Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Driver for Linear Technology LTC4215 I2C Hot Swap Controller
  4 *
  5 * Copyright (C) 2009 Ira W. Snyder <iws@ovro.caltech.edu>
  6 *
  7 * Datasheet:
  8 * http://www.linear.com/pc/downloadDocument.do?navId=H0,C1,C1003,C1006,C1163,P17572,D12697
  9 */
 10
 11#include <linux/kernel.h>
 12#include <linux/module.h>
 13#include <linux/init.h>
 14#include <linux/err.h>
 15#include <linux/slab.h>
 16#include <linux/i2c.h>
 17#include <linux/hwmon.h>
 18#include <linux/hwmon-sysfs.h>
 19#include <linux/jiffies.h>
 20
 21/* Here are names of the chip's registers (a.k.a. commands) */
 22enum ltc4215_cmd {
 23	LTC4215_CONTROL			= 0x00, /* rw */
 24	LTC4215_ALERT			= 0x01, /* rw */
 25	LTC4215_STATUS			= 0x02, /* ro */
 26	LTC4215_FAULT			= 0x03, /* rw */
 27	LTC4215_SENSE			= 0x04, /* rw */
 28	LTC4215_SOURCE			= 0x05, /* rw */
 29	LTC4215_ADIN			= 0x06, /* rw */
 30};
 31
 32struct ltc4215_data {
 33	struct i2c_client *client;
 34
 35	struct mutex update_lock;
 36	bool valid;
 37	unsigned long last_updated; /* in jiffies */
 38
 39	/* Registers */
 40	u8 regs[7];
 41};
 42
 43static struct ltc4215_data *ltc4215_update_device(struct device *dev)
 44{
 45	struct ltc4215_data *data = dev_get_drvdata(dev);
 46	struct i2c_client *client = data->client;
 47	s32 val;
 48	int i;
 49
 50	mutex_lock(&data->update_lock);
 51
 52	/* The chip's A/D updates 10 times per second */
 53	if (time_after(jiffies, data->last_updated + HZ / 10) || !data->valid) {
 54
 55		dev_dbg(&client->dev, "Starting ltc4215 update\n");
 56
 57		/* Read all registers */
 58		for (i = 0; i < ARRAY_SIZE(data->regs); i++) {
 59			val = i2c_smbus_read_byte_data(client, i);
 60			if (unlikely(val < 0))
 61				data->regs[i] = 0;
 62			else
 63				data->regs[i] = val;
 64		}
 65
 66		data->last_updated = jiffies;
 67		data->valid = true;
 68	}
 69
 70	mutex_unlock(&data->update_lock);
 71
 72	return data;
 73}
 74
 75/* Return the voltage from the given register in millivolts */
 76static int ltc4215_get_voltage(struct device *dev, u8 reg)
 77{
 78	struct ltc4215_data *data = ltc4215_update_device(dev);
 79	const u8 regval = data->regs[reg];
 80	u32 voltage = 0;
 81
 82	switch (reg) {
 83	case LTC4215_SENSE:
 84		/* 151 uV per increment */
 85		voltage = regval * 151 / 1000;
 86		break;
 87	case LTC4215_SOURCE:
 88		/* 60.5 mV per increment */
 89		voltage = regval * 605 / 10;
 90		break;
 91	case LTC4215_ADIN:
 92		/*
 93		 * The ADIN input is divided by 12.5, and has 4.82 mV
 94		 * per increment, so we have the additional multiply
 95		 */
 96		voltage = regval * 482 * 125 / 1000;
 97		break;
 98	default:
 99		/* If we get here, the developer messed up */
100		WARN_ON_ONCE(1);
101		break;
102	}
103
104	return voltage;
105}
106
107/* Return the current from the sense resistor in mA */
108static unsigned int ltc4215_get_current(struct device *dev)
109{
110	struct ltc4215_data *data = ltc4215_update_device(dev);
111
112	/*
113	 * The strange looking conversions that follow are fixed-point
114	 * math, since we cannot do floating point in the kernel.
