Linux Audio

Check our new training course

Loading...
v6.8
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 1994 - 1999, 2000 by Ralf Baechle and others.
  7 * Copyright (C) 2005, 2006 by Ralf Baechle (ralf@linux-mips.org)
  8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
  9 * Copyright (C) 2004 Thiemo Seufer
 10 * Copyright (C) 2013  Imagination Technologies Ltd.
 11 */
 12#include <linux/cpu.h>
 13#include <linux/errno.h>
 14#include <linux/init.h>
 15#include <linux/kallsyms.h>
 16#include <linux/kernel.h>
 17#include <linux/nmi.h>
 18#include <linux/personality.h>
 19#include <linux/prctl.h>
 20#include <linux/random.h>
 21#include <linux/sched.h>
 22#include <linux/sched/debug.h>
 
 23#include <linux/sched/task_stack.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 24
 25#include <asm/abi.h>
 26#include <asm/asm.h>
 
 
 27#include <asm/dsemul.h>
 28#include <asm/dsp.h>
 29#include <asm/exec.h>
 30#include <asm/fpu.h>
 31#include <asm/inst.h>
 32#include <asm/irq.h>
 33#include <asm/irq_regs.h>
 34#include <asm/isadep.h>
 35#include <asm/msa.h>
 36#include <asm/mips-cps.h>
 
 37#include <asm/mipsregs.h>
 38#include <asm/processor.h>
 39#include <asm/reg.h>
 
 
 
 
 
 40#include <asm/stacktrace.h>
 
 41
 42#ifdef CONFIG_HOTPLUG_CPU
 43void __noreturn arch_cpu_idle_dead(void)
 44{
 45	play_dead();
 46}
 47#endif
 48
 49asmlinkage void ret_from_fork(void);
 50asmlinkage void ret_from_kernel_thread(void);
 51
 52void start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
 53{
 54	unsigned long status;
 55
 56	/* New thread loses kernel privileges. */
 57	status = regs->cp0_status & ~(ST0_CU0|ST0_CU1|ST0_CU2|ST0_FR|KU_MASK);
 58	status |= KU_USER;
 59	regs->cp0_status = status;
 60	lose_fpu(0);
 61	clear_thread_flag(TIF_MSA_CTX_LIVE);
 62	clear_used_math();
 63#ifdef CONFIG_MIPS_FP_SUPPORT
 64	atomic_set(&current->thread.bd_emu_frame, BD_EMUFRAME_NONE);
 65#endif
 66	init_dsp();
 67	regs->cp0_epc = pc;
 68	regs->regs[29] = sp;
 69}
 70
 71void exit_thread(struct task_struct *tsk)
 72{
 73	/*
 74	 * User threads may have allocated a delay slot emulation frame.
 75	 * If so, clean up that allocation.
 76	 */
 77	if (!(current->flags & PF_KTHREAD))
 78		dsemul_thread_cleanup(tsk);
 79}
 80
 81int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 82{
 83	/*
 84	 * Save any process state which is live in hardware registers to the
 85	 * parent context prior to duplication. This prevents the new child
 86	 * state becoming stale if the parent is preempted before copy_thread()
 87	 * gets a chance to save the parent's live hardware registers to the
 88	 * child context.
 89	 */
 90	preempt_disable();
 91
 92	if (is_msa_enabled())
 93		save_msa(current);
 94	else if (is_fpu_owner())
 95		_save_fp(current);
 96
 97	save_dsp(current);
 98
 99	preempt_enable();
100
101	*dst = *src;
102	return 0;
103}
104
105/*
106 * Copy architecture-specific thread state
107 */
108int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
 
 
109{
110	unsigned long clone_flags = args->flags;
111	unsigned long usp = args->stack;
112	unsigned long tls = args->tls;
113	struct thread_info *ti = task_thread_info(p);
114	struct pt_regs *childregs, *regs = current_pt_regs();
115	unsigned long childksp;
116
117	childksp = (unsigned long)task_stack_page(p) + THREAD_SIZE - 32;
118
119	/* set up new TSS. */
120	childregs = (struct pt_regs *) childksp - 1;
121	/*  Put the stack after the struct pt_regs.  */
122	childksp = (unsigned long) childregs;
123	p->thread.cp0_status = (read_c0_status() & ~(ST0_CU2|ST0_CU1)) | ST0_KERNEL_CUMASK;
124
125	/*
126	 * New tasks lose permission to use the fpu. This accelerates context
127	 * switching for most programs since they don't use the fpu.
128	 */
129	clear_tsk_thread_flag(p, TIF_USEDFPU);
130	clear_tsk_thread_flag(p, TIF_USEDMSA);
131	clear_tsk_thread_flag(p, TIF_MSA_CTX_LIVE);
132
133#ifdef CONFIG_MIPS_MT_FPAFF
134	clear_tsk_thread_flag(p, TIF_FPUBOUND);
135#endif /* CONFIG_MIPS_MT_FPAFF */
136
137	if (unlikely(args->fn)) {
138		/* kernel thread */
139		unsigned long status = p->thread.cp0_status;
140		memset(childregs, 0, sizeof(struct pt_regs));
141		p->thread.reg16 = (unsigned long)args->fn;
142		p->thread.reg17 = (unsigned long)args->fn_arg;
 
143		p->thread.reg29 = childksp;
144		p->thread.reg31 = (unsigned long) ret_from_kernel_thread;
145#if defined(CONFIG_CPU_R3000)
146		status = (status & ~(ST0_KUP | ST0_IEP | ST0_IEC)) |
147			 ((status & (ST0_KUC | ST0_IEC)) << 2);
148#else
149		status |= ST0_EXL;
150#endif
151		childregs->cp0_status = status;
152		return 0;
153	}
154
155	/* user thread */
156	*childregs = *regs;
157	childregs->regs[7] = 0; /* Clear error flag */
158	childregs->regs[2] = 0; /* Child gets zero as return value */
159	if (usp)
160		childregs->regs[29] = usp;
 
161
162	p->thread.reg29 = (unsigned long) childregs;
163	p->thread.reg31 = (unsigned long) ret_from_fork;
164
 
 
 
 
165	childregs->cp0_status &= ~(ST0_CU2|ST0_CU1);
166
 
 
 
 
 
 
 
