003, 0, 0, 1 },
197 { 0x1186, 0x1002, 0x1186, 0x1012, 0, 0, 2 },
198 { 0x1186, 0x1002, 0x1186, 0x1040, 0, 0, 3 },
199 { 0x1186, 0x1002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 4 },
200 { 0x13F0, 0x0201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 5 },
201 { 0x13F0, 0x0200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 6 },
202 { }
203};
204MODULE_DEVICE_TABLE(pci, sundance_pci_tbl);
205
206enum {
207 netdev_io_size = 128
208};
209
210struct pci_id_info {
211 const char *name;
212};
213static const struct pci_id_info pci_id_tbl[] = {
214 {"D-Link DFE-550TX FAST Ethernet Adapter"},
215 {"D-Link DFE-550FX 100Mbps Fiber-optics Adapter"},
216 {"D-Link DFE-580TX 4 port Server Adapter"},
217 {"D-Link DFE-530TXS FAST Ethernet Adapter"},
218 {"D-Link DL10050-based FAST Ethernet Adapter"},
219 {"Sundance Technology Alta"},
220 {"IC Plus Corporation IP100A FAST Ethernet Adapter"},
221 { } /* terminate list. */
222};
223
224/* This driver was written to use PCI memory space, however x86-oriented
225 hardware often uses I/O space accesses. */
226
227/* Offsets to the device registers.
228 Unlike software-only systems, device drivers interact with complex hardware.
229 It's not useful to define symbolic names for every register bit in the
230 device. The name can only partially document the semantics and make
231 the driver longer and more difficult to read.
232 In general, only the important configuration values or bits changed
233 multiple times should be defined symbolically.
234*/
235enum alta_offsets {
236 DMACtrl = 0x00,
237 TxListPtr = 0x04,
238 TxDMABurstThresh = 0x08,
239 TxDMAUrgentThresh = 0x09,
240 TxDMAPollPeriod = 0x0a,
241 RxDMAStatus = 0x0c,
242 RxListPtr = 0x10,
243 DebugCtrl0 = 0x1a,
244 DebugCtrl1 = 0x1c,
245 RxDMABurstThresh = 0x14,
246 RxDMAUrgentThresh = 0x15,
247 RxDMAPollPeriod = 0x16,
248 LEDCtrl = 0x1a,
249 ASICCtrl = 0x30,
250 EEData = 0x34,
251 EECtrl = 0x36,
252 FlashAddr = 0x40,
253 FlashData = 0x44,
254 WakeEvent = 0x45,
255 TxStatus = 0x46,
256 TxFrameId = 0x47,
257 DownCounter = 0x18,
258 IntrClear = 0x4a,
259 IntrEnable = 0x4c,
260 IntrStatus = 0x4e,
261 MACCtrl0 = 0x50,
262 MACCtrl1 = 0x52,
263 StationAddr = 0x54,
264 MaxFrameSize = 0x5A,
265 RxMode = 0x5c,
266 MIICtrl = 0x5e,
267 MulticastFilter0 = 0x60,
268 MulticastFilter1 = 0x64,
269 RxOctetsLow = 0x68,
270 RxOctetsHigh = 0x6a,
271 TxOctetsLow = 0x6c,
272 TxOctetsHigh = 0x6e,
273 TxFramesOK = 0x70,
274 RxFramesOK = 0x72,
275 StatsCarrierError = 0x74,
276 StatsLateColl = 0x75,
277 StatsMultiColl = 0x76,
278 StatsOneColl = 0x77,
279 StatsTxDefer = 0x78,
280 RxMissed = 0x79,
281 StatsTxXSDefer = 0x7a,
282 StatsTxAbort = 0x7b,
283 StatsBcastTx = 0x7c,
284 StatsBcastRx = 0x7d,
285 StatsMcastTx = 0x7e,
286 StatsMcastRx = 0x7f,
287 /* Aliased and bogus values! */
288 RxStatus = 0x0c,
289};
290
291#define ASIC_HI_WORD(x) ((x) + 2)
292
293enum ASICCtrl_HiWord_bit {
294 GlobalReset = 0x0001,
295 RxReset = 0x0002,
296 TxReset = 0x0004,
297 DMAReset = 0x0008,
298 FIFOReset = 0x0010,
299 NetworkReset = 0x0020,
300 HostReset = 0x0040,
301 ResetBusy = 0x0400,
302};
303
304/* Bits in the interrupt status/mask registers. */
305enum intr_status_bits {
306 IntrSummary=0x0001, IntrPCIErr=0x0002, IntrMACCtrl=0x0008,
307 IntrTxDone=0x0004, IntrRxDone=0x0010, IntrRxStart=0x0020,
308 IntrDrvRqst=0x0040,
309 StatsMax=0x0080, LinkChange=0x0100,
310 IntrTxDMADone=0x0200, IntrRxDMADone=0x0400,
311};
312
313/* Bits in the RxMode register. */
314enum rx_mode_bits {
315 AcceptAllIPMulti=0x20, AcceptMultiHash=0x10, AcceptAll=0x08,
316 AcceptBroadcast=0x04, AcceptMulticast=0x02, AcceptMyPhys=0x01,
317};
318/* Bits in MACCtrl. */
319enum mac_ctrl0_bits {
320 EnbFullDuplex=0x20, EnbRcvLargeFrame=0x40,
321 EnbFlowCtrl=0x100, EnbPassRxCRC=0x200,
322};
323enum mac_ctrl1_bits {
324 StatsEnable=0x0020, StatsDisable=0x0040, StatsEnabled=0x0080,
325 TxEnable=0x0100, TxDisable=0x0200, TxEnabled=0x0400,
326 RxEnable=0x0800, RxDisable=0x1000, RxEnabled=0x2000,
327};
328
329/* Bits in WakeEvent register. */
330enum wake_event_bits {
331 WakePktEnable = 0x01,
332 MagicPktEnable = 0x02,
333 LinkEventEnable = 0x04,
334 WolEnable = 0x80,
335};
336
337/* The Rx and Tx buffer descriptors. */
338/* Note that using only 32 bit fields simplifies conversion to big-endian
339 architectures. */
340struct netdev_desc {
341 __le32 next_desc;
342 __le32 status;
343 struct desc_frag { __le32 addr, length; } frag[1];
344};
345
346/* Bits in netdev_desc.status */
347enum desc_status_bits {
348 DescOwn=0x8000,
349 DescEndPacket=0x4000,
350 DescEndRing=0x2000,
351 LastFrag=0x80000000,
352 DescIntrOnTx=0x8000,
353 DescIntrOnDMADone=0x80000000,
354 DisableAlign = 0x00000001,
355};
356
357#define PRIV_ALIGN 15 /* Required alignment mask */
358/* Use __attribute__((aligned (L1_CACHE_BYTES))) to maintain alignment
359 within the structure. */
360#define MII_CNT 4
361struct netdev_private {
362 /* Descriptor rings first for alignment. */
363 struct netdev_desc *rx_ring;
364 struct netdev_desc *tx_ring;
365 struct sk_buff* rx_skbuff[RX_RING_SIZE];
366 struct sk_buff* tx_skbuff[TX_RING_SIZE];
367 dma_addr_t tx_ring_dma;
368 dma_addr_t rx_ring_dma;
369 struct timer_list timer; /* Media monitoring timer. */
370 /* ethtool extra stats */
371 struct {
372 u64 tx_multiple_collisions;
373 u64 tx_single_collisions;
374 u64 tx_late_collisions;
375 u64 tx_deferred;
376 u64 tx_deferred_excessive;
377 u64 tx_aborted;
378 u64 tx_bcasts;
379 u64 rx_bcasts;
380 u64 tx_mcasts;
381 u64 rx_mcasts;
382 } xstats;
383 /* Frequently used values: keep some adjacent for cache effect. */
384 spinlock_t lock;
385 int msg_enable;
386 int chip_id;
387 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
388 unsigned int rx_buf_sz; /* Based on MTU+slack. */
389 struct netdev_desc *last_tx; /* Last Tx descriptor used. */
390 unsigned int cur_tx, dirty_tx;
391 /* These values are keep track of the transceiver/media in use. */
392 unsigned int flowctrl:1;
393 unsigned int default_port:4; /* Last dev->if_port value. */
394 unsigned int an_enable:1;
395 unsigned int speed;
396 unsigned int wol_enabled:1; /* Wake on LAN enabled */
397 struct tasklet_struct rx_tasklet;
398 struct tasklet_struct tx_tasklet;
399 int budget;
400 int cur_task;
401 /* Multicast and receive mode. */
402 spinlock_t mcastlock; /* SMP lock multicast updates. */
403 u16 mcast_filter[4];
404 /* MII transceiver section. */
405 struct mii_if_info mii_if;
406 int mii_preamble_required;
407 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used. */
408 struct pci_dev *pci_dev;
409 void __iomem *base;
410 spinlock_t statlock;
411};
412
413/* The station address location in the EEPROM. */
414#define EEPROM_SA_OFFSET 0x10
415#define DEFAULT_INTR (IntrRxDMADone | IntrPCIErr | \