115	 *
116	 * Step 1: convert sense register to microVolts
117	 * Step 2: convert voltage to milliAmperes
118	 *
119	 * If you play around with the V=IR equation, you come up with
120	 * the following: X uV / Y mOhm == Z mA
121	 *
122	 * With the resistors that are fractions of a milliOhm, we multiply
123	 * the voltage and resistance by 10, to shift the decimal point.
124	 * Now we can use the normal division operator again.
125	 */
126
127	/* Calculate voltage in microVolts (151 uV per increment) */
128	const unsigned int voltage = data->regs[LTC4215_SENSE] * 151;
129
130	/* Calculate current in milliAmperes (4 milliOhm sense resistor) */
131	const unsigned int curr = voltage / 4;
132
133	return curr;
134}
135
136static ssize_t ltc4215_voltage_show(struct device *dev,
137				    struct device_attribute *da, char *buf)
138{
139	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
140	const int voltage = ltc4215_get_voltage(dev, attr->index);
141
142	return sysfs_emit(buf, "%d\n", voltage);
143}
144
145static ssize_t ltc4215_current_show(struct device *dev,
146				    struct device_attribute *da, char *buf)
147{
148	const unsigned int curr = ltc4215_get_current(dev);
149
150	return sysfs_emit(buf, "%u\n", curr);
151}
152
153static ssize_t ltc4215_power_show(struct device *dev,
154				  struct device_attribute *da, char *buf)
155{
156	const unsigned int curr = ltc4215_get_current(dev);
157	const int output_voltage = ltc4215_get_voltage(dev, LTC4215_ADIN);
158
159	/* current in mA * voltage in mV == power in uW */
160	const unsigned int power = abs(output_voltage * curr);
161
162	return sysfs_emit(buf, "%u\n", power);
163}
164
165static ssize_t ltc4215_alarm_show(struct device *dev,
166				  struct device_attribute *da, char *buf)
167{
168	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
169	struct ltc4215_data *data = ltc4215_update_device(dev);
170	const u8 reg = data->regs[LTC4215_STATUS];
171	const u32 mask = attr->index;
172
173	return sysfs_emit(buf, "%u\n", !!(reg & mask));
174}
175
176/*
177 * These macros are used below in constructing device attribute objects
178 * for use with sysfs_create_group() to make a sysfs device file
179 * for each register.
180 */
181
182/* Construct a sensor_device_attribute structure for each register */
183
184/* Current */
185static SENSOR_DEVICE_ATTR_RO(curr1_input, ltc4215_current, 0);
186static SENSOR_DEVICE_ATTR_RO(curr1_max_alarm, ltc4215_alarm, 1 << 2);
187
188/* Power (virtual) */
189static SENSOR_DEVICE_ATTR_RO(power1_input, ltc4215_power, 0);
190
191/* Input Voltage */
192static SENSOR_DEVICE_ATTR_RO(in1_input, ltc4215_voltage, LTC4215_ADIN);
193static SENSOR_DEVICE_ATTR_RO(in1_max_alarm, ltc4215_alarm, 1 << 0);
194static SENSOR_DEVICE_ATTR_RO(in1_min_alarm, ltc4215_alarm, 1 << 1);
195
196/* Output Voltage */
197static SENSOR_DEVICE_ATTR_RO(in2_input, ltc4215_voltage, LTC4215_SOURCE);
198static SENSOR_DEVICE_ATTR_RO(in2_min_alarm, ltc4215_alarm, 1 << 3);
199
200/*
201 * Finally, construct an array of pointers to members of the above objects,
202 * as required for sysfs_create_group()
203 */
204static struct attribute *ltc4215_attrs[] = {
205	&sensor_dev_attr_curr1_input.dev_attr.attr,
206	&sensor_dev_attr_curr1_max_alarm.dev_attr.attr,
207
208	&sensor_dev_attr_power1_input.dev_attr.attr,
209
210	&sensor_dev_attr_in1_input.dev_attr.attr,
211	&sensor_dev_attr_in1_max_alarm.dev_attr.attr,