 
167#ifdef CONFIG_MIPS_FP_SUPPORT
168	atomic_set(&p->thread.bd_emu_frame, BD_EMUFRAME_NONE);
169#endif
170
171	if (clone_flags & CLONE_SETTLS)
172		ti->tp_value = tls;
173
174	return 0;
175}
176
177#ifdef CONFIG_STACKPROTECTOR
178#include <linux/stackprotector.h>
179unsigned long __stack_chk_guard __read_mostly;
180EXPORT_SYMBOL(__stack_chk_guard);
181#endif
182
183struct mips_frame_info {
184	void		*func;
185	unsigned long	func_size;
186	int		frame_size;
187	int		pc_offset;
188};
189
190#define J_TARGET(pc,target)	\
191		(((unsigned long)(pc) & 0xf0000000) | ((target) << 2))
192
193static inline int is_jr_ra_ins(union mips_instruction *ip)
194{
195#ifdef CONFIG_CPU_MICROMIPS
196	/*
197	 * jr16 ra
198	 * jr ra
199	 */
200	if (mm_insn_16bit(ip->word >> 16)) {
201		if (ip->mm16_r5_format.opcode == mm_pool16c_op &&
202		    ip->mm16_r5_format.rt == mm_jr16_op &&
203		    ip->mm16_r5_format.imm == 31)
204			return 1;
205		return 0;
206	}
207
208	if (ip->r_format.opcode == mm_pool32a_op &&
209	    ip->r_format.func == mm_pool32axf_op &&
210	    ((ip->u_format.uimmediate >> 6) & GENMASK(9, 0)) == mm_jalr_op &&
211	    ip->r_format.rt == 31)
212		return 1;
213	return 0;
214#else
215	if (ip->r_format.opcode == spec_op &&
216	    ip->r_format.func == jr_op &&
217	    ip->r_format.rs == 31)
218		return 1;
219	return 0;
220#endif
221}
222
223static inline int is_ra_save_ins(union mips_instruction *ip, int *poff)
224{
225#ifdef CONFIG_CPU_MICROMIPS
226	/*
227	 * swsp ra,offset
228	 * swm16 reglist,offset(sp)
229	 * swm32 reglist,offset(sp)
230	 * sw32 ra,offset(sp)
231	 * jradiussp - NOT SUPPORTED
232	 *
233	 * microMIPS is way more fun...
234	 */
235	if (mm_insn_16bit(ip->word >> 16)) {
236		switch (ip->mm16_r5_format.opcode) {
237		case mm_swsp16_op:
238			if (ip->mm16_r5_format.rt != 31)
239				return 0;
240
241			*poff = ip->mm16_r5_format.imm;
242			*poff = (*poff << 2) / sizeof(ulong);
243			return 1;
244
245		case mm_pool16c_op:
246			switch (ip->mm16_m_format.func) {
247			case mm_swm16_op:
248				*poff = ip->mm16_m_format.imm;
249				*poff += 1 + ip->mm16_m_format.rlist;
250				*poff = (*poff << 2) / sizeof(ulong);
251				return 1;
252
253			default:
254				return 0;
255			}
256
257		default:
258			return 0;
259		}
260	}
261
262	switch (ip->i_format.opcode) {
263	case mm_sw32_op:
264		if (ip->i_format.rs != 29)
265			return 0;
266		if (ip->i_format.rt != 31)
267			return 0;
268
269		*poff = ip->i_format.simmediate / sizeof(ulong);
270		return 1;
271
272	case mm_pool32b_op:
273		switch (ip->mm_m_format.func) {
274		case mm_swm32_func:
275			if (ip->mm_m_format.rd < 0x10)
276				return 0;
277			if (ip->mm_m_format.base != 29)
278				return 0;
279
280			*poff = ip->mm_m_format.simmediate;
281			*poff += (ip->mm_m_format.rd & 0xf) * sizeof(u32);
282			*poff /= sizeof(ulong);
283			return 1;
284		default:
285			return 0;
286		}
287
288	default:
289		return 0;
290	}
291#else
292	/* sw / sd $ra, offset($sp) */
293	if ((ip->i_format.opcode == sw_op || ip->i_format.opcode == sd_op) &&
294		ip->i_format.rs == 29 && ip->i_format.rt == 31) {
295		*poff = ip->i_format.simmediate / sizeof(ulong);
296		return 1;
297	}
298#ifdef CONFIG_CPU_LOONGSON64
299	if ((ip->loongson3_lswc2_format.opcode == swc2_op) &&
300		      (ip->loongson3_lswc2_format.ls == 1) &&
301		      (ip->loongson3_lswc2_format.fr == 0) &&
302		      (ip->loongson3_lswc2_format.base == 29)) {
303		if (ip->loongson3_lswc2_format.rt == 31) {
304			*poff = ip->loongson3_lswc2_format.offset << 1;
305			return 1;
306		}
307		if (ip->loongson3_lswc2_format.rq == 31) {
308			*poff = (ip->loongson3_lswc2_format.offset << 1) + 1;
309			return 1;
310		}
311	}
312#endif
313	return 0;
314#endif
315}
316
317static inline int is_jump_ins(union mips_instruction *ip)
318{
319#ifdef CONFIG_CPU_MICROMIPS
320	/*
321	 * jr16,jrc,jalr16,jalr16
322	 * jal
323	 * jalr/jr,jalr.hb/jr.hb,jalrs,jalrs.hb
324	 * jraddiusp - NOT SUPPORTED
325	 *
326	 * microMIPS is kind of more fun...
327	 */
328	if (mm_insn_16bit(ip->word >> 16)) {
329		if ((ip->mm16_r5_format.opcode == mm_pool16c_op &&
330		    (ip->mm16_r5_format.rt & mm_jr16_op) == mm_jr16_op))
331			return 1;
332		return 0;
333	}
334
335	if (ip->j_format.opcode == mm_j32_op)
336		return 1;
337	if (ip->j_format.opcode == mm_jal32_op)
338		return 1;
339	if (ip->r_format.opcode != mm_pool32a_op ||
340			ip->r_format.func != mm_pool32axf_op)
341		return 0;
342	return ((ip->u_format.uimmediate >> 6) & mm_jalr_op) == mm_jalr_op;
343#else
344	if (ip->j_format.opcode == j_op)
345		return 1;
346	if (ip->j_format.opcode == jal_op)
347		return 1;
348	if (ip->r_format.opcode != spec_op)
349		return 0;
350	return ip->r_format.func == jalr_op || ip->r_format.func == jr_op;
351#endif
352}
353
354static inline int is_sp_move_ins(union mips_instruction *ip, int *frame_size)
355{
356#ifdef CONFIG_CPU_MICROMIPS
357	unsigned short tmp;
358
359	/*
360	 * addiusp -imm
361	 * addius5 sp,-imm
362	 * addiu32 sp,sp,-imm
363	 * jradiussp - NOT SUPPORTED
364	 *
365	 * microMIPS is not more fun...
366	 */
367	if (mm_insn_16bit(ip->word >> 16)) {
368		if (ip->mm16_r3_format.opcode == mm_pool16d_op &&
369		    ip->mm16_r3_format.simmediate & mm_addiusp_func) {
370			tmp = ip->mm_b0_format.simmediate >> 1;
371			tmp = ((tmp & 0x1ff) ^ 0x100) - 0x100;
372			if ((tmp + 2) < 4) /* 0x0,0x1,0x1fe,0x1ff are special */
373				tmp ^= 0x100;
374			*frame_size = -(signed short)(tmp << 2);
375			return 1;
376		}
377		if (ip->mm16_r5_format.opcode == mm_pool16d_op &&
378		    ip->mm16_r5_format.rt == 29) {
379			tmp = ip->mm16_r5_format.imm >> 1;
380			*frame_size = -(signed short)(tmp & 0xf);
381			return 1;
382		}
383		return 0;
384	}
385
386	if (ip->mm_i_format.opcode == mm_addiu32_op &&
387	    ip->mm_i_format.rt == 29 && ip->mm_i_format.rs == 29) {
388		*frame_size = -ip->i_format.simmediate;
389		return 1;
390	}
391#else
392	/* addiu/daddiu sp,sp,-imm */
393	if (ip->i_format.rs != 29 || ip->i_format.rt != 29)
394		return 0;
395
396	if (ip->i_format.opcode == addiu_op ||
397	    ip->i_format.opcode == daddiu_op) {
398		*frame_size = -ip->i_format.simmediate;
399		return 1;
400	}
401#endif
402	return 0;
403}
404
405static int get_frame_info(struct mips_frame_info *info)
406{
407	bool is_mmips = IS_ENABLED(CONFIG_CPU_MICROMIPS);
408	union mips_instruction insn, *ip, *ip_end;
 
409	unsigned int last_insn_size = 0;
 
