Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Freescale i.MX23/i.MX28 Data Co-Processor driver
4 *
5 * Copyright (C) 2013 Marek Vasut <marex@denx.de>
6 */
7
8#include <linux/dma-mapping.h>
9#include <linux/interrupt.h>
10#include <linux/io.h>
11#include <linux/kernel.h>
12#include <linux/kthread.h>
13#include <linux/module.h>
14#include <linux/of.h>
15#include <linux/platform_device.h>
16#include <linux/stmp_device.h>
17#include <linux/clk.h>
18
19#include <crypto/aes.h>
20#include <crypto/sha1.h>
21#include <crypto/sha2.h>
22#include <crypto/internal/hash.h>
23#include <crypto/internal/skcipher.h>
24#include <crypto/scatterwalk.h>
25
26#define DCP_MAX_CHANS 4
27#define DCP_BUF_SZ PAGE_SIZE
28#define DCP_SHA_PAY_SZ 64
29
30#define DCP_ALIGNMENT 64
31
32/*
33 * Null hashes to align with hw behavior on imx6sl and ull
34 * these are flipped for consistency with hw output
35 */
36static const uint8_t sha1_null_hash[] =
37 "\x09\x07\xd8\xaf\x90\x18\x60\x95\xef\xbf"
38 "\x55\x32\x0d\x4b\x6b\x5e\xee\xa3\x39\xda";
39
40static const uint8_t sha256_null_hash[] =
41 "\x55\xb8\x52\x78\x1b\x99\x95\xa4"
42 "\x4c\x93\x9b\x64\xe4\x41\xae\x27"
43 "\x24\xb9\x6f\x99\xc8\xf4\xfb\x9a"
44 "\x14\x1c\xfc\x98\x42\xc4\xb0\xe3";
45
46/* DCP DMA descriptor. */
47struct dcp_dma_desc {
48 uint32_t next_cmd_addr;
49 uint32_t control0;
50 uint32_t control1;
51 uint32_t source;
52 uint32_t destination;
53 uint32_t size;
54 uint32_t payload;
55 uint32_t status;
56};
57
58/* Coherent aligned block for bounce buffering. */
59struct dcp_coherent_block {
60 uint8_t aes_in_buf[DCP_BUF_SZ];
61 uint8_t aes_out_buf[DCP_BUF_SZ];
62 uint8_t sha_in_buf[DCP_BUF_SZ];
63 uint8_t sha_out_buf[DCP_SHA_PAY_SZ];
64
65 uint8_t aes_key[2 * AES_KEYSIZE_128];
66
67 struct dcp_dma_desc desc[DCP_MAX_CHANS];
68};
69
70struct dcp {
71 struct device *dev;
72 void __iomem *base;
73
74 uint32_t caps;
75
76 struct dcp_coherent_block *coh;
77
78 struct completion completion[DCP_MAX_CHANS];
79 spinlock_t lock[DCP_MAX_CHANS];
80 struct task_struct *thread[DCP_MAX_CHANS];
81 struct crypto_queue queue[DCP_MAX_CHANS];
82 struct clk *dcp_clk;
83};
84
85enum dcp_chan {
86 DCP_CHAN_HASH_SHA = 0,
87 DCP_CHAN_CRYPTO = 2,
88};
89
90struct dcp_async_ctx {
91 /* Common context */
92 enum dcp_chan chan;
93 uint32_t fill;
94
95 /* SHA Hash-specific context */
96 struct mutex mutex;
97 uint32_t alg;
98 unsigned int hot:1;
99
100 /* Crypto-specific context */
101 struct crypto_skcipher *fallback;
102 unsigned int key_len;
103 uint8_t key[AES_KEYSIZE_128];
104};
105
106struct dcp_aes_req_ctx {
107 unsigned int enc:1;
108 unsigned int ecb:1;
109 struct skcipher_request fallback_req; // keep at the end
110};
111
112struct dcp_sha_req_ctx {
113 unsigned int init:1;
114 unsigned int fini:1;
115};
116
117struct dcp_export_state {
118 struct dcp_sha_req_ctx req_ctx;
119 struct dcp_async_ctx async_ctx;
120};
121
122/*
123 * There can even be only one instance of the MXS DCP due to the
124 * design of Linux Crypto API.
125 */
126static struct dcp *global_sdcp;
127
128/* DCP register layout. */
129#define MXS_DCP_CTRL 0x00
130#define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
131#define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
132
133#define MXS_DCP_STAT 0x10
134#define MXS_DCP_STAT_CLR 0x18
135#define MXS_DCP_STAT_IRQ_MASK 0xf
136
137#define MXS_DCP_CHANNELCTRL 0x20
138#define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
139
140#define MXS_DCP_CAPABILITY1 0x40
141#define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
142#define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
143#define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
144
145#define MXS_DCP_CONTEXT 0x50
146
147#define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
148
149#define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
150
151#define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
152#define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
153
154/* DMA descriptor bits. */
155#define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
156#define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
157#define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
158#define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
159#define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
160#define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
161#define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
162#define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
163#define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
164
165#define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
166#define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
167#define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
168#define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
169#define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
170
171static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
172{
173 int dma_err;
174 struct dcp *sdcp = global_sdcp;
175 const int chan = actx->chan;
176 uint32_t stat;
177 unsigned long ret;
178 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
179 dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
180 DMA_TO_DEVICE);
181
182 dma_err = dma_mapping_error(sdcp->dev, desc_phys);
183 if (dma_err)
184 return dma_err;
185
186 reinit_completion(&sdcp->completion[chan]);
187
188 /* Clear status register. */
189 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
190
191 /* Load the DMA descriptor. */
192 writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
193
194 /* Increment the semaphore to start the DMA transfer. */
195 writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
196
197 ret = wait_for_completion_timeout(&sdcp->completion[chan],
198 msecs_to_jiffies(1000));
199 if (!ret) {
200 dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
201 chan, readl(sdcp->base + MXS_DCP_STAT));
202 return -ETIMEDOUT;
203 }
204
205 stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
206 if (stat & 0xff) {
207 dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
208 chan, stat);
209 return -EINVAL;
210 }
211
212 dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
213
214 return 0;
215}
216
217/*
218 * Encryption (AES128)
219 */
220static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
221 struct skcipher_request *req, int init)
222{
223 dma_addr_t key_phys, src_phys, dst_phys;
224 struct dcp *sdcp = global_sdcp;
225 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
226 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
227 int ret;
228
229 key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
230 2 * AES_KEYSIZE_128, DMA_TO_DEVICE);
231 ret = dma_mapping_error(sdcp->dev, key_phys);
232 if (ret)
233 return ret;
234
235 src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
236 DCP_BUF_SZ, DMA_TO_DEVICE);
237 ret = dma_mapping_error(sdcp->dev, src_phys);
238 if (ret)
239 goto err_src;
240
241 dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
242 DCP_BUF_SZ, DMA_FROM_DEVICE);
243 ret = dma_mapping_error(sdcp->dev, dst_phys);
244 if (ret)
245 goto err_dst;
246
247 if (actx->fill % AES_BLOCK_SIZE) {
248 dev_err(sdcp->dev, "Invalid block size!\n");
249 ret = -EINVAL;
250 goto aes_done_run;
251 }
252
253 /* Fill in the DMA descriptor. */
254 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
255 MXS_DCP_CONTROL0_INTERRUPT |
256 MXS_DCP_CONTROL0_ENABLE_CIPHER;
257
258 /* Payload contains the key. */
259 desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
260
261 if (rctx->enc)
262 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
263 if (init)
264 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
265
266 desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
267
268 if (rctx->ecb)
269 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
270 else
271 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
272
273 desc->next_cmd_addr = 0;
274 desc->source = src_phys;
275 desc->destination = dst_phys;
276 desc->size = actx->fill;
277 desc->payload = key_phys;
278 desc->status = 0;
279
280 ret = mxs_dcp_start_dma(actx);
281
282aes_done_run:
283 dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
284err_dst:
285 dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
286err_src:
287 dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
288 DMA_TO_DEVICE);
289
290 return ret;
291}
292
293static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
294{
295 struct dcp *sdcp = global_sdcp;
296
297 struct skcipher_request *req = skcipher_request_cast(arq);
298 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
299 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
300
301 struct scatterlist *dst = req->dst;
302 struct scatterlist *src = req->src;
303 int dst_nents = sg_nents(dst);
304
305 const int out_off = DCP_BUF_SZ;
306 uint8_t *in_buf = sdcp->coh->aes_in_buf;
307 uint8_t *out_buf = sdcp->coh->aes_out_buf;
308
309 uint32_t dst_off = 0;
310 uint8_t *src_buf = NULL;
311 uint32_t last_out_len = 0;
312
313 uint8_t *key = sdcp->coh->aes_key;
314
315 int ret = 0;
316 unsigned int i, len, clen, tlen = 0;
317 int init = 0;
318 bool limit_hit = false;
319
320 actx->fill = 0;
321
322 /* Copy the key from the temporary location. */
323 memcpy(key, actx->key, actx->key_len);
324
325 if (!rctx->ecb) {
326 /* Copy the CBC IV just past the key. */
327 memcpy(key + AES_KEYSIZE_128, req->iv, AES_KEYSIZE_128);
328 /* CBC needs the INIT set. */
329 init = 1;
330 } else {
331 memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
332 }
333
334 for_each_sg(req->src, src, sg_nents(req->src), i) {
335 src_buf = sg_virt(src);
336 len = sg_dma_len(src);
337 tlen += len;
338 limit_hit = tlen > req->cryptlen;
339
340 if (limit_hit)
341 len = req->cryptlen - (tlen - len);
342
343 do {
344 if (actx->fill + len > out_off)
345 clen = out_off - actx->fill;
346 else
347 clen = len;
348
349 memcpy(in_buf + actx->fill, src_buf, clen);
350 len -= clen;
351 src_buf += clen;
352 actx->fill += clen;
353
354 /*
355 * If we filled the buffer or this is the last SG,
356 * submit the buffer.
