Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * NOHZ implementation for low and high resolution timers
8 *
9 * Started by: Thomas Gleixner and Ingo Molnar
10 */
11#include <linux/cpu.h>
12#include <linux/err.h>
13#include <linux/hrtimer.h>
14#include <linux/interrupt.h>
15#include <linux/kernel_stat.h>
16#include <linux/percpu.h>
17#include <linux/nmi.h>
18#include <linux/profile.h>
19#include <linux/sched/signal.h>
20#include <linux/sched/clock.h>
21#include <linux/sched/stat.h>
22#include <linux/sched/nohz.h>
23#include <linux/sched/loadavg.h>
24#include <linux/module.h>
25#include <linux/irq_work.h>
26#include <linux/posix-timers.h>
27#include <linux/context_tracking.h>
28#include <linux/mm.h>
29
30#include <asm/irq_regs.h>
31
32#include "tick-internal.h"
33
34#include <trace/events/timer.h>
35
36/*
37 * Per-CPU nohz control structure
38 */
39static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
40
41struct tick_sched *tick_get_tick_sched(int cpu)
42{
43 return &per_cpu(tick_cpu_sched, cpu);
44}
45
46#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
47/*
48 * The time when the last jiffy update happened. Write access must hold
49 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
50 * consistent view of jiffies and last_jiffies_update.
51 */
52static ktime_t last_jiffies_update;
53
54/*
55 * Must be called with interrupts disabled !
56 */
57static void tick_do_update_jiffies64(ktime_t now)
58{
59 unsigned long ticks = 1;
60 ktime_t delta, nextp;
61
62 /*
63 * 64-bit can do a quick check without holding the jiffies lock and
64 * without looking at the sequence count. The smp_load_acquire()
65 * pairs with the update done later in this function.
66 *
67 * 32-bit cannot do that because the store of 'tick_next_period'
68 * consists of two 32-bit stores, and the first store could be
69 * moved by the CPU to a random point in the future.
70 */
71 if (IS_ENABLED(CONFIG_64BIT)) {
72 if (ktime_before(now, smp_load_acquire(&tick_next_period)))
73 return;
74 } else {
75 unsigned int seq;
76
77 /*
78 * Avoid contention on 'jiffies_lock' and protect the quick
79 * check with the sequence count.
80 */
81 do {
82 seq = read_seqcount_begin(&jiffies_seq);
83 nextp = tick_next_period;
84 } while (read_seqcount_retry(&jiffies_seq, seq));
85
86 if (ktime_before(now, nextp))
87 return;
88 }
89
90 /* Quick check failed, i.e. update is required. */
91 raw_spin_lock(&jiffies_lock);
92 /*
93 * Re-evaluate with the lock held. Another CPU might have done the
94 * update already.
95 */
96 if (ktime_before(now, tick_next_period)) {
97 raw_spin_unlock(&jiffies_lock);
98 return;
99 }
100
101 write_seqcount_begin(&jiffies_seq);
102
103 delta = ktime_sub(now, tick_next_period);
104 if (unlikely(delta >= TICK_NSEC)) {
105 /* Slow path for long idle sleep times */
106 s64 incr = TICK_NSEC;
107
108 ticks += ktime_divns(delta, incr);
109
110 last_jiffies_update = ktime_add_ns(last_jiffies_update,
111 incr * ticks);
112 } else {
113 last_jiffies_update = ktime_add_ns(last_jiffies_update,
114 TICK_NSEC);
115 }
116
117 /* Advance jiffies to complete the 'jiffies_seq' protected job */
118 jiffies_64 += ticks;
119
120 /* Keep the tick_next_period variable up to date */
121 nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
122
123 if (IS_ENABLED(CONFIG_64BIT)) {
124 /*
125 * Pairs with smp_load_acquire() in the lockless quick
126 * check above, and ensures that the update to 'jiffies_64' is
127 * not reordered vs. the store to 'tick_next_period', neither
128 * by the compiler nor by the CPU.
129 */
130 smp_store_release(&tick_next_period, nextp);
131 } else {
132 /*
133 * A plain store is good enough on 32-bit, as the quick check
134 * above is protected by the sequence count.
135 */
136 tick_next_period = nextp;
137 }
138
139 /*
140 * Release the sequence count. calc_global_load() below is not
141 * protected by it, but 'jiffies_lock' needs to be held to prevent
142 * concurrent invocations.
143 */
144 write_seqcount_end(&jiffies_seq);
145
146 calc_global_load();
147
148 raw_spin_unlock(&jiffies_lock);
149 update_wall_time();
150}
151
152/*
153 * Initialize and return retrieve the jiffies update.
154 */
155static ktime_t tick_init_jiffy_update(void)
156{
157 ktime_t period;
158
159 raw_spin_lock(&jiffies_lock);
160 write_seqcount_begin(&jiffies_seq);
161
162 /* Have we started the jiffies update yet ? */
163 if (last_jiffies_update == 0) {
164 u32 rem;
165
166 /*
167 * Ensure that the tick is aligned to a multiple of
168 * TICK_NSEC.
169 */
170 div_u64_rem(tick_next_period, TICK_NSEC, &rem);
171 if (rem)
172 tick_next_period += TICK_NSEC - rem;
173
174 last_jiffies_update = tick_next_period;
175 }
176 period = last_jiffies_update;
177
178 write_seqcount_end(&jiffies_seq);
179 raw_spin_unlock(&jiffies_lock);
180
181 return period;
182}
183
184#define MAX_STALLED_JIFFIES 5
185
186static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
187{
188 int cpu = smp_processor_id();
189
190#ifdef CONFIG_NO_HZ_COMMON
191 /*
192 * Check if the do_timer duty was dropped. We don't care about
193 * concurrency: This happens only when the CPU in charge went
194 * into a long sleep. If two CPUs happen to assign themselves to
195 * this duty, then the jiffies update is still serialized by
196 * 'jiffies_lock'.
197 *
198 * If nohz_full is enabled, this should not happen because the
199 * 'tick_do_timer_cpu' CPU never relinquishes.
200 */
201 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
202#ifdef CONFIG_NO_HZ_FULL
203 WARN_ON_ONCE(tick_nohz_full_running);
204#endif
205 tick_do_timer_cpu = cpu;
206 }
207#endif
208
209 /* Check if jiffies need an update */
210 if (tick_do_timer_cpu == cpu)
211 tick_do_update_jiffies64(now);
212
213 /*
214 * If the jiffies update stalled for too long (timekeeper in stop_machine()
215 * or VMEXIT'ed for several msecs), force an update.
216 */
217 if (ts->last_tick_jiffies != jiffies) {
218 ts->stalled_jiffies = 0;
219 ts->last_tick_jiffies = READ_ONCE(jiffies);
220 } else {
221 if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) {
222 tick_do_update_jiffies64(now);
223 ts->stalled_jiffies = 0;
224 ts->last_tick_jiffies = READ_ONCE(jiffies);
225 }
226 }
227
228 if (ts->inidle)
229 ts->got_idle_tick = 1;
230}
231
232static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
233{
234#ifdef CONFIG_NO_HZ_COMMON
235 /*
236 * When we are idle and the tick is stopped, we have to touch
237 * the watchdog as we might not schedule for a really long
238 * time. This happens on completely idle SMP systems while
239 * waiting on the login prompt. We also increment the "start of
240 * idle" jiffy stamp so the idle accounting adjustment we do
241 * when we go busy again does not account too many ticks.
242 */
243 if (ts->tick_stopped) {
244 touch_softlockup_watchdog_sched();
245 if (is_idle_task(current))
246 ts->idle_jiffies++;
247 /*
248 * In case the current tick fired too early past its expected
249 * expiration, make sure we don't bypass the next clock reprogramming
250 * to the same deadline.
251 */
252 ts->next_tick = 0;
253 }
254#endif
255 update_process_times(user_mode(regs));
256 profile_tick(CPU_PROFILING);
257}
258#endif
259
260#ifdef CONFIG_NO_HZ_FULL
261cpumask_var_t tick_nohz_full_mask;
262EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
263bool tick_nohz_full_running;
264EXPORT_SYMBOL_GPL(tick_nohz_full_running);
265static atomic_t tick_dep_mask;
266
267static bool check_tick_dependency(atomic_t *dep)
268{
269 int val = atomic_read(dep);
270
271 if (val & TICK_DEP_MASK_POSIX_TIMER) {
272 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
273 return true;
274 }
275
276 if (val & TICK_DEP_MASK_PERF_EVENTS) {
277 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
278 return true;
279 }
280
281 if (val & TICK_DEP_MASK_SCHED) {
282 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
283 return true;
284 }
285
286 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
287 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
288 return true;
289 }
290
291 if (val & TICK_DEP_MASK_RCU) {
292 trace_tick_stop(0, TICK_DEP_MASK_RCU);
293 return true;
294 }
295
296 if (val & TICK_DEP_MASK_RCU_EXP) {
297 trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP);
298 return true;
299 }
300
301 return false;
302}
303
304static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
305{
306 lockdep_assert_irqs_disabled();
307
308 if (unlikely(!cpu_online(cpu)))
309 return false;
310
311 if (check_tick_dependency(&tick_dep_mask))
312 return false;
313
314 if (check_tick_dependency(&ts->tick_dep_mask))
315 return false;
316
317 if (check_tick_dependency(¤t->tick_dep_mask))
318 return false;
319
320 if (check_tick_dependency(¤t->signal->tick_dep_mask))
321 return false;
322
323 return true;
324}
325
326static void nohz_full_kick_func(struct irq_work *work)
327{
328 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
329}
330
331static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
332 IRQ_WORK_INIT_HARD(nohz_full_kick_func);
333
334/*
335 * Kick this CPU if it's full dynticks in order to force it to
336 * re-evaluate its dependency on the tick and restart it if necessary.
337 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
338 * is NMI safe.
339 */
340static void tick_nohz_full_kick(void)
341{
342 if (!tick_nohz_full_cpu(smp_processor_id()))
343 return;
344
345 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
346}
347
348/*
349 * Kick the CPU if it's full dynticks in order to force it to
350 * re-evaluate its dependency on the tick and restart it if necessary.
351 */
352void tick_nohz_full_kick_cpu(int cpu)
353{
354 if (!tick_nohz_full_cpu(cpu))
355 return;
356
357 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
358}
359
360static void tick_nohz_kick_task(struct task_struct *tsk)
361{
362 int cpu;
363
364 /*
365 * If the task is not running, run_posix_cpu_timers()
366 * has nothing to elapse, and an IPI can then be optimized out.
