Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Re-map IO memory to kernel address space so that we can access it.
  4 * This is needed for high PCI addresses that aren't mapped in the
  5 * 640k-1MB IO memory area on PC's
  6 *
  7 * (C) Copyright 1995 1996 Linus Torvalds
  8 */
  9
 10#include <linux/memblock.h>
 11#include <linux/init.h>
 12#include <linux/io.h>
 13#include <linux/ioport.h>
 14#include <linux/slab.h>
 15#include <linux/vmalloc.h>
 16#include <linux/mmiotrace.h>
 17#include <linux/cc_platform.h>
 18#include <linux/efi.h>
 19#include <linux/pgtable.h>
 20#include <linux/kmsan.h>
 21
 22#include <asm/set_memory.h>
 23#include <asm/e820/api.h>
 24#include <asm/efi.h>
 25#include <asm/fixmap.h>
 26#include <asm/tlbflush.h>
 27#include <asm/pgalloc.h>
 28#include <asm/memtype.h>
 29#include <asm/setup.h>
 30
 31#include "physaddr.h"
 32
 33/*
 34 * Descriptor controlling ioremap() behavior.
 35 */
 36struct ioremap_desc {
 37	unsigned int flags;
 38};
 39
 40/*
 41 * Fix up the linear direct mapping of the kernel to avoid cache attribute
 42 * conflicts.
 43 */
 44int ioremap_change_attr(unsigned long vaddr, unsigned long size,
 45			enum page_cache_mode pcm)
 46{
 47	unsigned long nrpages = size >> PAGE_SHIFT;
 48	int err;
 49
 50	switch (pcm) {
 51	case _PAGE_CACHE_MODE_UC:
 52	default:
 53		err = _set_memory_uc(vaddr, nrpages);
 54		break;
 55	case _PAGE_CACHE_MODE_WC:
 56		err = _set_memory_wc(vaddr, nrpages);
 57		break;
 58	case _PAGE_CACHE_MODE_WT:
 59		err = _set_memory_wt(vaddr, nrpages);
 60		break;
 61	case _PAGE_CACHE_MODE_WB:
 62		err = _set_memory_wb(vaddr, nrpages);
 63		break;
 64	}
 65
 66	return err;
 67}
 68
 69/* Does the range (or a subset of) contain normal RAM? */
 70static unsigned int __ioremap_check_ram(struct resource *res)
 71{
 72	unsigned long start_pfn, stop_pfn;
 73	unsigned long i;
 74
 75	if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
 76		return 0;
 77
 78	start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
 79	stop_pfn = (res->end + 1) >> PAGE_SHIFT;
 80	if (stop_pfn > start_pfn) {
 81		for (i = 0; i < (stop_pfn - start_pfn); ++i)
 82			if (pfn_valid(start_pfn + i) &&
 83			    !PageReserved(pfn_to_page(start_pfn + i)))
 84				return IORES_MAP_SYSTEM_RAM;
 85	}
 86
 87	return 0;
 88}
 89
 90/*
 91 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
 92 * there the whole memory is already encrypted.
 93 */
 94static unsigned int __ioremap_check_encrypted(struct resource *res)
 95{
 96	if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
 97		return 0;
 98
 99	switch (res->desc) {
100	case IORES_DESC_NONE:
101	case IORES_DESC_RESERVED:
102		break;
103	default:
104		return IORES_MAP_ENCRYPTED;
105	}
106
107	return 0;
108}
109
110/*
111 * The EFI runtime services data area is not covered by walk_mem_res(), but must
112 * be mapped encrypted when SEV is active.
113 */
114static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc)
115{
116	if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
117		return;
118
119	if (x86_platform.hyper.is_private_mmio(addr)) {
120		desc->flags |= IORES_MAP_ENCRYPTED;
121		return;
122	}
123
124	if (!IS_ENABLED(CONFIG_EFI))
125		return;
126
127	if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA ||
128	    (efi_mem_type(addr) == EFI_BOOT_SERVICES_DATA &&
129	     efi_mem_attributes(addr) & EFI_MEMORY_RUNTIME))
130		desc->flags |= IORES_MAP_ENCRYPTED;
131}
132
133static int __ioremap_collect_map_flags(struct resource *res, void *arg)
134{
135	struct ioremap_desc *desc = arg;
136
137	if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
138		desc->flags |= __ioremap_check_ram(res);
139
140	if (!(desc->flags & IORES_MAP_ENCRYPTED))
141		desc->flags |= __ioremap_check_encrypted(res);
142
143	return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
144			       (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
145}
146
147/*
148 * To avoid multiple resource walks, this function walks resources marked as
149 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
150 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
151 *
152 * After that, deal with misc other ranges in __ioremap_check_other() which do
153 * not fall into the above category.
154 */
155static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
156				struct ioremap_desc *desc)
157{
158	u64 start, end;
159
160	start = (u64)addr;
161	end = start + size - 1;
162	memset(desc, 0, sizeof(struct ioremap_desc));
163
164	walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
165
166	__ioremap_check_other(addr, desc);
167}
168
169/*
170 * Remap an arbitrary physical address space into the kernel virtual
171 * address space. It transparently creates kernel huge I/O mapping when
172 * the physical address is aligned by a huge page size (1GB or 2MB) and
173 * the requested size is at least the huge page size.
174 *
175 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
176 * Therefore, the mapping code falls back to use a smaller page toward 4KB
177 * when a mapping range is covered by non-WB type of MTRRs.
178 *
179 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
180 * have to convert them into an offset in a page-aligned mapping, but the
181 * caller shouldn't need to know that small detail.
182 */
183static void __iomem *
184__ioremap_caller(resource_size_t phys_addr, unsigned long size,
185		 enum page_cache_mode pcm, void *caller, bool encrypted)
186{
187	unsigned long offset, vaddr;
188	resource_size_t last_addr;
189	const resource_size_t unaligned_phys_addr = phys_addr;
190	const unsigned long unaligned_size = size;
191	struct ioremap_desc io_desc;
192	struct vm_struct *area;
193	enum page_cache_mode new_pcm;
194	pgprot_t prot;
195	int retval;
196	void __iomem *ret_addr;
197
198	/* Don't allow wraparound or zero size */
199	last_addr = phys_addr + size - 1;
200	if (!size || last_addr < phys_addr)
201		return NULL;
202
203	if (!phys_addr_valid(phys_addr)) {
204		printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
205		       (unsigned long long)phys_addr);
206		WARN_ON_ONCE(1);
207		return NULL;
208	}
209
210	__ioremap_check_mem(phys_addr, size, &io_desc);
211
212	/*
213	 * Don't allow anybody to remap normal RAM that we're using..
214	 */
215	if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
216		WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
217			  &phys_addr, &last_addr);
218		return NULL;
219	}
220
221	/*
222	 * Mappings have to be page-aligned
223	 */
224	offset = phys_addr & ~PAGE_MASK;
225	phys_addr &= PAGE_MASK;
226	size = PAGE_ALIGN(last_addr+1) - phys_addr;
227
228	/*
229	 * Mask out any bits not part of the actual physical
230	 * address, like memory encryption bits.
231	 */
232	phys_addr &= PHYSICAL_PAGE_MASK;
 
