Loading...
1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
2/**************************************************************************
3 *
4 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28/*
29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30 */
31
32#include <linux/vmalloc.h>
33
34#include <drm/ttm/ttm_bo.h>
35#include <drm/ttm/ttm_placement.h>
36#include <drm/ttm/ttm_tt.h>
37
38#include <drm/drm_cache.h>
39
40struct ttm_transfer_obj {
41 struct ttm_buffer_object base;
42 struct ttm_buffer_object *bo;
43};
44
45int ttm_mem_io_reserve(struct ttm_device *bdev,
46 struct ttm_resource *mem)
47{
48 if (mem->bus.offset || mem->bus.addr)
49 return 0;
50
51 mem->bus.is_iomem = false;
52 if (!bdev->funcs->io_mem_reserve)
53 return 0;
54
55 return bdev->funcs->io_mem_reserve(bdev, mem);
56}
57
58void ttm_mem_io_free(struct ttm_device *bdev,
59 struct ttm_resource *mem)
60{
61 if (!mem)
62 return;
63
64 if (!mem->bus.offset && !mem->bus.addr)
65 return;
66
67 if (bdev->funcs->io_mem_free)
68 bdev->funcs->io_mem_free(bdev, mem);
69
70 mem->bus.offset = 0;
71 mem->bus.addr = NULL;
72}
73
74/**
75 * ttm_move_memcpy - Helper to perform a memcpy ttm move operation.
76 * @clear: Whether to clear rather than copy.
77 * @num_pages: Number of pages of the operation.
78 * @dst_iter: A struct ttm_kmap_iter representing the destination resource.
79 * @src_iter: A struct ttm_kmap_iter representing the source resource.
80 *
81 * This function is intended to be able to move out async under a
82 * dma-fence if desired.
83 */
84void ttm_move_memcpy(bool clear,
85 u32 num_pages,
86 struct ttm_kmap_iter *dst_iter,
87 struct ttm_kmap_iter *src_iter)
88{
89 const struct ttm_kmap_iter_ops *dst_ops = dst_iter->ops;
90 const struct ttm_kmap_iter_ops *src_ops = src_iter->ops;
91 struct iosys_map src_map, dst_map;
92 pgoff_t i;
93
94 /* Single TTM move. NOP */
95 if (dst_ops->maps_tt && src_ops->maps_tt)
96 return;
97
98 /* Don't move nonexistent data. Clear destination instead. */
99 if (clear) {
100 for (i = 0; i < num_pages; ++i) {
101 dst_ops->map_local(dst_iter, &dst_map, i);
102 if (dst_map.is_iomem)
103 memset_io(dst_map.vaddr_iomem, 0, PAGE_SIZE);
104 else
105 memset(dst_map.vaddr, 0, PAGE_SIZE);
106 if (dst_ops->unmap_local)
107 dst_ops->unmap_local(dst_iter, &dst_map);
108 }
109 return;
110 }
111
112 for (i = 0; i < num_pages; ++i) {
113 dst_ops->map_local(dst_iter, &dst_map, i);
114 src_ops->map_local(src_iter, &src_map, i);
115
116 drm_memcpy_from_wc(&dst_map, &src_map, PAGE_SIZE);
117
118 if (src_ops->unmap_local)
119 src_ops->unmap_local(src_iter, &src_map);
120 if (dst_ops->unmap_local)
121 dst_ops->unmap_local(dst_iter, &dst_map);
122 }
123}
124EXPORT_SYMBOL(ttm_move_memcpy);
125
126/**
127 * ttm_bo_move_memcpy
128 *
129 * @bo: A pointer to a struct ttm_buffer_object.
130 * @ctx: operation context
131 * @dst_mem: struct ttm_resource indicating where to move.
132 *
133 * Fallback move function for a mappable buffer object in mappable memory.
134 * The function will, if successful,
135 * free any old aperture space, and set (@new_mem)->mm_node to NULL,
136 * and update the (@bo)->mem placement flags. If unsuccessful, the old
137 * data remains untouched, and it's up to the caller to free the
138 * memory space indicated by @new_mem.
139 * Returns:
140 * !0: Failure.
141 */
142int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
143 struct ttm_operation_ctx *ctx,
144 struct ttm_resource *dst_mem)
145{
146 struct ttm_device *bdev = bo->bdev;
147 struct ttm_resource_manager *dst_man =
148 ttm_manager_type(bo->bdev, dst_mem->mem_type);
149 struct ttm_tt *ttm = bo->ttm;
150 struct ttm_resource *src_mem = bo->resource;
151 struct ttm_resource_manager *src_man;
152 union {
153 struct ttm_kmap_iter_tt tt;
154 struct ttm_kmap_iter_linear_io io;
155 } _dst_iter, _src_iter;
156 struct ttm_kmap_iter *dst_iter, *src_iter;
157 bool clear;
158 int ret = 0;
159
160 if (WARN_ON(!src_mem))
161 return -EINVAL;
162
163 src_man = ttm_manager_type(bdev, src_mem->mem_type);
164 if (ttm && ((ttm->page_flags & TTM_TT_FLAG_SWAPPED) ||
165 dst_man->use_tt)) {
166 ret = ttm_tt_populate(bdev, ttm, ctx);
167 if (ret)
168 return ret;
169 }
170
171 dst_iter = ttm_kmap_iter_linear_io_init(&_dst_iter.io, bdev, dst_mem);
172 if (PTR_ERR(dst_iter) == -EINVAL && dst_man->use_tt)
173 dst_iter = ttm_kmap_iter_tt_init(&_dst_iter.tt, bo->ttm);
174 if (IS_ERR(dst_iter))
175 return PTR_ERR(dst_iter);
176
177 src_iter = ttm_kmap_iter_linear_io_init(&_src_iter.io, bdev, src_mem);
178 if (PTR_ERR(src_iter) == -EINVAL && src_man->use_tt)
179 src_iter = ttm_kmap_iter_tt_init(&_src_iter.tt, bo->ttm);
180 if (IS_ERR(src_iter)) {
181 ret = PTR_ERR(src_iter);
182 goto out_src_iter;
183 }
184
185 clear = src_iter->ops->maps_tt && (!ttm || !ttm_tt_is_populated(ttm));
186 if (!(clear && ttm && !(ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC)))
187 ttm_move_memcpy(clear, PFN_UP(dst_mem->size), dst_iter, src_iter);
188
189 if (!src_iter->ops->maps_tt)
190 ttm_kmap_iter_linear_io_fini(&_src_iter.io, bdev, src_mem);
191 ttm_bo_move_sync_cleanup(bo, dst_mem);
192
193out_src_iter:
194 if (!dst_iter->ops->maps_tt)
195 ttm_kmap_iter_linear_io_fini(&_dst_iter.io, bdev, dst_mem);
196
197 return ret;
198}
199EXPORT_SYMBOL(ttm_bo_move_memcpy);
200
201static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
202{
203 struct ttm_transfer_obj *fbo;
204
205 fbo = container_of(bo, struct ttm_transfer_obj, base);
206 dma_resv_fini(&fbo->base.base._resv);
207 ttm_bo_put(fbo->bo);
208 kfree(fbo);
209}
210
211/**
212 * ttm_buffer_object_transfer
213 *
214 * @bo: A pointer to a struct ttm_buffer_object.
