Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* CAN bus driver for Microchip 251x/25625 CAN Controller with SPI Interface
   3 *
   4 * MCP2510 support and bug fixes by Christian Pellegrin
   5 * <chripell@evolware.org>
   6 *
   7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
   8 *
   9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
  10 * Written under contract by:
  11 *   Chris Elston, Katalix Systems, Ltd.
  12 *
  13 * Based on Microchip MCP251x CAN controller driver written by
  14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
  15 *
  16 * Based on CAN bus driver for the CCAN controller written by
  17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
  18 * - Simon Kallweit, intefo AG
  19 * Copyright 2007
  20 */
  21
  22#include <linux/bitfield.h>
  23#include <linux/can/core.h>
  24#include <linux/can/dev.h>
 
  25#include <linux/clk.h>
  26#include <linux/completion.h>
  27#include <linux/delay.h>
  28#include <linux/device.h>
  29#include <linux/ethtool.h>
  30#include <linux/freezer.h>
  31#include <linux/gpio.h>
  32#include <linux/gpio/driver.h>
  33#include <linux/interrupt.h>
  34#include <linux/io.h>
  35#include <linux/iopoll.h>
  36#include <linux/kernel.h>
  37#include <linux/module.h>
  38#include <linux/netdevice.h>
  39#include <linux/platform_device.h>
  40#include <linux/property.h>
  41#include <linux/regulator/consumer.h>
  42#include <linux/slab.h>
  43#include <linux/spi/spi.h>
  44#include <linux/uaccess.h>
 
  45
  46/* SPI interface instruction set */
  47#define INSTRUCTION_WRITE	0x02
  48#define INSTRUCTION_READ	0x03
  49#define INSTRUCTION_BIT_MODIFY	0x05
  50#define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
  51#define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
  52#define INSTRUCTION_RESET	0xC0
  53#define RTS_TXB0		0x01
  54#define RTS_TXB1		0x02
  55#define RTS_TXB2		0x04
  56#define INSTRUCTION_RTS(n)	(0x80 | ((n) & 0x07))
  57
  58/* MPC251x registers */
  59#define BFPCTRL			0x0c
  60#  define BFPCTRL_B0BFM		BIT(0)
  61#  define BFPCTRL_B1BFM		BIT(1)
  62#  define BFPCTRL_BFM(n)	(BFPCTRL_B0BFM << (n))
  63#  define BFPCTRL_BFM_MASK	GENMASK(1, 0)
  64#  define BFPCTRL_B0BFE		BIT(2)
  65#  define BFPCTRL_B1BFE		BIT(3)
  66#  define BFPCTRL_BFE(n)	(BFPCTRL_B0BFE << (n))
  67#  define BFPCTRL_BFE_MASK	GENMASK(3, 2)
  68#  define BFPCTRL_B0BFS		BIT(4)
  69#  define BFPCTRL_B1BFS		BIT(5)
  70#  define BFPCTRL_BFS(n)	(BFPCTRL_B0BFS << (n))
  71#  define BFPCTRL_BFS_MASK	GENMASK(5, 4)
  72#define TXRTSCTRL		0x0d
  73#  define TXRTSCTRL_B0RTSM	BIT(0)
  74#  define TXRTSCTRL_B1RTSM	BIT(1)
  75#  define TXRTSCTRL_B2RTSM	BIT(2)
  76#  define TXRTSCTRL_RTSM(n)	(TXRTSCTRL_B0RTSM << (n))
  77#  define TXRTSCTRL_RTSM_MASK	GENMASK(2, 0)
  78#  define TXRTSCTRL_B0RTS	BIT(3)
  79#  define TXRTSCTRL_B1RTS	BIT(4)
  80#  define TXRTSCTRL_B2RTS	BIT(5)
  81#  define TXRTSCTRL_RTS(n)	(TXRTSCTRL_B0RTS << (n))
  82#  define TXRTSCTRL_RTS_MASK	GENMASK(5, 3)
  83#define CANSTAT	      0x0e
  84#define CANCTRL	      0x0f
  85#  define CANCTRL_REQOP_MASK	    0xe0
  86#  define CANCTRL_REQOP_CONF	    0x80
  87#  define CANCTRL_REQOP_LISTEN_ONLY 0x60
  88#  define CANCTRL_REQOP_LOOPBACK    0x40
  89#  define CANCTRL_REQOP_SLEEP	    0x20
  90#  define CANCTRL_REQOP_NORMAL	    0x00
  91#  define CANCTRL_OSM		    0x08
  92#  define CANCTRL_ABAT		    0x10
  93#define TEC	      0x1c
  94#define REC	      0x1d
  95#define CNF1	      0x2a
  96#  define CNF1_SJW_SHIFT   6
  97#define CNF2	      0x29
  98#  define CNF2_BTLMODE	   0x80
  99#  define CNF2_SAM         0x40
 100#  define CNF2_PS1_SHIFT   3
 101#define CNF3	      0x28
 102#  define CNF3_SOF	   0x08
 103#  define CNF3_WAKFIL	   0x04
 104#  define CNF3_PHSEG2_MASK 0x07
 105#define CANINTE	      0x2b
 106#  define CANINTE_MERRE 0x80
 107#  define CANINTE_WAKIE 0x40
 108#  define CANINTE_ERRIE 0x20
 109#  define CANINTE_TX2IE 0x10
 110#  define CANINTE_TX1IE 0x08
 111#  define CANINTE_TX0IE 0x04
 112#  define CANINTE_RX1IE 0x02
 113#  define CANINTE_RX0IE 0x01
 114#define CANINTF	      0x2c
 115#  define CANINTF_MERRF 0x80
 116#  define CANINTF_WAKIF 0x40
 117#  define CANINTF_ERRIF 0x20
 118#  define CANINTF_TX2IF 0x10
 119#  define CANINTF_TX1IF 0x08
 120#  define CANINTF_TX0IF 0x04
 121#  define CANINTF_RX1IF 0x02
 122#  define CANINTF_RX0IF 0x01
 123#  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
 124#  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
 125#  define CANINTF_ERR (CANINTF_ERRIF)
 126#define EFLG	      0x2d
 127#  define EFLG_EWARN	0x01
 128#  define EFLG_RXWAR	0x02
 129#  define EFLG_TXWAR	0x04
 130#  define EFLG_RXEP	0x08
 131#  define EFLG_TXEP	0x10
 132#  define EFLG_TXBO	0x20
 133#  define EFLG_RX0OVR	0x40
 134#  define EFLG_RX1OVR	0x80
 135#define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
 136#  define TXBCTRL_ABTF	0x40
 137#  define TXBCTRL_MLOA	0x20
 138#  define TXBCTRL_TXERR 0x10
 139#  define TXBCTRL_TXREQ 0x08
 140#define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
 141#  define SIDH_SHIFT    3
 142#define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
 143#  define SIDL_SID_MASK    7
 144#  define SIDL_SID_SHIFT   5
 145#  define SIDL_EXIDE_SHIFT 3
 146#  define SIDL_EID_SHIFT   16
 147#  define SIDL_EID_MASK    3
 148#define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
 149#define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
 150#define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
 151#  define DLC_RTR_SHIFT    6
 152#define TXBCTRL_OFF 0
 153#define TXBSIDH_OFF 1
 154#define TXBSIDL_OFF 2
 155#define TXBEID8_OFF 3
 156#define TXBEID0_OFF 4
 157#define TXBDLC_OFF  5
 158#define TXBDAT_OFF  6
 159#define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
 160#  define RXBCTRL_BUKT	0x04
 161#  define RXBCTRL_RXM0	0x20
 162#  define RXBCTRL_RXM1	0x40
 163#define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
 164#  define RXBSIDH_SHIFT 3
 165#define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
 166#  define RXBSIDL_IDE   0x08
 167#  define RXBSIDL_SRR   0x10
 168#  define RXBSIDL_EID   3
 169#  define RXBSIDL_SHIFT 5
 170#define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
 171#define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
 172#define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
 173#  define RXBDLC_LEN_MASK  0x0f
 174#  define RXBDLC_RTR       0x40
 175#define RXBCTRL_OFF 0
 176#define RXBSIDH_OFF 1
 177#define RXBSIDL_OFF 2
 178#define RXBEID8_OFF 3
 179#define RXBEID0_OFF 4
 180#define RXBDLC_OFF  5
 181#define RXBDAT_OFF  6
 182#define RXFSID(n) ((n < 3) ? 0 : 4)
 183#define RXFSIDH(n) ((n) * 4 + RXFSID(n))
 184#define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
 185#define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
 186#define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
 187#define RXMSIDH(n) ((n) * 4 + 0x20)
 188#define RXMSIDL(n) ((n) * 4 + 0x21)
 189#define RXMEID8(n) ((n) * 4 + 0x22)
 190#define RXMEID0(n) ((n) * 4 + 0x23)
 191
 192#define GET_BYTE(val, byte)			\
 193	(((val) >> ((byte) * 8)) & 0xff)
 194#define SET_BYTE(val, byte)			\
 195	(((val) & 0xff) << ((byte) * 8))
 196
 197/* Buffer size required for the largest SPI transfer (i.e., reading a
 198 * frame)
 199 */
 200#define CAN_FRAME_MAX_DATA_LEN	8
 201#define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
 202#define CAN_FRAME_MAX_BITS	128
 203
 204#define TX_ECHO_SKB_MAX	1
 205
 206#define MCP251X_OST_DELAY_MS	(5)
 207
 208#define DEVICE_NAME "mcp251x"
 209
 210static const struct can_bittiming_const mcp251x_bittiming_const = {
 211	.name = DEVICE_NAME,
 212	.tseg1_min = 3,
 213	.tseg1_max = 16,
 214	.tseg2_min = 2,
 215	.tseg2_max = 8,
 216	.sjw_max = 4,
 217	.brp_min = 1,
 218	.brp_max = 64,
 219	.brp_inc = 1,
 220};
 221
 222enum mcp251x_model {
 223	CAN_MCP251X_MCP2510	= 0x2510,
 224	CAN_MCP251X_MCP2515	= 0x2515,
 225	CAN_MCP251X_MCP25625	= 0x25625,
 226};
 227
 228struct mcp251x_priv {
 229	struct can_priv	   can;
 230	struct net_device *net;
 231	struct spi_device *spi;
 232	enum mcp251x_model model;
 233
 234	struct mutex mcp_lock; /* SPI device lock */
 235
 236	u8 *spi_tx_buf;
 237	u8 *spi_rx_buf;
 238
 239	struct sk_buff *tx_skb;
 
