Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/slab.h>
8#include <linux/sched.h>
9#include <linux/sched/mm.h>
10#include <linux/writeback.h>
11#include <linux/pagemap.h>
12#include <linux/blkdev.h>
13#include <linux/uuid.h>
14#include <linux/timekeeping.h>
15#include "misc.h"
16#include "ctree.h"
17#include "disk-io.h"
18#include "transaction.h"
19#include "locking.h"
20#include "tree-log.h"
21#include "volumes.h"
22#include "dev-replace.h"
23#include "qgroup.h"
24#include "block-group.h"
25#include "space-info.h"
26#include "zoned.h"
27#include "fs.h"
28#include "accessors.h"
29#include "extent-tree.h"
30#include "root-tree.h"
31#include "defrag.h"
32#include "dir-item.h"
33#include "uuid-tree.h"
34#include "ioctl.h"
35#include "relocation.h"
36#include "scrub.h"
37
38static struct kmem_cache *btrfs_trans_handle_cachep;
39
40/*
41 * Transaction states and transitions
42 *
43 * No running transaction (fs tree blocks are not modified)
44 * |
45 * | To next stage:
46 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
47 * V
48 * Transaction N [[TRANS_STATE_RUNNING]]
49 * |
50 * | New trans handles can be attached to transaction N by calling all
51 * | start_transaction() variants.
52 * |
53 * | To next stage:
54 * | Call btrfs_commit_transaction() on any trans handle attached to
55 * | transaction N
56 * V
57 * Transaction N [[TRANS_STATE_COMMIT_PREP]]
58 * |
59 * | If there are simultaneous calls to btrfs_commit_transaction() one will win
60 * | the race and the rest will wait for the winner to commit the transaction.
61 * |
62 * | The winner will wait for previous running transaction to completely finish
63 * | if there is one.
64 * |
65 * Transaction N [[TRANS_STATE_COMMIT_START]]
66 * |
67 * | Then one of the following happens:
68 * | - Wait for all other trans handle holders to release.
69 * | The btrfs_commit_transaction() caller will do the commit work.
70 * | - Wait for current transaction to be committed by others.
71 * | Other btrfs_commit_transaction() caller will do the commit work.
72 * |
73 * | At this stage, only btrfs_join_transaction*() variants can attach
74 * | to this running transaction.
75 * | All other variants will wait for current one to finish and attach to
76 * | transaction N+1.
77 * |
78 * | To next stage:
79 * | Caller is chosen to commit transaction N, and all other trans handle
80 * | haven been released.
81 * V
82 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
83 * |
84 * | The heavy lifting transaction work is started.
85 * | From running delayed refs (modifying extent tree) to creating pending
86 * | snapshots, running qgroups.
87 * | In short, modify supporting trees to reflect modifications of subvolume
88 * | trees.
89 * |
90 * | At this stage, all start_transaction() calls will wait for this
91 * | transaction to finish and attach to transaction N+1.
92 * |
93 * | To next stage:
94 * | Until all supporting trees are updated.
95 * V
96 * Transaction N [[TRANS_STATE_UNBLOCKED]]
97 * | Transaction N+1
98 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
99 * | need to write them back to disk and update |
100 * | super blocks. |
101 * | |
102 * | At this stage, new transaction is allowed to |
103 * | start. |
104 * | All new start_transaction() calls will be |
105 * | attached to transid N+1. |
106 * | |
107 * | To next stage: |
108 * | Until all tree blocks are super blocks are |
109 * | written to block devices |
110 * V |
111 * Transaction N [[TRANS_STATE_COMPLETED]] V
112 * All tree blocks and super blocks are written. Transaction N+1
113 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
114 * data structures will be cleaned up. | Life goes on
115 */
116static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
117 [TRANS_STATE_RUNNING] = 0U,
118 [TRANS_STATE_COMMIT_PREP] = 0U,
119 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
120 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
121 __TRANS_ATTACH |
122 __TRANS_JOIN |
123 __TRANS_JOIN_NOSTART),
124 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
125 __TRANS_ATTACH |
126 __TRANS_JOIN |
127 __TRANS_JOIN_NOLOCK |
128 __TRANS_JOIN_NOSTART),
129 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
130 __TRANS_ATTACH |
131 __TRANS_JOIN |
132 __TRANS_JOIN_NOLOCK |
133 __TRANS_JOIN_NOSTART),
134 [TRANS_STATE_COMPLETED] = (__TRANS_START |
135 __TRANS_ATTACH |
136 __TRANS_JOIN |
137 __TRANS_JOIN_NOLOCK |
138 __TRANS_JOIN_NOSTART),
139};
140
141void btrfs_put_transaction(struct btrfs_transaction *transaction)
142{
143 WARN_ON(refcount_read(&transaction->use_count) == 0);
144 if (refcount_dec_and_test(&transaction->use_count)) {
145 BUG_ON(!list_empty(&transaction->list));
146 WARN_ON(!RB_EMPTY_ROOT(
147 &transaction->delayed_refs.href_root.rb_root));
148 WARN_ON(!RB_EMPTY_ROOT(
149 &transaction->delayed_refs.dirty_extent_root));
150 if (transaction->delayed_refs.pending_csums)
151 btrfs_err(transaction->fs_info,
152 "pending csums is %llu",
153 transaction->delayed_refs.pending_csums);
154 /*
155 * If any block groups are found in ->deleted_bgs then it's
156 * because the transaction was aborted and a commit did not
157 * happen (things failed before writing the new superblock
158 * and calling btrfs_finish_extent_commit()), so we can not
159 * discard the physical locations of the block groups.
160 */
161 while (!list_empty(&transaction->deleted_bgs)) {
162 struct btrfs_block_group *cache;
163
164 cache = list_first_entry(&transaction->deleted_bgs,
165 struct btrfs_block_group,
166 bg_list);
167 list_del_init(&cache->bg_list);
168 btrfs_unfreeze_block_group(cache);
169 btrfs_put_block_group(cache);
170 }
171 WARN_ON(!list_empty(&transaction->dev_update_list));
172 kfree(transaction);
173 }
174}
175
176static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
177{
178 struct btrfs_transaction *cur_trans = trans->transaction;
179 struct btrfs_fs_info *fs_info = trans->fs_info;
180 struct btrfs_root *root, *tmp;
181
182 /*
183 * At this point no one can be using this transaction to modify any tree
184 * and no one can start another transaction to modify any tree either.
185 */
186 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
187
188 down_write(&fs_info->commit_root_sem);
189
190 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
191 fs_info->last_reloc_trans = trans->transid;
192
193 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
194 dirty_list) {
195 list_del_init(&root->dirty_list);
196 free_extent_buffer(root->commit_root);
197 root->commit_root = btrfs_root_node(root);
198 extent_io_tree_release(&root->dirty_log_pages);
199 btrfs_qgroup_clean_swapped_blocks(root);
200 }
201
202 /* We can free old roots now. */
203 spin_lock(&cur_trans->dropped_roots_lock);
204 while (!list_empty(&cur_trans->dropped_roots)) {
205 root = list_first_entry(&cur_trans->dropped_roots,
206 struct btrfs_root, root_list);
207 list_del_init(&root->root_list);
208 spin_unlock(&cur_trans->dropped_roots_lock);
209 btrfs_free_log(trans, root);
210 btrfs_drop_and_free_fs_root(fs_info, root);
211 spin_lock(&cur_trans->dropped_roots_lock);
212 }
213 spin_unlock(&cur_trans->dropped_roots_lock);
214
215 up_write(&fs_info->commit_root_sem);
216}
217
218static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
219 unsigned int type)
220{
221 if (type & TRANS_EXTWRITERS)
222 atomic_inc(&trans->num_extwriters);
223}
224
225static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
226 unsigned int type)
227{
228 if (type & TRANS_EXTWRITERS)
229 atomic_dec(&trans->num_extwriters);
230}
231
232static inline void extwriter_counter_init(struct btrfs_transaction *trans,
233 unsigned int type)
234{
235 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
236}
237
238static inline int extwriter_counter_read(struct btrfs_transaction *trans)
239{
240 return atomic_read(&trans->num_extwriters);
241}
242
243/*
244 * To be called after doing the chunk btree updates right after allocating a new
245 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
246 * chunk after all chunk btree updates and after finishing the second phase of
247 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
248 * group had its chunk item insertion delayed to the second phase.
249 */
250void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
251{
252 struct btrfs_fs_info *fs_info = trans->fs_info;
253
254 if (!trans->chunk_bytes_reserved)
255 return;
256
257 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
258 trans->chunk_bytes_reserved, NULL);
259 trans->chunk_bytes_reserved = 0;
260}
261
262/*
263 * either allocate a new transaction or hop into the existing one
264 */
265static noinline int join_transaction(struct btrfs_fs_info *fs_info,
266 unsigned int type)
267{
268 struct btrfs_transaction *cur_trans;
269
270 spin_lock(&fs_info->trans_lock);
271loop:
272 /* The file system has been taken offline. No new transactions. */
273 if (BTRFS_FS_ERROR(fs_info)) {
274 spin_unlock(&fs_info->trans_lock);
275 return -EROFS;
276 }
277
278 cur_trans = fs_info->running_transaction;
279 if (cur_trans) {
280 if (TRANS_ABORTED(cur_trans)) {
281 spin_unlock(&fs_info->trans_lock);
282 return cur_trans->aborted;
283 }
284 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
285 spin_unlock(&fs_info->trans_lock);
286 return -EBUSY;
287 }
288 refcount_inc(&cur_trans->use_count);
289 atomic_inc(&cur_trans->num_writers);
290 extwriter_counter_inc(cur_trans, type);
291 spin_unlock(&fs_info->trans_lock);
292 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
293 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
294 return 0;
295 }
296 spin_unlock(&fs_info->trans_lock);
297
298 /*
299 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
300 * current transaction, and commit it. If there is no transaction, just
301 * return ENOENT.
302 */
303 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
304 return -ENOENT;
305
306 /*
307 * JOIN_NOLOCK only happens during the transaction commit, so
308 * it is impossible that ->running_transaction is NULL
309 */
310 BUG_ON(type == TRANS_JOIN_NOLOCK);
311
312 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
313 if (!cur_trans)
314 return -ENOMEM;
315
316 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
317 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
318
319 spin_lock(&fs_info->trans_lock);
320 if (fs_info->running_transaction) {
321 /*
322 * someone started a transaction after we unlocked. Make sure
323 * to redo the checks above
324 */
325 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
326 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
327 kfree(cur_trans);
328 goto loop;
329 } else if (BTRFS_FS_ERROR(fs_info)) {
330 spin_unlock(&fs_info->trans_lock);
331 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
332 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
333 kfree(cur_trans);
334 return -EROFS;
335 }
336
337 cur_trans->fs_info = fs_info;
338 atomic_set(&cur_trans->pending_ordered, 0);
339 init_waitqueue_head(&cur_trans->pending_wait);
340 atomic_set(&cur_trans->num_writers, 1);
341 extwriter_counter_init(cur_trans, type);
342 init_waitqueue_head(&cur_trans->writer_wait);
343 init_waitqueue_head(&cur_trans->commit_wait);
344 cur_trans->state = TRANS_STATE_RUNNING;
345 /*
346 * One for this trans handle, one so it will live on until we
347 * commit the transaction.
348 */
349 refcount_set(&cur_trans->use_count, 2);
350 cur_trans->flags = 0;
351 cur_trans->start_time = ktime_get_seconds();
352
353 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
354
355 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
356 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
357 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
358
359 /*
360 * although the tree mod log is per file system and not per transaction,
361 * the log must never go across transaction boundaries.
362 */
363 smp_mb();
364 if (!list_empty(&fs_info->tree_mod_seq_list))
365 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
366 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
367 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
368 atomic64_set(&fs_info->tree_mod_seq, 0);
369
370 spin_lock_init(&cur_trans->delayed_refs.lock);
371
372 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
373 INIT_LIST_HEAD(&cur_trans->dev_update_list);
374 INIT_LIST_HEAD(&cur_trans->switch_commits);
375 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
376 INIT_LIST_HEAD(&cur_trans->io_bgs);
377 INIT_LIST_HEAD(&cur_trans->dropped_roots);
378 mutex_init(&cur_trans->cache_write_mutex);
379 spin_lock_init(&cur_trans->dirty_bgs_lock);
380 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
381 spin_lock_init(&cur_trans->dropped_roots_lock);
382 list_add_tail(&cur_trans->list, &fs_info->trans_list);
383 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
384 IO_TREE_TRANS_DIRTY_PAGES);
385 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
386 IO_TREE_FS_PINNED_EXTENTS);
387 btrfs_set_fs_generation(fs_info, fs_info->generation + 1);
388 cur_trans->transid = fs_info->generation;
389 fs_info->running_transaction = cur_trans;
390 cur_trans->aborted = 0;
391 spin_unlock(&fs_info->trans_lock);
392
393 return 0;
394}
395
396/*
397 * This does all the record keeping required to make sure that a shareable root
398 * is properly recorded in a given transaction. This is required to make sure
399 * the old root from before we joined the transaction is deleted when the
400 * transaction commits.
401 */
402static int record_root_in_trans(struct btrfs_trans_handle *trans,
403 struct btrfs_root *root,
404 int force)
405{
406 struct btrfs_fs_info *fs_info = root->fs_info;
407 int ret = 0;
408
409 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
410 root->last_trans < trans->transid) || force) {
411 WARN_ON(!force && root->commit_root != root->node);
412
413 /*
414 * see below for IN_TRANS_SETUP usage rules
415 * we have the reloc mutex held now, so there
416 * is only one writer in this function
417 */
418 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
419
420 /* make sure readers find IN_TRANS_SETUP before
421 * they find our root->last_trans update
422 */
423 smp_wmb();
424
425 spin_lock(&fs_info->fs_roots_radix_lock);
426 if (root->last_trans == trans->transid && !force) {
427 spin_unlock(&fs_info->fs_roots_radix_lock);
428 return 0;
429 }
430 radix_tree_tag_set(&fs_info->fs_roots_radix,
431 (unsigned long)root->root_key.objectid,
432 BTRFS_ROOT_TRANS_TAG);
433 spin_unlock(&fs_info->fs_roots_radix_lock);
434 root->last_trans = trans->transid;
435
436 /* this is pretty tricky. We don't want to
437 * take the relocation lock in btrfs_record_root_in_trans
438 * unless we're really doing the first setup for this root in
439 * this transaction.
440 *
441 * Normally we'd use root->last_trans as a flag to decide
442 * if we want to take the expensive mutex.
443 *
444 * But, we have to set root->last_trans before we
445 * init the relocation root, otherwise, we trip over warnings
446 * in ctree.c. The solution used here is to flag ourselves
447 * with root IN_TRANS_SETUP. When this is 1, we're still
448 * fixing up the reloc trees and everyone must wait.
449 *
450 * When this is zero, they can trust root->last_trans and fly
451 * through btrfs_record_root_in_trans without having to take the
452 * lock. smp_wmb() makes sure that all the writes above are
453 * done before we pop in the zero below
454 */
455 ret = btrfs_init_reloc_root(trans, root);
456 smp_mb__before_atomic();
457 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
458 }
459 return ret;
460}
461
462
463void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
464 struct btrfs_root *root)
465{
466 struct btrfs_fs_info *fs_info = root->fs_info;
467 struct btrfs_transaction *cur_trans = trans->transaction;
468
469 /* Add ourselves to the transaction dropped list */
470 spin_lock(&cur_trans->dropped_roots_lock);
471 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
472 spin_unlock(&cur_trans->dropped_roots_lock);
473
474 /* Make sure we don't try to update the root at commit time */
475 spin_lock(&fs_info->fs_roots_radix_lock);
476 radix_tree_tag_clear(&fs_info->fs_roots_radix,
477 (unsigned long)root->root_key.objectid,
478 BTRFS_ROOT_TRANS_TAG);
479 spin_unlock(&fs_info->fs_roots_radix_lock);
480}
481
482int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
483 struct btrfs_root *root)
484{
485 struct btrfs_fs_info *fs_info = root->fs_info;
486 int ret;
487
488 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
489 return 0;
490
491 /*
492 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
493 * and barriers
494 */
495 smp_rmb();
496 if (root->last_trans == trans->transid &&
497 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
498 return 0;
499
500 mutex_lock(&fs_info->reloc_mutex);
501 ret = record_root_in_trans(trans, root, 0);
502 mutex_unlock(&fs_info->reloc_mutex);
503
504 return ret;
505}
506
507static inline int is_transaction_blocked(struct btrfs_transaction *trans)
508{
509 return (trans->state >= TRANS_STATE_COMMIT_START &&
510 trans->state < TRANS_STATE_UNBLOCKED &&
511 !TRANS_ABORTED(trans));
512}
513
514/* wait for commit against the current transaction to become unblocked
515 * when this is done, it is safe to start a new transaction, but the current
516 * transaction might not be fully on disk.
517 */
518static void wait_current_trans(struct btrfs_fs_info *fs_info)
519{
520 struct btrfs_transaction *cur_trans;
521
522 spin_lock(&fs_info->trans_lock);
523 cur_trans = fs_info->running_transaction;
524 if (cur_trans && is_transaction_blocked(cur_trans)) {
525 refcount_inc(&cur_trans->use_count);
526 spin_unlock(&fs_info->trans_lock);
527
528 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
529 wait_event(fs_info->transaction_wait,
530 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
531 TRANS_ABORTED(cur_trans));
532 btrfs_put_transaction(cur_trans);
533 } else {
534 spin_unlock(&fs_info->trans_lock);
535 }
536}
537
538static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
539{
540 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
541 return 0;
542
543 if (type == TRANS_START)
544 return 1;
545
546 return 0;
547}
548
549static inline bool need_reserve_reloc_root(struct btrfs_root *root)
550{
551 struct btrfs_fs_info *fs_info = root->fs_info;
552
553 if (!fs_info->reloc_ctl ||
554 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
555 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
556 root->reloc_root)
557 return false;
558
559 return true;
560}
561
562static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
563 enum btrfs_reserve_flush_enum flush,
564 u64 num_bytes,
565 u64 *delayed_refs_bytes)
566{
567 struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
568 u64 bytes = num_bytes + *delayed_refs_bytes;
569 int ret;
570
571 /*
572 * We want to reserve all the bytes we may need all at once, so we only
573 * do 1 enospc flushing cycle per transaction start.
574 */
575 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
576
577 /*
578 * If we are an emergency flush, which can steal from the global block
579 * reserve, then attempt to not reserve space for the delayed refs, as
580 * we will consume space for them from the global block reserve.
581 */
582 if (ret && flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
583 bytes -= *delayed_refs_bytes;
584 *delayed_refs_bytes = 0;
585 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
586 }
587
588 return ret;
589}
590
591static struct btrfs_trans_handle *
592start_transaction(struct btrfs_root *root, unsigned int num_items,
593 unsigned int type, enum btrfs_reserve_flush_enum flush,
594 bool enforce_qgroups)
595{
596 struct btrfs_fs_info *fs_info = root->fs_info;
597 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
598 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
599 struct btrfs_trans_handle *h;
600 struct btrfs_transaction *cur_trans;
601 u64 num_bytes = 0;
602 u64 qgroup_reserved = 0;
603 u64 delayed_refs_bytes = 0;
604 bool reloc_reserved = false;
605 bool do_chunk_alloc = false;
606 int ret;
607
608 if (BTRFS_FS_ERROR(fs_info))
609 return ERR_PTR(-EROFS);
610
611 if (current->journal_info) {
612 WARN_ON(type & TRANS_EXTWRITERS);
613 h = current->journal_info;
614 refcount_inc(&h->use_count);
615 WARN_ON(refcount_read(&h->use_count) > 2);
616 h->orig_rsv = h->block_rsv;
617 h->block_rsv = NULL;
618 goto got_it;
619 }
620
621 /*
622 * Do the reservation before we join the transaction so we can do all
623 * the appropriate flushing if need be.
624 */
625 if (num_items && root != fs_info->chunk_root) {
626 qgroup_reserved = num_items * fs_info->nodesize;
627 /*
628 * Use prealloc for now, as there might be a currently running
629 * transaction that could free this reserved space prematurely
630 * by committing.
