Loading...
1#include <linux/gfp.h>
2#include <linux/initrd.h>
3#include <linux/ioport.h>
4#include <linux/swap.h>
5#include <linux/memblock.h>
6#include <linux/swapfile.h>
7#include <linux/swapops.h>
8#include <linux/kmemleak.h>
9#include <linux/sched/task.h>
10
11#include <asm/set_memory.h>
12#include <asm/cpu_device_id.h>
13#include <asm/e820/api.h>
14#include <asm/init.h>
15#include <asm/page.h>
16#include <asm/page_types.h>
17#include <asm/sections.h>
18#include <asm/setup.h>
19#include <asm/tlbflush.h>
20#include <asm/tlb.h>
21#include <asm/proto.h>
22#include <asm/dma.h> /* for MAX_DMA_PFN */
23#include <asm/kaslr.h>
24#include <asm/hypervisor.h>
25#include <asm/cpufeature.h>
26#include <asm/pti.h>
27#include <asm/text-patching.h>
28#include <asm/memtype.h>
29#include <asm/paravirt.h>
30
31/*
32 * We need to define the tracepoints somewhere, and tlb.c
33 * is only compiled when SMP=y.
34 */
35#include <trace/events/tlb.h>
36
37#include "mm_internal.h"
38
39/*
40 * Tables translating between page_cache_type_t and pte encoding.
41 *
42 * The default values are defined statically as minimal supported mode;
43 * WC and WT fall back to UC-. pat_init() updates these values to support
44 * more cache modes, WC and WT, when it is safe to do so. See pat_init()
45 * for the details. Note, __early_ioremap() used during early boot-time
46 * takes pgprot_t (pte encoding) and does not use these tables.
47 *
48 * Index into __cachemode2pte_tbl[] is the cachemode.
49 *
50 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
51 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
52 */
53static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
54 [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
55 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
56 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
57 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
58 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
59 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
60};
61
62unsigned long cachemode2protval(enum page_cache_mode pcm)
63{
64 if (likely(pcm == 0))
65 return 0;
66 return __cachemode2pte_tbl[pcm];
67}
68EXPORT_SYMBOL(cachemode2protval);
69
70static uint8_t __pte2cachemode_tbl[8] = {
71 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
72 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
73 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
74 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
75 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
76 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
77 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
78 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
79};
80
81/*
82 * Check that the write-protect PAT entry is set for write-protect.
83 * To do this without making assumptions how PAT has been set up (Xen has
84 * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache
85 * mode via the __cachemode2pte_tbl[] into protection bits (those protection
86 * bits will select a cache mode of WP or better), and then translate the
87 * protection bits back into the cache mode using __pte2cm_idx() and the
88 * __pte2cachemode_tbl[] array. This will return the really used cache mode.
89 */
90bool x86_has_pat_wp(void)
91{
92 uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP];
93
94 return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP;
95}
96
97enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
98{
99 unsigned long masked;
100
101 masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
102 if (likely(masked == 0))
103 return 0;
104 return __pte2cachemode_tbl[__pte2cm_idx(masked)];
105}
106
107static unsigned long __initdata pgt_buf_start;
108static unsigned long __initdata pgt_buf_end;
109static unsigned long __initdata pgt_buf_top;
110
111static unsigned long min_pfn_mapped;
112
113static bool __initdata can_use_brk_pgt = true;
114
115/*
116 * Pages returned are already directly mapped.
117 *
118 * Changing that is likely to break Xen, see commit:
119 *
120 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
121 *
122 * for detailed information.
123 */
124__ref void *alloc_low_pages(unsigned int num)
125{
126 unsigned long pfn;
127 int i;
128
129 if (after_bootmem) {
130 unsigned int order;
131
132 order = get_order((unsigned long)num << PAGE_SHIFT);
133 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
134 }
135
136 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
137 unsigned long ret = 0;
138
139 if (min_pfn_mapped < max_pfn_mapped) {
140 ret = memblock_phys_alloc_range(
141 PAGE_SIZE * num, PAGE_SIZE,
142 min_pfn_mapped << PAGE_SHIFT,
143 max_pfn_mapped << PAGE_SHIFT);
144 }
145 if (!ret && can_use_brk_pgt)
146 ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
147
148 if (!ret)
149 panic("alloc_low_pages: can not alloc memory");
150
151 pfn = ret >> PAGE_SHIFT;
152 } else {
153 pfn = pgt_buf_end;
154 pgt_buf_end += num;
155 }
156
157 for (i = 0; i < num; i++) {
158 void *adr;
159
160 adr = __va((pfn + i) << PAGE_SHIFT);
161 clear_page(adr);
162 }
163
164 return __va(pfn << PAGE_SHIFT);
165}
166
167/*
168 * By default need to be able to allocate page tables below PGD firstly for
169 * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
170 * With KASLR memory randomization, depending on the machine e820 memory and the
171 * PUD alignment, twice that many pages may be needed when KASLR memory
172 * randomization is enabled.
173 */
174
175#ifndef CONFIG_X86_5LEVEL
176#define INIT_PGD_PAGE_TABLES 3
177#else
178#define INIT_PGD_PAGE_TABLES 4
179#endif
180
181#ifndef CONFIG_RANDOMIZE_MEMORY
182#define INIT_PGD_PAGE_COUNT (2 * INIT_PGD_PAGE_TABLES)
183#else
184#define INIT_PGD_PAGE_COUNT (4 * INIT_PGD_PAGE_TABLES)
185#endif
186
187#define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
188RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
189void __init early_alloc_pgt_buf(void)
190{
191 unsigned long tables = INIT_PGT_BUF_SIZE;
192 phys_addr_t base;
193
194 base = __pa(extend_brk(tables, PAGE_SIZE));
195
196 pgt_buf_start = base >> PAGE_SHIFT;
197 pgt_buf_end = pgt_buf_start;
198 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
199}
200
201int after_bootmem;
202
203early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
204
205struct map_range {
206 unsigned long start;
207 unsigned long end;
208 unsigned page_size_mask;
209};
210
211static int page_size_mask;
212
213/*
214 * Save some of cr4 feature set we're using (e.g. Pentium 4MB
215 * enable and PPro Global page enable), so that any CPU's that boot
216 * up after us can get the correct flags. Invoked on the boot CPU.
217 */
218static inline void cr4_set_bits_and_update_boot(unsigned long mask)
219{
220 mmu_cr4_features |= mask;
221 if (trampoline_cr4_features)
222 *trampoline_cr4_features = mmu_cr4_features;
223 cr4_set_bits(mask);
224}
225
226static void __init probe_page_size_mask(void)
227{
228 /*
229 * For pagealloc debugging, identity mapping will use small pages.
230 * This will simplify cpa(), which otherwise needs to support splitting
231 * large pages into small in interrupt context, etc.
232 */
233 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
234 page_size_mask |= 1 << PG_LEVEL_2M;
235 else
236 direct_gbpages = 0;
237
238 /* Enable PSE if available */
239 if (boot_cpu_has(X86_FEATURE_PSE))
240 cr4_set_bits_and_update_boot(X86_CR4_PSE);
241
242 /* Enable PGE if available */
243 __supported_pte_mask &= ~_PAGE_GLOBAL;
244 if (boot_cpu_has(X86_FEATURE_PGE)) {
245 cr4_set_bits_and_update_boot(X86_CR4_PGE);
246 __supported_pte_mask |= _PAGE_GLOBAL;
247 }
248
249 /* By the default is everything supported: */
250 __default_kernel_pte_mask = __supported_pte_mask;
251 /* Except when with PTI where the kernel is mostly non-Global: */
252 if (cpu_feature_enabled(X86_FEATURE_PTI))
253 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
254
255 /* Enable 1 GB linear kernel mappings if available: */
256 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
257 printk(KERN_INFO "Using GB pages for direct mapping\n");
258 page_size_mask |= 1 << PG_LEVEL_1G;
259 } else {
260 direct_gbpages = 0;
261 }
262}
263
264#define INTEL_MATCH(_model) { .vendor = X86_VENDOR_INTEL, \
265 .family = 6, \
266 .model = _model, \
267 }
268/*
269 * INVLPG may not properly flush Global entries
270 * on these CPUs when PCIDs are enabled.