416 IntrDrvRqst | IntrTxDone | StatsMax | \
417 LinkChange)
418
419static int change_mtu(struct net_device *dev, int new_mtu);
420static int eeprom_read(void __iomem *ioaddr, int location);
421static int mdio_read(struct net_device *dev, int phy_id, int location);
422static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
423static int mdio_wait_link(struct net_device *dev, int wait);
424static int netdev_open(struct net_device *dev);
425static void check_duplex(struct net_device *dev);
426static void netdev_timer(struct timer_list *t);
427static void tx_timeout(struct net_device *dev, unsigned int txqueue);
428static void init_ring(struct net_device *dev);
429static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
430static int reset_tx (struct net_device *dev);
431static irqreturn_t intr_handler(int irq, void *dev_instance);
432static void rx_poll(unsigned long data);
433static void tx_poll(unsigned long data);
434static void refill_rx (struct net_device *dev);
435static void netdev_error(struct net_device *dev, int intr_status);
436static void netdev_error(struct net_device *dev, int intr_status);
437static void set_rx_mode(struct net_device *dev);
438static int __set_mac_addr(struct net_device *dev);
439static int sundance_set_mac_addr(struct net_device *dev, void *data);
440static struct net_device_stats *get_stats(struct net_device *dev);
441static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
442static int netdev_close(struct net_device *dev);
443static const struct ethtool_ops ethtool_ops;
444
445static void sundance_reset(struct net_device *dev, unsigned long reset_cmd)
446{
447 struct netdev_private *np = netdev_priv(dev);
448 void __iomem *ioaddr = np->base + ASICCtrl;
449 int countdown;
450
451 /* ST201 documentation states ASICCtrl is a 32bit register */
452 iowrite32 (reset_cmd | ioread32 (ioaddr), ioaddr);
453 /* ST201 documentation states reset can take up to 1 ms */
454 countdown = 10 + 1;
455 while (ioread32 (ioaddr) & (ResetBusy << 16)) {
456 if (--countdown == 0) {
457 printk(KERN_WARNING "%s : reset not completed !!\n", dev->name);
458 break;
459 }
460 udelay(100);
461 }
462}
463
464#ifdef CONFIG_NET_POLL_CONTROLLER
465static void sundance_poll_controller(struct net_device *dev)
466{
467 struct netdev_private *np = netdev_priv(dev);
468
469 disable_irq(np->pci_dev->irq);
470 intr_handler(np->pci_dev->irq, dev);
471 enable_irq(np->pci_dev->irq);
472}
473#endif
474
475static const struct net_device_ops netdev_ops = {
476 .ndo_open = netdev_open,
477 .ndo_stop = netdev_close,
478 .ndo_start_xmit = start_tx,
479 .ndo_get_stats = get_stats,
480 .ndo_set_rx_mode = set_rx_mode,
481 .ndo_do_ioctl = netdev_ioctl,
482 .ndo_tx_timeout = tx_timeout,
483 .ndo_change_mtu = change_mtu,
484 .ndo_set_mac_address = sundance_set_mac_addr,
485 .ndo_validate_addr = eth_validate_addr,
486#ifdef CONFIG_NET_POLL_CONTROLLER
487 .ndo_poll_controller = sundance_poll_controller,
488#endif
489};
490
491static int sundance_probe1(struct pci_dev *pdev,
492 const struct pci_device_id *ent)
493{
494 struct net_device *dev;
495 struct netdev_private *np;
496 static int card_idx;
497 int chip_idx = ent->driver_data;
498 int irq;
499 int i;
500 void __iomem *ioaddr;
501 u16 mii_ctl;
502 void *ring_space;
503 dma_addr_t ring_dma;
504#ifdef USE_IO_OPS
505 int bar = 0;
506#else
507 int bar = 1;
508#endif
509 int phy, phy_end, phy_idx = 0;
510
511 if (pci_enable_device(pdev))
512 return -EIO;
513 pci_set_master(pdev);
514
515 irq = pdev->irq;
516
517 dev = alloc_etherdev(sizeof(*np));
518 if (!dev)
519 return -ENOMEM;
520 SET_NETDEV_DEV(dev, &pdev->dev);
521
522 if (pci_request_regions(pdev, DRV_NAME))
523 goto err_out_netdev;
524
525 ioaddr = pci_iomap(pdev, bar, netdev_io_size);
526 if (!ioaddr)
527 goto err_out_res;
528
529 for (i = 0; i < 3; i++)
530 ((__le16 *)dev->dev_addr)[i] =
531 cpu_to_le16(eeprom_read(ioaddr, i + EEPROM_SA_OFFSET));
532
533 np = netdev_priv(dev);
534 np->base = ioaddr;
535 np->pci_dev = pdev;
536 np->chip_id = chip_idx;
537 np->msg_enable = (1 << debug) - 1;
538 spin_lock_init(&np->lock);
539 spin_lock_init(&np->statlock);
540 tasklet_init(&np->rx_tasklet, rx_poll, (unsigned long)dev);
541 tasklet_init(&np->tx_tasklet, tx_poll, (unsigned long)dev);
542
543 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE,
544 &ring_dma, GFP_KERNEL);
545 if (!ring_space)
546 goto err_out_cleardev;
547 np->tx_ring = (struct netdev_desc *)ring_space;
548 np->tx_ring_dma = ring_dma;
549
550 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE,
551 &ring_dma, GFP_KERNEL);
552 if (!ring_space)
553 goto err_out_unmap_tx;
554 np->rx_ring = (struct netdev_desc *)ring_space;
555 np->rx_ring_dma = ring_dma;
556
557 np->mii_if.dev = dev;
558 np->mii_if.mdio_read = mdio_read;
559 np->mii_if.mdio_write = mdio_write;
560 np->mii_if.phy_id_mask = 0x1f;
561 np->mii_if.reg_num_mask = 0x1f;
562
563 /* The chip-specific entries in the device structure. */
564 dev->netdev_ops = &netdev_ops;
565 dev->ethtool_ops = ðtool_ops;
566 dev->watchdog_timeo = TX_TIMEOUT;
567
568 /* MTU range: 68 - 8191 */
569 dev->min_mtu = ETH_MIN_MTU;
570 dev->max_mtu = 8191;
571
572 pci_set_drvdata(pdev, dev);
573
574 i = register_netdev(dev);
575 if (i)
576 goto err_out_unmap_rx;
577
578 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
579 dev->name, pci_id_tbl[chip_idx].name, ioaddr,
580 dev->dev_addr, irq);
581
582 np->phys[0] = 1; /* Default setting */
583 np->mii_preamble_required++;
584
585 /*
586 * It seems some phys doesn't deal well with address 0 being accessed
587 * first
588 */
589 if (sundance_pci_tbl[np->chip_id].device == 0x0200) {
590 phy = 0;
591 phy_end = 31;
592 } else {
593 phy = 1;
594 phy_end = 32; /* wraps to zero, due to 'phy & 0x1f' */
595 }
596 for (; phy <= phy_end && phy_idx < MII_CNT; phy++) {
597 int phyx = phy & 0x1f;
598 int mii_status = mdio_read(dev, phyx, MII_BMSR);
599 if (mii_status != 0xffff && mii_status != 0x0000) {
600 np->phys[phy_idx++] = phyx;
601 np->mii_if.advertising = mdio_read(dev, phyx, MII_ADVERTISE);
602 if ((mii_status & 0x0040) == 0)
603 np->mii_preamble_required++;
604 printk(KERN_INFO "%s: MII PHY found at address %d, status "
605 "0x%4.4x advertising %4.4x.\n",
606 dev->name, phyx, mii_status, np->mii_if.advertising);
607 }
608 }
609 np->mii_preamble_required--;
610
611 if (phy_idx == 0) {
612 printk(KERN_INFO "%s: No MII transceiver found, aborting. ASIC status %x\n",
613 dev->name, ioread32(ioaddr + ASICCtrl));
614 goto err_out_unregister;
615 }
616
617 np->mii_if.phy_id = np->phys[0];
618
619 /* Parse override configuration */
620 np->an_enable = 1;
621 if (card_idx < MAX_UNITS) {
622 if (media[card_idx] != NULL) {
623 np->an_enable = 0;
624 if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
