Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/slab.h>
   8#include <linux/sched.h>
   9#include <linux/sched/mm.h>
  10#include <linux/writeback.h>
  11#include <linux/pagemap.h>
  12#include <linux/blkdev.h>
  13#include <linux/uuid.h>
  14#include <linux/timekeeping.h>
  15#include "misc.h"
  16#include "ctree.h"
  17#include "disk-io.h"
  18#include "transaction.h"
  19#include "locking.h"
  20#include "tree-log.h"
 
  21#include "volumes.h"
  22#include "dev-replace.h"
  23#include "qgroup.h"
  24#include "block-group.h"
  25#include "space-info.h"
  26#include "zoned.h"
  27#include "fs.h"
  28#include "accessors.h"
  29#include "extent-tree.h"
  30#include "root-tree.h"
  31#include "defrag.h"
  32#include "dir-item.h"
  33#include "uuid-tree.h"
  34#include "ioctl.h"
  35#include "relocation.h"
  36#include "scrub.h"
  37
  38static struct kmem_cache *btrfs_trans_handle_cachep;
  39
  40/*
  41 * Transaction states and transitions
  42 *
  43 * No running transaction (fs tree blocks are not modified)
  44 * |
  45 * | To next stage:
  46 * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
  47 * V
  48 * Transaction N [[TRANS_STATE_RUNNING]]
  49 * |
  50 * | New trans handles can be attached to transaction N by calling all
  51 * | start_transaction() variants.
  52 * |
  53 * | To next stage:
  54 * |  Call btrfs_commit_transaction() on any trans handle attached to
  55 * |  transaction N
  56 * V
  57 * Transaction N [[TRANS_STATE_COMMIT_PREP]]
  58 * |
  59 * | If there are simultaneous calls to btrfs_commit_transaction() one will win
  60 * | the race and the rest will wait for the winner to commit the transaction.
  61 * |
  62 * | The winner will wait for previous running transaction to completely finish
  63 * | if there is one.
  64 * |
  65 * Transaction N [[TRANS_STATE_COMMIT_START]]
  66 * |
  67 * | Then one of the following happens:
 
 
 
  68 * | - Wait for all other trans handle holders to release.
  69 * |   The btrfs_commit_transaction() caller will do the commit work.
  70 * | - Wait for current transaction to be committed by others.
  71 * |   Other btrfs_commit_transaction() caller will do the commit work.
  72 * |
  73 * | At this stage, only btrfs_join_transaction*() variants can attach
  74 * | to this running transaction.
  75 * | All other variants will wait for current one to finish and attach to
  76 * | transaction N+1.
  77 * |
  78 * | To next stage:
  79 * |  Caller is chosen to commit transaction N, and all other trans handle
  80 * |  haven been released.
  81 * V
  82 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
  83 * |
  84 * | The heavy lifting transaction work is started.
  85 * | From running delayed refs (modifying extent tree) to creating pending
  86 * | snapshots, running qgroups.
  87 * | In short, modify supporting trees to reflect modifications of subvolume
  88 * | trees.
  89 * |
  90 * | At this stage, all start_transaction() calls will wait for this
  91 * | transaction to finish and attach to transaction N+1.
  92 * |
  93 * | To next stage:
  94 * |  Until all supporting trees are updated.
  95 * V
  96 * Transaction N [[TRANS_STATE_UNBLOCKED]]
  97 * |						    Transaction N+1
  98 * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
  99 * | need to write them back to disk and update	    |
 100 * | super blocks.				    |
 101 * |						    |
 102 * | At this stage, new transaction is allowed to   |
 103 * | start.					    |
 104 * | All new start_transaction() calls will be	    |
 105 * | attached to transid N+1.			    |
 106 * |						    |
 107 * | To next stage:				    |
 108 * |  Until all tree blocks are super blocks are    |
 109 * |  written to block devices			    |
 110 * V						    |
 111 * Transaction N [[TRANS_STATE_COMPLETED]]	    V
 112 *   All tree blocks and super blocks are written.  Transaction N+1
 113 *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
 114 *   data structures will be cleaned up.	    | Life goes on
 115 */
 116static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
 117	[TRANS_STATE_RUNNING]		= 0U,
 118	[TRANS_STATE_COMMIT_PREP]	= 0U,
 119	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
 120	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
 121					   __TRANS_ATTACH |
 122					   __TRANS_JOIN |
 123					   __TRANS_JOIN_NOSTART),
 124	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
 125					   __TRANS_ATTACH |
 126					   __TRANS_JOIN |
 127					   __TRANS_JOIN_NOLOCK |
 128					   __TRANS_JOIN_NOSTART),
 129	[TRANS_STATE_SUPER_COMMITTED]	= (__TRANS_START |
 130					   __TRANS_ATTACH |
 131					   __TRANS_JOIN |
 132					   __TRANS_JOIN_NOLOCK |
 133					   __TRANS_JOIN_NOSTART),
 134	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
 135					   __TRANS_ATTACH |
 136					   __TRANS_JOIN |
 137					   __TRANS_JOIN_NOLOCK |
 138					   __TRANS_JOIN_NOSTART),
 139};
 140
 141void btrfs_put_transaction(struct btrfs_transaction *transaction)
 142{
 143	WARN_ON(refcount_read(&transaction->use_count) == 0);
 144	if (refcount_dec_and_test(&transaction->use_count)) {
 145		BUG_ON(!list_empty(&transaction->list));
 146		WARN_ON(!RB_EMPTY_ROOT(
 147				&transaction->delayed_refs.href_root.rb_root));
 148		WARN_ON(!RB_EMPTY_ROOT(
 149				&transaction->delayed_refs.dirty_extent_root));
 150		if (transaction->delayed_refs.pending_csums)
 151			btrfs_err(transaction->fs_info,
 152				  "pending csums is %llu",
 153				  transaction->delayed_refs.pending_csums);
 154		/*
 155		 * If any block groups are found in ->deleted_bgs then it's
 156		 * because the transaction was aborted and a commit did not
 157		 * happen (things failed before writing the new superblock
 158		 * and calling btrfs_finish_extent_commit()), so we can not
 159		 * discard the physical locations of the block groups.
 160		 */
 161		while (!list_empty(&transaction->deleted_bgs)) {
 162			struct btrfs_block_group *cache;
 163
 164			cache = list_first_entry(&transaction->deleted_bgs,
 165						 struct btrfs_block_group,
 166						 bg_list);
 167			list_del_init(&cache->bg_list);
 168			btrfs_unfreeze_block_group(cache);
 169			btrfs_put_block_group(cache);
 170		}
 171		WARN_ON(!list_empty(&transaction->dev_update_list));
 172		kfree(transaction);
 173	}
 174}
 175
 176static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
 177{
 178	struct btrfs_transaction *cur_trans = trans->transaction;
 179	struct btrfs_fs_info *fs_info = trans->fs_info;
 180	struct btrfs_root *root, *tmp;
 181
 182	/*
 183	 * At this point no one can be using this transaction to modify any tree
 184	 * and no one can start another transaction to modify any tree either.
 185	 */
 186	ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
 187
 188	down_write(&fs_info->commit_root_sem);
 189
 190	if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
 191		fs_info->last_reloc_trans = trans->transid;
 192
 193	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
 194				 dirty_list) {
 195		list_del_init(&root->dirty_list);
 196		free_extent_buffer(root->commit_root);
 197		root->commit_root = btrfs_root_node(root);
 
 
 198		extent_io_tree_release(&root->dirty_log_pages);
 199		btrfs_qgroup_clean_swapped_blocks(root);
 200	}
 201
 202	/* We can free old roots now. */
 203	spin_lock(&cur_trans->dropped_roots_lock);
 204	while (!list_empty(&cur_trans->dropped_roots)) {
 205		root = list_first_entry(&cur_trans->dropped_roots,
 206					struct btrfs_root, root_list);
 207		list_del_init(&root->root_list);
 208		spin_unlock(&cur_trans->dropped_roots_lock);
 209		btrfs_free_log(trans, root);
 210		btrfs_drop_and_free_fs_root(fs_info, root);
 211		spin_lock(&cur_trans->dropped_roots_lock);
 212	}
 213	spin_unlock(&cur_trans->dropped_roots_lock);
 214
 215	up_write(&fs_info->commit_root_sem);
 216}
 217
 218static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
 219					 unsigned int type)
 220{
 221	if (type & TRANS_EXTWRITERS)
 222		atomic_inc(&trans->num_extwriters);
 223}
 224
 225static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
 226					 unsigned int type)
 227{
 228	if (type & TRANS_EXTWRITERS)
 229		atomic_dec(&trans->num_extwriters);
 230}
 231
 232static inline void extwriter_counter_init(struct btrfs_transaction *trans,
 233					  unsigned int type)
 234{
 235	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
 236}
 237
 238static inline int extwriter_counter_read(struct btrfs_transaction *trans)
 239{
 240	return atomic_read(&trans->num_extwriters);
 241}
 242
 243/*
 244 * To be called after doing the chunk btree updates right after allocating a new
 245 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
 246 * chunk after all chunk btree updates and after finishing the second phase of
 247 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
 248 * group had its chunk item insertion delayed to the second phase.
 249 */
 250void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
 251{
 252	struct btrfs_fs_info *fs_info = trans->fs_info;
 253
 254	if (!trans->chunk_bytes_reserved)
 255		return;
 256
 
 
 257	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
 258				trans->chunk_bytes_reserved, NULL);
 259	trans->chunk_bytes_reserved = 0;
 260}
 261
 262/*
 263 * either allocate a new transaction or hop into the existing one
 264 */
 265static noinline int join_transaction(struct btrfs_fs_info *fs_info,
 266				     unsigned int type)
 267{
 268	struct btrfs_transaction *cur_trans;
 269
 270	spin_lock(&fs_info->trans_lock);
 271loop:
 272	/* The file system has been taken offline. No new transactions. */
 273	if (BTRFS_FS_ERROR(fs_info)) {
 274		spin_unlock(&fs_info->trans_lock);
 275		return -EROFS;
 276	}
 277
 278	cur_trans = fs_info->running_transaction;
 279	if (cur_trans) {
 280		if (TRANS_ABORTED(cur_trans)) {
 281			spin_unlock(&fs_info->trans_lock);
 282			return cur_trans->aborted;
 283		}
 284		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
 285			spin_unlock(&fs_info->trans_lock);
 286			return -EBUSY;
 287		}
 288		refcount_inc(&cur_trans->use_count);
 289		atomic_inc(&cur_trans->num_writers);
 290		extwriter_counter_inc(cur_trans, type);
 291		spin_unlock(&fs_info->trans_lock);
 292		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
 293		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
 294		return 0;
 295	}
 296	spin_unlock(&fs_info->trans_lock);
 297
 298	/*
 299	 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
 300	 * current transaction, and commit it. If there is no transaction, just
 301	 * return ENOENT.
 302	 */
 303	if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
 304		return -ENOENT;
 305
 306	/*
 307	 * JOIN_NOLOCK only happens during the transaction commit, so
 308	 * it is impossible that ->running_transaction is NULL
 309	 */
 310	BUG_ON(type == TRANS_JOIN_NOLOCK);
 311
 312	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
 313	if (!cur_trans)
 314		return -ENOMEM;
 315
 316	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
 317	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
 318
 319	spin_lock(&fs_info->trans_lock);
 320	if (fs_info->running_transaction) {
 321		/*
 322		 * someone started a transaction after we unlocked.  Make sure
 323		 * to redo the checks above
 324		 */
 325		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
 326		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
 327		kfree(cur_trans);
 328		goto loop;
 329	} else if (BTRFS_FS_ERROR(fs_info)) {
 330		spin_unlock(&fs_info->trans_lock);
 331		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
 332		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
 333		kfree(cur_trans);
 334		return -EROFS;
 335	}
 336
 337	cur_trans->fs_info = fs_info;
 338	atomic_set(&cur_trans->pending_ordered, 0);
 339	init_waitqueue_head(&cur_trans->pending_wait);
 340	atomic_set(&cur_trans->num_writers, 1);
 341	extwriter_counter_init(cur_trans, type);
 342	init_waitqueue_head(&cur_trans->writer_wait);
 343	init_waitqueue_head(&cur_trans->commit_wait);
 344	cur_trans->state = TRANS_STATE_RUNNING;
 345	/*
 346	 * One for this trans handle, one so it will live on until we
 347	 * commit the transaction.
 348	 */
 349	refcount_set(&cur_trans->use_count, 2);
 350	cur_trans->flags = 0;
 351	cur_trans->start_time = ktime_get_seconds();
 352
 353	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
 354
 355	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
 356	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
 357	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
 358
 359	/*
 360	 * although the tree mod log is per file system and not per transaction,
 361	 * the log must never go across transaction boundaries.
 362	 */
 363	smp_mb();
 364	if (!list_empty(&fs_info->tree_mod_seq_list))
 365		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
 366	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
 367		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
 368	atomic64_set(&fs_info->tree_mod_seq, 0);
 369
 370	spin_lock_init(&cur_trans->delayed_refs.lock);
 371
 372	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
 373	INIT_LIST_HEAD(&cur_trans->dev_update_list);
 374	INIT_LIST_HEAD(&cur_trans->switch_commits);
 375	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
 376	INIT_LIST_HEAD(&cur_trans->io_bgs);
 377	INIT_LIST_HEAD(&cur_trans->dropped_roots);
 378	mutex_init(&cur_trans->cache_write_mutex);
 379	spin_lock_init(&cur_trans->dirty_bgs_lock);
 380	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
 381	spin_lock_init(&cur_trans->dropped_roots_lock);
 382	list_add_tail(&cur_trans->list, &fs_info->trans_list);
 383	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
 384			IO_TREE_TRANS_DIRTY_PAGES);
 385	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
 386			IO_TREE_FS_PINNED_EXTENTS);
 387	btrfs_set_fs_generation(fs_info, fs_info->generation + 1);
 388	cur_trans->transid = fs_info->generation;
 389	fs_info->running_transaction = cur_trans;
 390	cur_trans->aborted = 0;
 391	spin_unlock(&fs_info->trans_lock);
 392
 393	return 0;
 394}
 395
 396/*
 397 * This does all the record keeping required to make sure that a shareable root
 398 * is properly recorded in a given transaction.  This is required to make sure
 399 * the old root from before we joined the transaction is deleted when the
 400 * transaction commits.
 401 */
 402static int record_root_in_trans(struct btrfs_trans_handle *trans,
 403			       struct btrfs_root *root,
 404			       int force)
 405{
 406	struct btrfs_fs_info *fs_info = root->fs_info;
 407	int ret = 0;
 408
 409	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 410	    root->last_trans < trans->transid) || force) {
 
 411		WARN_ON(!force && root->commit_root != root->node);
 412
 413		/*
 414		 * see below for IN_TRANS_SETUP usage rules
 415		 * we have the reloc mutex held now, so there
 416		 * is only one writer in this function
 417		 */
 418		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
 419
 420		/* make sure readers find IN_TRANS_SETUP before
 421		 * they find our root->last_trans update
 422		 */
 423		smp_wmb();
 424
 425		spin_lock(&fs_info->fs_roots_radix_lock);
 426		if (root->last_trans == trans->transid && !force) {
 427			spin_unlock(&fs_info->fs_roots_radix_lock);
 428			return 0;
 429		}
 430		radix_tree_tag_set(&fs_info->fs_roots_radix,
 431				   (unsigned long)root->root_key.objectid,
 432				   BTRFS_ROOT_TRANS_TAG);
 433		spin_unlock(&fs_info->fs_roots_radix_lock);
 434		root->last_trans = trans->transid;
 435
 436		/* this is pretty tricky.  We don't want to
 437		 * take the relocation lock in btrfs_record_root_in_trans
 438		 * unless we're really doing the first setup for this root in
 439		 * this transaction.
 440		 *
 441		 * Normally we'd use root->last_trans as a flag to decide
 442		 * if we want to take the expensive mutex.
 443		 *
 444		 * But, we have to set root->last_trans before we
 445		 * init the relocation root, otherwise, we trip over warnings
 446		 * in ctree.c.  The solution used here is to flag ourselves
 447		 * with root IN_TRANS_SETUP.  When this is 1, we're still
 448		 * fixing up the reloc trees and everyone must wait.
 449		 *
 450		 * When this is zero, they can trust root->last_trans and fly
 451		 * through btrfs_record_root_in_trans without having to take the
 452		 * lock.  smp_wmb() makes sure that all the writes above are
 453		 * done before we pop in the zero below
 454		 */
 455		ret = btrfs_init_reloc_root(trans, root);
 456		smp_mb__before_atomic();
 457		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
 458	}
 459	return ret;
 460}
 461
 462
 463void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
 464			    struct btrfs_root *root)
 465{
 466	struct btrfs_fs_info *fs_info = root->fs_info;
 467	struct btrfs_transaction *cur_trans = trans->transaction;
 468
 469	/* Add ourselves to the transaction dropped list */
 470	spin_lock(&cur_trans->dropped_roots_lock);
 471	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
 472	spin_unlock(&cur_trans->dropped_roots_lock);
 473
 474	/* Make sure we don't try to update the root at commit time */
 475	spin_lock(&fs_info->fs_roots_radix_lock);
 476	radix_tree_tag_clear(&fs_info->fs_roots_radix,
 477			     (unsigned long)root->root_key.objectid,
 478			     BTRFS_ROOT_TRANS_TAG);
 479	spin_unlock(&fs_info->fs_roots_radix_lock);
 480}
 481
 482int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
 483			       struct btrfs_root *root)
 484{
 485	struct btrfs_fs_info *fs_info = root->fs_info;
 486	int ret;
 487
 488	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 489		return 0;
 490
 491	/*
 492	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
 493	 * and barriers
 494	 */
 495	smp_rmb();
 496	if (root->last_trans == trans->transid &&
 497	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
 498		return 0;
 499
 500	mutex_lock(&fs_info->reloc_mutex);
 501	ret = record_root_in_trans(trans, root, 0);
 502	mutex_unlock(&fs_info->reloc_mutex);
 503
 504	return ret;
 505}
 506
 507static inline int is_transaction_blocked(struct btrfs_transaction *trans)
 508{
 509	return (trans->state >= TRANS_STATE_COMMIT_START &&
 510		trans->state < TRANS_STATE_UNBLOCKED &&
 511		!TRANS_ABORTED(trans));
 512}
 513
 514/* wait for commit against the current transaction to become unblocked
 515 * when this is done, it is safe to start a new transaction, but the current
 516 * transaction might not be fully on disk.
 517 */
 518static void wait_current_trans(struct btrfs_fs_info *fs_info)
 519{
 520	struct btrfs_transaction *cur_trans;
 521
 522	spin_lock(&fs_info->trans_lock);
 523	cur_trans = fs_info->running_transaction;
 524	if (cur_trans && is_transaction_blocked(cur_trans)) {
 525		refcount_inc(&cur_trans->use_count);
 526		spin_unlock(&fs_info->trans_lock);
 527
 528		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
 529		wait_event(fs_info->transaction_wait,
 530			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
 531			   TRANS_ABORTED(cur_trans));
 532		btrfs_put_transaction(cur_trans);
 533	} else {
 534		spin_unlock(&fs_info->trans_lock);
 535	}
 536}
 537
 538static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
 539{
 540	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
 541		return 0;
 542
 543	if (type == TRANS_START)
 544		return 1;
 545
 546	return 0;
 547}
 548
 549static inline bool need_reserve_reloc_root(struct btrfs_root *root)
 550{
 551	struct btrfs_fs_info *fs_info = root->fs_info;
 552
 553	if (!fs_info->reloc_ctl ||
 554	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
 555	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 556	    root->reloc_root)
 557		return false;
 558
 559	return true;
 560}
 561
 562static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
 563					enum btrfs_reserve_flush_enum flush,
 564					u64 num_bytes,
 565					u64 *delayed_refs_bytes)
 566{
 567	struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
 568	u64 bytes = num_bytes + *delayed_refs_bytes;
 569	int ret;
 570
 571	/*
 572	 * We want to reserve all the bytes we may need all at once, so we only
 573	 * do 1 enospc flushing cycle per transaction start.
 574	 */
 575	ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
 576
 577	/*
 578	 * If we are an emergency flush, which can steal from the global block
 579	 * reserve, then attempt to not reserve space for the delayed refs, as
 580	 * we will consume space for them from the global block reserve.
 581	 */
 582	if (ret && flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
 583		bytes -= *delayed_refs_bytes;
 584		*delayed_refs_bytes = 0;
 585		ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
 586	}
 587
 588	return ret;
 589}
 590
 591static struct btrfs_trans_handle *
 592start_transaction(struct btrfs_root *root, unsigned int num_items,
 593		  unsigned int type, enum btrfs_reserve_flush_enum flush,
 594		  bool enforce_qgroups)
 595{
 596	struct btrfs_fs_info *fs_info = root->fs_info;
 597	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 598	struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
 599	struct btrfs_trans_handle *h;
 600	struct btrfs_transaction *cur_trans;
 601	u64 num_bytes = 0;
 602	u64 qgroup_reserved = 0;
 603	u64 delayed_refs_bytes = 0;
 604	bool reloc_reserved = false;
 605	bool do_chunk_alloc = false;
 606	int ret;
 607
 608	if (BTRFS_FS_ERROR(fs_info))
 
 
 