631 */
632 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
633 enforce_qgroups, false);
634 if (ret)
635 return ERR_PTR(ret);
636
637 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
638 /*
639 * If we plan to insert/update/delete "num_items" from a btree,
640 * we will also generate delayed refs for extent buffers in the
641 * respective btree paths, so reserve space for the delayed refs
642 * that will be generated by the caller as it modifies btrees.
643 * Try to reserve them to avoid excessive use of the global
644 * block reserve.
645 */
646 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items);
647
648 /*
649 * Do the reservation for the relocation root creation
650 */
651 if (need_reserve_reloc_root(root)) {
652 num_bytes += fs_info->nodesize;
653 reloc_reserved = true;
654 }
655
656 ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
657 &delayed_refs_bytes);
658 if (ret)
659 goto reserve_fail;
660
661 btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true);
662
663 if (trans_rsv->space_info->force_alloc)
664 do_chunk_alloc = true;
665 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
666 !btrfs_block_rsv_full(delayed_refs_rsv)) {
667 /*
668 * Some people call with btrfs_start_transaction(root, 0)
669 * because they can be throttled, but have some other mechanism
670 * for reserving space. We still want these guys to refill the
671 * delayed block_rsv so just add 1 items worth of reservation
672 * here.
673 */
674 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
675 if (ret)
676 goto reserve_fail;
677 }
678again:
679 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
680 if (!h) {
681 ret = -ENOMEM;
682 goto alloc_fail;
683 }
684
685 /*
686 * If we are JOIN_NOLOCK we're already committing a transaction and
687 * waiting on this guy, so we don't need to do the sb_start_intwrite
688 * because we're already holding a ref. We need this because we could
689 * have raced in and did an fsync() on a file which can kick a commit
690 * and then we deadlock with somebody doing a freeze.
691 *
692 * If we are ATTACH, it means we just want to catch the current
693 * transaction and commit it, so we needn't do sb_start_intwrite().
694 */
695 if (type & __TRANS_FREEZABLE)
696 sb_start_intwrite(fs_info->sb);
697
698 if (may_wait_transaction(fs_info, type))
699 wait_current_trans(fs_info);
700
701 do {
702 ret = join_transaction(fs_info, type);
703 if (ret == -EBUSY) {
704 wait_current_trans(fs_info);
705 if (unlikely(type == TRANS_ATTACH ||
706 type == TRANS_JOIN_NOSTART))
707 ret = -ENOENT;
708 }
709 } while (ret == -EBUSY);
710
711 if (ret < 0)
712 goto join_fail;
713
714 cur_trans = fs_info->running_transaction;
715
716 h->transid = cur_trans->transid;
717 h->transaction = cur_trans;
718 refcount_set(&h->use_count, 1);
719 h->fs_info = root->fs_info;
720
721 h->type = type;
722 INIT_LIST_HEAD(&h->new_bgs);
723 btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS);
724
725 smp_mb();
726 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
727 may_wait_transaction(fs_info, type)) {
728 current->journal_info = h;
729 btrfs_commit_transaction(h);
730 goto again;
731 }
732
733 if (num_bytes) {
734 trace_btrfs_space_reservation(fs_info, "transaction",
735 h->transid, num_bytes, 1);
736 h->block_rsv = trans_rsv;
737 h->bytes_reserved = num_bytes;
738 if (delayed_refs_bytes > 0) {
739 trace_btrfs_space_reservation(fs_info,
740 "local_delayed_refs_rsv",
741 h->transid,
742 delayed_refs_bytes, 1);
743 h->delayed_refs_bytes_reserved = delayed_refs_bytes;
744 btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true);
745 delayed_refs_bytes = 0;
746 }
747 h->reloc_reserved = reloc_reserved;
748 }
749
750 /*
751 * Now that we have found a transaction to be a part of, convert the
752 * qgroup reservation from prealloc to pertrans. A different transaction
753 * can't race in and free our pertrans out from under us.
754 */
755 if (qgroup_reserved)
756 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
757
758got_it:
759 if (!current->journal_info)
760 current->journal_info = h;
761
762 /*
763 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
764 * ALLOC_FORCE the first run through, and then we won't allocate for
765 * anybody else who races in later. We don't care about the return
766 * value here.
767 */
768 if (do_chunk_alloc && num_bytes) {
769 u64 flags = h->block_rsv->space_info->flags;
770
771 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
772 CHUNK_ALLOC_NO_FORCE);
773 }
774
775 /*
776 * btrfs_record_root_in_trans() needs to alloc new extents, and may
777 * call btrfs_join_transaction() while we're also starting a
778 * transaction.
779 *
780 * Thus it need to be called after current->journal_info initialized,
781 * or we can deadlock.
782 */
783 ret = btrfs_record_root_in_trans(h, root);
784 if (ret) {
785 /*
786 * The transaction handle is fully initialized and linked with
787 * other structures so it needs to be ended in case of errors,
788 * not just freed.
789 */
790 btrfs_end_transaction(h);
791 return ERR_PTR(ret);
792 }
793
794 return h;
795
796join_fail:
797 if (type & __TRANS_FREEZABLE)
798 sb_end_intwrite(fs_info->sb);
799 kmem_cache_free(btrfs_trans_handle_cachep, h);
800alloc_fail:
801 if (num_bytes)
802 btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL);
803 if (delayed_refs_bytes)
804 btrfs_space_info_free_bytes_may_use(fs_info, trans_rsv->space_info,
805 delayed_refs_bytes);
806reserve_fail:
807 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
808 return ERR_PTR(ret);
809}
810
811struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
812 unsigned int num_items)
813{
814 return start_transaction(root, num_items, TRANS_START,
815 BTRFS_RESERVE_FLUSH_ALL, true);
816}
817
818struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
819 struct btrfs_root *root,
820 unsigned int num_items)
821{
822 return start_transaction(root, num_items, TRANS_START,
823 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
824}
825
826struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
827{
828 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
829 true);
830}
831
832struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
833{
834 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
835 BTRFS_RESERVE_NO_FLUSH, true);
836}
837
838/*
839 * Similar to regular join but it never starts a transaction when none is
840 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
841 * This is similar to btrfs_attach_transaction() but it allows the join to
842 * happen if the transaction commit already started but it's not yet in the
843 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
844 */
845struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
846{
847 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
848 BTRFS_RESERVE_NO_FLUSH, true);
849}
850
851/*
852 * Catch the running transaction.
853 *
854 * It is used when we want to commit the current the transaction, but
855 * don't want to start a new one.
856 *
857 * Note: If this function return -ENOENT, it just means there is no
858 * running transaction. But it is possible that the inactive transaction
859 * is still in the memory, not fully on disk. If you hope there is no
860 * inactive transaction in the fs when -ENOENT is returned, you should
861 * invoke
862 * btrfs_attach_transaction_barrier()
863 */
864struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
865{
866 return start_transaction(root, 0, TRANS_ATTACH,
867 BTRFS_RESERVE_NO_FLUSH, true);
868}
869
870/*
871 * Catch the running transaction.
872 *
873 * It is similar to the above function, the difference is this one
874 * will wait for all the inactive transactions until they fully
875 * complete.
876 */
877struct btrfs_trans_handle *
878btrfs_attach_transaction_barrier(struct btrfs_root *root)
879{
880 struct btrfs_trans_handle *trans;
881
882 trans = start_transaction(root, 0, TRANS_ATTACH,
883 BTRFS_RESERVE_NO_FLUSH, true);
884 if (trans == ERR_PTR(-ENOENT)) {
885 int ret;
886
887 ret = btrfs_wait_for_commit(root->fs_info, 0);
888 if (ret)
889 return ERR_PTR(ret);
890 }
891
892 return trans;
893}
894
895/* Wait for a transaction commit to reach at least the given state. */
896static noinline void wait_for_commit(struct btrfs_transaction *commit,
897 const enum btrfs_trans_state min_state)
898{
899 struct btrfs_fs_info *fs_info = commit->fs_info;
900 u64 transid = commit->transid;
901 bool put = false;
902
903 /*
904 * At the moment this function is called with min_state either being
905 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
906 */
907 if (min_state == TRANS_STATE_COMPLETED)
908 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
909 else
910 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
911
912 while (1) {
913 wait_event(commit->commit_wait, commit->state >= min_state);
914 if (put)
915 btrfs_put_transaction(commit);
916
917 if (min_state < TRANS_STATE_COMPLETED)
918 break;
919
920 /*
921 * A transaction isn't really completed until all of the
922 * previous transactions are completed, but with fsync we can
923 * end up with SUPER_COMMITTED transactions before a COMPLETED
924 * transaction. Wait for those.
925 */
926
927 spin_lock(&fs_info->trans_lock);
928 commit = list_first_entry_or_null(&fs_info->trans_list,
929 struct btrfs_transaction,
930 list);
931 if (!commit || commit->transid > transid) {
932 spin_unlock(&fs_info->trans_lock);
933 break;
934 }
935 refcount_inc(&commit->use_count);
936 put = true;
937 spin_unlock(&fs_info->trans_lock);
938 }
939}
940
941int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
942{
943 struct btrfs_transaction *cur_trans = NULL, *t;
944 int ret = 0;
945
946 if (transid) {
947 if (transid <= btrfs_get_last_trans_committed(fs_info))
948 goto out;
949
950 /* find specified transaction */
951 spin_lock(&fs_info->trans_lock);
952 list_for_each_entry(t, &fs_info->trans_list, list) {
953 if (t->transid == transid) {
954 cur_trans = t;
955 refcount_inc(&cur_trans->use_count);
956 ret = 0;
957 break;
958 }
959 if (t->transid > transid) {
960 ret = 0;
961 break;
962 }
963 }
964 spin_unlock(&fs_info->trans_lock);
965
966 /*
967 * The specified transaction doesn't exist, or we
968 * raced with btrfs_commit_transaction
969 */
970 if (!cur_trans) {
971 if (transid > btrfs_get_last_trans_committed(fs_info))
972 ret = -EINVAL;
973 goto out;
974 }
975 } else {
976 /* find newest transaction that is committing | committed */
977 spin_lock(&fs_info->trans_lock);
978 list_for_each_entry_reverse(t, &fs_info->trans_list,
979 list) {
980 if (t->state >= TRANS_STATE_COMMIT_START) {
981 if (t->state == TRANS_STATE_COMPLETED)
982 break;
983 cur_trans = t;
984 refcount_inc(&cur_trans->use_count);
985 break;
986 }
987 }
988 spin_unlock(&fs_info->trans_lock);
989 if (!cur_trans)
990 goto out; /* nothing committing|committed */
991 }
992
993 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
994 ret = cur_trans->aborted;
995 btrfs_put_transaction(cur_trans);
996out:
997 return ret;
998}
999
1000void btrfs_throttle(struct btrfs_fs_info *fs_info)
1001{
1002 wait_current_trans(fs_info);
1003}
1004
1005bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
1006{
1007 struct btrfs_transaction *cur_trans = trans->transaction;
1008
1009 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
1010 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
1011 return true;
1012
1013 if (btrfs_check_space_for_delayed_refs(trans->fs_info))
1014 return true;
1015
1016 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
1017}
1018
1019static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1020
1021{
1022 struct btrfs_fs_info *fs_info = trans->fs_info;
1023
1024 if (!trans->block_rsv) {
1025 ASSERT(!trans->bytes_reserved);
1026 ASSERT(!trans->delayed_refs_bytes_reserved);
1027 return;
1028 }
1029
1030 if (!trans->bytes_reserved) {
1031 ASSERT(!trans->delayed_refs_bytes_reserved);
1032 return;
1033 }
1034
1035 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1036 trace_btrfs_space_reservation(fs_info, "transaction",
1037 trans->transid, trans->bytes_reserved, 0);
1038 btrfs_block_rsv_release(fs_info, trans->block_rsv,
1039 trans->bytes_reserved, NULL);
1040 trans->bytes_reserved = 0;
1041
1042 if (!trans->delayed_refs_bytes_reserved)
1043 return;
1044
1045 trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv",
1046 trans->transid,
1047 trans->delayed_refs_bytes_reserved, 0);
1048 btrfs_block_rsv_release(fs_info, &trans->delayed_rsv,
1049 trans->delayed_refs_bytes_reserved, NULL);
1050 trans->delayed_refs_bytes_reserved = 0;
1051}
1052
1053static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1054 int throttle)
1055{
1056 struct btrfs_fs_info *info = trans->fs_info;
1057 struct btrfs_transaction *cur_trans = trans->transaction;
1058 int err = 0;
1059
1060 if (refcount_read(&trans->use_count) > 1) {
1061 refcount_dec(&trans->use_count);
1062 trans->block_rsv = trans->orig_rsv;
1063 return 0;
1064 }
1065
1066 btrfs_trans_release_metadata(trans);
1067 trans->block_rsv = NULL;
1068
1069 btrfs_create_pending_block_groups(trans);
1070
1071 btrfs_trans_release_chunk_metadata(trans);
1072
1073 if (trans->type & __TRANS_FREEZABLE)
1074 sb_end_intwrite(info->sb);
1075
1076 WARN_ON(cur_trans != info->running_transaction);
1077 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1078 atomic_dec(&cur_trans->num_writers);
1079 extwriter_counter_dec(cur_trans, trans->type);
1080
1081 cond_wake_up(&cur_trans->writer_wait);
1082
1083 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1084 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1085
1086 btrfs_put_transaction(cur_trans);
1087
1088 if (current->journal_info == trans)
1089 current->journal_info = NULL;
1090
1091 if (throttle)
1092 btrfs_run_delayed_iputs(info);
1093
1094 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1095 wake_up_process(info->transaction_kthread);
1096 if (TRANS_ABORTED(trans))
1097 err = trans->aborted;
1098 else
1099 err = -EROFS;
1100 }
1101
1102 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1103 return err;
1104}
1105
1106int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1107{
1108 return __btrfs_end_transaction(trans, 0);
1109}
1110
1111int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1112{
1113 return __btrfs_end_transaction(trans, 1);
1114}
1115
1116/*
1117 * when btree blocks are allocated, they have some corresponding bits set for
1118 * them in one of two extent_io trees. This is used to make sure all of
1119 * those extents are sent to disk but does not wait on them
1120 */
1121int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1122 struct extent_io_tree *dirty_pages, int mark)
1123{
1124 int err = 0;
1125 int werr = 0;
1126 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1127 struct extent_state *cached_state = NULL;
1128 u64 start = 0;
1129 u64 end;
1130
1131 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1132 mark, &cached_state)) {
1133 bool wait_writeback = false;
1134
1135 err = convert_extent_bit(dirty_pages, start, end,
1136 EXTENT_NEED_WAIT,
1137 mark, &cached_state);
1138 /*
1139 * convert_extent_bit can return -ENOMEM, which is most of the
1140 * time a temporary error. So when it happens, ignore the error
1141 * and wait for writeback of this range to finish - because we
1142 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1143 * to __btrfs_wait_marked_extents() would not know that
1144 * writeback for this range started and therefore wouldn't
1145 * wait for it to finish - we don't want to commit a
1146 * superblock that points to btree nodes/leafs for which
1147 * writeback hasn't finished yet (and without errors).
1148 * We cleanup any entries left in the io tree when committing
1149 * the transaction (through extent_io_tree_release()).
1150 */
1151 if (err == -ENOMEM) {
1152 err = 0;
1153 wait_writeback = true;
1154 }
1155 if (!err)
1156 err = filemap_fdatawrite_range(mapping, start, end);
1157 if (err)
1158 werr = err;
1159 else if (wait_writeback)
1160 werr = filemap_fdatawait_range(mapping, start, end);
1161 free_extent_state(cached_state);
1162 cached_state = NULL;
1163 cond_resched();
1164 start = end + 1;
1165 }
1166 return werr;
1167}
1168
1169/*
1170 * when btree blocks are allocated, they have some corresponding bits set for
1171 * them in one of two extent_io trees. This is used to make sure all of
1172 * those extents are on disk for transaction or log commit. We wait
1173 * on all the pages and clear them from the dirty pages state tree
1174 */
1175static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1176 struct extent_io_tree *dirty_pages)
1177{
1178 int err = 0;
1179 int werr = 0;
1180 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1181 struct extent_state *cached_state = NULL;
1182 u64 start = 0;
1183 u64 end;
1184
1185 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1186 EXTENT_NEED_WAIT, &cached_state)) {
1187 /*
1188 * Ignore -ENOMEM errors returned by clear_extent_bit().
1189 * When committing the transaction, we'll remove any entries
1190 * left in the io tree. For a log commit, we don't remove them
1191 * after committing the log because the tree can be accessed
1192 * concurrently - we do it only at transaction commit time when
1193 * it's safe to do it (through extent_io_tree_release()).
1194 */
1195 err = clear_extent_bit(dirty_pages, start, end,
1196 EXTENT_NEED_WAIT, &cached_state);
1197 if (err == -ENOMEM)
1198 err = 0;
1199 if (!err)
1200 err = filemap_fdatawait_range(mapping, start, end);
1201 if (err)
1202 werr = err;
1203 free_extent_state(cached_state);
1204 cached_state = NULL;
1205 cond_resched();
1206 start = end + 1;
1207 }
1208 if (err)
1209 werr = err;
1210 return werr;
1211}
1212
1213static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1214 struct extent_io_tree *dirty_pages)
1215{
1216 bool errors = false;
1217 int err;
1218
1219 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1220 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1221 errors = true;
1222
1223 if (errors && !err)
1224 err = -EIO;
1225 return err;
1226}
1227
1228int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1229{
1230 struct btrfs_fs_info *fs_info = log_root->fs_info;
1231 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1232 bool errors = false;
1233 int err;
1234
1235 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1236
1237 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1238 if ((mark & EXTENT_DIRTY) &&
1239 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1240 errors = true;
1241
1242 if ((mark & EXTENT_NEW) &&
1243 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1244 errors = true;
1245
1246 if (errors && !err)
1247 err = -EIO;
1248 return err;
1249}
1250
1251/*
1252 * When btree blocks are allocated the corresponding extents are marked dirty.
1253 * This function ensures such extents are persisted on disk for transaction or
1254 * log commit.
1255 *
1256 * @trans: transaction whose dirty pages we'd like to write
1257 */
1258static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1259{
1260 int ret;
1261 int ret2;
1262 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1263 struct btrfs_fs_info *fs_info = trans->fs_info;
1264 struct blk_plug plug;
1265
1266 blk_start_plug(&plug);
1267 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1268 blk_finish_plug(&plug);
1269 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1270
1271 extent_io_tree_release(&trans->transaction->dirty_pages);
1272
1273 if (ret)
1274 return ret;
1275 else if (ret2)
1276 return ret2;
1277 else
1278 return 0;
1279}
1280
1281/*
1282 * this is used to update the root pointer in the tree of tree roots.
1283 *
1284 * But, in the case of the extent allocation tree, updating the root
1285 * pointer may allocate blocks which may change the root of the extent
1286 * allocation tree.
1287 *
1288 * So, this loops and repeats and makes sure the cowonly root didn't
1289 * change while the root pointer was being updated in the metadata.
1290 */
1291static int update_cowonly_root(struct btrfs_trans_handle *trans,
1292 struct btrfs_root *root)
1293{
1294 int ret;
1295 u64 old_root_bytenr;
1296 u64 old_root_used;
1297 struct btrfs_fs_info *fs_info = root->fs_info;
1298 struct btrfs_root *tree_root = fs_info->tree_root;
1299
1300 old_root_used = btrfs_root_used(&root->root_item);
1301
1302 while (1) {
1303 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1304 if (old_root_bytenr == root->node->start &&
1305 old_root_used == btrfs_root_used(&root->root_item))
1306 break;
1307
1308 btrfs_set_root_node(&root->root_item, root->node);
1309 ret = btrfs_update_root(trans, tree_root,
1310 &root->root_key,
1311 &root->root_item);
1312 if (ret)
1313 return ret;
1314
1315 old_root_used = btrfs_root_used(&root->root_item);
1316 }
1317
1318 return 0;
1319}
1320
1321/*
1322 * update all the cowonly tree roots on disk
1323 *
1324 * The error handling in this function may not be obvious. Any of the
1325 * failures will cause the file system to go offline. We still need
1326 * to clean up the delayed refs.