410	bool saw_jump = false;
411
412	info->pc_offset = -1;
413	info->frame_size = 0;
414
415	ip = (void *)msk_isa16_mode((ulong)info->func);
416	if (!ip)
417		goto err;
418
419	ip_end = (void *)ip + (info->func_size ? info->func_size : 512);
420
421	while (ip < ip_end) {
422		ip = (void *)ip + last_insn_size;
423
424		if (is_mmips && mm_insn_16bit(ip->halfword[0])) {
425			insn.word = ip->halfword[0] << 16;
426			last_insn_size = 2;
427		} else if (is_mmips) {
428			insn.word = ip->halfword[0] << 16 | ip->halfword[1];
429			last_insn_size = 4;
430		} else {
431			insn.word = ip->word;
432			last_insn_size = 4;
433		}
434
435		if (is_jr_ra_ins(ip)) {
436			break;
437		} else if (!info->frame_size) {
438			is_sp_move_ins(&insn, &info->frame_size);
439			continue;
440		} else if (!saw_jump && is_jump_ins(ip)) {
441			/*
442			 * If we see a jump instruction, we are finished
443			 * with the frame save.
444			 *
445			 * Some functions can have a shortcut return at
446			 * the beginning of the function, so don't start
447			 * looking for jump instruction until we see the
448			 * frame setup.
449			 *
450			 * The RA save instruction can get put into the
451			 * delay slot of the jump instruction, so look
452			 * at the next instruction, too.
453			 */
454			saw_jump = true;
455			continue;
456		}
457		if (info->pc_offset == -1 &&
458		    is_ra_save_ins(&insn, &info->pc_offset))
459			break;
460		if (saw_jump)
461			break;
462	}
463	if (info->frame_size && info->pc_offset >= 0) /* nested */
464		return 0;
465	if (info->pc_offset < 0) /* leaf */
466		return 1;
467	/* prologue seems bogus... */
468err:
469	return -1;
470}
471
472static struct mips_frame_info schedule_mfi __read_mostly;
473
474#ifdef CONFIG_KALLSYMS
475static unsigned long get___schedule_addr(void)
476{
477	return kallsyms_lookup_name("__schedule");
478}
479#else
480static unsigned long get___schedule_addr(void)
481{
482	union mips_instruction *ip = (void *)schedule;
483	int max_insns = 8;
484	int i;
485
486	for (i = 0; i < max_insns; i++, ip++) {
487		if (ip->j_format.opcode == j_op)
488			return J_TARGET(ip, ip->j_format.target);
489	}
490	return 0;
491}
492#endif
493
494static int __init frame_info_init(void)
495{
496	unsigned long size = 0;
497#ifdef CONFIG_KALLSYMS
498	unsigned long ofs;
499#endif
500	unsigned long addr;
501
502	addr = get___schedule_addr();
503	if (!addr)
504		addr = (unsigned long)schedule;
505
506#ifdef CONFIG_KALLSYMS
507	kallsyms_lookup_size_offset(addr, &size, &ofs);
508#endif
509	schedule_mfi.func = (void *)addr;
510	schedule_mfi.func_size = size;
511
512	get_frame_info(&schedule_mfi);
513
514	/*
515	 * Without schedule() frame info, result given by
516	 * thread_saved_pc() and __get_wchan() are not reliable.
517	 */
518	if (schedule_mfi.pc_offset < 0)
519		printk("Can't analyze schedule() prologue at %p\n", schedule);
520
521	return 0;
522}
523
524arch_initcall(frame_info_init);
525
526/*
527 * Return saved PC of a blocked thread.
528 */
529static unsigned long thread_saved_pc(struct task_struct *tsk)
530{
531	struct thread_struct *t = &tsk->thread;
532
533	/* New born processes are a special case */
534	if (t->reg31 == (unsigned long) ret_from_fork)
535		return t->reg31;
536	if (schedule_mfi.pc_offset < 0)
537		return 0;
538	return ((unsigned long *)t->reg29)[schedule_mfi.pc_offset];
539}
540
541
542#ifdef CONFIG_KALLSYMS
543/* generic stack unwinding function */
544unsigned long notrace unwind_stack_by_address(unsigned long stack_page,
545					      unsigned long *sp,
546					      unsigned long pc,
547					      unsigned long *ra)
548{
549	unsigned long low, high, irq_stack_high;
550	struct mips_frame_info info;
551	unsigned long size, ofs;
552	struct pt_regs *regs;
553	int leaf;
554
555	if (!stack_page)
556		return 0;
557
558	/*
559	 * IRQ stacks start at IRQ_STACK_START
560	 * task stacks at THREAD_SIZE - 32
561	 */
562	low = stack_page;
563	if (!preemptible() && on_irq_stack(raw_smp_processor_id(), *sp)) {
564		high = stack_page + IRQ_STACK_START;
565		irq_stack_high = high;
566	} else {
567		high = stack_page + THREAD_SIZE - 32;
568		irq_stack_high = 0;
569	}
570
571	/*
572	 * If we reached the top of the interrupt stack, start unwinding
573	 * the interrupted task stack.
574	 */
575	if (unlikely(*sp == irq_stack_high)) {
576		unsigned long task_sp = *(unsigned long *)*sp;
577
578		/*
579		 * Check that the pointer saved in the IRQ stack head points to
580		 * something within the stack of the current task
581		 */
582		if (!object_is_on_stack((void *)task_sp))
583			return 0;
584
585		/*
586		 * Follow pointer to tasks kernel stack frame where interrupted
587		 * state was saved.
588		 */
589		regs = (struct pt_regs *)task_sp;
590		pc = regs->cp0_epc;
591		if (!user_mode(regs) && __kernel_text_address(pc)) {
592			*sp = regs->regs[29];
593			*ra = regs->regs[31];
594			return pc;
595		}
596		return 0;
597	}
598	if (!kallsyms_lookup_size_offset(pc, &size, &ofs))
599		return 0;
600	/*
601	 * Return ra if an exception occurred at the first instruction
602	 */
603	if (unlikely(ofs == 0)) {
604		pc = *ra;
605		*ra = 0;
606		return pc;
607	}
608
609	info.func = (void *)(pc - ofs);
610	info.func_size = ofs;	/* analyze from start to ofs */
611	leaf = get_frame_info(&info);
612	if (leaf < 0)
613		return 0;
614
615	if (*sp < low || *sp + info.frame_size > high)
616		return 0;
617
618	if (leaf)
619		/*
620		 * For some extreme cases, get_frame_info() can
621		 * consider wrongly a nested function as a leaf
622		 * one. In that cases avoid to return always the
623		 * same value.
624		 */
625		pc = pc != *ra ? *ra : 0;
626	else
627		pc = ((unsigned long *)(*sp))[info.pc_offset];
628
629	*sp += info.frame_size;
630	*ra = 0;
631	return __kernel_text_address(pc) ? pc : 0;
632}
633EXPORT_SYMBOL(unwind_stack_by_address);
634
635/* used by show_backtrace() */
636unsigned long unwind_stack(struct task_struct *task, unsigned long *sp,
637			   unsigned long pc, unsigned long *ra)
638{
639	unsigned long stack_page = 0;
640	int cpu;
641
642	for_each_possible_cpu(cpu) {
643		if (on_irq_stack(cpu, *sp)) {
644			stack_page = (unsigned long)irq_stack[cpu];
645			break;
646		}
647	}
648
649	if (!stack_page)
650		stack_page = (unsigned long)task_stack_page(task);
651
652	return unwind_stack_by_address(stack_page, sp, pc, ra);
653}
654#endif
655
656/*
657 * __get_wchan - a maintenance nightmare^W^Wpain in the ass ...
658 */
659unsigned long __get_wchan(struct task_struct *task)
660{
661	unsigned long pc = 0;
662#ifdef CONFIG_KALLSYMS
663	unsigned long sp;
664	unsigned long ra = 0;
665#endif
666
 
