Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kexec.c - kexec system call core code.
   4 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
   5 */
   6
   7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   8
   9#include <linux/btf.h>
  10#include <linux/capability.h>
  11#include <linux/mm.h>
  12#include <linux/file.h>
  13#include <linux/slab.h>
  14#include <linux/fs.h>
  15#include <linux/kexec.h>
  16#include <linux/mutex.h>
  17#include <linux/list.h>
  18#include <linux/highmem.h>
  19#include <linux/syscalls.h>
  20#include <linux/reboot.h>
  21#include <linux/ioport.h>
  22#include <linux/hardirq.h>
  23#include <linux/elf.h>
  24#include <linux/elfcore.h>
  25#include <linux/utsname.h>
  26#include <linux/numa.h>
  27#include <linux/suspend.h>
  28#include <linux/device.h>
  29#include <linux/freezer.h>
  30#include <linux/panic_notifier.h>
  31#include <linux/pm.h>
  32#include <linux/cpu.h>
  33#include <linux/uaccess.h>
  34#include <linux/io.h>
  35#include <linux/console.h>
  36#include <linux/vmalloc.h>
  37#include <linux/swap.h>
  38#include <linux/syscore_ops.h>
  39#include <linux/compiler.h>
  40#include <linux/hugetlb.h>
  41#include <linux/objtool.h>
  42#include <linux/kmsg_dump.h>
  43
  44#include <asm/page.h>
  45#include <asm/sections.h>
  46
  47#include <crypto/hash.h>
 
  48#include "kexec_internal.h"
  49
  50atomic_t __kexec_lock = ATOMIC_INIT(0);
 
 
 
  51
  52/* Flag to indicate we are going to kexec a new kernel */
  53bool kexec_in_progress = false;
  54
  55bool kexec_file_dbg_print;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  56
  57int kexec_should_crash(struct task_struct *p)
  58{
  59	/*
  60	 * If crash_kexec_post_notifiers is enabled, don't run
  61	 * crash_kexec() here yet, which must be run after panic
  62	 * notifiers in panic().
  63	 */
  64	if (crash_kexec_post_notifiers)
  65		return 0;
  66	/*
  67	 * There are 4 panic() calls in make_task_dead() path, each of which
  68	 * corresponds to each of these 4 conditions.
  69	 */
  70	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
  71		return 1;
  72	return 0;
  73}
  74
  75int kexec_crash_loaded(void)
  76{
  77	return !!kexec_crash_image;
  78}
  79EXPORT_SYMBOL_GPL(kexec_crash_loaded);
  80
  81/*
  82 * When kexec transitions to the new kernel there is a one-to-one
  83 * mapping between physical and virtual addresses.  On processors
  84 * where you can disable the MMU this is trivial, and easy.  For
  85 * others it is still a simple predictable page table to setup.
  86 *
  87 * In that environment kexec copies the new kernel to its final
  88 * resting place.  This means I can only support memory whose
  89 * physical address can fit in an unsigned long.  In particular
  90 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
  91 * If the assembly stub has more restrictive requirements
  92 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
  93 * defined more restrictively in <asm/kexec.h>.
  94 *
  95 * The code for the transition from the current kernel to the
  96 * new kernel is placed in the control_code_buffer, whose size
  97 * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
  98 * page of memory is necessary, but some architectures require more.
  99 * Because this memory must be identity mapped in the transition from
 100 * virtual to physical addresses it must live in the range
 101 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
 102 * modifiable.
 103 *
 104 * The assembly stub in the control code buffer is passed a linked list
 105 * of descriptor pages detailing the source pages of the new kernel,
 106 * and the destination addresses of those source pages.  As this data
 107 * structure is not used in the context of the current OS, it must
 108 * be self-contained.
 109 *
 110 * The code has been made to work with highmem pages and will use a
 111 * destination page in its final resting place (if it happens
 112 * to allocate it).  The end product of this is that most of the
 113 * physical address space, and most of RAM can be used.
 114 *
 115 * Future directions include:
 116 *  - allocating a page table with the control code buffer identity
 117 *    mapped, to simplify machine_kexec and make kexec_on_panic more
 118 *    reliable.
 119 */
 120
 121/*
 122 * KIMAGE_NO_DEST is an impossible destination address..., for
 123 * allocating pages whose destination address we do not care about.
 124 */
 125#define KIMAGE_NO_DEST (-1UL)
 126#define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
 127
 128static struct page *kimage_alloc_page(struct kimage *image,
 129				       gfp_t gfp_mask,
 130				       unsigned long dest);
 131
 132int sanity_check_segment_list(struct kimage *image)
 133{
 134	int i;
 135	unsigned long nr_segments = image->nr_segments;
 136	unsigned long total_pages = 0;
 137	unsigned long nr_pages = totalram_pages();
 138
 139	/*
 140	 * Verify we have good destination addresses.  The caller is
 141	 * responsible for making certain we don't attempt to load
 142	 * the new image into invalid or reserved areas of RAM.  This
 143	 * just verifies it is an address we can use.
 144	 *
 145	 * Since the kernel does everything in page size chunks ensure
 146	 * the destination addresses are page aligned.  Too many
 147	 * special cases crop of when we don't do this.  The most
 148	 * insidious is getting overlapping destination addresses
 149	 * simply because addresses are changed to page size
 150	 * granularity.
 151	 */
 152	for (i = 0; i < nr_segments; i++) {
 153		unsigned long mstart, mend;
 154
 155		mstart = image->segment[i].mem;
 156		mend   = mstart + image->segment[i].memsz;
 157		if (mstart > mend)
 158			return -EADDRNOTAVAIL;
 159		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
 160			return -EADDRNOTAVAIL;
 161		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
 162			return -EADDRNOTAVAIL;
 163	}
 164
 165	/* Verify our destination addresses do not overlap.
 166	 * If we alloed overlapping destination addresses
 167	 * through very weird things can happen with no
 168	 * easy explanation as one segment stops on another.
 169	 */
 170	for (i = 0; i < nr_segments; i++) {
 171		unsigned long mstart, mend;
 172		unsigned long j;
 173
 174		mstart = image->segment[i].mem;
 175		mend   = mstart + image->segment[i].memsz;
 176		for (j = 0; j < i; j++) {
 177			unsigned long pstart, pend;
 178
 179			pstart = image->segment[j].mem;
 180			pend   = pstart + image->segment[j].memsz;
 181			/* Do the segments overlap ? */
 182			if ((mend > pstart) && (mstart < pend))
 183				return -EINVAL;
 184		}
 185	}
 186
 187	/* Ensure our buffer sizes are strictly less than
 188	 * our memory sizes.  This should always be the case,
 189	 * and it is easier to check up front than to be surprised
 190	 * later on.
 191	 */
 192	for (i = 0; i < nr_segments; i++) {
 193		if (image->segment[i].bufsz > image->segment[i].memsz)
 194			return -EINVAL;
 195	}
 196
 197	/*
 198	 * Verify that no more than half of memory will be consumed. If the
 199	 * request from userspace is too large, a large amount of time will be
 200	 * wasted allocating pages, which can cause a soft lockup.
 201	 */
 202	for (i = 0; i < nr_segments; i++) {
 203		if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
 204			return -EINVAL;
 205
 206		total_pages += PAGE_COUNT(image->segment[i].memsz);
 207	}
 208
 209	if (total_pages > nr_pages / 2)
 210		return -EINVAL;
 211
 212	/*
 213	 * Verify we have good destination addresses.  Normally
 214	 * the caller is responsible for making certain we don't
 215	 * attempt to load the new image into invalid or reserved
 216	 * areas of RAM.  But crash kernels are preloaded into a
 217	 * reserved area of ram.  We must ensure the addresses
 218	 * are in the reserved area otherwise preloading the
 219	 * kernel could corrupt things.
 220	 */
 221
 222	if (image->type == KEXEC_TYPE_CRASH) {
 223		for (i = 0; i < nr_segments; i++) {
 224			unsigned long mstart, mend;
 225
 226			mstart = image->segment[i].mem;
 227			mend = mstart + image->segment[i].memsz - 1;
 228			/* Ensure we are within the crash kernel limits */
 229			if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
 230			    (mend > phys_to_boot_phys(crashk_res.end)))
 231				return -EADDRNOTAVAIL;
 232		}
 233	}
 234
 235	return 0;
 236}
 237
 238struct kimage *do_kimage_alloc_init(void)
 239{
 240	struct kimage *image;
 241
 242	/* Allocate a controlling structure */
 243	image = kzalloc(sizeof(*image), GFP_KERNEL);
 244	if (!image)
 245		return NULL;
 246
 247	image->head = 0;
 248	image->entry = &image->head;
 249	image->last_entry = &image->head;
 250	image->control_page = ~0; /* By default this does not apply */
 251	image->type = KEXEC_TYPE_DEFAULT;
 252
 253	/* Initialize the list of control pages */
 254	INIT_LIST_HEAD(&image->control_pages);
 255
 256	/* Initialize the list of destination pages */
