Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
   2/*
   3 * Copyright(c) 2015-2020 Intel Corporation.
   4 * Copyright(c) 2021 Cornelis Networks.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <linux/spinlock.h>
   8#include <linux/pci.h>
   9#include <linux/io.h>
  10#include <linux/delay.h>
  11#include <linux/netdevice.h>
  12#include <linux/vmalloc.h>
  13#include <linux/module.h>
  14#include <linux/prefetch.h>
  15#include <rdma/ib_verbs.h>
  16#include <linux/etherdevice.h>
  17
  18#include "hfi.h"
  19#include "trace.h"
  20#include "qp.h"
  21#include "sdma.h"
  22#include "debugfs.h"
  23#include "vnic.h"
  24#include "fault.h"
  25
  26#include "ipoib.h"
  27#include "netdev.h"
  28
  29#undef pr_fmt
  30#define pr_fmt(fmt) DRIVER_NAME ": " fmt
  31
 
 
 
 
 
 
  32DEFINE_MUTEX(hfi1_mutex);	/* general driver use */
  33
  34unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
  35module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
  36MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify(
  37		 HFI1_DEFAULT_MAX_MTU));
  38
  39unsigned int hfi1_cu = 1;
  40module_param_named(cu, hfi1_cu, uint, S_IRUGO);
  41MODULE_PARM_DESC(cu, "Credit return units");
  42
  43unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
  44static int hfi1_caps_set(const char *val, const struct kernel_param *kp);
  45static int hfi1_caps_get(char *buffer, const struct kernel_param *kp);
  46static const struct kernel_param_ops cap_ops = {
  47	.set = hfi1_caps_set,
  48	.get = hfi1_caps_get
  49};
  50module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
  51MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
  52
  53MODULE_LICENSE("Dual BSD/GPL");
  54MODULE_DESCRIPTION("Cornelis Omni-Path Express driver");
  55
  56/*
  57 * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
  58 */
  59#define MAX_PKT_RECV 64
  60/*
  61 * MAX_PKT_THREAD_RCV is the max # of packets processed before
  62 * the qp_wait_list queue is flushed.
  63 */
  64#define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4)
  65#define EGR_HEAD_UPDATE_THRESHOLD 16
  66
  67struct hfi1_ib_stats hfi1_stats;
  68
  69static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
  70{
  71	int ret = 0;
  72	unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
  73		cap_mask = *cap_mask_ptr, value, diff,
  74		write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
  75			      HFI1_CAP_WRITABLE_MASK);
  76
  77	ret = kstrtoul(val, 0, &value);
  78	if (ret) {
  79		pr_warn("Invalid module parameter value for 'cap_mask'\n");
  80		goto done;
  81	}
  82	/* Get the changed bits (except the locked bit) */
  83	diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
  84
  85	/* Remove any bits that are not allowed to change after driver load */
  86	if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
  87		pr_warn("Ignoring non-writable capability bits %#lx\n",
  88			diff & ~write_mask);
  89		diff &= write_mask;
  90	}
  91
  92	/* Mask off any reserved bits */
  93	diff &= ~HFI1_CAP_RESERVED_MASK;
  94	/* Clear any previously set and changing bits */
  95	cap_mask &= ~diff;
  96	/* Update the bits with the new capability */
  97	cap_mask |= (value & diff);
  98	/* Check for any kernel/user restrictions */
  99	diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
 100		((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
 101	cap_mask &= ~diff;
 102	/* Set the bitmask to the final set */
 103	*cap_mask_ptr = cap_mask;
 104done:
 105	return ret;
 106}
 107
 108static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
 109{
 110	unsigned long cap_mask = *(unsigned long *)kp->arg;
 111
 112	cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
 113	cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
 114
 115	return sysfs_emit(buffer, "0x%lx\n", cap_mask);
 116}
 117
 118struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi)
 119{
 120	struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
 121	struct hfi1_devdata *dd = container_of(ibdev,
 122					       struct hfi1_devdata, verbs_dev);
 123	return dd->pcidev;
 124}
 125
 126/*
 127 * Return count of units with at least one port ACTIVE.
 128 */
 129int hfi1_count_active_units(void)
 130{
 131	struct hfi1_devdata *dd;
 132	struct hfi1_pportdata *ppd;
 133	unsigned long index, flags;
 134	int pidx, nunits_active = 0;
 135
 136	xa_lock_irqsave(&hfi1_dev_table, flags);
 137	xa_for_each(&hfi1_dev_table, index, dd) {
 138		if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase1)
 139			continue;
 140		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 141			ppd = dd->pport + pidx;
 142			if (ppd->lid && ppd->linkup) {
 143				nunits_active++;
 144				break;
 145			}
 146		}
 147	}
 148	xa_unlock_irqrestore(&hfi1_dev_table, flags);
 149	return nunits_active;
 150}
 151
 152/*
 153 * Get address of eager buffer from it's index (allocated in chunks, not
 154 * contiguous).
 155 */
 156static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
 157			       u8 *update)
 158{
 159	u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
 160
 161	*update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
 162	return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
 163			(offset * RCV_BUF_BLOCK_SIZE));
 164}
 165
 166static inline void *hfi1_get_header(struct hfi1_ctxtdata *rcd,
 167				    __le32 *rhf_addr)
 168{
 169	u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
 170
 171	return (void *)(rhf_addr - rcd->rhf_offset + offset);
 172}
 173
 174static inline struct ib_header *hfi1_get_msgheader(struct hfi1_ctxtdata *rcd,
 175						   __le32 *rhf_addr)
 176{
 177	return (struct ib_header *)hfi1_get_header(rcd, rhf_addr);
 178}
 179
 180static inline struct hfi1_16b_header
 181		*hfi1_get_16B_header(struct hfi1_ctxtdata *rcd,
 182				     __le32 *rhf_addr)
 183{
 184	return (struct hfi1_16b_header *)hfi1_get_header(rcd, rhf_addr);
 185}
 186
 187/*
 188 * Validate and encode the a given RcvArray Buffer size.
 189 * The function will check whether the given size falls within
 190 * allowed size ranges for the respective type and, optionally,
 191 * return the proper encoding.
 192 */
 193int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
 194{
 195	if (unlikely(!PAGE_ALIGNED(size)))
 196		return 0;
 197	if (unlikely(size < MIN_EAGER_BUFFER))
 198		return 0;
 199	if (size >
 200	    (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
 201		return 0;
 202	if (encoded)
 203		*encoded = ilog2(size / PAGE_SIZE) + 1;
 204	return 1;
 205}
 206
 207static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
 208		       struct hfi1_packet *packet)
 209{
 210	struct ib_header *rhdr = packet->hdr;
 211	u32 rte = rhf_rcv_type_err(packet->rhf);
 212	u32 mlid_base;
 213	struct hfi1_ibport *ibp = rcd_to_iport(rcd);
 214	struct hfi1_devdata *dd = ppd->dd;
 215	struct hfi1_ibdev *verbs_dev = &dd->verbs_dev;
 216	struct rvt_dev_info *rdi = &verbs_dev->rdi;
 217
 218	if ((packet->rhf & RHF_DC_ERR) &&
 219	    hfi1_dbg_fault_suppress_err(verbs_dev))
 220		return;
 221
 222	if (packet->rhf & RHF_ICRC_ERR)
 223		return;
 224
 225	if (packet->etype == RHF_RCV_TYPE_BYPASS) {
 226		goto drop;
 227	} else {
 228		u8 lnh = ib_get_lnh(rhdr);
 229
 230		mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE);
 231		if (lnh == HFI1_LRH_BTH) {
 232			packet->ohdr = &rhdr->u.oth;
 233		} else if (lnh == HFI1_LRH_GRH) {
 234			packet->ohdr = &rhdr->u.l.oth;
 235			packet->grh = &rhdr->u.l.grh;
 236		} else {
 237			goto drop;
 238		}
 239	}
 240
 241	if (packet->rhf & RHF_TID_ERR) {
 242		/* For TIDERR and RC QPs preemptively schedule a NAK */
 243		u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
 244		u32 dlid = ib_get_dlid(rhdr);
 245		u32 qp_num;
 246
 247		/* Sanity check packet */
 248		if (tlen < 24)
 249			goto drop;
 250
 251		/* Check for GRH */
 252		if (packet->grh) {
 253			u32 vtf;
 254			struct ib_grh *grh = packet->grh;
 255
 256			if (grh->next_hdr != IB_GRH_NEXT_HDR)
 257				goto drop;
 258			vtf = be32_to_cpu(grh->version_tclass_flow);
 259			if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
 260				goto drop;
 261		}
 262
 263		/* Get the destination QP number. */
 264		qp_num = ib_bth_get_qpn(packet->ohdr);
 265		if (dlid < mlid_base) {
 266			struct rvt_qp *qp;
 267			unsigned long flags;
 268
 269			rcu_read_lock();
 270			qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
 271			if (!qp) {
 272				rcu_read_unlock();
 273				goto drop;
 274			}
 275
 276			/*
 277			 * Handle only RC QPs - for other QP types drop error
 278			 * packet.
 279			 */
 280			spin_lock_irqsave(&qp->r_lock, flags);
 281
 282			/* Check for valid receive state. */
 283			if (!(ib_rvt_state_ops[qp->state] &
 284			      RVT_PROCESS_RECV_OK)) {
 285				ibp->rvp.n_pkt_drops++;
 286			}
 287
 288			switch (qp->ibqp.qp_type) {
 289			case IB_QPT_RC:
 290				hfi1_rc_hdrerr(rcd, packet, qp);
 291				break;
 292			default:
 293				/* For now don't handle any other QP types */
 294				break;
 295			}
 296
 297			spin_unlock_irqrestore(&qp->r_lock, flags);
 298			rcu_read_unlock();
 299		} /* Unicast QP */
 300	} /* Valid packet with TIDErr */
 301
 302	/* handle "RcvTypeErr" flags */
 303	switch (rte) {
 304	case RHF_RTE_ERROR_OP_CODE_ERR:
 305	{
 306		void *ebuf = NULL;
 307		u8 opcode;
 308
 309		if (rhf_use_egr_bfr(packet->rhf))
 310			ebuf = packet->ebuf;
 311
 312		if (!ebuf)
 313			goto drop; /* this should never happen */
 314
 315		opcode = ib_bth_get_opcode(packet->ohdr);
 316		if (opcode == IB_OPCODE_CNP) {
 317			/*
 318			 * Only in pre-B0 h/w is the CNP_OPCODE handled
 319			 * via this code path.
 320			 */
 321			struct rvt_qp *qp = NULL;
 322			u32 lqpn, rqpn;
 323			u16 rlid;
 324			u8 svc_type, sl, sc5;
 325
 326			sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf);
 327			sl = ibp->sc_to_sl[sc5];
 328
 329			lqpn = ib_bth_get_qpn(packet->ohdr);
 330			rcu_read_lock();
 331			qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn);
 332			if (!qp) {
 333				rcu_read_unlock();
 334				goto drop;
 335			}
 336
 337			switch (qp->ibqp.qp_type) {
 338			case IB_QPT_UD:
 339				rlid = 0;
 340				rqpn = 0;
 341				svc_type = IB_CC_SVCTYPE_UD;
 342				break;
 343			case IB_QPT_UC:
 344				rlid = ib_get_slid(rhdr);
 345				rqpn = qp->remote_qpn;
 346				svc_type = IB_CC_SVCTYPE_UC;
 347				break;
 348			default:
 349				rcu_read_unlock();
 350				goto drop;
 351			}
 352
 353			process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
 354			rcu_read_unlock();
 355		}
 356
 357		packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
 358		break;
 359	}
 360	default:
 361		break;
 362	}
 363
 364drop:
 365	return;
 366}
 367
 368static inline void init_packet(struct hfi1_ctxtdata *rcd,
 369			       struct hfi1_packet *packet)
 370{
 371	packet->rsize = get_hdrqentsize(rcd); /* words */
 372	packet->maxcnt = get_hdrq_cnt(rcd) * packet->rsize; /* words */
 373	packet->rcd = rcd;
 374	packet->updegr = 0;
 375	packet->etail = -1;
 376	packet->rhf_addr = get_rhf_addr(rcd);
 377	packet->rhf = rhf_to_cpu(packet->rhf_addr);
 378	packet->rhqoff = hfi1_rcd_head(rcd);
 379	packet->numpkt = 0;
 380}
 381
 382/* We support only two types - 9B and 16B for now */
 383static const hfi1_handle_cnp hfi1_handle_cnp_tbl[2] = {
 384	[HFI1_PKT_TYPE_9B] = &return_cnp,
 385	[HFI1_PKT_TYPE_16B] = &return_cnp_16B
 386};
 387
 388/**
 389 * hfi1_process_ecn_slowpath - Process FECN or BECN bits
 390 * @qp: The packet's destination QP
 391 * @pkt: The packet itself.
 392 * @prescan: Is the caller the RXQ prescan
 393 *
 394 * Process the packet's FECN or BECN bits. By now, the packet
 395 * has already been evaluated whether processing of those bit should
 396 * be done.
 397 * The significance of the @prescan argument is that if the caller
 398 * is the RXQ prescan, a CNP will be send out instead of waiting for the
 399 * normal packet processing to send an ACK with BECN set (or a CNP).
 400 */
 401bool hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
 402			       bool prescan)
 403{
 404	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
 405	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
 406	struct ib_other_headers *ohdr = pkt->ohdr;
 407	struct ib_grh *grh = pkt->grh;
 408	u32 rqpn = 0;
 409	u16 pkey;
 410	u32 rlid, slid, dlid = 0;
 411	u8 hdr_type, sc, svc_type, opcode;
 412	bool is_mcast = false, ignore_fecn = false, do_cnp = false,
 413		fecn, becn;
 414
 415	/* can be called from prescan */
 416	if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
 417		pkey = hfi1_16B_get_pkey(pkt->hdr);
 418		sc = hfi1_16B_get_sc(pkt->hdr);
 419		dlid = hfi1_16B_get_dlid(pkt->hdr);
 420		slid = hfi1_16B_get_slid(pkt->hdr);
 421		is_mcast = hfi1_is_16B_mcast(dlid);
 422		opcode = ib_bth_get_opcode(ohdr);
 423		hdr_type = HFI1_PKT_TYPE_16B;
 424		fecn = hfi1_16B_get_fecn(pkt->hdr);
 425		becn = hfi1_16B_get_becn(pkt->hdr);
 426	} else {
 427		pkey = ib_bth_get_pkey(ohdr);
 428		sc = hfi1_9B_get_sc5(pkt->hdr, pkt->rhf);
 429		dlid = qp->ibqp.qp_type != IB_QPT_UD ? ib_get_dlid(pkt->hdr) :
 430			ppd->lid;
 431		slid = ib_get_slid(pkt->hdr);
 432		is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
 433			   (dlid != be16_to_cpu(IB_LID_PERMISSIVE));
 434		opcode = ib_bth_get_opcode(ohdr);
 435		hdr_type = HFI1_PKT_TYPE_9B;
 436		fecn = ib_bth_get_fecn(ohdr);
 437		becn = ib_bth_get_becn(ohdr);
 438	}
 439
 440	switch (qp->ibqp.qp_type) {
 441	case IB_QPT_UD:
 442		rlid = slid;
 443		rqpn = ib_get_sqpn(pkt->ohdr);
 444		svc_type = IB_CC_SVCTYPE_UD;
 445		break;
 446	case IB_QPT_SMI:
 447	case IB_QPT_GSI:
 448		rlid = slid;
 449		rqpn = ib_get_sqpn(pkt->ohdr);
 450		svc_type = IB_CC_SVCTYPE_UD;
 451		break;
 452	case IB_QPT_UC:
 453		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
 454		rqpn = qp->remote_qpn;
 455		svc_type = IB_CC_SVCTYPE_UC;
 456		break;
 457	case IB_QPT_RC:
 458		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
 459		rqpn = qp->remote_qpn;
 460		svc_type = IB_CC_SVCTYPE_RC;
 461		break;
 462	default:
 463		return false;
 464	}
 465
 466	ignore_fecn = is_mcast || (opcode == IB_OPCODE_CNP) ||
 467		(opcode == IB_OPCODE_RC_ACKNOWLEDGE);
 468	/*
 469	 * ACKNOWLEDGE packets do not get a CNP but this will be
 470	 * guarded by ignore_fecn above.