 
667	if (!task_stack_page(task))
668		goto out;
669
670	pc = thread_saved_pc(task);
671
672#ifdef CONFIG_KALLSYMS
673	sp = task->thread.reg29 + schedule_mfi.frame_size;
674
675	while (in_sched_functions(pc))
676		pc = unwind_stack(task, &sp, pc, &ra);
677#endif
678
679out:
680	return pc;
681}
682
683unsigned long mips_stack_top(void)
684{
685	unsigned long top = TASK_SIZE & PAGE_MASK;
686
687	if (IS_ENABLED(CONFIG_MIPS_FP_SUPPORT)) {
688		/* One page for branch delay slot "emulation" */
689		top -= PAGE_SIZE;
690	}
691
692	/* Space for the VDSO, data page & GIC user page */
693	top -= PAGE_ALIGN(current->thread.abi->vdso->size);
694	top -= PAGE_SIZE;
695	top -= mips_gic_present() ? PAGE_SIZE : 0;
696
697	/* Space for cache colour alignment */
698	if (cpu_has_dc_aliases)
699		top -= shm_align_mask + 1;
700
701	/* Space to randomize the VDSO base */
702	if (current->flags & PF_RANDOMIZE)
703		top -= VDSO_RANDOMIZE_SIZE;
704
705	return top;
706}
707
708/*
709 * Don't forget that the stack pointer must be aligned on a 8 bytes
710 * boundary for 32-bits ABI and 16 bytes for 64-bits ABI.
711 */
712unsigned long arch_align_stack(unsigned long sp)
713{
714	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
715		sp -= get_random_u32_below(PAGE_SIZE);
716
717	return sp & ALMASK;
718}
719
 
720static struct cpumask backtrace_csd_busy;
721
722static void handle_backtrace(void *info)
723{
724	nmi_cpu_backtrace(get_irq_regs());
725	cpumask_clear_cpu(smp_processor_id(), &backtrace_csd_busy);
726}
727
728static DEFINE_PER_CPU(call_single_data_t, backtrace_csd) =
729	CSD_INIT(handle_backtrace, NULL);
730
731static void raise_backtrace(cpumask_t *mask)
732{
733	call_single_data_t *csd;
734	int cpu;
735
736	for_each_cpu(cpu, mask) {
737		/*
738		 * If we previously sent an IPI to the target CPU & it hasn't
739		 * cleared its bit in the busy cpumask then it didn't handle
740		 * our previous IPI & it's not safe for us to reuse the
741		 * call_single_data_t.
742		 */
743		if (cpumask_test_and_set_cpu(cpu, &backtrace_csd_busy)) {
744			pr_warn("Unable to send backtrace IPI to CPU%u - perhaps it hung?\n",
745				cpu);
746			continue;
747		}
748
749		csd = &per_cpu(backtrace_csd, cpu);
 
750		smp_call_function_single_async(cpu, csd);
751	}
752}
753
754void arch_trigger_cpumask_backtrace(const cpumask_t *mask, int exclude_cpu)
755{
756	nmi_trigger_cpumask_backtrace(mask, exclude_cpu, raise_backtrace);
757}
758
759int mips_get_process_fp_mode(struct task_struct *task)
760{
761	int value = 0;
762
763	if (!test_tsk_thread_flag(task, TIF_32BIT_FPREGS))
764		value |= PR_FP_MODE_FR;
765	if (test_tsk_thread_flag(task, TIF_HYBRID_FPREGS))
766		value |= PR_FP_MODE_FRE;
767
768	return value;
769}
770
771static long prepare_for_fp_mode_switch(void *unused)
772{
773	/*
774	 * This is icky, but we use this to simply ensure that all CPUs have
775	 * context switched, regardless of whether they were previously running
776	 * kernel or user code. This ensures that no CPU that a mode-switching
777	 * program may execute on keeps its FPU enabled (& in the old mode)
778	 * throughout the mode switch.
779	 */
780	return 0;
781}
782
783int mips_set_process_fp_mode(struct task_struct *task, unsigned int value)
784{
785	const unsigned int known_bits = PR_FP_MODE_FR | PR_FP_MODE_FRE;
786	struct task_struct *t;
787	struct cpumask process_cpus;
788	int cpu;
789
790	/* If nothing to change, return right away, successfully.  */
791	if (value == mips_get_process_fp_mode(task))
792		return 0;
793
794	/* Only accept a mode change if 64-bit FP enabled for o32.  */
795	if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
796		return -EOPNOTSUPP;
797
798	/* And only for o32 tasks.  */
799	if (IS_ENABLED(CONFIG_64BIT) && !test_thread_flag(TIF_32BIT_REGS))
800		return -EOPNOTSUPP;
801
802	/* Check the value is valid */
803	if (value & ~known_bits)
804		return -EOPNOTSUPP;
805
806	/* Setting FRE without FR is not supported.  */
807	if ((value & (PR_FP_MODE_FR | PR_FP_MODE_FRE)) == PR_FP_MODE_FRE)
808		return -EOPNOTSUPP;
809
810	/* Avoid inadvertently triggering emulation */
811	if ((value & PR_FP_MODE_FR) && raw_cpu_has_fpu &&
812	    !(raw_current_cpu_data.fpu_id & MIPS_FPIR_F64))
813		return -EOPNOTSUPP;
814	if ((value & PR_FP_MODE_FRE) && raw_cpu_has_fpu && !cpu_has_fre)
815		return -EOPNOTSUPP;
816
817	/* FR = 0 not supported in MIPS R6 */
818	if (!(value & PR_FP_MODE_FR) && raw_cpu_has_fpu && cpu_has_mips_r6)
819		return -EOPNOTSUPP;
820
821	/* Indicate the new FP mode in each thread */
822	for_each_thread(task, t) {
823		/* Update desired FP register width */
824		if (value & PR_FP_MODE_FR) {
825			clear_tsk_thread_flag(t, TIF_32BIT_FPREGS);
826		} else {
827			set_tsk_thread_flag(t, TIF_32BIT_FPREGS);
828			clear_tsk_thread_flag(t, TIF_MSA_CTX_LIVE);
829		}
830
831		/* Update desired FP single layout */
832		if (value & PR_FP_MODE_FRE)
833			set_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
834		else
835			clear_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
836	}
837
838	/*
839	 * We need to ensure that all threads in the process have switched mode
840	 * before returning, in order to allow userland to not worry about
841	 * races. We can do this by forcing all CPUs that any thread in the
842	 * process may be running on to schedule something else - in this case
843	 * prepare_for_fp_mode_switch().
844	 *
845	 * We begin by generating a mask of all CPUs that any thread in the
846	 * process may be running on.
847	 */
848	cpumask_clear(&process_cpus);
849	for_each_thread(task, t)
850		cpumask_set_cpu(task_cpu(t), &process_cpus);
851
852	/*
853	 * Now we schedule prepare_for_fp_mode_switch() on each of those CPUs.
854	 *
855	 * The CPUs may have rescheduled already since we switched mode or
856	 * generated the cpumask, but that doesn't matter. If the task in this
857	 * process is scheduled out then our scheduling
858	 * prepare_for_fp_mode_switch() will simply be redundant. If it's
859	 * scheduled in then it will already have picked up the new FP mode
860	 * whilst doing so.
861	 */
862	cpus_read_lock();
863	for_each_cpu_and(cpu, &process_cpus, cpu_online_mask)
864		work_on_cpu(cpu, prepare_for_fp_mode_switch, NULL);
865	cpus_read_unlock();
866
867	return 0;
868}
869
870#if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
871void mips_dump_regs32(u32 *uregs, const struct pt_regs *regs)
872{
873	unsigned int i;
874
875	for (i = MIPS32_EF_R1; i <= MIPS32_EF_R31; i++) {
876		/* k0/k1 are copied as zero. */
877		if (i == MIPS32_EF_R26 || i == MIPS32_EF_R27)
878			uregs[i] = 0;
879		else
880			uregs[i] = regs->regs[i - MIPS32_EF_R0];
881	}
882
883	uregs[MIPS32_EF_LO] = regs->lo;
884	uregs[MIPS32_EF_HI] = regs->hi;
885	uregs[MIPS32_EF_CP0_EPC] = regs->cp0_epc;
886	uregs[MIPS32_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
887	uregs[MIPS32_EF_CP0_STATUS] = regs->cp0_status;
888	uregs[MIPS32_EF_CP0_CAUSE] = regs->cp0_cause;
889}
890#endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
891
892#ifdef CONFIG_64BIT
893void mips_dump_regs64(u64 *uregs, const struct pt_regs *regs)
894{
895	unsigned int i;
896
897	for (i = MIPS64_EF_R1; i <= MIPS64_EF_R31; i++) {
898		/* k0/k1 are copied as zero. */
899		if (i == MIPS64_EF_R26 || i == MIPS64_EF_R27)
900			uregs[i] = 0;
901		else
902			uregs[i] = regs->regs[i - MIPS64_EF_R0];
903	}
904
905	uregs[MIPS64_EF_LO] = regs->lo;
906	uregs[MIPS64_EF_HI] = regs->hi;
907	uregs[MIPS64_EF_CP0_EPC] = regs->cp0_epc;
908	uregs[MIPS64_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
909	uregs[MIPS64_EF_CP0_STATUS] = regs->cp0_status;
910	uregs[MIPS64_EF_CP0_CAUSE] = regs->cp0_cause;
911}
912#endif /* CONFIG_64BIT */
v5.9
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 1994 - 1999, 2000 by Ralf Baechle and others.
  7 * Copyright (C) 2005, 2006 by Ralf Baechle (ralf@linux-mips.org)
  8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
  9 * Copyright (C) 2004 Thiemo Seufer
 10 * Copyright (C) 2013  Imagination Technologies Ltd.
 11 */
 