233
234	retval = memtype_reserve(phys_addr, (u64)phys_addr + size,
235						pcm, &new_pcm);
236	if (retval) {
237		printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval);
238		return NULL;
239	}
240
241	if (pcm != new_pcm) {
242		if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
243			printk(KERN_ERR
244		"ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
245				(unsigned long long)phys_addr,
246				(unsigned long long)(phys_addr + size),
247				pcm, new_pcm);
248			goto err_free_memtype;
249		}
250		pcm = new_pcm;
251	}
252
253	/*
254	 * If the page being mapped is in memory and SEV is active then
255	 * make sure the memory encryption attribute is enabled in the
256	 * resulting mapping.
257	 * In TDX guests, memory is marked private by default. If encryption
258	 * is not requested (using encrypted), explicitly set decrypt
259	 * attribute in all IOREMAPPED memory.
260	 */
261	prot = PAGE_KERNEL_IO;
262	if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
263		prot = pgprot_encrypted(prot);
264	else
265		prot = pgprot_decrypted(prot);
266
267	switch (pcm) {
268	case _PAGE_CACHE_MODE_UC:
269	default:
270		prot = __pgprot(pgprot_val(prot) |
271				cachemode2protval(_PAGE_CACHE_MODE_UC));
272		break;
273	case _PAGE_CACHE_MODE_UC_MINUS:
274		prot = __pgprot(pgprot_val(prot) |
275				cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
276		break;
277	case _PAGE_CACHE_MODE_WC:
278		prot = __pgprot(pgprot_val(prot) |
279				cachemode2protval(_PAGE_CACHE_MODE_WC));
280		break;
281	case _PAGE_CACHE_MODE_WT:
282		prot = __pgprot(pgprot_val(prot) |
283				cachemode2protval(_PAGE_CACHE_MODE_WT));
284		break;
285	case _PAGE_CACHE_MODE_WB:
286		break;
287	}
288
289	/*
290	 * Ok, go for it..
291	 */
292	area = get_vm_area_caller(size, VM_IOREMAP, caller);
293	if (!area)
294		goto err_free_memtype;
295	area->phys_addr = phys_addr;
296	vaddr = (unsigned long) area->addr;
297
298	if (memtype_kernel_map_sync(phys_addr, size, pcm))
299		goto err_free_area;
300
301	if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
302		goto err_free_area;
303
304	ret_addr = (void __iomem *) (vaddr + offset);
305	mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
306
307	/*
308	 * Check if the request spans more than any BAR in the iomem resource
309	 * tree.
310	 */
311	if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
312		pr_warn("caller %pS mapping multiple BARs\n", caller);
313
314	return ret_addr;
315err_free_area:
316	free_vm_area(area);
317err_free_memtype:
318	memtype_free(phys_addr, phys_addr + size);
319	return NULL;
320}
321
322/**
323 * ioremap     -   map bus memory into CPU space
324 * @phys_addr:    bus address of the memory
325 * @size:      size of the resource to map
326 *
327 * ioremap performs a platform specific sequence of operations to
328 * make bus memory CPU accessible via the readb/readw/readl/writeb/
329 * writew/writel functions and the other mmio helpers. The returned
330 * address is not guaranteed to be usable directly as a virtual
331 * address.
332 *
333 * This version of ioremap ensures that the memory is marked uncachable
334 * on the CPU as well as honouring existing caching rules from things like
335 * the PCI bus. Note that there are other caches and buffers on many
336 * busses. In particular driver authors should read up on PCI writes
337 *
338 * It's useful if some control registers are in such an area and
339 * write combining or read caching is not desirable:
340 *
341 * Must be freed with iounmap.
342 */
343void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
344{
345	/*
346	 * Ideally, this should be:
347	 *	pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
348	 *
349	 * Till we fix all X drivers to use ioremap_wc(), we will use
350	 * UC MINUS. Drivers that are certain they need or can already
351	 * be converted over to strong UC can use ioremap_uc().
352	 */
353	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
354
355	return __ioremap_caller(phys_addr, size, pcm,
356				__builtin_return_address(0), false);
357}
358EXPORT_SYMBOL(ioremap);
359
360/**
361 * ioremap_uc     -   map bus memory into CPU space as strongly uncachable
362 * @phys_addr:    bus address of the memory
363 * @size:      size of the resource to map
364 *
365 * ioremap_uc performs a platform specific sequence of operations to
366 * make bus memory CPU accessible via the readb/readw/readl/writeb/
367 * writew/writel functions and the other mmio helpers. The returned
368 * address is not guaranteed to be usable directly as a virtual
369 * address.
370 *
371 * This version of ioremap ensures that the memory is marked with a strong
372 * preference as completely uncachable on the CPU when possible. For non-PAT
373 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
374 * systems this will set the PAT entry for the pages as strong UC.  This call
375 * will honor existing caching rules from things like the PCI bus. Note that
376 * there are other caches and buffers on many busses. In particular driver
377 * authors should read up on PCI writes.
378 *
379 * It's useful if some control registers are in such an area and
380 * write combining or read caching is not desirable:
381 *
382 * Must be freed with iounmap.
383 */
384void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
385{
386	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
387
388	return __ioremap_caller(phys_addr, size, pcm,
389				__builtin_return_address(0), false);
390}
391EXPORT_SYMBOL_GPL(ioremap_uc);
392
393/**
394 * ioremap_wc	-	map memory into CPU space write combined
395 * @phys_addr:	bus address of the memory
396 * @size:	size of the resource to map
397 *
398 * This version of ioremap ensures that the memory is marked write combining.
399 * Write combining allows faster writes to some hardware devices.
400 *
401 * Must be freed with iounmap.
402 */
403void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
404{
405	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
406					__builtin_return_address(0), false);
407}
408EXPORT_SYMBOL(ioremap_wc);
409
410/**
411 * ioremap_wt	-	map memory into CPU space write through
412 * @phys_addr:	bus address of the memory
413 * @size:	size of the resource to map
414 *
415 * This version of ioremap ensures that the memory is marked write through.
416 * Write through stores data into memory while keeping the cache up-to-date.
417 *
418 * Must be freed with iounmap.
419 */
420void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
421{
422	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
423					__builtin_return_address(0), false);
424}
425EXPORT_SYMBOL(ioremap_wt);
426
427void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
428{
429	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
430				__builtin_return_address(0), true);
431}
432EXPORT_SYMBOL(ioremap_encrypted);
433
434void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
435{
436	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
437				__builtin_return_address(0), false);
438}
439EXPORT_SYMBOL(ioremap_cache);
440
441void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
442				unsigned long prot_val)
443{
444	return __ioremap_caller(phys_addr, size,
445				pgprot2cachemode(__pgprot(prot_val)),
446				__builtin_return_address(0), false);
447}
448EXPORT_SYMBOL(ioremap_prot);
449
450/**
451 * iounmap - Free a IO remapping
452 * @addr: virtual address from ioremap_*
453 *
454 * Caller must ensure there is only one unmapping for the same pointer.
455 */
456void iounmap(volatile void __iomem *addr)
457{
458	struct vm_struct *p, *o;
459
460	if ((void __force *)addr <= high_memory)
461		return;
462
463	/*
464	 * The PCI/ISA range special-casing was removed from __ioremap()
465	 * so this check, in theory, can be removed. However, there are
466	 * cases where iounmap() is called for addresses not obtained via
467	 * ioremap() (vga16fb for example). Add a warning so that these
468	 * cases can be caught and fixed.
469	 */
470	if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
471	    (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
472		WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
473		return;
474	}
475
476	mmiotrace_iounmap(addr);
477
478	addr = (volatile void __iomem *)
479		(PAGE_MASK & (unsigned long __force)addr);
480
481	/* Use the vm area unlocked, assuming the caller
482	   ensures there isn't another iounmap for the same address
483	   in parallel. Reuse of the virtual address is prevented by
484	   leaving it in the global lists until we're done with it.
485	   cpa takes care of the direct mappings. */
486	p = find_vm_area((void __force *)addr);
487
488	if (!p) {
489		printk(KERN_ERR "iounmap: bad address %p\n", addr);
490		dump_stack();
491		return;
492	}
493
494	kmsan_iounmap_page_range((unsigned long)addr,
495		(unsigned long)addr + get_vm_area_size(p));
496	memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p));
497
498	/* Finally remove it */
499	o = remove_vm_area((void __force *)addr);
500	BUG_ON(p != o || o == NULL);
501	kfree(p);
502}
503EXPORT_SYMBOL(iounmap);
504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
505/*
506 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
507 * access
508 */
509void *xlate_dev_mem_ptr(phys_addr_t phys)
510{
511	unsigned long start  = phys &  PAGE_MASK;
512	unsigned long offset = phys & ~PAGE_MASK;
513	void *vaddr;
514
515	/* memremap() maps if RAM, otherwise falls back to ioremap() */
516	vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
517
518	/* Only add the offset on success and return NULL if memremap() failed */
519	if (vaddr)
520		vaddr += offset;
521
522	return vaddr;
523}
524
525void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
526{
527	memunmap((void *)((unsigned long)addr & PAGE_MASK));
528}
529
530#ifdef CONFIG_AMD_MEM_ENCRYPT
531/*
532 * Examine the physical address to determine if it is an area of memory
533 * that should be mapped decrypted.  If the memory is not part of the
534 * kernel usable area it was accessed and created decrypted, so these
535 * areas should be mapped decrypted. And since the encryption key can
536 * change across reboots, persistent memory should also be mapped
537 * decrypted.
538 *
539 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
540 * only persistent memory should be mapped decrypted.
541 */
542static bool memremap_should_map_decrypted(resource_size_t phys_addr,
543					  unsigned long size)
544{
545	int is_pmem;
546
547	/*
548	 * Check if the address is part of a persistent memory region.
549	 * This check covers areas added by E820, EFI and ACPI.
550	 */
551	is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
552				    IORES_DESC_PERSISTENT_MEMORY);
553	if (is_pmem != REGION_DISJOINT)
554		return true;
555
556	/*
557	 * Check if the non-volatile attribute is set for an EFI
558	 * reserved area.
559	 */
560	if (efi_enabled(EFI_BOOT)) {
561		switch (efi_mem_type(phys_addr)) {
562		case EFI_RESERVED_TYPE:
563			if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
564				return true;
565			break;
566		default:
567			break;
568		}
569	}
570
571	/* Check if the address is outside kernel usable area */
572	switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
573	case E820_TYPE_RESERVED:
574	case E820_TYPE_ACPI:
575	case E820_TYPE_NVS:
576	case E820_TYPE_UNUSABLE:
577		/* For SEV, these areas are encrypted */
578		if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
579			break;
580		fallthrough;
581
582	case E820_TYPE_PRAM:
583		return true;
584	default:
585		break;
586	}
587
588	return false;
589}
590
591/*
592 * Examine the physical address to determine if it is EFI data. Check
593 * it against the boot params structure and EFI tables and memory types.
594 */
595static bool memremap_is_efi_data(resource_size_t phys_addr,
596				 unsigned long size)
597{
598	u64 paddr;
599
600	/* Check if the address is part of EFI boot/runtime data */
601	if (!efi_enabled(EFI_BOOT))
602		return false;
603
604	paddr = boot_params.efi_info.efi_memmap_hi;
605	paddr <<= 32;
606	paddr |= boot_params.efi_info.efi_memmap;
607	if (phys_addr == paddr)
608		return true;
609
610	paddr = boot_params.efi_info.efi_systab_hi;
611	paddr <<= 32;
612	paddr |= boot_params.efi_info.efi_systab;
613	if (phys_addr == paddr)
614		return true;
615
616	if (efi_is_table_address(phys_addr))
617		return true;
618
619	switch (efi_mem_type(phys_addr)) {
620	case EFI_BOOT_SERVICES_DATA:
621	case EFI_RUNTIME_SERVICES_DATA:
622		return true;
623	default:
624		break;
625	}
626
627	return false;
628}
629
630/*
631 * Examine the physical address to determine if it is boot data by checking
632 * it against the boot params setup_data chain.
633 */
634static bool memremap_is_setup_data(resource_size_t phys_addr,
635				   unsigned long size)
636{
637	struct setup_indirect *indirect;
638	struct setup_data *data;
639	u64 paddr, paddr_next;
640
641	paddr = boot_params.hdr.setup_data;
642	while (paddr) {
643		unsigned int len;
644
645		if (phys_addr == paddr)
646			return true;
647
648		data = memremap(paddr, sizeof(*data),
649				MEMREMAP_WB | MEMREMAP_DEC);
650		if (!data) {
651			pr_warn("failed to memremap setup_data entry\n");
652			return false;
653		}
654
655		paddr_next = data->next;
656		len = data->len;
657
658		if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
659			memunmap(data);
660			return true;
661		}
662
663		if (data->type == SETUP_INDIRECT) {
664			memunmap(data);
665			data = memremap(paddr, sizeof(*data) + len,
666					MEMREMAP_WB | MEMREMAP_DEC);
667			if (!data) {
668				pr_warn("failed to memremap indirect setup_data\n");
669				return false;
670			}
671
672			indirect = (struct setup_indirect *)data->data;
673
674			if (indirect->type != SETUP_INDIRECT) {
675				paddr = indirect->addr;
676				len = indirect->len;
677			}
678		}
679
680		memunmap(data);
681
682		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
683			return true;
684
685		paddr = paddr_next;
686	}
687
688	return false;
689}
690
691/*
692 * Examine the physical address to determine if it is boot data by checking
693 * it against the boot params setup_data chain (early boot version).
694 */
695static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
696						unsigned long size)
697{
698	struct setup_indirect *indirect;
699	struct setup_data *data;
700	u64 paddr, paddr_next;
701
702	paddr = boot_params.hdr.setup_data;
703	while (paddr) {
704		unsigned int len, size;
705
706		if (phys_addr == paddr)
707			return true;
708
709		data = early_memremap_decrypted(paddr, sizeof(*data));
710		if (!data) {
711			pr_warn("failed to early memremap setup_data entry\n");
712			return false;
713		}
714
715		size = sizeof(*data);
716
717		paddr_next = data->next;
718		len = data->len;
719
720		if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
721			early_memunmap(data, sizeof(*data));
722			return true;
723		}
724
725		if (data->type == SETUP_INDIRECT) {
726			size += len;
727			early_memunmap(data, sizeof(*data));
728			data = early_memremap_decrypted(paddr, size);
729			if (!data) {
730				pr_warn("failed to early memremap indirect setup_data\n");
731				return false;
732			}
733
734			indirect = (struct setup_indirect *)data->data;
735
736			if (indirect->type != SETUP_INDIRECT) {
737				paddr = indirect->addr;
738				len = indirect->len;
739			}
740		}
741
742		early_memunmap(data, size);
743
744		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
745			return true;
746
747		paddr = paddr_next;
748	}
749
750	return false;
751}
752
753/*
754 * Architecture function to determine if RAM remap is allowed. By default, a
755 * RAM remap will map the data as encrypted. Determine if a RAM remap should
756 * not be done so that the data will be mapped decrypted.
757 */
758bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
759				 unsigned long flags)
760{
761	if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
762		return true;
763
764	if (flags & MEMREMAP_ENC)
765		return true;
766
767	if (flags & MEMREMAP_DEC)
768		return false;
769
770	if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
771		if (memremap_is_setup_data(phys_addr, size) ||
772		    memremap_is_efi_data(phys_addr, size))
773			return false;
774	}
775
776	return !memremap_should_map_decrypted(phys_addr, size);
777}
778
779/*
780 * Architecture override of __weak function to adjust the protection attributes
781 * used when remapping memory. By default, early_memremap() will map the data
782 * as encrypted. Determine if an encrypted mapping should not be done and set
783 * the appropriate protection attributes.
784 */
785pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
786					     unsigned long size,
787					     pgprot_t prot)
788{
789	bool encrypted_prot;
790
791	if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
792		return prot;
793
794	encrypted_prot = true;
795
796	if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
797		if (early_memremap_is_setup_data(phys_addr, size) ||
798		    memremap_is_efi_data(phys_addr, size))
799			encrypted_prot = false;
800	}
801
802	if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
803		encrypted_prot = false;
804
805	return encrypted_prot ? pgprot_encrypted(prot)
806			      : pgprot_decrypted(prot);
807}
808
809bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
810{
811	return arch_memremap_can_ram_remap(phys_addr, size, 0);
812}
813
 