 257	INIT_LIST_HEAD(&image->dest_pages);
 258
 259	/* Initialize the list of unusable pages */
 260	INIT_LIST_HEAD(&image->unusable_pages);
 261
 262#ifdef CONFIG_CRASH_HOTPLUG
 263	image->hp_action = KEXEC_CRASH_HP_NONE;
 264	image->elfcorehdr_index = -1;
 265	image->elfcorehdr_updated = false;
 266#endif
 267
 268	return image;
 269}
 270
 271int kimage_is_destination_range(struct kimage *image,
 272					unsigned long start,
 273					unsigned long end)
 274{
 275	unsigned long i;
 276
 277	for (i = 0; i < image->nr_segments; i++) {
 278		unsigned long mstart, mend;
 279
 280		mstart = image->segment[i].mem;
 281		mend = mstart + image->segment[i].memsz - 1;
 282		if ((end >= mstart) && (start <= mend))
 283			return 1;
 284	}
 285
 286	return 0;
 287}
 288
 289static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
 290{
 291	struct page *pages;
 292
 293	if (fatal_signal_pending(current))
 294		return NULL;
 295	pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
 296	if (pages) {
 297		unsigned int count, i;
 298
 299		pages->mapping = NULL;
 300		set_page_private(pages, order);
 301		count = 1 << order;
 302		for (i = 0; i < count; i++)
 303			SetPageReserved(pages + i);
 304
 305		arch_kexec_post_alloc_pages(page_address(pages), count,
 306					    gfp_mask);
 307
 308		if (gfp_mask & __GFP_ZERO)
 309			for (i = 0; i < count; i++)
 310				clear_highpage(pages + i);
 311	}
 312
 313	return pages;
 314}
 315
 316static void kimage_free_pages(struct page *page)
 317{
 318	unsigned int order, count, i;
 319
 320	order = page_private(page);
 321	count = 1 << order;
 322
 323	arch_kexec_pre_free_pages(page_address(page), count);
 324
 325	for (i = 0; i < count; i++)
 326		ClearPageReserved(page + i);
 327	__free_pages(page, order);
 328}
 329
 330void kimage_free_page_list(struct list_head *list)
 331{
 332	struct page *page, *next;
 333
 334	list_for_each_entry_safe(page, next, list, lru) {
 335		list_del(&page->lru);
 336		kimage_free_pages(page);
 337	}
 338}
 339
 340static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
 341							unsigned int order)
 342{
 343	/* Control pages are special, they are the intermediaries
 344	 * that are needed while we copy the rest of the pages
 345	 * to their final resting place.  As such they must
 346	 * not conflict with either the destination addresses
 347	 * or memory the kernel is already using.
 348	 *
 349	 * The only case where we really need more than one of
 350	 * these are for architectures where we cannot disable
 351	 * the MMU and must instead generate an identity mapped
 352	 * page table for all of the memory.
 353	 *
 354	 * At worst this runs in O(N) of the image size.
 355	 */
 356	struct list_head extra_pages;
 357	struct page *pages;
 358	unsigned int count;
 359
 360	count = 1 << order;
 361	INIT_LIST_HEAD(&extra_pages);
 362
 363	/* Loop while I can allocate a page and the page allocated
 364	 * is a destination page.
 365	 */
 366	do {
 367		unsigned long pfn, epfn, addr, eaddr;
 368
 369		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
 370		if (!pages)
 371			break;
 372		pfn   = page_to_boot_pfn(pages);
 373		epfn  = pfn + count;
 374		addr  = pfn << PAGE_SHIFT;
 375		eaddr = (epfn << PAGE_SHIFT) - 1;
 376		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
 377			      kimage_is_destination_range(image, addr, eaddr)) {
 378			list_add(&pages->lru, &extra_pages);
 379			pages = NULL;
 380		}
 381	} while (!pages);
 382
 383	if (pages) {
 384		/* Remember the allocated page... */
 385		list_add(&pages->lru, &image->control_pages);
 386
 387		/* Because the page is already in it's destination
 388		 * location we will never allocate another page at
 389		 * that address.  Therefore kimage_alloc_pages
 390		 * will not return it (again) and we don't need
 391		 * to give it an entry in image->segment[].
 392		 */
 393	}
 394	/* Deal with the destination pages I have inadvertently allocated.
 395	 *
 396	 * Ideally I would convert multi-page allocations into single
 397	 * page allocations, and add everything to image->dest_pages.
 398	 *
 399	 * For now it is simpler to just free the pages.
 400	 */
 401	kimage_free_page_list(&extra_pages);
 402
 403	return pages;
 404}
 405
 406static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
 407						      unsigned int order)
 408{
 409	/* Control pages are special, they are the intermediaries
 410	 * that are needed while we copy the rest of the pages
 411	 * to their final resting place.  As such they must
 412	 * not conflict with either the destination addresses
 413	 * or memory the kernel is already using.
 414	 *
 415	 * Control pages are also the only pags we must allocate
 416	 * when loading a crash kernel.  All of the other pages
 417	 * are specified by the segments and we just memcpy
 418	 * into them directly.
 419	 *
 420	 * The only case where we really need more than one of
 421	 * these are for architectures where we cannot disable
 422	 * the MMU and must instead generate an identity mapped
 423	 * page table for all of the memory.
 424	 *
 425	 * Given the low demand this implements a very simple
 426	 * allocator that finds the first hole of the appropriate
 427	 * size in the reserved memory region, and allocates all
 428	 * of the memory up to and including the hole.
 429	 */
 430	unsigned long hole_start, hole_end, size;
 431	struct page *pages;
 432
 433	pages = NULL;
 434	size = (1 << order) << PAGE_SHIFT;
 435	hole_start = ALIGN(image->control_page, size);
 436	hole_end   = hole_start + size - 1;
 437	while (hole_end <= crashk_res.end) {
 438		unsigned long i;
 439
 440		cond_resched();
 441
 442		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
 443			break;
 444		/* See if I overlap any of the segments */
 445		for (i = 0; i < image->nr_segments; i++) {
 446			unsigned long mstart, mend;
 447
 448			mstart = image->segment[i].mem;
 449			mend   = mstart + image->segment[i].memsz - 1;
 450			if ((hole_end >= mstart) && (hole_start <= mend)) {
 451				/* Advance the hole to the end of the segment */
 452				hole_start = ALIGN(mend, size);
 453				hole_end   = hole_start + size - 1;
 454				break;
 455			}
 456		}
 457		/* If I don't overlap any segments I have found my hole! */
 458		if (i == image->nr_segments) {
 459			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
 460			image->control_page = hole_end + 1;
 461			break;
 462		}
 463	}
 464
 465	/* Ensure that these pages are decrypted if SME is enabled. */
 466	if (pages)
 467		arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
 468
 469	return pages;
 470}
 471
 472
 473struct page *kimage_alloc_control_pages(struct kimage *image,
 474					 unsigned int order)
 475{
 476	struct page *pages = NULL;
 477
 478	switch (image->type) {
 479	case KEXEC_TYPE_DEFAULT:
 480		pages = kimage_alloc_normal_control_pages(image, order);
 481		break;
 482	case KEXEC_TYPE_CRASH:
 483		pages = kimage_alloc_crash_control_pages(image, order);
 484		break;
 485	}
 486
 487	return pages;
 488}
 489
 490int kimage_crash_copy_vmcoreinfo(struct kimage *image)
 491{
 492	struct page *vmcoreinfo_page;
 493	void *safecopy;
 494
 495	if (image->type != KEXEC_TYPE_CRASH)
 496		return 0;
 497
 498	/*
 499	 * For kdump, allocate one vmcoreinfo safe copy from the
 500	 * crash memory. as we have arch_kexec_protect_crashkres()
 501	 * after kexec syscall, we naturally protect it from write
 502	 * (even read) access under kernel direct mapping. But on
 503	 * the other hand, we still need to operate it when crash
 504	 * happens to generate vmcoreinfo note, hereby we rely on
 505	 * vmap for this purpose.
 506	 */
 507	vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
 508	if (!vmcoreinfo_page) {
 509		pr_warn("Could not allocate vmcoreinfo buffer\n");
 510		return -ENOMEM;
 511	}
 512	safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
 513	if (!safecopy) {
 514		pr_warn("Could not vmap vmcoreinfo buffer\n");
 515		return -ENOMEM;
 516	}
 517
 518	image->vmcoreinfo_data_copy = safecopy;
 519	crash_update_vmcoreinfo_safecopy(safecopy);
 520
 521	return 0;
 522}
 523
 524static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
 525{
 526	if (*image->entry != 0)
 527		image->entry++;
 528
 529	if (image->entry == image->last_entry) {
 530		kimage_entry_t *ind_page;
 531		struct page *page;
 532
 533		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
 534		if (!page)
 535			return -ENOMEM;
 536
 537		ind_page = page_address(page);
 538		*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
 539		image->entry = ind_page;
 540		image->last_entry = ind_page +
 541				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
 542	}
 543	*image->entry = entry;
 544	image->entry++;
 545	*image->entry = 0;
 546
 547	return 0;
 548}
 549
 550static int kimage_set_destination(struct kimage *image,
 551				   unsigned long destination)
 552{
 