271 */
272static const struct x86_cpu_id invlpg_miss_ids[] = {
273 INTEL_MATCH(INTEL_FAM6_ALDERLAKE ),
274 INTEL_MATCH(INTEL_FAM6_ALDERLAKE_L ),
275 INTEL_MATCH(INTEL_FAM6_ATOM_GRACEMONT ),
276 INTEL_MATCH(INTEL_FAM6_RAPTORLAKE ),
277 INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_P),
278 INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_S),
279 {}
280};
281
282static void setup_pcid(void)
283{
284 if (!IS_ENABLED(CONFIG_X86_64))
285 return;
286
287 if (!boot_cpu_has(X86_FEATURE_PCID))
288 return;
289
290 if (x86_match_cpu(invlpg_miss_ids)) {
291 pr_info("Incomplete global flushes, disabling PCID");
292 setup_clear_cpu_cap(X86_FEATURE_PCID);
293 return;
294 }
295
296 if (boot_cpu_has(X86_FEATURE_PGE)) {
297 /*
298 * This can't be cr4_set_bits_and_update_boot() -- the
299 * trampoline code can't handle CR4.PCIDE and it wouldn't
300 * do any good anyway. Despite the name,
301 * cr4_set_bits_and_update_boot() doesn't actually cause
302 * the bits in question to remain set all the way through
303 * the secondary boot asm.
304 *
305 * Instead, we brute-force it and set CR4.PCIDE manually in
306 * start_secondary().
307 */
308 cr4_set_bits(X86_CR4_PCIDE);
309 } else {
310 /*
311 * flush_tlb_all(), as currently implemented, won't work if
312 * PCID is on but PGE is not. Since that combination
313 * doesn't exist on real hardware, there's no reason to try
314 * to fully support it, but it's polite to avoid corrupting
315 * data if we're on an improperly configured VM.
316 */
317 setup_clear_cpu_cap(X86_FEATURE_PCID);
318 }
319}
320
321#ifdef CONFIG_X86_32
322#define NR_RANGE_MR 3
323#else /* CONFIG_X86_64 */
324#define NR_RANGE_MR 5
325#endif
326
327static int __meminit save_mr(struct map_range *mr, int nr_range,
328 unsigned long start_pfn, unsigned long end_pfn,
329 unsigned long page_size_mask)
330{
331 if (start_pfn < end_pfn) {
332 if (nr_range >= NR_RANGE_MR)
333 panic("run out of range for init_memory_mapping\n");
334 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
335 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
336 mr[nr_range].page_size_mask = page_size_mask;
337 nr_range++;
338 }
339
340 return nr_range;
341}
342
343/*
344 * adjust the page_size_mask for small range to go with
345 * big page size instead small one if nearby are ram too.
346 */
347static void __ref adjust_range_page_size_mask(struct map_range *mr,
348 int nr_range)
349{
350 int i;
351
352 for (i = 0; i < nr_range; i++) {
353 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
354 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
355 unsigned long start = round_down(mr[i].start, PMD_SIZE);
356 unsigned long end = round_up(mr[i].end, PMD_SIZE);
357
358#ifdef CONFIG_X86_32
359 if ((end >> PAGE_SHIFT) > max_low_pfn)
360 continue;
361#endif
362
363 if (memblock_is_region_memory(start, end - start))
364 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
365 }
366 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
367 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
368 unsigned long start = round_down(mr[i].start, PUD_SIZE);
369 unsigned long end = round_up(mr[i].end, PUD_SIZE);
370
371 if (memblock_is_region_memory(start, end - start))
372 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
373 }
374 }
375}
376
377static const char *page_size_string(struct map_range *mr)
378{
379 static const char str_1g[] = "1G";
380 static const char str_2m[] = "2M";
381 static const char str_4m[] = "4M";
382 static const char str_4k[] = "4k";
383
384 if (mr->page_size_mask & (1<<PG_LEVEL_1G))
385 return str_1g;
386 /*
387 * 32-bit without PAE has a 4M large page size.
388 * PG_LEVEL_2M is misnamed, but we can at least
389 * print out the right size in the string.
390 */
391 if (IS_ENABLED(CONFIG_X86_32) &&
392 !IS_ENABLED(CONFIG_X86_PAE) &&
393 mr->page_size_mask & (1<<PG_LEVEL_2M))
394 return str_4m;
395
396 if (mr->page_size_mask & (1<<PG_LEVEL_2M))
397 return str_2m;
398
399 return str_4k;
400}
401
402static int __meminit split_mem_range(struct map_range *mr, int nr_range,
403 unsigned long start,
404 unsigned long end)
405{
406 unsigned long start_pfn, end_pfn, limit_pfn;
407 unsigned long pfn;
408 int i;
409
410 limit_pfn = PFN_DOWN(end);
411
412 /* head if not big page alignment ? */
413 pfn = start_pfn = PFN_DOWN(start);
414#ifdef CONFIG_X86_32
415 /*
416 * Don't use a large page for the first 2/4MB of memory
417 * because there are often fixed size MTRRs in there
418 * and overlapping MTRRs into large pages can cause
419 * slowdowns.
420 */
421 if (pfn == 0)
422 end_pfn = PFN_DOWN(PMD_SIZE);
423 else
424 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
425#else /* CONFIG_X86_64 */
426 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
427#endif
428 if (end_pfn > limit_pfn)
429 end_pfn = limit_pfn;
430 if (start_pfn < end_pfn) {
431 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
432 pfn = end_pfn;
433 }
434
435 /* big page (2M) range */
436 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
437#ifdef CONFIG_X86_32
438 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
439#else /* CONFIG_X86_64 */
440 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
441 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
442 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
443#endif
444
445 if (start_pfn < end_pfn) {
446 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
447 page_size_mask & (1<<PG_LEVEL_2M));
448 pfn = end_pfn;
449 }
450
451#ifdef CONFIG_X86_64
452 /* big page (1G) range */
453 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
454 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
455 if (start_pfn < end_pfn) {
456 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
457 page_size_mask &
458 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
459 pfn = end_pfn;
460 }
461
462 /* tail is not big page (1G) alignment */
463 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
464 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
465 if (start_pfn < end_pfn) {
466 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
467 page_size_mask & (1<<PG_LEVEL_2M));
468 pfn = end_pfn;
469 }
470#endif
471
472 /* tail is not big page (2M) alignment */
473 start_pfn = pfn;
474 end_pfn = limit_pfn;
475 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
476
477 if (!after_bootmem)
478 adjust_range_page_size_mask(mr, nr_range);
479
480 /* try to merge same page size and continuous */
481 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
482 unsigned long old_start;
483 if (mr[i].end != mr[i+1].start ||
484 mr[i].page_size_mask != mr[i+1].page_size_mask)
485 continue;
486 /* move it */
487 old_start = mr[i].start;
488 memmove(&mr[i], &mr[i+1],
489 (nr_range - 1 - i) * sizeof(struct map_range));
490 mr[i--].start = old_start;
491 nr_range--;
492 }
493
494 for (i = 0; i < nr_range; i++)
495 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
496 mr[i].start, mr[i].end - 1,
497 page_size_string(&mr[i]));
498
499 return nr_range;
500}
501
502struct range pfn_mapped[E820_MAX_ENTRIES];
503int nr_pfn_mapped;
504
505static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
506{
507 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
508 nr_pfn_mapped, start_pfn, end_pfn);
509 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
510
511 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
512
513 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
514 max_low_pfn_mapped = max(max_low_pfn_mapped,
515 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
516}
517
518bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
519{
520 int i;
521
522 for (i = 0; i < nr_pfn_mapped; i++)
523 if ((start_pfn >= pfn_mapped[i].start) &&
524 (end_pfn <= pfn_mapped[i].end))
525 return true;
526
527 return false;
528}
529
530/*
531 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
532 * This runs before bootmem is initialized and gets pages directly from
533 * the physical memory. To access them they are temporarily mapped.