 240
 241	struct workqueue_struct *wq;
 242	struct work_struct tx_work;
 243	struct work_struct restart_work;
 244
 245	int force_quit;
 246	int after_suspend;
 247#define AFTER_SUSPEND_UP 1
 248#define AFTER_SUSPEND_DOWN 2
 249#define AFTER_SUSPEND_POWER 4
 250#define AFTER_SUSPEND_RESTART 8
 251	int restart_tx;
 252	bool tx_busy;
 253
 254	struct regulator *power;
 255	struct regulator *transceiver;
 256	struct clk *clk;
 257#ifdef CONFIG_GPIOLIB
 258	struct gpio_chip gpio;
 259	u8 reg_bfpctrl;
 260#endif
 261};
 262
 263#define MCP251X_IS(_model) \
 264static inline int mcp251x_is_##_model(struct spi_device *spi) \
 265{ \
 266	struct mcp251x_priv *priv = spi_get_drvdata(spi); \
 267	return priv->model == CAN_MCP251X_MCP##_model; \
 268}
 269
 270MCP251X_IS(2510);
 271
 272static void mcp251x_clean(struct net_device *net)
 273{
 274	struct mcp251x_priv *priv = netdev_priv(net);
 275
 276	if (priv->tx_skb || priv->tx_busy)
 277		net->stats.tx_errors++;
 278	dev_kfree_skb(priv->tx_skb);
 279	if (priv->tx_busy)
 280		can_free_echo_skb(priv->net, 0, NULL);
 281	priv->tx_skb = NULL;
 282	priv->tx_busy = false;
 283}
 284
 285/* Note about handling of error return of mcp251x_spi_trans: accessing
 286 * registers via SPI is not really different conceptually than using
 287 * normal I/O assembler instructions, although it's much more
 288 * complicated from a practical POV. So it's not advisable to always
 289 * check the return value of this function. Imagine that every
 290 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
 291 * error();", it would be a great mess (well there are some situation
 292 * when exception handling C++ like could be useful after all). So we
 293 * just check that transfers are OK at the beginning of our
 294 * conversation with the chip and to avoid doing really nasty things
 295 * (like injecting bogus packets in the network stack).
 296 */
 297static int mcp251x_spi_trans(struct spi_device *spi, int len)
 298{
 299	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 300	struct spi_transfer t = {
 301		.tx_buf = priv->spi_tx_buf,
 302		.rx_buf = priv->spi_rx_buf,
 303		.len = len,
 304		.cs_change = 0,
 305	};
 306	struct spi_message m;
 307	int ret;
 308
 309	spi_message_init(&m);
 310	spi_message_add_tail(&t, &m);
 311
 312	ret = spi_sync(spi, &m);
 313	if (ret)
 314		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
 315	return ret;
 316}
 317
 318static int mcp251x_spi_write(struct spi_device *spi, int len)
 319{
 320	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 321	int ret;
 322
 323	ret = spi_write(spi, priv->spi_tx_buf, len);
 324	if (ret)
 325		dev_err(&spi->dev, "spi write failed: ret = %d\n", ret);
 326
 327	return ret;
 328}
 329
 330static u8 mcp251x_read_reg(struct spi_device *spi, u8 reg)
 331{
 332	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 333	u8 val = 0;
 334
 335	priv->spi_tx_buf[0] = INSTRUCTION_READ;
 336	priv->spi_tx_buf[1] = reg;
 337
 338	if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
 339		spi_write_then_read(spi, priv->spi_tx_buf, 2, &val, 1);
 340	} else {
 341		mcp251x_spi_trans(spi, 3);
 342		val = priv->spi_rx_buf[2];
 343	}
 344
 345	return val;
 346}
 347
 348static void mcp251x_read_2regs(struct spi_device *spi, u8 reg, u8 *v1, u8 *v2)
 349{
 350	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 351
 352	priv->spi_tx_buf[0] = INSTRUCTION_READ;
 353	priv->spi_tx_buf[1] = reg;
 354
 355	if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
 356		u8 val[2] = { 0 };
 357
 358		spi_write_then_read(spi, priv->spi_tx_buf, 2, val, 2);
 359		*v1 = val[0];
 360		*v2 = val[1];
 361	} else {
 362		mcp251x_spi_trans(spi, 4);
 363
 364		*v1 = priv->spi_rx_buf[2];
 365		*v2 = priv->spi_rx_buf[3];
 366	}
 367}
 368
 369static void mcp251x_write_reg(struct spi_device *spi, u8 reg, u8 val)
 370{
 371	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 372
 373	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
 374	priv->spi_tx_buf[1] = reg;
 375	priv->spi_tx_buf[2] = val;
 376
 377	mcp251x_spi_write(spi, 3);
 378}
 379
 380static void mcp251x_write_2regs(struct spi_device *spi, u8 reg, u8 v1, u8 v2)
 381{
 382	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 383
 384	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
 385	priv->spi_tx_buf[1] = reg;
 386	priv->spi_tx_buf[2] = v1;
 387	priv->spi_tx_buf[3] = v2;
 388
 389	mcp251x_spi_write(spi, 4);
 390}
 391
 392static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
 393			       u8 mask, u8 val)
 394{
 395	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 396
 397	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
 398	priv->spi_tx_buf[1] = reg;
 399	priv->spi_tx_buf[2] = mask;
 400	priv->spi_tx_buf[3] = val;
 401
 402	mcp251x_spi_write(spi, 4);
 403}
 404
 405static u8 mcp251x_read_stat(struct spi_device *spi)
 406{
 407	return mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK;
 408}
 409
 410#define mcp251x_read_stat_poll_timeout(addr, val, cond, delay_us, timeout_us) \
 411	readx_poll_timeout(mcp251x_read_stat, addr, val, cond, \
 412			   delay_us, timeout_us)
 413
 414#ifdef CONFIG_GPIOLIB
 415enum {
 416	MCP251X_GPIO_TX0RTS = 0,		/* inputs */
 417	MCP251X_GPIO_TX1RTS,
 418	MCP251X_GPIO_TX2RTS,
 419	MCP251X_GPIO_RX0BF,			/* outputs */
 420	MCP251X_GPIO_RX1BF,
 421};
 422
 423#define MCP251X_GPIO_INPUT_MASK \
 424	GENMASK(MCP251X_GPIO_TX2RTS, MCP251X_GPIO_TX0RTS)
 425#define MCP251X_GPIO_OUTPUT_MASK \
 426	GENMASK(MCP251X_GPIO_RX1BF, MCP251X_GPIO_RX0BF)
 427
 428static const char * const mcp251x_gpio_names[] = {
 429	[MCP251X_GPIO_TX0RTS] = "TX0RTS",	/* inputs */
 430	[MCP251X_GPIO_TX1RTS] = "TX1RTS",
 431	[MCP251X_GPIO_TX2RTS] = "TX2RTS",
 432	[MCP251X_GPIO_RX0BF] = "RX0BF",		/* outputs */
 433	[MCP251X_GPIO_RX1BF] = "RX1BF",
 434};
 435
 436static inline bool mcp251x_gpio_is_input(unsigned int offset)
 437{
 438	return offset <= MCP251X_GPIO_TX2RTS;
 439}
 440
 441static int mcp251x_gpio_request(struct gpio_chip *chip,
 442				unsigned int offset)
 443{
 444	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 445	u8 val;
 446
 447	/* nothing to be done for inputs */
 448	if (mcp251x_gpio_is_input(offset))
 449		return 0;
 450
 451	val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
 452
 453	mutex_lock(&priv->mcp_lock);
 454	mcp251x_write_bits(priv->spi, BFPCTRL, val, val);
 455	mutex_unlock(&priv->mcp_lock);
 456
 457	priv->reg_bfpctrl |= val;
 458
 459	return 0;
 460}
 461
 462static void mcp251x_gpio_free(struct gpio_chip *chip,
 463			      unsigned int offset)
 464{
 465	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 466	u8 val;
 467
 468	/* nothing to be done for inputs */
 469	if (mcp251x_gpio_is_input(offset))
 470		return;
 471
 472	val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
 473
 474	mutex_lock(&priv->mcp_lock);
 475	mcp251x_write_bits(priv->spi, BFPCTRL, val, 0);
 476	mutex_unlock(&priv->mcp_lock);
 477
 478	priv->reg_bfpctrl &= ~val;
 479}
 480
 481static int mcp251x_gpio_get_direction(struct gpio_chip *chip,
 482				      unsigned int offset)
 483{
 484	if (mcp251x_gpio_is_input(offset))
 485		return GPIOF_DIR_IN;
 486
 487	return GPIOF_DIR_OUT;
 488}
 489
 490static int mcp251x_gpio_get(struct gpio_chip *chip, unsigned int offset)
 491{
 492	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 493	u8 reg, mask, val;
 494
 495	if (mcp251x_gpio_is_input(offset)) {
 496		reg = TXRTSCTRL;
 497		mask = TXRTSCTRL_RTS(offset);
 498	} else {
 499		reg = BFPCTRL;
 500		mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
 501	}
 502
 503	mutex_lock(&priv->mcp_lock);
 504	val = mcp251x_read_reg(priv->spi, reg);
 505	mutex_unlock(&priv->mcp_lock);
 506
 507	return !!(val & mask);
 508}
 509
 510static int mcp251x_gpio_get_multiple(struct gpio_chip *chip,
 511				     unsigned long *maskp, unsigned long *bitsp)
 512{
 513	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 514	unsigned long bits = 0;
 515	u8 val;
 516
 517	mutex_lock(&priv->mcp_lock);
 518	if (maskp[0] & MCP251X_GPIO_INPUT_MASK) {
 519		val = mcp251x_read_reg(priv->spi, TXRTSCTRL);
 520		val = FIELD_GET(TXRTSCTRL_RTS_MASK, val);
 521		bits |= FIELD_PREP(MCP251X_GPIO_INPUT_MASK, val);
 522	}
 523	if (maskp[0] & MCP251X_GPIO_OUTPUT_MASK) {
 524		val = mcp251x_read_reg(priv->spi, BFPCTRL);
 525		val = FIELD_GET(BFPCTRL_BFS_MASK, val);
 526		bits |= FIELD_PREP(MCP251X_GPIO_OUTPUT_MASK, val);
 527	}
 528	mutex_unlock(&priv->mcp_lock);
 529
 530	bitsp[0] = bits;
 531	return 0;
 532}
 533
 534static void mcp251x_gpio_set(struct gpio_chip *chip, unsigned int offset,
 535			     int value)
 536{
 537	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 538	u8 mask, val;
 539
 540	mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
 541	val = value ? mask : 0;
 542
 543	mutex_lock(&priv->mcp_lock);
 544	mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
 545	mutex_unlock(&priv->mcp_lock);
 546
 547	priv->reg_bfpctrl &= ~mask;
 548	priv->reg_bfpctrl |= val;
 549}
 550
 551static void
 552mcp251x_gpio_set_multiple(struct gpio_chip *chip,
 553			  unsigned long *maskp, unsigned long *bitsp)
 554{
 555	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 556	u8 mask, val;
 557
 558	mask = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, maskp[0]);
 559	mask = FIELD_PREP(BFPCTRL_BFS_MASK, mask);
 560
 561	val = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, bitsp[0]);
 562	val = FIELD_PREP(BFPCTRL_BFS_MASK, val);
 563
 564	if (!mask)
 565		return;
 566
 567	mutex_lock(&priv->mcp_lock);
 568	mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
 569	mutex_unlock(&priv->mcp_lock);
 570
 571	priv->reg_bfpctrl &= ~mask;
 572	priv->reg_bfpctrl |= val;
 573}
 574
 575static void mcp251x_gpio_restore(struct spi_device *spi)
 576{
 577	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 578
 579	mcp251x_write_reg(spi, BFPCTRL, priv->reg_bfpctrl);
 580}
 581
 582static int mcp251x_gpio_setup(struct mcp251x_priv *priv)
 583{
 584	struct gpio_chip *gpio = &priv->gpio;
 585
 586	if (!device_property_present(&priv->spi->dev, "gpio-controller"))
 587		return 0;
 588
 589	/* gpiochip handles TX[0..2]RTS and RX[0..1]BF */
 590	gpio->label = priv->spi->modalias;
 591	gpio->parent = &priv->spi->dev;
 592	gpio->owner = THIS_MODULE;
 593	gpio->request = mcp251x_gpio_request;
 594	gpio->free = mcp251x_gpio_free;
 595	gpio->get_direction = mcp251x_gpio_get_direction;
 596	gpio->get = mcp251x_gpio_get;
 597	gpio->get_multiple = mcp251x_gpio_get_multiple;
 598	gpio->set = mcp251x_gpio_set;
 599	gpio->set_multiple = mcp251x_gpio_set_multiple;
 600	gpio->base = -1;
 601	gpio->ngpio = ARRAY_SIZE(mcp251x_gpio_names);
 602	gpio->names = mcp251x_gpio_names;
 603	gpio->can_sleep = true;
 604
 605	return devm_gpiochip_add_data(&priv->spi->dev, gpio, priv);
 606}
 607#else
 608static inline void mcp251x_gpio_restore(struct spi_device *spi)
 609{
 610}
 611
 612static inline int mcp251x_gpio_setup(struct mcp251x_priv *priv)
 613{
 614	return 0;
 615}
 616#endif
 617
 618static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
 619				int len, int tx_buf_idx)
 620{
 621	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 622
 623	if (mcp251x_is_2510(spi)) {
 624		int i;
 625
 626		for (i = 1; i < TXBDAT_OFF + len; i++)
 627			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
 628					  buf[i]);
 629	} else {
 630		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
 631		mcp251x_spi_write(spi, TXBDAT_OFF + len);
 632	}
 633}
 634
 635static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
 636			  int tx_buf_idx)
 637{
 638	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 639	u32 sid, eid, exide, rtr;
 640	u8 buf[SPI_TRANSFER_BUF_LEN];
 641
 642	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
 643	if (exide)
 644		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
 645	else
 646		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
 647	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
 648	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
 649
 650	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
 651	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
 652	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
 653		(exide << SIDL_EXIDE_SHIFT) |
 654		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
 655	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
 656	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
 657	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->len;
 658	memcpy(buf + TXBDAT_OFF, frame->data, frame->len);
 659	mcp251x_hw_tx_frame(spi, buf, frame->len, tx_buf_idx);
 660
 661	/* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
 662	priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
 663	mcp251x_spi_write(priv->spi, 1);
 664}
 665
 666static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
 667				int buf_idx)
 668{
 669	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 670
 671	if (mcp251x_is_2510(spi)) {
 672		int i, len;
 673
 674		for (i = 1; i < RXBDAT_OFF; i++)
 675			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
 676
 677		len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
 678		for (; i < (RXBDAT_OFF + len); i++)
 679			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
 680	} else {
 681		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
 682		if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
 683			spi_write_then_read(spi, priv->spi_tx_buf, 1,
 684					    priv->spi_rx_buf,
 685					    SPI_TRANSFER_BUF_LEN);
 686			memcpy(buf + 1, priv->spi_rx_buf,
 687			       SPI_TRANSFER_BUF_LEN - 1);
 688		} else {
 689			mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
 690			memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
 691		}
 692	}
 693}
 694
 695static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
 696{
 697	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 698	struct sk_buff *skb;
 699	struct can_frame *frame;
 700	u8 buf[SPI_TRANSFER_BUF_LEN];
 701
 702	skb = alloc_can_skb(priv->net, &frame);
 703	if (!skb) {
 704		dev_err(&spi->dev, "cannot allocate RX skb\n");
 705		priv->net->stats.rx_dropped++;
 706		return;
 707	}
 708
 709	mcp251x_hw_rx_frame(spi, buf, buf_idx);
 710	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
 711		/* Extended ID format */
 712		frame->can_id = CAN_EFF_FLAG;
 713		frame->can_id |=
 714			/* Extended ID part */
 715			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
 716			SET_BYTE(buf[RXBEID8_OFF], 1) |
 717			SET_BYTE(buf[RXBEID0_OFF], 0) |
 718			/* Standard ID part */
 719			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
 720			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
 721		/* Remote transmission request */
 722		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
 723			frame->can_id |= CAN_RTR_FLAG;
 724	} else {
 725		/* Standard ID format */
 726		frame->can_id =
 727			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
 728			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
 729		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
 730			frame->can_id |= CAN_RTR_FLAG;
 731	}
 732	/* Data length */
 733	frame->len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
 734	if (!(frame->can_id & CAN_RTR_FLAG)) {
 735		memcpy(frame->data, buf + RXBDAT_OFF, frame->len);
 736
 737		priv->net->stats.rx_bytes += frame->len;
 738	}
 739	priv->net->stats.rx_packets++;
 