 471	 */
 472	do_cnp = prescan ||
 473		(opcode >= IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST &&
 474		 opcode <= IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE) ||
 475		opcode == TID_OP(READ_RESP) ||
 476		opcode == TID_OP(ACK);
 477
 478	/* Call appropriate CNP handler */
 479	if (!ignore_fecn && do_cnp && fecn)
 480		hfi1_handle_cnp_tbl[hdr_type](ibp, qp, rqpn, pkey,
 481					      dlid, rlid, sc, grh);
 482
 483	if (becn) {
 484		u32 lqpn = be32_to_cpu(ohdr->bth[1]) & RVT_QPN_MASK;
 485		u8 sl = ibp->sc_to_sl[sc];
 486
 487		process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
 488	}
 489	return !ignore_fecn && fecn;
 490}
 491
 492struct ps_mdata {
 493	struct hfi1_ctxtdata *rcd;
 494	u32 rsize;
 495	u32 maxcnt;
 496	u32 ps_head;
 497	u32 ps_tail;
 498	u32 ps_seq;
 499};
 500
 501static inline void init_ps_mdata(struct ps_mdata *mdata,
 502				 struct hfi1_packet *packet)
 503{
 504	struct hfi1_ctxtdata *rcd = packet->rcd;
 505
 506	mdata->rcd = rcd;
 507	mdata->rsize = packet->rsize;
 508	mdata->maxcnt = packet->maxcnt;
 509	mdata->ps_head = packet->rhqoff;
 510
 511	if (get_dma_rtail_setting(rcd)) {
 512		mdata->ps_tail = get_rcvhdrtail(rcd);
 513		if (rcd->ctxt == HFI1_CTRL_CTXT)
 514			mdata->ps_seq = hfi1_seq_cnt(rcd);
 515		else
 516			mdata->ps_seq = 0; /* not used with DMA_RTAIL */
 517	} else {
 518		mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
 519		mdata->ps_seq = hfi1_seq_cnt(rcd);
 520	}
 521}
 522
 523static inline int ps_done(struct ps_mdata *mdata, u64 rhf,
 524			  struct hfi1_ctxtdata *rcd)
 525{
 526	if (get_dma_rtail_setting(rcd))
 527		return mdata->ps_head == mdata->ps_tail;
 528	return mdata->ps_seq != rhf_rcv_seq(rhf);
 529}
 530
 531static inline int ps_skip(struct ps_mdata *mdata, u64 rhf,
 532			  struct hfi1_ctxtdata *rcd)
 533{
 534	/*
 535	 * Control context can potentially receive an invalid rhf.
 536	 * Drop such packets.
 537	 */
 538	if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail))
 539		return mdata->ps_seq != rhf_rcv_seq(rhf);
 540
 541	return 0;
 542}
 543
 544static inline void update_ps_mdata(struct ps_mdata *mdata,
 545				   struct hfi1_ctxtdata *rcd)
 546{
 547	mdata->ps_head += mdata->rsize;
 548	if (mdata->ps_head >= mdata->maxcnt)
 549		mdata->ps_head = 0;
 550
 551	/* Control context must do seq counting */
 552	if (!get_dma_rtail_setting(rcd) ||
 553	    rcd->ctxt == HFI1_CTRL_CTXT)
 554		mdata->ps_seq = hfi1_seq_incr_wrap(mdata->ps_seq);
 555}
 556
 557/*
 558 * prescan_rxq - search through the receive queue looking for packets
 559 * containing Excplicit Congestion Notifications (FECNs, or BECNs).
 560 * When an ECN is found, process the Congestion Notification, and toggle
 561 * it off.
 562 * This is declared as a macro to allow quick checking of the port to avoid
 563 * the overhead of a function call if not enabled.
 564 */
 565#define prescan_rxq(rcd, packet) \
 566	do { \
 567		if (rcd->ppd->cc_prescan) \
 568			__prescan_rxq(packet); \
 569	} while (0)
 570static void __prescan_rxq(struct hfi1_packet *packet)
 571{
 572	struct hfi1_ctxtdata *rcd = packet->rcd;
 573	struct ps_mdata mdata;
 574
 575	init_ps_mdata(&mdata, packet);
 576
 577	while (1) {
 578		struct hfi1_ibport *ibp = rcd_to_iport(rcd);
 579		__le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
 580					 packet->rcd->rhf_offset;
 581		struct rvt_qp *qp;
 582		struct ib_header *hdr;
 583		struct rvt_dev_info *rdi = &rcd->dd->verbs_dev.rdi;
 584		u64 rhf = rhf_to_cpu(rhf_addr);
 585		u32 etype = rhf_rcv_type(rhf), qpn, bth1;
 586		u8 lnh;
 587
 588		if (ps_done(&mdata, rhf, rcd))
 589			break;
 590
 591		if (ps_skip(&mdata, rhf, rcd))
 592			goto next;
 593
 594		if (etype != RHF_RCV_TYPE_IB)
 595			goto next;
 596
 597		packet->hdr = hfi1_get_msgheader(packet->rcd, rhf_addr);
 598		hdr = packet->hdr;
 599		lnh = ib_get_lnh(hdr);
 600
 601		if (lnh == HFI1_LRH_BTH) {
 602			packet->ohdr = &hdr->u.oth;
 603			packet->grh = NULL;
 604		} else if (lnh == HFI1_LRH_GRH) {
 605			packet->ohdr = &hdr->u.l.oth;
 606			packet->grh = &hdr->u.l.grh;
 607		} else {
 608			goto next; /* just in case */
 609		}
 610
 611		if (!hfi1_may_ecn(packet))
 612			goto next;
 613
 614		bth1 = be32_to_cpu(packet->ohdr->bth[1]);
 615		qpn = bth1 & RVT_QPN_MASK;
 616		rcu_read_lock();
 617		qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn);
 618
 619		if (!qp) {
 620			rcu_read_unlock();
 621			goto next;
 622		}
 623
 624		hfi1_process_ecn_slowpath(qp, packet, true);
 625		rcu_read_unlock();
 626
 627		/* turn off BECN, FECN */
 628		bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK);
 629		packet->ohdr->bth[1] = cpu_to_be32(bth1);
 630next:
 631		update_ps_mdata(&mdata, rcd);
 632	}
 633}
 634
 635static void process_rcv_qp_work(struct hfi1_packet *packet)
 636{
 637	struct rvt_qp *qp, *nqp;
 638	struct hfi1_ctxtdata *rcd = packet->rcd;
 639
 640	/*
 641	 * Iterate over all QPs waiting to respond.
 642	 * The list won't change since the IRQ is only run on one CPU.
 643	 */
 644	list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
 645		list_del_init(&qp->rspwait);
 646		if (qp->r_flags & RVT_R_RSP_NAK) {
 647			qp->r_flags &= ~RVT_R_RSP_NAK;
 648			packet->qp = qp;
 649			hfi1_send_rc_ack(packet, 0);
 650		}
 651		if (qp->r_flags & RVT_R_RSP_SEND) {
 652			unsigned long flags;
 653
 654			qp->r_flags &= ~RVT_R_RSP_SEND;
 655			spin_lock_irqsave(&qp->s_lock, flags);
 656			if (ib_rvt_state_ops[qp->state] &
 657					RVT_PROCESS_OR_FLUSH_SEND)
 658				hfi1_schedule_send(qp);
 659			spin_unlock_irqrestore(&qp->s_lock, flags);
 660		}
 661		rvt_put_qp(qp);
 662	}
 663}
 664
 665static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread)
 666{
 667	if (thread) {
 668		if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0)
 669			/* allow defered processing */
 670			process_rcv_qp_work(packet);
 671		cond_resched();
 672		return RCV_PKT_OK;
 673	} else {
 674		this_cpu_inc(*packet->rcd->dd->rcv_limit);
 675		return RCV_PKT_LIMIT;
 676	}
 677}
 678
 679static inline int check_max_packet(struct hfi1_packet *packet, int thread)
 680{
 681	int ret = RCV_PKT_OK;
 682
 683	if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0))
 684		ret = max_packet_exceeded(packet, thread);
 685	return ret;
 686}
 687
 688static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread)
 689{
 690	int ret;
 691
 692	packet->rcd->dd->ctx0_seq_drop++;
 693	/* Set up for the next packet */
 694	packet->rhqoff += packet->rsize;
 695	if (packet->rhqoff >= packet->maxcnt)
 696		packet->rhqoff = 0;
 697
 698	packet->numpkt++;
 699	ret = check_max_packet(packet, thread);
 700
 701	packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
 702				     packet->rcd->rhf_offset;
 703	packet->rhf = rhf_to_cpu(packet->rhf_addr);
 704
 705	return ret;
 706}
 707
 708static void process_rcv_packet_napi(struct hfi1_packet *packet)
 709{
 710	packet->etype = rhf_rcv_type(packet->rhf);
 711
 712	/* total length */
 713	packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
 714	/* retrieve eager buffer details */
 715	packet->etail = rhf_egr_index(packet->rhf);
 716	packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
 717				  &packet->updegr);
 718	/*
 719	 * Prefetch the contents of the eager buffer.  It is
 720	 * OK to send a negative length to prefetch_range().
 721	 * The +2 is the size of the RHF.
 722	 */
 723	prefetch_range(packet->ebuf,
 724		       packet->tlen - ((packet->rcd->rcvhdrqentsize -
 725				       (rhf_hdrq_offset(packet->rhf)
 726					+ 2)) * 4));
 727
 728	packet->rcd->rhf_rcv_function_map[packet->etype](packet);
 729	packet->numpkt++;
 730
 731	/* Set up for the next packet */
 732	packet->rhqoff += packet->rsize;
 733	if (packet->rhqoff >= packet->maxcnt)
 734		packet->rhqoff = 0;
 735
 736	packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
 737				      packet->rcd->rhf_offset;
 738	packet->rhf = rhf_to_cpu(packet->rhf_addr);
 739}
 740
 741static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
 742{
 743	int ret;
 744
 745	packet->etype = rhf_rcv_type(packet->rhf);
 746
 747	/* total length */
 748	packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
 749	/* retrieve eager buffer details */
 750	packet->ebuf = NULL;
 751	if (rhf_use_egr_bfr(packet->rhf)) {
 752		packet->etail = rhf_egr_index(packet->rhf);
 753		packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
 754				 &packet->updegr);
 755		/*
 756		 * Prefetch the contents of the eager buffer.  It is
 757		 * OK to send a negative length to prefetch_range().
 758		 * The +2 is the size of the RHF.
 759		 */
 760		prefetch_range(packet->ebuf,
 761			       packet->tlen - ((get_hdrqentsize(packet->rcd) -
 762					       (rhf_hdrq_offset(packet->rhf)
 763						+ 2)) * 4));
 764	}
 765
 766	/*
 767	 * Call a type specific handler for the packet. We
 768	 * should be able to trust that etype won't be beyond
 769	 * the range of valid indexes. If so something is really
 770	 * wrong and we can probably just let things come
 771	 * crashing down. There is no need to eat another
 772	 * comparison in this performance critical code.
 773	 */
 774	packet->rcd->rhf_rcv_function_map[packet->etype](packet);
 775	packet->numpkt++;
 776
 777	/* Set up for the next packet */
 778	packet->rhqoff += packet->rsize;
 779	if (packet->rhqoff >= packet->maxcnt)
 780		packet->rhqoff = 0;
 781
 782	ret = check_max_packet(packet, thread);
 783
 784	packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
 785				      packet->rcd->rhf_offset;
 786	packet->rhf = rhf_to_cpu(packet->rhf_addr);
 787
 788	return ret;
 789}
 790
 791static inline void process_rcv_update(int last, struct hfi1_packet *packet)
 792{
 793	/*
 794	 * Update head regs etc., every 16 packets, if not last pkt,
 795	 * to help prevent rcvhdrq overflows, when many packets
 796	 * are processed and queue is nearly full.
 797	 * Don't request an interrupt for intermediate updates.
 798	 */
 799	if (!last && !(packet->numpkt & 0xf)) {
 800		update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
 801			       packet->etail, 0, 0);
 802		packet->updegr = 0;
 803	}
 804	packet->grh = NULL;
 805}
 806
 807static inline void finish_packet(struct hfi1_packet *packet)
 808{
 809	/*
 810	 * Nothing we need to free for the packet.
 811	 *
 812	 * The only thing we need to do is a final update and call for an
 813	 * interrupt
 814	 */
 815	update_usrhead(packet->rcd, hfi1_rcd_head(packet->rcd), packet->updegr,
 816		       packet->etail, rcv_intr_dynamic, packet->numpkt);
 817}
 818
 819/*
 820 * handle_receive_interrupt_napi_fp - receive a packet
 821 * @rcd: the context
 822 * @budget: polling budget
 823 *
 824 * Called from interrupt handler for receive interrupt.
 825 * This is the fast path interrupt handler
 826 * when executing napi soft irq environment.
 827 */
 828int handle_receive_interrupt_napi_fp(struct hfi1_ctxtdata *rcd, int budget)
 829{
 830	struct hfi1_packet packet;
 831
 832	init_packet(rcd, &packet);
 833	if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
 834		goto bail;
 835
 836	while (packet.numpkt < budget) {
 837		process_rcv_packet_napi(&packet);
 838		if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
 839			break;
 840
 841		process_rcv_update(0, &packet);
 842	}
 843	hfi1_set_rcd_head(rcd, packet.rhqoff);
 844bail:
 845	finish_packet(&packet);
 846	return packet.numpkt;
 847}
 848
 849/*
 850 * Handle receive interrupts when using the no dma rtail option.
 851 */
 852int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
 853{
 854	int last = RCV_PKT_OK;
 855	struct hfi1_packet packet;
 856
 857	init_packet(rcd, &packet);
 858	if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) {
 859		last = RCV_PKT_DONE;
 860		goto bail;
 861	}
 862
 863	prescan_rxq(rcd, &packet);
 864
 865	while (last == RCV_PKT_OK) {
 866		last = process_rcv_packet(&packet, thread);
 867		if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
 868			last = RCV_PKT_DONE;
 869		process_rcv_update(last, &packet);
 870	}
 871	process_rcv_qp_work(&packet);
 872	hfi1_set_rcd_head(rcd, packet.rhqoff);
 873bail:
 874	finish_packet(&packet);
 875	return last;
 876}
 877
 878int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
 879{
 880	u32 hdrqtail;
 881	int last = RCV_PKT_OK;
 882	struct hfi1_packet packet;
 883
 884	init_packet(rcd, &packet);
 885	hdrqtail = get_rcvhdrtail(rcd);
 886	if (packet.rhqoff == hdrqtail) {
 887		last = RCV_PKT_DONE;
 888		goto bail;
 889	}
 890	smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
 891
 892	prescan_rxq(rcd, &packet);
 893
 894	while (last == RCV_PKT_OK) {
 895		last = process_rcv_packet(&packet, thread);
 896		if (packet.rhqoff == hdrqtail)
 897			last = RCV_PKT_DONE;
 898		process_rcv_update(last, &packet);
 899	}
 900	process_rcv_qp_work(&packet);
 901	hfi1_set_rcd_head(rcd, packet.rhqoff);
 902bail:
 903	finish_packet(&packet);
 904	return last;
 905}
 906
 907static void set_all_fastpath(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
 908{
 909	u16 i;
 910
 911	/*
 912	 * For dynamically allocated kernel contexts (like vnic) switch
 913	 * interrupt handler only for that context. Otherwise, switch
 914	 * interrupt handler for all statically allocated kernel contexts.
 915	 */
 916	if (rcd->ctxt >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic) {
 917		hfi1_rcd_get(rcd);
 918		hfi1_set_fast(rcd);
 919		hfi1_rcd_put(rcd);
 920		return;
 921	}
 922
 923	for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
 924		rcd = hfi1_rcd_get_by_index(dd, i);
 925		if (rcd && (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic))
 926			hfi1_set_fast(rcd);
 927		hfi1_rcd_put(rcd);
 928	}
 929}
 930
 931void set_all_slowpath(struct hfi1_devdata *dd)
 932{
 933	struct hfi1_ctxtdata *rcd;
 934	u16 i;
 935
 936	/* HFI1_CTRL_CTXT must always use the slow path interrupt handler */
 937	for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
 938		rcd = hfi1_rcd_get_by_index(dd, i);
 939		if (!rcd)
 940			continue;
 941		if (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
 942			rcd->do_interrupt = rcd->slow_handler;
 943
 944		hfi1_rcd_put(rcd);
 945	}
 946}
 947
 948static bool __set_armed_to_active(struct hfi1_packet *packet)
 949{
 950	u8 etype = rhf_rcv_type(packet->rhf);
 951	u8 sc = SC15_PACKET;
 952
 953	if (etype == RHF_RCV_TYPE_IB) {
 954		struct ib_header *hdr = hfi1_get_msgheader(packet->rcd,
 955							   packet->rhf_addr);
 956		sc = hfi1_9B_get_sc5(hdr, packet->rhf);
 957	} else if (etype == RHF_RCV_TYPE_BYPASS) {
 958		struct hfi1_16b_header *hdr = hfi1_get_16B_header(
 959						packet->rcd,
 960						packet->rhf_addr);
 961		sc = hfi1_16B_get_sc(hdr);
 962	}
 963	if (sc != SC15_PACKET) {
 964		int hwstate = driver_lstate(packet->rcd->ppd);
 965		struct work_struct *lsaw =
 966				&packet->rcd->ppd->linkstate_active_work;
 967
 968		if (hwstate != IB_PORT_ACTIVE) {
 969			dd_dev_info(packet->rcd->dd,
 970				    "Unexpected link state %s\n",
 971				    opa_lstate_name(hwstate));
 972			return false;
 973		}
 974
 975		queue_work(packet->rcd->ppd->link_wq, lsaw);
 976		return true;
 977	}
 978	return false;
 979}
 980
 981/**
 982 * set_armed_to_active  - the fast path for armed to active
 983 * @packet: the packet structure
 984 *
 985 * Return true if packet processing needs to bail.
