Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * bcm63xx_udc.c -- BCM63xx UDC high/full speed USB device controller
   4 *
   5 * Copyright (C) 2012 Kevin Cernekee <cernekee@gmail.com>
   6 * Copyright (C) 2012 Broadcom Corporation
   7 */
   8
   9#include <linux/bitops.h>
  10#include <linux/bug.h>
  11#include <linux/clk.h>
  12#include <linux/compiler.h>
  13#include <linux/debugfs.h>
  14#include <linux/delay.h>
  15#include <linux/device.h>
  16#include <linux/dma-mapping.h>
  17#include <linux/errno.h>
  18#include <linux/interrupt.h>
  19#include <linux/ioport.h>
  20#include <linux/kernel.h>
  21#include <linux/list.h>
  22#include <linux/module.h>
  23#include <linux/moduleparam.h>
  24#include <linux/platform_device.h>
  25#include <linux/sched.h>
  26#include <linux/seq_file.h>
  27#include <linux/slab.h>
  28#include <linux/timer.h>
  29#include <linux/usb.h>
  30#include <linux/usb/ch9.h>
  31#include <linux/usb/gadget.h>
  32#include <linux/workqueue.h>
  33
  34#include <bcm63xx_cpu.h>
  35#include <bcm63xx_iudma.h>
  36#include <bcm63xx_dev_usb_usbd.h>
  37#include <bcm63xx_io.h>
  38#include <bcm63xx_regs.h>
  39
  40#define DRV_MODULE_NAME		"bcm63xx_udc"
  41
  42static const char bcm63xx_ep0name[] = "ep0";
  43
  44static const struct {
  45	const char *name;
  46	const struct usb_ep_caps caps;
  47} bcm63xx_ep_info[] = {
  48#define EP_INFO(_name, _caps) \
  49	{ \
  50		.name = _name, \
  51		.caps = _caps, \
  52	}
  53
  54	EP_INFO(bcm63xx_ep0name,
  55		USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL, USB_EP_CAPS_DIR_ALL)),
  56	EP_INFO("ep1in-bulk",
  57		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  58	EP_INFO("ep2out-bulk",
  59		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  60	EP_INFO("ep3in-int",
  61		USB_EP_CAPS(USB_EP_CAPS_TYPE_INT, USB_EP_CAPS_DIR_IN)),
  62	EP_INFO("ep4out-int",
  63		USB_EP_CAPS(USB_EP_CAPS_TYPE_INT, USB_EP_CAPS_DIR_OUT)),
  64
  65#undef EP_INFO
  66};
  67
  68static bool use_fullspeed;
  69module_param(use_fullspeed, bool, S_IRUGO);
  70MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
  71
  72/*
  73 * RX IRQ coalescing options:
  74 *
  75 * false (default) - one IRQ per DATAx packet.  Slow but reliable.  The
  76 * driver is able to pass the "testusb" suite and recover from conditions like:
  77 *
  78 *   1) Device queues up a 2048-byte RX IUDMA transaction on an OUT bulk ep
  79 *   2) Host sends 512 bytes of data
  80 *   3) Host decides to reconfigure the device and sends SET_INTERFACE
  81 *   4) Device shuts down the endpoint and cancels the RX transaction
  82 *
  83 * true - one IRQ per transfer, for transfers <= 2048B.  Generates
  84 * considerably fewer IRQs, but error recovery is less robust.  Does not
  85 * reliably pass "testusb".
  86 *
  87 * TX always uses coalescing, because we can cancel partially complete TX
  88 * transfers by repeatedly flushing the FIFO.  The hardware doesn't allow
  89 * this on RX.
  90 */
  91static bool irq_coalesce;
  92module_param(irq_coalesce, bool, S_IRUGO);
  93MODULE_PARM_DESC(irq_coalesce, "take one IRQ per RX transfer");
  94
  95#define BCM63XX_NUM_EP			5
  96#define BCM63XX_NUM_IUDMA		6
  97#define BCM63XX_NUM_FIFO_PAIRS		3
  98
  99#define IUDMA_RESET_TIMEOUT_US		10000
 100
 101#define IUDMA_EP0_RXCHAN		0
 102#define IUDMA_EP0_TXCHAN		1
 103
 104#define IUDMA_MAX_FRAGMENT		2048
 105#define BCM63XX_MAX_CTRL_PKT		64
 106
 107#define BCMEP_CTRL			0x00
 108#define BCMEP_ISOC			0x01
 109#define BCMEP_BULK			0x02
 110#define BCMEP_INTR			0x03
 111
 112#define BCMEP_OUT			0x00
 113#define BCMEP_IN			0x01
 114
 115#define BCM63XX_SPD_FULL		1
 116#define BCM63XX_SPD_HIGH		0
 117
 118#define IUDMA_DMAC_OFFSET		0x200
 119#define IUDMA_DMAS_OFFSET		0x400
 120
 121enum bcm63xx_ep0_state {
 122	EP0_REQUEUE,
 123	EP0_IDLE,
 124	EP0_IN_DATA_PHASE_SETUP,
 125	EP0_IN_DATA_PHASE_COMPLETE,
 126	EP0_OUT_DATA_PHASE_SETUP,
 127	EP0_OUT_DATA_PHASE_COMPLETE,
 128	EP0_OUT_STATUS_PHASE,
 129	EP0_IN_FAKE_STATUS_PHASE,
 130	EP0_SHUTDOWN,
 131};
 132
 133static const char __maybe_unused bcm63xx_ep0_state_names[][32] = {
 134	"REQUEUE",
 135	"IDLE",
 136	"IN_DATA_PHASE_SETUP",
 137	"IN_DATA_PHASE_COMPLETE",
 138	"OUT_DATA_PHASE_SETUP",
 139	"OUT_DATA_PHASE_COMPLETE",
 140	"OUT_STATUS_PHASE",
 141	"IN_FAKE_STATUS_PHASE",
 142	"SHUTDOWN",
 143};
 144
 145/**
 146 * struct iudma_ch_cfg - Static configuration for an IUDMA channel.
 147 * @ep_num: USB endpoint number.
 148 * @n_bds: Number of buffer descriptors in the ring.
 149 * @ep_type: Endpoint type (control, bulk, interrupt).
 150 * @dir: Direction (in, out).
 151 * @n_fifo_slots: Number of FIFO entries to allocate for this channel.
 152 * @max_pkt_hs: Maximum packet size in high speed mode.
 153 * @max_pkt_fs: Maximum packet size in full speed mode.
 154 */
 155struct iudma_ch_cfg {
 156	int				ep_num;
 157	int				n_bds;
 158	int				ep_type;
 159	int				dir;
 160	int				n_fifo_slots;
 161	int				max_pkt_hs;
 162	int				max_pkt_fs;
 163};
 164
 165static const struct iudma_ch_cfg iudma_defaults[] = {
 166
 167	/* This controller was designed to support a CDC/RNDIS application.
 168	   It may be possible to reconfigure some of the endpoints, but
 169	   the hardware limitations (FIFO sizing and number of DMA channels)
 170	   may significantly impact flexibility and/or stability.  Change
 171	   these values at your own risk.
 172
 173	      ep_num       ep_type           n_fifo_slots    max_pkt_fs
 174	idx      |  n_bds     |         dir       |  max_pkt_hs  |
 175	 |       |    |       |          |        |      |       |       */
 176	[0] = { -1,   4, BCMEP_CTRL, BCMEP_OUT,  32,    64,     64 },
 177	[1] = {  0,   4, BCMEP_CTRL, BCMEP_OUT,  32,    64,     64 },
 178	[2] = {  2,  16, BCMEP_BULK, BCMEP_OUT, 128,   512,     64 },
 179	[3] = {  1,  16, BCMEP_BULK, BCMEP_IN,  128,   512,     64 },
 180	[4] = {  4,   4, BCMEP_INTR, BCMEP_OUT,  32,    64,     64 },
 181	[5] = {  3,   4, BCMEP_INTR, BCMEP_IN,   32,    64,     64 },
 182};
 183
 184struct bcm63xx_udc;
 185
 186/**
 187 * struct iudma_ch - Represents the current state of a single IUDMA channel.
 188 * @ch_idx: IUDMA channel index (0 to BCM63XX_NUM_IUDMA-1).
 189 * @ep_num: USB endpoint number.  -1 for ep0 RX.
 190 * @enabled: Whether bcm63xx_ep_enable() has been called.
 191 * @max_pkt: "Chunk size" on the USB interface.  Based on interface speed.
 192 * @is_tx: true for TX, false for RX.
 193 * @bep: Pointer to the associated endpoint.  NULL for ep0 RX.
 194 * @udc: Reference to the device controller.
 195 * @read_bd: Next buffer descriptor to reap from the hardware.
 196 * @write_bd: Next BD available for a new packet.
 197 * @end_bd: Points to the final BD in the ring.
 198 * @n_bds_used: Number of BD entries currently occupied.
 199 * @bd_ring: Base pointer to the BD ring.
 200 * @bd_ring_dma: Physical (DMA) address of bd_ring.
 201 * @n_bds: Total number of BDs in the ring.
 202 *
 203 * ep0 has two IUDMA channels (IUDMA_EP0_RXCHAN and IUDMA_EP0_TXCHAN), as it is
 204 * bidirectional.  The "struct usb_ep" associated with ep0 is for TX (IN)
 205 * only.
 206 *
 207 * Each bulk/intr endpoint has a single IUDMA channel and a single
 208 * struct usb_ep.
 209 */
 210struct iudma_ch {
 211	unsigned int			ch_idx;
 212	int				ep_num;
 213	bool				enabled;
 214	int				max_pkt;
 215	bool				is_tx;
 216	struct bcm63xx_ep		*bep;
 217	struct bcm63xx_udc		*udc;
 218
 219	struct bcm_enet_desc		*read_bd;
 220	struct bcm_enet_desc		*write_bd;
 221	struct bcm_enet_desc		*end_bd;
 222	int				n_bds_used;
 223
 224	struct bcm_enet_desc		*bd_ring;
 225	dma_addr_t			bd_ring_dma;
 226	unsigned int			n_bds;
 227};
 228
 229/**
 230 * struct bcm63xx_ep - Internal (driver) state of a single endpoint.