 
 553	destination &= PAGE_MASK;
 
 554
 555	return kimage_add_entry(image, destination | IND_DESTINATION);
 556}
 557
 558
 559static int kimage_add_page(struct kimage *image, unsigned long page)
 560{
 
 
 561	page &= PAGE_MASK;
 
 562
 563	return kimage_add_entry(image, page | IND_SOURCE);
 564}
 565
 566
 567static void kimage_free_extra_pages(struct kimage *image)
 568{
 569	/* Walk through and free any extra destination pages I may have */
 570	kimage_free_page_list(&image->dest_pages);
 571
 572	/* Walk through and free any unusable pages I have cached */
 573	kimage_free_page_list(&image->unusable_pages);
 574
 575}
 576
 
 
 
 
 
 577void kimage_terminate(struct kimage *image)
 578{
 579	if (*image->entry != 0)
 580		image->entry++;
 581
 582	*image->entry = IND_DONE;
 583}
 584
 585#define for_each_kimage_entry(image, ptr, entry) \
 586	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
 587		ptr = (entry & IND_INDIRECTION) ? \
 588			boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
 589
 590static void kimage_free_entry(kimage_entry_t entry)
 591{
 592	struct page *page;
 593
 594	page = boot_pfn_to_page(entry >> PAGE_SHIFT);
 595	kimage_free_pages(page);
 596}
 597
 598void kimage_free(struct kimage *image)
 599{
 600	kimage_entry_t *ptr, entry;
 601	kimage_entry_t ind = 0;
 602
 603	if (!image)
 604		return;
 605
 606	if (image->vmcoreinfo_data_copy) {
 607		crash_update_vmcoreinfo_safecopy(NULL);
 608		vunmap(image->vmcoreinfo_data_copy);
 609	}
 610
 611	kimage_free_extra_pages(image);
 612	for_each_kimage_entry(image, ptr, entry) {
 613		if (entry & IND_INDIRECTION) {
 614			/* Free the previous indirection page */
 615			if (ind & IND_INDIRECTION)
 616				kimage_free_entry(ind);
 617			/* Save this indirection page until we are
 618			 * done with it.
 619			 */
 620			ind = entry;
 621		} else if (entry & IND_SOURCE)
 622			kimage_free_entry(entry);
 623	}
 624	/* Free the final indirection page */
 625	if (ind & IND_INDIRECTION)
 626		kimage_free_entry(ind);
 627
 628	/* Handle any machine specific cleanup */
 629	machine_kexec_cleanup(image);
 630
 631	/* Free the kexec control pages... */
 632	kimage_free_page_list(&image->control_pages);
 633
 634	/*
 635	 * Free up any temporary buffers allocated. This might hit if
 636	 * error occurred much later after buffer allocation.
 637	 */
 638	if (image->file_mode)
 639		kimage_file_post_load_cleanup(image);
 640
 641	kfree(image);
 642}
 643
 644static kimage_entry_t *kimage_dst_used(struct kimage *image,
 645					unsigned long page)
 646{
 647	kimage_entry_t *ptr, entry;
 648	unsigned long destination = 0;
 649
 650	for_each_kimage_entry(image, ptr, entry) {
 651		if (entry & IND_DESTINATION)
 652			destination = entry & PAGE_MASK;
 653		else if (entry & IND_SOURCE) {
 654			if (page == destination)
 655				return ptr;
 656			destination += PAGE_SIZE;
 657		}
 658	}
 659
 660	return NULL;
 661}
 662
 663static struct page *kimage_alloc_page(struct kimage *image,
 664					gfp_t gfp_mask,
 665					unsigned long destination)
 666{
 667	/*
 668	 * Here we implement safeguards to ensure that a source page
 669	 * is not copied to its destination page before the data on
 670	 * the destination page is no longer useful.
 671	 *
 672	 * To do this we maintain the invariant that a source page is
 673	 * either its own destination page, or it is not a
 674	 * destination page at all.
 675	 *
 676	 * That is slightly stronger than required, but the proof
 677	 * that no problems will not occur is trivial, and the
 678	 * implementation is simply to verify.
 679	 *
 680	 * When allocating all pages normally this algorithm will run
 681	 * in O(N) time, but in the worst case it will run in O(N^2)
 682	 * time.   If the runtime is a problem the data structures can
 683	 * be fixed.
 684	 */
 685	struct page *page;
 686	unsigned long addr;
 687
 688	/*
 689	 * Walk through the list of destination pages, and see if I
 690	 * have a match.
 691	 */
 692	list_for_each_entry(page, &image->dest_pages, lru) {
 693		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
 694		if (addr == destination) {
 695			list_del(&page->lru);
 696			return page;
 697		}
 698	}
 699	page = NULL;
 700	while (1) {
 701		kimage_entry_t *old;
 702
 703		/* Allocate a page, if we run out of memory give up */
 704		page = kimage_alloc_pages(gfp_mask, 0);
 705		if (!page)
 706			return NULL;
 707		/* If the page cannot be used file it away */
 708		if (page_to_boot_pfn(page) >
 709				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
 710			list_add(&page->lru, &image->unusable_pages);
 711			continue;
 712		}
 713		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
 714
 715		/* If it is the destination page we want use it */
 716		if (addr == destination)
 717			break;
 718
 719		/* If the page is not a destination page use it */
 720		if (!kimage_is_destination_range(image, addr,
 721						  addr + PAGE_SIZE - 1))
 722			break;
 723
 724		/*
 725		 * I know that the page is someones destination page.
 726		 * See if there is already a source page for this
 727		 * destination page.  And if so swap the source pages.
 728		 */
 729		old = kimage_dst_used(image, addr);
 730		if (old) {
 731			/* If so move it */
 732			unsigned long old_addr;
 733			struct page *old_page;
 734
 735			old_addr = *old & PAGE_MASK;
 736			old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
 737			copy_highpage(page, old_page);
 738			*old = addr | (*old & ~PAGE_MASK);
 739
 740			/* The old page I have found cannot be a
 741			 * destination page, so return it if it's
 742			 * gfp_flags honor the ones passed in.
 743			 */
 744			if (!(gfp_mask & __GFP_HIGHMEM) &&
 745			    PageHighMem(old_page)) {
 746				kimage_free_pages(old_page);
 747				continue;
 748			}
 
 749			page = old_page;
 750			break;
 751		}
 752		/* Place the page on the destination list, to be used later */
 753		list_add(&page->lru, &image->dest_pages);
 754	}
 755
 756	return page;
 757}
 758
 759static int kimage_load_normal_segment(struct kimage *image,
 760					 struct kexec_segment *segment)
 761{
 762	unsigned long maddr;
 763	size_t ubytes, mbytes;
 764	int result;
 765	unsigned char __user *buf = NULL;
 766	unsigned char *kbuf = NULL;
 767
 
 768	if (image->file_mode)
 769		kbuf = segment->kbuf;
 770	else
 771		buf = segment->buf;
 772	ubytes = segment->bufsz;
 773	mbytes = segment->memsz;
 774	maddr = segment->mem;
 775
 776	result = kimage_set_destination(image, maddr);
 777	if (result < 0)
 778		goto out;
 779
 780	while (mbytes) {
 781		struct page *page;
 782		char *ptr;
 783		size_t uchunk, mchunk;
 784
 785		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
 786		if (!page) {
 787			result  = -ENOMEM;
 788			goto out;
 789		}
 790		result = kimage_add_page(image, page_to_boot_pfn(page)
 791								<< PAGE_SHIFT);
 792		if (result < 0)
 793			goto out;
 794
 795		ptr = kmap_local_page(page);
 796		/* Start with a clear page */
 797		clear_page(ptr);
 798		ptr += maddr & ~PAGE_MASK;
 799		mchunk = min_t(size_t, mbytes,
 800				PAGE_SIZE - (maddr & ~PAGE_MASK));
 801		uchunk = min(ubytes, mchunk);
 802
 803		/* For file based kexec, source pages are in kernel memory */
 804		if (image->file_mode)
 805			memcpy(ptr, kbuf, uchunk);
 806		else
 807			result = copy_from_user(ptr, buf, uchunk);
 808		kunmap_local(ptr);
 809		if (result) {
 810			result = -EFAULT;
 811			goto out;
 812		}
 813		ubytes -= uchunk;
 814		maddr  += mchunk;
 815		if (image->file_mode)
 816			kbuf += mchunk;
 817		else
 818			buf += mchunk;
 819		mbytes -= mchunk;
 820
 821		cond_resched();
 822	}
 823out:
 824	return result;
 825}
 826
 827static int kimage_load_crash_segment(struct kimage *image,
 828					struct kexec_segment *segment)
 829{
 830	/* For crash dumps kernels we simply copy the data from
 831	 * user space to it's destination.
 832	 * We do things a page at a time for the sake of kmap.
 833	 */
 834	unsigned long maddr;
 835	size_t ubytes, mbytes;
 836	int result;
 837	unsigned char __user *buf = NULL;
 838	unsigned char *kbuf = NULL;
 839
 840	result = 0;
 841	if (image->file_mode)
 842		kbuf = segment->kbuf;
 843	else
 844		buf = segment->buf;
 845	ubytes = segment->bufsz;
 846	mbytes = segment->memsz;
 847	maddr = segment->mem;
 848	while (mbytes) {
 849		struct page *page;
 850		char *ptr;
 851		size_t uchunk, mchunk;
 852
 853		page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
 854		if (!page) {
 855			result  = -ENOMEM;
 856			goto out;
 857		}
 858		arch_kexec_post_alloc_pages(page_address(page), 1, 0);
 859		ptr = kmap_local_page(page);
 860		ptr += maddr & ~PAGE_MASK;
 861		mchunk = min_t(size_t, mbytes,
 862				PAGE_SIZE - (maddr & ~PAGE_MASK));
 863		uchunk = min(ubytes, mchunk);
 864		if (mchunk > uchunk) {
 865			/* Zero the trailing part of the page */
 866			memset(ptr + uchunk, 0, mchunk - uchunk);
 867		}
 868
 869		/* For file based kexec, source pages are in kernel memory */
 870		if (image->file_mode)
 871			memcpy(ptr, kbuf, uchunk);
 872		else
 873			result = copy_from_user(ptr, buf, uchunk);
 874		kexec_flush_icache_page(page);
 875		kunmap_local(ptr);
 876		arch_kexec_pre_free_pages(page_address(page), 1);
 877		if (result) {
 878			result = -EFAULT;
 879			goto out;
 880		}
 881		ubytes -= uchunk;
 882		maddr  += mchunk;
 883		if (image->file_mode)
 884			kbuf += mchunk;
 885		else
 886			buf += mchunk;
 887		mbytes -= mchunk;
 888
 889		cond_resched();
 890	}
 891out:
 892	return result;
 893}
 894
 895int kimage_load_segment(struct kimage *image,
 896				struct kexec_segment *segment)
 897{
 898	int result = -ENOMEM;
 899
 900	switch (image->type) {
 901	case KEXEC_TYPE_DEFAULT:
 902		result = kimage_load_normal_segment(image, segment);
 903		break;
 904	case KEXEC_TYPE_CRASH:
 905		result = kimage_load_crash_segment(image, segment);
 906		break;
 907	}
 908
 909	return result;
 910}
 911
 912struct kexec_load_limit {
 913	/* Mutex protects the limit count. */
 914	struct mutex mutex;
 915	int limit;
 916};
 917
 918static struct kexec_load_limit load_limit_reboot = {
 919	.mutex = __MUTEX_INITIALIZER(load_limit_reboot.mutex),
 920	.limit = -1,
 921};
 922
 923static struct kexec_load_limit load_limit_panic = {
 924	.mutex = __MUTEX_INITIALIZER(load_limit_panic.mutex),
 925	.limit = -1,
 926};
 927
 928struct kimage *kexec_image;
 929struct kimage *kexec_crash_image;
 930static int kexec_load_disabled;
 931
 932#ifdef CONFIG_SYSCTL
 933static int kexec_limit_handler(struct ctl_table *table, int write,
 934			       void *buffer, size_t *lenp, loff_t *ppos)
 935{
 936	struct kexec_load_limit *limit = table->data;
 937	int val;
 938	struct ctl_table tmp = {
 939		.data = &val,
 940		.maxlen = sizeof(val),
 941		.mode = table->mode,
 942	};
 943	int ret;
 944
 945	if (write) {
 946		ret = proc_dointvec(&tmp, write, buffer, lenp, ppos);
 947		if (ret)
 948			return ret;
 949
 950		if (val < 0)
 951			return -EINVAL;
 952
 953		mutex_lock(&limit->mutex);
 954		if (limit->limit != -1 && val >= limit->limit)
 955			ret = -EINVAL;
 956		else
 957			limit->limit = val;
 958		mutex_unlock(&limit->mutex);
 959
 960		return ret;
 961	}
 962
 963	mutex_lock(&limit->mutex);
 964	val = limit->limit;
 965	mutex_unlock(&limit->mutex);
 966
 967	return proc_dointvec(&tmp, write, buffer, lenp, ppos);
 968}
 969
 970static struct ctl_table kexec_core_sysctls[] = {
 971	{
 972		.procname	= "kexec_load_disabled",
 973		.data		= &kexec_load_disabled,
 974		.maxlen		= sizeof(int),
 975		.mode		= 0644,
 976		/* only handle a transition from default "0" to "1" */
 977		.proc_handler	= proc_dointvec_minmax,
 978		.extra1		= SYSCTL_ONE,
 979		.extra2		= SYSCTL_ONE,
 980	},
 981	{
 982		.procname	= "kexec_load_limit_panic",
 983		.data		= &load_limit_panic,
 984		.mode		= 0644,
 985		.proc_handler	= kexec_limit_handler,
 986	},
 987	{
 988		.procname	= "kexec_load_limit_reboot",
 989		.data		= &load_limit_reboot,
 990		.mode		= 0644,
 991		.proc_handler	= kexec_limit_handler,
 992	},
 993	{ }
 994};
 995
 996static int __init kexec_core_sysctl_init(void)
 997{
 998	register_sysctl_init("kernel", kexec_core_sysctls);
 999	return 0;
1000}
1001late_initcall(kexec_core_sysctl_init);
1002#endif
1003
1004bool kexec_load_permitted(int kexec_image_type)
1005{
1006	struct kexec_load_limit *limit;
1007
1008	/*
1009	 * Only the superuser can use the kexec syscall and if it has not
1010	 * been disabled.
1011	 */
1012	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
1013		return false;
1014
1015	/* Check limit counter and decrease it.*/
1016	limit = (kexec_image_type == KEXEC_TYPE_CRASH) ?
1017		&load_limit_panic : &load_limit_reboot;
1018	mutex_lock(&limit->mutex);
1019	if (!limit->limit) {
1020		mutex_unlock(&limit->mutex);
1021		return false;
1022	}
1023	if (limit->limit != -1)
1024		limit->limit--;
1025	mutex_unlock(&limit->mutex);
1026
1027	return true;
1028}
1029
1030/*
1031 * No panic_cpu check version of crash_kexec().  This function is called
1032 * only when panic_cpu holds the current CPU number; this is the only CPU
1033 * which processes crash_kexec routines.
1034 */
1035void __noclone __crash_kexec(struct pt_regs *regs)
1036{
1037	/* Take the kexec_lock here to prevent sys_kexec_load
1038	 * running on one cpu from replacing the crash kernel
1039	 * we are using after a panic on a different cpu.
1040	 *
1041	 * If the crash kernel was not located in a fixed area
1042	 * of memory the xchg(&kexec_crash_image) would be
1043	 * sufficient.  But since I reuse the memory...
1044	 */
1045	if (kexec_trylock()) {
1046		if (kexec_crash_image) {
1047			struct pt_regs fixed_regs;
1048
1049			crash_setup_regs(&fixed_regs, regs);
1050			crash_save_vmcoreinfo();
1051			machine_crash_shutdown(&fixed_regs);
1052			machine_kexec(kexec_crash_image);
1053		}
1054		kexec_unlock();
1055	}
1056}
1057STACK_FRAME_NON_STANDARD(__crash_kexec);
1058
1059__bpf_kfunc void crash_kexec(struct pt_regs *regs)
1060{
1061	int old_cpu, this_cpu;
1062
1063	/*
1064	 * Only one CPU is allowed to execute the crash_kexec() code as with
1065	 * panic().  Otherwise parallel calls of panic() and crash_kexec()
1066	 * may stop each other.  To exclude them, we use panic_cpu here too.
1067	 */
1068	old_cpu = PANIC_CPU_INVALID;
1069	this_cpu = raw_smp_processor_id();
1070
1071	if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu)) {
1072		/* This is the 1st CPU which comes here, so go ahead. */
 