 986 */
 987static bool set_armed_to_active(struct hfi1_packet *packet)
 988{
 989	if (likely(packet->rcd->ppd->host_link_state != HLS_UP_ARMED))
 990		return false;
 991	return __set_armed_to_active(packet);
 992}
 993
 994/*
 995 * handle_receive_interrupt - receive a packet
 996 * @rcd: the context
 997 *
 998 * Called from interrupt handler for errors or receive interrupt.
 999 * This is the slow path interrupt handler.
1000 */
1001int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
1002{
1003	struct hfi1_devdata *dd = rcd->dd;
1004	u32 hdrqtail;
1005	int needset, last = RCV_PKT_OK;
1006	struct hfi1_packet packet;
1007	int skip_pkt = 0;
1008
1009	if (!rcd->rcvhdrq)
1010		return RCV_PKT_OK;
1011	/* Control context will always use the slow path interrupt handler */
1012	needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1;
1013
1014	init_packet(rcd, &packet);
1015
1016	if (!get_dma_rtail_setting(rcd)) {
1017		if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) {
1018			last = RCV_PKT_DONE;
1019			goto bail;
1020		}
1021		hdrqtail = 0;
1022	} else {
1023		hdrqtail = get_rcvhdrtail(rcd);
1024		if (packet.rhqoff == hdrqtail) {
1025			last = RCV_PKT_DONE;
1026			goto bail;
1027		}
1028		smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
1029
1030		/*
1031		 * Control context can potentially receive an invalid
1032		 * rhf. Drop such packets.
1033		 */
1034		if (rcd->ctxt == HFI1_CTRL_CTXT)
1035			if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
1036				skip_pkt = 1;
1037	}
1038
1039	prescan_rxq(rcd, &packet);
1040
1041	while (last == RCV_PKT_OK) {
1042		if (hfi1_need_drop(dd)) {
1043			/* On to the next packet */
1044			packet.rhqoff += packet.rsize;
1045			packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
1046					  packet.rhqoff +
1047					  rcd->rhf_offset;
1048			packet.rhf = rhf_to_cpu(packet.rhf_addr);
1049
1050		} else if (skip_pkt) {
1051			last = skip_rcv_packet(&packet, thread);
1052			skip_pkt = 0;
1053		} else {
1054			if (set_armed_to_active(&packet))
1055				goto bail;
1056			last = process_rcv_packet(&packet, thread);
1057		}
1058
1059		if (!get_dma_rtail_setting(rcd)) {
1060			if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
1061				last = RCV_PKT_DONE;
1062		} else {
1063			if (packet.rhqoff == hdrqtail)
1064				last = RCV_PKT_DONE;
1065			/*
1066			 * Control context can potentially receive an invalid
1067			 * rhf. Drop such packets.
1068			 */
1069			if (rcd->ctxt == HFI1_CTRL_CTXT) {
1070				bool lseq;
1071
1072				lseq = hfi1_seq_incr(rcd,
1073						     rhf_rcv_seq(packet.rhf));
1074				if (!last && lseq)
1075					skip_pkt = 1;
1076			}
1077		}
1078
1079		if (needset) {
1080			needset = false;
1081			set_all_fastpath(dd, rcd);
1082		}
1083		process_rcv_update(last, &packet);
1084	}
1085
1086	process_rcv_qp_work(&packet);
1087	hfi1_set_rcd_head(rcd, packet.rhqoff);
1088
1089bail:
1090	/*
1091	 * Always write head at end, and setup rcv interrupt, even
1092	 * if no packets were processed.
1093	 */
1094	finish_packet(&packet);
1095	return last;
1096}
1097
1098/*
1099 * handle_receive_interrupt_napi_sp - receive a packet
1100 * @rcd: the context
1101 * @budget: polling budget
1102 *
1103 * Called from interrupt handler for errors or receive interrupt.
1104 * This is the slow path interrupt handler
1105 * when executing napi soft irq environment.
1106 */
1107int handle_receive_interrupt_napi_sp(struct hfi1_ctxtdata *rcd, int budget)
1108{
1109	struct hfi1_devdata *dd = rcd->dd;
1110	int last = RCV_PKT_OK;
1111	bool needset = true;
1112	struct hfi1_packet packet;
1113
1114	init_packet(rcd, &packet);
1115	if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
1116		goto bail;
1117
1118	while (last != RCV_PKT_DONE && packet.numpkt < budget) {
1119		if (hfi1_need_drop(dd)) {
1120			/* On to the next packet */
1121			packet.rhqoff += packet.rsize;
1122			packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
1123					  packet.rhqoff +
1124					  rcd->rhf_offset;
1125			packet.rhf = rhf_to_cpu(packet.rhf_addr);
1126
1127		} else {
1128			if (set_armed_to_active(&packet))
1129				goto bail;
1130			process_rcv_packet_napi(&packet);
1131		}
1132
1133		if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
1134			last = RCV_PKT_DONE;
1135
1136		if (needset) {
1137			needset = false;
1138			set_all_fastpath(dd, rcd);
1139		}
1140
1141		process_rcv_update(last, &packet);
1142	}
1143
1144	hfi1_set_rcd_head(rcd, packet.rhqoff);
1145
1146bail:
1147	/*
1148	 * Always write head at end, and setup rcv interrupt, even
1149	 * if no packets were processed.
1150	 */
1151	finish_packet(&packet);
1152	return packet.numpkt;
1153}
1154
1155/*
1156 * We may discover in the interrupt that the hardware link state has
1157 * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet),
1158 * and we need to update the driver's notion of the link state.  We cannot
1159 * run set_link_state from interrupt context, so we queue this function on
1160 * a workqueue.
1161 *
1162 * We delay the regular interrupt processing until after the state changes
1163 * so that the link will be in the correct state by the time any application
1164 * we wake up attempts to send a reply to any message it received.
1165 * (Subsequent receive interrupts may possibly force the wakeup before we
1166 * update the link state.)
1167 *
1168 * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes
1169 * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues,
1170 * so we're safe from use-after-free of the rcd.
1171 */
1172void receive_interrupt_work(struct work_struct *work)
1173{
1174	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
1175						  linkstate_active_work);
1176	struct hfi1_devdata *dd = ppd->dd;
1177	struct hfi1_ctxtdata *rcd;
1178	u16 i;
1179
1180	/* Received non-SC15 packet implies neighbor_normal */
1181	ppd->neighbor_normal = 1;
1182	set_link_state(ppd, HLS_UP_ACTIVE);
1183
1184	/*
1185	 * Interrupt all statically allocated kernel contexts that could
1186	 * have had an interrupt during auto activation.
1187	 */
1188	for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) {
1189		rcd = hfi1_rcd_get_by_index(dd, i);
1190		if (rcd)
1191			force_recv_intr(rcd);
1192		hfi1_rcd_put(rcd);
1193	}
1194}
1195
1196/*
1197 * Convert a given MTU size to the on-wire MAD packet enumeration.
1198 * Return -1 if the size is invalid.
1199 */
1200int mtu_to_enum(u32 mtu, int default_if_bad)
1201{
1202	switch (mtu) {
1203	case     0: return OPA_MTU_0;
1204	case   256: return OPA_MTU_256;
1205	case   512: return OPA_MTU_512;
1206	case  1024: return OPA_MTU_1024;
1207	case  2048: return OPA_MTU_2048;
1208	case  4096: return OPA_MTU_4096;
1209	case  8192: return OPA_MTU_8192;
1210	case 10240: return OPA_MTU_10240;
1211	}
1212	return default_if_bad;
1213}
1214
1215u16 enum_to_mtu(int mtu)
1216{
1217	switch (mtu) {
1218	case OPA_MTU_0:     return 0;
1219	case OPA_MTU_256:   return 256;
1220	case OPA_MTU_512:   return 512;
1221	case OPA_MTU_1024:  return 1024;
1222	case OPA_MTU_2048:  return 2048;
1223	case OPA_MTU_4096:  return 4096;
1224	case OPA_MTU_8192:  return 8192;
1225	case OPA_MTU_10240: return 10240;
1226	default: return 0xffff;
1227	}
1228}
1229
1230/*
1231 * set_mtu - set the MTU
1232 * @ppd: the per port data
1233 *
1234 * We can handle "any" incoming size, the issue here is whether we
1235 * need to restrict our outgoing size.  We do not deal with what happens
1236 * to programs that are already running when the size changes.
1237 */
1238int set_mtu(struct hfi1_pportdata *ppd)
1239{
1240	struct hfi1_devdata *dd = ppd->dd;
1241	int i, drain, ret = 0, is_up = 0;
1242
1243	ppd->ibmtu = 0;
1244	for (i = 0; i < ppd->vls_supported; i++)
1245		if (ppd->ibmtu < dd->vld[i].mtu)
1246			ppd->ibmtu = dd->vld[i].mtu;
1247	ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
1248
1249	mutex_lock(&ppd->hls_lock);
1250	if (ppd->host_link_state == HLS_UP_INIT ||
1251	    ppd->host_link_state == HLS_UP_ARMED ||
1252	    ppd->host_link_state == HLS_UP_ACTIVE)
1253		is_up = 1;
1254
1255	drain = !is_ax(dd) && is_up;
1256
1257	if (drain)
1258		/*
1259		 * MTU is specified per-VL. To ensure that no packet gets
1260		 * stuck (due, e.g., to the MTU for the packet's VL being
1261		 * reduced), empty the per-VL FIFOs before adjusting MTU.
1262		 */
1263		ret = stop_drain_data_vls(dd);
1264
1265	if (ret) {
1266		dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
1267			   __func__);
1268		goto err;
1269	}
1270
1271	hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
1272
1273	if (drain)
1274		open_fill_data_vls(dd); /* reopen all VLs */
1275
1276err:
1277	mutex_unlock(&ppd->hls_lock);
1278
1279	return ret;
1280}
1281
1282int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
1283{
1284	struct hfi1_devdata *dd = ppd->dd;
1285
1286	ppd->lid = lid;
1287	ppd->lmc = lmc;
1288	hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
1289
1290	dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid);
1291
1292	return 0;
1293}
1294
1295void shutdown_led_override(struct hfi1_pportdata *ppd)
1296{
1297	struct hfi1_devdata *dd = ppd->dd;
1298
1299	/*
1300	 * This pairs with the memory barrier in hfi1_start_led_override to
1301	 * ensure that we read the correct state of LED beaconing represented
1302	 * by led_override_timer_active
1303	 */
1304	smp_rmb();
1305	if (atomic_read(&ppd->led_override_timer_active)) {
1306		del_timer_sync(&ppd->led_override_timer);
1307		atomic_set(&ppd->led_override_timer_active, 0);
1308		/* Ensure the atomic_set is visible to all CPUs */
1309		smp_wmb();
1310	}
1311
1312	/* Hand control of the LED to the DC for normal operation */
1313	write_csr(dd, DCC_CFG_LED_CNTRL, 0);
1314}
1315
1316static void run_led_override(struct timer_list *t)
1317{
1318	struct hfi1_pportdata *ppd = from_timer(ppd, t, led_override_timer);
1319	struct hfi1_devdata *dd = ppd->dd;
1320	unsigned long timeout;
1321	int phase_idx;
1322
1323	if (!(dd->flags & HFI1_INITTED))
1324		return;
1325
1326	phase_idx = ppd->led_override_phase & 1;
1327
1328	setextled(dd, phase_idx);
1329
1330	timeout = ppd->led_override_vals[phase_idx];
1331
1332	/* Set up for next phase */
1333	ppd->led_override_phase = !ppd->led_override_phase;
1334
1335	mod_timer(&ppd->led_override_timer, jiffies + timeout);
1336}
1337
1338/*
1339 * To have the LED blink in a particular pattern, provide timeon and timeoff
1340 * in milliseconds.
1341 * To turn off custom blinking and return to normal operation, use
1342 * shutdown_led_override()
1343 */
1344void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
1345			     unsigned int timeoff)
1346{
1347	if (!(ppd->dd->flags & HFI1_INITTED))
1348		return;
1349
1350	/* Convert to jiffies for direct use in timer */
1351	ppd->led_override_vals[0] = msecs_to_jiffies(timeoff);
1352	ppd->led_override_vals[1] = msecs_to_jiffies(timeon);
1353
1354	/* Arbitrarily start from LED on phase */
1355	ppd->led_override_phase = 1;
1356
1357	/*
1358	 * If the timer has not already been started, do so. Use a "quick"
1359	 * timeout so the handler will be called soon to look at our request.
1360	 */
1361	if (!timer_pending(&ppd->led_override_timer)) {
1362		timer_setup(&ppd->led_override_timer, run_led_override, 0);
1363		ppd->led_override_timer.expires = jiffies + 1;
1364		add_timer(&ppd->led_override_timer);
1365		atomic_set(&ppd->led_override_timer_active, 1);
1366		/* Ensure the atomic_set is visible to all CPUs */
1367		smp_wmb();
1368	}
1369}
1370
1371/**
1372 * hfi1_reset_device - reset the chip if possible
1373 * @unit: the device to reset
1374 *
1375 * Whether or not reset is successful, we attempt to re-initialize the chip
1376 * (that is, much like a driver unload/reload).  We clear the INITTED flag
1377 * so that the various entry points will fail until we reinitialize.  For
1378 * now, we only allow this if no user contexts are open that use chip resources
1379 */
1380int hfi1_reset_device(int unit)
1381{
1382	int ret;
1383	struct hfi1_devdata *dd = hfi1_lookup(unit);
1384	struct hfi1_pportdata *ppd;
1385	int pidx;
1386
1387	if (!dd) {
1388		ret = -ENODEV;
1389		goto bail;
1390	}
1391
1392	dd_dev_info(dd, "Reset on unit %u requested\n", unit);
1393
1394	if (!dd->kregbase1 || !(dd->flags & HFI1_PRESENT)) {
1395		dd_dev_info(dd,
1396			    "Invalid unit number %u or not initialized or not present\n",
1397			    unit);
1398		ret = -ENXIO;
1399		goto bail;
1400	}
1401
1402	/* If there are any user/vnic contexts, we cannot reset */
1403	mutex_lock(&hfi1_mutex);
1404	if (dd->rcd)
1405		if (hfi1_stats.sps_ctxts) {
1406			mutex_unlock(&hfi1_mutex);
1407			ret = -EBUSY;
1408			goto bail;
1409		}
1410	mutex_unlock(&hfi1_mutex);
1411
1412	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1413		ppd = dd->pport + pidx;
1414
1415		shutdown_led_override(ppd);
1416	}
1417	if (dd->flags & HFI1_HAS_SEND_DMA)
1418		sdma_exit(dd);
1419
1420	hfi1_reset_cpu_counters(dd);
1421
1422	ret = hfi1_init(dd, 1);
1423
1424	if (ret)
1425		dd_dev_err(dd,
1426			   "Reinitialize unit %u after reset failed with %d\n",
1427			   unit, ret);
1428	else
1429		dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
1430			    unit);
1431
1432bail:
1433	return ret;
1434}
1435
1436static inline void hfi1_setup_ib_header(struct hfi1_packet *packet)
1437{
1438	packet->hdr = (struct hfi1_ib_message_header *)
1439			hfi1_get_msgheader(packet->rcd,
1440					   packet->rhf_addr);
1441	packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
1442}
1443
1444static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet *packet)
1445{
1446	struct hfi1_pportdata *ppd = packet->rcd->ppd;
1447
1448	/* slid and dlid cannot be 0 */
1449	if ((!packet->slid) || (!packet->dlid))
1450		return -EINVAL;
1451
1452	/* Compare port lid with incoming packet dlid */
1453	if ((!(hfi1_is_16B_mcast(packet->dlid))) &&
1454	    (packet->dlid !=
1455		opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))) {
1456		if ((packet->dlid & ~((1 << ppd->lmc) - 1)) != ppd->lid)
1457			return -EINVAL;
1458	}
1459
1460	/* No multicast packets with SC15 */
1461	if ((hfi1_is_16B_mcast(packet->dlid)) && (packet->sc == 0xF))
1462		return -EINVAL;
1463
1464	/* Packets with permissive DLID always on SC15 */
1465	if ((packet->dlid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE),
1466					 16B)) &&
1467	    (packet->sc != 0xF))
1468		return -EINVAL;
1469
1470	return 0;
1471}
1472
1473static int hfi1_setup_9B_packet(struct hfi1_packet *packet)
1474{
1475	struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1476	struct ib_header *hdr;
1477	u8 lnh;
1478
1479	hfi1_setup_ib_header(packet);
1480	hdr = packet->hdr;
1481
1482	lnh = ib_get_lnh(hdr);
1483	if (lnh == HFI1_LRH_BTH) {
1484		packet->ohdr = &hdr->u.oth;
1485		packet->grh = NULL;
1486	} else if (lnh == HFI1_LRH_GRH) {
1487		u32 vtf;
1488
1489		packet->ohdr = &hdr->u.l.oth;
1490		packet->grh = &hdr->u.l.grh;
1491		if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1492			goto drop;
1493		vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1494		if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1495			goto drop;
1496	} else {
1497		goto drop;
1498	}
1499
1500	/* Query commonly used fields from packet header */
1501	packet->payload = packet->ebuf;
1502	packet->opcode = ib_bth_get_opcode(packet->ohdr);
1503	packet->slid = ib_get_slid(hdr);
1504	packet->dlid = ib_get_dlid(hdr);
1505	if (unlikely((packet->dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
1506		     (packet->dlid != be16_to_cpu(IB_LID_PERMISSIVE))))
1507		packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1508				be16_to_cpu(IB_MULTICAST_LID_BASE);
1509	packet->sl = ib_get_sl(hdr);
1510	packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf);
1511	packet->pad = ib_bth_get_pad(packet->ohdr);
1512	packet->extra_byte = 0;
1513	packet->pkey = ib_bth_get_pkey(packet->ohdr);
1514	packet->migrated = ib_bth_is_migration(packet->ohdr);
1515
1516	return 0;
1517drop:
1518	ibp->rvp.n_pkt_drops++;
1519	return -EINVAL;
1520}
1521
1522static int hfi1_setup_bypass_packet(struct hfi1_packet *packet)
1523{
1524	/*
1525	 * Bypass packets have a different header/payload split
1526	 * compared to an IB packet.