 231 * @ep_num: USB endpoint number.
 232 * @iudma: Pointer to IUDMA channel state.
 233 * @ep: USB gadget layer representation of the EP.
 234 * @udc: Reference to the device controller.
 235 * @queue: Linked list of outstanding requests for this EP.
 236 * @halted: 1 if the EP is stalled; 0 otherwise.
 237 */
 238struct bcm63xx_ep {
 239	unsigned int			ep_num;
 240	struct iudma_ch			*iudma;
 241	struct usb_ep			ep;
 242	struct bcm63xx_udc		*udc;
 243	struct list_head		queue;
 244	unsigned			halted:1;
 245};
 246
 247/**
 248 * struct bcm63xx_req - Internal (driver) state of a single request.
 249 * @queue: Links back to the EP's request list.
 250 * @req: USB gadget layer representation of the request.
 251 * @offset: Current byte offset into the data buffer (next byte to queue).
 252 * @bd_bytes: Number of data bytes in outstanding BD entries.
 253 * @iudma: IUDMA channel used for the request.
 254 */
 255struct bcm63xx_req {
 256	struct list_head		queue;		/* ep's requests */
 257	struct usb_request		req;
 258	unsigned int			offset;
 259	unsigned int			bd_bytes;
 260	struct iudma_ch			*iudma;
 261};
 262
 263/**
 264 * struct bcm63xx_udc - Driver/hardware private context.
 265 * @lock: Spinlock to mediate access to this struct, and (most) HW regs.
 266 * @dev: Generic Linux device structure.
 267 * @pd: Platform data (board/port info).
 268 * @usbd_clk: Clock descriptor for the USB device block.
 269 * @usbh_clk: Clock descriptor for the USB host block.
 270 * @gadget: USB device.
 271 * @driver: Driver for USB device.
 272 * @usbd_regs: Base address of the USBD/USB20D block.
 273 * @iudma_regs: Base address of the USBD's associated IUDMA block.
 274 * @bep: Array of endpoints, including ep0.
 275 * @iudma: Array of all IUDMA channels used by this controller.
 276 * @cfg: USB configuration number, from SET_CONFIGURATION wValue.
 277 * @iface: USB interface number, from SET_INTERFACE wIndex.
 278 * @alt_iface: USB alt interface number, from SET_INTERFACE wValue.
 279 * @ep0_ctrl_req: Request object for bcm63xx_udc-initiated ep0 transactions.
 280 * @ep0_ctrl_buf: Data buffer for ep0_ctrl_req.
 281 * @ep0state: Current state of the ep0 state machine.
 282 * @ep0_wq: Workqueue struct used to wake up the ep0 state machine.
 283 * @wedgemap: Bitmap of wedged endpoints.
 284 * @ep0_req_reset: USB reset is pending.
 285 * @ep0_req_set_cfg: Need to spoof a SET_CONFIGURATION packet.
 286 * @ep0_req_set_iface: Need to spoof a SET_INTERFACE packet.
 287 * @ep0_req_shutdown: Driver is shutting down; requesting ep0 to halt activity.
 288 * @ep0_req_completed: ep0 request has completed; worker has not seen it yet.
 289 * @ep0_reply: Pending reply from gadget driver.
 290 * @ep0_request: Outstanding ep0 request.
 
 291 */
 292struct bcm63xx_udc {
 293	spinlock_t			lock;
 294
 295	struct device			*dev;
 296	struct bcm63xx_usbd_platform_data *pd;
 297	struct clk			*usbd_clk;
 298	struct clk			*usbh_clk;
 299
 300	struct usb_gadget		gadget;
 301	struct usb_gadget_driver	*driver;
 302
 303	void __iomem			*usbd_regs;
 304	void __iomem			*iudma_regs;
 305
 306	struct bcm63xx_ep		bep[BCM63XX_NUM_EP];
 307	struct iudma_ch			iudma[BCM63XX_NUM_IUDMA];
 308
 309	int				cfg;
 310	int				iface;
 311	int				alt_iface;
 312
 313	struct bcm63xx_req		ep0_ctrl_req;
 314	u8				*ep0_ctrl_buf;
 315
 316	int				ep0state;
 317	struct work_struct		ep0_wq;
 318
 319	unsigned long			wedgemap;
 320
 321	unsigned			ep0_req_reset:1;
 322	unsigned			ep0_req_set_cfg:1;
 323	unsigned			ep0_req_set_iface:1;
 324	unsigned			ep0_req_shutdown:1;
 325
 326	unsigned			ep0_req_completed:1;
 327	struct usb_request		*ep0_reply;
 328	struct usb_request		*ep0_request;
 
 
 329};
 330
 331static const struct usb_ep_ops bcm63xx_udc_ep_ops;
 332
 333/***********************************************************************
 334 * Convenience functions
 335 ***********************************************************************/
 336
 337static inline struct bcm63xx_udc *gadget_to_udc(struct usb_gadget *g)
 338{
 339	return container_of(g, struct bcm63xx_udc, gadget);
 340}
 341
 342static inline struct bcm63xx_ep *our_ep(struct usb_ep *ep)
 343{
 344	return container_of(ep, struct bcm63xx_ep, ep);
 345}
 346
 347static inline struct bcm63xx_req *our_req(struct usb_request *req)
 348{
 349	return container_of(req, struct bcm63xx_req, req);
 350}
 351
 352static inline u32 usbd_readl(struct bcm63xx_udc *udc, u32 off)
 353{
 354	return bcm_readl(udc->usbd_regs + off);
 355}
 356
 357static inline void usbd_writel(struct bcm63xx_udc *udc, u32 val, u32 off)
 358{
 359	bcm_writel(val, udc->usbd_regs + off);
 360}
 361
 362static inline u32 usb_dma_readl(struct bcm63xx_udc *udc, u32 off)
 363{
 364	return bcm_readl(udc->iudma_regs + off);
 365}
 366
 367static inline void usb_dma_writel(struct bcm63xx_udc *udc, u32 val, u32 off)
 368{
 369	bcm_writel(val, udc->iudma_regs + off);
 370}
 371
 372static inline u32 usb_dmac_readl(struct bcm63xx_udc *udc, u32 off, int chan)
 373{
 374	return bcm_readl(udc->iudma_regs + IUDMA_DMAC_OFFSET + off +
 375			(ENETDMA_CHAN_WIDTH * chan));
 376}
 377
 378static inline void usb_dmac_writel(struct bcm63xx_udc *udc, u32 val, u32 off,
 379					int chan)
 380{
 381	bcm_writel(val, udc->iudma_regs + IUDMA_DMAC_OFFSET + off +
 382			(ENETDMA_CHAN_WIDTH * chan));
 383}
 384
 385static inline u32 usb_dmas_readl(struct bcm63xx_udc *udc, u32 off, int chan)
 386{
 387	return bcm_readl(udc->iudma_regs + IUDMA_DMAS_OFFSET + off +
 388			(ENETDMA_CHAN_WIDTH * chan));
 389}
 390
 391static inline void usb_dmas_writel(struct bcm63xx_udc *udc, u32 val, u32 off,
 392					int chan)
 393{
 394	bcm_writel(val, udc->iudma_regs + IUDMA_DMAS_OFFSET + off +
 395			(ENETDMA_CHAN_WIDTH * chan));
 396}
 397
 398static inline void set_clocks(struct bcm63xx_udc *udc, bool is_enabled)
 399{
 400	if (is_enabled) {
 401		clk_enable(udc->usbh_clk);
 402		clk_enable(udc->usbd_clk);
 403		udelay(10);
 404	} else {
 405		clk_disable(udc->usbd_clk);
 406		clk_disable(udc->usbh_clk);
 407	}
 408}
 409
 410/***********************************************************************
 411 * Low-level IUDMA / FIFO operations
 412 ***********************************************************************/
 413
 414/**
 415 * bcm63xx_ep_dma_select - Helper function to set up the init_sel signal.
 416 * @udc: Reference to the device controller.
 417 * @idx: Desired init_sel value.
 418 *
 419 * The "init_sel" signal is used as a selection index for both endpoints
 420 * and IUDMA channels.  Since these do not map 1:1, the use of this signal
 421 * depends on the context.
 422 */
 423static void bcm63xx_ep_dma_select(struct bcm63xx_udc *udc, int idx)
 424{
 425	u32 val = usbd_readl(udc, USBD_CONTROL_REG);
 426
 427	val &= ~USBD_CONTROL_INIT_SEL_MASK;
 428	val |= idx << USBD_CONTROL_INIT_SEL_SHIFT;
 429	usbd_writel(udc, val, USBD_CONTROL_REG);
 430}
 431
 432/**
 433 * bcm63xx_set_stall - Enable/disable stall on one endpoint.
 434 * @udc: Reference to the device controller.
 435 * @bep: Endpoint on which to operate.
 436 * @is_stalled: true to enable stall, false to disable.
 437 *
 438 * See notes in bcm63xx_update_wedge() regarding automatic clearing of
 439 * halt/stall conditions.
 440 */
 441static void bcm63xx_set_stall(struct bcm63xx_udc *udc, struct bcm63xx_ep *bep,
 442	bool is_stalled)
 443{
 444	u32 val;
 445
 446	val = USBD_STALL_UPDATE_MASK |
 447		(is_stalled ? USBD_STALL_ENABLE_MASK : 0) |
 448		(bep->ep_num << USBD_STALL_EPNUM_SHIFT);
 449	usbd_writel(udc, val, USBD_STALL_REG);
 450}
 451
 452/**
 453 * bcm63xx_fifo_setup - (Re)initialize FIFO boundaries and settings.
 454 * @udc: Reference to the device controller.
 455 *
 456 * These parameters depend on the USB link speed.  Settings are
 457 * per-IUDMA-channel-pair.