367 *
368 * activate_task() STORE p->tick_dep_mask
369 * STORE p->on_rq
370 * __schedule() (switch to task 'p') smp_mb() (atomic_fetch_or())
371 * LOCK rq->lock LOAD p->on_rq
372 * smp_mb__after_spin_lock()
373 * tick_nohz_task_switch()
374 * LOAD p->tick_dep_mask
375 */
376 if (!sched_task_on_rq(tsk))
377 return;
378
379 /*
380 * If the task concurrently migrates to another CPU,
381 * we guarantee it sees the new tick dependency upon
382 * schedule.
383 *
384 * set_task_cpu(p, cpu);
385 * STORE p->cpu = @cpu
386 * __schedule() (switch to task 'p')
387 * LOCK rq->lock
388 * smp_mb__after_spin_lock() STORE p->tick_dep_mask
389 * tick_nohz_task_switch() smp_mb() (atomic_fetch_or())
390 * LOAD p->tick_dep_mask LOAD p->cpu
391 */
392 cpu = task_cpu(tsk);
393
394 preempt_disable();
395 if (cpu_online(cpu))
396 tick_nohz_full_kick_cpu(cpu);
397 preempt_enable();
398}
399
400/*
401 * Kick all full dynticks CPUs in order to force these to re-evaluate
402 * their dependency on the tick and restart it if necessary.
403 */
404static void tick_nohz_full_kick_all(void)
405{
406 int cpu;
407
408 if (!tick_nohz_full_running)
409 return;
410
411 preempt_disable();
412 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
413 tick_nohz_full_kick_cpu(cpu);
414 preempt_enable();
415}
416
417static void tick_nohz_dep_set_all(atomic_t *dep,
418 enum tick_dep_bits bit)
419{
420 int prev;
421
422 prev = atomic_fetch_or(BIT(bit), dep);
423 if (!prev)
424 tick_nohz_full_kick_all();
425}
426
427/*
428 * Set a global tick dependency. Used by perf events that rely on freq and
429 * unstable clocks.
430 */
431void tick_nohz_dep_set(enum tick_dep_bits bit)
432{
433 tick_nohz_dep_set_all(&tick_dep_mask, bit);
434}
435
436void tick_nohz_dep_clear(enum tick_dep_bits bit)
437{
438 atomic_andnot(BIT(bit), &tick_dep_mask);
439}
440
441/*
442 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
443 * manage event-throttling.
444 */
445void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
446{
447 int prev;
448 struct tick_sched *ts;
449
450 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
451
452 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
453 if (!prev) {
454 preempt_disable();
455 /* Perf needs local kick that is NMI safe */
456 if (cpu == smp_processor_id()) {
457 tick_nohz_full_kick();
458 } else {
459 /* Remote IRQ work not NMI-safe */
460 if (!WARN_ON_ONCE(in_nmi()))
461 tick_nohz_full_kick_cpu(cpu);
462 }
463 preempt_enable();
464 }
465}
466EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
467
468void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
469{
470 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
471
472 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
473}
474EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
475
476/*
477 * Set a per-task tick dependency. RCU needs this. Also posix CPU timers
478 * in order to elapse per task timers.
479 */
480void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
481{
482 if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
483 tick_nohz_kick_task(tsk);
484}
485EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
486
487void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
488{
489 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
490}
491EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
492
493/*
494 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
495 * per process timers.
496 */
497void tick_nohz_dep_set_signal(struct task_struct *tsk,
498 enum tick_dep_bits bit)
499{
500 int prev;
501 struct signal_struct *sig = tsk->signal;
502
503 prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
504 if (!prev) {
505 struct task_struct *t;
506
507 lockdep_assert_held(&tsk->sighand->siglock);
508 __for_each_thread(sig, t)
509 tick_nohz_kick_task(t);
510 }
511}
512
513void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
514{
515 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
516}
517
518/*
519 * Re-evaluate the need for the tick as we switch the current task.
520 * It might need the tick due to per task/process properties:
521 * perf events, posix CPU timers, ...
522 */
523void __tick_nohz_task_switch(void)
524{
525 struct tick_sched *ts;
526
527 if (!tick_nohz_full_cpu(smp_processor_id()))
528 return;
529
530 ts = this_cpu_ptr(&tick_cpu_sched);
531
532 if (ts->tick_stopped) {
533 if (atomic_read(¤t->tick_dep_mask) ||
534 atomic_read(¤t->signal->tick_dep_mask))
535 tick_nohz_full_kick();
536 }
537}
538
539/* Get the boot-time nohz CPU list from the kernel parameters. */
540void __init tick_nohz_full_setup(cpumask_var_t cpumask)
541{
542 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
543 cpumask_copy(tick_nohz_full_mask, cpumask);
544 tick_nohz_full_running = true;
545}
546
547bool tick_nohz_cpu_hotpluggable(unsigned int cpu)
548{
549 /*
550 * The 'tick_do_timer_cpu' CPU handles housekeeping duty (unbound
551 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
552 * CPUs. It must remain online when nohz full is enabled.
553 */
554 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
555 return false;
556 return true;
557}
558
559static int tick_nohz_cpu_down(unsigned int cpu)
560{
561 return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY;
562}
563
564void __init tick_nohz_init(void)
565{
566 int cpu, ret;
567
568 if (!tick_nohz_full_running)
569 return;
570
571 /*
572 * Full dynticks uses IRQ work to drive the tick rescheduling on safe
573 * locking contexts. But then we need IRQ work to raise its own
574 * interrupts to avoid circular dependency on the tick.
575 */
576 if (!arch_irq_work_has_interrupt()) {
577 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support IRQ work self-IPIs\n");
578 cpumask_clear(tick_nohz_full_mask);
579 tick_nohz_full_running = false;
580 return;
581 }
582
583 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
584 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
585 cpu = smp_processor_id();
586
587 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
588 pr_warn("NO_HZ: Clearing %d from nohz_full range "
589 "for timekeeping\n", cpu);
590 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
591 }
592 }
593
594 for_each_cpu(cpu, tick_nohz_full_mask)
595 ct_cpu_track_user(cpu);
596
597 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
598 "kernel/nohz:predown", NULL,
599 tick_nohz_cpu_down);
600 WARN_ON(ret < 0);
601 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
602 cpumask_pr_args(tick_nohz_full_mask));
603}
604#endif
605
606/*
607 * NOHZ - aka dynamic tick functionality
608 */
609#ifdef CONFIG_NO_HZ_COMMON
610/*
611 * NO HZ enabled ?
612 */
613bool tick_nohz_enabled __read_mostly = true;
614unsigned long tick_nohz_active __read_mostly;
615/*
616 * Enable / Disable tickless mode
617 */
618static int __init setup_tick_nohz(char *str)
619{
620 return (kstrtobool(str, &tick_nohz_enabled) == 0);
621}
622
623__setup("nohz=", setup_tick_nohz);
624
625bool tick_nohz_tick_stopped(void)
626{
627 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
628
629 return ts->tick_stopped;
630}
631
632bool tick_nohz_tick_stopped_cpu(int cpu)
633{
634 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
635
636 return ts->tick_stopped;
637}
638
639/**
640 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
641 *
642 * Called from interrupt entry when the CPU was idle
643 *
644 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
645 * must be updated. Otherwise an interrupt handler could use a stale jiffy
646 * value. We do this unconditionally on any CPU, as we don't know whether the
647 * CPU, which has the update task assigned, is in a long sleep.
648 */
649static void tick_nohz_update_jiffies(ktime_t now)
650{
651 unsigned long flags;
652
653 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
654
655 local_irq_save(flags);
656 tick_do_update_jiffies64(now);
657 local_irq_restore(flags);
658
659 touch_softlockup_watchdog_sched();
660}
661
662static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
663{
664 ktime_t delta;
665
666 if (WARN_ON_ONCE(!ts->idle_active))
667 return;
668
669 delta = ktime_sub(now, ts->idle_entrytime);
670
671 write_seqcount_begin(&ts->idle_sleeptime_seq);
672 if (nr_iowait_cpu(smp_processor_id()) > 0)
673 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
674 else
675 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
676
677 ts->idle_entrytime = now;
678 ts->idle_active = 0;
679 write_seqcount_end(&ts->idle_sleeptime_seq);
680
681 sched_clock_idle_wakeup_event();
682}
683
684static void tick_nohz_start_idle(struct tick_sched *ts)
685{
686 write_seqcount_begin(&ts->idle_sleeptime_seq);
687 ts->idle_entrytime = ktime_get();
688 ts->idle_active = 1;
689 write_seqcount_end(&ts->idle_sleeptime_seq);
690
691 sched_clock_idle_sleep_event();
692}
693
694static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime,
695 bool compute_delta, u64 *last_update_time)
696{
697 ktime_t now, idle;
698 unsigned int seq;
699
700 if (!tick_nohz_active)
701 return -1;
702
703 now = ktime_get();
704 if (last_update_time)
705 *last_update_time = ktime_to_us(now);
706
707 do {
708 seq = read_seqcount_begin(&ts->idle_sleeptime_seq);
709
710 if (ts->idle_active && compute_delta) {
711 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
712
713 idle = ktime_add(*sleeptime, delta);
714 } else {
715 idle = *sleeptime;
716 }
717 } while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq));
718
719 return ktime_to_us(idle);
720
721}
722
723/**
724 * get_cpu_idle_time_us - get the total idle time of a CPU
725 * @cpu: CPU number to query
726 * @last_update_time: variable to store update time in. Do not update
727 * counters if NULL.
728 *
729 * Return the cumulative idle time (since boot) for a given
730 * CPU, in microseconds. Note that this is partially broken due to
731 * the counter of iowait tasks that can be remotely updated without
732 * any synchronization. Therefore it is possible to observe backward
733 * values within two consecutive reads.
734 *
735 * This time is measured via accounting rather than sampling,
736 * and is as accurate as ktime_get() is.
737 *
738 * This function returns -1 if NOHZ is not enabled.
739 */
740u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
741{
742 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
743
744 return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime,
745 !nr_iowait_cpu(cpu), last_update_time);
746}
747EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
748
749/**
750 * get_cpu_iowait_time_us - get the total iowait time of a CPU
751 * @cpu: CPU number to query
752 * @last_update_time: variable to store update time in. Do not update
753 * counters if NULL.
754 *
755 * Return the cumulative iowait time (since boot) for a given
756 * CPU, in microseconds. Note this is partially broken due to
757 * the counter of iowait tasks that can be remotely updated without
758 * any synchronization. Therefore it is possible to observe backward
759 * values within two consecutive reads.
760 *
761 * This time is measured via accounting rather than sampling,
762 * and is as accurate as ktime_get() is.
763 *
764 * This function returns -1 if NOHZ is not enabled.