 740
 741	netif_rx(skb);
 
 
 742}
 743
 744static void mcp251x_hw_sleep(struct spi_device *spi)
 745{
 746	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
 747}
 748
 749/* May only be called when device is sleeping! */
 750static int mcp251x_hw_wake(struct spi_device *spi)
 751{
 752	u8 value;
 753	int ret;
 754
 755	/* Force wakeup interrupt to wake device, but don't execute IST */
 756	disable_irq(spi->irq);
 757	mcp251x_write_2regs(spi, CANINTE, CANINTE_WAKIE, CANINTF_WAKIF);
 758
 759	/* Wait for oscillator startup timer after wake up */
 760	mdelay(MCP251X_OST_DELAY_MS);
 761
 762	/* Put device into config mode */
 763	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_CONF);
 764
 765	/* Wait for the device to enter config mode */
 766	ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
 767					     MCP251X_OST_DELAY_MS * 1000,
 768					     USEC_PER_SEC);
 769	if (ret) {
 770		dev_err(&spi->dev, "MCP251x didn't enter in config mode\n");
 771		return ret;
 
 
 772	}
 773
 774	/* Disable and clear pending interrupts */
 775	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
 776	enable_irq(spi->irq);
 777
 778	return 0;
 779}
 780
 781static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
 782					   struct net_device *net)
 783{
 784	struct mcp251x_priv *priv = netdev_priv(net);
 785	struct spi_device *spi = priv->spi;
 786
 787	if (priv->tx_skb || priv->tx_busy) {
 788		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
 789		return NETDEV_TX_BUSY;
 790	}
 791
 792	if (can_dev_dropped_skb(net, skb))
 793		return NETDEV_TX_OK;
 794
 795	netif_stop_queue(net);
 796	priv->tx_skb = skb;
 797	queue_work(priv->wq, &priv->tx_work);
 798
 799	return NETDEV_TX_OK;
 800}
 801
 802static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
 803{
 804	struct mcp251x_priv *priv = netdev_priv(net);
 805
 806	switch (mode) {
 807	case CAN_MODE_START:
 808		mcp251x_clean(net);
 809		/* We have to delay work since SPI I/O may sleep */
 810		priv->can.state = CAN_STATE_ERROR_ACTIVE;
 811		priv->restart_tx = 1;
 812		if (priv->can.restart_ms == 0)
 813			priv->after_suspend = AFTER_SUSPEND_RESTART;
 814		queue_work(priv->wq, &priv->restart_work);
 815		break;
 816	default:
 817		return -EOPNOTSUPP;
 818	}
 819
 820	return 0;
 821}
 822
 823static int mcp251x_set_normal_mode(struct spi_device *spi)
 824{
 825	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 826	u8 value;
 827	int ret;
 828
 829	/* Enable interrupts */
 830	mcp251x_write_reg(spi, CANINTE,
 831			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
 832			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
 833
 834	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
 835		/* Put device into loopback mode */
 836		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
 837	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
 838		/* Put device into listen-only mode */
 839		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
 840	} else {
 841		/* Put device into normal mode */
 842		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
 843
 844		/* Wait for the device to enter normal mode */
 845		ret = mcp251x_read_stat_poll_timeout(spi, value, value == 0,
 846						     MCP251X_OST_DELAY_MS * 1000,
 847						     USEC_PER_SEC);
 848		if (ret) {
 849			dev_err(&spi->dev, "MCP251x didn't enter in normal mode\n");
 850			return ret;
 
 851		}
 852	}
 853	priv->can.state = CAN_STATE_ERROR_ACTIVE;
 854	return 0;
 855}
 856
 857static int mcp251x_do_set_bittiming(struct net_device *net)
 858{
 859	struct mcp251x_priv *priv = netdev_priv(net);
 860	struct can_bittiming *bt = &priv->can.bittiming;
 861	struct spi_device *spi = priv->spi;
 862
 863	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
 864			  (bt->brp - 1));
 865	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
 866			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
 867			   CNF2_SAM : 0) |
 868			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
 869			  (bt->prop_seg - 1));
 870	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
 871			   (bt->phase_seg2 - 1));
 872	dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
 873		mcp251x_read_reg(spi, CNF1),
 874		mcp251x_read_reg(spi, CNF2),
 875		mcp251x_read_reg(spi, CNF3));
 876
 877	return 0;
 878}
 879
 880static int mcp251x_setup(struct net_device *net, struct spi_device *spi)
 881{
 882	mcp251x_do_set_bittiming(net);
 883
 884	mcp251x_write_reg(spi, RXBCTRL(0),
 885			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
 886	mcp251x_write_reg(spi, RXBCTRL(1),
 887			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
 888	return 0;
 889}
 890
 891static int mcp251x_hw_reset(struct spi_device *spi)
 892{
 893	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 894	u8 value;
 895	int ret;
 896
 897	/* Wait for oscillator startup timer after power up */
 898	mdelay(MCP251X_OST_DELAY_MS);
 899
 900	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
 901	ret = mcp251x_spi_write(spi, 1);
 902	if (ret)
 903		return ret;
 904
 905	/* Wait for oscillator startup timer after reset */
 906	mdelay(MCP251X_OST_DELAY_MS);
 907
 908	/* Wait for reset to finish */
 909	ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
 910					     MCP251X_OST_DELAY_MS * 1000,
 911					     USEC_PER_SEC);
 912	if (ret)
 913		dev_err(&spi->dev, "MCP251x didn't enter in conf mode after reset\n");
 914	return ret;
 
 
 
 
 
 
 
 915}
 916
 917static int mcp251x_hw_probe(struct spi_device *spi)
 918{
 919	u8 ctrl;
 920	int ret;
 921
 922	ret = mcp251x_hw_reset(spi);
 923	if (ret)
 924		return ret;
 925
 926	ctrl = mcp251x_read_reg(spi, CANCTRL);
 927
 928	dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
 929
 930	/* Check for power up default value */
 931	if ((ctrl & 0x17) != 0x07)
 932		return -ENODEV;
 933
 934	return 0;
 935}
 936
 937static int mcp251x_power_enable(struct regulator *reg, int enable)
 938{
 939	if (IS_ERR_OR_NULL(reg))
 940		return 0;
 941
 942	if (enable)
 943		return regulator_enable(reg);
 944	else
 945		return regulator_disable(reg);
 946}
 947
 948static int mcp251x_stop(struct net_device *net)
 949{
 950	struct mcp251x_priv *priv = netdev_priv(net);
 951	struct spi_device *spi = priv->spi;
 952
 953	close_candev(net);
 954
 955	priv->force_quit = 1;
 956	free_irq(spi->irq, priv);
 
 
 957
 958	mutex_lock(&priv->mcp_lock);
 959
 960	/* Disable and clear pending interrupts */
 961	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
 962
 963	mcp251x_write_reg(spi, TXBCTRL(0), 0);
 964	mcp251x_clean(net);
 965
 966	mcp251x_hw_sleep(spi);
 967
 968	mcp251x_power_enable(priv->transceiver, 0);
 969
 970	priv->can.state = CAN_STATE_STOPPED;
 971
 972	mutex_unlock(&priv->mcp_lock);
 973
 