215 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
216 * holding the data of @bo with the old placement.
217 *
218 * This is a utility function that may be called after an accelerated move
219 * has been scheduled. A new buffer object is created as a placeholder for
220 * the old data while it's being copied. When that buffer object is idle,
221 * it can be destroyed, releasing the space of the old placement.
222 * Returns:
223 * !0: Failure.
224 */
225
226static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
227 struct ttm_buffer_object **new_obj)
228{
229 struct ttm_transfer_obj *fbo;
230 int ret;
231
232 fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
233 if (!fbo)
234 return -ENOMEM;
235
236 fbo->base = *bo;
237
238 /**
239 * Fix up members that we shouldn't copy directly:
240 * TODO: Explicit member copy would probably be better here.
241 */
242
243 atomic_inc(&ttm_glob.bo_count);
244 drm_vma_node_reset(&fbo->base.base.vma_node);
245
246 kref_init(&fbo->base.kref);
247 fbo->base.destroy = &ttm_transfered_destroy;
248 fbo->base.pin_count = 0;
249 if (bo->type != ttm_bo_type_sg)
250 fbo->base.base.resv = &fbo->base.base._resv;
251
252 dma_resv_init(&fbo->base.base._resv);
253 fbo->base.base.dev = NULL;
254 ret = dma_resv_trylock(&fbo->base.base._resv);
255 WARN_ON(!ret);
256
257 if (fbo->base.resource) {
258 ttm_resource_set_bo(fbo->base.resource, &fbo->base);
259 bo->resource = NULL;
260 ttm_bo_set_bulk_move(&fbo->base, NULL);
261 } else {
262 fbo->base.bulk_move = NULL;
263 }
264
265 ret = dma_resv_reserve_fences(&fbo->base.base._resv, 1);
266 if (ret) {
267 kfree(fbo);
268 return ret;
269 }
270
271 ttm_bo_get(bo);
272 fbo->bo = bo;
273
274 ttm_bo_move_to_lru_tail_unlocked(&fbo->base);
275
276 *new_obj = &fbo->base;
277 return 0;
278}
279
280/**
281 * ttm_io_prot
282 *
283 * @bo: ttm buffer object
284 * @res: ttm resource object
285 * @tmp: Page protection flag for a normal, cached mapping.
286 *
287 * Utility function that returns the pgprot_t that should be used for
288 * setting up a PTE with the caching model indicated by @c_state.
289 */
290pgprot_t ttm_io_prot(struct ttm_buffer_object *bo, struct ttm_resource *res,
291 pgprot_t tmp)
292{
293 struct ttm_resource_manager *man;
294 enum ttm_caching caching;
295
296 man = ttm_manager_type(bo->bdev, res->mem_type);
297 caching = man->use_tt ? bo->ttm->caching : res->bus.caching;
298
299 return ttm_prot_from_caching(caching, tmp);
300}
301EXPORT_SYMBOL(ttm_io_prot);
302
303static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
304 unsigned long offset,
305 unsigned long size,
306 struct ttm_bo_kmap_obj *map)
307{
308 struct ttm_resource *mem = bo->resource;
309
310 if (bo->resource->bus.addr) {
311 map->bo_kmap_type = ttm_bo_map_premapped;
312 map->virtual = ((u8 *)bo->resource->bus.addr) + offset;
313 } else {
314 resource_size_t res = bo->resource->bus.offset + offset;
315
316 map->bo_kmap_type = ttm_bo_map_iomap;
317 if (mem->bus.caching == ttm_write_combined)
318 map->virtual = ioremap_wc(res, size);
319#ifdef CONFIG_X86
320 else if (mem->bus.caching == ttm_cached)
321 map->virtual = ioremap_cache(res, size);
322#endif
323 else
324 map->virtual = ioremap(res, size);
325 }
326 return (!map->virtual) ? -ENOMEM : 0;
327}
328
329static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
330 unsigned long start_page,
331 unsigned long num_pages,
332 struct ttm_bo_kmap_obj *map)
333{
334 struct ttm_resource *mem = bo->resource;
335 struct ttm_operation_ctx ctx = {
336 .interruptible = false,
337 .no_wait_gpu = false
338 };
339 struct ttm_tt *ttm = bo->ttm;
340 pgprot_t prot;
341 int ret;
342
343 BUG_ON(!ttm);
344
345 ret = ttm_tt_populate(bo->bdev, ttm, &ctx);
346 if (ret)
347 return ret;
348
349 if (num_pages == 1 && ttm->caching == ttm_cached) {
350 /*
351 * We're mapping a single page, and the desired
352 * page protection is consistent with the bo.
353 */
354
355 map->bo_kmap_type = ttm_bo_map_kmap;
356 map->page = ttm->pages[start_page];
357 map->virtual = kmap(map->page);
358 } else {
359 /*
360 * We need to use vmap to get the desired page protection
361 * or to make the buffer object look contiguous.
362 */
363 prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
364 map->bo_kmap_type = ttm_bo_map_vmap;
365 map->virtual = vmap(ttm->pages + start_page, num_pages,
366 0, prot);
367 }
368 return (!map->virtual) ? -ENOMEM : 0;
369}
370
371/**
372 * ttm_bo_kmap
373 *
374 * @bo: The buffer object.
