Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2012 Alexander Block.  All rights reserved.
   4 */
   5
   6#include <linux/bsearch.h>
   7#include <linux/fs.h>
   8#include <linux/file.h>
   9#include <linux/sort.h>
  10#include <linux/mount.h>
  11#include <linux/xattr.h>
  12#include <linux/posix_acl_xattr.h>
  13#include <linux/radix-tree.h>
  14#include <linux/vmalloc.h>
  15#include <linux/string.h>
  16#include <linux/compat.h>
  17#include <linux/crc32c.h>
  18#include <linux/fsverity.h>
  19
  20#include "send.h"
  21#include "ctree.h"
  22#include "backref.h"
  23#include "locking.h"
  24#include "disk-io.h"
  25#include "btrfs_inode.h"
  26#include "transaction.h"
  27#include "compression.h"
  28#include "xattr.h"
  29#include "print-tree.h"
  30#include "accessors.h"
  31#include "dir-item.h"
  32#include "file-item.h"
  33#include "ioctl.h"
  34#include "verity.h"
  35#include "lru_cache.h"
  36
  37/*
  38 * Maximum number of references an extent can have in order for us to attempt to
  39 * issue clone operations instead of write operations. This currently exists to
  40 * avoid hitting limitations of the backreference walking code (taking a lot of
  41 * time and using too much memory for extents with large number of references).
  42 */
  43#define SEND_MAX_EXTENT_REFS	1024
  44
  45/*
  46 * A fs_path is a helper to dynamically build path names with unknown size.
  47 * It reallocates the internal buffer on demand.
  48 * It allows fast adding of path elements on the right side (normal path) and
  49 * fast adding to the left side (reversed path). A reversed path can also be
  50 * unreversed if needed.
  51 */
  52struct fs_path {
  53	union {
  54		struct {
  55			char *start;
  56			char *end;
  57
  58			char *buf;
  59			unsigned short buf_len:15;
  60			unsigned short reversed:1;
  61			char inline_buf[];
  62		};
  63		/*
  64		 * Average path length does not exceed 200 bytes, we'll have
  65		 * better packing in the slab and higher chance to satisfy
  66		 * a allocation later during send.
  67		 */
  68		char pad[256];
  69	};
  70};
  71#define FS_PATH_INLINE_SIZE \
  72	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
  73
  74
  75/* reused for each extent */
  76struct clone_root {
  77	struct btrfs_root *root;
  78	u64 ino;
  79	u64 offset;
  80	u64 num_bytes;
  81	bool found_ref;
  82};
  83
  84#define SEND_MAX_NAME_CACHE_SIZE			256
  85
  86/*
  87 * Limit the root_ids array of struct backref_cache_entry to 17 elements.
  88 * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which
  89 * can be satisfied from the kmalloc-192 slab, without wasting any space.
  90 * The most common case is to have a single root for cloning, which corresponds
  91 * to the send root. Having the user specify more than 16 clone roots is not
  92 * common, and in such rare cases we simply don't use caching if the number of
  93 * cloning roots that lead down to a leaf is more than 17.
  94 */
  95#define SEND_MAX_BACKREF_CACHE_ROOTS			17
  96
  97/*
  98 * Max number of entries in the cache.
  99 * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding
 100 * maple tree's internal nodes, is 24K.
 101 */
 102#define SEND_MAX_BACKREF_CACHE_SIZE 128
 103
 104/*
 105 * A backref cache entry maps a leaf to a list of IDs of roots from which the
 106 * leaf is accessible and we can use for clone operations.
 107 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on
 108 * x86_64).
 109 */
 110struct backref_cache_entry {
 111	struct btrfs_lru_cache_entry entry;
 112	u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS];
 113	/* Number of valid elements in the root_ids array. */
 114	int num_roots;
 115};
 116
 117/* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
 118static_assert(offsetof(struct backref_cache_entry, entry) == 0);
 119
 120/*
 121 * Max number of entries in the cache that stores directories that were already
 122 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
 123 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
 124 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
 125 */
 126#define SEND_MAX_DIR_CREATED_CACHE_SIZE			64
 127
 128/*
 129 * Max number of entries in the cache that stores directories that were already
 130 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
 131 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
 132 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
 133 */
 134#define SEND_MAX_DIR_UTIMES_CACHE_SIZE			64
 135
 136struct send_ctx {
 137	struct file *send_filp;
 138	loff_t send_off;
 139	char *send_buf;
 140	u32 send_size;
 141	u32 send_max_size;
 142	/*
 143	 * Whether BTRFS_SEND_A_DATA attribute was already added to current
 144	 * command (since protocol v2, data must be the last attribute).
 145	 */
 146	bool put_data;
 147	struct page **send_buf_pages;
 148	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
 149	/* Protocol version compatibility requested */
 150	u32 proto;
 151
 152	struct btrfs_root *send_root;
 153	struct btrfs_root *parent_root;
 154	struct clone_root *clone_roots;
 155	int clone_roots_cnt;
 156
 157	/* current state of the compare_tree call */
 158	struct btrfs_path *left_path;
 159	struct btrfs_path *right_path;
 160	struct btrfs_key *cmp_key;
 161
 162	/*
 163	 * Keep track of the generation of the last transaction that was used
 164	 * for relocating a block group. This is periodically checked in order
 165	 * to detect if a relocation happened since the last check, so that we
 166	 * don't operate on stale extent buffers for nodes (level >= 1) or on
 167	 * stale disk_bytenr values of file extent items.
 168	 */
 169	u64 last_reloc_trans;
 170
 171	/*
 172	 * infos of the currently processed inode. In case of deleted inodes,
 173	 * these are the values from the deleted inode.
 174	 */
 175	u64 cur_ino;
 176	u64 cur_inode_gen;
 
 
 
 177	u64 cur_inode_size;
 178	u64 cur_inode_mode;
 179	u64 cur_inode_rdev;
 180	u64 cur_inode_last_extent;
 181	u64 cur_inode_next_write_offset;
 182	bool cur_inode_new;
 183	bool cur_inode_new_gen;
 184	bool cur_inode_deleted;
 185	bool ignore_cur_inode;
 186	bool cur_inode_needs_verity;
 187	void *verity_descriptor;
 188
 189	u64 send_progress;
 190
 191	struct list_head new_refs;
 192	struct list_head deleted_refs;
 193
 194	struct btrfs_lru_cache name_cache;
 
 
 195
 196	/*
 197	 * The inode we are currently processing. It's not NULL only when we
 198	 * need to issue write commands for data extents from this inode.
 199	 */
 200	struct inode *cur_inode;
 201	struct file_ra_state ra;
 202	u64 page_cache_clear_start;
 203	bool clean_page_cache;
 204
 205	/*
 206	 * We process inodes by their increasing order, so if before an
 207	 * incremental send we reverse the parent/child relationship of
 208	 * directories such that a directory with a lower inode number was
 209	 * the parent of a directory with a higher inode number, and the one
 210	 * becoming the new parent got renamed too, we can't rename/move the
 211	 * directory with lower inode number when we finish processing it - we
 212	 * must process the directory with higher inode number first, then
 213	 * rename/move it and then rename/move the directory with lower inode
 214	 * number. Example follows.
 215	 *
 216	 * Tree state when the first send was performed:
 217	 *
 218	 * .
 219	 * |-- a                   (ino 257)
 220	 *     |-- b               (ino 258)
 221	 *         |
 222	 *         |
 223	 *         |-- c           (ino 259)
 224	 *         |   |-- d       (ino 260)
 225	 *         |
 226	 *         |-- c2          (ino 261)
 227	 *
 228	 * Tree state when the second (incremental) send is performed:
 229	 *
 230	 * .
 231	 * |-- a                   (ino 257)
 232	 *     |-- b               (ino 258)
 233	 *         |-- c2          (ino 261)
 234	 *             |-- d2      (ino 260)
 235	 *                 |-- cc  (ino 259)
 236	 *
 237	 * The sequence of steps that lead to the second state was:
 238	 *
 239	 * mv /a/b/c/d /a/b/c2/d2
 240	 * mv /a/b/c /a/b/c2/d2/cc
 241	 *
 242	 * "c" has lower inode number, but we can't move it (2nd mv operation)
 243	 * before we move "d", which has higher inode number.
 244	 *
 245	 * So we just memorize which move/rename operations must be performed
 246	 * later when their respective parent is processed and moved/renamed.
 247	 */
 248
 249	/* Indexed by parent directory inode number. */
 250	struct rb_root pending_dir_moves;
 251
 252	/*
 253	 * Reverse index, indexed by the inode number of a directory that
 254	 * is waiting for the move/rename of its immediate parent before its
 255	 * own move/rename can be performed.
 256	 */
 257	struct rb_root waiting_dir_moves;
 258
 259	/*
 260	 * A directory that is going to be rm'ed might have a child directory
 261	 * which is in the pending directory moves index above. In this case,
 262	 * the directory can only be removed after the move/rename of its child
 263	 * is performed. Example:
 264	 *
 265	 * Parent snapshot:
 266	 *
 267	 * .                        (ino 256)
 268	 * |-- a/                   (ino 257)
 269	 *     |-- b/               (ino 258)
 270	 *         |-- c/           (ino 259)
 271	 *         |   |-- x/       (ino 260)
 272	 *         |
 273	 *         |-- y/           (ino 261)
 274	 *
 275	 * Send snapshot:
 276	 *
 277	 * .                        (ino 256)
 278	 * |-- a/                   (ino 257)
 279	 *     |-- b/               (ino 258)
 280	 *         |-- YY/          (ino 261)
 281	 *              |-- x/      (ino 260)
 282	 *
 283	 * Sequence of steps that lead to the send snapshot:
 284	 * rm -f /a/b/c/foo.txt
 285	 * mv /a/b/y /a/b/YY
 286	 * mv /a/b/c/x /a/b/YY
 287	 * rmdir /a/b/c
 288	 *
 289	 * When the child is processed, its move/rename is delayed until its
 290	 * parent is processed (as explained above), but all other operations
 291	 * like update utimes, chown, chgrp, etc, are performed and the paths
 292	 * that it uses for those operations must use the orphanized name of
 293	 * its parent (the directory we're going to rm later), so we need to
 294	 * memorize that name.
 295	 *
 296	 * Indexed by the inode number of the directory to be deleted.
 297	 */
 298	struct rb_root orphan_dirs;
 299
 300	struct rb_root rbtree_new_refs;
 301	struct rb_root rbtree_deleted_refs;
 302
 303	struct btrfs_lru_cache backref_cache;
 304	u64 backref_cache_last_reloc_trans;
 305
 306	struct btrfs_lru_cache dir_created_cache;
 307	struct btrfs_lru_cache dir_utimes_cache;
 308};
 309
 310struct pending_dir_move {
 311	struct rb_node node;
 312	struct list_head list;
 313	u64 parent_ino;
 314	u64 ino;
 315	u64 gen;
 316	struct list_head update_refs;
 317};
 318
 319struct waiting_dir_move {
 320	struct rb_node node;
 321	u64 ino;
 322	/*
 323	 * There might be some directory that could not be removed because it
 324	 * was waiting for this directory inode to be moved first. Therefore
 325	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
 326	 */
 327	u64 rmdir_ino;
 328	u64 rmdir_gen;
 329	bool orphanized;
 330};
 331
 332struct orphan_dir_info {
 333	struct rb_node node;
 334	u64 ino;
 335	u64 gen;
 336	u64 last_dir_index_offset;
 337	u64 dir_high_seq_ino;
 338};
 339
 340struct name_cache_entry {
 
 341	/*
 342	 * The key in the entry is an inode number, and the generation matches
 343	 * the inode's generation.
 
 
 
 
 344	 */
 345	struct btrfs_lru_cache_entry entry;
 
 
 346	u64 parent_ino;
 347	u64 parent_gen;
 348	int ret;
 349	int need_later_update;
 350	int name_len;
 351	char name[];
 352};
 353
 354/* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
 355static_assert(offsetof(struct name_cache_entry, entry) == 0);
 356
 357#define ADVANCE							1
 358#define ADVANCE_ONLY_NEXT					-1
 359
 360enum btrfs_compare_tree_result {
 361	BTRFS_COMPARE_TREE_NEW,
 362	BTRFS_COMPARE_TREE_DELETED,
 363	BTRFS_COMPARE_TREE_CHANGED,
 364	BTRFS_COMPARE_TREE_SAME,
 365};
 
 
 
 
 
 366
 367__cold
 368static void inconsistent_snapshot_error(struct send_ctx *sctx,
 369					enum btrfs_compare_tree_result result,
 370					const char *what)
 371{
 372	const char *result_string;
 373
 374	switch (result) {
 375	case BTRFS_COMPARE_TREE_NEW:
 376		result_string = "new";
 377		break;
 378	case BTRFS_COMPARE_TREE_DELETED:
 379		result_string = "deleted";
 380		break;
 381	case BTRFS_COMPARE_TREE_CHANGED:
 382		result_string = "updated";
 383		break;
 384	case BTRFS_COMPARE_TREE_SAME:
 385		ASSERT(0);
 386		result_string = "unchanged";
 387		break;
 388	default:
 389		ASSERT(0);
 390		result_string = "unexpected";
 391	}
 392
 393	btrfs_err(sctx->send_root->fs_info,
 394		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
 395		  result_string, what, sctx->cmp_key->objectid,
 396		  sctx->send_root->root_key.objectid,
 397		  (sctx->parent_root ?
 398		   sctx->parent_root->root_key.objectid : 0));
 399}
 400
 401__maybe_unused
 402static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
 403{
 404	switch (sctx->proto) {
 405	case 1:	 return cmd <= BTRFS_SEND_C_MAX_V1;
 406	case 2:	 return cmd <= BTRFS_SEND_C_MAX_V2;
 407	case 3:	 return cmd <= BTRFS_SEND_C_MAX_V3;
 408	default: return false;
 409	}
 410}
 411
 412static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
 413
 414static struct waiting_dir_move *
 415get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
 416
 417static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
 418
 419static int need_send_hole(struct send_ctx *sctx)
 420{
 421	return (sctx->parent_root && !sctx->cur_inode_new &&
 422		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
 423		S_ISREG(sctx->cur_inode_mode));
 424}
 425
 426static void fs_path_reset(struct fs_path *p)
 427{
 428	if (p->reversed) {
 429		p->start = p->buf + p->buf_len - 1;
 430		p->end = p->start;
 431		*p->start = 0;
 432	} else {
 433		p->start = p->buf;
 434		p->end = p->start;
 435		*p->start = 0;
 436	}
 437}
 438
 439static struct fs_path *fs_path_alloc(void)
 440{
 441	struct fs_path *p;
 442
 443	p = kmalloc(sizeof(*p), GFP_KERNEL);
 444	if (!p)
 445		return NULL;
 446	p->reversed = 0;
 447	p->buf = p->inline_buf;
 448	p->buf_len = FS_PATH_INLINE_SIZE;
 449	fs_path_reset(p);
 450	return p;
 451}
 452
 453static struct fs_path *fs_path_alloc_reversed(void)
 454{
 455	struct fs_path *p;
 456
 457	p = fs_path_alloc();
 458	if (!p)
 459		return NULL;
 460	p->reversed = 1;
 461	fs_path_reset(p);
 462	return p;
 463}
 464
 465static void fs_path_free(struct fs_path *p)
 466{
 467	if (!p)
 468		return;
 469	if (p->buf != p->inline_buf)
 470		kfree(p->buf);
 471	kfree(p);
 472}
 473
 474static int fs_path_len(struct fs_path *p)
 475{
 476	return p->end - p->start;
 477}
 478
 479static int fs_path_ensure_buf(struct fs_path *p, int len)
 480{
 481	char *tmp_buf;
 482	int path_len;
 483	int old_buf_len;
 484
 485	len++;
 486
 487	if (p->buf_len >= len)
 488		return 0;
 489
 490	if (len > PATH_MAX) {
 491		WARN_ON(1);
 492		return -ENOMEM;
 493	}
 494
 495	path_len = p->end - p->start;
 496	old_buf_len = p->buf_len;
 497
 498	/*
 499	 * Allocate to the next largest kmalloc bucket size, to let
 500	 * the fast path happen most of the time.
 501	 */
 502	len = kmalloc_size_roundup(len);
 503	/*
 504	 * First time the inline_buf does not suffice
 505	 */
 506	if (p->buf == p->inline_buf) {
 507		tmp_buf = kmalloc(len, GFP_KERNEL);
 508		if (tmp_buf)
 509			memcpy(tmp_buf, p->buf, old_buf_len);
 510	} else {
 511		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
 512	}
 513	if (!tmp_buf)
 514		return -ENOMEM;
 515	p->buf = tmp_buf;
 516	p->buf_len = len;
 
 
 
 
 517
 518	if (p->reversed) {
 519		tmp_buf = p->buf + old_buf_len - path_len - 1;
 520		p->end = p->buf + p->buf_len - 1;
 521		p->start = p->end - path_len;
 522		memmove(p->start, tmp_buf, path_len + 1);
 523	} else {
 524		p->start = p->buf;
 525		p->end = p->start + path_len;
 526	}
 527	return 0;
 528}
 529
 530static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
 531				   char **prepared)
 532{
 533	int ret;
 534	int new_len;
 535
 536	new_len = p->end - p->start + name_len;
 537	if (p->start != p->end)
 538		new_len++;
 539	ret = fs_path_ensure_buf(p, new_len);
 540	if (ret < 0)
 541		goto out;
 542
 543	if (p->reversed) {
 544		if (p->start != p->end)
 545			*--p->start = '/';
 546		p->start -= name_len;
 547		*prepared = p->start;
 548	} else {
 549		if (p->start != p->end)
 550			*p->end++ = '/';
 551		*prepared = p->end;
 552		p->end += name_len;
 553		*p->end = 0;
 554	}
 555
 556out:
 557	return ret;
 558}
 559
 560static int fs_path_add(struct fs_path *p, const char *name, int name_len)
 561{
 562	int ret;
 563	char *prepared;
 564
 565	ret = fs_path_prepare_for_add(p, name_len, &prepared);
 566	if (ret < 0)
 567		goto out;
 568	memcpy(prepared, name, name_len);
 569
 570out:
 571	return ret;
 572}
 573
 574static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
 575{
 576	int ret;
 577	char *prepared;
 578
 579	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
 580	if (ret < 0)
 581		goto out;
 582	memcpy(prepared, p2->start, p2->end - p2->start);
 583
 584out:
 585	return ret;
 586}
 587
 588static int fs_path_add_from_extent_buffer(struct fs_path *p,
 589					  struct extent_buffer *eb,
 590					  unsigned long off, int len)
 591{
 592	int ret;
 593	char *prepared;
 594
 595	ret = fs_path_prepare_for_add(p, len, &prepared);
 596	if (ret < 0)
 597		goto out;
 598
 599	read_extent_buffer(eb, prepared, off, len);
 600
 601out:
 602	return ret;
 603}
 604
 605static int fs_path_copy(struct fs_path *p, struct fs_path *from)
 606{
 
 
 607	p->reversed = from->reversed;
 608	fs_path_reset(p);
 609
 610	return fs_path_add_path(p, from);
 
 
 611}
 612
 
 613static void fs_path_unreverse(struct fs_path *p)
 614{
 615	char *tmp;
 616	int len;
 617
 618	if (!p->reversed)
 619		return;
 620
 621	tmp = p->start;
 622	len = p->end - p->start;
 623	p->start = p->buf;
 624	p->end = p->start + len;
 625	memmove(p->start, tmp, len + 1);
 626	p->reversed = 0;
 627}
 628
 629static struct btrfs_path *alloc_path_for_send(void)
 630{
 631	struct btrfs_path *path;
 632
 633	path = btrfs_alloc_path();
 634	if (!path)
 635		return NULL;
 636	path->search_commit_root = 1;
 637	path->skip_locking = 1;
 638	path->need_commit_sem = 1;
 639	return path;
 640}
 641
 642static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
 643{
 644	int ret;
 645	u32 pos = 0;
 646
 647	while (pos < len) {
 648		ret = kernel_write(filp, buf + pos, len - pos, off);
 
 
 
 
 649		if (ret < 0)
 650			return ret;
 651		if (ret == 0)
 652			return -EIO;
 
 653		pos += ret;
 654	}
 655
 656	return 0;
 657}
 658
 659static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
 660{
 661	struct btrfs_tlv_header *hdr;
 662	int total_len = sizeof(*hdr) + len;
 663	int left = sctx->send_max_size - sctx->send_size;
 664
 665	if (WARN_ON_ONCE(sctx->put_data))
 666		return -EINVAL;
 667
 668	if (unlikely(left < total_len))
 669		return -EOVERFLOW;
 670
 671	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
 672	put_unaligned_le16(attr, &hdr->tlv_type);
 673	put_unaligned_le16(len, &hdr->tlv_len);
 674	memcpy(hdr + 1, data, len);
 675	sctx->send_size += total_len;
 676
 677	return 0;
 678}
 679
 680#define TLV_PUT_DEFINE_INT(bits) \
 681	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
 682			u##bits attr, u##bits value)			\
 683	{								\
 684		__le##bits __tmp = cpu_to_le##bits(value);		\
 685		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
 686	}
 687
 688TLV_PUT_DEFINE_INT(8)
 689TLV_PUT_DEFINE_INT(32)
 690TLV_PUT_DEFINE_INT(64)
 691
 692static int tlv_put_string(struct send_ctx *sctx, u16 attr,
 693			  const char *str, int len)
 694{
 695	if (len == -1)
 696		len = strlen(str);
 697	return tlv_put(sctx, attr, str, len);
 698}
 699
 700static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
 701			const u8 *uuid)
 702{
 703	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
 704}
 705
 706static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
 707				  struct extent_buffer *eb,
 708				  struct btrfs_timespec *ts)
 709{
 710	struct btrfs_timespec bts;
 711	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
 712	return tlv_put(sctx, attr, &bts, sizeof(bts));
 713}
 714
 715
 716#define TLV_PUT(sctx, attrtype, data, attrlen) \
 717	do { \
 718		ret = tlv_put(sctx, attrtype, data, attrlen); \
 719		if (ret < 0) \
 720			goto tlv_put_failure; \
 721	} while (0)
 722
 723#define TLV_PUT_INT(sctx, attrtype, bits, value) \
 724	do { \
 725		ret = tlv_put_u##bits(sctx, attrtype, value); \
 726		if (ret < 0) \
 727			goto tlv_put_failure; \
 728	} while (0)
 729
 730#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
 731#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
 732#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
 733#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
 734#define TLV_PUT_STRING(sctx, attrtype, str, len) \
 735	do { \
 736		ret = tlv_put_string(sctx, attrtype, str, len); \
 737		if (ret < 0) \
 738			goto tlv_put_failure; \
 739	} while (0)
 740#define TLV_PUT_PATH(sctx, attrtype, p) \
 741	do { \
 742		ret = tlv_put_string(sctx, attrtype, p->start, \
 743			p->end - p->start); \
 744		if (ret < 0) \
 745			goto tlv_put_failure; \
 746	} while(0)
 747#define TLV_PUT_UUID(sctx, attrtype, uuid) \
 748	do { \
 749		ret = tlv_put_uuid(sctx, attrtype, uuid); \
 750		if (ret < 0) \
 751			goto tlv_put_failure; \
 752	} while (0)
 753#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
 754	do { \
 755		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
 756		if (ret < 0) \
 757			goto tlv_put_failure; \
 758	} while (0)
 759
 760static int send_header(struct send_ctx *sctx)
 761{
 762	struct btrfs_stream_header hdr;
 763
 764	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
 765	hdr.version = cpu_to_le32(sctx->proto);
 
 766	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
 767					&sctx->send_off);
 768}
 769
 770/*
 771 * For each command/item we want to send to userspace, we call this function.
 772 */
 773static int begin_cmd(struct send_ctx *sctx, int cmd)
 774{
 775	struct btrfs_cmd_header *hdr;
 776
 777	if (WARN_ON(!sctx->send_buf))
 778		return -EINVAL;
 779
 780	BUG_ON(sctx->send_size);
 781
 782	sctx->send_size += sizeof(*hdr);
 783	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
 784	put_unaligned_le16(cmd, &hdr->cmd);
 785
 786	return 0;
 787}
 788
 789static int send_cmd(struct send_ctx *sctx)
 790{
 791	int ret;
 792	struct btrfs_cmd_header *hdr;
 793	u32 crc;
 794
 795	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
 796	put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
 797	put_unaligned_le32(0, &hdr->crc);
 798
 799	crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
 800	put_unaligned_le32(crc, &hdr->crc);
 801
 802	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
 803					&sctx->send_off);
 804
 
 
 805	sctx->send_size = 0;
 806	sctx->put_data = false;
 807
 808	return ret;
 809}
 810
 811/*
 812 * Sends a move instruction to user space
 813 */
 814static int send_rename(struct send_ctx *sctx,
 815		     struct fs_path *from, struct fs_path *to)
 816{
 817	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 818	int ret;
 819
 820	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
 821
 822	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
 823	if (ret < 0)
 824		goto out;
 825
 826	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
 827	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
 828
 829	ret = send_cmd(sctx);
 830
 831tlv_put_failure:
 832out:
 833	return ret;
 834}
 835
 836/*
 837 * Sends a link instruction to user space
 838 */
 839static int send_link(struct send_ctx *sctx,
 840		     struct fs_path *path, struct fs_path *lnk)
 841{
 842	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 843	int ret;
 844
 845	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
 846
 847	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
 848	if (ret < 0)
 849		goto out;
 850
 851	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 852	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
 853
 854	ret = send_cmd(sctx);
 855
 856tlv_put_failure:
 857out:
 858	return ret;
 859}
 860
 861/*
 862 * Sends an unlink instruction to user space
 863 */
 864static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
 865{
 866	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 867	int ret;
 868
 869	btrfs_debug(fs_info, "send_unlink %s", path->start);
 870
 871	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
 872	if (ret < 0)
 873		goto out;
 874
 875	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 876
 877	ret = send_cmd(sctx);
 878
 879tlv_put_failure:
 880out:
 881	return ret;
 882}
 883
 884/*
 885 * Sends a rmdir instruction to user space
 886 */
 887static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
 888{
 889	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 890	int ret;
 891
 892	btrfs_debug(fs_info, "send_rmdir %s", path->start);
 893
 894	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
 895	if (ret < 0)
 896		goto out;
 897
 898	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 899
 900	ret = send_cmd(sctx);
 901
 902tlv_put_failure:
 903out:
 904	return ret;
 905}
 906
 907struct btrfs_inode_info {
 908	u64 size;
 909	u64 gen;
 910	u64 mode;
 911	u64 uid;
 912	u64 gid;
 913	u64 rdev;
 914	u64 fileattr;
 915	u64 nlink;
 916};
 917
 918/*
 919 * Helper function to retrieve some fields from an inode item.
 920 */
 921static int get_inode_info(struct btrfs_root *root, u64 ino,
 922			  struct btrfs_inode_info *info)
 
 923{
 924	int ret;
 925	struct btrfs_path *path;
 926	struct btrfs_inode_item *ii;
 927	struct btrfs_key key;
 928
 929	path = alloc_path_for_send();
 930	if (!path)
 931		return -ENOMEM;
 932
 933	key.objectid = ino;
 934	key.type = BTRFS_INODE_ITEM_KEY;
 935	key.offset = 0;
 936	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 937	if (ret) {
 938		if (ret > 0)
 939			ret = -ENOENT;
 940		goto out;
 941	}
 942
 943	if (!info)
 944		goto out;
 945
 946	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
 947			struct btrfs_inode_item);
 948	info->size = btrfs_inode_size(path->nodes[0], ii);
 949	info->gen = btrfs_inode_generation(path->nodes[0], ii);
 950	info->mode = btrfs_inode_mode(path->nodes[0], ii);
 951	info->uid = btrfs_inode_uid(path->nodes[0], ii);
 952	info->gid = btrfs_inode_gid(path->nodes[0], ii);
 953	info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
 954	info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
 955	/*
 956	 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
 957	 * otherwise logically split to 32/32 parts.
 958	 */
 959	info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
 960
 961out:
 962	btrfs_free_path(path);
 963	return ret;
 964}
 965
 966static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
 
 
 
 967{
 
 968	int ret;
 969	struct btrfs_inode_info info = { 0 };
 970
 971	ASSERT(gen);
 972
 973	ret = get_inode_info(root, ino, &info);
 974	*gen = info.gen;
 
 
 975	return ret;
 976}
 977
 978typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
 979				   struct fs_path *p,
 980				   void *ctx);
 981
 982/*
 983 * Helper function to iterate the entries in ONE btrfs_inode_ref or
 984 * btrfs_inode_extref.
 985 * The iterate callback may return a non zero value to stop iteration. This can
 986 * be a negative value for error codes or 1 to simply stop it.
 987 *
 988 * path must point to the INODE_REF or INODE_EXTREF when called.
 989 */
 990static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
 991			     struct btrfs_key *found_key, int resolve,
 992			     iterate_inode_ref_t iterate, void *ctx)
 993{
 994	struct extent_buffer *eb = path->nodes[0];
 
 995	struct btrfs_inode_ref *iref;
 996	struct btrfs_inode_extref *extref;
 997	struct btrfs_path *tmp_path;
 998	struct fs_path *p;
 999	u32 cur = 0;
1000	u32 total;
1001	int slot = path->slots[0];
1002	u32 name_len;
1003	char *start;
1004	int ret = 0;
1005	int num = 0;
1006	int index;
1007	u64 dir;
1008	unsigned long name_off;
1009	unsigned long elem_size;
1010	unsigned long ptr;
1011
1012	p = fs_path_alloc_reversed();
1013	if (!p)
1014		return -ENOMEM;
1015
1016	tmp_path = alloc_path_for_send();
1017	if (!tmp_path) {
1018		fs_path_free(p);
1019		return -ENOMEM;
1020	}
1021
1022
1023	if (found_key->type == BTRFS_INODE_REF_KEY) {
1024		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
1025						    struct btrfs_inode_ref);
1026		total = btrfs_item_size(eb, slot);
 
1027		elem_size = sizeof(*iref);
1028	} else {
1029		ptr = btrfs_item_ptr_offset(eb, slot);
1030		total = btrfs_item_size(eb, slot);
1031		elem_size = sizeof(*extref);
1032	}
1033
1034	while (cur < total) {
1035		fs_path_reset(p);
1036
1037		if (found_key->type == BTRFS_INODE_REF_KEY) {
1038			iref = (struct btrfs_inode_ref *)(ptr + cur);
1039			name_len = btrfs_inode_ref_name_len(eb, iref);
1040			name_off = (unsigned long)(iref + 1);
1041			index = btrfs_inode_ref_index(eb, iref);
1042			dir = found_key->offset;
1043		} else {
1044			extref = (struct btrfs_inode_extref *)(ptr + cur);
1045			name_len = btrfs_inode_extref_name_len(eb, extref);
1046			name_off = (unsigned long)&extref->name;
1047			index = btrfs_inode_extref_index(eb, extref);
1048			dir = btrfs_inode_extref_parent(eb, extref);
1049		}
1050
1051		if (resolve) {
1052			start = btrfs_ref_to_path(root, tmp_path, name_len,
1053						  name_off, eb, dir,
1054						  p->buf, p->buf_len);
1055			if (IS_ERR(start)) {
1056				ret = PTR_ERR(start);
1057				goto out;
1058			}
1059			if (start < p->buf) {
1060				/* overflow , try again with larger buffer */
1061				ret = fs_path_ensure_buf(p,
1062						p->buf_len + p->buf - start);
1063				if (ret < 0)
1064					goto out;
1065				start = btrfs_ref_to_path(root, tmp_path,
1066							  name_len, name_off,
1067							  eb, dir,
1068							  p->buf, p->buf_len);
1069				if (IS_ERR(start)) {
1070					ret = PTR_ERR(start);
1071					goto out;
1072				}
1073				BUG_ON(start < p->buf);
1074			}
1075			p->start = start;
1076		} else {
1077			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1078							     name_len);
1079			if (ret < 0)
1080				goto out;
1081		}
1082
1083		cur += elem_size + name_len;
1084		ret = iterate(num, dir, index, p, ctx);
1085		if (ret)
1086			goto out;
1087		num++;
1088	}
1089
1090out:
1091	btrfs_free_path(tmp_path);
1092	fs_path_free(p);
1093	return ret;
1094}
1095
1096typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1097				  const char *name, int name_len,
1098				  const char *data, int data_len,
1099				  void *ctx);
1100
1101/*
1102 * Helper function to iterate the entries in ONE btrfs_dir_item.
1103 * The iterate callback may return a non zero value to stop iteration. This can
1104 * be a negative value for error codes or 1 to simply stop it.
1105 *
1106 * path must point to the dir item when called.
1107 */
1108static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1109			    iterate_dir_item_t iterate, void *ctx)
1110{
1111	int ret = 0;
1112	struct extent_buffer *eb;
 
1113	struct btrfs_dir_item *di;
1114	struct btrfs_key di_key;
1115	char *buf = NULL;
1116	int buf_len;
1117	u32 name_len;
1118	u32 data_len;
1119	u32 cur;
1120	u32 len;
1121	u32 total;
1122	int slot;
1123	int num;
 
1124
1125	/*
1126	 * Start with a small buffer (1 page). If later we end up needing more
1127	 * space, which can happen for xattrs on a fs with a leaf size greater
1128	 * then the page size, attempt to increase the buffer. Typically xattr
1129	 * values are small.
1130	 */
1131	buf_len = PATH_MAX;
1132	buf = kmalloc(buf_len, GFP_KERNEL);
1133	if (!buf) {
1134		ret = -ENOMEM;
1135		goto out;
1136	}
1137
1138	eb = path->nodes[0];
1139	slot = path->slots[0];
 
1140	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1141	cur = 0;
1142	len = 0;
1143	total = btrfs_item_size(eb, slot);
1144
1145	num = 0;
1146	while (cur < total) {
1147		name_len = btrfs_dir_name_len(eb, di);
1148		data_len = btrfs_dir_data_len(eb, di);
 
1149		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1150
1151		if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) {
1152			if (name_len > XATTR_NAME_MAX) {
1153				ret = -ENAMETOOLONG;
1154				goto out;
1155			}
1156			if (name_len + data_len >
1157					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1158				ret = -E2BIG;
1159				goto out;
1160			}
1161		} else {
1162			/*
1163			 * Path too long
1164			 */
1165			if (name_len + data_len > PATH_MAX) {
1166				ret = -ENAMETOOLONG;
1167				goto out;
1168			}
1169		}
1170
1171		if (name_len + data_len > buf_len) {
1172			buf_len = name_len + data_len;
1173			if (is_vmalloc_addr(buf)) {
1174				vfree(buf);
1175				buf = NULL;
1176			} else {
1177				char *tmp = krealloc(buf, buf_len,
1178						GFP_KERNEL | __GFP_NOWARN);
1179
1180				if (!tmp)
1181					kfree(buf);
1182				buf = tmp;
1183			}
1184			if (!buf) {
1185				buf = kvmalloc(buf_len, GFP_KERNEL);
1186				if (!buf) {
1187					ret = -ENOMEM;
1188					goto out;
1189				}
1190			}
1191		}
1192
1193		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1194				name_len + data_len);
1195
1196		len = sizeof(*di) + name_len + data_len;
1197		di = (struct btrfs_dir_item *)((char *)di + len);
1198		cur += len;
1199
1200		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1201			      data_len, ctx);
1202		if (ret < 0)
1203			goto out;
1204		if (ret) {
1205			ret = 0;
1206			goto out;
1207		}
1208
1209		num++;
1210	}
1211
1212out:
1213	kvfree(buf);
1214	return ret;
1215}
1216
1217static int __copy_first_ref(int num, u64 dir, int index,
1218			    struct fs_path *p, void *ctx)
1219{
1220	int ret;
1221	struct fs_path *pt = ctx;
1222
1223	ret = fs_path_copy(pt, p);
1224	if (ret < 0)
1225		return ret;
1226
1227	/* we want the first only */
1228	return 1;
1229}
1230
1231/*
1232 * Retrieve the first path of an inode. If an inode has more then one
1233 * ref/hardlink, this is ignored.
1234 */
1235static int get_inode_path(struct btrfs_root *root,
1236			  u64 ino, struct fs_path *path)
1237{
1238	int ret;
1239	struct btrfs_key key, found_key;
1240	struct btrfs_path *p;
1241
1242	p = alloc_path_for_send();
1243	if (!p)
1244		return -ENOMEM;
1245
1246	fs_path_reset(path);
1247
1248	key.objectid = ino;
1249	key.type = BTRFS_INODE_REF_KEY;
1250	key.offset = 0;
1251
1252	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1253	if (ret < 0)
1254		goto out;
1255	if (ret) {
1256		ret = 1;
1257		goto out;
1258	}
1259	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1260	if (found_key.objectid != ino ||
1261	    (found_key.type != BTRFS_INODE_REF_KEY &&
1262	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1263		ret = -ENOENT;
1264		goto out;
1265	}
1266
1267	ret = iterate_inode_ref(root, p, &found_key, 1,
1268				__copy_first_ref, path);
1269	if (ret < 0)
1270		goto out;
1271	ret = 0;
1272
1273out:
1274	btrfs_free_path(p);
1275	return ret;
1276}
1277
1278struct backref_ctx {
1279	struct send_ctx *sctx;
1280
1281	/* number of total found references */
1282	u64 found;
1283
1284	/*
1285	 * used for clones found in send_root. clones found behind cur_objectid
1286	 * and cur_offset are not considered as allowed clones.
1287	 */
1288	u64 cur_objectid;
1289	u64 cur_offset;
1290
1291	/* may be truncated in case it's the last extent in a file */
1292	u64 extent_len;
1293
1294	/* The bytenr the file extent item we are processing refers to. */
1295	u64 bytenr;
1296	/* The owner (root id) of the data backref for the current extent. */
1297	u64 backref_owner;
1298	/* The offset of the data backref for the current extent. */
1299	u64 backref_offset;
1300};
1301
1302static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1303{
1304	u64 root = (u64)(uintptr_t)key;
1305	const struct clone_root *cr = elt;
1306
1307	if (root < cr->root->root_key.objectid)
1308		return -1;
1309	if (root > cr->root->root_key.objectid)
1310		return 1;
1311	return 0;
1312}
1313
1314static int __clone_root_cmp_sort(const void *e1, const void *e2)
1315{
1316	const struct clone_root *cr1 = e1;
1317	const struct clone_root *cr2 = e2;
1318
1319	if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1320		return -1;
1321	if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1322		return 1;
1323	return 0;
1324}
1325
1326/*
1327 * Called for every backref that is found for the current extent.
1328 * Results are collected in sctx->clone_roots->ino/offset.
1329 */
1330static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id,
1331			    void *ctx_)
1332{
1333	struct backref_ctx *bctx = ctx_;
1334	struct clone_root *clone_root;
1335
1336	/* First check if the root is in the list of accepted clone sources */
1337	clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots,
1338			     bctx->sctx->clone_roots_cnt,
1339			     sizeof(struct clone_root),
1340			     __clone_root_cmp_bsearch);
1341	if (!clone_root)
1342		return 0;
1343
1344	/* This is our own reference, bail out as we can't clone from it. */
1345	if (clone_root->root == bctx->sctx->send_root &&
1346	    ino == bctx->cur_objectid &&
1347	    offset == bctx->cur_offset)
1348		return 0;
 
1349
1350	/*
1351	 * Make sure we don't consider clones from send_root that are
1352	 * behind the current inode/offset.
1353	 */
1354	if (clone_root->root == bctx->sctx->send_root) {
1355		/*
1356		 * If the source inode was not yet processed we can't issue a
1357		 * clone operation, as the source extent does not exist yet at
1358		 * the destination of the stream.
1359		 */
1360		if (ino > bctx->cur_objectid)
1361			return 0;
1362		/*
1363		 * We clone from the inode currently being sent as long as the
1364		 * source extent is already processed, otherwise we could try
1365		 * to clone from an extent that does not exist yet at the
1366		 * destination of the stream.
1367		 */
1368		if (ino == bctx->cur_objectid &&
1369		    offset + bctx->extent_len >
1370		    bctx->sctx->cur_inode_next_write_offset)
1371			return 0;
1372	}
1373
1374	bctx->found++;
1375	clone_root->found_ref = true;
1376
1377	/*
1378	 * If the given backref refers to a file extent item with a larger
1379	 * number of bytes than what we found before, use the new one so that
1380	 * we clone more optimally and end up doing less writes and getting
1381	 * less exclusive, non-shared extents at the destination.
1382	 */
1383	if (num_bytes > clone_root->num_bytes) {
1384		clone_root->ino = ino;
1385		clone_root->offset = offset;
1386		clone_root->num_bytes = num_bytes;
1387
1388		/*
1389		 * Found a perfect candidate, so there's no need to continue
1390		 * backref walking.
1391		 */
1392		if (num_bytes >= bctx->extent_len)
1393			return BTRFS_ITERATE_EXTENT_INODES_STOP;
1394	}
1395
1396	return 0;
1397}
1398
1399static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx,
1400				 const u64 **root_ids_ret, int *root_count_ret)
1401{
1402	struct backref_ctx *bctx = ctx;
1403	struct send_ctx *sctx = bctx->sctx;
1404	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1405	const u64 key = leaf_bytenr >> fs_info->sectorsize_bits;
1406	struct btrfs_lru_cache_entry *raw_entry;
1407	struct backref_cache_entry *entry;
1408
1409	if (btrfs_lru_cache_size(&sctx->backref_cache) == 0)
1410		return false;
1411
1412	/*
1413	 * If relocation happened since we first filled the cache, then we must
1414	 * empty the cache and can not use it, because even though we operate on
1415	 * read-only roots, their leaves and nodes may have been reallocated and
1416	 * now be used for different nodes/leaves of the same tree or some other
1417	 * tree.
1418	 *
1419	 * We are called from iterate_extent_inodes() while either holding a
1420	 * transaction handle or holding fs_info->commit_root_sem, so no need
1421	 * to take any lock here.
1422	 */
1423	if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) {
1424		btrfs_lru_cache_clear(&sctx->backref_cache);
1425		return false;
1426	}
1427
1428	raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0);
1429	if (!raw_entry)
1430		return false;
1431
1432	entry = container_of(raw_entry, struct backref_cache_entry, entry);
1433	*root_ids_ret = entry->root_ids;
1434	*root_count_ret = entry->num_roots;
1435
1436	return true;
1437}
1438
1439static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids,
1440				void *ctx)
1441{
1442	struct backref_ctx *bctx = ctx;
1443	struct send_ctx *sctx = bctx->sctx;
1444	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1445	struct backref_cache_entry *new_entry;
1446	struct ulist_iterator uiter;
1447	struct ulist_node *node;
1448	int ret;
1449
1450	/*
1451	 * We're called while holding a transaction handle or while holding
1452	 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a
1453	 * NOFS allocation.
1454	 */
1455	new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS);
1456	/* No worries, cache is optional. */
1457	if (!new_entry)
1458		return;
1459
1460	new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits;
1461	new_entry->entry.gen = 0;
1462	new_entry->num_roots = 0;
1463	ULIST_ITER_INIT(&uiter);
1464	while ((node = ulist_next(root_ids, &uiter)) != NULL) {
1465		const u64 root_id = node->val;
1466		struct clone_root *root;
1467
1468		root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots,
1469			       sctx->clone_roots_cnt, sizeof(struct clone_root),
1470			       __clone_root_cmp_bsearch);
1471		if (!root)
1472			continue;
1473
1474		/* Too many roots, just exit, no worries as caching is optional. */
1475		if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) {
1476			kfree(new_entry);
1477			return;
1478		}
1479
1480		new_entry->root_ids[new_entry->num_roots] = root_id;
1481		new_entry->num_roots++;
1482	}
1483
1484	/*
1485	 * We may have not added any roots to the new cache entry, which means
1486	 * none of the roots is part of the list of roots from which we are
1487	 * allowed to clone. Cache the new entry as it's still useful to avoid
1488	 * backref walking to determine which roots have a path to the leaf.
1489	 *
1490	 * Also use GFP_NOFS because we're called while holding a transaction
1491	 * handle or while holding fs_info->commit_root_sem.
1492	 */
1493	ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry,
1494				    GFP_NOFS);
1495	ASSERT(ret == 0 || ret == -ENOMEM);
1496	if (ret) {
1497		/* Caching is optional, no worries. */
1498		kfree(new_entry);
1499		return;
1500	}
1501
1502	/*
1503	 * We are called from iterate_extent_inodes() while either holding a
1504	 * transaction handle or holding fs_info->commit_root_sem, so no need
1505	 * to take any lock here.
1506	 */
1507	if (btrfs_lru_cache_size(&sctx->backref_cache) == 1)
1508		sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans;
1509}
1510
1511static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei,
1512			     const struct extent_buffer *leaf, void *ctx)
1513{
1514	const u64 refs = btrfs_extent_refs(leaf, ei);
1515	const struct backref_ctx *bctx = ctx;
1516	const struct send_ctx *sctx = bctx->sctx;
1517
1518	if (bytenr == bctx->bytenr) {
1519		const u64 flags = btrfs_extent_flags(leaf, ei);
1520
1521		if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
1522			return -EUCLEAN;
1523
1524		/*
1525		 * If we have only one reference and only the send root as a
1526		 * clone source - meaning no clone roots were given in the
1527		 * struct btrfs_ioctl_send_args passed to the send ioctl - then
1528		 * it's our reference and there's no point in doing backref
1529		 * walking which is expensive, so exit early.
1530		 */
1531		if (refs == 1 && sctx->clone_roots_cnt == 1)
1532			return -ENOENT;
1533	}
1534
1535	/*
1536	 * Backreference walking (iterate_extent_inodes() below) is currently
1537	 * too expensive when an extent has a large number of references, both
1538	 * in time spent and used memory. So for now just fallback to write
1539	 * operations instead of clone operations when an extent has more than
1540	 * a certain amount of references.
1541	 */
1542	if (refs > SEND_MAX_EXTENT_REFS)
1543		return -ENOENT;
1544
1545	return 0;
1546}
1547
1548static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx)
1549{
1550	const struct backref_ctx *bctx = ctx;
1551
1552	if (ino == bctx->cur_objectid &&
1553	    root == bctx->backref_owner &&
1554	    offset == bctx->backref_offset)
1555		return true;
1556
1557	return false;
1558}
1559
1560/*
1561 * Given an inode, offset and extent item, it finds a good clone for a clone
1562 * instruction. Returns -ENOENT when none could be found. The function makes
1563 * sure that the returned clone is usable at the point where sending is at the
1564 * moment. This means, that no clones are accepted which lie behind the current
1565 * inode+offset.
1566 *
1567 * path must point to the extent item when called.
1568 */
1569static int find_extent_clone(struct send_ctx *sctx,
1570			     struct btrfs_path *path,
1571			     u64 ino, u64 data_offset,
1572			     u64 ino_size,
1573			     struct clone_root **found)
1574{
1575	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1576	int ret;
1577	int extent_type;
1578	u64 logical;
1579	u64 disk_byte;
1580	u64 num_bytes;
 
 
1581	struct btrfs_file_extent_item *fi;
1582	struct extent_buffer *eb = path->nodes[0];
1583	struct backref_ctx backref_ctx = { 0 };
1584	struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 };
1585	struct clone_root *cur_clone_root;
 
 
 
1586	int compressed;
1587	u32 i;
1588
1589	/*
1590	 * With fallocate we can get prealloc extents beyond the inode's i_size,
1591	 * so we don't do anything here because clone operations can not clone
1592	 * to a range beyond i_size without increasing the i_size of the
1593	 * destination inode.
1594	 */
1595	if (data_offset >= ino_size)
1596		return 0;
1597
1598	fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item);
1599	extent_type = btrfs_file_extent_type(eb, fi);
1600	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1601		return -ENOENT;
1602
1603	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1604	if (disk_byte == 0)
1605		return -ENOENT;
 
 
1606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1607	compressed = btrfs_file_extent_compression(eb, fi);
 
1608	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
 
 
 
 
 
1609	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1611	/*
1612	 * Setup the clone roots.
1613	 */
1614	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1615		cur_clone_root = sctx->clone_roots + i;
1616		cur_clone_root->ino = (u64)-1;
1617		cur_clone_root->offset = 0;
1618		cur_clone_root->num_bytes = 0;
1619		cur_clone_root->found_ref = false;
1620	}
1621
1622	backref_ctx.sctx = sctx;
1623	backref_ctx.cur_objectid = ino;
1624	backref_ctx.cur_offset = data_offset;
1625	backref_ctx.bytenr = disk_byte;
1626	/*
1627	 * Use the header owner and not the send root's id, because in case of a
1628	 * snapshot we can have shared subtrees.
 
 
 
 
 
 
 
1629	 */
1630	backref_ctx.backref_owner = btrfs_header_owner(eb);
1631	backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi);
 
 
1632
1633	/*
1634	 * The last extent of a file may be too large due to page alignment.
1635	 * We need to adjust extent_len in this case so that the checks in
1636	 * iterate_backrefs() work.
1637	 */
1638	if (data_offset + num_bytes >= ino_size)
1639		backref_ctx.extent_len = ino_size - data_offset;
1640	else
1641		backref_ctx.extent_len = num_bytes;
1642
1643	/*
1644	 * Now collect all backrefs.
1645	 */
1646	backref_walk_ctx.bytenr = disk_byte;
1647	if (compressed == BTRFS_COMPRESS_NONE)
1648		backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi);
1649	backref_walk_ctx.fs_info = fs_info;
1650	backref_walk_ctx.cache_lookup = lookup_backref_cache;
1651	backref_walk_ctx.cache_store = store_backref_cache;
1652	backref_walk_ctx.indirect_ref_iterator = iterate_backrefs;
1653	backref_walk_ctx.check_extent_item = check_extent_item;
1654	backref_walk_ctx.user_ctx = &backref_ctx;
1655
1656	/*
1657	 * If have a single clone root, then it's the send root and we can tell
1658	 * the backref walking code to skip our own backref and not resolve it,
1659	 * since we can not use it for cloning - the source and destination
1660	 * ranges can't overlap and in case the leaf is shared through a subtree
1661	 * due to snapshots, we can't use those other roots since they are not
1662	 * in the list of clone roots.
1663	 */
1664	if (sctx->clone_roots_cnt == 1)
1665		backref_walk_ctx.skip_data_ref = skip_self_data_ref;
1666
1667	ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs,
1668				    &backref_ctx);
1669	if (ret < 0)
1670		return ret;
1671
1672	down_read(&fs_info->commit_root_sem);
1673	if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1674		/*
1675		 * A transaction commit for a transaction in which block group
1676		 * relocation was done just happened.
1677		 * The disk_bytenr of the file extent item we processed is
1678		 * possibly stale, referring to the extent's location before
1679		 * relocation. So act as if we haven't found any clone sources
1680		 * and fallback to write commands, which will read the correct
1681		 * data from the new extent location. Otherwise we will fail
1682		 * below because we haven't found our own back reference or we
1683		 * could be getting incorrect sources in case the old extent
1684		 * was already reallocated after the relocation.
1685		 */
1686		up_read(&fs_info->commit_root_sem);
1687		return -ENOENT;
1688	}
1689	up_read(&fs_info->commit_root_sem);
1690
1691	btrfs_debug(fs_info,
1692		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1693		    data_offset, ino, num_bytes, logical);
1694
1695	if (!backref_ctx.found) {
1696		btrfs_debug(fs_info, "no clones found");
1697		return -ENOENT;
1698	}
1699
1700	cur_clone_root = NULL;
1701	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1702		struct clone_root *clone_root = &sctx->clone_roots[i];
1703
1704		if (!clone_root->found_ref)
1705			continue;
1706
1707		/*
1708		 * Choose the root from which we can clone more bytes, to
1709		 * minimize write operations and therefore have more extent
1710		 * sharing at the destination (the same as in the source).
1711		 */
1712		if (!cur_clone_root ||
1713		    clone_root->num_bytes > cur_clone_root->num_bytes) {
1714			cur_clone_root = clone_root;
1715
1716			/*
1717			 * We found an optimal clone candidate (any inode from
1718			 * any root is fine), so we're done.
1719			 */
1720			if (clone_root->num_bytes >= backref_ctx.extent_len)
1721				break;
1722		}
 
1723	}
1724
1725	if (cur_clone_root) {
1726		*found = cur_clone_root;
1727		ret = 0;
1728	} else {
1729		ret = -ENOENT;
1730	}
1731
 
 
 
1732	return ret;
1733}
1734
1735static int read_symlink(struct btrfs_root *root,
1736			u64 ino,
1737			struct fs_path *dest)
1738{
1739	int ret;
1740	struct btrfs_path *path;
1741	struct btrfs_key key;
1742	struct btrfs_file_extent_item *ei;
1743	u8 type;
1744	u8 compression;
1745	unsigned long off;
1746	int len;
1747
1748	path = alloc_path_for_send();
1749	if (!path)
1750		return -ENOMEM;
1751
1752	key.objectid = ino;
1753	key.type = BTRFS_EXTENT_DATA_KEY;
1754	key.offset = 0;
1755	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1756	if (ret < 0)
1757		goto out;
1758	if (ret) {
1759		/*
1760		 * An empty symlink inode. Can happen in rare error paths when
1761		 * creating a symlink (transaction committed before the inode
1762		 * eviction handler removed the symlink inode items and a crash
1763		 * happened in between or the subvol was snapshoted in between).
1764		 * Print an informative message to dmesg/syslog so that the user
1765		 * can delete the symlink.
1766		 */
1767		btrfs_err(root->fs_info,
1768			  "Found empty symlink inode %llu at root %llu",
1769			  ino, root->root_key.objectid);
1770		ret = -EIO;
1771		goto out;
1772	}
1773
1774	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1775			struct btrfs_file_extent_item);
1776	type = btrfs_file_extent_type(path->nodes[0], ei);
1777	if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) {
1778		ret = -EUCLEAN;
1779		btrfs_crit(root->fs_info,
1780"send: found symlink extent that is not inline, ino %llu root %llu extent type %d",
1781			   ino, btrfs_root_id(root), type);
1782		goto out;
1783	}
1784	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1785	if (unlikely(compression != BTRFS_COMPRESS_NONE)) {
1786		ret = -EUCLEAN;
1787		btrfs_crit(root->fs_info,
1788"send: found symlink extent with compression, ino %llu root %llu compression type %d",
1789			   ino, btrfs_root_id(root), compression);
1790		goto out;
1791	}
1792
1793	off = btrfs_file_extent_inline_start(ei);
1794	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1795
1796	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1797
1798out:
1799	btrfs_free_path(path);
1800	return ret;
1801}
1802
1803/*
1804 * Helper function to generate a file name that is unique in the root of
1805 * send_root and parent_root. This is used to generate names for orphan inodes.
1806 */
1807static int gen_unique_name(struct send_ctx *sctx,
1808			   u64 ino, u64 gen,
1809			   struct fs_path *dest)
1810{
1811	int ret = 0;
1812	struct btrfs_path *path;
1813	struct btrfs_dir_item *di;
1814	char tmp[64];
1815	int len;
1816	u64 idx = 0;
1817
1818	path = alloc_path_for_send();
1819	if (!path)
1820		return -ENOMEM;
1821
1822	while (1) {
1823		struct fscrypt_str tmp_name;
1824
1825		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1826				ino, gen, idx);
1827		ASSERT(len < sizeof(tmp));
1828		tmp_name.name = tmp;
1829		tmp_name.len = strlen(tmp);
1830
1831		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1832				path, BTRFS_FIRST_FREE_OBJECTID,
1833				&tmp_name, 0);
1834		btrfs_release_path(path);
1835		if (IS_ERR(di)) {
1836			ret = PTR_ERR(di);
1837			goto out;
1838		}
1839		if (di) {
1840			/* not unique, try again */
1841			idx++;
1842			continue;
1843		}
1844
1845		if (!sctx->parent_root) {
1846			/* unique */
1847			ret = 0;
1848			break;
1849		}
1850
1851		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1852				path, BTRFS_FIRST_FREE_OBJECTID,
1853				&tmp_name, 0);
1854		btrfs_release_path(path);
1855		if (IS_ERR(di)) {
1856			ret = PTR_ERR(di);
1857			goto out;
1858		}
1859		if (di) {
1860			/* not unique, try again */
1861			idx++;
1862			continue;
1863		}
1864		/* unique */
1865		break;
1866	}
1867
1868	ret = fs_path_add(dest, tmp, strlen(tmp));
1869
1870out:
1871	btrfs_free_path(path);
1872	return ret;
1873}
1874
1875enum inode_state {
1876	inode_state_no_change,
1877	inode_state_will_create,
1878	inode_state_did_create,
1879	inode_state_will_delete,
1880	inode_state_did_delete,
1881};
1882
1883static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen,
1884			       u64 *send_gen, u64 *parent_gen)
1885{
1886	int ret;
1887	int left_ret;
1888	int right_ret;
1889	u64 left_gen;
1890	u64 right_gen = 0;
1891	struct btrfs_inode_info info;
1892
1893	ret = get_inode_info(sctx->send_root, ino, &info);
 
1894	if (ret < 0 && ret != -ENOENT)
1895		goto out;
1896	left_ret = (info.nlink == 0) ? -ENOENT : ret;
1897	left_gen = info.gen;
1898	if (send_gen)
1899		*send_gen = ((left_ret == -ENOENT) ? 0 : info.gen);
1900
1901	if (!sctx->parent_root) {
1902		right_ret = -ENOENT;
1903	} else {
1904		ret = get_inode_info(sctx->parent_root, ino, &info);
 
1905		if (ret < 0 && ret != -ENOENT)
1906			goto out;
1907		right_ret = (info.nlink == 0) ? -ENOENT : ret;
1908		right_gen = info.gen;
1909		if (parent_gen)
1910			*parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen);
1911	}
1912
1913	if (!left_ret && !right_ret) {
1914		if (left_gen == gen && right_gen == gen) {
1915			ret = inode_state_no_change;
1916		} else if (left_gen == gen) {
1917			if (ino < sctx->send_progress)
1918				ret = inode_state_did_create;
1919			else
1920				ret = inode_state_will_create;
1921		} else if (right_gen == gen) {
1922			if (ino < sctx->send_progress)
1923				ret = inode_state_did_delete;
1924			else
1925				ret = inode_state_will_delete;
1926		} else  {
1927			ret = -ENOENT;
1928		}
1929	} else if (!left_ret) {
1930		if (left_gen == gen) {
1931			if (ino < sctx->send_progress)
1932				ret = inode_state_did_create;
1933			else
1934				ret = inode_state_will_create;
1935		} else {
1936			ret = -ENOENT;
1937		}
1938	} else if (!right_ret) {
1939		if (right_gen == gen) {
1940			if (ino < sctx->send_progress)
1941				ret = inode_state_did_delete;
1942			else
1943				ret = inode_state_will_delete;
1944		} else {
1945			ret = -ENOENT;
1946		}
1947	} else {
1948		ret = -ENOENT;
1949	}
1950
1951out:
1952	return ret;
1953}
1954
1955static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen,
1956			     u64 *send_gen, u64 *parent_gen)
1957{
1958	int ret;
1959
1960	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1961		return 1;
1962
1963	ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen);
1964	if (ret < 0)
1965		goto out;
1966
1967	if (ret == inode_state_no_change ||
1968	    ret == inode_state_did_create ||
1969	    ret == inode_state_will_delete)
1970		ret = 1;
1971	else
1972		ret = 0;
1973
1974out:
1975	return ret;
1976}
1977
1978/*
1979 * Helper function to lookup a dir item in a dir.
1980 */
1981static int lookup_dir_item_inode(struct btrfs_root *root,
1982				 u64 dir, const char *name, int name_len,
1983				 u64 *found_inode)
 