 12#include <linux/errno.h>
 
 
 
 
 
 
 
 13#include <linux/sched.h>
 14#include <linux/sched/debug.h>
 15#include <linux/sched/task.h>
 16#include <linux/sched/task_stack.h>
 17#include <linux/tick.h>
 18#include <linux/kernel.h>
 19#include <linux/mm.h>
 20#include <linux/stddef.h>
 21#include <linux/unistd.h>
 22#include <linux/export.h>
 23#include <linux/ptrace.h>
 24#include <linux/mman.h>
 25#include <linux/personality.h>
 26#include <linux/sys.h>
 27#include <linux/init.h>
 28#include <linux/completion.h>
 29#include <linux/kallsyms.h>
 30#include <linux/random.h>
 31#include <linux/prctl.h>
 32#include <linux/nmi.h>
 33#include <linux/cpu.h>
 34
 35#include <asm/abi.h>
 36#include <asm/asm.h>
 37#include <asm/bootinfo.h>
 38#include <asm/cpu.h>
 39#include <asm/dsemul.h>
 40#include <asm/dsp.h>
 
 41#include <asm/fpu.h>
 
 42#include <asm/irq.h>
 
 
 
 43#include <asm/mips-cps.h>
 44#include <asm/msa.h>
 45#include <asm/mipsregs.h>
 46#include <asm/processor.h>
 47#include <asm/reg.h>
 48#include <linux/uaccess.h>
 49#include <asm/io.h>
 50#include <asm/elf.h>
 51#include <asm/isadep.h>
 52#include <asm/inst.h>
 53#include <asm/stacktrace.h>
 54#include <asm/irq_regs.h>
 55
 56#ifdef CONFIG_HOTPLUG_CPU
 57void arch_cpu_idle_dead(void)
 58{
 59	play_dead();
 60}
 61#endif
 62
 63asmlinkage void ret_from_fork(void);
 64asmlinkage void ret_from_kernel_thread(void);
 65
 66void start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
 67{
 68	unsigned long status;
 69
 70	/* New thread loses kernel privileges. */
 71	status = regs->cp0_status & ~(ST0_CU0|ST0_CU1|ST0_FR|KU_MASK);
 72	status |= KU_USER;
 73	regs->cp0_status = status;
 74	lose_fpu(0);
 75	clear_thread_flag(TIF_MSA_CTX_LIVE);
 76	clear_used_math();
 77#ifdef CONFIG_MIPS_FP_SUPPORT
 78	atomic_set(&current->thread.bd_emu_frame, BD_EMUFRAME_NONE);
 79#endif
 80	init_dsp();
 81	regs->cp0_epc = pc;
 82	regs->regs[29] = sp;
 83}
 84
 85void exit_thread(struct task_struct *tsk)
 86{
 87	/*
 88	 * User threads may have allocated a delay slot emulation frame.
 89	 * If so, clean up that allocation.
 90	 */
 91	if (!(current->flags & PF_KTHREAD))
 92		dsemul_thread_cleanup(tsk);
 93}
 94
 95int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 96{
 97	/*
 98	 * Save any process state which is live in hardware registers to the
 99	 * parent context prior to duplication. This prevents the new child
100	 * state becoming stale if the parent is preempted before copy_thread()
101	 * gets a chance to save the parent's live hardware registers to the
102	 * child context.
103	 */
104	preempt_disable();
105
106	if (is_msa_enabled())
107		save_msa(current);
108	else if (is_fpu_owner())
109		_save_fp(current);
110
111	save_dsp(current);
112
113	preempt_enable();
114
115	*dst = *src;
116	return 0;
117}
118
119/*
120 * Copy architecture-specific thread state
121 */
122int copy_thread(unsigned long clone_flags, unsigned long usp,
123		unsigned long kthread_arg, struct task_struct *p,
124		unsigned long tls)
125{
 
 
 