814/* Remap memory with encryption */
815void __init *early_memremap_encrypted(resource_size_t phys_addr,
816				      unsigned long size)
817{
818	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
819}
820
821/*
822 * Remap memory with encryption and write-protected - cannot be called
823 * before pat_init() is called
824 */
825void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
826					 unsigned long size)
827{
828	if (!x86_has_pat_wp())
829		return NULL;
830	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
831}
832
833/* Remap memory without encryption */
834void __init *early_memremap_decrypted(resource_size_t phys_addr,
835				      unsigned long size)
836{
837	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
838}
839
840/*
841 * Remap memory without encryption and write-protected - cannot be called
842 * before pat_init() is called
843 */
844void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
845					 unsigned long size)
846{
847	if (!x86_has_pat_wp())
848		return NULL;
849	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
850}
851#endif	/* CONFIG_AMD_MEM_ENCRYPT */
852
853static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
854
855static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
856{
857	/* Don't assume we're using swapper_pg_dir at this point */
858	pgd_t *base = __va(read_cr3_pa());
859	pgd_t *pgd = &base[pgd_index(addr)];
860	p4d_t *p4d = p4d_offset(pgd, addr);
861	pud_t *pud = pud_offset(p4d, addr);
862	pmd_t *pmd = pmd_offset(pud, addr);
863
864	return pmd;
865}
866
867static inline pte_t * __init early_ioremap_pte(unsigned long addr)
868{
869	return &bm_pte[pte_index(addr)];
870}
871
872bool __init is_early_ioremap_ptep(pte_t *ptep)
873{
874	return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
875}
876
877void __init early_ioremap_init(void)
878{
879	pmd_t *pmd;
880
881#ifdef CONFIG_X86_64
882	BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
883#else
884	WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
885#endif
886
887	early_ioremap_setup();
888
889	pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
890	memset(bm_pte, 0, sizeof(bm_pte));
891	pmd_populate_kernel(&init_mm, pmd, bm_pte);
892
893	/*
894	 * The boot-ioremap range spans multiple pmds, for which
895	 * we are not prepared:
896	 */
897#define __FIXADDR_TOP (-PAGE_SIZE)
898	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
899		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
900#undef __FIXADDR_TOP
901	if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
902		WARN_ON(1);
903		printk(KERN_WARNING "pmd %p != %p\n",
904		       pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
905		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
906			fix_to_virt(FIX_BTMAP_BEGIN));
907		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END):   %08lx\n",
908			fix_to_virt(FIX_BTMAP_END));
909
910		printk(KERN_WARNING "FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
911		printk(KERN_WARNING "FIX_BTMAP_BEGIN:     %d\n",
912		       FIX_BTMAP_BEGIN);
913	}
914}
915
916void __init __early_set_fixmap(enum fixed_addresses idx,
917			       phys_addr_t phys, pgprot_t flags)
918{
919	unsigned long addr = __fix_to_virt(idx);
920	pte_t *pte;
921
922	if (idx >= __end_of_fixed_addresses) {
923		BUG();
924		return;
925	}
926	pte = early_ioremap_pte(addr);
927
928	/* Sanitize 'prot' against any unsupported bits: */
929	pgprot_val(flags) &= __supported_pte_mask;
930
931	if (pgprot_val(flags))
932		set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
933	else
934		pte_clear(&init_mm, addr, pte);
935	flush_tlb_one_kernel(addr);
936}
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Re-map IO memory to kernel address space so that we can access it.
  4 * This is needed for high PCI addresses that aren't mapped in the
  5 * 640k-1MB IO memory area on PC's
  6 *
  7 * (C) Copyright 1995 1996 Linus Torvalds
  8 */
  9
 10#include <linux/memblock.h>
 11#include <linux/init.h>
 12#include <linux/io.h>
 13#include <linux/ioport.h>
 14#include <linux/slab.h>
 15#include <linux/vmalloc.h>
 16#include <linux/mmiotrace.h>
 17#include <linux/mem_encrypt.h>
 18#include <linux/efi.h>
 19#include <linux/pgtable.h>
 