625 strcmp (media[card_idx], "4") == 0) {
626 np->speed = 100;
627 np->mii_if.full_duplex = 1;
628 } else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
629 strcmp (media[card_idx], "3") == 0) {
630 np->speed = 100;
631 np->mii_if.full_duplex = 0;
632 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
633 strcmp (media[card_idx], "2") == 0) {
634 np->speed = 10;
635 np->mii_if.full_duplex = 1;
636 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
637 strcmp (media[card_idx], "1") == 0) {
638 np->speed = 10;
639 np->mii_if.full_duplex = 0;
640 } else {
641 np->an_enable = 1;
642 }
643 }
644 if (flowctrl == 1)
645 np->flowctrl = 1;
646 }
647
648 /* Fibre PHY? */
649 if (ioread32 (ioaddr + ASICCtrl) & 0x80) {
650 /* Default 100Mbps Full */
651 if (np->an_enable) {
652 np->speed = 100;
653 np->mii_if.full_duplex = 1;
654 np->an_enable = 0;
655 }
656 }
657 /* Reset PHY */
658 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_RESET);
659 mdelay (300);
660 /* If flow control enabled, we need to advertise it.*/
661 if (np->flowctrl)
662 mdio_write (dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising | 0x0400);
663 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART);
664 /* Force media type */
665 if (!np->an_enable) {
666 mii_ctl = 0;
667 mii_ctl |= (np->speed == 100) ? BMCR_SPEED100 : 0;
668 mii_ctl |= (np->mii_if.full_duplex) ? BMCR_FULLDPLX : 0;
669 mdio_write (dev, np->phys[0], MII_BMCR, mii_ctl);
670 printk (KERN_INFO "Override speed=%d, %s duplex\n",
671 np->speed, np->mii_if.full_duplex ? "Full" : "Half");
672
673 }
674
675 /* Perhaps move the reset here? */
676 /* Reset the chip to erase previous misconfiguration. */
677 if (netif_msg_hw(np))
678 printk("ASIC Control is %x.\n", ioread32(ioaddr + ASICCtrl));
679 sundance_reset(dev, 0x00ff << 16);
680 if (netif_msg_hw(np))
681 printk("ASIC Control is now %x.\n", ioread32(ioaddr + ASICCtrl));
682
683 card_idx++;
684 return 0;
685
686err_out_unregister:
687 unregister_netdev(dev);
688err_out_unmap_rx:
689 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE,
690 np->rx_ring, np->rx_ring_dma);
691err_out_unmap_tx:
692 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE,
693 np->tx_ring, np->tx_ring_dma);
694err_out_cleardev:
695 pci_iounmap(pdev, ioaddr);
696err_out_res:
697 pci_release_regions(pdev);
698err_out_netdev:
699 free_netdev (dev);
700 return -ENODEV;
701}
702
703static int change_mtu(struct net_device *dev, int new_mtu)
704{
705 if (netif_running(dev))
706 return -EBUSY;
707 dev->mtu = new_mtu;
708 return 0;
709}
710
711#define eeprom_delay(ee_addr) ioread32(ee_addr)
712/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. */
713static int eeprom_read(void __iomem *ioaddr, int location)
714{
715 int boguscnt = 10000; /* Typical 1900 ticks. */
716 iowrite16(0x0200 | (location & 0xff), ioaddr + EECtrl);
717 do {
718 eeprom_delay(ioaddr + EECtrl);
719 if (! (ioread16(ioaddr + EECtrl) & 0x8000)) {
720 return ioread16(ioaddr + EEData);
721 }
722 } while (--boguscnt > 0);
723 return 0;
724}
725
726/* MII transceiver control section.
727 Read and write the MII registers using software-generated serial
728 MDIO protocol. See the MII specifications or DP83840A data sheet
729 for details.
730
731 The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
732 met by back-to-back 33Mhz PCI cycles. */
733#define mdio_delay() ioread8(mdio_addr)
734
735enum mii_reg_bits {
736 MDIO_ShiftClk=0x0001, MDIO_Data=0x0002, MDIO_EnbOutput=0x0004,
737};
738#define MDIO_EnbIn (0)
739#define MDIO_WRITE0 (MDIO_EnbOutput)
740#define MDIO_WRITE1 (MDIO_Data | MDIO_EnbOutput)
741
742/* Generate the preamble required for initial synchronization and
743 a few older transceivers. */
744static void mdio_sync(void __iomem *mdio_addr)
745{
746 int bits = 32;
747
748 /* Establish sync by sending at least 32 logic ones. */
749 while (--bits >= 0) {
750 iowrite8(MDIO_WRITE1, mdio_addr);
751 mdio_delay();
752 iowrite8(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
753 mdio_delay();
754 }
755}
756
757static int mdio_read(struct net_device *dev, int phy_id, int location)
758{
759 struct netdev_private *np = netdev_priv(dev);
760 void __iomem *mdio_addr = np->base + MIICtrl;
761 int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
762 int i, retval = 0;
763
764 if (np->mii_preamble_required)
765 mdio_sync(mdio_addr);
766
767 /* Shift the read command bits out. */
768 for (i = 15; i >= 0; i--) {
769 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
770
771 iowrite8(dataval, mdio_addr);
772 mdio_delay();
773 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
774 mdio_delay();
775 }
776 /* Read the two transition, 16 data, and wire-idle bits. */
777 for (i = 19; i > 0; i--) {
778 iowrite8(MDIO_EnbIn, mdio_addr);
779 mdio_delay();
780 retval = (retval << 1) | ((ioread8(mdio_addr) & MDIO_Data) ? 1 : 0);
781 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
782 mdio_delay();
783 }
784 return (retval>>1) & 0xffff;
785}
786
787static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
788{
789 struct netdev_private *np = netdev_priv(dev);
790 void __iomem *mdio_addr = np->base + MIICtrl;
791 int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
792 int i;
793
794 if (np->mii_preamble_required)
795 mdio_sync(mdio_addr);
796
797 /* Shift the command bits out. */
798 for (i = 31; i >= 0; i--) {
799 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
800
801 iowrite8(dataval, mdio_addr);
802 mdio_delay();
803 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
804 mdio_delay();
805 }
806 /* Clear out extra bits. */
807 for (i = 2; i > 0; i--) {
808 iowrite8(MDIO_EnbIn, mdio_addr);
809 mdio_delay();
810 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
811 mdio_delay();
812 }
813}
814
815static int mdio_wait_link(struct net_device *dev, int wait)
816{
817 int bmsr;
818 int phy_id;
819 struct netdev_private *np;
820
821 np = netdev_priv(dev);
822 phy_id = np->phys[0];
823
824 do {
825 bmsr = mdio_read(dev, phy_id, MII_BMSR);
826 if (bmsr & 0x0004)
827 return 0;
828 mdelay(1);
829 } while (--wait > 0);
830 return -1;
831}
832
833static int netdev_open(struct net_device *dev)
834{
835 struct netdev_private *np = netdev_priv(dev);
836 void __iomem *ioaddr = np->base;
837 const int irq = np->pci_dev->irq;
838 unsigned long flags;
839 int i;
840
841 sundance_reset(dev, 0x00ff << 16);
842
843 i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
844 if (i)
845 return i;
846
847 if (netif_msg_ifup(np))
848 printk(KERN_DEBUG "%s: netdev_open() irq %d\n", dev->name, irq);
849
850 init_ring(dev);
851
852 iowrite32(np->rx_ring_dma, ioaddr + RxListPtr);
853 /* The Tx list pointer is written as packets are queued. */
854
855 /* Initialize other registers. */
856 __set_mac_addr(dev);