126	struct thread_info *ti = task_thread_info(p);
127	struct pt_regs *childregs, *regs = current_pt_regs();
128	unsigned long childksp;
129
130	childksp = (unsigned long)task_stack_page(p) + THREAD_SIZE - 32;
131
132	/* set up new TSS. */
133	childregs = (struct pt_regs *) childksp - 1;
134	/*  Put the stack after the struct pt_regs.  */
135	childksp = (unsigned long) childregs;
136	p->thread.cp0_status = read_c0_status() & ~(ST0_CU2|ST0_CU1);
137	if (unlikely(p->flags & PF_KTHREAD)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
138		/* kernel thread */
139		unsigned long status = p->thread.cp0_status;
140		memset(childregs, 0, sizeof(struct pt_regs));
141		ti->addr_limit = KERNEL_DS;
142		p->thread.reg16 = usp; /* fn */
143		p->thread.reg17 = kthread_arg;
144		p->thread.reg29 = childksp;
145		p->thread.reg31 = (unsigned long) ret_from_kernel_thread;
146#if defined(CONFIG_CPU_R3000) || defined(CONFIG_CPU_TX39XX)
147		status = (status & ~(ST0_KUP | ST0_IEP | ST0_IEC)) |
148			 ((status & (ST0_KUC | ST0_IEC)) << 2);
149#else
150		status |= ST0_EXL;
151#endif
152		childregs->cp0_status = status;
153		return 0;
154	}
155
156	/* user thread */
157	*childregs = *regs;
158	childregs->regs[7] = 0; /* Clear error flag */
159	childregs->regs[2] = 0; /* Child gets zero as return value */
160	if (usp)
161		childregs->regs[29] = usp;
162	ti->addr_limit = USER_DS;
163
164	p->thread.reg29 = (unsigned long) childregs;
165	p->thread.reg31 = (unsigned long) ret_from_fork;
166
167	/*
168	 * New tasks lose permission to use the fpu. This accelerates context
169	 * switching for most programs since they don't use the fpu.
170	 */
171	childregs->cp0_status &= ~(ST0_CU2|ST0_CU1);
172
173	clear_tsk_thread_flag(p, TIF_USEDFPU);
174	clear_tsk_thread_flag(p, TIF_USEDMSA);
175	clear_tsk_thread_flag(p, TIF_MSA_CTX_LIVE);
176
177#ifdef CONFIG_MIPS_MT_FPAFF
178	clear_tsk_thread_flag(p, TIF_FPUBOUND);
179#endif /* CONFIG_MIPS_MT_FPAFF */
180
181#ifdef CONFIG_MIPS_FP_SUPPORT
182	atomic_set(&p->thread.bd_emu_frame, BD_EMUFRAME_NONE);
183#endif
184
185	if (clone_flags & CLONE_SETTLS)
186		ti->tp_value = tls;
187
188	return 0;
189}
190
191#ifdef CONFIG_STACKPROTECTOR
192#include <linux/stackprotector.h>
193unsigned long __stack_chk_guard __read_mostly;
194EXPORT_SYMBOL(__stack_chk_guard);
195#endif
196
197struct mips_frame_info {
198	void		*func;
199	unsigned long	func_size;
200	int		frame_size;
201	int		pc_offset;
202};
203
204#define J_TARGET(pc,target)	\
205		(((unsigned long)(pc) & 0xf0000000) | ((target) << 2))
206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
207static inline int is_ra_save_ins(union mips_instruction *ip, int *poff)
208{
209#ifdef CONFIG_CPU_MICROMIPS
210	/*
211	 * swsp ra,offset
212	 * swm16 reglist,offset(sp)
213	 * swm32 reglist,offset(sp)
214	 * sw32 ra,offset(sp)
215	 * jradiussp - NOT SUPPORTED
216	 *
217	 * microMIPS is way more fun...
218	 */
219	if (mm_insn_16bit(ip->word >> 16)) {
220		switch (ip->mm16_r5_format.opcode) {
221		case mm_swsp16_op:
222			if (ip->mm16_r5_format.rt != 31)
223				return 0;
224
225			*poff = ip->mm16_r5_format.imm;
226			*poff = (*poff << 2) / sizeof(ulong);
227			return 1;
228
229		case mm_pool16c_op:
230			switch (ip->mm16_m_format.func) {
231			case mm_swm16_op:
232				*poff = ip->mm16_m_format.imm;
233				*poff += 1 + ip->mm16_m_format.rlist;
234				*poff = (*poff << 2) / sizeof(ulong);
235				return 1;
236
237			default:
238				return 0;
239			}
240
241		default:
242			return 0;
243		}
244	}
245
246	switch (ip->i_format.opcode) {
247	case mm_sw32_op:
248		if (ip->i_format.rs != 29)
249			return 0;
250		if (ip->i_format.rt != 31)
251			return 0;
252
253		*poff = ip->i_format.simmediate / sizeof(ulong);
254		return 1;
255
256	case mm_pool32b_op:
257		switch (ip->mm_m_format.func) {
258		case mm_swm32_func:
259			if (ip->mm_m_format.rd < 0x10)
260				return 0;
261			if (ip->mm_m_format.base != 29)
262				return 0;
263
264			*poff = ip->mm_m_format.simmediate;
265			*poff += (ip->mm_m_format.rd & 0xf) * sizeof(u32);
266			*poff /= sizeof(ulong);
267			return 1;
268		default:
269			return 0;
270		}
271
272	default:
273		return 0;
274	}
275#else
276	/* sw / sd $ra, offset($sp) */
277	if ((ip->i_format.opcode == sw_op || ip->i_format.opcode == sd_op) &&
278		ip->i_format.rs == 29 && ip->i_format.rt == 31) {
279		*poff = ip->i_format.simmediate / sizeof(ulong);
280		return 1;
281	}
282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
283	return 0;
284#endif
285}
286
287static inline int is_jump_ins(union mips_instruction *ip)
288{
289#ifdef CONFIG_CPU_MICROMIPS
290	/*
291	 * jr16,jrc,jalr16,jalr16
292	 * jal
293	 * jalr/jr,jalr.hb/jr.hb,jalrs,jalrs.hb
294	 * jraddiusp - NOT SUPPORTED
295	 *
296	 * microMIPS is kind of more fun...
297	 */
298	if (mm_insn_16bit(ip->word >> 16)) {
299		if ((ip->mm16_r5_format.opcode == mm_pool16c_op &&
300		    (ip->mm16_r5_format.rt & mm_jr16_op) == mm_jr16_op))
301			return 1;
302		return 0;
303	}
304
305	if (ip->j_format.opcode == mm_j32_op)
306		return 1;
307	if (ip->j_format.opcode == mm_jal32_op)
308		return 1;
309	if (ip->r_format.opcode != mm_pool32a_op ||
310			ip->r_format.func != mm_pool32axf_op)
311		return 0;
312	return ((ip->u_format.uimmediate >> 6) & mm_jalr_op) == mm_jalr_op;
313#else
314	if (ip->j_format.opcode == j_op)
315		return 1;
316	if (ip->j_format.opcode == jal_op)
317		return 1;
318	if (ip->r_format.opcode != spec_op)
319		return 0;
320	return ip->r_format.func == jalr_op || ip->r_format.func == jr_op;
321#endif
322}
323
324static inline int is_sp_move_ins(union mips_instruction *ip, int *frame_size)
325{
326#ifdef CONFIG_CPU_MICROMIPS
327	unsigned short tmp;
328
329	/*
330	 * addiusp -imm
331	 * addius5 sp,-imm
332	 * addiu32 sp,sp,-imm
333	 * jradiussp - NOT SUPPORTED
334	 *
335	 * microMIPS is not more fun...
336	 */
337	if (mm_insn_16bit(ip->word >> 16)) {
338		if (ip->mm16_r3_format.opcode == mm_pool16d_op &&
339		    ip->mm16_r3_format.simmediate & mm_addiusp_func) {
340			tmp = ip->mm_b0_format.simmediate >> 1;
341			tmp = ((tmp & 0x1ff) ^ 0x100) - 0x100;
342			if ((tmp + 2) < 4) /* 0x0,0x1,0x1fe,0x1ff are special */
343				tmp ^= 0x100;
344			*frame_size = -(signed short)(tmp << 2);
345			return 1;
346		}
347		if (ip->mm16_r5_format.opcode == mm_pool16d_op &&
348		    ip->mm16_r5_format.rt == 29) {
349			tmp = ip->mm16_r5_format.imm >> 1;
350			*frame_size = -(signed short)(tmp & 0xf);
351			return 1;
352		}
353		return 0;
354	}
355
356	if (ip->mm_i_format.opcode == mm_addiu32_op &&
357	    ip->mm_i_format.rt == 29 && ip->mm_i_format.rs == 29) {
358		*frame_size = -ip->i_format.simmediate;
359		return 1;
360	}
361#else
362	/* addiu/daddiu sp,sp,-imm */
363	if (ip->i_format.rs != 29 || ip->i_format.rt != 29)
364		return 0;
365
366	if (ip->i_format.opcode == addiu_op ||
367	    ip->i_format.opcode == daddiu_op) {
368		*frame_size = -ip->i_format.simmediate;
369		return 1;
370	}
371#endif
372	return 0;
373}
374
375static int get_frame_info(struct mips_frame_info *info)
376{
377	bool is_mmips = IS_ENABLED(CONFIG_CPU_MICROMIPS);
378	union mips_instruction insn, *ip;
379	const unsigned int max_insns = 128;
380	unsigned int last_insn_size = 0;
381	unsigned int i;
382	bool saw_jump = false;
383
384	info->pc_offset = -1;
385	info->frame_size = 0;
386
387	ip = (void *)msk_isa16_mode((ulong)info->func);
388	if (!ip)
389		goto err;
390
391	for (i = 0; i < max_insns; i++) {
 
 
392		ip = (void *)ip + last_insn_size;
393
394		if (is_mmips && mm_insn_16bit(ip->halfword[0])) {
395			insn.word = ip->halfword[0] << 16;
396			last_insn_size = 2;
397		} else if (is_mmips) {
398			insn.word = ip->halfword[0] << 16 | ip->halfword[1];
399			last_insn_size = 4;
400		} else {
401			insn.word = ip->word;
402			last_insn_size = 4;
403		}
404
405		if (!info->frame_size) {
 