1327 */
1328static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1329{
1330 struct btrfs_fs_info *fs_info = trans->fs_info;
1331 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1332 struct list_head *io_bgs = &trans->transaction->io_bgs;
1333 struct list_head *next;
1334 struct extent_buffer *eb;
1335 int ret;
1336
1337 /*
1338 * At this point no one can be using this transaction to modify any tree
1339 * and no one can start another transaction to modify any tree either.
1340 */
1341 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1342
1343 eb = btrfs_lock_root_node(fs_info->tree_root);
1344 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1345 0, &eb, BTRFS_NESTING_COW);
1346 btrfs_tree_unlock(eb);
1347 free_extent_buffer(eb);
1348
1349 if (ret)
1350 return ret;
1351
1352 ret = btrfs_run_dev_stats(trans);
1353 if (ret)
1354 return ret;
1355 ret = btrfs_run_dev_replace(trans);
1356 if (ret)
1357 return ret;
1358 ret = btrfs_run_qgroups(trans);
1359 if (ret)
1360 return ret;
1361
1362 ret = btrfs_setup_space_cache(trans);
1363 if (ret)
1364 return ret;
1365
1366again:
1367 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1368 struct btrfs_root *root;
1369 next = fs_info->dirty_cowonly_roots.next;
1370 list_del_init(next);
1371 root = list_entry(next, struct btrfs_root, dirty_list);
1372 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1373
1374 list_add_tail(&root->dirty_list,
1375 &trans->transaction->switch_commits);
1376 ret = update_cowonly_root(trans, root);
1377 if (ret)
1378 return ret;
1379 }
1380
1381 /* Now flush any delayed refs generated by updating all of the roots */
1382 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1383 if (ret)
1384 return ret;
1385
1386 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1387 ret = btrfs_write_dirty_block_groups(trans);
1388 if (ret)
1389 return ret;
1390
1391 /*
1392 * We're writing the dirty block groups, which could generate
1393 * delayed refs, which could generate more dirty block groups,
1394 * so we want to keep this flushing in this loop to make sure
1395 * everything gets run.
1396 */
1397 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1398 if (ret)
1399 return ret;
1400 }
1401
1402 if (!list_empty(&fs_info->dirty_cowonly_roots))
1403 goto again;
1404
1405 /* Update dev-replace pointer once everything is committed */
1406 fs_info->dev_replace.committed_cursor_left =
1407 fs_info->dev_replace.cursor_left_last_write_of_item;
1408
1409 return 0;
1410}
1411
1412/*
1413 * If we had a pending drop we need to see if there are any others left in our
1414 * dead roots list, and if not clear our bit and wake any waiters.
1415 */
1416void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1417{
1418 /*
1419 * We put the drop in progress roots at the front of the list, so if the
1420 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1421 * up.
1422 */
1423 spin_lock(&fs_info->trans_lock);
1424 if (!list_empty(&fs_info->dead_roots)) {
1425 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1426 struct btrfs_root,
1427 root_list);
1428 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1429 spin_unlock(&fs_info->trans_lock);
1430 return;
1431 }
1432 }
1433 spin_unlock(&fs_info->trans_lock);
1434
1435 btrfs_wake_unfinished_drop(fs_info);
1436}
1437
1438/*
1439 * dead roots are old snapshots that need to be deleted. This allocates
1440 * a dirty root struct and adds it into the list of dead roots that need to
1441 * be deleted
1442 */
1443void btrfs_add_dead_root(struct btrfs_root *root)
1444{
1445 struct btrfs_fs_info *fs_info = root->fs_info;
1446
1447 spin_lock(&fs_info->trans_lock);
1448 if (list_empty(&root->root_list)) {
1449 btrfs_grab_root(root);
1450
1451 /* We want to process the partially complete drops first. */
1452 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1453 list_add(&root->root_list, &fs_info->dead_roots);
1454 else
1455 list_add_tail(&root->root_list, &fs_info->dead_roots);
1456 }
1457 spin_unlock(&fs_info->trans_lock);
1458}
1459
1460/*
1461 * Update each subvolume root and its relocation root, if it exists, in the tree
1462 * of tree roots. Also free log roots if they exist.
1463 */
1464static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1465{
1466 struct btrfs_fs_info *fs_info = trans->fs_info;
1467 struct btrfs_root *gang[8];
1468 int i;
1469 int ret;
1470
1471 /*
1472 * At this point no one can be using this transaction to modify any tree
1473 * and no one can start another transaction to modify any tree either.
1474 */
1475 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1476
1477 spin_lock(&fs_info->fs_roots_radix_lock);
1478 while (1) {
1479 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1480 (void **)gang, 0,
1481 ARRAY_SIZE(gang),
1482 BTRFS_ROOT_TRANS_TAG);
1483 if (ret == 0)
1484 break;
1485 for (i = 0; i < ret; i++) {
1486 struct btrfs_root *root = gang[i];
1487 int ret2;
1488
1489 /*
1490 * At this point we can neither have tasks logging inodes
1491 * from a root nor trying to commit a log tree.
1492 */
1493 ASSERT(atomic_read(&root->log_writers) == 0);
1494 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1495 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1496
1497 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1498 (unsigned long)root->root_key.objectid,
1499 BTRFS_ROOT_TRANS_TAG);
1500 spin_unlock(&fs_info->fs_roots_radix_lock);
1501
1502 btrfs_free_log(trans, root);
1503 ret2 = btrfs_update_reloc_root(trans, root);
1504 if (ret2)
1505 return ret2;
1506
1507 /* see comments in should_cow_block() */
1508 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1509 smp_mb__after_atomic();
1510
1511 if (root->commit_root != root->node) {
1512 list_add_tail(&root->dirty_list,
1513 &trans->transaction->switch_commits);
1514 btrfs_set_root_node(&root->root_item,
1515 root->node);
1516 }
1517
1518 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1519 &root->root_key,
1520 &root->root_item);
1521 if (ret2)
1522 return ret2;
1523 spin_lock(&fs_info->fs_roots_radix_lock);
1524 btrfs_qgroup_free_meta_all_pertrans(root);
1525 }
1526 }
1527 spin_unlock(&fs_info->fs_roots_radix_lock);
1528 return 0;
1529}
1530
1531/*
1532 * Do all special snapshot related qgroup dirty hack.
1533 *
1534 * Will do all needed qgroup inherit and dirty hack like switch commit
1535 * roots inside one transaction and write all btree into disk, to make
1536 * qgroup works.
1537 */
1538static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1539 struct btrfs_root *src,
1540 struct btrfs_root *parent,
1541 struct btrfs_qgroup_inherit *inherit,
1542 u64 dst_objectid)
1543{
1544 struct btrfs_fs_info *fs_info = src->fs_info;
1545 int ret;
1546
1547 /*
1548 * Save some performance in the case that qgroups are not enabled. If
1549 * this check races with the ioctl, rescan will kick in anyway.
1550 */
1551 if (!btrfs_qgroup_full_accounting(fs_info))
1552 return 0;
1553
1554 /*
1555 * Ensure dirty @src will be committed. Or, after coming
1556 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1557 * recorded root will never be updated again, causing an outdated root
1558 * item.
1559 */
1560 ret = record_root_in_trans(trans, src, 1);
1561 if (ret)
1562 return ret;
1563
1564 /*
1565 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1566 * src root, so we must run the delayed refs here.
1567 *
1568 * However this isn't particularly fool proof, because there's no
1569 * synchronization keeping us from changing the tree after this point
1570 * before we do the qgroup_inherit, or even from making changes while
1571 * we're doing the qgroup_inherit. But that's a problem for the future,
1572 * for now flush the delayed refs to narrow the race window where the
1573 * qgroup counters could end up wrong.
1574 */
1575 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1576 if (ret) {
1577 btrfs_abort_transaction(trans, ret);
1578 return ret;
1579 }
1580
1581 ret = commit_fs_roots(trans);
1582 if (ret)
1583 goto out;
1584 ret = btrfs_qgroup_account_extents(trans);
1585 if (ret < 0)
1586 goto out;
1587
1588 /* Now qgroup are all updated, we can inherit it to new qgroups */
1589 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1590 parent->root_key.objectid, inherit);
1591 if (ret < 0)
1592 goto out;
1593
1594 /*
1595 * Now we do a simplified commit transaction, which will:
1596 * 1) commit all subvolume and extent tree
1597 * To ensure all subvolume and extent tree have a valid
1598 * commit_root to accounting later insert_dir_item()
1599 * 2) write all btree blocks onto disk
1600 * This is to make sure later btree modification will be cowed
1601 * Or commit_root can be populated and cause wrong qgroup numbers
1602 * In this simplified commit, we don't really care about other trees
1603 * like chunk and root tree, as they won't affect qgroup.
1604 * And we don't write super to avoid half committed status.
1605 */
1606 ret = commit_cowonly_roots(trans);
1607 if (ret)
1608 goto out;
1609 switch_commit_roots(trans);
1610 ret = btrfs_write_and_wait_transaction(trans);
1611 if (ret)
1612 btrfs_handle_fs_error(fs_info, ret,
1613 "Error while writing out transaction for qgroup");
1614
1615out:
1616 /*
1617 * Force parent root to be updated, as we recorded it before so its
1618 * last_trans == cur_transid.
1619 * Or it won't be committed again onto disk after later
1620 * insert_dir_item()
1621 */
1622 if (!ret)
1623 ret = record_root_in_trans(trans, parent, 1);
1624 return ret;
1625}
1626
1627/*
1628 * new snapshots need to be created at a very specific time in the
1629 * transaction commit. This does the actual creation.
1630 *
1631 * Note:
1632 * If the error which may affect the commitment of the current transaction
1633 * happens, we should return the error number. If the error which just affect
1634 * the creation of the pending snapshots, just return 0.
1635 */
1636static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1637 struct btrfs_pending_snapshot *pending)
1638{
1639
1640 struct btrfs_fs_info *fs_info = trans->fs_info;
1641 struct btrfs_key key;
1642 struct btrfs_root_item *new_root_item;
1643 struct btrfs_root *tree_root = fs_info->tree_root;
1644 struct btrfs_root *root = pending->root;
1645 struct btrfs_root *parent_root;
1646 struct btrfs_block_rsv *rsv;
1647 struct inode *parent_inode = pending->dir;
1648 struct btrfs_path *path;
1649 struct btrfs_dir_item *dir_item;
1650 struct extent_buffer *tmp;
1651 struct extent_buffer *old;
1652 struct timespec64 cur_time;
1653 int ret = 0;
1654 u64 to_reserve = 0;
1655 u64 index = 0;
1656 u64 objectid;
1657 u64 root_flags;
1658 unsigned int nofs_flags;
1659 struct fscrypt_name fname;
1660
1661 ASSERT(pending->path);
1662 path = pending->path;
1663
1664 ASSERT(pending->root_item);
1665 new_root_item = pending->root_item;
1666
1667 /*
1668 * We're inside a transaction and must make sure that any potential
1669 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1670 * filesystem.
1671 */
1672 nofs_flags = memalloc_nofs_save();
1673 pending->error = fscrypt_setup_filename(parent_inode,
1674 &pending->dentry->d_name, 0,
1675 &fname);
1676 memalloc_nofs_restore(nofs_flags);
1677 if (pending->error)
1678 goto free_pending;
1679
1680 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1681 if (pending->error)
1682 goto free_fname;
1683
1684 /*
1685 * Make qgroup to skip current new snapshot's qgroupid, as it is
1686 * accounted by later btrfs_qgroup_inherit().
1687 */
1688 btrfs_set_skip_qgroup(trans, objectid);
1689
1690 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1691
1692 if (to_reserve > 0) {
1693 pending->error = btrfs_block_rsv_add(fs_info,
1694 &pending->block_rsv,
1695 to_reserve,
1696 BTRFS_RESERVE_NO_FLUSH);
1697 if (pending->error)
1698 goto clear_skip_qgroup;
1699 }
1700
1701 key.objectid = objectid;
1702 key.offset = (u64)-1;
1703 key.type = BTRFS_ROOT_ITEM_KEY;
1704
1705 rsv = trans->block_rsv;
1706 trans->block_rsv = &pending->block_rsv;
1707 trans->bytes_reserved = trans->block_rsv->reserved;
1708 trace_btrfs_space_reservation(fs_info, "transaction",
1709 trans->transid,
1710 trans->bytes_reserved, 1);
1711 parent_root = BTRFS_I(parent_inode)->root;
1712 ret = record_root_in_trans(trans, parent_root, 0);
1713 if (ret)
1714 goto fail;
1715 cur_time = current_time(parent_inode);
1716
1717 /*
1718 * insert the directory item
1719 */
1720 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1721 if (ret) {
1722 btrfs_abort_transaction(trans, ret);
1723 goto fail;
1724 }
1725
1726 /* check if there is a file/dir which has the same name. */
1727 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1728 btrfs_ino(BTRFS_I(parent_inode)),
1729 &fname.disk_name, 0);
1730 if (dir_item != NULL && !IS_ERR(dir_item)) {
1731 pending->error = -EEXIST;
1732 goto dir_item_existed;
1733 } else if (IS_ERR(dir_item)) {
1734 ret = PTR_ERR(dir_item);
1735 btrfs_abort_transaction(trans, ret);
1736 goto fail;
1737 }
1738 btrfs_release_path(path);
1739
1740 ret = btrfs_create_qgroup(trans, objectid);
1741 if (ret && ret != -EEXIST) {
1742 btrfs_abort_transaction(trans, ret);
1743 goto fail;
1744 }
1745
1746 /*
1747 * pull in the delayed directory update
1748 * and the delayed inode item
1749 * otherwise we corrupt the FS during
1750 * snapshot
1751 */
1752 ret = btrfs_run_delayed_items(trans);
1753 if (ret) { /* Transaction aborted */
1754 btrfs_abort_transaction(trans, ret);
1755 goto fail;
1756 }
1757
1758 ret = record_root_in_trans(trans, root, 0);
1759 if (ret) {
1760 btrfs_abort_transaction(trans, ret);
1761 goto fail;
1762 }
1763 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1764 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1765 btrfs_check_and_init_root_item(new_root_item);
1766
1767 root_flags = btrfs_root_flags(new_root_item);
1768 if (pending->readonly)
1769 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1770 else
1771 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1772 btrfs_set_root_flags(new_root_item, root_flags);
1773
1774 btrfs_set_root_generation_v2(new_root_item,
1775 trans->transid);
1776 generate_random_guid(new_root_item->uuid);
1777 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1778 BTRFS_UUID_SIZE);
1779 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1780 memset(new_root_item->received_uuid, 0,
1781 sizeof(new_root_item->received_uuid));
1782 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1783 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1784 btrfs_set_root_stransid(new_root_item, 0);
1785 btrfs_set_root_rtransid(new_root_item, 0);
1786 }
1787 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1788 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1789 btrfs_set_root_otransid(new_root_item, trans->transid);
1790
1791 old = btrfs_lock_root_node(root);
1792 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1793 BTRFS_NESTING_COW);
1794 if (ret) {
1795 btrfs_tree_unlock(old);
1796 free_extent_buffer(old);
1797 btrfs_abort_transaction(trans, ret);
1798 goto fail;
1799 }
1800
1801 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1802 /* clean up in any case */
1803 btrfs_tree_unlock(old);
1804 free_extent_buffer(old);
1805 if (ret) {
1806 btrfs_abort_transaction(trans, ret);
1807 goto fail;
1808 }
1809 /* see comments in should_cow_block() */
1810 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1811 smp_wmb();
1812
1813 btrfs_set_root_node(new_root_item, tmp);
1814 /* record when the snapshot was created in key.offset */
1815 key.offset = trans->transid;
1816 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1817 btrfs_tree_unlock(tmp);
1818 free_extent_buffer(tmp);
1819 if (ret) {
1820 btrfs_abort_transaction(trans, ret);
1821 goto fail;
1822 }
1823
1824 /*
1825 * insert root back/forward references
1826 */
1827 ret = btrfs_add_root_ref(trans, objectid,
1828 parent_root->root_key.objectid,
1829 btrfs_ino(BTRFS_I(parent_inode)), index,
1830 &fname.disk_name);
1831 if (ret) {
1832 btrfs_abort_transaction(trans, ret);
1833 goto fail;
1834 }
1835
1836 key.offset = (u64)-1;
1837 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev);
1838 if (IS_ERR(pending->snap)) {
1839 ret = PTR_ERR(pending->snap);
1840 pending->snap = NULL;
1841 btrfs_abort_transaction(trans, ret);
1842 goto fail;
1843 }
1844
1845 ret = btrfs_reloc_post_snapshot(trans, pending);
1846 if (ret) {
1847 btrfs_abort_transaction(trans, ret);
1848 goto fail;
1849 }
1850
1851 /*
1852 * Do special qgroup accounting for snapshot, as we do some qgroup
1853 * snapshot hack to do fast snapshot.
1854 * To co-operate with that hack, we do hack again.
1855 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1856 */
1857 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1858 ret = qgroup_account_snapshot(trans, root, parent_root,
1859 pending->inherit, objectid);
1860 else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
1861 ret = btrfs_qgroup_inherit(trans, root->root_key.objectid, objectid,
1862 parent_root->root_key.objectid, pending->inherit);
1863 if (ret < 0)
1864 goto fail;
1865
1866 ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1867 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1868 index);
1869 /* We have check then name at the beginning, so it is impossible. */
1870 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1871 if (ret) {
1872 btrfs_abort_transaction(trans, ret);
1873 goto fail;
1874 }
1875
1876 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1877 fname.disk_name.len * 2);
1878 inode_set_mtime_to_ts(parent_inode,
1879 inode_set_ctime_current(parent_inode));
1880 ret = btrfs_update_inode_fallback(trans, BTRFS_I(parent_inode));
1881 if (ret) {
1882 btrfs_abort_transaction(trans, ret);
1883 goto fail;
1884 }
1885 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1886 BTRFS_UUID_KEY_SUBVOL,
1887 objectid);
1888 if (ret) {
1889 btrfs_abort_transaction(trans, ret);
1890 goto fail;
1891 }
1892 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1893 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1894 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1895 objectid);
1896 if (ret && ret != -EEXIST) {
1897 btrfs_abort_transaction(trans, ret);
1898 goto fail;
1899 }
1900 }
1901
1902fail:
1903 pending->error = ret;
1904dir_item_existed:
1905 trans->block_rsv = rsv;
1906 trans->bytes_reserved = 0;
1907clear_skip_qgroup:
1908 btrfs_clear_skip_qgroup(trans);
1909free_fname:
1910 fscrypt_free_filename(&fname);
1911free_pending:
1912 kfree(new_root_item);
1913 pending->root_item = NULL;
1914 btrfs_free_path(path);
1915 pending->path = NULL;
1916
1917 return ret;
1918}
1919
1920/*
1921 * create all the snapshots we've scheduled for creation
1922 */
1923static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1924{
1925 struct btrfs_pending_snapshot *pending, *next;
1926 struct list_head *head = &trans->transaction->pending_snapshots;
1927 int ret = 0;
1928
1929 list_for_each_entry_safe(pending, next, head, list) {
1930 list_del(&pending->list);
1931 ret = create_pending_snapshot(trans, pending);
1932 if (ret)
1933 break;
1934 }
1935 return ret;
1936}
1937
1938static void update_super_roots(struct btrfs_fs_info *fs_info)
1939{
1940 struct btrfs_root_item *root_item;
1941 struct btrfs_super_block *super;
1942
1943 super = fs_info->super_copy;
1944
1945 root_item = &fs_info->chunk_root->root_item;
1946 super->chunk_root = root_item->bytenr;
1947 super->chunk_root_generation = root_item->generation;
1948 super->chunk_root_level = root_item->level;
1949
1950 root_item = &fs_info->tree_root->root_item;
1951 super->root = root_item->bytenr;
1952 super->generation = root_item->generation;
1953 super->root_level = root_item->level;
1954 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1955 super->cache_generation = root_item->generation;
1956 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1957 super->cache_generation = 0;
1958 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1959 super->uuid_tree_generation = root_item->generation;
1960}
1961
1962int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1963{
1964 struct btrfs_transaction *trans;
1965 int ret = 0;
1966
1967 spin_lock(&info->trans_lock);
1968 trans = info->running_transaction;
1969 if (trans)
1970 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1971 spin_unlock(&info->trans_lock);
1972 return ret;
1973}
1974
1975int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1976{
1977 struct btrfs_transaction *trans;
1978 int ret = 0;
1979
1980 spin_lock(&info->trans_lock);
1981 trans = info->running_transaction;
1982 if (trans)
1983 ret = is_transaction_blocked(trans);
1984 spin_unlock(&info->trans_lock);
1985 return ret;
1986}
1987
1988void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1989{
1990 struct btrfs_fs_info *fs_info = trans->fs_info;
1991 struct btrfs_transaction *cur_trans;
1992
1993 /* Kick the transaction kthread. */
1994 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1995 wake_up_process(fs_info->transaction_kthread);
1996
1997 /* take transaction reference */
1998 cur_trans = trans->transaction;
1999 refcount_inc(&cur_trans->use_count);
2000
2001 btrfs_end_transaction(trans);
2002
2003 /*
2004 * Wait for the current transaction commit to start and block
2005 * subsequent transaction joins
2006 */
2007 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2008 wait_event(fs_info->transaction_blocked_wait,
2009 cur_trans->state >= TRANS_STATE_COMMIT_START ||
2010 TRANS_ABORTED(cur_trans));
2011 btrfs_put_transaction(cur_trans);
2012}
2013
2014static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
2015{
2016 struct btrfs_fs_info *fs_info = trans->fs_info;
2017 struct btrfs_transaction *cur_trans = trans->transaction;
2018
2019 WARN_ON(refcount_read(&trans->use_count) > 1);
2020
2021 btrfs_abort_transaction(trans, err);
2022
2023 spin_lock(&fs_info->trans_lock);
2024
2025 /*
2026 * If the transaction is removed from the list, it means this
2027 * transaction has been committed successfully, so it is impossible
2028 * to call the cleanup function.