 20
 21#include <asm/set_memory.h>
 22#include <asm/e820/api.h>
 23#include <asm/efi.h>
 24#include <asm/fixmap.h>
 25#include <asm/tlbflush.h>
 26#include <asm/pgalloc.h>
 27#include <asm/memtype.h>
 28#include <asm/setup.h>
 29
 30#include "physaddr.h"
 31
 32/*
 33 * Descriptor controlling ioremap() behavior.
 34 */
 35struct ioremap_desc {
 36	unsigned int flags;
 37};
 38
 39/*
 40 * Fix up the linear direct mapping of the kernel to avoid cache attribute
 41 * conflicts.
 42 */
 43int ioremap_change_attr(unsigned long vaddr, unsigned long size,
 44			enum page_cache_mode pcm)
 45{
 46	unsigned long nrpages = size >> PAGE_SHIFT;
 47	int err;
 48
 49	switch (pcm) {
 50	case _PAGE_CACHE_MODE_UC:
 51	default:
 52		err = _set_memory_uc(vaddr, nrpages);
 53		break;
 54	case _PAGE_CACHE_MODE_WC:
 55		err = _set_memory_wc(vaddr, nrpages);
 56		break;
 57	case _PAGE_CACHE_MODE_WT:
 58		err = _set_memory_wt(vaddr, nrpages);
 59		break;
 60	case _PAGE_CACHE_MODE_WB:
 61		err = _set_memory_wb(vaddr, nrpages);
 62		break;
 63	}
 64
 65	return err;
 66}
 67
 68/* Does the range (or a subset of) contain normal RAM? */
 69static unsigned int __ioremap_check_ram(struct resource *res)
 70{
 71	unsigned long start_pfn, stop_pfn;
 72	unsigned long i;
 73
 74	if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
 75		return 0;
 76
 77	start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
 78	stop_pfn = (res->end + 1) >> PAGE_SHIFT;
 79	if (stop_pfn > start_pfn) {
 80		for (i = 0; i < (stop_pfn - start_pfn); ++i)
 81			if (pfn_valid(start_pfn + i) &&
 82			    !PageReserved(pfn_to_page(start_pfn + i)))
 83				return IORES_MAP_SYSTEM_RAM;
 84	}
 85
 86	return 0;
 87}
 88
 89/*
 90 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
 91 * there the whole memory is already encrypted.
 92 */
 93static unsigned int __ioremap_check_encrypted(struct resource *res)
 94{
 95	if (!sev_active())
 96		return 0;
 97
 98	switch (res->desc) {
 99	case IORES_DESC_NONE:
100	case IORES_DESC_RESERVED:
101		break;
102	default:
103		return IORES_MAP_ENCRYPTED;
104	}
105
106	return 0;
107}
108
109/*
110 * The EFI runtime services data area is not covered by walk_mem_res(), but must
111 * be mapped encrypted when SEV is active.
112 */
113static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc)
114{
115	if (!sev_active())
116		return;
117
 