212	&sensor_dev_attr_in1_min_alarm.dev_attr.attr,
213
214	&sensor_dev_attr_in2_input.dev_attr.attr,
215	&sensor_dev_attr_in2_min_alarm.dev_attr.attr,
216
217	NULL,
218};
219ATTRIBUTE_GROUPS(ltc4215);
220
221static int ltc4215_probe(struct i2c_client *client)
 
222{
223	struct i2c_adapter *adapter = client->adapter;
224	struct device *dev = &client->dev;
225	struct ltc4215_data *data;
226	struct device *hwmon_dev;
227
228	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
229		return -ENODEV;
230
231	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
232	if (!data)
233		return -ENOMEM;
234
235	data->client = client;
236	mutex_init(&data->update_lock);
237
238	/* Initialize the LTC4215 chip */
239	i2c_smbus_write_byte_data(client, LTC4215_FAULT, 0x00);
240
241	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
242							   data,
243							   ltc4215_groups);
244	return PTR_ERR_OR_ZERO(hwmon_dev);
245}
246
247static const struct i2c_device_id ltc4215_id[] = {
248	{ "ltc4215", 0 },
249	{ }
250};
251MODULE_DEVICE_TABLE(i2c, ltc4215_id);
252
253/* This is the driver that will be inserted */
254static struct i2c_driver ltc4215_driver = {
255	.driver = {
256		.name	= "ltc4215",
257	},
258	.probe		= ltc4215_probe,
259	.id_table	= ltc4215_id,
260};
261
262module_i2c_driver(ltc4215_driver);
263
264MODULE_AUTHOR("Ira W. Snyder <iws@ovro.caltech.edu>");
265MODULE_DESCRIPTION("LTC4215 driver");
266MODULE_LICENSE("GPL");
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Driver for Linear Technology LTC4215 I2C Hot Swap Controller
  4 *
  5 * Copyright (C) 2009 Ira W. Snyder <iws@ovro.caltech.edu>
  6 *
  7 * Datasheet:
  8 * http://www.linear.com/pc/downloadDocument.do?navId=H0,C1,C1003,C1006,C1163,P17572,D12697
  9 */
 10
 11#include <linux/kernel.h>
 12#include <linux/module.h>
 13#include <linux/init.h>
 14#include <linux/err.h>
 15#include <linux/slab.h>
 16#include <linux/i2c.h>
 17#include <linux/hwmon.h>
 18#include <linux/hwmon-sysfs.h>
 19#include <linux/jiffies.h>
 20
 21/* Here are names of the chip's registers (a.k.a. commands) */
 22enum ltc4215_cmd {
 23	LTC4215_CONTROL			= 0x00, /* rw */
 24	LTC4215_ALERT			= 0x01, /* rw */
 25	LTC4215_STATUS			= 0x02, /* ro */
 26	LTC4215_FAULT			= 0x03, /* rw */
 27	LTC4215_SENSE			= 0x04, /* rw */
 28	LTC4215_SOURCE			= 0x05, /* rw */
 29	LTC4215_ADIN			= 0x06, /* rw */
 30};
 31
 32struct ltc4215_data {
 33	struct i2c_client *client;
 34
 35	struct mutex update_lock;
 36	bool valid;
 37	unsigned long last_updated; /* in jiffies */
 38
 39	/* Registers */
 40	u8 regs[7];
 41};
 42
 43static struct ltc4215_data *ltc4215_update_device(struct device *dev)
 44{
 45	struct ltc4215_data *data = dev_get_drvdata(dev);
 46	struct i2c_client *client = data->client;
 47	s32 val;
 48	int i;
 49
 50	mutex_lock(&data->update_lock);
 51
 52	/* The chip's A/D updates 10 times per second */
 53	if (time_after(jiffies, data->last_updated + HZ / 10) || !data->valid) {
 54
 55		dev_dbg(&client->dev, "Starting ltc4215 update\n");
 56
 57		/* Read all registers */
 58		for (i = 0; i < ARRAY_SIZE(data->regs); i++) {
 59			val = i2c_smbus_read_byte_data(client, i);
 60			if (unlikely(val < 0))
 61				data->regs[i] = 0;
 62			else
 63				data->regs[i] = val;
 64		}
 65
 66		data->last_updated = jiffies;
 67		data->valid = 1;
 68	}
 69
 70	mutex_unlock(&data->update_lock);
 71
 72	return data;
 73}
 74