1527	 * Current split is set such that 16 bytes of the actual
1528	 * header is in the header buffer and the remining is in
1529	 * the eager buffer. We chose 16 since hfi1 driver only
1530	 * supports 16B bypass packets and we will be able to
1531	 * receive the entire LRH with such a split.
1532	 */
1533
1534	struct hfi1_ctxtdata *rcd = packet->rcd;
1535	struct hfi1_pportdata *ppd = rcd->ppd;
1536	struct hfi1_ibport *ibp = &ppd->ibport_data;
1537	u8 l4;
1538
1539	packet->hdr = (struct hfi1_16b_header *)
1540			hfi1_get_16B_header(packet->rcd,
1541					    packet->rhf_addr);
1542	l4 = hfi1_16B_get_l4(packet->hdr);
1543	if (l4 == OPA_16B_L4_IB_LOCAL) {
1544		packet->ohdr = packet->ebuf;
1545		packet->grh = NULL;
1546		packet->opcode = ib_bth_get_opcode(packet->ohdr);
1547		packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1548		/* hdr_len_by_opcode already has an IB LRH factored in */
1549		packet->hlen = hdr_len_by_opcode[packet->opcode] +
1550			(LRH_16B_BYTES - LRH_9B_BYTES);
1551		packet->migrated = opa_bth_is_migration(packet->ohdr);
1552	} else if (l4 == OPA_16B_L4_IB_GLOBAL) {
1553		u32 vtf;
1554		u8 grh_len = sizeof(struct ib_grh);
1555
1556		packet->ohdr = packet->ebuf + grh_len;
1557		packet->grh = packet->ebuf;
1558		packet->opcode = ib_bth_get_opcode(packet->ohdr);
1559		packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1560		/* hdr_len_by_opcode already has an IB LRH factored in */
1561		packet->hlen = hdr_len_by_opcode[packet->opcode] +
1562			(LRH_16B_BYTES - LRH_9B_BYTES) + grh_len;
1563		packet->migrated = opa_bth_is_migration(packet->ohdr);
1564
1565		if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1566			goto drop;
1567		vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1568		if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1569			goto drop;
1570	} else if (l4 == OPA_16B_L4_FM) {
1571		packet->mgmt = packet->ebuf;
1572		packet->ohdr = NULL;
1573		packet->grh = NULL;
1574		packet->opcode = IB_OPCODE_UD_SEND_ONLY;
1575		packet->pad = OPA_16B_L4_FM_PAD;
1576		packet->hlen = OPA_16B_L4_FM_HLEN;
1577		packet->migrated = false;
1578	} else {
1579		goto drop;
1580	}
1581
1582	/* Query commonly used fields from packet header */
1583	packet->payload = packet->ebuf + packet->hlen - LRH_16B_BYTES;
1584	packet->slid = hfi1_16B_get_slid(packet->hdr);
1585	packet->dlid = hfi1_16B_get_dlid(packet->hdr);
1586	if (unlikely(hfi1_is_16B_mcast(packet->dlid)))
1587		packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1588				opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR),
1589					    16B);
1590	packet->sc = hfi1_16B_get_sc(packet->hdr);
1591	packet->sl = ibp->sc_to_sl[packet->sc];
1592	packet->extra_byte = SIZE_OF_LT;
1593	packet->pkey = hfi1_16B_get_pkey(packet->hdr);
1594
1595	if (hfi1_bypass_ingress_pkt_check(packet))
1596		goto drop;
1597
1598	return 0;
1599drop:
1600	hfi1_cdbg(PKT, "%s: packet dropped", __func__);
1601	ibp->rvp.n_pkt_drops++;
1602	return -EINVAL;
1603}
1604
1605static void show_eflags_errs(struct hfi1_packet *packet)
1606{
1607	struct hfi1_ctxtdata *rcd = packet->rcd;
1608	u32 rte = rhf_rcv_type_err(packet->rhf);
1609
1610	dd_dev_err(rcd->dd,
1611		   "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s] rte 0x%x\n",
1612		   rcd->ctxt, packet->rhf,
1613		   packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
1614		   packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
1615		   packet->rhf & RHF_DC_ERR ? "dc " : "",
1616		   packet->rhf & RHF_TID_ERR ? "tid " : "",
1617		   packet->rhf & RHF_LEN_ERR ? "len " : "",
1618		   packet->rhf & RHF_ECC_ERR ? "ecc " : "",
1619		   packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
1620		   rte);
1621}
1622
1623void handle_eflags(struct hfi1_packet *packet)
1624{
1625	struct hfi1_ctxtdata *rcd = packet->rcd;
1626
1627	rcv_hdrerr(rcd, rcd->ppd, packet);
1628	if (rhf_err_flags(packet->rhf))
1629		show_eflags_errs(packet);
1630}
1631
1632static void hfi1_ipoib_ib_rcv(struct hfi1_packet *packet)
1633{
1634	struct hfi1_ibport *ibp;
1635	struct net_device *netdev;
1636	struct hfi1_ctxtdata *rcd = packet->rcd;
1637	struct napi_struct *napi = rcd->napi;
1638	struct sk_buff *skb;
1639	struct hfi1_netdev_rxq *rxq = container_of(napi,
1640			struct hfi1_netdev_rxq, napi);
1641	u32 extra_bytes;
1642	u32 tlen, qpnum;
1643	bool do_work, do_cnp;
 
1644
1645	trace_hfi1_rcvhdr(packet);
1646
1647	hfi1_setup_ib_header(packet);
1648
1649	packet->ohdr = &((struct ib_header *)packet->hdr)->u.oth;
1650	packet->grh = NULL;
1651
1652	if (unlikely(rhf_err_flags(packet->rhf))) {
1653		handle_eflags(packet);
1654		return;
1655	}
1656
1657	qpnum = ib_bth_get_qpn(packet->ohdr);
1658	netdev = hfi1_netdev_get_data(rcd->dd, qpnum);
1659	if (!netdev)
1660		goto drop_no_nd;
1661
1662	trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
1663	trace_ctxt_rsm_hist(rcd->ctxt);
1664
1665	/* handle congestion notifications */
1666	do_work = hfi1_may_ecn(packet);
1667	if (unlikely(do_work)) {
1668		do_cnp = (packet->opcode != IB_OPCODE_CNP);
1669		(void)hfi1_process_ecn_slowpath(hfi1_ipoib_priv(netdev)->qp,
1670						 packet, do_cnp);
1671	}
1672
1673	/*
1674	 * We have split point after last byte of DETH
1675	 * lets strip padding and CRC and ICRC.
1676	 * tlen is whole packet len so we need to
1677	 * subtract header size as well.
1678	 */
1679	tlen = packet->tlen;
1680	extra_bytes = ib_bth_get_pad(packet->ohdr) + (SIZE_OF_CRC << 2) +
1681			packet->hlen;
1682	if (unlikely(tlen < extra_bytes))
1683		goto drop;
1684
1685	tlen -= extra_bytes;
1686
1687	skb = hfi1_ipoib_prepare_skb(rxq, tlen, packet->ebuf);
1688	if (unlikely(!skb))
1689		goto drop;
1690
1691	dev_sw_netstats_rx_add(netdev, skb->len);
 
1692
1693	skb->dev = netdev;
1694	skb->pkt_type = PACKET_HOST;
1695	netif_receive_skb(skb);
1696
1697	return;
1698
1699drop:
1700	++netdev->stats.rx_dropped;
1701drop_no_nd:
1702	ibp = rcd_to_iport(packet->rcd);
1703	++ibp->rvp.n_pkt_drops;
1704}
1705
1706/*
1707 * The following functions are called by the interrupt handler. They are type
1708 * specific handlers for each packet type.
1709 */
1710static void process_receive_ib(struct hfi1_packet *packet)
1711{
1712	if (hfi1_setup_9B_packet(packet))
1713		return;
1714
1715	if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1716		return;
1717
1718	trace_hfi1_rcvhdr(packet);
1719
1720	if (unlikely(rhf_err_flags(packet->rhf))) {
1721		handle_eflags(packet);
1722		return;
1723	}
1724
1725	hfi1_ib_rcv(packet);
1726}
1727
1728static void process_receive_bypass(struct hfi1_packet *packet)
1729{
1730	struct hfi1_devdata *dd = packet->rcd->dd;
1731
1732	if (hfi1_setup_bypass_packet(packet))
1733		return;
1734
1735	trace_hfi1_rcvhdr(packet);
1736
1737	if (unlikely(rhf_err_flags(packet->rhf))) {
1738		handle_eflags(packet);
1739		return;
1740	}
1741
1742	if (hfi1_16B_get_l2(packet->hdr) == 0x2) {
1743		hfi1_16B_rcv(packet);
1744	} else {
1745		dd_dev_err(dd,
1746			   "Bypass packets other than 16B are not supported in normal operation. Dropping\n");
1747		incr_cntr64(&dd->sw_rcv_bypass_packet_errors);
1748		if (!(dd->err_info_rcvport.status_and_code &
1749		      OPA_EI_STATUS_SMASK)) {
1750			u64 *flits = packet->ebuf;
1751
1752			if (flits && !(packet->rhf & RHF_LEN_ERR)) {
1753				dd->err_info_rcvport.packet_flit1 = flits[0];
1754				dd->err_info_rcvport.packet_flit2 =
1755					packet->tlen > sizeof(flits[0]) ?
1756					flits[1] : 0;
1757			}
1758			dd->err_info_rcvport.status_and_code |=
1759				(OPA_EI_STATUS_SMASK | BAD_L2_ERR);
1760		}
1761	}
1762}
1763
1764static void process_receive_error(struct hfi1_packet *packet)
1765{
1766	/* KHdrHCRCErr -- KDETH packet with a bad HCRC */
1767	if (unlikely(
1768		 hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) &&
1769		 (rhf_rcv_type_err(packet->rhf) == RHF_RCV_TYPE_ERROR ||
1770		  packet->rhf & RHF_DC_ERR)))
1771		return;
1772
1773	hfi1_setup_ib_header(packet);
1774	handle_eflags(packet);
1775
1776	if (unlikely(rhf_err_flags(packet->rhf)))
1777		dd_dev_err(packet->rcd->dd,
1778			   "Unhandled error packet received. Dropping.\n");
1779}
1780
1781static void kdeth_process_expected(struct hfi1_packet *packet)
1782{
1783	hfi1_setup_9B_packet(packet);
1784	if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1785		return;
1786
1787	if (unlikely(rhf_err_flags(packet->rhf))) {
1788		struct hfi1_ctxtdata *rcd = packet->rcd;
1789
1790		if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet))
1791			return;
1792	}
1793
1794	hfi1_kdeth_expected_rcv(packet);
1795}
1796
1797static void kdeth_process_eager(struct hfi1_packet *packet)
1798{
1799	hfi1_setup_9B_packet(packet);
1800	if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1801		return;
1802
1803	trace_hfi1_rcvhdr(packet);
1804	if (unlikely(rhf_err_flags(packet->rhf))) {
1805		struct hfi1_ctxtdata *rcd = packet->rcd;
1806
1807		show_eflags_errs(packet);
1808		if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet))
1809			return;
1810	}
1811
1812	hfi1_kdeth_eager_rcv(packet);
1813}
1814
1815static void process_receive_invalid(struct hfi1_packet *packet)
1816{
1817	dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
1818		   rhf_rcv_type(packet->rhf));
1819}
1820
1821#define HFI1_RCVHDR_DUMP_MAX	5
1822
1823void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd)
1824{
1825	struct hfi1_packet packet;
1826	struct ps_mdata mdata;
1827	int i;
1828
1829	seq_printf(s, "Rcd %u: RcvHdr cnt %u entsize %u %s ctrl 0x%08llx status 0x%08llx, head %llu tail %llu  sw head %u\n",
1830		   rcd->ctxt, get_hdrq_cnt(rcd), get_hdrqentsize(rcd),
1831		   get_dma_rtail_setting(rcd) ?
1832		   "dma_rtail" : "nodma_rtail",
1833		   read_kctxt_csr(rcd->dd, rcd->ctxt, RCV_CTXT_CTRL),
1834		   read_kctxt_csr(rcd->dd, rcd->ctxt, RCV_CTXT_STATUS),
1835		   read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) &
1836		   RCV_HDR_HEAD_HEAD_MASK,
1837		   read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL),
1838		   rcd->head);
1839
1840	init_packet(rcd, &packet);
1841	init_ps_mdata(&mdata, &packet);
1842
1843	for (i = 0; i < HFI1_RCVHDR_DUMP_MAX; i++) {
1844		__le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
1845					 rcd->rhf_offset;
1846		struct ib_header *hdr;
1847		u64 rhf = rhf_to_cpu(rhf_addr);
1848		u32 etype = rhf_rcv_type(rhf), qpn;
1849		u8 opcode;
1850		u32 psn;
1851		u8 lnh;
1852
1853		if (ps_done(&mdata, rhf, rcd))
1854			break;
1855
1856		if (ps_skip(&mdata, rhf, rcd))
1857			goto next;
1858
1859		if (etype > RHF_RCV_TYPE_IB)
1860			goto next;
1861
1862		packet.hdr = hfi1_get_msgheader(rcd, rhf_addr);
1863		hdr = packet.hdr;
1864
1865		lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1866
1867		if (lnh == HFI1_LRH_BTH)
1868			packet.ohdr = &hdr->u.oth;
1869		else if (lnh == HFI1_LRH_GRH)
1870			packet.ohdr = &hdr->u.l.oth;
1871		else
1872			goto next; /* just in case */
1873
1874		opcode = (be32_to_cpu(packet.ohdr->bth[0]) >> 24);
1875		qpn = be32_to_cpu(packet.ohdr->bth[1]) & RVT_QPN_MASK;
1876		psn = mask_psn(be32_to_cpu(packet.ohdr->bth[2]));
1877
1878		seq_printf(s, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n",
1879			   mdata.ps_head, opcode, qpn, psn);
1880next:
1881		update_ps_mdata(&mdata, rcd);
1882	}
1883}
1884
1885const rhf_rcv_function_ptr normal_rhf_rcv_functions[] = {
1886	[RHF_RCV_TYPE_EXPECTED] = kdeth_process_expected,
1887	[RHF_RCV_TYPE_EAGER] = kdeth_process_eager,
1888	[RHF_RCV_TYPE_IB] = process_receive_ib,
1889	[RHF_RCV_TYPE_ERROR] = process_receive_error,
1890	[RHF_RCV_TYPE_BYPASS] = process_receive_bypass,
1891	[RHF_RCV_TYPE_INVALID5] = process_receive_invalid,
1892	[RHF_RCV_TYPE_INVALID6] = process_receive_invalid,
1893	[RHF_RCV_TYPE_INVALID7] = process_receive_invalid,
1894};
1895
1896const rhf_rcv_function_ptr netdev_rhf_rcv_functions[] = {
1897	[RHF_RCV_TYPE_EXPECTED] = process_receive_invalid,
1898	[RHF_RCV_TYPE_EAGER] = process_receive_invalid,
1899	[RHF_RCV_TYPE_IB] = hfi1_ipoib_ib_rcv,
1900	[RHF_RCV_TYPE_ERROR] = process_receive_error,
1901	[RHF_RCV_TYPE_BYPASS] = hfi1_vnic_bypass_rcv,
1902	[RHF_RCV_TYPE_INVALID5] = process_receive_invalid,
1903	[RHF_RCV_TYPE_INVALID6] = process_receive_invalid,
1904	[RHF_RCV_TYPE_INVALID7] = process_receive_invalid,
1905};
v5.9
 
   1/*
   2 * Copyright(c) 2015-2020 Intel Corporation.
   3 *
   4 * This file is provided under a dual BSD/GPLv2 license.  When using or
   5 * redistributing this file, you may do so under either license.
   6 *
   7 * GPL LICENSE SUMMARY
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * BSD LICENSE
  19 *
  20 * Redistribution and use in source and binary forms, with or without
  21 * modification, are permitted provided that the following conditions
  22 * are met:
  23 *
  24 *  - Redistributions of source code must retain the above copyright
  25 *    notice, this list of conditions and the following disclaimer.