357 */
358 if (actx->fill == out_off || sg_is_last(src) ||
359 limit_hit) {
360 ret = mxs_dcp_run_aes(actx, req, init);
361 if (ret)
362 return ret;
363 init = 0;
364
365 sg_pcopy_from_buffer(dst, dst_nents, out_buf,
366 actx->fill, dst_off);
367 dst_off += actx->fill;
368 last_out_len = actx->fill;
369 actx->fill = 0;
370 }
371 } while (len);
372
373 if (limit_hit)
374 break;
375 }
376
377 /* Copy the IV for CBC for chaining */
378 if (!rctx->ecb) {
379 if (rctx->enc)
380 memcpy(req->iv, out_buf+(last_out_len-AES_BLOCK_SIZE),
381 AES_BLOCK_SIZE);
382 else
383 memcpy(req->iv, in_buf+(last_out_len-AES_BLOCK_SIZE),
384 AES_BLOCK_SIZE);
385 }
386
387 return ret;
388}
389
390static int dcp_chan_thread_aes(void *data)
391{
392 struct dcp *sdcp = global_sdcp;
393 const int chan = DCP_CHAN_CRYPTO;
394
395 struct crypto_async_request *backlog;
396 struct crypto_async_request *arq;
397
398 int ret;
399
400 while (!kthread_should_stop()) {
401 set_current_state(TASK_INTERRUPTIBLE);
402
403 spin_lock(&sdcp->lock[chan]);
404 backlog = crypto_get_backlog(&sdcp->queue[chan]);
405 arq = crypto_dequeue_request(&sdcp->queue[chan]);
406 spin_unlock(&sdcp->lock[chan]);
407
408 if (!backlog && !arq) {
409 schedule();
410 continue;
411 }
412
413 set_current_state(TASK_RUNNING);
414
415 if (backlog)
416 crypto_request_complete(backlog, -EINPROGRESS);
417
418 if (arq) {
419 ret = mxs_dcp_aes_block_crypt(arq);
420 crypto_request_complete(arq, ret);
421 }
422 }
423
424 return 0;
425}
426
427static int mxs_dcp_block_fallback(struct skcipher_request *req, int enc)
428{
429 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
430 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
431 struct dcp_async_ctx *ctx = crypto_skcipher_ctx(tfm);
432 int ret;
433
434 skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback);
435 skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
436 req->base.complete, req->base.data);
437 skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
438 req->cryptlen, req->iv);
439
440 if (enc)
441 ret = crypto_skcipher_encrypt(&rctx->fallback_req);
442 else
443 ret = crypto_skcipher_decrypt(&rctx->fallback_req);
444
445 return ret;
446}
447
448static int mxs_dcp_aes_enqueue(struct skcipher_request *req, int enc, int ecb)
449{
450 struct dcp *sdcp = global_sdcp;
451 struct crypto_async_request *arq = &req->base;
452 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
453 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
454 int ret;
455
456 if (unlikely(actx->key_len != AES_KEYSIZE_128))
457 return mxs_dcp_block_fallback(req, enc);
458
459 rctx->enc = enc;
460 rctx->ecb = ecb;
461 actx->chan = DCP_CHAN_CRYPTO;
462
463 spin_lock(&sdcp->lock[actx->chan]);
464 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
465 spin_unlock(&sdcp->lock[actx->chan]);
466
467 wake_up_process(sdcp->thread[actx->chan]);
468
469 return ret;
470}
471
472static int mxs_dcp_aes_ecb_decrypt(struct skcipher_request *req)
473{
474 return mxs_dcp_aes_enqueue(req, 0, 1);
475}
476
477static int mxs_dcp_aes_ecb_encrypt(struct skcipher_request *req)
478{
479 return mxs_dcp_aes_enqueue(req, 1, 1);
480}
481
482static int mxs_dcp_aes_cbc_decrypt(struct skcipher_request *req)
483{
484 return mxs_dcp_aes_enqueue(req, 0, 0);
485}
486
487static int mxs_dcp_aes_cbc_encrypt(struct skcipher_request *req)
488{
489 return mxs_dcp_aes_enqueue(req, 1, 0);
490}
491
492static int mxs_dcp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
493 unsigned int len)
494{
495 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
496
497 /*
498 * AES 128 is supposed by the hardware, store key into temporary
499 * buffer and exit. We must use the temporary buffer here, since
500 * there can still be an operation in progress.
501 */
502 actx->key_len = len;
503 if (len == AES_KEYSIZE_128) {
504 memcpy(actx->key, key, len);
505 return 0;
506 }
507
508 /*
509 * If the requested AES key size is not supported by the hardware,
510 * but is supported by in-kernel software implementation, we use
511 * software fallback.
512 */
513 crypto_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK);
514 crypto_skcipher_set_flags(actx->fallback,
515 tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
516 return crypto_skcipher_setkey(actx->fallback, key, len);
517}
518
519static int mxs_dcp_aes_fallback_init_tfm(struct crypto_skcipher *tfm)
520{
521 const char *name = crypto_tfm_alg_name(crypto_skcipher_tfm(tfm));
522 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
523 struct crypto_skcipher *blk;
524
525 blk = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
526 if (IS_ERR(blk))
527 return PTR_ERR(blk);
528
529 actx->fallback = blk;
530 crypto_skcipher_set_reqsize(tfm, sizeof(struct dcp_aes_req_ctx) +
531 crypto_skcipher_reqsize(blk));
532 return 0;
533}
534
535static void mxs_dcp_aes_fallback_exit_tfm(struct crypto_skcipher *tfm)
536{
537 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
538
539 crypto_free_skcipher(actx->fallback);
540}
541
542/*
543 * Hashing (SHA1/SHA256)
544 */
545static int mxs_dcp_run_sha(struct ahash_request *req)
546{
547 struct dcp *sdcp = global_sdcp;
548 int ret;
549
550 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
551 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
552 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
553 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
554
555 dma_addr_t digest_phys = 0;
556 dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
557 DCP_BUF_SZ, DMA_TO_DEVICE);
558
559 ret = dma_mapping_error(sdcp->dev, buf_phys);
560 if (ret)
561 return ret;
562
563 /* Fill in the DMA descriptor. */
564 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
565 MXS_DCP_CONTROL0_INTERRUPT |
566 MXS_DCP_CONTROL0_ENABLE_HASH;
567 if (rctx->init)
568 desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
569
570 desc->control1 = actx->alg;
571 desc->next_cmd_addr = 0;
572 desc->source = buf_phys;
573 desc->destination = 0;
574 desc->size = actx->fill;
575 desc->payload = 0;
576 desc->status = 0;
577
578 /*
579 * Align driver with hw behavior when generating null hashes
580 */
581 if (rctx->init && rctx->fini && desc->size == 0) {
582 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
583 const uint8_t *sha_buf =
584 (actx->alg == MXS_DCP_CONTROL1_HASH_SELECT_SHA1) ?