1073		__crash_kexec(regs);
1074
1075		/*
1076		 * Reset panic_cpu to allow another panic()/crash_kexec()
1077		 * call.
1078		 */
1079		atomic_set(&panic_cpu, PANIC_CPU_INVALID);
1080	}
1081}
1082
1083static inline resource_size_t crash_resource_size(const struct resource *res)
1084{
1085	return !res->end ? 0 : resource_size(res);
1086}
1087
1088ssize_t crash_get_memory_size(void)
1089{
1090	ssize_t size = 0;
1091
1092	if (!kexec_trylock())
1093		return -EBUSY;
1094
1095	size += crash_resource_size(&crashk_res);
1096	size += crash_resource_size(&crashk_low_res);
1097
1098	kexec_unlock();
1099	return size;
1100}
1101
1102static int __crash_shrink_memory(struct resource *old_res,
1103				 unsigned long new_size)
1104{
1105	struct resource *ram_res;
1106
1107	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1108	if (!ram_res)
1109		return -ENOMEM;
1110
1111	ram_res->start = old_res->start + new_size;
1112	ram_res->end   = old_res->end;
1113	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
1114	ram_res->name  = "System RAM";
1115
1116	if (!new_size) {
1117		release_resource(old_res);
1118		old_res->start = 0;
1119		old_res->end   = 0;
1120	} else {
1121		crashk_res.end = ram_res->start - 1;
1122	}
1123
1124	crash_free_reserved_phys_range(ram_res->start, ram_res->end);
1125	insert_resource(&iomem_resource, ram_res);
1126
1127	return 0;
 
1128}
1129
1130int crash_shrink_memory(unsigned long new_size)
1131{
1132	int ret = 0;
1133	unsigned long old_size, low_size;
 
 
1134
1135	if (!kexec_trylock())
1136		return -EBUSY;
1137
1138	if (kexec_crash_image) {
1139		ret = -ENOENT;
1140		goto unlock;
1141	}
1142
1143	low_size = crash_resource_size(&crashk_low_res);
1144	old_size = crash_resource_size(&crashk_res) + low_size;
1145	new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN);
1146	if (new_size >= old_size) {
1147		ret = (new_size == old_size) ? 0 : -EINVAL;
1148		goto unlock;
1149	}
1150
1151	/*
1152	 * (low_size > new_size) implies that low_size is greater than zero.
1153	 * This also means that if low_size is zero, the else branch is taken.
1154	 *
1155	 * If low_size is greater than 0, (low_size > new_size) indicates that
1156	 * crashk_low_res also needs to be shrunken. Otherwise, only crashk_res
1157	 * needs to be shrunken.
1158	 */
1159	if (low_size > new_size) {
1160		ret = __crash_shrink_memory(&crashk_res, 0);
1161		if (ret)
1162			goto unlock;
1163
1164		ret = __crash_shrink_memory(&crashk_low_res, new_size);
1165	} else {
1166		ret = __crash_shrink_memory(&crashk_res, new_size - low_size);
1167	}
1168
1169	/* Swap crashk_res and crashk_low_res if needed */
1170	if (!crashk_res.end && crashk_low_res.end) {
1171		crashk_res.start = crashk_low_res.start;
1172		crashk_res.end   = crashk_low_res.end;
1173		release_resource(&crashk_low_res);
1174		crashk_low_res.start = 0;
1175		crashk_low_res.end   = 0;
1176		insert_resource(&iomem_resource, &crashk_res);
1177	}
1178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1179unlock:
1180	kexec_unlock();
1181	return ret;
1182}
1183
1184void crash_save_cpu(struct pt_regs *regs, int cpu)
1185{
1186	struct elf_prstatus prstatus;
1187	u32 *buf;
1188
1189	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1190		return;
1191
1192	/* Using ELF notes here is opportunistic.
1193	 * I need a well defined structure format
1194	 * for the data I pass, and I need tags
1195	 * on the data to indicate what information I have
1196	 * squirrelled away.  ELF notes happen to provide
1197	 * all of that, so there is no need to invent something new.
1198	 */
1199	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1200	if (!buf)
1201		return;
1202	memset(&prstatus, 0, sizeof(prstatus));
1203	prstatus.common.pr_pid = current->pid;
1204	elf_core_copy_regs(&prstatus.pr_reg, regs);
1205	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1206			      &prstatus, sizeof(prstatus));
1207	final_note(buf);
1208}
1209
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1210/*
1211 * Move into place and start executing a preloaded standalone
1212 * executable.  If nothing was preloaded return an error.
1213 */
1214int kernel_kexec(void)
1215{
1216	int error = 0;
1217
1218	if (!kexec_trylock())
1219		return -EBUSY;
1220	if (!kexec_image) {
1221		error = -EINVAL;
1222		goto Unlock;
1223	}
1224
1225#ifdef CONFIG_KEXEC_JUMP
1226	if (kexec_image->preserve_context) {
 