1984{
1985	int ret = 0;
1986	struct btrfs_dir_item *di;
1987	struct btrfs_key key;
1988	struct btrfs_path *path;
1989	struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
1990
1991	path = alloc_path_for_send();
1992	if (!path)
1993		return -ENOMEM;
1994
1995	di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
 
1996	if (IS_ERR_OR_NULL(di)) {
1997		ret = di ? PTR_ERR(di) : -ENOENT;
1998		goto out;
1999	}
2000	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
2001	if (key.type == BTRFS_ROOT_ITEM_KEY) {
2002		ret = -ENOENT;
2003		goto out;
2004	}
2005	*found_inode = key.objectid;
 
2006
2007out:
2008	btrfs_free_path(path);
2009	return ret;
2010}
2011
2012/*
2013 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
2014 * generation of the parent dir and the name of the dir entry.
2015 */
2016static int get_first_ref(struct btrfs_root *root, u64 ino,
2017			 u64 *dir, u64 *dir_gen, struct fs_path *name)
2018{
2019	int ret;
2020	struct btrfs_key key;
2021	struct btrfs_key found_key;
2022	struct btrfs_path *path;
2023	int len;
2024	u64 parent_dir;
2025
2026	path = alloc_path_for_send();
2027	if (!path)
2028		return -ENOMEM;
2029
2030	key.objectid = ino;
2031	key.type = BTRFS_INODE_REF_KEY;
2032	key.offset = 0;
2033
2034	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2035	if (ret < 0)
2036		goto out;
2037	if (!ret)
2038		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2039				path->slots[0]);
2040	if (ret || found_key.objectid != ino ||
2041	    (found_key.type != BTRFS_INODE_REF_KEY &&
2042	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
2043		ret = -ENOENT;
2044		goto out;
2045	}
2046
2047	if (found_key.type == BTRFS_INODE_REF_KEY) {
2048		struct btrfs_inode_ref *iref;
2049		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2050				      struct btrfs_inode_ref);
2051		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
2052		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2053						     (unsigned long)(iref + 1),
2054						     len);
2055		parent_dir = found_key.offset;
2056	} else {
2057		struct btrfs_inode_extref *extref;
2058		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2059					struct btrfs_inode_extref);
2060		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
2061		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2062					(unsigned long)&extref->name, len);
2063		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
2064	}
2065	if (ret < 0)
2066		goto out;
2067	btrfs_release_path(path);
2068
2069	if (dir_gen) {
2070		ret = get_inode_gen(root, parent_dir, dir_gen);
 
2071		if (ret < 0)
2072			goto out;
2073	}
2074
2075	*dir = parent_dir;
2076
2077out:
2078	btrfs_free_path(path);
2079	return ret;
2080}
2081
2082static int is_first_ref(struct btrfs_root *root,
2083			u64 ino, u64 dir,
2084			const char *name, int name_len)
2085{
2086	int ret;
2087	struct fs_path *tmp_name;
2088	u64 tmp_dir;
2089
2090	tmp_name = fs_path_alloc();
2091	if (!tmp_name)
2092		return -ENOMEM;
2093
2094	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
2095	if (ret < 0)
2096		goto out;
2097
2098	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
2099		ret = 0;
2100		goto out;
2101	}
2102
2103	ret = !memcmp(tmp_name->start, name, name_len);
2104
2105out:
2106	fs_path_free(tmp_name);
2107	return ret;
2108}
2109
2110/*
2111 * Used by process_recorded_refs to determine if a new ref would overwrite an
2112 * already existing ref. In case it detects an overwrite, it returns the
2113 * inode/gen in who_ino/who_gen.
2114 * When an overwrite is detected, process_recorded_refs does proper orphanizing
2115 * to make sure later references to the overwritten inode are possible.
2116 * Orphanizing is however only required for the first ref of an inode.
2117 * process_recorded_refs does an additional is_first_ref check to see if
2118 * orphanizing is really required.
2119 */
2120static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2121			      const char *name, int name_len,
2122			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
2123{
2124	int ret;
2125	u64 parent_root_dir_gen;
2126	u64 other_inode = 0;
2127	struct btrfs_inode_info info;
2128
2129	if (!sctx->parent_root)
2130		return 0;
2131
2132	ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen);
2133	if (ret <= 0)
2134		return 0;
2135
2136	/*
2137	 * If we have a parent root we need to verify that the parent dir was
2138	 * not deleted and then re-created, if it was then we have no overwrite
2139	 * and we can just unlink this entry.
2140	 *
2141	 * @parent_root_dir_gen was set to 0 if the inode does not exist in the
2142	 * parent root.
2143	 */
2144	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID &&
2145	    parent_root_dir_gen != dir_gen)
2146		return 0;
 
 
 
 
 
 
 
 
 
2147
2148	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
2149				    &other_inode);
2150	if (ret == -ENOENT)
2151		return 0;
2152	else if (ret < 0)
2153		return ret;
 
 
2154
2155	/*
2156	 * Check if the overwritten ref was already processed. If yes, the ref
2157	 * was already unlinked/moved, so we can safely assume that we will not
2158	 * overwrite anything at this point in time.
2159	 */
2160	if (other_inode > sctx->send_progress ||
2161	    is_waiting_for_move(sctx, other_inode)) {
2162		ret = get_inode_info(sctx->parent_root, other_inode, &info);
 
2163		if (ret < 0)
2164			return ret;
2165
 
2166		*who_ino = other_inode;
2167		*who_gen = info.gen;
2168		*who_mode = info.mode;
2169		return 1;
2170	}
2171
2172	return 0;
 
2173}
2174
2175/*
2176 * Checks if the ref was overwritten by an already processed inode. This is
2177 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
2178 * thus the orphan name needs be used.
2179 * process_recorded_refs also uses it to avoid unlinking of refs that were
2180 * overwritten.
2181 */
2182static int did_overwrite_ref(struct send_ctx *sctx,
2183			    u64 dir, u64 dir_gen,
2184			    u64 ino, u64 ino_gen,
2185			    const char *name, int name_len)
2186{
2187	int ret;
 
2188	u64 ow_inode;
2189	u64 ow_gen = 0;
2190	u64 send_root_dir_gen;
2191
2192	if (!sctx->parent_root)
2193		return 0;
2194
2195	ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL);
2196	if (ret <= 0)
2197		return ret;
2198
2199	/*
2200	 * @send_root_dir_gen was set to 0 if the inode does not exist in the
2201	 * send root.
2202	 */
2203	if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen)
2204		return 0;
 
 
 
 
 
 
2205
2206	/* check if the ref was overwritten by another ref */
2207	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
2208				    &ow_inode);
2209	if (ret == -ENOENT) {
 
 
2210		/* was never and will never be overwritten */
2211		return 0;
2212	} else if (ret < 0) {
2213		return ret;
2214	}
2215
2216	if (ow_inode == ino) {
2217		ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2218		if (ret < 0)
2219			return ret;
2220
2221		/* It's the same inode, so no overwrite happened. */
2222		if (ow_gen == ino_gen)
2223			return 0;
2224	}
2225
2226	/*
2227	 * We know that it is or will be overwritten. Check this now.
2228	 * The current inode being processed might have been the one that caused
2229	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
2230	 * the current inode being processed.
2231	 */
2232	if (ow_inode < sctx->send_progress)
2233		return 1;
2234
2235	if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) {
2236		if (ow_gen == 0) {
2237			ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2238			if (ret < 0)
2239				return ret;
2240		}
2241		if (ow_gen == sctx->cur_inode_gen)
2242			return 1;
2243	}
2244
2245	return 0;
 
2246}
2247
2248/*
2249 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2250 * that got overwritten. This is used by process_recorded_refs to determine
2251 * if it has to use the path as returned by get_cur_path or the orphan name.
2252 */
2253static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2254{
2255	int ret = 0;
2256	struct fs_path *name = NULL;
2257	u64 dir;
2258	u64 dir_gen;
2259
2260	if (!sctx->parent_root)
2261		goto out;
2262
2263	name = fs_path_alloc();
2264	if (!name)
2265		return -ENOMEM;
2266
2267	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2268	if (ret < 0)
2269		goto out;
2270
2271	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2272			name->start, fs_path_len(name));
2273
2274out:
2275	fs_path_free(name);
2276	return ret;
2277}
2278
2279static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2280							 u64 ino, u64 gen)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2281{
2282	struct btrfs_lru_cache_entry *entry;
 
 
 
 
 
 
 
 
 
 
 
 
2283
2284	entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen);
2285	if (!entry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2286		return NULL;
2287
2288	return container_of(entry, struct name_cache_entry, entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2289}
2290
2291/*
2292 * Used by get_cur_path for each ref up to the root.
2293 * Returns 0 if it succeeded.
2294 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2295 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2296 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2297 * Returns <0 in case of error.
2298 */
2299static int __get_cur_name_and_parent(struct send_ctx *sctx,
2300				     u64 ino, u64 gen,
2301				     u64 *parent_ino,
2302				     u64 *parent_gen,
2303				     struct fs_path *dest)
2304{
2305	int ret;
2306	int nce_ret;
2307	struct name_cache_entry *nce;
2308
2309	/*
2310	 * First check if we already did a call to this function with the same
2311	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2312	 * return the cached result.
2313	 */
2314	nce = name_cache_search(sctx, ino, gen);
2315	if (nce) {
2316		if (ino < sctx->send_progress && nce->need_later_update) {
2317			btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry);
 
2318			nce = NULL;
2319		} else {
 
2320			*parent_ino = nce->parent_ino;
2321			*parent_gen = nce->parent_gen;
2322			ret = fs_path_add(dest, nce->name, nce->name_len);
2323			if (ret < 0)
2324				goto out;
2325			ret = nce->ret;
2326			goto out;
2327		}
2328	}
2329
2330	/*
2331	 * If the inode is not existent yet, add the orphan name and return 1.
2332	 * This should only happen for the parent dir that we determine in
2333	 * record_new_ref_if_needed().
2334	 */
2335	ret = is_inode_existent(sctx, ino, gen, NULL, NULL);
2336	if (ret < 0)
2337		goto out;
2338
2339	if (!ret) {
2340		ret = gen_unique_name(sctx, ino, gen, dest);
2341		if (ret < 0)
2342			goto out;
2343		ret = 1;
2344		goto out_cache;
2345	}
2346
2347	/*
2348	 * Depending on whether the inode was already processed or not, use
2349	 * send_root or parent_root for ref lookup.
2350	 */
2351	if (ino < sctx->send_progress)
2352		ret = get_first_ref(sctx->send_root, ino,
2353				    parent_ino, parent_gen, dest);
2354	else
2355		ret = get_first_ref(sctx->parent_root, ino,
2356				    parent_ino, parent_gen, dest);
2357	if (ret < 0)
2358		goto out;
2359
2360	/*
2361	 * Check if the ref was overwritten by an inode's ref that was processed
2362	 * earlier. If yes, treat as orphan and return 1.
2363	 */
2364	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2365			dest->start, dest->end - dest->start);
2366	if (ret < 0)
2367		goto out;
2368	if (ret) {
2369		fs_path_reset(dest);
2370		ret = gen_unique_name(sctx, ino, gen, dest);
2371		if (ret < 0)
2372			goto out;
2373		ret = 1;
2374	}
2375
2376out_cache:
2377	/*
2378	 * Store the result of the lookup in the name cache.
2379	 */
2380	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2381	if (!nce) {
2382		ret = -ENOMEM;
2383		goto out;
2384	}
2385
2386	nce->entry.key = ino;
2387	nce->entry.gen = gen;
2388	nce->parent_ino = *parent_ino;
2389	nce->parent_gen = *parent_gen;
2390	nce->name_len = fs_path_len(dest);
2391	nce->ret = ret;
2392	strcpy(nce->name, dest->start);
2393
2394	if (ino < sctx->send_progress)
2395		nce->need_later_update = 0;
2396	else
2397		nce->need_later_update = 1;
2398
2399	nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL);
2400	if (nce_ret < 0) {
2401		kfree(nce);
2402		ret = nce_ret;
2403	}
2404
2405out:
2406	return ret;
2407}
2408
2409/*
2410 * Magic happens here. This function returns the first ref to an inode as it
2411 * would look like while receiving the stream at this point in time.
2412 * We walk the path up to the root. For every inode in between, we check if it
2413 * was already processed/sent. If yes, we continue with the parent as found
2414 * in send_root. If not, we continue with the parent as found in parent_root.
2415 * If we encounter an inode that was deleted at this point in time, we use the
2416 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2417 * that were not created yet and overwritten inodes/refs.
2418 *
2419 * When do we have orphan inodes:
2420 * 1. When an inode is freshly created and thus no valid refs are available yet
2421 * 2. When a directory lost all it's refs (deleted) but still has dir items
2422 *    inside which were not processed yet (pending for move/delete). If anyone
2423 *    tried to get the path to the dir items, it would get a path inside that
2424 *    orphan directory.
2425 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2426 *    of an unprocessed inode. If in that case the first ref would be
2427 *    overwritten, the overwritten inode gets "orphanized". Later when we
2428 *    process this overwritten inode, it is restored at a new place by moving
2429 *    the orphan inode.
2430 *
2431 * sctx->send_progress tells this function at which point in time receiving
2432 * would be.
2433 */
2434static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2435			struct fs_path *dest)
2436{
2437	int ret = 0;
2438	struct fs_path *name = NULL;
2439	u64 parent_inode = 0;
2440	u64 parent_gen = 0;
2441	int stop = 0;
2442
2443	name = fs_path_alloc();
2444	if (!name) {
2445		ret = -ENOMEM;
2446		goto out;
2447	}
2448
2449	dest->reversed = 1;
2450	fs_path_reset(dest);
2451
2452	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2453		struct waiting_dir_move *wdm;
2454
2455		fs_path_reset(name);
2456
2457		if (is_waiting_for_rm(sctx, ino, gen)) {
2458			ret = gen_unique_name(sctx, ino, gen, name);
2459			if (ret < 0)
2460				goto out;
2461			ret = fs_path_add_path(dest, name);
2462			break;
2463		}
2464
2465		wdm = get_waiting_dir_move(sctx, ino);
2466		if (wdm && wdm->orphanized) {
2467			ret = gen_unique_name(sctx, ino, gen, name);
2468			stop = 1;
2469		} else if (wdm) {
2470			ret = get_first_ref(sctx->parent_root, ino,
2471					    &parent_inode, &parent_gen, name);
2472		} else {
2473			ret = __get_cur_name_and_parent(sctx, ino, gen,
2474							&parent_inode,
2475							&parent_gen, name);
2476			if (ret)
2477				stop = 1;
2478		}
2479
2480		if (ret < 0)
2481			goto out;
2482
2483		ret = fs_path_add_path(dest, name);
2484		if (ret < 0)
2485			goto out;
2486
2487		ino = parent_inode;
2488		gen = parent_gen;
2489	}
2490
2491out:
2492	fs_path_free(name);
2493	if (!ret)
2494		fs_path_unreverse(dest);
2495	return ret;
2496}
2497
2498/*
2499 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2500 */
2501static int send_subvol_begin(struct send_ctx *sctx)
2502{
2503	int ret;
2504	struct btrfs_root *send_root = sctx->send_root;
2505	struct btrfs_root *parent_root = sctx->parent_root;
2506	struct btrfs_path *path;
2507	struct btrfs_key key;
2508	struct btrfs_root_ref *ref;
2509	struct extent_buffer *leaf;
2510	char *name = NULL;
2511	int namelen;
2512
2513	path = btrfs_alloc_path();
2514	if (!path)
2515		return -ENOMEM;
2516
2517	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2518	if (!name) {
2519		btrfs_free_path(path);
2520		return -ENOMEM;
2521	}
2522
2523	key.objectid = send_root->root_key.objectid;
2524	key.type = BTRFS_ROOT_BACKREF_KEY;
2525	key.offset = 0;
2526
2527	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2528				&key, path, 1, 0);
2529	if (ret < 0)
2530		goto out;
2531	if (ret) {
2532		ret = -ENOENT;
2533		goto out;
2534	}
2535
2536	leaf = path->nodes[0];
2537	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2538	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2539	    key.objectid != send_root->root_key.objectid) {
2540		ret = -ENOENT;
2541		goto out;
2542	}
2543	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2544	namelen = btrfs_root_ref_name_len(leaf, ref);
2545	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2546	btrfs_release_path(path);
2547
2548	if (parent_root) {
2549		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2550		if (ret < 0)
2551			goto out;
2552	} else {
2553		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2554		if (ret < 0)
2555			goto out;
2556	}
2557
2558	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2559
2560	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2561		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2562			    sctx->send_root->root_item.received_uuid);
2563	else
2564		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2565			    sctx->send_root->root_item.uuid);
2566
2567	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2568		    btrfs_root_ctransid(&sctx->send_root->root_item));
2569	if (parent_root) {
2570		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2571			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2572				     parent_root->root_item.received_uuid);
2573		else
2574			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2575				     parent_root->root_item.uuid);
2576		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2577			    btrfs_root_ctransid(&sctx->parent_root->root_item));
2578	}
2579
2580	ret = send_cmd(sctx);
2581
2582tlv_put_failure:
2583out:
2584	btrfs_free_path(path);
2585	kfree(name);
2586	return ret;
2587}
2588
2589static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2590{
2591	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2592	int ret = 0;
2593	struct fs_path *p;
2594
2595	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2596
2597	p = fs_path_alloc();
2598	if (!p)
2599		return -ENOMEM;
2600
2601	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2602	if (ret < 0)
2603		goto out;
2604
2605	ret = get_cur_path(sctx, ino, gen, p);
2606	if (ret < 0)
2607		goto out;
2608	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2609	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2610
2611	ret = send_cmd(sctx);
2612
2613tlv_put_failure:
2614out:
2615	fs_path_free(p);
2616	return ret;
2617}
2618
2619static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2620{
2621	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2622	int ret = 0;
2623	struct fs_path *p;
2624
2625	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2626
2627	p = fs_path_alloc();
2628	if (!p)
2629		return -ENOMEM;
2630
2631	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2632	if (ret < 0)
2633		goto out;
2634
2635	ret = get_cur_path(sctx, ino, gen, p);
2636	if (ret < 0)
2637		goto out;
2638	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2639	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2640
2641	ret = send_cmd(sctx);
2642
2643tlv_put_failure:
2644out:
2645	fs_path_free(p);
2646	return ret;
2647}
2648
2649static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2650{
2651	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2652	int ret = 0;
2653	struct fs_path *p;
2654
2655	if (sctx->proto < 2)
2656		return 0;
2657
2658	btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr);
2659
2660	p = fs_path_alloc();
2661	if (!p)
2662		return -ENOMEM;
2663
2664	ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2665	if (ret < 0)
2666		goto out;
2667
2668	ret = get_cur_path(sctx, ino, gen, p);
2669	if (ret < 0)
2670		goto out;
2671	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2672	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2673
2674	ret = send_cmd(sctx);
2675
2676tlv_put_failure:
2677out:
2678	fs_path_free(p);
2679	return ret;
2680}
2681
2682static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2683{
2684	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2685	int ret = 0;
2686	struct fs_path *p;
2687
2688	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2689		    ino, uid, gid);
2690
2691	p = fs_path_alloc();
2692	if (!p)
2693		return -ENOMEM;
2694
2695	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2696	if (ret < 0)
2697		goto out;
2698
2699	ret = get_cur_path(sctx, ino, gen, p);
2700	if (ret < 0)
2701		goto out;
2702	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2703	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2704	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2705
2706	ret = send_cmd(sctx);
2707
2708tlv_put_failure:
2709out:
2710	fs_path_free(p);
2711	return ret;
2712}
2713
2714static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2715{
2716	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2717	int ret = 0;
2718	struct fs_path *p = NULL;
2719	struct btrfs_inode_item *ii;
2720	struct btrfs_path *path = NULL;
2721	struct extent_buffer *eb;
2722	struct btrfs_key key;
2723	int slot;
2724
2725	btrfs_debug(fs_info, "send_utimes %llu", ino);
2726
2727	p = fs_path_alloc();
2728	if (!p)
2729		return -ENOMEM;
2730
2731	path = alloc_path_for_send();
2732	if (!path) {
2733		ret = -ENOMEM;
2734		goto out;
2735	}
2736
2737	key.objectid = ino;
2738	key.type = BTRFS_INODE_ITEM_KEY;
2739	key.offset = 0;
2740	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2741	if (ret > 0)
2742		ret = -ENOENT;
2743	if (ret < 0)
2744		goto out;
2745
2746	eb = path->nodes[0];
2747	slot = path->slots[0];
2748	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2749
2750	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2751	if (ret < 0)
2752		goto out;
2753
2754	ret = get_cur_path(sctx, ino, gen, p);
2755	if (ret < 0)
2756		goto out;
2757	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2758	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2759	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2760	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2761	if (sctx->proto >= 2)
2762		TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2763
2764	ret = send_cmd(sctx);
2765
2766tlv_put_failure:
2767out:
2768	fs_path_free(p);
2769	btrfs_free_path(path);
2770	return ret;
2771}
2772
2773/*
2774 * If the cache is full, we can't remove entries from it and do a call to
2775 * send_utimes() for each respective inode, because we might be finishing
2776 * processing an inode that is a directory and it just got renamed, and existing
2777 * entries in the cache may refer to inodes that have the directory in their
2778 * full path - in which case we would generate outdated paths (pre-rename)
2779 * for the inodes that the cache entries point to. Instead of prunning the
2780 * cache when inserting, do it after we finish processing each inode at
2781 * finish_inode_if_needed().
2782 */
2783static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen)
2784{
2785	struct btrfs_lru_cache_entry *entry;
2786	int ret;
2787
2788	entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen);
2789	if (entry != NULL)
2790		return 0;
2791
2792	/* Caching is optional, don't fail if we can't allocate memory. */
2793	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2794	if (!entry)
2795		return send_utimes(sctx, dir, gen);
2796
2797	entry->key = dir;
2798	entry->gen = gen;
2799
2800	ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL);
2801	ASSERT(ret != -EEXIST);
2802	if (ret) {
2803		kfree(entry);
2804		return send_utimes(sctx, dir, gen);
2805	}
2806
2807	return 0;
2808}
2809
2810static int trim_dir_utimes_cache(struct send_ctx *sctx)
2811{
2812	while (btrfs_lru_cache_size(&sctx->dir_utimes_cache) >
2813	       SEND_MAX_DIR_UTIMES_CACHE_SIZE) {
2814		struct btrfs_lru_cache_entry *lru;
2815		int ret;
2816
2817		lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache);
2818		ASSERT(lru != NULL);
2819
2820		ret = send_utimes(sctx, lru->key, lru->gen);
2821		if (ret)
2822			return ret;
2823
2824		btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru);
2825	}
2826
2827	return 0;
2828}
2829
2830/*
2831 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2832 * a valid path yet because we did not process the refs yet. So, the inode
2833 * is created as orphan.
2834 */
2835static int send_create_inode(struct send_ctx *sctx, u64 ino)
2836{
2837	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2838	int ret = 0;
2839	struct fs_path *p;
2840	int cmd;
2841	struct btrfs_inode_info info;
2842	u64 gen;
2843	u64 mode;
2844	u64 rdev;
2845
2846	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2847
2848	p = fs_path_alloc();
2849	if (!p)
2850		return -ENOMEM;
2851
2852	if (ino != sctx->cur_ino) {
2853		ret = get_inode_info(sctx->send_root, ino, &info);
 
2854		if (ret < 0)
2855			goto out;
2856		gen = info.gen;
2857		mode = info.mode;
2858		rdev = info.rdev;
2859	} else {
2860		gen = sctx->cur_inode_gen;
2861		mode = sctx->cur_inode_mode;
2862		rdev = sctx->cur_inode_rdev;
2863	}
2864
2865	if (S_ISREG(mode)) {
2866		cmd = BTRFS_SEND_C_MKFILE;
2867	} else if (S_ISDIR(mode)) {
2868		cmd = BTRFS_SEND_C_MKDIR;
2869	} else if (S_ISLNK(mode)) {
2870		cmd = BTRFS_SEND_C_SYMLINK;
2871	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2872		cmd = BTRFS_SEND_C_MKNOD;
2873	} else if (S_ISFIFO(mode)) {
2874		cmd = BTRFS_SEND_C_MKFIFO;
2875	} else if (S_ISSOCK(mode)) {
2876		cmd = BTRFS_SEND_C_MKSOCK;
2877	} else {
2878		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2879				(int)(mode & S_IFMT));
2880		ret = -EOPNOTSUPP;
2881		goto out;
2882	}
2883
2884	ret = begin_cmd(sctx, cmd);
2885	if (ret < 0)
2886		goto out;
2887
2888	ret = gen_unique_name(sctx, ino, gen, p);
2889	if (ret < 0)
2890		goto out;
2891
2892	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2893	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2894
2895	if (S_ISLNK(mode)) {
2896		fs_path_reset(p);
2897		ret = read_symlink(sctx->send_root, ino, p);
2898		if (ret < 0)
2899			goto out;
2900		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2901	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2902		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2903		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2904		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2905	}
2906
2907	ret = send_cmd(sctx);
2908	if (ret < 0)
2909		goto out;
2910
2911
2912tlv_put_failure:
2913out:
2914	fs_path_free(p);
2915	return ret;
2916}
2917
2918static void cache_dir_created(struct send_ctx *sctx, u64 dir)
2919{
2920	struct btrfs_lru_cache_entry *entry;
2921	int ret;
2922
2923	/* Caching is optional, ignore any failures. */
2924	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2925	if (!entry)
2926		return;
2927
2928	entry->key = dir;
2929	entry->gen = 0;
2930	ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL);
2931	if (ret < 0)
2932		kfree(entry);
2933}
2934
2935/*
2936 * We need some special handling for inodes that get processed before the parent
2937 * directory got created. See process_recorded_refs for details.
2938 * This function does the check if we already created the dir out of order.
2939 */
2940static int did_create_dir(struct send_ctx *sctx, u64 dir)
2941{
2942	int ret = 0;
2943	int iter_ret = 0;
2944	struct btrfs_path *path = NULL;
2945	struct btrfs_key key;
2946	struct btrfs_key found_key;
2947	struct btrfs_key di_key;
 
2948	struct btrfs_dir_item *di;
2949
2950	if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0))
2951		return 1;
2952
2953	path = alloc_path_for_send();
2954	if (!path)
2955		return -ENOMEM;
 
 
2956
2957	key.objectid = dir;
2958	key.type = BTRFS_DIR_INDEX_KEY;
2959	key.offset = 0;
 
 
 
2960
2961	btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2962		struct extent_buffer *eb = path->nodes[0];
 
 
 
 
 
 
 
 
 
 
 
2963
 
2964		if (found_key.objectid != key.objectid ||
2965		    found_key.type != key.type) {
2966			ret = 0;
2967			break;
2968		}
2969
2970		di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
2971		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2972
2973		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2974		    di_key.objectid < sctx->send_progress) {
2975			ret = 1;
2976			cache_dir_created(sctx, dir);
2977			break;
2978		}
 
 
2979	}
2980	/* Catch error found during iteration */
2981	if (iter_ret < 0)
2982		ret = iter_ret;
2983
 
2984	btrfs_free_path(path);
2985	return ret;
2986}
2987
2988/*
2989 * Only creates the inode if it is:
2990 * 1. Not a directory
2991 * 2. Or a directory which was not created already due to out of order
2992 *    directories. See did_create_dir and process_recorded_refs for details.
2993 */
2994static int send_create_inode_if_needed(struct send_ctx *sctx)
2995{
2996	int ret;
2997
2998	if (S_ISDIR(sctx->cur_inode_mode)) {
2999		ret = did_create_dir(sctx, sctx->cur_ino);
3000		if (ret < 0)
3001			return ret;
3002		else if (ret > 0)
3003			return 0;
 
 
3004	}
3005
3006	ret = send_create_inode(sctx, sctx->cur_ino);
 
 
3007
3008	if (ret == 0 && S_ISDIR(sctx->cur_inode_mode))
3009		cache_dir_created(sctx, sctx->cur_ino);
3010
3011	return ret;
3012}
3013
3014struct recorded_ref {
3015	struct list_head list;
3016	char *name;
3017	struct fs_path *full_path;
3018	u64 dir;
3019	u64 dir_gen;
3020	int name_len;
3021	struct rb_node node;
3022	struct rb_root *root;
3023};
3024
3025static struct recorded_ref *recorded_ref_alloc(void)
3026{
3027	struct recorded_ref *ref;
3028
3029	ref = kzalloc(sizeof(*ref), GFP_KERNEL);
3030	if (!ref)
3031		return NULL;
3032	RB_CLEAR_NODE(&ref->node);
3033	INIT_LIST_HEAD(&ref->list);
3034	return ref;
3035}
3036
3037static void recorded_ref_free(struct recorded_ref *ref)
 
 
 
 
 
 
3038{
 
 
 
3039	if (!ref)
3040		return;
3041	if (!RB_EMPTY_NODE(&ref->node))
3042		rb_erase(&ref->node, ref->root);
3043	list_del(&ref->list);
3044	fs_path_free(ref->full_path);
3045	kfree(ref);
3046}
3047
3048static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
3049{
3050	ref->full_path = path;
3051	ref->name = (char *)kbasename(ref->full_path->start);
3052	ref->name_len = ref->full_path->end - ref->name;
3053}
3054
3055static int dup_ref(struct recorded_ref *ref, struct list_head *list)
3056{
3057	struct recorded_ref *new;
3058
3059	new = recorded_ref_alloc();
3060	if (!new)
3061		return -ENOMEM;
3062
3063	new->dir = ref->dir;
3064	new->dir_gen = ref->dir_gen;
 
 
3065	list_add_tail(&new->list, list);
3066	return 0;
3067}
3068
3069static void __free_recorded_refs(struct list_head *head)
3070{
3071	struct recorded_ref *cur;
3072
3073	while (!list_empty(head)) {
3074		cur = list_entry(head->next, struct recorded_ref, list);
3075		recorded_ref_free(cur);
 
 
3076	}
3077}
3078
3079static void free_recorded_refs(struct send_ctx *sctx)
3080{
3081	__free_recorded_refs(&sctx->new_refs);
3082	__free_recorded_refs(&sctx->deleted_refs);
3083}
3084
3085/*
3086 * Renames/moves a file/dir to its orphan name. Used when the first
3087 * ref of an unprocessed inode gets overwritten and for all non empty
3088 * directories.
3089 */
3090static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
3091			  struct fs_path *path)
3092{
3093	int ret;
3094	struct fs_path *orphan;
3095
3096	orphan = fs_path_alloc();
3097	if (!orphan)
3098		return -ENOMEM;
3099
3100	ret = gen_unique_name(sctx, ino, gen, orphan);
3101	if (ret < 0)
3102		goto out;
3103
3104	ret = send_rename(sctx, path, orphan);
3105
3106out:
3107	fs_path_free(orphan);
3108	return ret;
3109}
3110
3111static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
3112						   u64 dir_ino, u64 dir_gen)
3113{
3114	struct rb_node **p = &sctx->orphan_dirs.rb_node;
3115	struct rb_node *parent = NULL;
3116	struct orphan_dir_info *entry, *odi;
3117
3118	while (*p) {
3119		parent = *p;
3120		entry = rb_entry(parent, struct orphan_dir_info, node);
3121		if (dir_ino < entry->ino)
3122			p = &(*p)->rb_left;
3123		else if (dir_ino > entry->ino)
3124			p = &(*p)->rb_right;
3125		else if (dir_gen < entry->gen)
3126			p = &(*p)->rb_left;
3127		else if (dir_gen > entry->gen)
3128			p = &(*p)->rb_right;
3129		else
3130			return entry;
 
3131	}
3132
3133	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
3134	if (!odi)
3135		return ERR_PTR(-ENOMEM);
3136	odi->ino = dir_ino;
3137	odi->gen = dir_gen;
3138	odi->last_dir_index_offset = 0;
3139	odi->dir_high_seq_ino = 0;
3140
3141	rb_link_node(&odi->node, parent, p);
3142	rb_insert_color(&odi->node, &sctx->orphan_dirs);
3143	return odi;
3144}
3145
3146static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
3147						   u64 dir_ino, u64 gen)
3148{
3149	struct rb_node *n = sctx->orphan_dirs.rb_node;
3150	struct orphan_dir_info *entry;
3151
3152	while (n) {
3153		entry = rb_entry(n, struct orphan_dir_info, node);
3154		if (dir_ino < entry->ino)
3155			n = n->rb_left;
3156		else if (dir_ino > entry->ino)
3157			n = n->rb_right;
3158		else if (gen < entry->gen)
3159			n = n->rb_left;
3160		else if (gen > entry->gen)
3161			n = n->rb_right;
3162		else
3163			return entry;
3164	}
3165	return NULL;
3166}
3167
3168static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
3169{
3170	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
3171
3172	return odi != NULL;
3173}
3174
3175static void free_orphan_dir_info(struct send_ctx *sctx,
3176				 struct orphan_dir_info *odi)
3177{
3178	if (!odi)
3179		return;
3180	rb_erase(&odi->node, &sctx->orphan_dirs);
3181	kfree(odi);
3182}
3183
3184/*
3185 * Returns 1 if a directory can be removed at this point in time.
3186 * We check this by iterating all dir items and checking if the inode behind
3187 * the dir item was already processed.
3188 */
3189static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen)
 
3190{
3191	int ret = 0;
3192	int iter_ret = 0;
3193	struct btrfs_root *root = sctx->parent_root;
3194	struct btrfs_path *path;
3195	struct btrfs_key key;
3196	struct btrfs_key found_key;
3197	struct btrfs_key loc;
3198	struct btrfs_dir_item *di;
3199	struct orphan_dir_info *odi = NULL;
3200	u64 dir_high_seq_ino = 0;
3201	u64 last_dir_index_offset = 0;
3202
3203	/*
3204	 * Don't try to rmdir the top/root subvolume dir.
3205	 */
3206	if (dir == BTRFS_FIRST_FREE_OBJECTID)
3207		return 0;
3208
3209	odi = get_orphan_dir_info(sctx, dir, dir_gen);
3210	if (odi && sctx->cur_ino < odi->dir_high_seq_ino)
3211		return 0;
3212
3213	path = alloc_path_for_send();
3214	if (!path)
3215		return -ENOMEM;
3216
3217	if (!odi) {
3218		/*
3219		 * Find the inode number associated with the last dir index
3220		 * entry. This is very likely the inode with the highest number
3221		 * of all inodes that have an entry in the directory. We can
3222		 * then use it to avoid future calls to can_rmdir(), when
3223		 * processing inodes with a lower number, from having to search
3224		 * the parent root b+tree for dir index keys.
3225		 */
3226		key.objectid = dir;
3227		key.type = BTRFS_DIR_INDEX_KEY;
3228		key.offset = (u64)-1;
3229
3230		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3231		if (ret < 0) {
3232			goto out;
3233		} else if (ret > 0) {
3234			/* Can't happen, the root is never empty. */
3235			ASSERT(path->slots[0] > 0);
3236			if (WARN_ON(path->slots[0] == 0)) {
3237				ret = -EUCLEAN;
3238				goto out;
3239			}
3240			path->slots[0]--;
3241		}
3242
3243		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3244		if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) {
3245			/* No index keys, dir can be removed. */
3246			ret = 1;
3247			goto out;
3248		}
3249
3250		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3251				    struct btrfs_dir_item);
3252		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3253		dir_high_seq_ino = loc.objectid;
3254		if (sctx->cur_ino < dir_high_seq_ino) {
3255			ret = 0;
3256			goto out;
3257		}
3258
3259		btrfs_release_path(path);
3260	}
3261
3262	key.objectid = dir;
3263	key.type = BTRFS_DIR_INDEX_KEY;
3264	key.offset = (odi ? odi->last_dir_index_offset : 0);
 
 
 
 
3265
3266	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
 
 
 
 
3267		struct waiting_dir_move *dm;
3268
 
 
 
 
 
 
 
 
 
 
3269		if (found_key.objectid != key.objectid ||
3270		    found_key.type != key.type)
3271			break;
3272
3273		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3274				struct btrfs_dir_item);
3275		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3276
3277		dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid);
3278		last_dir_index_offset = found_key.offset;
3279
3280		dm = get_waiting_dir_move(sctx, loc.objectid);
3281		if (dm) {
 
 
 
 
 
 
 
3282			dm->rmdir_ino = dir;
3283			dm->rmdir_gen = dir_gen;
3284			ret = 0;
3285			goto out;
3286		}
3287
3288		if (loc.objectid > sctx->cur_ino) {
 
 
 
 
 
 
 
3289			ret = 0;
3290			goto out;
3291		}
3292	}
3293	if (iter_ret < 0) {
3294		ret = iter_ret;
3295		goto out;
3296	}
3297	free_orphan_dir_info(sctx, odi);
3298
3299	ret = 1;
3300
3301out:
3302	btrfs_free_path(path);
3303
3304	if (ret)
3305		return ret;
3306
3307	if (!odi) {
3308		odi = add_orphan_dir_info(sctx, dir, dir_gen);
3309		if (IS_ERR(odi))
3310			return PTR_ERR(odi);
3311
3312		odi->gen = dir_gen;
3313	}
3314
3315	odi->last_dir_index_offset = last_dir_index_offset;
3316	odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino);
3317
3318	return 0;
3319}
3320
3321static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3322{
3323	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3324
3325	return entry != NULL;
3326}
3327
3328static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3329{
3330	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3331	struct rb_node *parent = NULL;
3332	struct waiting_dir_move *entry, *dm;
3333
3334	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3335	if (!dm)
3336		return -ENOMEM;
3337	dm->ino = ino;
3338	dm->rmdir_ino = 0;
3339	dm->rmdir_gen = 0;
3340	dm->orphanized = orphanized;
3341
3342	while (*p) {
3343		parent = *p;
3344		entry = rb_entry(parent, struct waiting_dir_move, node);
3345		if (ino < entry->ino) {
3346			p = &(*p)->rb_left;
3347		} else if (ino > entry->ino) {
3348			p = &(*p)->rb_right;
3349		} else {
3350			kfree(dm);
3351			return -EEXIST;
3352		}
3353	}
3354
3355	rb_link_node(&dm->node, parent, p);
3356	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3357	return 0;
3358}
3359
3360static struct waiting_dir_move *
3361get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3362{
3363	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3364	struct waiting_dir_move *entry;
3365
3366	while (n) {
3367		entry = rb_entry(n, struct waiting_dir_move, node);
3368		if (ino < entry->ino)
3369			n = n->rb_left;
3370		else if (ino > entry->ino)
3371			n = n->rb_right;
3372		else
3373			return entry;
3374	}
3375	return NULL;
3376}
3377
3378static void free_waiting_dir_move(struct send_ctx *sctx,
3379				  struct waiting_dir_move *dm)
3380{
3381	if (!dm)
3382		return;
3383	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3384	kfree(dm);
3385}
3386
3387static int add_pending_dir_move(struct send_ctx *sctx,
3388				u64 ino,
3389				u64 ino_gen,
3390				u64 parent_ino,
3391				struct list_head *new_refs,
3392				struct list_head *deleted_refs,
3393				const bool is_orphan)
3394{
3395	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3396	struct rb_node *parent = NULL;
3397	struct pending_dir_move *entry = NULL, *pm;
3398	struct recorded_ref *cur;
3399	int exists = 0;
3400	int ret;
3401
3402	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3403	if (!pm)
3404		return -ENOMEM;
3405	pm->parent_ino = parent_ino;
3406	pm->ino = ino;
3407	pm->gen = ino_gen;
3408	INIT_LIST_HEAD(&pm->list);
3409	INIT_LIST_HEAD(&pm->update_refs);
3410	RB_CLEAR_NODE(&pm->node);
3411
3412	while (*p) {
3413		parent = *p;
3414		entry = rb_entry(parent, struct pending_dir_move, node);
3415		if (parent_ino < entry->parent_ino) {
3416			p = &(*p)->rb_left;
3417		} else if (parent_ino > entry->parent_ino) {
3418			p = &(*p)->rb_right;
3419		} else {
3420			exists = 1;
3421			break;
3422		}
3423	}
3424
3425	list_for_each_entry(cur, deleted_refs, list) {
3426		ret = dup_ref(cur, &pm->update_refs);
3427		if (ret < 0)
3428			goto out;
3429	}
3430	list_for_each_entry(cur, new_refs, list) {
3431		ret = dup_ref(cur, &pm->update_refs);
3432		if (ret < 0)
3433			goto out;
3434	}
3435
3436	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3437	if (ret)
3438		goto out;
3439
3440	if (exists) {
3441		list_add_tail(&pm->list, &entry->list);
3442	} else {
3443		rb_link_node(&pm->node, parent, p);
3444		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3445	}
3446	ret = 0;
3447out:
3448	if (ret) {
3449		__free_recorded_refs(&pm->update_refs);
3450		kfree(pm);
3451	}
3452	return ret;
3453}
3454
3455static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3456						      u64 parent_ino)
3457{
3458	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3459	struct pending_dir_move *entry;
3460
3461	while (n) {
3462		entry = rb_entry(n, struct pending_dir_move, node);
3463		if (parent_ino < entry->parent_ino)
3464			n = n->rb_left;
3465		else if (parent_ino > entry->parent_ino)
3466			n = n->rb_right;
3467		else
3468			return entry;
3469	}
3470	return NULL;
3471}
3472
3473static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3474		     u64 ino, u64 gen, u64 *ancestor_ino)
3475{
3476	int ret = 0;
3477	u64 parent_inode = 0;
3478	u64 parent_gen = 0;
3479	u64 start_ino = ino;
3480
3481	*ancestor_ino = 0;
3482	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3483		fs_path_reset(name);
3484
3485		if (is_waiting_for_rm(sctx, ino, gen))
3486			break;
3487		if (is_waiting_for_move(sctx, ino)) {
3488			if (*ancestor_ino == 0)
3489				*ancestor_ino = ino;
3490			ret = get_first_ref(sctx->parent_root, ino,
3491					    &parent_inode, &parent_gen, name);
3492		} else {
3493			ret = __get_cur_name_and_parent(sctx, ino, gen,
3494							&parent_inode,
3495							&parent_gen, name);
3496			if (ret > 0) {
3497				ret = 0;
3498				break;
3499			}
3500		}
3501		if (ret < 0)
3502			break;
3503		if (parent_inode == start_ino) {
3504			ret = 1;
3505			if (*ancestor_ino == 0)
3506				*ancestor_ino = ino;
3507			break;
3508		}
3509		ino = parent_inode;
3510		gen = parent_gen;
3511	}
3512	return ret;
3513}
3514
3515static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3516{
3517	struct fs_path *from_path = NULL;
3518	struct fs_path *to_path = NULL;
3519	struct fs_path *name = NULL;
3520	u64 orig_progress = sctx->send_progress;
3521	struct recorded_ref *cur;
3522	u64 parent_ino, parent_gen;
3523	struct waiting_dir_move *dm = NULL;
3524	u64 rmdir_ino = 0;
3525	u64 rmdir_gen;
3526	u64 ancestor;
3527	bool is_orphan;
3528	int ret;
3529
3530	name = fs_path_alloc();
3531	from_path = fs_path_alloc();
3532	if (!name || !from_path) {
3533		ret = -ENOMEM;
3534		goto out;
3535	}
3536
3537	dm = get_waiting_dir_move(sctx, pm->ino);
3538	ASSERT(dm);
3539	rmdir_ino = dm->rmdir_ino;
3540	rmdir_gen = dm->rmdir_gen;
3541	is_orphan = dm->orphanized;
3542	free_waiting_dir_move(sctx, dm);
3543
3544	if (is_orphan) {
3545		ret = gen_unique_name(sctx, pm->ino,
3546				      pm->gen, from_path);
3547	} else {
3548		ret = get_first_ref(sctx->parent_root, pm->ino,
3549				    &parent_ino, &parent_gen, name);
3550		if (ret < 0)
3551			goto out;
3552		ret = get_cur_path(sctx, parent_ino, parent_gen,
3553				   from_path);
3554		if (ret < 0)
3555			goto out;
3556		ret = fs_path_add_path(from_path, name);
3557	}
3558	if (ret < 0)
3559		goto out;
3560
3561	sctx->send_progress = sctx->cur_ino + 1;
3562	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3563	if (ret < 0)
3564		goto out;
3565	if (ret) {
3566		LIST_HEAD(deleted_refs);
3567		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3568		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3569					   &pm->update_refs, &deleted_refs,
3570					   is_orphan);
3571		if (ret < 0)
3572			goto out;
3573		if (rmdir_ino) {
3574			dm = get_waiting_dir_move(sctx, pm->ino);
3575			ASSERT(dm);
3576			dm->rmdir_ino = rmdir_ino;
3577			dm->rmdir_gen = rmdir_gen;
3578		}
3579		goto out;
3580	}
3581	fs_path_reset(name);
3582	to_path = name;
3583	name = NULL;
3584	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3585	if (ret < 0)
3586		goto out;
3587
3588	ret = send_rename(sctx, from_path, to_path);
3589	if (ret < 0)
3590		goto out;
3591
3592	if (rmdir_ino) {
3593		struct orphan_dir_info *odi;
3594		u64 gen;
3595
3596		odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3597		if (!odi) {
3598			/* already deleted */
3599			goto finish;
3600		}
3601		gen = odi->gen;
3602
3603		ret = can_rmdir(sctx, rmdir_ino, gen);
3604		if (ret < 0)
3605			goto out;
3606		if (!ret)
3607			goto finish;
3608
3609		name = fs_path_alloc();
3610		if (!name) {
3611			ret = -ENOMEM;
3612			goto out;
3613		}
3614		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3615		if (ret < 0)
3616			goto out;
3617		ret = send_rmdir(sctx, name);
3618		if (ret < 0)
3619			goto out;
3620	}
3621
3622finish:
3623	ret = cache_dir_utimes(sctx, pm->ino, pm->gen);
3624	if (ret < 0)
3625		goto out;
3626
3627	/*
3628	 * After rename/move, need to update the utimes of both new parent(s)
3629	 * and old parent(s).
3630	 */
3631	list_for_each_entry(cur, &pm->update_refs, list) {
3632		/*
3633		 * The parent inode might have been deleted in the send snapshot
3634		 */
3635		ret = get_inode_info(sctx->send_root, cur->dir, NULL);
 
3636		if (ret == -ENOENT) {
3637			ret = 0;
3638			continue;
3639		}
3640		if (ret < 0)
3641			goto out;
3642
3643		ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
3644		if (ret < 0)
3645			goto out;
3646	}
3647
3648out:
3649	fs_path_free(name);
3650	fs_path_free(from_path);
3651	fs_path_free(to_path);
3652	sctx->send_progress = orig_progress;
3653
3654	return ret;
3655}
3656
3657static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3658{
3659	if (!list_empty(&m->list))
3660		list_del(&m->list);
3661	if (!RB_EMPTY_NODE(&m->node))
3662		rb_erase(&m->node, &sctx->pending_dir_moves);
3663	__free_recorded_refs(&m->update_refs);
3664	kfree(m);
3665}
3666
3667static void tail_append_pending_moves(struct send_ctx *sctx,
3668				      struct pending_dir_move *moves,
3669				      struct list_head *stack)
3670{
3671	if (list_empty(&moves->list)) {
3672		list_add_tail(&moves->list, stack);
3673	} else {
3674		LIST_HEAD(list);
3675		list_splice_init(&moves->list, &list);
3676		list_add_tail(&moves->list, stack);
3677		list_splice_tail(&list, stack);
3678	}
3679	if (!RB_EMPTY_NODE(&moves->node)) {
3680		rb_erase(&moves->node, &sctx->pending_dir_moves);
3681		RB_CLEAR_NODE(&moves->node);
3682	}
3683}
3684
3685static int apply_children_dir_moves(struct send_ctx *sctx)
3686{
3687	struct pending_dir_move *pm;
3688	LIST_HEAD(stack);
3689	u64 parent_ino = sctx->cur_ino;
3690	int ret = 0;
3691
3692	pm = get_pending_dir_moves(sctx, parent_ino);
3693	if (!pm)
3694		return 0;
3695
 
3696	tail_append_pending_moves(sctx, pm, &stack);
3697
3698	while (!list_empty(&stack)) {
3699		pm = list_first_entry(&stack, struct pending_dir_move, list);
3700		parent_ino = pm->ino;
3701		ret = apply_dir_move(sctx, pm);
3702		free_pending_move(sctx, pm);
3703		if (ret)
3704			goto out;
3705		pm = get_pending_dir_moves(sctx, parent_ino);
3706		if (pm)
3707			tail_append_pending_moves(sctx, pm, &stack);
3708	}
3709	return 0;
3710
3711out:
3712	while (!list_empty(&stack)) {
3713		pm = list_first_entry(&stack, struct pending_dir_move, list);
3714		free_pending_move(sctx, pm);
3715	}
3716	return ret;
3717}
3718
3719/*
3720 * We might need to delay a directory rename even when no ancestor directory
3721 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3722 * renamed. This happens when we rename a directory to the old name (the name
3723 * in the parent root) of some other unrelated directory that got its rename
3724 * delayed due to some ancestor with higher number that got renamed.
3725 *
3726 * Example:
3727 *
3728 * Parent snapshot:
3729 * .                                       (ino 256)
3730 * |---- a/                                (ino 257)
3731 * |     |---- file                        (ino 260)
3732 * |
3733 * |---- b/                                (ino 258)
3734 * |---- c/                                (ino 259)
3735 *
3736 * Send snapshot:
3737 * .                                       (ino 256)
3738 * |---- a/                                (ino 258)
3739 * |---- x/                                (ino 259)
3740 *       |---- y/                          (ino 257)
3741 *             |----- file                 (ino 260)
3742 *
3743 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3744 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3745 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3746 * must issue is:
3747 *
3748 * 1 - rename 259 from 'c' to 'x'
3749 * 2 - rename 257 from 'a' to 'x/y'
3750 * 3 - rename 258 from 'b' to 'a'
3751 *
3752 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3753 * be done right away and < 0 on error.
3754 */
3755static int wait_for_dest_dir_move(struct send_ctx *sctx,
3756				  struct recorded_ref *parent_ref,
3757				  const bool is_orphan)
3758{
3759	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3760	struct btrfs_path *path;
3761	struct btrfs_key key;
3762	struct btrfs_key di_key;
3763	struct btrfs_dir_item *di;
3764	u64 left_gen;
3765	u64 right_gen;
3766	int ret = 0;
3767	struct waiting_dir_move *wdm;
3768
3769	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3770		return 0;
3771
3772	path = alloc_path_for_send();
3773	if (!path)
3774		return -ENOMEM;
3775
3776	key.objectid = parent_ref->dir;
3777	key.type = BTRFS_DIR_ITEM_KEY;
3778	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3779
3780	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3781	if (ret < 0) {
3782		goto out;
3783	} else if (ret > 0) {
3784		ret = 0;
3785		goto out;
3786	}
3787
3788	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3789				       parent_ref->name_len);
3790	if (!di) {
3791		ret = 0;
3792		goto out;
3793	}
3794	/*
3795	 * di_key.objectid has the number of the inode that has a dentry in the
3796	 * parent directory with the same name that sctx->cur_ino is being
3797	 * renamed to. We need to check if that inode is in the send root as
3798	 * well and if it is currently marked as an inode with a pending rename,
3799	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3800	 * that it happens after that other inode is renamed.
3801	 */
3802	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3803	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3804		ret = 0;
3805		goto out;
3806	}
3807
3808	ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
 
3809	if (ret < 0)
3810		goto out;
3811	ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
 
3812	if (ret < 0) {
3813		if (ret == -ENOENT)
3814			ret = 0;
3815		goto out;
3816	}
3817
3818	/* Different inode, no need to delay the rename of sctx->cur_ino */
3819	if (right_gen != left_gen) {
3820		ret = 0;
3821		goto out;
3822	}
3823
3824	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3825	if (wdm && !wdm->orphanized) {
3826		ret = add_pending_dir_move(sctx,
3827					   sctx->cur_ino,
3828					   sctx->cur_inode_gen,
3829					   di_key.objectid,
3830					   &sctx->new_refs,
3831					   &sctx->deleted_refs,
3832					   is_orphan);
3833		if (!ret)
3834			ret = 1;
3835	}
3836out:
3837	btrfs_free_path(path);
3838	return ret;
3839}
3840
3841/*
3842 * Check if inode ino2, or any of its ancestors, is inode ino1.
3843 * Return 1 if true, 0 if false and < 0 on error.
3844 */
3845static int check_ino_in_path(struct btrfs_root *root,
3846			     const u64 ino1,
3847			     const u64 ino1_gen,
3848			     const u64 ino2,
3849			     const u64 ino2_gen,
3850			     struct fs_path *fs_path)
3851{
3852	u64 ino = ino2;
3853
3854	if (ino1 == ino2)
3855		return ino1_gen == ino2_gen;
3856
3857	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3858		u64 parent;
3859		u64 parent_gen;
3860		int ret;
3861
3862		fs_path_reset(fs_path);
3863		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3864		if (ret < 0)
3865			return ret;
3866		if (parent == ino1)
3867			return parent_gen == ino1_gen;
3868		ino = parent;
3869	}
3870	return 0;
3871}
3872
3873/*
3874 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3875 * possible path (in case ino2 is not a directory and has multiple hard links).
3876 * Return 1 if true, 0 if false and < 0 on error.
3877 */
3878static int is_ancestor(struct btrfs_root *root,
3879		       const u64 ino1,
3880		       const u64 ino1_gen,
3881		       const u64 ino2,
3882		       struct fs_path *fs_path)
3883{
3884	bool free_fs_path = false;
3885	int ret = 0;
3886	int iter_ret = 0;
3887	struct btrfs_path *path = NULL;
3888	struct btrfs_key key;
3889
3890	if (!fs_path) {
3891		fs_path = fs_path_alloc();
3892		if (!fs_path)
3893			return -ENOMEM;
3894		free_fs_path = true;
3895	}
3896
3897	path = alloc_path_for_send();
3898	if (!path) {
3899		ret = -ENOMEM;
3900		goto out;
3901	}
3902
3903	key.objectid = ino2;
3904	key.type = BTRFS_INODE_REF_KEY;
3905	key.offset = 0;
3906
3907	btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
 
 
 
 
3908		struct extent_buffer *leaf = path->nodes[0];
3909		int slot = path->slots[0];
3910		u32 cur_offset = 0;
3911		u32 item_size;
3912
 
 
 
 
 
 
 
 
 
 
3913		if (key.objectid != ino2)
3914			break;
3915		if (key.type != BTRFS_INODE_REF_KEY &&
3916		    key.type != BTRFS_INODE_EXTREF_KEY)
3917			break;
3918
3919		item_size = btrfs_item_size(leaf, slot);
3920		while (cur_offset < item_size) {
3921			u64 parent;
3922			u64 parent_gen;
3923
3924			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3925				unsigned long ptr;
3926				struct btrfs_inode_extref *extref;
3927
3928				ptr = btrfs_item_ptr_offset(leaf, slot);
3929				extref = (struct btrfs_inode_extref *)
3930					(ptr + cur_offset);
3931				parent = btrfs_inode_extref_parent(leaf,
3932								   extref);
3933				cur_offset += sizeof(*extref);
3934				cur_offset += btrfs_inode_extref_name_len(leaf,
3935								  extref);
3936			} else {
3937				parent = key.offset;
3938				cur_offset = item_size;
3939			}
3940
3941			ret = get_inode_gen(root, parent, &parent_gen);
 
3942			if (ret < 0)
3943				goto out;
3944			ret = check_ino_in_path(root, ino1, ino1_gen,
3945						parent, parent_gen, fs_path);
3946			if (ret)
3947				goto out;
3948		}
 
3949	}
3950	ret = 0;
3951	if (iter_ret < 0)
3952		ret = iter_ret;
3953
3954out:
3955	btrfs_free_path(path);
3956	if (free_fs_path)
3957		fs_path_free(fs_path);
3958	return ret;
3959}
3960
3961static int wait_for_parent_move(struct send_ctx *sctx,
3962				struct recorded_ref *parent_ref,
3963				const bool is_orphan)
3964{
3965	int ret = 0;
3966	u64 ino = parent_ref->dir;
3967	u64 ino_gen = parent_ref->dir_gen;
3968	u64 parent_ino_before, parent_ino_after;
3969	struct fs_path *path_before = NULL;
3970	struct fs_path *path_after = NULL;
3971	int len1, len2;
3972
3973	path_after = fs_path_alloc();
3974	path_before = fs_path_alloc();
3975	if (!path_after || !path_before) {
3976		ret = -ENOMEM;
3977		goto out;
3978	}
3979
3980	/*
3981	 * Our current directory inode may not yet be renamed/moved because some
3982	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3983	 * such ancestor exists and make sure our own rename/move happens after
3984	 * that ancestor is processed to avoid path build infinite loops (done
3985	 * at get_cur_path()).
3986	 */
3987	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3988		u64 parent_ino_after_gen;
3989
3990		if (is_waiting_for_move(sctx, ino)) {
3991			/*
3992			 * If the current inode is an ancestor of ino in the
3993			 * parent root, we need to delay the rename of the
3994			 * current inode, otherwise don't delayed the rename
3995			 * because we can end up with a circular dependency
3996			 * of renames, resulting in some directories never
3997			 * getting the respective rename operations issued in
3998			 * the send stream or getting into infinite path build
3999			 * loops.
4000			 */
4001			ret = is_ancestor(sctx->parent_root,
4002					  sctx->cur_ino, sctx->cur_inode_gen,
4003					  ino, path_before);
4004			if (ret)
4005				break;
4006		}
4007
4008		fs_path_reset(path_before);
4009		fs_path_reset(path_after);
4010
4011		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
4012				    &parent_ino_after_gen, path_after);
4013		if (ret < 0)
4014			goto out;
4015		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
4016				    NULL, path_before);
4017		if (ret < 0 && ret != -ENOENT) {
4018			goto out;
4019		} else if (ret == -ENOENT) {
4020			ret = 0;
4021			break;
4022		}
4023
4024		len1 = fs_path_len(path_before);
4025		len2 = fs_path_len(path_after);
4026		if (ino > sctx->cur_ino &&
4027		    (parent_ino_before != parent_ino_after || len1 != len2 ||
4028		     memcmp(path_before->start, path_after->start, len1))) {
4029			u64 parent_ino_gen;
4030
4031			ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
 