534 */
535unsigned long __ref init_memory_mapping(unsigned long start,
536 unsigned long end, pgprot_t prot)
537{
538 struct map_range mr[NR_RANGE_MR];
539 unsigned long ret = 0;
540 int nr_range, i;
541
542 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
543 start, end - 1);
544
545 memset(mr, 0, sizeof(mr));
546 nr_range = split_mem_range(mr, 0, start, end);
547
548 for (i = 0; i < nr_range; i++)
549 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
550 mr[i].page_size_mask,
551 prot);
552
553 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
554
555 return ret >> PAGE_SHIFT;
556}
557
558/*
559 * We need to iterate through the E820 memory map and create direct mappings
560 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
561 * create direct mappings for all pfns from [0 to max_low_pfn) and
562 * [4GB to max_pfn) because of possible memory holes in high addresses
563 * that cannot be marked as UC by fixed/variable range MTRRs.
564 * Depending on the alignment of E820 ranges, this may possibly result
565 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
566 *
567 * init_mem_mapping() calls init_range_memory_mapping() with big range.
568 * That range would have hole in the middle or ends, and only ram parts
569 * will be mapped in init_range_memory_mapping().
570 */
571static unsigned long __init init_range_memory_mapping(
572 unsigned long r_start,
573 unsigned long r_end)
574{
575 unsigned long start_pfn, end_pfn;
576 unsigned long mapped_ram_size = 0;
577 int i;
578
579 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
580 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
581 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
582 if (start >= end)
583 continue;
584
585 /*
586 * if it is overlapping with brk pgt, we need to
587 * alloc pgt buf from memblock instead.
588 */
589 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
590 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
591 init_memory_mapping(start, end, PAGE_KERNEL);
592 mapped_ram_size += end - start;
593 can_use_brk_pgt = true;
594 }
595
596 return mapped_ram_size;
597}
598
599static unsigned long __init get_new_step_size(unsigned long step_size)
600{
601 /*
602 * Initial mapped size is PMD_SIZE (2M).
603 * We can not set step_size to be PUD_SIZE (1G) yet.
604 * In worse case, when we cross the 1G boundary, and
605 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
606 * to map 1G range with PTE. Hence we use one less than the
607 * difference of page table level shifts.
608 *
609 * Don't need to worry about overflow in the top-down case, on 32bit,
610 * when step_size is 0, round_down() returns 0 for start, and that
611 * turns it into 0x100000000ULL.
612 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
613 * needs to be taken into consideration by the code below.
614 */
615 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
616}
617
618/**
619 * memory_map_top_down - Map [map_start, map_end) top down
620 * @map_start: start address of the target memory range
621 * @map_end: end address of the target memory range
622 *
623 * This function will setup direct mapping for memory range
624 * [map_start, map_end) in top-down. That said, the page tables
625 * will be allocated at the end of the memory, and we map the
626 * memory in top-down.
627 */
628static void __init memory_map_top_down(unsigned long map_start,
629 unsigned long map_end)
630{
631 unsigned long real_end, last_start;
632 unsigned long step_size;
633 unsigned long addr;
634 unsigned long mapped_ram_size = 0;
635
636 /*
637 * Systems that have many reserved areas near top of the memory,
638 * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will
639 * require lots of 4K mappings which may exhaust pgt_buf.
640 * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure
641 * there is enough mapped memory that can be allocated from
642 * memblock.
643 */
644 addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start,
645 map_end);
646 memblock_phys_free(addr, PMD_SIZE);
647 real_end = addr + PMD_SIZE;
648
649 /* step_size need to be small so pgt_buf from BRK could cover it */
650 step_size = PMD_SIZE;
651 max_pfn_mapped = 0; /* will get exact value next */
652 min_pfn_mapped = real_end >> PAGE_SHIFT;
653 last_start = real_end;
654
655 /*
656 * We start from the top (end of memory) and go to the bottom.
657 * The memblock_find_in_range() gets us a block of RAM from the
658 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
659 * for page table.
660 */
661 while (last_start > map_start) {
662 unsigned long start;
663
664 if (last_start > step_size) {
665 start = round_down(last_start - 1, step_size);
666 if (start < map_start)
667 start = map_start;
668 } else
669 start = map_start;
670 mapped_ram_size += init_range_memory_mapping(start,
671 last_start);
672 last_start = start;
673 min_pfn_mapped = last_start >> PAGE_SHIFT;
674 if (mapped_ram_size >= step_size)
675 step_size = get_new_step_size(step_size);
676 }
677
678 if (real_end < map_end)
679 init_range_memory_mapping(real_end, map_end);
680}
681
682/**
683 * memory_map_bottom_up - Map [map_start, map_end) bottom up
684 * @map_start: start address of the target memory range
685 * @map_end: end address of the target memory range
686 *
687 * This function will setup direct mapping for memory range
688 * [map_start, map_end) in bottom-up. Since we have limited the
689 * bottom-up allocation above the kernel, the page tables will
690 * be allocated just above the kernel and we map the memory
691 * in [map_start, map_end) in bottom-up.
692 */
693static void __init memory_map_bottom_up(unsigned long map_start,
694 unsigned long map_end)
695{
696 unsigned long next, start;
697 unsigned long mapped_ram_size = 0;
698 /* step_size need to be small so pgt_buf from BRK could cover it */
699 unsigned long step_size = PMD_SIZE;
700
701 start = map_start;
702 min_pfn_mapped = start >> PAGE_SHIFT;
703
704 /*
705 * We start from the bottom (@map_start) and go to the top (@map_end).
706 * The memblock_find_in_range() gets us a block of RAM from the
707 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
708 * for page table.
709 */
710 while (start < map_end) {
711 if (step_size && map_end - start > step_size) {
712 next = round_up(start + 1, step_size);
713 if (next > map_end)
714 next = map_end;
715 } else {
716 next = map_end;
717 }
718
719 mapped_ram_size += init_range_memory_mapping(start, next);
720 start = next;
721
722 if (mapped_ram_size >= step_size)
723 step_size = get_new_step_size(step_size);
724 }
725}
726
727/*
728 * The real mode trampoline, which is required for bootstrapping CPUs
729 * occupies only a small area under the low 1MB. See reserve_real_mode()
730 * for details.
731 *
732 * If KASLR is disabled the first PGD entry of the direct mapping is copied
733 * to map the real mode trampoline.
734 *
735 * If KASLR is enabled, copy only the PUD which covers the low 1MB
736 * area. This limits the randomization granularity to 1GB for both 4-level
737 * and 5-level paging.
738 */
739static void __init init_trampoline(void)
740{
741#ifdef CONFIG_X86_64
742 /*
743 * The code below will alias kernel page-tables in the user-range of the
744 * address space, including the Global bit. So global TLB entries will
745 * be created when using the trampoline page-table.
746 */
747 if (!kaslr_memory_enabled())
748 trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
749 else
750 init_trampoline_kaslr();
751#endif
752}
753
754void __init init_mem_mapping(void)
755{
756 unsigned long end;
757
758 pti_check_boottime_disable();
759 probe_page_size_mask();
760 setup_pcid();
761
762#ifdef CONFIG_X86_64
763 end = max_pfn << PAGE_SHIFT;
764#else
765 end = max_low_pfn << PAGE_SHIFT;
766#endif
767
768 /* the ISA range is always mapped regardless of memory holes */
769 init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
770
771 /* Init the trampoline, possibly with KASLR memory offset */
772 init_trampoline();
773
774 /*
775 * If the allocation is in bottom-up direction, we setup direct mapping
776 * in bottom-up, otherwise we setup direct mapping in top-down.
777 */
778 if (memblock_bottom_up()) {
779 unsigned long kernel_end = __pa_symbol(_end);
780
781 /*
782 * we need two separate calls here. This is because we want to
783 * allocate page tables above the kernel. So we first map
784 * [kernel_end, end) to make memory above the kernel be mapped
785 * as soon as possible. And then use page tables allocated above
786 * the kernel to map [ISA_END_ADDRESS, kernel_end).