585 sha1_null_hash : sha256_null_hash;
586 memcpy(sdcp->coh->sha_out_buf, sha_buf, halg->digestsize);
587 ret = 0;
588 goto done_run;
589 }
590
591 /* Set HASH_TERM bit for last transfer block. */
592 if (rctx->fini) {
593 digest_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_out_buf,
594 DCP_SHA_PAY_SZ, DMA_FROM_DEVICE);
595 ret = dma_mapping_error(sdcp->dev, digest_phys);
596 if (ret)
597 goto done_run;
598
599 desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
600 desc->payload = digest_phys;
601 }
602
603 ret = mxs_dcp_start_dma(actx);
604
605 if (rctx->fini)
606 dma_unmap_single(sdcp->dev, digest_phys, DCP_SHA_PAY_SZ,
607 DMA_FROM_DEVICE);
608
609done_run:
610 dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
611
612 return ret;
613}
614
615static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
616{
617 struct dcp *sdcp = global_sdcp;
618
619 struct ahash_request *req = ahash_request_cast(arq);
620 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
621 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
622 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
623 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
624
625 uint8_t *in_buf = sdcp->coh->sha_in_buf;
626 uint8_t *out_buf = sdcp->coh->sha_out_buf;
627
628 struct scatterlist *src;
629
630 unsigned int i, len, clen, oft = 0;
631 int ret;
632
633 int fin = rctx->fini;
634 if (fin)
635 rctx->fini = 0;
636
637 src = req->src;
638 len = req->nbytes;
639
640 while (len) {
641 if (actx->fill + len > DCP_BUF_SZ)
642 clen = DCP_BUF_SZ - actx->fill;
643 else
644 clen = len;
645
646 scatterwalk_map_and_copy(in_buf + actx->fill, src, oft, clen,
647 0);
648
649 len -= clen;
650 oft += clen;
651 actx->fill += clen;
652
653 /*
654 * If we filled the buffer and still have some
655 * more data, submit the buffer.
656 */
657 if (len && actx->fill == DCP_BUF_SZ) {
658 ret = mxs_dcp_run_sha(req);
659 if (ret)
660 return ret;
661 actx->fill = 0;
662 rctx->init = 0;
663 }
664 }
665
666 if (fin) {
667 rctx->fini = 1;
668
669 /* Submit whatever is left. */
670 if (!req->result)
671 return -EINVAL;
672
673 ret = mxs_dcp_run_sha(req);
674 if (ret)
675 return ret;
676
677 actx->fill = 0;
678
679 /* For some reason the result is flipped */
680 for (i = 0; i < halg->digestsize; i++)
681 req->result[i] = out_buf[halg->digestsize - i - 1];
682 }
683
684 return 0;
685}
686
687static int dcp_chan_thread_sha(void *data)
688{
689 struct dcp *sdcp = global_sdcp;
690 const int chan = DCP_CHAN_HASH_SHA;
691
692 struct crypto_async_request *backlog;
693 struct crypto_async_request *arq;
694 int ret;
695
696 while (!kthread_should_stop()) {
697 set_current_state(TASK_INTERRUPTIBLE);
698
699 spin_lock(&sdcp->lock[chan]);
700 backlog = crypto_get_backlog(&sdcp->queue[chan]);
701 arq = crypto_dequeue_request(&sdcp->queue[chan]);
702 spin_unlock(&sdcp->lock[chan]);
703
704 if (!backlog && !arq) {
705 schedule();
706 continue;
707 }
708
709 set_current_state(TASK_RUNNING);
710
711 if (backlog)
712 crypto_request_complete(backlog, -EINPROGRESS);
713
714 if (arq) {
715 ret = dcp_sha_req_to_buf(arq);
716 crypto_request_complete(arq, ret);
717 }
718 }
719
720 return 0;
721}
722
723static int dcp_sha_init(struct ahash_request *req)
724{
725 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
726 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
727
728 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
729
730 /*
731 * Start hashing session. The code below only inits the
732 * hashing session context, nothing more.
733 */
734 memset(actx, 0, sizeof(*actx));
735
736 if (strcmp(halg->base.cra_name, "sha1") == 0)
737 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
738 else
739 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
740
741 actx->fill = 0;
742 actx->hot = 0;
743 actx->chan = DCP_CHAN_HASH_SHA;
744
745 mutex_init(&actx->mutex);
746
747 return 0;
748}
749
750static int dcp_sha_update_fx(struct ahash_request *req, int fini)
751{
752 struct dcp *sdcp = global_sdcp;
753
754 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
755 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
756 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
757
758 int ret;
759
760 /*
761 * Ignore requests that have no data in them and are not
762 * the trailing requests in the stream of requests.
763 */
764 if (!req->nbytes && !fini)
765 return 0;
766
767 mutex_lock(&actx->mutex);
768
769 rctx->fini = fini;
770
771 if (!actx->hot) {
772 actx->hot = 1;
773 rctx->init = 1;
774 }
775
776 spin_lock(&sdcp->lock[actx->chan]);
777 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
778 spin_unlock(&sdcp->lock[actx->chan]);
779
780 wake_up_process(sdcp->thread[actx->chan]);
781 mutex_unlock(&actx->mutex);
782
783 return ret;
784}
785
786static int dcp_sha_update(struct ahash_request *req)
787{
788 return dcp_sha_update_fx(req, 0);
789}
790
791static int dcp_sha_final(struct ahash_request *req)
792{
793 ahash_request_set_crypt(req, NULL, req->result, 0);
794 req->nbytes = 0;
795 return dcp_sha_update_fx(req, 1);
796}
797
798static int dcp_sha_finup(struct ahash_request *req)
799{
800 return dcp_sha_update_fx(req, 1);
801}
802
803static int dcp_sha_digest(struct ahash_request *req)
804{
805 int ret;
806
807 ret = dcp_sha_init(req);
808 if (ret)
809 return ret;
810
811 return dcp_sha_finup(req);
812}
813
814static int dcp_sha_import(struct ahash_request *req, const void *in)
815{
816 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
817 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
818 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
819 const struct dcp_export_state *export = in;
820
821 memset(rctx, 0, sizeof(struct dcp_sha_req_ctx));
822 memset(actx, 0, sizeof(struct dcp_async_ctx));
823 memcpy(rctx, &export->req_ctx, sizeof(struct dcp_sha_req_ctx));
824 memcpy(actx, &export->async_ctx, sizeof(struct dcp_async_ctx));
825
826 return 0;
827}
828
829static int dcp_sha_export(struct ahash_request *req, void *out)
830{
831 struct dcp_sha_req_ctx *rctx_state = ahash_request_ctx(req);
832 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
833 struct dcp_async_ctx *actx_state = crypto_ahash_ctx(tfm);
834 struct dcp_export_state *export = out;
835
836 memcpy(&export->req_ctx, rctx_state, sizeof(struct dcp_sha_req_ctx));
837 memcpy(&export->async_ctx, actx_state, sizeof(struct dcp_async_ctx));
838
839 return 0;
840}
841
842static int dcp_sha_cra_init(struct crypto_tfm *tfm)
843{
844 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
845 sizeof(struct dcp_sha_req_ctx));
846 return 0;
847}
848
849static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
850{
851}
852
853/* AES 128 ECB and AES 128 CBC */
854static struct skcipher_alg dcp_aes_algs[] = {
855 {
856 .base.cra_name = "ecb(aes)",
857 .base.cra_driver_name = "ecb-aes-dcp",
858 .base.cra_priority = 400,
859 .base.cra_alignmask = 15,
860 .base.cra_flags = CRYPTO_ALG_ASYNC |
861 CRYPTO_ALG_NEED_FALLBACK,
862 .base.cra_blocksize = AES_BLOCK_SIZE,
863 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
864 .base.cra_module = THIS_MODULE,
865
866 .min_keysize = AES_MIN_KEY_SIZE,
867 .max_keysize = AES_MAX_KEY_SIZE,
868 .setkey = mxs_dcp_aes_setkey,
869 .encrypt = mxs_dcp_aes_ecb_encrypt,
870 .decrypt = mxs_dcp_aes_ecb_decrypt,
871 .init = mxs_dcp_aes_fallback_init_tfm,
872 .exit = mxs_dcp_aes_fallback_exit_tfm,
873 }, {
874 .base.cra_name = "cbc(aes)",
875 .base.cra_driver_name = "cbc-aes-dcp",
876 .base.cra_priority = 400,
877 .base.cra_alignmask = 15,
878 .base.cra_flags = CRYPTO_ALG_ASYNC |
879 CRYPTO_ALG_NEED_FALLBACK,
880 .base.cra_blocksize = AES_BLOCK_SIZE,
881 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
882 .base.cra_module = THIS_MODULE,
883
884 .min_keysize = AES_MIN_KEY_SIZE,
885 .max_keysize = AES_MAX_KEY_SIZE,
886 .setkey = mxs_dcp_aes_setkey,
887 .encrypt = mxs_dcp_aes_cbc_encrypt,
888 .decrypt = mxs_dcp_aes_cbc_decrypt,
889 .ivsize = AES_BLOCK_SIZE,
890 .init = mxs_dcp_aes_fallback_init_tfm,
891 .exit = mxs_dcp_aes_fallback_exit_tfm,
892 },
893};
894
895/* SHA1 */
896static struct ahash_alg dcp_sha1_alg = {
897 .init = dcp_sha_init,
898 .update = dcp_sha_update,
899 .final = dcp_sha_final,
900 .finup = dcp_sha_finup,
901 .digest = dcp_sha_digest,
902 .import = dcp_sha_import,
903 .export = dcp_sha_export,
904 .halg = {
905 .digestsize = SHA1_DIGEST_SIZE,
906 .statesize = sizeof(struct dcp_export_state),
907 .base = {
908 .cra_name = "sha1",
909 .cra_driver_name = "sha1-dcp",
910 .cra_priority = 400,
911 .cra_flags = CRYPTO_ALG_ASYNC,
912 .cra_blocksize = SHA1_BLOCK_SIZE,
913 .cra_ctxsize = sizeof(struct dcp_async_ctx),
914 .cra_module = THIS_MODULE,
915 .cra_init = dcp_sha_cra_init,