 
4032			if (ret < 0)
4033				goto out;
4034			if (ino_gen == parent_ino_gen) {
4035				ret = 1;
4036				break;
4037			}
4038		}
4039		ino = parent_ino_after;
4040		ino_gen = parent_ino_after_gen;
4041	}
4042
4043out:
4044	fs_path_free(path_before);
4045	fs_path_free(path_after);
4046
4047	if (ret == 1) {
4048		ret = add_pending_dir_move(sctx,
4049					   sctx->cur_ino,
4050					   sctx->cur_inode_gen,
4051					   ino,
4052					   &sctx->new_refs,
4053					   &sctx->deleted_refs,
4054					   is_orphan);
4055		if (!ret)
4056			ret = 1;
4057	}
4058
4059	return ret;
4060}
4061
4062static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4063{
4064	int ret;
4065	struct fs_path *new_path;
4066
4067	/*
4068	 * Our reference's name member points to its full_path member string, so
4069	 * we use here a new path.
4070	 */
4071	new_path = fs_path_alloc();
4072	if (!new_path)
4073		return -ENOMEM;
4074
4075	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
4076	if (ret < 0) {
4077		fs_path_free(new_path);
4078		return ret;
4079	}
4080	ret = fs_path_add(new_path, ref->name, ref->name_len);
4081	if (ret < 0) {
4082		fs_path_free(new_path);
4083		return ret;
4084	}
4085
4086	fs_path_free(ref->full_path);
4087	set_ref_path(ref, new_path);
4088
4089	return 0;
4090}
4091
4092/*
4093 * When processing the new references for an inode we may orphanize an existing
4094 * directory inode because its old name conflicts with one of the new references
4095 * of the current inode. Later, when processing another new reference of our
4096 * inode, we might need to orphanize another inode, but the path we have in the
4097 * reference reflects the pre-orphanization name of the directory we previously
4098 * orphanized. For example:
4099 *
4100 * parent snapshot looks like:
4101 *
4102 * .                                     (ino 256)
4103 * |----- f1                             (ino 257)
4104 * |----- f2                             (ino 258)
4105 * |----- d1/                            (ino 259)
4106 *        |----- d2/                     (ino 260)
4107 *
4108 * send snapshot looks like:
4109 *
4110 * .                                     (ino 256)
4111 * |----- d1                             (ino 258)
4112 * |----- f2/                            (ino 259)
4113 *        |----- f2_link/                (ino 260)
4114 *        |       |----- f1              (ino 257)
4115 *        |
4116 *        |----- d2                      (ino 258)
4117 *
4118 * When processing inode 257 we compute the name for inode 259 as "d1", and we
4119 * cache it in the name cache. Later when we start processing inode 258, when
4120 * collecting all its new references we set a full path of "d1/d2" for its new
4121 * reference with name "d2". When we start processing the new references we
4122 * start by processing the new reference with name "d1", and this results in
4123 * orphanizing inode 259, since its old reference causes a conflict. Then we
4124 * move on the next new reference, with name "d2", and we find out we must
4125 * orphanize inode 260, as its old reference conflicts with ours - but for the
4126 * orphanization we use a source path corresponding to the path we stored in the
4127 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
4128 * receiver fail since the path component "d1/" no longer exists, it was renamed
4129 * to "o259-6-0/" when processing the previous new reference. So in this case we
4130 * must recompute the path in the new reference and use it for the new
4131 * orphanization operation.
4132 */
4133static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4134{
4135	char *name;
4136	int ret;
4137
4138	name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
4139	if (!name)
4140		return -ENOMEM;
4141
4142	fs_path_reset(ref->full_path);
4143	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
4144	if (ret < 0)
4145		goto out;
4146
4147	ret = fs_path_add(ref->full_path, name, ref->name_len);
4148	if (ret < 0)
4149		goto out;
4150
4151	/* Update the reference's base name pointer. */
4152	set_ref_path(ref, ref->full_path);
4153out:
4154	kfree(name);
4155	return ret;
4156}
4157
4158/*
4159 * This does all the move/link/unlink/rmdir magic.
4160 */
4161static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
4162{
4163	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4164	int ret = 0;
4165	struct recorded_ref *cur;
4166	struct recorded_ref *cur2;
4167	LIST_HEAD(check_dirs);
4168	struct fs_path *valid_path = NULL;
4169	u64 ow_inode = 0;
4170	u64 ow_gen;
4171	u64 ow_mode;
4172	int did_overwrite = 0;
4173	int is_orphan = 0;
4174	u64 last_dir_ino_rm = 0;
4175	bool can_rename = true;
4176	bool orphanized_dir = false;
4177	bool orphanized_ancestor = false;
4178
4179	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
4180
4181	/*
4182	 * This should never happen as the root dir always has the same ref
4183	 * which is always '..'
4184	 */
4185	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
 
4186
4187	valid_path = fs_path_alloc();
4188	if (!valid_path) {
4189		ret = -ENOMEM;
4190		goto out;
4191	}
4192
4193	/*
4194	 * First, check if the first ref of the current inode was overwritten
4195	 * before. If yes, we know that the current inode was already orphanized
4196	 * and thus use the orphan name. If not, we can use get_cur_path to
4197	 * get the path of the first ref as it would like while receiving at
4198	 * this point in time.
4199	 * New inodes are always orphan at the beginning, so force to use the
4200	 * orphan name in this case.
4201	 * The first ref is stored in valid_path and will be updated if it
4202	 * gets moved around.
4203	 */
4204	if (!sctx->cur_inode_new) {
4205		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
4206				sctx->cur_inode_gen);
4207		if (ret < 0)
4208			goto out;
4209		if (ret)
4210			did_overwrite = 1;
4211	}
4212	if (sctx->cur_inode_new || did_overwrite) {
4213		ret = gen_unique_name(sctx, sctx->cur_ino,
4214				sctx->cur_inode_gen, valid_path);
4215		if (ret < 0)
4216			goto out;
4217		is_orphan = 1;
4218	} else {
4219		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4220				valid_path);
4221		if (ret < 0)
4222			goto out;
4223	}
4224
4225	/*
4226	 * Before doing any rename and link operations, do a first pass on the
4227	 * new references to orphanize any unprocessed inodes that may have a
4228	 * reference that conflicts with one of the new references of the current
4229	 * inode. This needs to happen first because a new reference may conflict
4230	 * with the old reference of a parent directory, so we must make sure
4231	 * that the path used for link and rename commands don't use an
4232	 * orphanized name when an ancestor was not yet orphanized.
4233	 *
4234	 * Example:
4235	 *
4236	 * Parent snapshot:
4237	 *
4238	 * .                                                      (ino 256)
4239	 * |----- testdir/                                        (ino 259)
4240	 * |          |----- a                                    (ino 257)
4241	 * |
4242	 * |----- b                                               (ino 258)
4243	 *
4244	 * Send snapshot:
4245	 *
4246	 * .                                                      (ino 256)
4247	 * |----- testdir_2/                                      (ino 259)
4248	 * |          |----- a                                    (ino 260)
4249	 * |
4250	 * |----- testdir                                         (ino 257)
4251	 * |----- b                                               (ino 257)
4252	 * |----- b2                                              (ino 258)
4253	 *
4254	 * Processing the new reference for inode 257 with name "b" may happen
4255	 * before processing the new reference with name "testdir". If so, we
4256	 * must make sure that by the time we send a link command to create the
4257	 * hard link "b", inode 259 was already orphanized, since the generated
4258	 * path in "valid_path" already contains the orphanized name for 259.
4259	 * We are processing inode 257, so only later when processing 259 we do
4260	 * the rename operation to change its temporary (orphanized) name to
4261	 * "testdir_2".
4262	 */
4263	list_for_each_entry(cur, &sctx->new_refs, list) {
4264		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
 
 
 
 
 
 
 
4265		if (ret < 0)
4266			goto out;
4267		if (ret == inode_state_will_create)
4268			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4269
4270		/*
4271		 * Check if this new ref would overwrite the first ref of another
4272		 * unprocessed inode. If yes, orphanize the overwritten inode.
4273		 * If we find an overwritten ref that is not the first ref,
4274		 * simply unlink it.
4275		 */
4276		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4277				cur->name, cur->name_len,
4278				&ow_inode, &ow_gen, &ow_mode);
4279		if (ret < 0)
4280			goto out;
4281		if (ret) {
4282			ret = is_first_ref(sctx->parent_root,
4283					   ow_inode, cur->dir, cur->name,
4284					   cur->name_len);
4285			if (ret < 0)
4286				goto out;
4287			if (ret) {
4288				struct name_cache_entry *nce;
4289				struct waiting_dir_move *wdm;
4290
4291				if (orphanized_dir) {
4292					ret = refresh_ref_path(sctx, cur);
4293					if (ret < 0)
4294						goto out;
4295				}
4296
4297				ret = orphanize_inode(sctx, ow_inode, ow_gen,
4298						cur->full_path);
4299				if (ret < 0)
4300					goto out;
4301				if (S_ISDIR(ow_mode))
4302					orphanized_dir = true;
4303
4304				/*
4305				 * If ow_inode has its rename operation delayed
4306				 * make sure that its orphanized name is used in
4307				 * the source path when performing its rename
4308				 * operation.
4309				 */
4310				wdm = get_waiting_dir_move(sctx, ow_inode);
4311				if (wdm)
 
 
4312					wdm->orphanized = true;
 
4313
4314				/*
4315				 * Make sure we clear our orphanized inode's
4316				 * name from the name cache. This is because the
4317				 * inode ow_inode might be an ancestor of some
4318				 * other inode that will be orphanized as well
4319				 * later and has an inode number greater than
4320				 * sctx->send_progress. We need to prevent
4321				 * future name lookups from using the old name
4322				 * and get instead the orphan name.
4323				 */
4324				nce = name_cache_search(sctx, ow_inode, ow_gen);
4325				if (nce)
4326					btrfs_lru_cache_remove(&sctx->name_cache,
4327							       &nce->entry);
 
4328
4329				/*
4330				 * ow_inode might currently be an ancestor of
4331				 * cur_ino, therefore compute valid_path (the
4332				 * current path of cur_ino) again because it
4333				 * might contain the pre-orphanization name of
4334				 * ow_inode, which is no longer valid.
4335				 */
4336				ret = is_ancestor(sctx->parent_root,
4337						  ow_inode, ow_gen,
4338						  sctx->cur_ino, NULL);
4339				if (ret > 0) {
4340					orphanized_ancestor = true;
4341					fs_path_reset(valid_path);
4342					ret = get_cur_path(sctx, sctx->cur_ino,
4343							   sctx->cur_inode_gen,
4344							   valid_path);
4345				}
4346				if (ret < 0)
4347					goto out;
4348			} else {
4349				/*
4350				 * If we previously orphanized a directory that
4351				 * collided with a new reference that we already
4352				 * processed, recompute the current path because
4353				 * that directory may be part of the path.
4354				 */
4355				if (orphanized_dir) {
4356					ret = refresh_ref_path(sctx, cur);
4357					if (ret < 0)
4358						goto out;
4359				}
4360				ret = send_unlink(sctx, cur->full_path);
4361				if (ret < 0)
4362					goto out;
4363			}
4364		}
4365
4366	}
4367
4368	list_for_each_entry(cur, &sctx->new_refs, list) {
4369		/*
4370		 * We may have refs where the parent directory does not exist
4371		 * yet. This happens if the parent directories inum is higher
4372		 * than the current inum. To handle this case, we create the
4373		 * parent directory out of order. But we need to check if this
4374		 * did already happen before due to other refs in the same dir.
4375		 */
4376		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4377		if (ret < 0)
4378			goto out;
4379		if (ret == inode_state_will_create) {
4380			ret = 0;
4381			/*
4382			 * First check if any of the current inodes refs did
4383			 * already create the dir.
4384			 */
4385			list_for_each_entry(cur2, &sctx->new_refs, list) {
4386				if (cur == cur2)
4387					break;
4388				if (cur2->dir == cur->dir) {
4389					ret = 1;
4390					break;
4391				}
4392			}
4393
4394			/*
4395			 * If that did not happen, check if a previous inode
4396			 * did already create the dir.
4397			 */
4398			if (!ret)
4399				ret = did_create_dir(sctx, cur->dir);
4400			if (ret < 0)
4401				goto out;
4402			if (!ret) {
4403				ret = send_create_inode(sctx, cur->dir);
4404				if (ret < 0)
4405					goto out;
4406				cache_dir_created(sctx, cur->dir);
4407			}
4408		}
4409
4410		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4411			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4412			if (ret < 0)
4413				goto out;
4414			if (ret == 1) {
4415				can_rename = false;
4416				*pending_move = 1;
4417			}
4418		}
4419
4420		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4421		    can_rename) {
4422			ret = wait_for_parent_move(sctx, cur, is_orphan);
4423			if (ret < 0)
4424				goto out;
4425			if (ret == 1) {
4426				can_rename = false;
4427				*pending_move = 1;
4428			}
4429		}
4430
4431		/*
4432		 * link/move the ref to the new place. If we have an orphan
4433		 * inode, move it and update valid_path. If not, link or move
4434		 * it depending on the inode mode.
4435		 */
4436		if (is_orphan && can_rename) {
4437			ret = send_rename(sctx, valid_path, cur->full_path);
4438			if (ret < 0)
4439				goto out;
4440			is_orphan = 0;
4441			ret = fs_path_copy(valid_path, cur->full_path);
4442			if (ret < 0)
4443				goto out;
4444		} else if (can_rename) {
4445			if (S_ISDIR(sctx->cur_inode_mode)) {
4446				/*
4447				 * Dirs can't be linked, so move it. For moved
4448				 * dirs, we always have one new and one deleted
4449				 * ref. The deleted ref is ignored later.
4450				 */
4451				ret = send_rename(sctx, valid_path,
4452						  cur->full_path);
4453				if (!ret)
4454					ret = fs_path_copy(valid_path,
4455							   cur->full_path);
4456				if (ret < 0)
4457					goto out;
4458			} else {
4459				/*
4460				 * We might have previously orphanized an inode
4461				 * which is an ancestor of our current inode,
4462				 * so our reference's full path, which was
4463				 * computed before any such orphanizations, must
4464				 * be updated.
4465				 */
4466				if (orphanized_dir) {
4467					ret = update_ref_path(sctx, cur);
4468					if (ret < 0)
4469						goto out;
4470				}
4471				ret = send_link(sctx, cur->full_path,
4472						valid_path);
4473				if (ret < 0)
4474					goto out;
4475			}
4476		}
4477		ret = dup_ref(cur, &check_dirs);
4478		if (ret < 0)
4479			goto out;
4480	}
4481
4482	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4483		/*
4484		 * Check if we can already rmdir the directory. If not,
4485		 * orphanize it. For every dir item inside that gets deleted
4486		 * later, we do this check again and rmdir it then if possible.
4487		 * See the use of check_dirs for more details.
4488		 */
4489		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen);
 
4490		if (ret < 0)
4491			goto out;
4492		if (ret) {
4493			ret = send_rmdir(sctx, valid_path);
4494			if (ret < 0)
4495				goto out;
4496		} else if (!is_orphan) {
4497			ret = orphanize_inode(sctx, sctx->cur_ino,
4498					sctx->cur_inode_gen, valid_path);
4499			if (ret < 0)
4500				goto out;
4501			is_orphan = 1;
4502		}
4503
4504		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4505			ret = dup_ref(cur, &check_dirs);
4506			if (ret < 0)
4507				goto out;
4508		}
4509	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4510		   !list_empty(&sctx->deleted_refs)) {
4511		/*
4512		 * We have a moved dir. Add the old parent to check_dirs
4513		 */
4514		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4515				list);
4516		ret = dup_ref(cur, &check_dirs);
4517		if (ret < 0)
4518			goto out;
4519	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4520		/*
4521		 * We have a non dir inode. Go through all deleted refs and
4522		 * unlink them if they were not already overwritten by other
4523		 * inodes.
4524		 */
4525		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4526			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4527					sctx->cur_ino, sctx->cur_inode_gen,
4528					cur->name, cur->name_len);
4529			if (ret < 0)
4530				goto out;
4531			if (!ret) {
4532				/*
4533				 * If we orphanized any ancestor before, we need
4534				 * to recompute the full path for deleted names,
4535				 * since any such path was computed before we
4536				 * processed any references and orphanized any
4537				 * ancestor inode.
4538				 */
4539				if (orphanized_ancestor) {
4540					ret = update_ref_path(sctx, cur);
4541					if (ret < 0)
4542						goto out;
4543				}
4544				ret = send_unlink(sctx, cur->full_path);
4545				if (ret < 0)
4546					goto out;
4547			}
4548			ret = dup_ref(cur, &check_dirs);
4549			if (ret < 0)
4550				goto out;
4551		}
4552		/*
4553		 * If the inode is still orphan, unlink the orphan. This may
4554		 * happen when a previous inode did overwrite the first ref
4555		 * of this inode and no new refs were added for the current
4556		 * inode. Unlinking does not mean that the inode is deleted in
4557		 * all cases. There may still be links to this inode in other
4558		 * places.
4559		 */
4560		if (is_orphan) {
4561			ret = send_unlink(sctx, valid_path);
4562			if (ret < 0)
4563				goto out;
4564		}
4565	}
4566
4567	/*
4568	 * We did collect all parent dirs where cur_inode was once located. We
4569	 * now go through all these dirs and check if they are pending for
4570	 * deletion and if it's finally possible to perform the rmdir now.
4571	 * We also update the inode stats of the parent dirs here.
4572	 */
4573	list_for_each_entry(cur, &check_dirs, list) {
4574		/*
4575		 * In case we had refs into dirs that were not processed yet,
4576		 * we don't need to do the utime and rmdir logic for these dirs.
4577		 * The dir will be processed later.
4578		 */
4579		if (cur->dir > sctx->cur_ino)
4580			continue;
4581
4582		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4583		if (ret < 0)
4584			goto out;
4585
4586		if (ret == inode_state_did_create ||
4587		    ret == inode_state_no_change) {
4588			ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
 
4589			if (ret < 0)
4590				goto out;
4591		} else if (ret == inode_state_did_delete &&
4592			   cur->dir != last_dir_ino_rm) {
4593			ret = can_rmdir(sctx, cur->dir, cur->dir_gen);
 
4594			if (ret < 0)
4595				goto out;
4596			if (ret) {
4597				ret = get_cur_path(sctx, cur->dir,
4598						   cur->dir_gen, valid_path);
4599				if (ret < 0)
4600					goto out;
4601				ret = send_rmdir(sctx, valid_path);
4602				if (ret < 0)
4603					goto out;
4604				last_dir_ino_rm = cur->dir;
4605			}
4606		}
4607	}
4608
4609	ret = 0;
4610
4611out:
4612	__free_recorded_refs(&check_dirs);
4613	free_recorded_refs(sctx);
4614	fs_path_free(valid_path);
4615	return ret;
4616}
4617
4618static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4619{
4620	const struct recorded_ref *data = k;
4621	const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4622	int result;
4623
4624	if (data->dir > ref->dir)
4625		return 1;
4626	if (data->dir < ref->dir)
4627		return -1;
4628	if (data->dir_gen > ref->dir_gen)
4629		return 1;
4630	if (data->dir_gen < ref->dir_gen)
4631		return -1;
4632	if (data->name_len > ref->name_len)
4633		return 1;
4634	if (data->name_len < ref->name_len)
4635		return -1;
4636	result = strcmp(data->name, ref->name);
4637	if (result > 0)
4638		return 1;
4639	if (result < 0)
4640		return -1;
4641	return 0;
4642}
4643
4644static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4645{
4646	const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4647
4648	return rbtree_ref_comp(entry, parent) < 0;
4649}
4650
4651static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4652			      struct fs_path *name, u64 dir, u64 dir_gen,
4653			      struct send_ctx *sctx)
4654{
4655	int ret = 0;
4656	struct fs_path *path = NULL;
4657	struct recorded_ref *ref = NULL;
 
4658
4659	path = fs_path_alloc();
4660	if (!path) {
4661		ret = -ENOMEM;
4662		goto out;
4663	}
4664
4665	ref = recorded_ref_alloc();
4666	if (!ref) {
4667		ret = -ENOMEM;
4668		goto out;
4669	}
4670
4671	ret = get_cur_path(sctx, dir, dir_gen, path);
4672	if (ret < 0)
4673		goto out;
4674	ret = fs_path_add_path(path, name);
4675	if (ret < 0)
4676		goto out;
4677
4678	ref->dir = dir;
4679	ref->dir_gen = dir_gen;
4680	set_ref_path(ref, path);
4681	list_add_tail(&ref->list, refs);
4682	rb_add(&ref->node, root, rbtree_ref_less);
4683	ref->root = root;
4684out:
4685	if (ret) {
4686		if (path && (!ref || !ref->full_path))
4687			fs_path_free(path);
4688		recorded_ref_free(ref);
4689	}
4690	return ret;
4691}
4692
4693static int record_new_ref_if_needed(int num, u64 dir, int index,
4694				    struct fs_path *name, void *ctx)
 
4695{
4696	int ret = 0;
4697	struct send_ctx *sctx = ctx;
4698	struct rb_node *node = NULL;
4699	struct recorded_ref data;
4700	struct recorded_ref *ref;
4701	u64 dir_gen;
4702
4703	ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
4704	if (ret < 0)
4705		goto out;
4706
4707	data.dir = dir;
4708	data.dir_gen = dir_gen;
4709	set_ref_path(&data, name);
4710	node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4711	if (node) {
4712		ref = rb_entry(node, struct recorded_ref, node);
4713		recorded_ref_free(ref);
4714	} else {
4715		ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4716					 &sctx->new_refs, name, dir, dir_gen,
4717					 sctx);
4718	}
4719out:
4720	return ret;
4721}
4722
4723static int record_deleted_ref_if_needed(int num, u64 dir, int index,
4724					struct fs_path *name, void *ctx)
 
 
4725{
4726	int ret = 0;
4727	struct send_ctx *sctx = ctx;
4728	struct rb_node *node = NULL;
4729	struct recorded_ref data;
4730	struct recorded_ref *ref;
4731	u64 dir_gen;
4732
4733	ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
4734	if (ret < 0)
4735		goto out;
4736
4737	data.dir = dir;
4738	data.dir_gen = dir_gen;
4739	set_ref_path(&data, name);
4740	node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4741	if (node) {
4742		ref = rb_entry(node, struct recorded_ref, node);
4743		recorded_ref_free(ref);
4744	} else {
4745		ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4746					 &sctx->deleted_refs, name, dir,
4747					 dir_gen, sctx);
4748	}
4749out:
4750	return ret;
4751}
4752
4753static int record_new_ref(struct send_ctx *sctx)
4754{
4755	int ret;
4756
4757	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4758				sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4759	if (ret < 0)
4760		goto out;
4761	ret = 0;
4762
4763out:
4764	return ret;
4765}
4766
4767static int record_deleted_ref(struct send_ctx *sctx)
4768{
4769	int ret;
4770
4771	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4772				sctx->cmp_key, 0, record_deleted_ref_if_needed,
4773				sctx);
4774	if (ret < 0)
4775		goto out;
4776	ret = 0;
4777
4778out:
4779	return ret;
4780}
4781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4782static int record_changed_ref(struct send_ctx *sctx)
4783{
4784	int ret = 0;
4785
4786	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4787			sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4788	if (ret < 0)
4789		goto out;
4790	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4791			sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx);
4792	if (ret < 0)
4793		goto out;
4794	ret = 0;
4795
4796out:
4797	return ret;
4798}
4799
4800/*
4801 * Record and process all refs at once. Needed when an inode changes the
4802 * generation number, which means that it was deleted and recreated.
4803 */
4804static int process_all_refs(struct send_ctx *sctx,
4805			    enum btrfs_compare_tree_result cmd)
4806{
4807	int ret = 0;
4808	int iter_ret = 0;
4809	struct btrfs_root *root;
4810	struct btrfs_path *path;
4811	struct btrfs_key key;
4812	struct btrfs_key found_key;
 
 
4813	iterate_inode_ref_t cb;
4814	int pending_move = 0;
4815
4816	path = alloc_path_for_send();
4817	if (!path)
4818		return -ENOMEM;
4819
4820	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4821		root = sctx->send_root;
4822		cb = record_new_ref_if_needed;
4823	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4824		root = sctx->parent_root;
4825		cb = record_deleted_ref_if_needed;
4826	} else {
4827		btrfs_err(sctx->send_root->fs_info,
4828				"Wrong command %d in process_all_refs", cmd);
4829		ret = -EINVAL;
4830		goto out;
4831	}
4832
4833	key.objectid = sctx->cmp_key->objectid;
4834	key.type = BTRFS_INODE_REF_KEY;
4835	key.offset = 0;
4836	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4837		if (found_key.objectid != key.objectid ||
4838		    (found_key.type != BTRFS_INODE_REF_KEY &&
4839		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4840			break;
4841
4842		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4843		if (ret < 0)
4844			goto out;
4845	}
4846	/* Catch error found during iteration */
4847	if (iter_ret < 0) {
4848		ret = iter_ret;
4849		goto out;
4850	}
4851	btrfs_release_path(path);
4852
4853	/*
4854	 * We don't actually care about pending_move as we are simply
4855	 * re-creating this inode and will be rename'ing it into place once we
4856	 * rename the parent directory.
4857	 */
4858	ret = process_recorded_refs(sctx, &pending_move);
4859out:
4860	btrfs_free_path(path);
4861	return ret;
4862}
4863
4864static int send_set_xattr(struct send_ctx *sctx,
4865			  struct fs_path *path,
4866			  const char *name, int name_len,
4867			  const char *data, int data_len)
4868{
4869	int ret = 0;
4870
4871	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4872	if (ret < 0)
4873		goto out;
4874
4875	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4876	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4877	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4878
4879	ret = send_cmd(sctx);
4880
4881tlv_put_failure:
4882out:
4883	return ret;
4884}
4885
4886static int send_remove_xattr(struct send_ctx *sctx,
4887			  struct fs_path *path,
4888			  const char *name, int name_len)
4889{
4890	int ret = 0;
4891
4892	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4893	if (ret < 0)
4894		goto out;
4895
4896	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4897	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4898
4899	ret = send_cmd(sctx);
4900
4901tlv_put_failure:
4902out:
4903	return ret;
4904}
4905
4906static int __process_new_xattr(int num, struct btrfs_key *di_key,
4907			       const char *name, int name_len, const char *data,
4908			       int data_len, void *ctx)
 
4909{
4910	int ret;
4911	struct send_ctx *sctx = ctx;
4912	struct fs_path *p;
4913	struct posix_acl_xattr_header dummy_acl;
4914
4915	/* Capabilities are emitted by finish_inode_if_needed */
4916	if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4917		return 0;
4918
4919	p = fs_path_alloc();
4920	if (!p)
4921		return -ENOMEM;
4922
4923	/*
4924	 * This hack is needed because empty acls are stored as zero byte
4925	 * data in xattrs. Problem with that is, that receiving these zero byte
4926	 * acls will fail later. To fix this, we send a dummy acl list that
4927	 * only contains the version number and no entries.
4928	 */
4929	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4930	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4931		if (data_len == 0) {
4932			dummy_acl.a_version =
4933					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4934			data = (char *)&dummy_acl;
4935			data_len = sizeof(dummy_acl);
4936		}
4937	}
4938
4939	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4940	if (ret < 0)
4941		goto out;
4942
4943	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4944
4945out:
4946	fs_path_free(p);
4947	return ret;
4948}
4949
4950static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4951				   const char *name, int name_len,
4952				   const char *data, int data_len, void *ctx)
 
4953{
4954	int ret;
4955	struct send_ctx *sctx = ctx;
4956	struct fs_path *p;
4957
4958	p = fs_path_alloc();
4959	if (!p)
4960		return -ENOMEM;
4961
4962	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4963	if (ret < 0)
4964		goto out;
4965
4966	ret = send_remove_xattr(sctx, p, name, name_len);
4967
4968out:
4969	fs_path_free(p);
4970	return ret;
4971}
4972
4973static int process_new_xattr(struct send_ctx *sctx)
4974{
4975	int ret = 0;
4976
4977	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4978			       __process_new_xattr, sctx);
4979
4980	return ret;
4981}
4982
4983static int process_deleted_xattr(struct send_ctx *sctx)
4984{
4985	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4986				__process_deleted_xattr, sctx);
4987}
4988
4989struct find_xattr_ctx {
4990	const char *name;
4991	int name_len;
4992	int found_idx;
4993	char *found_data;
4994	int found_data_len;
4995};
4996
4997static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
4998			int name_len, const char *data, int data_len, void *vctx)
 
 
4999{
5000	struct find_xattr_ctx *ctx = vctx;
5001
5002	if (name_len == ctx->name_len &&
5003	    strncmp(name, ctx->name, name_len) == 0) {
5004		ctx->found_idx = num;
5005		ctx->found_data_len = data_len;
5006		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
5007		if (!ctx->found_data)
5008			return -ENOMEM;
5009		return 1;
5010	}
5011	return 0;
5012}
5013
5014static int find_xattr(struct btrfs_root *root,
5015		      struct btrfs_path *path,
5016		      struct btrfs_key *key,
5017		      const char *name, int name_len,
5018		      char **data, int *data_len)
5019{
5020	int ret;
5021	struct find_xattr_ctx ctx;
5022
5023	ctx.name = name;
5024	ctx.name_len = name_len;
5025	ctx.found_idx = -1;
5026	ctx.found_data = NULL;
5027	ctx.found_data_len = 0;
5028
5029	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
5030	if (ret < 0)
5031		return ret;
5032
5033	if (ctx.found_idx == -1)
5034		return -ENOENT;
5035	if (data) {
5036		*data = ctx.found_data;
5037		*data_len = ctx.found_data_len;
5038	} else {
5039		kfree(ctx.found_data);
5040	}
5041	return ctx.found_idx;
5042}
5043
5044
5045static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
5046				       const char *name, int name_len,
5047				       const char *data, int data_len,
5048				       void *ctx)
5049{
5050	int ret;
5051	struct send_ctx *sctx = ctx;
5052	char *found_data = NULL;
5053	int found_data_len  = 0;
5054
5055	ret = find_xattr(sctx->parent_root, sctx->right_path,
5056			 sctx->cmp_key, name, name_len, &found_data,
5057			 &found_data_len);
5058	if (ret == -ENOENT) {
5059		ret = __process_new_xattr(num, di_key, name, name_len, data,
5060					  data_len, ctx);
5061	} else if (ret >= 0) {
5062		if (data_len != found_data_len ||
5063		    memcmp(data, found_data, data_len)) {
5064			ret = __process_new_xattr(num, di_key, name, name_len,
5065						  data, data_len, ctx);
5066		} else {
5067			ret = 0;
5068		}
5069	}
5070
5071	kfree(found_data);
5072	return ret;
5073}
5074
5075static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
5076					   const char *name, int name_len,
5077					   const char *data, int data_len,
5078					   void *ctx)
5079{
5080	int ret;
5081	struct send_ctx *sctx = ctx;
5082
5083	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
5084			 name, name_len, NULL, NULL);
5085	if (ret == -ENOENT)
5086		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
5087					      data_len, ctx);
5088	else if (ret >= 0)
5089		ret = 0;
5090
5091	return ret;
5092}
5093
5094static int process_changed_xattr(struct send_ctx *sctx)
5095{
5096	int ret = 0;
5097
5098	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
5099			__process_changed_new_xattr, sctx);
5100	if (ret < 0)
5101		goto out;
5102	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
5103			__process_changed_deleted_xattr, sctx);
5104
5105out:
5106	return ret;
5107}
5108
5109static int process_all_new_xattrs(struct send_ctx *sctx)
5110{
5111	int ret = 0;
5112	int iter_ret = 0;
5113	struct btrfs_root *root;
5114	struct btrfs_path *path;
5115	struct btrfs_key key;
5116	struct btrfs_key found_key;
 
 
5117
5118	path = alloc_path_for_send();
5119	if (!path)
5120		return -ENOMEM;
5121
5122	root = sctx->send_root;
5123
5124	key.objectid = sctx->cmp_key->objectid;
5125	key.type = BTRFS_XATTR_ITEM_KEY;
5126	key.offset = 0;
5127	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5128		if (found_key.objectid != key.objectid ||
5129		    found_key.type != key.type) {
5130			ret = 0;
5131			break;
5132		}
5133
5134		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
5135		if (ret < 0)
5136			break;
5137	}
5138	/* Catch error found during iteration */
5139	if (iter_ret < 0)
5140		ret = iter_ret;
5141
5142	btrfs_free_path(path);
5143	return ret;
5144}
5145
5146static int send_verity(struct send_ctx *sctx, struct fs_path *path,
5147		       struct fsverity_descriptor *desc)
5148{
5149	int ret;
5150
5151	ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
5152	if (ret < 0)
5153		goto out;
5154
5155	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5156	TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
5157			le8_to_cpu(desc->hash_algorithm));
5158	TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
5159			1U << le8_to_cpu(desc->log_blocksize));
5160	TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
5161			le8_to_cpu(desc->salt_size));
5162	TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
5163			le32_to_cpu(desc->sig_size));
5164
5165	ret = send_cmd(sctx);
5166
5167tlv_put_failure:
5168out:
5169	return ret;
5170}
5171
5172static int process_verity(struct send_ctx *sctx)
5173{
5174	int ret = 0;
5175	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5176	struct inode *inode;
5177	struct fs_path *p;
5178
5179	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, sctx->send_root);
5180	if (IS_ERR(inode))
5181		return PTR_ERR(inode);
5182
5183	ret = btrfs_get_verity_descriptor(inode, NULL, 0);
5184	if (ret < 0)
5185		goto iput;
5186
5187	if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
5188		ret = -EMSGSIZE;
5189		goto iput;
5190	}
5191	if (!sctx->verity_descriptor) {
5192		sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
5193						   GFP_KERNEL);
5194		if (!sctx->verity_descriptor) {
5195			ret = -ENOMEM;
5196			goto iput;
5197		}
5198	}
5199
5200	ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret);
5201	if (ret < 0)
5202		goto iput;
5203
5204	p = fs_path_alloc();
5205	if (!p) {
5206		ret = -ENOMEM;
5207		goto iput;
5208	}
5209	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5210	if (ret < 0)
5211		goto free_path;
5212
5213	ret = send_verity(sctx, p, sctx->verity_descriptor);
5214	if (ret < 0)
5215		goto free_path;
5216
5217free_path:
5218	fs_path_free(p);
5219iput:
5220	iput(inode);
5221	return ret;
5222}
5223
5224static inline u64 max_send_read_size(const struct send_ctx *sctx)
5225{
5226	return sctx->send_max_size - SZ_16K;
5227}
5228
5229static int put_data_header(struct send_ctx *sctx, u32 len)
5230{
5231	if (WARN_ON_ONCE(sctx->put_data))
5232		return -EINVAL;
5233	sctx->put_data = true;
5234	if (sctx->proto >= 2) {
5235		/*
5236		 * Since v2, the data attribute header doesn't include a length,
5237		 * it is implicitly to the end of the command.
5238		 */
5239		if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
5240			return -EOVERFLOW;
5241		put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
5242		sctx->send_size += sizeof(__le16);
5243	} else {
5244		struct btrfs_tlv_header *hdr;
5245
5246		if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5247			return -EOVERFLOW;
5248		hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5249		put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5250		put_unaligned_le16(len, &hdr->tlv_len);
5251		sctx->send_size += sizeof(*hdr);
5252	}
5253	return 0;
5254}
5255
5256static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
5257{
5258	struct btrfs_root *root = sctx->send_root;
5259	struct btrfs_fs_info *fs_info = root->fs_info;
 
5260	struct page *page;
 
5261	pgoff_t index = offset >> PAGE_SHIFT;
5262	pgoff_t last_index;
5263	unsigned pg_offset = offset_in_page(offset);
5264	int ret;
5265
5266	ret = put_data_header(sctx, len);
5267	if (ret)
5268		return ret;
 
 
 
 
 
 
 
 
 
5269
5270	last_index = (offset + len - 1) >> PAGE_SHIFT;
5271
 
 
 
 
5272	while (index <= last_index) {
5273		unsigned cur_len = min_t(unsigned, len,
5274					 PAGE_SIZE - pg_offset);
5275
5276		page = find_lock_page(sctx->cur_inode->i_mapping, index);
5277		if (!page) {
5278			page_cache_sync_readahead(sctx->cur_inode->i_mapping,
5279						  &sctx->ra, NULL, index,
5280						  last_index + 1 - index);
5281
5282			page = find_or_create_page(sctx->cur_inode->i_mapping,
5283						   index, GFP_KERNEL);
5284			if (!page) {
5285				ret = -ENOMEM;
5286				break;
5287			}
5288		}
5289
5290		if (PageReadahead(page))
5291			page_cache_async_readahead(sctx->cur_inode->i_mapping,
5292						   &sctx->ra, NULL, page_folio(page),
5293						   index, last_index + 1 - index);
5294
5295		if (!PageUptodate(page)) {
5296			btrfs_read_folio(NULL, page_folio(page));
5297			lock_page(page);
5298			if (!PageUptodate(page)) {
5299				unlock_page(page);
5300				btrfs_err(fs_info,
5301			"send: IO error at offset %llu for inode %llu root %llu",
5302					page_offset(page), sctx->cur_ino,
5303					sctx->send_root->root_key.objectid);
5304				put_page(page);
5305				ret = -EIO;
5306				break;
5307			}
5308		}
5309
5310		memcpy_from_page(sctx->send_buf + sctx->send_size, page,
5311				 pg_offset, cur_len);
 
5312		unlock_page(page);
5313		put_page(page);
5314		index++;
5315		pg_offset = 0;
5316		len -= cur_len;
5317		sctx->send_size += cur_len;
5318	}
5319
 
5320	return ret;
5321}
5322
5323/*
5324 * Read some bytes from the current inode/file and send a write command to
5325 * user space.
5326 */
5327static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5328{
5329	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5330	int ret = 0;
5331	struct fs_path *p;
 
5332
5333	p = fs_path_alloc();
5334	if (!p)
5335		return -ENOMEM;
5336
5337	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5338
 
 
 
 
 
 
 
5339	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5340	if (ret < 0)
5341		goto out;
5342
5343	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5344	if (ret < 0)
5345		goto out;
5346
5347	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5348	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5349	ret = put_file_data(sctx, offset, len);
5350	if (ret < 0)
5351		goto out;
5352
5353	ret = send_cmd(sctx);
5354
5355tlv_put_failure:
5356out:
5357	fs_path_free(p);
5358	return ret;
 
 
5359}
5360
5361/*
5362 * Send a clone command to user space.
5363 */
5364static int send_clone(struct send_ctx *sctx,
5365		      u64 offset, u32 len,
5366		      struct clone_root *clone_root)
5367{
5368	int ret = 0;
5369	struct fs_path *p;
5370	u64 gen;
5371
5372	btrfs_debug(sctx->send_root->fs_info,
5373		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5374		    offset, len, clone_root->root->root_key.objectid,
5375		    clone_root->ino, clone_root->offset);
5376
5377	p = fs_path_alloc();
5378	if (!p)
5379		return -ENOMEM;
5380
5381	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5382	if (ret < 0)
5383		goto out;
5384
5385	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5386	if (ret < 0)
5387		goto out;
5388
5389	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5390	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5391	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5392
5393	if (clone_root->root == sctx->send_root) {
5394		ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
 
5395		if (ret < 0)
5396			goto out;
5397		ret = get_cur_path(sctx, clone_root->ino, gen, p);
5398	} else {
5399		ret = get_inode_path(clone_root->root, clone_root->ino, p);
5400	}
5401	if (ret < 0)
5402		goto out;
5403
5404	/*
5405	 * If the parent we're using has a received_uuid set then use that as
5406	 * our clone source as that is what we will look for when doing a
5407	 * receive.
5408	 *
5409	 * This covers the case that we create a snapshot off of a received
5410	 * subvolume and then use that as the parent and try to receive on a
5411	 * different host.
5412	 */
5413	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5414		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5415			     clone_root->root->root_item.received_uuid);
5416	else
5417		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5418			     clone_root->root->root_item.uuid);
5419	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5420		    btrfs_root_ctransid(&clone_root->root->root_item));
5421	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5422	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5423			clone_root->offset);
5424
5425	ret = send_cmd(sctx);
5426
5427tlv_put_failure:
5428out:
5429	fs_path_free(p);
5430	return ret;
5431}
5432
5433/*
5434 * Send an update extent command to user space.
5435 */
5436static int send_update_extent(struct send_ctx *sctx,
5437			      u64 offset, u32 len)
5438{
5439	int ret = 0;
5440	struct fs_path *p;
5441
5442	p = fs_path_alloc();
5443	if (!p)
5444		return -ENOMEM;
5445
5446	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5447	if (ret < 0)
5448		goto out;
5449
5450	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5451	if (ret < 0)
5452		goto out;
5453
5454	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5455	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5456	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5457
5458	ret = send_cmd(sctx);
5459
5460tlv_put_failure:
5461out:
5462	fs_path_free(p);
5463	return ret;
5464}
5465
5466static int send_hole(struct send_ctx *sctx, u64 end)
5467{
5468	struct fs_path *p = NULL;
5469	u64 read_size = max_send_read_size(sctx);
5470	u64 offset = sctx->cur_inode_last_extent;
 
5471	int ret = 0;
5472
5473	/*
5474	 * A hole that starts at EOF or beyond it. Since we do not yet support
5475	 * fallocate (for extent preallocation and hole punching), sending a
5476	 * write of zeroes starting at EOF or beyond would later require issuing
5477	 * a truncate operation which would undo the write and achieve nothing.
5478	 */
5479	if (offset >= sctx->cur_inode_size)
5480		return 0;
5481
5482	/*
5483	 * Don't go beyond the inode's i_size due to prealloc extents that start
5484	 * after the i_size.
5485	 */
5486	end = min_t(u64, end, sctx->cur_inode_size);
5487
5488	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5489		return send_update_extent(sctx, offset, end - offset);
5490
5491	p = fs_path_alloc();
5492	if (!p)
5493		return -ENOMEM;
5494	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5495	if (ret < 0)
5496		goto tlv_put_failure;
 
5497	while (offset < end) {
5498		u64 len = min(end - offset, read_size);
5499
5500		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5501		if (ret < 0)
5502			break;
5503		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5504		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5505		ret = put_data_header(sctx, len);
5506		if (ret < 0)
5507			break;
5508		memset(sctx->send_buf + sctx->send_size, 0, len);
5509		sctx->send_size += len;
5510		ret = send_cmd(sctx);
5511		if (ret < 0)
5512			break;
5513		offset += len;
5514	}
5515	sctx->cur_inode_next_write_offset = offset;
5516tlv_put_failure:
5517	fs_path_free(p);
5518	return ret;
5519}
5520
5521static int send_encoded_inline_extent(struct send_ctx *sctx,
5522				      struct btrfs_path *path, u64 offset,
5523				      u64 len)
5524{
5525	struct btrfs_root *root = sctx->send_root;
5526	struct btrfs_fs_info *fs_info = root->fs_info;
5527	struct inode *inode;
5528	struct fs_path *fspath;
5529	struct extent_buffer *leaf = path->nodes[0];
5530	struct btrfs_key key;
5531	struct btrfs_file_extent_item *ei;
5532	u64 ram_bytes;
5533	size_t inline_size;
5534	int ret;
5535
5536	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5537	if (IS_ERR(inode))
5538		return PTR_ERR(inode);
5539
5540	fspath = fs_path_alloc();
5541	if (!fspath) {
5542		ret = -ENOMEM;
5543		goto out;
5544	}
5545
5546	ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5547	if (ret < 0)
5548		goto out;
5549
5550	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5551	if (ret < 0)
5552		goto out;
5553
5554	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5555	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5556	ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5557	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5558
5559	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5560	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5561	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5562		    min(key.offset + ram_bytes - offset, len));
5563	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5564	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5565	ret = btrfs_encoded_io_compression_from_extent(fs_info,
5566				btrfs_file_extent_compression(leaf, ei));
5567	if (ret < 0)
5568		goto out;
5569	TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5570
5571	ret = put_data_header(sctx, inline_size);
5572	if (ret < 0)
5573		goto out;
5574	read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5575			   btrfs_file_extent_inline_start(ei), inline_size);
5576	sctx->send_size += inline_size;
5577
5578	ret = send_cmd(sctx);
5579
5580tlv_put_failure:
5581out:
5582	fs_path_free(fspath);
5583	iput(inode);
5584	return ret;
5585}
5586
5587static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5588			       u64 offset, u64 len)
5589{
5590	struct btrfs_root *root = sctx->send_root;
5591	struct btrfs_fs_info *fs_info = root->fs_info;
5592	struct inode *inode;
5593	struct fs_path *fspath;
5594	struct extent_buffer *leaf = path->nodes[0];
5595	struct btrfs_key key;
5596	struct btrfs_file_extent_item *ei;
5597	u64 disk_bytenr, disk_num_bytes;
5598	u32 data_offset;
5599	struct btrfs_cmd_header *hdr;
5600	u32 crc;
5601	int ret;
5602
5603	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5604	if (IS_ERR(inode))
5605		return PTR_ERR(inode);
5606
5607	fspath = fs_path_alloc();
5608	if (!fspath) {
5609		ret = -ENOMEM;
5610		goto out;
5611	}
5612
5613	ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5614	if (ret < 0)
5615		goto out;
5616
5617	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5618	if (ret < 0)
5619		goto out;
5620
5621	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5622	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5623	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5624	disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5625
5626	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5627	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5628	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5629		    min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5630			len));
5631	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5632		    btrfs_file_extent_ram_bytes(leaf, ei));
5633	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5634		    offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5635	ret = btrfs_encoded_io_compression_from_extent(fs_info,
5636				btrfs_file_extent_compression(leaf, ei));
5637	if (ret < 0)
5638		goto out;
5639	TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5640	TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5641
5642	ret = put_data_header(sctx, disk_num_bytes);
5643	if (ret < 0)
5644		goto out;
5645
5646	/*
5647	 * We want to do I/O directly into the send buffer, so get the next page
5648	 * boundary in the send buffer. This means that there may be a gap
5649	 * between the beginning of the command and the file data.
5650	 */
5651	data_offset = PAGE_ALIGN(sctx->send_size);
5652	if (data_offset > sctx->send_max_size ||
5653	    sctx->send_max_size - data_offset < disk_num_bytes) {
5654		ret = -EOVERFLOW;
5655		goto out;
5656	}
5657
5658	/*
5659	 * Note that send_buf is a mapping of send_buf_pages, so this is really
5660	 * reading into send_buf.
5661	 */
5662	ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset,
5663						    disk_bytenr, disk_num_bytes,
5664						    sctx->send_buf_pages +
5665						    (data_offset >> PAGE_SHIFT));
5666	if (ret)
5667		goto out;
5668
5669	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5670	hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5671	hdr->crc = 0;
5672	crc = crc32c(0, sctx->send_buf, sctx->send_size);
5673	crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5674	hdr->crc = cpu_to_le32(crc);
5675
5676	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5677			&sctx->send_off);
5678	if (!ret) {
5679		ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5680				disk_num_bytes, &sctx->send_off);
5681	}
5682	sctx->send_size = 0;
5683	sctx->put_data = false;
5684
5685tlv_put_failure:
5686out:
5687	fs_path_free(fspath);
5688	iput(inode);
5689	return ret;
5690}
5691
5692static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5693			    const u64 offset, const u64 len)
5694{
5695	const u64 end = offset + len;
5696	struct extent_buffer *leaf = path->nodes[0];
5697	struct btrfs_file_extent_item *ei;
5698	u64 read_size = max_send_read_size(sctx);
5699	u64 sent = 0;
5700
5701	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5702		return send_update_extent(sctx, offset, len);
5703
5704	ei = btrfs_item_ptr(leaf, path->slots[0],
5705			    struct btrfs_file_extent_item);
5706	if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5707	    btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5708		bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5709				  BTRFS_FILE_EXTENT_INLINE);
5710
5711		/*
5712		 * Send the compressed extent unless the compressed data is
5713		 * larger than the decompressed data. This can happen if we're
5714		 * not sending the entire extent, either because it has been
5715		 * partially overwritten/truncated or because this is a part of
5716		 * the extent that we couldn't clone in clone_range().
5717		 */
5718		if (is_inline &&
5719		    btrfs_file_extent_inline_item_len(leaf,
5720						      path->slots[0]) <= len) {
5721			return send_encoded_inline_extent(sctx, path, offset,
5722							  len);
5723		} else if (!is_inline &&
5724			   btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5725			return send_encoded_extent(sctx, path, offset, len);
5726		}
5727	}
5728
5729	if (sctx->cur_inode == NULL) {
5730		struct btrfs_root *root = sctx->send_root;
5731
5732		sctx->cur_inode = btrfs_iget(root->fs_info->sb, sctx->cur_ino, root);
5733		if (IS_ERR(sctx->cur_inode)) {
5734			int err = PTR_ERR(sctx->cur_inode);
5735
5736			sctx->cur_inode = NULL;
5737			return err;
5738		}
5739		memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5740		file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5741
5742		/*
5743		 * It's very likely there are no pages from this inode in the page
5744		 * cache, so after reading extents and sending their data, we clean
5745		 * the page cache to avoid trashing the page cache (adding pressure
5746		 * to the page cache and forcing eviction of other data more useful
5747		 * for applications).
5748		 *
5749		 * We decide if we should clean the page cache simply by checking
5750		 * if the inode's mapping nrpages is 0 when we first open it, and
5751		 * not by using something like filemap_range_has_page() before
5752		 * reading an extent because when we ask the readahead code to
5753		 * read a given file range, it may (and almost always does) read
5754		 * pages from beyond that range (see the documentation for
5755		 * page_cache_sync_readahead()), so it would not be reliable,
5756		 * because after reading the first extent future calls to
5757		 * filemap_range_has_page() would return true because the readahead
5758		 * on the previous extent resulted in reading pages of the current
5759		 * extent as well.
5760		 */
5761		sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5762		sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5763	}
5764
5765	while (sent < len) {
5766		u64 size = min(len - sent, read_size);
5767		int ret;
5768
 
 
5769		ret = send_write(sctx, offset + sent, size);
5770		if (ret < 0)
5771			return ret;
5772		sent += size;
5773	}
5774
5775	if (sctx->clean_page_cache && PAGE_ALIGNED(end)) {
5776		/*
5777		 * Always operate only on ranges that are a multiple of the page
5778		 * size. This is not only to prevent zeroing parts of a page in
5779		 * the case of subpage sector size, but also to guarantee we evict
5780		 * pages, as passing a range that is smaller than page size does
5781		 * not evict the respective page (only zeroes part of its content).
5782		 *
5783		 * Always start from the end offset of the last range cleared.
5784		 * This is because the readahead code may (and very often does)
5785		 * reads pages beyond the range we request for readahead. So if
5786		 * we have an extent layout like this:
5787		 *
5788		 *            [ extent A ] [ extent B ] [ extent C ]
5789		 *
5790		 * When we ask page_cache_sync_readahead() to read extent A, it
5791		 * may also trigger reads for pages of extent B. If we are doing
5792		 * an incremental send and extent B has not changed between the
5793		 * parent and send snapshots, some or all of its pages may end
5794		 * up being read and placed in the page cache. So when truncating
5795		 * the page cache we always start from the end offset of the
5796		 * previously processed extent up to the end of the current
5797		 * extent.
5798		 */
5799		truncate_inode_pages_range(&sctx->cur_inode->i_data,
5800					   sctx->page_cache_clear_start,
5801					   end - 1);
5802		sctx->page_cache_clear_start = end;
5803	}
5804
5805	return 0;
5806}
5807
5808/*
5809 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5810 * found, call send_set_xattr function to emit it.
5811 *
5812 * Return 0 if there isn't a capability, or when the capability was emitted
5813 * successfully, or < 0 if an error occurred.
5814 */
5815static int send_capabilities(struct send_ctx *sctx)
5816{
5817	struct fs_path *fspath = NULL;
5818	struct btrfs_path *path;
5819	struct btrfs_dir_item *di;
5820	struct extent_buffer *leaf;
5821	unsigned long data_ptr;
5822	char *buf = NULL;
5823	int buf_len;
5824	int ret = 0;
5825
5826	path = alloc_path_for_send();
5827	if (!path)
5828		return -ENOMEM;
5829
5830	di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5831				XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5832	if (!di) {
5833		/* There is no xattr for this inode */
5834		goto out;
5835	} else if (IS_ERR(di)) {
5836		ret = PTR_ERR(di);
5837		goto out;
5838	}
5839
5840	leaf = path->nodes[0];
5841	buf_len = btrfs_dir_data_len(leaf, di);
5842
5843	fspath = fs_path_alloc();
5844	buf = kmalloc(buf_len, GFP_KERNEL);
5845	if (!fspath || !buf) {
5846		ret = -ENOMEM;
5847		goto out;
5848	}
5849
5850	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5851	if (ret < 0)
5852		goto out;
5853
5854	data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5855	read_extent_buffer(leaf, buf, data_ptr, buf_len);
5856
5857	ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5858			strlen(XATTR_NAME_CAPS), buf, buf_len);
5859out:
5860	kfree(buf);
5861	fs_path_free(fspath);
5862	btrfs_free_path(path);
5863	return ret;
5864}
5865
5866static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5867		       struct clone_root *clone_root, const u64 disk_byte,
5868		       u64 data_offset, u64 offset, u64 len)
 
 
 
5869{
5870	struct btrfs_path *path;
5871	struct btrfs_key key;
5872	int ret;
5873	struct btrfs_inode_info info;
5874	u64 clone_src_i_size = 0;
5875
5876	/*
5877	 * Prevent cloning from a zero offset with a length matching the sector
5878	 * size because in some scenarios this will make the receiver fail.
5879	 *
5880	 * For example, if in the source filesystem the extent at offset 0
5881	 * has a length of sectorsize and it was written using direct IO, then
5882	 * it can never be an inline extent (even if compression is enabled).
5883	 * Then this extent can be cloned in the original filesystem to a non
5884	 * zero file offset, but it may not be possible to clone in the
5885	 * destination filesystem because it can be inlined due to compression
5886	 * on the destination filesystem (as the receiver's write operations are
5887	 * always done using buffered IO). The same happens when the original
5888	 * filesystem does not have compression enabled but the destination
5889	 * filesystem has.
5890	 */
5891	if (clone_root->offset == 0 &&
5892	    len == sctx->send_root->fs_info->sectorsize)
5893		return send_extent_data(sctx, dst_path, offset, len);
5894
5895	path = alloc_path_for_send();
5896	if (!path)
5897		return -ENOMEM;
5898
5899	/*
5900	 * There are inodes that have extents that lie behind its i_size. Don't
5901	 * accept clones from these extents.
5902	 */
5903	ret = get_inode_info(clone_root->root, clone_root->ino, &info);
 
5904	btrfs_release_path(path);
5905	if (ret < 0)
5906		goto out;
5907	clone_src_i_size = info.size;
5908
5909	/*
5910	 * We can't send a clone operation for the entire range if we find
5911	 * extent items in the respective range in the source file that
5912	 * refer to different extents or if we find holes.
5913	 * So check for that and do a mix of clone and regular write/copy
5914	 * operations if needed.
5915	 *
5916	 * Example:
5917	 *
5918	 * mkfs.btrfs -f /dev/sda
5919	 * mount /dev/sda /mnt
5920	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5921	 * cp --reflink=always /mnt/foo /mnt/bar
5922	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5923	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5924	 *
5925	 * If when we send the snapshot and we are processing file bar (which
5926	 * has a higher inode number than foo) we blindly send a clone operation
5927	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5928	 * a file bar that matches the content of file foo - iow, doesn't match
5929	 * the content from bar in the original filesystem.
5930	 */
5931	key.objectid = clone_root->ino;
5932	key.type = BTRFS_EXTENT_DATA_KEY;
5933	key.offset = clone_root->offset;
5934	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5935	if (ret < 0)
5936		goto out;
5937	if (ret > 0 && path->slots[0] > 0) {
5938		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5939		if (key.objectid == clone_root->ino &&
5940		    key.type == BTRFS_EXTENT_DATA_KEY)
5941			path->slots[0]--;
5942	}
5943
5944	while (true) {
5945		struct extent_buffer *leaf = path->nodes[0];
5946		int slot = path->slots[0];
5947		struct btrfs_file_extent_item *ei;
5948		u8 type;
5949		u64 ext_len;
5950		u64 clone_len;
5951		u64 clone_data_offset;
5952		bool crossed_src_i_size = false;
5953
5954		if (slot >= btrfs_header_nritems(leaf)) {
5955			ret = btrfs_next_leaf(clone_root->root, path);
5956			if (ret < 0)
5957				goto out;
5958			else if (ret > 0)
5959				break;
5960			continue;
5961		}
5962
5963		btrfs_item_key_to_cpu(leaf, &key, slot);
5964
5965		/*
5966		 * We might have an implicit trailing hole (NO_HOLES feature
5967		 * enabled). We deal with it after leaving this loop.
5968		 */
5969		if (key.objectid != clone_root->ino ||
5970		    key.type != BTRFS_EXTENT_DATA_KEY)
5971			break;
5972
5973		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5974		type = btrfs_file_extent_type(leaf, ei);
5975		if (type == BTRFS_FILE_EXTENT_INLINE) {
5976			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5977			ext_len = PAGE_ALIGN(ext_len);
5978		} else {
5979			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5980		}
5981
5982		if (key.offset + ext_len <= clone_root->offset)
5983			goto next;
5984
5985		if (key.offset > clone_root->offset) {
5986			/* Implicit hole, NO_HOLES feature enabled. */
5987			u64 hole_len = key.offset - clone_root->offset;
5988
5989			if (hole_len > len)
5990				hole_len = len;
5991			ret = send_extent_data(sctx, dst_path, offset,
5992					       hole_len);
5993			if (ret < 0)
5994				goto out;
5995
5996			len -= hole_len;
5997			if (len == 0)
5998				break;
5999			offset += hole_len;
6000			clone_root->offset += hole_len;
6001			data_offset += hole_len;
6002		}
6003
6004		if (key.offset >= clone_root->offset + len)
6005			break;
6006
6007		if (key.offset >= clone_src_i_size)
6008			break;
6009
6010		if (key.offset + ext_len > clone_src_i_size) {
6011			ext_len = clone_src_i_size - key.offset;
6012			crossed_src_i_size = true;
6013		}
6014
6015		clone_data_offset = btrfs_file_extent_offset(leaf, ei);
6016		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
6017			clone_root->offset = key.offset;
6018			if (clone_data_offset < data_offset &&
6019				clone_data_offset + ext_len > data_offset) {
6020				u64 extent_offset;
6021
6022				extent_offset = data_offset - clone_data_offset;
6023				ext_len -= extent_offset;
6024				clone_data_offset += extent_offset;
6025				clone_root->offset += extent_offset;
6026			}
6027		}
6028
6029		clone_len = min_t(u64, ext_len, len);
6030
6031		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
6032		    clone_data_offset == data_offset) {
6033			const u64 src_end = clone_root->offset + clone_len;
6034			const u64 sectorsize = SZ_64K;
6035
6036			/*
6037			 * We can't clone the last block, when its size is not
6038			 * sector size aligned, into the middle of a file. If we
6039			 * do so, the receiver will get a failure (-EINVAL) when
6040			 * trying to clone or will silently corrupt the data in
6041			 * the destination file if it's on a kernel without the
6042			 * fix introduced by commit ac765f83f1397646
6043			 * ("Btrfs: fix data corruption due to cloning of eof
6044			 * block).
6045			 *
6046			 * So issue a clone of the aligned down range plus a
6047			 * regular write for the eof block, if we hit that case.
6048			 *
6049			 * Also, we use the maximum possible sector size, 64K,
6050			 * because we don't know what's the sector size of the
6051			 * filesystem that receives the stream, so we have to
6052			 * assume the largest possible sector size.
6053			 */
6054			if (src_end == clone_src_i_size &&
6055			    !IS_ALIGNED(src_end, sectorsize) &&
6056			    offset + clone_len < sctx->cur_inode_size) {
6057				u64 slen;
6058
6059				slen = ALIGN_DOWN(src_end - clone_root->offset,
6060						  sectorsize);
6061				if (slen > 0) {
6062					ret = send_clone(sctx, offset, slen,
6063							 clone_root);
6064					if (ret < 0)
6065						goto out;
6066				}
6067				ret = send_extent_data(sctx, dst_path,
6068						       offset + slen,
6069						       clone_len - slen);
6070			} else {
6071				ret = send_clone(sctx, offset, clone_len,
6072						 clone_root);
6073			}
6074		} else if (crossed_src_i_size && clone_len < len) {
6075			/*
6076			 * If we are at i_size of the clone source inode and we
6077			 * can not clone from it, terminate the loop. This is
6078			 * to avoid sending two write operations, one with a
6079			 * length matching clone_len and the final one after
6080			 * this loop with a length of len - clone_len.
6081			 *
6082			 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
6083			 * was passed to the send ioctl), this helps avoid
6084			 * sending an encoded write for an offset that is not
6085			 * sector size aligned, in case the i_size of the source
6086			 * inode is not sector size aligned. That will make the
6087			 * receiver fallback to decompression of the data and
6088			 * writing it using regular buffered IO, therefore while
6089			 * not incorrect, it's not optimal due decompression and
6090			 * possible re-compression at the receiver.
6091			 */
6092			break;
6093		} else {
6094			ret = send_extent_data(sctx, dst_path, offset,
6095					       clone_len);
6096		}
6097
6098		if (ret < 0)
6099			goto out;
6100
6101		len -= clone_len;
6102		if (len == 0)
6103			break;
6104		offset += clone_len;
6105		clone_root->offset += clone_len;
6106
6107		/*
6108		 * If we are cloning from the file we are currently processing,
6109		 * and using the send root as the clone root, we must stop once
6110		 * the current clone offset reaches the current eof of the file
6111		 * at the receiver, otherwise we would issue an invalid clone
6112		 * operation (source range going beyond eof) and cause the
6113		 * receiver to fail. So if we reach the current eof, bail out
6114		 * and fallback to a regular write.
6115		 */
6116		if (clone_root->root == sctx->send_root &&
6117		    clone_root->ino == sctx->cur_ino &&
6118		    clone_root->offset >= sctx->cur_inode_next_write_offset)
6119			break;
6120
6121		data_offset += clone_len;
6122next:
6123		path->slots[0]++;
6124	}
6125
6126	if (len > 0)
6127		ret = send_extent_data(sctx, dst_path, offset, len);
6128	else
6129		ret = 0;
6130out:
6131	btrfs_free_path(path);
6132	return ret;
6133}
6134
6135static int send_write_or_clone(struct send_ctx *sctx,
6136			       struct btrfs_path *path,
6137			       struct btrfs_key *key,
6138			       struct clone_root *clone_root)
6139{
6140	int ret = 0;
 