787 */
788 memory_map_bottom_up(kernel_end, end);
789 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
790 } else {
791 memory_map_top_down(ISA_END_ADDRESS, end);
792 }
793
794#ifdef CONFIG_X86_64
795 if (max_pfn > max_low_pfn) {
796 /* can we preserve max_low_pfn ?*/
797 max_low_pfn = max_pfn;
798 }
799#else
800 early_ioremap_page_table_range_init();
801#endif
802
803 load_cr3(swapper_pg_dir);
804 __flush_tlb_all();
805
806 x86_init.hyper.init_mem_mapping();
807
808 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
809}
810
811/*
812 * Initialize an mm_struct to be used during poking and a pointer to be used
813 * during patching.
814 */
815void __init poking_init(void)
816{
817 spinlock_t *ptl;
818 pte_t *ptep;
819
820 poking_mm = mm_alloc();
821 BUG_ON(!poking_mm);
822
823 /* Xen PV guests need the PGD to be pinned. */
824 paravirt_enter_mmap(poking_mm);
825
826 /*
827 * Randomize the poking address, but make sure that the following page
828 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
829 * and adjust the address if the PMD ends after the first one.
830 */
831 poking_addr = TASK_UNMAPPED_BASE;
832 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
833 poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
834 (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
835
836 if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
837 poking_addr += PAGE_SIZE;
838
839 /*
840 * We need to trigger the allocation of the page-tables that will be
841 * needed for poking now. Later, poking may be performed in an atomic
842 * section, which might cause allocation to fail.
843 */
844 ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
845 BUG_ON(!ptep);
846 pte_unmap_unlock(ptep, ptl);
847}
848
849/*
850 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
851 * is valid. The argument is a physical page number.
852 *
853 * On x86, access has to be given to the first megabyte of RAM because that
854 * area traditionally contains BIOS code and data regions used by X, dosemu,
855 * and similar apps. Since they map the entire memory range, the whole range
856 * must be allowed (for mapping), but any areas that would otherwise be
857 * disallowed are flagged as being "zero filled" instead of rejected.
858 * Access has to be given to non-kernel-ram areas as well, these contain the
859 * PCI mmio resources as well as potential bios/acpi data regions.
860 */
861int devmem_is_allowed(unsigned long pagenr)
862{
863 if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
864 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
865 != REGION_DISJOINT) {
866 /*
867 * For disallowed memory regions in the low 1MB range,
868 * request that the page be shown as all zeros.
869 */
870 if (pagenr < 256)
871 return 2;
872
873 return 0;
874 }
875
876 /*
877 * This must follow RAM test, since System RAM is considered a
878 * restricted resource under CONFIG_STRICT_DEVMEM.
879 */
880 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
881 /* Low 1MB bypasses iomem restrictions. */
882 if (pagenr < 256)
883 return 1;
884
885 return 0;
886 }
887
888 return 1;
889}
890
891void free_init_pages(const char *what, unsigned long begin, unsigned long end)
892{
893 unsigned long begin_aligned, end_aligned;
894
895 /* Make sure boundaries are page aligned */
896 begin_aligned = PAGE_ALIGN(begin);
897 end_aligned = end & PAGE_MASK;
898
899 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
900 begin = begin_aligned;
901 end = end_aligned;
902 }
903
904 if (begin >= end)
905 return;
906
907 /*
908 * If debugging page accesses then do not free this memory but
909 * mark them not present - any buggy init-section access will
910 * create a kernel page fault:
911 */
912 if (debug_pagealloc_enabled()) {
913 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
914 begin, end - 1);
915 /*
916 * Inform kmemleak about the hole in the memory since the
917 * corresponding pages will be unmapped.
918 */
919 kmemleak_free_part((void *)begin, end - begin);
920 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
921 } else {
922 /*
923 * We just marked the kernel text read only above, now that
924 * we are going to free part of that, we need to make that
925 * writeable and non-executable first.
926 */
927 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
928 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
929
930 free_reserved_area((void *)begin, (void *)end,
931 POISON_FREE_INITMEM, what);
932 }
933}
934
935/*
936 * begin/end can be in the direct map or the "high kernel mapping"
937 * used for the kernel image only. free_init_pages() will do the
938 * right thing for either kind of address.
939 */
940void free_kernel_image_pages(const char *what, void *begin, void *end)
941{
942 unsigned long begin_ul = (unsigned long)begin;
943 unsigned long end_ul = (unsigned long)end;
944 unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
945
946 free_init_pages(what, begin_ul, end_ul);
947
948 /*
949 * PTI maps some of the kernel into userspace. For performance,
950 * this includes some kernel areas that do not contain secrets.
951 * Those areas might be adjacent to the parts of the kernel image
952 * being freed, which may contain secrets. Remove the "high kernel
953 * image mapping" for these freed areas, ensuring they are not even
954 * potentially vulnerable to Meltdown regardless of the specific
955 * optimizations PTI is currently using.
956 *
957 * The "noalias" prevents unmapping the direct map alias which is
958 * needed to access the freed pages.
959 *
960 * This is only valid for 64bit kernels. 32bit has only one mapping
961 * which can't be treated in this way for obvious reasons.
962 */
963 if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
964 set_memory_np_noalias(begin_ul, len_pages);
965}
966
967void __ref free_initmem(void)
968{
969 e820__reallocate_tables();
970
971 mem_encrypt_free_decrypted_mem();
972
973 free_kernel_image_pages("unused kernel image (initmem)",
974 &__init_begin, &__init_end);
975}
976
977#ifdef CONFIG_BLK_DEV_INITRD
978void __init free_initrd_mem(unsigned long start, unsigned long end)
979{
980 /*
981 * end could be not aligned, and We can not align that,
982 * decompressor could be confused by aligned initrd_end
983 * We already reserve the end partial page before in
984 * - i386_start_kernel()
985 * - x86_64_start_kernel()
986 * - relocate_initrd()
987 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
988 */
989 free_init_pages("initrd", start, PAGE_ALIGN(end));
990}
991#endif
992
993/*
994 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
995 * and pass it to the MM layer - to help it set zone watermarks more
996 * accurately.
997 *
998 * Done on 64-bit systems only for the time being, although 32-bit systems
999 * might benefit from this as well.
1000 */
1001void __init memblock_find_dma_reserve(void)
1002{
1003#ifdef CONFIG_X86_64
1004 u64 nr_pages = 0, nr_free_pages = 0;
1005 unsigned long start_pfn, end_pfn;
1006 phys_addr_t start_addr, end_addr;
1007 int i;
1008 u64 u;
1009
1010 /*
1011 * Iterate over all memory ranges (free and reserved ones alike),
1012 * to calculate the total number of pages in the first 16 MB of RAM:
1013 */
1014 nr_pages = 0;
1015 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1016 start_pfn = min(start_pfn, MAX_DMA_PFN);
1017 end_pfn = min(end_pfn, MAX_DMA_PFN);
1018
1019 nr_pages += end_pfn - start_pfn;
1020 }
1021
1022 /*
1023 * Iterate over free memory ranges to calculate the number of free
1024 * pages in the DMA zone, while not counting potential partial
1025 * pages at the beginning or the end of the range:
1026 */
1027 nr_free_pages = 0;
1028 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
1029 start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
1030 end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
1031
1032 if (start_pfn < end_pfn)
1033 nr_free_pages += end_pfn - start_pfn;
1034 }
1035
1036 set_dma_reserve(nr_pages - nr_free_pages);
1037#endif
1038}
1039
1040void __init zone_sizes_init(void)
1041{
1042 unsigned long max_zone_pfns[MAX_NR_ZONES];
1043
1044 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1045
1046#ifdef CONFIG_ZONE_DMA
1047 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
1048#endif
1049#ifdef CONFIG_ZONE_DMA32
1050 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
1051#endif
1052 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
1053#ifdef CONFIG_HIGHMEM
1054 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
1055#endif
1056
1057 free_area_init(max_zone_pfns);
1058}
1059
1060__visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1061 .loaded_mm = &init_mm,
1062 .next_asid = 1,
1063 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
1064};
1065
1066#ifdef CONFIG_ADDRESS_MASKING
1067DEFINE_PER_CPU(u64, tlbstate_untag_mask);
1068EXPORT_PER_CPU_SYMBOL(tlbstate_untag_mask);
1069#endif
1070
1071void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1072{
1073 /* entry 0 MUST be WB (hardwired to speed up translations) */
1074 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1075
1076 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1077 __pte2cachemode_tbl[entry] = cache;
1078}
1079
1080#ifdef CONFIG_SWAP
1081unsigned long arch_max_swapfile_size(void)
1082{
1083 unsigned long pages;
1084
1085 pages = generic_max_swapfile_size();
1086
1087 if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1088 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1089 unsigned long long l1tf_limit = l1tf_pfn_limit();
1090 /*
1091 * We encode swap offsets also with 3 bits below those for pfn
1092 * which makes the usable limit higher.