765 */
766u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
767{
768 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
769
770 return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime,
771 nr_iowait_cpu(cpu), last_update_time);
772}
773EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
774
775static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
776{
777 hrtimer_cancel(&ts->sched_timer);
778 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
779
780 /* Forward the time to expire in the future */
781 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
782
783 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
784 hrtimer_start_expires(&ts->sched_timer,
785 HRTIMER_MODE_ABS_PINNED_HARD);
786 } else {
787 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
788 }
789
790 /*
791 * Reset to make sure the next tick stop doesn't get fooled by past
792 * cached clock deadline.
793 */
794 ts->next_tick = 0;
795}
796
797static inline bool local_timer_softirq_pending(void)
798{
799 return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
800}
801
802static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
803{
804 u64 basemono, next_tick, delta, expires;
805 unsigned long basejiff;
806 unsigned int seq;
807
808 /* Read jiffies and the time when jiffies were updated last */
809 do {
810 seq = read_seqcount_begin(&jiffies_seq);
811 basemono = last_jiffies_update;
812 basejiff = jiffies;
813 } while (read_seqcount_retry(&jiffies_seq, seq));
814 ts->last_jiffies = basejiff;
815 ts->timer_expires_base = basemono;
816
817 /*
818 * Keep the periodic tick, when RCU, architecture or irq_work
819 * requests it.
820 * Aside of that, check whether the local timer softirq is
821 * pending. If so, its a bad idea to call get_next_timer_interrupt(),
822 * because there is an already expired timer, so it will request
823 * immediate expiry, which rearms the hardware timer with a
824 * minimal delta, which brings us back to this place
825 * immediately. Lather, rinse and repeat...
826 */
827 if (rcu_needs_cpu() || arch_needs_cpu() ||
828 irq_work_needs_cpu() || local_timer_softirq_pending()) {
829 next_tick = basemono + TICK_NSEC;
830 } else {
831 /*
832 * Get the next pending timer. If high resolution
833 * timers are enabled this only takes the timer wheel
834 * timers into account. If high resolution timers are
835 * disabled this also looks at the next expiring
836 * hrtimer.
837 */
838 next_tick = get_next_timer_interrupt(basejiff, basemono);
839 ts->next_timer = next_tick;
840 }
841
842 /* Make sure next_tick is never before basemono! */
843 if (WARN_ON_ONCE(basemono > next_tick))
844 next_tick = basemono;
845
846 /*
847 * If the tick is due in the next period, keep it ticking or
848 * force prod the timer.
849 */
850 delta = next_tick - basemono;
851 if (delta <= (u64)TICK_NSEC) {
852 /*
853 * Tell the timer code that the base is not idle, i.e. undo
854 * the effect of get_next_timer_interrupt():
855 */
856 timer_clear_idle();
857 /*
858 * We've not stopped the tick yet, and there's a timer in the
859 * next period, so no point in stopping it either, bail.
860 */
861 if (!ts->tick_stopped) {
862 ts->timer_expires = 0;
863 goto out;
864 }
865 }
866
867 /*
868 * If this CPU is the one which had the do_timer() duty last, we limit
869 * the sleep time to the timekeeping 'max_deferment' value.
870 * Otherwise we can sleep as long as we want.
871 */
872 delta = timekeeping_max_deferment();
873 if (cpu != tick_do_timer_cpu &&
874 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
875 delta = KTIME_MAX;
876
877 /* Calculate the next expiry time */
878 if (delta < (KTIME_MAX - basemono))
879 expires = basemono + delta;
880 else
881 expires = KTIME_MAX;
882
883 ts->timer_expires = min_t(u64, expires, next_tick);
884
885out:
886 return ts->timer_expires;
887}
888
889static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
890{
891 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
892 u64 basemono = ts->timer_expires_base;
893 u64 expires = ts->timer_expires;
894
895 /* Make sure we won't be trying to stop it twice in a row. */
896 ts->timer_expires_base = 0;
897
898 /*
899 * If this CPU is the one which updates jiffies, then give up
900 * the assignment and let it be taken by the CPU which runs
901 * the tick timer next, which might be this CPU as well. If we
902 * don't drop this here, the jiffies might be stale and
903 * do_timer() never gets invoked. Keep track of the fact that it
904 * was the one which had the do_timer() duty last.
905 */
906 if (cpu == tick_do_timer_cpu) {
907 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
908 ts->do_timer_last = 1;
909 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
910 ts->do_timer_last = 0;
911 }
912
913 /* Skip reprogram of event if it's not changed */
914 if (ts->tick_stopped && (expires == ts->next_tick)) {
915 /* Sanity check: make sure clockevent is actually programmed */
916 if (expires == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
917 return;
918
919 WARN_ON_ONCE(1);
920 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
921 basemono, ts->next_tick, dev->next_event,
922 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
923 }
924
925 /*
926 * tick_nohz_stop_tick() can be called several times before
927 * tick_nohz_restart_sched_tick() is called. This happens when
928 * interrupts arrive which do not cause a reschedule. In the first
929 * call we save the current tick time, so we can restart the
930 * scheduler tick in tick_nohz_restart_sched_tick().
931 */
932 if (!ts->tick_stopped) {
933 calc_load_nohz_start();
934 quiet_vmstat();
935
936 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
937 ts->tick_stopped = 1;
938 trace_tick_stop(1, TICK_DEP_MASK_NONE);
939 }
940
941 ts->next_tick = expires;
942
943 /*
944 * If the expiration time == KTIME_MAX, then we simply stop
945 * the tick timer.
946 */
947 if (unlikely(expires == KTIME_MAX)) {
948 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
949 hrtimer_cancel(&ts->sched_timer);
950 else
951 tick_program_event(KTIME_MAX, 1);
952 return;
953 }
954
955 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
956 hrtimer_start(&ts->sched_timer, expires,
957 HRTIMER_MODE_ABS_PINNED_HARD);
958 } else {
959 hrtimer_set_expires(&ts->sched_timer, expires);
960 tick_program_event(expires, 1);
961 }
962}
963
964static void tick_nohz_retain_tick(struct tick_sched *ts)
965{
966 ts->timer_expires_base = 0;
967}
968
969#ifdef CONFIG_NO_HZ_FULL
970static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
971{
972 if (tick_nohz_next_event(ts, cpu))
973 tick_nohz_stop_tick(ts, cpu);
974 else
975 tick_nohz_retain_tick(ts);
976}
977#endif /* CONFIG_NO_HZ_FULL */
978
979static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
980{
981 /* Update jiffies first */
982 tick_do_update_jiffies64(now);
983
984 /*
985 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
986 * the clock forward checks in the enqueue path:
987 */
988 timer_clear_idle();
989
990 calc_load_nohz_stop();
991 touch_softlockup_watchdog_sched();
992
993 /* Cancel the scheduled timer and restore the tick: */
994 ts->tick_stopped = 0;
995 tick_nohz_restart(ts, now);
996}
997
998static void __tick_nohz_full_update_tick(struct tick_sched *ts,
999 ktime_t now)
1000{
1001#ifdef CONFIG_NO_HZ_FULL
1002 int cpu = smp_processor_id();
1003
1004 if (can_stop_full_tick(cpu, ts))
1005 tick_nohz_stop_sched_tick(ts, cpu);
1006 else if (ts->tick_stopped)
1007 tick_nohz_restart_sched_tick(ts, now);
1008#endif
1009}
1010
1011static void tick_nohz_full_update_tick(struct tick_sched *ts)
1012{
1013 if (!tick_nohz_full_cpu(smp_processor_id()))
1014 return;
1015
1016 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
1017 return;
1018
1019 __tick_nohz_full_update_tick(ts, ktime_get());
1020}
1021
1022/*
1023 * A pending softirq outside an IRQ (or softirq disabled section) context
1024 * should be waiting for ksoftirqd to handle it. Therefore we shouldn't
1025 * reach this code due to the need_resched() early check in can_stop_idle_tick().
1026 *
1027 * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the
1028 * cpu_down() process, softirqs can still be raised while ksoftirqd is parked,
1029 * triggering the code below, since wakep_softirqd() is ignored.
1030 *
1031 */
1032static bool report_idle_softirq(void)
1033{
1034 static int ratelimit;
1035 unsigned int pending = local_softirq_pending();
1036
1037 if (likely(!pending))
1038 return false;
1039
1040 /* Some softirqs claim to be safe against hotplug and ksoftirqd parking */
1041 if (!cpu_active(smp_processor_id())) {
1042 pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK;
1043 if (!pending)
1044 return false;
1045 }
1046
1047 if (ratelimit >= 10)
1048 return false;
1049
1050 /* On RT, softirq handling may be waiting on some lock */
1051 if (local_bh_blocked())
1052 return false;
1053
1054 pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n",
1055 pending);
1056 ratelimit++;
1057
1058 return true;
1059}
1060
1061static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
1062{
1063 /*
1064 * If this CPU is offline and it is the one which updates
1065 * jiffies, then give up the assignment and let it be taken by
1066 * the CPU which runs the tick timer next. If we don't drop
1067 * this here, the jiffies might be stale and do_timer() never
1068 * gets invoked.
1069 */
1070 if (unlikely(!cpu_online(cpu))) {
1071 if (cpu == tick_do_timer_cpu)
1072 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
1073 /*
1074 * Make sure the CPU doesn't get fooled by obsolete tick
1075 * deadline if it comes back online later.
1076 */
1077 ts->next_tick = 0;
1078 return false;
1079 }
1080
1081 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
1082 return false;
1083
1084 if (need_resched())
1085 return false;
1086
1087 if (unlikely(report_idle_softirq()))
1088 return false;
1089
1090 if (tick_nohz_full_enabled()) {
1091 /*
1092 * Keep the tick alive to guarantee timekeeping progression
1093 * if there are full dynticks CPUs around
1094 */
1095 if (tick_do_timer_cpu == cpu)
1096 return false;
1097
1098 /* Should not happen for nohz-full */
1099 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
1100 return false;
1101 }
1102
1103 return true;
1104}
1105
1106/**
1107 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1108 *
1109 * When the next event is more than a tick into the future, stop the idle tick
1110 */
1111void tick_nohz_idle_stop_tick(void)
1112{
1113 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1114 int cpu = smp_processor_id();
1115 ktime_t expires;
1116
1117 /*
1118 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1119 * tick timer expiration time is known already.
1120 */
1121 if (ts->timer_expires_base)
1122 expires = ts->timer_expires;
1123 else if (can_stop_idle_tick(cpu, ts))
1124 expires = tick_nohz_next_event(ts, cpu);
1125 else
1126 return;
1127
1128 ts->idle_calls++;
1129
1130 if (expires > 0LL) {
1131 int was_stopped = ts->tick_stopped;
1132
1133 tick_nohz_stop_tick(ts, cpu);
1134
1135 ts->idle_sleeps++;
1136 ts->idle_expires = expires;
1137
1138 if (!was_stopped && ts->tick_stopped) {
1139 ts->idle_jiffies = ts->last_jiffies;
1140 nohz_balance_enter_idle(cpu);
1141 }
1142 } else {
1143 tick_nohz_retain_tick(ts);
1144 }
1145}
1146
1147void tick_nohz_idle_retain_tick(void)
1148{
1149 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1150 /*
1151 * Undo the effect of get_next_timer_interrupt() called from
1152 * tick_nohz_next_event().