1227		pm_prepare_console();
1228		error = freeze_processes();
1229		if (error) {
1230			error = -EBUSY;
1231			goto Restore_console;
1232		}
1233		suspend_console();
1234		error = dpm_suspend_start(PMSG_FREEZE);
1235		if (error)
1236			goto Resume_console;
1237		/* At this point, dpm_suspend_start() has been called,
1238		 * but *not* dpm_suspend_end(). We *must* call
1239		 * dpm_suspend_end() now.  Otherwise, drivers for
1240		 * some devices (e.g. interrupt controllers) become
1241		 * desynchronized with the actual state of the
1242		 * hardware at resume time, and evil weirdness ensues.
1243		 */
1244		error = dpm_suspend_end(PMSG_FREEZE);
1245		if (error)
1246			goto Resume_devices;
1247		error = suspend_disable_secondary_cpus();
1248		if (error)
1249			goto Enable_cpus;
1250		local_irq_disable();
1251		error = syscore_suspend();
1252		if (error)
1253			goto Enable_irqs;
1254	} else
1255#endif
1256	{
1257		kexec_in_progress = true;
1258		kernel_restart_prepare("kexec reboot");
1259		migrate_to_reboot_cpu();
1260		syscore_shutdown();
1261
1262		/*
1263		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1264		 * no further code needs to use CPU hotplug (which is true in
1265		 * the reboot case). However, the kexec path depends on using
1266		 * CPU hotplug again; so re-enable it here.
1267		 */
1268		cpu_hotplug_enable();
1269		pr_notice("Starting new kernel\n");
1270		machine_shutdown();
1271	}
1272
1273	kmsg_dump(KMSG_DUMP_SHUTDOWN);
1274	machine_kexec(kexec_image);
1275
1276#ifdef CONFIG_KEXEC_JUMP
1277	if (kexec_image->preserve_context) {
1278		syscore_resume();
1279 Enable_irqs:
1280		local_irq_enable();
1281 Enable_cpus:
1282		suspend_enable_secondary_cpus();
1283		dpm_resume_start(PMSG_RESTORE);
1284 Resume_devices:
1285		dpm_resume_end(PMSG_RESTORE);
1286 Resume_console:
1287		resume_console();
1288		thaw_processes();
1289 Restore_console:
1290		pm_restore_console();
 
1291	}
1292#endif
1293
1294 Unlock:
1295	kexec_unlock();
1296	return error;
1297}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kexec.c - kexec system call core code.
   4 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
   5 */
   6
   7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   8
 
   9#include <linux/capability.h>
  10#include <linux/mm.h>
  11#include <linux/file.h>
  12#include <linux/slab.h>
  13#include <linux/fs.h>
  14#include <linux/kexec.h>
  15#include <linux/mutex.h>
  16#include <linux/list.h>
  17#include <linux/highmem.h>
  18#include <linux/syscalls.h>
  19#include <linux/reboot.h>
  20#include <linux/ioport.h>
  21#include <linux/hardirq.h>
  22#include <linux/elf.h>
  23#include <linux/elfcore.h>
  24#include <linux/utsname.h>
  25#include <linux/numa.h>
  26#include <linux/suspend.h>
  27#include <linux/device.h>
  28#include <linux/freezer.h>
 
  29#include <linux/pm.h>
  30#include <linux/cpu.h>
  31#include <linux/uaccess.h>
  32#include <linux/io.h>
  33#include <linux/console.h>
  34#include <linux/vmalloc.h>
  35#include <linux/swap.h>
  36#include <linux/syscore_ops.h>
  37#include <linux/compiler.h>
  38#include <linux/hugetlb.h>
  39#include <linux/frame.h>
 
  40
  41#include <asm/page.h>
  42#include <asm/sections.h>
  43
  44#include <crypto/hash.h>
  45#include <crypto/sha.h>
  46#include "kexec_internal.h"
  47
  48DEFINE_MUTEX(kexec_mutex);
  49
  50/* Per cpu memory for storing cpu states in case of system crash. */
  51note_buf_t __percpu *crash_notes;
  52
  53/* Flag to indicate we are going to kexec a new kernel */
  54bool kexec_in_progress = false;
  55
  56
  57/* Location of the reserved area for the crash kernel */
  58struct resource crashk_res = {
  59	.name  = "Crash kernel",
  60	.start = 0,
  61	.end   = 0,
  62	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
  63	.desc  = IORES_DESC_CRASH_KERNEL
  64};
  65struct resource crashk_low_res = {
  66	.name  = "Crash kernel",
  67	.start = 0,
  68	.end   = 0,
  69	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
  70	.desc  = IORES_DESC_CRASH_KERNEL
  71};
  72
  73int kexec_should_crash(struct task_struct *p)
  74{
  75	/*
  76	 * If crash_kexec_post_notifiers is enabled, don't run
  77	 * crash_kexec() here yet, which must be run after panic
  78	 * notifiers in panic().
  79	 */
  80	if (crash_kexec_post_notifiers)
  81		return 0;
  82	/*
  83	 * There are 4 panic() calls in do_exit() path, each of which
  84	 * corresponds to each of these 4 conditions.
  85	 */
  86	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
  87		return 1;
  88	return 0;
  89}
  90
  91int kexec_crash_loaded(void)
  92{
  93	return !!kexec_crash_image;
  94}
  95EXPORT_SYMBOL_GPL(kexec_crash_loaded);
  96
  97/*
  98 * When kexec transitions to the new kernel there is a one-to-one
  99 * mapping between physical and virtual addresses.  On processors
 100 * where you can disable the MMU this is trivial, and easy.  For
 101 * others it is still a simple predictable page table to setup.
 102 *
 103 * In that environment kexec copies the new kernel to its final
 104 * resting place.  This means I can only support memory whose
 105 * physical address can fit in an unsigned long.  In particular
 106 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
 107 * If the assembly stub has more restrictive requirements
 108 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
 109 * defined more restrictively in <asm/kexec.h>.
 110 *
 111 * The code for the transition from the current kernel to the
 112 * the new kernel is placed in the control_code_buffer, whose size
 113 * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
 114 * page of memory is necessary, but some architectures require more.
 115 * Because this memory must be identity mapped in the transition from
 116 * virtual to physical addresses it must live in the range
 117 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
 118 * modifiable.
 119 *
 120 * The assembly stub in the control code buffer is passed a linked list
 121 * of descriptor pages detailing the source pages of the new kernel,
 122 * and the destination addresses of those source pages.  As this data
 123 * structure is not used in the context of the current OS, it must
 124 * be self-contained.
 125 *
 126 * The code has been made to work with highmem pages and will use a
 127 * destination page in its final resting place (if it happens
 128 * to allocate it).  The end product of this is that most of the
 129 * physical address space, and most of RAM can be used.
 130 *
 131 * Future directions include:
 132 *  - allocating a page table with the control code buffer identity
 133 *    mapped, to simplify machine_kexec and make kexec_on_panic more
 134 *    reliable.
 135 */
 136
 137/*
 138 * KIMAGE_NO_DEST is an impossible destination address..., for
 139 * allocating pages whose destination address we do not care about.
 140 */
 141#define KIMAGE_NO_DEST (-1UL)
 142#define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
 143
 144static struct page *kimage_alloc_page(struct kimage *image,
 145				       gfp_t gfp_mask,
 146				       unsigned long dest);
 147
 148int sanity_check_segment_list(struct kimage *image)
 149{
 150	int i;
 151	unsigned long nr_segments = image->nr_segments;
 152	unsigned long total_pages = 0;
 153	unsigned long nr_pages = totalram_pages();
 154
 155	/*
 156	 * Verify we have good destination addresses.  The caller is
 157	 * responsible for making certain we don't attempt to load
 158	 * the new image into invalid or reserved areas of RAM.  This
 159	 * just verifies it is an address we can use.
 160	 *
 161	 * Since the kernel does everything in page size chunks ensure
 162	 * the destination addresses are page aligned.  Too many
 163	 * special cases crop of when we don't do this.  The most
 164	 * insidious is getting overlapping destination addresses
 165	 * simply because addresses are changed to page size
 166	 * granularity.
 167	 */
 168	for (i = 0; i < nr_segments; i++) {
 169		unsigned long mstart, mend;
 170
 171		mstart = image->segment[i].mem;
 172		mend   = mstart + image->segment[i].memsz;
 173		if (mstart > mend)
 174			return -EADDRNOTAVAIL;
 175		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
 176			return -EADDRNOTAVAIL;
 177		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
 178			return -EADDRNOTAVAIL;
 179	}
 180
 181	/* Verify our destination addresses do not overlap.
 182	 * If we alloed overlapping destination addresses
 183	 * through very weird things can happen with no
 184	 * easy explanation as one segment stops on another.
 185	 */
 186	for (i = 0; i < nr_segments; i++) {
 187		unsigned long mstart, mend;
 188		unsigned long j;
 189
 190		mstart = image->segment[i].mem;
 191		mend   = mstart + image->segment[i].memsz;
 192		for (j = 0; j < i; j++) {
 193			unsigned long pstart, pend;
 194
 195			pstart = image->segment[j].mem;
 196			pend   = pstart + image->segment[j].memsz;
 197			/* Do the segments overlap ? */
 198			if ((mend > pstart) && (mstart < pend))
 199				return -EINVAL;
 200		}
 201	}
 202
 203	/* Ensure our buffer sizes are strictly less than
 204	 * our memory sizes.  This should always be the case,
 205	 * and it is easier to check up front than to be surprised
 206	 * later on.
 207	 */
 208	for (i = 0; i < nr_segments; i++) {
 209		if (image->segment[i].bufsz > image->segment[i].memsz)
 210			return -EINVAL;
 211	}
 212
 213	/*
 214	 * Verify that no more than half of memory will be consumed. If the
 215	 * request from userspace is too large, a large amount of time will be
 216	 * wasted allocating pages, which can cause a soft lockup.
 217	 */
 218	for (i = 0; i < nr_segments; i++) {
 219		if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
 220			return -EINVAL;
 221
 222		total_pages += PAGE_COUNT(image->segment[i].memsz);
 223	}
 224
 225	if (total_pages > nr_pages / 2)
 226		return -EINVAL;
 227
 228	/*
 229	 * Verify we have good destination addresses.  Normally
 230	 * the caller is responsible for making certain we don't
 231	 * attempt to load the new image into invalid or reserved
 232	 * areas of RAM.  But crash kernels are preloaded into a
 233	 * reserved area of ram.  We must ensure the addresses
 234	 * are in the reserved area otherwise preloading the
 235	 * kernel could corrupt things.
 236	 */
 237
 238	if (image->type == KEXEC_TYPE_CRASH) {
 239		for (i = 0; i < nr_segments; i++) {
 240			unsigned long mstart, mend;
 241
 242			mstart = image->segment[i].mem;
 243			mend = mstart + image->segment[i].memsz - 1;
 244			/* Ensure we are within the crash kernel limits */
 245			if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
 246			    (mend > phys_to_boot_phys(crashk_res.end)))
 247				return -EADDRNOTAVAIL;
 248		}
 249	}
 250
 251	return 0;
 252}
 253
 254struct kimage *do_kimage_alloc_init(void)
 255{
 256	struct kimage *image;
 257
 258	/* Allocate a controlling structure */
 259	image = kzalloc(sizeof(*image), GFP_KERNEL);
 260	if (!image)
 261		return NULL;
 262
 263	image->head = 0;
 264	image->entry = &image->head;
 265	image->last_entry = &image->head;
 266	image->control_page = ~0; /* By default this does not apply */
 267	image->type = KEXEC_TYPE_DEFAULT;
 268
 269	/* Initialize the list of control pages */
 270	INIT_LIST_HEAD(&image->control_pages);
 271
 272	/* Initialize the list of destination pages */
 273	INIT_LIST_HEAD(&image->dest_pages);
 274
 275	/* Initialize the list of unusable pages */
 276	INIT_LIST_HEAD(&image->unusable_pages);
 277
 