1093 */
1094#if CONFIG_PGTABLE_LEVELS > 2
1095 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1096#endif
1097 pages = min_t(unsigned long long, l1tf_limit, pages);
1098 }
1099 return pages;
1100}
1101#endif
1#include <linux/gfp.h>
2#include <linux/initrd.h>
3#include <linux/ioport.h>
4#include <linux/swap.h>
5#include <linux/memblock.h>
6#include <linux/swapfile.h>
7#include <linux/swapops.h>
8#include <linux/kmemleak.h>
9#include <linux/sched/task.h>
10
11#include <asm/set_memory.h>
12#include <asm/e820/api.h>
13#include <asm/init.h>
14#include <asm/page.h>
15#include <asm/page_types.h>
16#include <asm/sections.h>
17#include <asm/setup.h>
18#include <asm/tlbflush.h>
19#include <asm/tlb.h>
20#include <asm/proto.h>
21#include <asm/dma.h> /* for MAX_DMA_PFN */
22#include <asm/microcode.h>
23#include <asm/kaslr.h>
24#include <asm/hypervisor.h>
25#include <asm/cpufeature.h>
26#include <asm/pti.h>
27#include <asm/text-patching.h>
28#include <asm/memtype.h>
29
30/*
31 * We need to define the tracepoints somewhere, and tlb.c
32 * is only compied when SMP=y.
33 */
34#define CREATE_TRACE_POINTS
35#include <trace/events/tlb.h>
36
37#include "mm_internal.h"
38
39/*
40 * Tables translating between page_cache_type_t and pte encoding.
41 *
42 * The default values are defined statically as minimal supported mode;
43 * WC and WT fall back to UC-. pat_init() updates these values to support
44 * more cache modes, WC and WT, when it is safe to do so. See pat_init()
45 * for the details. Note, __early_ioremap() used during early boot-time
46 * takes pgprot_t (pte encoding) and does not use these tables.
47 *
48 * Index into __cachemode2pte_tbl[] is the cachemode.
49 *
50 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
51 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
52 */
53static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
54 [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
55 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
56 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
57 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
58 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
59 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
60};
61
62unsigned long cachemode2protval(enum page_cache_mode pcm)
63{
64 if (likely(pcm == 0))
65 return 0;
66 return __cachemode2pte_tbl[pcm];
67}
68EXPORT_SYMBOL(cachemode2protval);
69
70static uint8_t __pte2cachemode_tbl[8] = {
71 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
72 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
73 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
74 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
75 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
76 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
77 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
78 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
79};
80
81/* Check that the write-protect PAT entry is set for write-protect */
82bool x86_has_pat_wp(void)
83{
84 return __pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] == _PAGE_CACHE_MODE_WP;
85}
86
87enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
88{
89 unsigned long masked;
90
91 masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
92 if (likely(masked == 0))
93 return 0;
94 return __pte2cachemode_tbl[__pte2cm_idx(masked)];
95}
96
97static unsigned long __initdata pgt_buf_start;
98static unsigned long __initdata pgt_buf_end;
99static unsigned long __initdata pgt_buf_top;
100
101static unsigned long min_pfn_mapped;
102
103static bool __initdata can_use_brk_pgt = true;
104
105/*
106 * Pages returned are already directly mapped.
107 *
108 * Changing that is likely to break Xen, see commit:
109 *
110 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
111 *
112 * for detailed information.
113 */
114__ref void *alloc_low_pages(unsigned int num)
115{
116 unsigned long pfn;
117 int i;
118
119 if (after_bootmem) {
120 unsigned int order;
121
122 order = get_order((unsigned long)num << PAGE_SHIFT);
123 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
124 }
125
126 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
127 unsigned long ret = 0;
128
129 if (min_pfn_mapped < max_pfn_mapped) {
130 ret = memblock_find_in_range(
131 min_pfn_mapped << PAGE_SHIFT,
132 max_pfn_mapped << PAGE_SHIFT,
133 PAGE_SIZE * num , PAGE_SIZE);
134 }
135 if (ret)
136 memblock_reserve(ret, PAGE_SIZE * num);
137 else if (can_use_brk_pgt)
138 ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
139
140 if (!ret)
141 panic("alloc_low_pages: can not alloc memory");
142
143 pfn = ret >> PAGE_SHIFT;
144 } else {
145 pfn = pgt_buf_end;
146 pgt_buf_end += num;
147 }
148
149 for (i = 0; i < num; i++) {
150 void *adr;
151
152 adr = __va((pfn + i) << PAGE_SHIFT);
153 clear_page(adr);
154 }
155
156 return __va(pfn << PAGE_SHIFT);
157}
158
159/*
160 * By default need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS.
161 * With KASLR memory randomization, depending on the machine e820 memory
162 * and the PUD alignment. We may need twice more pages when KASLR memory
163 * randomization is enabled.
164 */
165#ifndef CONFIG_RANDOMIZE_MEMORY
166#define INIT_PGD_PAGE_COUNT 6
167#else
168#define INIT_PGD_PAGE_COUNT 12
169#endif
170#define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
171RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
172void __init early_alloc_pgt_buf(void)
173{
174 unsigned long tables = INIT_PGT_BUF_SIZE;
175 phys_addr_t base;
176
177 base = __pa(extend_brk(tables, PAGE_SIZE));
178
179 pgt_buf_start = base >> PAGE_SHIFT;
180 pgt_buf_end = pgt_buf_start;
181 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
182}
183
184int after_bootmem;
185
186early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
187
188struct map_range {
189 unsigned long start;
190 unsigned long end;
191 unsigned page_size_mask;
192};
193
194static int page_size_mask;
195
196/*
197 * Save some of cr4 feature set we're using (e.g. Pentium 4MB
198 * enable and PPro Global page enable), so that any CPU's that boot
199 * up after us can get the correct flags. Invoked on the boot CPU.
200 */
201static inline void cr4_set_bits_and_update_boot(unsigned long mask)
202{
203 mmu_cr4_features |= mask;
204 if (trampoline_cr4_features)
205 *trampoline_cr4_features = mmu_cr4_features;
206 cr4_set_bits(mask);
207}
208
209static void __init probe_page_size_mask(void)
210{
211 /*
212 * For pagealloc debugging, identity mapping will use small pages.
213 * This will simplify cpa(), which otherwise needs to support splitting
214 * large pages into small in interrupt context, etc.