 458 */
 459static void bcm63xx_fifo_setup(struct bcm63xx_udc *udc)
 460{
 461	int is_hs = udc->gadget.speed == USB_SPEED_HIGH;
 462	u32 i, val, rx_fifo_slot, tx_fifo_slot;
 463
 464	/* set up FIFO boundaries and packet sizes; this is done in pairs */
 465	rx_fifo_slot = tx_fifo_slot = 0;
 466	for (i = 0; i < BCM63XX_NUM_IUDMA; i += 2) {
 467		const struct iudma_ch_cfg *rx_cfg = &iudma_defaults[i];
 468		const struct iudma_ch_cfg *tx_cfg = &iudma_defaults[i + 1];
 469
 470		bcm63xx_ep_dma_select(udc, i >> 1);
 471
 472		val = (rx_fifo_slot << USBD_RXFIFO_CONFIG_START_SHIFT) |
 473			((rx_fifo_slot + rx_cfg->n_fifo_slots - 1) <<
 474			 USBD_RXFIFO_CONFIG_END_SHIFT);
 475		rx_fifo_slot += rx_cfg->n_fifo_slots;
 476		usbd_writel(udc, val, USBD_RXFIFO_CONFIG_REG);
 477		usbd_writel(udc,
 478			    is_hs ? rx_cfg->max_pkt_hs : rx_cfg->max_pkt_fs,
 479			    USBD_RXFIFO_EPSIZE_REG);
 480
 481		val = (tx_fifo_slot << USBD_TXFIFO_CONFIG_START_SHIFT) |
 482			((tx_fifo_slot + tx_cfg->n_fifo_slots - 1) <<
 483			 USBD_TXFIFO_CONFIG_END_SHIFT);
 484		tx_fifo_slot += tx_cfg->n_fifo_slots;
 485		usbd_writel(udc, val, USBD_TXFIFO_CONFIG_REG);
 486		usbd_writel(udc,
 487			    is_hs ? tx_cfg->max_pkt_hs : tx_cfg->max_pkt_fs,
 488			    USBD_TXFIFO_EPSIZE_REG);
 489
 490		usbd_readl(udc, USBD_TXFIFO_EPSIZE_REG);
 491	}
 492}
 493
 494/**
 495 * bcm63xx_fifo_reset_ep - Flush a single endpoint's FIFO.
 496 * @udc: Reference to the device controller.
 497 * @ep_num: Endpoint number.
 498 */
 499static void bcm63xx_fifo_reset_ep(struct bcm63xx_udc *udc, int ep_num)
 500{
 501	u32 val;
 502
 503	bcm63xx_ep_dma_select(udc, ep_num);
 504
 505	val = usbd_readl(udc, USBD_CONTROL_REG);
 506	val |= USBD_CONTROL_FIFO_RESET_MASK;
 507	usbd_writel(udc, val, USBD_CONTROL_REG);
 508	usbd_readl(udc, USBD_CONTROL_REG);
 509}
 510
 511/**
 512 * bcm63xx_fifo_reset - Flush all hardware FIFOs.
 513 * @udc: Reference to the device controller.
 514 */
 515static void bcm63xx_fifo_reset(struct bcm63xx_udc *udc)
 516{
 517	int i;
 518
 519	for (i = 0; i < BCM63XX_NUM_FIFO_PAIRS; i++)
 520		bcm63xx_fifo_reset_ep(udc, i);
 521}
 522
 523/**
 524 * bcm63xx_ep_init - Initial (one-time) endpoint initialization.
 525 * @udc: Reference to the device controller.
 526 */
 527static void bcm63xx_ep_init(struct bcm63xx_udc *udc)
 528{
 529	u32 i, val;
 530
 531	for (i = 0; i < BCM63XX_NUM_IUDMA; i++) {
 532		const struct iudma_ch_cfg *cfg = &iudma_defaults[i];
 533
 534		if (cfg->ep_num < 0)
 535			continue;
 536
 537		bcm63xx_ep_dma_select(udc, cfg->ep_num);
 538		val = (cfg->ep_type << USBD_EPNUM_TYPEMAP_TYPE_SHIFT) |
 539			((i >> 1) << USBD_EPNUM_TYPEMAP_DMA_CH_SHIFT);
 540		usbd_writel(udc, val, USBD_EPNUM_TYPEMAP_REG);
 541	}
 542}
 543
 544/**
 545 * bcm63xx_ep_setup - Configure per-endpoint settings.
 546 * @udc: Reference to the device controller.
 547 *
 548 * This needs to be rerun if the speed/cfg/intf/altintf changes.
 549 */
 550static void bcm63xx_ep_setup(struct bcm63xx_udc *udc)
 551{
 552	u32 val, i;
 553
 554	usbd_writel(udc, USBD_CSR_SETUPADDR_DEF, USBD_CSR_SETUPADDR_REG);
 555
 556	for (i = 0; i < BCM63XX_NUM_IUDMA; i++) {
 557		const struct iudma_ch_cfg *cfg = &iudma_defaults[i];
 558		int max_pkt = udc->gadget.speed == USB_SPEED_HIGH ?
 559			      cfg->max_pkt_hs : cfg->max_pkt_fs;
 560		int idx = cfg->ep_num;
 561
 562		udc->iudma[i].max_pkt = max_pkt;
 563
 564		if (idx < 0)
 565			continue;
 566		usb_ep_set_maxpacket_limit(&udc->bep[idx].ep, max_pkt);
 567
 568		val = (idx << USBD_CSR_EP_LOG_SHIFT) |
 569		      (cfg->dir << USBD_CSR_EP_DIR_SHIFT) |
 570		      (cfg->ep_type << USBD_CSR_EP_TYPE_SHIFT) |
 571		      (udc->cfg << USBD_CSR_EP_CFG_SHIFT) |
 572		      (udc->iface << USBD_CSR_EP_IFACE_SHIFT) |
 573		      (udc->alt_iface << USBD_CSR_EP_ALTIFACE_SHIFT) |
 574		      (max_pkt << USBD_CSR_EP_MAXPKT_SHIFT);
 575		usbd_writel(udc, val, USBD_CSR_EP_REG(idx));
 576	}
 577}
 578
 579/**
 580 * iudma_write - Queue a single IUDMA transaction.
 581 * @udc: Reference to the device controller.
 582 * @iudma: IUDMA channel to use.
 583 * @breq: Request containing the transaction data.
 584 *
 585 * For RX IUDMA, this will queue a single buffer descriptor, as RX IUDMA
 586 * does not honor SOP/EOP so the handling of multiple buffers is ambiguous.
 587 * So iudma_write() may be called several times to fulfill a single
 588 * usb_request.
 589 *
 590 * For TX IUDMA, this can queue multiple buffer descriptors if needed.
 591 */
 592static void iudma_write(struct bcm63xx_udc *udc, struct iudma_ch *iudma,
 593	struct bcm63xx_req *breq)
 594{
 595	int first_bd = 1, last_bd = 0, extra_zero_pkt = 0;
 596	unsigned int bytes_left = breq->req.length - breq->offset;
 597	const int max_bd_bytes = !irq_coalesce && !iudma->is_tx ?
 598		iudma->max_pkt : IUDMA_MAX_FRAGMENT;
 599
 600	iudma->n_bds_used = 0;
 601	breq->bd_bytes = 0;
 602	breq->iudma = iudma;
 603
 604	if ((bytes_left % iudma->max_pkt == 0) && bytes_left && breq->req.zero)
 605		extra_zero_pkt = 1;
 606
 607	do {
 608		struct bcm_enet_desc *d = iudma->write_bd;
 609		u32 dmaflags = 0;
 610		unsigned int n_bytes;
 611
 612		if (d == iudma->end_bd) {
 613			dmaflags |= DMADESC_WRAP_MASK;
 614			iudma->write_bd = iudma->bd_ring;
 615		} else {
 616			iudma->write_bd++;
 617		}
 618		iudma->n_bds_used++;
 619
 620		n_bytes = min_t(int, bytes_left, max_bd_bytes);
 621		if (n_bytes)
 622			dmaflags |= n_bytes << DMADESC_LENGTH_SHIFT;
 623		else
 624			dmaflags |= (1 << DMADESC_LENGTH_SHIFT) |
 625				    DMADESC_USB_ZERO_MASK;
 626
 627		dmaflags |= DMADESC_OWNER_MASK;
 628		if (first_bd) {
 629			dmaflags |= DMADESC_SOP_MASK;
 630			first_bd = 0;
 631		}
 632
 633		/*
 634		 * extra_zero_pkt forces one more iteration through the loop
 635		 * after all data is queued up, to send the zero packet
 636		 */
 637		if (extra_zero_pkt && !bytes_left)
 638			extra_zero_pkt = 0;
 639
 640		if (!iudma->is_tx || iudma->n_bds_used == iudma->n_bds ||
 641		    (n_bytes == bytes_left && !extra_zero_pkt)) {
 642			last_bd = 1;
 643			dmaflags |= DMADESC_EOP_MASK;
 644		}
 645
 646		d->address = breq->req.dma + breq->offset;
 647		mb();
 648		d->len_stat = dmaflags;
 649
 650		breq->offset += n_bytes;
 651		breq->bd_bytes += n_bytes;
 652		bytes_left -= n_bytes;
 653	} while (!last_bd);
 654
 655	usb_dmac_writel(udc, ENETDMAC_CHANCFG_EN_MASK,
 656			ENETDMAC_CHANCFG_REG, iudma->ch_idx);
 657}
 658
 659/**
 660 * iudma_read - Check for IUDMA buffer completion.
 661 * @udc: Reference to the device controller.
 662 * @iudma: IUDMA channel to use.
 663 *
 664 * This checks to see if ALL of the outstanding BDs on the DMA channel
 665 * have been filled.  If so, it returns the actual transfer length;
 666 * otherwise it returns -EBUSY.
 667 */
 668static int iudma_read(struct bcm63xx_udc *udc, struct iudma_ch *iudma)
 669{
 670	int i, actual_len = 0;
 671	struct bcm_enet_desc *d = iudma->read_bd;
 672
 673	if (!iudma->n_bds_used)
 674		return -EINVAL;
 675
 676	for (i = 0; i < iudma->n_bds_used; i++) {
 677		u32 dmaflags;
 678
 679		dmaflags = d->len_stat;
 680
 681		if (dmaflags & DMADESC_OWNER_MASK)
 682			return -EBUSY;
 683
 684		actual_len += (dmaflags & DMADESC_LENGTH_MASK) >>
 685			      DMADESC_LENGTH_SHIFT;
 686		if (d == iudma->end_bd)
 687			d = iudma->bd_ring;
 688		else
 689			d++;
 690	}
 691
 692	iudma->read_bd = d;
 693	iudma->n_bds_used = 0;
 694	return actual_len;
 695}
 696
 697/**
 698 * iudma_reset_channel - Stop DMA on a single channel.