 
 974	return 0;
 975}
 976
 977static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
 978{
 979	struct sk_buff *skb;
 980	struct can_frame *frame;
 981
 982	skb = alloc_can_err_skb(net, &frame);
 983	if (skb) {
 984		frame->can_id |= can_id;
 985		frame->data[1] = data1;
 986		netif_rx(skb);
 987	} else {
 988		netdev_err(net, "cannot allocate error skb\n");
 989	}
 990}
 991
 992static void mcp251x_tx_work_handler(struct work_struct *ws)
 993{
 994	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
 995						 tx_work);
 996	struct spi_device *spi = priv->spi;
 997	struct net_device *net = priv->net;
 998	struct can_frame *frame;
 999
1000	mutex_lock(&priv->mcp_lock);
1001	if (priv->tx_skb) {
1002		if (priv->can.state == CAN_STATE_BUS_OFF) {
1003			mcp251x_clean(net);
1004		} else {
1005			frame = (struct can_frame *)priv->tx_skb->data;
1006
1007			if (frame->len > CAN_FRAME_MAX_DATA_LEN)
1008				frame->len = CAN_FRAME_MAX_DATA_LEN;
1009			mcp251x_hw_tx(spi, frame, 0);
1010			priv->tx_busy = true;
1011			can_put_echo_skb(priv->tx_skb, net, 0, 0);
1012			priv->tx_skb = NULL;
1013		}
1014	}
1015	mutex_unlock(&priv->mcp_lock);
1016}
1017
1018static void mcp251x_restart_work_handler(struct work_struct *ws)
1019{
1020	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
1021						 restart_work);
1022	struct spi_device *spi = priv->spi;
1023	struct net_device *net = priv->net;
1024
1025	mutex_lock(&priv->mcp_lock);
1026	if (priv->after_suspend) {
1027		if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1028			mcp251x_hw_reset(spi);
1029			mcp251x_setup(net, spi);
1030			mcp251x_gpio_restore(spi);
1031		} else {
1032			mcp251x_hw_wake(spi);
1033		}
1034		priv->force_quit = 0;
1035		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
1036			mcp251x_set_normal_mode(spi);
1037		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
1038			netif_device_attach(net);
1039			mcp251x_clean(net);
1040			mcp251x_set_normal_mode(spi);
1041			netif_wake_queue(net);
1042		} else {
1043			mcp251x_hw_sleep(spi);
1044		}
1045		priv->after_suspend = 0;
1046	}
1047
1048	if (priv->restart_tx) {
1049		priv->restart_tx = 0;
1050		mcp251x_write_reg(spi, TXBCTRL(0), 0);
1051		mcp251x_clean(net);
1052		netif_wake_queue(net);
1053		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
1054	}
1055	mutex_unlock(&priv->mcp_lock);
1056}
1057
1058static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
1059{
1060	struct mcp251x_priv *priv = dev_id;
1061	struct spi_device *spi = priv->spi;
1062	struct net_device *net = priv->net;
1063
1064	mutex_lock(&priv->mcp_lock);
1065	while (!priv->force_quit) {
1066		enum can_state new_state;
1067		u8 intf, eflag;
1068		u8 clear_intf = 0;
1069		int can_id = 0, data1 = 0;
1070
1071		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
1072
 
 
 
1073		/* receive buffer 0 */
1074		if (intf & CANINTF_RX0IF) {
1075			mcp251x_hw_rx(spi, 0);
1076			/* Free one buffer ASAP
1077			 * (The MCP2515/25625 does this automatically.)
1078			 */
1079			if (mcp251x_is_2510(spi))
1080				mcp251x_write_bits(spi, CANINTF,
1081						   CANINTF_RX0IF, 0x00);
1082
1083			/* check if buffer 1 is already known to be full, no need to re-read */
1084			if (!(intf & CANINTF_RX1IF)) {
1085				u8 intf1, eflag1;
1086
1087				/* intf needs to be read again to avoid a race condition */
1088				mcp251x_read_2regs(spi, CANINTF, &intf1, &eflag1);
1089
1090				/* combine flags from both operations for error handling */
1091				intf |= intf1;
1092				eflag |= eflag1;
1093			}
1094		}
1095
1096		/* receive buffer 1 */
1097		if (intf & CANINTF_RX1IF) {
1098			mcp251x_hw_rx(spi, 1);
1099			/* The MCP2515/25625 does this automatically. */
1100			if (mcp251x_is_2510(spi))
1101				clear_intf |= CANINTF_RX1IF;
1102		}
1103
1104		/* mask out flags we don't care about */
1105		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
1106
1107		/* any error or tx interrupt we need to clear? */
1108		if (intf & (CANINTF_ERR | CANINTF_TX))
1109			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
1110		if (clear_intf)
1111			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
1112
1113		if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR))
1114			mcp251x_write_bits(spi, EFLG, eflag, 0x00);
1115
1116		/* Update can state */
1117		if (eflag & EFLG_TXBO) {
1118			new_state = CAN_STATE_BUS_OFF;
1119			can_id |= CAN_ERR_BUSOFF;
1120		} else if (eflag & EFLG_TXEP) {
1121			new_state = CAN_STATE_ERROR_PASSIVE;
1122			can_id |= CAN_ERR_CRTL;
1123			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
1124		} else if (eflag & EFLG_RXEP) {
1125			new_state = CAN_STATE_ERROR_PASSIVE;
1126			can_id |= CAN_ERR_CRTL;
1127			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
1128		} else if (eflag & EFLG_TXWAR) {
1129			new_state = CAN_STATE_ERROR_WARNING;
1130			can_id |= CAN_ERR_CRTL;
1131			data1 |= CAN_ERR_CRTL_TX_WARNING;
1132		} else if (eflag & EFLG_RXWAR) {
1133			new_state = CAN_STATE_ERROR_WARNING;
1134			can_id |= CAN_ERR_CRTL;
1135			data1 |= CAN_ERR_CRTL_RX_WARNING;
1136		} else {
1137			new_state = CAN_STATE_ERROR_ACTIVE;
1138		}
1139
1140		/* Update can state statistics */
1141		switch (priv->can.state) {
1142		case CAN_STATE_ERROR_ACTIVE:
1143			if (new_state >= CAN_STATE_ERROR_WARNING &&
1144			    new_state <= CAN_STATE_BUS_OFF)
1145				priv->can.can_stats.error_warning++;
1146			fallthrough;
1147		case CAN_STATE_ERROR_WARNING:
1148			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
1149			    new_state <= CAN_STATE_BUS_OFF)
1150				priv->can.can_stats.error_passive++;
1151			break;
1152		default:
1153			break;
1154		}
1155		priv->can.state = new_state;
1156
1157		if (intf & CANINTF_ERRIF) {
1158			/* Handle overflow counters */
1159			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
1160				if (eflag & EFLG_RX0OVR) {
1161					net->stats.rx_over_errors++;
1162					net->stats.rx_errors++;
1163				}
1164				if (eflag & EFLG_RX1OVR) {
1165					net->stats.rx_over_errors++;
1166					net->stats.rx_errors++;
1167				}
1168				can_id |= CAN_ERR_CRTL;
1169				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
1170			}
1171			mcp251x_error_skb(net, can_id, data1);
1172		}
1173
1174		if (priv->can.state == CAN_STATE_BUS_OFF) {
1175			if (priv->can.restart_ms == 0) {
1176				priv->force_quit = 1;
1177				priv->can.can_stats.bus_off++;
1178				can_bus_off(net);
1179				mcp251x_hw_sleep(spi);
1180				break;
1181			}
1182		}
1183
1184		if (intf == 0)
1185			break;
1186
1187		if (intf & CANINTF_TX) {
1188			if (priv->tx_busy) {
1189				net->stats.tx_packets++;
1190				net->stats.tx_bytes += can_get_echo_skb(net, 0,
1191									NULL);
1192				priv->tx_busy = false;
 
1193			}
1194			netif_wake_queue(net);
1195		}
1196	}
1197	mutex_unlock(&priv->mcp_lock);
1198	return IRQ_HANDLED;
1199}
1200
1201static int mcp251x_open(struct net_device *net)
1202{
1203	struct mcp251x_priv *priv = netdev_priv(net);
1204	struct spi_device *spi = priv->spi;
1205	unsigned long flags = 0;
1206	int ret;
1207
1208	ret = open_candev(net);
1209	if (ret) {
1210		dev_err(&spi->dev, "unable to set initial baudrate!\n");
1211		return ret;
1212	}
1213
1214	mutex_lock(&priv->mcp_lock);
1215	mcp251x_power_enable(priv->transceiver, 1);
1216
1217	priv->force_quit = 0;
1218	priv->tx_skb = NULL;
1219	priv->tx_busy = false;
1220
1221	if (!dev_fwnode(&spi->dev))
1222		flags = IRQF_TRIGGER_FALLING;
1223
1224	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
1225				   flags | IRQF_ONESHOT, dev_name(&spi->dev),
1226				   priv);
1227	if (ret) {
1228		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
1229		goto out_close;
1230	}
1231
 
 
 
 
 
 
 
 
 
1232	ret = mcp251x_hw_wake(spi);
1233	if (ret)
1234		goto out_free_irq;
1235	ret = mcp251x_setup(net, spi);
1236	if (ret)
1237		goto out_free_irq;
1238	ret = mcp251x_set_normal_mode(spi);
1239	if (ret)
1240		goto out_free_irq;
 
 
1241
1242	netif_wake_queue(net);
1243	mutex_unlock(&priv->mcp_lock);
1244
1245	return 0;
1246
1247out_free_irq:
 