 609		return ERR_PTR(-EROFS);
 610
 611	if (current->journal_info) {
 612		WARN_ON(type & TRANS_EXTWRITERS);
 613		h = current->journal_info;
 614		refcount_inc(&h->use_count);
 615		WARN_ON(refcount_read(&h->use_count) > 2);
 616		h->orig_rsv = h->block_rsv;
 617		h->block_rsv = NULL;
 618		goto got_it;
 619	}
 620
 621	/*
 622	 * Do the reservation before we join the transaction so we can do all
 623	 * the appropriate flushing if need be.
 624	 */
 625	if (num_items && root != fs_info->chunk_root) {
 
 
 
 626		qgroup_reserved = num_items * fs_info->nodesize;
 627		/*
 628		 * Use prealloc for now, as there might be a currently running
 629		 * transaction that could free this reserved space prematurely
 630		 * by committing.
 631		 */
 632		ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
 633							 enforce_qgroups, false);
 634		if (ret)
 635			return ERR_PTR(ret);
 636
 637		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
 638		/*
 639		 * If we plan to insert/update/delete "num_items" from a btree,
 640		 * we will also generate delayed refs for extent buffers in the
 641		 * respective btree paths, so reserve space for the delayed refs
 642		 * that will be generated by the caller as it modifies btrees.
 643		 * Try to reserve them to avoid excessive use of the global
 644		 * block reserve.
 645		 */
 646		delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items);
 
 
 
 
 
 647
 648		/*
 649		 * Do the reservation for the relocation root creation
 650		 */
 651		if (need_reserve_reloc_root(root)) {
 652			num_bytes += fs_info->nodesize;
 653			reloc_reserved = true;
 654		}
 655
 656		ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
 657						   &delayed_refs_bytes);
 658		if (ret)
 659			goto reserve_fail;
 
 
 
 
 
 660
 661		btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true);
 662
 663		if (trans_rsv->space_info->force_alloc)
 664			do_chunk_alloc = true;
 665	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
 666		   !btrfs_block_rsv_full(delayed_refs_rsv)) {
 667		/*
 668		 * Some people call with btrfs_start_transaction(root, 0)
 669		 * because they can be throttled, but have some other mechanism
 670		 * for reserving space.  We still want these guys to refill the
 671		 * delayed block_rsv so just add 1 items worth of reservation
 672		 * here.
 673		 */
 674		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
 675		if (ret)
 676			goto reserve_fail;
 677	}
 678again:
 679	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
 680	if (!h) {
 681		ret = -ENOMEM;
 682		goto alloc_fail;
 683	}
 684
 685	/*
 686	 * If we are JOIN_NOLOCK we're already committing a transaction and
 687	 * waiting on this guy, so we don't need to do the sb_start_intwrite
 688	 * because we're already holding a ref.  We need this because we could
 689	 * have raced in and did an fsync() on a file which can kick a commit
 690	 * and then we deadlock with somebody doing a freeze.
 691	 *
 692	 * If we are ATTACH, it means we just want to catch the current
 693	 * transaction and commit it, so we needn't do sb_start_intwrite(). 
 694	 */
 695	if (type & __TRANS_FREEZABLE)
 696		sb_start_intwrite(fs_info->sb);
 697
 698	if (may_wait_transaction(fs_info, type))
 699		wait_current_trans(fs_info);
 700
 701	do {
 702		ret = join_transaction(fs_info, type);
 703		if (ret == -EBUSY) {
 704			wait_current_trans(fs_info);
 705			if (unlikely(type == TRANS_ATTACH ||
 706				     type == TRANS_JOIN_NOSTART))
 707				ret = -ENOENT;
 708		}
 709	} while (ret == -EBUSY);
 710
 711	if (ret < 0)
 712		goto join_fail;
 713
 714	cur_trans = fs_info->running_transaction;
 715
 716	h->transid = cur_trans->transid;
 717	h->transaction = cur_trans;
 
 718	refcount_set(&h->use_count, 1);
 719	h->fs_info = root->fs_info;
 720
 721	h->type = type;
 
 722	INIT_LIST_HEAD(&h->new_bgs);
 723	btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS);
 724
 725	smp_mb();
 726	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
 727	    may_wait_transaction(fs_info, type)) {
 728		current->journal_info = h;
 729		btrfs_commit_transaction(h);
 730		goto again;
 731	}
 732
 733	if (num_bytes) {
 734		trace_btrfs_space_reservation(fs_info, "transaction",
 735					      h->transid, num_bytes, 1);
 736		h->block_rsv = trans_rsv;
 737		h->bytes_reserved = num_bytes;
 738		if (delayed_refs_bytes > 0) {
 739			trace_btrfs_space_reservation(fs_info,
 740						      "local_delayed_refs_rsv",
 741						      h->transid,
 742						      delayed_refs_bytes, 1);
 743			h->delayed_refs_bytes_reserved = delayed_refs_bytes;
 744			btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true);
 745			delayed_refs_bytes = 0;
 746		}
 747		h->reloc_reserved = reloc_reserved;
 748	}
 749
 750	/*
 751	 * Now that we have found a transaction to be a part of, convert the
 752	 * qgroup reservation from prealloc to pertrans. A different transaction
 753	 * can't race in and free our pertrans out from under us.
 754	 */
 755	if (qgroup_reserved)
 756		btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
 757
 758got_it:
 759	if (!current->journal_info)
 760		current->journal_info = h;
 761
 762	/*
 763	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
 764	 * ALLOC_FORCE the first run through, and then we won't allocate for
 765	 * anybody else who races in later.  We don't care about the return
 766	 * value here.
 767	 */
 768	if (do_chunk_alloc && num_bytes) {
 769		u64 flags = h->block_rsv->space_info->flags;
 770
 771		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
 772				  CHUNK_ALLOC_NO_FORCE);
 773	}
 774
 775	/*
 776	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
 777	 * call btrfs_join_transaction() while we're also starting a
 778	 * transaction.
 779	 *
 780	 * Thus it need to be called after current->journal_info initialized,
 781	 * or we can deadlock.
 782	 */
 783	ret = btrfs_record_root_in_trans(h, root);
 784	if (ret) {
 785		/*
 786		 * The transaction handle is fully initialized and linked with
 787		 * other structures so it needs to be ended in case of errors,
 788		 * not just freed.
 789		 */
 790		btrfs_end_transaction(h);
 791		return ERR_PTR(ret);
 792	}
 793
 794	return h;
 795
 796join_fail:
 797	if (type & __TRANS_FREEZABLE)
 798		sb_end_intwrite(fs_info->sb);
 799	kmem_cache_free(btrfs_trans_handle_cachep, h);
 800alloc_fail:
 801	if (num_bytes)
 802		btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL);
 803	if (delayed_refs_bytes)
 804		btrfs_space_info_free_bytes_may_use(fs_info, trans_rsv->space_info,
 805						    delayed_refs_bytes);
 806reserve_fail:
 807	btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
 808	return ERR_PTR(ret);
 809}
 810
 811struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
 812						   unsigned int num_items)
 813{
 814	return start_transaction(root, num_items, TRANS_START,
 815				 BTRFS_RESERVE_FLUSH_ALL, true);
 816}
 817
 818struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
 819					struct btrfs_root *root,
 820					unsigned int num_items)
 821{
 822	return start_transaction(root, num_items, TRANS_START,
 823				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
 824}
 825
 826struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
 827{
 828	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
 829				 true);
 830}
 831
 832struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
 833{
 834	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
 835				 BTRFS_RESERVE_NO_FLUSH, true);
 836}
 837
 838/*
 839 * Similar to regular join but it never starts a transaction when none is
 840 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
 841 * This is similar to btrfs_attach_transaction() but it allows the join to
 842 * happen if the transaction commit already started but it's not yet in the
 843 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
 844 */
 845struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
 846{
 847	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
 848				 BTRFS_RESERVE_NO_FLUSH, true);
 849}
 850
 851/*
 852 * Catch the running transaction.
 853 *
 854 * It is used when we want to commit the current the transaction, but
 855 * don't want to start a new one.
 856 *
 857 * Note: If this function return -ENOENT, it just means there is no
 858 * running transaction. But it is possible that the inactive transaction
 859 * is still in the memory, not fully on disk. If you hope there is no
 860 * inactive transaction in the fs when -ENOENT is returned, you should
 861 * invoke
 862 *     btrfs_attach_transaction_barrier()
 863 */
 864struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
 865{
 866	return start_transaction(root, 0, TRANS_ATTACH,
 867				 BTRFS_RESERVE_NO_FLUSH, true);
 868}
 869
 870/*
 871 * Catch the running transaction.
 872 *
 873 * It is similar to the above function, the difference is this one
 874 * will wait for all the inactive transactions until they fully
 875 * complete.
 876 */
 877struct btrfs_trans_handle *
 878btrfs_attach_transaction_barrier(struct btrfs_root *root)
 879{
 880	struct btrfs_trans_handle *trans;
 881
 882	trans = start_transaction(root, 0, TRANS_ATTACH,
 883				  BTRFS_RESERVE_NO_FLUSH, true);
 884	if (trans == ERR_PTR(-ENOENT)) {
 885		int ret;
 886
 887		ret = btrfs_wait_for_commit(root->fs_info, 0);
 888		if (ret)
 889			return ERR_PTR(ret);
 890	}
 891
 892	return trans;
 893}
 894
 895/* Wait for a transaction commit to reach at least the given state. */
 896static noinline void wait_for_commit(struct btrfs_transaction *commit,
 897				     const enum btrfs_trans_state min_state)
 898{
 899	struct btrfs_fs_info *fs_info = commit->fs_info;
 900	u64 transid = commit->transid;
 901	bool put = false;
 902
 903	/*
 904	 * At the moment this function is called with min_state either being
 905	 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
 906	 */
 907	if (min_state == TRANS_STATE_COMPLETED)
 908		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
 909	else
 910		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
 911
 912	while (1) {
 913		wait_event(commit->commit_wait, commit->state >= min_state);
 914		if (put)
 915			btrfs_put_transaction(commit);
 916
 917		if (min_state < TRANS_STATE_COMPLETED)
 918			break;
 919
 920		/*
 921		 * A transaction isn't really completed until all of the
 922		 * previous transactions are completed, but with fsync we can
 923		 * end up with SUPER_COMMITTED transactions before a COMPLETED
 924		 * transaction. Wait for those.
 925		 */
 926
 927		spin_lock(&fs_info->trans_lock);
 928		commit = list_first_entry_or_null(&fs_info->trans_list,
 929						  struct btrfs_transaction,
 930						  list);
 931		if (!commit || commit->transid > transid) {
 932			spin_unlock(&fs_info->trans_lock);
 933			break;
 934		}
 935		refcount_inc(&commit->use_count);
 936		put = true;
 937		spin_unlock(&fs_info->trans_lock);
 938	}
 939}
 940
 941int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
 942{
 943	struct btrfs_transaction *cur_trans = NULL, *t;
 944	int ret = 0;
 945
 946	if (transid) {
 947		if (transid <= btrfs_get_last_trans_committed(fs_info))
 948			goto out;
 949
 950		/* find specified transaction */
 951		spin_lock(&fs_info->trans_lock);
 952		list_for_each_entry(t, &fs_info->trans_list, list) {
 953			if (t->transid == transid) {
 954				cur_trans = t;
 955				refcount_inc(&cur_trans->use_count);
 956				ret = 0;
 957				break;
 958			}
 959			if (t->transid > transid) {
 960				ret = 0;
 961				break;
 962			}
 963		}
 964		spin_unlock(&fs_info->trans_lock);
 965
 966		/*
 967		 * The specified transaction doesn't exist, or we
 968		 * raced with btrfs_commit_transaction
 969		 */
 970		if (!cur_trans) {
 971			if (transid > btrfs_get_last_trans_committed(fs_info))
 972				ret = -EINVAL;
 973			goto out;
 974		}
 975	} else {
 976		/* find newest transaction that is committing | committed */
 977		spin_lock(&fs_info->trans_lock);
 978		list_for_each_entry_reverse(t, &fs_info->trans_list,
 979					    list) {
 980			if (t->state >= TRANS_STATE_COMMIT_START) {
 981				if (t->state == TRANS_STATE_COMPLETED)
 982					break;
 983				cur_trans = t;
 984				refcount_inc(&cur_trans->use_count);
 985				break;
 986			}
 987		}
 988		spin_unlock(&fs_info->trans_lock);
 989		if (!cur_trans)
 990			goto out;  /* nothing committing|committed */
 991	}
 992
 993	wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
 994	ret = cur_trans->aborted;
 995	btrfs_put_transaction(cur_trans);
 996out:
 997	return ret;
 998}
 999
1000void btrfs_throttle(struct btrfs_fs_info *fs_info)
1001{
1002	wait_current_trans(fs_info);
1003}
1004
1005bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
 
 
 
 
 
 
 
 
 
 
1006{
1007	struct btrfs_transaction *cur_trans = trans->transaction;
1008
 
1009	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
1010	    test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
1011		return true;
1012
1013	if (btrfs_check_space_for_delayed_refs(trans->fs_info))
1014		return true;
1015
1016	return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
1017}
1018
1019static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1020
1021{
1022	struct btrfs_fs_info *fs_info = trans->fs_info;
1023
1024	if (!trans->block_rsv) {
1025		ASSERT(!trans->bytes_reserved);
1026		ASSERT(!trans->delayed_refs_bytes_reserved);
1027		return;
1028	}
1029
1030	if (!trans->bytes_reserved) {
1031		ASSERT(!trans->delayed_refs_bytes_reserved);
1032		return;
1033	}
1034
1035	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1036	trace_btrfs_space_reservation(fs_info, "transaction",
1037				      trans->transid, trans->bytes_reserved, 0);
1038	btrfs_block_rsv_release(fs_info, trans->block_rsv,
1039				trans->bytes_reserved, NULL);
1040	trans->bytes_reserved = 0;
1041
1042	if (!trans->delayed_refs_bytes_reserved)
1043		return;
1044
1045	trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv",
1046				      trans->transid,
1047				      trans->delayed_refs_bytes_reserved, 0);
1048	btrfs_block_rsv_release(fs_info, &trans->delayed_rsv,
1049				trans->delayed_refs_bytes_reserved, NULL);
1050	trans->delayed_refs_bytes_reserved = 0;
1051}
1052
1053static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1054				   int throttle)
1055{
1056	struct btrfs_fs_info *info = trans->fs_info;
1057	struct btrfs_transaction *cur_trans = trans->transaction;
1058	int err = 0;
1059
1060	if (refcount_read(&trans->use_count) > 1) {
1061		refcount_dec(&trans->use_count);
1062		trans->block_rsv = trans->orig_rsv;
1063		return 0;
1064	}
1065
1066	btrfs_trans_release_metadata(trans);
1067	trans->block_rsv = NULL;
1068
1069	btrfs_create_pending_block_groups(trans);
1070
1071	btrfs_trans_release_chunk_metadata(trans);
1072
1073	if (trans->type & __TRANS_FREEZABLE)
1074		sb_end_intwrite(info->sb);
1075
1076	WARN_ON(cur_trans != info->running_transaction);
1077	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1078	atomic_dec(&cur_trans->num_writers);
1079	extwriter_counter_dec(cur_trans, trans->type);
1080
1081	cond_wake_up(&cur_trans->writer_wait);
1082
1083	btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1084	btrfs_lockdep_release(info, btrfs_trans_num_writers);
1085
1086	btrfs_put_transaction(cur_trans);
1087
1088	if (current->journal_info == trans)
1089		current->journal_info = NULL;
1090
1091	if (throttle)
1092		btrfs_run_delayed_iputs(info);
1093
1094	if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
 
1095		wake_up_process(info->transaction_kthread);
1096		if (TRANS_ABORTED(trans))
1097			err = trans->aborted;
1098		else
1099			err = -EROFS;
1100	}
1101
1102	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1103	return err;
1104}
1105
1106int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1107{
1108	return __btrfs_end_transaction(trans, 0);
1109}
1110
1111int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1112{
1113	return __btrfs_end_transaction(trans, 1);
1114}
1115
1116/*
1117 * when btree blocks are allocated, they have some corresponding bits set for
1118 * them in one of two extent_io trees.  This is used to make sure all of
1119 * those extents are sent to disk but does not wait on them
1120 */
1121int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1122			       struct extent_io_tree *dirty_pages, int mark)
1123{
1124	int err = 0;
1125	int werr = 0;
1126	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1127	struct extent_state *cached_state = NULL;
1128	u64 start = 0;
1129	u64 end;
1130
1131	while (find_first_extent_bit(dirty_pages, start, &start, &end,
1132				     mark, &cached_state)) {
 
1133		bool wait_writeback = false;
1134
1135		err = convert_extent_bit(dirty_pages, start, end,
1136					 EXTENT_NEED_WAIT,
1137					 mark, &cached_state);
1138		/*
1139		 * convert_extent_bit can return -ENOMEM, which is most of the
1140		 * time a temporary error. So when it happens, ignore the error
1141		 * and wait for writeback of this range to finish - because we
1142		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1143		 * to __btrfs_wait_marked_extents() would not know that
1144		 * writeback for this range started and therefore wouldn't
1145		 * wait for it to finish - we don't want to commit a
1146		 * superblock that points to btree nodes/leafs for which
1147		 * writeback hasn't finished yet (and without errors).
1148		 * We cleanup any entries left in the io tree when committing
1149		 * the transaction (through extent_io_tree_release()).
1150		 */
1151		if (err == -ENOMEM) {
1152			err = 0;
1153			wait_writeback = true;
1154		}
1155		if (!err)
1156			err = filemap_fdatawrite_range(mapping, start, end);
1157		if (err)
1158			werr = err;
1159		else if (wait_writeback)
1160			werr = filemap_fdatawait_range(mapping, start, end);
1161		free_extent_state(cached_state);
1162		cached_state = NULL;
1163		cond_resched();
1164		start = end + 1;
1165	}
 
1166	return werr;
1167}
1168
1169/*
1170 * when btree blocks are allocated, they have some corresponding bits set for
1171 * them in one of two extent_io trees.  This is used to make sure all of
1172 * those extents are on disk for transaction or log commit.  We wait
1173 * on all the pages and clear them from the dirty pages state tree
1174 */
1175static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1176				       struct extent_io_tree *dirty_pages)
1177{
1178	int err = 0;
1179	int werr = 0;
1180	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1181	struct extent_state *cached_state = NULL;
1182	u64 start = 0;
1183	u64 end;
1184
1185	while (find_first_extent_bit(dirty_pages, start, &start, &end,
1186				     EXTENT_NEED_WAIT, &cached_state)) {
1187		/*
1188		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1189		 * When committing the transaction, we'll remove any entries
1190		 * left in the io tree. For a log commit, we don't remove them
1191		 * after committing the log because the tree can be accessed
1192		 * concurrently - we do it only at transaction commit time when
1193		 * it's safe to do it (through extent_io_tree_release()).
1194		 */
1195		err = clear_extent_bit(dirty_pages, start, end,
1196				       EXTENT_NEED_WAIT, &cached_state);
1197		if (err == -ENOMEM)
1198			err = 0;
1199		if (!err)
1200			err = filemap_fdatawait_range(mapping, start, end);
1201		if (err)
1202			werr = err;
1203		free_extent_state(cached_state);
1204		cached_state = NULL;
1205		cond_resched();
1206		start = end + 1;
1207	}
1208	if (err)
1209		werr = err;
1210	return werr;
1211}
1212
1213static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1214		       struct extent_io_tree *dirty_pages)
1215{
1216	bool errors = false;
1217	int err;
1218
1219	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1220	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1221		errors = true;
1222
1223	if (errors && !err)
1224		err = -EIO;
1225	return err;
1226}
1227
1228int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1229{
1230	struct btrfs_fs_info *fs_info = log_root->fs_info;
1231	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1232	bool errors = false;
1233	int err;
1234
1235	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1236
1237	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1238	if ((mark & EXTENT_DIRTY) &&
1239	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1240		errors = true;
1241
1242	if ((mark & EXTENT_NEW) &&
1243	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1244		errors = true;
1245
1246	if (errors && !err)
1247		err = -EIO;
1248	return err;
1249}
1250
1251/*
1252 * When btree blocks are allocated the corresponding extents are marked dirty.
1253 * This function ensures such extents are persisted on disk for transaction or
1254 * log commit.
1255 *
1256 * @trans: transaction whose dirty pages we'd like to write
1257 */
1258static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1259{
1260	int ret;
1261	int ret2;
1262	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1263	struct btrfs_fs_info *fs_info = trans->fs_info;
1264	struct blk_plug plug;
1265
1266	blk_start_plug(&plug);
1267	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1268	blk_finish_plug(&plug);
1269	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1270
1271	extent_io_tree_release(&trans->transaction->dirty_pages);
1272
1273	if (ret)
1274		return ret;
1275	else if (ret2)
1276		return ret2;
1277	else
1278		return 0;
1279}
1280
1281/*
1282 * this is used to update the root pointer in the tree of tree roots.
1283 *
1284 * But, in the case of the extent allocation tree, updating the root
1285 * pointer may allocate blocks which may change the root of the extent
1286 * allocation tree.
1287 *
1288 * So, this loops and repeats and makes sure the cowonly root didn't
1289 * change while the root pointer was being updated in the metadata.
1290 */
1291static int update_cowonly_root(struct btrfs_trans_handle *trans,
1292			       struct btrfs_root *root)
1293{
1294	int ret;
1295	u64 old_root_bytenr;
1296	u64 old_root_used;
1297	struct btrfs_fs_info *fs_info = root->fs_info;
1298	struct btrfs_root *tree_root = fs_info->tree_root;
1299
1300	old_root_used = btrfs_root_used(&root->root_item);
1301
1302	while (1) {
1303		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1304		if (old_root_bytenr == root->node->start &&
1305		    old_root_used == btrfs_root_used(&root->root_item))
1306			break;
1307
1308		btrfs_set_root_node(&root->root_item, root->node);
1309		ret = btrfs_update_root(trans, tree_root,
1310					&root->root_key,
1311					&root->root_item);
1312		if (ret)
1313			return ret;
1314
1315		old_root_used = btrfs_root_used(&root->root_item);
1316	}
1317
1318	return 0;
1319}
1320
1321/*
1322 * update all the cowonly tree roots on disk
1323 *
1324 * The error handling in this function may not be obvious. Any of the
1325 * failures will cause the file system to go offline. We still need
1326 * to clean up the delayed refs.
1327 */
1328static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1329{
1330	struct btrfs_fs_info *fs_info = trans->fs_info;
1331	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1332	struct list_head *io_bgs = &trans->transaction->io_bgs;
1333	struct list_head *next;
1334	struct extent_buffer *eb;
1335	int ret;
1336
1337	/*
1338	 * At this point no one can be using this transaction to modify any tree
1339	 * and no one can start another transaction to modify any tree either.
1340	 */
1341	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1342
1343	eb = btrfs_lock_root_node(fs_info->tree_root);
1344	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1345			      0, &eb, BTRFS_NESTING_COW);
1346	btrfs_tree_unlock(eb);
1347	free_extent_buffer(eb);
1348
1349	if (ret)
1350		return ret;
1351
 