375 * @start_page: The first page to map.
376 * @num_pages: Number of pages to map.
377 * @map: pointer to a struct ttm_bo_kmap_obj representing the map.
378 *
379 * Sets up a kernel virtual mapping, using ioremap, vmap or kmap to the
380 * data in the buffer object. The ttm_kmap_obj_virtual function can then be
381 * used to obtain a virtual address to the data.
382 *
383 * Returns
384 * -ENOMEM: Out of memory.
385 * -EINVAL: Invalid range.
386 */
387int ttm_bo_kmap(struct ttm_buffer_object *bo,
388 unsigned long start_page, unsigned long num_pages,
389 struct ttm_bo_kmap_obj *map)
390{
391 unsigned long offset, size;
392 int ret;
393
394 map->virtual = NULL;
395 map->bo = bo;
396 if (num_pages > PFN_UP(bo->resource->size))
397 return -EINVAL;
398 if ((start_page + num_pages) > PFN_UP(bo->resource->size))
399 return -EINVAL;
400
401 ret = ttm_mem_io_reserve(bo->bdev, bo->resource);
402 if (ret)
403 return ret;
404 if (!bo->resource->bus.is_iomem) {
405 return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
406 } else {
407 offset = start_page << PAGE_SHIFT;
408 size = num_pages << PAGE_SHIFT;
409 return ttm_bo_ioremap(bo, offset, size, map);
410 }
411}
412EXPORT_SYMBOL(ttm_bo_kmap);
413
414/**
415 * ttm_bo_kunmap
416 *
417 * @map: Object describing the map to unmap.
418 *
419 * Unmaps a kernel map set up by ttm_bo_kmap.
420 */
421void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
422{
423 if (!map->virtual)
424 return;
425 switch (map->bo_kmap_type) {
426 case ttm_bo_map_iomap:
427 iounmap(map->virtual);
428 break;
429 case ttm_bo_map_vmap:
430 vunmap(map->virtual);
431 break;
432 case ttm_bo_map_kmap:
433 kunmap(map->page);
434 break;
435 case ttm_bo_map_premapped:
436 break;
437 default:
438 BUG();
439 }
440 ttm_mem_io_free(map->bo->bdev, map->bo->resource);
441 map->virtual = NULL;
442 map->page = NULL;
443}
444EXPORT_SYMBOL(ttm_bo_kunmap);
445
446/**
447 * ttm_bo_vmap
448 *
449 * @bo: The buffer object.
450 * @map: pointer to a struct iosys_map representing the map.
451 *
452 * Sets up a kernel virtual mapping, using ioremap or vmap to the
453 * data in the buffer object. The parameter @map returns the virtual
454 * address as struct iosys_map. Unmap the buffer with ttm_bo_vunmap().
455 *
456 * Returns
457 * -ENOMEM: Out of memory.
458 * -EINVAL: Invalid range.
459 */
460int ttm_bo_vmap(struct ttm_buffer_object *bo, struct iosys_map *map)
461{
462 struct ttm_resource *mem = bo->resource;
463 int ret;
464
465 dma_resv_assert_held(bo->base.resv);
466
467 ret = ttm_mem_io_reserve(bo->bdev, mem);
468 if (ret)
469 return ret;
470
471 if (mem->bus.is_iomem) {
472 void __iomem *vaddr_iomem;
473
474 if (mem->bus.addr)
475 vaddr_iomem = (void __iomem *)mem->bus.addr;
476 else if (mem->bus.caching == ttm_write_combined)
477 vaddr_iomem = ioremap_wc(mem->bus.offset,
478 bo->base.size);
479#ifdef CONFIG_X86
480 else if (mem->bus.caching == ttm_cached)
481 vaddr_iomem = ioremap_cache(mem->bus.offset,
482 bo->base.size);
483#endif
484 else
485 vaddr_iomem = ioremap(mem->bus.offset, bo->base.size);
486
487 if (!vaddr_iomem)
488 return -ENOMEM;
489
490 iosys_map_set_vaddr_iomem(map, vaddr_iomem);
491
492 } else {
493 struct ttm_operation_ctx ctx = {
494 .interruptible = false,
495 .no_wait_gpu = false
496 };
497 struct ttm_tt *ttm = bo->ttm;
498 pgprot_t prot;
499 void *vaddr;
500
501 ret = ttm_tt_populate(bo->bdev, ttm, &ctx);
502 if (ret)
503 return ret;
504
505 /*
506 * We need to use vmap to get the desired page protection
507 * or to make the buffer object look contiguous.
508 */
509 prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
510 vaddr = vmap(ttm->pages, ttm->num_pages, 0, prot);
511 if (!vaddr)
512 return -ENOMEM;
513
514 iosys_map_set_vaddr(map, vaddr);
515 }
516
517 return 0;
518}
519EXPORT_SYMBOL(ttm_bo_vmap);
520
521/**
522 * ttm_bo_vunmap
523 *
524 * @bo: The buffer object.
525 * @map: Object describing the map to unmap.
526 *
527 * Unmaps a kernel map set up by ttm_bo_vmap().
528 */
529void ttm_bo_vunmap(struct ttm_buffer_object *bo, struct iosys_map *map)
530{
531 struct ttm_resource *mem = bo->resource;
532
533 dma_resv_assert_held(bo->base.resv);
534
535 if (iosys_map_is_null(map))
536 return;
537
538 if (!map->is_iomem)
539 vunmap(map->vaddr);
540 else if (!mem->bus.addr)
541 iounmap(map->vaddr_iomem);
542 iosys_map_clear(map);
543
544 ttm_mem_io_free(bo->bdev, bo->resource);
545}
546EXPORT_SYMBOL(ttm_bo_vunmap);
547
548static int ttm_bo_wait_free_node(struct ttm_buffer_object *bo,
549 bool dst_use_tt)
550{
551 long ret;
552
553 ret = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
554 false, 15 * HZ);
555 if (ret == 0)
556 return -EBUSY;
557 if (ret < 0)
558 return ret;
559
560 if (!dst_use_tt)
561 ttm_bo_tt_destroy(bo);
562 ttm_resource_free(bo, &bo->resource);
563 return 0;
564}
565
566static int ttm_bo_move_to_ghost(struct ttm_buffer_object *bo,
567 struct dma_fence *fence,
568 bool dst_use_tt)
569{
570 struct ttm_buffer_object *ghost_obj;
571 int ret;
572
573 /**
574 * This should help pipeline ordinary buffer moves.