857#if IS_ENABLED(CONFIG_VLAN_8021Q)
858 iowrite16(dev->mtu + 18, ioaddr + MaxFrameSize);
859#else
860 iowrite16(dev->mtu + 14, ioaddr + MaxFrameSize);
861#endif
862 if (dev->mtu > 2047)
863 iowrite32(ioread32(ioaddr + ASICCtrl) | 0x0C, ioaddr + ASICCtrl);
864
865 /* Configure the PCI bus bursts and FIFO thresholds. */
866
867 if (dev->if_port == 0)
868 dev->if_port = np->default_port;
869
870 spin_lock_init(&np->mcastlock);
871
872 set_rx_mode(dev);
873 iowrite16(0, ioaddr + IntrEnable);
874 iowrite16(0, ioaddr + DownCounter);
875 /* Set the chip to poll every N*320nsec. */
876 iowrite8(100, ioaddr + RxDMAPollPeriod);
877 iowrite8(127, ioaddr + TxDMAPollPeriod);
878 /* Fix DFE-580TX packet drop issue */
879 if (np->pci_dev->revision >= 0x14)
880 iowrite8(0x01, ioaddr + DebugCtrl1);
881 netif_start_queue(dev);
882
883 spin_lock_irqsave(&np->lock, flags);
884 reset_tx(dev);
885 spin_unlock_irqrestore(&np->lock, flags);
886
887 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
888
889 /* Disable Wol */
890 iowrite8(ioread8(ioaddr + WakeEvent) | 0x00, ioaddr + WakeEvent);
891 np->wol_enabled = 0;
892
893 if (netif_msg_ifup(np))
894 printk(KERN_DEBUG "%s: Done netdev_open(), status: Rx %x Tx %x "
895 "MAC Control %x, %4.4x %4.4x.\n",
896 dev->name, ioread32(ioaddr + RxStatus), ioread8(ioaddr + TxStatus),
897 ioread32(ioaddr + MACCtrl0),
898 ioread16(ioaddr + MACCtrl1), ioread16(ioaddr + MACCtrl0));
899
900 /* Set the timer to check for link beat. */
901 timer_setup(&np->timer, netdev_timer, 0);
902 np->timer.expires = jiffies + 3*HZ;
903 add_timer(&np->timer);
904
905 /* Enable interrupts by setting the interrupt mask. */
906 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
907
908 return 0;
909}
910
911static void check_duplex(struct net_device *dev)
912{
913 struct netdev_private *np = netdev_priv(dev);
914 void __iomem *ioaddr = np->base;
915 int mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
916 int negotiated = mii_lpa & np->mii_if.advertising;
917 int duplex;
918
919 /* Force media */
920 if (!np->an_enable || mii_lpa == 0xffff) {
921 if (np->mii_if.full_duplex)
922 iowrite16 (ioread16 (ioaddr + MACCtrl0) | EnbFullDuplex,
923 ioaddr + MACCtrl0);
924 return;
925 }
926
927 /* Autonegotiation */
928 duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
929 if (np->mii_if.full_duplex != duplex) {
930 np->mii_if.full_duplex = duplex;
931 if (netif_msg_link(np))
932 printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d "
933 "negotiated capability %4.4x.\n", dev->name,
934 duplex ? "full" : "half", np->phys[0], negotiated);
935 iowrite16(ioread16(ioaddr + MACCtrl0) | (duplex ? 0x20 : 0), ioaddr + MACCtrl0);
936 }
937}
938
939static void netdev_timer(struct timer_list *t)
940{
941 struct netdev_private *np = from_timer(np, t, timer);
942 struct net_device *dev = np->mii_if.dev;
943 void __iomem *ioaddr = np->base;
944 int next_tick = 10*HZ;
945
946 if (netif_msg_timer(np)) {
947 printk(KERN_DEBUG "%s: Media selection timer tick, intr status %4.4x, "
948 "Tx %x Rx %x.\n",
949 dev->name, ioread16(ioaddr + IntrEnable),
950 ioread8(ioaddr + TxStatus), ioread32(ioaddr + RxStatus));
951 }
952 check_duplex(dev);
953 np->timer.expires = jiffies + next_tick;
954 add_timer(&np->timer);
955}
956
957static void tx_timeout(struct net_device *dev, unsigned int txqueue)
958{
959 struct netdev_private *np = netdev_priv(dev);
960 void __iomem *ioaddr = np->base;
961 unsigned long flag;
962
963 netif_stop_queue(dev);
964 tasklet_disable(&np->tx_tasklet);
965 iowrite16(0, ioaddr + IntrEnable);
966 printk(KERN_WARNING "%s: Transmit timed out, TxStatus %2.2x "
967 "TxFrameId %2.2x,"
968 " resetting...\n", dev->name, ioread8(ioaddr + TxStatus),
969 ioread8(ioaddr + TxFrameId));
970
971 {
972 int i;
973 for (i=0; i<TX_RING_SIZE; i++) {
974 printk(KERN_DEBUG "%02x %08llx %08x %08x(%02x) %08x %08x\n", i,
975 (unsigned long long)(np->tx_ring_dma + i*sizeof(*np->tx_ring)),
976 le32_to_cpu(np->tx_ring[i].next_desc),
977 le32_to_cpu(np->tx_ring[i].status),
978 (le32_to_cpu(np->tx_ring[i].status) >> 2) & 0xff,
979 le32_to_cpu(np->tx_ring[i].frag[0].addr),
980 le32_to_cpu(np->tx_ring[i].frag[0].length));
981 }
982 printk(KERN_DEBUG "TxListPtr=%08x netif_queue_stopped=%d\n",
983 ioread32(np->base + TxListPtr),
984 netif_queue_stopped(dev));
985 printk(KERN_DEBUG "cur_tx=%d(%02x) dirty_tx=%d(%02x)\n",
986 np->cur_tx, np->cur_tx % TX_RING_SIZE,
987 np->dirty_tx, np->dirty_tx % TX_RING_SIZE);
988 printk(KERN_DEBUG "cur_rx=%d dirty_rx=%d\n", np->cur_rx, np->dirty_rx);
989 printk(KERN_DEBUG "cur_task=%d\n", np->cur_task);
990 }
991 spin_lock_irqsave(&np->lock, flag);
992
993 /* Stop and restart the chip's Tx processes . */
994 reset_tx(dev);
995 spin_unlock_irqrestore(&np->lock, flag);
996
997 dev->if_port = 0;
998
999 netif_trans_update(dev); /* prevent tx timeout */
1000 dev->stats.tx_errors++;
1001 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
1002 netif_wake_queue(dev);
1003 }
1004 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
1005 tasklet_enable(&np->tx_tasklet);
1006}
1007
1008
1009/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1010static void init_ring(struct net_device *dev)
1011{
1012 struct netdev_private *np = netdev_priv(dev);
1013 int i;
1014
1015 np->cur_rx = np->cur_tx = 0;
1016 np->dirty_rx = np->dirty_tx = 0;
1017 np->cur_task = 0;
1018
1019 np->rx_buf_sz = (dev->mtu <= 1520 ? PKT_BUF_SZ : dev->mtu + 16);
1020
1021 /* Initialize all Rx descriptors. */
1022 for (i = 0; i < RX_RING_SIZE; i++) {
1023 np->rx_ring[i].next_desc = cpu_to_le32(np->rx_ring_dma +
1024 ((i+1)%RX_RING_SIZE)*sizeof(*np->rx_ring));
1025 np->rx_ring[i].status = 0;
1026 np->rx_ring[i].frag[0].length = 0;
1027 np->rx_skbuff[i] = NULL;
1028 }
1029
1030 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1031 for (i = 0; i < RX_RING_SIZE; i++) {
1032 struct sk_buff *skb =
1033 netdev_alloc_skb(dev, np->rx_buf_sz + 2);
1034 np->rx_skbuff[i] = skb;
1035 if (skb == NULL)
1036 break;
1037 skb_reserve(skb, 2); /* 16 byte align the IP header. */
1038 np->rx_ring[i].frag[0].addr = cpu_to_le32(
1039 dma_map_single(&np->pci_dev->dev, skb->data,
1040 np->rx_buf_sz, DMA_FROM_DEVICE));
1041 if (dma_mapping_error(&np->pci_dev->dev,
1042 np->rx_ring[i].frag[0].addr)) {
1043 dev_kfree_skb(skb);
1044 np->rx_skbuff[i] = NULL;
1045 break;
1046 }
1047 np->rx_ring[i].frag[0].length = cpu_to_le32(np->rx_buf_sz | LastFrag);
1048 }
1049 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1050
1051 for (i = 0; i < TX_RING_SIZE; i++) {
1052 np->tx_skbuff[i] = NULL;
1053 np->tx_ring[i].status = 0;
1054 }
1055}
1056
1057static void tx_poll (unsigned long data)
1058{
1059 struct net_device *dev = (struct net_device *)data;
1060 struct netdev_private *np = netdev_priv(dev);