 
 
 
1352	ret = btrfs_run_dev_stats(trans);
1353	if (ret)
1354		return ret;
1355	ret = btrfs_run_dev_replace(trans);
1356	if (ret)
1357		return ret;
1358	ret = btrfs_run_qgroups(trans);
1359	if (ret)
1360		return ret;
1361
1362	ret = btrfs_setup_space_cache(trans);
1363	if (ret)
1364		return ret;
1365
 
 
 
 
1366again:
1367	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1368		struct btrfs_root *root;
1369		next = fs_info->dirty_cowonly_roots.next;
1370		list_del_init(next);
1371		root = list_entry(next, struct btrfs_root, dirty_list);
1372		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1373
1374		list_add_tail(&root->dirty_list,
1375			      &trans->transaction->switch_commits);
 
1376		ret = update_cowonly_root(trans, root);
1377		if (ret)
1378			return ret;
 
 
 
1379	}
1380
1381	/* Now flush any delayed refs generated by updating all of the roots */
1382	ret = btrfs_run_delayed_refs(trans, U64_MAX);
1383	if (ret)
1384		return ret;
1385
1386	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1387		ret = btrfs_write_dirty_block_groups(trans);
1388		if (ret)
1389			return ret;
1390
1391		/*
1392		 * We're writing the dirty block groups, which could generate
1393		 * delayed refs, which could generate more dirty block groups,
1394		 * so we want to keep this flushing in this loop to make sure
1395		 * everything gets run.
1396		 */
1397		ret = btrfs_run_delayed_refs(trans, U64_MAX);
1398		if (ret)
1399			return ret;
1400	}
1401
1402	if (!list_empty(&fs_info->dirty_cowonly_roots))
1403		goto again;
1404
 
 
 
1405	/* Update dev-replace pointer once everything is committed */
1406	fs_info->dev_replace.committed_cursor_left =
1407		fs_info->dev_replace.cursor_left_last_write_of_item;
1408
1409	return 0;
1410}
1411
1412/*
1413 * If we had a pending drop we need to see if there are any others left in our
1414 * dead roots list, and if not clear our bit and wake any waiters.
1415 */
1416void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1417{
1418	/*
1419	 * We put the drop in progress roots at the front of the list, so if the
1420	 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1421	 * up.
1422	 */
1423	spin_lock(&fs_info->trans_lock);
1424	if (!list_empty(&fs_info->dead_roots)) {
1425		struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1426							   struct btrfs_root,
1427							   root_list);
1428		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1429			spin_unlock(&fs_info->trans_lock);
1430			return;
1431		}
1432	}
1433	spin_unlock(&fs_info->trans_lock);
1434
1435	btrfs_wake_unfinished_drop(fs_info);
1436}
1437
1438/*
1439 * dead roots are old snapshots that need to be deleted.  This allocates
1440 * a dirty root struct and adds it into the list of dead roots that need to
1441 * be deleted
1442 */
1443void btrfs_add_dead_root(struct btrfs_root *root)
1444{
1445	struct btrfs_fs_info *fs_info = root->fs_info;
1446
1447	spin_lock(&fs_info->trans_lock);
1448	if (list_empty(&root->root_list)) {
1449		btrfs_grab_root(root);
1450
1451		/* We want to process the partially complete drops first. */
1452		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1453			list_add(&root->root_list, &fs_info->dead_roots);
1454		else
1455			list_add_tail(&root->root_list, &fs_info->dead_roots);
1456	}
1457	spin_unlock(&fs_info->trans_lock);
1458}
1459
1460/*
1461 * Update each subvolume root and its relocation root, if it exists, in the tree
1462 * of tree roots. Also free log roots if they exist.
1463 */
1464static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1465{
1466	struct btrfs_fs_info *fs_info = trans->fs_info;
1467	struct btrfs_root *gang[8];
1468	int i;
1469	int ret;
1470
1471	/*
1472	 * At this point no one can be using this transaction to modify any tree
1473	 * and no one can start another transaction to modify any tree either.
1474	 */
1475	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1476
1477	spin_lock(&fs_info->fs_roots_radix_lock);
1478	while (1) {
1479		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1480						 (void **)gang, 0,
1481						 ARRAY_SIZE(gang),
1482						 BTRFS_ROOT_TRANS_TAG);
1483		if (ret == 0)
1484			break;
1485		for (i = 0; i < ret; i++) {
1486			struct btrfs_root *root = gang[i];
1487			int ret2;
1488
1489			/*
1490			 * At this point we can neither have tasks logging inodes
1491			 * from a root nor trying to commit a log tree.
1492			 */
1493			ASSERT(atomic_read(&root->log_writers) == 0);
1494			ASSERT(atomic_read(&root->log_commit[0]) == 0);
1495			ASSERT(atomic_read(&root->log_commit[1]) == 0);
1496
1497			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1498					(unsigned long)root->root_key.objectid,
1499					BTRFS_ROOT_TRANS_TAG);
1500			spin_unlock(&fs_info->fs_roots_radix_lock);
1501
1502			btrfs_free_log(trans, root);
1503			ret2 = btrfs_update_reloc_root(trans, root);
1504			if (ret2)
1505				return ret2;
1506
1507			/* see comments in should_cow_block() */
1508			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1509			smp_mb__after_atomic();
1510
1511			if (root->commit_root != root->node) {
1512				list_add_tail(&root->dirty_list,
1513					&trans->transaction->switch_commits);
1514				btrfs_set_root_node(&root->root_item,
1515						    root->node);
1516			}
1517
1518			ret2 = btrfs_update_root(trans, fs_info->tree_root,
1519						&root->root_key,
1520						&root->root_item);
1521			if (ret2)
1522				return ret2;
1523			spin_lock(&fs_info->fs_roots_radix_lock);
 
 
1524			btrfs_qgroup_free_meta_all_pertrans(root);
1525		}
1526	}
1527	spin_unlock(&fs_info->fs_roots_radix_lock);
1528	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1529}
1530
1531/*
1532 * Do all special snapshot related qgroup dirty hack.
1533 *
1534 * Will do all needed qgroup inherit and dirty hack like switch commit
1535 * roots inside one transaction and write all btree into disk, to make
1536 * qgroup works.
1537 */
1538static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1539				   struct btrfs_root *src,
1540				   struct btrfs_root *parent,
1541				   struct btrfs_qgroup_inherit *inherit,
1542				   u64 dst_objectid)
1543{
1544	struct btrfs_fs_info *fs_info = src->fs_info;
1545	int ret;
1546
1547	/*
1548	 * Save some performance in the case that qgroups are not enabled. If
1549	 * this check races with the ioctl, rescan will kick in anyway.
 
1550	 */
1551	if (!btrfs_qgroup_full_accounting(fs_info))
1552		return 0;
1553
1554	/*
1555	 * Ensure dirty @src will be committed.  Or, after coming
1556	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1557	 * recorded root will never be updated again, causing an outdated root
1558	 * item.
1559	 */
1560	ret = record_root_in_trans(trans, src, 1);
1561	if (ret)
1562		return ret;
1563
1564	/*
1565	 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1566	 * src root, so we must run the delayed refs here.
1567	 *
1568	 * However this isn't particularly fool proof, because there's no
1569	 * synchronization keeping us from changing the tree after this point
1570	 * before we do the qgroup_inherit, or even from making changes while
1571	 * we're doing the qgroup_inherit.  But that's a problem for the future,
1572	 * for now flush the delayed refs to narrow the race window where the
1573	 * qgroup counters could end up wrong.
1574	 */
1575	ret = btrfs_run_delayed_refs(trans, U64_MAX);
1576	if (ret) {
1577		btrfs_abort_transaction(trans, ret);
1578		return ret;
1579	}
1580
1581	ret = commit_fs_roots(trans);
1582	if (ret)
1583		goto out;
1584	ret = btrfs_qgroup_account_extents(trans);
1585	if (ret < 0)
1586		goto out;
1587
1588	/* Now qgroup are all updated, we can inherit it to new qgroups */
1589	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1590				   parent->root_key.objectid, inherit);
1591	if (ret < 0)
1592		goto out;
1593
1594	/*
1595	 * Now we do a simplified commit transaction, which will:
1596	 * 1) commit all subvolume and extent tree
1597	 *    To ensure all subvolume and extent tree have a valid
1598	 *    commit_root to accounting later insert_dir_item()
1599	 * 2) write all btree blocks onto disk
1600	 *    This is to make sure later btree modification will be cowed
1601	 *    Or commit_root can be populated and cause wrong qgroup numbers
1602	 * In this simplified commit, we don't really care about other trees
1603	 * like chunk and root tree, as they won't affect qgroup.
1604	 * And we don't write super to avoid half committed status.
1605	 */
1606	ret = commit_cowonly_roots(trans);
1607	if (ret)
1608		goto out;
1609	switch_commit_roots(trans);
1610	ret = btrfs_write_and_wait_transaction(trans);
1611	if (ret)
1612		btrfs_handle_fs_error(fs_info, ret,
1613			"Error while writing out transaction for qgroup");
1614
1615out:
 
 
1616	/*
1617	 * Force parent root to be updated, as we recorded it before so its
1618	 * last_trans == cur_transid.
1619	 * Or it won't be committed again onto disk after later
1620	 * insert_dir_item()
1621	 */
1622	if (!ret)
1623		ret = record_root_in_trans(trans, parent, 1);
1624	return ret;
1625}
1626
1627/*
1628 * new snapshots need to be created at a very specific time in the
1629 * transaction commit.  This does the actual creation.
1630 *
1631 * Note:
1632 * If the error which may affect the commitment of the current transaction
1633 * happens, we should return the error number. If the error which just affect
1634 * the creation of the pending snapshots, just return 0.
1635 */
1636static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1637				   struct btrfs_pending_snapshot *pending)
1638{
1639
1640	struct btrfs_fs_info *fs_info = trans->fs_info;
1641	struct btrfs_key key;
1642	struct btrfs_root_item *new_root_item;
1643	struct btrfs_root *tree_root = fs_info->tree_root;
1644	struct btrfs_root *root = pending->root;
1645	struct btrfs_root *parent_root;
1646	struct btrfs_block_rsv *rsv;
1647	struct inode *parent_inode = pending->dir;
1648	struct btrfs_path *path;
1649	struct btrfs_dir_item *dir_item;
 
1650	struct extent_buffer *tmp;
1651	struct extent_buffer *old;
1652	struct timespec64 cur_time;
1653	int ret = 0;
1654	u64 to_reserve = 0;
1655	u64 index = 0;
1656	u64 objectid;
1657	u64 root_flags;
1658	unsigned int nofs_flags;
1659	struct fscrypt_name fname;
1660
1661	ASSERT(pending->path);
1662	path = pending->path;
1663
1664	ASSERT(pending->root_item);
1665	new_root_item = pending->root_item;
1666
1667	/*
1668	 * We're inside a transaction and must make sure that any potential
1669	 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1670	 * filesystem.
1671	 */
1672	nofs_flags = memalloc_nofs_save();
1673	pending->error = fscrypt_setup_filename(parent_inode,
1674						&pending->dentry->d_name, 0,
1675						&fname);
1676	memalloc_nofs_restore(nofs_flags);
1677	if (pending->error)
1678		goto free_pending;
1679
1680	pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1681	if (pending->error)
1682		goto free_fname;
1683
1684	/*
1685	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1686	 * accounted by later btrfs_qgroup_inherit().
1687	 */
1688	btrfs_set_skip_qgroup(trans, objectid);
1689
1690	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1691
1692	if (to_reserve > 0) {
1693		pending->error = btrfs_block_rsv_add(fs_info,
1694						     &pending->block_rsv,
1695						     to_reserve,
1696						     BTRFS_RESERVE_NO_FLUSH);
1697		if (pending->error)
1698			goto clear_skip_qgroup;
1699	}
1700
1701	key.objectid = objectid;
1702	key.offset = (u64)-1;
1703	key.type = BTRFS_ROOT_ITEM_KEY;
1704
1705	rsv = trans->block_rsv;
1706	trans->block_rsv = &pending->block_rsv;
1707	trans->bytes_reserved = trans->block_rsv->reserved;
1708	trace_btrfs_space_reservation(fs_info, "transaction",
1709				      trans->transid,
1710				      trans->bytes_reserved, 1);
 
 
1711	parent_root = BTRFS_I(parent_inode)->root;
1712	ret = record_root_in_trans(trans, parent_root, 0);
1713	if (ret)
1714		goto fail;
1715	cur_time = current_time(parent_inode);
1716
1717	/*
1718	 * insert the directory item
1719	 */
1720	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1721	if (ret) {
1722		btrfs_abort_transaction(trans, ret);
1723		goto fail;
1724	}
1725
1726	/* check if there is a file/dir which has the same name. */
1727	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1728					 btrfs_ino(BTRFS_I(parent_inode)),
1729					 &fname.disk_name, 0);
 
1730	if (dir_item != NULL && !IS_ERR(dir_item)) {
1731		pending->error = -EEXIST;
1732		goto dir_item_existed;
1733	} else if (IS_ERR(dir_item)) {
1734		ret = PTR_ERR(dir_item);
1735		btrfs_abort_transaction(trans, ret);
1736		goto fail;
1737	}
1738	btrfs_release_path(path);
1739
1740	ret = btrfs_create_qgroup(trans, objectid);
1741	if (ret && ret != -EEXIST) {
1742		btrfs_abort_transaction(trans, ret);
1743		goto fail;
1744	}
1745
1746	/*
1747	 * pull in the delayed directory update
1748	 * and the delayed inode item
1749	 * otherwise we corrupt the FS during
1750	 * snapshot
1751	 */
1752	ret = btrfs_run_delayed_items(trans);
1753	if (ret) {	/* Transaction aborted */
1754		btrfs_abort_transaction(trans, ret);
1755		goto fail;
1756	}
1757
1758	ret = record_root_in_trans(trans, root, 0);
1759	if (ret) {
1760		btrfs_abort_transaction(trans, ret);
1761		goto fail;
1762	}
1763	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1764	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1765	btrfs_check_and_init_root_item(new_root_item);
1766
1767	root_flags = btrfs_root_flags(new_root_item);
1768	if (pending->readonly)
1769		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1770	else
1771		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1772	btrfs_set_root_flags(new_root_item, root_flags);
1773
1774	btrfs_set_root_generation_v2(new_root_item,
1775			trans->transid);
1776	generate_random_guid(new_root_item->uuid);
1777	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1778			BTRFS_UUID_SIZE);
1779	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1780		memset(new_root_item->received_uuid, 0,
1781		       sizeof(new_root_item->received_uuid));
1782		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1783		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1784		btrfs_set_root_stransid(new_root_item, 0);
1785		btrfs_set_root_rtransid(new_root_item, 0);
1786	}
1787	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1788	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1789	btrfs_set_root_otransid(new_root_item, trans->transid);
1790
1791	old = btrfs_lock_root_node(root);
1792	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1793			      BTRFS_NESTING_COW);
1794	if (ret) {
1795		btrfs_tree_unlock(old);
1796		free_extent_buffer(old);
1797		btrfs_abort_transaction(trans, ret);
1798		goto fail;
1799	}
1800
 
 
1801	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1802	/* clean up in any case */
1803	btrfs_tree_unlock(old);
1804	free_extent_buffer(old);
1805	if (ret) {
1806		btrfs_abort_transaction(trans, ret);
1807		goto fail;
1808	}
1809	/* see comments in should_cow_block() */
1810	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1811	smp_wmb();
1812
1813	btrfs_set_root_node(new_root_item, tmp);
1814	/* record when the snapshot was created in key.offset */
1815	key.offset = trans->transid;
1816	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1817	btrfs_tree_unlock(tmp);
1818	free_extent_buffer(tmp);
1819	if (ret) {
1820		btrfs_abort_transaction(trans, ret);
1821		goto fail;
1822	}
1823
1824	/*
1825	 * insert root back/forward references
1826	 */
1827	ret = btrfs_add_root_ref(trans, objectid,
1828				 parent_root->root_key.objectid,
1829				 btrfs_ino(BTRFS_I(parent_inode)), index,
1830				 &fname.disk_name);
1831	if (ret) {
1832		btrfs_abort_transaction(trans, ret);
1833		goto fail;
1834	}
1835
1836	key.offset = (u64)-1;
1837	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev);
1838	if (IS_ERR(pending->snap)) {
1839		ret = PTR_ERR(pending->snap);
1840		pending->snap = NULL;
1841		btrfs_abort_transaction(trans, ret);
1842		goto fail;
1843	}
1844
1845	ret = btrfs_reloc_post_snapshot(trans, pending);
1846	if (ret) {
1847		btrfs_abort_transaction(trans, ret);
1848		goto fail;
1849	}
1850
 
 
 
 
 
 
1851	/*
1852	 * Do special qgroup accounting for snapshot, as we do some qgroup
1853	 * snapshot hack to do fast snapshot.
1854	 * To co-operate with that hack, we do hack again.
1855	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1856	 */
1857	if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1858		ret = qgroup_account_snapshot(trans, root, parent_root,
1859					      pending->inherit, objectid);
1860	else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
1861		ret = btrfs_qgroup_inherit(trans, root->root_key.objectid, objectid,
1862					   parent_root->root_key.objectid, pending->inherit);
1863	if (ret < 0)
1864		goto fail;
1865
1866	ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1867				    BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1868				    index);
1869	/* We have check then name at the beginning, so it is impossible. */
1870	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1871	if (ret) {
1872		btrfs_abort_transaction(trans, ret);
1873		goto fail;
1874	}
1875
1876	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1877						  fname.disk_name.len * 2);
1878	inode_set_mtime_to_ts(parent_inode,
1879			      inode_set_ctime_current(parent_inode));
1880	ret = btrfs_update_inode_fallback(trans, BTRFS_I(parent_inode));
1881	if (ret) {
1882		btrfs_abort_transaction(trans, ret);
1883		goto fail;
1884	}
1885	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1886				  BTRFS_UUID_KEY_SUBVOL,
1887				  objectid);
1888	if (ret) {
1889		btrfs_abort_transaction(trans, ret);
1890		goto fail;
1891	}
1892	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1893		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1894					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1895					  objectid);
1896		if (ret && ret != -EEXIST) {
1897			btrfs_abort_transaction(trans, ret);
1898			goto fail;
1899		}
1900	}
1901
 
 
 
 
 
 
1902fail:
1903	pending->error = ret;
1904dir_item_existed:
1905	trans->block_rsv = rsv;
1906	trans->bytes_reserved = 0;
1907clear_skip_qgroup:
1908	btrfs_clear_skip_qgroup(trans);
1909free_fname:
1910	fscrypt_free_filename(&fname);
1911free_pending:
1912	kfree(new_root_item);
1913	pending->root_item = NULL;
1914	btrfs_free_path(path);
1915	pending->path = NULL;
1916
1917	return ret;
1918}
1919
1920/*
1921 * create all the snapshots we've scheduled for creation
1922 */
1923static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1924{
1925	struct btrfs_pending_snapshot *pending, *next;
1926	struct list_head *head = &trans->transaction->pending_snapshots;
1927	int ret = 0;
1928
1929	list_for_each_entry_safe(pending, next, head, list) {
1930		list_del(&pending->list);
1931		ret = create_pending_snapshot(trans, pending);
1932		if (ret)
1933			break;
1934	}
1935	return ret;
1936}
1937
1938static void update_super_roots(struct btrfs_fs_info *fs_info)
1939{
1940	struct btrfs_root_item *root_item;
1941	struct btrfs_super_block *super;
1942
1943	super = fs_info->super_copy;
1944
1945	root_item = &fs_info->chunk_root->root_item;
1946	super->chunk_root = root_item->bytenr;
1947	super->chunk_root_generation = root_item->generation;
1948	super->chunk_root_level = root_item->level;
1949
1950	root_item = &fs_info->tree_root->root_item;
1951	super->root = root_item->bytenr;
1952	super->generation = root_item->generation;
1953	super->root_level = root_item->level;
1954	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1955		super->cache_generation = root_item->generation;
1956	else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1957		super->cache_generation = 0;
1958	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1959		super->uuid_tree_generation = root_item->generation;
1960}
1961
1962int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1963{
1964	struct btrfs_transaction *trans;
1965	int ret = 0;
1966
1967	spin_lock(&info->trans_lock);
1968	trans = info->running_transaction;
1969	if (trans)
1970		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1971	spin_unlock(&info->trans_lock);
1972	return ret;
1973}
1974
1975int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1976{
1977	struct btrfs_transaction *trans;
1978	int ret = 0;
1979
1980	spin_lock(&info->trans_lock);
1981	trans = info->running_transaction;
1982	if (trans)
1983		ret = is_transaction_blocked(trans);
1984	spin_unlock(&info->trans_lock);
1985	return ret;
1986}
1987
1988void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1989{
1990	struct btrfs_fs_info *fs_info = trans->fs_info;
 