575 *
576 * Hang old buffer memory on a new buffer object,
577 * and leave it to be released when the GPU
578 * operation has completed.
579 */
580
581 ret = ttm_buffer_object_transfer(bo, &ghost_obj);
582 if (ret)
583 return ret;
584
585 dma_resv_add_fence(&ghost_obj->base._resv, fence,
586 DMA_RESV_USAGE_KERNEL);
587
588 /**
589 * If we're not moving to fixed memory, the TTM object
590 * needs to stay alive. Otherwhise hang it on the ghost
591 * bo to be unbound and destroyed.
592 */
593
594 if (dst_use_tt)
595 ghost_obj->ttm = NULL;
596 else
597 bo->ttm = NULL;
598
599 dma_resv_unlock(&ghost_obj->base._resv);
600 ttm_bo_put(ghost_obj);
601 return 0;
602}
603
604static void ttm_bo_move_pipeline_evict(struct ttm_buffer_object *bo,
605 struct dma_fence *fence)
606{
607 struct ttm_device *bdev = bo->bdev;
608 struct ttm_resource_manager *from;
609
610 from = ttm_manager_type(bdev, bo->resource->mem_type);
611
612 /**
613 * BO doesn't have a TTM we need to bind/unbind. Just remember
614 * this eviction and free up the allocation
615 */
616 spin_lock(&from->move_lock);
617 if (!from->move || dma_fence_is_later(fence, from->move)) {
618 dma_fence_put(from->move);
619 from->move = dma_fence_get(fence);
620 }
621 spin_unlock(&from->move_lock);
622
623 ttm_resource_free(bo, &bo->resource);
624}
625
626/**
627 * ttm_bo_move_accel_cleanup - cleanup helper for hw copies
628 *
629 * @bo: A pointer to a struct ttm_buffer_object.
630 * @fence: A fence object that signals when moving is complete.
631 * @evict: This is an evict move. Don't return until the buffer is idle.
632 * @pipeline: evictions are to be pipelined.
633 * @new_mem: struct ttm_resource indicating where to move.
634 *
635 * Accelerated move function to be called when an accelerated move
636 * has been scheduled. The function will create a new temporary buffer object
637 * representing the old placement, and put the sync object on both buffer
638 * objects. After that the newly created buffer object is unref'd to be
639 * destroyed when the move is complete. This will help pipeline
640 * buffer moves.
641 */
642int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
643 struct dma_fence *fence,
644 bool evict,
645 bool pipeline,
646 struct ttm_resource *new_mem)
647{
648 struct ttm_device *bdev = bo->bdev;
649 struct ttm_resource_manager *from = ttm_manager_type(bdev, bo->resource->mem_type);
650 struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
651 int ret = 0;
652
653 dma_resv_add_fence(bo->base.resv, fence, DMA_RESV_USAGE_KERNEL);
654 if (!evict)
655 ret = ttm_bo_move_to_ghost(bo, fence, man->use_tt);
656 else if (!from->use_tt && pipeline)
657 ttm_bo_move_pipeline_evict(bo, fence);
658 else
659 ret = ttm_bo_wait_free_node(bo, man->use_tt);
660
661 if (ret)
662 return ret;
663
664 ttm_bo_assign_mem(bo, new_mem);
665
666 return 0;
667}
668EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
669
670/**
671 * ttm_bo_move_sync_cleanup - cleanup by waiting for the move to finish
672 *
673 * @bo: A pointer to a struct ttm_buffer_object.
674 * @new_mem: struct ttm_resource indicating where to move.
675 *
676 * Special case of ttm_bo_move_accel_cleanup where the bo is guaranteed
677 * by the caller to be idle. Typically used after memcpy buffer moves.
678 */
679void ttm_bo_move_sync_cleanup(struct ttm_buffer_object *bo,
680 struct ttm_resource *new_mem)
681{
682 struct ttm_device *bdev = bo->bdev;
683 struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
684 int ret;
685
686 ret = ttm_bo_wait_free_node(bo, man->use_tt);
687 if (WARN_ON(ret))
688 return;
689
690 ttm_bo_assign_mem(bo, new_mem);
691}
692EXPORT_SYMBOL(ttm_bo_move_sync_cleanup);
693
694/**
695 * ttm_bo_pipeline_gutting - purge the contents of a bo
696 * @bo: The buffer object
697 *
698 * Purge the contents of a bo, async if the bo is not idle.
699 * After a successful call, the bo is left unpopulated in
700 * system placement. The function may wait uninterruptible
701 * for idle on OOM.
702 *
703 * Return: 0 if successful, negative error code on failure.
704 */
705int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
706{
707 struct ttm_buffer_object *ghost;
708 struct ttm_tt *ttm;
709 int ret;
710
711 /* If already idle, no need for ghost object dance. */
712 if (dma_resv_test_signaled(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP)) {
713 if (!bo->ttm) {
714 /* See comment below about clearing. */
715 ret = ttm_tt_create(bo, true);
716 if (ret)
717 return ret;
718 } else {
719 ttm_tt_unpopulate(bo->bdev, bo->ttm);
720 if (bo->type == ttm_bo_type_device)
721 ttm_tt_mark_for_clear(bo->ttm);
722 }
723 ttm_resource_free(bo, &bo->resource);
724 return 0;
725 }
726
727 /*
728 * We need an unpopulated ttm_tt after giving our current one,
729 * if any, to the ghost object. And we can't afford to fail
730 * creating one *after* the operation. If the bo subsequently gets
731 * resurrected, make sure it's cleared (if ttm_bo_type_device)
732 * to avoid leaking sensitive information to user-space.