 699 * @udc: Reference to the device controller.
 700 * @iudma: IUDMA channel to reset.
 701 */
 702static void iudma_reset_channel(struct bcm63xx_udc *udc, struct iudma_ch *iudma)
 703{
 704	int timeout = IUDMA_RESET_TIMEOUT_US;
 705	struct bcm_enet_desc *d;
 706	int ch_idx = iudma->ch_idx;
 707
 708	if (!iudma->is_tx)
 709		bcm63xx_fifo_reset_ep(udc, max(0, iudma->ep_num));
 710
 711	/* stop DMA, then wait for the hardware to wrap up */
 712	usb_dmac_writel(udc, 0, ENETDMAC_CHANCFG_REG, ch_idx);
 713
 714	while (usb_dmac_readl(udc, ENETDMAC_CHANCFG_REG, ch_idx) &
 715				   ENETDMAC_CHANCFG_EN_MASK) {
 716		udelay(1);
 717
 718		/* repeatedly flush the FIFO data until the BD completes */
 719		if (iudma->is_tx && iudma->ep_num >= 0)
 720			bcm63xx_fifo_reset_ep(udc, iudma->ep_num);
 721
 722		if (!timeout--) {
 723			dev_err(udc->dev, "can't reset IUDMA channel %d\n",
 724				ch_idx);
 725			break;
 726		}
 727		if (timeout == IUDMA_RESET_TIMEOUT_US / 2) {
 728			dev_warn(udc->dev, "forcibly halting IUDMA channel %d\n",
 729				 ch_idx);
 730			usb_dmac_writel(udc, ENETDMAC_CHANCFG_BUFHALT_MASK,
 731					ENETDMAC_CHANCFG_REG, ch_idx);
 732		}
 733	}
 734	usb_dmac_writel(udc, ~0, ENETDMAC_IR_REG, ch_idx);
 735
 736	/* don't leave "live" HW-owned entries for the next guy to step on */
 737	for (d = iudma->bd_ring; d <= iudma->end_bd; d++)
 738		d->len_stat = 0;
 739	mb();
 740
 741	iudma->read_bd = iudma->write_bd = iudma->bd_ring;
 742	iudma->n_bds_used = 0;
 743
 744	/* set up IRQs, UBUS burst size, and BD base for this channel */
 745	usb_dmac_writel(udc, ENETDMAC_IR_BUFDONE_MASK,
 746			ENETDMAC_IRMASK_REG, ch_idx);
 747	usb_dmac_writel(udc, 8, ENETDMAC_MAXBURST_REG, ch_idx);
 748
 749	usb_dmas_writel(udc, iudma->bd_ring_dma, ENETDMAS_RSTART_REG, ch_idx);
 750	usb_dmas_writel(udc, 0, ENETDMAS_SRAM2_REG, ch_idx);
 751}
 752
 753/**
 754 * iudma_init_channel - One-time IUDMA channel initialization.
 755 * @udc: Reference to the device controller.
 756 * @ch_idx: Channel to initialize.
 757 */
 758static int iudma_init_channel(struct bcm63xx_udc *udc, unsigned int ch_idx)
 759{
 760	struct iudma_ch *iudma = &udc->iudma[ch_idx];
 761	const struct iudma_ch_cfg *cfg = &iudma_defaults[ch_idx];
 762	unsigned int n_bds = cfg->n_bds;
 763	struct bcm63xx_ep *bep = NULL;
 764
 765	iudma->ep_num = cfg->ep_num;
 766	iudma->ch_idx = ch_idx;
 767	iudma->is_tx = !!(ch_idx & 0x01);
 768	if (iudma->ep_num >= 0) {
 769		bep = &udc->bep[iudma->ep_num];
 770		bep->iudma = iudma;
 771		INIT_LIST_HEAD(&bep->queue);
 772	}
 773
 774	iudma->bep = bep;
 775	iudma->udc = udc;
 776
 777	/* ep0 is always active; others are controlled by the gadget driver */
 778	if (iudma->ep_num <= 0)
 779		iudma->enabled = true;
 780
 781	iudma->n_bds = n_bds;
 782	iudma->bd_ring = dmam_alloc_coherent(udc->dev,
 783		n_bds * sizeof(struct bcm_enet_desc),
 784		&iudma->bd_ring_dma, GFP_KERNEL);
 785	if (!iudma->bd_ring)
 786		return -ENOMEM;
 787	iudma->end_bd = &iudma->bd_ring[n_bds - 1];
 788
 789	return 0;
 790}
 791
 792/**
 793 * iudma_init - One-time initialization of all IUDMA channels.
 794 * @udc: Reference to the device controller.
 795 *
 796 * Enable DMA, flush channels, and enable global IUDMA IRQs.
 797 */
 798static int iudma_init(struct bcm63xx_udc *udc)
 799{
 800	int i, rc;
 801
 802	usb_dma_writel(udc, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
 803
 804	for (i = 0; i < BCM63XX_NUM_IUDMA; i++) {
 805		rc = iudma_init_channel(udc, i);
 806		if (rc)
 807			return rc;
 808		iudma_reset_channel(udc, &udc->iudma[i]);
 809	}
 810
 811	usb_dma_writel(udc, BIT(BCM63XX_NUM_IUDMA)-1, ENETDMA_GLB_IRQMASK_REG);
 812	return 0;
 813}
 814
 815/**
 816 * iudma_uninit - Uninitialize IUDMA channels.
 817 * @udc: Reference to the device controller.
 818 *
 819 * Kill global IUDMA IRQs, flush channels, and kill DMA.
 820 */
 821static void iudma_uninit(struct bcm63xx_udc *udc)
 822{
 823	int i;
 824
 825	usb_dma_writel(udc, 0, ENETDMA_GLB_IRQMASK_REG);
 826
 827	for (i = 0; i < BCM63XX_NUM_IUDMA; i++)
 828		iudma_reset_channel(udc, &udc->iudma[i]);
 829
 830	usb_dma_writel(udc, 0, ENETDMA_CFG_REG);
 831}
 832
 833/***********************************************************************
 834 * Other low-level USBD operations
 835 ***********************************************************************/
 836
 837/**
 838 * bcm63xx_set_ctrl_irqs - Mask/unmask control path interrupts.
 839 * @udc: Reference to the device controller.
 840 * @enable_irqs: true to enable, false to disable.
 841 */
 842static void bcm63xx_set_ctrl_irqs(struct bcm63xx_udc *udc, bool enable_irqs)
 843{
 844	u32 val;
 845
 846	usbd_writel(udc, 0, USBD_STATUS_REG);
 847
 848	val = BIT(USBD_EVENT_IRQ_USB_RESET) |
 849	      BIT(USBD_EVENT_IRQ_SETUP) |
 850	      BIT(USBD_EVENT_IRQ_SETCFG) |
 851	      BIT(USBD_EVENT_IRQ_SETINTF) |
 852	      BIT(USBD_EVENT_IRQ_USB_LINK);
 853	usbd_writel(udc, enable_irqs ? val : 0, USBD_EVENT_IRQ_MASK_REG);
 854	usbd_writel(udc, val, USBD_EVENT_IRQ_STATUS_REG);
 855}
 856
 857/**
 858 * bcm63xx_select_phy_mode - Select between USB device and host mode.
 859 * @udc: Reference to the device controller.
 860 * @is_device: true for device, false for host.
 861 *
 862 * This should probably be reworked to use the drivers/usb/otg
 863 * infrastructure.
 864 *
 865 * By default, the AFE/pullups are disabled in device mode, until
 866 * bcm63xx_select_pullup() is called.
 867 */
 868static void bcm63xx_select_phy_mode(struct bcm63xx_udc *udc, bool is_device)
 869{
 870	u32 val, portmask = BIT(udc->pd->port_no);
 871
 872	if (BCMCPU_IS_6328()) {
 873		/* configure pinmux to sense VBUS signal */
 874		val = bcm_gpio_readl(GPIO_PINMUX_OTHR_REG);
 875		val &= ~GPIO_PINMUX_OTHR_6328_USB_MASK;
 876		val |= is_device ? GPIO_PINMUX_OTHR_6328_USB_DEV :
 877			       GPIO_PINMUX_OTHR_6328_USB_HOST;
 878		bcm_gpio_writel(val, GPIO_PINMUX_OTHR_REG);
 879	}
 880
 881	val = bcm_rset_readl(RSET_USBH_PRIV, USBH_PRIV_UTMI_CTL_6368_REG);
 882	if (is_device) {
 883		val |= (portmask << USBH_PRIV_UTMI_CTL_HOSTB_SHIFT);
 884		val |= (portmask << USBH_PRIV_UTMI_CTL_NODRIV_SHIFT);
 885	} else {
 886		val &= ~(portmask << USBH_PRIV_UTMI_CTL_HOSTB_SHIFT);
 887		val &= ~(portmask << USBH_PRIV_UTMI_CTL_NODRIV_SHIFT);
 888	}
 889	bcm_rset_writel(RSET_USBH_PRIV, val, USBH_PRIV_UTMI_CTL_6368_REG);
 890
 891	val = bcm_rset_readl(RSET_USBH_PRIV, USBH_PRIV_SWAP_6368_REG);
 892	if (is_device)
 893		val |= USBH_PRIV_SWAP_USBD_MASK;
 894	else
 895		val &= ~USBH_PRIV_SWAP_USBD_MASK;
 896	bcm_rset_writel(RSET_USBH_PRIV, val, USBH_PRIV_SWAP_6368_REG);
 897}
 898
 899/**
 900 * bcm63xx_select_pullup - Enable/disable the pullup on D+
 901 * @udc: Reference to the device controller.
 902 * @is_on: true to enable the pullup, false to disable.
 903 *
 904 * If the pullup is active, the host will sense a FS/HS device connected to
 905 * the port.  If the pullup is inactive, the host will think the USB
 906 * device has been disconnected.