1991	struct btrfs_transaction *cur_trans;
1992
1993	/* Kick the transaction kthread. */
1994	set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1995	wake_up_process(fs_info->transaction_kthread);
 
 
 
 
 
 
 
 
1996
1997	/* take transaction reference */
1998	cur_trans = trans->transaction;
1999	refcount_inc(&cur_trans->use_count);
2000
2001	btrfs_end_transaction(trans);
2002
2003	/*
2004	 * Wait for the current transaction commit to start and block
2005	 * subsequent transaction joins
2006	 */
2007	btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2008	wait_event(fs_info->transaction_blocked_wait,
2009		   cur_trans->state >= TRANS_STATE_COMMIT_START ||
2010		   TRANS_ABORTED(cur_trans));
 
 
 
 
 
 
 
 
 
 
2011	btrfs_put_transaction(cur_trans);
 
2012}
2013
 
2014static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
2015{
2016	struct btrfs_fs_info *fs_info = trans->fs_info;
2017	struct btrfs_transaction *cur_trans = trans->transaction;
2018
2019	WARN_ON(refcount_read(&trans->use_count) > 1);
2020
2021	btrfs_abort_transaction(trans, err);
2022
2023	spin_lock(&fs_info->trans_lock);
2024
2025	/*
2026	 * If the transaction is removed from the list, it means this
2027	 * transaction has been committed successfully, so it is impossible
2028	 * to call the cleanup function.
2029	 */
2030	BUG_ON(list_empty(&cur_trans->list));
2031
 
2032	if (cur_trans == fs_info->running_transaction) {
2033		cur_trans->state = TRANS_STATE_COMMIT_DOING;
2034		spin_unlock(&fs_info->trans_lock);
2035
2036		/*
2037		 * The thread has already released the lockdep map as reader
2038		 * already in btrfs_commit_transaction().
2039		 */
2040		btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2041		wait_event(cur_trans->writer_wait,
2042			   atomic_read(&cur_trans->num_writers) == 1);
2043
2044		spin_lock(&fs_info->trans_lock);
2045	}
2046
2047	/*
2048	 * Now that we know no one else is still using the transaction we can
2049	 * remove the transaction from the list of transactions. This avoids
2050	 * the transaction kthread from cleaning up the transaction while some
2051	 * other task is still using it, which could result in a use-after-free
2052	 * on things like log trees, as it forces the transaction kthread to
2053	 * wait for this transaction to be cleaned up by us.
2054	 */
2055	list_del_init(&cur_trans->list);
2056
2057	spin_unlock(&fs_info->trans_lock);
2058
2059	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2060
2061	spin_lock(&fs_info->trans_lock);
2062	if (cur_trans == fs_info->running_transaction)
2063		fs_info->running_transaction = NULL;
2064	spin_unlock(&fs_info->trans_lock);
2065
2066	if (trans->type & __TRANS_FREEZABLE)
2067		sb_end_intwrite(fs_info->sb);
2068	btrfs_put_transaction(cur_trans);
2069	btrfs_put_transaction(cur_trans);
2070
2071	trace_btrfs_transaction_commit(fs_info);
2072
2073	if (current->journal_info == trans)
2074		current->journal_info = NULL;
2075
2076	/*
2077	 * If relocation is running, we can't cancel scrub because that will
2078	 * result in a deadlock. Before relocating a block group, relocation
2079	 * pauses scrub, then starts and commits a transaction before unpausing
2080	 * scrub. If the transaction commit is being done by the relocation
2081	 * task or triggered by another task and the relocation task is waiting
2082	 * for the commit, and we end up here due to an error in the commit
2083	 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2084	 * asking for scrub to stop while having it asked to be paused higher
2085	 * above in relocation code.
2086	 */
2087	if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2088		btrfs_scrub_cancel(fs_info);
2089
2090	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2091}
2092
2093/*
2094 * Release reserved delayed ref space of all pending block groups of the
2095 * transaction and remove them from the list
2096 */
2097static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2098{
2099       struct btrfs_fs_info *fs_info = trans->fs_info;
2100       struct btrfs_block_group *block_group, *tmp;
2101
2102       list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2103               btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2104               list_del_init(&block_group->bg_list);
2105       }
2106}
2107
2108static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2109{
 
 
2110	/*
2111	 * We use try_to_writeback_inodes_sb() here because if we used
2112	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2113	 * Currently are holding the fs freeze lock, if we do an async flush
2114	 * we'll do btrfs_join_transaction() and deadlock because we need to
2115	 * wait for the fs freeze lock.  Using the direct flushing we benefit
2116	 * from already being in a transaction and our join_transaction doesn't
2117	 * have to re-take the fs freeze lock.
2118	 *
2119	 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2120	 * if it can read lock sb->s_umount. It will always be able to lock it,
2121	 * except when the filesystem is being unmounted or being frozen, but in
2122	 * those cases sync_filesystem() is called, which results in calling
2123	 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2124	 * Note that we don't call writeback_inodes_sb() directly, because it
2125	 * will emit a warning if sb->s_umount is not locked.
2126	 */
2127	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2128		try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2129	return 0;
2130}
 
2131
2132static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2133{
2134	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2135		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
 
 
 
 
 
 
 
 
 
 
 
 
2136}
2137
2138/*
2139 * Add a pending snapshot associated with the given transaction handle to the
2140 * respective handle. This must be called after the transaction commit started
2141 * and while holding fs_info->trans_lock.
2142 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2143 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2144 * returns an error.
2145 */
2146static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2147{
2148	struct btrfs_transaction *cur_trans = trans->transaction;
2149
2150	if (!trans->pending_snapshot)
2151		return;
2152
2153	lockdep_assert_held(&trans->fs_info->trans_lock);
2154	ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2155
2156	list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2157}
 
 
 
2158
2159static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2160{
2161	fs_info->commit_stats.commit_count++;
2162	fs_info->commit_stats.last_commit_dur = interval;
2163	fs_info->commit_stats.max_commit_dur =
2164			max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2165	fs_info->commit_stats.total_commit_dur += interval;
 
 
 
2166}
2167
2168int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2169{
2170	struct btrfs_fs_info *fs_info = trans->fs_info;
2171	struct btrfs_transaction *cur_trans = trans->transaction;
2172	struct btrfs_transaction *prev_trans = NULL;
2173	int ret;
2174	ktime_t start_time;
2175	ktime_t interval;
2176
2177	ASSERT(refcount_read(&trans->use_count) == 1);
2178	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2179
2180	clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
 
 
 
 
 
 
2181
2182	/* Stop the commit early if ->aborted is set */
2183	if (TRANS_ABORTED(cur_trans)) {
2184		ret = cur_trans->aborted;
2185		goto lockdep_trans_commit_start_release;
 
2186	}
2187
2188	btrfs_trans_release_metadata(trans);
2189	trans->block_rsv = NULL;
2190
2191	/*
2192	 * We only want one transaction commit doing the flushing so we do not
2193	 * waste a bunch of time on lock contention on the extent root node.
2194	 */
2195	if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2196			      &cur_trans->delayed_refs.flags)) {
2197		/*
2198		 * Make a pass through all the delayed refs we have so far.
2199		 * Any running threads may add more while we are here.
2200		 */
2201		ret = btrfs_run_delayed_refs(trans, 0);
2202		if (ret)
2203			goto lockdep_trans_commit_start_release;
2204	}
2205
 
 
 
 
 
 
 
 
 
2206	btrfs_create_pending_block_groups(trans);
2207
 
 
 
 
 
 
2208	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2209		int run_it = 0;
2210
2211		/* this mutex is also taken before trying to set
2212		 * block groups readonly.  We need to make sure
2213		 * that nobody has set a block group readonly
2214		 * after a extents from that block group have been
2215		 * allocated for cache files.  btrfs_set_block_group_ro
2216		 * will wait for the transaction to commit if it
2217		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2218		 *
2219		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2220		 * only one process starts all the block group IO.  It wouldn't
2221		 * hurt to have more than one go through, but there's no
2222		 * real advantage to it either.
2223		 */
2224		mutex_lock(&fs_info->ro_block_group_mutex);
2225		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2226				      &cur_trans->flags))
2227			run_it = 1;
2228		mutex_unlock(&fs_info->ro_block_group_mutex);
2229
2230		if (run_it) {
2231			ret = btrfs_start_dirty_block_groups(trans);
2232			if (ret)
2233				goto lockdep_trans_commit_start_release;
 
 
2234		}
2235	}
2236
2237	spin_lock(&fs_info->trans_lock);
2238	if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2239		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2240
2241		add_pending_snapshot(trans);
2242
2243		spin_unlock(&fs_info->trans_lock);
2244		refcount_inc(&cur_trans->use_count);
2245
2246		if (trans->in_fsync)
2247			want_state = TRANS_STATE_SUPER_COMMITTED;
2248
2249		btrfs_trans_state_lockdep_release(fs_info,
2250						  BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2251		ret = btrfs_end_transaction(trans);
2252		wait_for_commit(cur_trans, want_state);
 
2253
2254		if (TRANS_ABORTED(cur_trans))
2255			ret = cur_trans->aborted;
2256
2257		btrfs_put_transaction(cur_trans);
2258
2259		return ret;
2260	}
2261
2262	cur_trans->state = TRANS_STATE_COMMIT_PREP;
2263	wake_up(&fs_info->transaction_blocked_wait);
2264	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2265
2266	if (cur_trans->list.prev != &fs_info->trans_list) {
2267		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2268
2269		if (trans->in_fsync)
2270			want_state = TRANS_STATE_SUPER_COMMITTED;
2271
2272		prev_trans = list_entry(cur_trans->list.prev,
2273					struct btrfs_transaction, list);
2274		if (prev_trans->state < want_state) {
2275			refcount_inc(&prev_trans->use_count);
2276			spin_unlock(&fs_info->trans_lock);
2277
2278			wait_for_commit(prev_trans, want_state);
2279
2280			ret = READ_ONCE(prev_trans->aborted);
2281
2282			btrfs_put_transaction(prev_trans);
2283			if (ret)
2284				goto lockdep_release;
2285			spin_lock(&fs_info->trans_lock);
 
2286		}
2287	} else {
 
2288		/*
2289		 * The previous transaction was aborted and was already removed
2290		 * from the list of transactions at fs_info->trans_list. So we
2291		 * abort to prevent writing a new superblock that reflects a
2292		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2293		 */
2294		if (BTRFS_FS_ERROR(fs_info)) {
2295			spin_unlock(&fs_info->trans_lock);
2296			ret = -EROFS;
2297			goto lockdep_release;
2298		}
2299	}
2300
2301	cur_trans->state = TRANS_STATE_COMMIT_START;
2302	wake_up(&fs_info->transaction_blocked_wait);
2303	spin_unlock(&fs_info->trans_lock);
2304
2305	/*
2306	 * Get the time spent on the work done by the commit thread and not
2307	 * the time spent waiting on a previous commit
2308	 */
2309	start_time = ktime_get_ns();
2310
2311	extwriter_counter_dec(cur_trans, trans->type);
2312
2313	ret = btrfs_start_delalloc_flush(fs_info);
2314	if (ret)
2315		goto lockdep_release;
2316
2317	ret = btrfs_run_delayed_items(trans);
2318	if (ret)
2319		goto lockdep_release;
2320
2321	/*
2322	 * The thread has started/joined the transaction thus it holds the
2323	 * lockdep map as a reader. It has to release it before acquiring the
2324	 * lockdep map as a writer.
2325	 */
2326	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2327	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2328	wait_event(cur_trans->writer_wait,
2329		   extwriter_counter_read(cur_trans) == 0);
2330
2331	/* some pending stuffs might be added after the previous flush. */
2332	ret = btrfs_run_delayed_items(trans);
2333	if (ret) {
2334		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2335		goto cleanup_transaction;
2336	}
2337
2338	btrfs_wait_delalloc_flush(fs_info);
2339
2340	/*
2341	 * Wait for all ordered extents started by a fast fsync that joined this
2342	 * transaction. Otherwise if this transaction commits before the ordered
2343	 * extents complete we lose logged data after a power failure.
2344	 */
2345	btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2346	wait_event(cur_trans->pending_wait,
2347		   atomic_read(&cur_trans->pending_ordered) == 0);
2348
2349	btrfs_scrub_pause(fs_info);
2350	/*
2351	 * Ok now we need to make sure to block out any other joins while we
2352	 * commit the transaction.  We could have started a join before setting
2353	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2354	 */
2355	spin_lock(&fs_info->trans_lock);
2356	add_pending_snapshot(trans);
2357	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2358	spin_unlock(&fs_info->trans_lock);
2359
2360	/*
2361	 * The thread has started/joined the transaction thus it holds the
2362	 * lockdep map as a reader. It has to release it before acquiring the
2363	 * lockdep map as a writer.
2364	 */
2365	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2366	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2367	wait_event(cur_trans->writer_wait,
2368		   atomic_read(&cur_trans->num_writers) == 1);
2369
2370	/*
2371	 * Make lockdep happy by acquiring the state locks after
2372	 * btrfs_trans_num_writers is released. If we acquired the state locks
2373	 * before releasing the btrfs_trans_num_writers lock then lockdep would
2374	 * complain because we did not follow the reverse order unlocking rule.
2375	 */
2376	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2377	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2378	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2379
2380	/*
2381	 * We've started the commit, clear the flag in case we were triggered to
2382	 * do an async commit but somebody else started before the transaction
2383	 * kthread could do the work.
2384	 */
2385	clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2386
2387	if (TRANS_ABORTED(cur_trans)) {
2388		ret = cur_trans->aborted;
2389		btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2390		goto scrub_continue;
2391	}
2392	/*
2393	 * the reloc mutex makes sure that we stop
2394	 * the balancing code from coming in and moving
2395	 * extents around in the middle of the commit
2396	 */
2397	mutex_lock(&fs_info->reloc_mutex);
2398
2399	/*
2400	 * We needn't worry about the delayed items because we will
2401	 * deal with them in create_pending_snapshot(), which is the
2402	 * core function of the snapshot creation.
2403	 */
2404	ret = create_pending_snapshots(trans);
2405	if (ret)
2406		goto unlock_reloc;
2407
2408	/*
2409	 * We insert the dir indexes of the snapshots and update the inode
2410	 * of the snapshots' parents after the snapshot creation, so there
2411	 * are some delayed items which are not dealt with. Now deal with
2412	 * them.
2413	 *
2414	 * We needn't worry that this operation will corrupt the snapshots,
2415	 * because all the tree which are snapshoted will be forced to COW
2416	 * the nodes and leaves.
2417	 */
2418	ret = btrfs_run_delayed_items(trans);
2419	if (ret)
2420		goto unlock_reloc;
2421
2422	ret = btrfs_run_delayed_refs(trans, U64_MAX);
2423	if (ret)
2424		goto unlock_reloc;
2425
2426	/*
2427	 * make sure none of the code above managed to slip in a
2428	 * delayed item
2429	 */
2430	btrfs_assert_delayed_root_empty(fs_info);
2431
2432	WARN_ON(cur_trans != trans->transaction);
2433
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2434	ret = commit_fs_roots(trans);
2435	if (ret)
2436		goto unlock_reloc;
 
 
 
 
 
 
2437
2438	/* commit_fs_roots gets rid of all the tree log roots, it is now
2439	 * safe to free the root of tree log roots
2440	 */
2441	btrfs_free_log_root_tree(trans, fs_info);
2442
2443	/*
 
 
 
 
 
 
 
 
2444	 * Since fs roots are all committed, we can get a quite accurate
2445	 * new_roots. So let's do quota accounting.
2446	 */
2447	ret = btrfs_qgroup_account_extents(trans);
2448	if (ret < 0)
2449		goto unlock_reloc;
2450
2451	ret = commit_cowonly_roots(trans);
2452	if (ret)
2453		goto unlock_reloc;
2454
2455	/*
2456	 * The tasks which save the space cache and inode cache may also
2457	 * update ->aborted, check it.
2458	 */
2459	if (TRANS_ABORTED(cur_trans)) {
2460		ret = cur_trans->aborted;
2461		goto unlock_reloc;
2462	}
2463
 
 
2464	cur_trans = fs_info->running_transaction;
2465
2466	btrfs_set_root_node(&fs_info->tree_root->root_item,
2467			    fs_info->tree_root->node);
2468	list_add_tail(&fs_info->tree_root->dirty_list,
2469		      &cur_trans->switch_commits);
2470
2471	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2472			    fs_info->chunk_root->node);
2473	list_add_tail(&fs_info->chunk_root->dirty_list,
2474		      &cur_trans->switch_commits);
2475
2476	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2477		btrfs_set_root_node(&fs_info->block_group_root->root_item,
2478				    fs_info->block_group_root->node);
2479		list_add_tail(&fs_info->block_group_root->dirty_list,
2480			      &cur_trans->switch_commits);
2481	}
2482
2483	switch_commit_roots(trans);
2484
2485	ASSERT(list_empty(&cur_trans->dirty_bgs));
2486	ASSERT(list_empty(&cur_trans->io_bgs));
2487	update_super_roots(fs_info);
2488
2489	btrfs_set_super_log_root(fs_info->super_copy, 0);
2490	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2491	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2492	       sizeof(*fs_info->super_copy));
2493
2494	btrfs_commit_device_sizes(cur_trans);
2495
2496	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2497	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2498
2499	btrfs_trans_release_chunk_metadata(trans);
2500
2501	/*
2502	 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2503	 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2504	 * make sure that before we commit our superblock, no other task can
2505	 * start a new transaction and commit a log tree before we commit our
2506	 * superblock. Anyone trying to commit a log tree locks this mutex before
2507	 * writing its superblock.
2508	 */
2509	mutex_lock(&fs_info->tree_log_mutex);
2510
2511	spin_lock(&fs_info->trans_lock);
2512	cur_trans->state = TRANS_STATE_UNBLOCKED;
2513	fs_info->running_transaction = NULL;
2514	spin_unlock(&fs_info->trans_lock);
2515	mutex_unlock(&fs_info->reloc_mutex);
2516
2517	wake_up(&fs_info->transaction_wait);
2518	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2519
2520	/* If we have features changed, wake up the cleaner to update sysfs. */
2521	if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2522	    fs_info->cleaner_kthread)
2523		wake_up_process(fs_info->cleaner_kthread);
2524
2525	ret = btrfs_write_and_wait_transaction(trans);
2526	if (ret) {
2527		btrfs_handle_fs_error(fs_info, ret,
2528				      "Error while writing out transaction");
 
 
 
 
2529		mutex_unlock(&fs_info->tree_log_mutex);
2530		goto scrub_continue;
2531	}
2532
2533	ret = write_all_supers(fs_info, 0);
2534	/*
2535	 * the super is written, we can safely allow the tree-loggers
2536	 * to go about their business
2537	 */
2538	mutex_unlock(&fs_info->tree_log_mutex);
2539	if (ret)
2540		goto scrub_continue;
2541
2542	/*
2543	 * We needn't acquire the lock here because there is no other task
2544	 * which can change it.
2545	 */
2546	cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2547	wake_up(&cur_trans->commit_wait);
2548	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2549
2550	btrfs_finish_extent_commit(trans);
2551
2552	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2553		btrfs_clear_space_info_full(fs_info);
2554
2555	btrfs_set_last_trans_committed(fs_info, cur_trans->transid);
2556	/*
2557	 * We needn't acquire the lock here because there is no other task
2558	 * which can change it.
2559	 */
2560	cur_trans->state = TRANS_STATE_COMPLETED;
2561	wake_up(&cur_trans->commit_wait);
2562	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2563
2564	spin_lock(&fs_info->trans_lock);
2565	list_del_init(&cur_trans->list);
2566	spin_unlock(&fs_info->trans_lock);
2567
2568	btrfs_put_transaction(cur_trans);
2569	btrfs_put_transaction(cur_trans);
2570
2571	if (trans->type & __TRANS_FREEZABLE)
2572		sb_end_intwrite(fs_info->sb);
2573
2574	trace_btrfs_transaction_commit(fs_info);
2575
2576	interval = ktime_get_ns() - start_time;
2577
2578	btrfs_scrub_continue(fs_info);
2579
2580	if (current->journal_info == trans)
2581		current->journal_info = NULL;
2582
2583	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2584
2585	update_commit_stats(fs_info, interval);
2586
2587	return ret;
2588
 