6141	u64 offset = key->offset;
6142	u64 end;
 
6143	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
6144
6145	end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
6146	if (offset >= end)
6147		return 0;
 
 
 
 
 
 
 
 
 
 
 
6148
6149	if (clone_root && IS_ALIGNED(end, bs)) {
6150		struct btrfs_file_extent_item *ei;
 
 
 
 
 
 
 
 
 
 
6151		u64 disk_byte;
6152		u64 data_offset;
6153
6154		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6155				    struct btrfs_file_extent_item);
6156		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
6157		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
6158		ret = clone_range(sctx, path, clone_root, disk_byte,
6159				  data_offset, offset, end - offset);
6160	} else {
6161		ret = send_extent_data(sctx, path, offset, end - offset);
6162	}
6163	sctx->cur_inode_next_write_offset = end;
 
6164	return ret;
6165}
6166
6167static int is_extent_unchanged(struct send_ctx *sctx,
6168			       struct btrfs_path *left_path,
6169			       struct btrfs_key *ekey)
6170{
6171	int ret = 0;
6172	struct btrfs_key key;
6173	struct btrfs_path *path = NULL;
6174	struct extent_buffer *eb;
6175	int slot;
6176	struct btrfs_key found_key;
6177	struct btrfs_file_extent_item *ei;
6178	u64 left_disknr;
6179	u64 right_disknr;
6180	u64 left_offset;
6181	u64 right_offset;
6182	u64 left_offset_fixed;
6183	u64 left_len;
6184	u64 right_len;
6185	u64 left_gen;
6186	u64 right_gen;
6187	u8 left_type;
6188	u8 right_type;
6189
6190	path = alloc_path_for_send();
6191	if (!path)
6192		return -ENOMEM;
6193
6194	eb = left_path->nodes[0];
6195	slot = left_path->slots[0];
6196	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6197	left_type = btrfs_file_extent_type(eb, ei);
6198
6199	if (left_type != BTRFS_FILE_EXTENT_REG) {
6200		ret = 0;
6201		goto out;
6202	}
6203	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6204	left_len = btrfs_file_extent_num_bytes(eb, ei);
6205	left_offset = btrfs_file_extent_offset(eb, ei);
6206	left_gen = btrfs_file_extent_generation(eb, ei);
6207
6208	/*
6209	 * Following comments will refer to these graphics. L is the left
6210	 * extents which we are checking at the moment. 1-8 are the right
6211	 * extents that we iterate.
6212	 *
6213	 *       |-----L-----|
6214	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
6215	 *
6216	 *       |-----L-----|
6217	 * |--1--|-2b-|...(same as above)
6218	 *
6219	 * Alternative situation. Happens on files where extents got split.
6220	 *       |-----L-----|
6221	 * |-----------7-----------|-6-|
6222	 *
6223	 * Alternative situation. Happens on files which got larger.
6224	 *       |-----L-----|
6225	 * |-8-|
6226	 * Nothing follows after 8.
6227	 */
6228
6229	key.objectid = ekey->objectid;
6230	key.type = BTRFS_EXTENT_DATA_KEY;
6231	key.offset = ekey->offset;
6232	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
6233	if (ret < 0)
6234		goto out;
6235	if (ret) {
6236		ret = 0;
6237		goto out;
6238	}
6239
6240	/*
6241	 * Handle special case where the right side has no extents at all.
6242	 */
6243	eb = path->nodes[0];
6244	slot = path->slots[0];
6245	btrfs_item_key_to_cpu(eb, &found_key, slot);
6246	if (found_key.objectid != key.objectid ||
6247	    found_key.type != key.type) {
6248		/* If we're a hole then just pretend nothing changed */
6249		ret = (left_disknr) ? 0 : 1;
6250		goto out;
6251	}
6252
6253	/*
6254	 * We're now on 2a, 2b or 7.
6255	 */
6256	key = found_key;
6257	while (key.offset < ekey->offset + left_len) {
6258		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6259		right_type = btrfs_file_extent_type(eb, ei);
6260		if (right_type != BTRFS_FILE_EXTENT_REG &&
6261		    right_type != BTRFS_FILE_EXTENT_INLINE) {
6262			ret = 0;
6263			goto out;
6264		}
6265
6266		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6267			right_len = btrfs_file_extent_ram_bytes(eb, ei);
6268			right_len = PAGE_ALIGN(right_len);
6269		} else {
6270			right_len = btrfs_file_extent_num_bytes(eb, ei);
6271		}
6272
6273		/*
6274		 * Are we at extent 8? If yes, we know the extent is changed.
6275		 * This may only happen on the first iteration.
6276		 */
6277		if (found_key.offset + right_len <= ekey->offset) {
6278			/* If we're a hole just pretend nothing changed */
6279			ret = (left_disknr) ? 0 : 1;
6280			goto out;
6281		}
6282
6283		/*
6284		 * We just wanted to see if when we have an inline extent, what
6285		 * follows it is a regular extent (wanted to check the above
6286		 * condition for inline extents too). This should normally not
6287		 * happen but it's possible for example when we have an inline
6288		 * compressed extent representing data with a size matching
6289		 * the page size (currently the same as sector size).
6290		 */
6291		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6292			ret = 0;
6293			goto out;
6294		}
6295
6296		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6297		right_offset = btrfs_file_extent_offset(eb, ei);
6298		right_gen = btrfs_file_extent_generation(eb, ei);
6299
6300		left_offset_fixed = left_offset;
6301		if (key.offset < ekey->offset) {
6302			/* Fix the right offset for 2a and 7. */
6303			right_offset += ekey->offset - key.offset;
6304		} else {
6305			/* Fix the left offset for all behind 2a and 2b */
6306			left_offset_fixed += key.offset - ekey->offset;
6307		}
6308
6309		/*
6310		 * Check if we have the same extent.
6311		 */
6312		if (left_disknr != right_disknr ||
6313		    left_offset_fixed != right_offset ||
6314		    left_gen != right_gen) {
6315			ret = 0;
6316			goto out;
6317		}
6318
6319		/*
6320		 * Go to the next extent.
6321		 */
6322		ret = btrfs_next_item(sctx->parent_root, path);
6323		if (ret < 0)
6324			goto out;
6325		if (!ret) {
6326			eb = path->nodes[0];
6327			slot = path->slots[0];
6328			btrfs_item_key_to_cpu(eb, &found_key, slot);
6329		}
6330		if (ret || found_key.objectid != key.objectid ||
6331		    found_key.type != key.type) {
6332			key.offset += right_len;
6333			break;
6334		}
6335		if (found_key.offset != key.offset + right_len) {
6336			ret = 0;
6337			goto out;
6338		}
6339		key = found_key;
6340	}
6341
6342	/*
6343	 * We're now behind the left extent (treat as unchanged) or at the end
6344	 * of the right side (treat as changed).
6345	 */
6346	if (key.offset >= ekey->offset + left_len)
6347		ret = 1;
6348	else
6349		ret = 0;
6350
6351
6352out:
6353	btrfs_free_path(path);
6354	return ret;
6355}
6356
6357static int get_last_extent(struct send_ctx *sctx, u64 offset)
6358{
6359	struct btrfs_path *path;
6360	struct btrfs_root *root = sctx->send_root;
6361	struct btrfs_key key;
6362	int ret;
6363
6364	path = alloc_path_for_send();
6365	if (!path)
6366		return -ENOMEM;
6367
6368	sctx->cur_inode_last_extent = 0;
6369
6370	key.objectid = sctx->cur_ino;
6371	key.type = BTRFS_EXTENT_DATA_KEY;
6372	key.offset = offset;
6373	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6374	if (ret < 0)
6375		goto out;
6376	ret = 0;
6377	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6378	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6379		goto out;
6380
6381	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6382out:
6383	btrfs_free_path(path);
6384	return ret;
6385}
6386
6387static int range_is_hole_in_parent(struct send_ctx *sctx,
6388				   const u64 start,
6389				   const u64 end)
6390{
6391	struct btrfs_path *path;
6392	struct btrfs_key key;
6393	struct btrfs_root *root = sctx->parent_root;
6394	u64 search_start = start;
6395	int ret;
6396
6397	path = alloc_path_for_send();
6398	if (!path)
6399		return -ENOMEM;
6400
6401	key.objectid = sctx->cur_ino;
6402	key.type = BTRFS_EXTENT_DATA_KEY;
6403	key.offset = search_start;
6404	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6405	if (ret < 0)
6406		goto out;
6407	if (ret > 0 && path->slots[0] > 0)
6408		path->slots[0]--;
6409
6410	while (search_start < end) {
6411		struct extent_buffer *leaf = path->nodes[0];
6412		int slot = path->slots[0];
6413		struct btrfs_file_extent_item *fi;
6414		u64 extent_end;
6415
6416		if (slot >= btrfs_header_nritems(leaf)) {
6417			ret = btrfs_next_leaf(root, path);
6418			if (ret < 0)
6419				goto out;
6420			else if (ret > 0)
6421				break;
6422			continue;
6423		}
6424
6425		btrfs_item_key_to_cpu(leaf, &key, slot);
6426		if (key.objectid < sctx->cur_ino ||
6427		    key.type < BTRFS_EXTENT_DATA_KEY)
6428			goto next;
6429		if (key.objectid > sctx->cur_ino ||
6430		    key.type > BTRFS_EXTENT_DATA_KEY ||
6431		    key.offset >= end)
6432			break;
6433
6434		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6435		extent_end = btrfs_file_extent_end(path);
6436		if (extent_end <= start)
6437			goto next;
6438		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6439			search_start = extent_end;
6440			goto next;
6441		}
6442		ret = 0;
6443		goto out;
6444next:
6445		path->slots[0]++;
6446	}
6447	ret = 1;
6448out:
6449	btrfs_free_path(path);
6450	return ret;
6451}
6452
6453static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6454			   struct btrfs_key *key)
6455{
6456	int ret = 0;
6457
6458	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6459		return 0;
6460
6461	if (sctx->cur_inode_last_extent == (u64)-1) {
6462		ret = get_last_extent(sctx, key->offset - 1);
6463		if (ret)
6464			return ret;
6465	}
6466
6467	if (path->slots[0] == 0 &&
6468	    sctx->cur_inode_last_extent < key->offset) {
6469		/*
6470		 * We might have skipped entire leafs that contained only
6471		 * file extent items for our current inode. These leafs have
6472		 * a generation number smaller (older) than the one in the
6473		 * current leaf and the leaf our last extent came from, and
6474		 * are located between these 2 leafs.
6475		 */
6476		ret = get_last_extent(sctx, key->offset - 1);
6477		if (ret)
6478			return ret;
6479	}
6480
6481	if (sctx->cur_inode_last_extent < key->offset) {
6482		ret = range_is_hole_in_parent(sctx,
6483					      sctx->cur_inode_last_extent,
6484					      key->offset);
6485		if (ret < 0)
6486			return ret;
6487		else if (ret == 0)
6488			ret = send_hole(sctx, key->offset);
6489		else
6490			ret = 0;
6491	}
6492	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6493	return ret;
6494}
6495
6496static int process_extent(struct send_ctx *sctx,
6497			  struct btrfs_path *path,
6498			  struct btrfs_key *key)
6499{
6500	struct clone_root *found_clone = NULL;
6501	int ret = 0;
6502
6503	if (S_ISLNK(sctx->cur_inode_mode))
6504		return 0;
6505
6506	if (sctx->parent_root && !sctx->cur_inode_new) {
6507		ret = is_extent_unchanged(sctx, path, key);
6508		if (ret < 0)
6509			goto out;
6510		if (ret) {
6511			ret = 0;
6512			goto out_hole;
6513		}
6514	} else {
6515		struct btrfs_file_extent_item *ei;
6516		u8 type;
6517
6518		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6519				    struct btrfs_file_extent_item);
6520		type = btrfs_file_extent_type(path->nodes[0], ei);
6521		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6522		    type == BTRFS_FILE_EXTENT_REG) {
6523			/*
6524			 * The send spec does not have a prealloc command yet,
6525			 * so just leave a hole for prealloc'ed extents until
6526			 * we have enough commands queued up to justify rev'ing
6527			 * the send spec.
6528			 */
6529			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6530				ret = 0;
6531				goto out;
6532			}
6533
6534			/* Have a hole, just skip it. */
6535			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6536				ret = 0;
6537				goto out;
6538			}
6539		}
6540	}
6541
6542	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6543			sctx->cur_inode_size, &found_clone);
6544	if (ret != -ENOENT && ret < 0)
6545		goto out;
6546
6547	ret = send_write_or_clone(sctx, path, key, found_clone);
6548	if (ret)
6549		goto out;
6550out_hole:
6551	ret = maybe_send_hole(sctx, path, key);
6552out:
6553	return ret;
6554}
6555
6556static int process_all_extents(struct send_ctx *sctx)
6557{
6558	int ret = 0;
6559	int iter_ret = 0;
6560	struct btrfs_root *root;
6561	struct btrfs_path *path;
6562	struct btrfs_key key;
6563	struct btrfs_key found_key;
 
 
6564
6565	root = sctx->send_root;
6566	path = alloc_path_for_send();
6567	if (!path)
6568		return -ENOMEM;
6569
6570	key.objectid = sctx->cmp_key->objectid;
6571	key.type = BTRFS_EXTENT_DATA_KEY;
6572	key.offset = 0;
6573	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6574		if (found_key.objectid != key.objectid ||
6575		    found_key.type != key.type) {
6576			ret = 0;
6577			break;
6578		}
6579
6580		ret = process_extent(sctx, path, &found_key);
6581		if (ret < 0)
6582			break;
 
 
6583	}
6584	/* Catch error found during iteration */
6585	if (iter_ret < 0)
6586		ret = iter_ret;
6587
 
6588	btrfs_free_path(path);
6589	return ret;
6590}
6591
6592static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6593					   int *pending_move,
6594					   int *refs_processed)
6595{
6596	int ret = 0;
6597
6598	if (sctx->cur_ino == 0)
6599		goto out;
6600	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6601	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6602		goto out;
6603	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6604		goto out;
6605
6606	ret = process_recorded_refs(sctx, pending_move);
6607	if (ret < 0)
6608		goto out;
6609
6610	*refs_processed = 1;
6611out:
6612	return ret;
6613}
6614
6615static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6616{
6617	int ret = 0;
6618	struct btrfs_inode_info info;
6619	u64 left_mode;
6620	u64 left_uid;
6621	u64 left_gid;
6622	u64 left_fileattr;
6623	u64 right_mode;
6624	u64 right_uid;
6625	u64 right_gid;
6626	u64 right_fileattr;
6627	int need_chmod = 0;
6628	int need_chown = 0;
6629	bool need_fileattr = false;
6630	int need_truncate = 1;
6631	int pending_move = 0;
6632	int refs_processed = 0;
6633
6634	if (sctx->ignore_cur_inode)
6635		return 0;
6636
6637	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6638					      &refs_processed);
6639	if (ret < 0)
6640		goto out;
6641
6642	/*
6643	 * We have processed the refs and thus need to advance send_progress.
6644	 * Now, calls to get_cur_xxx will take the updated refs of the current
6645	 * inode into account.
6646	 *
6647	 * On the other hand, if our current inode is a directory and couldn't
6648	 * be moved/renamed because its parent was renamed/moved too and it has
6649	 * a higher inode number, we can only move/rename our current inode
6650	 * after we moved/renamed its parent. Therefore in this case operate on
6651	 * the old path (pre move/rename) of our current inode, and the
6652	 * move/rename will be performed later.
6653	 */
6654	if (refs_processed && !pending_move)
6655		sctx->send_progress = sctx->cur_ino + 1;
6656
6657	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6658		goto out;
6659	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6660		goto out;
6661	ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
 
 
6662	if (ret < 0)
6663		goto out;
6664	left_mode = info.mode;
6665	left_uid = info.uid;
6666	left_gid = info.gid;
6667	left_fileattr = info.fileattr;
6668
6669	if (!sctx->parent_root || sctx->cur_inode_new) {
6670		need_chown = 1;
6671		if (!S_ISLNK(sctx->cur_inode_mode))
6672			need_chmod = 1;
6673		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6674			need_truncate = 0;
6675	} else {
6676		u64 old_size;
6677
6678		ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
 
 
6679		if (ret < 0)
6680			goto out;
6681		old_size = info.size;
6682		right_mode = info.mode;
6683		right_uid = info.uid;
6684		right_gid = info.gid;
6685		right_fileattr = info.fileattr;
6686
6687		if (left_uid != right_uid || left_gid != right_gid)
6688			need_chown = 1;
6689		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6690			need_chmod = 1;
6691		if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6692			need_fileattr = true;
6693		if ((old_size == sctx->cur_inode_size) ||
6694		    (sctx->cur_inode_size > old_size &&
6695		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6696			need_truncate = 0;
6697	}
6698
6699	if (S_ISREG(sctx->cur_inode_mode)) {
6700		if (need_send_hole(sctx)) {
6701			if (sctx->cur_inode_last_extent == (u64)-1 ||
6702			    sctx->cur_inode_last_extent <
6703			    sctx->cur_inode_size) {
6704				ret = get_last_extent(sctx, (u64)-1);
6705				if (ret)
6706					goto out;
6707			}
6708			if (sctx->cur_inode_last_extent < sctx->cur_inode_size) {
6709				ret = range_is_hole_in_parent(sctx,
6710						      sctx->cur_inode_last_extent,
6711						      sctx->cur_inode_size);
6712				if (ret < 0) {
6713					goto out;
6714				} else if (ret == 0) {
6715					ret = send_hole(sctx, sctx->cur_inode_size);
6716					if (ret < 0)
6717						goto out;
6718				} else {
6719					/* Range is already a hole, skip. */
6720					ret = 0;
6721				}
6722			}
6723		}
6724		if (need_truncate) {
6725			ret = send_truncate(sctx, sctx->cur_ino,
6726					    sctx->cur_inode_gen,
6727					    sctx->cur_inode_size);
6728			if (ret < 0)
6729				goto out;
6730		}
6731	}
6732
6733	if (need_chown) {
6734		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6735				left_uid, left_gid);
6736		if (ret < 0)
6737			goto out;
6738	}
6739	if (need_chmod) {
6740		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6741				left_mode);
6742		if (ret < 0)
6743			goto out;
6744	}
6745	if (need_fileattr) {
6746		ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6747				    left_fileattr);
6748		if (ret < 0)
6749			goto out;
6750	}
6751
6752	if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6753	    && sctx->cur_inode_needs_verity) {
6754		ret = process_verity(sctx);
6755		if (ret < 0)
6756			goto out;
6757	}
6758
6759	ret = send_capabilities(sctx);
6760	if (ret < 0)
6761		goto out;
6762
6763	/*
6764	 * If other directory inodes depended on our current directory
6765	 * inode's move/rename, now do their move/rename operations.
6766	 */
6767	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6768		ret = apply_children_dir_moves(sctx);
6769		if (ret)
6770			goto out;
6771		/*
6772		 * Need to send that every time, no matter if it actually
6773		 * changed between the two trees as we have done changes to
6774		 * the inode before. If our inode is a directory and it's
6775		 * waiting to be moved/renamed, we will send its utimes when
6776		 * it's moved/renamed, therefore we don't need to do it here.
6777		 */
6778		sctx->send_progress = sctx->cur_ino + 1;
6779
6780		/*
6781		 * If the current inode is a non-empty directory, delay issuing
6782		 * the utimes command for it, as it's very likely we have inodes
6783		 * with an higher number inside it. We want to issue the utimes
6784		 * command only after adding all dentries to it.
6785		 */
6786		if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0)
6787			ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6788		else
6789			ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6790
6791		if (ret < 0)
6792			goto out;
6793	}
6794
6795out:
6796	if (!ret)
6797		ret = trim_dir_utimes_cache(sctx);
6798
6799	return ret;
6800}
6801
6802static void close_current_inode(struct send_ctx *sctx)
 
 
 
 
 
 
6803{
6804	u64 i_size;
6805
6806	if (sctx->cur_inode == NULL)
6807		return;
 
6808
6809	i_size = i_size_read(sctx->cur_inode);
 
 
 
 
 
 
 
 
 
 
6810
6811	/*
6812	 * If we are doing an incremental send, we may have extents between the
6813	 * last processed extent and the i_size that have not been processed
6814	 * because they haven't changed but we may have read some of their pages
6815	 * through readahead, see the comments at send_extent_data().
6816	 */
6817	if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6818		truncate_inode_pages_range(&sctx->cur_inode->i_data,
6819					   sctx->page_cache_clear_start,
6820					   round_up(i_size, PAGE_SIZE) - 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6821
6822	iput(sctx->cur_inode);
6823	sctx->cur_inode = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
6824}
6825
6826static int changed_inode(struct send_ctx *sctx,
6827			 enum btrfs_compare_tree_result result)
6828{
6829	int ret = 0;
6830	struct btrfs_key *key = sctx->cmp_key;
6831	struct btrfs_inode_item *left_ii = NULL;
6832	struct btrfs_inode_item *right_ii = NULL;
6833	u64 left_gen = 0;
6834	u64 right_gen = 0;
6835
6836	close_current_inode(sctx);
6837
6838	sctx->cur_ino = key->objectid;
6839	sctx->cur_inode_new_gen = false;
6840	sctx->cur_inode_last_extent = (u64)-1;
6841	sctx->cur_inode_next_write_offset = 0;
6842	sctx->ignore_cur_inode = false;
6843
6844	/*
6845	 * Set send_progress to current inode. This will tell all get_cur_xxx
6846	 * functions that the current inode's refs are not updated yet. Later,
6847	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6848	 */
6849	sctx->send_progress = sctx->cur_ino;
6850
6851	if (result == BTRFS_COMPARE_TREE_NEW ||
6852	    result == BTRFS_COMPARE_TREE_CHANGED) {
6853		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6854				sctx->left_path->slots[0],
6855				struct btrfs_inode_item);
6856		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6857				left_ii);
6858	} else {
6859		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6860				sctx->right_path->slots[0],
6861				struct btrfs_inode_item);
6862		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6863				right_ii);
6864	}
6865	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6866		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6867				sctx->right_path->slots[0],
6868				struct btrfs_inode_item);
6869
6870		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6871				right_ii);
6872
6873		/*
6874		 * The cur_ino = root dir case is special here. We can't treat
6875		 * the inode as deleted+reused because it would generate a
6876		 * stream that tries to delete/mkdir the root dir.
6877		 */
6878		if (left_gen != right_gen &&
6879		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6880			sctx->cur_inode_new_gen = true;
6881	}
6882
6883	/*
6884	 * Normally we do not find inodes with a link count of zero (orphans)
6885	 * because the most common case is to create a snapshot and use it
6886	 * for a send operation. However other less common use cases involve
6887	 * using a subvolume and send it after turning it to RO mode just
6888	 * after deleting all hard links of a file while holding an open
6889	 * file descriptor against it or turning a RO snapshot into RW mode,
6890	 * keep an open file descriptor against a file, delete it and then
6891	 * turn the snapshot back to RO mode before using it for a send
6892	 * operation. The former is what the receiver operation does.
6893	 * Therefore, if we want to send these snapshots soon after they're
6894	 * received, we need to handle orphan inodes as well. Moreover, orphans
6895	 * can appear not only in the send snapshot but also in the parent
6896	 * snapshot. Here are several cases:
6897	 *
6898	 * Case 1: BTRFS_COMPARE_TREE_NEW
6899	 *       |  send snapshot  | action
6900	 * --------------------------------
6901	 * nlink |        0        | ignore
6902	 *
6903	 * Case 2: BTRFS_COMPARE_TREE_DELETED
6904	 *       | parent snapshot | action
6905	 * ----------------------------------
6906	 * nlink |        0        | as usual
6907	 * Note: No unlinks will be sent because there're no paths for it.
6908	 *
6909	 * Case 3: BTRFS_COMPARE_TREE_CHANGED
6910	 *           |       | parent snapshot | send snapshot | action
6911	 * -----------------------------------------------------------------------
6912	 * subcase 1 | nlink |        0        |       0       | ignore
6913	 * subcase 2 | nlink |       >0        |       0       | new_gen(deletion)
6914	 * subcase 3 | nlink |        0        |      >0       | new_gen(creation)
6915	 *
6916	 */
6917	if (result == BTRFS_COMPARE_TREE_NEW) {
6918		if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
 
 
 
 
6919			sctx->ignore_cur_inode = true;
 
 
6920			goto out;
6921		}
 
 
 
6922		sctx->cur_inode_gen = left_gen;
6923		sctx->cur_inode_new = true;
6924		sctx->cur_inode_deleted = false;
6925		sctx->cur_inode_size = btrfs_inode_size(
6926				sctx->left_path->nodes[0], left_ii);
6927		sctx->cur_inode_mode = btrfs_inode_mode(
6928				sctx->left_path->nodes[0], left_ii);
6929		sctx->cur_inode_rdev = btrfs_inode_rdev(
6930				sctx->left_path->nodes[0], left_ii);
6931		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6932			ret = send_create_inode_if_needed(sctx);
6933	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6934		sctx->cur_inode_gen = right_gen;
6935		sctx->cur_inode_new = false;
6936		sctx->cur_inode_deleted = true;
6937		sctx->cur_inode_size = btrfs_inode_size(
6938				sctx->right_path->nodes[0], right_ii);
6939		sctx->cur_inode_mode = btrfs_inode_mode(
6940				sctx->right_path->nodes[0], right_ii);
6941	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6942		u32 new_nlinks, old_nlinks;
6943
6944		new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6945		old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
6946		if (new_nlinks == 0 && old_nlinks == 0) {
6947			sctx->ignore_cur_inode = true;
6948			goto out;
6949		} else if (new_nlinks == 0 || old_nlinks == 0) {
6950			sctx->cur_inode_new_gen = 1;
6951		}
6952		/*
6953		 * We need to do some special handling in case the inode was
6954		 * reported as changed with a changed generation number. This
6955		 * means that the original inode was deleted and new inode
6956		 * reused the same inum. So we have to treat the old inode as
6957		 * deleted and the new one as new.
6958		 */
6959		if (sctx->cur_inode_new_gen) {
6960			/*
6961			 * First, process the inode as if it was deleted.
6962			 */
6963			if (old_nlinks > 0) {
6964				sctx->cur_inode_gen = right_gen;
6965				sctx->cur_inode_new = false;
6966				sctx->cur_inode_deleted = true;
6967				sctx->cur_inode_size = btrfs_inode_size(
6968						sctx->right_path->nodes[0], right_ii);
6969				sctx->cur_inode_mode = btrfs_inode_mode(
6970						sctx->right_path->nodes[0], right_ii);
6971				ret = process_all_refs(sctx,
6972						BTRFS_COMPARE_TREE_DELETED);
6973				if (ret < 0)
6974					goto out;
6975			}
6976
6977			/*
6978			 * Now process the inode as if it was new.
6979			 */
6980			if (new_nlinks > 0) {
6981				sctx->cur_inode_gen = left_gen;
6982				sctx->cur_inode_new = true;
6983				sctx->cur_inode_deleted = false;
6984				sctx->cur_inode_size = btrfs_inode_size(
6985						sctx->left_path->nodes[0],
6986						left_ii);
6987				sctx->cur_inode_mode = btrfs_inode_mode(
6988						sctx->left_path->nodes[0],
6989						left_ii);
6990				sctx->cur_inode_rdev = btrfs_inode_rdev(
6991						sctx->left_path->nodes[0],
6992						left_ii);
6993				ret = send_create_inode_if_needed(sctx);
6994				if (ret < 0)
6995					goto out;
6996
6997				ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6998				if (ret < 0)
6999					goto out;
7000				/*
7001				 * Advance send_progress now as we did not get
7002				 * into process_recorded_refs_if_needed in the
7003				 * new_gen case.
7004				 */
7005				sctx->send_progress = sctx->cur_ino + 1;
7006
7007				/*
7008				 * Now process all extents and xattrs of the
7009				 * inode as if they were all new.
7010				 */
7011				ret = process_all_extents(sctx);
7012				if (ret < 0)
7013					goto out;
7014				ret = process_all_new_xattrs(sctx);
7015				if (ret < 0)
7016					goto out;
7017			}
7018		} else {
7019			sctx->cur_inode_gen = left_gen;
7020			sctx->cur_inode_new = false;
7021			sctx->cur_inode_new_gen = false;
7022			sctx->cur_inode_deleted = false;
7023			sctx->cur_inode_size = btrfs_inode_size(
7024					sctx->left_path->nodes[0], left_ii);
7025			sctx->cur_inode_mode = btrfs_inode_mode(
7026					sctx->left_path->nodes[0], left_ii);
7027		}
7028	}
7029
7030out:
7031	return ret;
7032}
7033
7034/*
7035 * We have to process new refs before deleted refs, but compare_trees gives us
7036 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
7037 * first and later process them in process_recorded_refs.
7038 * For the cur_inode_new_gen case, we skip recording completely because
7039 * changed_inode did already initiate processing of refs. The reason for this is
7040 * that in this case, compare_tree actually compares the refs of 2 different
7041 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
7042 * refs of the right tree as deleted and all refs of the left tree as new.
7043 */
7044static int changed_ref(struct send_ctx *sctx,
7045		       enum btrfs_compare_tree_result result)
7046{
7047	int ret = 0;
7048
7049	if (sctx->cur_ino != sctx->cmp_key->objectid) {
7050		inconsistent_snapshot_error(sctx, result, "reference");
7051		return -EIO;
7052	}
7053
7054	if (!sctx->cur_inode_new_gen &&
7055	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
7056		if (result == BTRFS_COMPARE_TREE_NEW)
7057			ret = record_new_ref(sctx);
7058		else if (result == BTRFS_COMPARE_TREE_DELETED)
7059			ret = record_deleted_ref(sctx);
7060		else if (result == BTRFS_COMPARE_TREE_CHANGED)
7061			ret = record_changed_ref(sctx);
7062	}
7063
7064	return ret;
7065}
7066
7067/*
7068 * Process new/deleted/changed xattrs. We skip processing in the
7069 * cur_inode_new_gen case because changed_inode did already initiate processing
7070 * of xattrs. The reason is the same as in changed_ref
7071 */
7072static int changed_xattr(struct send_ctx *sctx,
7073			 enum btrfs_compare_tree_result result)
7074{
7075	int ret = 0;
7076
7077	if (sctx->cur_ino != sctx->cmp_key->objectid) {
7078		inconsistent_snapshot_error(sctx, result, "xattr");
7079		return -EIO;
7080	}
7081
7082	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7083		if (result == BTRFS_COMPARE_TREE_NEW)
7084			ret = process_new_xattr(sctx);
7085		else if (result == BTRFS_COMPARE_TREE_DELETED)
7086			ret = process_deleted_xattr(sctx);
7087		else if (result == BTRFS_COMPARE_TREE_CHANGED)
7088			ret = process_changed_xattr(sctx);
7089	}
7090
7091	return ret;
7092}
7093
7094/*
7095 * Process new/deleted/changed extents. We skip processing in the
7096 * cur_inode_new_gen case because changed_inode did already initiate processing
7097 * of extents. The reason is the same as in changed_ref
7098 */
7099static int changed_extent(struct send_ctx *sctx,
7100			  enum btrfs_compare_tree_result result)
7101{
7102	int ret = 0;
7103
7104	/*
7105	 * We have found an extent item that changed without the inode item
7106	 * having changed. This can happen either after relocation (where the
7107	 * disk_bytenr of an extent item is replaced at
7108	 * relocation.c:replace_file_extents()) or after deduplication into a
7109	 * file in both the parent and send snapshots (where an extent item can
7110	 * get modified or replaced with a new one). Note that deduplication
7111	 * updates the inode item, but it only changes the iversion (sequence
7112	 * field in the inode item) of the inode, so if a file is deduplicated
7113	 * the same amount of times in both the parent and send snapshots, its
7114	 * iversion becomes the same in both snapshots, whence the inode item is
7115	 * the same on both snapshots.
7116	 */
7117	if (sctx->cur_ino != sctx->cmp_key->objectid)
7118		return 0;
7119
7120	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7121		if (result != BTRFS_COMPARE_TREE_DELETED)
7122			ret = process_extent(sctx, sctx->left_path,
7123					sctx->cmp_key);
7124	}
7125
7126	return ret;
7127}
7128
7129static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
7130{
7131	int ret = 0;
7132
7133	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7134		if (result == BTRFS_COMPARE_TREE_NEW)
7135			sctx->cur_inode_needs_verity = true;
7136	}
7137	return ret;
7138}
7139
7140static int dir_changed(struct send_ctx *sctx, u64 dir)
7141{
7142	u64 orig_gen, new_gen;
7143	int ret;
7144
7145	ret = get_inode_gen(sctx->send_root, dir, &new_gen);
 
7146	if (ret)
7147		return ret;
7148
7149	ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
 
7150	if (ret)
7151		return ret;
7152
7153	return (orig_gen != new_gen) ? 1 : 0;
7154}
7155
7156static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
7157			struct btrfs_key *key)
7158{
7159	struct btrfs_inode_extref *extref;
7160	struct extent_buffer *leaf;
7161	u64 dirid = 0, last_dirid = 0;
7162	unsigned long ptr;
7163	u32 item_size;
7164	u32 cur_offset = 0;
7165	int ref_name_len;
7166	int ret = 0;
7167
7168	/* Easy case, just check this one dirid */
7169	if (key->type == BTRFS_INODE_REF_KEY) {
7170		dirid = key->offset;
7171
7172		ret = dir_changed(sctx, dirid);
7173		goto out;
7174	}
7175
7176	leaf = path->nodes[0];
7177	item_size = btrfs_item_size(leaf, path->slots[0]);
7178	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
7179	while (cur_offset < item_size) {
7180		extref = (struct btrfs_inode_extref *)(ptr +
7181						       cur_offset);
7182		dirid = btrfs_inode_extref_parent(leaf, extref);
7183		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
7184		cur_offset += ref_name_len + sizeof(*extref);
7185		if (dirid == last_dirid)
7186			continue;
7187		ret = dir_changed(sctx, dirid);
7188		if (ret)
7189			break;
7190		last_dirid = dirid;
7191	}
7192out:
7193	return ret;
7194}
7195
7196/*
7197 * Updates compare related fields in sctx and simply forwards to the actual
7198 * changed_xxx functions.
7199 */
7200static int changed_cb(struct btrfs_path *left_path,
7201		      struct btrfs_path *right_path,
7202		      struct btrfs_key *key,
7203		      enum btrfs_compare_tree_result result,
7204		      struct send_ctx *sctx)
7205{
7206	int ret = 0;
7207
7208	/*
7209	 * We can not hold the commit root semaphore here. This is because in
7210	 * the case of sending and receiving to the same filesystem, using a
7211	 * pipe, could result in a deadlock:
7212	 *
7213	 * 1) The task running send blocks on the pipe because it's full;
7214	 *
7215	 * 2) The task running receive, which is the only consumer of the pipe,
7216	 *    is waiting for a transaction commit (for example due to a space
7217	 *    reservation when doing a write or triggering a transaction commit
7218	 *    when creating a subvolume);
7219	 *
7220	 * 3) The transaction is waiting to write lock the commit root semaphore,
7221	 *    but can not acquire it since it's being held at 1).
7222	 *
7223	 * Down this call chain we write to the pipe through kernel_write().
7224	 * The same type of problem can also happen when sending to a file that
7225	 * is stored in the same filesystem - when reserving space for a write
7226	 * into the file, we can trigger a transaction commit.
7227	 *
7228	 * Our caller has supplied us with clones of leaves from the send and
7229	 * parent roots, so we're safe here from a concurrent relocation and
7230	 * further reallocation of metadata extents while we are here. Below we
7231	 * also assert that the leaves are clones.
7232	 */
7233	lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
7234
7235	/*
7236	 * We always have a send root, so left_path is never NULL. We will not
7237	 * have a leaf when we have reached the end of the send root but have
7238	 * not yet reached the end of the parent root.
7239	 */
7240	if (left_path->nodes[0])
7241		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7242				&left_path->nodes[0]->bflags));
7243	/*
7244	 * When doing a full send we don't have a parent root, so right_path is
7245	 * NULL. When doing an incremental send, we may have reached the end of
7246	 * the parent root already, so we don't have a leaf at right_path.
7247	 */
7248	if (right_path && right_path->nodes[0])
7249		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7250				&right_path->nodes[0]->bflags));
7251
7252	if (result == BTRFS_COMPARE_TREE_SAME) {
7253		if (key->type == BTRFS_INODE_REF_KEY ||
7254		    key->type == BTRFS_INODE_EXTREF_KEY) {
7255			ret = compare_refs(sctx, left_path, key);
7256			if (!ret)
7257				return 0;
7258			if (ret < 0)
7259				return ret;
7260		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
7261			return maybe_send_hole(sctx, left_path, key);
7262		} else {
7263			return 0;
7264		}
7265		result = BTRFS_COMPARE_TREE_CHANGED;
7266		ret = 0;
7267	}
7268
7269	sctx->left_path = left_path;
7270	sctx->right_path = right_path;
7271	sctx->cmp_key = key;
7272
7273	ret = finish_inode_if_needed(sctx, 0);
7274	if (ret < 0)
7275		goto out;
7276
7277	/* Ignore non-FS objects */
7278	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7279	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7280		goto out;
7281
7282	if (key->type == BTRFS_INODE_ITEM_KEY) {
7283		ret = changed_inode(sctx, result);
7284	} else if (!sctx->ignore_cur_inode) {
7285		if (key->type == BTRFS_INODE_REF_KEY ||
7286		    key->type == BTRFS_INODE_EXTREF_KEY)
7287			ret = changed_ref(sctx, result);
7288		else if (key->type == BTRFS_XATTR_ITEM_KEY)
7289			ret = changed_xattr(sctx, result);
7290		else if (key->type == BTRFS_EXTENT_DATA_KEY)
7291			ret = changed_extent(sctx, result);
7292		else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7293			 key->offset == 0)
7294			ret = changed_verity(sctx, result);
7295	}
7296
7297out:
7298	return ret;
7299}
7300
7301static int search_key_again(const struct send_ctx *sctx,
7302			    struct btrfs_root *root,
7303			    struct btrfs_path *path,
7304			    const struct btrfs_key *key)
7305{
7306	int ret;
7307
7308	if (!path->need_commit_sem)
7309		lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7310
7311	/*
7312	 * Roots used for send operations are readonly and no one can add,
7313	 * update or remove keys from them, so we should be able to find our
7314	 * key again. The only exception is deduplication, which can operate on
7315	 * readonly roots and add, update or remove keys to/from them - but at
7316	 * the moment we don't allow it to run in parallel with send.
7317	 */
7318	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7319	ASSERT(ret <= 0);
7320	if (ret > 0) {
7321		btrfs_print_tree(path->nodes[path->lowest_level], false);
7322		btrfs_err(root->fs_info,
7323"send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7324			  key->objectid, key->type, key->offset,
7325			  (root == sctx->parent_root ? "parent" : "send"),
7326			  root->root_key.objectid, path->lowest_level,
7327			  path->slots[path->lowest_level]);
7328		return -EUCLEAN;
7329	}
7330
7331	return ret;
7332}
7333
7334static int full_send_tree(struct send_ctx *sctx)
7335{
7336	int ret;
7337	struct btrfs_root *send_root = sctx->send_root;
7338	struct btrfs_key key;
7339	struct btrfs_fs_info *fs_info = send_root->fs_info;
7340	struct btrfs_path *path;
 
 
7341
7342	path = alloc_path_for_send();
7343	if (!path)
7344		return -ENOMEM;
7345	path->reada = READA_FORWARD_ALWAYS;
7346
7347	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7348	key.type = BTRFS_INODE_ITEM_KEY;
7349	key.offset = 0;
7350
7351	down_read(&fs_info->commit_root_sem);
7352	sctx->last_reloc_trans = fs_info->last_reloc_trans;
7353	up_read(&fs_info->commit_root_sem);
7354
7355	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7356	if (ret < 0)
7357		goto out;
7358	if (ret)
7359		goto out_finish;
7360
7361	while (1) {
7362		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 
 
7363
7364		ret = changed_cb(path, NULL, &key,
7365				 BTRFS_COMPARE_TREE_NEW, sctx);
7366		if (ret < 0)
7367			goto out;
7368
7369		down_read(&fs_info->commit_root_sem);
7370		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7371			sctx->last_reloc_trans = fs_info->last_reloc_trans;
7372			up_read(&fs_info->commit_root_sem);
7373			/*
7374			 * A transaction used for relocating a block group was
7375			 * committed or is about to finish its commit. Release
7376			 * our path (leaf) and restart the search, so that we
7377			 * avoid operating on any file extent items that are
7378			 * stale, with a disk_bytenr that reflects a pre
7379			 * relocation value. This way we avoid as much as
7380			 * possible to fallback to regular writes when checking
7381			 * if we can clone file ranges.
7382			 */
7383			btrfs_release_path(path);
7384			ret = search_key_again(sctx, send_root, path, &key);
7385			if (ret < 0)
7386				goto out;
7387		} else {
7388			up_read(&fs_info->commit_root_sem);
7389		}
7390
7391		ret = btrfs_next_item(send_root, path);
7392		if (ret < 0)
7393			goto out;
7394		if (ret) {
7395			ret  = 0;
7396			break;
7397		}
7398	}
7399
7400out_finish:
7401	ret = finish_inode_if_needed(sctx, 1);
7402
7403out:
7404	btrfs_free_path(path);
7405	return ret;
7406}
7407
7408static int replace_node_with_clone(struct btrfs_path *path, int level)
7409{
7410	struct extent_buffer *clone;
7411
7412	clone = btrfs_clone_extent_buffer(path->nodes[level]);
7413	if (!clone)
7414		return -ENOMEM;
7415
7416	free_extent_buffer(path->nodes[level]);
7417	path->nodes[level] = clone;
7418
7419	return 0;
7420}
7421
7422static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7423{
7424	struct extent_buffer *eb;
7425	struct extent_buffer *parent = path->nodes[*level];
7426	int slot = path->slots[*level];
7427	const int nritems = btrfs_header_nritems(parent);
7428	u64 reada_max;
7429	u64 reada_done = 0;
7430
7431	lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7432
7433	BUG_ON(*level == 0);
7434	eb = btrfs_read_node_slot(parent, slot);
7435	if (IS_ERR(eb))
7436		return PTR_ERR(eb);
7437
7438	/*
7439	 * Trigger readahead for the next leaves we will process, so that it is
7440	 * very likely that when we need them they are already in memory and we
7441	 * will not block on disk IO. For nodes we only do readahead for one,
7442	 * since the time window between processing nodes is typically larger.
7443	 */
7444	reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7445
7446	for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7447		if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7448			btrfs_readahead_node_child(parent, slot);
7449			reada_done += eb->fs_info->nodesize;
7450		}
7451	}
7452
7453	path->nodes[*level - 1] = eb;
7454	path->slots[*level - 1] = 0;
7455	(*level)--;
7456
7457	if (*level == 0)
7458		return replace_node_with_clone(path, 0);
7459
7460	return 0;
7461}
7462
7463static int tree_move_next_or_upnext(struct btrfs_path *path,
7464				    int *level, int root_level)
7465{
7466	int ret = 0;
7467	int nritems;
7468	nritems = btrfs_header_nritems(path->nodes[*level]);
7469
7470	path->slots[*level]++;
7471
7472	while (path->slots[*level] >= nritems) {
7473		if (*level == root_level) {
7474			path->slots[*level] = nritems - 1;
7475			return -1;
7476		}
7477
7478		/* move upnext */
7479		path->slots[*level] = 0;
7480		free_extent_buffer(path->nodes[*level]);
7481		path->nodes[*level] = NULL;
7482		(*level)++;
7483		path->slots[*level]++;
7484
7485		nritems = btrfs_header_nritems(path->nodes[*level]);
7486		ret = 1;
7487	}
7488	return ret;
7489}
7490
7491/*
7492 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7493 * or down.
7494 */
7495static int tree_advance(struct btrfs_path *path,
7496			int *level, int root_level,
7497			int allow_down,
7498			struct btrfs_key *key,
7499			u64 reada_min_gen)
7500{
7501	int ret;
7502
7503	if (*level == 0 || !allow_down) {
7504		ret = tree_move_next_or_upnext(path, level, root_level);
7505	} else {
7506		ret = tree_move_down(path, level, reada_min_gen);
 
 
 
 
 
 
 
 
7507	}
7508
7509	/*
7510	 * Even if we have reached the end of a tree, ret is -1, update the key
7511	 * anyway, so that in case we need to restart due to a block group
7512	 * relocation, we can assert that the last key of the root node still
7513	 * exists in the tree.
7514	 */
7515	if (*level == 0)
7516		btrfs_item_key_to_cpu(path->nodes[*level], key,
7517				      path->slots[*level]);
7518	else
7519		btrfs_node_key_to_cpu(path->nodes[*level], key,
7520				      path->slots[*level]);
7521
7522	return ret;
7523}
7524
7525static int tree_compare_item(struct btrfs_path *left_path,
7526			     struct btrfs_path *right_path,
7527			     char *tmp_buf)
7528{
7529	int cmp;
7530	int len1, len2;
7531	unsigned long off1, off2;
7532
7533	len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7534	len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
7535	if (len1 != len2)
7536		return 1;
7537
7538	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7539	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7540				right_path->slots[0]);
7541
7542	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7543
7544	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7545	if (cmp)
7546		return 1;
7547	return 0;
7548}
7549
7550/*
7551 * A transaction used for relocating a block group was committed or is about to
7552 * finish its commit. Release our paths and restart the search, so that we are
7553 * not using stale extent buffers:
7554 *
7555 * 1) For levels > 0, we are only holding references of extent buffers, without
7556 *    any locks on them, which does not prevent them from having been relocated
7557 *    and reallocated after the last time we released the commit root semaphore.
7558 *    The exception are the root nodes, for which we always have a clone, see
7559 *    the comment at btrfs_compare_trees();
7560 *
7561 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7562 *    we are safe from the concurrent relocation and reallocation. However they
7563 *    can have file extent items with a pre relocation disk_bytenr value, so we
7564 *    restart the start from the current commit roots and clone the new leaves so
7565 *    that we get the post relocation disk_bytenr values. Not doing so, could
7566 *    make us clone the wrong data in case there are new extents using the old
7567 *    disk_bytenr that happen to be shared.
7568 */
7569static int restart_after_relocation(struct btrfs_path *left_path,
7570				    struct btrfs_path *right_path,
7571				    const struct btrfs_key *left_key,
7572				    const struct btrfs_key *right_key,
7573				    int left_level,
7574				    int right_level,
7575				    const struct send_ctx *sctx)
7576{
7577	int root_level;
7578	int ret;
7579
7580	lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7581
7582	btrfs_release_path(left_path);
7583	btrfs_release_path(right_path);
7584
7585	/*
7586	 * Since keys can not be added or removed to/from our roots because they
7587	 * are readonly and we do not allow deduplication to run in parallel
7588	 * (which can add, remove or change keys), the layout of the trees should
7589	 * not change.
7590	 */
7591	left_path->lowest_level = left_level;
7592	ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7593	if (ret < 0)
7594		return ret;
7595
7596	right_path->lowest_level = right_level;
7597	ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7598	if (ret < 0)
7599		return ret;
7600
7601	/*
7602	 * If the lowest level nodes are leaves, clone them so that they can be
7603	 * safely used by changed_cb() while not under the protection of the
7604	 * commit root semaphore, even if relocation and reallocation happens in
7605	 * parallel.
7606	 */
7607	if (left_level == 0) {
7608		ret = replace_node_with_clone(left_path, 0);
7609		if (ret < 0)
7610			return ret;
7611	}
7612
7613	if (right_level == 0) {
7614		ret = replace_node_with_clone(right_path, 0);
7615		if (ret < 0)
7616			return ret;
7617	}
7618
7619	/*
7620	 * Now clone the root nodes (unless they happen to be the leaves we have
7621	 * already cloned). This is to protect against concurrent snapshotting of
7622	 * the send and parent roots (see the comment at btrfs_compare_trees()).
7623	 */
7624	root_level = btrfs_header_level(sctx->send_root->commit_root);
7625	if (root_level > 0) {
7626		ret = replace_node_with_clone(left_path, root_level);
7627		if (ret < 0)
7628			return ret;
7629	}
7630
7631	root_level = btrfs_header_level(sctx->parent_root->commit_root);
7632	if (root_level > 0) {
7633		ret = replace_node_with_clone(right_path, root_level);
7634		if (ret < 0)
7635			return ret;
7636	}
7637
7638	return 0;
7639}
7640
7641/*
7642 * This function compares two trees and calls the provided callback for
7643 * every changed/new/deleted item it finds.
7644 * If shared tree blocks are encountered, whole subtrees are skipped, making
7645 * the compare pretty fast on snapshotted subvolumes.
7646 *
7647 * This currently works on commit roots only. As commit roots are read only,
7648 * we don't do any locking. The commit roots are protected with transactions.
7649 * Transactions are ended and rejoined when a commit is tried in between.
7650 *
7651 * This function checks for modifications done to the trees while comparing.
7652 * If it detects a change, it aborts immediately.
7653 */
7654static int btrfs_compare_trees(struct btrfs_root *left_root,
7655			struct btrfs_root *right_root, struct send_ctx *sctx)
 
7656{
7657	struct btrfs_fs_info *fs_info = left_root->fs_info;
7658	int ret;
7659	int cmp;
7660	struct btrfs_path *left_path = NULL;
7661	struct btrfs_path *right_path = NULL;
7662	struct btrfs_key left_key;
7663	struct btrfs_key right_key;
7664	char *tmp_buf = NULL;
7665	int left_root_level;
7666	int right_root_level;
7667	int left_level;
7668	int right_level;
7669	int left_end_reached = 0;
7670	int right_end_reached = 0;
7671	int advance_left = 0;
7672	int advance_right = 0;
7673	u64 left_blockptr;
7674	u64 right_blockptr;
7675	u64 left_gen;
7676	u64 right_gen;
7677	u64 reada_min_gen;
7678
7679	left_path = btrfs_alloc_path();
7680	if (!left_path) {
7681		ret = -ENOMEM;
7682		goto out;
7683	}
7684	right_path = btrfs_alloc_path();
7685	if (!right_path) {
7686		ret = -ENOMEM;
7687		goto out;
7688	}
7689
7690	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7691	if (!tmp_buf) {
7692		ret = -ENOMEM;
7693		goto out;
7694	}
7695
7696	left_path->search_commit_root = 1;
7697	left_path->skip_locking = 1;
7698	right_path->search_commit_root = 1;
7699	right_path->skip_locking = 1;
7700
7701	/*
7702	 * Strategy: Go to the first items of both trees. Then do
7703	 *
7704	 * If both trees are at level 0
7705	 *   Compare keys of current items
7706	 *     If left < right treat left item as new, advance left tree
7707	 *       and repeat
7708	 *     If left > right treat right item as deleted, advance right tree
7709	 *       and repeat
7710	 *     If left == right do deep compare of items, treat as changed if
7711	 *       needed, advance both trees and repeat
7712	 * If both trees are at the same level but not at level 0
7713	 *   Compare keys of current nodes/leafs
7714	 *     If left < right advance left tree and repeat
7715	 *     If left > right advance right tree and repeat
7716	 *     If left == right compare blockptrs of the next nodes/leafs
7717	 *       If they match advance both trees but stay at the same level
7718	 *         and repeat
7719	 *       If they don't match advance both trees while allowing to go
7720	 *         deeper and repeat
7721	 * If tree levels are different
7722	 *   Advance the tree that needs it and repeat
7723	 *
7724	 * Advancing a tree means:
7725	 *   If we are at level 0, try to go to the next slot. If that's not
7726	 *   possible, go one level up and repeat. Stop when we found a level
7727	 *   where we could go to the next slot. We may at this point be on a
7728	 *   node or a leaf.
7729	 *
7730	 *   If we are not at level 0 and not on shared tree blocks, go one
7731	 *   level deeper.
7732	 *
7733	 *   If we are not at level 0 and on shared tree blocks, go one slot to
7734	 *   the right if possible or go up and right.
7735	 */
7736
7737	down_read(&fs_info->commit_root_sem);
7738	left_level = btrfs_header_level(left_root->commit_root);
7739	left_root_level = left_level;
7740	/*
7741	 * We clone the root node of the send and parent roots to prevent races
7742	 * with snapshot creation of these roots. Snapshot creation COWs the
7743	 * root node of a tree, so after the transaction is committed the old
7744	 * extent can be reallocated while this send operation is still ongoing.
7745	 * So we clone them, under the commit root semaphore, to be race free.
7746	 */
7747	left_path->nodes[left_level] =
7748			btrfs_clone_extent_buffer(left_root->commit_root);
7749	if (!left_path->nodes[left_level]) {
 
7750		ret = -ENOMEM;
7751		goto out_unlock;
7752	}
7753
7754	right_level = btrfs_header_level(right_root->commit_root);
7755	right_root_level = right_level;
7756	right_path->nodes[right_level] =
7757			btrfs_clone_extent_buffer(right_root->commit_root);
7758	if (!right_path->nodes[right_level]) {
 
7759		ret = -ENOMEM;
7760		goto out_unlock;
7761	}
7762	/*
7763	 * Our right root is the parent root, while the left root is the "send"
7764	 * root. We know that all new nodes/leaves in the left root must have
7765	 * a generation greater than the right root's generation, so we trigger
7766	 * readahead for those nodes and leaves of the left root, as we know we
7767	 * will need to read them at some point.
7768	 */
7769	reada_min_gen = btrfs_header_generation(right_root->commit_root);
7770
7771	if (left_level == 0)
7772		btrfs_item_key_to_cpu(left_path->nodes[left_level],
7773				&left_key, left_path->slots[left_level]);
7774	else
7775		btrfs_node_key_to_cpu(left_path->nodes[left_level],
7776				&left_key, left_path->slots[left_level]);
7777	if (right_level == 0)
7778		btrfs_item_key_to_cpu(right_path->nodes[right_level],
7779				&right_key, right_path->slots[right_level]);
7780	else
7781		btrfs_node_key_to_cpu(right_path->nodes[right_level],
7782				&right_key, right_path->slots[right_level]);
7783
7784	sctx->last_reloc_trans = fs_info->last_reloc_trans;
 