 75/* Return the voltage from the given register in millivolts */
 76static int ltc4215_get_voltage(struct device *dev, u8 reg)
 77{
 78	struct ltc4215_data *data = ltc4215_update_device(dev);
 79	const u8 regval = data->regs[reg];
 80	u32 voltage = 0;
 81
 82	switch (reg) {
 83	case LTC4215_SENSE:
 84		/* 151 uV per increment */
 85		voltage = regval * 151 / 1000;
 86		break;
 87	case LTC4215_SOURCE:
 88		/* 60.5 mV per increment */
 89		voltage = regval * 605 / 10;
 90		break;
 91	case LTC4215_ADIN:
 92		/*
 93		 * The ADIN input is divided by 12.5, and has 4.82 mV
 94		 * per increment, so we have the additional multiply
 95		 */
 96		voltage = regval * 482 * 125 / 1000;
 97		break;
 98	default:
 99		/* If we get here, the developer messed up */
100		WARN_ON_ONCE(1);
101		break;
102	}
103
104	return voltage;
105}
106
107/* Return the current from the sense resistor in mA */
108static unsigned int ltc4215_get_current(struct device *dev)
109{
110	struct ltc4215_data *data = ltc4215_update_device(dev);
111
112	/*
113	 * The strange looking conversions that follow are fixed-point
114	 * math, since we cannot do floating point in the kernel.
115	 *
116	 * Step 1: convert sense register to microVolts
117	 * Step 2: convert voltage to milliAmperes
118	 *
119	 * If you play around with the V=IR equation, you come up with
120	 * the following: X uV / Y mOhm == Z mA
121	 *
122	 * With the resistors that are fractions of a milliOhm, we multiply
123	 * the voltage and resistance by 10, to shift the decimal point.
124	 * Now we can use the normal division operator again.
125	 */
126
127	/* Calculate voltage in microVolts (151 uV per increment) */
128	const unsigned int voltage = data->regs[LTC4215_SENSE] * 151;
129
130	/* Calculate current in milliAmperes (4 milliOhm sense resistor) */
131	const unsigned int curr = voltage / 4;
132
133	return curr;
134}
135
136static ssize_t ltc4215_voltage_show(struct device *dev,
137				    struct device_attribute *da, char *buf)
138{
139	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
140	const int voltage = ltc4215_get_voltage(dev, attr->index);
141
142	return snprintf(buf, PAGE_SIZE, "%d\n", voltage);
143}
144
145static ssize_t ltc4215_current_show(struct device *dev,
146				    struct device_attribute *da, char *buf)
147{
148	const unsigned int curr = ltc4215_get_current(dev);
149
150	return snprintf(buf, PAGE_SIZE, "%u\n", curr);
151}
152
153static ssize_t ltc4215_power_show(struct device *dev,
154				  struct device_attribute *da, char *buf)
155{
156	const unsigned int curr = ltc4215_get_current(dev);
157	const int output_voltage = ltc4215_get_voltage(dev, LTC4215_ADIN);
158
159	/* current in mA * voltage in mV == power in uW */
160	const unsigned int power = abs(output_voltage * curr);
161
162	return snprintf(buf, PAGE_SIZE, "%u\n", power);
163}
164
165static ssize_t ltc4215_alarm_show(struct device *dev,
166				  struct device_attribute *da, char *buf)
167{
168	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
169	struct ltc4215_data *data = ltc4215_update_device(dev);
170	const u8 reg = data->regs[LTC4215_STATUS];
171	const u32 mask = attr->index;
172
173	return snprintf(buf, PAGE_SIZE, "%u\n", !!(reg & mask));
174}
175
176/*
177 * These macros are used below in constructing device attribute objects
178 * for use with sysfs_create_group() to make a sysfs device file
179 * for each register.