 
2589unlock_reloc:
2590	mutex_unlock(&fs_info->reloc_mutex);
2591	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2592scrub_continue:
2593	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2594	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2595	btrfs_scrub_continue(fs_info);
2596cleanup_transaction:
2597	btrfs_trans_release_metadata(trans);
2598	btrfs_cleanup_pending_block_groups(trans);
2599	btrfs_trans_release_chunk_metadata(trans);
2600	trans->block_rsv = NULL;
2601	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2602	if (current->journal_info == trans)
2603		current->journal_info = NULL;
2604	cleanup_transaction(trans, ret);
2605
2606	return ret;
2607
2608lockdep_release:
2609	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2610	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2611	goto cleanup_transaction;
2612
2613lockdep_trans_commit_start_release:
2614	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2615	btrfs_end_transaction(trans);
2616	return ret;
2617}
2618
2619/*
2620 * return < 0 if error
2621 * 0 if there are no more dead_roots at the time of call
2622 * 1 there are more to be processed, call me again
2623 *
2624 * The return value indicates there are certainly more snapshots to delete, but
2625 * if there comes a new one during processing, it may return 0. We don't mind,
2626 * because btrfs_commit_super will poke cleaner thread and it will process it a
2627 * few seconds later.
2628 */
2629int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2630{
2631	struct btrfs_root *root;
2632	int ret;
 
2633
2634	spin_lock(&fs_info->trans_lock);
2635	if (list_empty(&fs_info->dead_roots)) {
2636		spin_unlock(&fs_info->trans_lock);
2637		return 0;
2638	}
2639	root = list_first_entry(&fs_info->dead_roots,
2640			struct btrfs_root, root_list);
2641	list_del_init(&root->root_list);
2642	spin_unlock(&fs_info->trans_lock);
2643
2644	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2645
2646	btrfs_kill_all_delayed_nodes(root);
 
 
 
 
2647
2648	if (btrfs_header_backref_rev(root->node) <
2649			BTRFS_MIXED_BACKREF_REV)
2650		ret = btrfs_drop_snapshot(root, 0, 0);
2651	else
2652		ret = btrfs_drop_snapshot(root, 1, 0);
2653
2654	btrfs_put_root(root);
2655	return (ret < 0) ? 0 : 1;
2656}
2657
2658/*
2659 * We only mark the transaction aborted and then set the file system read-only.
2660 * This will prevent new transactions from starting or trying to join this
2661 * one.
2662 *
2663 * This means that error recovery at the call site is limited to freeing
2664 * any local memory allocations and passing the error code up without
2665 * further cleanup. The transaction should complete as it normally would
2666 * in the call path but will return -EIO.
2667 *
2668 * We'll complete the cleanup in btrfs_end_transaction and
2669 * btrfs_commit_transaction.
2670 */
2671void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2672				      const char *function,
2673				      unsigned int line, int error, bool first_hit)
2674{
2675	struct btrfs_fs_info *fs_info = trans->fs_info;
2676
2677	WRITE_ONCE(trans->aborted, error);
2678	WRITE_ONCE(trans->transaction->aborted, error);
2679	if (first_hit && error == -ENOSPC)
2680		btrfs_dump_space_info_for_trans_abort(fs_info);
2681	/* Wake up anybody who may be waiting on this transaction */
2682	wake_up(&fs_info->transaction_wait);
2683	wake_up(&fs_info->transaction_blocked_wait);
2684	__btrfs_handle_fs_error(fs_info, function, line, error, NULL);
2685}
2686
2687int __init btrfs_transaction_init(void)
2688{
2689	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2690			sizeof(struct btrfs_trans_handle), 0,
2691			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2692	if (!btrfs_trans_handle_cachep)
2693		return -ENOMEM;
2694	return 0;
2695}
2696
2697void __cold btrfs_transaction_exit(void)
2698{
2699	kmem_cache_destroy(btrfs_trans_handle_cachep);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2700}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/slab.h>
   8#include <linux/sched.h>
 
   9#include <linux/writeback.h>
  10#include <linux/pagemap.h>
  11#include <linux/blkdev.h>
  12#include <linux/uuid.h>
 
  13#include "misc.h"
  14#include "ctree.h"
  15#include "disk-io.h"
  16#include "transaction.h"
  17#include "locking.h"
  18#include "tree-log.h"
  19#include "inode-map.h"
  20#include "volumes.h"
  21#include "dev-replace.h"
  22#include "qgroup.h"
  23#include "block-group.h"
  24#include "space-info.h"
 
 
 
 
 
 
 
 
 
 
 
  25
  26#define BTRFS_ROOT_TRANS_TAG 0
  27
  28/*
  29 * Transaction states and transitions
  30 *
  31 * No running transaction (fs tree blocks are not modified)
  32 * |
  33 * | To next stage:
  34 * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
  35 * V
  36 * Transaction N [[TRANS_STATE_RUNNING]]
  37 * |
  38 * | New trans handles can be attached to transaction N by calling all
  39 * | start_transaction() variants.
  40 * |
  41 * | To next stage:
  42 * |  Call btrfs_commit_transaction() on any trans handle attached to
  43 * |  transaction N
  44 * V
 
 
 
 
 
 
 
 
  45 * Transaction N [[TRANS_STATE_COMMIT_START]]
  46 * |
  47 * | Will wait for previous running transaction to completely finish if there
  48 * | is one
  49 * |
  50 * | Then one of the following happes:
  51 * | - Wait for all other trans handle holders to release.
  52 * |   The btrfs_commit_transaction() caller will do the commit work.
  53 * | - Wait for current transaction to be committed by others.
  54 * |   Other btrfs_commit_transaction() caller will do the commit work.
  55 * |
  56 * | At this stage, only btrfs_join_transaction*() variants can attach
  57 * | to this running transaction.
  58 * | All other variants will wait for current one to finish and attach to
  59 * | transaction N+1.
  60 * |
  61 * | To next stage:
  62 * |  Caller is chosen to commit transaction N, and all other trans handle
  63 * |  haven been released.
  64 * V
  65 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
  66 * |
  67 * | The heavy lifting transaction work is started.
  68 * | From running delayed refs (modifying extent tree) to creating pending
  69 * | snapshots, running qgroups.
  70 * | In short, modify supporting trees to reflect modifications of subvolume
  71 * | trees.
  72 * |
  73 * | At this stage, all start_transaction() calls will wait for this
  74 * | transaction to finish and attach to transaction N+1.
  75 * |
  76 * | To next stage:
  77 * |  Until all supporting trees are updated.
  78 * V
  79 * Transaction N [[TRANS_STATE_UNBLOCKED]]
  80 * |						    Transaction N+1
  81 * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
  82 * | need to write them back to disk and update	    |
  83 * | super blocks.				    |
  84 * |						    |
  85 * | At this stage, new transaction is allowed to   |
  86 * | start.					    |
  87 * | All new start_transaction() calls will be	    |
  88 * | attached to transid N+1.			    |
  89 * |						    |
  90 * | To next stage:				    |
  91 * |  Until all tree blocks are super blocks are    |
  92 * |  written to block devices			    |
  93 * V						    |
  94 * Transaction N [[TRANS_STATE_COMPLETED]]	    V
  95 *   All tree blocks and super blocks are written.  Transaction N+1
  96 *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
  97 *   data structures will be cleaned up.	    | Life goes on
  98 */
  99static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
 100	[TRANS_STATE_RUNNING]		= 0U,
 
 101	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
 102	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
 103					   __TRANS_ATTACH |
 104					   __TRANS_JOIN |
 105					   __TRANS_JOIN_NOSTART),
 106	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
 107					   __TRANS_ATTACH |
 108					   __TRANS_JOIN |
 109					   __TRANS_JOIN_NOLOCK |
 110					   __TRANS_JOIN_NOSTART),
 
 
 
 
 
 111	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
 112					   __TRANS_ATTACH |
 113					   __TRANS_JOIN |
 114					   __TRANS_JOIN_NOLOCK |
 115					   __TRANS_JOIN_NOSTART),
 116};
 117
 118void btrfs_put_transaction(struct btrfs_transaction *transaction)
 119{
 120	WARN_ON(refcount_read(&transaction->use_count) == 0);
 121	if (refcount_dec_and_test(&transaction->use_count)) {
 122		BUG_ON(!list_empty(&transaction->list));
 123		WARN_ON(!RB_EMPTY_ROOT(
 124				&transaction->delayed_refs.href_root.rb_root));
 125		WARN_ON(!RB_EMPTY_ROOT(
 126				&transaction->delayed_refs.dirty_extent_root));
 127		if (transaction->delayed_refs.pending_csums)
 128			btrfs_err(transaction->fs_info,
 129				  "pending csums is %llu",
 130				  transaction->delayed_refs.pending_csums);
 131		/*
 132		 * If any block groups are found in ->deleted_bgs then it's
 133		 * because the transaction was aborted and a commit did not
 134		 * happen (things failed before writing the new superblock
 135		 * and calling btrfs_finish_extent_commit()), so we can not
 136		 * discard the physical locations of the block groups.
 137		 */
 138		while (!list_empty(&transaction->deleted_bgs)) {
 139			struct btrfs_block_group *cache;
 140
 141			cache = list_first_entry(&transaction->deleted_bgs,
 142						 struct btrfs_block_group,
 143						 bg_list);
 144			list_del_init(&cache->bg_list);
 145			btrfs_unfreeze_block_group(cache);
 146			btrfs_put_block_group(cache);
 147		}
 148		WARN_ON(!list_empty(&transaction->dev_update_list));
 149		kfree(transaction);
 150	}
 151}
 152
 153static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
 154{
 155	struct btrfs_transaction *cur_trans = trans->transaction;
 156	struct btrfs_fs_info *fs_info = trans->fs_info;
 157	struct btrfs_root *root, *tmp;
 158
 
 
 
 
 
 
 159	down_write(&fs_info->commit_root_sem);
 
 
 
 
 160	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
 161				 dirty_list) {
 162		list_del_init(&root->dirty_list);
 163		free_extent_buffer(root->commit_root);
 164		root->commit_root = btrfs_root_node(root);
 165		if (is_fstree(root->root_key.objectid))
 166			btrfs_unpin_free_ino(root);
 167		extent_io_tree_release(&root->dirty_log_pages);
 168		btrfs_qgroup_clean_swapped_blocks(root);
 169	}
 170
 171	/* We can free old roots now. */
 172	spin_lock(&cur_trans->dropped_roots_lock);
 173	while (!list_empty(&cur_trans->dropped_roots)) {
 174		root = list_first_entry(&cur_trans->dropped_roots,
 175					struct btrfs_root, root_list);
 176		list_del_init(&root->root_list);
 177		spin_unlock(&cur_trans->dropped_roots_lock);
 178		btrfs_free_log(trans, root);
 179		btrfs_drop_and_free_fs_root(fs_info, root);
 180		spin_lock(&cur_trans->dropped_roots_lock);
 181	}
 182	spin_unlock(&cur_trans->dropped_roots_lock);
 
 183	up_write(&fs_info->commit_root_sem);
 184}
 185
 186static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
 187					 unsigned int type)
 188{
 189	if (type & TRANS_EXTWRITERS)
 190		atomic_inc(&trans->num_extwriters);
 191}
 192
 193static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
 194					 unsigned int type)
 195{
 196	if (type & TRANS_EXTWRITERS)
 197		atomic_dec(&trans->num_extwriters);
 198}
 199
 200static inline void extwriter_counter_init(struct btrfs_transaction *trans,
 201					  unsigned int type)
 202{
 203	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
 204}
 205
 206static inline int extwriter_counter_read(struct btrfs_transaction *trans)
 207{
 208	return atomic_read(&trans->num_extwriters);
 209}
 210
 211/*
 212 * To be called after all the new block groups attached to the transaction
 213 * handle have been created (btrfs_create_pending_block_groups()).
 
 
 
 214 */
 215void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
 216{
 217	struct btrfs_fs_info *fs_info = trans->fs_info;
 218
 219	if (!trans->chunk_bytes_reserved)
 220		return;
 221
 222	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
 223
 224	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
 225				trans->chunk_bytes_reserved, NULL);
 226	trans->chunk_bytes_reserved = 0;
 227}
 228
 229/*
 230 * either allocate a new transaction or hop into the existing one
 231 */
 232static noinline int join_transaction(struct btrfs_fs_info *fs_info,
 233				     unsigned int type)
 234{
 235	struct btrfs_transaction *cur_trans;
 236
 237	spin_lock(&fs_info->trans_lock);
 238loop:
 239	/* The file system has been taken offline. No new transactions. */
 240	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 241		spin_unlock(&fs_info->trans_lock);
 242		return -EROFS;
 243	}
 244
 245	cur_trans = fs_info->running_transaction;
 246	if (cur_trans) {
 247		if (TRANS_ABORTED(cur_trans)) {
 248			spin_unlock(&fs_info->trans_lock);
 249			return cur_trans->aborted;
 250		}
 251		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
 252			spin_unlock(&fs_info->trans_lock);
 253			return -EBUSY;
 254		}
 255		refcount_inc(&cur_trans->use_count);
 256		atomic_inc(&cur_trans->num_writers);
 257		extwriter_counter_inc(cur_trans, type);
 258		spin_unlock(&fs_info->trans_lock);
 
 
 259		return 0;
 260	}
 261	spin_unlock(&fs_info->trans_lock);
 262
 263	/*
 264	 * If we are ATTACH, we just want to catch the current transaction,
 265	 * and commit it. If there is no transaction, just return ENOENT.
 
 266	 */
 267	if (type == TRANS_ATTACH)
 268		return -ENOENT;
 269
 270	/*
 271	 * JOIN_NOLOCK only happens during the transaction commit, so
 272	 * it is impossible that ->running_transaction is NULL
 273	 */
 274	BUG_ON(type == TRANS_JOIN_NOLOCK);
 275
 276	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
 277	if (!cur_trans)
 278		return -ENOMEM;
 279
 
 
 
 280	spin_lock(&fs_info->trans_lock);
 281	if (fs_info->running_transaction) {
 282		/*
 283		 * someone started a transaction after we unlocked.  Make sure
 284		 * to redo the checks above
 285		 */
 
 
 286		kfree(cur_trans);
 287		goto loop;
 288	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 289		spin_unlock(&fs_info->trans_lock);
 
 
 290		kfree(cur_trans);
 291		return -EROFS;
 292	}
 293
 294	cur_trans->fs_info = fs_info;
 
 
 295	atomic_set(&cur_trans->num_writers, 1);
 296	extwriter_counter_init(cur_trans, type);
 297	init_waitqueue_head(&cur_trans->writer_wait);
 298	init_waitqueue_head(&cur_trans->commit_wait);
 299	cur_trans->state = TRANS_STATE_RUNNING;
 300	/*
 301	 * One for this trans handle, one so it will live on until we
 302	 * commit the transaction.
 303	 */
 304	refcount_set(&cur_trans->use_count, 2);
 305	cur_trans->flags = 0;
 306	cur_trans->start_time = ktime_get_seconds();
 307
 308	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
 309
 310	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
 311	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
 312	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
 313
 314	/*
 315	 * although the tree mod log is per file system and not per transaction,
 316	 * the log must never go across transaction boundaries.
 317	 */
 318	smp_mb();
 319	if (!list_empty(&fs_info->tree_mod_seq_list))
 320		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
 321	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
 322		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
 323	atomic64_set(&fs_info->tree_mod_seq, 0);
 324
 325	spin_lock_init(&cur_trans->delayed_refs.lock);
 326
 327	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
 328	INIT_LIST_HEAD(&cur_trans->dev_update_list);
 329	INIT_LIST_HEAD(&cur_trans->switch_commits);
 330	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
 331	INIT_LIST_HEAD(&cur_trans->io_bgs);
 332	INIT_LIST_HEAD(&cur_trans->dropped_roots);
 333	mutex_init(&cur_trans->cache_write_mutex);
 334	spin_lock_init(&cur_trans->dirty_bgs_lock);
 335	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
 336	spin_lock_init(&cur_trans->dropped_roots_lock);
 337	list_add_tail(&cur_trans->list, &fs_info->trans_list);
 338	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
 339			IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
 340	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
 341			IO_TREE_FS_PINNED_EXTENTS, NULL);
 342	fs_info->generation++;
 343	cur_trans->transid = fs_info->generation;
 344	fs_info->running_transaction = cur_trans;
 345	cur_trans->aborted = 0;
 346	spin_unlock(&fs_info->trans_lock);
 347
 348	return 0;
 349}
 350
 351/*
 352 * This does all the record keeping required to make sure that a shareable root
 353 * is properly recorded in a given transaction.  This is required to make sure
 354 * the old root from before we joined the transaction is deleted when the
 355 * transaction commits.
 356 */
 357static int record_root_in_trans(struct btrfs_trans_handle *trans,
 358			       struct btrfs_root *root,
 359			       int force)
 360{
 361	struct btrfs_fs_info *fs_info = root->fs_info;
 
 362
 363	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 364	    root->last_trans < trans->transid) || force) {
 365		WARN_ON(root == fs_info->extent_root);
 366		WARN_ON(!force && root->commit_root != root->node);
 367
 368		/*
 369		 * see below for IN_TRANS_SETUP usage rules
 370		 * we have the reloc mutex held now, so there
 371		 * is only one writer in this function
 372		 */
 373		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
 374
 375		/* make sure readers find IN_TRANS_SETUP before
 376		 * they find our root->last_trans update
 377		 */
 378		smp_wmb();
 379
 380		spin_lock(&fs_info->fs_roots_radix_lock);
 381		if (root->last_trans == trans->transid && !force) {
 382			spin_unlock(&fs_info->fs_roots_radix_lock);
 383			return 0;
 384		}
 385		radix_tree_tag_set(&fs_info->fs_roots_radix,
 386				   (unsigned long)root->root_key.objectid,
 387				   BTRFS_ROOT_TRANS_TAG);
 388		spin_unlock(&fs_info->fs_roots_radix_lock);
 389		root->last_trans = trans->transid;
 390
 391		/* this is pretty tricky.  We don't want to
 392		 * take the relocation lock in btrfs_record_root_in_trans
 393		 * unless we're really doing the first setup for this root in
 394		 * this transaction.
 395		 *
 396		 * Normally we'd use root->last_trans as a flag to decide
 397		 * if we want to take the expensive mutex.
 398		 *
 399		 * But, we have to set root->last_trans before we
 400		 * init the relocation root, otherwise, we trip over warnings
 401		 * in ctree.c.  The solution used here is to flag ourselves
 402		 * with root IN_TRANS_SETUP.  When this is 1, we're still
 403		 * fixing up the reloc trees and everyone must wait.
 404		 *
 405		 * When this is zero, they can trust root->last_trans and fly
 406		 * through btrfs_record_root_in_trans without having to take the
 407		 * lock.  smp_wmb() makes sure that all the writes above are
 408		 * done before we pop in the zero below
 409		 */
 410		btrfs_init_reloc_root(trans, root);
 411		smp_mb__before_atomic();
 412		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
 413	}
 414	return 0;
 415}
 416
 417
 418void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
 419			    struct btrfs_root *root)
 420{
 421	struct btrfs_fs_info *fs_info = root->fs_info;
 422	struct btrfs_transaction *cur_trans = trans->transaction;
 423
 424	/* Add ourselves to the transaction dropped list */
 425	spin_lock(&cur_trans->dropped_roots_lock);
 426	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
 427	spin_unlock(&cur_trans->dropped_roots_lock);
 428
 429	/* Make sure we don't try to update the root at commit time */
 430	spin_lock(&fs_info->fs_roots_radix_lock);
 431	radix_tree_tag_clear(&fs_info->fs_roots_radix,
 432			     (unsigned long)root->root_key.objectid,
 433			     BTRFS_ROOT_TRANS_TAG);
 434	spin_unlock(&fs_info->fs_roots_radix_lock);
 435}
 436
 437int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
 438			       struct btrfs_root *root)
 439{
 440	struct btrfs_fs_info *fs_info = root->fs_info;
 
 441
 442	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 443		return 0;
 444
 445	/*
 446	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
 447	 * and barriers
 448	 */
 449	smp_rmb();
 450	if (root->last_trans == trans->transid &&
 451	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
 452		return 0;
 453
 454	mutex_lock(&fs_info->reloc_mutex);
 455	record_root_in_trans(trans, root, 0);
 456	mutex_unlock(&fs_info->reloc_mutex);
 457
 458	return 0;
 459}
 460
 461static inline int is_transaction_blocked(struct btrfs_transaction *trans)
 462{
 463	return (trans->state >= TRANS_STATE_COMMIT_START &&
 464		trans->state < TRANS_STATE_UNBLOCKED &&
 465		!TRANS_ABORTED(trans));
 466}
 467
 468/* wait for commit against the current transaction to become unblocked
 469 * when this is done, it is safe to start a new transaction, but the current
 470 * transaction might not be fully on disk.
 471 */
 472static void wait_current_trans(struct btrfs_fs_info *fs_info)
 473{
 474	struct btrfs_transaction *cur_trans;
 475
 476	spin_lock(&fs_info->trans_lock);
 477	cur_trans = fs_info->running_transaction;
 478	if (cur_trans && is_transaction_blocked(cur_trans)) {
 479		refcount_inc(&cur_trans->use_count);
 480		spin_unlock(&fs_info->trans_lock);
 481
 
 482		wait_event(fs_info->transaction_wait,
 483			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
 484			   TRANS_ABORTED(cur_trans));
 485		btrfs_put_transaction(cur_trans);
 486	} else {
 487		spin_unlock(&fs_info->trans_lock);
 488	}
 489}
 490
 491static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
 492{
 493	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
 494		return 0;
 495
 496	if (type == TRANS_START)
 497		return 1;
 498
 499	return 0;
 500}
 501
 502static inline bool need_reserve_reloc_root(struct btrfs_root *root)
 503{
 504	struct btrfs_fs_info *fs_info = root->fs_info;
 505
 506	if (!fs_info->reloc_ctl ||
 507	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
 508	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 509	    root->reloc_root)
 510		return false;
 511
 512	return true;
 513}
 514
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 515static struct btrfs_trans_handle *
 516start_transaction(struct btrfs_root *root, unsigned int num_items,
 517		  unsigned int type, enum btrfs_reserve_flush_enum flush,
 518		  bool enforce_qgroups)
 519{
 520	struct btrfs_fs_info *fs_info = root->fs_info;
 521	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 
 522	struct btrfs_trans_handle *h;
 523	struct btrfs_transaction *cur_trans;
 524	u64 num_bytes = 0;
 525	u64 qgroup_reserved = 0;
 
 526	bool reloc_reserved = false;
 527	bool do_chunk_alloc = false;
 528	int ret;
 529
 530	/* Send isn't supposed to start transactions. */
 531	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
 532
 533	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
 534		return ERR_PTR(-EROFS);
 535
 536	if (current->journal_info) {
 537		WARN_ON(type & TRANS_EXTWRITERS);
 538		h = current->journal_info;
 539		refcount_inc(&h->use_count);
 540		WARN_ON(refcount_read(&h->use_count) > 2);
 541		h->orig_rsv = h->block_rsv;
 542		h->block_rsv = NULL;
 543		goto got_it;
 544	}
 545
 546	/*
 547	 * Do the reservation before we join the transaction so we can do all
 548	 * the appropriate flushing if need be.
 549	 */
 550	if (num_items && root != fs_info->chunk_root) {
 551		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
 552		u64 delayed_refs_bytes = 0;
 553
 554		qgroup_reserved = num_items * fs_info->nodesize;
 555		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
 556				enforce_qgroups);
 
 
 
 
 
 557		if (ret)
 558			return ERR_PTR(ret);
 559
 
 560		/*
 561		 * We want to reserve all the bytes we may need all at once, so
 562		 * we only do 1 enospc flushing cycle per transaction start.  We
 563		 * accomplish this by simply assuming we'll do 2 x num_items
 564		 * worth of delayed refs updates in this trans handle, and
 565		 * refill that amount for whatever is missing in the reserve.
 