733 */
734
735 ttm = bo->ttm;
736 bo->ttm = NULL;
737 ret = ttm_tt_create(bo, true);
738 swap(bo->ttm, ttm);
739 if (ret)
740 return ret;
741
742 ret = ttm_buffer_object_transfer(bo, &ghost);
743 if (ret)
744 goto error_destroy_tt;
745
746 ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv);
747 /* Last resort, wait for the BO to be idle when we are OOM */
748 if (ret) {
749 dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
750 false, MAX_SCHEDULE_TIMEOUT);
751 }
752
753 dma_resv_unlock(&ghost->base._resv);
754 ttm_bo_put(ghost);
755 bo->ttm = ttm;
756 return 0;
757
758error_destroy_tt:
759 ttm_tt_destroy(bo->bdev, ttm);
760 return ret;
761}
1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
2/**************************************************************************
3 *
4 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28/*
29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30 */
31
32#include <drm/ttm/ttm_bo_driver.h>
33#include <drm/ttm/ttm_placement.h>
34#include <drm/drm_vma_manager.h>
35#include <linux/io.h>
36#include <linux/highmem.h>
37#include <linux/wait.h>
38#include <linux/slab.h>
39#include <linux/vmalloc.h>
40#include <linux/module.h>
41#include <linux/dma-resv.h>
42
43struct ttm_transfer_obj {
44 struct ttm_buffer_object base;
45 struct ttm_buffer_object *bo;
46};
47
48void ttm_bo_free_old_node(struct ttm_buffer_object *bo)
49{
50 ttm_bo_mem_put(bo, &bo->mem);
51}
52
53int ttm_bo_move_ttm(struct ttm_buffer_object *bo,
54 struct ttm_operation_ctx *ctx,
55 struct ttm_mem_reg *new_mem)
56{
57 struct ttm_tt *ttm = bo->ttm;
58 struct ttm_mem_reg *old_mem = &bo->mem;
59 int ret;
60
61 if (old_mem->mem_type != TTM_PL_SYSTEM) {
62 ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
63
64 if (unlikely(ret != 0)) {
65 if (ret != -ERESTARTSYS)
66 pr_err("Failed to expire sync object before unbinding TTM\n");
67 return ret;
68 }
69
70 ttm_tt_unbind(ttm);
71 ttm_bo_free_old_node(bo);
72 ttm_flag_masked(&old_mem->placement, TTM_PL_FLAG_SYSTEM,
73 TTM_PL_MASK_MEM);
74 old_mem->mem_type = TTM_PL_SYSTEM;
75 }
76
77 ret = ttm_tt_set_placement_caching(ttm, new_mem->placement);
78 if (unlikely(ret != 0))
79 return ret;
80
81 if (new_mem->mem_type != TTM_PL_SYSTEM) {
82 ret = ttm_tt_bind(ttm, new_mem, ctx);
83 if (unlikely(ret != 0))
84 return ret;
85 }
86
87 *old_mem = *new_mem;
88 new_mem->mm_node = NULL;
89
90 return 0;
91}
92EXPORT_SYMBOL(ttm_bo_move_ttm);
93
94int ttm_mem_io_lock(struct ttm_mem_type_manager *man, bool interruptible)
95{
96 if (likely(!man->use_io_reserve_lru))
97 return 0;
98
99 if (interruptible)
100 return mutex_lock_interruptible(&man->io_reserve_mutex);
101
102 mutex_lock(&man->io_reserve_mutex);
103 return 0;
104}
105
106void ttm_mem_io_unlock(struct ttm_mem_type_manager *man)
107{
108 if (likely(!man->use_io_reserve_lru))
109 return;
110
111 mutex_unlock(&man->io_reserve_mutex);
112}
113
114static int ttm_mem_io_evict(struct ttm_mem_type_manager *man)
115{
116 struct ttm_buffer_object *bo;
117
118 bo = list_first_entry_or_null(&man->io_reserve_lru,
119 struct ttm_buffer_object,
120 io_reserve_lru);
121 if (!bo)
122 return -ENOSPC;
123
124 list_del_init(&bo->io_reserve_lru);
125 ttm_bo_unmap_virtual_locked(bo);
126 return 0;
127}
128
129int ttm_mem_io_reserve(struct ttm_bo_device *bdev,
130 struct ttm_mem_reg *mem)
131{
132 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
133 int ret;
134
135 if (mem->bus.io_reserved_count++)
136 return 0;
137
138 if (!bdev->driver->io_mem_reserve)
139 return 0;
140
141retry:
142 ret = bdev->driver->io_mem_reserve(bdev, mem);
143 if (ret == -ENOSPC) {
144 ret = ttm_mem_io_evict(man);
145 if (ret == 0)
146 goto retry;
147 }
148 return ret;
149}
150
151void ttm_mem_io_free(struct ttm_bo_device *bdev,
152 struct ttm_mem_reg *mem)
153{
154 if (--mem->bus.io_reserved_count)
155 return;
156
157 if (!bdev->driver->io_mem_free)
158 return;
159
160 bdev->driver->io_mem_free(bdev, mem);
161}
162
163int ttm_mem_io_reserve_vm(struct ttm_buffer_object *bo)
164{
165 struct ttm_mem_type_manager *man = &bo->bdev->man[bo->mem.mem_type];
166 struct ttm_mem_reg *mem = &bo->mem;
167 int ret;
168
169 if (mem->bus.io_reserved_vm)
170 return 0;
171
172 ret = ttm_mem_io_reserve(bo->bdev, mem);
173 if (unlikely(ret != 0))
174 return ret;
175 mem->bus.io_reserved_vm = true;
176 if (man->use_io_reserve_lru)
177 list_add_tail(&bo->io_reserve_lru,
178 &man->io_reserve_lru);
179 return 0;
180}
181
182void ttm_mem_io_free_vm(struct ttm_buffer_object *bo)
183{
184 struct ttm_mem_reg *mem = &bo->mem;
185
186 if (!mem->bus.io_reserved_vm)
187 return;
188
189 mem->bus.io_reserved_vm = false;
190 list_del_init(&bo->io_reserve_lru);
191 ttm_mem_io_free(bo->bdev, mem);
192}
193
194static int ttm_mem_reg_ioremap(struct ttm_bo_device *bdev,
195 struct ttm_mem_reg *mem,
196 void **virtual)
197{
198 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
199 int ret;
200 void *addr;
201
202 *virtual = NULL;
203 (void) ttm_mem_io_lock(man, false);
204 ret = ttm_mem_io_reserve(bdev, mem);
205 ttm_mem_io_unlock(man);
206 if (ret || !mem->bus.is_iomem)