  26 *  - Redistributions in binary form must reproduce the above copyright
  27 *    notice, this list of conditions and the following disclaimer in
  28 *    the documentation and/or other materials provided with the
  29 *    distribution.
  30 *  - Neither the name of Intel Corporation nor the names of its
  31 *    contributors may be used to endorse or promote products derived
  32 *    from this software without specific prior written permission.
  33 *
  34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45 *
  46 */
  47
  48#include <linux/spinlock.h>
  49#include <linux/pci.h>
  50#include <linux/io.h>
  51#include <linux/delay.h>
  52#include <linux/netdevice.h>
  53#include <linux/vmalloc.h>
  54#include <linux/module.h>
  55#include <linux/prefetch.h>
  56#include <rdma/ib_verbs.h>
  57#include <linux/etherdevice.h>
  58
  59#include "hfi.h"
  60#include "trace.h"
  61#include "qp.h"
  62#include "sdma.h"
  63#include "debugfs.h"
  64#include "vnic.h"
  65#include "fault.h"
  66
  67#include "ipoib.h"
  68#include "netdev.h"
  69
  70#undef pr_fmt
  71#define pr_fmt(fmt) DRIVER_NAME ": " fmt
  72
  73/*
  74 * The size has to be longer than this string, so we can append
  75 * board/chip information to it in the initialization code.
  76 */
  77const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n";
  78
  79DEFINE_MUTEX(hfi1_mutex);	/* general driver use */
  80
  81unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
  82module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
  83MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify(
  84		 HFI1_DEFAULT_MAX_MTU));
  85
  86unsigned int hfi1_cu = 1;
  87module_param_named(cu, hfi1_cu, uint, S_IRUGO);
  88MODULE_PARM_DESC(cu, "Credit return units");
  89
  90unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
  91static int hfi1_caps_set(const char *val, const struct kernel_param *kp);
  92static int hfi1_caps_get(char *buffer, const struct kernel_param *kp);
  93static const struct kernel_param_ops cap_ops = {
  94	.set = hfi1_caps_set,
  95	.get = hfi1_caps_get
  96};
  97module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
  98MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
  99
 100MODULE_LICENSE("Dual BSD/GPL");
 101MODULE_DESCRIPTION("Intel Omni-Path Architecture driver");
 102
 103/*
 104 * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
 105 */
 106#define MAX_PKT_RECV 64
 107/*
 108 * MAX_PKT_THREAD_RCV is the max # of packets processed before
 109 * the qp_wait_list queue is flushed.
 110 */
 111#define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4)
 112#define EGR_HEAD_UPDATE_THRESHOLD 16
 113
 114struct hfi1_ib_stats hfi1_stats;
 115
 116static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
 117{
 118	int ret = 0;
 119	unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
 120		cap_mask = *cap_mask_ptr, value, diff,
 121		write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
 122			      HFI1_CAP_WRITABLE_MASK);
 123
 124	ret = kstrtoul(val, 0, &value);
 125	if (ret) {
 126		pr_warn("Invalid module parameter value for 'cap_mask'\n");
 127		goto done;
 128	}
 129	/* Get the changed bits (except the locked bit) */
 130	diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
 131
 132	/* Remove any bits that are not allowed to change after driver load */
 133	if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
 134		pr_warn("Ignoring non-writable capability bits %#lx\n",
 135			diff & ~write_mask);
 136		diff &= write_mask;
 137	}
 138
 139	/* Mask off any reserved bits */
 140	diff &= ~HFI1_CAP_RESERVED_MASK;
 141	/* Clear any previously set and changing bits */
 142	cap_mask &= ~diff;
 143	/* Update the bits with the new capability */
 144	cap_mask |= (value & diff);
 145	/* Check for any kernel/user restrictions */
 146	diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
 147		((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
 148	cap_mask &= ~diff;
 149	/* Set the bitmask to the final set */
 150	*cap_mask_ptr = cap_mask;
 151done:
 152	return ret;
 153}
 154
 155static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
 156{
 157	unsigned long cap_mask = *(unsigned long *)kp->arg;
 158
 159	cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
 160	cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
 161
 162	return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask);
 163}
 164
 165struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi)
 166{
 167	struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
 168	struct hfi1_devdata *dd = container_of(ibdev,
 169					       struct hfi1_devdata, verbs_dev);
 170	return dd->pcidev;
 171}
 172
 173/*
 174 * Return count of units with at least one port ACTIVE.
 175 */
 176int hfi1_count_active_units(void)
 177{
 178	struct hfi1_devdata *dd;
 179	struct hfi1_pportdata *ppd;
 180	unsigned long index, flags;
 181	int pidx, nunits_active = 0;
 182
 183	xa_lock_irqsave(&hfi1_dev_table, flags);
 184	xa_for_each(&hfi1_dev_table, index, dd) {
 185		if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase1)
 186			continue;
 187		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 188			ppd = dd->pport + pidx;
 189			if (ppd->lid && ppd->linkup) {
 190				nunits_active++;
 191				break;
 192			}
 193		}
 194	}
 195	xa_unlock_irqrestore(&hfi1_dev_table, flags);
 196	return nunits_active;
 197}
 198
 199/*
 200 * Get address of eager buffer from it's index (allocated in chunks, not
 201 * contiguous).
 202 */
 203static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
 204			       u8 *update)
 205{
 206	u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
 207
 208	*update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
 209	return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
 210			(offset * RCV_BUF_BLOCK_SIZE));
 211}
 212
 213static inline void *hfi1_get_header(struct hfi1_ctxtdata *rcd,
 214				    __le32 *rhf_addr)
 215{
 216	u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
 217
 218	return (void *)(rhf_addr - rcd->rhf_offset + offset);
 219}
 220
 221static inline struct ib_header *hfi1_get_msgheader(struct hfi1_ctxtdata *rcd,
 222						   __le32 *rhf_addr)
 223{
 224	return (struct ib_header *)hfi1_get_header(rcd, rhf_addr);
 225}
 226
 227static inline struct hfi1_16b_header
 228		*hfi1_get_16B_header(struct hfi1_ctxtdata *rcd,
 229				     __le32 *rhf_addr)
 230{
 231	return (struct hfi1_16b_header *)hfi1_get_header(rcd, rhf_addr);
 232}
 233
 234/*
 235 * Validate and encode the a given RcvArray Buffer size.
 236 * The function will check whether the given size falls within
 237 * allowed size ranges for the respective type and, optionally,
 238 * return the proper encoding.
 239 */
 240int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
 241{
 242	if (unlikely(!PAGE_ALIGNED(size)))
 243		return 0;
 244	if (unlikely(size < MIN_EAGER_BUFFER))
 245		return 0;
 246	if (size >
 247	    (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
 248		return 0;
 249	if (encoded)
 250		*encoded = ilog2(size / PAGE_SIZE) + 1;
 251	return 1;
 252}
 253
 254static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
 255		       struct hfi1_packet *packet)
 256{
 257	struct ib_header *rhdr = packet->hdr;
 258	u32 rte = rhf_rcv_type_err(packet->rhf);
 259	u32 mlid_base;
 260	struct hfi1_ibport *ibp = rcd_to_iport(rcd);
 261	struct hfi1_devdata *dd = ppd->dd;
 262	struct hfi1_ibdev *verbs_dev = &dd->verbs_dev;
 263	struct rvt_dev_info *rdi = &verbs_dev->rdi;
 264
 265	if ((packet->rhf & RHF_DC_ERR) &&
 266	    hfi1_dbg_fault_suppress_err(verbs_dev))
 267		return;
 268
 269	if (packet->rhf & RHF_ICRC_ERR)
 270		return;
 271
 272	if (packet->etype == RHF_RCV_TYPE_BYPASS) {
 273		goto drop;
 274	} else {
 275		u8 lnh = ib_get_lnh(rhdr);
 276
 277		mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE);
 278		if (lnh == HFI1_LRH_BTH) {
 279			packet->ohdr = &rhdr->u.oth;
 280		} else if (lnh == HFI1_LRH_GRH) {
 281			packet->ohdr = &rhdr->u.l.oth;
 282			packet->grh = &rhdr->u.l.grh;
 283		} else {
 284			goto drop;
 285		}
 286	}
 287
 288	if (packet->rhf & RHF_TID_ERR) {
 289		/* For TIDERR and RC QPs preemptively schedule a NAK */
 290		u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
 291		u32 dlid = ib_get_dlid(rhdr);
 292		u32 qp_num;
 293
 294		/* Sanity check packet */
 295		if (tlen < 24)
 296			goto drop;
 297
 298		/* Check for GRH */
 299		if (packet->grh) {
 300			u32 vtf;
 301			struct ib_grh *grh = packet->grh;
 302
 303			if (grh->next_hdr != IB_GRH_NEXT_HDR)
 304				goto drop;
 305			vtf = be32_to_cpu(grh->version_tclass_flow);
 306			if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
 307				goto drop;
 308		}
 309
 310		/* Get the destination QP number. */
 311		qp_num = ib_bth_get_qpn(packet->ohdr);
 312		if (dlid < mlid_base) {
 313			struct rvt_qp *qp;
 314			unsigned long flags;
 315
 316			rcu_read_lock();
 317			qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
 318			if (!qp) {
 319				rcu_read_unlock();
 320				goto drop;
 321			}
 322
 323			/*
 324			 * Handle only RC QPs - for other QP types drop error
 325			 * packet.
 326			 */
 327			spin_lock_irqsave(&qp->r_lock, flags);
 328
 329			/* Check for valid receive state. */
 330			if (!(ib_rvt_state_ops[qp->state] &
 331			      RVT_PROCESS_RECV_OK)) {
 332				ibp->rvp.n_pkt_drops++;
 333			}
 334
 335			switch (qp->ibqp.qp_type) {
 336			case IB_QPT_RC:
 337				hfi1_rc_hdrerr(rcd, packet, qp);
 338				break;
 339			default:
 340				/* For now don't handle any other QP types */
 341				break;
 342			}
 343
 344			spin_unlock_irqrestore(&qp->r_lock, flags);
 345			rcu_read_unlock();
 346		} /* Unicast QP */
 347	} /* Valid packet with TIDErr */
 348
 349	/* handle "RcvTypeErr" flags */
 350	switch (rte) {
 351	case RHF_RTE_ERROR_OP_CODE_ERR:
 352	{
 353		void *ebuf = NULL;
 354		u8 opcode;
 355
 356		if (rhf_use_egr_bfr(packet->rhf))
 357			ebuf = packet->ebuf;
 358
 359		if (!ebuf)
 360			goto drop; /* this should never happen */
 361
 362		opcode = ib_bth_get_opcode(packet->ohdr);
 363		if (opcode == IB_OPCODE_CNP) {
 364			/*
 365			 * Only in pre-B0 h/w is the CNP_OPCODE handled
 366			 * via this code path.
 367			 */
 368			struct rvt_qp *qp = NULL;
 369			u32 lqpn, rqpn;
 370			u16 rlid;
 371			u8 svc_type, sl, sc5;
 372
 373			sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf);
 374			sl = ibp->sc_to_sl[sc5];
 375
 376			lqpn = ib_bth_get_qpn(packet->ohdr);
 377			rcu_read_lock();
 378			qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn);
 379			if (!qp) {
 380				rcu_read_unlock();
 381				goto drop;
 382			}
 383
 384			switch (qp->ibqp.qp_type) {
 385			case IB_QPT_UD:
 386				rlid = 0;
 387				rqpn = 0;
 388				svc_type = IB_CC_SVCTYPE_UD;
 389				break;
 390			case IB_QPT_UC:
 391				rlid = ib_get_slid(rhdr);
 392				rqpn = qp->remote_qpn;
 393				svc_type = IB_CC_SVCTYPE_UC;
 394				break;
 395			default:
 396				rcu_read_unlock();
 397				goto drop;
 398			}
 399
 400			process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
 401			rcu_read_unlock();
 402		}
 403
 404		packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
 405		break;
 406	}
 407	default:
 408		break;
 409	}
 410
 411drop:
 412	return;
 413}
 414
 415static inline void init_packet(struct hfi1_ctxtdata *rcd,
 416			       struct hfi1_packet *packet)
 417{
 418	packet->rsize = get_hdrqentsize(rcd); /* words */
 419	packet->maxcnt = get_hdrq_cnt(rcd) * packet->rsize; /* words */
 420	packet->rcd = rcd;
 421	packet->updegr = 0;
 422	packet->etail = -1;
 423	packet->rhf_addr = get_rhf_addr(rcd);
 424	packet->rhf = rhf_to_cpu(packet->rhf_addr);
 425	packet->rhqoff = hfi1_rcd_head(rcd);
 426	packet->numpkt = 0;
 427}
 428
 429/* We support only two types - 9B and 16B for now */
 430static const hfi1_handle_cnp hfi1_handle_cnp_tbl[2] = {
 431	[HFI1_PKT_TYPE_9B] = &return_cnp,
 432	[HFI1_PKT_TYPE_16B] = &return_cnp_16B
 433};
 434
 435/**
 436 * hfi1_process_ecn_slowpath - Process FECN or BECN bits
 437 * @qp: The packet's destination QP
 438 * @pkt: The packet itself.
 439 * @prescan: Is the caller the RXQ prescan
 440 *
 441 * Process the packet's FECN or BECN bits. By now, the packet
 442 * has already been evaluated whether processing of those bit should
 443 * be done.
 444 * The significance of the @prescan argument is that if the caller
 445 * is the RXQ prescan, a CNP will be send out instead of waiting for the
 446 * normal packet processing to send an ACK with BECN set (or a CNP).
 447 */
 448bool hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
 449			       bool prescan)
 450{
 451	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
 452	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
 453	struct ib_other_headers *ohdr = pkt->ohdr;
 454	struct ib_grh *grh = pkt->grh;
 455	u32 rqpn = 0;
 456	u16 pkey;
 457	u32 rlid, slid, dlid = 0;
 458	u8 hdr_type, sc, svc_type, opcode;
 459	bool is_mcast = false, ignore_fecn = false, do_cnp = false,
 460		fecn, becn;
 461
 462	/* can be called from prescan */
 463	if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
 464		pkey = hfi1_16B_get_pkey(pkt->hdr);
 465		sc = hfi1_16B_get_sc(pkt->hdr);
 466		dlid = hfi1_16B_get_dlid(pkt->hdr);
 467		slid = hfi1_16B_get_slid(pkt->hdr);
 468		is_mcast = hfi1_is_16B_mcast(dlid);
 469		opcode = ib_bth_get_opcode(ohdr);
 470		hdr_type = HFI1_PKT_TYPE_16B;
 471		fecn = hfi1_16B_get_fecn(pkt->hdr);
 472		becn = hfi1_16B_get_becn(pkt->hdr);
 473	} else {
 474		pkey = ib_bth_get_pkey(ohdr);
 475		sc = hfi1_9B_get_sc5(pkt->hdr, pkt->rhf);
 476		dlid = qp->ibqp.qp_type != IB_QPT_UD ? ib_get_dlid(pkt->hdr) :
 477			ppd->lid;
 478		slid = ib_get_slid(pkt->hdr);
 479		is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
 480			   (dlid != be16_to_cpu(IB_LID_PERMISSIVE));
 481		opcode = ib_bth_get_opcode(ohdr);
 482		hdr_type = HFI1_PKT_TYPE_9B;
 483		fecn = ib_bth_get_fecn(ohdr);
 484		becn = ib_bth_get_becn(ohdr);
 485	}
 486
 487	switch (qp->ibqp.qp_type) {
 488	case IB_QPT_UD:
 489		rlid = slid;
 490		rqpn = ib_get_sqpn(pkt->ohdr);
 491		svc_type = IB_CC_SVCTYPE_UD;
 492		break;
 493	case IB_QPT_SMI:
 494	case IB_QPT_GSI:
 495		rlid = slid;
 496		rqpn = ib_get_sqpn(pkt->ohdr);
 497		svc_type = IB_CC_SVCTYPE_UD;
 498		break;
 499	case IB_QPT_UC:
 500		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
 501		rqpn = qp->remote_qpn;
 502		svc_type = IB_CC_SVCTYPE_UC;
 503		break;
 504	case IB_QPT_RC:
 505		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
 506		rqpn = qp->remote_qpn;
 507		svc_type = IB_CC_SVCTYPE_RC;
 508		break;
 509	default:
 510		return false;
 511	}
 512
 513	ignore_fecn = is_mcast || (opcode == IB_OPCODE_CNP) ||
 514		(opcode == IB_OPCODE_RC_ACKNOWLEDGE);
 515	/*
 516	 * ACKNOWLEDGE packets do not get a CNP but this will be
 517	 * guarded by ignore_fecn above.