 566		 */
 567		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
 568		if (flush == BTRFS_RESERVE_FLUSH_ALL &&
 569		    delayed_refs_rsv->full == 0) {
 570			delayed_refs_bytes = num_bytes;
 571			num_bytes <<= 1;
 572		}
 573
 574		/*
 575		 * Do the reservation for the relocation root creation
 576		 */
 577		if (need_reserve_reloc_root(root)) {
 578			num_bytes += fs_info->nodesize;
 579			reloc_reserved = true;
 580		}
 581
 582		ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
 
 583		if (ret)
 584			goto reserve_fail;
 585		if (delayed_refs_bytes) {
 586			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
 587							  delayed_refs_bytes);
 588			num_bytes -= delayed_refs_bytes;
 589		}
 590
 591		if (rsv->space_info->force_alloc)
 
 
 592			do_chunk_alloc = true;
 593	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
 594		   !delayed_refs_rsv->full) {
 595		/*
 596		 * Some people call with btrfs_start_transaction(root, 0)
 597		 * because they can be throttled, but have some other mechanism
 598		 * for reserving space.  We still want these guys to refill the
 599		 * delayed block_rsv so just add 1 items worth of reservation
 600		 * here.
 601		 */
 602		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
 603		if (ret)
 604			goto reserve_fail;
 605	}
 606again:
 607	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
 608	if (!h) {
 609		ret = -ENOMEM;
 610		goto alloc_fail;
 611	}
 612
 613	/*
 614	 * If we are JOIN_NOLOCK we're already committing a transaction and
 615	 * waiting on this guy, so we don't need to do the sb_start_intwrite
 616	 * because we're already holding a ref.  We need this because we could
 617	 * have raced in and did an fsync() on a file which can kick a commit
 618	 * and then we deadlock with somebody doing a freeze.
 619	 *
 620	 * If we are ATTACH, it means we just want to catch the current
 621	 * transaction and commit it, so we needn't do sb_start_intwrite(). 
 622	 */
 623	if (type & __TRANS_FREEZABLE)
 624		sb_start_intwrite(fs_info->sb);
 625
 626	if (may_wait_transaction(fs_info, type))
 627		wait_current_trans(fs_info);
 628
 629	do {
 630		ret = join_transaction(fs_info, type);
 631		if (ret == -EBUSY) {
 632			wait_current_trans(fs_info);
 633			if (unlikely(type == TRANS_ATTACH ||
 634				     type == TRANS_JOIN_NOSTART))
 635				ret = -ENOENT;
 636		}
 637	} while (ret == -EBUSY);
 638
 639	if (ret < 0)
 640		goto join_fail;
 641
 642	cur_trans = fs_info->running_transaction;
 643
 644	h->transid = cur_trans->transid;
 645	h->transaction = cur_trans;
 646	h->root = root;
 647	refcount_set(&h->use_count, 1);
 648	h->fs_info = root->fs_info;
 649
 650	h->type = type;
 651	h->can_flush_pending_bgs = true;
 652	INIT_LIST_HEAD(&h->new_bgs);
 
 653
 654	smp_mb();
 655	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
 656	    may_wait_transaction(fs_info, type)) {
 657		current->journal_info = h;
 658		btrfs_commit_transaction(h);
 659		goto again;
 660	}
 661
 662	if (num_bytes) {
 663		trace_btrfs_space_reservation(fs_info, "transaction",
 664					      h->transid, num_bytes, 1);
 665		h->block_rsv = &fs_info->trans_block_rsv;
 666		h->bytes_reserved = num_bytes;
 
 
 
 
 
 
 
 
 
 667		h->reloc_reserved = reloc_reserved;
 668	}
 669
 
 
 
 
 
 
 
 
 670got_it:
 671	if (!current->journal_info)
 672		current->journal_info = h;
 673
 674	/*
 675	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
 676	 * ALLOC_FORCE the first run through, and then we won't allocate for
 677	 * anybody else who races in later.  We don't care about the return
 678	 * value here.
 679	 */
 680	if (do_chunk_alloc && num_bytes) {
 681		u64 flags = h->block_rsv->space_info->flags;
 682
 683		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
 684				  CHUNK_ALLOC_NO_FORCE);
 685	}
 686
 687	/*
 688	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
 689	 * call btrfs_join_transaction() while we're also starting a
 690	 * transaction.
 691	 *
 692	 * Thus it need to be called after current->journal_info initialized,
 693	 * or we can deadlock.
 694	 */
 695	btrfs_record_root_in_trans(h, root);
 
 
 
 
 
 
 
 
 
 696
 697	return h;
 698
 699join_fail:
 700	if (type & __TRANS_FREEZABLE)
 701		sb_end_intwrite(fs_info->sb);
 702	kmem_cache_free(btrfs_trans_handle_cachep, h);
 703alloc_fail:
 704	if (num_bytes)
 705		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
 706					num_bytes, NULL);
 
 
 707reserve_fail:
 708	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
 709	return ERR_PTR(ret);
 710}
 711
 712struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
 713						   unsigned int num_items)
 714{
 715	return start_transaction(root, num_items, TRANS_START,
 716				 BTRFS_RESERVE_FLUSH_ALL, true);
 717}
 718
 719struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
 720					struct btrfs_root *root,
 721					unsigned int num_items)
 722{
 723	return start_transaction(root, num_items, TRANS_START,
 724				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
 725}
 726
 727struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
 728{
 729	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
 730				 true);
 731}
 732
 733struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
 734{
 735	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
 736				 BTRFS_RESERVE_NO_FLUSH, true);
 737}
 738
 739/*
 740 * Similar to regular join but it never starts a transaction when none is
 741 * running or after waiting for the current one to finish.
 
 
 
 742 */
 743struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
 744{
 745	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
 746				 BTRFS_RESERVE_NO_FLUSH, true);
 747}
 748
 749/*
 750 * btrfs_attach_transaction() - catch the running transaction
 751 *
 752 * It is used when we want to commit the current the transaction, but
 753 * don't want to start a new one.
 754 *
 755 * Note: If this function return -ENOENT, it just means there is no
 756 * running transaction. But it is possible that the inactive transaction
 757 * is still in the memory, not fully on disk. If you hope there is no
 758 * inactive transaction in the fs when -ENOENT is returned, you should
 759 * invoke
 760 *     btrfs_attach_transaction_barrier()
 761 */
 762struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
 763{
 764	return start_transaction(root, 0, TRANS_ATTACH,
 765				 BTRFS_RESERVE_NO_FLUSH, true);
 766}
 767
 768/*
 769 * btrfs_attach_transaction_barrier() - catch the running transaction
 770 *
 771 * It is similar to the above function, the difference is this one
 772 * will wait for all the inactive transactions until they fully
 773 * complete.
 774 */
 775struct btrfs_trans_handle *
 776btrfs_attach_transaction_barrier(struct btrfs_root *root)
 777{
 778	struct btrfs_trans_handle *trans;
 779
 780	trans = start_transaction(root, 0, TRANS_ATTACH,
 781				  BTRFS_RESERVE_NO_FLUSH, true);
 782	if (trans == ERR_PTR(-ENOENT))
 783		btrfs_wait_for_commit(root->fs_info, 0);
 
 
 
 
 
 784
 785	return trans;
 786}
 787
 788/* wait for a transaction commit to be fully complete */
 789static noinline void wait_for_commit(struct btrfs_transaction *commit)
 
 790{
 791	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 792}
 793
 794int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
 795{
 796	struct btrfs_transaction *cur_trans = NULL, *t;
 797	int ret = 0;
 798
 799	if (transid) {
 800		if (transid <= fs_info->last_trans_committed)
 801			goto out;
 802
 803		/* find specified transaction */
 804		spin_lock(&fs_info->trans_lock);
 805		list_for_each_entry(t, &fs_info->trans_list, list) {
 806			if (t->transid == transid) {
 807				cur_trans = t;
 808				refcount_inc(&cur_trans->use_count);
 809				ret = 0;
 810				break;
 811			}
 812			if (t->transid > transid) {
 813				ret = 0;
 814				break;
 815			}
 816		}
 817		spin_unlock(&fs_info->trans_lock);
 818
 819		/*
 820		 * The specified transaction doesn't exist, or we
 821		 * raced with btrfs_commit_transaction
 822		 */
 823		if (!cur_trans) {
 824			if (transid > fs_info->last_trans_committed)
 825				ret = -EINVAL;
 826			goto out;
 827		}
 828	} else {
 829		/* find newest transaction that is committing | committed */
 830		spin_lock(&fs_info->trans_lock);
 831		list_for_each_entry_reverse(t, &fs_info->trans_list,
 832					    list) {
 833			if (t->state >= TRANS_STATE_COMMIT_START) {
 834				if (t->state == TRANS_STATE_COMPLETED)
 835					break;
 836				cur_trans = t;
 837				refcount_inc(&cur_trans->use_count);
 838				break;
 839			}
 840		}
 841		spin_unlock(&fs_info->trans_lock);
 842		if (!cur_trans)
 843			goto out;  /* nothing committing|committed */
 844	}
 845
 846	wait_for_commit(cur_trans);
 
 847	btrfs_put_transaction(cur_trans);
 848out:
 849	return ret;
 850}
 851
 852void btrfs_throttle(struct btrfs_fs_info *fs_info)
 853{
 854	wait_current_trans(fs_info);
 855}
 856
 857static int should_end_transaction(struct btrfs_trans_handle *trans)
 858{
 859	struct btrfs_fs_info *fs_info = trans->fs_info;
 860
 861	if (btrfs_check_space_for_delayed_refs(fs_info))
 862		return 1;
 863
 864	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
 865}
 866
 867int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
 868{
 869	struct btrfs_transaction *cur_trans = trans->transaction;
 870
 871	smp_mb();
 872	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
 873	    cur_trans->delayed_refs.flushing)
 874		return 1;
 
 
 
 875
 876	return should_end_transaction(trans);
 877}
 878
 879static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
 880
 881{
 882	struct btrfs_fs_info *fs_info = trans->fs_info;
 883
 884	if (!trans->block_rsv) {
 885		ASSERT(!trans->bytes_reserved);
 
 886		return;
 887	}
 888
 889	if (!trans->bytes_reserved)
 
 890		return;
 
 891
 892	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
 893	trace_btrfs_space_reservation(fs_info, "transaction",
 894				      trans->transid, trans->bytes_reserved, 0);
 895	btrfs_block_rsv_release(fs_info, trans->block_rsv,
 896				trans->bytes_reserved, NULL);
 897	trans->bytes_reserved = 0;
 
 
 
 
 
 
 
 
 
 
 898}
 899
 900static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
 901				   int throttle)
 902{
 903	struct btrfs_fs_info *info = trans->fs_info;
 904	struct btrfs_transaction *cur_trans = trans->transaction;
 905	int err = 0;
 906
 907	if (refcount_read(&trans->use_count) > 1) {
 908		refcount_dec(&trans->use_count);
 909		trans->block_rsv = trans->orig_rsv;
 910		return 0;
 911	}
 912
 913	btrfs_trans_release_metadata(trans);
 914	trans->block_rsv = NULL;
 915
 916	btrfs_create_pending_block_groups(trans);
 917
 918	btrfs_trans_release_chunk_metadata(trans);
 919
 920	if (trans->type & __TRANS_FREEZABLE)
 921		sb_end_intwrite(info->sb);
 922
 923	WARN_ON(cur_trans != info->running_transaction);
 924	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
 925	atomic_dec(&cur_trans->num_writers);
 926	extwriter_counter_dec(cur_trans, trans->type);
 927
 928	cond_wake_up(&cur_trans->writer_wait);
 
 
 
 
 929	btrfs_put_transaction(cur_trans);
 930
 931	if (current->journal_info == trans)
 932		current->journal_info = NULL;
 933
 934	if (throttle)
 935		btrfs_run_delayed_iputs(info);
 936
 937	if (TRANS_ABORTED(trans) ||
 938	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
 939		wake_up_process(info->transaction_kthread);
 940		if (TRANS_ABORTED(trans))
 941			err = trans->aborted;
 942		else
 943			err = -EROFS;
 944	}
 945
 946	kmem_cache_free(btrfs_trans_handle_cachep, trans);
 947	return err;
 948}
 949
 950int btrfs_end_transaction(struct btrfs_trans_handle *trans)
 951{
 952	return __btrfs_end_transaction(trans, 0);
 953}
 954
 955int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
 956{
 957	return __btrfs_end_transaction(trans, 1);
 958}
 959
 960/*
 961 * when btree blocks are allocated, they have some corresponding bits set for
 962 * them in one of two extent_io trees.  This is used to make sure all of
 963 * those extents are sent to disk but does not wait on them
 964 */
 965int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
 966			       struct extent_io_tree *dirty_pages, int mark)
 967{
 968	int err = 0;
 969	int werr = 0;
 970	struct address_space *mapping = fs_info->btree_inode->i_mapping;
 971	struct extent_state *cached_state = NULL;
 972	u64 start = 0;
 973	u64 end;
 974
 975	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
 976	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
 977				      mark, &cached_state)) {
 978		bool wait_writeback = false;
 979
 980		err = convert_extent_bit(dirty_pages, start, end,
 981					 EXTENT_NEED_WAIT,
 982					 mark, &cached_state);
 983		/*
 984		 * convert_extent_bit can return -ENOMEM, which is most of the
 985		 * time a temporary error. So when it happens, ignore the error
 986		 * and wait for writeback of this range to finish - because we
 987		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
 988		 * to __btrfs_wait_marked_extents() would not know that
 989		 * writeback for this range started and therefore wouldn't
 990		 * wait for it to finish - we don't want to commit a
 991		 * superblock that points to btree nodes/leafs for which
 992		 * writeback hasn't finished yet (and without errors).
 993		 * We cleanup any entries left in the io tree when committing
 994		 * the transaction (through extent_io_tree_release()).
 995		 */
 996		if (err == -ENOMEM) {
 997			err = 0;
 998			wait_writeback = true;
 999		}
1000		if (!err)
1001			err = filemap_fdatawrite_range(mapping, start, end);
1002		if (err)
1003			werr = err;
1004		else if (wait_writeback)
1005			werr = filemap_fdatawait_range(mapping, start, end);
1006		free_extent_state(cached_state);
1007		cached_state = NULL;
1008		cond_resched();
1009		start = end + 1;
1010	}
1011	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1012	return werr;
1013}
1014
1015/*
1016 * when btree blocks are allocated, they have some corresponding bits set for
1017 * them in one of two extent_io trees.  This is used to make sure all of
1018 * those extents are on disk for transaction or log commit.  We wait
1019 * on all the pages and clear them from the dirty pages state tree
1020 */
1021static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1022				       struct extent_io_tree *dirty_pages)
1023{
1024	int err = 0;
1025	int werr = 0;
1026	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1027	struct extent_state *cached_state = NULL;
1028	u64 start = 0;
1029	u64 end;
1030
1031	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1032				      EXTENT_NEED_WAIT, &cached_state)) {
1033		/*
1034		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1035		 * When committing the transaction, we'll remove any entries
1036		 * left in the io tree. For a log commit, we don't remove them
1037		 * after committing the log because the tree can be accessed
1038		 * concurrently - we do it only at transaction commit time when
1039		 * it's safe to do it (through extent_io_tree_release()).
1040		 */
1041		err = clear_extent_bit(dirty_pages, start, end,
1042				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
1043		if (err == -ENOMEM)
1044			err = 0;
1045		if (!err)
1046			err = filemap_fdatawait_range(mapping, start, end);
1047		if (err)
1048			werr = err;
1049		free_extent_state(cached_state);
1050		cached_state = NULL;
1051		cond_resched();
1052		start = end + 1;
1053	}
1054	if (err)
1055		werr = err;
1056	return werr;
1057}
1058
1059static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1060		       struct extent_io_tree *dirty_pages)
1061{
1062	bool errors = false;
1063	int err;
1064
1065	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1066	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1067		errors = true;
1068
1069	if (errors && !err)
1070		err = -EIO;
1071	return err;
1072}
1073
1074int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1075{
1076	struct btrfs_fs_info *fs_info = log_root->fs_info;
1077	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1078	bool errors = false;
1079	int err;
1080
1081	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1082
1083	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1084	if ((mark & EXTENT_DIRTY) &&
1085	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1086		errors = true;
1087
1088	if ((mark & EXTENT_NEW) &&
1089	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1090		errors = true;
1091
1092	if (errors && !err)
1093		err = -EIO;
1094	return err;
1095}
1096
1097/*
1098 * When btree blocks are allocated the corresponding extents are marked dirty.
1099 * This function ensures such extents are persisted on disk for transaction or
1100 * log commit.
1101 *
1102 * @trans: transaction whose dirty pages we'd like to write
1103 */
1104static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1105{
1106	int ret;
1107	int ret2;
1108	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1109	struct btrfs_fs_info *fs_info = trans->fs_info;
1110	struct blk_plug plug;
1111
1112	blk_start_plug(&plug);
1113	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1114	blk_finish_plug(&plug);
1115	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1116
1117	extent_io_tree_release(&trans->transaction->dirty_pages);
1118
1119	if (ret)
1120		return ret;
1121	else if (ret2)
1122		return ret2;
1123	else
1124		return 0;
1125}
1126
1127/*
1128 * this is used to update the root pointer in the tree of tree roots.
1129 *
1130 * But, in the case of the extent allocation tree, updating the root
1131 * pointer may allocate blocks which may change the root of the extent
1132 * allocation tree.
1133 *
1134 * So, this loops and repeats and makes sure the cowonly root didn't
1135 * change while the root pointer was being updated in the metadata.
1136 */
1137static int update_cowonly_root(struct btrfs_trans_handle *trans,
1138			       struct btrfs_root *root)
1139{
1140	int ret;
1141	u64 old_root_bytenr;
1142	u64 old_root_used;
1143	struct btrfs_fs_info *fs_info = root->fs_info;
1144	struct btrfs_root *tree_root = fs_info->tree_root;
1145
1146	old_root_used = btrfs_root_used(&root->root_item);
1147
1148	while (1) {
1149		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1150		if (old_root_bytenr == root->node->start &&
1151		    old_root_used == btrfs_root_used(&root->root_item))
1152			break;
1153
1154		btrfs_set_root_node(&root->root_item, root->node);
1155		ret = btrfs_update_root(trans, tree_root,
1156					&root->root_key,
1157					&root->root_item);
1158		if (ret)
1159			return ret;
1160
1161		old_root_used = btrfs_root_used(&root->root_item);
1162	}
1163
1164	return 0;
1165}
1166
1167/*
1168 * update all the cowonly tree roots on disk
1169 *
1170 * The error handling in this function may not be obvious. Any of the
1171 * failures will cause the file system to go offline. We still need
1172 * to clean up the delayed refs.
1173 */
1174static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1175{
1176	struct btrfs_fs_info *fs_info = trans->fs_info;
1177	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1178	struct list_head *io_bgs = &trans->transaction->io_bgs;
1179	struct list_head *next;
1180	struct extent_buffer *eb;
1181	int ret;
1182
 