215 */
216 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
217 page_size_mask |= 1 << PG_LEVEL_2M;
218 else
219 direct_gbpages = 0;
220
221 /* Enable PSE if available */
222 if (boot_cpu_has(X86_FEATURE_PSE))
223 cr4_set_bits_and_update_boot(X86_CR4_PSE);
224
225 /* Enable PGE if available */
226 __supported_pte_mask &= ~_PAGE_GLOBAL;
227 if (boot_cpu_has(X86_FEATURE_PGE)) {
228 cr4_set_bits_and_update_boot(X86_CR4_PGE);
229 __supported_pte_mask |= _PAGE_GLOBAL;
230 }
231
232 /* By the default is everything supported: */
233 __default_kernel_pte_mask = __supported_pte_mask;
234 /* Except when with PTI where the kernel is mostly non-Global: */
235 if (cpu_feature_enabled(X86_FEATURE_PTI))
236 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
237
238 /* Enable 1 GB linear kernel mappings if available: */
239 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
240 printk(KERN_INFO "Using GB pages for direct mapping\n");
241 page_size_mask |= 1 << PG_LEVEL_1G;
242 } else {
243 direct_gbpages = 0;
244 }
245}
246
247static void setup_pcid(void)
248{
249 if (!IS_ENABLED(CONFIG_X86_64))
250 return;
251
252 if (!boot_cpu_has(X86_FEATURE_PCID))
253 return;
254
255 if (boot_cpu_has(X86_FEATURE_PGE)) {
256 /*
257 * This can't be cr4_set_bits_and_update_boot() -- the
258 * trampoline code can't handle CR4.PCIDE and it wouldn't
259 * do any good anyway. Despite the name,
260 * cr4_set_bits_and_update_boot() doesn't actually cause
261 * the bits in question to remain set all the way through
262 * the secondary boot asm.
263 *
264 * Instead, we brute-force it and set CR4.PCIDE manually in
265 * start_secondary().
266 */
267 cr4_set_bits(X86_CR4_PCIDE);
268
269 /*
270 * INVPCID's single-context modes (2/3) only work if we set
271 * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable
272 * on systems that have X86_CR4_PCIDE clear, or that have
273 * no INVPCID support at all.
274 */
275 if (boot_cpu_has(X86_FEATURE_INVPCID))
276 setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
277 } else {
278 /*
279 * flush_tlb_all(), as currently implemented, won't work if
280 * PCID is on but PGE is not. Since that combination
281 * doesn't exist on real hardware, there's no reason to try
282 * to fully support it, but it's polite to avoid corrupting
283 * data if we're on an improperly configured VM.
284 */
285 setup_clear_cpu_cap(X86_FEATURE_PCID);
286 }
287}
288
289#ifdef CONFIG_X86_32
290#define NR_RANGE_MR 3
291#else /* CONFIG_X86_64 */
292#define NR_RANGE_MR 5
293#endif
294
295static int __meminit save_mr(struct map_range *mr, int nr_range,
296 unsigned long start_pfn, unsigned long end_pfn,
297 unsigned long page_size_mask)
298{
299 if (start_pfn < end_pfn) {
300 if (nr_range >= NR_RANGE_MR)
301 panic("run out of range for init_memory_mapping\n");
302 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
303 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
304 mr[nr_range].page_size_mask = page_size_mask;
305 nr_range++;
306 }
307
308 return nr_range;
309}
310
311/*
312 * adjust the page_size_mask for small range to go with
313 * big page size instead small one if nearby are ram too.
314 */
315static void __ref adjust_range_page_size_mask(struct map_range *mr,
316 int nr_range)
317{
318 int i;
319
320 for (i = 0; i < nr_range; i++) {
321 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
322 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
323 unsigned long start = round_down(mr[i].start, PMD_SIZE);
324 unsigned long end = round_up(mr[i].end, PMD_SIZE);
325
326#ifdef CONFIG_X86_32
327 if ((end >> PAGE_SHIFT) > max_low_pfn)
328 continue;
329#endif
330
331 if (memblock_is_region_memory(start, end - start))
332 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
333 }
334 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
335 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
336 unsigned long start = round_down(mr[i].start, PUD_SIZE);
337 unsigned long end = round_up(mr[i].end, PUD_SIZE);
338
339 if (memblock_is_region_memory(start, end - start))
340 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
341 }
342 }
343}
344
345static const char *page_size_string(struct map_range *mr)
346{
347 static const char str_1g[] = "1G";
348 static const char str_2m[] = "2M";
349 static const char str_4m[] = "4M";
350 static const char str_4k[] = "4k";
351
352 if (mr->page_size_mask & (1<<PG_LEVEL_1G))
353 return str_1g;
354 /*
355 * 32-bit without PAE has a 4M large page size.
356 * PG_LEVEL_2M is misnamed, but we can at least
357 * print out the right size in the string.
358 */
359 if (IS_ENABLED(CONFIG_X86_32) &&
360 !IS_ENABLED(CONFIG_X86_PAE) &&
361 mr->page_size_mask & (1<<PG_LEVEL_2M))
362 return str_4m;
363
364 if (mr->page_size_mask & (1<<PG_LEVEL_2M))
365 return str_2m;
366
367 return str_4k;
368}
369
370static int __meminit split_mem_range(struct map_range *mr, int nr_range,
371 unsigned long start,
372 unsigned long end)
373{
374 unsigned long start_pfn, end_pfn, limit_pfn;
375 unsigned long pfn;
376 int i;
377
378 limit_pfn = PFN_DOWN(end);
379
380 /* head if not big page alignment ? */
381 pfn = start_pfn = PFN_DOWN(start);
382#ifdef CONFIG_X86_32
383 /*
384 * Don't use a large page for the first 2/4MB of memory
385 * because there are often fixed size MTRRs in there
386 * and overlapping MTRRs into large pages can cause
387 * slowdowns.
388 */
389 if (pfn == 0)
390 end_pfn = PFN_DOWN(PMD_SIZE);
391 else
392 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
393#else /* CONFIG_X86_64 */
394 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
395#endif
396 if (end_pfn > limit_pfn)
397 end_pfn = limit_pfn;
398 if (start_pfn < end_pfn) {
399 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
400 pfn = end_pfn;
401 }
402
403 /* big page (2M) range */
404 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
405#ifdef CONFIG_X86_32
406 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
407#else /* CONFIG_X86_64 */
408 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
409 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
410 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
411#endif
412
413 if (start_pfn < end_pfn) {
414 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
415 page_size_mask & (1<<PG_LEVEL_2M));
416 pfn = end_pfn;
417 }
418
419#ifdef CONFIG_X86_64
420 /* big page (1G) range */
421 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
422 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
423 if (start_pfn < end_pfn) {
424 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
425 page_size_mask &
426 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
427 pfn = end_pfn;
428 }
429
430 /* tail is not big page (1G) alignment */
431 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
432 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
433 if (start_pfn < end_pfn) {
434 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
435 page_size_mask & (1<<PG_LEVEL_2M));
436 pfn = end_pfn;
437 }
438#endif
439
440 /* tail is not big page (2M) alignment */
441 start_pfn = pfn;
442 end_pfn = limit_pfn;
443 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
444
445 if (!after_bootmem)
446 adjust_range_page_size_mask(mr, nr_range);
447
448 /* try to merge same page size and continuous */
449 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
450 unsigned long old_start;
451 if (mr[i].end != mr[i+1].start ||
452 mr[i].page_size_mask != mr[i+1].page_size_mask)
453 continue;
454 /* move it */
455 old_start = mr[i].start;
456 memmove(&mr[i], &mr[i+1],
457 (nr_range - 1 - i) * sizeof(struct map_range));
458 mr[i--].start = old_start;
459 nr_range--;
460 }
461
462 for (i = 0; i < nr_range; i++)
463 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
464 mr[i].start, mr[i].end - 1,
465 page_size_string(&mr[i]));
466
467 return nr_range;
468}
469
470struct range pfn_mapped[E820_MAX_ENTRIES];
471int nr_pfn_mapped;
472
473static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
474{
475 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
476 nr_pfn_mapped, start_pfn, end_pfn);
477 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
478
479 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
480
481 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
482 max_low_pfn_mapped = max(max_low_pfn_mapped,
483 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
484}
485
486bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
487{
488 int i;
489
490 for (i = 0; i < nr_pfn_mapped; i++)
491 if ((start_pfn >= pfn_mapped[i].start) &&
492 (end_pfn <= pfn_mapped[i].end))
493 return true;
494
495 return false;
496}
497
498/*
499 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
500 * This runs before bootmem is initialized and gets pages directly from
501 * the physical memory. To access them they are temporarily mapped.