1153 */
1154 timer_clear_idle();
1155}
1156
1157/**
1158 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1159 *
1160 * Called when we start the idle loop.
1161 */
1162void tick_nohz_idle_enter(void)
1163{
1164 struct tick_sched *ts;
1165
1166 lockdep_assert_irqs_enabled();
1167
1168 local_irq_disable();
1169
1170 ts = this_cpu_ptr(&tick_cpu_sched);
1171
1172 WARN_ON_ONCE(ts->timer_expires_base);
1173
1174 ts->inidle = 1;
1175 tick_nohz_start_idle(ts);
1176
1177 local_irq_enable();
1178}
1179
1180/**
1181 * tick_nohz_irq_exit - Notify the tick about IRQ exit
1182 *
1183 * A timer may have been added/modified/deleted either by the current IRQ,
1184 * or by another place using this IRQ as a notification. This IRQ may have
1185 * also updated the RCU callback list. These events may require a
1186 * re-evaluation of the next tick. Depending on the context:
1187 *
1188 * 1) If the CPU is idle and no resched is pending, just proceed with idle
1189 * time accounting. The next tick will be re-evaluated on the next idle
1190 * loop iteration.
1191 *
1192 * 2) If the CPU is nohz_full:
1193 *
1194 * 2.1) If there is any tick dependency, restart the tick if stopped.
1195 *
1196 * 2.2) If there is no tick dependency, (re-)evaluate the next tick and
1197 * stop/update it accordingly.
1198 */
1199void tick_nohz_irq_exit(void)
1200{
1201 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1202
1203 if (ts->inidle)
1204 tick_nohz_start_idle(ts);
1205 else
1206 tick_nohz_full_update_tick(ts);
1207}
1208
1209/**
1210 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1211 */
1212bool tick_nohz_idle_got_tick(void)
1213{
1214 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1215
1216 if (ts->got_idle_tick) {
1217 ts->got_idle_tick = 0;
1218 return true;
1219 }
1220 return false;
1221}
1222
1223/**
1224 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1225 * or the tick, whichever expires first. Note that, if the tick has been
1226 * stopped, it returns the next hrtimer.
1227 *
1228 * Called from power state control code with interrupts disabled
1229 */
1230ktime_t tick_nohz_get_next_hrtimer(void)
1231{
1232 return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1233}
1234
1235/**
1236 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1237 * @delta_next: duration until the next event if the tick cannot be stopped
1238 *
1239 * Called from power state control code with interrupts disabled.
1240 *
1241 * The return value of this function and/or the value returned by it through the
1242 * @delta_next pointer can be negative which must be taken into account by its
1243 * callers.
1244 */
1245ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1246{
1247 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1248 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1249 int cpu = smp_processor_id();
1250 /*
1251 * The idle entry time is expected to be a sufficient approximation of
1252 * the current time at this point.
1253 */
1254 ktime_t now = ts->idle_entrytime;
1255 ktime_t next_event;
1256
1257 WARN_ON_ONCE(!ts->inidle);
1258
1259 *delta_next = ktime_sub(dev->next_event, now);
1260
1261 if (!can_stop_idle_tick(cpu, ts))
1262 return *delta_next;
1263
1264 next_event = tick_nohz_next_event(ts, cpu);
1265 if (!next_event)
1266 return *delta_next;
1267
1268 /*
1269 * If the next highres timer to expire is earlier than 'next_event', the
1270 * idle governor needs to know that.
1271 */
1272 next_event = min_t(u64, next_event,
1273 hrtimer_next_event_without(&ts->sched_timer));
1274
1275 return ktime_sub(next_event, now);
1276}
1277
1278/**
1279 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1280 * for a particular CPU.
1281 *
1282 * Called from the schedutil frequency scaling governor in scheduler context.
1283 */
1284unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1285{
1286 struct tick_sched *ts = tick_get_tick_sched(cpu);
1287
1288 return ts->idle_calls;
1289}
1290
1291/**
1292 * tick_nohz_get_idle_calls - return the current idle calls counter value
1293 *
1294 * Called from the schedutil frequency scaling governor in scheduler context.
1295 */
1296unsigned long tick_nohz_get_idle_calls(void)
1297{
1298 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1299
1300 return ts->idle_calls;
1301}
1302
1303static void tick_nohz_account_idle_time(struct tick_sched *ts,
1304 ktime_t now)
1305{
1306 unsigned long ticks;
1307
1308 ts->idle_exittime = now;
1309
1310 if (vtime_accounting_enabled_this_cpu())
1311 return;
1312 /*
1313 * We stopped the tick in idle. update_process_times() would miss the
1314 * time we slept, as it does only a 1 tick accounting.
1315 * Enforce that this is accounted to idle !
1316 */
1317 ticks = jiffies - ts->idle_jiffies;
1318 /*
1319 * We might be one off. Do not randomly account a huge number of ticks!
1320 */
1321 if (ticks && ticks < LONG_MAX)
1322 account_idle_ticks(ticks);
1323}
1324
1325void tick_nohz_idle_restart_tick(void)
1326{
1327 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1328
1329 if (ts->tick_stopped) {
1330 ktime_t now = ktime_get();
1331 tick_nohz_restart_sched_tick(ts, now);
1332 tick_nohz_account_idle_time(ts, now);
1333 }
1334}
1335
1336static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1337{
1338 if (tick_nohz_full_cpu(smp_processor_id()))
1339 __tick_nohz_full_update_tick(ts, now);
1340 else
1341 tick_nohz_restart_sched_tick(ts, now);
1342
1343 tick_nohz_account_idle_time(ts, now);
1344}
1345
1346/**
1347 * tick_nohz_idle_exit - Update the tick upon idle task exit
1348 *
1349 * When the idle task exits, update the tick depending on the
1350 * following situations:
1351 *
1352 * 1) If the CPU is not in nohz_full mode (most cases), then
1353 * restart the tick.
1354 *
1355 * 2) If the CPU is in nohz_full mode (corner case):
1356 * 2.1) If the tick can be kept stopped (no tick dependencies)
1357 * then re-evaluate the next tick and try to keep it stopped
1358 * as long as possible.
1359 * 2.2) If the tick has dependencies, restart the tick.
1360 *
1361 */
1362void tick_nohz_idle_exit(void)
1363{
1364 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1365 bool idle_active, tick_stopped;
1366 ktime_t now;
1367
1368 local_irq_disable();
1369
1370 WARN_ON_ONCE(!ts->inidle);
1371 WARN_ON_ONCE(ts->timer_expires_base);
1372
1373 ts->inidle = 0;
1374 idle_active = ts->idle_active;
1375 tick_stopped = ts->tick_stopped;
1376
1377 if (idle_active || tick_stopped)
1378 now = ktime_get();
1379
1380 if (idle_active)
1381 tick_nohz_stop_idle(ts, now);
1382
1383 if (tick_stopped)
1384 tick_nohz_idle_update_tick(ts, now);
1385
1386 local_irq_enable();
1387}
1388
1389/*
1390 * In low-resolution mode, the tick handler must be implemented directly
1391 * at the clockevent level. hrtimer can't be used instead, because its
1392 * infrastructure actually relies on the tick itself as a backend in
1393 * low-resolution mode (see hrtimer_run_queues()).
1394 *
1395 * This low-resolution handler still makes use of some hrtimer APIs meanwhile
1396 * for convenience with expiration calculation and forwarding.
1397 */
1398static void tick_nohz_lowres_handler(struct clock_event_device *dev)
1399{
1400 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1401 struct pt_regs *regs = get_irq_regs();
1402 ktime_t now = ktime_get();
1403
1404 dev->next_event = KTIME_MAX;
1405
1406 tick_sched_do_timer(ts, now);
1407 tick_sched_handle(ts, regs);
1408
1409 /*
1410 * In dynticks mode, tick reprogram is deferred:
1411 * - to the idle task if in dynticks-idle
1412 * - to IRQ exit if in full-dynticks.
1413 */
1414 if (likely(!ts->tick_stopped)) {
1415 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1416 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1417 }
1418
1419}
1420
1421static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1422{
1423 if (!tick_nohz_enabled)
1424 return;
1425 ts->nohz_mode = mode;
1426 /* One update is enough */
1427 if (!test_and_set_bit(0, &tick_nohz_active))
1428 timers_update_nohz();
1429}
1430
1431/**
1432 * tick_nohz_switch_to_nohz - switch to NOHZ mode
1433 */
1434static void tick_nohz_switch_to_nohz(void)
1435{
1436 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1437 ktime_t next;
1438
1439 if (!tick_nohz_enabled)
1440 return;
1441
1442 if (tick_switch_to_oneshot(tick_nohz_lowres_handler))
1443 return;
1444
1445 /*
1446 * Recycle the hrtimer in 'ts', so we can share the
1447 * hrtimer_forward_now() function with the highres code.
1448 */
1449 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1450 /* Get the next period */
1451 next = tick_init_jiffy_update();
1452
1453 hrtimer_set_expires(&ts->sched_timer, next);
1454 hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1455 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1456 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1457}
1458
1459static inline void tick_nohz_irq_enter(void)
1460{
1461 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1462 ktime_t now;
1463
1464 if (!ts->idle_active && !ts->tick_stopped)
1465 return;
1466 now = ktime_get();
1467 if (ts->idle_active)
1468 tick_nohz_stop_idle(ts, now);
1469 /*
1470 * If all CPUs are idle we may need to update a stale jiffies value.
1471 * Note nohz_full is a special case: a timekeeper is guaranteed to stay
1472 * alive but it might be busy looping with interrupts disabled in some
1473 * rare case (typically stop machine). So we must make sure we have a
1474 * last resort.
1475 */
1476 if (ts->tick_stopped)
1477 tick_nohz_update_jiffies(now);
1478}
1479
1480#else
1481
1482static inline void tick_nohz_switch_to_nohz(void) { }
1483static inline void tick_nohz_irq_enter(void) { }
1484static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1485
1486#endif /* CONFIG_NO_HZ_COMMON */
1487
1488/*
1489 * Called from irq_enter() to notify about the possible interruption of idle()
1490 */
1491void tick_irq_enter(void)
1492{
1493 tick_check_oneshot_broadcast_this_cpu();
1494 tick_nohz_irq_enter();
1495}
1496
1497/*
1498 * High resolution timer specific code
1499 */
1500#ifdef CONFIG_HIGH_RES_TIMERS
1501/*
1502 * We rearm the timer until we get disabled by the idle code.
1503 * Called with interrupts disabled.