 
 
 
 
 
1183	eb = btrfs_lock_root_node(fs_info->tree_root);
1184	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1185			      0, &eb);
1186	btrfs_tree_unlock(eb);
1187	free_extent_buffer(eb);
1188
1189	if (ret)
1190		return ret;
1191
1192	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1193	if (ret)
1194		return ret;
1195
1196	ret = btrfs_run_dev_stats(trans);
1197	if (ret)
1198		return ret;
1199	ret = btrfs_run_dev_replace(trans);
1200	if (ret)
1201		return ret;
1202	ret = btrfs_run_qgroups(trans);
1203	if (ret)
1204		return ret;
1205
1206	ret = btrfs_setup_space_cache(trans);
1207	if (ret)
1208		return ret;
1209
1210	/* run_qgroups might have added some more refs */
1211	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1212	if (ret)
1213		return ret;
1214again:
1215	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1216		struct btrfs_root *root;
1217		next = fs_info->dirty_cowonly_roots.next;
1218		list_del_init(next);
1219		root = list_entry(next, struct btrfs_root, dirty_list);
1220		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1221
1222		if (root != fs_info->extent_root)
1223			list_add_tail(&root->dirty_list,
1224				      &trans->transaction->switch_commits);
1225		ret = update_cowonly_root(trans, root);
1226		if (ret)
1227			return ret;
1228		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1229		if (ret)
1230			return ret;
1231	}
1232
 
 
 
 
 
1233	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1234		ret = btrfs_write_dirty_block_groups(trans);
1235		if (ret)
1236			return ret;
1237		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
 
 
 
 
 
 
 
1238		if (ret)
1239			return ret;
1240	}
1241
1242	if (!list_empty(&fs_info->dirty_cowonly_roots))
1243		goto again;
1244
1245	list_add_tail(&fs_info->extent_root->dirty_list,
1246		      &trans->transaction->switch_commits);
1247
1248	/* Update dev-replace pointer once everything is committed */
1249	fs_info->dev_replace.committed_cursor_left =
1250		fs_info->dev_replace.cursor_left_last_write_of_item;
1251
1252	return 0;
1253}
1254
1255/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1256 * dead roots are old snapshots that need to be deleted.  This allocates
1257 * a dirty root struct and adds it into the list of dead roots that need to
1258 * be deleted
1259 */
1260void btrfs_add_dead_root(struct btrfs_root *root)
1261{
1262	struct btrfs_fs_info *fs_info = root->fs_info;
1263
1264	spin_lock(&fs_info->trans_lock);
1265	if (list_empty(&root->root_list)) {
1266		btrfs_grab_root(root);
1267		list_add_tail(&root->root_list, &fs_info->dead_roots);
 
 
 
 
 
1268	}
1269	spin_unlock(&fs_info->trans_lock);
1270}
1271
1272/*
1273 * update all the cowonly tree roots on disk
 
1274 */
1275static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1276{
1277	struct btrfs_fs_info *fs_info = trans->fs_info;
1278	struct btrfs_root *gang[8];
1279	int i;
1280	int ret;
1281	int err = 0;
 
 
 
 
 
1282
1283	spin_lock(&fs_info->fs_roots_radix_lock);
1284	while (1) {
1285		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1286						 (void **)gang, 0,
1287						 ARRAY_SIZE(gang),
1288						 BTRFS_ROOT_TRANS_TAG);
1289		if (ret == 0)
1290			break;
1291		for (i = 0; i < ret; i++) {
1292			struct btrfs_root *root = gang[i];
 
 
 
 
 
 
 
 
 
 
1293			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1294					(unsigned long)root->root_key.objectid,
1295					BTRFS_ROOT_TRANS_TAG);
1296			spin_unlock(&fs_info->fs_roots_radix_lock);
1297
1298			btrfs_free_log(trans, root);
1299			btrfs_update_reloc_root(trans, root);
1300
1301			btrfs_save_ino_cache(root, trans);
1302
1303			/* see comments in should_cow_block() */
1304			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1305			smp_mb__after_atomic();
1306
1307			if (root->commit_root != root->node) {
1308				list_add_tail(&root->dirty_list,
1309					&trans->transaction->switch_commits);
1310				btrfs_set_root_node(&root->root_item,
1311						    root->node);
1312			}
1313
1314			err = btrfs_update_root(trans, fs_info->tree_root,
1315						&root->root_key,
1316						&root->root_item);
 
 
1317			spin_lock(&fs_info->fs_roots_radix_lock);
1318			if (err)
1319				break;
1320			btrfs_qgroup_free_meta_all_pertrans(root);
1321		}
1322	}
1323	spin_unlock(&fs_info->fs_roots_radix_lock);
1324	return err;
1325}
1326
1327/*
1328 * defrag a given btree.
1329 * Every leaf in the btree is read and defragged.
1330 */
1331int btrfs_defrag_root(struct btrfs_root *root)
1332{
1333	struct btrfs_fs_info *info = root->fs_info;
1334	struct btrfs_trans_handle *trans;
1335	int ret;
1336
1337	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1338		return 0;
1339
1340	while (1) {
1341		trans = btrfs_start_transaction(root, 0);
1342		if (IS_ERR(trans))
1343			return PTR_ERR(trans);
1344
1345		ret = btrfs_defrag_leaves(trans, root);
1346
1347		btrfs_end_transaction(trans);
1348		btrfs_btree_balance_dirty(info);
1349		cond_resched();
1350
1351		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1352			break;
1353
1354		if (btrfs_defrag_cancelled(info)) {
1355			btrfs_debug(info, "defrag_root cancelled");
1356			ret = -EAGAIN;
1357			break;
1358		}
1359	}
1360	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1361	return ret;
1362}
1363
1364/*
1365 * Do all special snapshot related qgroup dirty hack.
1366 *
1367 * Will do all needed qgroup inherit and dirty hack like switch commit
1368 * roots inside one transaction and write all btree into disk, to make
1369 * qgroup works.
1370 */
1371static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1372				   struct btrfs_root *src,
1373				   struct btrfs_root *parent,
1374				   struct btrfs_qgroup_inherit *inherit,
1375				   u64 dst_objectid)
1376{
1377	struct btrfs_fs_info *fs_info = src->fs_info;
1378	int ret;
1379
1380	/*
1381	 * Save some performance in the case that qgroups are not
1382	 * enabled. If this check races with the ioctl, rescan will
1383	 * kick in anyway.
1384	 */
1385	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1386		return 0;
1387
1388	/*
1389	 * Ensure dirty @src will be committed.  Or, after coming
1390	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1391	 * recorded root will never be updated again, causing an outdated root
1392	 * item.
1393	 */
1394	record_root_in_trans(trans, src, 1);
 
 
1395
1396	/*
1397	 * We are going to commit transaction, see btrfs_commit_transaction()
1398	 * comment for reason locking tree_log_mutex
 
 
 
 
 
 
 
1399	 */
1400	mutex_lock(&fs_info->tree_log_mutex);
 
 
 
 
1401
1402	ret = commit_fs_roots(trans);
1403	if (ret)
1404		goto out;
1405	ret = btrfs_qgroup_account_extents(trans);
1406	if (ret < 0)
1407		goto out;
1408
1409	/* Now qgroup are all updated, we can inherit it to new qgroups */
1410	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1411				   inherit);
1412	if (ret < 0)
1413		goto out;
1414
1415	/*
1416	 * Now we do a simplified commit transaction, which will:
1417	 * 1) commit all subvolume and extent tree
1418	 *    To ensure all subvolume and extent tree have a valid
1419	 *    commit_root to accounting later insert_dir_item()
1420	 * 2) write all btree blocks onto disk
1421	 *    This is to make sure later btree modification will be cowed
1422	 *    Or commit_root can be populated and cause wrong qgroup numbers
1423	 * In this simplified commit, we don't really care about other trees
1424	 * like chunk and root tree, as they won't affect qgroup.
1425	 * And we don't write super to avoid half committed status.
1426	 */
1427	ret = commit_cowonly_roots(trans);
1428	if (ret)
1429		goto out;
1430	switch_commit_roots(trans);
1431	ret = btrfs_write_and_wait_transaction(trans);
1432	if (ret)
1433		btrfs_handle_fs_error(fs_info, ret,
1434			"Error while writing out transaction for qgroup");
1435
1436out:
1437	mutex_unlock(&fs_info->tree_log_mutex);
1438
1439	/*
1440	 * Force parent root to be updated, as we recorded it before so its
1441	 * last_trans == cur_transid.
1442	 * Or it won't be committed again onto disk after later
1443	 * insert_dir_item()
1444	 */
1445	if (!ret)
1446		record_root_in_trans(trans, parent, 1);
1447	return ret;
1448}
1449
1450/*
1451 * new snapshots need to be created at a very specific time in the
1452 * transaction commit.  This does the actual creation.
1453 *
1454 * Note:
1455 * If the error which may affect the commitment of the current transaction
1456 * happens, we should return the error number. If the error which just affect
1457 * the creation of the pending snapshots, just return 0.
1458 */
1459static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1460				   struct btrfs_pending_snapshot *pending)
1461{
1462
1463	struct btrfs_fs_info *fs_info = trans->fs_info;
1464	struct btrfs_key key;
1465	struct btrfs_root_item *new_root_item;
1466	struct btrfs_root *tree_root = fs_info->tree_root;
1467	struct btrfs_root *root = pending->root;
1468	struct btrfs_root *parent_root;
1469	struct btrfs_block_rsv *rsv;
1470	struct inode *parent_inode;
1471	struct btrfs_path *path;
1472	struct btrfs_dir_item *dir_item;
1473	struct dentry *dentry;
1474	struct extent_buffer *tmp;
1475	struct extent_buffer *old;
1476	struct timespec64 cur_time;
1477	int ret = 0;
1478	u64 to_reserve = 0;
1479	u64 index = 0;
1480	u64 objectid;
1481	u64 root_flags;
 
 
1482
1483	ASSERT(pending->path);
1484	path = pending->path;
1485
1486	ASSERT(pending->root_item);
1487	new_root_item = pending->root_item;
1488
1489	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
 
 
 
 
 
 
 
 
 
 
 
 
 
1490	if (pending->error)
1491		goto no_free_objectid;
1492
1493	/*
1494	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1495	 * accounted by later btrfs_qgroup_inherit().
1496	 */
1497	btrfs_set_skip_qgroup(trans, objectid);
1498
1499	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1500
1501	if (to_reserve > 0) {
1502		pending->error = btrfs_block_rsv_add(root,
1503						     &pending->block_rsv,
1504						     to_reserve,
1505						     BTRFS_RESERVE_NO_FLUSH);
1506		if (pending->error)
1507			goto clear_skip_qgroup;
1508	}
1509
1510	key.objectid = objectid;
1511	key.offset = (u64)-1;
1512	key.type = BTRFS_ROOT_ITEM_KEY;
1513
1514	rsv = trans->block_rsv;
1515	trans->block_rsv = &pending->block_rsv;
1516	trans->bytes_reserved = trans->block_rsv->reserved;
1517	trace_btrfs_space_reservation(fs_info, "transaction",
1518				      trans->transid,
1519				      trans->bytes_reserved, 1);
1520	dentry = pending->dentry;
1521	parent_inode = pending->dir;
1522	parent_root = BTRFS_I(parent_inode)->root;
1523	record_root_in_trans(trans, parent_root, 0);
1524
 
1525	cur_time = current_time(parent_inode);
1526
1527	/*
1528	 * insert the directory item
1529	 */
1530	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1531	BUG_ON(ret); /* -ENOMEM */
 
 
 
1532
1533	/* check if there is a file/dir which has the same name. */
1534	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1535					 btrfs_ino(BTRFS_I(parent_inode)),
1536					 dentry->d_name.name,
1537					 dentry->d_name.len, 0);
1538	if (dir_item != NULL && !IS_ERR(dir_item)) {
1539		pending->error = -EEXIST;
1540		goto dir_item_existed;
1541	} else if (IS_ERR(dir_item)) {
1542		ret = PTR_ERR(dir_item);
1543		btrfs_abort_transaction(trans, ret);
1544		goto fail;
1545	}
1546	btrfs_release_path(path);
1547
 
 
 
 
 
 
1548	/*
1549	 * pull in the delayed directory update
1550	 * and the delayed inode item
1551	 * otherwise we corrupt the FS during
1552	 * snapshot
1553	 */
1554	ret = btrfs_run_delayed_items(trans);
1555	if (ret) {	/* Transaction aborted */
1556		btrfs_abort_transaction(trans, ret);
1557		goto fail;
1558	}
1559
1560	record_root_in_trans(trans, root, 0);
 
 
 
 
1561	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1562	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1563	btrfs_check_and_init_root_item(new_root_item);
1564
1565	root_flags = btrfs_root_flags(new_root_item);
1566	if (pending->readonly)
1567		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1568	else
1569		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1570	btrfs_set_root_flags(new_root_item, root_flags);
1571
1572	btrfs_set_root_generation_v2(new_root_item,
1573			trans->transid);
1574	generate_random_guid(new_root_item->uuid);
1575	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1576			BTRFS_UUID_SIZE);
1577	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1578		memset(new_root_item->received_uuid, 0,
1579		       sizeof(new_root_item->received_uuid));
1580		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1581		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1582		btrfs_set_root_stransid(new_root_item, 0);
1583		btrfs_set_root_rtransid(new_root_item, 0);
1584	}
1585	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1586	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1587	btrfs_set_root_otransid(new_root_item, trans->transid);
1588
1589	old = btrfs_lock_root_node(root);
1590	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
 
1591	if (ret) {
1592		btrfs_tree_unlock(old);
1593		free_extent_buffer(old);
1594		btrfs_abort_transaction(trans, ret);
1595		goto fail;
1596	}
1597
1598	btrfs_set_lock_blocking_write(old);
1599
1600	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1601	/* clean up in any case */
1602	btrfs_tree_unlock(old);
1603	free_extent_buffer(old);
1604	if (ret) {
1605		btrfs_abort_transaction(trans, ret);
1606		goto fail;
1607	}
1608	/* see comments in should_cow_block() */
1609	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1610	smp_wmb();
1611
1612	btrfs_set_root_node(new_root_item, tmp);
1613	/* record when the snapshot was created in key.offset */
1614	key.offset = trans->transid;
1615	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1616	btrfs_tree_unlock(tmp);
1617	free_extent_buffer(tmp);
1618	if (ret) {
1619		btrfs_abort_transaction(trans, ret);
1620		goto fail;
1621	}
1622
1623	/*
1624	 * insert root back/forward references
1625	 */
1626	ret = btrfs_add_root_ref(trans, objectid,
1627				 parent_root->root_key.objectid,
1628				 btrfs_ino(BTRFS_I(parent_inode)), index,
1629				 dentry->d_name.name, dentry->d_name.len);
1630	if (ret) {
1631		btrfs_abort_transaction(trans, ret);
1632		goto fail;
1633	}
1634
1635	key.offset = (u64)-1;
1636	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1637	if (IS_ERR(pending->snap)) {
1638		ret = PTR_ERR(pending->snap);
1639		pending->snap = NULL;
1640		btrfs_abort_transaction(trans, ret);
1641		goto fail;
1642	}
1643
1644	ret = btrfs_reloc_post_snapshot(trans, pending);
1645	if (ret) {
1646		btrfs_abort_transaction(trans, ret);
1647		goto fail;
1648	}
1649
1650	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1651	if (ret) {
1652		btrfs_abort_transaction(trans, ret);
1653		goto fail;
1654	}
1655
1656	/*
1657	 * Do special qgroup accounting for snapshot, as we do some qgroup
1658	 * snapshot hack to do fast snapshot.
1659	 * To co-operate with that hack, we do hack again.
1660	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1661	 */
1662	ret = qgroup_account_snapshot(trans, root, parent_root,
1663				      pending->inherit, objectid);
 
 
 
 
1664	if (ret < 0)
1665		goto fail;
1666
1667	ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1668				    dentry->d_name.len, BTRFS_I(parent_inode),
1669				    &key, BTRFS_FT_DIR, index);
1670	/* We have check then name at the beginning, so it is impossible. */
1671	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1672	if (ret) {
1673		btrfs_abort_transaction(trans, ret);
1674		goto fail;
1675	}
1676
1677	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1678					 dentry->d_name.len * 2);
1679	parent_inode->i_mtime = parent_inode->i_ctime =
1680		current_time(parent_inode);
1681	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1682	if (ret) {
1683		btrfs_abort_transaction(trans, ret);
1684		goto fail;
1685	}
1686	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1687				  BTRFS_UUID_KEY_SUBVOL,
1688				  objectid);
1689	if (ret) {
1690		btrfs_abort_transaction(trans, ret);
1691		goto fail;
1692	}
1693	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1694		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1695					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1696					  objectid);
1697		if (ret && ret != -EEXIST) {
1698			btrfs_abort_transaction(trans, ret);
1699			goto fail;
1700		}
1701	}
1702
1703	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1704	if (ret) {
1705		btrfs_abort_transaction(trans, ret);
1706		goto fail;
1707	}
1708
1709fail:
1710	pending->error = ret;
1711dir_item_existed:
1712	trans->block_rsv = rsv;
1713	trans->bytes_reserved = 0;
1714clear_skip_qgroup:
1715	btrfs_clear_skip_qgroup(trans);
1716no_free_objectid:
 
 
1717	kfree(new_root_item);
1718	pending->root_item = NULL;
1719	btrfs_free_path(path);
1720	pending->path = NULL;
1721
1722	return ret;
1723}
1724
1725/*
1726 * create all the snapshots we've scheduled for creation
1727 */
1728static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1729{
1730	struct btrfs_pending_snapshot *pending, *next;
1731	struct list_head *head = &trans->transaction->pending_snapshots;
1732	int ret = 0;
1733
1734	list_for_each_entry_safe(pending, next, head, list) {
1735		list_del(&pending->list);
1736		ret = create_pending_snapshot(trans, pending);
1737		if (ret)
1738			break;
1739	}
1740	return ret;
1741}
1742
1743static void update_super_roots(struct btrfs_fs_info *fs_info)
1744{
1745	struct btrfs_root_item *root_item;
1746	struct btrfs_super_block *super;
1747
1748	super = fs_info->super_copy;
1749
1750	root_item = &fs_info->chunk_root->root_item;
1751	super->chunk_root = root_item->bytenr;
1752	super->chunk_root_generation = root_item->generation;
1753	super->chunk_root_level = root_item->level;
1754
1755	root_item = &fs_info->tree_root->root_item;
1756	super->root = root_item->bytenr;
1757	super->generation = root_item->generation;
1758	super->root_level = root_item->level;
1759	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1760		super->cache_generation = root_item->generation;
 
 
1761	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1762		super->uuid_tree_generation = root_item->generation;
1763}
1764
1765int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1766{
1767	struct btrfs_transaction *trans;
1768	int ret = 0;
1769
1770	spin_lock(&info->trans_lock);
1771	trans = info->running_transaction;
1772	if (trans)
1773		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1774	spin_unlock(&info->trans_lock);
1775	return ret;
1776}
1777
1778int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1779{
1780	struct btrfs_transaction *trans;
1781	int ret = 0;
1782
1783	spin_lock(&info->trans_lock);
1784	trans = info->running_transaction;
1785	if (trans)
1786		ret = is_transaction_blocked(trans);
1787	spin_unlock(&info->trans_lock);
1788	return ret;
1789}
1790
1791/*
1792 * wait for the current transaction commit to start and block subsequent
1793 * transaction joins
1794 */
1795static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1796					    struct btrfs_transaction *trans)
1797{
1798	wait_event(fs_info->transaction_blocked_wait,
1799		   trans->state >= TRANS_STATE_COMMIT_START ||
1800		   TRANS_ABORTED(trans));
1801}
1802
1803/*
1804 * wait for the current transaction to start and then become unblocked.
1805 * caller holds ref.
1806 */
1807static void wait_current_trans_commit_start_and_unblock(
1808					struct btrfs_fs_info *fs_info,
1809					struct btrfs_transaction *trans)
1810{
1811	wait_event(fs_info->transaction_wait,
1812		   trans->state >= TRANS_STATE_UNBLOCKED ||
1813		   TRANS_ABORTED(trans));
1814}
1815
1816/*
1817 * commit transactions asynchronously. once btrfs_commit_transaction_async
1818 * returns, any subsequent transaction will not be allowed to join.
1819 */
1820struct btrfs_async_commit {
1821	struct btrfs_trans_handle *newtrans;
1822	struct work_struct work;
1823};
1824
1825static void do_async_commit(struct work_struct *work)
1826{
1827	struct btrfs_async_commit *ac =
1828		container_of(work, struct btrfs_async_commit, work);
1829
1830	/*
1831	 * We've got freeze protection passed with the transaction.
1832	 * Tell lockdep about it.
1833	 */
1834	if (ac->newtrans->type & __TRANS_FREEZABLE)
1835		__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1836
1837	current->journal_info = ac->newtrans;
1838
1839	btrfs_commit_transaction(ac->newtrans);
1840	kfree(ac);
1841}
1842
1843int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1844				   int wait_for_unblock)
1845{
1846	struct btrfs_fs_info *fs_info = trans->fs_info;
1847	struct btrfs_async_commit *ac;
1848	struct btrfs_transaction *cur_trans;
1849
1850	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1851	if (!ac)
1852		return -ENOMEM;
1853
1854	INIT_WORK(&ac->work, do_async_commit);
1855	ac->newtrans = btrfs_join_transaction(trans->root);
1856	if (IS_ERR(ac->newtrans)) {
1857		int err = PTR_ERR(ac->newtrans);
1858		kfree(ac);
1859		return err;
1860	}
1861
1862	/* take transaction reference */
1863	cur_trans = trans->transaction;
1864	refcount_inc(&cur_trans->use_count);
1865
1866	btrfs_end_transaction(trans);
1867
1868	/*
1869	 * Tell lockdep we've released the freeze rwsem, since the
1870	 * async commit thread will be the one to unlock it.
1871	 */
1872	if (ac->newtrans->type & __TRANS_FREEZABLE)
1873		__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1874
1875	schedule_work(&ac->work);
1876
1877	/* wait for transaction to start and unblock */
1878	if (wait_for_unblock)
1879		wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1880	else
1881		wait_current_trans_commit_start(fs_info, cur_trans);
1882
1883	if (current->journal_info == trans)
1884		current->journal_info = NULL;
1885
1886	btrfs_put_transaction(cur_trans);
1887	return 0;
1888}
1889
1890
1891static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1892{
1893	struct btrfs_fs_info *fs_info = trans->fs_info;
1894	struct btrfs_transaction *cur_trans = trans->transaction;
1895
1896	WARN_ON(refcount_read(&trans->use_count) > 1);
1897
1898	btrfs_abort_transaction(trans, err);
1899
1900	spin_lock(&fs_info->trans_lock);
1901
1902	/*
1903	 * If the transaction is removed from the list, it means this
1904	 * transaction has been committed successfully, so it is impossible
1905	 * to call the cleanup function.
1906	 */
1907	BUG_ON(list_empty(&cur_trans->list));
1908
1909	list_del_init(&cur_trans->list);
1910	if (cur_trans == fs_info->running_transaction) {
1911		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1912		spin_unlock(&fs_info->trans_lock);
 