 
1248	free_irq(spi->irq, priv);
1249	mcp251x_hw_sleep(spi);
1250out_close:
1251	mcp251x_power_enable(priv->transceiver, 0);
1252	close_candev(net);
1253	mutex_unlock(&priv->mcp_lock);
1254	return ret;
1255}
1256
1257static const struct net_device_ops mcp251x_netdev_ops = {
1258	.ndo_open = mcp251x_open,
1259	.ndo_stop = mcp251x_stop,
1260	.ndo_start_xmit = mcp251x_hard_start_xmit,
1261	.ndo_change_mtu = can_change_mtu,
1262};
1263
1264static const struct ethtool_ops mcp251x_ethtool_ops = {
1265	.get_ts_info = ethtool_op_get_ts_info,
1266};
1267
1268static const struct of_device_id mcp251x_of_match[] = {
1269	{
1270		.compatible	= "microchip,mcp2510",
1271		.data		= (void *)CAN_MCP251X_MCP2510,
1272	},
1273	{
1274		.compatible	= "microchip,mcp2515",
1275		.data		= (void *)CAN_MCP251X_MCP2515,
1276	},
1277	{
1278		.compatible	= "microchip,mcp25625",
1279		.data		= (void *)CAN_MCP251X_MCP25625,
1280	},
1281	{ }
1282};
1283MODULE_DEVICE_TABLE(of, mcp251x_of_match);
1284
1285static const struct spi_device_id mcp251x_id_table[] = {
1286	{
1287		.name		= "mcp2510",
1288		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2510,
1289	},
1290	{
1291		.name		= "mcp2515",
1292		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2515,
1293	},
1294	{
1295		.name		= "mcp25625",
1296		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP25625,
1297	},
1298	{ }
1299};
1300MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1301
1302static int mcp251x_can_probe(struct spi_device *spi)
1303{
1304	const void *match = device_get_match_data(&spi->dev);
1305	struct net_device *net;
1306	struct mcp251x_priv *priv;
1307	struct clk *clk;
1308	u32 freq;
1309	int ret;
1310
1311	clk = devm_clk_get_optional(&spi->dev, NULL);
1312	if (IS_ERR(clk))
1313		return PTR_ERR(clk);
1314
1315	freq = clk_get_rate(clk);
1316	if (freq == 0)
1317		device_property_read_u32(&spi->dev, "clock-frequency", &freq);
1318
1319	/* Sanity check */
1320	if (freq < 1000000 || freq > 25000000)
1321		return -ERANGE;
1322
1323	/* Allocate can/net device */
1324	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1325	if (!net)
1326		return -ENOMEM;
1327
1328	ret = clk_prepare_enable(clk);
1329	if (ret)
1330		goto out_free;
1331
1332	net->netdev_ops = &mcp251x_netdev_ops;
1333	net->ethtool_ops = &mcp251x_ethtool_ops;
1334	net->flags |= IFF_ECHO;
1335
1336	priv = netdev_priv(net);
1337	priv->can.bittiming_const = &mcp251x_bittiming_const;
1338	priv->can.do_set_mode = mcp251x_do_set_mode;
1339	priv->can.clock.freq = freq / 2;
1340	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1341		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1342	if (match)
1343		priv->model = (enum mcp251x_model)(uintptr_t)match;
1344	else
1345		priv->model = spi_get_device_id(spi)->driver_data;
1346	priv->net = net;
1347	priv->clk = clk;
1348
1349	spi_set_drvdata(spi, priv);
1350
1351	/* Configure the SPI bus */
1352	spi->bits_per_word = 8;
1353	if (mcp251x_is_2510(spi))
1354		spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1355	else
1356		spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1357	ret = spi_setup(spi);
1358	if (ret)
1359		goto out_clk;
1360
1361	priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
1362	priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
1363	if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1364	    (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1365		ret = -EPROBE_DEFER;
1366		goto out_clk;
1367	}
1368
1369	ret = mcp251x_power_enable(priv->power, 1);
1370	if (ret)
1371		goto out_clk;
1372
1373	priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM,
1374				   0);
1375	if (!priv->wq) {
1376		ret = -ENOMEM;
1377		goto out_clk;
1378	}
1379	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
1380	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
1381
1382	priv->spi = spi;
1383	mutex_init(&priv->mcp_lock);
1384
1385	priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1386					GFP_KERNEL);
1387	if (!priv->spi_tx_buf) {
1388		ret = -ENOMEM;
1389		goto error_probe;
1390	}
1391
1392	priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1393					GFP_KERNEL);
1394	if (!priv->spi_rx_buf) {
1395		ret = -ENOMEM;
1396		goto error_probe;
1397	}
1398
1399	SET_NETDEV_DEV(net, &spi->dev);
1400
1401	/* Here is OK to not lock the MCP, no one knows about it yet */
1402	ret = mcp251x_hw_probe(spi);
1403	if (ret) {
1404		if (ret == -ENODEV)
1405			dev_err(&spi->dev, "Cannot initialize MCP%x. Wrong wiring?\n",
1406				priv->model);
1407		goto error_probe;
1408	}
1409
1410	mcp251x_hw_sleep(spi);
1411
1412	ret = register_candev(net);
1413	if (ret)
1414		goto error_probe;
1415
1416	ret = mcp251x_gpio_setup(priv);
1417	if (ret)
1418		goto out_unregister_candev;
1419
1420	netdev_info(net, "MCP%x successfully initialized.\n", priv->model);
1421	return 0;
1422
1423out_unregister_candev:
1424	unregister_candev(net);
1425
1426error_probe:
1427	destroy_workqueue(priv->wq);
1428	priv->wq = NULL;
1429	mcp251x_power_enable(priv->power, 0);
1430
1431out_clk:
1432	clk_disable_unprepare(clk);
1433
1434out_free:
1435	free_candev(net);
1436
1437	dev_err(&spi->dev, "Probe failed, err=%d\n", -ret);
1438	return ret;
1439}
1440
1441static void mcp251x_can_remove(struct spi_device *spi)
1442{
1443	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1444	struct net_device *net = priv->net;
1445
1446	unregister_candev(net);
1447
1448	mcp251x_power_enable(priv->power, 0);
1449
1450	destroy_workqueue(priv->wq);
1451	priv->wq = NULL;
1452
1453	clk_disable_unprepare(priv->clk);
1454
1455	free_candev(net);
 
 
1456}
1457
1458static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1459{
1460	struct spi_device *spi = to_spi_device(dev);
1461	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1462	struct net_device *net = priv->net;
1463
1464	priv->force_quit = 1;
1465	disable_irq(spi->irq);
1466	/* Note: at this point neither IST nor workqueues are running.
1467	 * open/stop cannot be called anyway so locking is not needed
1468	 */
1469	if (netif_running(net)) {
1470		netif_device_detach(net);
1471
1472		mcp251x_hw_sleep(spi);
1473		mcp251x_power_enable(priv->transceiver, 0);
1474		priv->after_suspend = AFTER_SUSPEND_UP;
1475	} else {
1476		priv->after_suspend = AFTER_SUSPEND_DOWN;
1477	}
1478
1479	mcp251x_power_enable(priv->power, 0);
1480	priv->after_suspend |= AFTER_SUSPEND_POWER;
1481
1482	return 0;
1483}
1484
1485static int __maybe_unused mcp251x_can_resume(struct device *dev)
1486{
1487	struct spi_device *spi = to_spi_device(dev);
1488	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1489
1490	if (priv->after_suspend & AFTER_SUSPEND_POWER)
1491		mcp251x_power_enable(priv->power, 1);
1492	if (priv->after_suspend & AFTER_SUSPEND_UP)
1493		mcp251x_power_enable(priv->transceiver, 1);
1494
1495	if (priv->after_suspend & (AFTER_SUSPEND_POWER | AFTER_SUSPEND_UP))
1496		queue_work(priv->wq, &priv->restart_work);
1497	else
1498		priv->after_suspend = 0;
1499
1500	priv->force_quit = 0;
1501	enable_irq(spi->irq);
1502	return 0;
1503}
1504
1505static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1506	mcp251x_can_resume);
1507
1508static struct spi_driver mcp251x_can_driver = {
1509	.driver = {
1510		.name = DEVICE_NAME,
1511		.of_match_table = mcp251x_of_match,
1512		.pm = &mcp251x_can_pm_ops,
1513	},
1514	.id_table = mcp251x_id_table,
1515	.probe = mcp251x_can_probe,
1516	.remove = mcp251x_can_remove,
1517};
1518module_spi_driver(mcp251x_can_driver);
1519
1520MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1521	      "Christian Pellegrin <chripell@evolware.org>");
1522MODULE_DESCRIPTION("Microchip 251x/25625 CAN driver");
1523MODULE_LICENSE("GPL v2");
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* CAN bus driver for Microchip 251x/25625 CAN Controller with SPI Interface
   3 *
   4 * MCP2510 support and bug fixes by Christian Pellegrin
   5 * <chripell@evolware.org>
   6 *
   7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
   8 *
   9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
  10 * Written under contract by:
  11 *   Chris Elston, Katalix Systems, Ltd.
  12 *
  13 * Based on Microchip MCP251x CAN controller driver written by
  14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
  15 *
  16 * Based on CAN bus driver for the CCAN controller written by
  17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
  18 * - Simon Kallweit, intefo AG
  19 * Copyright 2007
  20 */
  21
 
  22#include <linux/can/core.h>
  23#include <linux/can/dev.h>
  24#include <linux/can/led.h>
  25#include <linux/clk.h>
  26#include <linux/completion.h>
  27#include <linux/delay.h>
  28#include <linux/device.h>
 
  29#include <linux/freezer.h>
 
 
  30#include <linux/interrupt.h>
  31#include <linux/io.h>
 
  32#include <linux/kernel.h>
  33#include <linux/module.h>
  34#include <linux/netdevice.h>
 
  35#include <linux/property.h>
  36#include <linux/platform_device.h>
  37#include <linux/slab.h>
  38#include <linux/spi/spi.h>
  39#include <linux/uaccess.h>
  40#include <linux/regulator/consumer.h>
  41
  42/* SPI interface instruction set */
  43#define INSTRUCTION_WRITE	0x02
  44#define INSTRUCTION_READ	0x03
  45#define INSTRUCTION_BIT_MODIFY	0x05
  46#define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
  47#define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
  48#define INSTRUCTION_RESET	0xC0
  49#define RTS_TXB0		0x01
  50#define RTS_TXB1		0x02
  51#define RTS_TXB2		0x04
  52#define INSTRUCTION_RTS(n)	(0x80 | ((n) & 0x07))
  53
  54/* MPC251x registers */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  55#define CANSTAT	      0x0e
  56#define CANCTRL	      0x0f
  57#  define CANCTRL_REQOP_MASK	    0xe0
  58#  define CANCTRL_REQOP_CONF	    0x80
  59#  define CANCTRL_REQOP_LISTEN_ONLY 0x60
  60#  define CANCTRL_REQOP_LOOPBACK    0x40
  61#  define CANCTRL_REQOP_SLEEP	    0x20
  62#  define CANCTRL_REQOP_NORMAL	    0x00
  63#  define CANCTRL_OSM		    0x08
  64#  define CANCTRL_ABAT		    0x10
  65#define TEC	      0x1c
  66#define REC	      0x1d
  67#define CNF1	      0x2a
  68#  define CNF1_SJW_SHIFT   6
  69#define CNF2	      0x29
  70#  define CNF2_BTLMODE	   0x80
  71#  define CNF2_SAM         0x40
  72#  define CNF2_PS1_SHIFT   3
  73#define CNF3	      0x28
  74#  define CNF3_SOF	   0x08
  75#  define CNF3_WAKFIL	   0x04
  76#  define CNF3_PHSEG2_MASK 0x07
  77#define CANINTE	      0x2b
  78#  define CANINTE_MERRE 0x80
  79#  define CANINTE_WAKIE 0x40
  80#  define CANINTE_ERRIE 0x20
  81#  define CANINTE_TX2IE 0x10
  82#  define CANINTE_TX1IE 0x08
  83#  define CANINTE_TX0IE 0x04
  84#  define CANINTE_RX1IE 0x02
  85#  define CANINTE_RX0IE 0x01
  86#define CANINTF	      0x2c
  87#  define CANINTF_MERRF 0x80
  88#  define CANINTF_WAKIF 0x40
  89#  define CANINTF_ERRIF 0x20
  90#  define CANINTF_TX2IF 0x10
  91#  define CANINTF_TX1IF 0x08
  92#  define CANINTF_TX0IF 0x04
  93#  define CANINTF_RX1IF 0x02
  94#  define CANINTF_RX0IF 0x01
  95#  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
  96#  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
  97#  define CANINTF_ERR (CANINTF_ERRIF)
  98#define EFLG	      0x2d
  99#  define EFLG_EWARN	0x01
 100#  define EFLG_RXWAR	0x02
 101#  define EFLG_TXWAR	0x04
 102#  define EFLG_RXEP	0x08
 103#  define EFLG_TXEP	0x10
 104#  define EFLG_TXBO	0x20
 105#  define EFLG_RX0OVR	0x40
 106#  define EFLG_RX1OVR	0x80
 107#define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
 108#  define TXBCTRL_ABTF	0x40
 109#  define TXBCTRL_MLOA	0x20
 110#  define TXBCTRL_TXERR 0x10
 111#  define TXBCTRL_TXREQ 0x08
 112#define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
 113#  define SIDH_SHIFT    3
 114#define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
 115#  define SIDL_SID_MASK    7
 116#  define SIDL_SID_SHIFT   5
 117#  define SIDL_EXIDE_SHIFT 3
 118#  define SIDL_EID_SHIFT   16
 119#  define SIDL_EID_MASK    3
 120#define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
 121#define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
 122#define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
 123#  define DLC_RTR_SHIFT    6
 124#define TXBCTRL_OFF 0
 125#define TXBSIDH_OFF 1
 126#define TXBSIDL_OFF 2
 127#define TXBEID8_OFF 3
 128#define TXBEID0_OFF 4
 129#define TXBDLC_OFF  5
 130#define TXBDAT_OFF  6
 131#define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
 132#  define RXBCTRL_BUKT	0x04
 133#  define RXBCTRL_RXM0	0x20
 134#  define RXBCTRL_RXM1	0x40
 135#define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
 136#  define RXBSIDH_SHIFT 3
 137#define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
 138#  define RXBSIDL_IDE   0x08
 139#  define RXBSIDL_SRR   0x10
 140#  define RXBSIDL_EID   3
 141#  define RXBSIDL_SHIFT 5
 142#define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
 143#define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
 144#define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
 145#  define RXBDLC_LEN_MASK  0x0f
 146#  define RXBDLC_RTR       0x40
 147#define RXBCTRL_OFF 0
 148#define RXBSIDH_OFF 1
 149#define RXBSIDL_OFF 2
 150#define RXBEID8_OFF 3
 151#define RXBEID0_OFF 4
 152#define RXBDLC_OFF  5
 153#define RXBDAT_OFF  6
 154#define RXFSID(n) ((n < 3) ? 0 : 4)
 155#define RXFSIDH(n) ((n) * 4 + RXFSID(n))
 156#define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
 157#define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
 158#define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
 159#define RXMSIDH(n) ((n) * 4 + 0x20)
 160#define RXMSIDL(n) ((n) * 4 + 0x21)
 161#define RXMEID8(n) ((n) * 4 + 0x22)
 162#define RXMEID0(n) ((n) * 4 + 0x23)
 163
 164#define GET_BYTE(val, byte)			\
 165	(((val) >> ((byte) * 8)) & 0xff)
 166#define SET_BYTE(val, byte)			\
 167	(((val) & 0xff) << ((byte) * 8))
 168
 169/* Buffer size required for the largest SPI transfer (i.e., reading a
 170 * frame)
 171 */
 172#define CAN_FRAME_MAX_DATA_LEN	8
 173#define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
 174#define CAN_FRAME_MAX_BITS	128
 175
 176#define TX_ECHO_SKB_MAX	1
 177
 178#define MCP251X_OST_DELAY_MS	(5)
 179
 180#define DEVICE_NAME "mcp251x"
 181
 182static const struct can_bittiming_const mcp251x_bittiming_const = {
 183	.name = DEVICE_NAME,
 184	.tseg1_min = 3,
 185	.tseg1_max = 16,
 186	.tseg2_min = 2,
 187	.tseg2_max = 8,
 188	.sjw_max = 4,
 189	.brp_min = 1,
 190	.brp_max = 64,
 191	.brp_inc = 1,
 192};
 193
 194enum mcp251x_model {
 195	CAN_MCP251X_MCP2510	= 0x2510,
 196	CAN_MCP251X_MCP2515	= 0x2515,
 197	CAN_MCP251X_MCP25625	= 0x25625,
 198};
 199
 200struct mcp251x_priv {
 201	struct can_priv	   can;
 202	struct net_device *net;
 203	struct spi_device *spi;
 204	enum mcp251x_model model;
 205
 206	struct mutex mcp_lock; /* SPI device lock */
 207
 208	u8 *spi_tx_buf;
 209	u8 *spi_rx_buf;
 210
 211	struct sk_buff *tx_skb;
 212	int tx_len;
 213
 214	struct workqueue_struct *wq;
 215	struct work_struct tx_work;
 216	struct work_struct restart_work;
 217
 218	int force_quit;
 219	int after_suspend;
 220#define AFTER_SUSPEND_UP 1
 221#define AFTER_SUSPEND_DOWN 2
 222#define AFTER_SUSPEND_POWER 4
 223#define AFTER_SUSPEND_RESTART 8
 224	int restart_tx;
 