1061 unsigned head = np->cur_task % TX_RING_SIZE;
1062 struct netdev_desc *txdesc =
1063 &np->tx_ring[(np->cur_tx - 1) % TX_RING_SIZE];
1064
1065 /* Chain the next pointer */
1066 for (; np->cur_tx - np->cur_task > 0; np->cur_task++) {
1067 int entry = np->cur_task % TX_RING_SIZE;
1068 txdesc = &np->tx_ring[entry];
1069 if (np->last_tx) {
1070 np->last_tx->next_desc = cpu_to_le32(np->tx_ring_dma +
1071 entry*sizeof(struct netdev_desc));
1072 }
1073 np->last_tx = txdesc;
1074 }
1075 /* Indicate the latest descriptor of tx ring */
1076 txdesc->status |= cpu_to_le32(DescIntrOnTx);
1077
1078 if (ioread32 (np->base + TxListPtr) == 0)
1079 iowrite32 (np->tx_ring_dma + head * sizeof(struct netdev_desc),
1080 np->base + TxListPtr);
1081}
1082
1083static netdev_tx_t
1084start_tx (struct sk_buff *skb, struct net_device *dev)
1085{
1086 struct netdev_private *np = netdev_priv(dev);
1087 struct netdev_desc *txdesc;
1088 unsigned entry;
1089
1090 /* Calculate the next Tx descriptor entry. */
1091 entry = np->cur_tx % TX_RING_SIZE;
1092 np->tx_skbuff[entry] = skb;
1093 txdesc = &np->tx_ring[entry];
1094
1095 txdesc->next_desc = 0;
1096 txdesc->status = cpu_to_le32 ((entry << 2) | DisableAlign);
1097 txdesc->frag[0].addr = cpu_to_le32(dma_map_single(&np->pci_dev->dev,
1098 skb->data, skb->len, DMA_TO_DEVICE));
1099 if (dma_mapping_error(&np->pci_dev->dev,
1100 txdesc->frag[0].addr))
1101 goto drop_frame;
1102 txdesc->frag[0].length = cpu_to_le32 (skb->len | LastFrag);
1103
1104 /* Increment cur_tx before tasklet_schedule() */
1105 np->cur_tx++;
1106 mb();
1107 /* Schedule a tx_poll() task */
1108 tasklet_schedule(&np->tx_tasklet);
1109
1110 /* On some architectures: explicitly flush cache lines here. */
1111 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 1 &&
1112 !netif_queue_stopped(dev)) {
1113 /* do nothing */
1114 } else {
1115 netif_stop_queue (dev);
1116 }
1117 if (netif_msg_tx_queued(np)) {
1118 printk (KERN_DEBUG
1119 "%s: Transmit frame #%d queued in slot %d.\n",
1120 dev->name, np->cur_tx, entry);
1121 }
1122 return NETDEV_TX_OK;
1123
1124drop_frame:
1125 dev_kfree_skb_any(skb);
1126 np->tx_skbuff[entry] = NULL;
1127 dev->stats.tx_dropped++;
1128 return NETDEV_TX_OK;
1129}
1130
1131/* Reset hardware tx and free all of tx buffers */
1132static int
1133reset_tx (struct net_device *dev)
1134{
1135 struct netdev_private *np = netdev_priv(dev);
1136 void __iomem *ioaddr = np->base;
1137 struct sk_buff *skb;
1138 int i;
1139
1140 /* Reset tx logic, TxListPtr will be cleaned */
1141 iowrite16 (TxDisable, ioaddr + MACCtrl1);
1142 sundance_reset(dev, (NetworkReset|FIFOReset|DMAReset|TxReset) << 16);
1143
1144 /* free all tx skbuff */
1145 for (i = 0; i < TX_RING_SIZE; i++) {
1146 np->tx_ring[i].next_desc = 0;
1147
1148 skb = np->tx_skbuff[i];
1149 if (skb) {
1150 dma_unmap_single(&np->pci_dev->dev,
1151 le32_to_cpu(np->tx_ring[i].frag[0].addr),
1152 skb->len, DMA_TO_DEVICE);
1153 dev_kfree_skb_any(skb);
1154 np->tx_skbuff[i] = NULL;
1155 dev->stats.tx_dropped++;
1156 }
1157 }
1158 np->cur_tx = np->dirty_tx = 0;
1159 np->cur_task = 0;
1160
1161 np->last_tx = NULL;
1162 iowrite8(127, ioaddr + TxDMAPollPeriod);
1163
1164 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
1165 return 0;
1166}
1167
1168/* The interrupt handler cleans up after the Tx thread,
1169 and schedule a Rx thread work */
1170static irqreturn_t intr_handler(int irq, void *dev_instance)
1171{
1172 struct net_device *dev = (struct net_device *)dev_instance;
1173 struct netdev_private *np = netdev_priv(dev);
1174 void __iomem *ioaddr = np->base;
1175 int hw_frame_id;
1176 int tx_cnt;
1177 int tx_status;
1178 int handled = 0;
1179 int i;
1180
1181 do {
1182 int intr_status = ioread16(ioaddr + IntrStatus);
1183 iowrite16(intr_status, ioaddr + IntrStatus);
1184
1185 if (netif_msg_intr(np))
1186 printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n",
1187 dev->name, intr_status);
1188
1189 if (!(intr_status & DEFAULT_INTR))
1190 break;
1191
1192 handled = 1;
1193
1194 if (intr_status & (IntrRxDMADone)) {
1195 iowrite16(DEFAULT_INTR & ~(IntrRxDone|IntrRxDMADone),
1196 ioaddr + IntrEnable);
1197 if (np->budget < 0)
1198 np->budget = RX_BUDGET;
1199 tasklet_schedule(&np->rx_tasklet);
1200 }
1201 if (intr_status & (IntrTxDone | IntrDrvRqst)) {
1202 tx_status = ioread16 (ioaddr + TxStatus);
1203 for (tx_cnt=32; tx_status & 0x80; --tx_cnt) {
1204 if (netif_msg_tx_done(np))
1205 printk
1206 ("%s: Transmit status is %2.2x.\n",
1207 dev->name, tx_status);
1208 if (tx_status & 0x1e) {
1209 if (netif_msg_tx_err(np))
1210 printk("%s: Transmit error status %4.4x.\n",
1211 dev->name, tx_status);
1212 dev->stats.tx_errors++;
1213 if (tx_status & 0x10)
1214 dev->stats.tx_fifo_errors++;
1215 if (tx_status & 0x08)
1216 dev->stats.collisions++;
1217 if (tx_status & 0x04)
1218 dev->stats.tx_fifo_errors++;
1219 if (tx_status & 0x02)
1220 dev->stats.tx_window_errors++;
1221
1222 /*
1223 ** This reset has been verified on
1224 ** DFE-580TX boards ! phdm@macqel.be.
1225 */
1226 if (tx_status & 0x10) { /* TxUnderrun */
1227 /* Restart Tx FIFO and transmitter */
1228 sundance_reset(dev, (NetworkReset|FIFOReset|TxReset) << 16);
1229 /* No need to reset the Tx pointer here */
1230 }
1231 /* Restart the Tx. Need to make sure tx enabled */
1232 i = 10;
1233 do {
1234 iowrite16(ioread16(ioaddr + MACCtrl1) | TxEnable, ioaddr + MACCtrl1);
1235 if (ioread16(ioaddr + MACCtrl1) & TxEnabled)
1236 break;
1237 mdelay(1);
1238 } while (--i);
1239 }
1240 /* Yup, this is a documentation bug. It cost me *hours*. */
1241 iowrite16 (0, ioaddr + TxStatus);
1242 if (tx_cnt < 0) {
1243 iowrite32(5000, ioaddr + DownCounter);
1244 break;
1245 }
1246 tx_status = ioread16 (ioaddr + TxStatus);
1247 }
1248 hw_frame_id = (tx_status >> 8) & 0xff;
1249 } else {
1250 hw_frame_id = ioread8(ioaddr + TxFrameId);
1251 }
1252
1253 if (np->pci_dev->revision >= 0x14) {
1254 spin_lock(&np->lock);
1255 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1256 int entry = np->dirty_tx % TX_RING_SIZE;
1257 struct sk_buff *skb;
1258 int sw_frame_id;
1259 sw_frame_id = (le32_to_cpu(
1260 np->tx_ring[entry].status) >> 2) & 0xff;
1261 if (sw_frame_id == hw_frame_id &&
1262 !(le32_to_cpu(np->tx_ring[entry].status)
1263 & 0x00010000))
1264 break;
1265 if (sw_frame_id == (hw_frame_id + 1) %
1266 TX_RING_SIZE)
1267 break;
1268 skb = np->tx_skbuff[entry];
1269 /* Free the original skb. */
1270 dma_unmap_single(&np->pci_dev->dev,
1271 le32_to_cpu(np->tx_ring[entry].frag[0].addr),
1272 skb->len, DMA_TO_DEVICE);
1273 dev_consume_skb_irq(np->tx_skbuff[entry]);
1274 np->tx_skbuff[entry] = NULL;
1275 np->tx_ring[entry].frag[0].addr = 0;
1276 np->tx_ring[entry].frag[0].length = 0;
1277 }
1278 spin_unlock(&np->lock);
1279 } else {
1280 spin_lock(&np->lock);