 
 
 
 
 
1913		wait_event(cur_trans->writer_wait,
1914			   atomic_read(&cur_trans->num_writers) == 1);
1915
1916		spin_lock(&fs_info->trans_lock);
1917	}
 
 
 
 
 
 
 
 
 
 
 
1918	spin_unlock(&fs_info->trans_lock);
1919
1920	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1921
1922	spin_lock(&fs_info->trans_lock);
1923	if (cur_trans == fs_info->running_transaction)
1924		fs_info->running_transaction = NULL;
1925	spin_unlock(&fs_info->trans_lock);
1926
1927	if (trans->type & __TRANS_FREEZABLE)
1928		sb_end_intwrite(fs_info->sb);
1929	btrfs_put_transaction(cur_trans);
1930	btrfs_put_transaction(cur_trans);
1931
1932	trace_btrfs_transaction_commit(trans->root);
1933
1934	if (current->journal_info == trans)
1935		current->journal_info = NULL;
1936	btrfs_scrub_cancel(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
1937
1938	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1939}
1940
1941/*
1942 * Release reserved delayed ref space of all pending block groups of the
1943 * transaction and remove them from the list
1944 */
1945static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1946{
1947       struct btrfs_fs_info *fs_info = trans->fs_info;
1948       struct btrfs_block_group *block_group, *tmp;
1949
1950       list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1951               btrfs_delayed_refs_rsv_release(fs_info, 1);
1952               list_del_init(&block_group->bg_list);
1953       }
1954}
1955
1956static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
1957{
1958	struct btrfs_fs_info *fs_info = trans->fs_info;
1959
1960	/*
1961	 * We use writeback_inodes_sb here because if we used
1962	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1963	 * Currently are holding the fs freeze lock, if we do an async flush
1964	 * we'll do btrfs_join_transaction() and deadlock because we need to
1965	 * wait for the fs freeze lock.  Using the direct flushing we benefit
1966	 * from already being in a transaction and our join_transaction doesn't
1967	 * have to re-take the fs freeze lock.
 
 
 
 
 
 
 
 
1968	 */
1969	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1970		writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1971	} else {
1972		struct btrfs_pending_snapshot *pending;
1973		struct list_head *head = &trans->transaction->pending_snapshots;
1974
1975		/*
1976		 * Flush dellaloc for any root that is going to be snapshotted.
1977		 * This is done to avoid a corrupted version of files, in the
1978		 * snapshots, that had both buffered and direct IO writes (even
1979		 * if they were done sequentially) due to an unordered update of
1980		 * the inode's size on disk.
1981		 */
1982		list_for_each_entry(pending, head, list) {
1983			int ret;
1984
1985			ret = btrfs_start_delalloc_snapshot(pending->root);
1986			if (ret)
1987				return ret;
1988		}
1989	}
1990	return 0;
1991}
1992
1993static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
 
 
 
 
 
 
 
 
1994{
1995	struct btrfs_fs_info *fs_info = trans->fs_info;
 
 
 
 
 
 
1996
1997	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1998		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1999	} else {
2000		struct btrfs_pending_snapshot *pending;
2001		struct list_head *head = &trans->transaction->pending_snapshots;
2002
2003		/*
2004		 * Wait for any dellaloc that we started previously for the roots
2005		 * that are going to be snapshotted. This is to avoid a corrupted
2006		 * version of files in the snapshots that had both buffered and
2007		 * direct IO writes (even if they were done sequentially).
2008		 */
2009		list_for_each_entry(pending, head, list)
2010			btrfs_wait_ordered_extents(pending->root,
2011						   U64_MAX, 0, U64_MAX);
2012	}
2013}
2014
2015int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2016{
2017	struct btrfs_fs_info *fs_info = trans->fs_info;
2018	struct btrfs_transaction *cur_trans = trans->transaction;
2019	struct btrfs_transaction *prev_trans = NULL;
2020	int ret;
 
 
2021
2022	ASSERT(refcount_read(&trans->use_count) == 1);
 
2023
2024	/*
2025	 * Some places just start a transaction to commit it.  We need to make
2026	 * sure that if this commit fails that the abort code actually marks the
2027	 * transaction as failed, so set trans->dirty to make the abort code do
2028	 * the right thing.
2029	 */
2030	trans->dirty = true;
2031
2032	/* Stop the commit early if ->aborted is set */
2033	if (TRANS_ABORTED(cur_trans)) {
2034		ret = cur_trans->aborted;
2035		btrfs_end_transaction(trans);
2036		return ret;
2037	}
2038
2039	btrfs_trans_release_metadata(trans);
2040	trans->block_rsv = NULL;
2041
2042	/* make a pass through all the delayed refs we have so far
2043	 * any runnings procs may add more while we are here
 
2044	 */
2045	ret = btrfs_run_delayed_refs(trans, 0);
2046	if (ret) {
2047		btrfs_end_transaction(trans);
2048		return ret;
 
 
 
 
 
2049	}
2050
2051	cur_trans = trans->transaction;
2052
2053	/*
2054	 * set the flushing flag so procs in this transaction have to
2055	 * start sending their work down.
2056	 */
2057	cur_trans->delayed_refs.flushing = 1;
2058	smp_wmb();
2059
2060	btrfs_create_pending_block_groups(trans);
2061
2062	ret = btrfs_run_delayed_refs(trans, 0);
2063	if (ret) {
2064		btrfs_end_transaction(trans);
2065		return ret;
2066	}
2067
2068	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2069		int run_it = 0;
2070
2071		/* this mutex is also taken before trying to set
2072		 * block groups readonly.  We need to make sure
2073		 * that nobody has set a block group readonly
2074		 * after a extents from that block group have been
2075		 * allocated for cache files.  btrfs_set_block_group_ro
2076		 * will wait for the transaction to commit if it
2077		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2078		 *
2079		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2080		 * only one process starts all the block group IO.  It wouldn't
2081		 * hurt to have more than one go through, but there's no
2082		 * real advantage to it either.
2083		 */
2084		mutex_lock(&fs_info->ro_block_group_mutex);
2085		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2086				      &cur_trans->flags))
2087			run_it = 1;
2088		mutex_unlock(&fs_info->ro_block_group_mutex);
2089
2090		if (run_it) {
2091			ret = btrfs_start_dirty_block_groups(trans);
2092			if (ret) {
2093				btrfs_end_transaction(trans);
2094				return ret;
2095			}
2096		}
2097	}
2098
2099	spin_lock(&fs_info->trans_lock);
2100	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
 
 
 
 
2101		spin_unlock(&fs_info->trans_lock);
2102		refcount_inc(&cur_trans->use_count);
 
 
 
 
 
 
2103		ret = btrfs_end_transaction(trans);
2104
2105		wait_for_commit(cur_trans);
2106
2107		if (TRANS_ABORTED(cur_trans))
2108			ret = cur_trans->aborted;
2109
2110		btrfs_put_transaction(cur_trans);
2111
2112		return ret;
2113	}
2114
2115	cur_trans->state = TRANS_STATE_COMMIT_START;
2116	wake_up(&fs_info->transaction_blocked_wait);
 
2117
2118	if (cur_trans->list.prev != &fs_info->trans_list) {
 
 
 
 
 
2119		prev_trans = list_entry(cur_trans->list.prev,
2120					struct btrfs_transaction, list);
2121		if (prev_trans->state != TRANS_STATE_COMPLETED) {
2122			refcount_inc(&prev_trans->use_count);
2123			spin_unlock(&fs_info->trans_lock);
2124
2125			wait_for_commit(prev_trans);
 
2126			ret = READ_ONCE(prev_trans->aborted);
2127
2128			btrfs_put_transaction(prev_trans);
2129			if (ret)
2130				goto cleanup_transaction;
2131		} else {
2132			spin_unlock(&fs_info->trans_lock);
2133		}
2134	} else {
2135		spin_unlock(&fs_info->trans_lock);
2136		/*
2137		 * The previous transaction was aborted and was already removed
2138		 * from the list of transactions at fs_info->trans_list. So we
2139		 * abort to prevent writing a new superblock that reflects a
2140		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2141		 */
2142		if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
 
2143			ret = -EROFS;
2144			goto cleanup_transaction;
2145		}
2146	}
2147
 
 
 
 
 
 
 
 
 
 
2148	extwriter_counter_dec(cur_trans, trans->type);
2149
2150	ret = btrfs_start_delalloc_flush(trans);
2151	if (ret)
2152		goto cleanup_transaction;
2153
2154	ret = btrfs_run_delayed_items(trans);
2155	if (ret)
2156		goto cleanup_transaction;
2157
 
 
 
 
 
 
 
2158	wait_event(cur_trans->writer_wait,
2159		   extwriter_counter_read(cur_trans) == 0);
2160
2161	/* some pending stuffs might be added after the previous flush. */
2162	ret = btrfs_run_delayed_items(trans);
2163	if (ret)
 
2164		goto cleanup_transaction;
 
 
 
2165
2166	btrfs_wait_delalloc_flush(trans);
 
 
 
 
 
 
 
2167
2168	btrfs_scrub_pause(fs_info);
2169	/*
2170	 * Ok now we need to make sure to block out any other joins while we
2171	 * commit the transaction.  We could have started a join before setting
2172	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2173	 */
2174	spin_lock(&fs_info->trans_lock);
 
2175	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2176	spin_unlock(&fs_info->trans_lock);
 
 
 
 
 
 
 
 
2177	wait_event(cur_trans->writer_wait,
2178		   atomic_read(&cur_trans->num_writers) == 1);
2179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2180	if (TRANS_ABORTED(cur_trans)) {
2181		ret = cur_trans->aborted;
 
2182		goto scrub_continue;
2183	}
2184	/*
2185	 * the reloc mutex makes sure that we stop
2186	 * the balancing code from coming in and moving
2187	 * extents around in the middle of the commit
2188	 */
2189	mutex_lock(&fs_info->reloc_mutex);
2190
2191	/*
2192	 * We needn't worry about the delayed items because we will
2193	 * deal with them in create_pending_snapshot(), which is the
2194	 * core function of the snapshot creation.
2195	 */
2196	ret = create_pending_snapshots(trans);
2197	if (ret)
2198		goto unlock_reloc;
2199
2200	/*
2201	 * We insert the dir indexes of the snapshots and update the inode
2202	 * of the snapshots' parents after the snapshot creation, so there
2203	 * are some delayed items which are not dealt with. Now deal with
2204	 * them.
2205	 *
2206	 * We needn't worry that this operation will corrupt the snapshots,
2207	 * because all the tree which are snapshoted will be forced to COW
2208	 * the nodes and leaves.
2209	 */
2210	ret = btrfs_run_delayed_items(trans);
2211	if (ret)
2212		goto unlock_reloc;
2213
2214	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2215	if (ret)
2216		goto unlock_reloc;
2217
2218	/*
2219	 * make sure none of the code above managed to slip in a
2220	 * delayed item
2221	 */
2222	btrfs_assert_delayed_root_empty(fs_info);
2223
2224	WARN_ON(cur_trans != trans->transaction);
2225
2226	/* btrfs_commit_tree_roots is responsible for getting the
2227	 * various roots consistent with each other.  Every pointer
2228	 * in the tree of tree roots has to point to the most up to date
2229	 * root for every subvolume and other tree.  So, we have to keep
2230	 * the tree logging code from jumping in and changing any
2231	 * of the trees.
2232	 *
2233	 * At this point in the commit, there can't be any tree-log
2234	 * writers, but a little lower down we drop the trans mutex
2235	 * and let new people in.  By holding the tree_log_mutex
2236	 * from now until after the super is written, we avoid races
2237	 * with the tree-log code.
2238	 */
2239	mutex_lock(&fs_info->tree_log_mutex);
2240
2241	ret = commit_fs_roots(trans);
2242	if (ret)
2243		goto unlock_tree_log;
2244
2245	/*
2246	 * Since the transaction is done, we can apply the pending changes
2247	 * before the next transaction.
2248	 */
2249	btrfs_apply_pending_changes(fs_info);
2250
2251	/* commit_fs_roots gets rid of all the tree log roots, it is now
2252	 * safe to free the root of tree log roots
2253	 */
2254	btrfs_free_log_root_tree(trans, fs_info);
2255
2256	/*
2257	 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2258	 * new delayed refs. Must handle them or qgroup can be wrong.
2259	 */
2260	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2261	if (ret)
2262		goto unlock_tree_log;
2263
2264	/*
2265	 * Since fs roots are all committed, we can get a quite accurate
2266	 * new_roots. So let's do quota accounting.
2267	 */
2268	ret = btrfs_qgroup_account_extents(trans);
2269	if (ret < 0)
2270		goto unlock_tree_log;
2271
2272	ret = commit_cowonly_roots(trans);
2273	if (ret)
2274		goto unlock_tree_log;
2275
2276	/*
2277	 * The tasks which save the space cache and inode cache may also
2278	 * update ->aborted, check it.
2279	 */
2280	if (TRANS_ABORTED(cur_trans)) {
2281		ret = cur_trans->aborted;
2282		goto unlock_tree_log;
2283	}
2284
2285	btrfs_prepare_extent_commit(fs_info);
2286
2287	cur_trans = fs_info->running_transaction;
2288
2289	btrfs_set_root_node(&fs_info->tree_root->root_item,
2290			    fs_info->tree_root->node);
2291	list_add_tail(&fs_info->tree_root->dirty_list,
2292		      &cur_trans->switch_commits);
2293
2294	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2295			    fs_info->chunk_root->node);
2296	list_add_tail(&fs_info->chunk_root->dirty_list,
2297		      &cur_trans->switch_commits);
2298
 
 
 
 
 
 
 
2299	switch_commit_roots(trans);
2300
2301	ASSERT(list_empty(&cur_trans->dirty_bgs));
2302	ASSERT(list_empty(&cur_trans->io_bgs));
2303	update_super_roots(fs_info);
2304
2305	btrfs_set_super_log_root(fs_info->super_copy, 0);
2306	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2307	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2308	       sizeof(*fs_info->super_copy));
2309
2310	btrfs_commit_device_sizes(cur_trans);
2311
2312	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2313	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2314
2315	btrfs_trans_release_chunk_metadata(trans);
2316
 
 
 
 
 
 
 
 
 
 
2317	spin_lock(&fs_info->trans_lock);
2318	cur_trans->state = TRANS_STATE_UNBLOCKED;
2319	fs_info->running_transaction = NULL;
2320	spin_unlock(&fs_info->trans_lock);
2321	mutex_unlock(&fs_info->reloc_mutex);
2322
2323	wake_up(&fs_info->transaction_wait);
 
 
 
 
 
 
2324
2325	ret = btrfs_write_and_wait_transaction(trans);
2326	if (ret) {
2327		btrfs_handle_fs_error(fs_info, ret,
2328				      "Error while writing out transaction");
2329		/*
2330		 * reloc_mutex has been unlocked, tree_log_mutex is still held
2331		 * but we can't jump to unlock_tree_log causing double unlock
2332		 */
2333		mutex_unlock(&fs_info->tree_log_mutex);
2334		goto scrub_continue;
2335	}
2336
2337	ret = write_all_supers(fs_info, 0);
2338	/*
2339	 * the super is written, we can safely allow the tree-loggers
2340	 * to go about their business
2341	 */
2342	mutex_unlock(&fs_info->tree_log_mutex);
2343	if (ret)
2344		goto scrub_continue;
2345
 
 
 
 
 
 
 
 
2346	btrfs_finish_extent_commit(trans);
2347
2348	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2349		btrfs_clear_space_info_full(fs_info);
2350
2351	fs_info->last_trans_committed = cur_trans->transid;
2352	/*
2353	 * We needn't acquire the lock here because there is no other task
2354	 * which can change it.
2355	 */
2356	cur_trans->state = TRANS_STATE_COMPLETED;
2357	wake_up(&cur_trans->commit_wait);
 
2358
2359	spin_lock(&fs_info->trans_lock);
2360	list_del_init(&cur_trans->list);
2361	spin_unlock(&fs_info->trans_lock);
2362
2363	btrfs_put_transaction(cur_trans);
2364	btrfs_put_transaction(cur_trans);
2365
2366	if (trans->type & __TRANS_FREEZABLE)
2367		sb_end_intwrite(fs_info->sb);
2368
2369	trace_btrfs_transaction_commit(trans->root);
 
 
2370
2371	btrfs_scrub_continue(fs_info);
2372
2373	if (current->journal_info == trans)
2374		current->journal_info = NULL;
2375
2376	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2377
 
 
2378	return ret;
2379
2380unlock_tree_log:
2381	mutex_unlock(&fs_info->tree_log_mutex);
2382unlock_reloc:
2383	mutex_unlock(&fs_info->reloc_mutex);
 
2384scrub_continue:
 
 
2385	btrfs_scrub_continue(fs_info);
2386cleanup_transaction:
2387	btrfs_trans_release_metadata(trans);
2388	btrfs_cleanup_pending_block_groups(trans);
2389	btrfs_trans_release_chunk_metadata(trans);
2390	trans->block_rsv = NULL;
2391	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2392	if (current->journal_info == trans)
2393		current->journal_info = NULL;
2394	cleanup_transaction(trans, ret);
2395
2396	return ret;
 
 
 
 
 
 
 
 
 
 
2397}
2398
2399/*
2400 * return < 0 if error
2401 * 0 if there are no more dead_roots at the time of call
2402 * 1 there are more to be processed, call me again
2403 *
2404 * The return value indicates there are certainly more snapshots to delete, but
2405 * if there comes a new one during processing, it may return 0. We don't mind,
2406 * because btrfs_commit_super will poke cleaner thread and it will process it a
2407 * few seconds later.
2408 */
2409int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2410{
 
2411	int ret;
2412	struct btrfs_fs_info *fs_info = root->fs_info;
2413
2414	spin_lock(&fs_info->trans_lock);
2415	if (list_empty(&fs_info->dead_roots)) {
2416		spin_unlock(&fs_info->trans_lock);
2417		return 0;
2418	}
2419	root = list_first_entry(&fs_info->dead_roots,
2420			struct btrfs_root, root_list);
2421	list_del_init(&root->root_list);
2422	spin_unlock(&fs_info->trans_lock);
2423
2424	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2425
2426	btrfs_kill_all_delayed_nodes(root);
2427	if (root->ino_cache_inode) {
2428		iput(root->ino_cache_inode);
2429		root->ino_cache_inode = NULL;
2430	}
2431
2432	if (btrfs_header_backref_rev(root->node) <
2433			BTRFS_MIXED_BACKREF_REV)
2434		ret = btrfs_drop_snapshot(root, 0, 0);
2435	else
2436		ret = btrfs_drop_snapshot(root, 1, 0);
2437
2438	btrfs_put_root(root);
2439	return (ret < 0) ? 0 : 1;
2440}
2441
2442void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2443{
2444	unsigned long prev;
2445	unsigned long bit;
 
 
 
 
 
 
 
 
 
2446
2447	prev = xchg(&fs_info->pending_changes, 0);
2448	if (!prev)
2449		return;
 
 
 
 
 
 
2450
2451	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2452	if (prev & bit)
2453		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2454	prev &= ~bit;
2455
2456	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2457	if (prev & bit)
2458		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2459	prev &= ~bit;
2460
2461	bit = 1 << BTRFS_PENDING_COMMIT;
2462	if (prev & bit)
2463		btrfs_debug(fs_info, "pending commit done");
2464	prev &= ~bit;
2465
2466	if (prev)
2467		btrfs_warn(fs_info,
2468			"unknown pending changes left 0x%lx, ignoring", prev);
2469}