2029 */
2030 BUG_ON(list_empty(&cur_trans->list));
2031
2032 if (cur_trans == fs_info->running_transaction) {
2033 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2034 spin_unlock(&fs_info->trans_lock);
2035
2036 /*
2037 * The thread has already released the lockdep map as reader
2038 * already in btrfs_commit_transaction().
2039 */
2040 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2041 wait_event(cur_trans->writer_wait,
2042 atomic_read(&cur_trans->num_writers) == 1);
2043
2044 spin_lock(&fs_info->trans_lock);
2045 }
2046
2047 /*
2048 * Now that we know no one else is still using the transaction we can
2049 * remove the transaction from the list of transactions. This avoids
2050 * the transaction kthread from cleaning up the transaction while some
2051 * other task is still using it, which could result in a use-after-free
2052 * on things like log trees, as it forces the transaction kthread to
2053 * wait for this transaction to be cleaned up by us.
2054 */
2055 list_del_init(&cur_trans->list);
2056
2057 spin_unlock(&fs_info->trans_lock);
2058
2059 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2060
2061 spin_lock(&fs_info->trans_lock);
2062 if (cur_trans == fs_info->running_transaction)
2063 fs_info->running_transaction = NULL;
2064 spin_unlock(&fs_info->trans_lock);
2065
2066 if (trans->type & __TRANS_FREEZABLE)
2067 sb_end_intwrite(fs_info->sb);
2068 btrfs_put_transaction(cur_trans);
2069 btrfs_put_transaction(cur_trans);
2070
2071 trace_btrfs_transaction_commit(fs_info);
2072
2073 if (current->journal_info == trans)
2074 current->journal_info = NULL;
2075
2076 /*
2077 * If relocation is running, we can't cancel scrub because that will
2078 * result in a deadlock. Before relocating a block group, relocation
2079 * pauses scrub, then starts and commits a transaction before unpausing
2080 * scrub. If the transaction commit is being done by the relocation
2081 * task or triggered by another task and the relocation task is waiting
2082 * for the commit, and we end up here due to an error in the commit
2083 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2084 * asking for scrub to stop while having it asked to be paused higher
2085 * above in relocation code.
2086 */
2087 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2088 btrfs_scrub_cancel(fs_info);
2089
2090 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2091}
2092
2093/*
2094 * Release reserved delayed ref space of all pending block groups of the
2095 * transaction and remove them from the list
2096 */
2097static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2098{
2099 struct btrfs_fs_info *fs_info = trans->fs_info;
2100 struct btrfs_block_group *block_group, *tmp;
2101
2102 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2103 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2104 list_del_init(&block_group->bg_list);
2105 }
2106}
2107
2108static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2109{
2110 /*
2111 * We use try_to_writeback_inodes_sb() here because if we used
2112 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2113 * Currently are holding the fs freeze lock, if we do an async flush
2114 * we'll do btrfs_join_transaction() and deadlock because we need to
2115 * wait for the fs freeze lock. Using the direct flushing we benefit
2116 * from already being in a transaction and our join_transaction doesn't
2117 * have to re-take the fs freeze lock.
2118 *
2119 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2120 * if it can read lock sb->s_umount. It will always be able to lock it,
2121 * except when the filesystem is being unmounted or being frozen, but in
2122 * those cases sync_filesystem() is called, which results in calling
2123 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2124 * Note that we don't call writeback_inodes_sb() directly, because it
2125 * will emit a warning if sb->s_umount is not locked.
2126 */
2127 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2128 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2129 return 0;
2130}
2131
2132static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2133{
2134 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2135 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2136}
2137
2138/*
2139 * Add a pending snapshot associated with the given transaction handle to the
2140 * respective handle. This must be called after the transaction commit started
2141 * and while holding fs_info->trans_lock.
2142 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2143 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2144 * returns an error.
2145 */
2146static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2147{
2148 struct btrfs_transaction *cur_trans = trans->transaction;
2149
2150 if (!trans->pending_snapshot)
2151 return;
2152
2153 lockdep_assert_held(&trans->fs_info->trans_lock);
2154 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2155
2156 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2157}
2158
2159static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2160{
2161 fs_info->commit_stats.commit_count++;
2162 fs_info->commit_stats.last_commit_dur = interval;
2163 fs_info->commit_stats.max_commit_dur =
2164 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2165 fs_info->commit_stats.total_commit_dur += interval;
2166}
2167
2168int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2169{
2170 struct btrfs_fs_info *fs_info = trans->fs_info;
2171 struct btrfs_transaction *cur_trans = trans->transaction;
2172 struct btrfs_transaction *prev_trans = NULL;
2173 int ret;
2174 ktime_t start_time;
2175 ktime_t interval;
2176
2177 ASSERT(refcount_read(&trans->use_count) == 1);
2178 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2179
2180 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2181
2182 /* Stop the commit early if ->aborted is set */
2183 if (TRANS_ABORTED(cur_trans)) {
2184 ret = cur_trans->aborted;
2185 goto lockdep_trans_commit_start_release;
2186 }
2187
2188 btrfs_trans_release_metadata(trans);
2189 trans->block_rsv = NULL;
2190
2191 /*
2192 * We only want one transaction commit doing the flushing so we do not
2193 * waste a bunch of time on lock contention on the extent root node.
2194 */
2195 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2196 &cur_trans->delayed_refs.flags)) {
2197 /*
2198 * Make a pass through all the delayed refs we have so far.
2199 * Any running threads may add more while we are here.
2200 */
2201 ret = btrfs_run_delayed_refs(trans, 0);
2202 if (ret)
2203 goto lockdep_trans_commit_start_release;
2204 }
2205
2206 btrfs_create_pending_block_groups(trans);
2207
2208 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2209 int run_it = 0;
2210
2211 /* this mutex is also taken before trying to set
2212 * block groups readonly. We need to make sure
2213 * that nobody has set a block group readonly
2214 * after a extents from that block group have been
2215 * allocated for cache files. btrfs_set_block_group_ro
2216 * will wait for the transaction to commit if it
2217 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2218 *
2219 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2220 * only one process starts all the block group IO. It wouldn't
2221 * hurt to have more than one go through, but there's no
2222 * real advantage to it either.
2223 */
2224 mutex_lock(&fs_info->ro_block_group_mutex);
2225 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2226 &cur_trans->flags))
2227 run_it = 1;
2228 mutex_unlock(&fs_info->ro_block_group_mutex);
2229
2230 if (run_it) {
2231 ret = btrfs_start_dirty_block_groups(trans);
2232 if (ret)
2233 goto lockdep_trans_commit_start_release;
2234 }
2235 }
2236
2237 spin_lock(&fs_info->trans_lock);
2238 if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2239 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2240
2241 add_pending_snapshot(trans);
2242
2243 spin_unlock(&fs_info->trans_lock);
2244 refcount_inc(&cur_trans->use_count);
2245
2246 if (trans->in_fsync)
2247 want_state = TRANS_STATE_SUPER_COMMITTED;
2248
2249 btrfs_trans_state_lockdep_release(fs_info,
2250 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2251 ret = btrfs_end_transaction(trans);
2252 wait_for_commit(cur_trans, want_state);
2253
2254 if (TRANS_ABORTED(cur_trans))
2255 ret = cur_trans->aborted;
2256
2257 btrfs_put_transaction(cur_trans);
2258
2259 return ret;
2260 }
2261
2262 cur_trans->state = TRANS_STATE_COMMIT_PREP;
2263 wake_up(&fs_info->transaction_blocked_wait);
2264 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2265
2266 if (cur_trans->list.prev != &fs_info->trans_list) {
2267 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2268
2269 if (trans->in_fsync)
2270 want_state = TRANS_STATE_SUPER_COMMITTED;
2271
2272 prev_trans = list_entry(cur_trans->list.prev,
2273 struct btrfs_transaction, list);
2274 if (prev_trans->state < want_state) {
2275 refcount_inc(&prev_trans->use_count);
2276 spin_unlock(&fs_info->trans_lock);
2277
2278 wait_for_commit(prev_trans, want_state);
2279
2280 ret = READ_ONCE(prev_trans->aborted);
2281
2282 btrfs_put_transaction(prev_trans);
2283 if (ret)
2284 goto lockdep_release;
2285 spin_lock(&fs_info->trans_lock);
2286 }
2287 } else {
2288 /*
2289 * The previous transaction was aborted and was already removed
2290 * from the list of transactions at fs_info->trans_list. So we
2291 * abort to prevent writing a new superblock that reflects a
2292 * corrupt state (pointing to trees with unwritten nodes/leafs).
2293 */
2294 if (BTRFS_FS_ERROR(fs_info)) {
2295 spin_unlock(&fs_info->trans_lock);
2296 ret = -EROFS;
2297 goto lockdep_release;
2298 }
2299 }
2300
2301 cur_trans->state = TRANS_STATE_COMMIT_START;
2302 wake_up(&fs_info->transaction_blocked_wait);
2303 spin_unlock(&fs_info->trans_lock);
2304
2305 /*
2306 * Get the time spent on the work done by the commit thread and not
2307 * the time spent waiting on a previous commit
2308 */
2309 start_time = ktime_get_ns();
2310
2311 extwriter_counter_dec(cur_trans, trans->type);
2312
2313 ret = btrfs_start_delalloc_flush(fs_info);
2314 if (ret)
2315 goto lockdep_release;
2316
2317 ret = btrfs_run_delayed_items(trans);
2318 if (ret)
2319 goto lockdep_release;
2320
2321 /*
2322 * The thread has started/joined the transaction thus it holds the
2323 * lockdep map as a reader. It has to release it before acquiring the
2324 * lockdep map as a writer.
2325 */
2326 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2327 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2328 wait_event(cur_trans->writer_wait,
2329 extwriter_counter_read(cur_trans) == 0);
2330
2331 /* some pending stuffs might be added after the previous flush. */
2332 ret = btrfs_run_delayed_items(trans);
2333 if (ret) {
2334 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2335 goto cleanup_transaction;
2336 }
2337
2338 btrfs_wait_delalloc_flush(fs_info);
2339
2340 /*
2341 * Wait for all ordered extents started by a fast fsync that joined this
2342 * transaction. Otherwise if this transaction commits before the ordered
2343 * extents complete we lose logged data after a power failure.
2344 */
2345 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2346 wait_event(cur_trans->pending_wait,
2347 atomic_read(&cur_trans->pending_ordered) == 0);
2348
2349 btrfs_scrub_pause(fs_info);
2350 /*
2351 * Ok now we need to make sure to block out any other joins while we
2352 * commit the transaction. We could have started a join before setting
2353 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2354 */
2355 spin_lock(&fs_info->trans_lock);
2356 add_pending_snapshot(trans);
2357 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2358 spin_unlock(&fs_info->trans_lock);
2359
2360 /*
2361 * The thread has started/joined the transaction thus it holds the
2362 * lockdep map as a reader. It has to release it before acquiring the
2363 * lockdep map as a writer.
2364 */
2365 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2366 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2367 wait_event(cur_trans->writer_wait,
2368 atomic_read(&cur_trans->num_writers) == 1);
2369
2370 /*
2371 * Make lockdep happy by acquiring the state locks after
2372 * btrfs_trans_num_writers is released. If we acquired the state locks
2373 * before releasing the btrfs_trans_num_writers lock then lockdep would
2374 * complain because we did not follow the reverse order unlocking rule.
2375 */
2376 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2377 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2378 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2379
2380 /*
2381 * We've started the commit, clear the flag in case we were triggered to
2382 * do an async commit but somebody else started before the transaction
2383 * kthread could do the work.
2384 */
2385 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2386
2387 if (TRANS_ABORTED(cur_trans)) {
2388 ret = cur_trans->aborted;
2389 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2390 goto scrub_continue;
2391 }
2392 /*
2393 * the reloc mutex makes sure that we stop
2394 * the balancing code from coming in and moving
2395 * extents around in the middle of the commit
2396 */
2397 mutex_lock(&fs_info->reloc_mutex);
2398
2399 /*
2400 * We needn't worry about the delayed items because we will
2401 * deal with them in create_pending_snapshot(), which is the
2402 * core function of the snapshot creation.
2403 */
2404 ret = create_pending_snapshots(trans);
2405 if (ret)
2406 goto unlock_reloc;
2407
2408 /*
2409 * We insert the dir indexes of the snapshots and update the inode
2410 * of the snapshots' parents after the snapshot creation, so there
2411 * are some delayed items which are not dealt with. Now deal with
2412 * them.
2413 *
2414 * We needn't worry that this operation will corrupt the snapshots,
2415 * because all the tree which are snapshoted will be forced to COW
2416 * the nodes and leaves.
2417 */
2418 ret = btrfs_run_delayed_items(trans);
2419 if (ret)
2420 goto unlock_reloc;
2421
2422 ret = btrfs_run_delayed_refs(trans, U64_MAX);
2423 if (ret)
2424 goto unlock_reloc;
2425
2426 /*
2427 * make sure none of the code above managed to slip in a
2428 * delayed item
2429 */
2430 btrfs_assert_delayed_root_empty(fs_info);
2431
2432 WARN_ON(cur_trans != trans->transaction);
2433
2434 ret = commit_fs_roots(trans);
2435 if (ret)
2436 goto unlock_reloc;
2437
2438 /* commit_fs_roots gets rid of all the tree log roots, it is now
2439 * safe to free the root of tree log roots
2440 */
2441 btrfs_free_log_root_tree(trans, fs_info);
2442
2443 /*
2444 * Since fs roots are all committed, we can get a quite accurate
2445 * new_roots. So let's do quota accounting.
2446 */
2447 ret = btrfs_qgroup_account_extents(trans);
2448 if (ret < 0)
2449 goto unlock_reloc;
2450
2451 ret = commit_cowonly_roots(trans);
2452 if (ret)
2453 goto unlock_reloc;
2454
2455 /*
2456 * The tasks which save the space cache and inode cache may also
2457 * update ->aborted, check it.
2458 */
2459 if (TRANS_ABORTED(cur_trans)) {
2460 ret = cur_trans->aborted;
2461 goto unlock_reloc;
2462 }
2463
2464 cur_trans = fs_info->running_transaction;
2465
2466 btrfs_set_root_node(&fs_info->tree_root->root_item,
2467 fs_info->tree_root->node);
2468 list_add_tail(&fs_info->tree_root->dirty_list,
2469 &cur_trans->switch_commits);
2470
2471 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2472 fs_info->chunk_root->node);
2473 list_add_tail(&fs_info->chunk_root->dirty_list,
2474 &cur_trans->switch_commits);
2475
2476 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2477 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2478 fs_info->block_group_root->node);
2479 list_add_tail(&fs_info->block_group_root->dirty_list,
2480 &cur_trans->switch_commits);
2481 }
2482
2483 switch_commit_roots(trans);
2484
2485 ASSERT(list_empty(&cur_trans->dirty_bgs));
2486 ASSERT(list_empty(&cur_trans->io_bgs));
2487 update_super_roots(fs_info);
2488
2489 btrfs_set_super_log_root(fs_info->super_copy, 0);
2490 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2491 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2492 sizeof(*fs_info->super_copy));
2493
2494 btrfs_commit_device_sizes(cur_trans);
2495
2496 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2497 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2498
2499 btrfs_trans_release_chunk_metadata(trans);
2500
2501 /*
2502 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2503 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2504 * make sure that before we commit our superblock, no other task can
2505 * start a new transaction and commit a log tree before we commit our
2506 * superblock. Anyone trying to commit a log tree locks this mutex before
2507 * writing its superblock.
2508 */
2509 mutex_lock(&fs_info->tree_log_mutex);
2510
2511 spin_lock(&fs_info->trans_lock);
2512 cur_trans->state = TRANS_STATE_UNBLOCKED;
2513 fs_info->running_transaction = NULL;
2514 spin_unlock(&fs_info->trans_lock);
2515 mutex_unlock(&fs_info->reloc_mutex);
2516
2517 wake_up(&fs_info->transaction_wait);
2518 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2519
2520 /* If we have features changed, wake up the cleaner to update sysfs. */
2521 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2522 fs_info->cleaner_kthread)
2523 wake_up_process(fs_info->cleaner_kthread);
2524
2525 ret = btrfs_write_and_wait_transaction(trans);
2526 if (ret) {
2527 btrfs_handle_fs_error(fs_info, ret,
2528 "Error while writing out transaction");
2529 mutex_unlock(&fs_info->tree_log_mutex);
2530 goto scrub_continue;
2531 }
2532
2533 ret = write_all_supers(fs_info, 0);
2534 /*
2535 * the super is written, we can safely allow the tree-loggers
2536 * to go about their business
2537 */
2538 mutex_unlock(&fs_info->tree_log_mutex);
2539 if (ret)
2540 goto scrub_continue;
2541
2542 /*
2543 * We needn't acquire the lock here because there is no other task
2544 * which can change it.
2545 */
2546 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2547 wake_up(&cur_trans->commit_wait);
2548 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2549
2550 btrfs_finish_extent_commit(trans);
2551
2552 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2553 btrfs_clear_space_info_full(fs_info);
2554
2555 btrfs_set_last_trans_committed(fs_info, cur_trans->transid);
2556 /*
2557 * We needn't acquire the lock here because there is no other task
2558 * which can change it.