1504 */
1505static enum hrtimer_restart tick_nohz_highres_handler(struct hrtimer *timer)
1506{
1507 struct tick_sched *ts =
1508 container_of(timer, struct tick_sched, sched_timer);
1509 struct pt_regs *regs = get_irq_regs();
1510 ktime_t now = ktime_get();
1511
1512 tick_sched_do_timer(ts, now);
1513
1514 /*
1515 * Do not call when we are not in IRQ context and have
1516 * no valid 'regs' pointer
1517 */
1518 if (regs)
1519 tick_sched_handle(ts, regs);
1520 else
1521 ts->next_tick = 0;
1522
1523 /*
1524 * In dynticks mode, tick reprogram is deferred:
1525 * - to the idle task if in dynticks-idle
1526 * - to IRQ exit if in full-dynticks.
1527 */
1528 if (unlikely(ts->tick_stopped))
1529 return HRTIMER_NORESTART;
1530
1531 hrtimer_forward(timer, now, TICK_NSEC);
1532
1533 return HRTIMER_RESTART;
1534}
1535
1536static int sched_skew_tick;
1537
1538static int __init skew_tick(char *str)
1539{
1540 get_option(&str, &sched_skew_tick);
1541
1542 return 0;
1543}
1544early_param("skew_tick", skew_tick);
1545
1546/**
1547 * tick_setup_sched_timer - setup the tick emulation timer
1548 */
1549void tick_setup_sched_timer(void)
1550{
1551 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1552 ktime_t now = ktime_get();
1553
1554 /* Emulate tick processing via per-CPU hrtimers: */
1555 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1556 ts->sched_timer.function = tick_nohz_highres_handler;
1557
1558 /* Get the next period (per-CPU) */
1559 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1560
1561 /* Offset the tick to avert 'jiffies_lock' contention. */
1562 if (sched_skew_tick) {
1563 u64 offset = TICK_NSEC >> 1;
1564 do_div(offset, num_possible_cpus());
1565 offset *= smp_processor_id();
1566 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1567 }
1568
1569 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1570 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1571 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1572}
1573#endif /* HIGH_RES_TIMERS */
1574
1575#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1576void tick_cancel_sched_timer(int cpu)
1577{
1578 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1579 ktime_t idle_sleeptime, iowait_sleeptime;
1580 unsigned long idle_calls, idle_sleeps;
1581
1582# ifdef CONFIG_HIGH_RES_TIMERS
1583 if (ts->sched_timer.base)
1584 hrtimer_cancel(&ts->sched_timer);
1585# endif
1586
1587 idle_sleeptime = ts->idle_sleeptime;
1588 iowait_sleeptime = ts->iowait_sleeptime;
1589 idle_calls = ts->idle_calls;
1590 idle_sleeps = ts->idle_sleeps;
1591 memset(ts, 0, sizeof(*ts));
1592 ts->idle_sleeptime = idle_sleeptime;
1593 ts->iowait_sleeptime = iowait_sleeptime;
1594 ts->idle_calls = idle_calls;
1595 ts->idle_sleeps = idle_sleeps;
1596}
1597#endif
1598
1599/*
1600 * Async notification about clocksource changes
1601 */
1602void tick_clock_notify(void)
1603{
1604 int cpu;
1605
1606 for_each_possible_cpu(cpu)
1607 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1608}
1609
1610/*
1611 * Async notification about clock event changes
1612 */
1613void tick_oneshot_notify(void)
1614{
1615 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1616
1617 set_bit(0, &ts->check_clocks);
1618}
1619
1620/*
1621 * Check if a change happened, which makes oneshot possible.
1622 *
1623 * Called cyclically from the hrtimer softirq (driven by the timer
1624 * softirq). 'allow_nohz' signals that we can switch into low-res NOHZ
1625 * mode, because high resolution timers are disabled (either compile
1626 * or runtime). Called with interrupts disabled.
1627 */
1628int tick_check_oneshot_change(int allow_nohz)
1629{
1630 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1631
1632 if (!test_and_clear_bit(0, &ts->check_clocks))
1633 return 0;
1634
1635 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1636 return 0;
1637
1638 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1639 return 0;
1640
1641 if (!allow_nohz)
1642 return 1;
1643
1644 tick_nohz_switch_to_nohz();
1645 return 0;
1646}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * No idle tick implementation for low and high resolution timers
8 *
9 * Started by: Thomas Gleixner and Ingo Molnar
10 */
11#include <linux/cpu.h>
12#include <linux/err.h>
13#include <linux/hrtimer.h>
14#include <linux/interrupt.h>
15#include <linux/kernel_stat.h>
16#include <linux/percpu.h>
17#include <linux/nmi.h>
18#include <linux/profile.h>
19#include <linux/sched/signal.h>
20#include <linux/sched/clock.h>
21#include <linux/sched/stat.h>
22#include <linux/sched/nohz.h>
23#include <linux/module.h>
24#include <linux/irq_work.h>
25#include <linux/posix-timers.h>
26#include <linux/context_tracking.h>
27#include <linux/mm.h>
28
29#include <asm/irq_regs.h>
30
31#include "tick-internal.h"
32
33#include <trace/events/timer.h>
34
35/*
36 * Per-CPU nohz control structure
37 */
38static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
39
40struct tick_sched *tick_get_tick_sched(int cpu)
41{
42 return &per_cpu(tick_cpu_sched, cpu);
43}
44
45#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
46/*
47 * The time, when the last jiffy update happened. Protected by jiffies_lock.
48 */
49static ktime_t last_jiffies_update;
50
51/*
52 * Must be called with interrupts disabled !
53 */
54static void tick_do_update_jiffies64(ktime_t now)
55{
56 unsigned long ticks = 0;
57 ktime_t delta;
58
59 /*
60 * Do a quick check without holding jiffies_lock:
61 * The READ_ONCE() pairs with two updates done later in this function.
62 */
63 delta = ktime_sub(now, READ_ONCE(last_jiffies_update));
64 if (delta < tick_period)
65 return;
66
67 /* Reevaluate with jiffies_lock held */
68 raw_spin_lock(&jiffies_lock);
69 write_seqcount_begin(&jiffies_seq);
70
71 delta = ktime_sub(now, last_jiffies_update);
72 if (delta >= tick_period) {
73
74 delta = ktime_sub(delta, tick_period);
75 /* Pairs with the lockless read in this function. */
76 WRITE_ONCE(last_jiffies_update,
77 ktime_add(last_jiffies_update, tick_period));
78
79 /* Slow path for long timeouts */
80 if (unlikely(delta >= tick_period)) {
81 s64 incr = ktime_to_ns(tick_period);
82
83 ticks = ktime_divns(delta, incr);
84
85 /* Pairs with the lockless read in this function. */
86 WRITE_ONCE(last_jiffies_update,
87 ktime_add_ns(last_jiffies_update,
88 incr * ticks));
89 }
90 do_timer(++ticks);
91
92 /* Keep the tick_next_period variable up to date */
93 tick_next_period = ktime_add(last_jiffies_update, tick_period);
94 } else {
95 write_seqcount_end(&jiffies_seq);
96 raw_spin_unlock(&jiffies_lock);
97 return;
98 }
99 write_seqcount_end(&jiffies_seq);
100 raw_spin_unlock(&jiffies_lock);
101 update_wall_time();
102}
103
104/*
105 * Initialize and return retrieve the jiffies update.
106 */
107static ktime_t tick_init_jiffy_update(void)
108{
109 ktime_t period;
110
111 raw_spin_lock(&jiffies_lock);
112 write_seqcount_begin(&jiffies_seq);
113 /* Did we start the jiffies update yet ? */
114 if (last_jiffies_update == 0)
115 last_jiffies_update = tick_next_period;
116 period = last_jiffies_update;
117 write_seqcount_end(&jiffies_seq);
118 raw_spin_unlock(&jiffies_lock);
119 return period;
120}
121
122static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
123{
124 int cpu = smp_processor_id();
125
126#ifdef CONFIG_NO_HZ_COMMON
127 /*
128 * Check if the do_timer duty was dropped. We don't care about
129 * concurrency: This happens only when the CPU in charge went
130 * into a long sleep. If two CPUs happen to assign themselves to
131 * this duty, then the jiffies update is still serialized by
132 * jiffies_lock.
133 *
134 * If nohz_full is enabled, this should not happen because the
135 * tick_do_timer_cpu never relinquishes.
136 */
137 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
138#ifdef CONFIG_NO_HZ_FULL
139 WARN_ON(tick_nohz_full_running);
140#endif
141 tick_do_timer_cpu = cpu;
142 }
143#endif
144
145 /* Check, if the jiffies need an update */
146 if (tick_do_timer_cpu == cpu)
147 tick_do_update_jiffies64(now);
148
149 if (ts->inidle)
150 ts->got_idle_tick = 1;
151}
152
153static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
154{
155#ifdef CONFIG_NO_HZ_COMMON
156 /*
157 * When we are idle and the tick is stopped, we have to touch
158 * the watchdog as we might not schedule for a really long
159 * time. This happens on complete idle SMP systems while
160 * waiting on the login prompt. We also increment the "start of
161 * idle" jiffy stamp so the idle accounting adjustment we do
162 * when we go busy again does not account too much ticks.
163 */
164 if (ts->tick_stopped) {
165 touch_softlockup_watchdog_sched();
166 if (is_idle_task(current))
167 ts->idle_jiffies++;
168 /*
169 * In case the current tick fired too early past its expected
170 * expiration, make sure we don't bypass the next clock reprogramming
171 * to the same deadline.
172 */
173 ts->next_tick = 0;
174 }
175#endif
176 update_process_times(user_mode(regs));
177 profile_tick(CPU_PROFILING);
178}
179#endif
180
181#ifdef CONFIG_NO_HZ_FULL
182cpumask_var_t tick_nohz_full_mask;
183bool tick_nohz_full_running;
184EXPORT_SYMBOL_GPL(tick_nohz_full_running);
185static atomic_t tick_dep_mask;
186
187static bool check_tick_dependency(atomic_t *dep)
188{
189 int val = atomic_read(dep);
190
191 if (val & TICK_DEP_MASK_POSIX_TIMER) {
192 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
193 return true;
194 }
195
196 if (val & TICK_DEP_MASK_PERF_EVENTS) {
197 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
198 return true;
199 }
200
201 if (val & TICK_DEP_MASK_SCHED) {
202 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
203 return true;
204 }
205
206 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
207 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
208 return true;
209 }
210
211 if (val & TICK_DEP_MASK_RCU) {
212 trace_tick_stop(0, TICK_DEP_MASK_RCU);
213 return true;
214 }
215
216 return false;
217}
218
219static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
220{
221 lockdep_assert_irqs_disabled();
222
223 if (unlikely(!cpu_online(cpu)))
224 return false;
225
226 if (check_tick_dependency(&tick_dep_mask))
227 return false;
228
229 if (check_tick_dependency(&ts->tick_dep_mask))
230 return false;
231
232 if (check_tick_dependency(¤t->tick_dep_mask))
233 return false;
234
235 if (check_tick_dependency(¤t->signal->tick_dep_mask))
236 return false;
237
238 return true;
239}
240
241static void nohz_full_kick_func(struct irq_work *work)
242{
243 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
244}
245
246static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
247 .func = nohz_full_kick_func,
248 .flags = ATOMIC_INIT(IRQ_WORK_HARD_IRQ),
249};
250
251/*
252 * Kick this CPU if it's full dynticks in order to force it to
253 * re-evaluate its dependency on the tick and restart it if necessary.