207 return ret;
208
209 if (mem->bus.addr) {
210 addr = mem->bus.addr;
211 } else {
212 if (mem->placement & TTM_PL_FLAG_WC)
213 addr = ioremap_wc(mem->bus.base + mem->bus.offset,
214 mem->bus.size);
215 else
216 addr = ioremap(mem->bus.base + mem->bus.offset,
217 mem->bus.size);
218 if (!addr) {
219 (void) ttm_mem_io_lock(man, false);
220 ttm_mem_io_free(bdev, mem);
221 ttm_mem_io_unlock(man);
222 return -ENOMEM;
223 }
224 }
225 *virtual = addr;
226 return 0;
227}
228
229static void ttm_mem_reg_iounmap(struct ttm_bo_device *bdev,
230 struct ttm_mem_reg *mem,
231 void *virtual)
232{
233 struct ttm_mem_type_manager *man;
234
235 man = &bdev->man[mem->mem_type];
236
237 if (virtual && mem->bus.addr == NULL)
238 iounmap(virtual);
239 (void) ttm_mem_io_lock(man, false);
240 ttm_mem_io_free(bdev, mem);
241 ttm_mem_io_unlock(man);
242}
243
244static int ttm_copy_io_page(void *dst, void *src, unsigned long page)
245{
246 uint32_t *dstP =
247 (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT));
248 uint32_t *srcP =
249 (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT));
250
251 int i;
252 for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i)
253 iowrite32(ioread32(srcP++), dstP++);
254 return 0;
255}
256
257static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src,
258 unsigned long page,
259 pgprot_t prot)
260{
261 struct page *d = ttm->pages[page];
262 void *dst;
263
264 if (!d)
265 return -ENOMEM;
266
267 src = (void *)((unsigned long)src + (page << PAGE_SHIFT));
268 dst = kmap_atomic_prot(d, prot);
269 if (!dst)
270 return -ENOMEM;
271
272 memcpy_fromio(dst, src, PAGE_SIZE);
273
274 kunmap_atomic(dst);
275
276 return 0;
277}
278
279static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst,
280 unsigned long page,
281 pgprot_t prot)
282{
283 struct page *s = ttm->pages[page];
284 void *src;
285
286 if (!s)
287 return -ENOMEM;
288
289 dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT));
290 src = kmap_atomic_prot(s, prot);
291 if (!src)
292 return -ENOMEM;
293
294 memcpy_toio(dst, src, PAGE_SIZE);
295
296 kunmap_atomic(src);
297
298 return 0;
299}
300
301int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
302 struct ttm_operation_ctx *ctx,
303 struct ttm_mem_reg *new_mem)
304{
305 struct ttm_bo_device *bdev = bo->bdev;
306 struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
307 struct ttm_tt *ttm = bo->ttm;
308 struct ttm_mem_reg *old_mem = &bo->mem;
309 struct ttm_mem_reg old_copy = *old_mem;
310 void *old_iomap;
311 void *new_iomap;
312 int ret;
313 unsigned long i;
314 unsigned long page;
315 unsigned long add = 0;
316 int dir;
317
318 ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
319 if (ret)
320 return ret;
321
322 ret = ttm_mem_reg_ioremap(bdev, old_mem, &old_iomap);
323 if (ret)
324 return ret;
325 ret = ttm_mem_reg_ioremap(bdev, new_mem, &new_iomap);
326 if (ret)
327 goto out;
328
329 /*
330 * Single TTM move. NOP.
331 */
332 if (old_iomap == NULL && new_iomap == NULL)
333 goto out2;
334
335 /*
336 * Don't move nonexistent data. Clear destination instead.
337 */
338 if (old_iomap == NULL &&
339 (ttm == NULL || (ttm->state == tt_unpopulated &&
340 !(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)))) {
341 memset_io(new_iomap, 0, new_mem->num_pages*PAGE_SIZE);
342 goto out2;
343 }
344
345 /*
346 * TTM might be null for moves within the same region.
347 */
348 if (ttm) {
349 ret = ttm_tt_populate(ttm, ctx);
350 if (ret)
351 goto out1;
352 }
353
354 add = 0;
355 dir = 1;
356
357 if ((old_mem->mem_type == new_mem->mem_type) &&
358 (new_mem->start < old_mem->start + old_mem->size)) {
359 dir = -1;
360 add = new_mem->num_pages - 1;
361 }
362
363 for (i = 0; i < new_mem->num_pages; ++i) {
364 page = i * dir + add;
365 if (old_iomap == NULL) {
366 pgprot_t prot = ttm_io_prot(old_mem->placement,
367 PAGE_KERNEL);
368 ret = ttm_copy_ttm_io_page(ttm, new_iomap, page,
369 prot);
370 } else if (new_iomap == NULL) {
371 pgprot_t prot = ttm_io_prot(new_mem->placement,
372 PAGE_KERNEL);
373 ret = ttm_copy_io_ttm_page(ttm, old_iomap, page,
374 prot);
375 } else {
376 ret = ttm_copy_io_page(new_iomap, old_iomap, page);
377 }
378 if (ret)
379 goto out1;
380 }
381 mb();
382out2:
383 old_copy = *old_mem;
384 *old_mem = *new_mem;
385 new_mem->mm_node = NULL;
386
387 if (man->flags & TTM_MEMTYPE_FLAG_FIXED) {
388 ttm_tt_destroy(ttm);
389 bo->ttm = NULL;
390 }
391
392out1:
393 ttm_mem_reg_iounmap(bdev, old_mem, new_iomap);
394out:
395 ttm_mem_reg_iounmap(bdev, &old_copy, old_iomap);
396
397 /*
398 * On error, keep the mm node!
399 */
400 if (!ret)
401 ttm_bo_mem_put(bo, &old_copy);
402 return ret;
403}
404EXPORT_SYMBOL(ttm_bo_move_memcpy);
405
406static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
407{
408 struct ttm_transfer_obj *fbo;
409
410 fbo = container_of(bo, struct ttm_transfer_obj, base);
411 ttm_bo_put(fbo->bo);
412 kfree(fbo);
413}
414
415/**
416 * ttm_buffer_object_transfer
417 *
418 * @bo: A pointer to a struct ttm_buffer_object.
419 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
420 * holding the data of @bo with the old placement.