1281 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1282 int entry = np->dirty_tx % TX_RING_SIZE;
1283 struct sk_buff *skb;
1284 if (!(le32_to_cpu(np->tx_ring[entry].status)
1285 & 0x00010000))
1286 break;
1287 skb = np->tx_skbuff[entry];
1288 /* Free the original skb. */
1289 dma_unmap_single(&np->pci_dev->dev,
1290 le32_to_cpu(np->tx_ring[entry].frag[0].addr),
1291 skb->len, DMA_TO_DEVICE);
1292 dev_consume_skb_irq(np->tx_skbuff[entry]);
1293 np->tx_skbuff[entry] = NULL;
1294 np->tx_ring[entry].frag[0].addr = 0;
1295 np->tx_ring[entry].frag[0].length = 0;
1296 }
1297 spin_unlock(&np->lock);
1298 }
1299
1300 if (netif_queue_stopped(dev) &&
1301 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
1302 /* The ring is no longer full, clear busy flag. */
1303 netif_wake_queue (dev);
1304 }
1305 /* Abnormal error summary/uncommon events handlers. */
1306 if (intr_status & (IntrPCIErr | LinkChange | StatsMax))
1307 netdev_error(dev, intr_status);
1308 } while (0);
1309 if (netif_msg_intr(np))
1310 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1311 dev->name, ioread16(ioaddr + IntrStatus));
1312 return IRQ_RETVAL(handled);
1313}
1314
1315static void rx_poll(unsigned long data)
1316{
1317 struct net_device *dev = (struct net_device *)data;
1318 struct netdev_private *np = netdev_priv(dev);
1319 int entry = np->cur_rx % RX_RING_SIZE;
1320 int boguscnt = np->budget;
1321 void __iomem *ioaddr = np->base;
1322 int received = 0;
1323
1324 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1325 while (1) {
1326 struct netdev_desc *desc = &(np->rx_ring[entry]);
1327 u32 frame_status = le32_to_cpu(desc->status);
1328 int pkt_len;
1329
1330 if (--boguscnt < 0) {
1331 goto not_done;
1332 }
1333 if (!(frame_status & DescOwn))
1334 break;
1335 pkt_len = frame_status & 0x1fff; /* Chip omits the CRC. */
1336 if (netif_msg_rx_status(np))
1337 printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n",
1338 frame_status);
1339 if (frame_status & 0x001f4000) {
1340 /* There was a error. */
1341 if (netif_msg_rx_err(np))
1342 printk(KERN_DEBUG " netdev_rx() Rx error was %8.8x.\n",
1343 frame_status);
1344 dev->stats.rx_errors++;
1345 if (frame_status & 0x00100000)
1346 dev->stats.rx_length_errors++;
1347 if (frame_status & 0x00010000)
1348 dev->stats.rx_fifo_errors++;
1349 if (frame_status & 0x00060000)
1350 dev->stats.rx_frame_errors++;
1351 if (frame_status & 0x00080000)
1352 dev->stats.rx_crc_errors++;
1353 if (frame_status & 0x00100000) {
1354 printk(KERN_WARNING "%s: Oversized Ethernet frame,"
1355 " status %8.8x.\n",
1356 dev->name, frame_status);
1357 }
1358 } else {
1359 struct sk_buff *skb;
1360#ifndef final_version
1361 if (netif_msg_rx_status(np))
1362 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d"
1363 ", bogus_cnt %d.\n",
1364 pkt_len, boguscnt);
1365#endif
1366 /* Check if the packet is long enough to accept without copying
1367 to a minimally-sized skbuff. */
1368 if (pkt_len < rx_copybreak &&
1369 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1370 skb_reserve(skb, 2); /* 16 byte align the IP header */
1371 dma_sync_single_for_cpu(&np->pci_dev->dev,
1372 le32_to_cpu(desc->frag[0].addr),
1373 np->rx_buf_sz, DMA_FROM_DEVICE);
1374 skb_copy_to_linear_data(skb, np->rx_skbuff[entry]->data, pkt_len);
1375 dma_sync_single_for_device(&np->pci_dev->dev,
1376 le32_to_cpu(desc->frag[0].addr),
1377 np->rx_buf_sz, DMA_FROM_DEVICE);
1378 skb_put(skb, pkt_len);
1379 } else {
1380 dma_unmap_single(&np->pci_dev->dev,
1381 le32_to_cpu(desc->frag[0].addr),
1382 np->rx_buf_sz, DMA_FROM_DEVICE);
1383 skb_put(skb = np->rx_skbuff[entry], pkt_len);
1384 np->rx_skbuff[entry] = NULL;
1385 }
1386 skb->protocol = eth_type_trans(skb, dev);
1387 /* Note: checksum -> skb->ip_summed = CHECKSUM_UNNECESSARY; */
1388 netif_rx(skb);
1389 }
1390 entry = (entry + 1) % RX_RING_SIZE;
1391 received++;
1392 }
1393 np->cur_rx = entry;
1394 refill_rx (dev);
1395 np->budget -= received;
1396 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
1397 return;
1398
1399not_done:
1400 np->cur_rx = entry;
1401 refill_rx (dev);
1402 if (!received)
1403 received = 1;
1404 np->budget -= received;
1405 if (np->budget <= 0)
1406 np->budget = RX_BUDGET;
1407 tasklet_schedule(&np->rx_tasklet);
1408}
1409
1410static void refill_rx (struct net_device *dev)
1411{
1412 struct netdev_private *np = netdev_priv(dev);
1413 int entry;
1414 int cnt = 0;
1415
1416 /* Refill the Rx ring buffers. */
1417 for (;(np->cur_rx - np->dirty_rx + RX_RING_SIZE) % RX_RING_SIZE > 0;
1418 np->dirty_rx = (np->dirty_rx + 1) % RX_RING_SIZE) {
1419 struct sk_buff *skb;
1420 entry = np->dirty_rx % RX_RING_SIZE;
1421 if (np->rx_skbuff[entry] == NULL) {
1422 skb = netdev_alloc_skb(dev, np->rx_buf_sz + 2);
1423 np->rx_skbuff[entry] = skb;
1424 if (skb == NULL)
1425 break; /* Better luck next round. */
1426 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1427 np->rx_ring[entry].frag[0].addr = cpu_to_le32(
1428 dma_map_single(&np->pci_dev->dev, skb->data,
1429 np->rx_buf_sz, DMA_FROM_DEVICE));
1430 if (dma_mapping_error(&np->pci_dev->dev,
1431 np->rx_ring[entry].frag[0].addr)) {
1432 dev_kfree_skb_irq(skb);
1433 np->rx_skbuff[entry] = NULL;
1434 break;
1435 }
1436 }
1437 /* Perhaps we need not reset this field. */
1438 np->rx_ring[entry].frag[0].length =
1439 cpu_to_le32(np->rx_buf_sz | LastFrag);
1440 np->rx_ring[entry].status = 0;
1441 cnt++;
1442 }
1443}
1444static void netdev_error(struct net_device *dev, int intr_status)
1445{
1446 struct netdev_private *np = netdev_priv(dev);
1447 void __iomem *ioaddr = np->base;
1448 u16 mii_ctl, mii_advertise, mii_lpa;
1449 int speed;
1450
1451 if (intr_status & LinkChange) {
1452 if (mdio_wait_link(dev, 10) == 0) {
1453 printk(KERN_INFO "%s: Link up\n", dev->name);
1454 if (np->an_enable) {
1455 mii_advertise = mdio_read(dev, np->phys[0],
1456 MII_ADVERTISE);
1457 mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
1458 mii_advertise &= mii_lpa;
1459 printk(KERN_INFO "%s: Link changed: ",
1460 dev->name);
1461 if (mii_advertise & ADVERTISE_100FULL) {
1462 np->speed = 100;
1463 printk("100Mbps, full duplex\n");
1464 } else if (mii_advertise & ADVERTISE_100HALF) {
1465 np->speed = 100;
1466 printk("100Mbps, half duplex\n");
1467 } else if (mii_advertise & ADVERTISE_10FULL) {
1468 np->speed = 10;
1469 printk("10Mbps, full duplex\n");
1470 } else if (mii_advertise & ADVERTISE_10HALF) {
1471 np->speed = 10;
1472 printk("10Mbps, half duplex\n");
1473 } else
1474 printk("\n");
1475
1476 } else {
1477 mii_ctl = mdio_read(dev, np->phys[0], MII_BMCR);
1478 speed = (mii_ctl & BMCR_SPEED100) ? 100 : 10;
1479 np->speed = speed;
1480 printk(KERN_INFO "%s: Link changed: %dMbps ,",
1481 dev->name, speed);
1482 printk("%s duplex.\n",
1483 (mii_ctl & BMCR_FULLDPLX) ?