2559 */
2560 cur_trans->state = TRANS_STATE_COMPLETED;
2561 wake_up(&cur_trans->commit_wait);
2562 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2563
2564 spin_lock(&fs_info->trans_lock);
2565 list_del_init(&cur_trans->list);
2566 spin_unlock(&fs_info->trans_lock);
2567
2568 btrfs_put_transaction(cur_trans);
2569 btrfs_put_transaction(cur_trans);
2570
2571 if (trans->type & __TRANS_FREEZABLE)
2572 sb_end_intwrite(fs_info->sb);
2573
2574 trace_btrfs_transaction_commit(fs_info);
2575
2576 interval = ktime_get_ns() - start_time;
2577
2578 btrfs_scrub_continue(fs_info);
2579
2580 if (current->journal_info == trans)
2581 current->journal_info = NULL;
2582
2583 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2584
2585 update_commit_stats(fs_info, interval);
2586
2587 return ret;
2588
2589unlock_reloc:
2590 mutex_unlock(&fs_info->reloc_mutex);
2591 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2592scrub_continue:
2593 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2594 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2595 btrfs_scrub_continue(fs_info);
2596cleanup_transaction:
2597 btrfs_trans_release_metadata(trans);
2598 btrfs_cleanup_pending_block_groups(trans);
2599 btrfs_trans_release_chunk_metadata(trans);
2600 trans->block_rsv = NULL;
2601 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2602 if (current->journal_info == trans)
2603 current->journal_info = NULL;
2604 cleanup_transaction(trans, ret);
2605
2606 return ret;
2607
2608lockdep_release:
2609 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2610 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2611 goto cleanup_transaction;
2612
2613lockdep_trans_commit_start_release:
2614 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2615 btrfs_end_transaction(trans);
2616 return ret;
2617}
2618
2619/*
2620 * return < 0 if error
2621 * 0 if there are no more dead_roots at the time of call
2622 * 1 there are more to be processed, call me again
2623 *
2624 * The return value indicates there are certainly more snapshots to delete, but
2625 * if there comes a new one during processing, it may return 0. We don't mind,
2626 * because btrfs_commit_super will poke cleaner thread and it will process it a
2627 * few seconds later.
2628 */
2629int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2630{
2631 struct btrfs_root *root;
2632 int ret;
2633
2634 spin_lock(&fs_info->trans_lock);
2635 if (list_empty(&fs_info->dead_roots)) {
2636 spin_unlock(&fs_info->trans_lock);
2637 return 0;
2638 }
2639 root = list_first_entry(&fs_info->dead_roots,
2640 struct btrfs_root, root_list);
2641 list_del_init(&root->root_list);
2642 spin_unlock(&fs_info->trans_lock);
2643
2644 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2645
2646 btrfs_kill_all_delayed_nodes(root);
2647
2648 if (btrfs_header_backref_rev(root->node) <
2649 BTRFS_MIXED_BACKREF_REV)
2650 ret = btrfs_drop_snapshot(root, 0, 0);
2651 else
2652 ret = btrfs_drop_snapshot(root, 1, 0);
2653
2654 btrfs_put_root(root);
2655 return (ret < 0) ? 0 : 1;
2656}
2657
2658/*
2659 * We only mark the transaction aborted and then set the file system read-only.
2660 * This will prevent new transactions from starting or trying to join this
2661 * one.
2662 *
2663 * This means that error recovery at the call site is limited to freeing
2664 * any local memory allocations and passing the error code up without
2665 * further cleanup. The transaction should complete as it normally would
2666 * in the call path but will return -EIO.
2667 *
2668 * We'll complete the cleanup in btrfs_end_transaction and
2669 * btrfs_commit_transaction.
2670 */
2671void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2672 const char *function,
2673 unsigned int line, int error, bool first_hit)
2674{
2675 struct btrfs_fs_info *fs_info = trans->fs_info;
2676
2677 WRITE_ONCE(trans->aborted, error);
2678 WRITE_ONCE(trans->transaction->aborted, error);
2679 if (first_hit && error == -ENOSPC)
2680 btrfs_dump_space_info_for_trans_abort(fs_info);
2681 /* Wake up anybody who may be waiting on this transaction */
2682 wake_up(&fs_info->transaction_wait);
2683 wake_up(&fs_info->transaction_blocked_wait);
2684 __btrfs_handle_fs_error(fs_info, function, line, error, NULL);
2685}
2686
2687int __init btrfs_transaction_init(void)
2688{
2689 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2690 sizeof(struct btrfs_trans_handle), 0,
2691 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2692 if (!btrfs_trans_handle_cachep)
2693 return -ENOMEM;
2694 return 0;
2695}
2696
2697void __cold btrfs_transaction_exit(void)
2698{
2699 kmem_cache_destroy(btrfs_trans_handle_cachep);
2700}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/slab.h>
8#include <linux/sched.h>
9#include <linux/writeback.h>
10#include <linux/pagemap.h>
11#include <linux/blkdev.h>
12#include <linux/uuid.h>
13#include "misc.h"
14#include "ctree.h"
15#include "disk-io.h"
16#include "transaction.h"
17#include "locking.h"
18#include "tree-log.h"
19#include "inode-map.h"
20#include "volumes.h"
21#include "dev-replace.h"
22#include "qgroup.h"
23#include "block-group.h"
24#include "space-info.h"
25
26#define BTRFS_ROOT_TRANS_TAG 0
27
28/*
29 * Transaction states and transitions
30 *
31 * No running transaction (fs tree blocks are not modified)
32 * |
33 * | To next stage:
34 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35 * V
36 * Transaction N [[TRANS_STATE_RUNNING]]
37 * |
38 * | New trans handles can be attached to transaction N by calling all
39 * | start_transaction() variants.
40 * |
41 * | To next stage:
42 * | Call btrfs_commit_transaction() on any trans handle attached to
43 * | transaction N
44 * V
45 * Transaction N [[TRANS_STATE_COMMIT_START]]
46 * |
47 * | Will wait for previous running transaction to completely finish if there
48 * | is one
49 * |
50 * | Then one of the following happes:
51 * | - Wait for all other trans handle holders to release.
52 * | The btrfs_commit_transaction() caller will do the commit work.
53 * | - Wait for current transaction to be committed by others.
54 * | Other btrfs_commit_transaction() caller will do the commit work.
55 * |
56 * | At this stage, only btrfs_join_transaction*() variants can attach
57 * | to this running transaction.
58 * | All other variants will wait for current one to finish and attach to
59 * | transaction N+1.
60 * |
61 * | To next stage:
62 * | Caller is chosen to commit transaction N, and all other trans handle
63 * | haven been released.
64 * V
65 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66 * |
67 * | The heavy lifting transaction work is started.
68 * | From running delayed refs (modifying extent tree) to creating pending
69 * | snapshots, running qgroups.
70 * | In short, modify supporting trees to reflect modifications of subvolume
71 * | trees.
72 * |
73 * | At this stage, all start_transaction() calls will wait for this
74 * | transaction to finish and attach to transaction N+1.
75 * |
76 * | To next stage:
77 * | Until all supporting trees are updated.
78 * V
79 * Transaction N [[TRANS_STATE_UNBLOCKED]]
80 * | Transaction N+1
81 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
82 * | need to write them back to disk and update |
83 * | super blocks. |
84 * | |
85 * | At this stage, new transaction is allowed to |
86 * | start. |
87 * | All new start_transaction() calls will be |
88 * | attached to transid N+1. |
89 * | |
90 * | To next stage: |
91 * | Until all tree blocks are super blocks are |
92 * | written to block devices |
93 * V |
94 * Transaction N [[TRANS_STATE_COMPLETED]] V
95 * All tree blocks and super blocks are written. Transaction N+1
96 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
97 * data structures will be cleaned up. | Life goes on
98 */
99static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
100 [TRANS_STATE_RUNNING] = 0U,
101 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
102 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
103 __TRANS_ATTACH |
104 __TRANS_JOIN |
105 __TRANS_JOIN_NOSTART),
106 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
107 __TRANS_ATTACH |
108 __TRANS_JOIN |
109 __TRANS_JOIN_NOLOCK |
110 __TRANS_JOIN_NOSTART),
111 [TRANS_STATE_COMPLETED] = (__TRANS_START |
112 __TRANS_ATTACH |
113 __TRANS_JOIN |
114 __TRANS_JOIN_NOLOCK |
115 __TRANS_JOIN_NOSTART),
116};
117
118void btrfs_put_transaction(struct btrfs_transaction *transaction)
119{
120 WARN_ON(refcount_read(&transaction->use_count) == 0);
121 if (refcount_dec_and_test(&transaction->use_count)) {
122 BUG_ON(!list_empty(&transaction->list));
123 WARN_ON(!RB_EMPTY_ROOT(
124 &transaction->delayed_refs.href_root.rb_root));
125 WARN_ON(!RB_EMPTY_ROOT(
126 &transaction->delayed_refs.dirty_extent_root));
127 if (transaction->delayed_refs.pending_csums)
128 btrfs_err(transaction->fs_info,
129 "pending csums is %llu",
130 transaction->delayed_refs.pending_csums);
131 /*
132 * If any block groups are found in ->deleted_bgs then it's
133 * because the transaction was aborted and a commit did not
134 * happen (things failed before writing the new superblock
135 * and calling btrfs_finish_extent_commit()), so we can not
136 * discard the physical locations of the block groups.
137 */
138 while (!list_empty(&transaction->deleted_bgs)) {
139 struct btrfs_block_group *cache;
140
141 cache = list_first_entry(&transaction->deleted_bgs,
142 struct btrfs_block_group,
143 bg_list);
144 list_del_init(&cache->bg_list);
145 btrfs_unfreeze_block_group(cache);
146 btrfs_put_block_group(cache);
147 }
148 WARN_ON(!list_empty(&transaction->dev_update_list));
149 kfree(transaction);
150 }
151}
152
153static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
154{
155 struct btrfs_transaction *cur_trans = trans->transaction;
156 struct btrfs_fs_info *fs_info = trans->fs_info;
157 struct btrfs_root *root, *tmp;
158
159 down_write(&fs_info->commit_root_sem);
160 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
161 dirty_list) {
162 list_del_init(&root->dirty_list);
163 free_extent_buffer(root->commit_root);
164 root->commit_root = btrfs_root_node(root);
165 if (is_fstree(root->root_key.objectid))
166 btrfs_unpin_free_ino(root);
167 extent_io_tree_release(&root->dirty_log_pages);
168 btrfs_qgroup_clean_swapped_blocks(root);
169 }
170
171 /* We can free old roots now. */
172 spin_lock(&cur_trans->dropped_roots_lock);
173 while (!list_empty(&cur_trans->dropped_roots)) {
174 root = list_first_entry(&cur_trans->dropped_roots,
175 struct btrfs_root, root_list);
176 list_del_init(&root->root_list);
177 spin_unlock(&cur_trans->dropped_roots_lock);
178 btrfs_free_log(trans, root);
179 btrfs_drop_and_free_fs_root(fs_info, root);
180 spin_lock(&cur_trans->dropped_roots_lock);
181 }
182 spin_unlock(&cur_trans->dropped_roots_lock);
183 up_write(&fs_info->commit_root_sem);
184}
185
186static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
187 unsigned int type)
188{
189 if (type & TRANS_EXTWRITERS)
190 atomic_inc(&trans->num_extwriters);
191}
192
193static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
194 unsigned int type)
195{
196 if (type & TRANS_EXTWRITERS)
197 atomic_dec(&trans->num_extwriters);
198}
199
200static inline void extwriter_counter_init(struct btrfs_transaction *trans,
201 unsigned int type)
202{
203 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
204}
205
206static inline int extwriter_counter_read(struct btrfs_transaction *trans)
207{
208 return atomic_read(&trans->num_extwriters);
209}
210
211/*
212 * To be called after all the new block groups attached to the transaction
213 * handle have been created (btrfs_create_pending_block_groups()).
214 */
215void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
216{
217 struct btrfs_fs_info *fs_info = trans->fs_info;
218
219 if (!trans->chunk_bytes_reserved)
220 return;
221
222 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
223
224 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
225 trans->chunk_bytes_reserved, NULL);
226 trans->chunk_bytes_reserved = 0;
227}
228
229/*
230 * either allocate a new transaction or hop into the existing one
231 */
232static noinline int join_transaction(struct btrfs_fs_info *fs_info,
233 unsigned int type)
234{
235 struct btrfs_transaction *cur_trans;
236
237 spin_lock(&fs_info->trans_lock);
238loop:
239 /* The file system has been taken offline. No new transactions. */
240 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
241 spin_unlock(&fs_info->trans_lock);
242 return -EROFS;
243 }
244
245 cur_trans = fs_info->running_transaction;
246 if (cur_trans) {
247 if (TRANS_ABORTED(cur_trans)) {
248 spin_unlock(&fs_info->trans_lock);
249 return cur_trans->aborted;
250 }
251 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
252 spin_unlock(&fs_info->trans_lock);
253 return -EBUSY;
254 }
255 refcount_inc(&cur_trans->use_count);
256 atomic_inc(&cur_trans->num_writers);
257 extwriter_counter_inc(cur_trans, type);
258 spin_unlock(&fs_info->trans_lock);
259 return 0;
260 }
261 spin_unlock(&fs_info->trans_lock);
262
263 /*
264 * If we are ATTACH, we just want to catch the current transaction,
265 * and commit it. If there is no transaction, just return ENOENT.
266 */
267 if (type == TRANS_ATTACH)
268 return -ENOENT;
269
270 /*
271 * JOIN_NOLOCK only happens during the transaction commit, so
272 * it is impossible that ->running_transaction is NULL
273 */
274 BUG_ON(type == TRANS_JOIN_NOLOCK);
275
276 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
277 if (!cur_trans)
278 return -ENOMEM;
279
280 spin_lock(&fs_info->trans_lock);
281 if (fs_info->running_transaction) {
282 /*
283 * someone started a transaction after we unlocked. Make sure
284 * to redo the checks above
285 */
286 kfree(cur_trans);
287 goto loop;
288 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
289 spin_unlock(&fs_info->trans_lock);
290 kfree(cur_trans);
291 return -EROFS;
292 }
293
294 cur_trans->fs_info = fs_info;
295 atomic_set(&cur_trans->num_writers, 1);
296 extwriter_counter_init(cur_trans, type);
297 init_waitqueue_head(&cur_trans->writer_wait);
298 init_waitqueue_head(&cur_trans->commit_wait);
299 cur_trans->state = TRANS_STATE_RUNNING;
300 /*
301 * One for this trans handle, one so it will live on until we
302 * commit the transaction.
303 */
304 refcount_set(&cur_trans->use_count, 2);
305 cur_trans->flags = 0;
306 cur_trans->start_time = ktime_get_seconds();
307
308 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
309
310 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
311 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
312 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
313
314 /*
315 * although the tree mod log is per file system and not per transaction,
316 * the log must never go across transaction boundaries.
317 */
318 smp_mb();
319 if (!list_empty(&fs_info->tree_mod_seq_list))
320 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
321 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
322 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
323 atomic64_set(&fs_info->tree_mod_seq, 0);
324
325 spin_lock_init(&cur_trans->delayed_refs.lock);
326
327 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
328 INIT_LIST_HEAD(&cur_trans->dev_update_list);
329 INIT_LIST_HEAD(&cur_trans->switch_commits);
330 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
331 INIT_LIST_HEAD(&cur_trans->io_bgs);
332 INIT_LIST_HEAD(&cur_trans->dropped_roots);
333 mutex_init(&cur_trans->cache_write_mutex);
334 spin_lock_init(&cur_trans->dirty_bgs_lock);
335 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
336 spin_lock_init(&cur_trans->dropped_roots_lock);
337 list_add_tail(&cur_trans->list, &fs_info->trans_list);
338 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
339 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
340 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
341 IO_TREE_FS_PINNED_EXTENTS, NULL);
342 fs_info->generation++;
343 cur_trans->transid = fs_info->generation;
344 fs_info->running_transaction = cur_trans;
345 cur_trans->aborted = 0;
346 spin_unlock(&fs_info->trans_lock);
347
348 return 0;
349}
350
351/*
352 * This does all the record keeping required to make sure that a shareable root
353 * is properly recorded in a given transaction. This is required to make sure
354 * the old root from before we joined the transaction is deleted when the
355 * transaction commits.
356 */
357static int record_root_in_trans(struct btrfs_trans_handle *trans,
358 struct btrfs_root *root,
359 int force)
360{
361 struct btrfs_fs_info *fs_info = root->fs_info;
362
363 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
364 root->last_trans < trans->transid) || force) {
365 WARN_ON(root == fs_info->extent_root);
366 WARN_ON(!force && root->commit_root != root->node);
367
368 /*
369 * see below for IN_TRANS_SETUP usage rules
370 * we have the reloc mutex held now, so there
371 * is only one writer in this function
372 */
373 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
374
375 /* make sure readers find IN_TRANS_SETUP before
376 * they find our root->last_trans update
377 */
378 smp_wmb();
379
380 spin_lock(&fs_info->fs_roots_radix_lock);
381 if (root->last_trans == trans->transid && !force) {
382 spin_unlock(&fs_info->fs_roots_radix_lock);
383 return 0;
384 }
385 radix_tree_tag_set(&fs_info->fs_roots_radix,
386 (unsigned long)root->root_key.objectid,
387 BTRFS_ROOT_TRANS_TAG);
388 spin_unlock(&fs_info->fs_roots_radix_lock);
389 root->last_trans = trans->transid;
390
391 /* this is pretty tricky. We don't want to
392 * take the relocation lock in btrfs_record_root_in_trans
393 * unless we're really doing the first setup for this root in
394 * this transaction.
395 *
396 * Normally we'd use root->last_trans as a flag to decide
397 * if we want to take the expensive mutex.
398 *
399 * But, we have to set root->last_trans before we
400 * init the relocation root, otherwise, we trip over warnings
401 * in ctree.c. The solution used here is to flag ourselves
402 * with root IN_TRANS_SETUP. When this is 1, we're still
403 * fixing up the reloc trees and everyone must wait.
404 *
405 * When this is zero, they can trust root->last_trans and fly
406 * through btrfs_record_root_in_trans without having to take the
407 * lock. smp_wmb() makes sure that all the writes above are
408 * done before we pop in the zero below
409 */
410 btrfs_init_reloc_root(trans, root);
411 smp_mb__before_atomic();
412 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
413 }
414 return 0;
415}
416
417
418void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
419 struct btrfs_root *root)
420{
421 struct btrfs_fs_info *fs_info = root->fs_info;
422 struct btrfs_transaction *cur_trans = trans->transaction;
423
424 /* Add ourselves to the transaction dropped list */
425 spin_lock(&cur_trans->dropped_roots_lock);
426 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
427 spin_unlock(&cur_trans->dropped_roots_lock);
428
429 /* Make sure we don't try to update the root at commit time */
430 spin_lock(&fs_info->fs_roots_radix_lock);
431 radix_tree_tag_clear(&fs_info->fs_roots_radix,
432 (unsigned long)root->root_key.objectid,
433 BTRFS_ROOT_TRANS_TAG);
434 spin_unlock(&fs_info->fs_roots_radix_lock);
435}
436
437int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
438 struct btrfs_root *root)
439{
440 struct btrfs_fs_info *fs_info = root->fs_info;
441
442 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
443 return 0;
444
445 /*
446 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
447 * and barriers
448 */
449 smp_rmb();
450 if (root->last_trans == trans->transid &&
451 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
452 return 0;
453
454 mutex_lock(&fs_info->reloc_mutex);
455 record_root_in_trans(trans, root, 0);
456 mutex_unlock(&fs_info->reloc_mutex);
457
458 return 0;
459}
460
461static inline int is_transaction_blocked(struct btrfs_transaction *trans)
462{
463 return (trans->state >= TRANS_STATE_COMMIT_START &&
464 trans->state < TRANS_STATE_UNBLOCKED &&
465 !TRANS_ABORTED(trans));
466}
467
468/* wait for commit against the current transaction to become unblocked
469 * when this is done, it is safe to start a new transaction, but the current
470 * transaction might not be fully on disk.