 
 
 
 
118	if (!IS_ENABLED(CONFIG_EFI))
119		return;
120
121	if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA)
 
 
122		desc->flags |= IORES_MAP_ENCRYPTED;
123}
124
125static int __ioremap_collect_map_flags(struct resource *res, void *arg)
126{
127	struct ioremap_desc *desc = arg;
128
129	if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
130		desc->flags |= __ioremap_check_ram(res);
131
132	if (!(desc->flags & IORES_MAP_ENCRYPTED))
133		desc->flags |= __ioremap_check_encrypted(res);
134
135	return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
136			       (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
137}
138
139/*
140 * To avoid multiple resource walks, this function walks resources marked as
141 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
142 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
143 *
144 * After that, deal with misc other ranges in __ioremap_check_other() which do
145 * not fall into the above category.
146 */
147static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
148				struct ioremap_desc *desc)
149{
150	u64 start, end;
151
152	start = (u64)addr;
153	end = start + size - 1;
154	memset(desc, 0, sizeof(struct ioremap_desc));
155
156	walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
157
158	__ioremap_check_other(addr, desc);
159}
160
161/*
162 * Remap an arbitrary physical address space into the kernel virtual
163 * address space. It transparently creates kernel huge I/O mapping when
164 * the physical address is aligned by a huge page size (1GB or 2MB) and
165 * the requested size is at least the huge page size.
166 *
167 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
168 * Therefore, the mapping code falls back to use a smaller page toward 4KB
169 * when a mapping range is covered by non-WB type of MTRRs.
170 *
171 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
172 * have to convert them into an offset in a page-aligned mapping, but the
173 * caller shouldn't need to know that small detail.
174 */
175static void __iomem *
176__ioremap_caller(resource_size_t phys_addr, unsigned long size,
177		 enum page_cache_mode pcm, void *caller, bool encrypted)
178{
179	unsigned long offset, vaddr;
180	resource_size_t last_addr;
181	const resource_size_t unaligned_phys_addr = phys_addr;
182	const unsigned long unaligned_size = size;
183	struct ioremap_desc io_desc;
184	struct vm_struct *area;
185	enum page_cache_mode new_pcm;
186	pgprot_t prot;
187	int retval;
188	void __iomem *ret_addr;
189
190	/* Don't allow wraparound or zero size */
191	last_addr = phys_addr + size - 1;
192	if (!size || last_addr < phys_addr)
193		return NULL;
194
195	if (!phys_addr_valid(phys_addr)) {
196		printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
197		       (unsigned long long)phys_addr);
198		WARN_ON_ONCE(1);
199		return NULL;
200	}
201
202	__ioremap_check_mem(phys_addr, size, &io_desc);
203
204	/*
205	 * Don't allow anybody to remap normal RAM that we're using..
206	 */
207	if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
208		WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
209			  &phys_addr, &last_addr);
210		return NULL;
211	}
212
213	/*
214	 * Mappings have to be page-aligned
215	 */
216	offset = phys_addr & ~PAGE_MASK;
 