421 *
422 * This is a utility function that may be called after an accelerated move
423 * has been scheduled. A new buffer object is created as a placeholder for
424 * the old data while it's being copied. When that buffer object is idle,
425 * it can be destroyed, releasing the space of the old placement.
426 * Returns:
427 * !0: Failure.
428 */
429
430static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
431 struct ttm_buffer_object **new_obj)
432{
433 struct ttm_transfer_obj *fbo;
434 int ret;
435
436 fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
437 if (!fbo)
438 return -ENOMEM;
439
440 fbo->base = *bo;
441 fbo->base.mem.placement |= TTM_PL_FLAG_NO_EVICT;
442
443 ttm_bo_get(bo);
444 fbo->bo = bo;
445
446 /**
447 * Fix up members that we shouldn't copy directly:
448 * TODO: Explicit member copy would probably be better here.
449 */
450
451 atomic_inc(&ttm_bo_glob.bo_count);
452 INIT_LIST_HEAD(&fbo->base.ddestroy);
453 INIT_LIST_HEAD(&fbo->base.lru);
454 INIT_LIST_HEAD(&fbo->base.swap);
455 INIT_LIST_HEAD(&fbo->base.io_reserve_lru);
456 fbo->base.moving = NULL;
457 drm_vma_node_reset(&fbo->base.base.vma_node);
458
459 kref_init(&fbo->base.kref);
460 fbo->base.destroy = &ttm_transfered_destroy;
461 fbo->base.acc_size = 0;
462 if (bo->type != ttm_bo_type_sg)
463 fbo->base.base.resv = &fbo->base.base._resv;
464
465 dma_resv_init(&fbo->base.base._resv);
466 fbo->base.base.dev = NULL;
467 ret = dma_resv_trylock(&fbo->base.base._resv);
468 WARN_ON(!ret);
469
470 *new_obj = &fbo->base;
471 return 0;
472}
473
474pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp)
475{
476 /* Cached mappings need no adjustment */
477 if (caching_flags & TTM_PL_FLAG_CACHED)
478 return tmp;
479
480#if defined(__i386__) || defined(__x86_64__)
481 if (caching_flags & TTM_PL_FLAG_WC)
482 tmp = pgprot_writecombine(tmp);
483 else if (boot_cpu_data.x86 > 3)
484 tmp = pgprot_noncached(tmp);
485#endif
486#if defined(__ia64__) || defined(__arm__) || defined(__aarch64__) || \
487 defined(__powerpc__) || defined(__mips__)
488 if (caching_flags & TTM_PL_FLAG_WC)
489 tmp = pgprot_writecombine(tmp);
490 else
491 tmp = pgprot_noncached(tmp);
492#endif
493#if defined(__sparc__)
494 tmp = pgprot_noncached(tmp);
495#endif
496 return tmp;
497}
498EXPORT_SYMBOL(ttm_io_prot);
499
500static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
501 unsigned long offset,
502 unsigned long size,
503 struct ttm_bo_kmap_obj *map)
504{
505 struct ttm_mem_reg *mem = &bo->mem;
506
507 if (bo->mem.bus.addr) {
508 map->bo_kmap_type = ttm_bo_map_premapped;
509 map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset);
510 } else {
511 map->bo_kmap_type = ttm_bo_map_iomap;
512 if (mem->placement & TTM_PL_FLAG_WC)
513 map->virtual = ioremap_wc(bo->mem.bus.base +
514 bo->mem.bus.offset + offset,
515 size);
516 else
517 map->virtual = ioremap(bo->mem.bus.base +
518 bo->mem.bus.offset + offset,
519 size);
520 }
521 return (!map->virtual) ? -ENOMEM : 0;
522}
523
524static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
525 unsigned long start_page,
526 unsigned long num_pages,
527 struct ttm_bo_kmap_obj *map)
528{
529 struct ttm_mem_reg *mem = &bo->mem;
530 struct ttm_operation_ctx ctx = {
531 .interruptible = false,
532 .no_wait_gpu = false
533 };
534 struct ttm_tt *ttm = bo->ttm;
535 pgprot_t prot;
536 int ret;
537
538 BUG_ON(!ttm);
539
540 ret = ttm_tt_populate(ttm, &ctx);
541 if (ret)
542 return ret;
543
544 if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) {
545 /*
546 * We're mapping a single page, and the desired
547 * page protection is consistent with the bo.
548 */
549
550 map->bo_kmap_type = ttm_bo_map_kmap;
551 map->page = ttm->pages[start_page];
552 map->virtual = kmap(map->page);
553 } else {
554 /*
555 * We need to use vmap to get the desired page protection
556 * or to make the buffer object look contiguous.
557 */
558 prot = ttm_io_prot(mem->placement, PAGE_KERNEL);
559 map->bo_kmap_type = ttm_bo_map_vmap;
560 map->virtual = vmap(ttm->pages + start_page, num_pages,
561 0, prot);
562 }
563 return (!map->virtual) ? -ENOMEM : 0;
564}
565
566int ttm_bo_kmap(struct ttm_buffer_object *bo,
567 unsigned long start_page, unsigned long num_pages,
568 struct ttm_bo_kmap_obj *map)
569{
570 struct ttm_mem_type_manager *man =
571 &bo->bdev->man[bo->mem.mem_type];
572 unsigned long offset, size;
573 int ret;
574
575 map->virtual = NULL;
576 map->bo = bo;
577 if (num_pages > bo->num_pages)
578 return -EINVAL;
579 if (start_page > bo->num_pages)
580 return -EINVAL;
581
582 (void) ttm_mem_io_lock(man, false);
583 ret = ttm_mem_io_reserve(bo->bdev, &bo->mem);
584 ttm_mem_io_unlock(man);
585 if (ret)
586 return ret;
587 if (!bo->mem.bus.is_iomem) {
588 return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
589 } else {
590 offset = start_page << PAGE_SHIFT;
591 size = num_pages << PAGE_SHIFT;
592 return ttm_bo_ioremap(bo, offset, size, map);
593 }
594}
595EXPORT_SYMBOL(ttm_bo_kmap);
596
597void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
598{
599 struct ttm_buffer_object *bo = map->bo;
600 struct ttm_mem_type_manager *man =
601 &bo->bdev->man[bo->mem.mem_type];
602
603 if (!map->virtual)
604 return;
605 switch (map->bo_kmap_type) {
606 case ttm_bo_map_iomap:
607 iounmap(map->virtual);
608 break;
609 case ttm_bo_map_vmap:
610 vunmap(map->virtual);
611 break;
612 case ttm_bo_map_kmap:
613 kunmap(map->page);
614 break;
615 case ttm_bo_map_premapped:
616 break;
617 default:
618 BUG();
619 }
620 (void) ttm_mem_io_lock(man, false);
621 ttm_mem_io_free(map->bo->bdev, &map->bo->mem);
622 ttm_mem_io_unlock(man);
623 map->virtual = NULL;
624 map->page = NULL;
625}
626EXPORT_SYMBOL(ttm_bo_kunmap);
627
628int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
629 struct dma_fence *fence,
630 bool evict,
631 struct ttm_mem_reg *new_mem)
632{
633 struct ttm_bo_device *bdev = bo->bdev;
634 struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
635 struct ttm_mem_reg *old_mem = &bo->mem;
636 int ret;
637 struct ttm_buffer_object *ghost_obj;
638
639 dma_resv_add_excl_fence(bo->base.resv, fence);
640 if (evict) {
641 ret = ttm_bo_wait(bo, false, false);
642 if (ret)
643 return ret;
644
645 if (man->flags & TTM_MEMTYPE_FLAG_FIXED) {
646 ttm_tt_destroy(bo->ttm);
647 bo->ttm = NULL;
648 }
649 ttm_bo_free_old_node(bo);
650 } else {
651 /**
652 * This should help pipeline ordinary buffer moves.