471 */
472static void wait_current_trans(struct btrfs_fs_info *fs_info)
473{
474 struct btrfs_transaction *cur_trans;
475
476 spin_lock(&fs_info->trans_lock);
477 cur_trans = fs_info->running_transaction;
478 if (cur_trans && is_transaction_blocked(cur_trans)) {
479 refcount_inc(&cur_trans->use_count);
480 spin_unlock(&fs_info->trans_lock);
481
482 wait_event(fs_info->transaction_wait,
483 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
484 TRANS_ABORTED(cur_trans));
485 btrfs_put_transaction(cur_trans);
486 } else {
487 spin_unlock(&fs_info->trans_lock);
488 }
489}
490
491static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
492{
493 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
494 return 0;
495
496 if (type == TRANS_START)
497 return 1;
498
499 return 0;
500}
501
502static inline bool need_reserve_reloc_root(struct btrfs_root *root)
503{
504 struct btrfs_fs_info *fs_info = root->fs_info;
505
506 if (!fs_info->reloc_ctl ||
507 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
508 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
509 root->reloc_root)
510 return false;
511
512 return true;
513}
514
515static struct btrfs_trans_handle *
516start_transaction(struct btrfs_root *root, unsigned int num_items,
517 unsigned int type, enum btrfs_reserve_flush_enum flush,
518 bool enforce_qgroups)
519{
520 struct btrfs_fs_info *fs_info = root->fs_info;
521 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
522 struct btrfs_trans_handle *h;
523 struct btrfs_transaction *cur_trans;
524 u64 num_bytes = 0;
525 u64 qgroup_reserved = 0;
526 bool reloc_reserved = false;
527 bool do_chunk_alloc = false;
528 int ret;
529
530 /* Send isn't supposed to start transactions. */
531 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
532
533 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
534 return ERR_PTR(-EROFS);
535
536 if (current->journal_info) {
537 WARN_ON(type & TRANS_EXTWRITERS);
538 h = current->journal_info;
539 refcount_inc(&h->use_count);
540 WARN_ON(refcount_read(&h->use_count) > 2);
541 h->orig_rsv = h->block_rsv;
542 h->block_rsv = NULL;
543 goto got_it;
544 }
545
546 /*
547 * Do the reservation before we join the transaction so we can do all
548 * the appropriate flushing if need be.
549 */
550 if (num_items && root != fs_info->chunk_root) {
551 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
552 u64 delayed_refs_bytes = 0;
553
554 qgroup_reserved = num_items * fs_info->nodesize;
555 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
556 enforce_qgroups);
557 if (ret)
558 return ERR_PTR(ret);
559
560 /*
561 * We want to reserve all the bytes we may need all at once, so
562 * we only do 1 enospc flushing cycle per transaction start. We
563 * accomplish this by simply assuming we'll do 2 x num_items
564 * worth of delayed refs updates in this trans handle, and
565 * refill that amount for whatever is missing in the reserve.
566 */
567 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
568 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
569 delayed_refs_rsv->full == 0) {
570 delayed_refs_bytes = num_bytes;
571 num_bytes <<= 1;
572 }
573
574 /*
575 * Do the reservation for the relocation root creation
576 */
577 if (need_reserve_reloc_root(root)) {
578 num_bytes += fs_info->nodesize;
579 reloc_reserved = true;
580 }
581
582 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
583 if (ret)
584 goto reserve_fail;
585 if (delayed_refs_bytes) {
586 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
587 delayed_refs_bytes);
588 num_bytes -= delayed_refs_bytes;
589 }
590
591 if (rsv->space_info->force_alloc)
592 do_chunk_alloc = true;
593 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
594 !delayed_refs_rsv->full) {
595 /*
596 * Some people call with btrfs_start_transaction(root, 0)
597 * because they can be throttled, but have some other mechanism
598 * for reserving space. We still want these guys to refill the
599 * delayed block_rsv so just add 1 items worth of reservation
600 * here.
601 */
602 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
603 if (ret)
604 goto reserve_fail;
605 }
606again:
607 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
608 if (!h) {
609 ret = -ENOMEM;
610 goto alloc_fail;
611 }
612
613 /*
614 * If we are JOIN_NOLOCK we're already committing a transaction and
615 * waiting on this guy, so we don't need to do the sb_start_intwrite
616 * because we're already holding a ref. We need this because we could
617 * have raced in and did an fsync() on a file which can kick a commit
618 * and then we deadlock with somebody doing a freeze.
619 *
620 * If we are ATTACH, it means we just want to catch the current
621 * transaction and commit it, so we needn't do sb_start_intwrite().
622 */
623 if (type & __TRANS_FREEZABLE)
624 sb_start_intwrite(fs_info->sb);
625
626 if (may_wait_transaction(fs_info, type))
627 wait_current_trans(fs_info);
628
629 do {
630 ret = join_transaction(fs_info, type);
631 if (ret == -EBUSY) {
632 wait_current_trans(fs_info);
633 if (unlikely(type == TRANS_ATTACH ||
634 type == TRANS_JOIN_NOSTART))
635 ret = -ENOENT;
636 }
637 } while (ret == -EBUSY);
638
639 if (ret < 0)
640 goto join_fail;
641
642 cur_trans = fs_info->running_transaction;
643
644 h->transid = cur_trans->transid;
645 h->transaction = cur_trans;
646 h->root = root;
647 refcount_set(&h->use_count, 1);
648 h->fs_info = root->fs_info;
649
650 h->type = type;
651 h->can_flush_pending_bgs = true;
652 INIT_LIST_HEAD(&h->new_bgs);
653
654 smp_mb();
655 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
656 may_wait_transaction(fs_info, type)) {
657 current->journal_info = h;
658 btrfs_commit_transaction(h);
659 goto again;
660 }
661
662 if (num_bytes) {
663 trace_btrfs_space_reservation(fs_info, "transaction",
664 h->transid, num_bytes, 1);
665 h->block_rsv = &fs_info->trans_block_rsv;
666 h->bytes_reserved = num_bytes;
667 h->reloc_reserved = reloc_reserved;
668 }
669
670got_it:
671 if (!current->journal_info)
672 current->journal_info = h;
673
674 /*
675 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
676 * ALLOC_FORCE the first run through, and then we won't allocate for
677 * anybody else who races in later. We don't care about the return
678 * value here.
679 */
680 if (do_chunk_alloc && num_bytes) {
681 u64 flags = h->block_rsv->space_info->flags;
682
683 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
684 CHUNK_ALLOC_NO_FORCE);
685 }
686
687 /*
688 * btrfs_record_root_in_trans() needs to alloc new extents, and may
689 * call btrfs_join_transaction() while we're also starting a
690 * transaction.
691 *
692 * Thus it need to be called after current->journal_info initialized,
693 * or we can deadlock.
694 */
695 btrfs_record_root_in_trans(h, root);
696
697 return h;
698
699join_fail:
700 if (type & __TRANS_FREEZABLE)
701 sb_end_intwrite(fs_info->sb);
702 kmem_cache_free(btrfs_trans_handle_cachep, h);
703alloc_fail:
704 if (num_bytes)
705 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
706 num_bytes, NULL);
707reserve_fail:
708 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
709 return ERR_PTR(ret);
710}
711
712struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
713 unsigned int num_items)
714{
715 return start_transaction(root, num_items, TRANS_START,
716 BTRFS_RESERVE_FLUSH_ALL, true);
717}
718
719struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
720 struct btrfs_root *root,
721 unsigned int num_items)
722{
723 return start_transaction(root, num_items, TRANS_START,
724 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
725}
726
727struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
728{
729 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
730 true);
731}
732
733struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
734{
735 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
736 BTRFS_RESERVE_NO_FLUSH, true);
737}
738
739/*
740 * Similar to regular join but it never starts a transaction when none is
741 * running or after waiting for the current one to finish.
742 */
743struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
744{
745 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
746 BTRFS_RESERVE_NO_FLUSH, true);
747}
748
749/*
750 * btrfs_attach_transaction() - catch the running transaction
751 *
752 * It is used when we want to commit the current the transaction, but
753 * don't want to start a new one.
754 *
755 * Note: If this function return -ENOENT, it just means there is no
756 * running transaction. But it is possible that the inactive transaction
757 * is still in the memory, not fully on disk. If you hope there is no
758 * inactive transaction in the fs when -ENOENT is returned, you should
759 * invoke
760 * btrfs_attach_transaction_barrier()
761 */
762struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
763{
764 return start_transaction(root, 0, TRANS_ATTACH,
765 BTRFS_RESERVE_NO_FLUSH, true);
766}
767
768/*
769 * btrfs_attach_transaction_barrier() - catch the running transaction
770 *
771 * It is similar to the above function, the difference is this one
772 * will wait for all the inactive transactions until they fully
773 * complete.
774 */
775struct btrfs_trans_handle *
776btrfs_attach_transaction_barrier(struct btrfs_root *root)
777{
778 struct btrfs_trans_handle *trans;
779
780 trans = start_transaction(root, 0, TRANS_ATTACH,
781 BTRFS_RESERVE_NO_FLUSH, true);
782 if (trans == ERR_PTR(-ENOENT))
783 btrfs_wait_for_commit(root->fs_info, 0);
784
785 return trans;
786}
787
788/* wait for a transaction commit to be fully complete */
789static noinline void wait_for_commit(struct btrfs_transaction *commit)
790{
791 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
792}
793
794int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
795{
796 struct btrfs_transaction *cur_trans = NULL, *t;
797 int ret = 0;
798
799 if (transid) {
800 if (transid <= fs_info->last_trans_committed)
801 goto out;
802
803 /* find specified transaction */
804 spin_lock(&fs_info->trans_lock);
805 list_for_each_entry(t, &fs_info->trans_list, list) {
806 if (t->transid == transid) {
807 cur_trans = t;
808 refcount_inc(&cur_trans->use_count);
809 ret = 0;
810 break;
811 }
812 if (t->transid > transid) {
813 ret = 0;
814 break;
815 }
816 }
817 spin_unlock(&fs_info->trans_lock);
818
819 /*
820 * The specified transaction doesn't exist, or we
821 * raced with btrfs_commit_transaction
822 */
823 if (!cur_trans) {
824 if (transid > fs_info->last_trans_committed)
825 ret = -EINVAL;
826 goto out;
827 }
828 } else {
829 /* find newest transaction that is committing | committed */
830 spin_lock(&fs_info->trans_lock);
831 list_for_each_entry_reverse(t, &fs_info->trans_list,
832 list) {
833 if (t->state >= TRANS_STATE_COMMIT_START) {
834 if (t->state == TRANS_STATE_COMPLETED)
835 break;
836 cur_trans = t;
837 refcount_inc(&cur_trans->use_count);
838 break;
839 }
840 }
841 spin_unlock(&fs_info->trans_lock);
842 if (!cur_trans)
843 goto out; /* nothing committing|committed */
844 }
845
846 wait_for_commit(cur_trans);
847 btrfs_put_transaction(cur_trans);
848out:
849 return ret;
850}
851
852void btrfs_throttle(struct btrfs_fs_info *fs_info)
853{
854 wait_current_trans(fs_info);
855}
856
857static int should_end_transaction(struct btrfs_trans_handle *trans)
858{
859 struct btrfs_fs_info *fs_info = trans->fs_info;
860
861 if (btrfs_check_space_for_delayed_refs(fs_info))
862 return 1;
863
864 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
865}
866
867int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
868{
869 struct btrfs_transaction *cur_trans = trans->transaction;
870
871 smp_mb();
872 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
873 cur_trans->delayed_refs.flushing)
874 return 1;
875
876 return should_end_transaction(trans);
877}
878
879static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
880
881{
882 struct btrfs_fs_info *fs_info = trans->fs_info;
883
884 if (!trans->block_rsv) {
885 ASSERT(!trans->bytes_reserved);
886 return;
887 }
888
889 if (!trans->bytes_reserved)
890 return;
891
892 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
893 trace_btrfs_space_reservation(fs_info, "transaction",
894 trans->transid, trans->bytes_reserved, 0);
895 btrfs_block_rsv_release(fs_info, trans->block_rsv,
896 trans->bytes_reserved, NULL);
897 trans->bytes_reserved = 0;
898}
899
900static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
901 int throttle)
902{
903 struct btrfs_fs_info *info = trans->fs_info;
904 struct btrfs_transaction *cur_trans = trans->transaction;
905 int err = 0;
906
907 if (refcount_read(&trans->use_count) > 1) {
908 refcount_dec(&trans->use_count);
909 trans->block_rsv = trans->orig_rsv;
910 return 0;
911 }
912
913 btrfs_trans_release_metadata(trans);
914 trans->block_rsv = NULL;
915
916 btrfs_create_pending_block_groups(trans);
917
918 btrfs_trans_release_chunk_metadata(trans);
919
920 if (trans->type & __TRANS_FREEZABLE)
921 sb_end_intwrite(info->sb);
922
923 WARN_ON(cur_trans != info->running_transaction);
924 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
925 atomic_dec(&cur_trans->num_writers);
926 extwriter_counter_dec(cur_trans, trans->type);
927
928 cond_wake_up(&cur_trans->writer_wait);
929 btrfs_put_transaction(cur_trans);
930
931 if (current->journal_info == trans)
932 current->journal_info = NULL;
933
934 if (throttle)
935 btrfs_run_delayed_iputs(info);
936
937 if (TRANS_ABORTED(trans) ||
938 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
939 wake_up_process(info->transaction_kthread);
940 if (TRANS_ABORTED(trans))
941 err = trans->aborted;
942 else
943 err = -EROFS;
944 }
945
946 kmem_cache_free(btrfs_trans_handle_cachep, trans);
947 return err;
948}
949
950int btrfs_end_transaction(struct btrfs_trans_handle *trans)
951{
952 return __btrfs_end_transaction(trans, 0);
953}
954
955int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
956{
957 return __btrfs_end_transaction(trans, 1);
958}
959
960/*
961 * when btree blocks are allocated, they have some corresponding bits set for
962 * them in one of two extent_io trees. This is used to make sure all of
963 * those extents are sent to disk but does not wait on them
964 */
965int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
966 struct extent_io_tree *dirty_pages, int mark)
967{
968 int err = 0;
969 int werr = 0;
970 struct address_space *mapping = fs_info->btree_inode->i_mapping;
971 struct extent_state *cached_state = NULL;
972 u64 start = 0;
973 u64 end;
974
975 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
976 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
977 mark, &cached_state)) {
978 bool wait_writeback = false;
979
980 err = convert_extent_bit(dirty_pages, start, end,
981 EXTENT_NEED_WAIT,
982 mark, &cached_state);
983 /*
984 * convert_extent_bit can return -ENOMEM, which is most of the
985 * time a temporary error. So when it happens, ignore the error
986 * and wait for writeback of this range to finish - because we
987 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
988 * to __btrfs_wait_marked_extents() would not know that
989 * writeback for this range started and therefore wouldn't
990 * wait for it to finish - we don't want to commit a
991 * superblock that points to btree nodes/leafs for which
992 * writeback hasn't finished yet (and without errors).
993 * We cleanup any entries left in the io tree when committing
994 * the transaction (through extent_io_tree_release()).
995 */
996 if (err == -ENOMEM) {
997 err = 0;
998 wait_writeback = true;
999 }
1000 if (!err)
1001 err = filemap_fdatawrite_range(mapping, start, end);
1002 if (err)
1003 werr = err;
1004 else if (wait_writeback)
1005 werr = filemap_fdatawait_range(mapping, start, end);
1006 free_extent_state(cached_state);
1007 cached_state = NULL;
1008 cond_resched();
1009 start = end + 1;
1010 }
1011 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1012 return werr;
1013}
1014
1015/*
1016 * when btree blocks are allocated, they have some corresponding bits set for
1017 * them in one of two extent_io trees. This is used to make sure all of
1018 * those extents are on disk for transaction or log commit. We wait
1019 * on all the pages and clear them from the dirty pages state tree
1020 */
1021static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1022 struct extent_io_tree *dirty_pages)
1023{
1024 int err = 0;
1025 int werr = 0;
1026 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1027 struct extent_state *cached_state = NULL;
1028 u64 start = 0;
1029 u64 end;
1030
1031 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1032 EXTENT_NEED_WAIT, &cached_state)) {
1033 /*
1034 * Ignore -ENOMEM errors returned by clear_extent_bit().
1035 * When committing the transaction, we'll remove any entries
1036 * left in the io tree. For a log commit, we don't remove them
1037 * after committing the log because the tree can be accessed
1038 * concurrently - we do it only at transaction commit time when
1039 * it's safe to do it (through extent_io_tree_release()).
1040 */
1041 err = clear_extent_bit(dirty_pages, start, end,
1042 EXTENT_NEED_WAIT, 0, 0, &cached_state);
1043 if (err == -ENOMEM)
1044 err = 0;
1045 if (!err)
1046 err = filemap_fdatawait_range(mapping, start, end);
1047 if (err)
1048 werr = err;
1049 free_extent_state(cached_state);
1050 cached_state = NULL;
1051 cond_resched();
1052 start = end + 1;
1053 }
1054 if (err)
1055 werr = err;
1056 return werr;
1057}
1058
1059static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1060 struct extent_io_tree *dirty_pages)
1061{
1062 bool errors = false;
1063 int err;
1064
1065 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1066 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1067 errors = true;
1068
1069 if (errors && !err)
1070 err = -EIO;
1071 return err;
1072}
1073
1074int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1075{
1076 struct btrfs_fs_info *fs_info = log_root->fs_info;
1077 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1078 bool errors = false;
1079 int err;
1080
1081 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1082
1083 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1084 if ((mark & EXTENT_DIRTY) &&
1085 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1086 errors = true;
1087
1088 if ((mark & EXTENT_NEW) &&
1089 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1090 errors = true;
1091
1092 if (errors && !err)
1093 err = -EIO;
1094 return err;
1095}
1096
1097/*
1098 * When btree blocks are allocated the corresponding extents are marked dirty.
1099 * This function ensures such extents are persisted on disk for transaction or
1100 * log commit.
1101 *
1102 * @trans: transaction whose dirty pages we'd like to write
1103 */
1104static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1105{
1106 int ret;
1107 int ret2;
1108 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1109 struct btrfs_fs_info *fs_info = trans->fs_info;
1110 struct blk_plug plug;
1111
1112 blk_start_plug(&plug);
1113 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1114 blk_finish_plug(&plug);
1115 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1116
1117 extent_io_tree_release(&trans->transaction->dirty_pages);
1118
1119 if (ret)
1120 return ret;
1121 else if (ret2)
1122 return ret2;
1123 else
1124 return 0;
1125}
1126
1127/*
1128 * this is used to update the root pointer in the tree of tree roots.
1129 *
1130 * But, in the case of the extent allocation tree, updating the root
1131 * pointer may allocate blocks which may change the root of the extent
1132 * allocation tree.
1133 *
1134 * So, this loops and repeats and makes sure the cowonly root didn't
1135 * change while the root pointer was being updated in the metadata.
1136 */
1137static int update_cowonly_root(struct btrfs_trans_handle *trans,
1138 struct btrfs_root *root)
1139{
1140 int ret;
1141 u64 old_root_bytenr;
1142 u64 old_root_used;
1143 struct btrfs_fs_info *fs_info = root->fs_info;
1144 struct btrfs_root *tree_root = fs_info->tree_root;
1145
1146 old_root_used = btrfs_root_used(&root->root_item);
1147
1148 while (1) {
1149 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1150 if (old_root_bytenr == root->node->start &&
1151 old_root_used == btrfs_root_used(&root->root_item))
1152 break;
1153
1154 btrfs_set_root_node(&root->root_item, root->node);
1155 ret = btrfs_update_root(trans, tree_root,
1156 &root->root_key,
1157 &root->root_item);
1158 if (ret)
1159 return ret;
1160
1161 old_root_used = btrfs_root_used(&root->root_item);
1162 }
1163
1164 return 0;
1165}
1166
1167/*
1168 * update all the cowonly tree roots on disk
1169 *
1170 * The error handling in this function may not be obvious. Any of the
1171 * failures will cause the file system to go offline. We still need
1172 * to clean up the delayed refs.