7785
7786	while (1) {
7787		if (need_resched() ||
7788		    rwsem_is_contended(&fs_info->commit_root_sem)) {
7789			up_read(&fs_info->commit_root_sem);
7790			cond_resched();
7791			down_read(&fs_info->commit_root_sem);
7792		}
7793
7794		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7795			ret = restart_after_relocation(left_path, right_path,
7796						       &left_key, &right_key,
7797						       left_level, right_level,
7798						       sctx);
7799			if (ret < 0)
7800				goto out_unlock;
7801			sctx->last_reloc_trans = fs_info->last_reloc_trans;
7802		}
7803
7804		if (advance_left && !left_end_reached) {
7805			ret = tree_advance(left_path, &left_level,
7806					left_root_level,
7807					advance_left != ADVANCE_ONLY_NEXT,
7808					&left_key, reada_min_gen);
7809			if (ret == -1)
7810				left_end_reached = ADVANCE;
7811			else if (ret < 0)
7812				goto out_unlock;
7813			advance_left = 0;
7814		}
7815		if (advance_right && !right_end_reached) {
7816			ret = tree_advance(right_path, &right_level,
7817					right_root_level,
7818					advance_right != ADVANCE_ONLY_NEXT,
7819					&right_key, reada_min_gen);
7820			if (ret == -1)
7821				right_end_reached = ADVANCE;
7822			else if (ret < 0)
7823				goto out_unlock;
7824			advance_right = 0;
7825		}
7826
7827		if (left_end_reached && right_end_reached) {
7828			ret = 0;
7829			goto out_unlock;
7830		} else if (left_end_reached) {
7831			if (right_level == 0) {
7832				up_read(&fs_info->commit_root_sem);
7833				ret = changed_cb(left_path, right_path,
7834						&right_key,
7835						BTRFS_COMPARE_TREE_DELETED,
7836						sctx);
7837				if (ret < 0)
7838					goto out;
7839				down_read(&fs_info->commit_root_sem);
7840			}
7841			advance_right = ADVANCE;
7842			continue;
7843		} else if (right_end_reached) {
7844			if (left_level == 0) {
7845				up_read(&fs_info->commit_root_sem);
7846				ret = changed_cb(left_path, right_path,
7847						&left_key,
7848						BTRFS_COMPARE_TREE_NEW,
7849						sctx);
7850				if (ret < 0)
7851					goto out;
7852				down_read(&fs_info->commit_root_sem);
7853			}
7854			advance_left = ADVANCE;
7855			continue;
7856		}
7857
7858		if (left_level == 0 && right_level == 0) {
7859			up_read(&fs_info->commit_root_sem);
7860			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7861			if (cmp < 0) {
7862				ret = changed_cb(left_path, right_path,
7863						&left_key,
7864						BTRFS_COMPARE_TREE_NEW,
7865						sctx);
 
 
7866				advance_left = ADVANCE;
7867			} else if (cmp > 0) {
7868				ret = changed_cb(left_path, right_path,
7869						&right_key,
7870						BTRFS_COMPARE_TREE_DELETED,
7871						sctx);
 
 
7872				advance_right = ADVANCE;
7873			} else {
7874				enum btrfs_compare_tree_result result;
7875
7876				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7877				ret = tree_compare_item(left_path, right_path,
7878							tmp_buf);
7879				if (ret)
7880					result = BTRFS_COMPARE_TREE_CHANGED;
7881				else
7882					result = BTRFS_COMPARE_TREE_SAME;
7883				ret = changed_cb(left_path, right_path,
7884						 &left_key, result, sctx);
 
 
7885				advance_left = ADVANCE;
7886				advance_right = ADVANCE;
7887			}
7888
7889			if (ret < 0)
7890				goto out;
7891			down_read(&fs_info->commit_root_sem);
7892		} else if (left_level == right_level) {
7893			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7894			if (cmp < 0) {
7895				advance_left = ADVANCE;
7896			} else if (cmp > 0) {
7897				advance_right = ADVANCE;
7898			} else {
7899				left_blockptr = btrfs_node_blockptr(
7900						left_path->nodes[left_level],
7901						left_path->slots[left_level]);
7902				right_blockptr = btrfs_node_blockptr(
7903						right_path->nodes[right_level],
7904						right_path->slots[right_level]);
7905				left_gen = btrfs_node_ptr_generation(
7906						left_path->nodes[left_level],
7907						left_path->slots[left_level]);
7908				right_gen = btrfs_node_ptr_generation(
7909						right_path->nodes[right_level],
7910						right_path->slots[right_level]);
7911				if (left_blockptr == right_blockptr &&
7912				    left_gen == right_gen) {
7913					/*
7914					 * As we're on a shared block, don't
7915					 * allow to go deeper.
7916					 */
7917					advance_left = ADVANCE_ONLY_NEXT;
7918					advance_right = ADVANCE_ONLY_NEXT;
7919				} else {
7920					advance_left = ADVANCE;
7921					advance_right = ADVANCE;
7922				}
7923			}
7924		} else if (left_level < right_level) {
7925			advance_right = ADVANCE;
7926		} else {
7927			advance_left = ADVANCE;
7928		}
7929	}
7930
7931out_unlock:
7932	up_read(&fs_info->commit_root_sem);
7933out:
7934	btrfs_free_path(left_path);
7935	btrfs_free_path(right_path);
7936	kvfree(tmp_buf);
7937	return ret;
7938}
7939
7940static int send_subvol(struct send_ctx *sctx)
7941{
7942	int ret;
7943
7944	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7945		ret = send_header(sctx);
7946		if (ret < 0)
7947			goto out;
7948	}
7949
7950	ret = send_subvol_begin(sctx);
7951	if (ret < 0)
7952		goto out;
7953
7954	if (sctx->parent_root) {
7955		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
 
7956		if (ret < 0)
7957			goto out;
7958		ret = finish_inode_if_needed(sctx, 1);
7959		if (ret < 0)
7960			goto out;
7961	} else {
7962		ret = full_send_tree(sctx);
7963		if (ret < 0)
7964			goto out;
7965	}
7966
7967out:
7968	free_recorded_refs(sctx);
7969	return ret;
7970}
7971
7972/*
7973 * If orphan cleanup did remove any orphans from a root, it means the tree
7974 * was modified and therefore the commit root is not the same as the current
7975 * root anymore. This is a problem, because send uses the commit root and
7976 * therefore can see inode items that don't exist in the current root anymore,
7977 * and for example make calls to btrfs_iget, which will do tree lookups based
7978 * on the current root and not on the commit root. Those lookups will fail,
7979 * returning a -ESTALE error, and making send fail with that error. So make
7980 * sure a send does not see any orphans we have just removed, and that it will
7981 * see the same inodes regardless of whether a transaction commit happened
7982 * before it started (meaning that the commit root will be the same as the
7983 * current root) or not.
7984 */
7985static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7986{
7987	int i;
7988	struct btrfs_trans_handle *trans = NULL;
7989
7990again:
7991	if (sctx->parent_root &&
7992	    sctx->parent_root->node != sctx->parent_root->commit_root)
7993		goto commit_trans;
7994
7995	for (i = 0; i < sctx->clone_roots_cnt; i++)
7996		if (sctx->clone_roots[i].root->node !=
7997		    sctx->clone_roots[i].root->commit_root)
7998			goto commit_trans;
7999
8000	if (trans)
8001		return btrfs_end_transaction(trans);
8002
8003	return 0;
8004
8005commit_trans:
8006	/* Use any root, all fs roots will get their commit roots updated. */
8007	if (!trans) {
8008		trans = btrfs_join_transaction(sctx->send_root);
8009		if (IS_ERR(trans))
8010			return PTR_ERR(trans);
8011		goto again;
8012	}
8013
8014	return btrfs_commit_transaction(trans);
8015}
8016
8017/*
8018 * Make sure any existing dellaloc is flushed for any root used by a send
8019 * operation so that we do not miss any data and we do not race with writeback
8020 * finishing and changing a tree while send is using the tree. This could
8021 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
8022 * a send operation then uses the subvolume.
8023 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
8024 */
8025static int flush_delalloc_roots(struct send_ctx *sctx)
8026{
8027	struct btrfs_root *root = sctx->parent_root;
8028	int ret;
8029	int i;
8030
8031	if (root) {
8032		ret = btrfs_start_delalloc_snapshot(root, false);
8033		if (ret)
8034			return ret;
8035		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
8036	}
8037
8038	for (i = 0; i < sctx->clone_roots_cnt; i++) {
8039		root = sctx->clone_roots[i].root;
8040		ret = btrfs_start_delalloc_snapshot(root, false);
8041		if (ret)
8042			return ret;
8043		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
8044	}
8045
8046	return 0;
8047}
8048
8049static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
8050{
8051	spin_lock(&root->root_item_lock);
8052	root->send_in_progress--;
8053	/*
8054	 * Not much left to do, we don't know why it's unbalanced and
8055	 * can't blindly reset it to 0.
8056	 */
8057	if (root->send_in_progress < 0)
8058		btrfs_err(root->fs_info,
8059			  "send_in_progress unbalanced %d root %llu",
8060			  root->send_in_progress, root->root_key.objectid);
8061	spin_unlock(&root->root_item_lock);
8062}
8063
8064static void dedupe_in_progress_warn(const struct btrfs_root *root)
8065{
8066	btrfs_warn_rl(root->fs_info,
8067"cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
8068		      root->root_key.objectid, root->dedupe_in_progress);
8069}
8070
8071long btrfs_ioctl_send(struct inode *inode, struct btrfs_ioctl_send_args *arg)
8072{
8073	int ret = 0;
8074	struct btrfs_root *send_root = BTRFS_I(inode)->root;
8075	struct btrfs_fs_info *fs_info = send_root->fs_info;
8076	struct btrfs_root *clone_root;
8077	struct send_ctx *sctx = NULL;
8078	u32 i;
8079	u64 *clone_sources_tmp = NULL;
8080	int clone_sources_to_rollback = 0;
8081	size_t alloc_size;
8082	int sort_clone_roots = 0;
8083	struct btrfs_lru_cache_entry *entry;
8084	struct btrfs_lru_cache_entry *tmp;
8085
8086	if (!capable(CAP_SYS_ADMIN))
8087		return -EPERM;
8088
8089	/*
8090	 * The subvolume must remain read-only during send, protect against
8091	 * making it RW. This also protects against deletion.
8092	 */
8093	spin_lock(&send_root->root_item_lock);
8094	if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
8095		dedupe_in_progress_warn(send_root);
8096		spin_unlock(&send_root->root_item_lock);
8097		return -EAGAIN;
8098	}
8099	send_root->send_in_progress++;
8100	spin_unlock(&send_root->root_item_lock);
8101
8102	/*
8103	 * Userspace tools do the checks and warn the user if it's
8104	 * not RO.
8105	 */
8106	if (!btrfs_root_readonly(send_root)) {
8107		ret = -EPERM;
8108		goto out;
8109	}
8110
8111	/*
8112	 * Check that we don't overflow at later allocations, we request
8113	 * clone_sources_count + 1 items, and compare to unsigned long inside
8114	 * access_ok. Also set an upper limit for allocation size so this can't
8115	 * easily exhaust memory. Max number of clone sources is about 200K.
8116	 */
8117	if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
 
8118		ret = -EINVAL;
8119		goto out;
8120	}
8121
8122	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
8123		ret = -EOPNOTSUPP;
8124		goto out;
8125	}
8126
8127	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
8128	if (!sctx) {
8129		ret = -ENOMEM;
8130		goto out;
8131	}
8132
8133	INIT_LIST_HEAD(&sctx->new_refs);
8134	INIT_LIST_HEAD(&sctx->deleted_refs);
8135
8136	btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE);
8137	btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE);
8138	btrfs_lru_cache_init(&sctx->dir_created_cache,
8139			     SEND_MAX_DIR_CREATED_CACHE_SIZE);
8140	/*
8141	 * This cache is periodically trimmed to a fixed size elsewhere, see
8142	 * cache_dir_utimes() and trim_dir_utimes_cache().
8143	 */
8144	btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0);
8145
8146	sctx->pending_dir_moves = RB_ROOT;
8147	sctx->waiting_dir_moves = RB_ROOT;
8148	sctx->orphan_dirs = RB_ROOT;
8149	sctx->rbtree_new_refs = RB_ROOT;
8150	sctx->rbtree_deleted_refs = RB_ROOT;
8151
8152	sctx->flags = arg->flags;
8153
8154	if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
8155		if (arg->version > BTRFS_SEND_STREAM_VERSION) {
8156			ret = -EPROTO;
8157			goto out;
8158		}
8159		/* Zero means "use the highest version" */
8160		sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
8161	} else {
8162		sctx->proto = 1;
8163	}
8164	if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
8165		ret = -EINVAL;
8166		goto out;
8167	}
8168
8169	sctx->send_filp = fget(arg->send_fd);
8170	if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) {
8171		ret = -EBADF;
8172		goto out;
8173	}
8174
8175	sctx->send_root = send_root;
8176	/*
8177	 * Unlikely but possible, if the subvolume is marked for deletion but
8178	 * is slow to remove the directory entry, send can still be started
8179	 */
8180	if (btrfs_root_dead(sctx->send_root)) {
8181		ret = -EPERM;
8182		goto out;
8183	}
8184
8185	sctx->clone_roots_cnt = arg->clone_sources_count;
8186
8187	if (sctx->proto >= 2) {
8188		u32 send_buf_num_pages;
8189
8190		sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
8191		sctx->send_buf = vmalloc(sctx->send_max_size);
8192		if (!sctx->send_buf) {
8193			ret = -ENOMEM;
8194			goto out;
8195		}
8196		send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
8197		sctx->send_buf_pages = kcalloc(send_buf_num_pages,
8198					       sizeof(*sctx->send_buf_pages),
8199					       GFP_KERNEL);
8200		if (!sctx->send_buf_pages) {
8201			ret = -ENOMEM;
8202			goto out;
8203		}
8204		for (i = 0; i < send_buf_num_pages; i++) {
8205			sctx->send_buf_pages[i] =
8206				vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
8207		}
8208	} else {
8209		sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
8210		sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
8211	}
8212	if (!sctx->send_buf) {
8213		ret = -ENOMEM;
8214		goto out;
8215	}
8216
8217	sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1,
8218				     sizeof(*sctx->clone_roots),
8219				     GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
8220	if (!sctx->clone_roots) {
8221		ret = -ENOMEM;
8222		goto out;
8223	}
8224
8225	alloc_size = array_size(sizeof(*arg->clone_sources),
8226				arg->clone_sources_count);
8227
8228	if (arg->clone_sources_count) {
8229		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
8230		if (!clone_sources_tmp) {
8231			ret = -ENOMEM;
8232			goto out;
8233		}
8234
8235		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
8236				alloc_size);
8237		if (ret) {
8238			ret = -EFAULT;
8239			goto out;
8240		}
8241
8242		for (i = 0; i < arg->clone_sources_count; i++) {
8243			clone_root = btrfs_get_fs_root(fs_info,
8244						clone_sources_tmp[i], true);
8245			if (IS_ERR(clone_root)) {
8246				ret = PTR_ERR(clone_root);
8247				goto out;
8248			}
8249			spin_lock(&clone_root->root_item_lock);
8250			if (!btrfs_root_readonly(clone_root) ||
8251			    btrfs_root_dead(clone_root)) {
8252				spin_unlock(&clone_root->root_item_lock);
8253				btrfs_put_root(clone_root);
8254				ret = -EPERM;
8255				goto out;
8256			}
8257			if (clone_root->dedupe_in_progress) {
8258				dedupe_in_progress_warn(clone_root);
8259				spin_unlock(&clone_root->root_item_lock);
8260				btrfs_put_root(clone_root);
8261				ret = -EAGAIN;
8262				goto out;
8263			}
8264			clone_root->send_in_progress++;
8265			spin_unlock(&clone_root->root_item_lock);
8266
8267			sctx->clone_roots[i].root = clone_root;
8268			clone_sources_to_rollback = i + 1;
8269		}
8270		kvfree(clone_sources_tmp);
8271		clone_sources_tmp = NULL;
8272	}
8273
8274	if (arg->parent_root) {
8275		sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
8276						      true);
8277		if (IS_ERR(sctx->parent_root)) {
8278			ret = PTR_ERR(sctx->parent_root);
8279			goto out;
8280		}
8281
8282		spin_lock(&sctx->parent_root->root_item_lock);
8283		sctx->parent_root->send_in_progress++;
8284		if (!btrfs_root_readonly(sctx->parent_root) ||
8285				btrfs_root_dead(sctx->parent_root)) {
8286			spin_unlock(&sctx->parent_root->root_item_lock);
8287			ret = -EPERM;
8288			goto out;
8289		}
8290		if (sctx->parent_root->dedupe_in_progress) {
8291			dedupe_in_progress_warn(sctx->parent_root);
8292			spin_unlock(&sctx->parent_root->root_item_lock);
8293			ret = -EAGAIN;
8294			goto out;
8295		}
8296		spin_unlock(&sctx->parent_root->root_item_lock);
8297	}
8298
8299	/*
8300	 * Clones from send_root are allowed, but only if the clone source
8301	 * is behind the current send position. This is checked while searching
8302	 * for possible clone sources.
8303	 */
8304	sctx->clone_roots[sctx->clone_roots_cnt++].root =
8305		btrfs_grab_root(sctx->send_root);
8306
8307	/* We do a bsearch later */
8308	sort(sctx->clone_roots, sctx->clone_roots_cnt,
8309			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8310			NULL);
8311	sort_clone_roots = 1;
8312
8313	ret = flush_delalloc_roots(sctx);
8314	if (ret)
8315		goto out;
8316
8317	ret = ensure_commit_roots_uptodate(sctx);
8318	if (ret)
8319		goto out;
8320
 
 
 
 
 
 
 
 
 
 
 
 
8321	ret = send_subvol(sctx);
 
 
 
 
8322	if (ret < 0)
8323		goto out;
8324
8325	btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) {
8326		ret = send_utimes(sctx, entry->key, entry->gen);
8327		if (ret < 0)
8328			goto out;
8329		btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry);
8330	}
8331
8332	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8333		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8334		if (ret < 0)
8335			goto out;
8336		ret = send_cmd(sctx);
8337		if (ret < 0)
8338			goto out;
8339	}
8340
8341out:
8342	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8343	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8344		struct rb_node *n;
8345		struct pending_dir_move *pm;
8346
8347		n = rb_first(&sctx->pending_dir_moves);
8348		pm = rb_entry(n, struct pending_dir_move, node);
8349		while (!list_empty(&pm->list)) {
8350			struct pending_dir_move *pm2;
8351
8352			pm2 = list_first_entry(&pm->list,
8353					       struct pending_dir_move, list);
8354			free_pending_move(sctx, pm2);
8355		}
8356		free_pending_move(sctx, pm);
8357	}
8358
8359	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8360	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8361		struct rb_node *n;
8362		struct waiting_dir_move *dm;
8363
8364		n = rb_first(&sctx->waiting_dir_moves);
8365		dm = rb_entry(n, struct waiting_dir_move, node);
8366		rb_erase(&dm->node, &sctx->waiting_dir_moves);
8367		kfree(dm);
8368	}
8369
8370	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8371	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8372		struct rb_node *n;
8373		struct orphan_dir_info *odi;
8374
8375		n = rb_first(&sctx->orphan_dirs);
8376		odi = rb_entry(n, struct orphan_dir_info, node);
8377		free_orphan_dir_info(sctx, odi);
8378	}
8379
8380	if (sort_clone_roots) {
8381		for (i = 0; i < sctx->clone_roots_cnt; i++) {
8382			btrfs_root_dec_send_in_progress(
8383					sctx->clone_roots[i].root);
8384			btrfs_put_root(sctx->clone_roots[i].root);
8385		}
8386	} else {
8387		for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8388			btrfs_root_dec_send_in_progress(
8389					sctx->clone_roots[i].root);
8390			btrfs_put_root(sctx->clone_roots[i].root);
8391		}
8392
8393		btrfs_root_dec_send_in_progress(send_root);
8394	}
8395	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
8396		btrfs_root_dec_send_in_progress(sctx->parent_root);
8397		btrfs_put_root(sctx->parent_root);
8398	}
8399
8400	kvfree(clone_sources_tmp);
8401
8402	if (sctx) {
8403		if (sctx->send_filp)
8404			fput(sctx->send_filp);
8405
8406		kvfree(sctx->clone_roots);
8407		kfree(sctx->send_buf_pages);
8408		kvfree(sctx->send_buf);
8409		kvfree(sctx->verity_descriptor);
8410
8411		close_current_inode(sctx);
8412
8413		btrfs_lru_cache_clear(&sctx->name_cache);
8414		btrfs_lru_cache_clear(&sctx->backref_cache);
8415		btrfs_lru_cache_clear(&sctx->dir_created_cache);
8416		btrfs_lru_cache_clear(&sctx->dir_utimes_cache);
8417
8418		kfree(sctx);
8419	}
8420
8421	return ret;
8422}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2012 Alexander Block.  All rights reserved.
   4 */
   5
   6#include <linux/bsearch.h>
   7#include <linux/fs.h>
   8#include <linux/file.h>
   9#include <linux/sort.h>
  10#include <linux/mount.h>
  11#include <linux/xattr.h>
  12#include <linux/posix_acl_xattr.h>
  13#include <linux/radix-tree.h>
  14#include <linux/vmalloc.h>
  15#include <linux/string.h>
  16#include <linux/compat.h>
  17#include <linux/crc32c.h>
 
  18
  19#include "send.h"
 
  20#include "backref.h"
  21#include "locking.h"
  22#include "disk-io.h"
  23#include "btrfs_inode.h"
  24#include "transaction.h"
  25#include "compression.h"
  26#include "xattr.h"
 
 
 
 
 
 
 
  27
  28/*
  29 * Maximum number of references an extent can have in order for us to attempt to
  30 * issue clone operations instead of write operations. This currently exists to
  31 * avoid hitting limitations of the backreference walking code (taking a lot of
  32 * time and using too much memory for extents with large number of references).
  33 */
  34#define SEND_MAX_EXTENT_REFS	64
  35
  36/*
  37 * A fs_path is a helper to dynamically build path names with unknown size.
  38 * It reallocates the internal buffer on demand.
  39 * It allows fast adding of path elements on the right side (normal path) and
  40 * fast adding to the left side (reversed path). A reversed path can also be
  41 * unreversed if needed.
  42 */
  43struct fs_path {
  44	union {
  45		struct {
  46			char *start;
  47			char *end;
  48
  49			char *buf;
  50			unsigned short buf_len:15;
  51			unsigned short reversed:1;
  52			char inline_buf[];
  53		};
  54		/*
  55		 * Average path length does not exceed 200 bytes, we'll have
  56		 * better packing in the slab and higher chance to satisfy
  57		 * a allocation later during send.
  58		 */
  59		char pad[256];
  60	};
  61};
  62#define FS_PATH_INLINE_SIZE \
  63	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
  64
  65
  66/* reused for each extent */
  67struct clone_root {
  68	struct btrfs_root *root;
  69	u64 ino;
  70	u64 offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  71
  72	u64 found_refs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  73};
  74
  75#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
  76#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  77
  78struct send_ctx {
  79	struct file *send_filp;
  80	loff_t send_off;
  81	char *send_buf;
  82	u32 send_size;
  83	u32 send_max_size;
  84	u64 total_send_size;
  85	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
 
 
 
 
  86	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
 
 
  87
  88	struct btrfs_root *send_root;
  89	struct btrfs_root *parent_root;
  90	struct clone_root *clone_roots;
  91	int clone_roots_cnt;
  92
  93	/* current state of the compare_tree call */
  94	struct btrfs_path *left_path;
  95	struct btrfs_path *right_path;
  96	struct btrfs_key *cmp_key;
  97
  98	/*
 
 
 
 
 
 
 
 
 
  99	 * infos of the currently processed inode. In case of deleted inodes,
 100	 * these are the values from the deleted inode.
 101	 */
 102	u64 cur_ino;
 103	u64 cur_inode_gen;
 104	int cur_inode_new;
 105	int cur_inode_new_gen;
 106	int cur_inode_deleted;
 107	u64 cur_inode_size;
 108	u64 cur_inode_mode;
 109	u64 cur_inode_rdev;
 110	u64 cur_inode_last_extent;
 111	u64 cur_inode_next_write_offset;
 
 
 
 112	bool ignore_cur_inode;
 
 
 113
 114	u64 send_progress;
 115
 116	struct list_head new_refs;
 117	struct list_head deleted_refs;
 118
 119	struct radix_tree_root name_cache;
 120	struct list_head name_cache_list;
 121	int name_cache_size;
 122
 
 
 
 
 
 123	struct file_ra_state ra;
 124
 125	char *read_buf;
 126
 127	/*
 128	 * We process inodes by their increasing order, so if before an
 129	 * incremental send we reverse the parent/child relationship of
 130	 * directories such that a directory with a lower inode number was
 131	 * the parent of a directory with a higher inode number, and the one
 132	 * becoming the new parent got renamed too, we can't rename/move the
 133	 * directory with lower inode number when we finish processing it - we
 134	 * must process the directory with higher inode number first, then
 135	 * rename/move it and then rename/move the directory with lower inode
 136	 * number. Example follows.
 137	 *
 138	 * Tree state when the first send was performed:
 139	 *
 140	 * .
 141	 * |-- a                   (ino 257)
 142	 *     |-- b               (ino 258)
 143	 *         |
 144	 *         |
 145	 *         |-- c           (ino 259)
 146	 *         |   |-- d       (ino 260)
 147	 *         |
 148	 *         |-- c2          (ino 261)
 149	 *
 150	 * Tree state when the second (incremental) send is performed:
 151	 *
 152	 * .
 153	 * |-- a                   (ino 257)
 154	 *     |-- b               (ino 258)
 155	 *         |-- c2          (ino 261)
 156	 *             |-- d2      (ino 260)
 157	 *                 |-- cc  (ino 259)
 158	 *
 159	 * The sequence of steps that lead to the second state was:
 160	 *
 161	 * mv /a/b/c/d /a/b/c2/d2
 162	 * mv /a/b/c /a/b/c2/d2/cc
 163	 *
 164	 * "c" has lower inode number, but we can't move it (2nd mv operation)
 165	 * before we move "d", which has higher inode number.
 166	 *
 167	 * So we just memorize which move/rename operations must be performed
 168	 * later when their respective parent is processed and moved/renamed.
 169	 */
 170
 171	/* Indexed by parent directory inode number. */
 172	struct rb_root pending_dir_moves;
 173
 174	/*
 175	 * Reverse index, indexed by the inode number of a directory that
 176	 * is waiting for the move/rename of its immediate parent before its
 177	 * own move/rename can be performed.
 178	 */
 179	struct rb_root waiting_dir_moves;
 180
 181	/*
 182	 * A directory that is going to be rm'ed might have a child directory
 183	 * which is in the pending directory moves index above. In this case,
 184	 * the directory can only be removed after the move/rename of its child
 185	 * is performed. Example:
 186	 *
 187	 * Parent snapshot:
 188	 *
 189	 * .                        (ino 256)
 190	 * |-- a/                   (ino 257)
 191	 *     |-- b/               (ino 258)
 192	 *         |-- c/           (ino 259)
 193	 *         |   |-- x/       (ino 260)
 194	 *         |
 195	 *         |-- y/           (ino 261)
 196	 *
 197	 * Send snapshot:
 198	 *
 199	 * .                        (ino 256)
 200	 * |-- a/                   (ino 257)
 201	 *     |-- b/               (ino 258)
 202	 *         |-- YY/          (ino 261)
 203	 *              |-- x/      (ino 260)
 204	 *
 205	 * Sequence of steps that lead to the send snapshot:
 206	 * rm -f /a/b/c/foo.txt
 207	 * mv /a/b/y /a/b/YY
 208	 * mv /a/b/c/x /a/b/YY
 209	 * rmdir /a/b/c
 210	 *
 211	 * When the child is processed, its move/rename is delayed until its
 212	 * parent is processed (as explained above), but all other operations
 213	 * like update utimes, chown, chgrp, etc, are performed and the paths
 214	 * that it uses for those operations must use the orphanized name of
 215	 * its parent (the directory we're going to rm later), so we need to
 216	 * memorize that name.
 217	 *
 218	 * Indexed by the inode number of the directory to be deleted.
 219	 */
 220	struct rb_root orphan_dirs;
 
 
 
 
 
 
 
 
 
 221};
 222
 223struct pending_dir_move {
 224	struct rb_node node;
 225	struct list_head list;
 226	u64 parent_ino;
 227	u64 ino;
 228	u64 gen;
 229	struct list_head update_refs;
 230};
 231
 232struct waiting_dir_move {
 233	struct rb_node node;
 234	u64 ino;
 235	/*
 236	 * There might be some directory that could not be removed because it
 237	 * was waiting for this directory inode to be moved first. Therefore
 238	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
 239	 */
 240	u64 rmdir_ino;
 
 241	bool orphanized;
 242};
 243
 244struct orphan_dir_info {
 245	struct rb_node node;
 246	u64 ino;
 247	u64 gen;
 248	u64 last_dir_index_offset;
 
 249};
 250
 251struct name_cache_entry {
 252	struct list_head list;
 253	/*
 254	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
 255	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
 256	 * more then one inum would fall into the same entry, we use radix_list
 257	 * to store the additional entries. radix_list is also used to store
 258	 * entries where two entries have the same inum but different
 259	 * generations.
 260	 */
 261	struct list_head radix_list;
 262	u64 ino;
 263	u64 gen;
 264	u64 parent_ino;
 265	u64 parent_gen;
 266	int ret;
 267	int need_later_update;
 268	int name_len;
 269	char name[];
 270};
 271
 
 
 
 272#define ADVANCE							1
 273#define ADVANCE_ONLY_NEXT					-1
 274
 275enum btrfs_compare_tree_result {
 276	BTRFS_COMPARE_TREE_NEW,
 277	BTRFS_COMPARE_TREE_DELETED,
 278	BTRFS_COMPARE_TREE_CHANGED,
 279	BTRFS_COMPARE_TREE_SAME,
 280};
 281typedef int (*btrfs_changed_cb_t)(struct btrfs_path *left_path,
 282				  struct btrfs_path *right_path,
 283				  struct btrfs_key *key,
 284				  enum btrfs_compare_tree_result result,
 285				  void *ctx);
 286
 287__cold
 288static void inconsistent_snapshot_error(struct send_ctx *sctx,
 289					enum btrfs_compare_tree_result result,
 290					const char *what)
 291{
 292	const char *result_string;
 293
 294	switch (result) {
 295	case BTRFS_COMPARE_TREE_NEW:
 296		result_string = "new";
 297		break;
 298	case BTRFS_COMPARE_TREE_DELETED:
 299		result_string = "deleted";
 300		break;
 301	case BTRFS_COMPARE_TREE_CHANGED:
 302		result_string = "updated";
 303		break;
 304	case BTRFS_COMPARE_TREE_SAME:
 305		ASSERT(0);
 306		result_string = "unchanged";
 307		break;
 308	default:
 309		ASSERT(0);
 310		result_string = "unexpected";
 311	}
 312
 313	btrfs_err(sctx->send_root->fs_info,
 314		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
 315		  result_string, what, sctx->cmp_key->objectid,
 316		  sctx->send_root->root_key.objectid,
 317		  (sctx->parent_root ?
 318		   sctx->parent_root->root_key.objectid : 0));
 319}
 320
 
 
 
 
 
 
 
 
 
 
 
 321static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
 322
 323static struct waiting_dir_move *
 324get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
 325
 326static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
 327
 328static int need_send_hole(struct send_ctx *sctx)
 329{
 330	return (sctx->parent_root && !sctx->cur_inode_new &&
 331		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
 332		S_ISREG(sctx->cur_inode_mode));
 333}
 334
 335static void fs_path_reset(struct fs_path *p)
 336{
 337	if (p->reversed) {
 338		p->start = p->buf + p->buf_len - 1;
 339		p->end = p->start;
 340		*p->start = 0;
 341	} else {
 342		p->start = p->buf;
 343		p->end = p->start;
 344		*p->start = 0;
 345	}
 346}
 347
 348static struct fs_path *fs_path_alloc(void)
 349{
 350	struct fs_path *p;
 351
 352	p = kmalloc(sizeof(*p), GFP_KERNEL);
 353	if (!p)
 354		return NULL;
 355	p->reversed = 0;
 356	p->buf = p->inline_buf;
 357	p->buf_len = FS_PATH_INLINE_SIZE;
 358	fs_path_reset(p);
 359	return p;
 360}
 361
 362static struct fs_path *fs_path_alloc_reversed(void)
 363{
 364	struct fs_path *p;
 365
 366	p = fs_path_alloc();
 367	if (!p)
 368		return NULL;
 369	p->reversed = 1;
 370	fs_path_reset(p);
 371	return p;
 372}
 373
 374static void fs_path_free(struct fs_path *p)
 375{
 376	if (!p)
 377		return;
 378	if (p->buf != p->inline_buf)
 379		kfree(p->buf);
 380	kfree(p);
 381}
 382
 383static int fs_path_len(struct fs_path *p)
 384{
 385	return p->end - p->start;
 386}
 387
 388static int fs_path_ensure_buf(struct fs_path *p, int len)
 389{
 390	char *tmp_buf;
 391	int path_len;
 392	int old_buf_len;
 393
 394	len++;
 395
 396	if (p->buf_len >= len)
 397		return 0;
 398
 399	if (len > PATH_MAX) {
 400		WARN_ON(1);
 401		return -ENOMEM;
 402	}
 403
 404	path_len = p->end - p->start;
 405	old_buf_len = p->buf_len;
 406
 407	/*
 
 
 
 
 
 408	 * First time the inline_buf does not suffice
 409	 */
 410	if (p->buf == p->inline_buf) {
 411		tmp_buf = kmalloc(len, GFP_KERNEL);
 412		if (tmp_buf)
 413			memcpy(tmp_buf, p->buf, old_buf_len);
 414	} else {
 415		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
 416	}
 417	if (!tmp_buf)
 418		return -ENOMEM;
 419	p->buf = tmp_buf;
 420	/*
 421	 * The real size of the buffer is bigger, this will let the fast path
 422	 * happen most of the time
 423	 */
 424	p->buf_len = ksize(p->buf);
 425
 426	if (p->reversed) {
 427		tmp_buf = p->buf + old_buf_len - path_len - 1;
 428		p->end = p->buf + p->buf_len - 1;
 429		p->start = p->end - path_len;
 430		memmove(p->start, tmp_buf, path_len + 1);
 431	} else {
 432		p->start = p->buf;
 433		p->end = p->start + path_len;
 434	}
 435	return 0;
 436}
 437
 438static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
 439				   char **prepared)
 440{
 441	int ret;
 442	int new_len;
 443
 444	new_len = p->end - p->start + name_len;
 445	if (p->start != p->end)
 446		new_len++;
 447	ret = fs_path_ensure_buf(p, new_len);
 448	if (ret < 0)
 449		goto out;
 450
 451	if (p->reversed) {
 452		if (p->start != p->end)
 453			*--p->start = '/';
 454		p->start -= name_len;
 455		*prepared = p->start;
 456	} else {
 457		if (p->start != p->end)
 458			*p->end++ = '/';
 459		*prepared = p->end;
 460		p->end += name_len;
 461		*p->end = 0;
 462	}
 463
 464out:
 465	return ret;
 466}
 467
 468static int fs_path_add(struct fs_path *p, const char *name, int name_len)
 469{
 470	int ret;
 471	char *prepared;
 472
 473	ret = fs_path_prepare_for_add(p, name_len, &prepared);
 474	if (ret < 0)
 475		goto out;
 476	memcpy(prepared, name, name_len);
 477
 478out:
 479	return ret;
 480}
 481
 482static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
 483{
 484	int ret;
 485	char *prepared;
 486
 487	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
 488	if (ret < 0)
 489		goto out;
 490	memcpy(prepared, p2->start, p2->end - p2->start);
 491
 492out:
 493	return ret;
 494}
 495
 496static int fs_path_add_from_extent_buffer(struct fs_path *p,
 497					  struct extent_buffer *eb,
 498					  unsigned long off, int len)
 499{
 500	int ret;
 501	char *prepared;
 502
 503	ret = fs_path_prepare_for_add(p, len, &prepared);
 504	if (ret < 0)
 505		goto out;
 506
 507	read_extent_buffer(eb, prepared, off, len);
 508
 509out:
 510	return ret;
 511}
 512
 513static int fs_path_copy(struct fs_path *p, struct fs_path *from)
 514{
 515	int ret;
 516
 517	p->reversed = from->reversed;
 518	fs_path_reset(p);
 519
 520	ret = fs_path_add_path(p, from);
 521
 522	return ret;
 523}
 524
 525
 526static void fs_path_unreverse(struct fs_path *p)
 527{
 528	char *tmp;
 529	int len;
 530
 531	if (!p->reversed)
 532		return;
 533
 534	tmp = p->start;
 535	len = p->end - p->start;
 536	p->start = p->buf;
 537	p->end = p->start + len;
 538	memmove(p->start, tmp, len + 1);
 539	p->reversed = 0;
 540}
 541
 542static struct btrfs_path *alloc_path_for_send(void)
 543{
 544	struct btrfs_path *path;
 545
 546	path = btrfs_alloc_path();
 547	if (!path)
 548		return NULL;
 549	path->search_commit_root = 1;
 550	path->skip_locking = 1;
 551	path->need_commit_sem = 1;
 552	return path;
 553}
 554
 555static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
 556{
 557	int ret;
 558	u32 pos = 0;
 559
 560	while (pos < len) {
 561		ret = kernel_write(filp, buf + pos, len - pos, off);
 562		/* TODO handle that correctly */
 563		/*if (ret == -ERESTARTSYS) {
 564			continue;
 565		}*/
 566		if (ret < 0)
 567			return ret;
 568		if (ret == 0) {
 569			return -EIO;
 570		}
 571		pos += ret;
 572	}
 573
 574	return 0;
 575}
 576
 577static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
 578{
 579	struct btrfs_tlv_header *hdr;
 580	int total_len = sizeof(*hdr) + len;
 581	int left = sctx->send_max_size - sctx->send_size;
 582
 
 
 
 583	if (unlikely(left < total_len))
 584		return -EOVERFLOW;
 585
 586	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
 587	hdr->tlv_type = cpu_to_le16(attr);
 588	hdr->tlv_len = cpu_to_le16(len);
 589	memcpy(hdr + 1, data, len);
 590	sctx->send_size += total_len;
 591
 592	return 0;
 593}
 594
 595#define TLV_PUT_DEFINE_INT(bits) \
 596	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
 597			u##bits attr, u##bits value)			\
 598	{								\
 599		__le##bits __tmp = cpu_to_le##bits(value);		\
 600		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
 601	}
 602
 
 
 603TLV_PUT_DEFINE_INT(64)
 604
 605static int tlv_put_string(struct send_ctx *sctx, u16 attr,
 606			  const char *str, int len)
 607{
 608	if (len == -1)
 609		len = strlen(str);
 610	return tlv_put(sctx, attr, str, len);
 611}
 612
 613static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
 614			const u8 *uuid)
 615{
 616	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
 617}
 618
 619static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
 620				  struct extent_buffer *eb,
 621				  struct btrfs_timespec *ts)
 622{
 623	struct btrfs_timespec bts;
 624	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
 625	return tlv_put(sctx, attr, &bts, sizeof(bts));
 626}
 627
 628
 629#define TLV_PUT(sctx, attrtype, data, attrlen) \
 630	do { \
 631		ret = tlv_put(sctx, attrtype, data, attrlen); \
 632		if (ret < 0) \
 633			goto tlv_put_failure; \
 634	} while (0)
 635
 636#define TLV_PUT_INT(sctx, attrtype, bits, value) \
 637	do { \
 638		ret = tlv_put_u##bits(sctx, attrtype, value); \
 639		if (ret < 0) \
 640			goto tlv_put_failure; \
 641	} while (0)
 642
 643#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
 644#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
 645#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
 646#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
 647#define TLV_PUT_STRING(sctx, attrtype, str, len) \
 648	do { \
 649		ret = tlv_put_string(sctx, attrtype, str, len); \
 650		if (ret < 0) \
 651			goto tlv_put_failure; \
 652	} while (0)
 653#define TLV_PUT_PATH(sctx, attrtype, p) \
 654	do { \
 655		ret = tlv_put_string(sctx, attrtype, p->start, \
 656			p->end - p->start); \
 657		if (ret < 0) \
 658			goto tlv_put_failure; \
 659	} while(0)
 660#define TLV_PUT_UUID(sctx, attrtype, uuid) \
 661	do { \
 662		ret = tlv_put_uuid(sctx, attrtype, uuid); \
 663		if (ret < 0) \
 664			goto tlv_put_failure; \
 665	} while (0)
 666#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
 667	do { \
 668		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
 669		if (ret < 0) \
 670			goto tlv_put_failure; \
 671	} while (0)
 672
 673static int send_header(struct send_ctx *sctx)
 674{
 675	struct btrfs_stream_header hdr;
 676
 677	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
 678	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
 679
 680	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
 681					&sctx->send_off);
 682}
 683
 684/*
 685 * For each command/item we want to send to userspace, we call this function.
 686 */
 687static int begin_cmd(struct send_ctx *sctx, int cmd)
 688{
 689	struct btrfs_cmd_header *hdr;
 690
 691	if (WARN_ON(!sctx->send_buf))
 692		return -EINVAL;
 693
 694	BUG_ON(sctx->send_size);
 695
 696	sctx->send_size += sizeof(*hdr);
 697	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
 698	hdr->cmd = cpu_to_le16(cmd);
 699
 700	return 0;
 701}
 702
 703static int send_cmd(struct send_ctx *sctx)
 704{
 705	int ret;
 706	struct btrfs_cmd_header *hdr;
 707	u32 crc;
 708
 709	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
 710	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
 711	hdr->crc = 0;
 712
 713	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
 714	hdr->crc = cpu_to_le32(crc);
 715
 716	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
 717					&sctx->send_off);
 718
 719	sctx->total_send_size += sctx->send_size;
 720	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
 721	sctx->send_size = 0;
 
 722
 723	return ret;
 724}
 725
 726/*
 727 * Sends a move instruction to user space
 728 */
 729static int send_rename(struct send_ctx *sctx,
 730		     struct fs_path *from, struct fs_path *to)
 731{
 732	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 733	int ret;
 734
 735	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
 736
 737	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
 738	if (ret < 0)
 739		goto out;
 740
 741	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
 742	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
 743
 744	ret = send_cmd(sctx);
 745
 746tlv_put_failure:
 747out:
 748	return ret;
 749}
 750
 751/*
 752 * Sends a link instruction to user space
 753 */
 754static int send_link(struct send_ctx *sctx,
 755		     struct fs_path *path, struct fs_path *lnk)
 756{
 757	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 758	int ret;
 759
 760	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
 761
 762	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
 763	if (ret < 0)
 764		goto out;
 765
 766	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 767	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
 768
 769	ret = send_cmd(sctx);
 770
 771tlv_put_failure:
 772out:
 773	return ret;
 774}
 775
 776/*
 777 * Sends an unlink instruction to user space
 778 */
 779static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
 780{
 781	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 782	int ret;
 783
 784	btrfs_debug(fs_info, "send_unlink %s", path->start);
 785
 786	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
 787	if (ret < 0)
 788		goto out;
 789
 790	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 791
 792	ret = send_cmd(sctx);
 793
 794tlv_put_failure:
 795out:
 796	return ret;
 797}
 798
 799/*
 800 * Sends a rmdir instruction to user space
 801 */
 802static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
 803{
 804	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 805	int ret;
 806
 807	btrfs_debug(fs_info, "send_rmdir %s", path->start);
 808
 809	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
 810	if (ret < 0)
 811		goto out;
 812
 813	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 814
 815	ret = send_cmd(sctx);
 816
 817tlv_put_failure:
 818out:
 819	return ret;
 820}
 821
 
 
 
 
 
 
 
 
 
 
 
 822/*
 823 * Helper function to retrieve some fields from an inode item.
 824 */
 825static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
 826			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
 827			  u64 *gid, u64 *rdev)
 828{
 829	int ret;
 
 830	struct btrfs_inode_item *ii;
 831	struct btrfs_key key;
 832
 
 
 
 
 833	key.objectid = ino;
 834	key.type = BTRFS_INODE_ITEM_KEY;
 835	key.offset = 0;
 836	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 837	if (ret) {
 838		if (ret > 0)
 839			ret = -ENOENT;
 840		return ret;
 841	}
 842
 
 
 
 843	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
 844			struct btrfs_inode_item);
 845	if (size)
 846		*size = btrfs_inode_size(path->nodes[0], ii);
 847	if (gen)
 848		*gen = btrfs_inode_generation(path->nodes[0], ii);
 849	if (mode)
 850		*mode = btrfs_inode_mode(path->nodes[0], ii);
 851	if (uid)
 852		*uid = btrfs_inode_uid(path->nodes[0], ii);
 853	if (gid)
 854		*gid = btrfs_inode_gid(path->nodes[0], ii);
 855	if (rdev)
 856		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
 857
 
 
 858	return ret;
 859}
 860
 861static int get_inode_info(struct btrfs_root *root,
 862			  u64 ino, u64 *size, u64 *gen,
 863			  u64 *mode, u64 *uid, u64 *gid,
 864			  u64 *rdev)
 865{
 866	struct btrfs_path *path;
 867	int ret;
 
 868
 869	path = alloc_path_for_send();
 870	if (!path)
 871		return -ENOMEM;
 872	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
 873			       rdev);
 874	btrfs_free_path(path);
 875	return ret;
 876}
 877
 878typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
 879				   struct fs_path *p,
 880				   void *ctx);
 881
 882/*
 883 * Helper function to iterate the entries in ONE btrfs_inode_ref or
 884 * btrfs_inode_extref.
 885 * The iterate callback may return a non zero value to stop iteration. This can
 886 * be a negative value for error codes or 1 to simply stop it.
 887 *
 888 * path must point to the INODE_REF or INODE_EXTREF when called.
 889 */
 890static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
 891			     struct btrfs_key *found_key, int resolve,
 892			     iterate_inode_ref_t iterate, void *ctx)
 893{
 894	struct extent_buffer *eb = path->nodes[0];
 895	struct btrfs_item *item;
 896	struct btrfs_inode_ref *iref;
 897	struct btrfs_inode_extref *extref;
 898	struct btrfs_path *tmp_path;
 899	struct fs_path *p;
 900	u32 cur = 0;
 901	u32 total;
 902	int slot = path->slots[0];
 903	u32 name_len;
 904	char *start;
 905	int ret = 0;
 906	int num = 0;
 907	int index;
 908	u64 dir;
 909	unsigned long name_off;
 910	unsigned long elem_size;
 911	unsigned long ptr;
 912
 913	p = fs_path_alloc_reversed();
 914	if (!p)
 915		return -ENOMEM;
 916
 917	tmp_path = alloc_path_for_send();
 918	if (!tmp_path) {
 919		fs_path_free(p);
 920		return -ENOMEM;
 921	}
 922
 923
 924	if (found_key->type == BTRFS_INODE_REF_KEY) {
 925		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
 926						    struct btrfs_inode_ref);
 927		item = btrfs_item_nr(slot);
 928		total = btrfs_item_size(eb, item);
 929		elem_size = sizeof(*iref);
 930	} else {
 931		ptr = btrfs_item_ptr_offset(eb, slot);
 932		total = btrfs_item_size_nr(eb, slot);
 933		elem_size = sizeof(*extref);
 934	}
 935
 936	while (cur < total) {
 937		fs_path_reset(p);
 938
 939		if (found_key->type == BTRFS_INODE_REF_KEY) {
 940			iref = (struct btrfs_inode_ref *)(ptr + cur);
 941			name_len = btrfs_inode_ref_name_len(eb, iref);
 942			name_off = (unsigned long)(iref + 1);
 943			index = btrfs_inode_ref_index(eb, iref);
 944			dir = found_key->offset;
 945		} else {
 946			extref = (struct btrfs_inode_extref *)(ptr + cur);
 947			name_len = btrfs_inode_extref_name_len(eb, extref);
 948			name_off = (unsigned long)&extref->name;
 949			index = btrfs_inode_extref_index(eb, extref);
 950			dir = btrfs_inode_extref_parent(eb, extref);
 951		}
 952
 953		if (resolve) {
 954			start = btrfs_ref_to_path(root, tmp_path, name_len,
 955						  name_off, eb, dir,
 956						  p->buf, p->buf_len);
 957			if (IS_ERR(start)) {
 958				ret = PTR_ERR(start);
 959				goto out;
 960			}
 961			if (start < p->buf) {
 962				/* overflow , try again with larger buffer */
 963				ret = fs_path_ensure_buf(p,
 964						p->buf_len + p->buf - start);
 965				if (ret < 0)
 966					goto out;
 967				start = btrfs_ref_to_path(root, tmp_path,
 968							  name_len, name_off,
 969							  eb, dir,
 970							  p->buf, p->buf_len);
 971				if (IS_ERR(start)) {
 972					ret = PTR_ERR(start);
 973					goto out;
 974				}
 975				BUG_ON(start < p->buf);
 976			}
 977			p->start = start;
 978		} else {
 979			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
 980							     name_len);
 981			if (ret < 0)
 982				goto out;
 983		}
 984
 985		cur += elem_size + name_len;
 986		ret = iterate(num, dir, index, p, ctx);
 987		if (ret)
 988			goto out;
 989		num++;
 990	}
 991
 992out:
 993	btrfs_free_path(tmp_path);
 994	fs_path_free(p);
 995	return ret;
 996}
 997
 998typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
 999				  const char *name, int name_len,
1000				  const char *data, int data_len,
1001				  u8 type, void *ctx);
1002
1003/*
1004 * Helper function to iterate the entries in ONE btrfs_dir_item.
1005 * The iterate callback may return a non zero value to stop iteration. This can
1006 * be a negative value for error codes or 1 to simply stop it.
1007 *
1008 * path must point to the dir item when called.
1009 */
1010static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1011			    iterate_dir_item_t iterate, void *ctx)
1012{
1013	int ret = 0;
1014	struct extent_buffer *eb;
1015	struct btrfs_item *item;
1016	struct btrfs_dir_item *di;
1017	struct btrfs_key di_key;
1018	char *buf = NULL;
1019	int buf_len;
1020	u32 name_len;
1021	u32 data_len;
1022	u32 cur;
1023	u32 len;
1024	u32 total;
1025	int slot;
1026	int num;
1027	u8 type;
1028
1029	/*
1030	 * Start with a small buffer (1 page). If later we end up needing more
1031	 * space, which can happen for xattrs on a fs with a leaf size greater
1032	 * then the page size, attempt to increase the buffer. Typically xattr
1033	 * values are small.
1034	 */
1035	buf_len = PATH_MAX;
1036	buf = kmalloc(buf_len, GFP_KERNEL);
1037	if (!buf) {
1038		ret = -ENOMEM;
1039		goto out;
1040	}
1041
1042	eb = path->nodes[0];
1043	slot = path->slots[0];
1044	item = btrfs_item_nr(slot);
1045	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1046	cur = 0;
1047	len = 0;
1048	total = btrfs_item_size(eb, item);
1049
1050	num = 0;
1051	while (cur < total) {
1052		name_len = btrfs_dir_name_len(eb, di);
1053		data_len = btrfs_dir_data_len(eb, di);
1054		type = btrfs_dir_type(eb, di);
1055		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1056
1057		if (type == BTRFS_FT_XATTR) {
1058			if (name_len > XATTR_NAME_MAX) {
1059				ret = -ENAMETOOLONG;
1060				goto out;
1061			}
1062			if (name_len + data_len >
1063					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1064				ret = -E2BIG;
1065				goto out;
1066			}
1067		} else {
1068			/*
1069			 * Path too long
1070			 */
1071			if (name_len + data_len > PATH_MAX) {
1072				ret = -ENAMETOOLONG;
1073				goto out;
1074			}
1075		}
1076
1077		if (name_len + data_len > buf_len) {
1078			buf_len = name_len + data_len;
1079			if (is_vmalloc_addr(buf)) {
1080				vfree(buf);
1081				buf = NULL;
1082			} else {
1083				char *tmp = krealloc(buf, buf_len,
1084						GFP_KERNEL | __GFP_NOWARN);
1085
1086				if (!tmp)
1087					kfree(buf);
1088				buf = tmp;
1089			}
1090			if (!buf) {
1091				buf = kvmalloc(buf_len, GFP_KERNEL);
1092				if (!buf) {
1093					ret = -ENOMEM;
1094					goto out;
1095				}
1096			}
1097		}
1098
1099		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1100				name_len + data_len);
1101
1102		len = sizeof(*di) + name_len + data_len;
1103		di = (struct btrfs_dir_item *)((char *)di + len);
1104		cur += len;
1105
1106		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1107				data_len, type, ctx);
1108		if (ret < 0)
1109			goto out;
1110		if (ret) {
1111			ret = 0;
1112			goto out;
1113		}
1114
1115		num++;
1116	}
1117
1118out:
1119	kvfree(buf);
1120	return ret;
1121}
1122
1123static int __copy_first_ref(int num, u64 dir, int index,
1124			    struct fs_path *p, void *ctx)
1125{
1126	int ret;
1127	struct fs_path *pt = ctx;
1128
1129	ret = fs_path_copy(pt, p);
1130	if (ret < 0)
1131		return ret;
1132
1133	/* we want the first only */
1134	return 1;
1135}
1136
1137/*
1138 * Retrieve the first path of an inode. If an inode has more then one
1139 * ref/hardlink, this is ignored.
1140 */
1141static int get_inode_path(struct btrfs_root *root,
1142			  u64 ino, struct fs_path *path)
1143{
1144	int ret;
1145	struct btrfs_key key, found_key;
1146	struct btrfs_path *p;
1147
1148	p = alloc_path_for_send();
1149	if (!p)
1150		return -ENOMEM;
1151
1152	fs_path_reset(path);
1153
1154	key.objectid = ino;
1155	key.type = BTRFS_INODE_REF_KEY;
1156	key.offset = 0;
1157
1158	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1159	if (ret < 0)
1160		goto out;
1161	if (ret) {
1162		ret = 1;
1163		goto out;
1164	}
1165	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1166	if (found_key.objectid != ino ||
1167	    (found_key.type != BTRFS_INODE_REF_KEY &&
1168	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1169		ret = -ENOENT;
1170		goto out;
1171	}
1172
1173	ret = iterate_inode_ref(root, p, &found_key, 1,
1174				__copy_first_ref, path);
1175	if (ret < 0)
1176		goto out;
1177	ret = 0;
1178
1179out:
1180	btrfs_free_path(p);
1181	return ret;
1182}
1183
1184struct backref_ctx {
1185	struct send_ctx *sctx;
1186
1187	/* number of total found references */
1188	u64 found;
1189
1190	/*
1191	 * used for clones found in send_root. clones found behind cur_objectid
1192	 * and cur_offset are not considered as allowed clones.
1193	 */
1194	u64 cur_objectid;
1195	u64 cur_offset;
1196
1197	/* may be truncated in case it's the last extent in a file */
1198	u64 extent_len;
1199
1200	/* data offset in the file extent item */
1201	u64 data_offset;
1202
1203	/* Just to check for bugs in backref resolving */
1204	int found_itself;
 
1205};
1206
1207static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1208{
1209	u64 root = (u64)(uintptr_t)key;
1210	struct clone_root *cr = (struct clone_root *)elt;
1211
1212	if (root < cr->root->root_key.objectid)
1213		return -1;
1214	if (root > cr->root->root_key.objectid)
1215		return 1;
1216	return 0;
1217}
1218
1219static int __clone_root_cmp_sort(const void *e1, const void *e2)
1220{
1221	struct clone_root *cr1 = (struct clone_root *)e1;
1222	struct clone_root *cr2 = (struct clone_root *)e2;
1223
1224	if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1225		return -1;
1226	if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1227		return 1;
1228	return 0;
1229}
1230
1231/*
1232 * Called for every backref that is found for the current extent.
1233 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1234 */
1235static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
 
1236{
1237	struct backref_ctx *bctx = ctx_;
1238	struct clone_root *found;
1239
1240	/* First check if the root is in the list of accepted clone sources */
1241	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1242			bctx->sctx->clone_roots_cnt,
1243			sizeof(struct clone_root),
1244			__clone_root_cmp_bsearch);
1245	if (!found)
1246		return 0;
1247
1248	if (found->root == bctx->sctx->send_root &&
 
1249	    ino == bctx->cur_objectid &&
1250	    offset == bctx->cur_offset) {
1251		bctx->found_itself = 1;
1252	}
1253
1254	/*
1255	 * Make sure we don't consider clones from send_root that are
1256	 * behind the current inode/offset.
1257	 */
1258	if (found->root == bctx->sctx->send_root) {
1259		/*
1260		 * If the source inode was not yet processed we can't issue a
1261		 * clone operation, as the source extent does not exist yet at
1262		 * the destination of the stream.
1263		 */
1264		if (ino > bctx->cur_objectid)
1265			return 0;
1266		/*
1267		 * We clone from the inode currently being sent as long as the
1268		 * source extent is already processed, otherwise we could try
1269		 * to clone from an extent that does not exist yet at the
1270		 * destination of the stream.
1271		 */
1272		if (ino == bctx->cur_objectid &&
1273		    offset + bctx->extent_len >
1274		    bctx->sctx->cur_inode_next_write_offset)
1275			return 0;
1276	}
1277
1278	bctx->found++;
1279	found->found_refs++;
1280	if (ino < found->ino) {
1281		found->ino = ino;
1282		found->offset = offset;
1283	} else if (found->ino == ino) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1284		/*
1285		 * same extent found more then once in the same file.
 