 
406			is_sp_move_ins(&insn, &info->frame_size);
407			continue;
408		} else if (!saw_jump && is_jump_ins(ip)) {
409			/*
410			 * If we see a jump instruction, we are finished
411			 * with the frame save.
412			 *
413			 * Some functions can have a shortcut return at
414			 * the beginning of the function, so don't start
415			 * looking for jump instruction until we see the
416			 * frame setup.
417			 *
418			 * The RA save instruction can get put into the
419			 * delay slot of the jump instruction, so look
420			 * at the next instruction, too.
421			 */
422			saw_jump = true;
423			continue;
424		}
425		if (info->pc_offset == -1 &&
426		    is_ra_save_ins(&insn, &info->pc_offset))
427			break;
428		if (saw_jump)
429			break;
430	}
431	if (info->frame_size && info->pc_offset >= 0) /* nested */
432		return 0;
433	if (info->pc_offset < 0) /* leaf */
434		return 1;
435	/* prologue seems bogus... */
436err:
437	return -1;
438}
439
440static struct mips_frame_info schedule_mfi __read_mostly;
441
442#ifdef CONFIG_KALLSYMS
443static unsigned long get___schedule_addr(void)
444{
445	return kallsyms_lookup_name("__schedule");
446}
447#else
448static unsigned long get___schedule_addr(void)
449{
450	union mips_instruction *ip = (void *)schedule;
451	int max_insns = 8;
452	int i;
453
454	for (i = 0; i < max_insns; i++, ip++) {
455		if (ip->j_format.opcode == j_op)
456			return J_TARGET(ip, ip->j_format.target);
457	}
458	return 0;
459}
460#endif
461
462static int __init frame_info_init(void)
463{
464	unsigned long size = 0;
465#ifdef CONFIG_KALLSYMS
466	unsigned long ofs;
467#endif
468	unsigned long addr;
469
470	addr = get___schedule_addr();
471	if (!addr)
472		addr = (unsigned long)schedule;
473
474#ifdef CONFIG_KALLSYMS
475	kallsyms_lookup_size_offset(addr, &size, &ofs);
476#endif
477	schedule_mfi.func = (void *)addr;
478	schedule_mfi.func_size = size;
479
480	get_frame_info(&schedule_mfi);
481
482	/*
483	 * Without schedule() frame info, result given by
484	 * thread_saved_pc() and get_wchan() are not reliable.
485	 */
486	if (schedule_mfi.pc_offset < 0)
487		printk("Can't analyze schedule() prologue at %p\n", schedule);
488
489	return 0;
490}
491
492arch_initcall(frame_info_init);
493
494/*
495 * Return saved PC of a blocked thread.
496 */
497static unsigned long thread_saved_pc(struct task_struct *tsk)
498{
499	struct thread_struct *t = &tsk->thread;
500
501	/* New born processes are a special case */
502	if (t->reg31 == (unsigned long) ret_from_fork)
503		return t->reg31;
504	if (schedule_mfi.pc_offset < 0)
505		return 0;
506	return ((unsigned long *)t->reg29)[schedule_mfi.pc_offset];
507}
508
509
510#ifdef CONFIG_KALLSYMS
511/* generic stack unwinding function */
512unsigned long notrace unwind_stack_by_address(unsigned long stack_page,
513					      unsigned long *sp,
514					      unsigned long pc,
515					      unsigned long *ra)
516{
517	unsigned long low, high, irq_stack_high;
518	struct mips_frame_info info;
519	unsigned long size, ofs;
520	struct pt_regs *regs;
521	int leaf;
522
523	if (!stack_page)
524		return 0;
525
526	/*
527	 * IRQ stacks start at IRQ_STACK_START
528	 * task stacks at THREAD_SIZE - 32
529	 */
530	low = stack_page;
531	if (!preemptible() && on_irq_stack(raw_smp_processor_id(), *sp)) {
532		high = stack_page + IRQ_STACK_START;
533		irq_stack_high = high;
534	} else {
535		high = stack_page + THREAD_SIZE - 32;
536		irq_stack_high = 0;
537	}
538
539	/*
540	 * If we reached the top of the interrupt stack, start unwinding
541	 * the interrupted task stack.
542	 */
543	if (unlikely(*sp == irq_stack_high)) {
544		unsigned long task_sp = *(unsigned long *)*sp;
545
546		/*
547		 * Check that the pointer saved in the IRQ stack head points to
548		 * something within the stack of the current task
549		 */
550		if (!object_is_on_stack((void *)task_sp))
551			return 0;
552
553		/*
554		 * Follow pointer to tasks kernel stack frame where interrupted
555		 * state was saved.
556		 */
557		regs = (struct pt_regs *)task_sp;
558		pc = regs->cp0_epc;
559		if (!user_mode(regs) && __kernel_text_address(pc)) {
560			*sp = regs->regs[29];
561			*ra = regs->regs[31];
562			return pc;
563		}
564		return 0;
565	}
566	if (!kallsyms_lookup_size_offset(pc, &size, &ofs))
567		return 0;
568	/*
569	 * Return ra if an exception occurred at the first instruction
570	 */
571	if (unlikely(ofs == 0)) {
572		pc = *ra;
573		*ra = 0;
574		return pc;
575	}
576
577	info.func = (void *)(pc - ofs);
578	info.func_size = ofs;	/* analyze from start to ofs */
579	leaf = get_frame_info(&info);
580	if (leaf < 0)
581		return 0;
582
583	if (*sp < low || *sp + info.frame_size > high)
584		return 0;
585
586	if (leaf)
587		/*
588		 * For some extreme cases, get_frame_info() can
589		 * consider wrongly a nested function as a leaf
590		 * one. In that cases avoid to return always the
591		 * same value.
592		 */
593		pc = pc != *ra ? *ra : 0;
594	else
595		pc = ((unsigned long *)(*sp))[info.pc_offset];
596
597	*sp += info.frame_size;
598	*ra = 0;
599	return __kernel_text_address(pc) ? pc : 0;
600}
601EXPORT_SYMBOL(unwind_stack_by_address);
602
603/* used by show_backtrace() */
604unsigned long unwind_stack(struct task_struct *task, unsigned long *sp,
605			   unsigned long pc, unsigned long *ra)
606{
607	unsigned long stack_page = 0;
608	int cpu;
609
610	for_each_possible_cpu(cpu) {
611		if (on_irq_stack(cpu, *sp)) {
612			stack_page = (unsigned long)irq_stack[cpu];
613			break;
614		}
615	}
616
617	if (!stack_page)
618		stack_page = (unsigned long)task_stack_page(task);
619
620	return unwind_stack_by_address(stack_page, sp, pc, ra);
621}
622#endif
623
624/*
625 * get_wchan - a maintenance nightmare^W^Wpain in the ass ...
626 */
627unsigned long get_wchan(struct task_struct *task)
628{
629	unsigned long pc = 0;
630#ifdef CONFIG_KALLSYMS
631	unsigned long sp;
632	unsigned long ra = 0;
633#endif
634
635	if (!task || task == current || task->state == TASK_RUNNING)
636		goto out;
637	if (!task_stack_page(task))
638		goto out;
639
640	pc = thread_saved_pc(task);
641
642#ifdef CONFIG_KALLSYMS
643	sp = task->thread.reg29 + schedule_mfi.frame_size;
644
645	while (in_sched_functions(pc))
646		pc = unwind_stack(task, &sp, pc, &ra);
647#endif
648
649out:
650	return pc;
651}
652
653unsigned long mips_stack_top(void)
654{
655	unsigned long top = TASK_SIZE & PAGE_MASK;
656
657	if (IS_ENABLED(CONFIG_MIPS_FP_SUPPORT)) {
658		/* One page for branch delay slot "emulation" */
659		top -= PAGE_SIZE;
660	}
661
662	/* Space for the VDSO, data page & GIC user page */
663	top -= PAGE_ALIGN(current->thread.abi->vdso->size);
664	top -= PAGE_SIZE;
665	top -= mips_gic_present() ? PAGE_SIZE : 0;
666
667	/* Space for cache colour alignment */
668	if (cpu_has_dc_aliases)
669		top -= shm_align_mask + 1;
670
671	/* Space to randomize the VDSO base */
672	if (current->flags & PF_RANDOMIZE)
673		top -= VDSO_RANDOMIZE_SIZE;
674
675	return top;
676}
677
678/*
679 * Don't forget that the stack pointer must be aligned on a 8 bytes
680 * boundary for 32-bits ABI and 16 bytes for 64-bits ABI.
681 */
682unsigned long arch_align_stack(unsigned long sp)
683{
684	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
685		sp -= get_random_int() & ~PAGE_MASK;
686
687	return sp & ALMASK;
688}
689
690static DEFINE_PER_CPU(call_single_data_t, backtrace_csd);
691static struct cpumask backtrace_csd_busy;
692
693static void handle_backtrace(void *info)
694{
695	nmi_cpu_backtrace(get_irq_regs());
696	cpumask_clear_cpu(smp_processor_id(), &backtrace_csd_busy);
697}
698
 