 518	 */
 519	do_cnp = prescan ||
 520		(opcode >= IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST &&
 521		 opcode <= IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE) ||
 522		opcode == TID_OP(READ_RESP) ||
 523		opcode == TID_OP(ACK);
 524
 525	/* Call appropriate CNP handler */
 526	if (!ignore_fecn && do_cnp && fecn)
 527		hfi1_handle_cnp_tbl[hdr_type](ibp, qp, rqpn, pkey,
 528					      dlid, rlid, sc, grh);
 529
 530	if (becn) {
 531		u32 lqpn = be32_to_cpu(ohdr->bth[1]) & RVT_QPN_MASK;
 532		u8 sl = ibp->sc_to_sl[sc];
 533
 534		process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
 535	}
 536	return !ignore_fecn && fecn;
 537}
 538
 539struct ps_mdata {
 540	struct hfi1_ctxtdata *rcd;
 541	u32 rsize;
 542	u32 maxcnt;
 543	u32 ps_head;
 544	u32 ps_tail;
 545	u32 ps_seq;
 546};
 547
 548static inline void init_ps_mdata(struct ps_mdata *mdata,
 549				 struct hfi1_packet *packet)
 550{
 551	struct hfi1_ctxtdata *rcd = packet->rcd;
 552
 553	mdata->rcd = rcd;
 554	mdata->rsize = packet->rsize;
 555	mdata->maxcnt = packet->maxcnt;
 556	mdata->ps_head = packet->rhqoff;
 557
 558	if (get_dma_rtail_setting(rcd)) {
 559		mdata->ps_tail = get_rcvhdrtail(rcd);
 560		if (rcd->ctxt == HFI1_CTRL_CTXT)
 561			mdata->ps_seq = hfi1_seq_cnt(rcd);
 562		else
 563			mdata->ps_seq = 0; /* not used with DMA_RTAIL */
 564	} else {
 565		mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
 566		mdata->ps_seq = hfi1_seq_cnt(rcd);
 567	}
 568}
 569
 570static inline int ps_done(struct ps_mdata *mdata, u64 rhf,
 571			  struct hfi1_ctxtdata *rcd)
 572{
 573	if (get_dma_rtail_setting(rcd))
 574		return mdata->ps_head == mdata->ps_tail;
 575	return mdata->ps_seq != rhf_rcv_seq(rhf);
 576}
 577
 578static inline int ps_skip(struct ps_mdata *mdata, u64 rhf,
 579			  struct hfi1_ctxtdata *rcd)
 580{
 581	/*
 582	 * Control context can potentially receive an invalid rhf.
 583	 * Drop such packets.
 584	 */
 585	if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail))
 586		return mdata->ps_seq != rhf_rcv_seq(rhf);
 587
 588	return 0;
 589}
 590
 591static inline void update_ps_mdata(struct ps_mdata *mdata,
 592				   struct hfi1_ctxtdata *rcd)
 593{
 594	mdata->ps_head += mdata->rsize;
 595	if (mdata->ps_head >= mdata->maxcnt)
 596		mdata->ps_head = 0;
 597
 598	/* Control context must do seq counting */
 599	if (!get_dma_rtail_setting(rcd) ||
 600	    rcd->ctxt == HFI1_CTRL_CTXT)
 601		mdata->ps_seq = hfi1_seq_incr_wrap(mdata->ps_seq);
 602}
 603
 604/*
 605 * prescan_rxq - search through the receive queue looking for packets
 606 * containing Excplicit Congestion Notifications (FECNs, or BECNs).
 607 * When an ECN is found, process the Congestion Notification, and toggle
 608 * it off.
 609 * This is declared as a macro to allow quick checking of the port to avoid
 610 * the overhead of a function call if not enabled.
 611 */
 612#define prescan_rxq(rcd, packet) \
 613	do { \
 614		if (rcd->ppd->cc_prescan) \
 615			__prescan_rxq(packet); \
 616	} while (0)
 617static void __prescan_rxq(struct hfi1_packet *packet)
 618{
 619	struct hfi1_ctxtdata *rcd = packet->rcd;
 620	struct ps_mdata mdata;
 621
 622	init_ps_mdata(&mdata, packet);
 623
 624	while (1) {
 625		struct hfi1_ibport *ibp = rcd_to_iport(rcd);
 626		__le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
 627					 packet->rcd->rhf_offset;
 628		struct rvt_qp *qp;
 629		struct ib_header *hdr;
 630		struct rvt_dev_info *rdi = &rcd->dd->verbs_dev.rdi;
 631		u64 rhf = rhf_to_cpu(rhf_addr);
 632		u32 etype = rhf_rcv_type(rhf), qpn, bth1;
 633		u8 lnh;
 634
 635		if (ps_done(&mdata, rhf, rcd))
 636			break;
 637
 638		if (ps_skip(&mdata, rhf, rcd))
 639			goto next;
 640
 641		if (etype != RHF_RCV_TYPE_IB)
 642			goto next;
 643
 644		packet->hdr = hfi1_get_msgheader(packet->rcd, rhf_addr);
 645		hdr = packet->hdr;
 646		lnh = ib_get_lnh(hdr);
 647
 648		if (lnh == HFI1_LRH_BTH) {
 649			packet->ohdr = &hdr->u.oth;
 650			packet->grh = NULL;
 651		} else if (lnh == HFI1_LRH_GRH) {
 652			packet->ohdr = &hdr->u.l.oth;
 653			packet->grh = &hdr->u.l.grh;
 654		} else {
 655			goto next; /* just in case */
 656		}
 657
 658		if (!hfi1_may_ecn(packet))
 659			goto next;
 660
 661		bth1 = be32_to_cpu(packet->ohdr->bth[1]);
 662		qpn = bth1 & RVT_QPN_MASK;
 663		rcu_read_lock();
 664		qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn);
 665
 666		if (!qp) {
 667			rcu_read_unlock();
 668			goto next;
 669		}
 670
 671		hfi1_process_ecn_slowpath(qp, packet, true);
 672		rcu_read_unlock();
 673
 674		/* turn off BECN, FECN */
 675		bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK);
 676		packet->ohdr->bth[1] = cpu_to_be32(bth1);
 677next:
 678		update_ps_mdata(&mdata, rcd);
 679	}
 680}
 681
 682static void process_rcv_qp_work(struct hfi1_packet *packet)
 683{
 684	struct rvt_qp *qp, *nqp;
 685	struct hfi1_ctxtdata *rcd = packet->rcd;
 686
 687	/*
 688	 * Iterate over all QPs waiting to respond.
 689	 * The list won't change since the IRQ is only run on one CPU.
 690	 */
 691	list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
 692		list_del_init(&qp->rspwait);
 693		if (qp->r_flags & RVT_R_RSP_NAK) {
 694			qp->r_flags &= ~RVT_R_RSP_NAK;
 695			packet->qp = qp;
 696			hfi1_send_rc_ack(packet, 0);
 697		}
 698		if (qp->r_flags & RVT_R_RSP_SEND) {
 699			unsigned long flags;
 700
 701			qp->r_flags &= ~RVT_R_RSP_SEND;
 702			spin_lock_irqsave(&qp->s_lock, flags);
 703			if (ib_rvt_state_ops[qp->state] &
 704					RVT_PROCESS_OR_FLUSH_SEND)
 705				hfi1_schedule_send(qp);
 706			spin_unlock_irqrestore(&qp->s_lock, flags);
 707		}
 708		rvt_put_qp(qp);
 709	}
 710}
 711
 712static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread)
 713{
 714	if (thread) {
 715		if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0)
 716			/* allow defered processing */
 717			process_rcv_qp_work(packet);
 718		cond_resched();
 719		return RCV_PKT_OK;
 720	} else {
 721		this_cpu_inc(*packet->rcd->dd->rcv_limit);
 722		return RCV_PKT_LIMIT;
 723	}
 724}
 725
 726static inline int check_max_packet(struct hfi1_packet *packet, int thread)
 727{
 728	int ret = RCV_PKT_OK;
 729
 730	if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0))
 731		ret = max_packet_exceeded(packet, thread);
 732	return ret;
 733}
 734
 735static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread)
 736{
 737	int ret;
 738
 739	packet->rcd->dd->ctx0_seq_drop++;
 740	/* Set up for the next packet */
 741	packet->rhqoff += packet->rsize;
 742	if (packet->rhqoff >= packet->maxcnt)
 743		packet->rhqoff = 0;
 744
 745	packet->numpkt++;
 746	ret = check_max_packet(packet, thread);
 747
 748	packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
 749				     packet->rcd->rhf_offset;
 750	packet->rhf = rhf_to_cpu(packet->rhf_addr);
 751
 752	return ret;
 753}
 754
 755static void process_rcv_packet_napi(struct hfi1_packet *packet)
 756{
 757	packet->etype = rhf_rcv_type(packet->rhf);
 758
 759	/* total length */
 760	packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
 761	/* retrieve eager buffer details */
 762	packet->etail = rhf_egr_index(packet->rhf);
 763	packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
 764				  &packet->updegr);
 765	/*
 766	 * Prefetch the contents of the eager buffer.  It is
 767	 * OK to send a negative length to prefetch_range().
 768	 * The +2 is the size of the RHF.
 769	 */
 770	prefetch_range(packet->ebuf,
 771		       packet->tlen - ((packet->rcd->rcvhdrqentsize -
 772				       (rhf_hdrq_offset(packet->rhf)
 773					+ 2)) * 4));
 774
 775	packet->rcd->rhf_rcv_function_map[packet->etype](packet);
 776	packet->numpkt++;
 777
 778	/* Set up for the next packet */
 779	packet->rhqoff += packet->rsize;
 780	if (packet->rhqoff >= packet->maxcnt)
 781		packet->rhqoff = 0;
 782
 783	packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
 784				      packet->rcd->rhf_offset;
 785	packet->rhf = rhf_to_cpu(packet->rhf_addr);
 786}
 787
 788static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
 789{
 790	int ret;
 791
 792	packet->etype = rhf_rcv_type(packet->rhf);
 793
 794	/* total length */
 795	packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
 796	/* retrieve eager buffer details */
 797	packet->ebuf = NULL;
 798	if (rhf_use_egr_bfr(packet->rhf)) {
 799		packet->etail = rhf_egr_index(packet->rhf);
 800		packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
 801				 &packet->updegr);
 802		/*
 803		 * Prefetch the contents of the eager buffer.  It is
 804		 * OK to send a negative length to prefetch_range().
 805		 * The +2 is the size of the RHF.
 806		 */
 807		prefetch_range(packet->ebuf,
 808			       packet->tlen - ((get_hdrqentsize(packet->rcd) -
 809					       (rhf_hdrq_offset(packet->rhf)
 810						+ 2)) * 4));
 811	}
 812
 813	/*
 814	 * Call a type specific handler for the packet. We
 815	 * should be able to trust that etype won't be beyond
 816	 * the range of valid indexes. If so something is really
 817	 * wrong and we can probably just let things come
 818	 * crashing down. There is no need to eat another
 819	 * comparison in this performance critical code.
 820	 */
 821	packet->rcd->rhf_rcv_function_map[packet->etype](packet);
 822	packet->numpkt++;
 823
 824	/* Set up for the next packet */
 825	packet->rhqoff += packet->rsize;
 826	if (packet->rhqoff >= packet->maxcnt)
 827		packet->rhqoff = 0;
 828
 829	ret = check_max_packet(packet, thread);
 830
 831	packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
 832				      packet->rcd->rhf_offset;
 833	packet->rhf = rhf_to_cpu(packet->rhf_addr);
 834
 835	return ret;
 836}
 837
 838static inline void process_rcv_update(int last, struct hfi1_packet *packet)
 839{
 840	/*
 841	 * Update head regs etc., every 16 packets, if not last pkt,
 842	 * to help prevent rcvhdrq overflows, when many packets
 843	 * are processed and queue is nearly full.
 844	 * Don't request an interrupt for intermediate updates.
 845	 */
 846	if (!last && !(packet->numpkt & 0xf)) {
 847		update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
 848			       packet->etail, 0, 0);
 849		packet->updegr = 0;
 850	}
 851	packet->grh = NULL;
 852}
 853
 854static inline void finish_packet(struct hfi1_packet *packet)
 855{
 856	/*
 857	 * Nothing we need to free for the packet.
 858	 *
 859	 * The only thing we need to do is a final update and call for an
 860	 * interrupt
 861	 */
 862	update_usrhead(packet->rcd, hfi1_rcd_head(packet->rcd), packet->updegr,
 863		       packet->etail, rcv_intr_dynamic, packet->numpkt);
 864}
 865
 866/*
 867 * handle_receive_interrupt_napi_fp - receive a packet
 868 * @rcd: the context
 869 * @budget: polling budget
 870 *
 871 * Called from interrupt handler for receive interrupt.
 872 * This is the fast path interrupt handler
 873 * when executing napi soft irq environment.
 874 */
 875int handle_receive_interrupt_napi_fp(struct hfi1_ctxtdata *rcd, int budget)
 876{
 877	struct hfi1_packet packet;
 878
 879	init_packet(rcd, &packet);
 880	if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
 881		goto bail;
 882
 883	while (packet.numpkt < budget) {
 884		process_rcv_packet_napi(&packet);
 885		if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
 886			break;
 887
 888		process_rcv_update(0, &packet);
 889	}
 890	hfi1_set_rcd_head(rcd, packet.rhqoff);
 891bail:
 892	finish_packet(&packet);
 893	return packet.numpkt;
 894}
 895
 896/*
 897 * Handle receive interrupts when using the no dma rtail option.
 898 */
 899int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
 900{
 901	int last = RCV_PKT_OK;
 902	struct hfi1_packet packet;
 903
 904	init_packet(rcd, &packet);
 905	if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) {
 906		last = RCV_PKT_DONE;
 907		goto bail;
 908	}
 909
 910	prescan_rxq(rcd, &packet);
 911
 912	while (last == RCV_PKT_OK) {
 913		last = process_rcv_packet(&packet, thread);
 914		if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
 915			last = RCV_PKT_DONE;
 916		process_rcv_update(last, &packet);
 917	}
 918	process_rcv_qp_work(&packet);
 919	hfi1_set_rcd_head(rcd, packet.rhqoff);
 920bail:
 921	finish_packet(&packet);
 922	return last;
 923}
 924
 925int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
 926{
 927	u32 hdrqtail;
 928	int last = RCV_PKT_OK;
 929	struct hfi1_packet packet;
 930
 931	init_packet(rcd, &packet);
 932	hdrqtail = get_rcvhdrtail(rcd);
 933	if (packet.rhqoff == hdrqtail) {
 934		last = RCV_PKT_DONE;
 935		goto bail;
 936	}
 937	smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
 938
 939	prescan_rxq(rcd, &packet);
 940
 941	while (last == RCV_PKT_OK) {
 942		last = process_rcv_packet(&packet, thread);
 943		if (packet.rhqoff == hdrqtail)
 944			last = RCV_PKT_DONE;
 945		process_rcv_update(last, &packet);
 946	}
 947	process_rcv_qp_work(&packet);
 948	hfi1_set_rcd_head(rcd, packet.rhqoff);
 949bail:
 950	finish_packet(&packet);
 951	return last;
 952}
 953
 954static void set_all_fastpath(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
 955{
 956	u16 i;
 957
 958	/*
 959	 * For dynamically allocated kernel contexts (like vnic) switch
 960	 * interrupt handler only for that context. Otherwise, switch
 961	 * interrupt handler for all statically allocated kernel contexts.
 962	 */
 963	if (rcd->ctxt >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic) {
 964		hfi1_rcd_get(rcd);
 965		hfi1_set_fast(rcd);
 966		hfi1_rcd_put(rcd);
 967		return;
 968	}
 969
 970	for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
 971		rcd = hfi1_rcd_get_by_index(dd, i);
 972		if (rcd && (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic))
 973			hfi1_set_fast(rcd);
 974		hfi1_rcd_put(rcd);
 975	}
 976}
 977
 978void set_all_slowpath(struct hfi1_devdata *dd)
 979{
 980	struct hfi1_ctxtdata *rcd;
 981	u16 i;
 982
 983	/* HFI1_CTRL_CTXT must always use the slow path interrupt handler */
 984	for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
 985		rcd = hfi1_rcd_get_by_index(dd, i);
 986		if (!rcd)
 987			continue;
 988		if (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
 989			rcd->do_interrupt = rcd->slow_handler;
 990
 991		hfi1_rcd_put(rcd);
 992	}
 993}
 994
 995static bool __set_armed_to_active(struct hfi1_packet *packet)
 996{
 997	u8 etype = rhf_rcv_type(packet->rhf);
 998	u8 sc = SC15_PACKET;
 999
1000	if (etype == RHF_RCV_TYPE_IB) {
1001		struct ib_header *hdr = hfi1_get_msgheader(packet->rcd,
1002							   packet->rhf_addr);
1003		sc = hfi1_9B_get_sc5(hdr, packet->rhf);
1004	} else if (etype == RHF_RCV_TYPE_BYPASS) {
1005		struct hfi1_16b_header *hdr = hfi1_get_16B_header(
1006						packet->rcd,
1007						packet->rhf_addr);
1008		sc = hfi1_16B_get_sc(hdr);
1009	}
1010	if (sc != SC15_PACKET) {
1011		int hwstate = driver_lstate(packet->rcd->ppd);
1012		struct work_struct *lsaw =
1013				&packet->rcd->ppd->linkstate_active_work;
1014
1015		if (hwstate != IB_PORT_ACTIVE) {
1016			dd_dev_info(packet->rcd->dd,
1017				    "Unexpected link state %s\n",
1018				    opa_lstate_name(hwstate));
1019			return false;
1020		}
1021
1022		queue_work(packet->rcd->ppd->link_wq, lsaw);
1023		return true;
1024	}
1025	return false;
1026}
1027
1028/**
1029 * armed to active - the fast path for armed to active
1030 * @packet: the packet structure
1031 *
1032 * Return true if packet processing needs to bail.