1484 "full" : "half");
1485 }
1486 check_duplex(dev);
1487 if (np->flowctrl && np->mii_if.full_duplex) {
1488 iowrite16(ioread16(ioaddr + MulticastFilter1+2) | 0x0200,
1489 ioaddr + MulticastFilter1+2);
1490 iowrite16(ioread16(ioaddr + MACCtrl0) | EnbFlowCtrl,
1491 ioaddr + MACCtrl0);
1492 }
1493 netif_carrier_on(dev);
1494 } else {
1495 printk(KERN_INFO "%s: Link down\n", dev->name);
1496 netif_carrier_off(dev);
1497 }
1498 }
1499 if (intr_status & StatsMax) {
1500 get_stats(dev);
1501 }
1502 if (intr_status & IntrPCIErr) {
1503 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1504 dev->name, intr_status);
1505 /* We must do a global reset of DMA to continue. */
1506 }
1507}
1508
1509static struct net_device_stats *get_stats(struct net_device *dev)
1510{
1511 struct netdev_private *np = netdev_priv(dev);
1512 void __iomem *ioaddr = np->base;
1513 unsigned long flags;
1514 u8 late_coll, single_coll, mult_coll;
1515
1516 spin_lock_irqsave(&np->statlock, flags);
1517 /* The chip only need report frame silently dropped. */
1518 dev->stats.rx_missed_errors += ioread8(ioaddr + RxMissed);
1519 dev->stats.tx_packets += ioread16(ioaddr + TxFramesOK);
1520 dev->stats.rx_packets += ioread16(ioaddr + RxFramesOK);
1521 dev->stats.tx_carrier_errors += ioread8(ioaddr + StatsCarrierError);
1522
1523 mult_coll = ioread8(ioaddr + StatsMultiColl);
1524 np->xstats.tx_multiple_collisions += mult_coll;
1525 single_coll = ioread8(ioaddr + StatsOneColl);
1526 np->xstats.tx_single_collisions += single_coll;
1527 late_coll = ioread8(ioaddr + StatsLateColl);
1528 np->xstats.tx_late_collisions += late_coll;
1529 dev->stats.collisions += mult_coll
1530 + single_coll
1531 + late_coll;
1532
1533 np->xstats.tx_deferred += ioread8(ioaddr + StatsTxDefer);
1534 np->xstats.tx_deferred_excessive += ioread8(ioaddr + StatsTxXSDefer);
1535 np->xstats.tx_aborted += ioread8(ioaddr + StatsTxAbort);
1536 np->xstats.tx_bcasts += ioread8(ioaddr + StatsBcastTx);
1537 np->xstats.rx_bcasts += ioread8(ioaddr + StatsBcastRx);
1538 np->xstats.tx_mcasts += ioread8(ioaddr + StatsMcastTx);
1539 np->xstats.rx_mcasts += ioread8(ioaddr + StatsMcastRx);
1540
1541 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsLow);
1542 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsHigh) << 16;
1543 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsLow);
1544 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsHigh) << 16;
1545
1546 spin_unlock_irqrestore(&np->statlock, flags);
1547
1548 return &dev->stats;
1549}
1550
1551static void set_rx_mode(struct net_device *dev)
1552{
1553 struct netdev_private *np = netdev_priv(dev);
1554 void __iomem *ioaddr = np->base;
1555 u16 mc_filter[4]; /* Multicast hash filter */
1556 u32 rx_mode;
1557 int i;
1558
1559 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1560 memset(mc_filter, 0xff, sizeof(mc_filter));
1561 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptAll | AcceptMyPhys;
1562 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1563 (dev->flags & IFF_ALLMULTI)) {
1564 /* Too many to match, or accept all multicasts. */
1565 memset(mc_filter, 0xff, sizeof(mc_filter));
1566 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1567 } else if (!netdev_mc_empty(dev)) {
1568 struct netdev_hw_addr *ha;
1569 int bit;
1570 int index;
1571 int crc;
1572 memset (mc_filter, 0, sizeof (mc_filter));
1573 netdev_for_each_mc_addr(ha, dev) {
1574 crc = ether_crc_le(ETH_ALEN, ha->addr);
1575 for (index=0, bit=0; bit < 6; bit++, crc <<= 1)
1576 if (crc & 0x80000000) index |= 1 << bit;
1577 mc_filter[index/16] |= (1 << (index % 16));
1578 }
1579 rx_mode = AcceptBroadcast | AcceptMultiHash | AcceptMyPhys;
1580 } else {
1581 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
1582 return;
1583 }
1584 if (np->mii_if.full_duplex && np->flowctrl)
1585 mc_filter[3] |= 0x0200;
1586
1587 for (i = 0; i < 4; i++)
1588 iowrite16(mc_filter[i], ioaddr + MulticastFilter0 + i*2);
1589 iowrite8(rx_mode, ioaddr + RxMode);
1590}
1591
1592static int __set_mac_addr(struct net_device *dev)
1593{
1594 struct netdev_private *np = netdev_priv(dev);
1595 u16 addr16;
1596
1597 addr16 = (dev->dev_addr[0] | (dev->dev_addr[1] << 8));
1598 iowrite16(addr16, np->base + StationAddr);
1599 addr16 = (dev->dev_addr[2] | (dev->dev_addr[3] << 8));
1600 iowrite16(addr16, np->base + StationAddr+2);
1601 addr16 = (dev->dev_addr[4] | (dev->dev_addr[5] << 8));
1602 iowrite16(addr16, np->base + StationAddr+4);
1603 return 0;
1604}
1605
1606/* Invoked with rtnl_lock held */
1607static int sundance_set_mac_addr(struct net_device *dev, void *data)
1608{
1609 const struct sockaddr *addr = data;
1610
1611 if (!is_valid_ether_addr(addr->sa_data))
1612 return -EADDRNOTAVAIL;
1613 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
1614 __set_mac_addr(dev);
1615
1616 return 0;
1617}
1618
1619static const struct {
1620 const char name[ETH_GSTRING_LEN];
1621} sundance_stats[] = {
1622 { "tx_multiple_collisions" },
1623 { "tx_single_collisions" },
1624 { "tx_late_collisions" },
1625 { "tx_deferred" },
1626 { "tx_deferred_excessive" },
1627 { "tx_aborted" },
1628 { "tx_bcasts" },
1629 { "rx_bcasts" },
1630 { "tx_mcasts" },
1631 { "rx_mcasts" },
1632};
1633
1634static int check_if_running(struct net_device *dev)
1635{
1636 if (!netif_running(dev))
1637 return -EINVAL;
1638 return 0;
1639}
1640
1641static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1642{
1643 struct netdev_private *np = netdev_priv(dev);
1644 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1645 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1646}
1647
1648static int get_link_ksettings(struct net_device *dev,
1649 struct ethtool_link_ksettings *cmd)
1650{
1651 struct netdev_private *np = netdev_priv(dev);
1652 spin_lock_irq(&np->lock);
1653 mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1654 spin_unlock_irq(&np->lock);
1655 return 0;
1656}
1657
1658static int set_link_ksettings(struct net_device *dev,
1659 const struct ethtool_link_ksettings *cmd)
1660{
1661 struct netdev_private *np = netdev_priv(dev);
1662 int res;
1663 spin_lock_irq(&np->lock);
1664 res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1665 spin_unlock_irq(&np->lock);
1666 return res;
1667}
1668
1669static int nway_reset(struct net_device *dev)
1670{
1671 struct netdev_private *np = netdev_priv(dev);
1672 return mii_nway_restart(&np->mii_if);
1673}
1674
1675static u32 get_link(struct net_device *dev)
1676{
1677 struct netdev_private *np = netdev_priv(dev);
1678 return mii_link_ok(&np->mii_if);
1679}
1680
1681static u32 get_msglevel(struct net_device *dev)
1682{
1683 struct netdev_private *np = netdev_priv(dev);
1684 return np->msg_enable;
1685}
1686
1687static void set_msglevel(struct net_device *dev, u32 val)
1688{
1689 struct netdev_private *np = netdev_priv(dev);
1690 np->msg_enable = val;
1691}
1692
1693static void get_strings(struct net_device *dev, u32 stringset,
1694 u8 *data)
1695{
1696 if (stringset == ETH_SS_STATS)
1697 memcpy(data, sundance_stats, sizeof(sundance_stats));
1698}
1699
1700static int get_sset_count(struct net_device *dev, int sset)
1701{
1702 switch (sset) {
1703 case ETH_SS_STATS:
1704 return ARRAY_SIZE(sundance_stats);
1705 default:
1706 return -EOPNOTSUPP;
1707 }
1708}
1709
1710static void get_ethtool_stats(struct net_device *dev,
1711 struct ethtool_stats *stats, u64 *data)
1712{
1713 struct netdev_private *np = netdev_priv(dev);
1714 int i = 0;
1715
1716 get_stats(dev);
1717 data[i++] = np->xstats.tx_multiple_collisions;
1718 data[i++] = np->xstats.tx_single_collisions;
1719 data[i++] = np->xstats.tx_late_collisions;
1720 data[i++] = np->xstats.tx_deferred;
1721 data[i++] = np->xstats.tx_deferred_excessive;