502 */
503unsigned long __ref init_memory_mapping(unsigned long start,
504 unsigned long end, pgprot_t prot)
505{
506 struct map_range mr[NR_RANGE_MR];
507 unsigned long ret = 0;
508 int nr_range, i;
509
510 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
511 start, end - 1);
512
513 memset(mr, 0, sizeof(mr));
514 nr_range = split_mem_range(mr, 0, start, end);
515
516 for (i = 0; i < nr_range; i++)
517 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
518 mr[i].page_size_mask,
519 prot);
520
521 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
522
523 return ret >> PAGE_SHIFT;
524}
525
526/*
527 * We need to iterate through the E820 memory map and create direct mappings
528 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
529 * create direct mappings for all pfns from [0 to max_low_pfn) and
530 * [4GB to max_pfn) because of possible memory holes in high addresses
531 * that cannot be marked as UC by fixed/variable range MTRRs.
532 * Depending on the alignment of E820 ranges, this may possibly result
533 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
534 *
535 * init_mem_mapping() calls init_range_memory_mapping() with big range.
536 * That range would have hole in the middle or ends, and only ram parts
537 * will be mapped in init_range_memory_mapping().
538 */
539static unsigned long __init init_range_memory_mapping(
540 unsigned long r_start,
541 unsigned long r_end)
542{
543 unsigned long start_pfn, end_pfn;
544 unsigned long mapped_ram_size = 0;
545 int i;
546
547 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
548 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
549 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
550 if (start >= end)
551 continue;
552
553 /*
554 * if it is overlapping with brk pgt, we need to
555 * alloc pgt buf from memblock instead.
556 */
557 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
558 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
559 init_memory_mapping(start, end, PAGE_KERNEL);
560 mapped_ram_size += end - start;
561 can_use_brk_pgt = true;
562 }
563
564 return mapped_ram_size;
565}
566
567static unsigned long __init get_new_step_size(unsigned long step_size)
568{
569 /*
570 * Initial mapped size is PMD_SIZE (2M).
571 * We can not set step_size to be PUD_SIZE (1G) yet.
572 * In worse case, when we cross the 1G boundary, and
573 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
574 * to map 1G range with PTE. Hence we use one less than the
575 * difference of page table level shifts.
576 *
577 * Don't need to worry about overflow in the top-down case, on 32bit,
578 * when step_size is 0, round_down() returns 0 for start, and that
579 * turns it into 0x100000000ULL.
580 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
581 * needs to be taken into consideration by the code below.
582 */
583 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
584}
585
586/**
587 * memory_map_top_down - Map [map_start, map_end) top down
588 * @map_start: start address of the target memory range
589 * @map_end: end address of the target memory range
590 *
591 * This function will setup direct mapping for memory range
592 * [map_start, map_end) in top-down. That said, the page tables
593 * will be allocated at the end of the memory, and we map the
594 * memory in top-down.
595 */
596static void __init memory_map_top_down(unsigned long map_start,
597 unsigned long map_end)
598{
599 unsigned long real_end, start, last_start;
600 unsigned long step_size;
601 unsigned long addr;
602 unsigned long mapped_ram_size = 0;
603
604 /* xen has big range in reserved near end of ram, skip it at first.*/
605 addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
606 real_end = addr + PMD_SIZE;
607
608 /* step_size need to be small so pgt_buf from BRK could cover it */
609 step_size = PMD_SIZE;
610 max_pfn_mapped = 0; /* will get exact value next */
611 min_pfn_mapped = real_end >> PAGE_SHIFT;
612 last_start = start = real_end;
613
614 /*
615 * We start from the top (end of memory) and go to the bottom.
616 * The memblock_find_in_range() gets us a block of RAM from the
617 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
618 * for page table.
619 */
620 while (last_start > map_start) {
621 if (last_start > step_size) {
622 start = round_down(last_start - 1, step_size);
623 if (start < map_start)
624 start = map_start;
625 } else
626 start = map_start;
627 mapped_ram_size += init_range_memory_mapping(start,
628 last_start);
629 last_start = start;
630 min_pfn_mapped = last_start >> PAGE_SHIFT;
631 if (mapped_ram_size >= step_size)
632 step_size = get_new_step_size(step_size);
633 }
634
635 if (real_end < map_end)
636 init_range_memory_mapping(real_end, map_end);
637}
638
639/**
640 * memory_map_bottom_up - Map [map_start, map_end) bottom up
641 * @map_start: start address of the target memory range
642 * @map_end: end address of the target memory range
643 *
644 * This function will setup direct mapping for memory range
645 * [map_start, map_end) in bottom-up. Since we have limited the
646 * bottom-up allocation above the kernel, the page tables will
647 * be allocated just above the kernel and we map the memory
648 * in [map_start, map_end) in bottom-up.
649 */
650static void __init memory_map_bottom_up(unsigned long map_start,
651 unsigned long map_end)
652{
653 unsigned long next, start;
654 unsigned long mapped_ram_size = 0;
655 /* step_size need to be small so pgt_buf from BRK could cover it */
656 unsigned long step_size = PMD_SIZE;
657
658 start = map_start;
659 min_pfn_mapped = start >> PAGE_SHIFT;
660
661 /*
662 * We start from the bottom (@map_start) and go to the top (@map_end).
663 * The memblock_find_in_range() gets us a block of RAM from the
664 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
665 * for page table.
666 */
667 while (start < map_end) {
668 if (step_size && map_end - start > step_size) {
669 next = round_up(start + 1, step_size);
670 if (next > map_end)
671 next = map_end;
672 } else {
673 next = map_end;
674 }
675
676 mapped_ram_size += init_range_memory_mapping(start, next);
677 start = next;
678
679 if (mapped_ram_size >= step_size)
680 step_size = get_new_step_size(step_size);
681 }
682}
683
684/*
685 * The real mode trampoline, which is required for bootstrapping CPUs
686 * occupies only a small area under the low 1MB. See reserve_real_mode()
687 * for details.
688 *
689 * If KASLR is disabled the first PGD entry of the direct mapping is copied
690 * to map the real mode trampoline.
691 *
692 * If KASLR is enabled, copy only the PUD which covers the low 1MB
693 * area. This limits the randomization granularity to 1GB for both 4-level
694 * and 5-level paging.
695 */
696static void __init init_trampoline(void)
697{
698#ifdef CONFIG_X86_64
699 if (!kaslr_memory_enabled())
700 trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
701 else
702 init_trampoline_kaslr();
703#endif
704}
705
706void __init init_mem_mapping(void)
707{
708 unsigned long end;
709
710 pti_check_boottime_disable();
711 probe_page_size_mask();
712 setup_pcid();
713
714#ifdef CONFIG_X86_64
715 end = max_pfn << PAGE_SHIFT;
716#else
717 end = max_low_pfn << PAGE_SHIFT;
718#endif
719
720 /* the ISA range is always mapped regardless of memory holes */
721 init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
722
723 /* Init the trampoline, possibly with KASLR memory offset */
724 init_trampoline();
725
726 /*
727 * If the allocation is in bottom-up direction, we setup direct mapping
728 * in bottom-up, otherwise we setup direct mapping in top-down.
729 */
730 if (memblock_bottom_up()) {
731 unsigned long kernel_end = __pa_symbol(_end);
732
733 /*
734 * we need two separate calls here. This is because we want to
735 * allocate page tables above the kernel. So we first map
736 * [kernel_end, end) to make memory above the kernel be mapped
737 * as soon as possible. And then use page tables allocated above
738 * the kernel to map [ISA_END_ADDRESS, kernel_end).
739 */
740 memory_map_bottom_up(kernel_end, end);
741 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
742 } else {
743 memory_map_top_down(ISA_END_ADDRESS, end);
744 }
745
746#ifdef CONFIG_X86_64
747 if (max_pfn > max_low_pfn) {
748 /* can we preseve max_low_pfn ?*/
749 max_low_pfn = max_pfn;
750 }
751#else
752 early_ioremap_page_table_range_init();
753#endif
754
755 load_cr3(swapper_pg_dir);
756 __flush_tlb_all();
757
758 x86_init.hyper.init_mem_mapping();
759
760 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
761}
762
763/*
764 * Initialize an mm_struct to be used during poking and a pointer to be used
765 * during patching.