 907 */
 908static void bcm63xx_select_pullup(struct bcm63xx_udc *udc, bool is_on)
 909{
 910	u32 val, portmask = BIT(udc->pd->port_no);
 911
 912	val = bcm_rset_readl(RSET_USBH_PRIV, USBH_PRIV_UTMI_CTL_6368_REG);
 913	if (is_on)
 914		val &= ~(portmask << USBH_PRIV_UTMI_CTL_NODRIV_SHIFT);
 915	else
 916		val |= (portmask << USBH_PRIV_UTMI_CTL_NODRIV_SHIFT);
 917	bcm_rset_writel(RSET_USBH_PRIV, val, USBH_PRIV_UTMI_CTL_6368_REG);
 918}
 919
 920/**
 921 * bcm63xx_uninit_udc_hw - Shut down the hardware prior to driver removal.
 922 * @udc: Reference to the device controller.
 923 *
 924 * This just masks the IUDMA IRQs and releases the clocks.  It is assumed
 925 * that bcm63xx_udc_stop() has already run, and the clocks are stopped.
 926 */
 927static void bcm63xx_uninit_udc_hw(struct bcm63xx_udc *udc)
 928{
 929	set_clocks(udc, true);
 930	iudma_uninit(udc);
 931	set_clocks(udc, false);
 932
 933	clk_put(udc->usbd_clk);
 934	clk_put(udc->usbh_clk);
 935}
 936
 937/**
 938 * bcm63xx_init_udc_hw - Initialize the controller hardware and data structures.
 939 * @udc: Reference to the device controller.
 940 */
 941static int bcm63xx_init_udc_hw(struct bcm63xx_udc *udc)
 942{
 943	int i, rc = 0;
 944	u32 val;
 945
 946	udc->ep0_ctrl_buf = devm_kzalloc(udc->dev, BCM63XX_MAX_CTRL_PKT,
 947					 GFP_KERNEL);
 948	if (!udc->ep0_ctrl_buf)
 949		return -ENOMEM;
 950
 951	INIT_LIST_HEAD(&udc->gadget.ep_list);
 952	for (i = 0; i < BCM63XX_NUM_EP; i++) {
 953		struct bcm63xx_ep *bep = &udc->bep[i];
 954
 955		bep->ep.name = bcm63xx_ep_info[i].name;
 956		bep->ep.caps = bcm63xx_ep_info[i].caps;
 957		bep->ep_num = i;
 958		bep->ep.ops = &bcm63xx_udc_ep_ops;
 959		list_add_tail(&bep->ep.ep_list, &udc->gadget.ep_list);
 960		bep->halted = 0;
 961		usb_ep_set_maxpacket_limit(&bep->ep, BCM63XX_MAX_CTRL_PKT);
 962		bep->udc = udc;
 963		bep->ep.desc = NULL;
 964		INIT_LIST_HEAD(&bep->queue);
 965	}
 966
 967	udc->gadget.ep0 = &udc->bep[0].ep;
 968	list_del(&udc->bep[0].ep.ep_list);
 969
 970	udc->gadget.speed = USB_SPEED_UNKNOWN;
 971	udc->ep0state = EP0_SHUTDOWN;
 972
 973	udc->usbh_clk = clk_get(udc->dev, "usbh");
 974	if (IS_ERR(udc->usbh_clk))
 975		return -EIO;
 976
 977	udc->usbd_clk = clk_get(udc->dev, "usbd");
 978	if (IS_ERR(udc->usbd_clk)) {
 979		clk_put(udc->usbh_clk);
 980		return -EIO;
 981	}
 982
 983	set_clocks(udc, true);
 984
 985	val = USBD_CONTROL_AUTO_CSRS_MASK |
 986	      USBD_CONTROL_DONE_CSRS_MASK |
 987	      (irq_coalesce ? USBD_CONTROL_RXZSCFG_MASK : 0);
 988	usbd_writel(udc, val, USBD_CONTROL_REG);
 989
 990	val = USBD_STRAPS_APP_SELF_PWR_MASK |
 991	      USBD_STRAPS_APP_RAM_IF_MASK |
 992	      USBD_STRAPS_APP_CSRPRGSUP_MASK |
 993	      USBD_STRAPS_APP_8BITPHY_MASK |
 994	      USBD_STRAPS_APP_RMTWKUP_MASK;
 995
 996	if (udc->gadget.max_speed == USB_SPEED_HIGH)
 997		val |= (BCM63XX_SPD_HIGH << USBD_STRAPS_SPEED_SHIFT);
 998	else
 999		val |= (BCM63XX_SPD_FULL << USBD_STRAPS_SPEED_SHIFT);
1000	usbd_writel(udc, val, USBD_STRAPS_REG);
1001
1002	bcm63xx_set_ctrl_irqs(udc, false);
1003
1004	usbd_writel(udc, 0, USBD_EVENT_IRQ_CFG_LO_REG);
1005
1006	val = USBD_EVENT_IRQ_CFG_FALLING(USBD_EVENT_IRQ_ENUM_ON) |
1007	      USBD_EVENT_IRQ_CFG_FALLING(USBD_EVENT_IRQ_SET_CSRS);
1008	usbd_writel(udc, val, USBD_EVENT_IRQ_CFG_HI_REG);
1009
1010	rc = iudma_init(udc);
1011	set_clocks(udc, false);
1012	if (rc)
1013		bcm63xx_uninit_udc_hw(udc);
1014
1015	return 0;
1016}
1017
1018/***********************************************************************
1019 * Standard EP gadget operations
1020 ***********************************************************************/
1021
1022/**
1023 * bcm63xx_ep_enable - Enable one endpoint.
1024 * @ep: Endpoint to enable.
1025 * @desc: Contains max packet, direction, etc.
1026 *
1027 * Most of the endpoint parameters are fixed in this controller, so there
1028 * isn't much for this function to do.
1029 */
1030static int bcm63xx_ep_enable(struct usb_ep *ep,
1031	const struct usb_endpoint_descriptor *desc)
1032{
1033	struct bcm63xx_ep *bep = our_ep(ep);
1034	struct bcm63xx_udc *udc = bep->udc;
1035	struct iudma_ch *iudma = bep->iudma;
1036	unsigned long flags;
1037
1038	if (!ep || !desc || ep->name == bcm63xx_ep0name)
1039		return -EINVAL;
1040
1041	if (!udc->driver)
1042		return -ESHUTDOWN;
1043
1044	spin_lock_irqsave(&udc->lock, flags);
1045	if (iudma->enabled) {
1046		spin_unlock_irqrestore(&udc->lock, flags);
1047		return -EINVAL;
1048	}
1049
1050	iudma->enabled = true;
1051	BUG_ON(!list_empty(&bep->queue));
1052
1053	iudma_reset_channel(udc, iudma);
1054
1055	bep->halted = 0;
1056	bcm63xx_set_stall(udc, bep, false);
1057	clear_bit(bep->ep_num, &udc->wedgemap);
1058
1059	ep->desc = desc;
1060	ep->maxpacket = usb_endpoint_maxp(desc);
1061
1062	spin_unlock_irqrestore(&udc->lock, flags);
1063	return 0;
1064}
1065
1066/**
1067 * bcm63xx_ep_disable - Disable one endpoint.
1068 * @ep: Endpoint to disable.
1069 */
1070static int bcm63xx_ep_disable(struct usb_ep *ep)
1071{
1072	struct bcm63xx_ep *bep = our_ep(ep);
1073	struct bcm63xx_udc *udc = bep->udc;
1074	struct iudma_ch *iudma = bep->iudma;
1075	struct bcm63xx_req *breq, *n;
1076	unsigned long flags;
1077
1078	if (!ep || !ep->desc)
1079		return -EINVAL;
1080
1081	spin_lock_irqsave(&udc->lock, flags);
1082	if (!iudma->enabled) {
1083		spin_unlock_irqrestore(&udc->lock, flags);
1084		return -EINVAL;
1085	}
1086	iudma->enabled = false;
1087
1088	iudma_reset_channel(udc, iudma);
1089
1090	if (!list_empty(&bep->queue)) {
1091		list_for_each_entry_safe(breq, n, &bep->queue, queue) {
1092			usb_gadget_unmap_request(&udc->gadget, &breq->req,
1093						 iudma->is_tx);
1094			list_del(&breq->queue);
1095			breq->req.status = -ESHUTDOWN;
1096
1097			spin_unlock_irqrestore(&udc->lock, flags);
1098			usb_gadget_giveback_request(&iudma->bep->ep, &breq->req);
1099			spin_lock_irqsave(&udc->lock, flags);
1100		}
1101	}
1102	ep->desc = NULL;
1103
1104	spin_unlock_irqrestore(&udc->lock, flags);
1105	return 0;
1106}
1107
1108/**
1109 * bcm63xx_udc_alloc_request - Allocate a new request.
1110 * @ep: Endpoint associated with the request.
1111 * @mem_flags: Flags to pass to kzalloc().
1112 */
1113static struct usb_request *bcm63xx_udc_alloc_request(struct usb_ep *ep,
1114	gfp_t mem_flags)
1115{
1116	struct bcm63xx_req *breq;
1117
1118	breq = kzalloc(sizeof(*breq), mem_flags);
1119	if (!breq)
1120		return NULL;
1121	return &breq->req;
1122}
1123
1124/**
1125 * bcm63xx_udc_free_request - Free a request.
1126 * @ep: Endpoint associated with the request.
1127 * @req: Request to free.
1128 */
1129static void bcm63xx_udc_free_request(struct usb_ep *ep,
1130	struct usb_request *req)
1131{
1132	struct bcm63xx_req *breq = our_req(req);
1133	kfree(breq);
1134}
1135
1136/**
1137 * bcm63xx_udc_queue - Queue up a new request.
1138 * @ep: Endpoint associated with the request.
1139 * @req: Request to add.
1140 * @mem_flags: Unused.
1141 *
1142 * If the queue is empty, start this request immediately.  Otherwise, add
1143 * it to the list.
1144 *
1145 * ep0 replies are sent through this function from the gadget driver, but
1146 * they are treated differently because they need to be handled by the ep0
1147 * state machine.  (Sometimes they are replies to control requests that
1148 * were spoofed by this driver, and so they shouldn't be transmitted at all.)