1173 */
1174static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1175{
1176 struct btrfs_fs_info *fs_info = trans->fs_info;
1177 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1178 struct list_head *io_bgs = &trans->transaction->io_bgs;
1179 struct list_head *next;
1180 struct extent_buffer *eb;
1181 int ret;
1182
1183 eb = btrfs_lock_root_node(fs_info->tree_root);
1184 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1185 0, &eb);
1186 btrfs_tree_unlock(eb);
1187 free_extent_buffer(eb);
1188
1189 if (ret)
1190 return ret;
1191
1192 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1193 if (ret)
1194 return ret;
1195
1196 ret = btrfs_run_dev_stats(trans);
1197 if (ret)
1198 return ret;
1199 ret = btrfs_run_dev_replace(trans);
1200 if (ret)
1201 return ret;
1202 ret = btrfs_run_qgroups(trans);
1203 if (ret)
1204 return ret;
1205
1206 ret = btrfs_setup_space_cache(trans);
1207 if (ret)
1208 return ret;
1209
1210 /* run_qgroups might have added some more refs */
1211 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1212 if (ret)
1213 return ret;
1214again:
1215 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1216 struct btrfs_root *root;
1217 next = fs_info->dirty_cowonly_roots.next;
1218 list_del_init(next);
1219 root = list_entry(next, struct btrfs_root, dirty_list);
1220 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1221
1222 if (root != fs_info->extent_root)
1223 list_add_tail(&root->dirty_list,
1224 &trans->transaction->switch_commits);
1225 ret = update_cowonly_root(trans, root);
1226 if (ret)
1227 return ret;
1228 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1229 if (ret)
1230 return ret;
1231 }
1232
1233 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1234 ret = btrfs_write_dirty_block_groups(trans);
1235 if (ret)
1236 return ret;
1237 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1238 if (ret)
1239 return ret;
1240 }
1241
1242 if (!list_empty(&fs_info->dirty_cowonly_roots))
1243 goto again;
1244
1245 list_add_tail(&fs_info->extent_root->dirty_list,
1246 &trans->transaction->switch_commits);
1247
1248 /* Update dev-replace pointer once everything is committed */
1249 fs_info->dev_replace.committed_cursor_left =
1250 fs_info->dev_replace.cursor_left_last_write_of_item;
1251
1252 return 0;
1253}
1254
1255/*
1256 * dead roots are old snapshots that need to be deleted. This allocates
1257 * a dirty root struct and adds it into the list of dead roots that need to
1258 * be deleted
1259 */
1260void btrfs_add_dead_root(struct btrfs_root *root)
1261{
1262 struct btrfs_fs_info *fs_info = root->fs_info;
1263
1264 spin_lock(&fs_info->trans_lock);
1265 if (list_empty(&root->root_list)) {
1266 btrfs_grab_root(root);
1267 list_add_tail(&root->root_list, &fs_info->dead_roots);
1268 }
1269 spin_unlock(&fs_info->trans_lock);
1270}
1271
1272/*
1273 * update all the cowonly tree roots on disk
1274 */
1275static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1276{
1277 struct btrfs_fs_info *fs_info = trans->fs_info;
1278 struct btrfs_root *gang[8];
1279 int i;
1280 int ret;
1281 int err = 0;
1282
1283 spin_lock(&fs_info->fs_roots_radix_lock);
1284 while (1) {
1285 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1286 (void **)gang, 0,
1287 ARRAY_SIZE(gang),
1288 BTRFS_ROOT_TRANS_TAG);
1289 if (ret == 0)
1290 break;
1291 for (i = 0; i < ret; i++) {
1292 struct btrfs_root *root = gang[i];
1293 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1294 (unsigned long)root->root_key.objectid,
1295 BTRFS_ROOT_TRANS_TAG);
1296 spin_unlock(&fs_info->fs_roots_radix_lock);
1297
1298 btrfs_free_log(trans, root);
1299 btrfs_update_reloc_root(trans, root);
1300
1301 btrfs_save_ino_cache(root, trans);
1302
1303 /* see comments in should_cow_block() */
1304 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1305 smp_mb__after_atomic();
1306
1307 if (root->commit_root != root->node) {
1308 list_add_tail(&root->dirty_list,
1309 &trans->transaction->switch_commits);
1310 btrfs_set_root_node(&root->root_item,
1311 root->node);
1312 }
1313
1314 err = btrfs_update_root(trans, fs_info->tree_root,
1315 &root->root_key,
1316 &root->root_item);
1317 spin_lock(&fs_info->fs_roots_radix_lock);
1318 if (err)
1319 break;
1320 btrfs_qgroup_free_meta_all_pertrans(root);
1321 }
1322 }
1323 spin_unlock(&fs_info->fs_roots_radix_lock);
1324 return err;
1325}
1326
1327/*
1328 * defrag a given btree.
1329 * Every leaf in the btree is read and defragged.
1330 */
1331int btrfs_defrag_root(struct btrfs_root *root)
1332{
1333 struct btrfs_fs_info *info = root->fs_info;
1334 struct btrfs_trans_handle *trans;
1335 int ret;
1336
1337 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1338 return 0;
1339
1340 while (1) {
1341 trans = btrfs_start_transaction(root, 0);
1342 if (IS_ERR(trans))
1343 return PTR_ERR(trans);
1344
1345 ret = btrfs_defrag_leaves(trans, root);
1346
1347 btrfs_end_transaction(trans);
1348 btrfs_btree_balance_dirty(info);
1349 cond_resched();
1350
1351 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1352 break;
1353
1354 if (btrfs_defrag_cancelled(info)) {
1355 btrfs_debug(info, "defrag_root cancelled");
1356 ret = -EAGAIN;
1357 break;
1358 }
1359 }
1360 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1361 return ret;
1362}
1363
1364/*
1365 * Do all special snapshot related qgroup dirty hack.
1366 *
1367 * Will do all needed qgroup inherit and dirty hack like switch commit
1368 * roots inside one transaction and write all btree into disk, to make
1369 * qgroup works.
1370 */
1371static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1372 struct btrfs_root *src,
1373 struct btrfs_root *parent,
1374 struct btrfs_qgroup_inherit *inherit,
1375 u64 dst_objectid)
1376{
1377 struct btrfs_fs_info *fs_info = src->fs_info;
1378 int ret;
1379
1380 /*
1381 * Save some performance in the case that qgroups are not
1382 * enabled. If this check races with the ioctl, rescan will
1383 * kick in anyway.
1384 */
1385 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1386 return 0;
1387
1388 /*
1389 * Ensure dirty @src will be committed. Or, after coming
1390 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1391 * recorded root will never be updated again, causing an outdated root
1392 * item.
1393 */
1394 record_root_in_trans(trans, src, 1);
1395
1396 /*
1397 * We are going to commit transaction, see btrfs_commit_transaction()
1398 * comment for reason locking tree_log_mutex
1399 */
1400 mutex_lock(&fs_info->tree_log_mutex);
1401
1402 ret = commit_fs_roots(trans);
1403 if (ret)
1404 goto out;
1405 ret = btrfs_qgroup_account_extents(trans);
1406 if (ret < 0)
1407 goto out;
1408
1409 /* Now qgroup are all updated, we can inherit it to new qgroups */
1410 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1411 inherit);
1412 if (ret < 0)
1413 goto out;
1414
1415 /*
1416 * Now we do a simplified commit transaction, which will:
1417 * 1) commit all subvolume and extent tree
1418 * To ensure all subvolume and extent tree have a valid
1419 * commit_root to accounting later insert_dir_item()
1420 * 2) write all btree blocks onto disk
1421 * This is to make sure later btree modification will be cowed
1422 * Or commit_root can be populated and cause wrong qgroup numbers
1423 * In this simplified commit, we don't really care about other trees
1424 * like chunk and root tree, as they won't affect qgroup.
1425 * And we don't write super to avoid half committed status.
1426 */
1427 ret = commit_cowonly_roots(trans);
1428 if (ret)
1429 goto out;
1430 switch_commit_roots(trans);
1431 ret = btrfs_write_and_wait_transaction(trans);
1432 if (ret)
1433 btrfs_handle_fs_error(fs_info, ret,
1434 "Error while writing out transaction for qgroup");
1435
1436out:
1437 mutex_unlock(&fs_info->tree_log_mutex);
1438
1439 /*
1440 * Force parent root to be updated, as we recorded it before so its
1441 * last_trans == cur_transid.
1442 * Or it won't be committed again onto disk after later
1443 * insert_dir_item()
1444 */
1445 if (!ret)
1446 record_root_in_trans(trans, parent, 1);
1447 return ret;
1448}
1449
1450/*
1451 * new snapshots need to be created at a very specific time in the
1452 * transaction commit. This does the actual creation.
1453 *
1454 * Note:
1455 * If the error which may affect the commitment of the current transaction
1456 * happens, we should return the error number. If the error which just affect
1457 * the creation of the pending snapshots, just return 0.
1458 */
1459static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1460 struct btrfs_pending_snapshot *pending)
1461{
1462
1463 struct btrfs_fs_info *fs_info = trans->fs_info;
1464 struct btrfs_key key;
1465 struct btrfs_root_item *new_root_item;
1466 struct btrfs_root *tree_root = fs_info->tree_root;
1467 struct btrfs_root *root = pending->root;
1468 struct btrfs_root *parent_root;
1469 struct btrfs_block_rsv *rsv;
1470 struct inode *parent_inode;
1471 struct btrfs_path *path;
1472 struct btrfs_dir_item *dir_item;
1473 struct dentry *dentry;
1474 struct extent_buffer *tmp;
1475 struct extent_buffer *old;
1476 struct timespec64 cur_time;
1477 int ret = 0;
1478 u64 to_reserve = 0;
1479 u64 index = 0;
1480 u64 objectid;
1481 u64 root_flags;
1482
1483 ASSERT(pending->path);
1484 path = pending->path;
1485
1486 ASSERT(pending->root_item);
1487 new_root_item = pending->root_item;
1488
1489 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1490 if (pending->error)
1491 goto no_free_objectid;
1492
1493 /*
1494 * Make qgroup to skip current new snapshot's qgroupid, as it is
1495 * accounted by later btrfs_qgroup_inherit().
1496 */
1497 btrfs_set_skip_qgroup(trans, objectid);
1498
1499 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1500
1501 if (to_reserve > 0) {
1502 pending->error = btrfs_block_rsv_add(root,
1503 &pending->block_rsv,
1504 to_reserve,
1505 BTRFS_RESERVE_NO_FLUSH);
1506 if (pending->error)
1507 goto clear_skip_qgroup;
1508 }
1509
1510 key.objectid = objectid;
1511 key.offset = (u64)-1;
1512 key.type = BTRFS_ROOT_ITEM_KEY;
1513
1514 rsv = trans->block_rsv;
1515 trans->block_rsv = &pending->block_rsv;
1516 trans->bytes_reserved = trans->block_rsv->reserved;
1517 trace_btrfs_space_reservation(fs_info, "transaction",
1518 trans->transid,
1519 trans->bytes_reserved, 1);
1520 dentry = pending->dentry;
1521 parent_inode = pending->dir;
1522 parent_root = BTRFS_I(parent_inode)->root;
1523 record_root_in_trans(trans, parent_root, 0);
1524
1525 cur_time = current_time(parent_inode);
1526
1527 /*
1528 * insert the directory item
1529 */
1530 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1531 BUG_ON(ret); /* -ENOMEM */
1532
1533 /* check if there is a file/dir which has the same name. */
1534 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1535 btrfs_ino(BTRFS_I(parent_inode)),
1536 dentry->d_name.name,
1537 dentry->d_name.len, 0);
1538 if (dir_item != NULL && !IS_ERR(dir_item)) {
1539 pending->error = -EEXIST;
1540 goto dir_item_existed;
1541 } else if (IS_ERR(dir_item)) {
1542 ret = PTR_ERR(dir_item);
1543 btrfs_abort_transaction(trans, ret);
1544 goto fail;
1545 }
1546 btrfs_release_path(path);
1547
1548 /*
1549 * pull in the delayed directory update
1550 * and the delayed inode item
1551 * otherwise we corrupt the FS during
1552 * snapshot
1553 */
1554 ret = btrfs_run_delayed_items(trans);
1555 if (ret) { /* Transaction aborted */
1556 btrfs_abort_transaction(trans, ret);
1557 goto fail;
1558 }
1559
1560 record_root_in_trans(trans, root, 0);
1561 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1562 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1563 btrfs_check_and_init_root_item(new_root_item);
1564
1565 root_flags = btrfs_root_flags(new_root_item);
1566 if (pending->readonly)
1567 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1568 else
1569 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1570 btrfs_set_root_flags(new_root_item, root_flags);
1571
1572 btrfs_set_root_generation_v2(new_root_item,
1573 trans->transid);
1574 generate_random_guid(new_root_item->uuid);
1575 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1576 BTRFS_UUID_SIZE);
1577 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1578 memset(new_root_item->received_uuid, 0,
1579 sizeof(new_root_item->received_uuid));
1580 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1581 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1582 btrfs_set_root_stransid(new_root_item, 0);
1583 btrfs_set_root_rtransid(new_root_item, 0);
1584 }
1585 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1586 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1587 btrfs_set_root_otransid(new_root_item, trans->transid);
1588
1589 old = btrfs_lock_root_node(root);
1590 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1591 if (ret) {
1592 btrfs_tree_unlock(old);
1593 free_extent_buffer(old);
1594 btrfs_abort_transaction(trans, ret);
1595 goto fail;
1596 }
1597
1598 btrfs_set_lock_blocking_write(old);
1599
1600 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1601 /* clean up in any case */
1602 btrfs_tree_unlock(old);
1603 free_extent_buffer(old);
1604 if (ret) {
1605 btrfs_abort_transaction(trans, ret);
1606 goto fail;
1607 }
1608 /* see comments in should_cow_block() */
1609 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1610 smp_wmb();
1611
1612 btrfs_set_root_node(new_root_item, tmp);
1613 /* record when the snapshot was created in key.offset */
1614 key.offset = trans->transid;
1615 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1616 btrfs_tree_unlock(tmp);
1617 free_extent_buffer(tmp);
1618 if (ret) {
1619 btrfs_abort_transaction(trans, ret);
1620 goto fail;
1621 }
1622
1623 /*
1624 * insert root back/forward references
1625 */
1626 ret = btrfs_add_root_ref(trans, objectid,
1627 parent_root->root_key.objectid,
1628 btrfs_ino(BTRFS_I(parent_inode)), index,
1629 dentry->d_name.name, dentry->d_name.len);
1630 if (ret) {
1631 btrfs_abort_transaction(trans, ret);
1632 goto fail;
1633 }
1634
1635 key.offset = (u64)-1;
1636 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1637 if (IS_ERR(pending->snap)) {
1638 ret = PTR_ERR(pending->snap);
1639 pending->snap = NULL;
1640 btrfs_abort_transaction(trans, ret);
1641 goto fail;
1642 }
1643
1644 ret = btrfs_reloc_post_snapshot(trans, pending);
1645 if (ret) {
1646 btrfs_abort_transaction(trans, ret);
1647 goto fail;
1648 }
1649
1650 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1651 if (ret) {
1652 btrfs_abort_transaction(trans, ret);
1653 goto fail;
1654 }
1655
1656 /*
1657 * Do special qgroup accounting for snapshot, as we do some qgroup
1658 * snapshot hack to do fast snapshot.
1659 * To co-operate with that hack, we do hack again.
1660 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1661 */
1662 ret = qgroup_account_snapshot(trans, root, parent_root,
1663 pending->inherit, objectid);
1664 if (ret < 0)
1665 goto fail;
1666
1667 ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1668 dentry->d_name.len, BTRFS_I(parent_inode),
1669 &key, BTRFS_FT_DIR, index);
1670 /* We have check then name at the beginning, so it is impossible. */
1671 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1672 if (ret) {
1673 btrfs_abort_transaction(trans, ret);
1674 goto fail;
1675 }
1676
1677 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1678 dentry->d_name.len * 2);
1679 parent_inode->i_mtime = parent_inode->i_ctime =
1680 current_time(parent_inode);
1681 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1682 if (ret) {
1683 btrfs_abort_transaction(trans, ret);
1684 goto fail;
1685 }
1686 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1687 BTRFS_UUID_KEY_SUBVOL,
1688 objectid);
1689 if (ret) {
1690 btrfs_abort_transaction(trans, ret);
1691 goto fail;
1692 }
1693 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1694 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1695 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1696 objectid);
1697 if (ret && ret != -EEXIST) {
1698 btrfs_abort_transaction(trans, ret);
1699 goto fail;
1700 }
1701 }
1702
1703 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1704 if (ret) {
1705 btrfs_abort_transaction(trans, ret);
1706 goto fail;
1707 }
1708
1709fail:
1710 pending->error = ret;
1711dir_item_existed:
1712 trans->block_rsv = rsv;
1713 trans->bytes_reserved = 0;
1714clear_skip_qgroup:
1715 btrfs_clear_skip_qgroup(trans);
1716no_free_objectid:
1717 kfree(new_root_item);
1718 pending->root_item = NULL;
1719 btrfs_free_path(path);
1720 pending->path = NULL;
1721
1722 return ret;
1723}
1724
1725/*
1726 * create all the snapshots we've scheduled for creation
1727 */
1728static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1729{
1730 struct btrfs_pending_snapshot *pending, *next;
1731 struct list_head *head = &trans->transaction->pending_snapshots;
1732 int ret = 0;
1733
1734 list_for_each_entry_safe(pending, next, head, list) {
1735 list_del(&pending->list);
1736 ret = create_pending_snapshot(trans, pending);
1737 if (ret)
1738 break;
1739 }
1740 return ret;
1741}
1742
1743static void update_super_roots(struct btrfs_fs_info *fs_info)
1744{
1745 struct btrfs_root_item *root_item;
1746 struct btrfs_super_block *super;
1747
1748 super = fs_info->super_copy;
1749
1750 root_item = &fs_info->chunk_root->root_item;
1751 super->chunk_root = root_item->bytenr;
1752 super->chunk_root_generation = root_item->generation;
1753 super->chunk_root_level = root_item->level;
1754
1755 root_item = &fs_info->tree_root->root_item;
1756 super->root = root_item->bytenr;
1757 super->generation = root_item->generation;
1758 super->root_level = root_item->level;
1759 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1760 super->cache_generation = root_item->generation;
1761 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1762 super->uuid_tree_generation = root_item->generation;
1763}
1764
1765int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1766{
1767 struct btrfs_transaction *trans;
1768 int ret = 0;
1769
1770 spin_lock(&info->trans_lock);
1771 trans = info->running_transaction;
1772 if (trans)
1773 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1774 spin_unlock(&info->trans_lock);
1775 return ret;
1776}
1777
1778int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1779{
1780 struct btrfs_transaction *trans;
1781 int ret = 0;
1782
1783 spin_lock(&info->trans_lock);
1784 trans = info->running_transaction;
1785 if (trans)
1786 ret = is_transaction_blocked(trans);
1787 spin_unlock(&info->trans_lock);
1788 return ret;
1789}
1790
1791/*
1792 * wait for the current transaction commit to start and block subsequent
1793 * transaction joins
1794 */
1795static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1796 struct btrfs_transaction *trans)
1797{
1798 wait_event(fs_info->transaction_blocked_wait,
1799 trans->state >= TRANS_STATE_COMMIT_START ||
1800 TRANS_ABORTED(trans));
1801}
1802
1803/*
1804 * wait for the current transaction to start and then become unblocked.
1805 * caller holds ref.
1806 */
1807static void wait_current_trans_commit_start_and_unblock(
1808 struct btrfs_fs_info *fs_info,
1809 struct btrfs_transaction *trans)
1810{
1811 wait_event(fs_info->transaction_wait,
1812 trans->state >= TRANS_STATE_UNBLOCKED ||
1813 TRANS_ABORTED(trans));
1814}
1815
1816/*
1817 * commit transactions asynchronously. once btrfs_commit_transaction_async
1818 * returns, any subsequent transaction will not be allowed to join.
1819 */
1820struct btrfs_async_commit {
1821 struct btrfs_trans_handle *newtrans;
1822 struct work_struct work;
1823};
1824
1825static void do_async_commit(struct work_struct *work)
1826{
1827 struct btrfs_async_commit *ac =
1828 container_of(work, struct btrfs_async_commit, work);
1829
1830 /*
1831 * We've got freeze protection passed with the transaction.
1832 * Tell lockdep about it.
1833 */
1834 if (ac->newtrans->type & __TRANS_FREEZABLE)
1835 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1836
1837 current->journal_info = ac->newtrans;
1838
1839 btrfs_commit_transaction(ac->newtrans);
1840 kfree(ac);
1841}
1842
1843int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1844 int wait_for_unblock)
1845{
1846 struct btrfs_fs_info *fs_info = trans->fs_info;
1847 struct btrfs_async_commit *ac;
1848 struct btrfs_transaction *cur_trans;
1849
1850 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1851 if (!ac)
1852 return -ENOMEM;
1853
1854 INIT_WORK(&ac->work, do_async_commit);
1855 ac->newtrans = btrfs_join_transaction(trans->root);
1856 if (IS_ERR(ac->newtrans)) {
1857 int err = PTR_ERR(ac->newtrans);
1858 kfree(ac);
1859 return err;
1860 }
1861
1862 /* take transaction reference */
1863 cur_trans = trans->transaction;
1864 refcount_inc(&cur_trans->use_count);
1865
1866 btrfs_end_transaction(trans);
1867
1868 /*
1869 * Tell lockdep we've released the freeze rwsem, since the
1870 * async commit thread will be the one to unlock it.