916 .cra_exit = dcp_sha_cra_exit,
917 },
918 },
919};
920
921/* SHA256 */
922static struct ahash_alg dcp_sha256_alg = {
923 .init = dcp_sha_init,
924 .update = dcp_sha_update,
925 .final = dcp_sha_final,
926 .finup = dcp_sha_finup,
927 .digest = dcp_sha_digest,
928 .import = dcp_sha_import,
929 .export = dcp_sha_export,
930 .halg = {
931 .digestsize = SHA256_DIGEST_SIZE,
932 .statesize = sizeof(struct dcp_export_state),
933 .base = {
934 .cra_name = "sha256",
935 .cra_driver_name = "sha256-dcp",
936 .cra_priority = 400,
937 .cra_flags = CRYPTO_ALG_ASYNC,
938 .cra_blocksize = SHA256_BLOCK_SIZE,
939 .cra_ctxsize = sizeof(struct dcp_async_ctx),
940 .cra_module = THIS_MODULE,
941 .cra_init = dcp_sha_cra_init,
942 .cra_exit = dcp_sha_cra_exit,
943 },
944 },
945};
946
947static irqreturn_t mxs_dcp_irq(int irq, void *context)
948{
949 struct dcp *sdcp = context;
950 uint32_t stat;
951 int i;
952
953 stat = readl(sdcp->base + MXS_DCP_STAT);
954 stat &= MXS_DCP_STAT_IRQ_MASK;
955 if (!stat)
956 return IRQ_NONE;
957
958 /* Clear the interrupts. */
959 writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
960
961 /* Complete the DMA requests that finished. */
962 for (i = 0; i < DCP_MAX_CHANS; i++)
963 if (stat & (1 << i))
964 complete(&sdcp->completion[i]);
965
966 return IRQ_HANDLED;
967}
968
969static int mxs_dcp_probe(struct platform_device *pdev)
970{
971 struct device *dev = &pdev->dev;
972 struct dcp *sdcp = NULL;
973 int i, ret;
974 int dcp_vmi_irq, dcp_irq;
975
976 if (global_sdcp) {
977 dev_err(dev, "Only one DCP instance allowed!\n");
978 return -ENODEV;
979 }
980
981 dcp_vmi_irq = platform_get_irq(pdev, 0);
982 if (dcp_vmi_irq < 0)
983 return dcp_vmi_irq;
984
985 dcp_irq = platform_get_irq(pdev, 1);
986 if (dcp_irq < 0)
987 return dcp_irq;
988
989 sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
990 if (!sdcp)
991 return -ENOMEM;
992
993 sdcp->dev = dev;
994 sdcp->base = devm_platform_ioremap_resource(pdev, 0);
995 if (IS_ERR(sdcp->base))
996 return PTR_ERR(sdcp->base);
997
998
999 ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
1000 "dcp-vmi-irq", sdcp);
1001 if (ret) {
1002 dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
1003 return ret;
1004 }
1005
1006 ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
1007 "dcp-irq", sdcp);
1008 if (ret) {
1009 dev_err(dev, "Failed to claim DCP IRQ!\n");
1010 return ret;
1011 }
1012
1013 /* Allocate coherent helper block. */
1014 sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
1015 GFP_KERNEL);
1016 if (!sdcp->coh)
1017 return -ENOMEM;
1018
1019 /* Re-align the structure so it fits the DCP constraints. */
1020 sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
1021
1022 /* DCP clock is optional, only used on some SOCs */
1023 sdcp->dcp_clk = devm_clk_get_optional_enabled(dev, "dcp");
1024 if (IS_ERR(sdcp->dcp_clk))
1025 return PTR_ERR(sdcp->dcp_clk);
1026
1027 /* Restart the DCP block. */
1028 ret = stmp_reset_block(sdcp->base);
1029 if (ret) {
1030 dev_err(dev, "Failed reset\n");
1031 return ret;
1032 }
1033
1034 /* Initialize control register. */
1035 writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
1036 MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
1037 sdcp->base + MXS_DCP_CTRL);
1038
1039 /* Enable all DCP DMA channels. */
1040 writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
1041 sdcp->base + MXS_DCP_CHANNELCTRL);
1042
1043 /*
1044 * We do not enable context switching. Give the context buffer a
1045 * pointer to an illegal address so if context switching is
1046 * inadvertantly enabled, the DCP will return an error instead of
1047 * trashing good memory. The DCP DMA cannot access ROM, so any ROM
1048 * address will do.
1049 */
1050 writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
1051 for (i = 0; i < DCP_MAX_CHANS; i++)
1052 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
1053 writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
1054
1055 global_sdcp = sdcp;
1056
1057 platform_set_drvdata(pdev, sdcp);
1058
1059 for (i = 0; i < DCP_MAX_CHANS; i++) {
1060 spin_lock_init(&sdcp->lock[i]);
1061 init_completion(&sdcp->completion[i]);
1062 crypto_init_queue(&sdcp->queue[i], 50);
1063 }
1064
1065 /* Create the SHA and AES handler threads. */
1066 sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
1067 NULL, "mxs_dcp_chan/sha");
1068 if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
1069 dev_err(dev, "Error starting SHA thread!\n");
1070 ret = PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
1071 return ret;
1072 }
1073
1074 sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
1075 NULL, "mxs_dcp_chan/aes");
1076 if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
1077 dev_err(dev, "Error starting SHA thread!\n");
1078 ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
1079 goto err_destroy_sha_thread;
1080 }
1081
1082 /* Register the various crypto algorithms. */
1083 sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
1084
1085 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
1086 ret = crypto_register_skciphers(dcp_aes_algs,
1087 ARRAY_SIZE(dcp_aes_algs));
1088 if (ret) {
1089 /* Failed to register algorithm. */
1090 dev_err(dev, "Failed to register AES crypto!\n");
1091 goto err_destroy_aes_thread;
1092 }
1093 }
1094
1095 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
1096 ret = crypto_register_ahash(&dcp_sha1_alg);
1097 if (ret) {
1098 dev_err(dev, "Failed to register %s hash!\n",
1099 dcp_sha1_alg.halg.base.cra_name);
1100 goto err_unregister_aes;
1101 }
1102 }
1103
1104 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
1105 ret = crypto_register_ahash(&dcp_sha256_alg);
1106 if (ret) {
1107 dev_err(dev, "Failed to register %s hash!\n",
1108 dcp_sha256_alg.halg.base.cra_name);
1109 goto err_unregister_sha1;
1110 }
1111 }
1112
1113 return 0;
1114
1115err_unregister_sha1:
1116 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1117 crypto_unregister_ahash(&dcp_sha1_alg);
1118
1119err_unregister_aes:
1120 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1121 crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1122
1123err_destroy_aes_thread:
1124 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1125
1126err_destroy_sha_thread:
1127 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1128
1129 return ret;
1130}
1131
1132static void mxs_dcp_remove(struct platform_device *pdev)
1133{
1134 struct dcp *sdcp = platform_get_drvdata(pdev);
1135
1136 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
1137 crypto_unregister_ahash(&dcp_sha256_alg);
1138
1139 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1140 crypto_unregister_ahash(&dcp_sha1_alg);
1141
1142 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1143 crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1144
1145 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1146 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1147
1148 platform_set_drvdata(pdev, NULL);
1149
1150 global_sdcp = NULL;
1151}
1152
1153static const struct of_device_id mxs_dcp_dt_ids[] = {
1154 { .compatible = "fsl,imx23-dcp", .data = NULL, },
1155 { .compatible = "fsl,imx28-dcp", .data = NULL, },
1156 { /* sentinel */ }
1157};
1158
1159MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
1160
1161static struct platform_driver mxs_dcp_driver = {
1162 .probe = mxs_dcp_probe,
1163 .remove_new = mxs_dcp_remove,
1164 .driver = {
1165 .name = "mxs-dcp",
1166 .of_match_table = mxs_dcp_dt_ids,
1167 },
1168};
1169
1170module_platform_driver(mxs_dcp_driver);
1171
1172MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1173MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1174MODULE_LICENSE("GPL");
1175MODULE_ALIAS("platform:mxs-dcp");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Freescale i.MX23/i.MX28 Data Co-Processor driver
4 *
5 * Copyright (C) 2013 Marek Vasut <marex@denx.de>
6 */
7
8#include <linux/dma-mapping.h>
9#include <linux/interrupt.h>
10#include <linux/io.h>
11#include <linux/kernel.h>
12#include <linux/kthread.h>
13#include <linux/module.h>
14#include <linux/of.h>
15#include <linux/platform_device.h>
16#include <linux/stmp_device.h>
17#include <linux/clk.h>
18
19#include <crypto/aes.h>
20#include <crypto/sha.h>
21#include <crypto/internal/hash.h>
22#include <crypto/internal/skcipher.h>
23#include <crypto/scatterwalk.h>
24
25#define DCP_MAX_CHANS 4
26#define DCP_BUF_SZ PAGE_SIZE
27#define DCP_SHA_PAY_SZ 64
28
29#define DCP_ALIGNMENT 64
30
31/*
32 * Null hashes to align with hw behavior on imx6sl and ull
33 * these are flipped for consistency with hw output
34 */
35static const uint8_t sha1_null_hash[] =
36 "\x09\x07\xd8\xaf\x90\x18\x60\x95\xef\xbf"
37 "\x55\x32\x0d\x4b\x6b\x5e\xee\xa3\x39\xda";
38