254 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
255 * is NMI safe.
256 */
257static void tick_nohz_full_kick(void)
258{
259 if (!tick_nohz_full_cpu(smp_processor_id()))
260 return;
261
262 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
263}
264
265/*
266 * Kick the CPU if it's full dynticks in order to force it to
267 * re-evaluate its dependency on the tick and restart it if necessary.
268 */
269void tick_nohz_full_kick_cpu(int cpu)
270{
271 if (!tick_nohz_full_cpu(cpu))
272 return;
273
274 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
275}
276
277/*
278 * Kick all full dynticks CPUs in order to force these to re-evaluate
279 * their dependency on the tick and restart it if necessary.
280 */
281static void tick_nohz_full_kick_all(void)
282{
283 int cpu;
284
285 if (!tick_nohz_full_running)
286 return;
287
288 preempt_disable();
289 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
290 tick_nohz_full_kick_cpu(cpu);
291 preempt_enable();
292}
293
294static void tick_nohz_dep_set_all(atomic_t *dep,
295 enum tick_dep_bits bit)
296{
297 int prev;
298
299 prev = atomic_fetch_or(BIT(bit), dep);
300 if (!prev)
301 tick_nohz_full_kick_all();
302}
303
304/*
305 * Set a global tick dependency. Used by perf events that rely on freq and
306 * by unstable clock.
307 */
308void tick_nohz_dep_set(enum tick_dep_bits bit)
309{
310 tick_nohz_dep_set_all(&tick_dep_mask, bit);
311}
312
313void tick_nohz_dep_clear(enum tick_dep_bits bit)
314{
315 atomic_andnot(BIT(bit), &tick_dep_mask);
316}
317
318/*
319 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
320 * manage events throttling.
321 */
322void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
323{
324 int prev;
325 struct tick_sched *ts;
326
327 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
328
329 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
330 if (!prev) {
331 preempt_disable();
332 /* Perf needs local kick that is NMI safe */
333 if (cpu == smp_processor_id()) {
334 tick_nohz_full_kick();
335 } else {
336 /* Remote irq work not NMI-safe */
337 if (!WARN_ON_ONCE(in_nmi()))
338 tick_nohz_full_kick_cpu(cpu);
339 }
340 preempt_enable();
341 }
342}
343EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
344
345void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
346{
347 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
348
349 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
350}
351EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
352
353/*
354 * Set a per-task tick dependency. RCU need this. Also posix CPU timers
355 * in order to elapse per task timers.
356 */
357void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
358{
359 if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask)) {
360 if (tsk == current) {
361 preempt_disable();
362 tick_nohz_full_kick();
363 preempt_enable();
364 } else {
365 /*
366 * Some future tick_nohz_full_kick_task()
367 * should optimize this.
368 */
369 tick_nohz_full_kick_all();
370 }
371 }
372}
373EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
374
375void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
376{
377 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
378}
379EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
380
381/*
382 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
383 * per process timers.
384 */
385void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
386{
387 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
388}
389
390void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
391{
392 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
393}
394
395/*
396 * Re-evaluate the need for the tick as we switch the current task.
397 * It might need the tick due to per task/process properties:
398 * perf events, posix CPU timers, ...
399 */
400void __tick_nohz_task_switch(void)
401{
402 unsigned long flags;
403 struct tick_sched *ts;
404
405 local_irq_save(flags);
406
407 if (!tick_nohz_full_cpu(smp_processor_id()))
408 goto out;
409
410 ts = this_cpu_ptr(&tick_cpu_sched);
411
412 if (ts->tick_stopped) {
413 if (atomic_read(¤t->tick_dep_mask) ||
414 atomic_read(¤t->signal->tick_dep_mask))
415 tick_nohz_full_kick();
416 }
417out:
418 local_irq_restore(flags);
419}
420
421/* Get the boot-time nohz CPU list from the kernel parameters. */
422void __init tick_nohz_full_setup(cpumask_var_t cpumask)
423{
424 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
425 cpumask_copy(tick_nohz_full_mask, cpumask);
426 tick_nohz_full_running = true;
427}
428EXPORT_SYMBOL_GPL(tick_nohz_full_setup);
429
430static int tick_nohz_cpu_down(unsigned int cpu)
431{
432 /*
433 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
434 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
435 * CPUs. It must remain online when nohz full is enabled.
436 */
437 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
438 return -EBUSY;
439 return 0;
440}
441
442void __init tick_nohz_init(void)
443{
444 int cpu, ret;
445
446 if (!tick_nohz_full_running)
447 return;
448
449 /*
450 * Full dynticks uses irq work to drive the tick rescheduling on safe
451 * locking contexts. But then we need irq work to raise its own
452 * interrupts to avoid circular dependency on the tick
453 */
454 if (!arch_irq_work_has_interrupt()) {
455 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
456 cpumask_clear(tick_nohz_full_mask);
457 tick_nohz_full_running = false;
458 return;
459 }
460
461 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
462 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
463 cpu = smp_processor_id();
464
465 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
466 pr_warn("NO_HZ: Clearing %d from nohz_full range "
467 "for timekeeping\n", cpu);
468 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
469 }
470 }
471
472 for_each_cpu(cpu, tick_nohz_full_mask)
473 context_tracking_cpu_set(cpu);
474
475 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
476 "kernel/nohz:predown", NULL,
477 tick_nohz_cpu_down);
478 WARN_ON(ret < 0);
479 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
480 cpumask_pr_args(tick_nohz_full_mask));
481}
482#endif
483
484/*
485 * NOHZ - aka dynamic tick functionality
486 */
487#ifdef CONFIG_NO_HZ_COMMON
488/*
489 * NO HZ enabled ?
490 */
491bool tick_nohz_enabled __read_mostly = true;
492unsigned long tick_nohz_active __read_mostly;
493/*
494 * Enable / Disable tickless mode
495 */
496static int __init setup_tick_nohz(char *str)
497{
498 return (kstrtobool(str, &tick_nohz_enabled) == 0);
499}
500
501__setup("nohz=", setup_tick_nohz);
502
503bool tick_nohz_tick_stopped(void)
504{
505 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
506
507 return ts->tick_stopped;
508}
509
510bool tick_nohz_tick_stopped_cpu(int cpu)
511{
512 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
513
514 return ts->tick_stopped;
515}
516
517/**
518 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
519 *
520 * Called from interrupt entry when the CPU was idle
521 *
522 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
523 * must be updated. Otherwise an interrupt handler could use a stale jiffy
524 * value. We do this unconditionally on any CPU, as we don't know whether the
525 * CPU, which has the update task assigned is in a long sleep.
526 */
527static void tick_nohz_update_jiffies(ktime_t now)
528{
529 unsigned long flags;
530
531 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
532
533 local_irq_save(flags);
534 tick_do_update_jiffies64(now);
535 local_irq_restore(flags);
536
537 touch_softlockup_watchdog_sched();
538}
539
540/*
541 * Updates the per-CPU time idle statistics counters
542 */
543static void
544update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
545{
546 ktime_t delta;
547
548 if (ts->idle_active) {
549 delta = ktime_sub(now, ts->idle_entrytime);
550 if (nr_iowait_cpu(cpu) > 0)
551 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
552 else
553 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
554 ts->idle_entrytime = now;
555 }
556
557 if (last_update_time)
558 *last_update_time = ktime_to_us(now);
559
560}
561
562static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
563{
564 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
565 ts->idle_active = 0;
566
567 sched_clock_idle_wakeup_event();
568}
569
570static void tick_nohz_start_idle(struct tick_sched *ts)
571{
572 ts->idle_entrytime = ktime_get();
573 ts->idle_active = 1;
574 sched_clock_idle_sleep_event();
575}
576
577/**
578 * get_cpu_idle_time_us - get the total idle time of a CPU
579 * @cpu: CPU number to query
580 * @last_update_time: variable to store update time in. Do not update
581 * counters if NULL.
582 *
583 * Return the cumulative idle time (since boot) for a given
584 * CPU, in microseconds.
585 *
586 * This time is measured via accounting rather than sampling,
587 * and is as accurate as ktime_get() is.
588 *
589 * This function returns -1 if NOHZ is not enabled.
590 */
591u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
592{
593 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
594 ktime_t now, idle;
595
596 if (!tick_nohz_active)
597 return -1;
598
599 now = ktime_get();
600 if (last_update_time) {
601 update_ts_time_stats(cpu, ts, now, last_update_time);
602 idle = ts->idle_sleeptime;
603 } else {
604 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
605 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
606
607 idle = ktime_add(ts->idle_sleeptime, delta);
608 } else {
609 idle = ts->idle_sleeptime;
610 }
611 }
612
613 return ktime_to_us(idle);
614
615}
616EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
617
618/**
619 * get_cpu_iowait_time_us - get the total iowait time of a CPU
620 * @cpu: CPU number to query
621 * @last_update_time: variable to store update time in. Do not update
622 * counters if NULL.
623 *
624 * Return the cumulative iowait time (since boot) for a given
625 * CPU, in microseconds.
626 *
627 * This time is measured via accounting rather than sampling,
628 * and is as accurate as ktime_get() is.
629 *
630 * This function returns -1 if NOHZ is not enabled.
631 */
632u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
633{
634 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
635 ktime_t now, iowait;
636
637 if (!tick_nohz_active)
638 return -1;
639
640 now = ktime_get();
641 if (last_update_time) {
642 update_ts_time_stats(cpu, ts, now, last_update_time);
643 iowait = ts->iowait_sleeptime;
644 } else {
645 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
646 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
647
648 iowait = ktime_add(ts->iowait_sleeptime, delta);
649 } else {
650 iowait = ts->iowait_sleeptime;
651 }
652 }
653
654 return ktime_to_us(iowait);
655}
656EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
657
658static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
659{
660 hrtimer_cancel(&ts->sched_timer);
661 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
662
663 /* Forward the time to expire in the future */
664 hrtimer_forward(&ts->sched_timer, now, tick_period);
665
666 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
667 hrtimer_start_expires(&ts->sched_timer,
668 HRTIMER_MODE_ABS_PINNED_HARD);
669 } else {
670 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
671 }
672
673 /*
674 * Reset to make sure next tick stop doesn't get fooled by past
675 * cached clock deadline.