1149 */
1150static int bcm63xx_udc_queue(struct usb_ep *ep, struct usb_request *req,
1151	gfp_t mem_flags)
1152{
1153	struct bcm63xx_ep *bep = our_ep(ep);
1154	struct bcm63xx_udc *udc = bep->udc;
1155	struct bcm63xx_req *breq = our_req(req);
1156	unsigned long flags;
1157	int rc = 0;
1158
1159	if (unlikely(!req || !req->complete || !req->buf || !ep))
1160		return -EINVAL;
1161
1162	req->actual = 0;
1163	req->status = 0;
1164	breq->offset = 0;
1165
1166	if (bep == &udc->bep[0]) {
1167		/* only one reply per request, please */
1168		if (udc->ep0_reply)
1169			return -EINVAL;
1170
1171		udc->ep0_reply = req;
1172		schedule_work(&udc->ep0_wq);
1173		return 0;
1174	}
1175
1176	spin_lock_irqsave(&udc->lock, flags);
1177	if (!bep->iudma->enabled) {
1178		rc = -ESHUTDOWN;
1179		goto out;
1180	}
1181
1182	rc = usb_gadget_map_request(&udc->gadget, req, bep->iudma->is_tx);
1183	if (rc == 0) {
1184		list_add_tail(&breq->queue, &bep->queue);
1185		if (list_is_singular(&bep->queue))
1186			iudma_write(udc, bep->iudma, breq);
1187	}
1188
1189out:
1190	spin_unlock_irqrestore(&udc->lock, flags);
1191	return rc;
1192}
1193
1194/**
1195 * bcm63xx_udc_dequeue - Remove a pending request from the queue.
1196 * @ep: Endpoint associated with the request.
1197 * @req: Request to remove.
1198 *
1199 * If the request is not at the head of the queue, this is easy - just nuke
1200 * it.  If the request is at the head of the queue, we'll need to stop the
1201 * DMA transaction and then queue up the successor.
1202 */
1203static int bcm63xx_udc_dequeue(struct usb_ep *ep, struct usb_request *req)
1204{
1205	struct bcm63xx_ep *bep = our_ep(ep);
1206	struct bcm63xx_udc *udc = bep->udc;
1207	struct bcm63xx_req *breq = our_req(req), *cur;
1208	unsigned long flags;
1209	int rc = 0;
1210
1211	spin_lock_irqsave(&udc->lock, flags);
1212	if (list_empty(&bep->queue)) {
1213		rc = -EINVAL;
1214		goto out;
1215	}
1216
1217	cur = list_first_entry(&bep->queue, struct bcm63xx_req, queue);
1218	usb_gadget_unmap_request(&udc->gadget, &breq->req, bep->iudma->is_tx);
1219
1220	if (breq == cur) {
1221		iudma_reset_channel(udc, bep->iudma);
1222		list_del(&breq->queue);
1223
1224		if (!list_empty(&bep->queue)) {
1225			struct bcm63xx_req *next;
1226
1227			next = list_first_entry(&bep->queue,
1228				struct bcm63xx_req, queue);
1229			iudma_write(udc, bep->iudma, next);
1230		}
1231	} else {
1232		list_del(&breq->queue);
1233	}
1234
1235out:
1236	spin_unlock_irqrestore(&udc->lock, flags);
1237
1238	req->status = -ESHUTDOWN;
1239	req->complete(ep, req);
1240
1241	return rc;
1242}
1243
1244/**
1245 * bcm63xx_udc_set_halt - Enable/disable STALL flag in the hardware.
1246 * @ep: Endpoint to halt.
1247 * @value: Zero to clear halt; nonzero to set halt.
1248 *
1249 * See comments in bcm63xx_update_wedge().
1250 */
1251static int bcm63xx_udc_set_halt(struct usb_ep *ep, int value)
1252{
1253	struct bcm63xx_ep *bep = our_ep(ep);
1254	struct bcm63xx_udc *udc = bep->udc;
1255	unsigned long flags;
1256
1257	spin_lock_irqsave(&udc->lock, flags);
1258	bcm63xx_set_stall(udc, bep, !!value);
1259	bep->halted = value;
1260	spin_unlock_irqrestore(&udc->lock, flags);
1261
1262	return 0;
1263}
1264
1265/**
1266 * bcm63xx_udc_set_wedge - Stall the endpoint until the next reset.
1267 * @ep: Endpoint to wedge.
1268 *
1269 * See comments in bcm63xx_update_wedge().
1270 */
1271static int bcm63xx_udc_set_wedge(struct usb_ep *ep)
1272{
1273	struct bcm63xx_ep *bep = our_ep(ep);
1274	struct bcm63xx_udc *udc = bep->udc;
1275	unsigned long flags;
1276
1277	spin_lock_irqsave(&udc->lock, flags);
1278	set_bit(bep->ep_num, &udc->wedgemap);
1279	bcm63xx_set_stall(udc, bep, true);
1280	spin_unlock_irqrestore(&udc->lock, flags);
1281
1282	return 0;
1283}
1284
1285static const struct usb_ep_ops bcm63xx_udc_ep_ops = {
1286	.enable		= bcm63xx_ep_enable,
1287	.disable	= bcm63xx_ep_disable,
1288
1289	.alloc_request	= bcm63xx_udc_alloc_request,
1290	.free_request	= bcm63xx_udc_free_request,
1291
1292	.queue		= bcm63xx_udc_queue,
1293	.dequeue	= bcm63xx_udc_dequeue,
1294
1295	.set_halt	= bcm63xx_udc_set_halt,
1296	.set_wedge	= bcm63xx_udc_set_wedge,
1297};
1298
1299/***********************************************************************
1300 * EP0 handling
1301 ***********************************************************************/
1302
1303/**
1304 * bcm63xx_ep0_setup_callback - Drop spinlock to invoke ->setup callback.
1305 * @udc: Reference to the device controller.
1306 * @ctrl: 8-byte SETUP request.
1307 */
1308static int bcm63xx_ep0_setup_callback(struct bcm63xx_udc *udc,
1309	struct usb_ctrlrequest *ctrl)
1310{
1311	int rc;
1312
1313	spin_unlock_irq(&udc->lock);
1314	rc = udc->driver->setup(&udc->gadget, ctrl);
1315	spin_lock_irq(&udc->lock);
1316	return rc;
1317}
1318
1319/**
1320 * bcm63xx_ep0_spoof_set_cfg - Synthesize a SET_CONFIGURATION request.
1321 * @udc: Reference to the device controller.
1322 *
1323 * Many standard requests are handled automatically in the hardware, but
1324 * we still need to pass them to the gadget driver so that it can
1325 * reconfigure the interfaces/endpoints if necessary.
1326 *
1327 * Unfortunately we are not able to send a STALL response if the host
1328 * requests an invalid configuration.  If this happens, we'll have to be
1329 * content with printing a warning.
1330 */
1331static int bcm63xx_ep0_spoof_set_cfg(struct bcm63xx_udc *udc)
1332{
1333	struct usb_ctrlrequest ctrl;
1334	int rc;
1335
1336	ctrl.bRequestType = USB_DIR_OUT | USB_RECIP_DEVICE;
1337	ctrl.bRequest = USB_REQ_SET_CONFIGURATION;
1338	ctrl.wValue = cpu_to_le16(udc->cfg);
1339	ctrl.wIndex = 0;
1340	ctrl.wLength = 0;
1341
1342	rc = bcm63xx_ep0_setup_callback(udc, &ctrl);
1343	if (rc < 0) {
1344		dev_warn_ratelimited(udc->dev,
1345			"hardware auto-acked bad SET_CONFIGURATION(%d) request\n",
1346			udc->cfg);
1347	}
1348	return rc;
1349}
1350
1351/**
1352 * bcm63xx_ep0_spoof_set_iface - Synthesize a SET_INTERFACE request.
1353 * @udc: Reference to the device controller.
1354 */
1355static int bcm63xx_ep0_spoof_set_iface(struct bcm63xx_udc *udc)
1356{
1357	struct usb_ctrlrequest ctrl;
1358	int rc;
1359
1360	ctrl.bRequestType = USB_DIR_OUT | USB_RECIP_INTERFACE;
1361	ctrl.bRequest = USB_REQ_SET_INTERFACE;
1362	ctrl.wValue = cpu_to_le16(udc->alt_iface);
1363	ctrl.wIndex = cpu_to_le16(udc->iface);
1364	ctrl.wLength = 0;
1365
1366	rc = bcm63xx_ep0_setup_callback(udc, &ctrl);
1367	if (rc < 0) {
1368		dev_warn_ratelimited(udc->dev,
1369			"hardware auto-acked bad SET_INTERFACE(%d,%d) request\n",
1370			udc->iface, udc->alt_iface);
1371	}
1372	return rc;
1373}
1374
1375/**
1376 * bcm63xx_ep0_map_write - dma_map and iudma_write a single request.
1377 * @udc: Reference to the device controller.
1378 * @ch_idx: IUDMA channel number.
1379 * @req: USB gadget layer representation of the request.
1380 */
1381static void bcm63xx_ep0_map_write(struct bcm63xx_udc *udc, int ch_idx,
1382	struct usb_request *req)
1383{
1384	struct bcm63xx_req *breq = our_req(req);
1385	struct iudma_ch *iudma = &udc->iudma[ch_idx];
1386
1387	BUG_ON(udc->ep0_request);
1388	udc->ep0_request = req;
1389
1390	req->actual = 0;
1391	breq->offset = 0;
1392	usb_gadget_map_request(&udc->gadget, req, iudma->is_tx);
1393	iudma_write(udc, iudma, breq);
1394}
1395
1396/**
1397 * bcm63xx_ep0_complete - Set completion status and "stage" the callback.
1398 * @udc: Reference to the device controller.
1399 * @req: USB gadget layer representation of the request.
1400 * @status: Status to return to the gadget driver.