 
 
 
1286		 */
1287		if (found->offset > offset + bctx->extent_len)
1288			found->offset = offset;
1289	}
1290
 
 
 
 
 
 
 
 
 
 
1291	return 0;
1292}
1293
 
 
 
 
 
 
 
 
 
 
 
 
1294/*
1295 * Given an inode, offset and extent item, it finds a good clone for a clone
1296 * instruction. Returns -ENOENT when none could be found. The function makes
1297 * sure that the returned clone is usable at the point where sending is at the
1298 * moment. This means, that no clones are accepted which lie behind the current
1299 * inode+offset.
1300 *
1301 * path must point to the extent item when called.
1302 */
1303static int find_extent_clone(struct send_ctx *sctx,
1304			     struct btrfs_path *path,
1305			     u64 ino, u64 data_offset,
1306			     u64 ino_size,
1307			     struct clone_root **found)
1308{
1309	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1310	int ret;
1311	int extent_type;
1312	u64 logical;
1313	u64 disk_byte;
1314	u64 num_bytes;
1315	u64 extent_item_pos;
1316	u64 flags = 0;
1317	struct btrfs_file_extent_item *fi;
1318	struct extent_buffer *eb = path->nodes[0];
1319	struct backref_ctx *backref_ctx = NULL;
 
1320	struct clone_root *cur_clone_root;
1321	struct btrfs_key found_key;
1322	struct btrfs_path *tmp_path;
1323	struct btrfs_extent_item *ei;
1324	int compressed;
1325	u32 i;
1326
1327	tmp_path = alloc_path_for_send();
1328	if (!tmp_path)
1329		return -ENOMEM;
 
 
 
 
 
1330
1331	/* We only use this path under the commit sem */
1332	tmp_path->need_commit_sem = 0;
 
 
1333
1334	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1335	if (!backref_ctx) {
1336		ret = -ENOMEM;
1337		goto out;
1338	}
1339
1340	if (data_offset >= ino_size) {
1341		/*
1342		 * There may be extents that lie behind the file's size.
1343		 * I at least had this in combination with snapshotting while
1344		 * writing large files.
1345		 */
1346		ret = 0;
1347		goto out;
1348	}
1349
1350	fi = btrfs_item_ptr(eb, path->slots[0],
1351			struct btrfs_file_extent_item);
1352	extent_type = btrfs_file_extent_type(eb, fi);
1353	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1354		ret = -ENOENT;
1355		goto out;
1356	}
1357	compressed = btrfs_file_extent_compression(eb, fi);
1358
1359	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1360	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1361	if (disk_byte == 0) {
1362		ret = -ENOENT;
1363		goto out;
1364	}
1365	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1366
1367	down_read(&fs_info->commit_root_sem);
1368	ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1369				  &found_key, &flags);
1370	up_read(&fs_info->commit_root_sem);
1371
1372	if (ret < 0)
1373		goto out;
1374	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1375		ret = -EIO;
1376		goto out;
1377	}
1378
1379	ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0],
1380			    struct btrfs_extent_item);
1381	/*
1382	 * Backreference walking (iterate_extent_inodes() below) is currently
1383	 * too expensive when an extent has a large number of references, both
1384	 * in time spent and used memory. So for now just fallback to write
1385	 * operations instead of clone operations when an extent has more than
1386	 * a certain amount of references.
1387	 */
1388	if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) {
1389		ret = -ENOENT;
1390		goto out;
1391	}
1392	btrfs_release_path(tmp_path);
1393
1394	/*
1395	 * Setup the clone roots.
1396	 */
1397	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1398		cur_clone_root = sctx->clone_roots + i;
1399		cur_clone_root->ino = (u64)-1;
1400		cur_clone_root->offset = 0;
1401		cur_clone_root->found_refs = 0;
 
1402	}
1403
1404	backref_ctx->sctx = sctx;
1405	backref_ctx->found = 0;
1406	backref_ctx->cur_objectid = ino;
1407	backref_ctx->cur_offset = data_offset;
1408	backref_ctx->found_itself = 0;
1409	backref_ctx->extent_len = num_bytes;
1410	/*
1411	 * For non-compressed extents iterate_extent_inodes() gives us extent
1412	 * offsets that already take into account the data offset, but not for
1413	 * compressed extents, since the offset is logical and not relative to
1414	 * the physical extent locations. We must take this into account to
1415	 * avoid sending clone offsets that go beyond the source file's size,
1416	 * which would result in the clone ioctl failing with -EINVAL on the
1417	 * receiving end.
1418	 */
1419	if (compressed == BTRFS_COMPRESS_NONE)
1420		backref_ctx->data_offset = 0;
1421	else
1422		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1423
1424	/*
1425	 * The last extent of a file may be too large due to page alignment.
1426	 * We need to adjust extent_len in this case so that the checks in
1427	 * __iterate_backrefs work.
1428	 */
1429	if (data_offset + num_bytes >= ino_size)
1430		backref_ctx->extent_len = ino_size - data_offset;
 
 
1431
1432	/*
1433	 * Now collect all backrefs.
1434	 */
 
1435	if (compressed == BTRFS_COMPRESS_NONE)
1436		extent_item_pos = logical - found_key.objectid;
1437	else
1438		extent_item_pos = 0;
1439	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1440				    extent_item_pos, 1, __iterate_backrefs,
1441				    backref_ctx, false);
 
 
 
 
 
 
 
 
 
 
 
 
1442
 
 
1443	if (ret < 0)
1444		goto out;
1445
1446	if (!backref_ctx->found_itself) {
1447		/* found a bug in backref code? */
1448		ret = -EIO;
1449		btrfs_err(fs_info,
1450			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1451			  ino, data_offset, disk_byte, found_key.objectid);
1452		goto out;
 
 
 
 
 
 
 
 
 
1453	}
 
1454
1455	btrfs_debug(fs_info,
1456		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1457		    data_offset, ino, num_bytes, logical);
1458
1459	if (!backref_ctx->found)
1460		btrfs_debug(fs_info, "no clones found");
 
 
1461
1462	cur_clone_root = NULL;
1463	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1464		if (sctx->clone_roots[i].found_refs) {
1465			if (!cur_clone_root)
1466				cur_clone_root = sctx->clone_roots + i;
1467			else if (sctx->clone_roots[i].root == sctx->send_root)
1468				/* prefer clones from send_root over others */
1469				cur_clone_root = sctx->clone_roots + i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1470		}
1471
1472	}
1473
1474	if (cur_clone_root) {
1475		*found = cur_clone_root;
1476		ret = 0;
1477	} else {
1478		ret = -ENOENT;
1479	}
1480
1481out:
1482	btrfs_free_path(tmp_path);
1483	kfree(backref_ctx);
1484	return ret;
1485}
1486
1487static int read_symlink(struct btrfs_root *root,
1488			u64 ino,
1489			struct fs_path *dest)
1490{
1491	int ret;
1492	struct btrfs_path *path;
1493	struct btrfs_key key;
1494	struct btrfs_file_extent_item *ei;
1495	u8 type;
1496	u8 compression;
1497	unsigned long off;
1498	int len;
1499
1500	path = alloc_path_for_send();
1501	if (!path)
1502		return -ENOMEM;
1503
1504	key.objectid = ino;
1505	key.type = BTRFS_EXTENT_DATA_KEY;
1506	key.offset = 0;
1507	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1508	if (ret < 0)
1509		goto out;
1510	if (ret) {
1511		/*
1512		 * An empty symlink inode. Can happen in rare error paths when
1513		 * creating a symlink (transaction committed before the inode
1514		 * eviction handler removed the symlink inode items and a crash
1515		 * happened in between or the subvol was snapshoted in between).
1516		 * Print an informative message to dmesg/syslog so that the user
1517		 * can delete the symlink.
1518		 */
1519		btrfs_err(root->fs_info,
1520			  "Found empty symlink inode %llu at root %llu",
1521			  ino, root->root_key.objectid);
1522		ret = -EIO;
1523		goto out;
1524	}
1525
1526	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1527			struct btrfs_file_extent_item);
1528	type = btrfs_file_extent_type(path->nodes[0], ei);
 
 
 
 
 
 
 
1529	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1530	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1531	BUG_ON(compression);
 
 
 
 
 
1532
1533	off = btrfs_file_extent_inline_start(ei);
1534	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1535
1536	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1537
1538out:
1539	btrfs_free_path(path);
1540	return ret;
1541}
1542
1543/*
1544 * Helper function to generate a file name that is unique in the root of
1545 * send_root and parent_root. This is used to generate names for orphan inodes.
1546 */
1547static int gen_unique_name(struct send_ctx *sctx,
1548			   u64 ino, u64 gen,
1549			   struct fs_path *dest)
1550{
1551	int ret = 0;
1552	struct btrfs_path *path;
1553	struct btrfs_dir_item *di;
1554	char tmp[64];
1555	int len;
1556	u64 idx = 0;
1557
1558	path = alloc_path_for_send();
1559	if (!path)
1560		return -ENOMEM;
1561
1562	while (1) {
 
 
1563		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1564				ino, gen, idx);
1565		ASSERT(len < sizeof(tmp));
 
 
1566
1567		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1568				path, BTRFS_FIRST_FREE_OBJECTID,
1569				tmp, strlen(tmp), 0);
1570		btrfs_release_path(path);
1571		if (IS_ERR(di)) {
1572			ret = PTR_ERR(di);
1573			goto out;
1574		}
1575		if (di) {
1576			/* not unique, try again */
1577			idx++;
1578			continue;
1579		}
1580
1581		if (!sctx->parent_root) {
1582			/* unique */
1583			ret = 0;
1584			break;
1585		}
1586
1587		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1588				path, BTRFS_FIRST_FREE_OBJECTID,
1589				tmp, strlen(tmp), 0);
1590		btrfs_release_path(path);
1591		if (IS_ERR(di)) {
1592			ret = PTR_ERR(di);
1593			goto out;
1594		}
1595		if (di) {
1596			/* not unique, try again */
1597			idx++;
1598			continue;
1599		}
1600		/* unique */
1601		break;
1602	}
1603
1604	ret = fs_path_add(dest, tmp, strlen(tmp));
1605
1606out:
1607	btrfs_free_path(path);
1608	return ret;
1609}
1610
1611enum inode_state {
1612	inode_state_no_change,
1613	inode_state_will_create,
1614	inode_state_did_create,
1615	inode_state_will_delete,
1616	inode_state_did_delete,
1617};
1618
1619static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
 
1620{
1621	int ret;
1622	int left_ret;
1623	int right_ret;
1624	u64 left_gen;
1625	u64 right_gen;
 
1626
1627	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1628			NULL, NULL);
1629	if (ret < 0 && ret != -ENOENT)
1630		goto out;
1631	left_ret = ret;
 
 
 
1632
1633	if (!sctx->parent_root) {
1634		right_ret = -ENOENT;
1635	} else {
1636		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1637				NULL, NULL, NULL, NULL);
1638		if (ret < 0 && ret != -ENOENT)
1639			goto out;
1640		right_ret = ret;
 
 
 
1641	}
1642
1643	if (!left_ret && !right_ret) {
1644		if (left_gen == gen && right_gen == gen) {
1645			ret = inode_state_no_change;
1646		} else if (left_gen == gen) {
1647			if (ino < sctx->send_progress)
1648				ret = inode_state_did_create;
1649			else
1650				ret = inode_state_will_create;
1651		} else if (right_gen == gen) {
1652			if (ino < sctx->send_progress)
1653				ret = inode_state_did_delete;
1654			else
1655				ret = inode_state_will_delete;
1656		} else  {
1657			ret = -ENOENT;
1658		}
1659	} else if (!left_ret) {
1660		if (left_gen == gen) {
1661			if (ino < sctx->send_progress)
1662				ret = inode_state_did_create;
1663			else
1664				ret = inode_state_will_create;
1665		} else {
1666			ret = -ENOENT;
1667		}
1668	} else if (!right_ret) {
1669		if (right_gen == gen) {
1670			if (ino < sctx->send_progress)
1671				ret = inode_state_did_delete;
1672			else
1673				ret = inode_state_will_delete;
1674		} else {
1675			ret = -ENOENT;
1676		}
1677	} else {
1678		ret = -ENOENT;
1679	}
1680
1681out:
1682	return ret;
1683}
1684
1685static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
 
1686{
1687	int ret;
1688
1689	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1690		return 1;
1691
1692	ret = get_cur_inode_state(sctx, ino, gen);
1693	if (ret < 0)
1694		goto out;
1695
1696	if (ret == inode_state_no_change ||
1697	    ret == inode_state_did_create ||
1698	    ret == inode_state_will_delete)
1699		ret = 1;
1700	else
1701		ret = 0;
1702
1703out:
1704	return ret;
1705}
1706
1707/*
1708 * Helper function to lookup a dir item in a dir.
1709 */
1710static int lookup_dir_item_inode(struct btrfs_root *root,
1711				 u64 dir, const char *name, int name_len,
1712				 u64 *found_inode,
1713				 u8 *found_type)
1714{
1715	int ret = 0;
1716	struct btrfs_dir_item *di;
1717	struct btrfs_key key;
1718	struct btrfs_path *path;
 
1719
1720	path = alloc_path_for_send();
1721	if (!path)
1722		return -ENOMEM;
1723
1724	di = btrfs_lookup_dir_item(NULL, root, path,
1725			dir, name, name_len, 0);
1726	if (IS_ERR_OR_NULL(di)) {
1727		ret = di ? PTR_ERR(di) : -ENOENT;
1728		goto out;
1729	}
1730	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1731	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1732		ret = -ENOENT;
1733		goto out;
1734	}
1735	*found_inode = key.objectid;
1736	*found_type = btrfs_dir_type(path->nodes[0], di);
1737
1738out:
1739	btrfs_free_path(path);
1740	return ret;
1741}
1742
1743/*
1744 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1745 * generation of the parent dir and the name of the dir entry.
1746 */
1747static int get_first_ref(struct btrfs_root *root, u64 ino,
1748			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1749{
1750	int ret;
1751	struct btrfs_key key;
1752	struct btrfs_key found_key;
1753	struct btrfs_path *path;
1754	int len;
1755	u64 parent_dir;
1756
1757	path = alloc_path_for_send();
1758	if (!path)
1759		return -ENOMEM;
1760
1761	key.objectid = ino;
1762	key.type = BTRFS_INODE_REF_KEY;
1763	key.offset = 0;
1764
1765	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1766	if (ret < 0)
1767		goto out;
1768	if (!ret)
1769		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1770				path->slots[0]);
1771	if (ret || found_key.objectid != ino ||
1772	    (found_key.type != BTRFS_INODE_REF_KEY &&
1773	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1774		ret = -ENOENT;
1775		goto out;
1776	}
1777
1778	if (found_key.type == BTRFS_INODE_REF_KEY) {
1779		struct btrfs_inode_ref *iref;
1780		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1781				      struct btrfs_inode_ref);
1782		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1783		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1784						     (unsigned long)(iref + 1),
1785						     len);
1786		parent_dir = found_key.offset;
1787	} else {
1788		struct btrfs_inode_extref *extref;
1789		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1790					struct btrfs_inode_extref);
1791		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1792		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1793					(unsigned long)&extref->name, len);
1794		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1795	}
1796	if (ret < 0)
1797		goto out;
1798	btrfs_release_path(path);
1799
1800	if (dir_gen) {
1801		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1802				     NULL, NULL, NULL);
1803		if (ret < 0)
1804			goto out;
1805	}
1806
1807	*dir = parent_dir;
1808
1809out:
1810	btrfs_free_path(path);
1811	return ret;
1812}
1813
1814static int is_first_ref(struct btrfs_root *root,
1815			u64 ino, u64 dir,
1816			const char *name, int name_len)
1817{
1818	int ret;
1819	struct fs_path *tmp_name;
1820	u64 tmp_dir;
1821
1822	tmp_name = fs_path_alloc();
1823	if (!tmp_name)
1824		return -ENOMEM;
1825
1826	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1827	if (ret < 0)
1828		goto out;
1829
1830	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1831		ret = 0;
1832		goto out;
1833	}
1834
1835	ret = !memcmp(tmp_name->start, name, name_len);
1836
1837out:
1838	fs_path_free(tmp_name);
1839	return ret;
1840}
1841
1842/*
1843 * Used by process_recorded_refs to determine if a new ref would overwrite an
1844 * already existing ref. In case it detects an overwrite, it returns the
1845 * inode/gen in who_ino/who_gen.
1846 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1847 * to make sure later references to the overwritten inode are possible.
1848 * Orphanizing is however only required for the first ref of an inode.
1849 * process_recorded_refs does an additional is_first_ref check to see if
1850 * orphanizing is really required.
1851 */
1852static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1853			      const char *name, int name_len,
1854			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
1855{
1856	int ret = 0;
1857	u64 gen;
1858	u64 other_inode = 0;
1859	u8 other_type = 0;
1860
1861	if (!sctx->parent_root)
1862		goto out;
1863
1864	ret = is_inode_existent(sctx, dir, dir_gen);
1865	if (ret <= 0)
1866		goto out;
1867
1868	/*
1869	 * If we have a parent root we need to verify that the parent dir was
1870	 * not deleted and then re-created, if it was then we have no overwrite
1871	 * and we can just unlink this entry.
 
 
 
1872	 */
1873	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1874		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1875				     NULL, NULL, NULL);
1876		if (ret < 0 && ret != -ENOENT)
1877			goto out;
1878		if (ret) {
1879			ret = 0;
1880			goto out;
1881		}
1882		if (gen != dir_gen)
1883			goto out;
1884	}
1885
1886	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1887			&other_inode, &other_type);
1888	if (ret < 0 && ret != -ENOENT)
1889		goto out;
1890	if (ret) {
1891		ret = 0;
1892		goto out;
1893	}
1894
1895	/*
1896	 * Check if the overwritten ref was already processed. If yes, the ref
1897	 * was already unlinked/moved, so we can safely assume that we will not
1898	 * overwrite anything at this point in time.
1899	 */
1900	if (other_inode > sctx->send_progress ||
1901	    is_waiting_for_move(sctx, other_inode)) {
1902		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1903				who_gen, who_mode, NULL, NULL, NULL);
1904		if (ret < 0)
1905			goto out;
1906
1907		ret = 1;
1908		*who_ino = other_inode;
1909	} else {
1910		ret = 0;
 
1911	}
1912
1913out:
1914	return ret;
1915}
1916
1917/*
1918 * Checks if the ref was overwritten by an already processed inode. This is
1919 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1920 * thus the orphan name needs be used.
1921 * process_recorded_refs also uses it to avoid unlinking of refs that were
1922 * overwritten.
1923 */
1924static int did_overwrite_ref(struct send_ctx *sctx,
1925			    u64 dir, u64 dir_gen,
1926			    u64 ino, u64 ino_gen,
1927			    const char *name, int name_len)
1928{
1929	int ret = 0;
1930	u64 gen;
1931	u64 ow_inode;
1932	u8 other_type;
 
1933
1934	if (!sctx->parent_root)
1935		goto out;
1936
1937	ret = is_inode_existent(sctx, dir, dir_gen);
1938	if (ret <= 0)
1939		goto out;
1940
1941	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1942		ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1943				     NULL, NULL, NULL);
1944		if (ret < 0 && ret != -ENOENT)
1945			goto out;
1946		if (ret) {
1947			ret = 0;
1948			goto out;
1949		}
1950		if (gen != dir_gen)
1951			goto out;
1952	}
1953
1954	/* check if the ref was overwritten by another ref */
1955	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1956			&ow_inode, &other_type);
1957	if (ret < 0 && ret != -ENOENT)
1958		goto out;
1959	if (ret) {
1960		/* was never and will never be overwritten */
1961		ret = 0;
1962		goto out;
 
1963	}
1964
1965	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1966			NULL, NULL);
1967	if (ret < 0)
1968		goto out;
1969
1970	if (ow_inode == ino && gen == ino_gen) {
1971		ret = 0;
1972		goto out;
1973	}
1974
1975	/*
1976	 * We know that it is or will be overwritten. Check this now.
1977	 * The current inode being processed might have been the one that caused
1978	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1979	 * the current inode being processed.
1980	 */
1981	if ((ow_inode < sctx->send_progress) ||
1982	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1983	     gen == sctx->cur_inode_gen))
1984		ret = 1;
1985	else
1986		ret = 0;
 
 
 
 
 
 
1987
1988out:
1989	return ret;
1990}
1991
1992/*
1993 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1994 * that got overwritten. This is used by process_recorded_refs to determine
1995 * if it has to use the path as returned by get_cur_path or the orphan name.
1996 */
1997static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1998{
1999	int ret = 0;
2000	struct fs_path *name = NULL;
2001	u64 dir;
2002	u64 dir_gen;
2003
2004	if (!sctx->parent_root)
2005		goto out;
2006
2007	name = fs_path_alloc();
2008	if (!name)
2009		return -ENOMEM;
2010
2011	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2012	if (ret < 0)
2013		goto out;
2014
2015	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2016			name->start, fs_path_len(name));
2017
2018out:
2019	fs_path_free(name);
2020	return ret;
2021}
2022
2023/*
2024 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2025 * so we need to do some special handling in case we have clashes. This function
2026 * takes care of this with the help of name_cache_entry::radix_list.
2027 * In case of error, nce is kfreed.
2028 */
2029static int name_cache_insert(struct send_ctx *sctx,
2030			     struct name_cache_entry *nce)
2031{
2032	int ret = 0;
2033	struct list_head *nce_head;
2034
2035	nce_head = radix_tree_lookup(&sctx->name_cache,
2036			(unsigned long)nce->ino);
2037	if (!nce_head) {
2038		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2039		if (!nce_head) {
2040			kfree(nce);
2041			return -ENOMEM;
2042		}
2043		INIT_LIST_HEAD(nce_head);
2044
2045		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2046		if (ret < 0) {
2047			kfree(nce_head);
2048			kfree(nce);
2049			return ret;
2050		}
2051	}
2052	list_add_tail(&nce->radix_list, nce_head);
2053	list_add_tail(&nce->list, &sctx->name_cache_list);
2054	sctx->name_cache_size++;
2055
2056	return ret;
2057}
2058
2059static void name_cache_delete(struct send_ctx *sctx,
2060			      struct name_cache_entry *nce)
2061{
2062	struct list_head *nce_head;
2063
2064	nce_head = radix_tree_lookup(&sctx->name_cache,
2065			(unsigned long)nce->ino);
2066	if (!nce_head) {
2067		btrfs_err(sctx->send_root->fs_info,
2068	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2069			nce->ino, sctx->name_cache_size);
2070	}
2071
2072	list_del(&nce->radix_list);
2073	list_del(&nce->list);
2074	sctx->name_cache_size--;
2075
2076	/*
2077	 * We may not get to the final release of nce_head if the lookup fails
2078	 */
2079	if (nce_head && list_empty(nce_head)) {
2080		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2081		kfree(nce_head);
2082	}
2083}
2084
2085static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2086						    u64 ino, u64 gen)
2087{
2088	struct list_head *nce_head;
2089	struct name_cache_entry *cur;
2090
2091	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2092	if (!nce_head)
2093		return NULL;
2094
2095	list_for_each_entry(cur, nce_head, radix_list) {
2096		if (cur->ino == ino && cur->gen == gen)
2097			return cur;
2098	}
2099	return NULL;
2100}
2101
2102/*
2103 * Removes the entry from the list and adds it back to the end. This marks the
2104 * entry as recently used so that name_cache_clean_unused does not remove it.
2105 */
2106static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2107{
2108	list_del(&nce->list);
2109	list_add_tail(&nce->list, &sctx->name_cache_list);
2110}
2111
2112/*
2113 * Remove some entries from the beginning of name_cache_list.
2114 */
2115static void name_cache_clean_unused(struct send_ctx *sctx)
2116{
2117	struct name_cache_entry *nce;
2118
2119	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2120		return;
2121
2122	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2123		nce = list_entry(sctx->name_cache_list.next,
2124				struct name_cache_entry, list);
2125		name_cache_delete(sctx, nce);
2126		kfree(nce);
2127	}
2128}
2129
2130static void name_cache_free(struct send_ctx *sctx)
2131{
2132	struct name_cache_entry *nce;
2133
2134	while (!list_empty(&sctx->name_cache_list)) {
2135		nce = list_entry(sctx->name_cache_list.next,
2136				struct name_cache_entry, list);
2137		name_cache_delete(sctx, nce);
2138		kfree(nce);
2139	}
2140}
2141
2142/*
2143 * Used by get_cur_path for each ref up to the root.
2144 * Returns 0 if it succeeded.
2145 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2146 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2147 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2148 * Returns <0 in case of error.
2149 */
2150static int __get_cur_name_and_parent(struct send_ctx *sctx,
2151				     u64 ino, u64 gen,
2152				     u64 *parent_ino,
2153				     u64 *parent_gen,
2154				     struct fs_path *dest)
2155{
2156	int ret;
2157	int nce_ret;
2158	struct name_cache_entry *nce = NULL;
2159
2160	/*
2161	 * First check if we already did a call to this function with the same
2162	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2163	 * return the cached result.
2164	 */
2165	nce = name_cache_search(sctx, ino, gen);
2166	if (nce) {
2167		if (ino < sctx->send_progress && nce->need_later_update) {
2168			name_cache_delete(sctx, nce);
2169			kfree(nce);
2170			nce = NULL;
2171		} else {
2172			name_cache_used(sctx, nce);
2173			*parent_ino = nce->parent_ino;
2174			*parent_gen = nce->parent_gen;
2175			ret = fs_path_add(dest, nce->name, nce->name_len);
2176			if (ret < 0)
2177				goto out;
2178			ret = nce->ret;
2179			goto out;
2180		}
2181	}
2182
2183	/*
2184	 * If the inode is not existent yet, add the orphan name and return 1.
2185	 * This should only happen for the parent dir that we determine in
2186	 * __record_new_ref
2187	 */
2188	ret = is_inode_existent(sctx, ino, gen);
2189	if (ret < 0)
2190		goto out;
2191
2192	if (!ret) {
2193		ret = gen_unique_name(sctx, ino, gen, dest);
2194		if (ret < 0)
2195			goto out;
2196		ret = 1;
2197		goto out_cache;
2198	}
2199
2200	/*
2201	 * Depending on whether the inode was already processed or not, use
2202	 * send_root or parent_root for ref lookup.
2203	 */
2204	if (ino < sctx->send_progress)
2205		ret = get_first_ref(sctx->send_root, ino,
2206				    parent_ino, parent_gen, dest);
2207	else
2208		ret = get_first_ref(sctx->parent_root, ino,
2209				    parent_ino, parent_gen, dest);
2210	if (ret < 0)
2211		goto out;
2212
2213	/*
2214	 * Check if the ref was overwritten by an inode's ref that was processed
2215	 * earlier. If yes, treat as orphan and return 1.
2216	 */
2217	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2218			dest->start, dest->end - dest->start);
2219	if (ret < 0)
2220		goto out;
2221	if (ret) {
2222		fs_path_reset(dest);
2223		ret = gen_unique_name(sctx, ino, gen, dest);
2224		if (ret < 0)
2225			goto out;
2226		ret = 1;
2227	}
2228
2229out_cache:
2230	/*
2231	 * Store the result of the lookup in the name cache.
2232	 */
2233	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2234	if (!nce) {
2235		ret = -ENOMEM;
2236		goto out;
2237	}
2238
2239	nce->ino = ino;
2240	nce->gen = gen;
2241	nce->parent_ino = *parent_ino;
2242	nce->parent_gen = *parent_gen;
2243	nce->name_len = fs_path_len(dest);
2244	nce->ret = ret;
2245	strcpy(nce->name, dest->start);
2246
2247	if (ino < sctx->send_progress)
2248		nce->need_later_update = 0;
2249	else
2250		nce->need_later_update = 1;
2251
2252	nce_ret = name_cache_insert(sctx, nce);
2253	if (nce_ret < 0)
 
2254		ret = nce_ret;
2255	name_cache_clean_unused(sctx);
2256
2257out:
2258	return ret;
2259}
2260
2261/*
2262 * Magic happens here. This function returns the first ref to an inode as it
2263 * would look like while receiving the stream at this point in time.
2264 * We walk the path up to the root. For every inode in between, we check if it
2265 * was already processed/sent. If yes, we continue with the parent as found
2266 * in send_root. If not, we continue with the parent as found in parent_root.
2267 * If we encounter an inode that was deleted at this point in time, we use the
2268 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2269 * that were not created yet and overwritten inodes/refs.
2270 *
2271 * When do we have orphan inodes:
2272 * 1. When an inode is freshly created and thus no valid refs are available yet
2273 * 2. When a directory lost all it's refs (deleted) but still has dir items
2274 *    inside which were not processed yet (pending for move/delete). If anyone
2275 *    tried to get the path to the dir items, it would get a path inside that
2276 *    orphan directory.
2277 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2278 *    of an unprocessed inode. If in that case the first ref would be
2279 *    overwritten, the overwritten inode gets "orphanized". Later when we
2280 *    process this overwritten inode, it is restored at a new place by moving
2281 *    the orphan inode.
2282 *
2283 * sctx->send_progress tells this function at which point in time receiving
2284 * would be.
2285 */
2286static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2287			struct fs_path *dest)
2288{
2289	int ret = 0;
2290	struct fs_path *name = NULL;
2291	u64 parent_inode = 0;
2292	u64 parent_gen = 0;
2293	int stop = 0;
2294
2295	name = fs_path_alloc();
2296	if (!name) {
2297		ret = -ENOMEM;
2298		goto out;
2299	}
2300
2301	dest->reversed = 1;
2302	fs_path_reset(dest);
2303
2304	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2305		struct waiting_dir_move *wdm;
2306
2307		fs_path_reset(name);
2308
2309		if (is_waiting_for_rm(sctx, ino)) {
2310			ret = gen_unique_name(sctx, ino, gen, name);
2311			if (ret < 0)
2312				goto out;
2313			ret = fs_path_add_path(dest, name);
2314			break;
2315		}
2316
2317		wdm = get_waiting_dir_move(sctx, ino);
2318		if (wdm && wdm->orphanized) {
2319			ret = gen_unique_name(sctx, ino, gen, name);
2320			stop = 1;
2321		} else if (wdm) {
2322			ret = get_first_ref(sctx->parent_root, ino,
2323					    &parent_inode, &parent_gen, name);
2324		} else {
2325			ret = __get_cur_name_and_parent(sctx, ino, gen,
2326							&parent_inode,
2327							&parent_gen, name);
2328			if (ret)
2329				stop = 1;
2330		}
2331
2332		if (ret < 0)
2333			goto out;
2334
2335		ret = fs_path_add_path(dest, name);
2336		if (ret < 0)
2337			goto out;
2338
2339		ino = parent_inode;
2340		gen = parent_gen;
2341	}
2342
2343out:
2344	fs_path_free(name);
2345	if (!ret)
2346		fs_path_unreverse(dest);
2347	return ret;
2348}
2349
2350/*
2351 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2352 */
2353static int send_subvol_begin(struct send_ctx *sctx)
2354{
2355	int ret;
2356	struct btrfs_root *send_root = sctx->send_root;
2357	struct btrfs_root *parent_root = sctx->parent_root;
2358	struct btrfs_path *path;
2359	struct btrfs_key key;
2360	struct btrfs_root_ref *ref;
2361	struct extent_buffer *leaf;
2362	char *name = NULL;
2363	int namelen;
2364
2365	path = btrfs_alloc_path();
2366	if (!path)
2367		return -ENOMEM;
2368
2369	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2370	if (!name) {
2371		btrfs_free_path(path);
2372		return -ENOMEM;
2373	}
2374
2375	key.objectid = send_root->root_key.objectid;
2376	key.type = BTRFS_ROOT_BACKREF_KEY;
2377	key.offset = 0;
2378
2379	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2380				&key, path, 1, 0);
2381	if (ret < 0)
2382		goto out;
2383	if (ret) {
2384		ret = -ENOENT;
2385		goto out;
2386	}
2387
2388	leaf = path->nodes[0];
2389	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2390	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2391	    key.objectid != send_root->root_key.objectid) {
2392		ret = -ENOENT;
2393		goto out;
2394	}
2395	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2396	namelen = btrfs_root_ref_name_len(leaf, ref);
2397	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2398	btrfs_release_path(path);
2399
2400	if (parent_root) {
2401		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2402		if (ret < 0)
2403			goto out;
2404	} else {
2405		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2406		if (ret < 0)
2407			goto out;
2408	}
2409
2410	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2411
2412	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2413		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2414			    sctx->send_root->root_item.received_uuid);
2415	else
2416		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2417			    sctx->send_root->root_item.uuid);
2418
2419	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2420		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2421	if (parent_root) {
2422		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2423			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2424				     parent_root->root_item.received_uuid);
2425		else
2426			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2427				     parent_root->root_item.uuid);
2428		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2429			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2430	}
2431
2432	ret = send_cmd(sctx);
2433
2434tlv_put_failure:
2435out:
2436	btrfs_free_path(path);
2437	kfree(name);
2438	return ret;
2439}
2440
2441static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2442{
2443	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2444	int ret = 0;
2445	struct fs_path *p;
2446
2447	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2448
2449	p = fs_path_alloc();
2450	if (!p)
2451		return -ENOMEM;
2452
2453	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2454	if (ret < 0)
2455		goto out;
2456
2457	ret = get_cur_path(sctx, ino, gen, p);
2458	if (ret < 0)
2459		goto out;
2460	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2461	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2462
2463	ret = send_cmd(sctx);
2464
2465tlv_put_failure:
2466out:
2467	fs_path_free(p);
2468	return ret;
2469}
2470
2471static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2472{
2473	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2474	int ret = 0;
2475	struct fs_path *p;
2476
2477	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2478
2479	p = fs_path_alloc();
2480	if (!p)
2481		return -ENOMEM;
2482
2483	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2484	if (ret < 0)
2485		goto out;
2486
2487	ret = get_cur_path(sctx, ino, gen, p);
2488	if (ret < 0)
2489		goto out;
2490	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2491	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2492
2493	ret = send_cmd(sctx);
2494
2495tlv_put_failure:
2496out:
2497	fs_path_free(p);
2498	return ret;
2499}
2500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2501static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2502{
2503	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2504	int ret = 0;
2505	struct fs_path *p;
2506
2507	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2508		    ino, uid, gid);
2509
2510	p = fs_path_alloc();
2511	if (!p)
2512		return -ENOMEM;
2513
2514	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2515	if (ret < 0)
2516		goto out;
2517
2518	ret = get_cur_path(sctx, ino, gen, p);
2519	if (ret < 0)
2520		goto out;
2521	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2522	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2523	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2524
2525	ret = send_cmd(sctx);
2526
2527tlv_put_failure:
2528out:
2529	fs_path_free(p);
2530	return ret;
2531}
2532
2533static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2534{
2535	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2536	int ret = 0;
2537	struct fs_path *p = NULL;
2538	struct btrfs_inode_item *ii;
2539	struct btrfs_path *path = NULL;
2540	struct extent_buffer *eb;
2541	struct btrfs_key key;
2542	int slot;
2543
2544	btrfs_debug(fs_info, "send_utimes %llu", ino);
2545
2546	p = fs_path_alloc();
2547	if (!p)
2548		return -ENOMEM;
2549
2550	path = alloc_path_for_send();
2551	if (!path) {
2552		ret = -ENOMEM;
2553		goto out;
2554	}
2555
2556	key.objectid = ino;
2557	key.type = BTRFS_INODE_ITEM_KEY;
2558	key.offset = 0;
2559	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2560	if (ret > 0)
2561		ret = -ENOENT;
2562	if (ret < 0)
2563		goto out;
2564
2565	eb = path->nodes[0];
2566	slot = path->slots[0];
2567	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2568
2569	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2570	if (ret < 0)
2571		goto out;
2572
2573	ret = get_cur_path(sctx, ino, gen, p);
2574	if (ret < 0)
2575		goto out;
2576	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2577	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2578	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2579	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2580	/* TODO Add otime support when the otime patches get into upstream */
 
2581
2582	ret = send_cmd(sctx);
2583
2584tlv_put_failure:
2585out:
2586	fs_path_free(p);
2587	btrfs_free_path(path);
2588	return ret;
2589}
2590
2591/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2592 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2593 * a valid path yet because we did not process the refs yet. So, the inode
2594 * is created as orphan.
2595 */
2596static int send_create_inode(struct send_ctx *sctx, u64 ino)
2597{
2598	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2599	int ret = 0;
2600	struct fs_path *p;
2601	int cmd;
 
2602	u64 gen;
2603	u64 mode;
2604	u64 rdev;
2605
2606	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2607
2608	p = fs_path_alloc();
2609	if (!p)
2610		return -ENOMEM;
2611
2612	if (ino != sctx->cur_ino) {
2613		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2614				     NULL, NULL, &rdev);
2615		if (ret < 0)
2616			goto out;
 
 
 
2617	} else {
2618		gen = sctx->cur_inode_gen;
2619		mode = sctx->cur_inode_mode;
2620		rdev = sctx->cur_inode_rdev;
2621	}
2622
2623	if (S_ISREG(mode)) {
2624		cmd = BTRFS_SEND_C_MKFILE;
2625	} else if (S_ISDIR(mode)) {
2626		cmd = BTRFS_SEND_C_MKDIR;
2627	} else if (S_ISLNK(mode)) {
2628		cmd = BTRFS_SEND_C_SYMLINK;
2629	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2630		cmd = BTRFS_SEND_C_MKNOD;
2631	} else if (S_ISFIFO(mode)) {
2632		cmd = BTRFS_SEND_C_MKFIFO;
2633	} else if (S_ISSOCK(mode)) {
2634		cmd = BTRFS_SEND_C_MKSOCK;
2635	} else {
2636		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2637				(int)(mode & S_IFMT));
2638		ret = -EOPNOTSUPP;
2639		goto out;
2640	}
2641
2642	ret = begin_cmd(sctx, cmd);
2643	if (ret < 0)
2644		goto out;
2645
2646	ret = gen_unique_name(sctx, ino, gen, p);
2647	if (ret < 0)
2648		goto out;
2649
2650	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2651	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2652
2653	if (S_ISLNK(mode)) {
2654		fs_path_reset(p);
2655		ret = read_symlink(sctx->send_root, ino, p);
2656		if (ret < 0)
2657			goto out;
2658		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2659	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2660		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2661		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2662		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2663	}
2664
2665	ret = send_cmd(sctx);
2666	if (ret < 0)
2667		goto out;
2668
2669
2670tlv_put_failure:
2671out:
2672	fs_path_free(p);
2673	return ret;
2674}
2675
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2676/*
2677 * We need some special handling for inodes that get processed before the parent
2678 * directory got created. See process_recorded_refs for details.
2679 * This function does the check if we already created the dir out of order.
2680 */
2681static int did_create_dir(struct send_ctx *sctx, u64 dir)
2682{
2683	int ret = 0;
 
2684	struct btrfs_path *path = NULL;
2685	struct btrfs_key key;
2686	struct btrfs_key found_key;
2687	struct btrfs_key di_key;
2688	struct extent_buffer *eb;
2689	struct btrfs_dir_item *di;
2690	int slot;
 
 
2691
2692	path = alloc_path_for_send();
2693	if (!path) {
2694		ret = -ENOMEM;
2695		goto out;
2696	}
2697
2698	key.objectid = dir;
2699	key.type = BTRFS_DIR_INDEX_KEY;
2700	key.offset = 0;
2701	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2702	if (ret < 0)
2703		goto out;
2704
2705	while (1) {
2706		eb = path->nodes[0];
2707		slot = path->slots[0];
2708		if (slot >= btrfs_header_nritems(eb)) {
2709			ret = btrfs_next_leaf(sctx->send_root, path);
2710			if (ret < 0) {
2711				goto out;
2712			} else if (ret > 0) {
2713				ret = 0;
2714				break;
2715			}
2716			continue;
2717		}
2718
2719		btrfs_item_key_to_cpu(eb, &found_key, slot);
2720		if (found_key.objectid != key.objectid ||
2721		    found_key.type != key.type) {
2722			ret = 0;
2723			goto out;
2724		}
2725
2726		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2727		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2728
2729		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2730		    di_key.objectid < sctx->send_progress) {
2731			ret = 1;
2732			goto out;
 
2733		}
2734
2735		path->slots[0]++;
2736	}
 
 
 
2737
2738out:
2739	btrfs_free_path(path);
2740	return ret;
2741}
2742
2743/*
2744 * Only creates the inode if it is:
2745 * 1. Not a directory
2746 * 2. Or a directory which was not created already due to out of order
2747 *    directories. See did_create_dir and process_recorded_refs for details.
2748 */
2749static int send_create_inode_if_needed(struct send_ctx *sctx)
2750{
2751	int ret;
2752
2753	if (S_ISDIR(sctx->cur_inode_mode)) {
2754		ret = did_create_dir(sctx, sctx->cur_ino);
2755		if (ret < 0)
2756			goto out;
2757		if (ret) {
2758			ret = 0;
2759			goto out;
2760		}
2761	}
2762
2763	ret = send_create_inode(sctx, sctx->cur_ino);
2764	if (ret < 0)
2765		goto out;
2766
2767out:
 
 
2768	return ret;
2769}
2770
2771struct recorded_ref {
2772	struct list_head list;
2773	char *name;
2774	struct fs_path *full_path;
2775	u64 dir;
2776	u64 dir_gen;
2777	int name_len;
 
 
2778};
2779
2780static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2781{
2782	ref->full_path = path;
2783	ref->name = (char *)kbasename(ref->full_path->start);
2784	ref->name_len = ref->full_path->end - ref->name;
 
 
 
 
 
2785}
2786
2787/*
2788 * We need to process new refs before deleted refs, but compare_tree gives us
2789 * everything mixed. So we first record all refs and later process them.
2790 * This function is a helper to record one ref.
2791 */
2792static int __record_ref(struct list_head *head, u64 dir,
2793		      u64 dir_gen, struct fs_path *path)
2794{
2795	struct recorded_ref *ref;
2796
2797	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2798	if (!ref)
2799		return -ENOMEM;
 
 
 
 
 
 
2800
2801	ref->dir = dir;
2802	ref->dir_gen = dir_gen;
2803	set_ref_path(ref, path);
2804	list_add_tail(&ref->list, head);
2805	return 0;
2806}
2807
2808static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2809{
2810	struct recorded_ref *new;
2811
2812	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2813	if (!new)
2814		return -ENOMEM;
2815
2816	new->dir = ref->dir;
2817	new->dir_gen = ref->dir_gen;
2818	new->full_path = NULL;
2819	INIT_LIST_HEAD(&new->list);
2820	list_add_tail(&new->list, list);
2821	return 0;
2822}
2823
2824static void __free_recorded_refs(struct list_head *head)
2825{
2826	struct recorded_ref *cur;
2827
2828	while (!list_empty(head)) {
2829		cur = list_entry(head->next, struct recorded_ref, list);
2830		fs_path_free(cur->full_path);
2831		list_del(&cur->list);
2832		kfree(cur);
2833	}
2834}
2835
2836static void free_recorded_refs(struct send_ctx *sctx)
2837{
2838	__free_recorded_refs(&sctx->new_refs);
2839	__free_recorded_refs(&sctx->deleted_refs);
2840}
2841
2842/*
2843 * Renames/moves a file/dir to its orphan name. Used when the first
2844 * ref of an unprocessed inode gets overwritten and for all non empty
2845 * directories.
2846 */
2847static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2848			  struct fs_path *path)
2849{
2850	int ret;
2851	struct fs_path *orphan;
2852
2853	orphan = fs_path_alloc();
2854	if (!orphan)
2855		return -ENOMEM;
2856
2857	ret = gen_unique_name(sctx, ino, gen, orphan);
2858	if (ret < 0)
2859		goto out;
2860
2861	ret = send_rename(sctx, path, orphan);
2862
2863out:
2864	fs_path_free(orphan);
2865	return ret;
2866}
2867
2868static struct orphan_dir_info *
2869add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2870{
2871	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2872	struct rb_node *parent = NULL;
2873	struct orphan_dir_info *entry, *odi;
2874
2875	while (*p) {
2876		parent = *p;
2877		entry = rb_entry(parent, struct orphan_dir_info, node);
2878		if (dir_ino < entry->ino) {
2879			p = &(*p)->rb_left;
2880		} else if (dir_ino > entry->ino) {
2881			p = &(*p)->rb_right;
2882		} else {
 
 
 
 
2883			return entry;
2884		}
2885	}
2886
2887	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2888	if (!odi)
2889		return ERR_PTR(-ENOMEM);
2890	odi->ino = dir_ino;
2891	odi->gen = 0;
2892	odi->last_dir_index_offset = 0;
 
2893
2894	rb_link_node(&odi->node, parent, p);
2895	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2896	return odi;
2897}
2898
2899static struct orphan_dir_info *
2900get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2901{
2902	struct rb_node *n = sctx->orphan_dirs.rb_node;
2903	struct orphan_dir_info *entry;
2904
2905	while (n) {
2906		entry = rb_entry(n, struct orphan_dir_info, node);
2907		if (dir_ino < entry->ino)
2908			n = n->rb_left;
2909		else if (dir_ino > entry->ino)
2910			n = n->rb_right;
 
 
 
 
2911		else
2912			return entry;
2913	}
2914	return NULL;
2915}
2916
2917static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2918{
2919	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2920
2921	return odi != NULL;
2922}
2923
2924static void free_orphan_dir_info(struct send_ctx *sctx,
2925				 struct orphan_dir_info *odi)
2926{
2927	if (!odi)
2928		return;
2929	rb_erase(&odi->node, &sctx->orphan_dirs);
2930	kfree(odi);
2931}
2932
2933/*
2934 * Returns 1 if a directory can be removed at this point in time.
2935 * We check this by iterating all dir items and checking if the inode behind
2936 * the dir item was already processed.
2937 */
2938static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2939		     u64 send_progress)
2940{
2941	int ret = 0;
 
2942	struct btrfs_root *root = sctx->parent_root;
2943	struct btrfs_path *path;
2944	struct btrfs_key key;
2945	struct btrfs_key found_key;
2946	struct btrfs_key loc;
2947	struct btrfs_dir_item *di;
2948	struct orphan_dir_info *odi = NULL;
 
 
2949
2950	/*
2951	 * Don't try to rmdir the top/root subvolume dir.
2952	 */
2953	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2954		return 0;
2955
 
 
 
 
2956	path = alloc_path_for_send();
2957	if (!path)
2958		return -ENOMEM;
2959
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2960	key.objectid = dir;
2961	key.type = BTRFS_DIR_INDEX_KEY;
2962	key.offset = 0;
2963
2964	odi = get_orphan_dir_info(sctx, dir);
2965	if (odi)
2966		key.offset = odi->last_dir_index_offset;
2967
2968	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2969	if (ret < 0)
2970		goto out;
2971
2972	while (1) {
2973		struct waiting_dir_move *dm;
2974
2975		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2976			ret = btrfs_next_leaf(root, path);
2977			if (ret < 0)
2978				goto out;
2979			else if (ret > 0)
2980				break;
2981			continue;
2982		}
2983		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2984				      path->slots[0]);
2985		if (found_key.objectid != key.objectid ||
2986		    found_key.type != key.type)
2987			break;
2988
2989		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2990				struct btrfs_dir_item);
2991		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2992
 
 
 
2993		dm = get_waiting_dir_move(sctx, loc.objectid);
2994		if (dm) {
2995			odi = add_orphan_dir_info(sctx, dir);
2996			if (IS_ERR(odi)) {
2997				ret = PTR_ERR(odi);
2998				goto out;
2999			}
3000			odi->gen = dir_gen;
3001			odi->last_dir_index_offset = found_key.offset;
3002			dm->rmdir_ino = dir;
 
3003			ret = 0;
3004			goto out;
3005		}
3006
3007		if (loc.objectid > send_progress) {
3008			odi = add_orphan_dir_info(sctx, dir);
3009			if (IS_ERR(odi)) {
3010				ret = PTR_ERR(odi);
3011				goto out;
3012			}
3013			odi->gen = dir_gen;
3014			odi->last_dir_index_offset = found_key.offset;
3015			ret = 0;
3016			goto out;
3017		}
3018
3019		path->slots[0]++;
 
 
3020	}
3021	free_orphan_dir_info(sctx, odi);
3022
3023	ret = 1;
3024
3025out:
3026	btrfs_free_path(path);
3027	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3028}
3029
3030static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3031{
3032	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3033
3034	return entry != NULL;
3035}
3036
3037static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3038{
3039	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3040	struct rb_node *parent = NULL;
3041	struct waiting_dir_move *entry, *dm;
3042
3043	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3044	if (!dm)
3045		return -ENOMEM;
3046	dm->ino = ino;
3047	dm->rmdir_ino = 0;
 
3048	dm->orphanized = orphanized;
3049
3050	while (*p) {
3051		parent = *p;
3052		entry = rb_entry(parent, struct waiting_dir_move, node);
3053		if (ino < entry->ino) {
3054			p = &(*p)->rb_left;
3055		} else if (ino > entry->ino) {
3056			p = &(*p)->rb_right;
3057		} else {
3058			kfree(dm);
3059			return -EEXIST;
3060		}
3061	}
3062
3063	rb_link_node(&dm->node, parent, p);
3064	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3065	return 0;
3066}
3067
3068static struct waiting_dir_move *
3069get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3070{
3071	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3072	struct waiting_dir_move *entry;
3073
3074	while (n) {
3075		entry = rb_entry(n, struct waiting_dir_move, node);
3076		if (ino < entry->ino)
3077			n = n->rb_left;
3078		else if (ino > entry->ino)
3079			n = n->rb_right;
3080		else
3081			return entry;
3082	}
3083	return NULL;
3084}
3085
3086static void free_waiting_dir_move(struct send_ctx *sctx,
3087				  struct waiting_dir_move *dm)
3088{
3089	if (!dm)
3090		return;
3091	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3092	kfree(dm);
3093}
3094
3095static int add_pending_dir_move(struct send_ctx *sctx,
3096				u64 ino,
3097				u64 ino_gen,
3098				u64 parent_ino,
3099				struct list_head *new_refs,
3100				struct list_head *deleted_refs,
3101				const bool is_orphan)
3102{
3103	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3104	struct rb_node *parent = NULL;
3105	struct pending_dir_move *entry = NULL, *pm;
3106	struct recorded_ref *cur;
3107	int exists = 0;
3108	int ret;
3109
3110	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3111	if (!pm)
3112		return -ENOMEM;
3113	pm->parent_ino = parent_ino;
3114	pm->ino = ino;
3115	pm->gen = ino_gen;
3116	INIT_LIST_HEAD(&pm->list);
3117	INIT_LIST_HEAD(&pm->update_refs);
3118	RB_CLEAR_NODE(&pm->node);
3119
3120	while (*p) {
3121		parent = *p;
3122		entry = rb_entry(parent, struct pending_dir_move, node);
3123		if (parent_ino < entry->parent_ino) {
3124			p = &(*p)->rb_left;
3125		} else if (parent_ino > entry->parent_ino) {
3126			p = &(*p)->rb_right;
3127		} else {
3128			exists = 1;
3129			break;
3130		}
3131	}
3132
3133	list_for_each_entry(cur, deleted_refs, list) {
3134		ret = dup_ref(cur, &pm->update_refs);
3135		if (ret < 0)
3136			goto out;
3137	}
3138	list_for_each_entry(cur, new_refs, list) {
3139		ret = dup_ref(cur, &pm->update_refs);
3140		if (ret < 0)
3141			goto out;
3142	}
3143
3144	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3145	if (ret)
3146		goto out;
3147
3148	if (exists) {
3149		list_add_tail(&pm->list, &entry->list);
3150	} else {
3151		rb_link_node(&pm->node, parent, p);
3152		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3153	}
3154	ret = 0;
3155out:
3156	if (ret) {
3157		__free_recorded_refs(&pm->update_refs);
3158		kfree(pm);
3159	}
3160	return ret;
3161}
3162
3163static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3164						      u64 parent_ino)
3165{
3166	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3167	struct pending_dir_move *entry;
3168
3169	while (n) {
3170		entry = rb_entry(n, struct pending_dir_move, node);
3171		if (parent_ino < entry->parent_ino)
3172			n = n->rb_left;
3173		else if (parent_ino > entry->parent_ino)
3174			n = n->rb_right;
3175		else
3176			return entry;
3177	}
3178	return NULL;
3179}
3180
3181static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3182		     u64 ino, u64 gen, u64 *ancestor_ino)
3183{
3184	int ret = 0;
3185	u64 parent_inode = 0;
3186	u64 parent_gen = 0;
3187	u64 start_ino = ino;
3188
3189	*ancestor_ino = 0;
3190	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3191		fs_path_reset(name);
3192
3193		if (is_waiting_for_rm(sctx, ino))
3194			break;
3195		if (is_waiting_for_move(sctx, ino)) {
3196			if (*ancestor_ino == 0)
3197				*ancestor_ino = ino;
3198			ret = get_first_ref(sctx->parent_root, ino,
3199					    &parent_inode, &parent_gen, name);
3200		} else {
3201			ret = __get_cur_name_and_parent(sctx, ino, gen,
3202							&parent_inode,
3203							&parent_gen, name);
3204			if (ret > 0) {
3205				ret = 0;
3206				break;
3207			}
3208		}
3209		if (ret < 0)
3210			break;
3211		if (parent_inode == start_ino) {
3212			ret = 1;
3213			if (*ancestor_ino == 0)
3214				*ancestor_ino = ino;
3215			break;
3216		}
3217		ino = parent_inode;
3218		gen = parent_gen;
3219	}
3220	return ret;
3221}
3222
3223static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3224{
3225	struct fs_path *from_path = NULL;
3226	struct fs_path *to_path = NULL;
3227	struct fs_path *name = NULL;
3228	u64 orig_progress = sctx->send_progress;
3229	struct recorded_ref *cur;
3230	u64 parent_ino, parent_gen;
3231	struct waiting_dir_move *dm = NULL;
3232	u64 rmdir_ino = 0;
 
3233	u64 ancestor;
3234	bool is_orphan;
3235	int ret;
3236
3237	name = fs_path_alloc();
3238	from_path = fs_path_alloc();
3239	if (!name || !from_path) {
3240		ret = -ENOMEM;
3241		goto out;
3242	}
3243
3244	dm = get_waiting_dir_move(sctx, pm->ino);
3245	ASSERT(dm);
3246	rmdir_ino = dm->rmdir_ino;
 
3247	is_orphan = dm->orphanized;
3248	free_waiting_dir_move(sctx, dm);
3249
3250	if (is_orphan) {
3251		ret = gen_unique_name(sctx, pm->ino,
3252				      pm->gen, from_path);
3253	} else {
3254		ret = get_first_ref(sctx->parent_root, pm->ino,
3255				    &parent_ino, &parent_gen, name);
3256		if (ret < 0)
3257			goto out;
3258		ret = get_cur_path(sctx, parent_ino, parent_gen,
3259				   from_path);
3260		if (ret < 0)
3261			goto out;
3262		ret = fs_path_add_path(from_path, name);
3263	}
3264	if (ret < 0)
3265		goto out;
3266
3267	sctx->send_progress = sctx->cur_ino + 1;
3268	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3269	if (ret < 0)
3270		goto out;
3271	if (ret) {
3272		LIST_HEAD(deleted_refs);
3273		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3274		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3275					   &pm->update_refs, &deleted_refs,
3276					   is_orphan);
3277		if (ret < 0)
3278			goto out;
3279		if (rmdir_ino) {
3280			dm = get_waiting_dir_move(sctx, pm->ino);
3281			ASSERT(dm);
3282			dm->rmdir_ino = rmdir_ino;
 
3283		}
3284		goto out;
3285	}
3286	fs_path_reset(name);
3287	to_path = name;
3288	name = NULL;
3289	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3290	if (ret < 0)
3291		goto out;
3292
3293	ret = send_rename(sctx, from_path, to_path);
3294	if (ret < 0)
3295		goto out;
3296
3297	if (rmdir_ino) {
3298		struct orphan_dir_info *odi;
3299		u64 gen;
3300
3301		odi = get_orphan_dir_info(sctx, rmdir_ino);
3302		if (!odi) {
3303			/* already deleted */
3304			goto finish;
3305		}
3306		gen = odi->gen;
3307
3308		ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3309		if (ret < 0)
3310			goto out;
3311		if (!ret)
3312			goto finish;
3313
3314		name = fs_path_alloc();
3315		if (!name) {
3316			ret = -ENOMEM;
3317			goto out;
3318		}
3319		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3320		if (ret < 0)
3321			goto out;
3322		ret = send_rmdir(sctx, name);
3323		if (ret < 0)
3324			goto out;
3325	}
3326
3327finish:
3328	ret = send_utimes(sctx, pm->ino, pm->gen);
3329	if (ret < 0)
3330		goto out;
3331
3332	/*
3333	 * After rename/move, need to update the utimes of both new parent(s)
3334	 * and old parent(s).
3335	 */
3336	list_for_each_entry(cur, &pm->update_refs, list) {
3337		/*
3338		 * The parent inode might have been deleted in the send snapshot
3339		 */
3340		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3341				     NULL, NULL, NULL, NULL, NULL);
3342		if (ret == -ENOENT) {
3343			ret = 0;
3344			continue;
3345		}
3346		if (ret < 0)
3347			goto out;
3348
3349		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3350		if (ret < 0)
3351			goto out;
3352	}
3353
3354out:
3355	fs_path_free(name);
3356	fs_path_free(from_path);
3357	fs_path_free(to_path);
3358	sctx->send_progress = orig_progress;
3359
3360	return ret;
3361}
3362
3363static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3364{
3365	if (!list_empty(&m->list))
3366		list_del(&m->list);
3367	if (!RB_EMPTY_NODE(&m->node))
3368		rb_erase(&m->node, &sctx->pending_dir_moves);
3369	__free_recorded_refs(&m->update_refs);
3370	kfree(m);
3371}
3372
3373static void tail_append_pending_moves(struct send_ctx *sctx,
3374				      struct pending_dir_move *moves,
3375				      struct list_head *stack)
3376{
3377	if (list_empty(&moves->list)) {
3378		list_add_tail(&moves->list, stack);
3379	} else {
3380		LIST_HEAD(list);
3381		list_splice_init(&moves->list, &list);
3382		list_add_tail(&moves->list, stack);
3383		list_splice_tail(&list, stack);
3384	}
3385	if (!RB_EMPTY_NODE(&moves->node)) {
3386		rb_erase(&moves->node, &sctx->pending_dir_moves);
3387		RB_CLEAR_NODE(&moves->node);
3388	}
3389}
3390
3391static int apply_children_dir_moves(struct send_ctx *sctx)
3392{
3393	struct pending_dir_move *pm;
3394	struct list_head stack;
3395	u64 parent_ino = sctx->cur_ino;
3396	int ret = 0;
3397
3398	pm = get_pending_dir_moves(sctx, parent_ino);
3399	if (!pm)
3400		return 0;
3401
3402	INIT_LIST_HEAD(&stack);
3403	tail_append_pending_moves(sctx, pm, &stack);
3404
3405	while (!list_empty(&stack)) {
3406		pm = list_first_entry(&stack, struct pending_dir_move, list);
3407		parent_ino = pm->ino;
3408		ret = apply_dir_move(sctx, pm);
3409		free_pending_move(sctx, pm);
3410		if (ret)
3411			goto out;
3412		pm = get_pending_dir_moves(sctx, parent_ino);
3413		if (pm)
3414			tail_append_pending_moves(sctx, pm, &stack);
3415	}
3416	return 0;
3417
3418out:
3419	while (!list_empty(&stack)) {
3420		pm = list_first_entry(&stack, struct pending_dir_move, list);
3421		free_pending_move(sctx, pm);
3422	}
3423	return ret;
3424}
3425
3426/*
3427 * We might need to delay a directory rename even when no ancestor directory
3428 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3429 * renamed. This happens when we rename a directory to the old name (the name
3430 * in the parent root) of some other unrelated directory that got its rename
3431 * delayed due to some ancestor with higher number that got renamed.
3432 *
3433 * Example:
3434 *
3435 * Parent snapshot:
3436 * .                                       (ino 256)
3437 * |---- a/                                (ino 257)
3438 * |     |---- file                        (ino 260)
3439 * |
3440 * |---- b/                                (ino 258)
3441 * |---- c/                                (ino 259)
3442 *
3443 * Send snapshot:
3444 * .                                       (ino 256)
3445 * |---- a/                                (ino 258)
3446 * |---- x/                                (ino 259)
3447 *       |---- y/                          (ino 257)
3448 *             |----- file                 (ino 260)
3449 *
3450 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3451 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3452 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3453 * must issue is:
3454 *
3455 * 1 - rename 259 from 'c' to 'x'
3456 * 2 - rename 257 from 'a' to 'x/y'
3457 * 3 - rename 258 from 'b' to 'a'
3458 *
3459 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3460 * be done right away and < 0 on error.
3461 */
3462static int wait_for_dest_dir_move(struct send_ctx *sctx,
3463				  struct recorded_ref *parent_ref,
3464				  const bool is_orphan)
3465{
3466	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3467	struct btrfs_path *path;
3468	struct btrfs_key key;
3469	struct btrfs_key di_key;
3470	struct btrfs_dir_item *di;
3471	u64 left_gen;
3472	u64 right_gen;
3473	int ret = 0;
3474	struct waiting_dir_move *wdm;
3475
3476	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3477		return 0;
3478
3479	path = alloc_path_for_send();
3480	if (!path)
3481		return -ENOMEM;
3482
3483	key.objectid = parent_ref->dir;
3484	key.type = BTRFS_DIR_ITEM_KEY;
3485	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3486
3487	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3488	if (ret < 0) {
3489		goto out;
3490	} else if (ret > 0) {
3491		ret = 0;
3492		goto out;
3493	}
3494
3495	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3496				       parent_ref->name_len);
3497	if (!di) {
3498		ret = 0;
3499		goto out;
3500	}
3501	/*
3502	 * di_key.objectid has the number of the inode that has a dentry in the
3503	 * parent directory with the same name that sctx->cur_ino is being
3504	 * renamed to. We need to check if that inode is in the send root as
3505	 * well and if it is currently marked as an inode with a pending rename,
3506	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3507	 * that it happens after that other inode is renamed.
3508	 */
3509	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3510	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3511		ret = 0;
3512		goto out;
3513	}
3514
3515	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3516			     &left_gen, NULL, NULL, NULL, NULL);
3517	if (ret < 0)
3518		goto out;
3519	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3520			     &right_gen, NULL, NULL, NULL, NULL);
3521	if (ret < 0) {
3522		if (ret == -ENOENT)
3523			ret = 0;
3524		goto out;
3525	}
3526
3527	/* Different inode, no need to delay the rename of sctx->cur_ino */
3528	if (right_gen != left_gen) {
3529		ret = 0;
3530		goto out;
3531	}
3532
3533	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3534	if (wdm && !wdm->orphanized) {
3535		ret = add_pending_dir_move(sctx,
3536					   sctx->cur_ino,
3537					   sctx->cur_inode_gen,
3538					   di_key.objectid,
3539					   &sctx->new_refs,
3540					   &sctx->deleted_refs,
3541					   is_orphan);
3542		if (!ret)
3543			ret = 1;
3544	}
3545out:
3546	btrfs_free_path(path);
3547	return ret;
3548}
3549
3550/*
3551 * Check if inode ino2, or any of its ancestors, is inode ino1.
3552 * Return 1 if true, 0 if false and < 0 on error.
3553 */
3554static int check_ino_in_path(struct btrfs_root *root,
3555			     const u64 ino1,
3556			     const u64 ino1_gen,
3557			     const u64 ino2,
3558			     const u64 ino2_gen,
3559			     struct fs_path *fs_path)
3560{
3561	u64 ino = ino2;
3562
3563	if (ino1 == ino2)
3564		return ino1_gen == ino2_gen;
3565
3566	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3567		u64 parent;
3568		u64 parent_gen;
3569		int ret;
3570
3571		fs_path_reset(fs_path);
3572		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3573		if (ret < 0)
3574			return ret;
3575		if (parent == ino1)
3576			return parent_gen == ino1_gen;
3577		ino = parent;
3578	}
3579	return 0;
3580}
3581
3582/*
3583 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3584 * possible path (in case ino2 is not a directory and has multiple hard links).
3585 * Return 1 if true, 0 if false and < 0 on error.
3586 */
3587static int is_ancestor(struct btrfs_root *root,
3588		       const u64 ino1,
3589		       const u64 ino1_gen,
3590		       const u64 ino2,
3591		       struct fs_path *fs_path)
3592{
3593	bool free_fs_path = false;
3594	int ret = 0;
 