676 */
677 ts->next_tick = 0;
678}
679
680static inline bool local_timer_softirq_pending(void)
681{
682 return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
683}
684
685static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
686{
687 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
688 unsigned long basejiff;
689 unsigned int seq;
690
691 /* Read jiffies and the time when jiffies were updated last */
692 do {
693 seq = read_seqcount_begin(&jiffies_seq);
694 basemono = last_jiffies_update;
695 basejiff = jiffies;
696 } while (read_seqcount_retry(&jiffies_seq, seq));
697 ts->last_jiffies = basejiff;
698 ts->timer_expires_base = basemono;
699
700 /*
701 * Keep the periodic tick, when RCU, architecture or irq_work
702 * requests it.
703 * Aside of that check whether the local timer softirq is
704 * pending. If so its a bad idea to call get_next_timer_interrupt()
705 * because there is an already expired timer, so it will request
706 * immeditate expiry, which rearms the hardware timer with a
707 * minimal delta which brings us back to this place
708 * immediately. Lather, rinse and repeat...
709 */
710 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
711 irq_work_needs_cpu() || local_timer_softirq_pending()) {
712 next_tick = basemono + TICK_NSEC;
713 } else {
714 /*
715 * Get the next pending timer. If high resolution
716 * timers are enabled this only takes the timer wheel
717 * timers into account. If high resolution timers are
718 * disabled this also looks at the next expiring
719 * hrtimer.
720 */
721 next_tmr = get_next_timer_interrupt(basejiff, basemono);
722 ts->next_timer = next_tmr;
723 /* Take the next rcu event into account */
724 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
725 }
726
727 /*
728 * If the tick is due in the next period, keep it ticking or
729 * force prod the timer.
730 */
731 delta = next_tick - basemono;
732 if (delta <= (u64)TICK_NSEC) {
733 /*
734 * Tell the timer code that the base is not idle, i.e. undo
735 * the effect of get_next_timer_interrupt():
736 */
737 timer_clear_idle();
738 /*
739 * We've not stopped the tick yet, and there's a timer in the
740 * next period, so no point in stopping it either, bail.
741 */
742 if (!ts->tick_stopped) {
743 ts->timer_expires = 0;
744 goto out;
745 }
746 }
747
748 /*
749 * If this CPU is the one which had the do_timer() duty last, we limit
750 * the sleep time to the timekeeping max_deferment value.
751 * Otherwise we can sleep as long as we want.
752 */
753 delta = timekeeping_max_deferment();
754 if (cpu != tick_do_timer_cpu &&
755 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
756 delta = KTIME_MAX;
757
758 /* Calculate the next expiry time */
759 if (delta < (KTIME_MAX - basemono))
760 expires = basemono + delta;
761 else
762 expires = KTIME_MAX;
763
764 ts->timer_expires = min_t(u64, expires, next_tick);
765
766out:
767 return ts->timer_expires;
768}
769
770static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
771{
772 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
773 u64 basemono = ts->timer_expires_base;
774 u64 expires = ts->timer_expires;
775 ktime_t tick = expires;
776
777 /* Make sure we won't be trying to stop it twice in a row. */
778 ts->timer_expires_base = 0;
779
780 /*
781 * If this CPU is the one which updates jiffies, then give up
782 * the assignment and let it be taken by the CPU which runs
783 * the tick timer next, which might be this CPU as well. If we
784 * don't drop this here the jiffies might be stale and
785 * do_timer() never invoked. Keep track of the fact that it
786 * was the one which had the do_timer() duty last.
787 */
788 if (cpu == tick_do_timer_cpu) {
789 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
790 ts->do_timer_last = 1;
791 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
792 ts->do_timer_last = 0;
793 }
794
795 /* Skip reprogram of event if its not changed */
796 if (ts->tick_stopped && (expires == ts->next_tick)) {
797 /* Sanity check: make sure clockevent is actually programmed */
798 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
799 return;
800
801 WARN_ON_ONCE(1);
802 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
803 basemono, ts->next_tick, dev->next_event,
804 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
805 }
806
807 /*
808 * nohz_stop_sched_tick can be called several times before
809 * the nohz_restart_sched_tick is called. This happens when
810 * interrupts arrive which do not cause a reschedule. In the
811 * first call we save the current tick time, so we can restart
812 * the scheduler tick in nohz_restart_sched_tick.
813 */
814 if (!ts->tick_stopped) {
815 calc_load_nohz_start();
816 quiet_vmstat();
817
818 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
819 ts->tick_stopped = 1;
820 trace_tick_stop(1, TICK_DEP_MASK_NONE);
821 }
822
823 ts->next_tick = tick;
824
825 /*
826 * If the expiration time == KTIME_MAX, then we simply stop
827 * the tick timer.
828 */
829 if (unlikely(expires == KTIME_MAX)) {
830 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
831 hrtimer_cancel(&ts->sched_timer);
832 return;
833 }
834
835 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
836 hrtimer_start(&ts->sched_timer, tick,
837 HRTIMER_MODE_ABS_PINNED_HARD);
838 } else {
839 hrtimer_set_expires(&ts->sched_timer, tick);
840 tick_program_event(tick, 1);
841 }
842}
843
844static void tick_nohz_retain_tick(struct tick_sched *ts)
845{
846 ts->timer_expires_base = 0;
847}
848
849#ifdef CONFIG_NO_HZ_FULL
850static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
851{
852 if (tick_nohz_next_event(ts, cpu))
853 tick_nohz_stop_tick(ts, cpu);
854 else
855 tick_nohz_retain_tick(ts);
856}
857#endif /* CONFIG_NO_HZ_FULL */
858
859static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
860{
861 /* Update jiffies first */
862 tick_do_update_jiffies64(now);
863
864 /*
865 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
866 * the clock forward checks in the enqueue path:
867 */
868 timer_clear_idle();
869
870 calc_load_nohz_stop();
871 touch_softlockup_watchdog_sched();
872 /*
873 * Cancel the scheduled timer and restore the tick
874 */
875 ts->tick_stopped = 0;
876 ts->idle_exittime = now;
877
878 tick_nohz_restart(ts, now);
879}
880
881static void tick_nohz_full_update_tick(struct tick_sched *ts)
882{
883#ifdef CONFIG_NO_HZ_FULL
884 int cpu = smp_processor_id();
885
886 if (!tick_nohz_full_cpu(cpu))
887 return;
888
889 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
890 return;
891
892 if (can_stop_full_tick(cpu, ts))
893 tick_nohz_stop_sched_tick(ts, cpu);
894 else if (ts->tick_stopped)
895 tick_nohz_restart_sched_tick(ts, ktime_get());
896#endif
897}
898
899static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
900{
901 /*
902 * If this CPU is offline and it is the one which updates
903 * jiffies, then give up the assignment and let it be taken by
904 * the CPU which runs the tick timer next. If we don't drop
905 * this here the jiffies might be stale and do_timer() never
906 * invoked.
907 */
908 if (unlikely(!cpu_online(cpu))) {
909 if (cpu == tick_do_timer_cpu)
910 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
911 /*
912 * Make sure the CPU doesn't get fooled by obsolete tick
913 * deadline if it comes back online later.
914 */
915 ts->next_tick = 0;
916 return false;
917 }
918
919 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
920 return false;
921
922 if (need_resched())
923 return false;
924
925 if (unlikely(local_softirq_pending())) {
926 static int ratelimit;
927
928 if (ratelimit < 10 &&
929 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
930 pr_warn("NOHZ: local_softirq_pending %02x\n",
931 (unsigned int) local_softirq_pending());
932 ratelimit++;
933 }
934 return false;
935 }
936
937 if (tick_nohz_full_enabled()) {
938 /*
939 * Keep the tick alive to guarantee timekeeping progression
940 * if there are full dynticks CPUs around
941 */
942 if (tick_do_timer_cpu == cpu)
943 return false;
944 /*
945 * Boot safety: make sure the timekeeping duty has been
946 * assigned before entering dyntick-idle mode,
947 * tick_do_timer_cpu is TICK_DO_TIMER_BOOT
948 */
949 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_BOOT))
950 return false;
951
952 /* Should not happen for nohz-full */
953 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
954 return false;
955 }
956
957 return true;
958}
959
960static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
961{
962 ktime_t expires;
963 int cpu = smp_processor_id();
964
965 /*
966 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
967 * tick timer expiration time is known already.
968 */
969 if (ts->timer_expires_base)
970 expires = ts->timer_expires;
971 else if (can_stop_idle_tick(cpu, ts))
972 expires = tick_nohz_next_event(ts, cpu);
973 else
974 return;
975
976 ts->idle_calls++;
977
978 if (expires > 0LL) {
979 int was_stopped = ts->tick_stopped;
980
981 tick_nohz_stop_tick(ts, cpu);
982
983 ts->idle_sleeps++;
984 ts->idle_expires = expires;
985
986 if (!was_stopped && ts->tick_stopped) {
987 ts->idle_jiffies = ts->last_jiffies;
988 nohz_balance_enter_idle(cpu);
989 }
990 } else {
991 tick_nohz_retain_tick(ts);
992 }
993}
994
995/**
996 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
997 *
998 * When the next event is more than a tick into the future, stop the idle tick
999 */
1000void tick_nohz_idle_stop_tick(void)
1001{
1002 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
1003}
1004
1005void tick_nohz_idle_retain_tick(void)
1006{
1007 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1008 /*
1009 * Undo the effect of get_next_timer_interrupt() called from
1010 * tick_nohz_next_event().
1011 */
1012 timer_clear_idle();
1013}
1014
1015/**
1016 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1017 *
1018 * Called when we start the idle loop.
1019 */
1020void tick_nohz_idle_enter(void)
1021{
1022 struct tick_sched *ts;
1023
1024 lockdep_assert_irqs_enabled();
1025
1026 local_irq_disable();
1027
1028 ts = this_cpu_ptr(&tick_cpu_sched);
1029
1030 WARN_ON_ONCE(ts->timer_expires_base);
1031
1032 ts->inidle = 1;
1033 tick_nohz_start_idle(ts);
1034
1035 local_irq_enable();
1036}
1037
1038/**
1039 * tick_nohz_irq_exit - update next tick event from interrupt exit
1040 *
1041 * When an interrupt fires while we are idle and it doesn't cause
1042 * a reschedule, it may still add, modify or delete a timer, enqueue
1043 * an RCU callback, etc...
1044 * So we need to re-calculate and reprogram the next tick event.