 
 
 
 
 
 
217	phys_addr &= PHYSICAL_PAGE_MASK;
218	size = PAGE_ALIGN(last_addr+1) - phys_addr;
219
220	retval = memtype_reserve(phys_addr, (u64)phys_addr + size,
221						pcm, &new_pcm);
222	if (retval) {
223		printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval);
224		return NULL;
225	}
226
227	if (pcm != new_pcm) {
228		if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
229			printk(KERN_ERR
230		"ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
231				(unsigned long long)phys_addr,
232				(unsigned long long)(phys_addr + size),
233				pcm, new_pcm);
234			goto err_free_memtype;
235		}
236		pcm = new_pcm;
237	}
238
239	/*
240	 * If the page being mapped is in memory and SEV is active then
241	 * make sure the memory encryption attribute is enabled in the
242	 * resulting mapping.
 
 
 
243	 */
244	prot = PAGE_KERNEL_IO;
245	if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
246		prot = pgprot_encrypted(prot);
 
 
247
248	switch (pcm) {
249	case _PAGE_CACHE_MODE_UC:
250	default:
251		prot = __pgprot(pgprot_val(prot) |
252				cachemode2protval(_PAGE_CACHE_MODE_UC));
253		break;
254	case _PAGE_CACHE_MODE_UC_MINUS:
255		prot = __pgprot(pgprot_val(prot) |
256				cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
257		break;
258	case _PAGE_CACHE_MODE_WC:
259		prot = __pgprot(pgprot_val(prot) |
260				cachemode2protval(_PAGE_CACHE_MODE_WC));
261		break;
262	case _PAGE_CACHE_MODE_WT:
263		prot = __pgprot(pgprot_val(prot) |
264				cachemode2protval(_PAGE_CACHE_MODE_WT));
265		break;
266	case _PAGE_CACHE_MODE_WB:
267		break;
268	}
269
270	/*
271	 * Ok, go for it..
272	 */
273	area = get_vm_area_caller(size, VM_IOREMAP, caller);
274	if (!area)
275		goto err_free_memtype;
276	area->phys_addr = phys_addr;
277	vaddr = (unsigned long) area->addr;
278
279	if (memtype_kernel_map_sync(phys_addr, size, pcm))
280		goto err_free_area;
281
282	if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
283		goto err_free_area;
284
285	ret_addr = (void __iomem *) (vaddr + offset);
286	mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
287
288	/*
289	 * Check if the request spans more than any BAR in the iomem resource
290	 * tree.
291	 */
292	if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
293		pr_warn("caller %pS mapping multiple BARs\n", caller);
294
295	return ret_addr;
296err_free_area:
297	free_vm_area(area);
298err_free_memtype:
299	memtype_free(phys_addr, phys_addr + size);
300	return NULL;
301}
302
303/**
304 * ioremap     -   map bus memory into CPU space
305 * @phys_addr:    bus address of the memory
306 * @size:      size of the resource to map
307 *
308 * ioremap performs a platform specific sequence of operations to
309 * make bus memory CPU accessible via the readb/readw/readl/writeb/
310 * writew/writel functions and the other mmio helpers. The returned
311 * address is not guaranteed to be usable directly as a virtual
312 * address.
313 *
314 * This version of ioremap ensures that the memory is marked uncachable
315 * on the CPU as well as honouring existing caching rules from things like
316 * the PCI bus. Note that there are other caches and buffers on many
317 * busses. In particular driver authors should read up on PCI writes
318 *
319 * It's useful if some control registers are in such an area and
320 * write combining or read caching is not desirable:
321 *
322 * Must be freed with iounmap.
323 */
324void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
325{
326	/*
327	 * Ideally, this should be:
328	 *	pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
329	 *
330	 * Till we fix all X drivers to use ioremap_wc(), we will use
331	 * UC MINUS. Drivers that are certain they need or can already
332	 * be converted over to strong UC can use ioremap_uc().
333	 */
334	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
335
336	return __ioremap_caller(phys_addr, size, pcm,
337				__builtin_return_address(0), false);
338}
339EXPORT_SYMBOL(ioremap);
340
341/**
342 * ioremap_uc     -   map bus memory into CPU space as strongly uncachable
343 * @phys_addr:    bus address of the memory
344 * @size:      size of the resource to map
345 *
346 * ioremap_uc performs a platform specific sequence of operations to
347 * make bus memory CPU accessible via the readb/readw/readl/writeb/
348 * writew/writel functions and the other mmio helpers. The returned
349 * address is not guaranteed to be usable directly as a virtual
350 * address.
351 *
352 * This version of ioremap ensures that the memory is marked with a strong
353 * preference as completely uncachable on the CPU when possible. For non-PAT
354 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
355 * systems this will set the PAT entry for the pages as strong UC.  This call
356 * will honor existing caching rules from things like the PCI bus. Note that
357 * there are other caches and buffers on many busses. In particular driver
358 * authors should read up on PCI writes.
359 *
360 * It's useful if some control registers are in such an area and
361 * write combining or read caching is not desirable:
362 *
363 * Must be freed with iounmap.
364 */
365void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
366{
367	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
368
369	return __ioremap_caller(phys_addr, size, pcm,
370				__builtin_return_address(0), false);
371}
372EXPORT_SYMBOL_GPL(ioremap_uc);
373
374/**
375 * ioremap_wc	-	map memory into CPU space write combined
376 * @phys_addr:	bus address of the memory
377 * @size:	size of the resource to map
378 *
379 * This version of ioremap ensures that the memory is marked write combining.
380 * Write combining allows faster writes to some hardware devices.
381 *
382 * Must be freed with iounmap.
383 */
384void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
385{
386	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
387					__builtin_return_address(0), false);
388}
389EXPORT_SYMBOL(ioremap_wc);
390
391/**
392 * ioremap_wt	-	map memory into CPU space write through
393 * @phys_addr:	bus address of the memory
394 * @size:	size of the resource to map
395 *
396 * This version of ioremap ensures that the memory is marked write through.
397 * Write through stores data into memory while keeping the cache up-to-date.
398 *
399 * Must be freed with iounmap.
400 */
401void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
402{
403	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
404					__builtin_return_address(0), false);
405}
406EXPORT_SYMBOL(ioremap_wt);
407
408void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
409{
410	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
411				__builtin_return_address(0), true);
412}
413EXPORT_SYMBOL(ioremap_encrypted);
414
415void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
416{
417	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
418				__builtin_return_address(0), false);
419}
420EXPORT_SYMBOL(ioremap_cache);
421
422void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
423				unsigned long prot_val)
424{
425	return __ioremap_caller(phys_addr, size,
426				pgprot2cachemode(__pgprot(prot_val)),
427				__builtin_return_address(0), false);
428}
429EXPORT_SYMBOL(ioremap_prot);
430
431/**
432 * iounmap - Free a IO remapping
433 * @addr: virtual address from ioremap_*
434 *
435 * Caller must ensure there is only one unmapping for the same pointer.
436 */
437void iounmap(volatile void __iomem *addr)
438{
439	struct vm_struct *p, *o;
440
441	if ((void __force *)addr <= high_memory)
442		return;
443
444	/*
445	 * The PCI/ISA range special-casing was removed from __ioremap()
446	 * so this check, in theory, can be removed. However, there are
447	 * cases where iounmap() is called for addresses not obtained via
448	 * ioremap() (vga16fb for example). Add a warning so that these
449	 * cases can be caught and fixed.
450	 */
451	if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
452	    (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
453		WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
454		return;
455	}
456
457	mmiotrace_iounmap(addr);
458
459	addr = (volatile void __iomem *)
460		(PAGE_MASK & (unsigned long __force)addr);
461
462	/* Use the vm area unlocked, assuming the caller
463	   ensures there isn't another iounmap for the same address
464	   in parallel. Reuse of the virtual address is prevented by
465	   leaving it in the global lists until we're done with it.
466	   cpa takes care of the direct mappings. */
467	p = find_vm_area((void __force *)addr);
468
469	if (!p) {
470		printk(KERN_ERR "iounmap: bad address %p\n", addr);
471		dump_stack();
472		return;
473	}
474
 