1033 */
1034static bool set_armed_to_active(struct hfi1_packet *packet)
1035{
1036	if (likely(packet->rcd->ppd->host_link_state != HLS_UP_ARMED))
1037		return false;
1038	return __set_armed_to_active(packet);
1039}
1040
1041/*
1042 * handle_receive_interrupt - receive a packet
1043 * @rcd: the context
1044 *
1045 * Called from interrupt handler for errors or receive interrupt.
1046 * This is the slow path interrupt handler.
1047 */
1048int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
1049{
1050	struct hfi1_devdata *dd = rcd->dd;
1051	u32 hdrqtail;
1052	int needset, last = RCV_PKT_OK;
1053	struct hfi1_packet packet;
1054	int skip_pkt = 0;
1055
 
 
1056	/* Control context will always use the slow path interrupt handler */
1057	needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1;
1058
1059	init_packet(rcd, &packet);
1060
1061	if (!get_dma_rtail_setting(rcd)) {
1062		if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) {
1063			last = RCV_PKT_DONE;
1064			goto bail;
1065		}
1066		hdrqtail = 0;
1067	} else {
1068		hdrqtail = get_rcvhdrtail(rcd);
1069		if (packet.rhqoff == hdrqtail) {
1070			last = RCV_PKT_DONE;
1071			goto bail;
1072		}
1073		smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
1074
1075		/*
1076		 * Control context can potentially receive an invalid
1077		 * rhf. Drop such packets.
1078		 */
1079		if (rcd->ctxt == HFI1_CTRL_CTXT)
1080			if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
1081				skip_pkt = 1;
1082	}
1083
1084	prescan_rxq(rcd, &packet);
1085
1086	while (last == RCV_PKT_OK) {
1087		if (hfi1_need_drop(dd)) {
1088			/* On to the next packet */
1089			packet.rhqoff += packet.rsize;
1090			packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
1091					  packet.rhqoff +
1092					  rcd->rhf_offset;
1093			packet.rhf = rhf_to_cpu(packet.rhf_addr);
1094
1095		} else if (skip_pkt) {
1096			last = skip_rcv_packet(&packet, thread);
1097			skip_pkt = 0;
1098		} else {
1099			if (set_armed_to_active(&packet))
1100				goto bail;
1101			last = process_rcv_packet(&packet, thread);
1102		}
1103
1104		if (!get_dma_rtail_setting(rcd)) {
1105			if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
1106				last = RCV_PKT_DONE;
1107		} else {
1108			if (packet.rhqoff == hdrqtail)
1109				last = RCV_PKT_DONE;
1110			/*
1111			 * Control context can potentially receive an invalid
1112			 * rhf. Drop such packets.
1113			 */
1114			if (rcd->ctxt == HFI1_CTRL_CTXT) {
1115				bool lseq;
1116
1117				lseq = hfi1_seq_incr(rcd,
1118						     rhf_rcv_seq(packet.rhf));
1119				if (!last && lseq)
1120					skip_pkt = 1;
1121			}
1122		}
1123
1124		if (needset) {
1125			needset = false;
1126			set_all_fastpath(dd, rcd);
1127		}
1128		process_rcv_update(last, &packet);
1129	}
1130
1131	process_rcv_qp_work(&packet);
1132	hfi1_set_rcd_head(rcd, packet.rhqoff);
1133
1134bail:
1135	/*
1136	 * Always write head at end, and setup rcv interrupt, even
1137	 * if no packets were processed.
1138	 */
1139	finish_packet(&packet);
1140	return last;
1141}
1142
1143/*
1144 * handle_receive_interrupt_napi_sp - receive a packet
1145 * @rcd: the context
1146 * @budget: polling budget
1147 *
1148 * Called from interrupt handler for errors or receive interrupt.
1149 * This is the slow path interrupt handler
1150 * when executing napi soft irq environment.
1151 */
1152int handle_receive_interrupt_napi_sp(struct hfi1_ctxtdata *rcd, int budget)
1153{
1154	struct hfi1_devdata *dd = rcd->dd;
1155	int last = RCV_PKT_OK;
1156	bool needset = true;
1157	struct hfi1_packet packet;
1158
1159	init_packet(rcd, &packet);
1160	if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
1161		goto bail;
1162
1163	while (last != RCV_PKT_DONE && packet.numpkt < budget) {
1164		if (hfi1_need_drop(dd)) {
1165			/* On to the next packet */
1166			packet.rhqoff += packet.rsize;
1167			packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
1168					  packet.rhqoff +
1169					  rcd->rhf_offset;
1170			packet.rhf = rhf_to_cpu(packet.rhf_addr);
1171
1172		} else {
1173			if (set_armed_to_active(&packet))
1174				goto bail;
1175			process_rcv_packet_napi(&packet);
1176		}
1177
1178		if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
1179			last = RCV_PKT_DONE;
1180
1181		if (needset) {
1182			needset = false;
1183			set_all_fastpath(dd, rcd);
1184		}
1185
1186		process_rcv_update(last, &packet);
1187	}
1188
1189	hfi1_set_rcd_head(rcd, packet.rhqoff);
1190
1191bail:
1192	/*
1193	 * Always write head at end, and setup rcv interrupt, even
1194	 * if no packets were processed.
1195	 */
1196	finish_packet(&packet);
1197	return packet.numpkt;
1198}
1199
1200/*
1201 * We may discover in the interrupt that the hardware link state has
1202 * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet),
1203 * and we need to update the driver's notion of the link state.  We cannot
1204 * run set_link_state from interrupt context, so we queue this function on
1205 * a workqueue.
1206 *
1207 * We delay the regular interrupt processing until after the state changes
1208 * so that the link will be in the correct state by the time any application
1209 * we wake up attempts to send a reply to any message it received.
1210 * (Subsequent receive interrupts may possibly force the wakeup before we
1211 * update the link state.)
1212 *
1213 * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes
1214 * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues,
1215 * so we're safe from use-after-free of the rcd.
1216 */
1217void receive_interrupt_work(struct work_struct *work)
1218{
1219	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
1220						  linkstate_active_work);
1221	struct hfi1_devdata *dd = ppd->dd;
1222	struct hfi1_ctxtdata *rcd;
1223	u16 i;
1224
1225	/* Received non-SC15 packet implies neighbor_normal */
1226	ppd->neighbor_normal = 1;
1227	set_link_state(ppd, HLS_UP_ACTIVE);
1228
1229	/*
1230	 * Interrupt all statically allocated kernel contexts that could
1231	 * have had an interrupt during auto activation.
1232	 */
1233	for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) {
1234		rcd = hfi1_rcd_get_by_index(dd, i);
1235		if (rcd)
1236			force_recv_intr(rcd);
1237		hfi1_rcd_put(rcd);
1238	}
1239}
1240
1241/*
1242 * Convert a given MTU size to the on-wire MAD packet enumeration.
1243 * Return -1 if the size is invalid.
1244 */
1245int mtu_to_enum(u32 mtu, int default_if_bad)
1246{
1247	switch (mtu) {
1248	case     0: return OPA_MTU_0;
1249	case   256: return OPA_MTU_256;
1250	case   512: return OPA_MTU_512;
1251	case  1024: return OPA_MTU_1024;
1252	case  2048: return OPA_MTU_2048;
1253	case  4096: return OPA_MTU_4096;
1254	case  8192: return OPA_MTU_8192;
1255	case 10240: return OPA_MTU_10240;
1256	}
1257	return default_if_bad;
1258}
1259
1260u16 enum_to_mtu(int mtu)
1261{
1262	switch (mtu) {
1263	case OPA_MTU_0:     return 0;
1264	case OPA_MTU_256:   return 256;
1265	case OPA_MTU_512:   return 512;
1266	case OPA_MTU_1024:  return 1024;
1267	case OPA_MTU_2048:  return 2048;
1268	case OPA_MTU_4096:  return 4096;
1269	case OPA_MTU_8192:  return 8192;
1270	case OPA_MTU_10240: return 10240;
1271	default: return 0xffff;
1272	}
1273}
1274
1275/*
1276 * set_mtu - set the MTU
1277 * @ppd: the per port data
1278 *
1279 * We can handle "any" incoming size, the issue here is whether we
1280 * need to restrict our outgoing size.  We do not deal with what happens
1281 * to programs that are already running when the size changes.
1282 */
1283int set_mtu(struct hfi1_pportdata *ppd)
1284{
1285	struct hfi1_devdata *dd = ppd->dd;
1286	int i, drain, ret = 0, is_up = 0;
1287
1288	ppd->ibmtu = 0;
1289	for (i = 0; i < ppd->vls_supported; i++)
1290		if (ppd->ibmtu < dd->vld[i].mtu)
1291			ppd->ibmtu = dd->vld[i].mtu;
1292	ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
1293
1294	mutex_lock(&ppd->hls_lock);
1295	if (ppd->host_link_state == HLS_UP_INIT ||
1296	    ppd->host_link_state == HLS_UP_ARMED ||
1297	    ppd->host_link_state == HLS_UP_ACTIVE)
1298		is_up = 1;
1299
1300	drain = !is_ax(dd) && is_up;
1301
1302	if (drain)
1303		/*
1304		 * MTU is specified per-VL. To ensure that no packet gets
1305		 * stuck (due, e.g., to the MTU for the packet's VL being
1306		 * reduced), empty the per-VL FIFOs before adjusting MTU.
1307		 */
1308		ret = stop_drain_data_vls(dd);
1309
1310	if (ret) {
1311		dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
1312			   __func__);
1313		goto err;
1314	}
1315
1316	hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
1317
1318	if (drain)
1319		open_fill_data_vls(dd); /* reopen all VLs */
1320
1321err:
1322	mutex_unlock(&ppd->hls_lock);
1323
1324	return ret;
1325}
1326
1327int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
1328{
1329	struct hfi1_devdata *dd = ppd->dd;
1330
1331	ppd->lid = lid;
1332	ppd->lmc = lmc;
1333	hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
1334
1335	dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid);
1336
1337	return 0;
1338}
1339
1340void shutdown_led_override(struct hfi1_pportdata *ppd)
1341{
1342	struct hfi1_devdata *dd = ppd->dd;
1343
1344	/*
1345	 * This pairs with the memory barrier in hfi1_start_led_override to
1346	 * ensure that we read the correct state of LED beaconing represented
1347	 * by led_override_timer_active
1348	 */
1349	smp_rmb();
1350	if (atomic_read(&ppd->led_override_timer_active)) {
1351		del_timer_sync(&ppd->led_override_timer);
1352		atomic_set(&ppd->led_override_timer_active, 0);
1353		/* Ensure the atomic_set is visible to all CPUs */
1354		smp_wmb();
1355	}
1356
1357	/* Hand control of the LED to the DC for normal operation */
1358	write_csr(dd, DCC_CFG_LED_CNTRL, 0);
1359}
1360
1361static void run_led_override(struct timer_list *t)
1362{
1363	struct hfi1_pportdata *ppd = from_timer(ppd, t, led_override_timer);
1364	struct hfi1_devdata *dd = ppd->dd;
1365	unsigned long timeout;
1366	int phase_idx;
1367
1368	if (!(dd->flags & HFI1_INITTED))
1369		return;
1370
1371	phase_idx = ppd->led_override_phase & 1;
1372
1373	setextled(dd, phase_idx);
1374
1375	timeout = ppd->led_override_vals[phase_idx];
1376
1377	/* Set up for next phase */
1378	ppd->led_override_phase = !ppd->led_override_phase;
1379
1380	mod_timer(&ppd->led_override_timer, jiffies + timeout);
1381}
1382
1383/*
1384 * To have the LED blink in a particular pattern, provide timeon and timeoff
1385 * in milliseconds.
1386 * To turn off custom blinking and return to normal operation, use
1387 * shutdown_led_override()
1388 */
1389void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
1390			     unsigned int timeoff)
1391{
1392	if (!(ppd->dd->flags & HFI1_INITTED))
1393		return;
1394
1395	/* Convert to jiffies for direct use in timer */
1396	ppd->led_override_vals[0] = msecs_to_jiffies(timeoff);
1397	ppd->led_override_vals[1] = msecs_to_jiffies(timeon);
1398
1399	/* Arbitrarily start from LED on phase */
1400	ppd->led_override_phase = 1;
1401
1402	/*
1403	 * If the timer has not already been started, do so. Use a "quick"
1404	 * timeout so the handler will be called soon to look at our request.
1405	 */
1406	if (!timer_pending(&ppd->led_override_timer)) {
1407		timer_setup(&ppd->led_override_timer, run_led_override, 0);
1408		ppd->led_override_timer.expires = jiffies + 1;
1409		add_timer(&ppd->led_override_timer);
1410		atomic_set(&ppd->led_override_timer_active, 1);
1411		/* Ensure the atomic_set is visible to all CPUs */
1412		smp_wmb();
1413	}
1414}
1415
1416/**
1417 * hfi1_reset_device - reset the chip if possible
1418 * @unit: the device to reset
1419 *
1420 * Whether or not reset is successful, we attempt to re-initialize the chip
1421 * (that is, much like a driver unload/reload).  We clear the INITTED flag
1422 * so that the various entry points will fail until we reinitialize.  For
1423 * now, we only allow this if no user contexts are open that use chip resources
1424 */
1425int hfi1_reset_device(int unit)
1426{
1427	int ret;
1428	struct hfi1_devdata *dd = hfi1_lookup(unit);
1429	struct hfi1_pportdata *ppd;
1430	int pidx;
1431
1432	if (!dd) {
1433		ret = -ENODEV;
1434		goto bail;
1435	}
1436
1437	dd_dev_info(dd, "Reset on unit %u requested\n", unit);
1438
1439	if (!dd->kregbase1 || !(dd->flags & HFI1_PRESENT)) {
1440		dd_dev_info(dd,
1441			    "Invalid unit number %u or not initialized or not present\n",
1442			    unit);
1443		ret = -ENXIO;
1444		goto bail;
1445	}
1446
1447	/* If there are any user/vnic contexts, we cannot reset */
1448	mutex_lock(&hfi1_mutex);
1449	if (dd->rcd)
1450		if (hfi1_stats.sps_ctxts) {
1451			mutex_unlock(&hfi1_mutex);
1452			ret = -EBUSY;
1453			goto bail;
1454		}
1455	mutex_unlock(&hfi1_mutex);
1456
1457	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1458		ppd = dd->pport + pidx;
1459
1460		shutdown_led_override(ppd);
1461	}
1462	if (dd->flags & HFI1_HAS_SEND_DMA)
1463		sdma_exit(dd);
1464
1465	hfi1_reset_cpu_counters(dd);
1466
1467	ret = hfi1_init(dd, 1);
1468
1469	if (ret)
1470		dd_dev_err(dd,
1471			   "Reinitialize unit %u after reset failed with %d\n",
1472			   unit, ret);
1473	else
1474		dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
1475			    unit);
1476
1477bail:
1478	return ret;
1479}
1480
1481static inline void hfi1_setup_ib_header(struct hfi1_packet *packet)
1482{
1483	packet->hdr = (struct hfi1_ib_message_header *)
1484			hfi1_get_msgheader(packet->rcd,
1485					   packet->rhf_addr);
1486	packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
1487}
1488
1489static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet *packet)
1490{
1491	struct hfi1_pportdata *ppd = packet->rcd->ppd;
1492
1493	/* slid and dlid cannot be 0 */
1494	if ((!packet->slid) || (!packet->dlid))
1495		return -EINVAL;
1496
1497	/* Compare port lid with incoming packet dlid */
1498	if ((!(hfi1_is_16B_mcast(packet->dlid))) &&
1499	    (packet->dlid !=
1500		opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))) {
1501		if ((packet->dlid & ~((1 << ppd->lmc) - 1)) != ppd->lid)
1502			return -EINVAL;
1503	}
1504
1505	/* No multicast packets with SC15 */
1506	if ((hfi1_is_16B_mcast(packet->dlid)) && (packet->sc == 0xF))
1507		return -EINVAL;
1508
1509	/* Packets with permissive DLID always on SC15 */
1510	if ((packet->dlid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE),
1511					 16B)) &&
1512	    (packet->sc != 0xF))
1513		return -EINVAL;
1514
1515	return 0;
1516}
1517
1518static int hfi1_setup_9B_packet(struct hfi1_packet *packet)
1519{
1520	struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1521	struct ib_header *hdr;
1522	u8 lnh;
1523
1524	hfi1_setup_ib_header(packet);
1525	hdr = packet->hdr;
1526
1527	lnh = ib_get_lnh(hdr);
1528	if (lnh == HFI1_LRH_BTH) {
1529		packet->ohdr = &hdr->u.oth;
1530		packet->grh = NULL;
1531	} else if (lnh == HFI1_LRH_GRH) {
1532		u32 vtf;
1533
1534		packet->ohdr = &hdr->u.l.oth;
1535		packet->grh = &hdr->u.l.grh;
1536		if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1537			goto drop;
1538		vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1539		if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1540			goto drop;
1541	} else {
1542		goto drop;
1543	}
1544
1545	/* Query commonly used fields from packet header */
1546	packet->payload = packet->ebuf;
1547	packet->opcode = ib_bth_get_opcode(packet->ohdr);
1548	packet->slid = ib_get_slid(hdr);
1549	packet->dlid = ib_get_dlid(hdr);
1550	if (unlikely((packet->dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
1551		     (packet->dlid != be16_to_cpu(IB_LID_PERMISSIVE))))
1552		packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1553				be16_to_cpu(IB_MULTICAST_LID_BASE);
1554	packet->sl = ib_get_sl(hdr);
1555	packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf);
1556	packet->pad = ib_bth_get_pad(packet->ohdr);
1557	packet->extra_byte = 0;
1558	packet->pkey = ib_bth_get_pkey(packet->ohdr);
1559	packet->migrated = ib_bth_is_migration(packet->ohdr);
1560
1561	return 0;
1562drop:
1563	ibp->rvp.n_pkt_drops++;
1564	return -EINVAL;
1565}
1566
1567static int hfi1_setup_bypass_packet(struct hfi1_packet *packet)
1568{
1569	/*
1570	 * Bypass packets have a different header/payload split
1571	 * compared to an IB packet.