1401 */
1402static void bcm63xx_ep0_complete(struct bcm63xx_udc *udc,
1403	struct usb_request *req, int status)
1404{
1405	req->status = status;
1406	if (status)
1407		req->actual = 0;
1408	if (req->complete) {
1409		spin_unlock_irq(&udc->lock);
1410		req->complete(&udc->bep[0].ep, req);
1411		spin_lock_irq(&udc->lock);
1412	}
1413}
1414
1415/**
1416 * bcm63xx_ep0_nuke_reply - Abort request from the gadget driver due to
1417 *   reset/shutdown.
1418 * @udc: Reference to the device controller.
1419 * @is_tx: Nonzero for TX (IN), zero for RX (OUT).
1420 */
1421static void bcm63xx_ep0_nuke_reply(struct bcm63xx_udc *udc, int is_tx)
1422{
1423	struct usb_request *req = udc->ep0_reply;
1424
1425	udc->ep0_reply = NULL;
1426	usb_gadget_unmap_request(&udc->gadget, req, is_tx);
1427	if (udc->ep0_request == req) {
1428		udc->ep0_req_completed = 0;
1429		udc->ep0_request = NULL;
1430	}
1431	bcm63xx_ep0_complete(udc, req, -ESHUTDOWN);
1432}
1433
1434/**
1435 * bcm63xx_ep0_read_complete - Close out the pending ep0 request; return
1436 *   transfer len.
1437 * @udc: Reference to the device controller.
1438 */
1439static int bcm63xx_ep0_read_complete(struct bcm63xx_udc *udc)
1440{
1441	struct usb_request *req = udc->ep0_request;
1442
1443	udc->ep0_req_completed = 0;
1444	udc->ep0_request = NULL;
1445
1446	return req->actual;
1447}
1448
1449/**
1450 * bcm63xx_ep0_internal_request - Helper function to submit an ep0 request.
1451 * @udc: Reference to the device controller.
1452 * @ch_idx: IUDMA channel number.
1453 * @length: Number of bytes to TX/RX.
1454 *
1455 * Used for simple transfers performed by the ep0 worker.  This will always
1456 * use ep0_ctrl_req / ep0_ctrl_buf.
1457 */
1458static void bcm63xx_ep0_internal_request(struct bcm63xx_udc *udc, int ch_idx,
1459	int length)
1460{
1461	struct usb_request *req = &udc->ep0_ctrl_req.req;
1462
1463	req->buf = udc->ep0_ctrl_buf;
1464	req->length = length;
1465	req->complete = NULL;
1466
1467	bcm63xx_ep0_map_write(udc, ch_idx, req);
1468}
1469
1470/**
1471 * bcm63xx_ep0_do_setup - Parse new SETUP packet and decide how to handle it.
1472 * @udc: Reference to the device controller.
1473 *
1474 * EP0_IDLE probably shouldn't ever happen.  EP0_REQUEUE means we're ready
1475 * for the next packet.  Anything else means the transaction requires multiple
1476 * stages of handling.
1477 */
1478static enum bcm63xx_ep0_state bcm63xx_ep0_do_setup(struct bcm63xx_udc *udc)
1479{
1480	int rc;
1481	struct usb_ctrlrequest *ctrl = (void *)udc->ep0_ctrl_buf;
1482
1483	rc = bcm63xx_ep0_read_complete(udc);
1484
1485	if (rc < 0) {
1486		dev_err(udc->dev, "missing SETUP packet\n");
1487		return EP0_IDLE;
1488	}
1489
1490	/*
1491	 * Handle 0-byte IN STATUS acknowledgement.  The hardware doesn't
1492	 * ALWAYS deliver these 100% of the time, so if we happen to see one,
1493	 * just throw it away.
1494	 */
1495	if (rc == 0)
1496		return EP0_REQUEUE;
1497
1498	/* Drop malformed SETUP packets */
1499	if (rc != sizeof(*ctrl)) {
1500		dev_warn_ratelimited(udc->dev,
1501			"malformed SETUP packet (%d bytes)\n", rc);
1502		return EP0_REQUEUE;
1503	}
1504
1505	/* Process new SETUP packet arriving on ep0 */
1506	rc = bcm63xx_ep0_setup_callback(udc, ctrl);
1507	if (rc < 0) {
1508		bcm63xx_set_stall(udc, &udc->bep[0], true);
1509		return EP0_REQUEUE;
1510	}
1511
1512	if (!ctrl->wLength)
1513		return EP0_REQUEUE;
1514	else if (ctrl->bRequestType & USB_DIR_IN)
1515		return EP0_IN_DATA_PHASE_SETUP;
1516	else
1517		return EP0_OUT_DATA_PHASE_SETUP;
1518}
1519
1520/**
1521 * bcm63xx_ep0_do_idle - Check for outstanding requests if ep0 is idle.
1522 * @udc: Reference to the device controller.
1523 *
1524 * In state EP0_IDLE, the RX descriptor is either pending, or has been
1525 * filled with a SETUP packet from the host.  This function handles new
1526 * SETUP packets, control IRQ events (which can generate fake SETUP packets),
1527 * and reset/shutdown events.
1528 *
1529 * Returns 0 if work was done; -EAGAIN if nothing to do.
1530 */
1531static int bcm63xx_ep0_do_idle(struct bcm63xx_udc *udc)
1532{
1533	if (udc->ep0_req_reset) {
1534		udc->ep0_req_reset = 0;
1535	} else if (udc->ep0_req_set_cfg) {
1536		udc->ep0_req_set_cfg = 0;
1537		if (bcm63xx_ep0_spoof_set_cfg(udc) >= 0)
1538			udc->ep0state = EP0_IN_FAKE_STATUS_PHASE;
1539	} else if (udc->ep0_req_set_iface) {
1540		udc->ep0_req_set_iface = 0;
1541		if (bcm63xx_ep0_spoof_set_iface(udc) >= 0)
1542			udc->ep0state = EP0_IN_FAKE_STATUS_PHASE;
1543	} else if (udc->ep0_req_completed) {
1544		udc->ep0state = bcm63xx_ep0_do_setup(udc);
1545		return udc->ep0state == EP0_IDLE ? -EAGAIN : 0;
1546	} else if (udc->ep0_req_shutdown) {
1547		udc->ep0_req_shutdown = 0;
1548		udc->ep0_req_completed = 0;
1549		udc->ep0_request = NULL;
1550		iudma_reset_channel(udc, &udc->iudma[IUDMA_EP0_RXCHAN]);
1551		usb_gadget_unmap_request(&udc->gadget,
1552			&udc->ep0_ctrl_req.req, 0);
1553
1554		/* bcm63xx_udc_pullup() is waiting for this */
1555		mb();
1556		udc->ep0state = EP0_SHUTDOWN;
1557	} else if (udc->ep0_reply) {
1558		/*
1559		 * This could happen if a USB RESET shows up during an ep0
1560		 * transaction (especially if a laggy driver like gadgetfs
1561		 * is in use).
1562		 */
1563		dev_warn(udc->dev, "nuking unexpected reply\n");
1564		bcm63xx_ep0_nuke_reply(udc, 0);
1565	} else {
1566		return -EAGAIN;
1567	}
1568
1569	return 0;
1570}
1571
1572/**
1573 * bcm63xx_ep0_one_round - Handle the current ep0 state.
1574 * @udc: Reference to the device controller.
1575 *
1576 * Returns 0 if work was done; -EAGAIN if nothing to do.
1577 */
1578static int bcm63xx_ep0_one_round(struct bcm63xx_udc *udc)
1579{
1580	enum bcm63xx_ep0_state ep0state = udc->ep0state;
1581	bool shutdown = udc->ep0_req_reset || udc->ep0_req_shutdown;
1582
1583	switch (udc->ep0state) {
1584	case EP0_REQUEUE:
1585		/* set up descriptor to receive SETUP packet */
1586		bcm63xx_ep0_internal_request(udc, IUDMA_EP0_RXCHAN,
1587					     BCM63XX_MAX_CTRL_PKT);
1588		ep0state = EP0_IDLE;
1589		break;
1590	case EP0_IDLE:
1591		return bcm63xx_ep0_do_idle(udc);
1592	case EP0_IN_DATA_PHASE_SETUP:
1593		/*
1594		 * Normal case: TX request is in ep0_reply (queued by the
1595		 * callback), or will be queued shortly.  When it's here,
1596		 * send it to the HW and go to EP0_IN_DATA_PHASE_COMPLETE.
1597		 *
1598		 * Shutdown case: Stop waiting for the reply.  Just
1599		 * REQUEUE->IDLE.  The gadget driver is NOT expected to
1600		 * queue anything else now.
1601		 */
1602		if (udc->ep0_reply) {
1603			bcm63xx_ep0_map_write(udc, IUDMA_EP0_TXCHAN,
1604					      udc->ep0_reply);
1605			ep0state = EP0_IN_DATA_PHASE_COMPLETE;
1606		} else if (shutdown) {
1607			ep0state = EP0_REQUEUE;
1608		}
1609		break;
1610	case EP0_IN_DATA_PHASE_COMPLETE: {
1611		/*
1612		 * Normal case: TX packet (ep0_reply) is in flight; wait for
1613		 * it to finish, then go back to REQUEUE->IDLE.
1614		 *
1615		 * Shutdown case: Reset the TX channel, send -ESHUTDOWN
1616		 * completion to the gadget driver, then REQUEUE->IDLE.