 
475	memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p));
476
477	/* Finally remove it */
478	o = remove_vm_area((void __force *)addr);
479	BUG_ON(p != o || o == NULL);
480	kfree(p);
481}
482EXPORT_SYMBOL(iounmap);
483
484int __init arch_ioremap_p4d_supported(void)
485{
486	return 0;
487}
488
489int __init arch_ioremap_pud_supported(void)
490{
491#ifdef CONFIG_X86_64
492	return boot_cpu_has(X86_FEATURE_GBPAGES);
493#else
494	return 0;
495#endif
496}
497
498int __init arch_ioremap_pmd_supported(void)
499{
500	return boot_cpu_has(X86_FEATURE_PSE);
501}
502
503/*
504 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
505 * access
506 */
507void *xlate_dev_mem_ptr(phys_addr_t phys)
508{
509	unsigned long start  = phys &  PAGE_MASK;
510	unsigned long offset = phys & ~PAGE_MASK;
511	void *vaddr;
512
513	/* memremap() maps if RAM, otherwise falls back to ioremap() */
514	vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
515
516	/* Only add the offset on success and return NULL if memremap() failed */
517	if (vaddr)
518		vaddr += offset;
519
520	return vaddr;
521}
522
523void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
524{
525	memunmap((void *)((unsigned long)addr & PAGE_MASK));
526}
527
 
528/*
529 * Examine the physical address to determine if it is an area of memory
530 * that should be mapped decrypted.  If the memory is not part of the
531 * kernel usable area it was accessed and created decrypted, so these
532 * areas should be mapped decrypted. And since the encryption key can
533 * change across reboots, persistent memory should also be mapped
534 * decrypted.
535 *
536 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
537 * only persistent memory should be mapped decrypted.
538 */
539static bool memremap_should_map_decrypted(resource_size_t phys_addr,
540					  unsigned long size)
541{
542	int is_pmem;
543
544	/*
545	 * Check if the address is part of a persistent memory region.
546	 * This check covers areas added by E820, EFI and ACPI.
547	 */
548	is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
549				    IORES_DESC_PERSISTENT_MEMORY);
550	if (is_pmem != REGION_DISJOINT)
551		return true;
552
553	/*
554	 * Check if the non-volatile attribute is set for an EFI
555	 * reserved area.
556	 */
557	if (efi_enabled(EFI_BOOT)) {
558		switch (efi_mem_type(phys_addr)) {
559		case EFI_RESERVED_TYPE:
560			if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
561				return true;
562			break;
563		default:
564			break;
565		}
566	}
567
568	/* Check if the address is outside kernel usable area */
569	switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
570	case E820_TYPE_RESERVED:
571	case E820_TYPE_ACPI:
572	case E820_TYPE_NVS:
573	case E820_TYPE_UNUSABLE:
574		/* For SEV, these areas are encrypted */
575		if (sev_active())
576			break;
577		fallthrough;
578
579	case E820_TYPE_PRAM:
580		return true;
581	default:
582		break;
583	}
584
585	return false;
586}
587
588/*
589 * Examine the physical address to determine if it is EFI data. Check
590 * it against the boot params structure and EFI tables and memory types.
591 */
592static bool memremap_is_efi_data(resource_size_t phys_addr,
593				 unsigned long size)
594{
595	u64 paddr;
596
597	/* Check if the address is part of EFI boot/runtime data */
598	if (!efi_enabled(EFI_BOOT))
599		return false;
600
601	paddr = boot_params.efi_info.efi_memmap_hi;
602	paddr <<= 32;
603	paddr |= boot_params.efi_info.efi_memmap;
604	if (phys_addr == paddr)
605		return true;
606
607	paddr = boot_params.efi_info.efi_systab_hi;
608	paddr <<= 32;
609	paddr |= boot_params.efi_info.efi_systab;
610	if (phys_addr == paddr)
611		return true;
612
613	if (efi_is_table_address(phys_addr))
614		return true;
615
616	switch (efi_mem_type(phys_addr)) {
617	case EFI_BOOT_SERVICES_DATA:
618	case EFI_RUNTIME_SERVICES_DATA:
619		return true;
620	default:
621		break;
622	}
623
624	return false;
625}
626
627/*
628 * Examine the physical address to determine if it is boot data by checking
629 * it against the boot params setup_data chain.
630 */
631static bool memremap_is_setup_data(resource_size_t phys_addr,
632				   unsigned long size)
633{
 