653 *
654 * Hang old buffer memory on a new buffer object,
655 * and leave it to be released when the GPU
656 * operation has completed.
657 */
658
659 dma_fence_put(bo->moving);
660 bo->moving = dma_fence_get(fence);
661
662 ret = ttm_buffer_object_transfer(bo, &ghost_obj);
663 if (ret)
664 return ret;
665
666 dma_resv_add_excl_fence(&ghost_obj->base._resv, fence);
667
668 /**
669 * If we're not moving to fixed memory, the TTM object
670 * needs to stay alive. Otherwhise hang it on the ghost
671 * bo to be unbound and destroyed.
672 */
673
674 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED))
675 ghost_obj->ttm = NULL;
676 else
677 bo->ttm = NULL;
678
679 dma_resv_unlock(&ghost_obj->base._resv);
680 ttm_bo_put(ghost_obj);
681 }
682
683 *old_mem = *new_mem;
684 new_mem->mm_node = NULL;
685
686 return 0;
687}
688EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
689
690int ttm_bo_pipeline_move(struct ttm_buffer_object *bo,
691 struct dma_fence *fence, bool evict,
692 struct ttm_mem_reg *new_mem)
693{
694 struct ttm_bo_device *bdev = bo->bdev;
695 struct ttm_mem_reg *old_mem = &bo->mem;
696
697 struct ttm_mem_type_manager *from = &bdev->man[old_mem->mem_type];
698 struct ttm_mem_type_manager *to = &bdev->man[new_mem->mem_type];
699
700 int ret;
701
702 dma_resv_add_excl_fence(bo->base.resv, fence);
703
704 if (!evict) {
705 struct ttm_buffer_object *ghost_obj;
706
707 /**
708 * This should help pipeline ordinary buffer moves.
709 *
710 * Hang old buffer memory on a new buffer object,
711 * and leave it to be released when the GPU
712 * operation has completed.
713 */
714
715 dma_fence_put(bo->moving);
716 bo->moving = dma_fence_get(fence);
717
718 ret = ttm_buffer_object_transfer(bo, &ghost_obj);
719 if (ret)
720 return ret;
721
722 dma_resv_add_excl_fence(&ghost_obj->base._resv, fence);
723
724 /**
725 * If we're not moving to fixed memory, the TTM object
726 * needs to stay alive. Otherwhise hang it on the ghost
727 * bo to be unbound and destroyed.
728 */
729
730 if (!(to->flags & TTM_MEMTYPE_FLAG_FIXED))
731 ghost_obj->ttm = NULL;
732 else
733 bo->ttm = NULL;
734
735 dma_resv_unlock(&ghost_obj->base._resv);
736 ttm_bo_put(ghost_obj);
737
738 } else if (from->flags & TTM_MEMTYPE_FLAG_FIXED) {
739
740 /**
741 * BO doesn't have a TTM we need to bind/unbind. Just remember
742 * this eviction and free up the allocation
743 */
744
745 spin_lock(&from->move_lock);
746 if (!from->move || dma_fence_is_later(fence, from->move)) {
747 dma_fence_put(from->move);
748 from->move = dma_fence_get(fence);
749 }
750 spin_unlock(&from->move_lock);
751
752 ttm_bo_free_old_node(bo);
753
754 dma_fence_put(bo->moving);
755 bo->moving = dma_fence_get(fence);
756
757 } else {
758 /**
759 * Last resort, wait for the move to be completed.
760 *
761 * Should never happen in pratice.
762 */
763
764 ret = ttm_bo_wait(bo, false, false);
765 if (ret)
766 return ret;
767
768 if (to->flags & TTM_MEMTYPE_FLAG_FIXED) {
769 ttm_tt_destroy(bo->ttm);
770 bo->ttm = NULL;
771 }
772 ttm_bo_free_old_node(bo);
773 }
774
775 *old_mem = *new_mem;
776 new_mem->mm_node = NULL;
777
778 return 0;
779}
780EXPORT_SYMBOL(ttm_bo_pipeline_move);
781
782int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
783{
784 struct ttm_buffer_object *ghost;
785 int ret;
786
787 ret = ttm_buffer_object_transfer(bo, &ghost);
788 if (ret)
789 return ret;
790
791 ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv);
792 /* Last resort, wait for the BO to be idle when we are OOM */
793 if (ret)
794 ttm_bo_wait(bo, false, false);
795
796 memset(&bo->mem, 0, sizeof(bo->mem));
797 bo->mem.mem_type = TTM_PL_SYSTEM;
798 bo->ttm = NULL;
799
800 dma_resv_unlock(&ghost->base._resv);
801 ttm_bo_put(ghost);
802
803 return 0;
804}