39static const uint8_t sha256_null_hash[] =
40 "\x55\xb8\x52\x78\x1b\x99\x95\xa4"
41 "\x4c\x93\x9b\x64\xe4\x41\xae\x27"
42 "\x24\xb9\x6f\x99\xc8\xf4\xfb\x9a"
43 "\x14\x1c\xfc\x98\x42\xc4\xb0\xe3";
44
45/* DCP DMA descriptor. */
46struct dcp_dma_desc {
47 uint32_t next_cmd_addr;
48 uint32_t control0;
49 uint32_t control1;
50 uint32_t source;
51 uint32_t destination;
52 uint32_t size;
53 uint32_t payload;
54 uint32_t status;
55};
56
57/* Coherent aligned block for bounce buffering. */
58struct dcp_coherent_block {
59 uint8_t aes_in_buf[DCP_BUF_SZ];
60 uint8_t aes_out_buf[DCP_BUF_SZ];
61 uint8_t sha_in_buf[DCP_BUF_SZ];
62 uint8_t sha_out_buf[DCP_SHA_PAY_SZ];
63
64 uint8_t aes_key[2 * AES_KEYSIZE_128];
65
66 struct dcp_dma_desc desc[DCP_MAX_CHANS];
67};
68
69struct dcp {
70 struct device *dev;
71 void __iomem *base;
72
73 uint32_t caps;
74
75 struct dcp_coherent_block *coh;
76
77 struct completion completion[DCP_MAX_CHANS];
78 spinlock_t lock[DCP_MAX_CHANS];
79 struct task_struct *thread[DCP_MAX_CHANS];
80 struct crypto_queue queue[DCP_MAX_CHANS];
81 struct clk *dcp_clk;
82};
83
84enum dcp_chan {
85 DCP_CHAN_HASH_SHA = 0,
86 DCP_CHAN_CRYPTO = 2,
87};
88
89struct dcp_async_ctx {
90 /* Common context */
91 enum dcp_chan chan;
92 uint32_t fill;
93
94 /* SHA Hash-specific context */
95 struct mutex mutex;
96 uint32_t alg;
97 unsigned int hot:1;
98
99 /* Crypto-specific context */
100 struct crypto_skcipher *fallback;
101 unsigned int key_len;
102 uint8_t key[AES_KEYSIZE_128];
103};
104
105struct dcp_aes_req_ctx {
106 unsigned int enc:1;
107 unsigned int ecb:1;
108 struct skcipher_request fallback_req; // keep at the end
109};
110
111struct dcp_sha_req_ctx {
112 unsigned int init:1;
113 unsigned int fini:1;
114};
115
116struct dcp_export_state {
117 struct dcp_sha_req_ctx req_ctx;
118 struct dcp_async_ctx async_ctx;
119};
120
121/*
122 * There can even be only one instance of the MXS DCP due to the
123 * design of Linux Crypto API.
124 */
125static struct dcp *global_sdcp;
126
127/* DCP register layout. */
128#define MXS_DCP_CTRL 0x00
129#define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
130#define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
131
132#define MXS_DCP_STAT 0x10
133#define MXS_DCP_STAT_CLR 0x18
134#define MXS_DCP_STAT_IRQ_MASK 0xf
135
136#define MXS_DCP_CHANNELCTRL 0x20
137#define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
138
139#define MXS_DCP_CAPABILITY1 0x40
140#define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
141#define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
142#define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
143
144#define MXS_DCP_CONTEXT 0x50
145
146#define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
147
148#define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
149
150#define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
151#define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
152
153/* DMA descriptor bits. */
154#define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
155#define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
156#define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
157#define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
158#define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
159#define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
160#define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
161#define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
162#define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
163
164#define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
165#define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
166#define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
167#define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
168#define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
169
170static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
171{
172 struct dcp *sdcp = global_sdcp;
173 const int chan = actx->chan;
174 uint32_t stat;
175 unsigned long ret;
176 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
177
178 dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
179 DMA_TO_DEVICE);
180
181 reinit_completion(&sdcp->completion[chan]);
182
183 /* Clear status register. */
184 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
185
186 /* Load the DMA descriptor. */
187 writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
188
189 /* Increment the semaphore to start the DMA transfer. */
190 writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
191
192 ret = wait_for_completion_timeout(&sdcp->completion[chan],
193 msecs_to_jiffies(1000));
194 if (!ret) {
195 dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
196 chan, readl(sdcp->base + MXS_DCP_STAT));
197 return -ETIMEDOUT;
198 }
199
200 stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
201 if (stat & 0xff) {
202 dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
203 chan, stat);
204 return -EINVAL;
205 }
206
207 dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
208
209 return 0;
210}
211
212/*
213 * Encryption (AES128)
214 */
215static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
216 struct skcipher_request *req, int init)
217{
218 struct dcp *sdcp = global_sdcp;
219 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
220 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
221 int ret;
222
223 dma_addr_t key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
224 2 * AES_KEYSIZE_128,
225 DMA_TO_DEVICE);
226 dma_addr_t src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
227 DCP_BUF_SZ, DMA_TO_DEVICE);
228 dma_addr_t dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
229 DCP_BUF_SZ, DMA_FROM_DEVICE);
230
231 if (actx->fill % AES_BLOCK_SIZE) {
232 dev_err(sdcp->dev, "Invalid block size!\n");
233 ret = -EINVAL;
234 goto aes_done_run;
235 }
236
237 /* Fill in the DMA descriptor. */
238 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
239 MXS_DCP_CONTROL0_INTERRUPT |
240 MXS_DCP_CONTROL0_ENABLE_CIPHER;
241
242 /* Payload contains the key. */
243 desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
244
245 if (rctx->enc)
246 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
247 if (init)
248 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
249
250 desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
251
252 if (rctx->ecb)
253 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
254 else
255 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
256
257 desc->next_cmd_addr = 0;
258 desc->source = src_phys;
259 desc->destination = dst_phys;
260 desc->size = actx->fill;
261 desc->payload = key_phys;
262 desc->status = 0;
263
264 ret = mxs_dcp_start_dma(actx);
265
266aes_done_run:
267 dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
268 DMA_TO_DEVICE);
269 dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
270 dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
271
272 return ret;
273}
274
275static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
276{
277 struct dcp *sdcp = global_sdcp;
278
279 struct skcipher_request *req = skcipher_request_cast(arq);
280 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
281 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
282
283 struct scatterlist *dst = req->dst;
284 struct scatterlist *src = req->src;
285 const int nents = sg_nents(req->src);
286
287 const int out_off = DCP_BUF_SZ;
288 uint8_t *in_buf = sdcp->coh->aes_in_buf;
289 uint8_t *out_buf = sdcp->coh->aes_out_buf;
290
291 uint8_t *out_tmp, *src_buf, *dst_buf = NULL;
292 uint32_t dst_off = 0;
293 uint32_t last_out_len = 0;
294
295 uint8_t *key = sdcp->coh->aes_key;
296
297 int ret = 0;
298 int split = 0;
299 unsigned int i, len, clen, rem = 0, tlen = 0;
300 int init = 0;
301 bool limit_hit = false;
302
303 actx->fill = 0;
304
305 /* Copy the key from the temporary location. */
306 memcpy(key, actx->key, actx->key_len);
307
308 if (!rctx->ecb) {
309 /* Copy the CBC IV just past the key. */
310 memcpy(key + AES_KEYSIZE_128, req->iv, AES_KEYSIZE_128);
311 /* CBC needs the INIT set. */
312 init = 1;
313 } else {
314 memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
315 }
316
317 for_each_sg(req->src, src, nents, i) {
318 src_buf = sg_virt(src);
319 len = sg_dma_len(src);
320 tlen += len;
321 limit_hit = tlen > req->cryptlen;
322
323 if (limit_hit)
324 len = req->cryptlen - (tlen - len);
325
326 do {
327 if (actx->fill + len > out_off)
328 clen = out_off - actx->fill;
329 else
330 clen = len;
331
332 memcpy(in_buf + actx->fill, src_buf, clen);
333 len -= clen;
334 src_buf += clen;
335 actx->fill += clen;
336
337 /*
338 * If we filled the buffer or this is the last SG,
339 * submit the buffer.