 
 225	struct regulator *power;
 226	struct regulator *transceiver;
 227	struct clk *clk;
 
 
 
 
 228};
 229
 230#define MCP251X_IS(_model) \
 231static inline int mcp251x_is_##_model(struct spi_device *spi) \
 232{ \
 233	struct mcp251x_priv *priv = spi_get_drvdata(spi); \
 234	return priv->model == CAN_MCP251X_MCP##_model; \
 235}
 236
 237MCP251X_IS(2510);
 238
 239static void mcp251x_clean(struct net_device *net)
 240{
 241	struct mcp251x_priv *priv = netdev_priv(net);
 242
 243	if (priv->tx_skb || priv->tx_len)
 244		net->stats.tx_errors++;
 245	dev_kfree_skb(priv->tx_skb);
 246	if (priv->tx_len)
 247		can_free_echo_skb(priv->net, 0);
 248	priv->tx_skb = NULL;
 249	priv->tx_len = 0;
 250}
 251
 252/* Note about handling of error return of mcp251x_spi_trans: accessing
 253 * registers via SPI is not really different conceptually than using
 254 * normal I/O assembler instructions, although it's much more
 255 * complicated from a practical POV. So it's not advisable to always
 256 * check the return value of this function. Imagine that every
 257 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
 258 * error();", it would be a great mess (well there are some situation
 259 * when exception handling C++ like could be useful after all). So we
 260 * just check that transfers are OK at the beginning of our
 261 * conversation with the chip and to avoid doing really nasty things
 262 * (like injecting bogus packets in the network stack).
 263 */
 264static int mcp251x_spi_trans(struct spi_device *spi, int len)
 265{
 266	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 267	struct spi_transfer t = {
 268		.tx_buf = priv->spi_tx_buf,
 269		.rx_buf = priv->spi_rx_buf,
 270		.len = len,
 271		.cs_change = 0,
 272	};
 273	struct spi_message m;
 274	int ret;
 275
 276	spi_message_init(&m);
 277	spi_message_add_tail(&t, &m);
 278
 279	ret = spi_sync(spi, &m);
 280	if (ret)
 281		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
 282	return ret;
 283}
 284
 
 
 
 
 
 
 
 
 
 
 
 
 285static u8 mcp251x_read_reg(struct spi_device *spi, u8 reg)
 286{
 287	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 288	u8 val = 0;
 289
 290	priv->spi_tx_buf[0] = INSTRUCTION_READ;
 291	priv->spi_tx_buf[1] = reg;
 292
 293	mcp251x_spi_trans(spi, 3);
 294	val = priv->spi_rx_buf[2];
 
 
 
 
 295
 296	return val;
 297}
 298
 299static void mcp251x_read_2regs(struct spi_device *spi, u8 reg, u8 *v1, u8 *v2)
 300{
 301	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 302
 303	priv->spi_tx_buf[0] = INSTRUCTION_READ;
 304	priv->spi_tx_buf[1] = reg;
 305
 306	mcp251x_spi_trans(spi, 4);
 
 307
 308	*v1 = priv->spi_rx_buf[2];
 309	*v2 = priv->spi_rx_buf[3];
 
 
 
 
 
 
 
 310}
 311
 312static void mcp251x_write_reg(struct spi_device *spi, u8 reg, u8 val)
 313{
 314	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 315
 316	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
 317	priv->spi_tx_buf[1] = reg;
 318	priv->spi_tx_buf[2] = val;
 319
 320	mcp251x_spi_trans(spi, 3);
 321}
 322
 323static void mcp251x_write_2regs(struct spi_device *spi, u8 reg, u8 v1, u8 v2)
 324{
 325	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 326
 327	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
 328	priv->spi_tx_buf[1] = reg;
 329	priv->spi_tx_buf[2] = v1;
 330	priv->spi_tx_buf[3] = v2;
 331
 332	mcp251x_spi_trans(spi, 4);
 333}
 334
 335static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
 336			       u8 mask, u8 val)
 337{
 338	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 339
 340	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
 341	priv->spi_tx_buf[1] = reg;
 342	priv->spi_tx_buf[2] = mask;
 343	priv->spi_tx_buf[3] = val;
 344
 345	mcp251x_spi_trans(spi, 4);
 
 
 
 
 
 346}
 347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 348static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
 349				int len, int tx_buf_idx)
 350{
 351	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 352
 353	if (mcp251x_is_2510(spi)) {
 354		int i;
 355
 356		for (i = 1; i < TXBDAT_OFF + len; i++)
 357			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
 358					  buf[i]);
 359	} else {
 360		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
 361		mcp251x_spi_trans(spi, TXBDAT_OFF + len);
 362	}
 363}
 364
 365static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
 366			  int tx_buf_idx)
 367{
 368	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 369	u32 sid, eid, exide, rtr;
 370	u8 buf[SPI_TRANSFER_BUF_LEN];
 371
 372	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
 373	if (exide)
 374		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
 375	else
 376		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
 377	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
 378	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
 379
 380	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
 381	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
 382	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
 383		(exide << SIDL_EXIDE_SHIFT) |
 384		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
 385	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
 386	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
 387	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
 388	memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
 389	mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
 390
 391	/* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
 392	priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
 393	mcp251x_spi_trans(priv->spi, 1);
 394}
 395
 396static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
 397				int buf_idx)
 398{
 399	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 400
 401	if (mcp251x_is_2510(spi)) {
 402		int i, len;
 403
 404		for (i = 1; i < RXBDAT_OFF; i++)
 405			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
 406
 407		len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
 408		for (; i < (RXBDAT_OFF + len); i++)
 409			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
 410	} else {
 411		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
 412		mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
 413		memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
 
 
 
 
 
 
 
 
 414	}
 415}
 416
 417static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
 418{
 419	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 420	struct sk_buff *skb;
 421	struct can_frame *frame;
 422	u8 buf[SPI_TRANSFER_BUF_LEN];
 423
 424	skb = alloc_can_skb(priv->net, &frame);
 425	if (!skb) {
 426		dev_err(&spi->dev, "cannot allocate RX skb\n");
 427		priv->net->stats.rx_dropped++;
 428		return;
 429	}
 430
 431	mcp251x_hw_rx_frame(spi, buf, buf_idx);
 432	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
 433		/* Extended ID format */
 434		frame->can_id = CAN_EFF_FLAG;
 435		frame->can_id |=
 436			/* Extended ID part */
 437			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
 438			SET_BYTE(buf[RXBEID8_OFF], 1) |
 439			SET_BYTE(buf[RXBEID0_OFF], 0) |
 440			/* Standard ID part */
 441			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
 442			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
 443		/* Remote transmission request */
 444		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
 445			frame->can_id |= CAN_RTR_FLAG;
 446	} else {
 447		/* Standard ID format */
 448		frame->can_id =
 449			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
 450			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
 451		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
 452			frame->can_id |= CAN_RTR_FLAG;
 453	}
 454	/* Data length */
 455	frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
 456	memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
 
 457
 
 
 458	priv->net->stats.rx_packets++;
 459	priv->net->stats.rx_bytes += frame->can_dlc;
 460
 461	can_led_event(priv->net, CAN_LED_EVENT_RX);
 462
 463	netif_rx_ni(skb);
 464}
 465
 466static void mcp251x_hw_sleep(struct spi_device *spi)
 467{
 468	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
 469}
 470
 471/* May only be called when device is sleeping! */
 472static int mcp251x_hw_wake(struct spi_device *spi)
 473{
 474	unsigned long timeout;
 