1572	 * Current split is set such that 16 bytes of the actual
1573	 * header is in the header buffer and the remining is in
1574	 * the eager buffer. We chose 16 since hfi1 driver only
1575	 * supports 16B bypass packets and we will be able to
1576	 * receive the entire LRH with such a split.
1577	 */
1578
1579	struct hfi1_ctxtdata *rcd = packet->rcd;
1580	struct hfi1_pportdata *ppd = rcd->ppd;
1581	struct hfi1_ibport *ibp = &ppd->ibport_data;
1582	u8 l4;
1583
1584	packet->hdr = (struct hfi1_16b_header *)
1585			hfi1_get_16B_header(packet->rcd,
1586					    packet->rhf_addr);
1587	l4 = hfi1_16B_get_l4(packet->hdr);
1588	if (l4 == OPA_16B_L4_IB_LOCAL) {
1589		packet->ohdr = packet->ebuf;
1590		packet->grh = NULL;
1591		packet->opcode = ib_bth_get_opcode(packet->ohdr);
1592		packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1593		/* hdr_len_by_opcode already has an IB LRH factored in */
1594		packet->hlen = hdr_len_by_opcode[packet->opcode] +
1595			(LRH_16B_BYTES - LRH_9B_BYTES);
1596		packet->migrated = opa_bth_is_migration(packet->ohdr);
1597	} else if (l4 == OPA_16B_L4_IB_GLOBAL) {
1598		u32 vtf;
1599		u8 grh_len = sizeof(struct ib_grh);
1600
1601		packet->ohdr = packet->ebuf + grh_len;
1602		packet->grh = packet->ebuf;
1603		packet->opcode = ib_bth_get_opcode(packet->ohdr);
1604		packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1605		/* hdr_len_by_opcode already has an IB LRH factored in */
1606		packet->hlen = hdr_len_by_opcode[packet->opcode] +
1607			(LRH_16B_BYTES - LRH_9B_BYTES) + grh_len;
1608		packet->migrated = opa_bth_is_migration(packet->ohdr);
1609
1610		if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1611			goto drop;
1612		vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1613		if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1614			goto drop;
1615	} else if (l4 == OPA_16B_L4_FM) {
1616		packet->mgmt = packet->ebuf;
1617		packet->ohdr = NULL;
1618		packet->grh = NULL;
1619		packet->opcode = IB_OPCODE_UD_SEND_ONLY;
1620		packet->pad = OPA_16B_L4_FM_PAD;
1621		packet->hlen = OPA_16B_L4_FM_HLEN;
1622		packet->migrated = false;
1623	} else {
1624		goto drop;
1625	}
1626
1627	/* Query commonly used fields from packet header */
1628	packet->payload = packet->ebuf + packet->hlen - LRH_16B_BYTES;
1629	packet->slid = hfi1_16B_get_slid(packet->hdr);
1630	packet->dlid = hfi1_16B_get_dlid(packet->hdr);
1631	if (unlikely(hfi1_is_16B_mcast(packet->dlid)))
1632		packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1633				opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR),
1634					    16B);
1635	packet->sc = hfi1_16B_get_sc(packet->hdr);
1636	packet->sl = ibp->sc_to_sl[packet->sc];
1637	packet->extra_byte = SIZE_OF_LT;
1638	packet->pkey = hfi1_16B_get_pkey(packet->hdr);
1639
1640	if (hfi1_bypass_ingress_pkt_check(packet))
1641		goto drop;
1642
1643	return 0;
1644drop:
1645	hfi1_cdbg(PKT, "%s: packet dropped\n", __func__);
1646	ibp->rvp.n_pkt_drops++;
1647	return -EINVAL;
1648}
1649
1650static void show_eflags_errs(struct hfi1_packet *packet)
1651{
1652	struct hfi1_ctxtdata *rcd = packet->rcd;
1653	u32 rte = rhf_rcv_type_err(packet->rhf);
1654
1655	dd_dev_err(rcd->dd,
1656		   "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s] rte 0x%x\n",
1657		   rcd->ctxt, packet->rhf,
1658		   packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
1659		   packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
1660		   packet->rhf & RHF_DC_ERR ? "dc " : "",
1661		   packet->rhf & RHF_TID_ERR ? "tid " : "",
1662		   packet->rhf & RHF_LEN_ERR ? "len " : "",
1663		   packet->rhf & RHF_ECC_ERR ? "ecc " : "",
1664		   packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
1665		   rte);
1666}
1667
1668void handle_eflags(struct hfi1_packet *packet)
1669{
1670	struct hfi1_ctxtdata *rcd = packet->rcd;
1671
1672	rcv_hdrerr(rcd, rcd->ppd, packet);
1673	if (rhf_err_flags(packet->rhf))
1674		show_eflags_errs(packet);
1675}
1676
1677static void hfi1_ipoib_ib_rcv(struct hfi1_packet *packet)
1678{
1679	struct hfi1_ibport *ibp;
1680	struct net_device *netdev;
1681	struct hfi1_ctxtdata *rcd = packet->rcd;
1682	struct napi_struct *napi = rcd->napi;
1683	struct sk_buff *skb;
1684	struct hfi1_netdev_rxq *rxq = container_of(napi,
1685			struct hfi1_netdev_rxq, napi);
1686	u32 extra_bytes;
1687	u32 tlen, qpnum;
1688	bool do_work, do_cnp;
1689	struct hfi1_ipoib_dev_priv *priv;
1690
1691	trace_hfi1_rcvhdr(packet);
1692
1693	hfi1_setup_ib_header(packet);
1694
1695	packet->ohdr = &((struct ib_header *)packet->hdr)->u.oth;
1696	packet->grh = NULL;
1697
1698	if (unlikely(rhf_err_flags(packet->rhf))) {
1699		handle_eflags(packet);
1700		return;
1701	}
1702
1703	qpnum = ib_bth_get_qpn(packet->ohdr);
1704	netdev = hfi1_netdev_get_data(rcd->dd, qpnum);
1705	if (!netdev)
1706		goto drop_no_nd;
1707
1708	trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
1709	trace_ctxt_rsm_hist(rcd->ctxt);
1710
1711	/* handle congestion notifications */
1712	do_work = hfi1_may_ecn(packet);
1713	if (unlikely(do_work)) {
1714		do_cnp = (packet->opcode != IB_OPCODE_CNP);
1715		(void)hfi1_process_ecn_slowpath(hfi1_ipoib_priv(netdev)->qp,
1716						 packet, do_cnp);
1717	}
1718
1719	/*
1720	 * We have split point after last byte of DETH
1721	 * lets strip padding and CRC and ICRC.
1722	 * tlen is whole packet len so we need to
1723	 * subtract header size as well.
1724	 */
1725	tlen = packet->tlen;
1726	extra_bytes = ib_bth_get_pad(packet->ohdr) + (SIZE_OF_CRC << 2) +
1727			packet->hlen;
1728	if (unlikely(tlen < extra_bytes))
1729		goto drop;
1730
1731	tlen -= extra_bytes;
1732
1733	skb = hfi1_ipoib_prepare_skb(rxq, tlen, packet->ebuf);
1734	if (unlikely(!skb))
1735		goto drop;
1736
1737	priv = hfi1_ipoib_priv(netdev);
1738	hfi1_ipoib_update_rx_netstats(priv, 1, skb->len);
1739
1740	skb->dev = netdev;
1741	skb->pkt_type = PACKET_HOST;
1742	netif_receive_skb(skb);
1743
1744	return;
1745
1746drop:
1747	++netdev->stats.rx_dropped;
1748drop_no_nd:
1749	ibp = rcd_to_iport(packet->rcd);
1750	++ibp->rvp.n_pkt_drops;
1751}
1752
1753/*
1754 * The following functions are called by the interrupt handler. They are type
1755 * specific handlers for each packet type.
1756 */
1757static void process_receive_ib(struct hfi1_packet *packet)
1758{
1759	if (hfi1_setup_9B_packet(packet))
1760		return;
1761
1762	if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1763		return;
1764
1765	trace_hfi1_rcvhdr(packet);
1766
1767	if (unlikely(rhf_err_flags(packet->rhf))) {
1768		handle_eflags(packet);
1769		return;
1770	}
1771
1772	hfi1_ib_rcv(packet);
1773}
1774
1775static void process_receive_bypass(struct hfi1_packet *packet)
1776{
1777	struct hfi1_devdata *dd = packet->rcd->dd;
1778
1779	if (hfi1_setup_bypass_packet(packet))
1780		return;
1781
1782	trace_hfi1_rcvhdr(packet);
1783
1784	if (unlikely(rhf_err_flags(packet->rhf))) {
1785		handle_eflags(packet);
1786		return;
1787	}
1788
1789	if (hfi1_16B_get_l2(packet->hdr) == 0x2) {
1790		hfi1_16B_rcv(packet);
1791	} else {
1792		dd_dev_err(dd,
1793			   "Bypass packets other than 16B are not supported in normal operation. Dropping\n");
1794		incr_cntr64(&dd->sw_rcv_bypass_packet_errors);
1795		if (!(dd->err_info_rcvport.status_and_code &
1796		      OPA_EI_STATUS_SMASK)) {
1797			u64 *flits = packet->ebuf;
1798
1799			if (flits && !(packet->rhf & RHF_LEN_ERR)) {
1800				dd->err_info_rcvport.packet_flit1 = flits[0];
1801				dd->err_info_rcvport.packet_flit2 =
1802					packet->tlen > sizeof(flits[0]) ?
1803					flits[1] : 0;
1804			}
1805			dd->err_info_rcvport.status_and_code |=
1806				(OPA_EI_STATUS_SMASK | BAD_L2_ERR);
1807		}
1808	}
1809}
1810
1811static void process_receive_error(struct hfi1_packet *packet)
1812{
1813	/* KHdrHCRCErr -- KDETH packet with a bad HCRC */
1814	if (unlikely(
1815		 hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) &&
1816		 (rhf_rcv_type_err(packet->rhf) == RHF_RCV_TYPE_ERROR ||
1817		  packet->rhf & RHF_DC_ERR)))
1818		return;
1819
1820	hfi1_setup_ib_header(packet);
1821	handle_eflags(packet);
1822
1823	if (unlikely(rhf_err_flags(packet->rhf)))
1824		dd_dev_err(packet->rcd->dd,
1825			   "Unhandled error packet received. Dropping.\n");
1826}
1827
1828static void kdeth_process_expected(struct hfi1_packet *packet)
1829{
1830	hfi1_setup_9B_packet(packet);
1831	if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1832		return;
1833
1834	if (unlikely(rhf_err_flags(packet->rhf))) {
1835		struct hfi1_ctxtdata *rcd = packet->rcd;
1836
1837		if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet))
1838			return;
1839	}
1840
1841	hfi1_kdeth_expected_rcv(packet);
1842}
1843
1844static void kdeth_process_eager(struct hfi1_packet *packet)
1845{
1846	hfi1_setup_9B_packet(packet);
1847	if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1848		return;
1849
1850	trace_hfi1_rcvhdr(packet);
1851	if (unlikely(rhf_err_flags(packet->rhf))) {
1852		struct hfi1_ctxtdata *rcd = packet->rcd;
1853
1854		show_eflags_errs(packet);
1855		if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet))
1856			return;
1857	}
1858
1859	hfi1_kdeth_eager_rcv(packet);
1860}
1861
1862static void process_receive_invalid(struct hfi1_packet *packet)
1863{
1864	dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
1865		   rhf_rcv_type(packet->rhf));
1866}
1867
1868#define HFI1_RCVHDR_DUMP_MAX	5
1869
1870void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd)
1871{
1872	struct hfi1_packet packet;
1873	struct ps_mdata mdata;
1874	int i;
1875
1876	seq_printf(s, "Rcd %u: RcvHdr cnt %u entsize %u %s ctrl 0x%08llx status 0x%08llx, head %llu tail %llu  sw head %u\n",
1877		   rcd->ctxt, get_hdrq_cnt(rcd), get_hdrqentsize(rcd),
1878		   get_dma_rtail_setting(rcd) ?
1879		   "dma_rtail" : "nodma_rtail",
1880		   read_kctxt_csr(rcd->dd, rcd->ctxt, RCV_CTXT_CTRL),
1881		   read_kctxt_csr(rcd->dd, rcd->ctxt, RCV_CTXT_STATUS),
1882		   read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) &
1883		   RCV_HDR_HEAD_HEAD_MASK,
1884		   read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL),
1885		   rcd->head);
1886
1887	init_packet(rcd, &packet);
1888	init_ps_mdata(&mdata, &packet);
1889
1890	for (i = 0; i < HFI1_RCVHDR_DUMP_MAX; i++) {
1891		__le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
1892					 rcd->rhf_offset;
1893		struct ib_header *hdr;
1894		u64 rhf = rhf_to_cpu(rhf_addr);
1895		u32 etype = rhf_rcv_type(rhf), qpn;
1896		u8 opcode;
1897		u32 psn;
1898		u8 lnh;
1899
1900		if (ps_done(&mdata, rhf, rcd))
1901			break;
1902
1903		if (ps_skip(&mdata, rhf, rcd))
1904			goto next;
1905
1906		if (etype > RHF_RCV_TYPE_IB)
1907			goto next;
1908
1909		packet.hdr = hfi1_get_msgheader(rcd, rhf_addr);
1910		hdr = packet.hdr;
1911
1912		lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1913
1914		if (lnh == HFI1_LRH_BTH)
1915			packet.ohdr = &hdr->u.oth;
1916		else if (lnh == HFI1_LRH_GRH)
1917			packet.ohdr = &hdr->u.l.oth;
1918		else
1919			goto next; /* just in case */
1920
1921		opcode = (be32_to_cpu(packet.ohdr->bth[0]) >> 24);
1922		qpn = be32_to_cpu(packet.ohdr->bth[1]) & RVT_QPN_MASK;
1923		psn = mask_psn(be32_to_cpu(packet.ohdr->bth[2]));
1924
1925		seq_printf(s, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n",
1926			   mdata.ps_head, opcode, qpn, psn);
1927next:
1928		update_ps_mdata(&mdata, rcd);
1929	}
1930}
1931
1932const rhf_rcv_function_ptr normal_rhf_rcv_functions[] = {
1933	[RHF_RCV_TYPE_EXPECTED] = kdeth_process_expected,
1934	[RHF_RCV_TYPE_EAGER] = kdeth_process_eager,
1935	[RHF_RCV_TYPE_IB] = process_receive_ib,
1936	[RHF_RCV_TYPE_ERROR] = process_receive_error,
1937	[RHF_RCV_TYPE_BYPASS] = process_receive_bypass,
1938	[RHF_RCV_TYPE_INVALID5] = process_receive_invalid,
1939	[RHF_RCV_TYPE_INVALID6] = process_receive_invalid,
1940	[RHF_RCV_TYPE_INVALID7] = process_receive_invalid,
1941};
1942
1943const rhf_rcv_function_ptr netdev_rhf_rcv_functions[] = {
1944	[RHF_RCV_TYPE_EXPECTED] = process_receive_invalid,
1945	[RHF_RCV_TYPE_EAGER] = process_receive_invalid,
1946	[RHF_RCV_TYPE_IB] = hfi1_ipoib_ib_rcv,
1947	[RHF_RCV_TYPE_ERROR] = process_receive_error,
1948	[RHF_RCV_TYPE_BYPASS] = hfi1_vnic_bypass_rcv,
1949	[RHF_RCV_TYPE_INVALID5] = process_receive_invalid,
1950	[RHF_RCV_TYPE_INVALID6] = process_receive_invalid,
1951	[RHF_RCV_TYPE_INVALID7] = process_receive_invalid,
1952};