340 */
341 if (actx->fill == out_off || sg_is_last(src) ||
342 limit_hit) {
343 ret = mxs_dcp_run_aes(actx, req, init);
344 if (ret)
345 return ret;
346 init = 0;
347
348 out_tmp = out_buf;
349 last_out_len = actx->fill;
350 while (dst && actx->fill) {
351 if (!split) {
352 dst_buf = sg_virt(dst);
353 dst_off = 0;
354 }
355 rem = min(sg_dma_len(dst) - dst_off,
356 actx->fill);
357
358 memcpy(dst_buf + dst_off, out_tmp, rem);
359 out_tmp += rem;
360 dst_off += rem;
361 actx->fill -= rem;
362
363 if (dst_off == sg_dma_len(dst)) {
364 dst = sg_next(dst);
365 split = 0;
366 } else {
367 split = 1;
368 }
369 }
370 }
371 } while (len);
372
373 if (limit_hit)
374 break;
375 }
376
377 /* Copy the IV for CBC for chaining */
378 if (!rctx->ecb) {
379 if (rctx->enc)
380 memcpy(req->iv, out_buf+(last_out_len-AES_BLOCK_SIZE),
381 AES_BLOCK_SIZE);
382 else
383 memcpy(req->iv, in_buf+(last_out_len-AES_BLOCK_SIZE),
384 AES_BLOCK_SIZE);
385 }
386
387 return ret;
388}
389
390static int dcp_chan_thread_aes(void *data)
391{
392 struct dcp *sdcp = global_sdcp;
393 const int chan = DCP_CHAN_CRYPTO;
394
395 struct crypto_async_request *backlog;
396 struct crypto_async_request *arq;
397
398 int ret;
399
400 while (!kthread_should_stop()) {
401 set_current_state(TASK_INTERRUPTIBLE);
402
403 spin_lock(&sdcp->lock[chan]);
404 backlog = crypto_get_backlog(&sdcp->queue[chan]);
405 arq = crypto_dequeue_request(&sdcp->queue[chan]);
406 spin_unlock(&sdcp->lock[chan]);
407
408 if (!backlog && !arq) {
409 schedule();
410 continue;
411 }
412
413 set_current_state(TASK_RUNNING);
414
415 if (backlog)
416 backlog->complete(backlog, -EINPROGRESS);
417
418 if (arq) {
419 ret = mxs_dcp_aes_block_crypt(arq);
420 arq->complete(arq, ret);
421 }
422 }
423
424 return 0;
425}
426
427static int mxs_dcp_block_fallback(struct skcipher_request *req, int enc)
428{
429 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
430 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
431 struct dcp_async_ctx *ctx = crypto_skcipher_ctx(tfm);
432 int ret;
433
434 skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback);
435 skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
436 req->base.complete, req->base.data);
437 skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
438 req->cryptlen, req->iv);
439
440 if (enc)
441 ret = crypto_skcipher_encrypt(&rctx->fallback_req);
442 else
443 ret = crypto_skcipher_decrypt(&rctx->fallback_req);
444
445 return ret;
446}
447
448static int mxs_dcp_aes_enqueue(struct skcipher_request *req, int enc, int ecb)
449{
450 struct dcp *sdcp = global_sdcp;
451 struct crypto_async_request *arq = &req->base;
452 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
453 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
454 int ret;
455
456 if (unlikely(actx->key_len != AES_KEYSIZE_128))
457 return mxs_dcp_block_fallback(req, enc);
458
459 rctx->enc = enc;
460 rctx->ecb = ecb;
461 actx->chan = DCP_CHAN_CRYPTO;
462
463 spin_lock(&sdcp->lock[actx->chan]);
464 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
465 spin_unlock(&sdcp->lock[actx->chan]);
466
467 wake_up_process(sdcp->thread[actx->chan]);
468
469 return ret;
470}
471
472static int mxs_dcp_aes_ecb_decrypt(struct skcipher_request *req)
473{
474 return mxs_dcp_aes_enqueue(req, 0, 1);
475}
476
477static int mxs_dcp_aes_ecb_encrypt(struct skcipher_request *req)
478{
479 return mxs_dcp_aes_enqueue(req, 1, 1);
480}
481
482static int mxs_dcp_aes_cbc_decrypt(struct skcipher_request *req)
483{
484 return mxs_dcp_aes_enqueue(req, 0, 0);
485}
486
487static int mxs_dcp_aes_cbc_encrypt(struct skcipher_request *req)
488{
489 return mxs_dcp_aes_enqueue(req, 1, 0);
490}
491
492static int mxs_dcp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
493 unsigned int len)
494{
495 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
496
497 /*
498 * AES 128 is supposed by the hardware, store key into temporary
499 * buffer and exit. We must use the temporary buffer here, since
500 * there can still be an operation in progress.
501 */
502 actx->key_len = len;
503 if (len == AES_KEYSIZE_128) {
504 memcpy(actx->key, key, len);
505 return 0;
506 }
507
508 /*
509 * If the requested AES key size is not supported by the hardware,
510 * but is supported by in-kernel software implementation, we use
511 * software fallback.
512 */
513 crypto_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK);
514 crypto_skcipher_set_flags(actx->fallback,
515 tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
516 return crypto_skcipher_setkey(actx->fallback, key, len);
517}
518
519static int mxs_dcp_aes_fallback_init_tfm(struct crypto_skcipher *tfm)
520{
521 const char *name = crypto_tfm_alg_name(crypto_skcipher_tfm(tfm));
522 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
523 struct crypto_skcipher *blk;
524
525 blk = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
526 if (IS_ERR(blk))
527 return PTR_ERR(blk);
528
529 actx->fallback = blk;
530 crypto_skcipher_set_reqsize(tfm, sizeof(struct dcp_aes_req_ctx) +
531 crypto_skcipher_reqsize(blk));
532 return 0;
533}
534
535static void mxs_dcp_aes_fallback_exit_tfm(struct crypto_skcipher *tfm)
536{
537 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
538
539 crypto_free_skcipher(actx->fallback);
540}
541
542/*
543 * Hashing (SHA1/SHA256)
544 */
545static int mxs_dcp_run_sha(struct ahash_request *req)
546{
547 struct dcp *sdcp = global_sdcp;
548 int ret;
549
550 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
551 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
552 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
553 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
554
555 dma_addr_t digest_phys = 0;
556 dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
557 DCP_BUF_SZ, DMA_TO_DEVICE);
558
559 /* Fill in the DMA descriptor. */
560 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
561 MXS_DCP_CONTROL0_INTERRUPT |
562 MXS_DCP_CONTROL0_ENABLE_HASH;
563 if (rctx->init)
564 desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
565
566 desc->control1 = actx->alg;
567 desc->next_cmd_addr = 0;
568 desc->source = buf_phys;
569 desc->destination = 0;
570 desc->size = actx->fill;
571 desc->payload = 0;
572 desc->status = 0;
573
574 /*
575 * Align driver with hw behavior when generating null hashes
576 */
577 if (rctx->init && rctx->fini && desc->size == 0) {
578 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
579 const uint8_t *sha_buf =
580 (actx->alg == MXS_DCP_CONTROL1_HASH_SELECT_SHA1) ?
581 sha1_null_hash : sha256_null_hash;
582 memcpy(sdcp->coh->sha_out_buf, sha_buf, halg->digestsize);
583 ret = 0;
584 goto done_run;
585 }
586
587 /* Set HASH_TERM bit for last transfer block. */
588 if (rctx->fini) {
589 digest_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_out_buf,
590 DCP_SHA_PAY_SZ, DMA_FROM_DEVICE);
591 desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
592 desc->payload = digest_phys;
593 }
594
595 ret = mxs_dcp_start_dma(actx);
596
597 if (rctx->fini)
598 dma_unmap_single(sdcp->dev, digest_phys, DCP_SHA_PAY_SZ,
599 DMA_FROM_DEVICE);
600
601done_run:
602 dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
603
604 return ret;
605}
606
607static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
608{
609 struct dcp *sdcp = global_sdcp;
610
611 struct ahash_request *req = ahash_request_cast(arq);
612 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
613 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
614 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
615 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
616
617 uint8_t *in_buf = sdcp->coh->sha_in_buf;
618 uint8_t *out_buf = sdcp->coh->sha_out_buf;
619
620 struct scatterlist *src;
621
622 unsigned int i, len, clen, oft = 0;
623 int ret;
624
625 int fin = rctx->fini;
626 if (fin)
627 rctx->fini = 0;
628
629 src = req->src;
630 len = req->nbytes;
631
632 while (len) {
633 if (actx->fill + len > DCP_BUF_SZ)
634 clen = DCP_BUF_SZ - actx->fill;
635 else
636 clen = len;
637
638 scatterwalk_map_and_copy(in_buf + actx->fill, src, oft, clen,
639 0);
640
641 len -= clen;
642 oft += clen;
643 actx->fill += clen;
644
645 /*
646 * If we filled the buffer and still have some
647 * more data, submit the buffer.