3595	struct btrfs_path *path = NULL;
3596	struct btrfs_key key;
3597
3598	if (!fs_path) {
3599		fs_path = fs_path_alloc();
3600		if (!fs_path)
3601			return -ENOMEM;
3602		free_fs_path = true;
3603	}
3604
3605	path = alloc_path_for_send();
3606	if (!path) {
3607		ret = -ENOMEM;
3608		goto out;
3609	}
3610
3611	key.objectid = ino2;
3612	key.type = BTRFS_INODE_REF_KEY;
3613	key.offset = 0;
3614
3615	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3616	if (ret < 0)
3617		goto out;
3618
3619	while (true) {
3620		struct extent_buffer *leaf = path->nodes[0];
3621		int slot = path->slots[0];
3622		u32 cur_offset = 0;
3623		u32 item_size;
3624
3625		if (slot >= btrfs_header_nritems(leaf)) {
3626			ret = btrfs_next_leaf(root, path);
3627			if (ret < 0)
3628				goto out;
3629			if (ret > 0)
3630				break;
3631			continue;
3632		}
3633
3634		btrfs_item_key_to_cpu(leaf, &key, slot);
3635		if (key.objectid != ino2)
3636			break;
3637		if (key.type != BTRFS_INODE_REF_KEY &&
3638		    key.type != BTRFS_INODE_EXTREF_KEY)
3639			break;
3640
3641		item_size = btrfs_item_size_nr(leaf, slot);
3642		while (cur_offset < item_size) {
3643			u64 parent;
3644			u64 parent_gen;
3645
3646			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3647				unsigned long ptr;
3648				struct btrfs_inode_extref *extref;
3649
3650				ptr = btrfs_item_ptr_offset(leaf, slot);
3651				extref = (struct btrfs_inode_extref *)
3652					(ptr + cur_offset);
3653				parent = btrfs_inode_extref_parent(leaf,
3654								   extref);
3655				cur_offset += sizeof(*extref);
3656				cur_offset += btrfs_inode_extref_name_len(leaf,
3657								  extref);
3658			} else {
3659				parent = key.offset;
3660				cur_offset = item_size;
3661			}
3662
3663			ret = get_inode_info(root, parent, NULL, &parent_gen,
3664					     NULL, NULL, NULL, NULL);
3665			if (ret < 0)
3666				goto out;
3667			ret = check_ino_in_path(root, ino1, ino1_gen,
3668						parent, parent_gen, fs_path);
3669			if (ret)
3670				goto out;
3671		}
3672		path->slots[0]++;
3673	}
3674	ret = 0;
3675 out:
 
 
 
3676	btrfs_free_path(path);
3677	if (free_fs_path)
3678		fs_path_free(fs_path);
3679	return ret;
3680}
3681
3682static int wait_for_parent_move(struct send_ctx *sctx,
3683				struct recorded_ref *parent_ref,
3684				const bool is_orphan)
3685{
3686	int ret = 0;
3687	u64 ino = parent_ref->dir;
3688	u64 ino_gen = parent_ref->dir_gen;
3689	u64 parent_ino_before, parent_ino_after;
3690	struct fs_path *path_before = NULL;
3691	struct fs_path *path_after = NULL;
3692	int len1, len2;
3693
3694	path_after = fs_path_alloc();
3695	path_before = fs_path_alloc();
3696	if (!path_after || !path_before) {
3697		ret = -ENOMEM;
3698		goto out;
3699	}
3700
3701	/*
3702	 * Our current directory inode may not yet be renamed/moved because some
3703	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3704	 * such ancestor exists and make sure our own rename/move happens after
3705	 * that ancestor is processed to avoid path build infinite loops (done
3706	 * at get_cur_path()).
3707	 */
3708	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3709		u64 parent_ino_after_gen;
3710
3711		if (is_waiting_for_move(sctx, ino)) {
3712			/*
3713			 * If the current inode is an ancestor of ino in the
3714			 * parent root, we need to delay the rename of the
3715			 * current inode, otherwise don't delayed the rename
3716			 * because we can end up with a circular dependency
3717			 * of renames, resulting in some directories never
3718			 * getting the respective rename operations issued in
3719			 * the send stream or getting into infinite path build
3720			 * loops.
3721			 */
3722			ret = is_ancestor(sctx->parent_root,
3723					  sctx->cur_ino, sctx->cur_inode_gen,
3724					  ino, path_before);
3725			if (ret)
3726				break;
3727		}
3728
3729		fs_path_reset(path_before);
3730		fs_path_reset(path_after);
3731
3732		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3733				    &parent_ino_after_gen, path_after);
3734		if (ret < 0)
3735			goto out;
3736		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3737				    NULL, path_before);
3738		if (ret < 0 && ret != -ENOENT) {
3739			goto out;
3740		} else if (ret == -ENOENT) {
3741			ret = 0;
3742			break;
3743		}
3744
3745		len1 = fs_path_len(path_before);
3746		len2 = fs_path_len(path_after);
3747		if (ino > sctx->cur_ino &&
3748		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3749		     memcmp(path_before->start, path_after->start, len1))) {
3750			u64 parent_ino_gen;
3751
3752			ret = get_inode_info(sctx->parent_root, ino, NULL,
3753					     &parent_ino_gen, NULL, NULL, NULL,
3754					     NULL);
3755			if (ret < 0)
3756				goto out;
3757			if (ino_gen == parent_ino_gen) {
3758				ret = 1;
3759				break;
3760			}
3761		}
3762		ino = parent_ino_after;
3763		ino_gen = parent_ino_after_gen;
3764	}
3765
3766out:
3767	fs_path_free(path_before);
3768	fs_path_free(path_after);
3769
3770	if (ret == 1) {
3771		ret = add_pending_dir_move(sctx,
3772					   sctx->cur_ino,
3773					   sctx->cur_inode_gen,
3774					   ino,
3775					   &sctx->new_refs,
3776					   &sctx->deleted_refs,
3777					   is_orphan);
3778		if (!ret)
3779			ret = 1;
3780	}
3781
3782	return ret;
3783}
3784
3785static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3786{
3787	int ret;
3788	struct fs_path *new_path;
3789
3790	/*
3791	 * Our reference's name member points to its full_path member string, so
3792	 * we use here a new path.
3793	 */
3794	new_path = fs_path_alloc();
3795	if (!new_path)
3796		return -ENOMEM;
3797
3798	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3799	if (ret < 0) {
3800		fs_path_free(new_path);
3801		return ret;
3802	}
3803	ret = fs_path_add(new_path, ref->name, ref->name_len);
3804	if (ret < 0) {
3805		fs_path_free(new_path);
3806		return ret;
3807	}
3808
3809	fs_path_free(ref->full_path);
3810	set_ref_path(ref, new_path);
3811
3812	return 0;
3813}
3814
3815/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3816 * This does all the move/link/unlink/rmdir magic.
3817 */
3818static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3819{
3820	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3821	int ret = 0;
3822	struct recorded_ref *cur;
3823	struct recorded_ref *cur2;
3824	struct list_head check_dirs;
3825	struct fs_path *valid_path = NULL;
3826	u64 ow_inode = 0;
3827	u64 ow_gen;
3828	u64 ow_mode;
3829	int did_overwrite = 0;
3830	int is_orphan = 0;
3831	u64 last_dir_ino_rm = 0;
3832	bool can_rename = true;
3833	bool orphanized_dir = false;
3834	bool orphanized_ancestor = false;
3835
3836	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3837
3838	/*
3839	 * This should never happen as the root dir always has the same ref
3840	 * which is always '..'
3841	 */
3842	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3843	INIT_LIST_HEAD(&check_dirs);
3844
3845	valid_path = fs_path_alloc();
3846	if (!valid_path) {
3847		ret = -ENOMEM;
3848		goto out;
3849	}
3850
3851	/*
3852	 * First, check if the first ref of the current inode was overwritten
3853	 * before. If yes, we know that the current inode was already orphanized
3854	 * and thus use the orphan name. If not, we can use get_cur_path to
3855	 * get the path of the first ref as it would like while receiving at
3856	 * this point in time.
3857	 * New inodes are always orphan at the beginning, so force to use the
3858	 * orphan name in this case.
3859	 * The first ref is stored in valid_path and will be updated if it
3860	 * gets moved around.
3861	 */
3862	if (!sctx->cur_inode_new) {
3863		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3864				sctx->cur_inode_gen);
3865		if (ret < 0)
3866			goto out;
3867		if (ret)
3868			did_overwrite = 1;
3869	}
3870	if (sctx->cur_inode_new || did_overwrite) {
3871		ret = gen_unique_name(sctx, sctx->cur_ino,
3872				sctx->cur_inode_gen, valid_path);
3873		if (ret < 0)
3874			goto out;
3875		is_orphan = 1;
3876	} else {
3877		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3878				valid_path);
3879		if (ret < 0)
3880			goto out;
3881	}
3882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3883	list_for_each_entry(cur, &sctx->new_refs, list) {
3884		/*
3885		 * We may have refs where the parent directory does not exist
3886		 * yet. This happens if the parent directories inum is higher
3887		 * than the current inum. To handle this case, we create the
3888		 * parent directory out of order. But we need to check if this
3889		 * did already happen before due to other refs in the same dir.
3890		 */
3891		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3892		if (ret < 0)
3893			goto out;
3894		if (ret == inode_state_will_create) {
3895			ret = 0;
3896			/*
3897			 * First check if any of the current inodes refs did
3898			 * already create the dir.
3899			 */
3900			list_for_each_entry(cur2, &sctx->new_refs, list) {
3901				if (cur == cur2)
3902					break;
3903				if (cur2->dir == cur->dir) {
3904					ret = 1;
3905					break;
3906				}
3907			}
3908
3909			/*
3910			 * If that did not happen, check if a previous inode
3911			 * did already create the dir.
3912			 */
3913			if (!ret)
3914				ret = did_create_dir(sctx, cur->dir);
3915			if (ret < 0)
3916				goto out;
3917			if (!ret) {
3918				ret = send_create_inode(sctx, cur->dir);
3919				if (ret < 0)
3920					goto out;
3921			}
3922		}
3923
3924		/*
3925		 * Check if this new ref would overwrite the first ref of
3926		 * another unprocessed inode. If yes, orphanize the
3927		 * overwritten inode. If we find an overwritten ref that is
3928		 * not the first ref, simply unlink it.
3929		 */
3930		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3931				cur->name, cur->name_len,
3932				&ow_inode, &ow_gen, &ow_mode);
3933		if (ret < 0)
3934			goto out;
3935		if (ret) {
3936			ret = is_first_ref(sctx->parent_root,
3937					   ow_inode, cur->dir, cur->name,
3938					   cur->name_len);
3939			if (ret < 0)
3940				goto out;
3941			if (ret) {
3942				struct name_cache_entry *nce;
3943				struct waiting_dir_move *wdm;
3944
 
 
 
 
 
 
3945				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3946						cur->full_path);
3947				if (ret < 0)
3948					goto out;
3949				if (S_ISDIR(ow_mode))
3950					orphanized_dir = true;
3951
3952				/*
3953				 * If ow_inode has its rename operation delayed
3954				 * make sure that its orphanized name is used in
3955				 * the source path when performing its rename
3956				 * operation.
3957				 */
3958				if (is_waiting_for_move(sctx, ow_inode)) {
3959					wdm = get_waiting_dir_move(sctx,
3960								   ow_inode);
3961					ASSERT(wdm);
3962					wdm->orphanized = true;
3963				}
3964
3965				/*
3966				 * Make sure we clear our orphanized inode's
3967				 * name from the name cache. This is because the
3968				 * inode ow_inode might be an ancestor of some
3969				 * other inode that will be orphanized as well
3970				 * later and has an inode number greater than
3971				 * sctx->send_progress. We need to prevent
3972				 * future name lookups from using the old name
3973				 * and get instead the orphan name.
3974				 */
3975				nce = name_cache_search(sctx, ow_inode, ow_gen);
3976				if (nce) {
3977					name_cache_delete(sctx, nce);
3978					kfree(nce);
3979				}
3980
3981				/*
3982				 * ow_inode might currently be an ancestor of
3983				 * cur_ino, therefore compute valid_path (the
3984				 * current path of cur_ino) again because it
3985				 * might contain the pre-orphanization name of
3986				 * ow_inode, which is no longer valid.
3987				 */
3988				ret = is_ancestor(sctx->parent_root,
3989						  ow_inode, ow_gen,
3990						  sctx->cur_ino, NULL);
3991				if (ret > 0) {
3992					orphanized_ancestor = true;
3993					fs_path_reset(valid_path);
3994					ret = get_cur_path(sctx, sctx->cur_ino,
3995							   sctx->cur_inode_gen,
3996							   valid_path);
3997				}
3998				if (ret < 0)
3999					goto out;
4000			} else {
 
 
 
 
 
 
 
 
 
 
 
4001				ret = send_unlink(sctx, cur->full_path);
4002				if (ret < 0)
4003					goto out;
4004			}
4005		}
4006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4007		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4008			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4009			if (ret < 0)
4010				goto out;
4011			if (ret == 1) {
4012				can_rename = false;
4013				*pending_move = 1;
4014			}
4015		}
4016
4017		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4018		    can_rename) {
4019			ret = wait_for_parent_move(sctx, cur, is_orphan);
4020			if (ret < 0)
4021				goto out;
4022			if (ret == 1) {
4023				can_rename = false;
4024				*pending_move = 1;
4025			}
4026		}
4027
4028		/*
4029		 * link/move the ref to the new place. If we have an orphan
4030		 * inode, move it and update valid_path. If not, link or move
4031		 * it depending on the inode mode.
4032		 */
4033		if (is_orphan && can_rename) {
4034			ret = send_rename(sctx, valid_path, cur->full_path);
4035			if (ret < 0)
4036				goto out;
4037			is_orphan = 0;
4038			ret = fs_path_copy(valid_path, cur->full_path);
4039			if (ret < 0)
4040				goto out;
4041		} else if (can_rename) {
4042			if (S_ISDIR(sctx->cur_inode_mode)) {
4043				/*
4044				 * Dirs can't be linked, so move it. For moved
4045				 * dirs, we always have one new and one deleted
4046				 * ref. The deleted ref is ignored later.
4047				 */
4048				ret = send_rename(sctx, valid_path,
4049						  cur->full_path);
4050				if (!ret)
4051					ret = fs_path_copy(valid_path,
4052							   cur->full_path);
4053				if (ret < 0)
4054					goto out;
4055			} else {
4056				/*
4057				 * We might have previously orphanized an inode
4058				 * which is an ancestor of our current inode,
4059				 * so our reference's full path, which was
4060				 * computed before any such orphanizations, must
4061				 * be updated.
4062				 */
4063				if (orphanized_dir) {
4064					ret = update_ref_path(sctx, cur);
4065					if (ret < 0)
4066						goto out;
4067				}
4068				ret = send_link(sctx, cur->full_path,
4069						valid_path);
4070				if (ret < 0)
4071					goto out;
4072			}
4073		}
4074		ret = dup_ref(cur, &check_dirs);
4075		if (ret < 0)
4076			goto out;
4077	}
4078
4079	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4080		/*
4081		 * Check if we can already rmdir the directory. If not,
4082		 * orphanize it. For every dir item inside that gets deleted
4083		 * later, we do this check again and rmdir it then if possible.
4084		 * See the use of check_dirs for more details.
4085		 */
4086		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4087				sctx->cur_ino);
4088		if (ret < 0)
4089			goto out;
4090		if (ret) {
4091			ret = send_rmdir(sctx, valid_path);
4092			if (ret < 0)
4093				goto out;
4094		} else if (!is_orphan) {
4095			ret = orphanize_inode(sctx, sctx->cur_ino,
4096					sctx->cur_inode_gen, valid_path);
4097			if (ret < 0)
4098				goto out;
4099			is_orphan = 1;
4100		}
4101
4102		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4103			ret = dup_ref(cur, &check_dirs);
4104			if (ret < 0)
4105				goto out;
4106		}
4107	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4108		   !list_empty(&sctx->deleted_refs)) {
4109		/*
4110		 * We have a moved dir. Add the old parent to check_dirs
4111		 */
4112		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4113				list);
4114		ret = dup_ref(cur, &check_dirs);
4115		if (ret < 0)
4116			goto out;
4117	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4118		/*
4119		 * We have a non dir inode. Go through all deleted refs and
4120		 * unlink them if they were not already overwritten by other
4121		 * inodes.
4122		 */
4123		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4124			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4125					sctx->cur_ino, sctx->cur_inode_gen,
4126					cur->name, cur->name_len);
4127			if (ret < 0)
4128				goto out;
4129			if (!ret) {
4130				/*
4131				 * If we orphanized any ancestor before, we need
4132				 * to recompute the full path for deleted names,
4133				 * since any such path was computed before we
4134				 * processed any references and orphanized any
4135				 * ancestor inode.
4136				 */
4137				if (orphanized_ancestor) {
4138					ret = update_ref_path(sctx, cur);
4139					if (ret < 0)
4140						goto out;
4141				}
4142				ret = send_unlink(sctx, cur->full_path);
4143				if (ret < 0)
4144					goto out;
4145			}
4146			ret = dup_ref(cur, &check_dirs);
4147			if (ret < 0)
4148				goto out;
4149		}
4150		/*
4151		 * If the inode is still orphan, unlink the orphan. This may
4152		 * happen when a previous inode did overwrite the first ref
4153		 * of this inode and no new refs were added for the current
4154		 * inode. Unlinking does not mean that the inode is deleted in
4155		 * all cases. There may still be links to this inode in other
4156		 * places.
4157		 */
4158		if (is_orphan) {
4159			ret = send_unlink(sctx, valid_path);
4160			if (ret < 0)
4161				goto out;
4162		}
4163	}
4164
4165	/*
4166	 * We did collect all parent dirs where cur_inode was once located. We
4167	 * now go through all these dirs and check if they are pending for
4168	 * deletion and if it's finally possible to perform the rmdir now.
4169	 * We also update the inode stats of the parent dirs here.
4170	 */
4171	list_for_each_entry(cur, &check_dirs, list) {
4172		/*
4173		 * In case we had refs into dirs that were not processed yet,
4174		 * we don't need to do the utime and rmdir logic for these dirs.
4175		 * The dir will be processed later.
4176		 */
4177		if (cur->dir > sctx->cur_ino)
4178			continue;
4179
4180		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4181		if (ret < 0)
4182			goto out;
4183
4184		if (ret == inode_state_did_create ||
4185		    ret == inode_state_no_change) {
4186			/* TODO delayed utimes */
4187			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4188			if (ret < 0)
4189				goto out;
4190		} else if (ret == inode_state_did_delete &&
4191			   cur->dir != last_dir_ino_rm) {
4192			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4193					sctx->cur_ino);
4194			if (ret < 0)
4195				goto out;
4196			if (ret) {
4197				ret = get_cur_path(sctx, cur->dir,
4198						   cur->dir_gen, valid_path);
4199				if (ret < 0)
4200					goto out;
4201				ret = send_rmdir(sctx, valid_path);
4202				if (ret < 0)
4203					goto out;
4204				last_dir_ino_rm = cur->dir;
4205			}
4206		}
4207	}
4208
4209	ret = 0;
4210
4211out:
4212	__free_recorded_refs(&check_dirs);
4213	free_recorded_refs(sctx);
4214	fs_path_free(valid_path);
4215	return ret;
4216}
4217
4218static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4219		      void *ctx, struct list_head *refs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4220{
4221	int ret = 0;
4222	struct send_ctx *sctx = ctx;
4223	struct fs_path *p;
4224	u64 gen;
4225
4226	p = fs_path_alloc();
4227	if (!p)
4228		return -ENOMEM;
 
 
4229
4230	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4231			NULL, NULL);
4232	if (ret < 0)
4233		goto out;
 
4234
4235	ret = get_cur_path(sctx, dir, gen, p);
4236	if (ret < 0)
4237		goto out;
4238	ret = fs_path_add_path(p, name);
4239	if (ret < 0)
4240		goto out;
4241
4242	ret = __record_ref(refs, dir, gen, p);
4243
 
 
 
 
4244out:
4245	if (ret)
4246		fs_path_free(p);
 
 
 
4247	return ret;
4248}
4249
4250static int __record_new_ref(int num, u64 dir, int index,
4251			    struct fs_path *name,
4252			    void *ctx)
4253{
 
4254	struct send_ctx *sctx = ctx;
4255	return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4256}
4257
4258
4259static int __record_deleted_ref(int num, u64 dir, int index,
4260				struct fs_path *name,
4261				void *ctx)
4262{
 
4263	struct send_ctx *sctx = ctx;
4264	return record_ref(sctx->parent_root, dir, name, ctx,
4265			  &sctx->deleted_refs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4266}
4267
4268static int record_new_ref(struct send_ctx *sctx)
4269{
4270	int ret;
4271
4272	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4273				sctx->cmp_key, 0, __record_new_ref, sctx);
4274	if (ret < 0)
4275		goto out;
4276	ret = 0;
4277
4278out:
4279	return ret;
4280}
4281
4282static int record_deleted_ref(struct send_ctx *sctx)
4283{
4284	int ret;
4285
4286	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4287				sctx->cmp_key, 0, __record_deleted_ref, sctx);
 
4288	if (ret < 0)
4289		goto out;
4290	ret = 0;
4291
4292out:
4293	return ret;
4294}
4295
4296struct find_ref_ctx {
4297	u64 dir;
4298	u64 dir_gen;
4299	struct btrfs_root *root;
4300	struct fs_path *name;
4301	int found_idx;
4302};
4303
4304static int __find_iref(int num, u64 dir, int index,
4305		       struct fs_path *name,
4306		       void *ctx_)
4307{
4308	struct find_ref_ctx *ctx = ctx_;
4309	u64 dir_gen;
4310	int ret;
4311
4312	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4313	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4314		/*
4315		 * To avoid doing extra lookups we'll only do this if everything
4316		 * else matches.
4317		 */
4318		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4319				     NULL, NULL, NULL);
4320		if (ret)
4321			return ret;
4322		if (dir_gen != ctx->dir_gen)
4323			return 0;
4324		ctx->found_idx = num;
4325		return 1;
4326	}
4327	return 0;
4328}
4329
4330static int find_iref(struct btrfs_root *root,
4331		     struct btrfs_path *path,
4332		     struct btrfs_key *key,
4333		     u64 dir, u64 dir_gen, struct fs_path *name)
4334{
4335	int ret;
4336	struct find_ref_ctx ctx;
4337
4338	ctx.dir = dir;
4339	ctx.name = name;
4340	ctx.dir_gen = dir_gen;
4341	ctx.found_idx = -1;
4342	ctx.root = root;
4343
4344	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4345	if (ret < 0)
4346		return ret;
4347
4348	if (ctx.found_idx == -1)
4349		return -ENOENT;
4350
4351	return ctx.found_idx;
4352}
4353
4354static int __record_changed_new_ref(int num, u64 dir, int index,
4355				    struct fs_path *name,
4356				    void *ctx)
4357{
4358	u64 dir_gen;
4359	int ret;
4360	struct send_ctx *sctx = ctx;
4361
4362	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4363			     NULL, NULL, NULL);
4364	if (ret)
4365		return ret;
4366
4367	ret = find_iref(sctx->parent_root, sctx->right_path,
4368			sctx->cmp_key, dir, dir_gen, name);
4369	if (ret == -ENOENT)
4370		ret = __record_new_ref(num, dir, index, name, sctx);
4371	else if (ret > 0)
4372		ret = 0;
4373
4374	return ret;
4375}
4376
4377static int __record_changed_deleted_ref(int num, u64 dir, int index,
4378					struct fs_path *name,
4379					void *ctx)
4380{
4381	u64 dir_gen;
4382	int ret;
4383	struct send_ctx *sctx = ctx;
4384
4385	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4386			     NULL, NULL, NULL);
4387	if (ret)
4388		return ret;
4389
4390	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4391			dir, dir_gen, name);
4392	if (ret == -ENOENT)
4393		ret = __record_deleted_ref(num, dir, index, name, sctx);
4394	else if (ret > 0)
4395		ret = 0;
4396
4397	return ret;
4398}
4399
4400static int record_changed_ref(struct send_ctx *sctx)
4401{
4402	int ret = 0;
4403
4404	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4405			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4406	if (ret < 0)
4407		goto out;
4408	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4409			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4410	if (ret < 0)
4411		goto out;
4412	ret = 0;
4413
4414out:
4415	return ret;
4416}
4417
4418/*
4419 * Record and process all refs at once. Needed when an inode changes the
4420 * generation number, which means that it was deleted and recreated.
4421 */
4422static int process_all_refs(struct send_ctx *sctx,
4423			    enum btrfs_compare_tree_result cmd)
4424{
4425	int ret;
 
4426	struct btrfs_root *root;
4427	struct btrfs_path *path;
4428	struct btrfs_key key;
4429	struct btrfs_key found_key;
4430	struct extent_buffer *eb;
4431	int slot;
4432	iterate_inode_ref_t cb;
4433	int pending_move = 0;
4434
4435	path = alloc_path_for_send();
4436	if (!path)
4437		return -ENOMEM;
4438
4439	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4440		root = sctx->send_root;
4441		cb = __record_new_ref;
4442	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4443		root = sctx->parent_root;
4444		cb = __record_deleted_ref;
4445	} else {
4446		btrfs_err(sctx->send_root->fs_info,
4447				"Wrong command %d in process_all_refs", cmd);
4448		ret = -EINVAL;
4449		goto out;
4450	}
4451
4452	key.objectid = sctx->cmp_key->objectid;
4453	key.type = BTRFS_INODE_REF_KEY;
4454	key.offset = 0;
4455	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4456	if (ret < 0)
4457		goto out;
4458
4459	while (1) {
4460		eb = path->nodes[0];
4461		slot = path->slots[0];
4462		if (slot >= btrfs_header_nritems(eb)) {
4463			ret = btrfs_next_leaf(root, path);
4464			if (ret < 0)
4465				goto out;
4466			else if (ret > 0)
4467				break;
4468			continue;
4469		}
4470
4471		btrfs_item_key_to_cpu(eb, &found_key, slot);
4472
4473		if (found_key.objectid != key.objectid ||
4474		    (found_key.type != BTRFS_INODE_REF_KEY &&
4475		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4476			break;
4477
4478		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4479		if (ret < 0)
4480			goto out;
4481
4482		path->slots[0]++;
 
 
 
4483	}
4484	btrfs_release_path(path);
4485
4486	/*
4487	 * We don't actually care about pending_move as we are simply
4488	 * re-creating this inode and will be rename'ing it into place once we
4489	 * rename the parent directory.
4490	 */
4491	ret = process_recorded_refs(sctx, &pending_move);
4492out:
4493	btrfs_free_path(path);
4494	return ret;
4495}
4496
4497static int send_set_xattr(struct send_ctx *sctx,
4498			  struct fs_path *path,
4499			  const char *name, int name_len,
4500			  const char *data, int data_len)
4501{
4502	int ret = 0;
4503
4504	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4505	if (ret < 0)
4506		goto out;
4507
4508	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4509	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4510	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4511
4512	ret = send_cmd(sctx);
4513
4514tlv_put_failure:
4515out:
4516	return ret;
4517}
4518
4519static int send_remove_xattr(struct send_ctx *sctx,
4520			  struct fs_path *path,
4521			  const char *name, int name_len)
4522{
4523	int ret = 0;
4524
4525	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4526	if (ret < 0)
4527		goto out;
4528
4529	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4530	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4531
4532	ret = send_cmd(sctx);
4533
4534tlv_put_failure:
4535out:
4536	return ret;
4537}
4538
4539static int __process_new_xattr(int num, struct btrfs_key *di_key,
4540			       const char *name, int name_len,
4541			       const char *data, int data_len,
4542			       u8 type, void *ctx)
4543{
4544	int ret;
4545	struct send_ctx *sctx = ctx;
4546	struct fs_path *p;
4547	struct posix_acl_xattr_header dummy_acl;
4548
4549	/* Capabilities are emitted by finish_inode_if_needed */
4550	if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4551		return 0;
4552
4553	p = fs_path_alloc();
4554	if (!p)
4555		return -ENOMEM;
4556
4557	/*
4558	 * This hack is needed because empty acls are stored as zero byte
4559	 * data in xattrs. Problem with that is, that receiving these zero byte
4560	 * acls will fail later. To fix this, we send a dummy acl list that
4561	 * only contains the version number and no entries.
4562	 */
4563	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4564	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4565		if (data_len == 0) {
4566			dummy_acl.a_version =
4567					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4568			data = (char *)&dummy_acl;
4569			data_len = sizeof(dummy_acl);
4570		}
4571	}
4572
4573	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4574	if (ret < 0)
4575		goto out;
4576
4577	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4578
4579out:
4580	fs_path_free(p);
4581	return ret;
4582}
4583
4584static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4585				   const char *name, int name_len,
4586				   const char *data, int data_len,
4587				   u8 type, void *ctx)
4588{
4589	int ret;
4590	struct send_ctx *sctx = ctx;
4591	struct fs_path *p;
4592
4593	p = fs_path_alloc();
4594	if (!p)
4595		return -ENOMEM;
4596
4597	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4598	if (ret < 0)
4599		goto out;
4600
4601	ret = send_remove_xattr(sctx, p, name, name_len);
4602
4603out:
4604	fs_path_free(p);
4605	return ret;
4606}
4607
4608static int process_new_xattr(struct send_ctx *sctx)
4609{
4610	int ret = 0;
4611
4612	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4613			       __process_new_xattr, sctx);
4614
4615	return ret;
4616}
4617
4618static int process_deleted_xattr(struct send_ctx *sctx)
4619{
4620	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4621				__process_deleted_xattr, sctx);
4622}
4623
4624struct find_xattr_ctx {
4625	const char *name;
4626	int name_len;
4627	int found_idx;
4628	char *found_data;
4629	int found_data_len;
4630};
4631
4632static int __find_xattr(int num, struct btrfs_key *di_key,
4633			const char *name, int name_len,
4634			const char *data, int data_len,
4635			u8 type, void *vctx)
4636{
4637	struct find_xattr_ctx *ctx = vctx;
4638
4639	if (name_len == ctx->name_len &&
4640	    strncmp(name, ctx->name, name_len) == 0) {
4641		ctx->found_idx = num;
4642		ctx->found_data_len = data_len;
4643		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4644		if (!ctx->found_data)
4645			return -ENOMEM;
4646		return 1;
4647	}
4648	return 0;
4649}
4650
4651static int find_xattr(struct btrfs_root *root,
4652		      struct btrfs_path *path,
4653		      struct btrfs_key *key,
4654		      const char *name, int name_len,
4655		      char **data, int *data_len)
4656{
4657	int ret;
4658	struct find_xattr_ctx ctx;
4659
4660	ctx.name = name;
4661	ctx.name_len = name_len;
4662	ctx.found_idx = -1;
4663	ctx.found_data = NULL;
4664	ctx.found_data_len = 0;
4665
4666	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4667	if (ret < 0)
4668		return ret;
4669
4670	if (ctx.found_idx == -1)
4671		return -ENOENT;
4672	if (data) {
4673		*data = ctx.found_data;
4674		*data_len = ctx.found_data_len;
4675	} else {
4676		kfree(ctx.found_data);
4677	}
4678	return ctx.found_idx;
4679}
4680
4681
4682static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4683				       const char *name, int name_len,
4684				       const char *data, int data_len,
4685				       u8 type, void *ctx)
4686{
4687	int ret;
4688	struct send_ctx *sctx = ctx;
4689	char *found_data = NULL;
4690	int found_data_len  = 0;
4691
4692	ret = find_xattr(sctx->parent_root, sctx->right_path,
4693			 sctx->cmp_key, name, name_len, &found_data,
4694			 &found_data_len);
4695	if (ret == -ENOENT) {
4696		ret = __process_new_xattr(num, di_key, name, name_len, data,
4697				data_len, type, ctx);
4698	} else if (ret >= 0) {
4699		if (data_len != found_data_len ||
4700		    memcmp(data, found_data, data_len)) {
4701			ret = __process_new_xattr(num, di_key, name, name_len,
4702					data, data_len, type, ctx);
4703		} else {
4704			ret = 0;
4705		}
4706	}
4707
4708	kfree(found_data);
4709	return ret;
4710}
4711
4712static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4713					   const char *name, int name_len,
4714					   const char *data, int data_len,
4715					   u8 type, void *ctx)
4716{
4717	int ret;
4718	struct send_ctx *sctx = ctx;
4719
4720	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4721			 name, name_len, NULL, NULL);
4722	if (ret == -ENOENT)
4723		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4724				data_len, type, ctx);
4725	else if (ret >= 0)
4726		ret = 0;
4727
4728	return ret;
4729}
4730
4731static int process_changed_xattr(struct send_ctx *sctx)
4732{
4733	int ret = 0;
4734
4735	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4736			__process_changed_new_xattr, sctx);
4737	if (ret < 0)
4738		goto out;
4739	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4740			__process_changed_deleted_xattr, sctx);
4741
4742out:
4743	return ret;
4744}
4745
4746static int process_all_new_xattrs(struct send_ctx *sctx)
4747{
4748	int ret;
 
4749	struct btrfs_root *root;
4750	struct btrfs_path *path;
4751	struct btrfs_key key;
4752	struct btrfs_key found_key;
4753	struct extent_buffer *eb;
4754	int slot;
4755
4756	path = alloc_path_for_send();
4757	if (!path)
4758		return -ENOMEM;
4759
4760	root = sctx->send_root;
4761
4762	key.objectid = sctx->cmp_key->objectid;
4763	key.type = BTRFS_XATTR_ITEM_KEY;
4764	key.offset = 0;
4765	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4766	if (ret < 0)
4767		goto out;
4768
4769	while (1) {
4770		eb = path->nodes[0];
4771		slot = path->slots[0];
4772		if (slot >= btrfs_header_nritems(eb)) {
4773			ret = btrfs_next_leaf(root, path);
4774			if (ret < 0) {
4775				goto out;
4776			} else if (ret > 0) {
4777				ret = 0;
4778				break;
4779			}
4780			continue;
4781		}
4782
4783		btrfs_item_key_to_cpu(eb, &found_key, slot);
4784		if (found_key.objectid != key.objectid ||
4785		    found_key.type != key.type) {
4786			ret = 0;
4787			goto out;
4788		}
4789
4790		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4791		if (ret < 0)
4792			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4793
4794		path->slots[0]++;
 
 
 
4795	}
 
 
 
4796
4797out:
4798	btrfs_free_path(path);
 
 
 
 
 
 
4799	return ret;
4800}
4801
4802static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4803{
4804	struct btrfs_root *root = sctx->send_root;
4805	struct btrfs_fs_info *fs_info = root->fs_info;
4806	struct inode *inode;
4807	struct page *page;
4808	char *addr;
4809	pgoff_t index = offset >> PAGE_SHIFT;
4810	pgoff_t last_index;
4811	unsigned pg_offset = offset_in_page(offset);
4812	ssize_t ret = 0;
4813
4814	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
4815	if (IS_ERR(inode))
4816		return PTR_ERR(inode);
4817
4818	if (offset + len > i_size_read(inode)) {
4819		if (offset > i_size_read(inode))
4820			len = 0;
4821		else
4822			len = offset - i_size_read(inode);
4823	}
4824	if (len == 0)
4825		goto out;
4826
4827	last_index = (offset + len - 1) >> PAGE_SHIFT;
4828
4829	/* initial readahead */
4830	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4831	file_ra_state_init(&sctx->ra, inode->i_mapping);
4832
4833	while (index <= last_index) {
4834		unsigned cur_len = min_t(unsigned, len,
4835					 PAGE_SIZE - pg_offset);
4836
4837		page = find_lock_page(inode->i_mapping, index);
4838		if (!page) {
4839			page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4840				NULL, index, last_index + 1 - index);
 
4841
4842			page = find_or_create_page(inode->i_mapping, index,
4843					GFP_KERNEL);
4844			if (!page) {
4845				ret = -ENOMEM;
4846				break;
4847			}
4848		}
4849
4850		if (PageReadahead(page)) {
4851			page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4852				NULL, page, index, last_index + 1 - index);
4853		}
4854
4855		if (!PageUptodate(page)) {
4856			btrfs_readpage(NULL, page);
4857			lock_page(page);
4858			if (!PageUptodate(page)) {
4859				unlock_page(page);
 
 
 
 
4860				put_page(page);
4861				ret = -EIO;
4862				break;
4863			}
4864		}
4865
4866		addr = kmap(page);
4867		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4868		kunmap(page);
4869		unlock_page(page);
4870		put_page(page);
4871		index++;
4872		pg_offset = 0;
4873		len -= cur_len;
4874		ret += cur_len;
4875	}
4876out:
4877	iput(inode);
4878	return ret;
4879}
4880
4881/*
4882 * Read some bytes from the current inode/file and send a write command to
4883 * user space.
4884 */
4885static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4886{
4887	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4888	int ret = 0;
4889	struct fs_path *p;
4890	ssize_t num_read = 0;
4891
4892	p = fs_path_alloc();
4893	if (!p)
4894		return -ENOMEM;
4895
4896	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4897
4898	num_read = fill_read_buf(sctx, offset, len);
4899	if (num_read <= 0) {
4900		if (num_read < 0)
4901			ret = num_read;
4902		goto out;
4903	}
4904
4905	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4906	if (ret < 0)
4907		goto out;
4908
4909	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4910	if (ret < 0)
4911		goto out;
4912
4913	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4914	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4915	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
 
 
4916
4917	ret = send_cmd(sctx);
4918
4919tlv_put_failure:
4920out:
4921	fs_path_free(p);
4922	if (ret < 0)
4923		return ret;
4924	return num_read;
4925}
4926
4927/*
4928 * Send a clone command to user space.
4929 */
4930static int send_clone(struct send_ctx *sctx,
4931		      u64 offset, u32 len,
4932		      struct clone_root *clone_root)
4933{
4934	int ret = 0;
4935	struct fs_path *p;
4936	u64 gen;
4937
4938	btrfs_debug(sctx->send_root->fs_info,
4939		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4940		    offset, len, clone_root->root->root_key.objectid,
4941		    clone_root->ino, clone_root->offset);
4942
4943	p = fs_path_alloc();
4944	if (!p)
4945		return -ENOMEM;
4946
4947	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4948	if (ret < 0)
4949		goto out;
4950
4951	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4952	if (ret < 0)
4953		goto out;
4954
4955	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4956	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4957	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4958
4959	if (clone_root->root == sctx->send_root) {
4960		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4961				&gen, NULL, NULL, NULL, NULL);
4962		if (ret < 0)
4963			goto out;
4964		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4965	} else {
4966		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4967	}
4968	if (ret < 0)
4969		goto out;
4970
4971	/*
4972	 * If the parent we're using has a received_uuid set then use that as
4973	 * our clone source as that is what we will look for when doing a
4974	 * receive.
4975	 *
4976	 * This covers the case that we create a snapshot off of a received
4977	 * subvolume and then use that as the parent and try to receive on a
4978	 * different host.
4979	 */
4980	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4981		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4982			     clone_root->root->root_item.received_uuid);
4983	else
4984		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4985			     clone_root->root->root_item.uuid);
4986	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4987		    le64_to_cpu(clone_root->root->root_item.ctransid));
4988	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4989	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4990			clone_root->offset);
4991
4992	ret = send_cmd(sctx);
4993
4994tlv_put_failure:
4995out:
4996	fs_path_free(p);
4997	return ret;
4998}
4999
5000/*
5001 * Send an update extent command to user space.
5002 */
5003static int send_update_extent(struct send_ctx *sctx,
5004			      u64 offset, u32 len)
5005{
5006	int ret = 0;
5007	struct fs_path *p;
5008
5009	p = fs_path_alloc();
5010	if (!p)
5011		return -ENOMEM;
5012
5013	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5014	if (ret < 0)
5015		goto out;
5016
5017	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5018	if (ret < 0)
5019		goto out;
5020
5021	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5022	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5023	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5024
5025	ret = send_cmd(sctx);
5026
5027tlv_put_failure:
5028out:
5029	fs_path_free(p);
5030	return ret;
5031}
5032
5033static int send_hole(struct send_ctx *sctx, u64 end)
5034{
5035	struct fs_path *p = NULL;
 
5036	u64 offset = sctx->cur_inode_last_extent;
5037	u64 len;
5038	int ret = 0;
5039
5040	/*
5041	 * A hole that starts at EOF or beyond it. Since we do not yet support
5042	 * fallocate (for extent preallocation and hole punching), sending a
5043	 * write of zeroes starting at EOF or beyond would later require issuing
5044	 * a truncate operation which would undo the write and achieve nothing.
5045	 */
5046	if (offset >= sctx->cur_inode_size)
5047		return 0;
5048
5049	/*
5050	 * Don't go beyond the inode's i_size due to prealloc extents that start
5051	 * after the i_size.
5052	 */
5053	end = min_t(u64, end, sctx->cur_inode_size);
5054
5055	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5056		return send_update_extent(sctx, offset, end - offset);
5057
5058	p = fs_path_alloc();
5059	if (!p)
5060		return -ENOMEM;
5061	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5062	if (ret < 0)
5063		goto tlv_put_failure;
5064	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
5065	while (offset < end) {
5066		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
5067
5068		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5069		if (ret < 0)
5070			break;
5071		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5072		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5073		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
 
 
 
 
5074		ret = send_cmd(sctx);
5075		if (ret < 0)
5076			break;
5077		offset += len;
5078	}
5079	sctx->cur_inode_next_write_offset = offset;
5080tlv_put_failure:
5081	fs_path_free(p);
5082	return ret;
5083}
5084
5085static int send_extent_data(struct send_ctx *sctx,
5086			    const u64 offset,
5087			    const u64 len)
5088{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5089	u64 sent = 0;
5090
5091	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5092		return send_update_extent(sctx, offset, len);
5093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5094	while (sent < len) {
5095		u64 size = len - sent;
5096		int ret;
5097
5098		if (size > BTRFS_SEND_READ_SIZE)
5099			size = BTRFS_SEND_READ_SIZE;
5100		ret = send_write(sctx, offset + sent, size);
5101		if (ret < 0)
5102			return ret;
5103		if (!ret)
5104			break;
5105		sent += ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5106	}
 
5107	return 0;
5108}
5109
5110/*
5111 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5112 * found, call send_set_xattr function to emit it.
5113 *
5114 * Return 0 if there isn't a capability, or when the capability was emitted
5115 * successfully, or < 0 if an error occurred.
5116 */
5117static int send_capabilities(struct send_ctx *sctx)
5118{
5119	struct fs_path *fspath = NULL;
5120	struct btrfs_path *path;
5121	struct btrfs_dir_item *di;
5122	struct extent_buffer *leaf;
5123	unsigned long data_ptr;
5124	char *buf = NULL;
5125	int buf_len;
5126	int ret = 0;
5127
5128	path = alloc_path_for_send();
5129	if (!path)
5130		return -ENOMEM;
5131
5132	di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5133				XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5134	if (!di) {
5135		/* There is no xattr for this inode */
5136		goto out;
5137	} else if (IS_ERR(di)) {
5138		ret = PTR_ERR(di);
5139		goto out;
5140	}
5141
5142	leaf = path->nodes[0];
5143	buf_len = btrfs_dir_data_len(leaf, di);
5144
5145	fspath = fs_path_alloc();
5146	buf = kmalloc(buf_len, GFP_KERNEL);
5147	if (!fspath || !buf) {
5148		ret = -ENOMEM;
5149		goto out;
5150	}
5151
5152	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5153	if (ret < 0)
5154		goto out;
5155
5156	data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5157	read_extent_buffer(leaf, buf, data_ptr, buf_len);
5158
5159	ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5160			strlen(XATTR_NAME_CAPS), buf, buf_len);
5161out:
5162	kfree(buf);
5163	fs_path_free(fspath);
5164	btrfs_free_path(path);
5165	return ret;
5166}
5167
5168static int clone_range(struct send_ctx *sctx,
5169		       struct clone_root *clone_root,
5170		       const u64 disk_byte,
5171		       u64 data_offset,
5172		       u64 offset,
5173		       u64 len)
5174{
5175	struct btrfs_path *path;
5176	struct btrfs_key key;
5177	int ret;
 
5178	u64 clone_src_i_size = 0;
5179
5180	/*
5181	 * Prevent cloning from a zero offset with a length matching the sector
5182	 * size because in some scenarios this will make the receiver fail.
5183	 *
5184	 * For example, if in the source filesystem the extent at offset 0
5185	 * has a length of sectorsize and it was written using direct IO, then
5186	 * it can never be an inline extent (even if compression is enabled).
5187	 * Then this extent can be cloned in the original filesystem to a non
5188	 * zero file offset, but it may not be possible to clone in the
5189	 * destination filesystem because it can be inlined due to compression
5190	 * on the destination filesystem (as the receiver's write operations are
5191	 * always done using buffered IO). The same happens when the original
5192	 * filesystem does not have compression enabled but the destination
5193	 * filesystem has.
5194	 */
5195	if (clone_root->offset == 0 &&
5196	    len == sctx->send_root->fs_info->sectorsize)
5197		return send_extent_data(sctx, offset, len);
5198
5199	path = alloc_path_for_send();
5200	if (!path)
5201		return -ENOMEM;
5202
5203	/*
5204	 * There are inodes that have extents that lie behind its i_size. Don't
5205	 * accept clones from these extents.
5206	 */
5207	ret = __get_inode_info(clone_root->root, path, clone_root->ino,
5208			       &clone_src_i_size, NULL, NULL, NULL, NULL, NULL);
5209	btrfs_release_path(path);
5210	if (ret < 0)
5211		goto out;
 
5212
5213	/*
5214	 * We can't send a clone operation for the entire range if we find
5215	 * extent items in the respective range in the source file that
5216	 * refer to different extents or if we find holes.
5217	 * So check for that and do a mix of clone and regular write/copy
5218	 * operations if needed.
5219	 *
5220	 * Example:
5221	 *
5222	 * mkfs.btrfs -f /dev/sda
5223	 * mount /dev/sda /mnt
5224	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5225	 * cp --reflink=always /mnt/foo /mnt/bar
5226	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5227	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5228	 *
5229	 * If when we send the snapshot and we are processing file bar (which
5230	 * has a higher inode number than foo) we blindly send a clone operation
5231	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5232	 * a file bar that matches the content of file foo - iow, doesn't match
5233	 * the content from bar in the original filesystem.
5234	 */
5235	key.objectid = clone_root->ino;
5236	key.type = BTRFS_EXTENT_DATA_KEY;
5237	key.offset = clone_root->offset;
5238	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5239	if (ret < 0)
5240		goto out;
5241	if (ret > 0 && path->slots[0] > 0) {
5242		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5243		if (key.objectid == clone_root->ino &&
5244		    key.type == BTRFS_EXTENT_DATA_KEY)
5245			path->slots[0]--;
5246	}
5247
5248	while (true) {
5249		struct extent_buffer *leaf = path->nodes[0];
5250		int slot = path->slots[0];
5251		struct btrfs_file_extent_item *ei;
5252		u8 type;
5253		u64 ext_len;
5254		u64 clone_len;
5255		u64 clone_data_offset;
 
5256
5257		if (slot >= btrfs_header_nritems(leaf)) {
5258			ret = btrfs_next_leaf(clone_root->root, path);
5259			if (ret < 0)
5260				goto out;
5261			else if (ret > 0)
5262				break;
5263			continue;
5264		}
5265
5266		btrfs_item_key_to_cpu(leaf, &key, slot);
5267
5268		/*
5269		 * We might have an implicit trailing hole (NO_HOLES feature
5270		 * enabled). We deal with it after leaving this loop.
5271		 */
5272		if (key.objectid != clone_root->ino ||
5273		    key.type != BTRFS_EXTENT_DATA_KEY)
5274			break;
5275
5276		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5277		type = btrfs_file_extent_type(leaf, ei);
5278		if (type == BTRFS_FILE_EXTENT_INLINE) {
5279			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5280			ext_len = PAGE_ALIGN(ext_len);
5281		} else {
5282			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5283		}
5284
5285		if (key.offset + ext_len <= clone_root->offset)
5286			goto next;
5287
5288		if (key.offset > clone_root->offset) {
5289			/* Implicit hole, NO_HOLES feature enabled. */
5290			u64 hole_len = key.offset - clone_root->offset;
5291
5292			if (hole_len > len)
5293				hole_len = len;
5294			ret = send_extent_data(sctx, offset, hole_len);
 
5295			if (ret < 0)
5296				goto out;
5297
5298			len -= hole_len;
5299			if (len == 0)
5300				break;
5301			offset += hole_len;
5302			clone_root->offset += hole_len;
5303			data_offset += hole_len;
5304		}
5305
5306		if (key.offset >= clone_root->offset + len)
5307			break;
5308
5309		if (key.offset >= clone_src_i_size)
5310			break;
5311
5312		if (key.offset + ext_len > clone_src_i_size)
5313			ext_len = clone_src_i_size - key.offset;
 
 
5314
5315		clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5316		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5317			clone_root->offset = key.offset;
5318			if (clone_data_offset < data_offset &&
5319				clone_data_offset + ext_len > data_offset) {
5320				u64 extent_offset;
5321
5322				extent_offset = data_offset - clone_data_offset;
5323				ext_len -= extent_offset;
5324				clone_data_offset += extent_offset;
5325				clone_root->offset += extent_offset;
5326			}
5327		}
5328
5329		clone_len = min_t(u64, ext_len, len);
5330
5331		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5332		    clone_data_offset == data_offset) {
5333			const u64 src_end = clone_root->offset + clone_len;
5334			const u64 sectorsize = SZ_64K;
5335
5336			/*
5337			 * We can't clone the last block, when its size is not
5338			 * sector size aligned, into the middle of a file. If we
5339			 * do so, the receiver will get a failure (-EINVAL) when
5340			 * trying to clone or will silently corrupt the data in
5341			 * the destination file if it's on a kernel without the
5342			 * fix introduced by commit ac765f83f1397646
5343			 * ("Btrfs: fix data corruption due to cloning of eof
5344			 * block).
5345			 *
5346			 * So issue a clone of the aligned down range plus a
5347			 * regular write for the eof block, if we hit that case.
5348			 *
5349			 * Also, we use the maximum possible sector size, 64K,
5350			 * because we don't know what's the sector size of the
5351			 * filesystem that receives the stream, so we have to
5352			 * assume the largest possible sector size.
5353			 */
5354			if (src_end == clone_src_i_size &&
5355			    !IS_ALIGNED(src_end, sectorsize) &&
5356			    offset + clone_len < sctx->cur_inode_size) {
5357				u64 slen;
5358
5359				slen = ALIGN_DOWN(src_end - clone_root->offset,
5360						  sectorsize);
5361				if (slen > 0) {
5362					ret = send_clone(sctx, offset, slen,
5363							 clone_root);
5364					if (ret < 0)
5365						goto out;
5366				}
5367				ret = send_extent_data(sctx, offset + slen,
 
5368						       clone_len - slen);
5369			} else {
5370				ret = send_clone(sctx, offset, clone_len,
5371						 clone_root);
5372			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5373		} else {
5374			ret = send_extent_data(sctx, offset, clone_len);
 
5375		}
5376
5377		if (ret < 0)
5378			goto out;
5379
5380		len -= clone_len;
5381		if (len == 0)
5382			break;
5383		offset += clone_len;
5384		clone_root->offset += clone_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5385		data_offset += clone_len;
5386next:
5387		path->slots[0]++;
5388	}
5389
5390	if (len > 0)
5391		ret = send_extent_data(sctx, offset, len);
5392	else
5393		ret = 0;
5394out:
5395	btrfs_free_path(path);
5396	return ret;
5397}
5398
5399static int send_write_or_clone(struct send_ctx *sctx,
5400			       struct btrfs_path *path,
5401			       struct btrfs_key *key,
5402			       struct clone_root *clone_root)
5403{
5404	int ret = 0;
5405	struct btrfs_file_extent_item *ei;
5406	u64 offset = key->offset;
5407	u64 len;
5408	u8 type;
5409	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5410
5411	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5412			struct btrfs_file_extent_item);
5413	type = btrfs_file_extent_type(path->nodes[0], ei);
5414	if (type == BTRFS_FILE_EXTENT_INLINE) {
5415		len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
5416		/*
5417		 * it is possible the inline item won't cover the whole page,
5418		 * but there may be items after this page.  Make
5419		 * sure to send the whole thing
5420		 */
5421		len = PAGE_ALIGN(len);
5422	} else {
5423		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5424	}
5425
5426	if (offset >= sctx->cur_inode_size) {
5427		ret = 0;
5428		goto out;
5429	}
5430	if (offset + len > sctx->cur_inode_size)
5431		len = sctx->cur_inode_size - offset;
5432	if (len == 0) {
5433		ret = 0;
5434		goto out;
5435	}
5436
5437	if (clone_root && IS_ALIGNED(offset + len, bs)) {
5438		u64 disk_byte;
5439		u64 data_offset;
5440
 