 
 
 
 
 
 278	return image;
 279}
 280
 281int kimage_is_destination_range(struct kimage *image,
 282					unsigned long start,
 283					unsigned long end)
 284{
 285	unsigned long i;
 286
 287	for (i = 0; i < image->nr_segments; i++) {
 288		unsigned long mstart, mend;
 289
 290		mstart = image->segment[i].mem;
 291		mend = mstart + image->segment[i].memsz;
 292		if ((end > mstart) && (start < mend))
 293			return 1;
 294	}
 295
 296	return 0;
 297}
 298
 299static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
 300{
 301	struct page *pages;
 302
 303	if (fatal_signal_pending(current))
 304		return NULL;
 305	pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
 306	if (pages) {
 307		unsigned int count, i;
 308
 309		pages->mapping = NULL;
 310		set_page_private(pages, order);
 311		count = 1 << order;
 312		for (i = 0; i < count; i++)
 313			SetPageReserved(pages + i);
 314
 315		arch_kexec_post_alloc_pages(page_address(pages), count,
 316					    gfp_mask);
 317
 318		if (gfp_mask & __GFP_ZERO)
 319			for (i = 0; i < count; i++)
 320				clear_highpage(pages + i);
 321	}
 322
 323	return pages;
 324}
 325
 326static void kimage_free_pages(struct page *page)
 327{
 328	unsigned int order, count, i;
 329
 330	order = page_private(page);
 331	count = 1 << order;
 332
 333	arch_kexec_pre_free_pages(page_address(page), count);
 334
 335	for (i = 0; i < count; i++)
 336		ClearPageReserved(page + i);
 337	__free_pages(page, order);
 338}
 339
 340void kimage_free_page_list(struct list_head *list)
 341{
 342	struct page *page, *next;
 343
 344	list_for_each_entry_safe(page, next, list, lru) {
 345		list_del(&page->lru);
 346		kimage_free_pages(page);
 347	}
 348}
 349
 350static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
 351							unsigned int order)
 352{
 353	/* Control pages are special, they are the intermediaries
 354	 * that are needed while we copy the rest of the pages
 355	 * to their final resting place.  As such they must
 356	 * not conflict with either the destination addresses
 357	 * or memory the kernel is already using.
 358	 *
 359	 * The only case where we really need more than one of
 360	 * these are for architectures where we cannot disable
 361	 * the MMU and must instead generate an identity mapped
 362	 * page table for all of the memory.
 363	 *
 364	 * At worst this runs in O(N) of the image size.
 365	 */
 366	struct list_head extra_pages;
 367	struct page *pages;
 368	unsigned int count;
 369
 370	count = 1 << order;
 371	INIT_LIST_HEAD(&extra_pages);
 372
 373	/* Loop while I can allocate a page and the page allocated
 374	 * is a destination page.
 375	 */
 376	do {
 377		unsigned long pfn, epfn, addr, eaddr;
 378
 379		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
 380		if (!pages)
 381			break;
 382		pfn   = page_to_boot_pfn(pages);
 383		epfn  = pfn + count;
 384		addr  = pfn << PAGE_SHIFT;
 385		eaddr = epfn << PAGE_SHIFT;
 386		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
 387			      kimage_is_destination_range(image, addr, eaddr)) {
 388			list_add(&pages->lru, &extra_pages);
 389			pages = NULL;
 390		}
 391	} while (!pages);
 392
 393	if (pages) {
 394		/* Remember the allocated page... */
 395		list_add(&pages->lru, &image->control_pages);
 396
 397		/* Because the page is already in it's destination
 398		 * location we will never allocate another page at
 399		 * that address.  Therefore kimage_alloc_pages
 400		 * will not return it (again) and we don't need
 401		 * to give it an entry in image->segment[].
 402		 */
 403	}
 404	/* Deal with the destination pages I have inadvertently allocated.
 405	 *
 406	 * Ideally I would convert multi-page allocations into single
 407	 * page allocations, and add everything to image->dest_pages.
 408	 *
 409	 * For now it is simpler to just free the pages.
 410	 */
 411	kimage_free_page_list(&extra_pages);
 412
 413	return pages;
 414}
 415
 416static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
 417						      unsigned int order)
 418{
 419	/* Control pages are special, they are the intermediaries
 420	 * that are needed while we copy the rest of the pages
 421	 * to their final resting place.  As such they must
 422	 * not conflict with either the destination addresses
 423	 * or memory the kernel is already using.
 424	 *
 425	 * Control pages are also the only pags we must allocate
 426	 * when loading a crash kernel.  All of the other pages
 427	 * are specified by the segments and we just memcpy
 428	 * into them directly.
 429	 *
 430	 * The only case where we really need more than one of
 431	 * these are for architectures where we cannot disable
 432	 * the MMU and must instead generate an identity mapped
 433	 * page table for all of the memory.
 434	 *
 435	 * Given the low demand this implements a very simple
 436	 * allocator that finds the first hole of the appropriate
 437	 * size in the reserved memory region, and allocates all
 438	 * of the memory up to and including the hole.
 439	 */
 440	unsigned long hole_start, hole_end, size;
 441	struct page *pages;
 442
 443	pages = NULL;
 444	size = (1 << order) << PAGE_SHIFT;
 445	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
 446	hole_end   = hole_start + size - 1;
 447	while (hole_end <= crashk_res.end) {
 448		unsigned long i;
 449
 450		cond_resched();
 451
 452		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
 453			break;
 454		/* See if I overlap any of the segments */
 455		for (i = 0; i < image->nr_segments; i++) {
 456			unsigned long mstart, mend;
 457
 458			mstart = image->segment[i].mem;
 459			mend   = mstart + image->segment[i].memsz - 1;
 460			if ((hole_end >= mstart) && (hole_start <= mend)) {
 461				/* Advance the hole to the end of the segment */
 462				hole_start = (mend + (size - 1)) & ~(size - 1);
 463				hole_end   = hole_start + size - 1;
 464				break;
 465			}
 466		}
 467		/* If I don't overlap any segments I have found my hole! */
 468		if (i == image->nr_segments) {
 469			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
 470			image->control_page = hole_end;
 471			break;
 472		}
 473	}
 474
 475	/* Ensure that these pages are decrypted if SME is enabled. */
 476	if (pages)
 477		arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
 478
 479	return pages;
 480}
 481
 482
 483struct page *kimage_alloc_control_pages(struct kimage *image,
 484					 unsigned int order)
 485{
 486	struct page *pages = NULL;
 487
 488	switch (image->type) {
 489	case KEXEC_TYPE_DEFAULT:
 490		pages = kimage_alloc_normal_control_pages(image, order);
 491		break;
 492	case KEXEC_TYPE_CRASH:
 493		pages = kimage_alloc_crash_control_pages(image, order);
 494		break;
 495	}
 496
 497	return pages;
 498}
 499
 500int kimage_crash_copy_vmcoreinfo(struct kimage *image)
 501{
 502	struct page *vmcoreinfo_page;
 503	void *safecopy;
 504
 505	if (image->type != KEXEC_TYPE_CRASH)
 506		return 0;
 507
 508	/*
 509	 * For kdump, allocate one vmcoreinfo safe copy from the
 510	 * crash memory. as we have arch_kexec_protect_crashkres()
 511	 * after kexec syscall, we naturally protect it from write
 512	 * (even read) access under kernel direct mapping. But on
 513	 * the other hand, we still need to operate it when crash
 514	 * happens to generate vmcoreinfo note, hereby we rely on
 515	 * vmap for this purpose.
 516	 */
 517	vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
 518	if (!vmcoreinfo_page) {
 519		pr_warn("Could not allocate vmcoreinfo buffer\n");
 520		return -ENOMEM;
 521	}
 522	safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
 523	if (!safecopy) {
 524		pr_warn("Could not vmap vmcoreinfo buffer\n");
 525		return -ENOMEM;
 526	}
 527
 528	image->vmcoreinfo_data_copy = safecopy;
 529	crash_update_vmcoreinfo_safecopy(safecopy);
 530
 531	return 0;
 532}
 533
 534static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
 535{
 536	if (*image->entry != 0)
 537		image->entry++;
 538
 539	if (image->entry == image->last_entry) {
 540		kimage_entry_t *ind_page;
 541		struct page *page;
 542
 543		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
 544		if (!page)
 545			return -ENOMEM;
 546
 547		ind_page = page_address(page);
 548		*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
 549		image->entry = ind_page;
 550		image->last_entry = ind_page +
 551				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
 552	}
 553	*image->entry = entry;
 554	image->entry++;
 555	*image->entry = 0;
 556
 557	return 0;
 558}
 559
 560static int kimage_set_destination(struct kimage *image,
 561				   unsigned long destination)
 562{
 563	int result;
 564
 565	destination &= PAGE_MASK;
 566	result = kimage_add_entry(image, destination | IND_DESTINATION);
 567
 568	return result;
 569}
 570
 571
 572static int kimage_add_page(struct kimage *image, unsigned long page)
 573{
 574	int result;
 575
 576	page &= PAGE_MASK;
 577	result = kimage_add_entry(image, page | IND_SOURCE);
 578
 579	return result;
 580}
 581
 582
 583static void kimage_free_extra_pages(struct kimage *image)
 584{
 585	/* Walk through and free any extra destination pages I may have */
 586	kimage_free_page_list(&image->dest_pages);
 587
 588	/* Walk through and free any unusable pages I have cached */
 589	kimage_free_page_list(&image->unusable_pages);
 590
 591}
 592
 593int __weak machine_kexec_post_load(struct kimage *image)
 594{
 595	return 0;
 596}
 597
 598void kimage_terminate(struct kimage *image)
 599{
 600	if (*image->entry != 0)
 601		image->entry++;
 602
 603	*image->entry = IND_DONE;
 604}
 605
 606#define for_each_kimage_entry(image, ptr, entry) \
 607	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
 608		ptr = (entry & IND_INDIRECTION) ? \
 609			boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
 610
 611static void kimage_free_entry(kimage_entry_t entry)
 612{
 613	struct page *page;
 614
 615	page = boot_pfn_to_page(entry >> PAGE_SHIFT);
 616	kimage_free_pages(page);
 617}
 618
 619void kimage_free(struct kimage *image)
 620{
 621	kimage_entry_t *ptr, entry;
 622	kimage_entry_t ind = 0;
 623
 624	if (!image)