648 */
649 if (len && actx->fill == DCP_BUF_SZ) {
650 ret = mxs_dcp_run_sha(req);
651 if (ret)
652 return ret;
653 actx->fill = 0;
654 rctx->init = 0;
655 }
656 }
657
658 if (fin) {
659 rctx->fini = 1;
660
661 /* Submit whatever is left. */
662 if (!req->result)
663 return -EINVAL;
664
665 ret = mxs_dcp_run_sha(req);
666 if (ret)
667 return ret;
668
669 actx->fill = 0;
670
671 /* For some reason the result is flipped */
672 for (i = 0; i < halg->digestsize; i++)
673 req->result[i] = out_buf[halg->digestsize - i - 1];
674 }
675
676 return 0;
677}
678
679static int dcp_chan_thread_sha(void *data)
680{
681 struct dcp *sdcp = global_sdcp;
682 const int chan = DCP_CHAN_HASH_SHA;
683
684 struct crypto_async_request *backlog;
685 struct crypto_async_request *arq;
686 int ret;
687
688 while (!kthread_should_stop()) {
689 set_current_state(TASK_INTERRUPTIBLE);
690
691 spin_lock(&sdcp->lock[chan]);
692 backlog = crypto_get_backlog(&sdcp->queue[chan]);
693 arq = crypto_dequeue_request(&sdcp->queue[chan]);
694 spin_unlock(&sdcp->lock[chan]);
695
696 if (!backlog && !arq) {
697 schedule();
698 continue;
699 }
700
701 set_current_state(TASK_RUNNING);
702
703 if (backlog)
704 backlog->complete(backlog, -EINPROGRESS);
705
706 if (arq) {
707 ret = dcp_sha_req_to_buf(arq);
708 arq->complete(arq, ret);
709 }
710 }
711
712 return 0;
713}
714
715static int dcp_sha_init(struct ahash_request *req)
716{
717 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
718 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
719
720 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
721
722 /*
723 * Start hashing session. The code below only inits the
724 * hashing session context, nothing more.
725 */
726 memset(actx, 0, sizeof(*actx));
727
728 if (strcmp(halg->base.cra_name, "sha1") == 0)
729 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
730 else
731 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
732
733 actx->fill = 0;
734 actx->hot = 0;
735 actx->chan = DCP_CHAN_HASH_SHA;
736
737 mutex_init(&actx->mutex);
738
739 return 0;
740}
741
742static int dcp_sha_update_fx(struct ahash_request *req, int fini)
743{
744 struct dcp *sdcp = global_sdcp;
745
746 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
747 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
748 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
749
750 int ret;
751
752 /*
753 * Ignore requests that have no data in them and are not
754 * the trailing requests in the stream of requests.
755 */
756 if (!req->nbytes && !fini)
757 return 0;
758
759 mutex_lock(&actx->mutex);
760
761 rctx->fini = fini;
762
763 if (!actx->hot) {
764 actx->hot = 1;
765 rctx->init = 1;
766 }
767
768 spin_lock(&sdcp->lock[actx->chan]);
769 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
770 spin_unlock(&sdcp->lock[actx->chan]);
771
772 wake_up_process(sdcp->thread[actx->chan]);
773 mutex_unlock(&actx->mutex);
774
775 return ret;
776}
777
778static int dcp_sha_update(struct ahash_request *req)
779{
780 return dcp_sha_update_fx(req, 0);
781}
782
783static int dcp_sha_final(struct ahash_request *req)
784{
785 ahash_request_set_crypt(req, NULL, req->result, 0);
786 req->nbytes = 0;
787 return dcp_sha_update_fx(req, 1);
788}
789
790static int dcp_sha_finup(struct ahash_request *req)
791{
792 return dcp_sha_update_fx(req, 1);
793}
794
795static int dcp_sha_digest(struct ahash_request *req)
796{
797 int ret;
798
799 ret = dcp_sha_init(req);
800 if (ret)
801 return ret;
802
803 return dcp_sha_finup(req);
804}
805
806static int dcp_sha_import(struct ahash_request *req, const void *in)
807{
808 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
809 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
810 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
811 const struct dcp_export_state *export = in;
812
813 memset(rctx, 0, sizeof(struct dcp_sha_req_ctx));
814 memset(actx, 0, sizeof(struct dcp_async_ctx));
815 memcpy(rctx, &export->req_ctx, sizeof(struct dcp_sha_req_ctx));
816 memcpy(actx, &export->async_ctx, sizeof(struct dcp_async_ctx));
817
818 return 0;
819}
820
821static int dcp_sha_export(struct ahash_request *req, void *out)
822{
823 struct dcp_sha_req_ctx *rctx_state = ahash_request_ctx(req);
824 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
825 struct dcp_async_ctx *actx_state = crypto_ahash_ctx(tfm);
826 struct dcp_export_state *export = out;
827
828 memcpy(&export->req_ctx, rctx_state, sizeof(struct dcp_sha_req_ctx));
829 memcpy(&export->async_ctx, actx_state, sizeof(struct dcp_async_ctx));
830
831 return 0;
832}
833
834static int dcp_sha_cra_init(struct crypto_tfm *tfm)
835{
836 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
837 sizeof(struct dcp_sha_req_ctx));
838 return 0;
839}
840
841static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
842{
843}
844
845/* AES 128 ECB and AES 128 CBC */
846static struct skcipher_alg dcp_aes_algs[] = {
847 {
848 .base.cra_name = "ecb(aes)",
849 .base.cra_driver_name = "ecb-aes-dcp",
850 .base.cra_priority = 400,
851 .base.cra_alignmask = 15,
852 .base.cra_flags = CRYPTO_ALG_ASYNC |
853 CRYPTO_ALG_NEED_FALLBACK,
854 .base.cra_blocksize = AES_BLOCK_SIZE,
855 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
856 .base.cra_module = THIS_MODULE,
857
858 .min_keysize = AES_MIN_KEY_SIZE,
859 .max_keysize = AES_MAX_KEY_SIZE,
860 .setkey = mxs_dcp_aes_setkey,
861 .encrypt = mxs_dcp_aes_ecb_encrypt,
862 .decrypt = mxs_dcp_aes_ecb_decrypt,
863 .init = mxs_dcp_aes_fallback_init_tfm,
864 .exit = mxs_dcp_aes_fallback_exit_tfm,
865 }, {
866 .base.cra_name = "cbc(aes)",
867 .base.cra_driver_name = "cbc-aes-dcp",
868 .base.cra_priority = 400,
869 .base.cra_alignmask = 15,
870 .base.cra_flags = CRYPTO_ALG_ASYNC |
871 CRYPTO_ALG_NEED_FALLBACK,
872 .base.cra_blocksize = AES_BLOCK_SIZE,
873 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
874 .base.cra_module = THIS_MODULE,
875
876 .min_keysize = AES_MIN_KEY_SIZE,
877 .max_keysize = AES_MAX_KEY_SIZE,
878 .setkey = mxs_dcp_aes_setkey,
879 .encrypt = mxs_dcp_aes_cbc_encrypt,
880 .decrypt = mxs_dcp_aes_cbc_decrypt,
881 .ivsize = AES_BLOCK_SIZE,
882 .init = mxs_dcp_aes_fallback_init_tfm,
883 .exit = mxs_dcp_aes_fallback_exit_tfm,
884 },
885};
886
887/* SHA1 */
888static struct ahash_alg dcp_sha1_alg = {
889 .init = dcp_sha_init,
890 .update = dcp_sha_update,
891 .final = dcp_sha_final,
892 .finup = dcp_sha_finup,
893 .digest = dcp_sha_digest,
894 .import = dcp_sha_import,
895 .export = dcp_sha_export,
896 .halg = {
897 .digestsize = SHA1_DIGEST_SIZE,
898 .statesize = sizeof(struct dcp_export_state),
899 .base = {
900 .cra_name = "sha1",
901 .cra_driver_name = "sha1-dcp",
902 .cra_priority = 400,
903 .cra_alignmask = 63,
904 .cra_flags = CRYPTO_ALG_ASYNC,
905 .cra_blocksize = SHA1_BLOCK_SIZE,
906 .cra_ctxsize = sizeof(struct dcp_async_ctx),
907 .cra_module = THIS_MODULE,
908 .cra_init = dcp_sha_cra_init,
909 .cra_exit = dcp_sha_cra_exit,
910 },
911 },
912};
913
914/* SHA256 */
915static struct ahash_alg dcp_sha256_alg = {
916 .init = dcp_sha_init,
917 .update = dcp_sha_update,
918 .final = dcp_sha_final,
919 .finup = dcp_sha_finup,
920 .digest = dcp_sha_digest,
921 .import = dcp_sha_import,
922 .export = dcp_sha_export,
923 .halg = {
924 .digestsize = SHA256_DIGEST_SIZE,
925 .statesize = sizeof(struct dcp_export_state),
926 .base = {
927 .cra_name = "sha256",
928 .cra_driver_name = "sha256-dcp",
929 .cra_priority = 400,
930 .cra_alignmask = 63,
931 .cra_flags = CRYPTO_ALG_ASYNC,