1722 data[i++] = np->xstats.tx_aborted;
1723 data[i++] = np->xstats.tx_bcasts;
1724 data[i++] = np->xstats.rx_bcasts;
1725 data[i++] = np->xstats.tx_mcasts;
1726 data[i++] = np->xstats.rx_mcasts;
1727}
1728
1729#ifdef CONFIG_PM
1730
1731static void sundance_get_wol(struct net_device *dev,
1732 struct ethtool_wolinfo *wol)
1733{
1734 struct netdev_private *np = netdev_priv(dev);
1735 void __iomem *ioaddr = np->base;
1736 u8 wol_bits;
1737
1738 wol->wolopts = 0;
1739
1740 wol->supported = (WAKE_PHY | WAKE_MAGIC);
1741 if (!np->wol_enabled)
1742 return;
1743
1744 wol_bits = ioread8(ioaddr + WakeEvent);
1745 if (wol_bits & MagicPktEnable)
1746 wol->wolopts |= WAKE_MAGIC;
1747 if (wol_bits & LinkEventEnable)
1748 wol->wolopts |= WAKE_PHY;
1749}
1750
1751static int sundance_set_wol(struct net_device *dev,
1752 struct ethtool_wolinfo *wol)
1753{
1754 struct netdev_private *np = netdev_priv(dev);
1755 void __iomem *ioaddr = np->base;
1756 u8 wol_bits;
1757
1758 if (!device_can_wakeup(&np->pci_dev->dev))
1759 return -EOPNOTSUPP;
1760
1761 np->wol_enabled = !!(wol->wolopts);
1762 wol_bits = ioread8(ioaddr + WakeEvent);
1763 wol_bits &= ~(WakePktEnable | MagicPktEnable |
1764 LinkEventEnable | WolEnable);
1765
1766 if (np->wol_enabled) {
1767 if (wol->wolopts & WAKE_MAGIC)
1768 wol_bits |= (MagicPktEnable | WolEnable);
1769 if (wol->wolopts & WAKE_PHY)
1770 wol_bits |= (LinkEventEnable | WolEnable);
1771 }
1772 iowrite8(wol_bits, ioaddr + WakeEvent);
1773
1774 device_set_wakeup_enable(&np->pci_dev->dev, np->wol_enabled);
1775
1776 return 0;
1777}
1778#else
1779#define sundance_get_wol NULL
1780#define sundance_set_wol NULL
1781#endif /* CONFIG_PM */
1782
1783static const struct ethtool_ops ethtool_ops = {
1784 .begin = check_if_running,
1785 .get_drvinfo = get_drvinfo,
1786 .nway_reset = nway_reset,
1787 .get_link = get_link,
1788 .get_wol = sundance_get_wol,
1789 .set_wol = sundance_set_wol,
1790 .get_msglevel = get_msglevel,
1791 .set_msglevel = set_msglevel,
1792 .get_strings = get_strings,
1793 .get_sset_count = get_sset_count,
1794 .get_ethtool_stats = get_ethtool_stats,
1795 .get_link_ksettings = get_link_ksettings,
1796 .set_link_ksettings = set_link_ksettings,
1797};
1798
1799static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1800{
1801 struct netdev_private *np = netdev_priv(dev);
1802 int rc;
1803
1804 if (!netif_running(dev))
1805 return -EINVAL;
1806
1807 spin_lock_irq(&np->lock);
1808 rc = generic_mii_ioctl(&np->mii_if, if_mii(rq), cmd, NULL);
1809 spin_unlock_irq(&np->lock);
1810
1811 return rc;
1812}
1813
1814static int netdev_close(struct net_device *dev)
1815{
1816 struct netdev_private *np = netdev_priv(dev);
1817 void __iomem *ioaddr = np->base;
1818 struct sk_buff *skb;
1819 int i;
1820
1821 /* Wait and kill tasklet */
1822 tasklet_kill(&np->rx_tasklet);
1823 tasklet_kill(&np->tx_tasklet);
1824 np->cur_tx = 0;
1825 np->dirty_tx = 0;
1826 np->cur_task = 0;
1827 np->last_tx = NULL;
1828
1829 netif_stop_queue(dev);
1830
1831 if (netif_msg_ifdown(np)) {
1832 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %2.2x "
1833 "Rx %4.4x Int %2.2x.\n",
1834 dev->name, ioread8(ioaddr + TxStatus),
1835 ioread32(ioaddr + RxStatus), ioread16(ioaddr + IntrStatus));
1836 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1837 dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx);
1838 }
1839
1840 /* Disable interrupts by clearing the interrupt mask. */
1841 iowrite16(0x0000, ioaddr + IntrEnable);
1842
1843 /* Disable Rx and Tx DMA for safely release resource */
1844 iowrite32(0x500, ioaddr + DMACtrl);
1845
1846 /* Stop the chip's Tx and Rx processes. */
1847 iowrite16(TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl1);
1848
1849 for (i = 2000; i > 0; i--) {
1850 if ((ioread32(ioaddr + DMACtrl) & 0xc000) == 0)
1851 break;
1852 mdelay(1);
1853 }
1854
1855 iowrite16(GlobalReset | DMAReset | FIFOReset | NetworkReset,
1856 ioaddr + ASIC_HI_WORD(ASICCtrl));
1857
1858 for (i = 2000; i > 0; i--) {
1859 if ((ioread16(ioaddr + ASIC_HI_WORD(ASICCtrl)) & ResetBusy) == 0)
1860 break;
1861 mdelay(1);
1862 }
1863
1864#ifdef __i386__
1865 if (netif_msg_hw(np)) {
1866 printk(KERN_DEBUG " Tx ring at %8.8x:\n",
1867 (int)(np->tx_ring_dma));
1868 for (i = 0; i < TX_RING_SIZE; i++)
1869 printk(KERN_DEBUG " #%d desc. %4.4x %8.8x %8.8x.\n",
1870 i, np->tx_ring[i].status, np->tx_ring[i].frag[0].addr,
1871 np->tx_ring[i].frag[0].length);
1872 printk(KERN_DEBUG " Rx ring %8.8x:\n",
1873 (int)(np->rx_ring_dma));
1874 for (i = 0; i < /*RX_RING_SIZE*/4 ; i++) {
1875 printk(KERN_DEBUG " #%d desc. %4.4x %4.4x %8.8x\n",
1876 i, np->rx_ring[i].status, np->rx_ring[i].frag[0].addr,
1877 np->rx_ring[i].frag[0].length);
1878 }
1879 }
1880#endif /* __i386__ debugging only */
1881
1882 free_irq(np->pci_dev->irq, dev);
1883
1884 del_timer_sync(&np->timer);
1885
1886 /* Free all the skbuffs in the Rx queue. */
1887 for (i = 0; i < RX_RING_SIZE; i++) {
1888 np->rx_ring[i].status = 0;
1889 skb = np->rx_skbuff[i];
1890 if (skb) {
1891 dma_unmap_single(&np->pci_dev->dev,
1892 le32_to_cpu(np->rx_ring[i].frag[0].addr),
1893 np->rx_buf_sz, DMA_FROM_DEVICE);
1894 dev_kfree_skb(skb);
1895 np->rx_skbuff[i] = NULL;
1896 }
1897 np->rx_ring[i].frag[0].addr = cpu_to_le32(0xBADF00D0); /* poison */
1898 }
1899 for (i = 0; i < TX_RING_SIZE; i++) {
1900 np->tx_ring[i].next_desc = 0;
1901 skb = np->tx_skbuff[i];
1902 if (skb) {
1903 dma_unmap_single(&np->pci_dev->dev,
1904 le32_to_cpu(np->tx_ring[i].frag[0].addr),
1905 skb->len, DMA_TO_DEVICE);
1906 dev_kfree_skb(skb);
1907 np->tx_skbuff[i] = NULL;
1908 }
1909 }
1910
1911 return 0;
1912}
1913
1914static void sundance_remove1(struct pci_dev *pdev)
1915{
1916 struct net_device *dev = pci_get_drvdata(pdev);
1917
1918 if (dev) {
1919 struct netdev_private *np = netdev_priv(dev);
1920 unregister_netdev(dev);
1921 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE,
1922 np->rx_ring, np->rx_ring_dma);
1923 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE,
1924 np->tx_ring, np->tx_ring_dma);
1925 pci_iounmap(pdev, np->base);
1926 pci_release_regions(pdev);
1927 free_netdev(dev);
1928 }
1929}
1930
1931static int __maybe_unused sundance_suspend(struct device *dev_d)
1932{
1933 struct net_device *dev = dev_get_drvdata(dev_d);
1934 struct netdev_private *np = netdev_priv(dev);
1935 void __iomem *ioaddr = np->base;
1936
1937 if (!netif_running(dev))
1938 return 0;
1939
1940 netdev_close(dev);
1941 netif_device_detach(dev);
1942
1943 if (np->wol_enabled) {
1944 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
1945 iowrite16(RxEnable, ioaddr + MACCtrl1);
1946 }
1947
1948 device_set_wakeup_enable(dev_d, np->wol_enabled);
1949
1950 return 0;
1951}
1952
1953static int __maybe_unused sundance_resume(struct device *dev_d)
1954{
1955 struct net_device *dev = dev_get_drvdata(dev_d);
1956 int err = 0;
1957
1958 if (!netif_running(dev))
1959 return 0;
1960
1961 err = netdev_open(dev);
1962 if (err) {
1963 printk(KERN_ERR "%s: Can't resume interface!\n",
1964 dev->name);
1965 goto out;
1966 }
1967
1968 netif_device_attach(dev);
1969
1970out:
1971 return err;
1972}
1973
1974static SIMPLE_DEV_PM_OPS(sundance_pm_ops, sundance_suspend, sundance_resume);
1975
1976static struct pci_driver sundance_driver = {
1977 .name = DRV_NAME,
1978 .id_table = sundance_pci_tbl,
1979 .probe = sundance_probe1,
1980 .remove = sundance_remove1,
1981 .driver.pm = &sundance_pm_ops,
1982};
1983
1984static int __init sundance_init(void)
1985{
1986 return pci_register_driver(&sundance_driver);
1987}
1988
1989static void __exit sundance_exit(void)
1990{
1991 pci_unregister_driver(&sundance_driver);
1992}
1993
1994module_init(sundance_init);
1995module_exit(sundance_exit);
1996
1997