 625		return;
 626
 627	if (image->vmcoreinfo_data_copy) {
 628		crash_update_vmcoreinfo_safecopy(NULL);
 629		vunmap(image->vmcoreinfo_data_copy);
 630	}
 631
 632	kimage_free_extra_pages(image);
 633	for_each_kimage_entry(image, ptr, entry) {
 634		if (entry & IND_INDIRECTION) {
 635			/* Free the previous indirection page */
 636			if (ind & IND_INDIRECTION)
 637				kimage_free_entry(ind);
 638			/* Save this indirection page until we are
 639			 * done with it.
 640			 */
 641			ind = entry;
 642		} else if (entry & IND_SOURCE)
 643			kimage_free_entry(entry);
 644	}
 645	/* Free the final indirection page */
 646	if (ind & IND_INDIRECTION)
 647		kimage_free_entry(ind);
 648
 649	/* Handle any machine specific cleanup */
 650	machine_kexec_cleanup(image);
 651
 652	/* Free the kexec control pages... */
 653	kimage_free_page_list(&image->control_pages);
 654
 655	/*
 656	 * Free up any temporary buffers allocated. This might hit if
 657	 * error occurred much later after buffer allocation.
 658	 */
 659	if (image->file_mode)
 660		kimage_file_post_load_cleanup(image);
 661
 662	kfree(image);
 663}
 664
 665static kimage_entry_t *kimage_dst_used(struct kimage *image,
 666					unsigned long page)
 667{
 668	kimage_entry_t *ptr, entry;
 669	unsigned long destination = 0;
 670
 671	for_each_kimage_entry(image, ptr, entry) {
 672		if (entry & IND_DESTINATION)
 673			destination = entry & PAGE_MASK;
 674		else if (entry & IND_SOURCE) {
 675			if (page == destination)
 676				return ptr;
 677			destination += PAGE_SIZE;
 678		}
 679	}
 680
 681	return NULL;
 682}
 683
 684static struct page *kimage_alloc_page(struct kimage *image,
 685					gfp_t gfp_mask,
 686					unsigned long destination)
 687{
 688	/*
 689	 * Here we implement safeguards to ensure that a source page
 690	 * is not copied to its destination page before the data on
 691	 * the destination page is no longer useful.
 692	 *
 693	 * To do this we maintain the invariant that a source page is
 694	 * either its own destination page, or it is not a
 695	 * destination page at all.
 696	 *
 697	 * That is slightly stronger than required, but the proof
 698	 * that no problems will not occur is trivial, and the
 699	 * implementation is simply to verify.
 700	 *
 701	 * When allocating all pages normally this algorithm will run
 702	 * in O(N) time, but in the worst case it will run in O(N^2)
 703	 * time.   If the runtime is a problem the data structures can
 704	 * be fixed.
 705	 */
 706	struct page *page;
 707	unsigned long addr;
 708
 709	/*
 710	 * Walk through the list of destination pages, and see if I
 711	 * have a match.
 712	 */
 713	list_for_each_entry(page, &image->dest_pages, lru) {
 714		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
 715		if (addr == destination) {
 716			list_del(&page->lru);
 717			return page;
 718		}
 719	}
 720	page = NULL;
 721	while (1) {
 722		kimage_entry_t *old;
 723
 724		/* Allocate a page, if we run out of memory give up */
 725		page = kimage_alloc_pages(gfp_mask, 0);
 726		if (!page)
 727			return NULL;
 728		/* If the page cannot be used file it away */
 729		if (page_to_boot_pfn(page) >
 730				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
 731			list_add(&page->lru, &image->unusable_pages);
 732			continue;
 733		}
 734		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
 735
 736		/* If it is the destination page we want use it */
 737		if (addr == destination)
 738			break;
 739
 740		/* If the page is not a destination page use it */
 741		if (!kimage_is_destination_range(image, addr,
 742						  addr + PAGE_SIZE))
 743			break;
 744
 745		/*
 746		 * I know that the page is someones destination page.
 747		 * See if there is already a source page for this
 748		 * destination page.  And if so swap the source pages.
 749		 */
 750		old = kimage_dst_used(image, addr);
 751		if (old) {
 752			/* If so move it */
 753			unsigned long old_addr;
 754			struct page *old_page;
 755
 756			old_addr = *old & PAGE_MASK;
 757			old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
 758			copy_highpage(page, old_page);
 759			*old = addr | (*old & ~PAGE_MASK);
 760
 761			/* The old page I have found cannot be a
 762			 * destination page, so return it if it's
 763			 * gfp_flags honor the ones passed in.
 764			 */
 765			if (!(gfp_mask & __GFP_HIGHMEM) &&
 766			    PageHighMem(old_page)) {
 767				kimage_free_pages(old_page);
 768				continue;
 769			}
 770			addr = old_addr;
 771			page = old_page;
 772			break;
 773		}
 774		/* Place the page on the destination list, to be used later */
 775		list_add(&page->lru, &image->dest_pages);
 776	}
 777
 778	return page;
 779}
 780
 781static int kimage_load_normal_segment(struct kimage *image,
 782					 struct kexec_segment *segment)
 783{
 784	unsigned long maddr;
 785	size_t ubytes, mbytes;
 786	int result;
 787	unsigned char __user *buf = NULL;
 788	unsigned char *kbuf = NULL;
 789
 790	result = 0;
 791	if (image->file_mode)
 792		kbuf = segment->kbuf;
 793	else
 794		buf = segment->buf;
 795	ubytes = segment->bufsz;
 796	mbytes = segment->memsz;
 797	maddr = segment->mem;
 798
 799	result = kimage_set_destination(image, maddr);
 800	if (result < 0)
 801		goto out;
 802
 803	while (mbytes) {
 804		struct page *page;
 805		char *ptr;
 806		size_t uchunk, mchunk;
 807
 808		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
 809		if (!page) {
 810			result  = -ENOMEM;
 811			goto out;
 812		}
 813		result = kimage_add_page(image, page_to_boot_pfn(page)
 814								<< PAGE_SHIFT);
 815		if (result < 0)
 816			goto out;
 817
 818		ptr = kmap(page);
 819		/* Start with a clear page */
 820		clear_page(ptr);
 821		ptr += maddr & ~PAGE_MASK;
 822		mchunk = min_t(size_t, mbytes,
 823				PAGE_SIZE - (maddr & ~PAGE_MASK));
 824		uchunk = min(ubytes, mchunk);
 825
 826		/* For file based kexec, source pages are in kernel memory */
 827		if (image->file_mode)
 828			memcpy(ptr, kbuf, uchunk);
 829		else
 830			result = copy_from_user(ptr, buf, uchunk);
 831		kunmap(page);
 832		if (result) {
 833			result = -EFAULT;
 834			goto out;
 835		}
 836		ubytes -= uchunk;
 837		maddr  += mchunk;
 838		if (image->file_mode)
 839			kbuf += mchunk;
 840		else
 841			buf += mchunk;
 842		mbytes -= mchunk;
 843
 844		cond_resched();
 845	}
 846out:
 847	return result;
 848}
 849
 850static int kimage_load_crash_segment(struct kimage *image,
 851					struct kexec_segment *segment)
 852{
 853	/* For crash dumps kernels we simply copy the data from
 854	 * user space to it's destination.
 855	 * We do things a page at a time for the sake of kmap.
 856	 */
 857	unsigned long maddr;
 858	size_t ubytes, mbytes;
 859	int result;
 860	unsigned char __user *buf = NULL;
 861	unsigned char *kbuf = NULL;
 862
 863	result = 0;
 864	if (image->file_mode)
 865		kbuf = segment->kbuf;
 866	else
 867		buf = segment->buf;
 868	ubytes = segment->bufsz;
 869	mbytes = segment->memsz;
 870	maddr = segment->mem;
 871	while (mbytes) {
 872		struct page *page;
 873		char *ptr;
 874		size_t uchunk, mchunk;
 875
 876		page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
 877		if (!page) {
 878			result  = -ENOMEM;
 879			goto out;
 880		}
 881		arch_kexec_post_alloc_pages(page_address(page), 1, 0);
 882		ptr = kmap(page);
 883		ptr += maddr & ~PAGE_MASK;
 884		mchunk = min_t(size_t, mbytes,
 885				PAGE_SIZE - (maddr & ~PAGE_MASK));
 886		uchunk = min(ubytes, mchunk);
 887		if (mchunk > uchunk) {
 888			/* Zero the trailing part of the page */
 889			memset(ptr + uchunk, 0, mchunk - uchunk);
 890		}
 891
 892		/* For file based kexec, source pages are in kernel memory */
 893		if (image->file_mode)
 894			memcpy(ptr, kbuf, uchunk);
 895		else
 896			result = copy_from_user(ptr, buf, uchunk);
 897		kexec_flush_icache_page(page);
 898		kunmap(page);
 899		arch_kexec_pre_free_pages(page_address(page), 1);
 900		if (result) {
 901			result = -EFAULT;
 902			goto out;
 903		}
 904		ubytes -= uchunk;
 905		maddr  += mchunk;
 906		if (image->file_mode)
 907			kbuf += mchunk;
 908		else
 909			buf += mchunk;
 910		mbytes -= mchunk;
 911
 912		cond_resched();
 913	}
 914out:
 915	return result;
 916}
 917
 918int kimage_load_segment(struct kimage *image,
 919				struct kexec_segment *segment)
 920{
 921	int result = -ENOMEM;
 922
 923	switch (image->type) {
 924	case KEXEC_TYPE_DEFAULT:
 925		result = kimage_load_normal_segment(image, segment);
 926		break;
 927	case KEXEC_TYPE_CRASH:
 928		result = kimage_load_crash_segment(image, segment);
 929		break;
 930	}
 931
 932	return result;
 933}
 934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 935struct kimage *kexec_image;
 936struct kimage *kexec_crash_image;
 937int kexec_load_disabled;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 938
 939/*
 940 * No panic_cpu check version of crash_kexec().  This function is called
 941 * only when panic_cpu holds the current CPU number; this is the only CPU
 942 * which processes crash_kexec routines.
 943 */
 944void __noclone __crash_kexec(struct pt_regs *regs)
 945{
 946	/* Take the kexec_mutex here to prevent sys_kexec_load
 947	 * running on one cpu from replacing the crash kernel
 948	 * we are using after a panic on a different cpu.
 949	 *
 950	 * If the crash kernel was not located in a fixed area
 951	 * of memory the xchg(&kexec_crash_image) would be
 952	 * sufficient.  But since I reuse the memory...
 953	 */
 954	if (mutex_trylock(&kexec_mutex)) {
 955		if (kexec_crash_image) {
 956			struct pt_regs fixed_regs;
 957
 958			crash_setup_regs(&fixed_regs, regs);
 959			crash_save_vmcoreinfo();
 960			machine_crash_shutdown(&fixed_regs);
 961			machine_kexec(kexec_crash_image);
 962		}
 963		mutex_unlock(&kexec_mutex);
 964	}
 965}
 966STACK_FRAME_NON_STANDARD(__crash_kexec);
 967
 968void crash_kexec(struct pt_regs *regs)
 969{
 970	int old_cpu, this_cpu;
 971
 972	/*
 973	 * Only one CPU is allowed to execute the crash_kexec() code as with
 974	 * panic().  Otherwise parallel calls of panic() and crash_kexec()
 975	 * may stop each other.  To exclude them, we use panic_cpu here too.
 976	 */
 