932 .cra_blocksize = SHA256_BLOCK_SIZE,
933 .cra_ctxsize = sizeof(struct dcp_async_ctx),
934 .cra_module = THIS_MODULE,
935 .cra_init = dcp_sha_cra_init,
936 .cra_exit = dcp_sha_cra_exit,
937 },
938 },
939};
940
941static irqreturn_t mxs_dcp_irq(int irq, void *context)
942{
943 struct dcp *sdcp = context;
944 uint32_t stat;
945 int i;
946
947 stat = readl(sdcp->base + MXS_DCP_STAT);
948 stat &= MXS_DCP_STAT_IRQ_MASK;
949 if (!stat)
950 return IRQ_NONE;
951
952 /* Clear the interrupts. */
953 writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
954
955 /* Complete the DMA requests that finished. */
956 for (i = 0; i < DCP_MAX_CHANS; i++)
957 if (stat & (1 << i))
958 complete(&sdcp->completion[i]);
959
960 return IRQ_HANDLED;
961}
962
963static int mxs_dcp_probe(struct platform_device *pdev)
964{
965 struct device *dev = &pdev->dev;
966 struct dcp *sdcp = NULL;
967 int i, ret;
968 int dcp_vmi_irq, dcp_irq;
969
970 if (global_sdcp) {
971 dev_err(dev, "Only one DCP instance allowed!\n");
972 return -ENODEV;
973 }
974
975 dcp_vmi_irq = platform_get_irq(pdev, 0);
976 if (dcp_vmi_irq < 0)
977 return dcp_vmi_irq;
978
979 dcp_irq = platform_get_irq(pdev, 1);
980 if (dcp_irq < 0)
981 return dcp_irq;
982
983 sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
984 if (!sdcp)
985 return -ENOMEM;
986
987 sdcp->dev = dev;
988 sdcp->base = devm_platform_ioremap_resource(pdev, 0);
989 if (IS_ERR(sdcp->base))
990 return PTR_ERR(sdcp->base);
991
992
993 ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
994 "dcp-vmi-irq", sdcp);
995 if (ret) {
996 dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
997 return ret;
998 }
999
1000 ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
1001 "dcp-irq", sdcp);
1002 if (ret) {
1003 dev_err(dev, "Failed to claim DCP IRQ!\n");
1004 return ret;
1005 }
1006
1007 /* Allocate coherent helper block. */
1008 sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
1009 GFP_KERNEL);
1010 if (!sdcp->coh)
1011 return -ENOMEM;
1012
1013 /* Re-align the structure so it fits the DCP constraints. */
1014 sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
1015
1016 /* DCP clock is optional, only used on some SOCs */
1017 sdcp->dcp_clk = devm_clk_get(dev, "dcp");
1018 if (IS_ERR(sdcp->dcp_clk)) {
1019 if (sdcp->dcp_clk != ERR_PTR(-ENOENT))
1020 return PTR_ERR(sdcp->dcp_clk);
1021 sdcp->dcp_clk = NULL;
1022 }
1023 ret = clk_prepare_enable(sdcp->dcp_clk);
1024 if (ret)
1025 return ret;
1026
1027 /* Restart the DCP block. */
1028 ret = stmp_reset_block(sdcp->base);
1029 if (ret) {
1030 dev_err(dev, "Failed reset\n");
1031 goto err_disable_unprepare_clk;
1032 }
1033
1034 /* Initialize control register. */
1035 writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
1036 MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
1037 sdcp->base + MXS_DCP_CTRL);
1038
1039 /* Enable all DCP DMA channels. */
1040 writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
1041 sdcp->base + MXS_DCP_CHANNELCTRL);
1042
1043 /*
1044 * We do not enable context switching. Give the context buffer a
1045 * pointer to an illegal address so if context switching is
1046 * inadvertantly enabled, the DCP will return an error instead of
1047 * trashing good memory. The DCP DMA cannot access ROM, so any ROM
1048 * address will do.
1049 */
1050 writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
1051 for (i = 0; i < DCP_MAX_CHANS; i++)
1052 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
1053 writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
1054
1055 global_sdcp = sdcp;
1056
1057 platform_set_drvdata(pdev, sdcp);
1058
1059 for (i = 0; i < DCP_MAX_CHANS; i++) {
1060 spin_lock_init(&sdcp->lock[i]);
1061 init_completion(&sdcp->completion[i]);
1062 crypto_init_queue(&sdcp->queue[i], 50);
1063 }
1064
1065 /* Create the SHA and AES handler threads. */
1066 sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
1067 NULL, "mxs_dcp_chan/sha");
1068 if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
1069 dev_err(dev, "Error starting SHA thread!\n");
1070 ret = PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
1071 goto err_disable_unprepare_clk;
1072 }
1073
1074 sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
1075 NULL, "mxs_dcp_chan/aes");
1076 if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
1077 dev_err(dev, "Error starting SHA thread!\n");
1078 ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
1079 goto err_destroy_sha_thread;
1080 }
1081
1082 /* Register the various crypto algorithms. */
1083 sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
1084
1085 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
1086 ret = crypto_register_skciphers(dcp_aes_algs,
1087 ARRAY_SIZE(dcp_aes_algs));
1088 if (ret) {
1089 /* Failed to register algorithm. */
1090 dev_err(dev, "Failed to register AES crypto!\n");
1091 goto err_destroy_aes_thread;
1092 }
1093 }
1094
1095 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
1096 ret = crypto_register_ahash(&dcp_sha1_alg);
1097 if (ret) {
1098 dev_err(dev, "Failed to register %s hash!\n",
1099 dcp_sha1_alg.halg.base.cra_name);
1100 goto err_unregister_aes;
1101 }
1102 }
1103
1104 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
1105 ret = crypto_register_ahash(&dcp_sha256_alg);
1106 if (ret) {
1107 dev_err(dev, "Failed to register %s hash!\n",
1108 dcp_sha256_alg.halg.base.cra_name);
1109 goto err_unregister_sha1;
1110 }
1111 }
1112
1113 return 0;
1114
1115err_unregister_sha1:
1116 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1117 crypto_unregister_ahash(&dcp_sha1_alg);
1118
1119err_unregister_aes:
1120 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1121 crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1122
1123err_destroy_aes_thread:
1124 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1125
1126err_destroy_sha_thread:
1127 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1128
1129err_disable_unprepare_clk:
1130 clk_disable_unprepare(sdcp->dcp_clk);
1131
1132 return ret;
1133}
1134
1135static int mxs_dcp_remove(struct platform_device *pdev)
1136{
1137 struct dcp *sdcp = platform_get_drvdata(pdev);
1138
1139 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
1140 crypto_unregister_ahash(&dcp_sha256_alg);
1141
1142 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1143 crypto_unregister_ahash(&dcp_sha1_alg);
1144
1145 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1146 crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1147
1148 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1149 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1150
1151 clk_disable_unprepare(sdcp->dcp_clk);
1152
1153 platform_set_drvdata(pdev, NULL);
1154
1155 global_sdcp = NULL;
1156
1157 return 0;
1158}
1159
1160static const struct of_device_id mxs_dcp_dt_ids[] = {
1161 { .compatible = "fsl,imx23-dcp", .data = NULL, },
1162 { .compatible = "fsl,imx28-dcp", .data = NULL, },
1163 { /* sentinel */ }
1164};
1165
1166MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
1167
1168static struct platform_driver mxs_dcp_driver = {
1169 .probe = mxs_dcp_probe,
1170 .remove = mxs_dcp_remove,
1171 .driver = {
1172 .name = "mxs-dcp",
1173 .of_match_table = mxs_dcp_dt_ids,
1174 },
1175};
1176
1177module_platform_driver(mxs_dcp_driver);
1178
1179MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1180MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1181MODULE_LICENSE("GPL");
1182MODULE_ALIAS("platform:mxs-dcp");