 
5441		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5442		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5443		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5444				  offset, len);
5445	} else {
5446		ret = send_extent_data(sctx, offset, len);
5447	}
5448	sctx->cur_inode_next_write_offset = offset + len;
5449out:
5450	return ret;
5451}
5452
5453static int is_extent_unchanged(struct send_ctx *sctx,
5454			       struct btrfs_path *left_path,
5455			       struct btrfs_key *ekey)
5456{
5457	int ret = 0;
5458	struct btrfs_key key;
5459	struct btrfs_path *path = NULL;
5460	struct extent_buffer *eb;
5461	int slot;
5462	struct btrfs_key found_key;
5463	struct btrfs_file_extent_item *ei;
5464	u64 left_disknr;
5465	u64 right_disknr;
5466	u64 left_offset;
5467	u64 right_offset;
5468	u64 left_offset_fixed;
5469	u64 left_len;
5470	u64 right_len;
5471	u64 left_gen;
5472	u64 right_gen;
5473	u8 left_type;
5474	u8 right_type;
5475
5476	path = alloc_path_for_send();
5477	if (!path)
5478		return -ENOMEM;
5479
5480	eb = left_path->nodes[0];
5481	slot = left_path->slots[0];
5482	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5483	left_type = btrfs_file_extent_type(eb, ei);
5484
5485	if (left_type != BTRFS_FILE_EXTENT_REG) {
5486		ret = 0;
5487		goto out;
5488	}
5489	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5490	left_len = btrfs_file_extent_num_bytes(eb, ei);
5491	left_offset = btrfs_file_extent_offset(eb, ei);
5492	left_gen = btrfs_file_extent_generation(eb, ei);
5493
5494	/*
5495	 * Following comments will refer to these graphics. L is the left
5496	 * extents which we are checking at the moment. 1-8 are the right
5497	 * extents that we iterate.
5498	 *
5499	 *       |-----L-----|
5500	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5501	 *
5502	 *       |-----L-----|
5503	 * |--1--|-2b-|...(same as above)
5504	 *
5505	 * Alternative situation. Happens on files where extents got split.
5506	 *       |-----L-----|
5507	 * |-----------7-----------|-6-|
5508	 *
5509	 * Alternative situation. Happens on files which got larger.
5510	 *       |-----L-----|
5511	 * |-8-|
5512	 * Nothing follows after 8.
5513	 */
5514
5515	key.objectid = ekey->objectid;
5516	key.type = BTRFS_EXTENT_DATA_KEY;
5517	key.offset = ekey->offset;
5518	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5519	if (ret < 0)
5520		goto out;
5521	if (ret) {
5522		ret = 0;
5523		goto out;
5524	}
5525
5526	/*
5527	 * Handle special case where the right side has no extents at all.
5528	 */
5529	eb = path->nodes[0];
5530	slot = path->slots[0];
5531	btrfs_item_key_to_cpu(eb, &found_key, slot);
5532	if (found_key.objectid != key.objectid ||
5533	    found_key.type != key.type) {
5534		/* If we're a hole then just pretend nothing changed */
5535		ret = (left_disknr) ? 0 : 1;
5536		goto out;
5537	}
5538
5539	/*
5540	 * We're now on 2a, 2b or 7.
5541	 */
5542	key = found_key;
5543	while (key.offset < ekey->offset + left_len) {
5544		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5545		right_type = btrfs_file_extent_type(eb, ei);
5546		if (right_type != BTRFS_FILE_EXTENT_REG &&
5547		    right_type != BTRFS_FILE_EXTENT_INLINE) {
5548			ret = 0;
5549			goto out;
5550		}
5551
5552		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5553			right_len = btrfs_file_extent_ram_bytes(eb, ei);
5554			right_len = PAGE_ALIGN(right_len);
5555		} else {
5556			right_len = btrfs_file_extent_num_bytes(eb, ei);
5557		}
5558
5559		/*
5560		 * Are we at extent 8? If yes, we know the extent is changed.
5561		 * This may only happen on the first iteration.
5562		 */
5563		if (found_key.offset + right_len <= ekey->offset) {
5564			/* If we're a hole just pretend nothing changed */
5565			ret = (left_disknr) ? 0 : 1;
5566			goto out;
5567		}
5568
5569		/*
5570		 * We just wanted to see if when we have an inline extent, what
5571		 * follows it is a regular extent (wanted to check the above
5572		 * condition for inline extents too). This should normally not
5573		 * happen but it's possible for example when we have an inline
5574		 * compressed extent representing data with a size matching
5575		 * the page size (currently the same as sector size).
5576		 */
5577		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5578			ret = 0;
5579			goto out;
5580		}
5581
5582		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5583		right_offset = btrfs_file_extent_offset(eb, ei);
5584		right_gen = btrfs_file_extent_generation(eb, ei);
5585
5586		left_offset_fixed = left_offset;
5587		if (key.offset < ekey->offset) {
5588			/* Fix the right offset for 2a and 7. */
5589			right_offset += ekey->offset - key.offset;
5590		} else {
5591			/* Fix the left offset for all behind 2a and 2b */
5592			left_offset_fixed += key.offset - ekey->offset;
5593		}
5594
5595		/*
5596		 * Check if we have the same extent.
5597		 */
5598		if (left_disknr != right_disknr ||
5599		    left_offset_fixed != right_offset ||
5600		    left_gen != right_gen) {
5601			ret = 0;
5602			goto out;
5603		}
5604
5605		/*
5606		 * Go to the next extent.
5607		 */
5608		ret = btrfs_next_item(sctx->parent_root, path);
5609		if (ret < 0)
5610			goto out;
5611		if (!ret) {
5612			eb = path->nodes[0];
5613			slot = path->slots[0];
5614			btrfs_item_key_to_cpu(eb, &found_key, slot);
5615		}
5616		if (ret || found_key.objectid != key.objectid ||
5617		    found_key.type != key.type) {
5618			key.offset += right_len;
5619			break;
5620		}
5621		if (found_key.offset != key.offset + right_len) {
5622			ret = 0;
5623			goto out;
5624		}
5625		key = found_key;
5626	}
5627
5628	/*
5629	 * We're now behind the left extent (treat as unchanged) or at the end
5630	 * of the right side (treat as changed).
5631	 */
5632	if (key.offset >= ekey->offset + left_len)
5633		ret = 1;
5634	else
5635		ret = 0;
5636
5637
5638out:
5639	btrfs_free_path(path);
5640	return ret;
5641}
5642
5643static int get_last_extent(struct send_ctx *sctx, u64 offset)
5644{
5645	struct btrfs_path *path;
5646	struct btrfs_root *root = sctx->send_root;
5647	struct btrfs_key key;
5648	int ret;
5649
5650	path = alloc_path_for_send();
5651	if (!path)
5652		return -ENOMEM;
5653
5654	sctx->cur_inode_last_extent = 0;
5655
5656	key.objectid = sctx->cur_ino;
5657	key.type = BTRFS_EXTENT_DATA_KEY;
5658	key.offset = offset;
5659	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5660	if (ret < 0)
5661		goto out;
5662	ret = 0;
5663	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5664	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5665		goto out;
5666
5667	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5668out:
5669	btrfs_free_path(path);
5670	return ret;
5671}
5672
5673static int range_is_hole_in_parent(struct send_ctx *sctx,
5674				   const u64 start,
5675				   const u64 end)
5676{
5677	struct btrfs_path *path;
5678	struct btrfs_key key;
5679	struct btrfs_root *root = sctx->parent_root;
5680	u64 search_start = start;
5681	int ret;
5682
5683	path = alloc_path_for_send();
5684	if (!path)
5685		return -ENOMEM;
5686
5687	key.objectid = sctx->cur_ino;
5688	key.type = BTRFS_EXTENT_DATA_KEY;
5689	key.offset = search_start;
5690	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5691	if (ret < 0)
5692		goto out;
5693	if (ret > 0 && path->slots[0] > 0)
5694		path->slots[0]--;
5695
5696	while (search_start < end) {
5697		struct extent_buffer *leaf = path->nodes[0];
5698		int slot = path->slots[0];
5699		struct btrfs_file_extent_item *fi;
5700		u64 extent_end;
5701
5702		if (slot >= btrfs_header_nritems(leaf)) {
5703			ret = btrfs_next_leaf(root, path);
5704			if (ret < 0)
5705				goto out;
5706			else if (ret > 0)
5707				break;
5708			continue;
5709		}
5710
5711		btrfs_item_key_to_cpu(leaf, &key, slot);
5712		if (key.objectid < sctx->cur_ino ||
5713		    key.type < BTRFS_EXTENT_DATA_KEY)
5714			goto next;
5715		if (key.objectid > sctx->cur_ino ||
5716		    key.type > BTRFS_EXTENT_DATA_KEY ||
5717		    key.offset >= end)
5718			break;
5719
5720		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5721		extent_end = btrfs_file_extent_end(path);
5722		if (extent_end <= start)
5723			goto next;
5724		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5725			search_start = extent_end;
5726			goto next;
5727		}
5728		ret = 0;
5729		goto out;
5730next:
5731		path->slots[0]++;
5732	}
5733	ret = 1;
5734out:
5735	btrfs_free_path(path);
5736	return ret;
5737}
5738
5739static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5740			   struct btrfs_key *key)
5741{
5742	int ret = 0;
5743
5744	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5745		return 0;
5746
5747	if (sctx->cur_inode_last_extent == (u64)-1) {
5748		ret = get_last_extent(sctx, key->offset - 1);
5749		if (ret)
5750			return ret;
5751	}
5752
5753	if (path->slots[0] == 0 &&
5754	    sctx->cur_inode_last_extent < key->offset) {
5755		/*
5756		 * We might have skipped entire leafs that contained only
5757		 * file extent items for our current inode. These leafs have
5758		 * a generation number smaller (older) than the one in the
5759		 * current leaf and the leaf our last extent came from, and
5760		 * are located between these 2 leafs.
5761		 */
5762		ret = get_last_extent(sctx, key->offset - 1);
5763		if (ret)
5764			return ret;
5765	}
5766
5767	if (sctx->cur_inode_last_extent < key->offset) {
5768		ret = range_is_hole_in_parent(sctx,
5769					      sctx->cur_inode_last_extent,
5770					      key->offset);
5771		if (ret < 0)
5772			return ret;
5773		else if (ret == 0)
5774			ret = send_hole(sctx, key->offset);
5775		else
5776			ret = 0;
5777	}
5778	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5779	return ret;
5780}
5781
5782static int process_extent(struct send_ctx *sctx,
5783			  struct btrfs_path *path,
5784			  struct btrfs_key *key)
5785{
5786	struct clone_root *found_clone = NULL;
5787	int ret = 0;
5788
5789	if (S_ISLNK(sctx->cur_inode_mode))
5790		return 0;
5791
5792	if (sctx->parent_root && !sctx->cur_inode_new) {
5793		ret = is_extent_unchanged(sctx, path, key);
5794		if (ret < 0)
5795			goto out;
5796		if (ret) {
5797			ret = 0;
5798			goto out_hole;
5799		}
5800	} else {
5801		struct btrfs_file_extent_item *ei;
5802		u8 type;
5803
5804		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5805				    struct btrfs_file_extent_item);
5806		type = btrfs_file_extent_type(path->nodes[0], ei);
5807		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5808		    type == BTRFS_FILE_EXTENT_REG) {
5809			/*
5810			 * The send spec does not have a prealloc command yet,
5811			 * so just leave a hole for prealloc'ed extents until
5812			 * we have enough commands queued up to justify rev'ing
5813			 * the send spec.
5814			 */
5815			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5816				ret = 0;
5817				goto out;
5818			}
5819
5820			/* Have a hole, just skip it. */
5821			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5822				ret = 0;
5823				goto out;
5824			}
5825		}
5826	}
5827
5828	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5829			sctx->cur_inode_size, &found_clone);
5830	if (ret != -ENOENT && ret < 0)
5831		goto out;
5832
5833	ret = send_write_or_clone(sctx, path, key, found_clone);
5834	if (ret)
5835		goto out;
5836out_hole:
5837	ret = maybe_send_hole(sctx, path, key);
5838out:
5839	return ret;
5840}
5841
5842static int process_all_extents(struct send_ctx *sctx)
5843{
5844	int ret;
 
5845	struct btrfs_root *root;
5846	struct btrfs_path *path;
5847	struct btrfs_key key;
5848	struct btrfs_key found_key;
5849	struct extent_buffer *eb;
5850	int slot;
5851
5852	root = sctx->send_root;
5853	path = alloc_path_for_send();
5854	if (!path)
5855		return -ENOMEM;
5856
5857	key.objectid = sctx->cmp_key->objectid;
5858	key.type = BTRFS_EXTENT_DATA_KEY;
5859	key.offset = 0;
5860	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5861	if (ret < 0)
5862		goto out;
5863
5864	while (1) {
5865		eb = path->nodes[0];
5866		slot = path->slots[0];
5867
5868		if (slot >= btrfs_header_nritems(eb)) {
5869			ret = btrfs_next_leaf(root, path);
5870			if (ret < 0) {
5871				goto out;
5872			} else if (ret > 0) {
5873				ret = 0;
5874				break;
5875			}
5876			continue;
5877		}
5878
5879		btrfs_item_key_to_cpu(eb, &found_key, slot);
5880
5881		if (found_key.objectid != key.objectid ||
5882		    found_key.type != key.type) {
5883			ret = 0;
5884			goto out;
5885		}
5886
5887		ret = process_extent(sctx, path, &found_key);
5888		if (ret < 0)
5889			goto out;
5890
5891		path->slots[0]++;
5892	}
 
 
 
5893
5894out:
5895	btrfs_free_path(path);
5896	return ret;
5897}
5898
5899static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5900					   int *pending_move,
5901					   int *refs_processed)
5902{
5903	int ret = 0;
5904
5905	if (sctx->cur_ino == 0)
5906		goto out;
5907	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5908	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5909		goto out;
5910	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5911		goto out;
5912
5913	ret = process_recorded_refs(sctx, pending_move);
5914	if (ret < 0)
5915		goto out;
5916
5917	*refs_processed = 1;
5918out:
5919	return ret;
5920}
5921
5922static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5923{
5924	int ret = 0;
 
5925	u64 left_mode;
5926	u64 left_uid;
5927	u64 left_gid;
 
5928	u64 right_mode;
5929	u64 right_uid;
5930	u64 right_gid;
 
5931	int need_chmod = 0;
5932	int need_chown = 0;
 
5933	int need_truncate = 1;
5934	int pending_move = 0;
5935	int refs_processed = 0;
5936
5937	if (sctx->ignore_cur_inode)
5938		return 0;
5939
5940	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5941					      &refs_processed);
5942	if (ret < 0)
5943		goto out;
5944
5945	/*
5946	 * We have processed the refs and thus need to advance send_progress.
5947	 * Now, calls to get_cur_xxx will take the updated refs of the current
5948	 * inode into account.
5949	 *
5950	 * On the other hand, if our current inode is a directory and couldn't
5951	 * be moved/renamed because its parent was renamed/moved too and it has
5952	 * a higher inode number, we can only move/rename our current inode
5953	 * after we moved/renamed its parent. Therefore in this case operate on
5954	 * the old path (pre move/rename) of our current inode, and the
5955	 * move/rename will be performed later.
5956	 */
5957	if (refs_processed && !pending_move)
5958		sctx->send_progress = sctx->cur_ino + 1;
5959
5960	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5961		goto out;
5962	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5963		goto out;
5964
5965	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5966			&left_mode, &left_uid, &left_gid, NULL);
5967	if (ret < 0)
5968		goto out;
 
 
 
 
5969
5970	if (!sctx->parent_root || sctx->cur_inode_new) {
5971		need_chown = 1;
5972		if (!S_ISLNK(sctx->cur_inode_mode))
5973			need_chmod = 1;
5974		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
5975			need_truncate = 0;
5976	} else {
5977		u64 old_size;
5978
5979		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5980				&old_size, NULL, &right_mode, &right_uid,
5981				&right_gid, NULL);
5982		if (ret < 0)
5983			goto out;
 
 
 
 
 
5984
5985		if (left_uid != right_uid || left_gid != right_gid)
5986			need_chown = 1;
5987		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5988			need_chmod = 1;
 
 
5989		if ((old_size == sctx->cur_inode_size) ||
5990		    (sctx->cur_inode_size > old_size &&
5991		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
5992			need_truncate = 0;
5993	}
5994
5995	if (S_ISREG(sctx->cur_inode_mode)) {
5996		if (need_send_hole(sctx)) {
5997			if (sctx->cur_inode_last_extent == (u64)-1 ||
5998			    sctx->cur_inode_last_extent <
5999			    sctx->cur_inode_size) {
6000				ret = get_last_extent(sctx, (u64)-1);
6001				if (ret)
6002					goto out;
6003			}
6004			if (sctx->cur_inode_last_extent <
6005			    sctx->cur_inode_size) {
6006				ret = send_hole(sctx, sctx->cur_inode_size);
6007				if (ret)
 
6008					goto out;
 
 
 
 
 
 
 
 
6009			}
6010		}
6011		if (need_truncate) {
6012			ret = send_truncate(sctx, sctx->cur_ino,
6013					    sctx->cur_inode_gen,
6014					    sctx->cur_inode_size);
6015			if (ret < 0)
6016				goto out;
6017		}
6018	}
6019
6020	if (need_chown) {
6021		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6022				left_uid, left_gid);
6023		if (ret < 0)
6024			goto out;
6025	}
6026	if (need_chmod) {
6027		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6028				left_mode);
6029		if (ret < 0)
6030			goto out;
6031	}
 
 
 
 
 
 
 
 
 
 
 
 
 
6032
6033	ret = send_capabilities(sctx);
6034	if (ret < 0)
6035		goto out;
6036
6037	/*
6038	 * If other directory inodes depended on our current directory
6039	 * inode's move/rename, now do their move/rename operations.
6040	 */
6041	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6042		ret = apply_children_dir_moves(sctx);
6043		if (ret)
6044			goto out;
6045		/*
6046		 * Need to send that every time, no matter if it actually
6047		 * changed between the two trees as we have done changes to
6048		 * the inode before. If our inode is a directory and it's
6049		 * waiting to be moved/renamed, we will send its utimes when
6050		 * it's moved/renamed, therefore we don't need to do it here.
6051		 */
6052		sctx->send_progress = sctx->cur_ino + 1;
6053		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
 
 
 
 
 
 
 
 
 
 
 
6054		if (ret < 0)
6055			goto out;
6056	}
6057
6058out:
 
 
 
6059	return ret;
6060}
6061
6062struct parent_paths_ctx {
6063	struct list_head *refs;
6064	struct send_ctx *sctx;
6065};
6066
6067static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
6068			     void *ctx)
6069{
6070	struct parent_paths_ctx *ppctx = ctx;
6071
6072	return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
6073			  ppctx->refs);
6074}
6075
6076/*
6077 * Issue unlink operations for all paths of the current inode found in the
6078 * parent snapshot.
6079 */
6080static int btrfs_unlink_all_paths(struct send_ctx *sctx)
6081{
6082	LIST_HEAD(deleted_refs);
6083	struct btrfs_path *path;
6084	struct btrfs_key key;
6085	struct parent_paths_ctx ctx;
6086	int ret;
6087
6088	path = alloc_path_for_send();
6089	if (!path)
6090		return -ENOMEM;
6091
6092	key.objectid = sctx->cur_ino;
6093	key.type = BTRFS_INODE_REF_KEY;
6094	key.offset = 0;
6095	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
6096	if (ret < 0)
6097		goto out;
6098
6099	ctx.refs = &deleted_refs;
6100	ctx.sctx = sctx;
6101
6102	while (true) {
6103		struct extent_buffer *eb = path->nodes[0];
6104		int slot = path->slots[0];
6105
6106		if (slot >= btrfs_header_nritems(eb)) {
6107			ret = btrfs_next_leaf(sctx->parent_root, path);
6108			if (ret < 0)
6109				goto out;
6110			else if (ret > 0)
6111				break;
6112			continue;
6113		}
6114
6115		btrfs_item_key_to_cpu(eb, &key, slot);
6116		if (key.objectid != sctx->cur_ino)
6117			break;
6118		if (key.type != BTRFS_INODE_REF_KEY &&
6119		    key.type != BTRFS_INODE_EXTREF_KEY)
6120			break;
6121
6122		ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
6123					record_parent_ref, &ctx);
6124		if (ret < 0)
6125			goto out;
6126
6127		path->slots[0]++;
6128	}
6129
6130	while (!list_empty(&deleted_refs)) {
6131		struct recorded_ref *ref;
6132
6133		ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6134		ret = send_unlink(sctx, ref->full_path);
6135		if (ret < 0)
6136			goto out;
6137		fs_path_free(ref->full_path);
6138		list_del(&ref->list);
6139		kfree(ref);
6140	}
6141	ret = 0;
6142out:
6143	btrfs_free_path(path);
6144	if (ret)
6145		__free_recorded_refs(&deleted_refs);
6146	return ret;
6147}
6148
6149static int changed_inode(struct send_ctx *sctx,
6150			 enum btrfs_compare_tree_result result)
6151{
6152	int ret = 0;
6153	struct btrfs_key *key = sctx->cmp_key;
6154	struct btrfs_inode_item *left_ii = NULL;
6155	struct btrfs_inode_item *right_ii = NULL;
6156	u64 left_gen = 0;
6157	u64 right_gen = 0;
6158
 
 
6159	sctx->cur_ino = key->objectid;
6160	sctx->cur_inode_new_gen = 0;
6161	sctx->cur_inode_last_extent = (u64)-1;
6162	sctx->cur_inode_next_write_offset = 0;
6163	sctx->ignore_cur_inode = false;
6164
6165	/*
6166	 * Set send_progress to current inode. This will tell all get_cur_xxx
6167	 * functions that the current inode's refs are not updated yet. Later,
6168	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6169	 */
6170	sctx->send_progress = sctx->cur_ino;
6171
6172	if (result == BTRFS_COMPARE_TREE_NEW ||
6173	    result == BTRFS_COMPARE_TREE_CHANGED) {
6174		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6175				sctx->left_path->slots[0],
6176				struct btrfs_inode_item);
6177		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6178				left_ii);
6179	} else {
6180		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6181				sctx->right_path->slots[0],
6182				struct btrfs_inode_item);
6183		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6184				right_ii);
6185	}
6186	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6187		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6188				sctx->right_path->slots[0],
6189				struct btrfs_inode_item);
6190
6191		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6192				right_ii);
6193
6194		/*
6195		 * The cur_ino = root dir case is special here. We can't treat
6196		 * the inode as deleted+reused because it would generate a
6197		 * stream that tries to delete/mkdir the root dir.
6198		 */
6199		if (left_gen != right_gen &&
6200		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6201			sctx->cur_inode_new_gen = 1;
6202	}
6203
6204	/*
6205	 * Normally we do not find inodes with a link count of zero (orphans)
6206	 * because the most common case is to create a snapshot and use it
6207	 * for a send operation. However other less common use cases involve
6208	 * using a subvolume and send it after turning it to RO mode just
6209	 * after deleting all hard links of a file while holding an open
6210	 * file descriptor against it or turning a RO snapshot into RW mode,
6211	 * keep an open file descriptor against a file, delete it and then
6212	 * turn the snapshot back to RO mode before using it for a send
6213	 * operation. So if we find such cases, ignore the inode and all its
6214	 * items completely if it's a new inode, or if it's a changed inode
6215	 * make sure all its previous paths (from the parent snapshot) are all
6216	 * unlinked and all other the inode items are ignored.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6217	 */
6218	if (result == BTRFS_COMPARE_TREE_NEW ||
6219	    result == BTRFS_COMPARE_TREE_CHANGED) {
6220		u32 nlinks;
6221
6222		nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6223		if (nlinks == 0) {
6224			sctx->ignore_cur_inode = true;
6225			if (result == BTRFS_COMPARE_TREE_CHANGED)
6226				ret = btrfs_unlink_all_paths(sctx);
6227			goto out;
6228		}
6229	}
6230
6231	if (result == BTRFS_COMPARE_TREE_NEW) {
6232		sctx->cur_inode_gen = left_gen;
6233		sctx->cur_inode_new = 1;
6234		sctx->cur_inode_deleted = 0;
6235		sctx->cur_inode_size = btrfs_inode_size(
6236				sctx->left_path->nodes[0], left_ii);
6237		sctx->cur_inode_mode = btrfs_inode_mode(
6238				sctx->left_path->nodes[0], left_ii);
6239		sctx->cur_inode_rdev = btrfs_inode_rdev(
6240				sctx->left_path->nodes[0], left_ii);
6241		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6242			ret = send_create_inode_if_needed(sctx);
6243	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6244		sctx->cur_inode_gen = right_gen;
6245		sctx->cur_inode_new = 0;
6246		sctx->cur_inode_deleted = 1;
6247		sctx->cur_inode_size = btrfs_inode_size(
6248				sctx->right_path->nodes[0], right_ii);
6249		sctx->cur_inode_mode = btrfs_inode_mode(
6250				sctx->right_path->nodes[0], right_ii);
6251	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
 
 
 
 
 
 
 
 
 
 
6252		/*
6253		 * We need to do some special handling in case the inode was
6254		 * reported as changed with a changed generation number. This
6255		 * means that the original inode was deleted and new inode
6256		 * reused the same inum. So we have to treat the old inode as
6257		 * deleted and the new one as new.
6258		 */
6259		if (sctx->cur_inode_new_gen) {
6260			/*
6261			 * First, process the inode as if it was deleted.
6262			 */
6263			sctx->cur_inode_gen = right_gen;
6264			sctx->cur_inode_new = 0;
6265			sctx->cur_inode_deleted = 1;
6266			sctx->cur_inode_size = btrfs_inode_size(
6267					sctx->right_path->nodes[0], right_ii);
6268			sctx->cur_inode_mode = btrfs_inode_mode(
6269					sctx->right_path->nodes[0], right_ii);
6270			ret = process_all_refs(sctx,
6271					BTRFS_COMPARE_TREE_DELETED);
6272			if (ret < 0)
6273				goto out;
 
 
6274
6275			/*
6276			 * Now process the inode as if it was new.
6277			 */
6278			sctx->cur_inode_gen = left_gen;
6279			sctx->cur_inode_new = 1;
6280			sctx->cur_inode_deleted = 0;
6281			sctx->cur_inode_size = btrfs_inode_size(
6282					sctx->left_path->nodes[0], left_ii);
6283			sctx->cur_inode_mode = btrfs_inode_mode(
6284					sctx->left_path->nodes[0], left_ii);
6285			sctx->cur_inode_rdev = btrfs_inode_rdev(
6286					sctx->left_path->nodes[0], left_ii);
6287			ret = send_create_inode_if_needed(sctx);
6288			if (ret < 0)
6289				goto out;
 
 
 
 
6290
6291			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6292			if (ret < 0)
6293				goto out;
6294			/*
6295			 * Advance send_progress now as we did not get into
6296			 * process_recorded_refs_if_needed in the new_gen case.
6297			 */
6298			sctx->send_progress = sctx->cur_ino + 1;
 
6299
6300			/*
6301			 * Now process all extents and xattrs of the inode as if
6302			 * they were all new.
6303			 */
6304			ret = process_all_extents(sctx);
6305			if (ret < 0)
6306				goto out;
6307			ret = process_all_new_xattrs(sctx);
6308			if (ret < 0)
6309				goto out;
 
6310		} else {
6311			sctx->cur_inode_gen = left_gen;
6312			sctx->cur_inode_new = 0;
6313			sctx->cur_inode_new_gen = 0;
6314			sctx->cur_inode_deleted = 0;
6315			sctx->cur_inode_size = btrfs_inode_size(
6316					sctx->left_path->nodes[0], left_ii);
6317			sctx->cur_inode_mode = btrfs_inode_mode(
6318					sctx->left_path->nodes[0], left_ii);
6319		}
6320	}
6321
6322out:
6323	return ret;
6324}
6325
6326/*
6327 * We have to process new refs before deleted refs, but compare_trees gives us
6328 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6329 * first and later process them in process_recorded_refs.
6330 * For the cur_inode_new_gen case, we skip recording completely because
6331 * changed_inode did already initiate processing of refs. The reason for this is
6332 * that in this case, compare_tree actually compares the refs of 2 different
6333 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6334 * refs of the right tree as deleted and all refs of the left tree as new.
6335 */
6336static int changed_ref(struct send_ctx *sctx,
6337		       enum btrfs_compare_tree_result result)
6338{
6339	int ret = 0;
6340
6341	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6342		inconsistent_snapshot_error(sctx, result, "reference");
6343		return -EIO;
6344	}
6345
6346	if (!sctx->cur_inode_new_gen &&
6347	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6348		if (result == BTRFS_COMPARE_TREE_NEW)
6349			ret = record_new_ref(sctx);
6350		else if (result == BTRFS_COMPARE_TREE_DELETED)
6351			ret = record_deleted_ref(sctx);
6352		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6353			ret = record_changed_ref(sctx);
6354	}
6355
6356	return ret;
6357}
6358
6359/*
6360 * Process new/deleted/changed xattrs. We skip processing in the
6361 * cur_inode_new_gen case because changed_inode did already initiate processing
6362 * of xattrs. The reason is the same as in changed_ref
6363 */
6364static int changed_xattr(struct send_ctx *sctx,
6365			 enum btrfs_compare_tree_result result)
6366{
6367	int ret = 0;
6368
6369	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6370		inconsistent_snapshot_error(sctx, result, "xattr");
6371		return -EIO;
6372	}
6373
6374	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6375		if (result == BTRFS_COMPARE_TREE_NEW)
6376			ret = process_new_xattr(sctx);
6377		else if (result == BTRFS_COMPARE_TREE_DELETED)
6378			ret = process_deleted_xattr(sctx);
6379		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6380			ret = process_changed_xattr(sctx);
6381	}
6382
6383	return ret;
6384}
6385
6386/*
6387 * Process new/deleted/changed extents. We skip processing in the
6388 * cur_inode_new_gen case because changed_inode did already initiate processing
6389 * of extents. The reason is the same as in changed_ref
6390 */
6391static int changed_extent(struct send_ctx *sctx,
6392			  enum btrfs_compare_tree_result result)
6393{
6394	int ret = 0;
6395
6396	/*
6397	 * We have found an extent item that changed without the inode item
6398	 * having changed. This can happen either after relocation (where the
6399	 * disk_bytenr of an extent item is replaced at
6400	 * relocation.c:replace_file_extents()) or after deduplication into a
6401	 * file in both the parent and send snapshots (where an extent item can
6402	 * get modified or replaced with a new one). Note that deduplication
6403	 * updates the inode item, but it only changes the iversion (sequence
6404	 * field in the inode item) of the inode, so if a file is deduplicated
6405	 * the same amount of times in both the parent and send snapshots, its
6406	 * iversion becames the same in both snapshots, whence the inode item is
6407	 * the same on both snapshots.
6408	 */
6409	if (sctx->cur_ino != sctx->cmp_key->objectid)
6410		return 0;
6411
6412	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6413		if (result != BTRFS_COMPARE_TREE_DELETED)
6414			ret = process_extent(sctx, sctx->left_path,
6415					sctx->cmp_key);
6416	}
6417
6418	return ret;
6419}
6420
 
 
 
 
 
 
 
 
 
 
 
6421static int dir_changed(struct send_ctx *sctx, u64 dir)
6422{
6423	u64 orig_gen, new_gen;
6424	int ret;
6425
6426	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6427			     NULL, NULL);
6428	if (ret)
6429		return ret;
6430
6431	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6432			     NULL, NULL, NULL);
6433	if (ret)
6434		return ret;
6435
6436	return (orig_gen != new_gen) ? 1 : 0;
6437}
6438
6439static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6440			struct btrfs_key *key)
6441{
6442	struct btrfs_inode_extref *extref;
6443	struct extent_buffer *leaf;
6444	u64 dirid = 0, last_dirid = 0;
6445	unsigned long ptr;
6446	u32 item_size;
6447	u32 cur_offset = 0;
6448	int ref_name_len;
6449	int ret = 0;
6450
6451	/* Easy case, just check this one dirid */
6452	if (key->type == BTRFS_INODE_REF_KEY) {
6453		dirid = key->offset;
6454
6455		ret = dir_changed(sctx, dirid);
6456		goto out;
6457	}
6458
6459	leaf = path->nodes[0];
6460	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6461	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6462	while (cur_offset < item_size) {
6463		extref = (struct btrfs_inode_extref *)(ptr +
6464						       cur_offset);
6465		dirid = btrfs_inode_extref_parent(leaf, extref);
6466		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6467		cur_offset += ref_name_len + sizeof(*extref);
6468		if (dirid == last_dirid)
6469			continue;
6470		ret = dir_changed(sctx, dirid);
6471		if (ret)
6472			break;
6473		last_dirid = dirid;
6474	}
6475out:
6476	return ret;
6477}
6478
6479/*
6480 * Updates compare related fields in sctx and simply forwards to the actual
6481 * changed_xxx functions.
6482 */
6483static int changed_cb(struct btrfs_path *left_path,
6484		      struct btrfs_path *right_path,
6485		      struct btrfs_key *key,
6486		      enum btrfs_compare_tree_result result,
6487		      void *ctx)
6488{
6489	int ret = 0;
6490	struct send_ctx *sctx = ctx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6491
6492	if (result == BTRFS_COMPARE_TREE_SAME) {
6493		if (key->type == BTRFS_INODE_REF_KEY ||
6494		    key->type == BTRFS_INODE_EXTREF_KEY) {
6495			ret = compare_refs(sctx, left_path, key);
6496			if (!ret)
6497				return 0;
6498			if (ret < 0)
6499				return ret;
6500		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6501			return maybe_send_hole(sctx, left_path, key);
6502		} else {
6503			return 0;
6504		}
6505		result = BTRFS_COMPARE_TREE_CHANGED;
6506		ret = 0;
6507	}
6508
6509	sctx->left_path = left_path;
6510	sctx->right_path = right_path;
6511	sctx->cmp_key = key;
6512
6513	ret = finish_inode_if_needed(sctx, 0);
6514	if (ret < 0)
6515		goto out;
6516
6517	/* Ignore non-FS objects */
6518	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6519	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6520		goto out;
6521
6522	if (key->type == BTRFS_INODE_ITEM_KEY) {
6523		ret = changed_inode(sctx, result);
6524	} else if (!sctx->ignore_cur_inode) {
6525		if (key->type == BTRFS_INODE_REF_KEY ||
6526		    key->type == BTRFS_INODE_EXTREF_KEY)
6527			ret = changed_ref(sctx, result);
6528		else if (key->type == BTRFS_XATTR_ITEM_KEY)
6529			ret = changed_xattr(sctx, result);
6530		else if (key->type == BTRFS_EXTENT_DATA_KEY)
6531			ret = changed_extent(sctx, result);
 
 
 
6532	}
6533
6534out:
6535	return ret;
6536}
6537
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6538static int full_send_tree(struct send_ctx *sctx)
6539{
6540	int ret;
6541	struct btrfs_root *send_root = sctx->send_root;
6542	struct btrfs_key key;
 
6543	struct btrfs_path *path;
6544	struct extent_buffer *eb;
6545	int slot;
6546
6547	path = alloc_path_for_send();
6548	if (!path)
6549		return -ENOMEM;
 
6550
6551	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6552	key.type = BTRFS_INODE_ITEM_KEY;
6553	key.offset = 0;
6554
 
 
 
 
6555	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6556	if (ret < 0)
6557		goto out;
6558	if (ret)
6559		goto out_finish;
6560
6561	while (1) {
6562		eb = path->nodes[0];
6563		slot = path->slots[0];
6564		btrfs_item_key_to_cpu(eb, &key, slot);
6565
6566		ret = changed_cb(path, NULL, &key,
6567				 BTRFS_COMPARE_TREE_NEW, sctx);
6568		if (ret < 0)
6569			goto out;
6570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6571		ret = btrfs_next_item(send_root, path);
6572		if (ret < 0)
6573			goto out;
6574		if (ret) {
6575			ret  = 0;
6576			break;
6577		}
6578	}
6579
6580out_finish:
6581	ret = finish_inode_if_needed(sctx, 1);
6582
6583out:
6584	btrfs_free_path(path);
6585	return ret;
6586}
6587
6588static int tree_move_down(struct btrfs_path *path, int *level)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6589{
6590	struct extent_buffer *eb;
 
 
 
 
 
 
 
6591
6592	BUG_ON(*level == 0);
6593	eb = btrfs_read_node_slot(path->nodes[*level], path->slots[*level]);
6594	if (IS_ERR(eb))
6595		return PTR_ERR(eb);
6596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6597	path->nodes[*level - 1] = eb;
6598	path->slots[*level - 1] = 0;
6599	(*level)--;
 
 
 
 
6600	return 0;
6601}
6602
6603static int tree_move_next_or_upnext(struct btrfs_path *path,
6604				    int *level, int root_level)
6605{
6606	int ret = 0;
6607	int nritems;
6608	nritems = btrfs_header_nritems(path->nodes[*level]);
6609
6610	path->slots[*level]++;
6611
6612	while (path->slots[*level] >= nritems) {
6613		if (*level == root_level)
 
6614			return -1;
 
6615
6616		/* move upnext */
6617		path->slots[*level] = 0;
6618		free_extent_buffer(path->nodes[*level]);
6619		path->nodes[*level] = NULL;
6620		(*level)++;
6621		path->slots[*level]++;
6622
6623		nritems = btrfs_header_nritems(path->nodes[*level]);
6624		ret = 1;
6625	}
6626	return ret;
6627}
6628
6629/*
6630 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
6631 * or down.
6632 */
6633static int tree_advance(struct btrfs_path *path,
6634			int *level, int root_level,
6635			int allow_down,
6636			struct btrfs_key *key)
 
6637{
6638	int ret;
6639
6640	if (*level == 0 || !allow_down) {
6641		ret = tree_move_next_or_upnext(path, level, root_level);
6642	} else {
6643		ret = tree_move_down(path, level);
6644	}
6645	if (ret >= 0) {
6646		if (*level == 0)
6647			btrfs_item_key_to_cpu(path->nodes[*level], key,
6648					path->slots[*level]);
6649		else
6650			btrfs_node_key_to_cpu(path->nodes[*level], key,
6651					path->slots[*level]);
6652	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6653	return ret;
6654}
6655
6656static int tree_compare_item(struct btrfs_path *left_path,
6657			     struct btrfs_path *right_path,
6658			     char *tmp_buf)
6659{
6660	int cmp;
6661	int len1, len2;
6662	unsigned long off1, off2;
6663
6664	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
6665	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
6666	if (len1 != len2)
6667		return 1;
6668
6669	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
6670	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
6671				right_path->slots[0]);
6672
6673	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
6674
6675	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
6676	if (cmp)
6677		return 1;
6678	return 0;
6679}
6680
6681/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6682 * This function compares two trees and calls the provided callback for
6683 * every changed/new/deleted item it finds.
6684 * If shared tree blocks are encountered, whole subtrees are skipped, making
6685 * the compare pretty fast on snapshotted subvolumes.
6686 *
6687 * This currently works on commit roots only. As commit roots are read only,
6688 * we don't do any locking. The commit roots are protected with transactions.
6689 * Transactions are ended and rejoined when a commit is tried in between.
6690 *
6691 * This function checks for modifications done to the trees while comparing.
6692 * If it detects a change, it aborts immediately.
6693 */
6694static int btrfs_compare_trees(struct btrfs_root *left_root,
6695			struct btrfs_root *right_root,
6696			btrfs_changed_cb_t changed_cb, void *ctx)
6697{
6698	struct btrfs_fs_info *fs_info = left_root->fs_info;
6699	int ret;
6700	int cmp;
6701	struct btrfs_path *left_path = NULL;
6702	struct btrfs_path *right_path = NULL;
6703	struct btrfs_key left_key;
6704	struct btrfs_key right_key;
6705	char *tmp_buf = NULL;
6706	int left_root_level;
6707	int right_root_level;
6708	int left_level;
6709	int right_level;
6710	int left_end_reached;
6711	int right_end_reached;
6712	int advance_left;
6713	int advance_right;
6714	u64 left_blockptr;
6715	u64 right_blockptr;
6716	u64 left_gen;
6717	u64 right_gen;
 
6718
6719	left_path = btrfs_alloc_path();
6720	if (!left_path) {
6721		ret = -ENOMEM;
6722		goto out;
6723	}
6724	right_path = btrfs_alloc_path();
6725	if (!right_path) {
6726		ret = -ENOMEM;
6727		goto out;
6728	}
6729
6730	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
6731	if (!tmp_buf) {
6732		ret = -ENOMEM;
6733		goto out;
6734	}
6735
6736	left_path->search_commit_root = 1;
6737	left_path->skip_locking = 1;
6738	right_path->search_commit_root = 1;
6739	right_path->skip_locking = 1;
6740
6741	/*
6742	 * Strategy: Go to the first items of both trees. Then do
6743	 *
6744	 * If both trees are at level 0
6745	 *   Compare keys of current items
6746	 *     If left < right treat left item as new, advance left tree
6747	 *       and repeat
6748	 *     If left > right treat right item as deleted, advance right tree
6749	 *       and repeat
6750	 *     If left == right do deep compare of items, treat as changed if
6751	 *       needed, advance both trees and repeat
6752	 * If both trees are at the same level but not at level 0
6753	 *   Compare keys of current nodes/leafs
6754	 *     If left < right advance left tree and repeat
6755	 *     If left > right advance right tree and repeat
6756	 *     If left == right compare blockptrs of the next nodes/leafs
6757	 *       If they match advance both trees but stay at the same level
6758	 *         and repeat
6759	 *       If they don't match advance both trees while allowing to go
6760	 *         deeper and repeat
6761	 * If tree levels are different
6762	 *   Advance the tree that needs it and repeat
6763	 *
6764	 * Advancing a tree means:
6765	 *   If we are at level 0, try to go to the next slot. If that's not
6766	 *   possible, go one level up and repeat. Stop when we found a level
6767	 *   where we could go to the next slot. We may at this point be on a
6768	 *   node or a leaf.
6769	 *
6770	 *   If we are not at level 0 and not on shared tree blocks, go one
6771	 *   level deeper.
6772	 *
6773	 *   If we are not at level 0 and on shared tree blocks, go one slot to
6774	 *   the right if possible or go up and right.
6775	 */
6776
6777	down_read(&fs_info->commit_root_sem);
6778	left_level = btrfs_header_level(left_root->commit_root);
6779	left_root_level = left_level;
 
 
 
 
 
 
 
6780	left_path->nodes[left_level] =
6781			btrfs_clone_extent_buffer(left_root->commit_root);
6782	if (!left_path->nodes[left_level]) {
6783		up_read(&fs_info->commit_root_sem);
6784		ret = -ENOMEM;
6785		goto out;
6786	}
6787
6788	right_level = btrfs_header_level(right_root->commit_root);
6789	right_root_level = right_level;
6790	right_path->nodes[right_level] =
6791			btrfs_clone_extent_buffer(right_root->commit_root);
6792	if (!right_path->nodes[right_level]) {
6793		up_read(&fs_info->commit_root_sem);
6794		ret = -ENOMEM;
6795		goto out;
6796	}
6797	up_read(&fs_info->commit_root_sem);
 
 
 
 
 
 
 
6798
6799	if (left_level == 0)
6800		btrfs_item_key_to_cpu(left_path->nodes[left_level],
6801				&left_key, left_path->slots[left_level]);
6802	else
6803		btrfs_node_key_to_cpu(left_path->nodes[left_level],
6804				&left_key, left_path->slots[left_level]);
6805	if (right_level == 0)
6806		btrfs_item_key_to_cpu(right_path->nodes[right_level],
6807				&right_key, right_path->slots[right_level]);
6808	else
6809		btrfs_node_key_to_cpu(right_path->nodes[right_level],
6810				&right_key, right_path->slots[right_level]);
6811
6812	left_end_reached = right_end_reached = 0;
6813	advance_left = advance_right = 0;
6814
6815	while (1) {
6816		cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6817		if (advance_left && !left_end_reached) {
6818			ret = tree_advance(left_path, &left_level,
6819					left_root_level,
6820					advance_left != ADVANCE_ONLY_NEXT,
6821					&left_key);
6822			if (ret == -1)
6823				left_end_reached = ADVANCE;
6824			else if (ret < 0)
6825				goto out;
6826			advance_left = 0;
6827		}
6828		if (advance_right && !right_end_reached) {
6829			ret = tree_advance(right_path, &right_level,
6830					right_root_level,
6831					advance_right != ADVANCE_ONLY_NEXT,
6832					&right_key);
6833			if (ret == -1)
6834				right_end_reached = ADVANCE;
6835			else if (ret < 0)
6836				goto out;
6837			advance_right = 0;
6838		}
6839
6840		if (left_end_reached && right_end_reached) {
6841			ret = 0;
6842			goto out;
6843		} else if (left_end_reached) {
6844			if (right_level == 0) {
 
6845				ret = changed_cb(left_path, right_path,
6846						&right_key,
6847						BTRFS_COMPARE_TREE_DELETED,
6848						ctx);
6849				if (ret < 0)
6850					goto out;
 
6851			}
6852			advance_right = ADVANCE;
6853			continue;
6854		} else if (right_end_reached) {
6855			if (left_level == 0) {
 
6856				ret = changed_cb(left_path, right_path,
6857						&left_key,
6858						BTRFS_COMPARE_TREE_NEW,
6859						ctx);
6860				if (ret < 0)
6861					goto out;
 
6862			}
6863			advance_left = ADVANCE;
6864			continue;
6865		}
6866
6867		if (left_level == 0 && right_level == 0) {
 
6868			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
6869			if (cmp < 0) {
6870				ret = changed_cb(left_path, right_path,
6871						&left_key,
6872						BTRFS_COMPARE_TREE_NEW,
6873						ctx);
6874				if (ret < 0)
6875					goto out;
6876				advance_left = ADVANCE;
6877			} else if (cmp > 0) {
6878				ret = changed_cb(left_path, right_path,
6879						&right_key,
6880						BTRFS_COMPARE_TREE_DELETED,
6881						ctx);
6882				if (ret < 0)
6883					goto out;
6884				advance_right = ADVANCE;
6885			} else {
6886				enum btrfs_compare_tree_result result;
6887
6888				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
6889				ret = tree_compare_item(left_path, right_path,
6890							tmp_buf);
6891				if (ret)
6892					result = BTRFS_COMPARE_TREE_CHANGED;
6893				else
6894					result = BTRFS_COMPARE_TREE_SAME;
6895				ret = changed_cb(left_path, right_path,
6896						 &left_key, result, ctx);
6897				if (ret < 0)
6898					goto out;
6899				advance_left = ADVANCE;
6900				advance_right = ADVANCE;
6901			}
 
 
 
 
6902		} else if (left_level == right_level) {
6903			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
6904			if (cmp < 0) {
6905				advance_left = ADVANCE;
6906			} else if (cmp > 0) {
6907				advance_right = ADVANCE;
6908			} else {
6909				left_blockptr = btrfs_node_blockptr(
6910						left_path->nodes[left_level],
6911						left_path->slots[left_level]);
6912				right_blockptr = btrfs_node_blockptr(
6913						right_path->nodes[right_level],
6914						right_path->slots[right_level]);
6915				left_gen = btrfs_node_ptr_generation(
6916						left_path->nodes[left_level],
6917						left_path->slots[left_level]);
6918				right_gen = btrfs_node_ptr_generation(
6919						right_path->nodes[right_level],
6920						right_path->slots[right_level]);
6921				if (left_blockptr == right_blockptr &&
6922				    left_gen == right_gen) {
6923					/*
6924					 * As we're on a shared block, don't
6925					 * allow to go deeper.
6926					 */
6927					advance_left = ADVANCE_ONLY_NEXT;
6928					advance_right = ADVANCE_ONLY_NEXT;
6929				} else {
6930					advance_left = ADVANCE;
6931					advance_right = ADVANCE;
6932				}
6933			}
6934		} else if (left_level < right_level) {
6935			advance_right = ADVANCE;
6936		} else {
6937			advance_left = ADVANCE;
6938		}
6939	}
6940
 
 
6941out:
6942	btrfs_free_path(left_path);
6943	btrfs_free_path(right_path);
6944	kvfree(tmp_buf);
6945	return ret;
6946}
6947
6948static int send_subvol(struct send_ctx *sctx)
6949{
6950	int ret;
6951
6952	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6953		ret = send_header(sctx);
6954		if (ret < 0)
6955			goto out;
6956	}
6957
6958	ret = send_subvol_begin(sctx);
6959	if (ret < 0)
6960		goto out;
6961
6962	if (sctx->parent_root) {
6963		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6964				changed_cb, sctx);
6965		if (ret < 0)
6966			goto out;
6967		ret = finish_inode_if_needed(sctx, 1);
6968		if (ret < 0)
6969			goto out;
6970	} else {
6971		ret = full_send_tree(sctx);
6972		if (ret < 0)
6973			goto out;
6974	}
6975
6976out:
6977	free_recorded_refs(sctx);
6978	return ret;
6979}
6980
6981/*
6982 * If orphan cleanup did remove any orphans from a root, it means the tree
6983 * was modified and therefore the commit root is not the same as the current
6984 * root anymore. This is a problem, because send uses the commit root and
6985 * therefore can see inode items that don't exist in the current root anymore,
6986 * and for example make calls to btrfs_iget, which will do tree lookups based
6987 * on the current root and not on the commit root. Those lookups will fail,
6988 * returning a -ESTALE error, and making send fail with that error. So make
6989 * sure a send does not see any orphans we have just removed, and that it will
6990 * see the same inodes regardless of whether a transaction commit happened
6991 * before it started (meaning that the commit root will be the same as the
6992 * current root) or not.
6993 */
6994static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6995{
6996	int i;
6997	struct btrfs_trans_handle *trans = NULL;
6998
6999again:
7000	if (sctx->parent_root &&
7001	    sctx->parent_root->node != sctx->parent_root->commit_root)
7002		goto commit_trans;
7003
7004	for (i = 0; i < sctx->clone_roots_cnt; i++)
7005		if (sctx->clone_roots[i].root->node !=
7006		    sctx->clone_roots[i].root->commit_root)
7007			goto commit_trans;
7008
7009	if (trans)
7010		return btrfs_end_transaction(trans);
7011
7012	return 0;
7013
7014commit_trans:
7015	/* Use any root, all fs roots will get their commit roots updated. */
7016	if (!trans) {
7017		trans = btrfs_join_transaction(sctx->send_root);
7018		if (IS_ERR(trans))
7019			return PTR_ERR(trans);
7020		goto again;
7021	}
7022
7023	return btrfs_commit_transaction(trans);
7024}
7025
7026/*
7027 * Make sure any existing dellaloc is flushed for any root used by a send
7028 * operation so that we do not miss any data and we do not race with writeback
7029 * finishing and changing a tree while send is using the tree. This could
7030 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7031 * a send operation then uses the subvolume.
7032 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7033 */
7034static int flush_delalloc_roots(struct send_ctx *sctx)
7035{
7036	struct btrfs_root *root = sctx->parent_root;
7037	int ret;
7038	int i;
7039
7040	if (root) {
7041		ret = btrfs_start_delalloc_snapshot(root);
7042		if (ret)
7043			return ret;
7044		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7045	}
7046
7047	for (i = 0; i < sctx->clone_roots_cnt; i++) {
7048		root = sctx->clone_roots[i].root;
7049		ret = btrfs_start_delalloc_snapshot(root);
7050		if (ret)
7051			return ret;
7052		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7053	}
7054
7055	return 0;
7056}
7057
7058static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
7059{
7060	spin_lock(&root->root_item_lock);
7061	root->send_in_progress--;
7062	/*
7063	 * Not much left to do, we don't know why it's unbalanced and
7064	 * can't blindly reset it to 0.
7065	 */
7066	if (root->send_in_progress < 0)
7067		btrfs_err(root->fs_info,
7068			  "send_in_progress unbalanced %d root %llu",
7069			  root->send_in_progress, root->root_key.objectid);
7070	spin_unlock(&root->root_item_lock);
7071}
7072
7073static void dedupe_in_progress_warn(const struct btrfs_root *root)
7074{
7075	btrfs_warn_rl(root->fs_info,
7076"cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7077		      root->root_key.objectid, root->dedupe_in_progress);
7078}
7079
7080long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
7081{
7082	int ret = 0;
7083	struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
7084	struct btrfs_fs_info *fs_info = send_root->fs_info;
7085	struct btrfs_root *clone_root;
7086	struct send_ctx *sctx = NULL;
7087	u32 i;
7088	u64 *clone_sources_tmp = NULL;
7089	int clone_sources_to_rollback = 0;
7090	unsigned alloc_size;
7091	int sort_clone_roots = 0;
 
 
7092
7093	if (!capable(CAP_SYS_ADMIN))
7094		return -EPERM;
7095
7096	/*
7097	 * The subvolume must remain read-only during send, protect against
7098	 * making it RW. This also protects against deletion.
7099	 */
7100	spin_lock(&send_root->root_item_lock);
7101	if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
7102		dedupe_in_progress_warn(send_root);
7103		spin_unlock(&send_root->root_item_lock);
7104		return -EAGAIN;
7105	}
7106	send_root->send_in_progress++;
7107	spin_unlock(&send_root->root_item_lock);
7108
7109	/*
7110	 * Userspace tools do the checks and warn the user if it's
7111	 * not RO.
7112	 */
7113	if (!btrfs_root_readonly(send_root)) {
7114		ret = -EPERM;
7115		goto out;
7116	}
7117
7118	/*
7119	 * Check that we don't overflow at later allocations, we request
7120	 * clone_sources_count + 1 items, and compare to unsigned long inside
7121	 * access_ok.
 
7122	 */
7123	if (arg->clone_sources_count >
7124	    ULONG_MAX / sizeof(struct clone_root) - 1) {
7125		ret = -EINVAL;
7126		goto out;
7127	}
7128
7129	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
7130		ret = -EINVAL;
7131		goto out;
7132	}
7133
7134	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
7135	if (!sctx) {
7136		ret = -ENOMEM;
7137		goto out;
7138	}
7139
7140	INIT_LIST_HEAD(&sctx->new_refs);
7141	INIT_LIST_HEAD(&sctx->deleted_refs);
7142	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
7143	INIT_LIST_HEAD(&sctx->name_cache_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7144
7145	sctx->flags = arg->flags;
7146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7147	sctx->send_filp = fget(arg->send_fd);
7148	if (!sctx->send_filp) {
7149		ret = -EBADF;
7150		goto out;
7151	}
7152
7153	sctx->send_root = send_root;
7154	/*
7155	 * Unlikely but possible, if the subvolume is marked for deletion but
7156	 * is slow to remove the directory entry, send can still be started
7157	 */
7158	if (btrfs_root_dead(sctx->send_root)) {
7159		ret = -EPERM;
7160		goto out;
7161	}
7162
7163	sctx->clone_roots_cnt = arg->clone_sources_count;
7164
7165	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
7166	sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7167	if (!sctx->send_buf) {
7168		ret = -ENOMEM;
7169		goto out;
7170	}
7171
7172	sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
7173	if (!sctx->read_buf) {
7174		ret = -ENOMEM;
7175		goto out;
7176	}
7177
7178	sctx->pending_dir_moves = RB_ROOT;
7179	sctx->waiting_dir_moves = RB_ROOT;
7180	sctx->orphan_dirs = RB_ROOT;
7181
7182	alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
7183
7184	sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
7185	if (!sctx->clone_roots) {
7186		ret = -ENOMEM;
7187		goto out;
7188	}
7189
7190	alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
 
7191
7192	if (arg->clone_sources_count) {
7193		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
7194		if (!clone_sources_tmp) {
7195			ret = -ENOMEM;
7196			goto out;
7197		}
7198
7199		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
7200				alloc_size);
7201		if (ret) {
7202			ret = -EFAULT;
7203			goto out;
7204		}
7205
7206		for (i = 0; i < arg->clone_sources_count; i++) {
7207			clone_root = btrfs_get_fs_root(fs_info,
7208						clone_sources_tmp[i], true);
7209			if (IS_ERR(clone_root)) {
7210				ret = PTR_ERR(clone_root);
7211				goto out;
7212			}
7213			spin_lock(&clone_root->root_item_lock);
7214			if (!btrfs_root_readonly(clone_root) ||
7215			    btrfs_root_dead(clone_root)) {
7216				spin_unlock(&clone_root->root_item_lock);
7217				btrfs_put_root(clone_root);
7218				ret = -EPERM;
7219				goto out;
7220			}
7221			if (clone_root->dedupe_in_progress) {
7222				dedupe_in_progress_warn(clone_root);
7223				spin_unlock(&clone_root->root_item_lock);
7224				btrfs_put_root(clone_root);
7225				ret = -EAGAIN;
7226				goto out;
7227			}
7228			clone_root->send_in_progress++;
7229			spin_unlock(&clone_root->root_item_lock);
7230
7231			sctx->clone_roots[i].root = clone_root;
7232			clone_sources_to_rollback = i + 1;
7233		}
7234		kvfree(clone_sources_tmp);
7235		clone_sources_tmp = NULL;
7236	}
7237
7238	if (arg->parent_root) {
7239		sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
7240						      true);
7241		if (IS_ERR(sctx->parent_root)) {
7242			ret = PTR_ERR(sctx->parent_root);
7243			goto out;
7244		}
7245
7246		spin_lock(&sctx->parent_root->root_item_lock);
7247		sctx->parent_root->send_in_progress++;
7248		if (!btrfs_root_readonly(sctx->parent_root) ||
7249				btrfs_root_dead(sctx->parent_root)) {
7250			spin_unlock(&sctx->parent_root->root_item_lock);
7251			ret = -EPERM;
7252			goto out;
7253		}
7254		if (sctx->parent_root->dedupe_in_progress) {
7255			dedupe_in_progress_warn(sctx->parent_root);
7256			spin_unlock(&sctx->parent_root->root_item_lock);
7257			ret = -EAGAIN;
7258			goto out;
7259		}
7260		spin_unlock(&sctx->parent_root->root_item_lock);
7261	}
7262
7263	/*
7264	 * Clones from send_root are allowed, but only if the clone source
7265	 * is behind the current send position. This is checked while searching
7266	 * for possible clone sources.
7267	 */
7268	sctx->clone_roots[sctx->clone_roots_cnt++].root =
7269		btrfs_grab_root(sctx->send_root);
7270
7271	/* We do a bsearch later */
7272	sort(sctx->clone_roots, sctx->clone_roots_cnt,
7273			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
7274			NULL);
7275	sort_clone_roots = 1;
7276
7277	ret = flush_delalloc_roots(sctx);
7278	if (ret)
7279		goto out;
7280
7281	ret = ensure_commit_roots_uptodate(sctx);
7282	if (ret)
7283		goto out;
7284
7285	mutex_lock(&fs_info->balance_mutex);
7286	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
7287		mutex_unlock(&fs_info->balance_mutex);
7288		btrfs_warn_rl(fs_info,
7289		"cannot run send because a balance operation is in progress");
7290		ret = -EAGAIN;
7291		goto out;
7292	}
7293	fs_info->send_in_progress++;
7294	mutex_unlock(&fs_info->balance_mutex);
7295
7296	current->journal_info = BTRFS_SEND_TRANS_STUB;
7297	ret = send_subvol(sctx);
7298	current->journal_info = NULL;
7299	mutex_lock(&fs_info->balance_mutex);
7300	fs_info->send_in_progress--;
7301	mutex_unlock(&fs_info->balance_mutex);
7302	if (ret < 0)
7303		goto out;
7304
 
 
 
 
 
 
 
7305	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
7306		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
7307		if (ret < 0)
7308			goto out;
7309		ret = send_cmd(sctx);
7310		if (ret < 0)
7311			goto out;
7312	}
7313
7314out:
7315	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
7316	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
7317		struct rb_node *n;
7318		struct pending_dir_move *pm;
7319
7320		n = rb_first(&sctx->pending_dir_moves);
7321		pm = rb_entry(n, struct pending_dir_move, node);
7322		while (!list_empty(&pm->list)) {
7323			struct pending_dir_move *pm2;
7324
7325			pm2 = list_first_entry(&pm->list,
7326					       struct pending_dir_move, list);
7327			free_pending_move(sctx, pm2);
7328		}
7329		free_pending_move(sctx, pm);
7330	}
7331
7332	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
7333	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
7334		struct rb_node *n;
7335		struct waiting_dir_move *dm;
7336
7337		n = rb_first(&sctx->waiting_dir_moves);
7338		dm = rb_entry(n, struct waiting_dir_move, node);
7339		rb_erase(&dm->node, &sctx->waiting_dir_moves);
7340		kfree(dm);
7341	}
7342
7343	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
7344	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
7345		struct rb_node *n;
7346		struct orphan_dir_info *odi;
7347
7348		n = rb_first(&sctx->orphan_dirs);
7349		odi = rb_entry(n, struct orphan_dir_info, node);
7350		free_orphan_dir_info(sctx, odi);
7351	}
7352
7353	if (sort_clone_roots) {
7354		for (i = 0; i < sctx->clone_roots_cnt; i++) {
7355			btrfs_root_dec_send_in_progress(
7356					sctx->clone_roots[i].root);
7357			btrfs_put_root(sctx->clone_roots[i].root);
7358		}
7359	} else {
7360		for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
7361			btrfs_root_dec_send_in_progress(
7362					sctx->clone_roots[i].root);
7363			btrfs_put_root(sctx->clone_roots[i].root);
7364		}
7365
7366		btrfs_root_dec_send_in_progress(send_root);
7367	}
7368	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
7369		btrfs_root_dec_send_in_progress(sctx->parent_root);
7370		btrfs_put_root(sctx->parent_root);
7371	}
7372
7373	kvfree(clone_sources_tmp);
7374
7375	if (sctx) {
7376		if (sctx->send_filp)
7377			fput(sctx->send_filp);
7378
7379		kvfree(sctx->clone_roots);
 
7380		kvfree(sctx->send_buf);
7381		kvfree(sctx->read_buf);
 
 
7382
7383		name_cache_free(sctx);
 
 
 
7384
7385		kfree(sctx);
7386	}
7387
7388	return ret;
7389}