 
 
699static void raise_backtrace(cpumask_t *mask)
700{
701	call_single_data_t *csd;
702	int cpu;
703
704	for_each_cpu(cpu, mask) {
705		/*
706		 * If we previously sent an IPI to the target CPU & it hasn't
707		 * cleared its bit in the busy cpumask then it didn't handle
708		 * our previous IPI & it's not safe for us to reuse the
709		 * call_single_data_t.
710		 */
711		if (cpumask_test_and_set_cpu(cpu, &backtrace_csd_busy)) {
712			pr_warn("Unable to send backtrace IPI to CPU%u - perhaps it hung?\n",
713				cpu);
714			continue;
715		}
716
717		csd = &per_cpu(backtrace_csd, cpu);
718		csd->func = handle_backtrace;
719		smp_call_function_single_async(cpu, csd);
720	}
721}
722
723void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
724{
725	nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_backtrace);
726}
727
728int mips_get_process_fp_mode(struct task_struct *task)
729{
730	int value = 0;
731
732	if (!test_tsk_thread_flag(task, TIF_32BIT_FPREGS))
733		value |= PR_FP_MODE_FR;
734	if (test_tsk_thread_flag(task, TIF_HYBRID_FPREGS))
735		value |= PR_FP_MODE_FRE;
736
737	return value;
738}
739
740static long prepare_for_fp_mode_switch(void *unused)
741{
742	/*
743	 * This is icky, but we use this to simply ensure that all CPUs have
744	 * context switched, regardless of whether they were previously running
745	 * kernel or user code. This ensures that no CPU that a mode-switching
746	 * program may execute on keeps its FPU enabled (& in the old mode)
747	 * throughout the mode switch.
748	 */
749	return 0;
750}
751
752int mips_set_process_fp_mode(struct task_struct *task, unsigned int value)
753{
754	const unsigned int known_bits = PR_FP_MODE_FR | PR_FP_MODE_FRE;
755	struct task_struct *t;
756	struct cpumask process_cpus;
757	int cpu;
758
759	/* If nothing to change, return right away, successfully.  */
760	if (value == mips_get_process_fp_mode(task))
761		return 0;
762
763	/* Only accept a mode change if 64-bit FP enabled for o32.  */
764	if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
765		return -EOPNOTSUPP;
766
767	/* And only for o32 tasks.  */
768	if (IS_ENABLED(CONFIG_64BIT) && !test_thread_flag(TIF_32BIT_REGS))
769		return -EOPNOTSUPP;
770
771	/* Check the value is valid */
772	if (value & ~known_bits)
773		return -EOPNOTSUPP;
774
775	/* Setting FRE without FR is not supported.  */
776	if ((value & (PR_FP_MODE_FR | PR_FP_MODE_FRE)) == PR_FP_MODE_FRE)
777		return -EOPNOTSUPP;
778
779	/* Avoid inadvertently triggering emulation */
780	if ((value & PR_FP_MODE_FR) && raw_cpu_has_fpu &&
781	    !(raw_current_cpu_data.fpu_id & MIPS_FPIR_F64))
782		return -EOPNOTSUPP;
783	if ((value & PR_FP_MODE_FRE) && raw_cpu_has_fpu && !cpu_has_fre)
784		return -EOPNOTSUPP;
785
786	/* FR = 0 not supported in MIPS R6 */
787	if (!(value & PR_FP_MODE_FR) && raw_cpu_has_fpu && cpu_has_mips_r6)
788		return -EOPNOTSUPP;
789
790	/* Indicate the new FP mode in each thread */
791	for_each_thread(task, t) {
792		/* Update desired FP register width */
793		if (value & PR_FP_MODE_FR) {
794			clear_tsk_thread_flag(t, TIF_32BIT_FPREGS);
795		} else {
796			set_tsk_thread_flag(t, TIF_32BIT_FPREGS);
797			clear_tsk_thread_flag(t, TIF_MSA_CTX_LIVE);
798		}
799
800		/* Update desired FP single layout */
801		if (value & PR_FP_MODE_FRE)
802			set_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
803		else
804			clear_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
805	}
806
807	/*
808	 * We need to ensure that all threads in the process have switched mode
809	 * before returning, in order to allow userland to not worry about
810	 * races. We can do this by forcing all CPUs that any thread in the
811	 * process may be running on to schedule something else - in this case
812	 * prepare_for_fp_mode_switch().
813	 *
814	 * We begin by generating a mask of all CPUs that any thread in the
815	 * process may be running on.
816	 */
817	cpumask_clear(&process_cpus);
818	for_each_thread(task, t)
819		cpumask_set_cpu(task_cpu(t), &process_cpus);
820
821	/*
822	 * Now we schedule prepare_for_fp_mode_switch() on each of those CPUs.
823	 *
824	 * The CPUs may have rescheduled already since we switched mode or
825	 * generated the cpumask, but that doesn't matter. If the task in this
826	 * process is scheduled out then our scheduling
827	 * prepare_for_fp_mode_switch() will simply be redundant. If it's
828	 * scheduled in then it will already have picked up the new FP mode
829	 * whilst doing so.
830	 */
831	get_online_cpus();
832	for_each_cpu_and(cpu, &process_cpus, cpu_online_mask)
833		work_on_cpu(cpu, prepare_for_fp_mode_switch, NULL);
834	put_online_cpus();
835
836	return 0;
837}
838
839#if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
840void mips_dump_regs32(u32 *uregs, const struct pt_regs *regs)
841{
842	unsigned int i;
843
844	for (i = MIPS32_EF_R1; i <= MIPS32_EF_R31; i++) {
845		/* k0/k1 are copied as zero. */
846		if (i == MIPS32_EF_R26 || i == MIPS32_EF_R27)
847			uregs[i] = 0;
848		else
849			uregs[i] = regs->regs[i - MIPS32_EF_R0];
850	}
851
852	uregs[MIPS32_EF_LO] = regs->lo;
853	uregs[MIPS32_EF_HI] = regs->hi;
854	uregs[MIPS32_EF_CP0_EPC] = regs->cp0_epc;
855	uregs[MIPS32_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
856	uregs[MIPS32_EF_CP0_STATUS] = regs->cp0_status;
857	uregs[MIPS32_EF_CP0_CAUSE] = regs->cp0_cause;
858}
859#endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
860
861#ifdef CONFIG_64BIT
862void mips_dump_regs64(u64 *uregs, const struct pt_regs *regs)
863{
864	unsigned int i;
865
866	for (i = MIPS64_EF_R1; i <= MIPS64_EF_R31; i++) {
867		/* k0/k1 are copied as zero. */
868		if (i == MIPS64_EF_R26 || i == MIPS64_EF_R27)
869			uregs[i] = 0;
870		else
871			uregs[i] = regs->regs[i - MIPS64_EF_R0];
872	}
873
874	uregs[MIPS64_EF_LO] = regs->lo;
875	uregs[MIPS64_EF_HI] = regs->hi;
876	uregs[MIPS64_EF_CP0_EPC] = regs->cp0_epc;
877	uregs[MIPS64_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
878	uregs[MIPS64_EF_CP0_STATUS] = regs->cp0_status;
879	uregs[MIPS64_EF_CP0_CAUSE] = regs->cp0_cause;
880}
881#endif /* CONFIG_64BIT */