634	struct setup_data *data;
635	u64 paddr, paddr_next;
636
637	paddr = boot_params.hdr.setup_data;
638	while (paddr) {
639		unsigned int len;
640
641		if (phys_addr == paddr)
642			return true;
643
644		data = memremap(paddr, sizeof(*data),
645				MEMREMAP_WB | MEMREMAP_DEC);
 
 
 
 
646
647		paddr_next = data->next;
648		len = data->len;
649
650		if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
651			memunmap(data);
652			return true;
653		}
654
655		if (data->type == SETUP_INDIRECT &&
656		    ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) {
657			paddr = ((struct setup_indirect *)data->data)->addr;
658			len = ((struct setup_indirect *)data->data)->len;
 
 
 
 
 
 
 
 
 
 
 
659		}
660
661		memunmap(data);
662
663		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
664			return true;
665
666		paddr = paddr_next;
667	}
668
669	return false;
670}
671
672/*
673 * Examine the physical address to determine if it is boot data by checking
674 * it against the boot params setup_data chain (early boot version).
675 */
676static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
677						unsigned long size)
678{
 
679	struct setup_data *data;
680	u64 paddr, paddr_next;
681
682	paddr = boot_params.hdr.setup_data;
683	while (paddr) {
684		unsigned int len;
685
686		if (phys_addr == paddr)
687			return true;
688
689		data = early_memremap_decrypted(paddr, sizeof(*data));
 
 
 
 
 
 
690
691		paddr_next = data->next;
692		len = data->len;
693
694		early_memunmap(data, sizeof(*data));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
695
696		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
697			return true;
698
699		paddr = paddr_next;
700	}
701
702	return false;
703}
704
705/*
706 * Architecture function to determine if RAM remap is allowed. By default, a
707 * RAM remap will map the data as encrypted. Determine if a RAM remap should
708 * not be done so that the data will be mapped decrypted.
709 */
710bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
711				 unsigned long flags)
712{
713	if (!mem_encrypt_active())
714		return true;
715
716	if (flags & MEMREMAP_ENC)
717		return true;
718
719	if (flags & MEMREMAP_DEC)
720		return false;
721
722	if (sme_active()) {
723		if (memremap_is_setup_data(phys_addr, size) ||
724		    memremap_is_efi_data(phys_addr, size))
725			return false;
726	}
727
728	return !memremap_should_map_decrypted(phys_addr, size);
729}
730
731/*
732 * Architecture override of __weak function to adjust the protection attributes
733 * used when remapping memory. By default, early_memremap() will map the data
734 * as encrypted. Determine if an encrypted mapping should not be done and set
735 * the appropriate protection attributes.
736 */
737pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
738					     unsigned long size,
739					     pgprot_t prot)
740{
741	bool encrypted_prot;
742
743	if (!mem_encrypt_active())
744		return prot;
745
746	encrypted_prot = true;
747
748	if (sme_active()) {
749		if (early_memremap_is_setup_data(phys_addr, size) ||
750		    memremap_is_efi_data(phys_addr, size))
751			encrypted_prot = false;
752	}
753
754	if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
755		encrypted_prot = false;
756
757	return encrypted_prot ? pgprot_encrypted(prot)
758			      : pgprot_decrypted(prot);
759}
760
761bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
762{
763	return arch_memremap_can_ram_remap(phys_addr, size, 0);
764}
765
766#ifdef CONFIG_AMD_MEM_ENCRYPT
767/* Remap memory with encryption */
768void __init *early_memremap_encrypted(resource_size_t phys_addr,
769				      unsigned long size)
770{
771	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
772}
773
774/*
775 * Remap memory with encryption and write-protected - cannot be called
776 * before pat_init() is called
777 */
778void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
779					 unsigned long size)
780{
781	if (!x86_has_pat_wp())
782		return NULL;
783	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
784}
785
786/* Remap memory without encryption */
787void __init *early_memremap_decrypted(resource_size_t phys_addr,
788				      unsigned long size)
789{
790	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
791}
792
793/*
794 * Remap memory without encryption and write-protected - cannot be called
795 * before pat_init() is called
796 */
797void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
798					 unsigned long size)
799{
800	if (!x86_has_pat_wp())
801		return NULL;
802	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
803}
804#endif	/* CONFIG_AMD_MEM_ENCRYPT */
805
806static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
807
808static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
809{
810	/* Don't assume we're using swapper_pg_dir at this point */
811	pgd_t *base = __va(read_cr3_pa());
812	pgd_t *pgd = &base[pgd_index(addr)];
813	p4d_t *p4d = p4d_offset(pgd, addr);
814	pud_t *pud = pud_offset(p4d, addr);
815	pmd_t *pmd = pmd_offset(pud, addr);
816
817	return pmd;
818}
819
820static inline pte_t * __init early_ioremap_pte(unsigned long addr)
821{
822	return &bm_pte[pte_index(addr)];
823}
824
825bool __init is_early_ioremap_ptep(pte_t *ptep)
826{
827	return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
828}
829
830void __init early_ioremap_init(void)
831{
832	pmd_t *pmd;
833
834#ifdef CONFIG_X86_64
835	BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
836#else
837	WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
838#endif
839
840	early_ioremap_setup();
841
842	pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
843	memset(bm_pte, 0, sizeof(bm_pte));
844	pmd_populate_kernel(&init_mm, pmd, bm_pte);
845
846	/*
847	 * The boot-ioremap range spans multiple pmds, for which
848	 * we are not prepared:
849	 */
850#define __FIXADDR_TOP (-PAGE_SIZE)
851	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
852		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
853#undef __FIXADDR_TOP
854	if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
855		WARN_ON(1);
856		printk(KERN_WARNING "pmd %p != %p\n",
857		       pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
858		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
859			fix_to_virt(FIX_BTMAP_BEGIN));
860		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END):   %08lx\n",
861			fix_to_virt(FIX_BTMAP_END));
862
863		printk(KERN_WARNING "FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
864		printk(KERN_WARNING "FIX_BTMAP_BEGIN:     %d\n",
865		       FIX_BTMAP_BEGIN);
866	}
867}
868
869void __init __early_set_fixmap(enum fixed_addresses idx,
870			       phys_addr_t phys, pgprot_t flags)
871{
872	unsigned long addr = __fix_to_virt(idx);
873	pte_t *pte;
874
875	if (idx >= __end_of_fixed_addresses) {
876		BUG();
877		return;
878	}
879	pte = early_ioremap_pte(addr);
880
881	/* Sanitize 'prot' against any unsupported bits: */
882	pgprot_val(flags) &= __supported_pte_mask;
883
884	if (pgprot_val(flags))
885		set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
886	else
887		pte_clear(&init_mm, addr, pte);
888	flush_tlb_one_kernel(addr);
889}