766 */
767void __init poking_init(void)
768{
769 spinlock_t *ptl;
770 pte_t *ptep;
771
772 poking_mm = copy_init_mm();
773 BUG_ON(!poking_mm);
774
775 /*
776 * Randomize the poking address, but make sure that the following page
777 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
778 * and adjust the address if the PMD ends after the first one.
779 */
780 poking_addr = TASK_UNMAPPED_BASE;
781 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
782 poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
783 (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
784
785 if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
786 poking_addr += PAGE_SIZE;
787
788 /*
789 * We need to trigger the allocation of the page-tables that will be
790 * needed for poking now. Later, poking may be performed in an atomic
791 * section, which might cause allocation to fail.
792 */
793 ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
794 BUG_ON(!ptep);
795 pte_unmap_unlock(ptep, ptl);
796}
797
798/*
799 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
800 * is valid. The argument is a physical page number.
801 *
802 * On x86, access has to be given to the first megabyte of RAM because that
803 * area traditionally contains BIOS code and data regions used by X, dosemu,
804 * and similar apps. Since they map the entire memory range, the whole range
805 * must be allowed (for mapping), but any areas that would otherwise be
806 * disallowed are flagged as being "zero filled" instead of rejected.
807 * Access has to be given to non-kernel-ram areas as well, these contain the
808 * PCI mmio resources as well as potential bios/acpi data regions.
809 */
810int devmem_is_allowed(unsigned long pagenr)
811{
812 if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
813 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
814 != REGION_DISJOINT) {
815 /*
816 * For disallowed memory regions in the low 1MB range,
817 * request that the page be shown as all zeros.
818 */
819 if (pagenr < 256)
820 return 2;
821
822 return 0;
823 }
824
825 /*
826 * This must follow RAM test, since System RAM is considered a
827 * restricted resource under CONFIG_STRICT_IOMEM.
828 */
829 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
830 /* Low 1MB bypasses iomem restrictions. */
831 if (pagenr < 256)
832 return 1;
833
834 return 0;
835 }
836
837 return 1;
838}
839
840void free_init_pages(const char *what, unsigned long begin, unsigned long end)
841{
842 unsigned long begin_aligned, end_aligned;
843
844 /* Make sure boundaries are page aligned */
845 begin_aligned = PAGE_ALIGN(begin);
846 end_aligned = end & PAGE_MASK;
847
848 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
849 begin = begin_aligned;
850 end = end_aligned;
851 }
852
853 if (begin >= end)
854 return;
855
856 /*
857 * If debugging page accesses then do not free this memory but
858 * mark them not present - any buggy init-section access will
859 * create a kernel page fault:
860 */
861 if (debug_pagealloc_enabled()) {
862 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
863 begin, end - 1);
864 /*
865 * Inform kmemleak about the hole in the memory since the
866 * corresponding pages will be unmapped.
867 */
868 kmemleak_free_part((void *)begin, end - begin);
869 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
870 } else {
871 /*
872 * We just marked the kernel text read only above, now that
873 * we are going to free part of that, we need to make that
874 * writeable and non-executable first.
875 */
876 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
877 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
878
879 free_reserved_area((void *)begin, (void *)end,
880 POISON_FREE_INITMEM, what);
881 }
882}
883
884/*
885 * begin/end can be in the direct map or the "high kernel mapping"
886 * used for the kernel image only. free_init_pages() will do the
887 * right thing for either kind of address.
888 */
889void free_kernel_image_pages(const char *what, void *begin, void *end)
890{
891 unsigned long begin_ul = (unsigned long)begin;
892 unsigned long end_ul = (unsigned long)end;
893 unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
894
895 free_init_pages(what, begin_ul, end_ul);
896
897 /*
898 * PTI maps some of the kernel into userspace. For performance,
899 * this includes some kernel areas that do not contain secrets.
900 * Those areas might be adjacent to the parts of the kernel image
901 * being freed, which may contain secrets. Remove the "high kernel
902 * image mapping" for these freed areas, ensuring they are not even
903 * potentially vulnerable to Meltdown regardless of the specific
904 * optimizations PTI is currently using.
905 *
906 * The "noalias" prevents unmapping the direct map alias which is
907 * needed to access the freed pages.
908 *
909 * This is only valid for 64bit kernels. 32bit has only one mapping
910 * which can't be treated in this way for obvious reasons.
911 */
912 if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
913 set_memory_np_noalias(begin_ul, len_pages);
914}
915
916void __ref free_initmem(void)
917{
918 e820__reallocate_tables();
919
920 mem_encrypt_free_decrypted_mem();
921
922 free_kernel_image_pages("unused kernel image (initmem)",
923 &__init_begin, &__init_end);
924}
925
926#ifdef CONFIG_BLK_DEV_INITRD
927void __init free_initrd_mem(unsigned long start, unsigned long end)
928{
929 /*
930 * end could be not aligned, and We can not align that,
931 * decompresser could be confused by aligned initrd_end
932 * We already reserve the end partial page before in
933 * - i386_start_kernel()
934 * - x86_64_start_kernel()
935 * - relocate_initrd()
936 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
937 */
938 free_init_pages("initrd", start, PAGE_ALIGN(end));
939}
940#endif
941
942/*
943 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
944 * and pass it to the MM layer - to help it set zone watermarks more
945 * accurately.
946 *
947 * Done on 64-bit systems only for the time being, although 32-bit systems
948 * might benefit from this as well.
949 */
950void __init memblock_find_dma_reserve(void)
951{
952#ifdef CONFIG_X86_64
953 u64 nr_pages = 0, nr_free_pages = 0;
954 unsigned long start_pfn, end_pfn;
955 phys_addr_t start_addr, end_addr;
956 int i;
957 u64 u;
958
959 /*
960 * Iterate over all memory ranges (free and reserved ones alike),
961 * to calculate the total number of pages in the first 16 MB of RAM:
962 */
963 nr_pages = 0;
964 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
965 start_pfn = min(start_pfn, MAX_DMA_PFN);
966 end_pfn = min(end_pfn, MAX_DMA_PFN);
967
968 nr_pages += end_pfn - start_pfn;
969 }
970
971 /*
972 * Iterate over free memory ranges to calculate the number of free
973 * pages in the DMA zone, while not counting potential partial
974 * pages at the beginning or the end of the range:
975 */
976 nr_free_pages = 0;
977 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
978 start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
979 end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
980
981 if (start_pfn < end_pfn)
982 nr_free_pages += end_pfn - start_pfn;
983 }
984
985 set_dma_reserve(nr_pages - nr_free_pages);
986#endif
987}
988
989void __init zone_sizes_init(void)
990{
991 unsigned long max_zone_pfns[MAX_NR_ZONES];
992
993 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
994
995#ifdef CONFIG_ZONE_DMA
996 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
997#endif
998#ifdef CONFIG_ZONE_DMA32
999 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
1000#endif
1001 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
1002#ifdef CONFIG_HIGHMEM
1003 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
1004#endif
1005
1006 free_area_init(max_zone_pfns);
1007}
1008
1009__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1010 .loaded_mm = &init_mm,
1011 .next_asid = 1,
1012 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
1013};
1014
1015void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1016{
1017 /* entry 0 MUST be WB (hardwired to speed up translations) */
1018 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1019
1020 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1021 __pte2cachemode_tbl[entry] = cache;
1022}
1023
1024#ifdef CONFIG_SWAP
1025unsigned long max_swapfile_size(void)
1026{
1027 unsigned long pages;
1028
1029 pages = generic_max_swapfile_size();
1030
1031 if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1032 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1033 unsigned long long l1tf_limit = l1tf_pfn_limit();
1034 /*
1035 * We encode swap offsets also with 3 bits below those for pfn
1036 * which makes the usable limit higher.
1037 */
1038#if CONFIG_PGTABLE_LEVELS > 2
1039 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1040#endif
1041 pages = min_t(unsigned long long, l1tf_limit, pages);
1042 }
1043 return pages;
1044}
1045#endif