1045 */
1046void tick_nohz_irq_exit(void)
1047{
1048 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1049
1050 if (ts->inidle)
1051 tick_nohz_start_idle(ts);
1052 else
1053 tick_nohz_full_update_tick(ts);
1054}
1055
1056/**
1057 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1058 */
1059bool tick_nohz_idle_got_tick(void)
1060{
1061 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1062
1063 if (ts->got_idle_tick) {
1064 ts->got_idle_tick = 0;
1065 return true;
1066 }
1067 return false;
1068}
1069
1070/**
1071 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1072 * or the tick, whatever that expires first. Note that, if the tick has been
1073 * stopped, it returns the next hrtimer.
1074 *
1075 * Called from power state control code with interrupts disabled
1076 */
1077ktime_t tick_nohz_get_next_hrtimer(void)
1078{
1079 return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1080}
1081
1082/**
1083 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1084 * @delta_next: duration until the next event if the tick cannot be stopped
1085 *
1086 * Called from power state control code with interrupts disabled
1087 */
1088ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1089{
1090 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1091 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1092 int cpu = smp_processor_id();
1093 /*
1094 * The idle entry time is expected to be a sufficient approximation of
1095 * the current time at this point.
1096 */
1097 ktime_t now = ts->idle_entrytime;
1098 ktime_t next_event;
1099
1100 WARN_ON_ONCE(!ts->inidle);
1101
1102 *delta_next = ktime_sub(dev->next_event, now);
1103
1104 if (!can_stop_idle_tick(cpu, ts))
1105 return *delta_next;
1106
1107 next_event = tick_nohz_next_event(ts, cpu);
1108 if (!next_event)
1109 return *delta_next;
1110
1111 /*
1112 * If the next highres timer to expire is earlier than next_event, the
1113 * idle governor needs to know that.
1114 */
1115 next_event = min_t(u64, next_event,
1116 hrtimer_next_event_without(&ts->sched_timer));
1117
1118 return ktime_sub(next_event, now);
1119}
1120
1121/**
1122 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1123 * for a particular CPU.
1124 *
1125 * Called from the schedutil frequency scaling governor in scheduler context.
1126 */
1127unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1128{
1129 struct tick_sched *ts = tick_get_tick_sched(cpu);
1130
1131 return ts->idle_calls;
1132}
1133
1134/**
1135 * tick_nohz_get_idle_calls - return the current idle calls counter value
1136 *
1137 * Called from the schedutil frequency scaling governor in scheduler context.
1138 */
1139unsigned long tick_nohz_get_idle_calls(void)
1140{
1141 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1142
1143 return ts->idle_calls;
1144}
1145
1146static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1147{
1148#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1149 unsigned long ticks;
1150
1151 if (vtime_accounting_enabled_this_cpu())
1152 return;
1153 /*
1154 * We stopped the tick in idle. Update process times would miss the
1155 * time we slept as update_process_times does only a 1 tick
1156 * accounting. Enforce that this is accounted to idle !
1157 */
1158 ticks = jiffies - ts->idle_jiffies;
1159 /*
1160 * We might be one off. Do not randomly account a huge number of ticks!
1161 */
1162 if (ticks && ticks < LONG_MAX)
1163 account_idle_ticks(ticks);
1164#endif
1165}
1166
1167static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1168{
1169 tick_nohz_restart_sched_tick(ts, now);
1170 tick_nohz_account_idle_ticks(ts);
1171}
1172
1173void tick_nohz_idle_restart_tick(void)
1174{
1175 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1176
1177 if (ts->tick_stopped)
1178 __tick_nohz_idle_restart_tick(ts, ktime_get());
1179}
1180
1181/**
1182 * tick_nohz_idle_exit - restart the idle tick from the idle task
1183 *
1184 * Restart the idle tick when the CPU is woken up from idle
1185 * This also exit the RCU extended quiescent state. The CPU
1186 * can use RCU again after this function is called.
1187 */
1188void tick_nohz_idle_exit(void)
1189{
1190 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1191 bool idle_active, tick_stopped;
1192 ktime_t now;
1193
1194 local_irq_disable();
1195
1196 WARN_ON_ONCE(!ts->inidle);
1197 WARN_ON_ONCE(ts->timer_expires_base);
1198
1199 ts->inidle = 0;
1200 idle_active = ts->idle_active;
1201 tick_stopped = ts->tick_stopped;
1202
1203 if (idle_active || tick_stopped)
1204 now = ktime_get();
1205
1206 if (idle_active)
1207 tick_nohz_stop_idle(ts, now);
1208
1209 if (tick_stopped)
1210 __tick_nohz_idle_restart_tick(ts, now);
1211
1212 local_irq_enable();
1213}
1214
1215/*
1216 * The nohz low res interrupt handler
1217 */
1218static void tick_nohz_handler(struct clock_event_device *dev)
1219{
1220 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1221 struct pt_regs *regs = get_irq_regs();
1222 ktime_t now = ktime_get();
1223
1224 dev->next_event = KTIME_MAX;
1225
1226 tick_sched_do_timer(ts, now);
1227 tick_sched_handle(ts, regs);
1228
1229 /* No need to reprogram if we are running tickless */
1230 if (unlikely(ts->tick_stopped))
1231 return;
1232
1233 hrtimer_forward(&ts->sched_timer, now, tick_period);
1234 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1235}
1236
1237static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1238{
1239 if (!tick_nohz_enabled)
1240 return;
1241 ts->nohz_mode = mode;
1242 /* One update is enough */
1243 if (!test_and_set_bit(0, &tick_nohz_active))
1244 timers_update_nohz();
1245}
1246
1247/**
1248 * tick_nohz_switch_to_nohz - switch to nohz mode
1249 */
1250static void tick_nohz_switch_to_nohz(void)
1251{
1252 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1253 ktime_t next;
1254
1255 if (!tick_nohz_enabled)
1256 return;
1257
1258 if (tick_switch_to_oneshot(tick_nohz_handler))
1259 return;
1260
1261 /*
1262 * Recycle the hrtimer in ts, so we can share the
1263 * hrtimer_forward with the highres code.
1264 */
1265 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1266 /* Get the next period */
1267 next = tick_init_jiffy_update();
1268
1269 hrtimer_set_expires(&ts->sched_timer, next);
1270 hrtimer_forward_now(&ts->sched_timer, tick_period);
1271 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1272 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1273}
1274
1275static inline void tick_nohz_irq_enter(void)
1276{
1277 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1278 ktime_t now;
1279
1280 if (!ts->idle_active && !ts->tick_stopped)
1281 return;
1282 now = ktime_get();
1283 if (ts->idle_active)
1284 tick_nohz_stop_idle(ts, now);
1285 if (ts->tick_stopped)
1286 tick_nohz_update_jiffies(now);
1287}
1288
1289#else
1290
1291static inline void tick_nohz_switch_to_nohz(void) { }
1292static inline void tick_nohz_irq_enter(void) { }
1293static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1294
1295#endif /* CONFIG_NO_HZ_COMMON */
1296
1297/*
1298 * Called from irq_enter to notify about the possible interruption of idle()
1299 */
1300void tick_irq_enter(void)
1301{
1302 tick_check_oneshot_broadcast_this_cpu();
1303 tick_nohz_irq_enter();
1304}
1305
1306/*
1307 * High resolution timer specific code
1308 */
1309#ifdef CONFIG_HIGH_RES_TIMERS
1310/*
1311 * We rearm the timer until we get disabled by the idle code.
1312 * Called with interrupts disabled.
1313 */
1314static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1315{
1316 struct tick_sched *ts =
1317 container_of(timer, struct tick_sched, sched_timer);
1318 struct pt_regs *regs = get_irq_regs();
1319 ktime_t now = ktime_get();
1320
1321 tick_sched_do_timer(ts, now);
1322
1323 /*
1324 * Do not call, when we are not in irq context and have
1325 * no valid regs pointer
1326 */
1327 if (regs)
1328 tick_sched_handle(ts, regs);
1329 else
1330 ts->next_tick = 0;
1331
1332 /* No need to reprogram if we are in idle or full dynticks mode */
1333 if (unlikely(ts->tick_stopped))
1334 return HRTIMER_NORESTART;
1335
1336 hrtimer_forward(timer, now, tick_period);
1337
1338 return HRTIMER_RESTART;
1339}
1340
1341static int sched_skew_tick;
1342
1343static int __init skew_tick(char *str)
1344{
1345 get_option(&str, &sched_skew_tick);
1346
1347 return 0;
1348}
1349early_param("skew_tick", skew_tick);
1350
1351/**
1352 * tick_setup_sched_timer - setup the tick emulation timer
1353 */
1354void tick_setup_sched_timer(void)
1355{
1356 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1357 ktime_t now = ktime_get();
1358
1359 /*
1360 * Emulate tick processing via per-CPU hrtimers:
1361 */
1362 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1363 ts->sched_timer.function = tick_sched_timer;
1364
1365 /* Get the next period (per-CPU) */
1366 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1367
1368 /* Offset the tick to avert jiffies_lock contention. */
1369 if (sched_skew_tick) {
1370 u64 offset = ktime_to_ns(tick_period) >> 1;
1371 do_div(offset, num_possible_cpus());
1372 offset *= smp_processor_id();
1373 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1374 }
1375
1376 hrtimer_forward(&ts->sched_timer, now, tick_period);
1377 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1378 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1379}
1380#endif /* HIGH_RES_TIMERS */
1381
1382#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1383void tick_cancel_sched_timer(int cpu)
1384{
1385 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1386
1387# ifdef CONFIG_HIGH_RES_TIMERS
1388 if (ts->sched_timer.base)
1389 hrtimer_cancel(&ts->sched_timer);
1390# endif
1391
1392 memset(ts, 0, sizeof(*ts));
1393}
1394#endif
1395
1396/**
1397 * Async notification about clocksource changes
1398 */
1399void tick_clock_notify(void)
1400{
1401 int cpu;
1402
1403 for_each_possible_cpu(cpu)
1404 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1405}
1406
1407/*
1408 * Async notification about clock event changes
1409 */
1410void tick_oneshot_notify(void)
1411{
1412 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1413
1414 set_bit(0, &ts->check_clocks);
1415}
1416
1417/**
1418 * Check, if a change happened, which makes oneshot possible.
1419 *
1420 * Called cyclic from the hrtimer softirq (driven by the timer
1421 * softirq) allow_nohz signals, that we can switch into low-res nohz
1422 * mode, because high resolution timers are disabled (either compile
1423 * or runtime). Called with interrupts disabled.
1424 */
1425int tick_check_oneshot_change(int allow_nohz)
1426{
1427 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1428
1429 if (!test_and_clear_bit(0, &ts->check_clocks))
1430 return 0;
1431
1432 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1433 return 0;
1434
1435 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1436 return 0;
1437
1438 if (!allow_nohz)
1439 return 1;
1440
1441 tick_nohz_switch_to_nohz();
1442 return 0;
1443}