 977	this_cpu = raw_smp_processor_id();
 978	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
 979	if (old_cpu == PANIC_CPU_INVALID) {
 980		/* This is the 1st CPU which comes here, so go ahead. */
 981		printk_safe_flush_on_panic();
 982		__crash_kexec(regs);
 983
 984		/*
 985		 * Reset panic_cpu to allow another panic()/crash_kexec()
 986		 * call.
 987		 */
 988		atomic_set(&panic_cpu, PANIC_CPU_INVALID);
 989	}
 990}
 991
 992size_t crash_get_memory_size(void)
 993{
 994	size_t size = 0;
 
 
 
 
 
 995
 996	mutex_lock(&kexec_mutex);
 997	if (crashk_res.end != crashk_res.start)
 998		size = resource_size(&crashk_res);
 999	mutex_unlock(&kexec_mutex);
 
 
 
1000	return size;
1001}
1002
1003void __weak crash_free_reserved_phys_range(unsigned long begin,
1004					   unsigned long end)
1005{
1006	unsigned long addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1007
1008	for (addr = begin; addr < end; addr += PAGE_SIZE)
1009		free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
1010}
1011
1012int crash_shrink_memory(unsigned long new_size)
1013{
1014	int ret = 0;
1015	unsigned long start, end;
1016	unsigned long old_size;
1017	struct resource *ram_res;
1018
1019	mutex_lock(&kexec_mutex);
 
1020
1021	if (kexec_crash_image) {
1022		ret = -ENOENT;
1023		goto unlock;
1024	}
1025	start = crashk_res.start;
1026	end = crashk_res.end;
1027	old_size = (end == 0) ? 0 : end - start + 1;
 
1028	if (new_size >= old_size) {
1029		ret = (new_size == old_size) ? 0 : -EINVAL;
1030		goto unlock;
1031	}
1032
1033	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1034	if (!ram_res) {
1035		ret = -ENOMEM;
1036		goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1037	}
1038
1039	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1040	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1041
1042	crash_free_reserved_phys_range(end, crashk_res.end);
1043
1044	if ((start == end) && (crashk_res.parent != NULL))
1045		release_resource(&crashk_res);
1046
1047	ram_res->start = end;
1048	ram_res->end = crashk_res.end;
1049	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
1050	ram_res->name = "System RAM";
1051
1052	crashk_res.end = end - 1;
1053
1054	insert_resource(&iomem_resource, ram_res);
1055
1056unlock:
1057	mutex_unlock(&kexec_mutex);
1058	return ret;
1059}
1060
1061void crash_save_cpu(struct pt_regs *regs, int cpu)
1062{
1063	struct elf_prstatus prstatus;
1064	u32 *buf;
1065
1066	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1067		return;
1068
1069	/* Using ELF notes here is opportunistic.
1070	 * I need a well defined structure format
1071	 * for the data I pass, and I need tags
1072	 * on the data to indicate what information I have
1073	 * squirrelled away.  ELF notes happen to provide
1074	 * all of that, so there is no need to invent something new.
1075	 */
1076	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1077	if (!buf)
1078		return;
1079	memset(&prstatus, 0, sizeof(prstatus));
1080	prstatus.pr_pid = current->pid;
1081	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1082	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1083			      &prstatus, sizeof(prstatus));
1084	final_note(buf);
1085}
1086
1087static int __init crash_notes_memory_init(void)
1088{
1089	/* Allocate memory for saving cpu registers. */
1090	size_t size, align;
1091
1092	/*
1093	 * crash_notes could be allocated across 2 vmalloc pages when percpu
1094	 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1095	 * pages are also on 2 continuous physical pages. In this case the
1096	 * 2nd part of crash_notes in 2nd page could be lost since only the
1097	 * starting address and size of crash_notes are exported through sysfs.
1098	 * Here round up the size of crash_notes to the nearest power of two
1099	 * and pass it to __alloc_percpu as align value. This can make sure
1100	 * crash_notes is allocated inside one physical page.
1101	 */
1102	size = sizeof(note_buf_t);
1103	align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1104
1105	/*
1106	 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1107	 * definitely will be in 2 pages with that.
1108	 */
1109	BUILD_BUG_ON(size > PAGE_SIZE);
1110
1111	crash_notes = __alloc_percpu(size, align);
1112	if (!crash_notes) {
1113		pr_warn("Memory allocation for saving cpu register states failed\n");
1114		return -ENOMEM;
1115	}
1116	return 0;
1117}
1118subsys_initcall(crash_notes_memory_init);
1119
1120
1121/*
1122 * Move into place and start executing a preloaded standalone
1123 * executable.  If nothing was preloaded return an error.
1124 */
1125int kernel_kexec(void)
1126{
1127	int error = 0;
1128
1129	if (!mutex_trylock(&kexec_mutex))
1130		return -EBUSY;
1131	if (!kexec_image) {
1132		error = -EINVAL;
1133		goto Unlock;
1134	}
1135
1136#ifdef CONFIG_KEXEC_JUMP
1137	if (kexec_image->preserve_context) {
1138		lock_system_sleep();
1139		pm_prepare_console();
1140		error = freeze_processes();
1141		if (error) {
1142			error = -EBUSY;
1143			goto Restore_console;
1144		}
1145		suspend_console();
1146		error = dpm_suspend_start(PMSG_FREEZE);
1147		if (error)
1148			goto Resume_console;
1149		/* At this point, dpm_suspend_start() has been called,
1150		 * but *not* dpm_suspend_end(). We *must* call
1151		 * dpm_suspend_end() now.  Otherwise, drivers for
1152		 * some devices (e.g. interrupt controllers) become
1153		 * desynchronized with the actual state of the
1154		 * hardware at resume time, and evil weirdness ensues.
1155		 */
1156		error = dpm_suspend_end(PMSG_FREEZE);
1157		if (error)
1158			goto Resume_devices;
1159		error = suspend_disable_secondary_cpus();
1160		if (error)
1161			goto Enable_cpus;
1162		local_irq_disable();
1163		error = syscore_suspend();
1164		if (error)
1165			goto Enable_irqs;
1166	} else
1167#endif
1168	{
1169		kexec_in_progress = true;
1170		kernel_restart_prepare(NULL);
1171		migrate_to_reboot_cpu();
 
1172
1173		/*
1174		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1175		 * no further code needs to use CPU hotplug (which is true in
1176		 * the reboot case). However, the kexec path depends on using
1177		 * CPU hotplug again; so re-enable it here.
1178		 */
1179		cpu_hotplug_enable();
1180		pr_notice("Starting new kernel\n");
1181		machine_shutdown();
1182	}
1183
 
1184	machine_kexec(kexec_image);
1185
1186#ifdef CONFIG_KEXEC_JUMP
1187	if (kexec_image->preserve_context) {
1188		syscore_resume();
1189 Enable_irqs:
1190		local_irq_enable();
1191 Enable_cpus:
1192		suspend_enable_secondary_cpus();
1193		dpm_resume_start(PMSG_RESTORE);
1194 Resume_devices:
1195		dpm_resume_end(PMSG_RESTORE);
1196 Resume_console:
1197		resume_console();
1198		thaw_processes();
1199 Restore_console:
1200		pm_restore_console();
1201		unlock_system_sleep();
1202	}
1203#endif
1204
1205 Unlock:
1206	mutex_unlock(&kexec_mutex);
1207	return error;
1208}
1209
1210/*
1211 * Protection mechanism for crashkernel reserved memory after
1212 * the kdump kernel is loaded.
1213 *
1214 * Provide an empty default implementation here -- architecture
1215 * code may override this
1216 */
1217void __weak arch_kexec_protect_crashkres(void)
1218{}
1219
1220void __weak arch_kexec_unprotect_crashkres(void)
1221{}