1871 */
1872 if (ac->newtrans->type & __TRANS_FREEZABLE)
1873 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1874
1875 schedule_work(&ac->work);
1876
1877 /* wait for transaction to start and unblock */
1878 if (wait_for_unblock)
1879 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1880 else
1881 wait_current_trans_commit_start(fs_info, cur_trans);
1882
1883 if (current->journal_info == trans)
1884 current->journal_info = NULL;
1885
1886 btrfs_put_transaction(cur_trans);
1887 return 0;
1888}
1889
1890
1891static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1892{
1893 struct btrfs_fs_info *fs_info = trans->fs_info;
1894 struct btrfs_transaction *cur_trans = trans->transaction;
1895
1896 WARN_ON(refcount_read(&trans->use_count) > 1);
1897
1898 btrfs_abort_transaction(trans, err);
1899
1900 spin_lock(&fs_info->trans_lock);
1901
1902 /*
1903 * If the transaction is removed from the list, it means this
1904 * transaction has been committed successfully, so it is impossible
1905 * to call the cleanup function.
1906 */
1907 BUG_ON(list_empty(&cur_trans->list));
1908
1909 list_del_init(&cur_trans->list);
1910 if (cur_trans == fs_info->running_transaction) {
1911 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1912 spin_unlock(&fs_info->trans_lock);
1913 wait_event(cur_trans->writer_wait,
1914 atomic_read(&cur_trans->num_writers) == 1);
1915
1916 spin_lock(&fs_info->trans_lock);
1917 }
1918 spin_unlock(&fs_info->trans_lock);
1919
1920 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1921
1922 spin_lock(&fs_info->trans_lock);
1923 if (cur_trans == fs_info->running_transaction)
1924 fs_info->running_transaction = NULL;
1925 spin_unlock(&fs_info->trans_lock);
1926
1927 if (trans->type & __TRANS_FREEZABLE)
1928 sb_end_intwrite(fs_info->sb);
1929 btrfs_put_transaction(cur_trans);
1930 btrfs_put_transaction(cur_trans);
1931
1932 trace_btrfs_transaction_commit(trans->root);
1933
1934 if (current->journal_info == trans)
1935 current->journal_info = NULL;
1936 btrfs_scrub_cancel(fs_info);
1937
1938 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1939}
1940
1941/*
1942 * Release reserved delayed ref space of all pending block groups of the
1943 * transaction and remove them from the list
1944 */
1945static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1946{
1947 struct btrfs_fs_info *fs_info = trans->fs_info;
1948 struct btrfs_block_group *block_group, *tmp;
1949
1950 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1951 btrfs_delayed_refs_rsv_release(fs_info, 1);
1952 list_del_init(&block_group->bg_list);
1953 }
1954}
1955
1956static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
1957{
1958 struct btrfs_fs_info *fs_info = trans->fs_info;
1959
1960 /*
1961 * We use writeback_inodes_sb here because if we used
1962 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1963 * Currently are holding the fs freeze lock, if we do an async flush
1964 * we'll do btrfs_join_transaction() and deadlock because we need to
1965 * wait for the fs freeze lock. Using the direct flushing we benefit
1966 * from already being in a transaction and our join_transaction doesn't
1967 * have to re-take the fs freeze lock.
1968 */
1969 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1970 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1971 } else {
1972 struct btrfs_pending_snapshot *pending;
1973 struct list_head *head = &trans->transaction->pending_snapshots;
1974
1975 /*
1976 * Flush dellaloc for any root that is going to be snapshotted.
1977 * This is done to avoid a corrupted version of files, in the
1978 * snapshots, that had both buffered and direct IO writes (even
1979 * if they were done sequentially) due to an unordered update of
1980 * the inode's size on disk.
1981 */
1982 list_for_each_entry(pending, head, list) {
1983 int ret;
1984
1985 ret = btrfs_start_delalloc_snapshot(pending->root);
1986 if (ret)
1987 return ret;
1988 }
1989 }
1990 return 0;
1991}
1992
1993static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
1994{
1995 struct btrfs_fs_info *fs_info = trans->fs_info;
1996
1997 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1998 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1999 } else {
2000 struct btrfs_pending_snapshot *pending;
2001 struct list_head *head = &trans->transaction->pending_snapshots;
2002
2003 /*
2004 * Wait for any dellaloc that we started previously for the roots
2005 * that are going to be snapshotted. This is to avoid a corrupted
2006 * version of files in the snapshots that had both buffered and
2007 * direct IO writes (even if they were done sequentially).
2008 */
2009 list_for_each_entry(pending, head, list)
2010 btrfs_wait_ordered_extents(pending->root,
2011 U64_MAX, 0, U64_MAX);
2012 }
2013}
2014
2015int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2016{
2017 struct btrfs_fs_info *fs_info = trans->fs_info;
2018 struct btrfs_transaction *cur_trans = trans->transaction;
2019 struct btrfs_transaction *prev_trans = NULL;
2020 int ret;
2021
2022 ASSERT(refcount_read(&trans->use_count) == 1);
2023
2024 /*
2025 * Some places just start a transaction to commit it. We need to make
2026 * sure that if this commit fails that the abort code actually marks the
2027 * transaction as failed, so set trans->dirty to make the abort code do
2028 * the right thing.
2029 */
2030 trans->dirty = true;
2031
2032 /* Stop the commit early if ->aborted is set */
2033 if (TRANS_ABORTED(cur_trans)) {
2034 ret = cur_trans->aborted;
2035 btrfs_end_transaction(trans);
2036 return ret;
2037 }
2038
2039 btrfs_trans_release_metadata(trans);
2040 trans->block_rsv = NULL;
2041
2042 /* make a pass through all the delayed refs we have so far
2043 * any runnings procs may add more while we are here
2044 */
2045 ret = btrfs_run_delayed_refs(trans, 0);
2046 if (ret) {
2047 btrfs_end_transaction(trans);
2048 return ret;
2049 }
2050
2051 cur_trans = trans->transaction;
2052
2053 /*
2054 * set the flushing flag so procs in this transaction have to
2055 * start sending their work down.
2056 */
2057 cur_trans->delayed_refs.flushing = 1;
2058 smp_wmb();
2059
2060 btrfs_create_pending_block_groups(trans);
2061
2062 ret = btrfs_run_delayed_refs(trans, 0);
2063 if (ret) {
2064 btrfs_end_transaction(trans);
2065 return ret;
2066 }
2067
2068 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2069 int run_it = 0;
2070
2071 /* this mutex is also taken before trying to set
2072 * block groups readonly. We need to make sure
2073 * that nobody has set a block group readonly
2074 * after a extents from that block group have been
2075 * allocated for cache files. btrfs_set_block_group_ro
2076 * will wait for the transaction to commit if it
2077 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2078 *
2079 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2080 * only one process starts all the block group IO. It wouldn't
2081 * hurt to have more than one go through, but there's no
2082 * real advantage to it either.
2083 */
2084 mutex_lock(&fs_info->ro_block_group_mutex);
2085 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2086 &cur_trans->flags))
2087 run_it = 1;
2088 mutex_unlock(&fs_info->ro_block_group_mutex);
2089
2090 if (run_it) {
2091 ret = btrfs_start_dirty_block_groups(trans);
2092 if (ret) {
2093 btrfs_end_transaction(trans);
2094 return ret;
2095 }
2096 }
2097 }
2098
2099 spin_lock(&fs_info->trans_lock);
2100 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2101 spin_unlock(&fs_info->trans_lock);
2102 refcount_inc(&cur_trans->use_count);
2103 ret = btrfs_end_transaction(trans);
2104
2105 wait_for_commit(cur_trans);
2106
2107 if (TRANS_ABORTED(cur_trans))
2108 ret = cur_trans->aborted;
2109
2110 btrfs_put_transaction(cur_trans);
2111
2112 return ret;
2113 }
2114
2115 cur_trans->state = TRANS_STATE_COMMIT_START;
2116 wake_up(&fs_info->transaction_blocked_wait);
2117
2118 if (cur_trans->list.prev != &fs_info->trans_list) {
2119 prev_trans = list_entry(cur_trans->list.prev,
2120 struct btrfs_transaction, list);
2121 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2122 refcount_inc(&prev_trans->use_count);
2123 spin_unlock(&fs_info->trans_lock);
2124
2125 wait_for_commit(prev_trans);
2126 ret = READ_ONCE(prev_trans->aborted);
2127
2128 btrfs_put_transaction(prev_trans);
2129 if (ret)
2130 goto cleanup_transaction;
2131 } else {
2132 spin_unlock(&fs_info->trans_lock);
2133 }
2134 } else {
2135 spin_unlock(&fs_info->trans_lock);
2136 /*
2137 * The previous transaction was aborted and was already removed
2138 * from the list of transactions at fs_info->trans_list. So we
2139 * abort to prevent writing a new superblock that reflects a
2140 * corrupt state (pointing to trees with unwritten nodes/leafs).
2141 */
2142 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2143 ret = -EROFS;
2144 goto cleanup_transaction;
2145 }
2146 }
2147
2148 extwriter_counter_dec(cur_trans, trans->type);
2149
2150 ret = btrfs_start_delalloc_flush(trans);
2151 if (ret)
2152 goto cleanup_transaction;
2153
2154 ret = btrfs_run_delayed_items(trans);
2155 if (ret)
2156 goto cleanup_transaction;
2157
2158 wait_event(cur_trans->writer_wait,
2159 extwriter_counter_read(cur_trans) == 0);
2160
2161 /* some pending stuffs might be added after the previous flush. */
2162 ret = btrfs_run_delayed_items(trans);
2163 if (ret)
2164 goto cleanup_transaction;
2165
2166 btrfs_wait_delalloc_flush(trans);
2167
2168 btrfs_scrub_pause(fs_info);
2169 /*
2170 * Ok now we need to make sure to block out any other joins while we
2171 * commit the transaction. We could have started a join before setting
2172 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2173 */
2174 spin_lock(&fs_info->trans_lock);
2175 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2176 spin_unlock(&fs_info->trans_lock);
2177 wait_event(cur_trans->writer_wait,
2178 atomic_read(&cur_trans->num_writers) == 1);
2179
2180 if (TRANS_ABORTED(cur_trans)) {
2181 ret = cur_trans->aborted;
2182 goto scrub_continue;
2183 }
2184 /*
2185 * the reloc mutex makes sure that we stop
2186 * the balancing code from coming in and moving
2187 * extents around in the middle of the commit
2188 */
2189 mutex_lock(&fs_info->reloc_mutex);
2190
2191 /*
2192 * We needn't worry about the delayed items because we will
2193 * deal with them in create_pending_snapshot(), which is the
2194 * core function of the snapshot creation.
2195 */
2196 ret = create_pending_snapshots(trans);
2197 if (ret)
2198 goto unlock_reloc;
2199
2200 /*
2201 * We insert the dir indexes of the snapshots and update the inode
2202 * of the snapshots' parents after the snapshot creation, so there
2203 * are some delayed items which are not dealt with. Now deal with
2204 * them.
2205 *
2206 * We needn't worry that this operation will corrupt the snapshots,
2207 * because all the tree which are snapshoted will be forced to COW
2208 * the nodes and leaves.
2209 */
2210 ret = btrfs_run_delayed_items(trans);
2211 if (ret)
2212 goto unlock_reloc;
2213
2214 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2215 if (ret)
2216 goto unlock_reloc;
2217
2218 /*
2219 * make sure none of the code above managed to slip in a
2220 * delayed item
2221 */
2222 btrfs_assert_delayed_root_empty(fs_info);
2223
2224 WARN_ON(cur_trans != trans->transaction);
2225
2226 /* btrfs_commit_tree_roots is responsible for getting the
2227 * various roots consistent with each other. Every pointer
2228 * in the tree of tree roots has to point to the most up to date
2229 * root for every subvolume and other tree. So, we have to keep
2230 * the tree logging code from jumping in and changing any
2231 * of the trees.
2232 *
2233 * At this point in the commit, there can't be any tree-log
2234 * writers, but a little lower down we drop the trans mutex
2235 * and let new people in. By holding the tree_log_mutex
2236 * from now until after the super is written, we avoid races
2237 * with the tree-log code.
2238 */
2239 mutex_lock(&fs_info->tree_log_mutex);
2240
2241 ret = commit_fs_roots(trans);
2242 if (ret)
2243 goto unlock_tree_log;
2244
2245 /*
2246 * Since the transaction is done, we can apply the pending changes
2247 * before the next transaction.
2248 */
2249 btrfs_apply_pending_changes(fs_info);
2250
2251 /* commit_fs_roots gets rid of all the tree log roots, it is now
2252 * safe to free the root of tree log roots
2253 */
2254 btrfs_free_log_root_tree(trans, fs_info);
2255
2256 /*
2257 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2258 * new delayed refs. Must handle them or qgroup can be wrong.
2259 */
2260 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2261 if (ret)
2262 goto unlock_tree_log;
2263
2264 /*
2265 * Since fs roots are all committed, we can get a quite accurate
2266 * new_roots. So let's do quota accounting.
2267 */
2268 ret = btrfs_qgroup_account_extents(trans);
2269 if (ret < 0)
2270 goto unlock_tree_log;
2271
2272 ret = commit_cowonly_roots(trans);
2273 if (ret)
2274 goto unlock_tree_log;
2275
2276 /*
2277 * The tasks which save the space cache and inode cache may also
2278 * update ->aborted, check it.
2279 */
2280 if (TRANS_ABORTED(cur_trans)) {
2281 ret = cur_trans->aborted;
2282 goto unlock_tree_log;
2283 }
2284
2285 btrfs_prepare_extent_commit(fs_info);
2286
2287 cur_trans = fs_info->running_transaction;
2288
2289 btrfs_set_root_node(&fs_info->tree_root->root_item,
2290 fs_info->tree_root->node);
2291 list_add_tail(&fs_info->tree_root->dirty_list,
2292 &cur_trans->switch_commits);
2293
2294 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2295 fs_info->chunk_root->node);
2296 list_add_tail(&fs_info->chunk_root->dirty_list,
2297 &cur_trans->switch_commits);
2298
2299 switch_commit_roots(trans);
2300
2301 ASSERT(list_empty(&cur_trans->dirty_bgs));
2302 ASSERT(list_empty(&cur_trans->io_bgs));
2303 update_super_roots(fs_info);
2304
2305 btrfs_set_super_log_root(fs_info->super_copy, 0);
2306 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2307 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2308 sizeof(*fs_info->super_copy));
2309
2310 btrfs_commit_device_sizes(cur_trans);
2311
2312 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2313 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2314
2315 btrfs_trans_release_chunk_metadata(trans);
2316
2317 spin_lock(&fs_info->trans_lock);
2318 cur_trans->state = TRANS_STATE_UNBLOCKED;
2319 fs_info->running_transaction = NULL;
2320 spin_unlock(&fs_info->trans_lock);
2321 mutex_unlock(&fs_info->reloc_mutex);
2322
2323 wake_up(&fs_info->transaction_wait);
2324
2325 ret = btrfs_write_and_wait_transaction(trans);
2326 if (ret) {
2327 btrfs_handle_fs_error(fs_info, ret,
2328 "Error while writing out transaction");
2329 /*
2330 * reloc_mutex has been unlocked, tree_log_mutex is still held
2331 * but we can't jump to unlock_tree_log causing double unlock
2332 */
2333 mutex_unlock(&fs_info->tree_log_mutex);
2334 goto scrub_continue;
2335 }
2336
2337 ret = write_all_supers(fs_info, 0);
2338 /*
2339 * the super is written, we can safely allow the tree-loggers
2340 * to go about their business
2341 */
2342 mutex_unlock(&fs_info->tree_log_mutex);
2343 if (ret)
2344 goto scrub_continue;
2345
2346 btrfs_finish_extent_commit(trans);
2347
2348 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2349 btrfs_clear_space_info_full(fs_info);
2350
2351 fs_info->last_trans_committed = cur_trans->transid;
2352 /*
2353 * We needn't acquire the lock here because there is no other task
2354 * which can change it.
2355 */
2356 cur_trans->state = TRANS_STATE_COMPLETED;
2357 wake_up(&cur_trans->commit_wait);
2358
2359 spin_lock(&fs_info->trans_lock);
2360 list_del_init(&cur_trans->list);
2361 spin_unlock(&fs_info->trans_lock);
2362
2363 btrfs_put_transaction(cur_trans);
2364 btrfs_put_transaction(cur_trans);
2365
2366 if (trans->type & __TRANS_FREEZABLE)
2367 sb_end_intwrite(fs_info->sb);
2368
2369 trace_btrfs_transaction_commit(trans->root);
2370
2371 btrfs_scrub_continue(fs_info);
2372
2373 if (current->journal_info == trans)
2374 current->journal_info = NULL;
2375
2376 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2377
2378 return ret;
2379
2380unlock_tree_log:
2381 mutex_unlock(&fs_info->tree_log_mutex);
2382unlock_reloc:
2383 mutex_unlock(&fs_info->reloc_mutex);
2384scrub_continue:
2385 btrfs_scrub_continue(fs_info);
2386cleanup_transaction:
2387 btrfs_trans_release_metadata(trans);
2388 btrfs_cleanup_pending_block_groups(trans);
2389 btrfs_trans_release_chunk_metadata(trans);
2390 trans->block_rsv = NULL;
2391 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2392 if (current->journal_info == trans)
2393 current->journal_info = NULL;
2394 cleanup_transaction(trans, ret);
2395
2396 return ret;
2397}
2398
2399/*
2400 * return < 0 if error
2401 * 0 if there are no more dead_roots at the time of call
2402 * 1 there are more to be processed, call me again
2403 *
2404 * The return value indicates there are certainly more snapshots to delete, but
2405 * if there comes a new one during processing, it may return 0. We don't mind,
2406 * because btrfs_commit_super will poke cleaner thread and it will process it a
2407 * few seconds later.
2408 */
2409int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2410{
2411 int ret;
2412 struct btrfs_fs_info *fs_info = root->fs_info;
2413
2414 spin_lock(&fs_info->trans_lock);
2415 if (list_empty(&fs_info->dead_roots)) {
2416 spin_unlock(&fs_info->trans_lock);
2417 return 0;
2418 }
2419 root = list_first_entry(&fs_info->dead_roots,
2420 struct btrfs_root, root_list);
2421 list_del_init(&root->root_list);
2422 spin_unlock(&fs_info->trans_lock);
2423
2424 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2425
2426 btrfs_kill_all_delayed_nodes(root);
2427 if (root->ino_cache_inode) {
2428 iput(root->ino_cache_inode);
2429 root->ino_cache_inode = NULL;
2430 }
2431
2432 if (btrfs_header_backref_rev(root->node) <
2433 BTRFS_MIXED_BACKREF_REV)
2434 ret = btrfs_drop_snapshot(root, 0, 0);
2435 else
2436 ret = btrfs_drop_snapshot(root, 1, 0);
2437
2438 btrfs_put_root(root);
2439 return (ret < 0) ? 0 : 1;
2440}
2441
2442void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2443{
2444 unsigned long prev;
2445 unsigned long bit;
2446
2447 prev = xchg(&fs_info->pending_changes, 0);
2448 if (!prev)
2449 return;
2450
2451 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2452 if (prev & bit)
2453 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2454 prev &= ~bit;
2455
2456 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2457 if (prev & bit)
2458 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2459 prev &= ~bit;
2460
2461 bit = 1 << BTRFS_PENDING_COMMIT;
2462 if (prev & bit)
2463 btrfs_debug(fs_info, "pending commit done");
2464 prev &= ~bit;
2465
2466 if (prev)
2467 btrfs_warn(fs_info,
2468 "unknown pending changes left 0x%lx, ignoring", prev);
2469}