 475
 476	/* Force wakeup interrupt to wake device, but don't execute IST */
 477	disable_irq(spi->irq);
 478	mcp251x_write_2regs(spi, CANINTE, CANINTE_WAKIE, CANINTF_WAKIF);
 479
 480	/* Wait for oscillator startup timer after wake up */
 481	mdelay(MCP251X_OST_DELAY_MS);
 482
 483	/* Put device into config mode */
 484	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_CONF);
 485
 486	/* Wait for the device to enter config mode */
 487	timeout = jiffies + HZ;
 488	while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) !=
 489			CANCTRL_REQOP_CONF) {
 490		schedule();
 491		if (time_after(jiffies, timeout)) {
 492			dev_err(&spi->dev, "MCP251x didn't enter in config mode\n");
 493			return -EBUSY;
 494		}
 495	}
 496
 497	/* Disable and clear pending interrupts */
 498	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
 499	enable_irq(spi->irq);
 500
 501	return 0;
 502}
 503
 504static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
 505					   struct net_device *net)
 506{
 507	struct mcp251x_priv *priv = netdev_priv(net);
 508	struct spi_device *spi = priv->spi;
 509
 510	if (priv->tx_skb || priv->tx_len) {
 511		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
 512		return NETDEV_TX_BUSY;
 513	}
 514
 515	if (can_dropped_invalid_skb(net, skb))
 516		return NETDEV_TX_OK;
 517
 518	netif_stop_queue(net);
 519	priv->tx_skb = skb;
 520	queue_work(priv->wq, &priv->tx_work);
 521
 522	return NETDEV_TX_OK;
 523}
 524
 525static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
 526{
 527	struct mcp251x_priv *priv = netdev_priv(net);
 528
 529	switch (mode) {
 530	case CAN_MODE_START:
 531		mcp251x_clean(net);
 532		/* We have to delay work since SPI I/O may sleep */
 533		priv->can.state = CAN_STATE_ERROR_ACTIVE;
 534		priv->restart_tx = 1;
 535		if (priv->can.restart_ms == 0)
 536			priv->after_suspend = AFTER_SUSPEND_RESTART;
 537		queue_work(priv->wq, &priv->restart_work);
 538		break;
 539	default:
 540		return -EOPNOTSUPP;
 541	}
 542
 543	return 0;
 544}
 545
 546static int mcp251x_set_normal_mode(struct spi_device *spi)
 547{
 548	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 549	unsigned long timeout;
 
 550
 551	/* Enable interrupts */
 552	mcp251x_write_reg(spi, CANINTE,
 553			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
 554			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
 555
 556	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
 557		/* Put device into loopback mode */
 558		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
 559	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
 560		/* Put device into listen-only mode */
 561		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
 562	} else {
 563		/* Put device into normal mode */
 564		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
 565
 566		/* Wait for the device to enter normal mode */
 567		timeout = jiffies + HZ;
 568		while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
 569			schedule();
 570			if (time_after(jiffies, timeout)) {
 571				dev_err(&spi->dev, "MCP251x didn't enter in normal mode\n");
 572				return -EBUSY;
 573			}
 574		}
 575	}
 576	priv->can.state = CAN_STATE_ERROR_ACTIVE;
 577	return 0;
 578}
 579
 580static int mcp251x_do_set_bittiming(struct net_device *net)
 581{
 582	struct mcp251x_priv *priv = netdev_priv(net);
 583	struct can_bittiming *bt = &priv->can.bittiming;
 584	struct spi_device *spi = priv->spi;
 585
 586	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
 587			  (bt->brp - 1));
 588	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
 589			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
 590			   CNF2_SAM : 0) |
 591			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
 592			  (bt->prop_seg - 1));
 593	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
 594			   (bt->phase_seg2 - 1));
 595	dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
 596		mcp251x_read_reg(spi, CNF1),
 597		mcp251x_read_reg(spi, CNF2),
 598		mcp251x_read_reg(spi, CNF3));
 599
 600	return 0;
 601}
 602
 603static int mcp251x_setup(struct net_device *net, struct spi_device *spi)
 604{
 605	mcp251x_do_set_bittiming(net);
 606
 607	mcp251x_write_reg(spi, RXBCTRL(0),
 608			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
 609	mcp251x_write_reg(spi, RXBCTRL(1),
 610			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
 611	return 0;
 612}
 613
 614static int mcp251x_hw_reset(struct spi_device *spi)
 615{
 616	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 617	unsigned long timeout;
 618	int ret;
 619
 620	/* Wait for oscillator startup timer after power up */
 621	mdelay(MCP251X_OST_DELAY_MS);
 622
 623	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
 624	ret = mcp251x_spi_trans(spi, 1);
 625	if (ret)
 626		return ret;
 627
 628	/* Wait for oscillator startup timer after reset */
 629	mdelay(MCP251X_OST_DELAY_MS);
 630
 631	/* Wait for reset to finish */
 632	timeout = jiffies + HZ;
 633	while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) !=
 634	       CANCTRL_REQOP_CONF) {
 635		usleep_range(MCP251X_OST_DELAY_MS * 1000,
 636			     MCP251X_OST_DELAY_MS * 1000 * 2);
 637
 638		if (time_after(jiffies, timeout)) {
 639			dev_err(&spi->dev,
 640				"MCP251x didn't enter in conf mode after reset\n");
 641			return -EBUSY;
 642		}
 643	}
 644	return 0;
 645}
 646
 647static int mcp251x_hw_probe(struct spi_device *spi)
 648{
 649	u8 ctrl;
 650	int ret;
 651
 652	ret = mcp251x_hw_reset(spi);
 653	if (ret)
 654		return ret;
 655
 656	ctrl = mcp251x_read_reg(spi, CANCTRL);
 657
 658	dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
 659
 660	/* Check for power up default value */
 661	if ((ctrl & 0x17) != 0x07)
 662		return -ENODEV;
 663
 664	return 0;
 665}
 666
 667static int mcp251x_power_enable(struct regulator *reg, int enable)
 668{
 669	if (IS_ERR_OR_NULL(reg))
 670		return 0;
 671
 672	if (enable)
 673		return regulator_enable(reg);
 674	else
 675		return regulator_disable(reg);
 676}
 677
 678static int mcp251x_stop(struct net_device *net)
 679{
 680	struct mcp251x_priv *priv = netdev_priv(net);
 681	struct spi_device *spi = priv->spi;
 682
 683	close_candev(net);
 684
 685	priv->force_quit = 1;
 686	free_irq(spi->irq, priv);
 687	destroy_workqueue(priv->wq);
 688	priv->wq = NULL;
 689
 690	mutex_lock(&priv->mcp_lock);
 691
 692	/* Disable and clear pending interrupts */
 693	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
 694
 695	mcp251x_write_reg(spi, TXBCTRL(0), 0);
 696	mcp251x_clean(net);
 697
 698	mcp251x_hw_sleep(spi);
 699
 700	mcp251x_power_enable(priv->transceiver, 0);
 701
 702	priv->can.state = CAN_STATE_STOPPED;
 703
 704	mutex_unlock(&priv->mcp_lock);
 705
 706	can_led_event(net, CAN_LED_EVENT_STOP);
 707
 708	return 0;
 709}
 710
 711static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
 712{
 713	struct sk_buff *skb;
 714	struct can_frame *frame;
 715
 716	skb = alloc_can_err_skb(net, &frame);
 717	if (skb) {
 718		frame->can_id |= can_id;
 719		frame->data[1] = data1;
 720		netif_rx_ni(skb);
 721	} else {
 722		netdev_err(net, "cannot allocate error skb\n");
 723	}
 724}
 725
 726static void mcp251x_tx_work_handler(struct work_struct *ws)
 727{
 728	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
 729						 tx_work);
 730	struct spi_device *spi = priv->spi;
 731	struct net_device *net = priv->net;
 732	struct can_frame *frame;
 733
 734	mutex_lock(&priv->mcp_lock);
 735	if (priv->tx_skb) {
 736		if (priv->can.state == CAN_STATE_BUS_OFF) {
 737			mcp251x_clean(net);
 738		} else {
 739			frame = (struct can_frame *)priv->tx_skb->data;
 740
 741			if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
 742				frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
 743			mcp251x_hw_tx(spi, frame, 0);
 744			priv->tx_len = 1 + frame->can_dlc;
 745			can_put_echo_skb(priv->tx_skb, net, 0);
 746			priv->tx_skb = NULL;
 747		}
 748	}
 749	mutex_unlock(&priv->mcp_lock);
 750}
 751
 752static void mcp251x_restart_work_handler(struct work_struct *ws)
 753{
 754	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
 755						 restart_work);
 756	struct spi_device *spi = priv->spi;
 757	struct net_device *net = priv->net;
 758
 759	mutex_lock(&priv->mcp_lock);
 760	if (priv->after_suspend) {
 761		if (priv->after_suspend & AFTER_SUSPEND_POWER) {
 762			mcp251x_hw_reset(spi);
 763			mcp251x_setup(net, spi);
 
 764		} else {
 765			mcp251x_hw_wake(spi);
 766		}
 767		priv->force_quit = 0;
 768		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
 769			mcp251x_set_normal_mode(spi);
 770		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
 771			netif_device_attach(net);
 772			mcp251x_clean(net);
 773			mcp251x_set_normal_mode(spi);
 774			netif_wake_queue(net);
 775		} else {
 776			mcp251x_hw_sleep(spi);
 777		}
 778		priv->after_suspend = 0;
 779	}
 780
 781	if (priv->restart_tx) {
 782		priv->restart_tx = 0;
 783		mcp251x_write_reg(spi, TXBCTRL(0), 0);
 784		mcp251x_clean(net);
 785		netif_wake_queue(net);
 786		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
 787	}
 788	mutex_unlock(&priv->mcp_lock);
 789}
 790
 791static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
 792{
 793	struct mcp251x_priv *priv = dev_id;
 794	struct spi_device *spi = priv->spi;
 795	struct net_device *net = priv->net;
 796
 797	mutex_lock(&priv->mcp_lock);
 798	while (!priv->force_quit) {
 799		enum can_state new_state;
 800		u8 intf, eflag;
 801		u8 clear_intf = 0;
 802		int can_id = 0, data1 = 0;
 803
 804		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
 805
 806		/* mask out flags we don't care about */
 807		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
 808
 809		/* receive buffer 0 */
 810		if (intf & CANINTF_RX0IF) {
 811			mcp251x_hw_rx(spi, 0);
 812			/* Free one buffer ASAP
 813			 * (The MCP2515/25625 does this automatically.)
 814			 */
 815			if (mcp251x_is_2510(spi))
 816				mcp251x_write_bits(spi, CANINTF,
 817						   CANINTF_RX0IF, 0x00);
 
 
 
 
 
 
 
 
 
 
 
 
 818		}
 819
 820		/* receive buffer 1 */
 821		if (intf & CANINTF_RX1IF) {
 822			mcp251x_hw_rx(spi, 1);
 823			/* The MCP2515/25625 does this automatically. */
 824			if (mcp251x_is_2510(spi))
 825				clear_intf |= CANINTF_RX1IF;
 826		}
 827
 
 
 