180 */
181
182/* Construct a sensor_device_attribute structure for each register */
183
184/* Current */
185static SENSOR_DEVICE_ATTR_RO(curr1_input, ltc4215_current, 0);
186static SENSOR_DEVICE_ATTR_RO(curr1_max_alarm, ltc4215_alarm, 1 << 2);
187
188/* Power (virtual) */
189static SENSOR_DEVICE_ATTR_RO(power1_input, ltc4215_power, 0);
190
191/* Input Voltage */
192static SENSOR_DEVICE_ATTR_RO(in1_input, ltc4215_voltage, LTC4215_ADIN);
193static SENSOR_DEVICE_ATTR_RO(in1_max_alarm, ltc4215_alarm, 1 << 0);
194static SENSOR_DEVICE_ATTR_RO(in1_min_alarm, ltc4215_alarm, 1 << 1);
195
196/* Output Voltage */
197static SENSOR_DEVICE_ATTR_RO(in2_input, ltc4215_voltage, LTC4215_SOURCE);
198static SENSOR_DEVICE_ATTR_RO(in2_min_alarm, ltc4215_alarm, 1 << 3);
199
200/*
201 * Finally, construct an array of pointers to members of the above objects,
202 * as required for sysfs_create_group()
203 */
204static struct attribute *ltc4215_attrs[] = {
205	&sensor_dev_attr_curr1_input.dev_attr.attr,
206	&sensor_dev_attr_curr1_max_alarm.dev_attr.attr,
207
208	&sensor_dev_attr_power1_input.dev_attr.attr,
209
210	&sensor_dev_attr_in1_input.dev_attr.attr,
211	&sensor_dev_attr_in1_max_alarm.dev_attr.attr,
212	&sensor_dev_attr_in1_min_alarm.dev_attr.attr,
213
214	&sensor_dev_attr_in2_input.dev_attr.attr,
215	&sensor_dev_attr_in2_min_alarm.dev_attr.attr,
216
217	NULL,
218};
219ATTRIBUTE_GROUPS(ltc4215);
220
221static int ltc4215_probe(struct i2c_client *client,
222			 const struct i2c_device_id *id)
223{
224	struct i2c_adapter *adapter = client->adapter;
225	struct device *dev = &client->dev;
226	struct ltc4215_data *data;
227	struct device *hwmon_dev;
228
229	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
230		return -ENODEV;
231
232	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
233	if (!data)
234		return -ENOMEM;
235
236	data->client = client;
237	mutex_init(&data->update_lock);
238
239	/* Initialize the LTC4215 chip */
240	i2c_smbus_write_byte_data(client, LTC4215_FAULT, 0x00);
241
242	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
243							   data,
244							   ltc4215_groups);
245	return PTR_ERR_OR_ZERO(hwmon_dev);
246}
247
248static const struct i2c_device_id ltc4215_id[] = {
249	{ "ltc4215", 0 },
250	{ }
251};
252MODULE_DEVICE_TABLE(i2c, ltc4215_id);
253
254/* This is the driver that will be inserted */
255static struct i2c_driver ltc4215_driver = {
256	.driver = {
257		.name	= "ltc4215",
258	},
259	.probe		= ltc4215_probe,
260	.id_table	= ltc4215_id,
261};
262
263module_i2c_driver(ltc4215_driver);
264
265MODULE_AUTHOR("Ira W. Snyder <iws@ovro.caltech.edu>");
266MODULE_DESCRIPTION("LTC4215 driver");
267MODULE_LICENSE("GPL");