 828		/* any error or tx interrupt we need to clear? */
 829		if (intf & (CANINTF_ERR | CANINTF_TX))
 830			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
 831		if (clear_intf)
 832			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
 833
 834		if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR))
 835			mcp251x_write_bits(spi, EFLG, eflag, 0x00);
 836
 837		/* Update can state */
 838		if (eflag & EFLG_TXBO) {
 839			new_state = CAN_STATE_BUS_OFF;
 840			can_id |= CAN_ERR_BUSOFF;
 841		} else if (eflag & EFLG_TXEP) {
 842			new_state = CAN_STATE_ERROR_PASSIVE;
 843			can_id |= CAN_ERR_CRTL;
 844			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
 845		} else if (eflag & EFLG_RXEP) {
 846			new_state = CAN_STATE_ERROR_PASSIVE;
 847			can_id |= CAN_ERR_CRTL;
 848			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
 849		} else if (eflag & EFLG_TXWAR) {
 850			new_state = CAN_STATE_ERROR_WARNING;
 851			can_id |= CAN_ERR_CRTL;
 852			data1 |= CAN_ERR_CRTL_TX_WARNING;
 853		} else if (eflag & EFLG_RXWAR) {
 854			new_state = CAN_STATE_ERROR_WARNING;
 855			can_id |= CAN_ERR_CRTL;
 856			data1 |= CAN_ERR_CRTL_RX_WARNING;
 857		} else {
 858			new_state = CAN_STATE_ERROR_ACTIVE;
 859		}
 860
 861		/* Update can state statistics */
 862		switch (priv->can.state) {
 863		case CAN_STATE_ERROR_ACTIVE:
 864			if (new_state >= CAN_STATE_ERROR_WARNING &&
 865			    new_state <= CAN_STATE_BUS_OFF)
 866				priv->can.can_stats.error_warning++;
 867			fallthrough;
 868		case CAN_STATE_ERROR_WARNING:
 869			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
 870			    new_state <= CAN_STATE_BUS_OFF)
 871				priv->can.can_stats.error_passive++;
 872			break;
 873		default:
 874			break;
 875		}
 876		priv->can.state = new_state;
 877
 878		if (intf & CANINTF_ERRIF) {
 879			/* Handle overflow counters */
 880			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
 881				if (eflag & EFLG_RX0OVR) {
 882					net->stats.rx_over_errors++;
 883					net->stats.rx_errors++;
 884				}
 885				if (eflag & EFLG_RX1OVR) {
 886					net->stats.rx_over_errors++;
 887					net->stats.rx_errors++;
 888				}
 889				can_id |= CAN_ERR_CRTL;
 890				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
 891			}
 892			mcp251x_error_skb(net, can_id, data1);
 893		}
 894
 895		if (priv->can.state == CAN_STATE_BUS_OFF) {
 896			if (priv->can.restart_ms == 0) {
 897				priv->force_quit = 1;
 898				priv->can.can_stats.bus_off++;
 899				can_bus_off(net);
 900				mcp251x_hw_sleep(spi);
 901				break;
 902			}
 903		}
 904
 905		if (intf == 0)
 906			break;
 907
 908		if (intf & CANINTF_TX) {
 909			net->stats.tx_packets++;
 910			net->stats.tx_bytes += priv->tx_len - 1;
 911			can_led_event(net, CAN_LED_EVENT_TX);
 912			if (priv->tx_len) {
 913				can_get_echo_skb(net, 0);
 914				priv->tx_len = 0;
 915			}
 916			netif_wake_queue(net);
 917		}
 918	}
 919	mutex_unlock(&priv->mcp_lock);
 920	return IRQ_HANDLED;
 921}
 922
 923static int mcp251x_open(struct net_device *net)
 924{
 925	struct mcp251x_priv *priv = netdev_priv(net);
 926	struct spi_device *spi = priv->spi;
 927	unsigned long flags = 0;
 928	int ret;
 929
 930	ret = open_candev(net);
 931	if (ret) {
 932		dev_err(&spi->dev, "unable to set initial baudrate!\n");
 933		return ret;
 934	}
 935
 936	mutex_lock(&priv->mcp_lock);
 937	mcp251x_power_enable(priv->transceiver, 1);
 938
 939	priv->force_quit = 0;
 940	priv->tx_skb = NULL;
 941	priv->tx_len = 0;
 942
 943	if (!dev_fwnode(&spi->dev))
 944		flags = IRQF_TRIGGER_FALLING;
 945
 946	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
 947				   flags | IRQF_ONESHOT, dev_name(&spi->dev),
 948				   priv);
 949	if (ret) {
 950		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
 951		goto out_close;
 952	}
 953
 954	priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM,
 955				   0);
 956	if (!priv->wq) {
 957		ret = -ENOMEM;
 958		goto out_clean;
 959	}
 960	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
 961	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
 962
 963	ret = mcp251x_hw_wake(spi);
 964	if (ret)
 965		goto out_free_wq;
 966	ret = mcp251x_setup(net, spi);
 967	if (ret)
 968		goto out_free_wq;
 969	ret = mcp251x_set_normal_mode(spi);
 970	if (ret)
 971		goto out_free_wq;
 972
 973	can_led_event(net, CAN_LED_EVENT_OPEN);
 974
 975	netif_wake_queue(net);
 976	mutex_unlock(&priv->mcp_lock);
 977
 978	return 0;
 979
 980out_free_wq:
 981	destroy_workqueue(priv->wq);
 982out_clean:
 983	free_irq(spi->irq, priv);
 984	mcp251x_hw_sleep(spi);
 985out_close:
 986	mcp251x_power_enable(priv->transceiver, 0);
 987	close_candev(net);
 988	mutex_unlock(&priv->mcp_lock);
 989	return ret;
 990}
 991
 992static const struct net_device_ops mcp251x_netdev_ops = {
 993	.ndo_open = mcp251x_open,
 994	.ndo_stop = mcp251x_stop,
 995	.ndo_start_xmit = mcp251x_hard_start_xmit,
 996	.ndo_change_mtu = can_change_mtu,
 997};
 998
 
 
 
 
 999static const struct of_device_id mcp251x_of_match[] = {
1000	{
1001		.compatible	= "microchip,mcp2510",
1002		.data		= (void *)CAN_MCP251X_MCP2510,
1003	},
1004	{
1005		.compatible	= "microchip,mcp2515",
1006		.data		= (void *)CAN_MCP251X_MCP2515,
1007	},
1008	{
1009		.compatible	= "microchip,mcp25625",
1010		.data		= (void *)CAN_MCP251X_MCP25625,
1011	},
1012	{ }
1013};
1014MODULE_DEVICE_TABLE(of, mcp251x_of_match);
1015
1016static const struct spi_device_id mcp251x_id_table[] = {
1017	{
1018		.name		= "mcp2510",
1019		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2510,
1020	},
1021	{
1022		.name		= "mcp2515",
1023		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2515,
1024	},
1025	{
1026		.name		= "mcp25625",
1027		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP25625,
1028	},
1029	{ }
1030};
1031MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1032
1033static int mcp251x_can_probe(struct spi_device *spi)
1034{
1035	const void *match = device_get_match_data(&spi->dev);
1036	struct net_device *net;
1037	struct mcp251x_priv *priv;
1038	struct clk *clk;
1039	u32 freq;
1040	int ret;
1041
1042	clk = devm_clk_get_optional(&spi->dev, NULL);
1043	if (IS_ERR(clk))
1044		return PTR_ERR(clk);
1045
1046	freq = clk_get_rate(clk);
1047	if (freq == 0)
1048		device_property_read_u32(&spi->dev, "clock-frequency", &freq);
1049
1050	/* Sanity check */
1051	if (freq < 1000000 || freq > 25000000)
1052		return -ERANGE;
1053
1054	/* Allocate can/net device */
1055	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1056	if (!net)
1057		return -ENOMEM;
1058
1059	ret = clk_prepare_enable(clk);
1060	if (ret)
1061		goto out_free;
1062
1063	net->netdev_ops = &mcp251x_netdev_ops;
 
1064	net->flags |= IFF_ECHO;
1065
1066	priv = netdev_priv(net);
1067	priv->can.bittiming_const = &mcp251x_bittiming_const;
1068	priv->can.do_set_mode = mcp251x_do_set_mode;
1069	priv->can.clock.freq = freq / 2;
1070	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1071		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1072	if (match)
1073		priv->model = (enum mcp251x_model)match;
1074	else
1075		priv->model = spi_get_device_id(spi)->driver_data;
1076	priv->net = net;
1077	priv->clk = clk;
1078
1079	spi_set_drvdata(spi, priv);
1080
1081	/* Configure the SPI bus */
1082	spi->bits_per_word = 8;
1083	if (mcp251x_is_2510(spi))
1084		spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1085	else
1086		spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1087	ret = spi_setup(spi);
1088	if (ret)
1089		goto out_clk;
1090
1091	priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
1092	priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
1093	if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1094	    (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1095		ret = -EPROBE_DEFER;
1096		goto out_clk;
1097	}
1098
1099	ret = mcp251x_power_enable(priv->power, 1);
1100	if (ret)
1101		goto out_clk;
1102
 
 
 
 
 
 
 
 
 
1103	priv->spi = spi;
1104	mutex_init(&priv->mcp_lock);
1105
1106	priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1107					GFP_KERNEL);
1108	if (!priv->spi_tx_buf) {
1109		ret = -ENOMEM;
1110		goto error_probe;
1111	}
1112
1113	priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1114					GFP_KERNEL);
1115	if (!priv->spi_rx_buf) {
1116		ret = -ENOMEM;
1117		goto error_probe;
1118	}
1119
1120	SET_NETDEV_DEV(net, &spi->dev);
1121
1122	/* Here is OK to not lock the MCP, no one knows about it yet */
1123	ret = mcp251x_hw_probe(spi);
1124	if (ret) {
1125		if (ret == -ENODEV)
1126			dev_err(&spi->dev, "Cannot initialize MCP%x. Wrong wiring?\n",
1127				priv->model);
1128		goto error_probe;
1129	}
1130
1131	mcp251x_hw_sleep(spi);
1132
1133	ret = register_candev(net);
1134	if (ret)
1135		goto error_probe;
1136
1137	devm_can_led_init(net);
 
 
1138
1139	netdev_info(net, "MCP%x successfully initialized.\n", priv->model);
1140	return 0;
1141
 
 
 
1142error_probe:
 
 
1143	mcp251x_power_enable(priv->power, 0);
1144
1145out_clk:
1146	clk_disable_unprepare(clk);
1147
1148out_free:
1149	free_candev(net);
1150
1151	dev_err(&spi->dev, "Probe failed, err=%d\n", -ret);
1152	return ret;
1153}
1154
1155static int mcp251x_can_remove(struct spi_device *spi)
1156{
1157	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1158	struct net_device *net = priv->net;
1159
1160	unregister_candev(net);
1161
1162	mcp251x_power_enable(priv->power, 0);
1163
 
 
 
1164	clk_disable_unprepare(priv->clk);
1165
1166	free_candev(net);
1167
1168	return 0;
1169}
1170
1171static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1172{
1173	struct spi_device *spi = to_spi_device(dev);
1174	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1175	struct net_device *net = priv->net;
1176
1177	priv->force_quit = 1;
1178	disable_irq(spi->irq);
1179	/* Note: at this point neither IST nor workqueues are running.
1180	 * open/stop cannot be called anyway so locking is not needed
1181	 */
1182	if (netif_running(net)) {
1183		netif_device_detach(net);
1184
1185		mcp251x_hw_sleep(spi);
1186		mcp251x_power_enable(priv->transceiver, 0);
1187		priv->after_suspend = AFTER_SUSPEND_UP;
1188	} else {
1189		priv->after_suspend = AFTER_SUSPEND_DOWN;
1190	}
1191
1192	mcp251x_power_enable(priv->power, 0);
1193	priv->after_suspend |= AFTER_SUSPEND_POWER;
1194
1195	return 0;
1196}
1197
1198static int __maybe_unused mcp251x_can_resume(struct device *dev)
1199{
1200	struct spi_device *spi = to_spi_device(dev);
1201	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1202
1203	if (priv->after_suspend & AFTER_SUSPEND_POWER)
1204		mcp251x_power_enable(priv->power, 1);
1205	if (priv->after_suspend & AFTER_SUSPEND_UP)
1206		mcp251x_power_enable(priv->transceiver, 1);
1207
1208	if (priv->after_suspend & (AFTER_SUSPEND_POWER | AFTER_SUSPEND_UP))
1209		queue_work(priv->wq, &priv->restart_work);
1210	else
1211		priv->after_suspend = 0;
1212
1213	priv->force_quit = 0;
1214	enable_irq(spi->irq);
1215	return 0;
1216}
1217
1218static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1219	mcp251x_can_resume);
1220
1221static struct spi_driver mcp251x_can_driver = {
1222	.driver = {
1223		.name = DEVICE_NAME,
1224		.of_match_table = mcp251x_of_match,
1225		.pm = &mcp251x_can_pm_ops,
1226	},
1227	.id_table = mcp251x_id_table,
1228	.probe = mcp251x_can_probe,
1229	.remove = mcp251x_can_remove,
1230};
1231module_spi_driver(mcp251x_can_driver);
1232
1233MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1234	      "Christian Pellegrin <chripell@evolware.org>");
1235MODULE_DESCRIPTION("Microchip 251x/25625 CAN driver");
1236MODULE_LICENSE("GPL v2");