1617		 */
1618		if (udc->ep0_req_completed) {
1619			udc->ep0_reply = NULL;
1620			bcm63xx_ep0_read_complete(udc);
1621			/*
1622			 * the "ack" sometimes gets eaten (see
1623			 * bcm63xx_ep0_do_idle)
1624			 */
1625			ep0state = EP0_REQUEUE;
1626		} else if (shutdown) {
1627			iudma_reset_channel(udc, &udc->iudma[IUDMA_EP0_TXCHAN]);
1628			bcm63xx_ep0_nuke_reply(udc, 1);
1629			ep0state = EP0_REQUEUE;
1630		}
1631		break;
1632	}
1633	case EP0_OUT_DATA_PHASE_SETUP:
1634		/* Similar behavior to EP0_IN_DATA_PHASE_SETUP */
1635		if (udc->ep0_reply) {
1636			bcm63xx_ep0_map_write(udc, IUDMA_EP0_RXCHAN,
1637					      udc->ep0_reply);
1638			ep0state = EP0_OUT_DATA_PHASE_COMPLETE;
1639		} else if (shutdown) {
1640			ep0state = EP0_REQUEUE;
1641		}
1642		break;
1643	case EP0_OUT_DATA_PHASE_COMPLETE: {
1644		/* Similar behavior to EP0_IN_DATA_PHASE_COMPLETE */
1645		if (udc->ep0_req_completed) {
1646			udc->ep0_reply = NULL;
1647			bcm63xx_ep0_read_complete(udc);
1648
1649			/* send 0-byte ack to host */
1650			bcm63xx_ep0_internal_request(udc, IUDMA_EP0_TXCHAN, 0);
1651			ep0state = EP0_OUT_STATUS_PHASE;
1652		} else if (shutdown) {
1653			iudma_reset_channel(udc, &udc->iudma[IUDMA_EP0_RXCHAN]);
1654			bcm63xx_ep0_nuke_reply(udc, 0);
1655			ep0state = EP0_REQUEUE;
1656		}
1657		break;
1658	}
1659	case EP0_OUT_STATUS_PHASE:
1660		/*
1661		 * Normal case: 0-byte OUT ack packet is in flight; wait
1662		 * for it to finish, then go back to REQUEUE->IDLE.
1663		 *
1664		 * Shutdown case: just cancel the transmission.  Don't bother
1665		 * calling the completion, because it originated from this
1666		 * function anyway.  Then go back to REQUEUE->IDLE.
1667		 */
1668		if (udc->ep0_req_completed) {
1669			bcm63xx_ep0_read_complete(udc);
1670			ep0state = EP0_REQUEUE;
1671		} else if (shutdown) {
1672			iudma_reset_channel(udc, &udc->iudma[IUDMA_EP0_TXCHAN]);
1673			udc->ep0_request = NULL;
1674			ep0state = EP0_REQUEUE;
1675		}
1676		break;
1677	case EP0_IN_FAKE_STATUS_PHASE: {
1678		/*
1679		 * Normal case: we spoofed a SETUP packet and are now
1680		 * waiting for the gadget driver to send a 0-byte reply.
1681		 * This doesn't actually get sent to the HW because the
1682		 * HW has already sent its own reply.  Once we get the
1683		 * response, return to IDLE.
1684		 *
1685		 * Shutdown case: return to IDLE immediately.
1686		 *
1687		 * Note that the ep0 RX descriptor has remained queued
1688		 * (and possibly unfilled) during this entire transaction.
1689		 * The HW datapath (IUDMA) never even sees SET_CONFIGURATION
1690		 * or SET_INTERFACE transactions.
1691		 */
1692		struct usb_request *r = udc->ep0_reply;
1693
1694		if (!r) {
1695			if (shutdown)
1696				ep0state = EP0_IDLE;
1697			break;
1698		}
1699
1700		bcm63xx_ep0_complete(udc, r, 0);
1701		udc->ep0_reply = NULL;
1702		ep0state = EP0_IDLE;
1703		break;
1704	}
1705	case EP0_SHUTDOWN:
1706		break;
1707	}
1708
1709	if (udc->ep0state == ep0state)
1710		return -EAGAIN;
1711
1712	udc->ep0state = ep0state;
1713	return 0;
1714}
1715
1716/**
1717 * bcm63xx_ep0_process - ep0 worker thread / state machine.
1718 * @w: Workqueue struct.
1719 *
1720 * bcm63xx_ep0_process is triggered any time an event occurs on ep0.  It
1721 * is used to synchronize ep0 events and ensure that both HW and SW events
1722 * occur in a well-defined order.  When the ep0 IUDMA queues are idle, it may
1723 * synthesize SET_CONFIGURATION / SET_INTERFACE requests that were consumed
1724 * by the USBD hardware.
1725 *
1726 * The worker function will continue iterating around the state machine
1727 * until there is nothing left to do.  Usually "nothing left to do" means
1728 * that we're waiting for a new event from the hardware.
1729 */
1730static void bcm63xx_ep0_process(struct work_struct *w)
1731{
1732	struct bcm63xx_udc *udc = container_of(w, struct bcm63xx_udc, ep0_wq);
1733	spin_lock_irq(&udc->lock);
1734	while (bcm63xx_ep0_one_round(udc) == 0)
1735		;
1736	spin_unlock_irq(&udc->lock);
1737}
1738
1739/***********************************************************************
1740 * Standard UDC gadget operations
1741 ***********************************************************************/
1742
1743/**
1744 * bcm63xx_udc_get_frame - Read current SOF frame number from the HW.
1745 * @gadget: USB device.
1746 */
1747static int bcm63xx_udc_get_frame(struct usb_gadget *gadget)
1748{
1749	struct bcm63xx_udc *udc = gadget_to_udc(gadget);
1750
1751	return (usbd_readl(udc, USBD_STATUS_REG) &
1752		USBD_STATUS_SOF_MASK) >> USBD_STATUS_SOF_SHIFT;
1753}
1754
1755/**
1756 * bcm63xx_udc_pullup - Enable/disable pullup on D+ line.
1757 * @gadget: USB device.
1758 * @is_on: 0 to disable pullup, 1 to enable.
1759 *
1760 * See notes in bcm63xx_select_pullup().
1761 */
1762static int bcm63xx_udc_pullup(struct usb_gadget *gadget, int is_on)
1763{
1764	struct bcm63xx_udc *udc = gadget_to_udc(gadget);
1765	unsigned long flags;
1766	int i, rc = -EINVAL;
1767
1768	spin_lock_irqsave(&udc->lock, flags);
1769	if (is_on && udc->ep0state == EP0_SHUTDOWN) {
1770		udc->gadget.speed = USB_SPEED_UNKNOWN;
1771		udc->ep0state = EP0_REQUEUE;
1772		bcm63xx_fifo_setup(udc);
1773		bcm63xx_fifo_reset(udc);
1774		bcm63xx_ep_setup(udc);
1775
1776		bitmap_zero(&udc->wedgemap, BCM63XX_NUM_EP);
1777		for (i = 0; i < BCM63XX_NUM_EP; i++)
1778			bcm63xx_set_stall(udc, &udc->bep[i], false);
1779
1780		bcm63xx_set_ctrl_irqs(udc, true);
1781		bcm63xx_select_pullup(gadget_to_udc(gadget), true);
1782		rc = 0;
1783	} else if (!is_on && udc->ep0state != EP0_SHUTDOWN) {
1784		bcm63xx_select_pullup(gadget_to_udc(gadget), false);
1785
1786		udc->ep0_req_shutdown = 1;
1787		spin_unlock_irqrestore(&udc->lock, flags);
1788
1789		while (1) {
1790			schedule_work(&udc->ep0_wq);
1791			if (udc->ep0state == EP0_SHUTDOWN)
1792				break;
1793			msleep(50);
1794		}
1795		bcm63xx_set_ctrl_irqs(udc, false);
1796		cancel_work_sync(&udc->ep0_wq);
1797		return 0;
1798	}
1799
1800	spin_unlock_irqrestore(&udc->lock, flags);
1801	return rc;
1802}
1803
1804/**
1805 * bcm63xx_udc_start - Start the controller.
1806 * @gadget: USB device.
1807 * @driver: Driver for USB device.
1808 */
1809static int bcm63xx_udc_start(struct usb_gadget *gadget,
1810		struct usb_gadget_driver *driver)
1811{
1812	struct bcm63xx_udc *udc = gadget_to_udc(gadget);
1813	unsigned long flags;
1814
1815	if (!driver || driver->max_speed < USB_SPEED_HIGH ||
1816	    !driver->setup)
1817		return -EINVAL;
1818	if (!udc)
1819		return -ENODEV;
1820	if (udc->driver)
1821		return -EBUSY;
1822
1823	spin_lock_irqsave(&udc->lock, flags);
1824
1825	set_clocks(udc, true);
1826	bcm63xx_fifo_setup(udc);
1827	bcm63xx_ep_init(udc);
1828	bcm63xx_ep_setup(udc);
1829	bcm63xx_fifo_reset(udc);
1830	bcm63xx_select_phy_mode(udc, true);
1831
1832	udc->driver = driver;
 
1833	udc->gadget.dev.of_node = udc->dev->of_node;
1834
1835	spin_unlock_irqrestore(&udc->lock, flags);
1836
1837	return 0;
1838}
1839
1840/**
1841 * bcm63xx_udc_stop - Shut down the controller.
1842 * @gadget: USB device.
1843 * @driver: Driver for USB device.
1844 */
1845static int bcm63xx_udc_stop(struct usb_gadget *gadget)
1846{
1847	struct bcm63xx_udc *udc = gadget_to_udc(gadget);
1848	unsigned long flags;
1849
1850	spin_lock_irqsave(&udc->lock, flags);
1851
1852	udc->driver = NULL;
1853
1854	/*
1855	 * If we switch the PHY too abruptly after dropping D+, the host
1856	 * will often complain:
1857	 *
1858	 *     hub 1-0:1.0: port 1 disabled by hub (EMI?), re-enabling...
1859	 */
1860	msleep(100);
1861
1862	bcm63xx_select_phy_mode(udc, false);
1863	set_clocks(udc, false);
1864
1865	spin_unlock_irqrestore(&udc->lock, flags);
1866
1867	return 0;
1868}
1869
1870static const struct usb_gadget_ops bcm63xx_udc_ops = {
1871	.get_frame	= bcm63xx_udc_get_frame,
1872	.pullup		= bcm63xx_udc_pullup,
1873	.udc_start	= bcm63xx_udc_start,
1874	.udc_stop	= bcm63xx_udc_stop,
1875};
1876
1877/***********************************************************************
1878 * IRQ handling
1879 ***********************************************************************/
1880
1881/**
1882 * bcm63xx_update_cfg_iface - Read current configuration/interface settings.
1883 * @udc: Reference to the device controller.
1884 *
1885 * This controller intercepts SET_CONFIGURATION and SET_INTERFACE messages.
1886 * The driver never sees the raw control packets coming in on the ep0
1887 * IUDMA channel, but at least we get an interrupt event to tell us that
1888 * new values are waiting in the USBD_STATUS register.
1889 */
1890static void bcm63xx_update_cfg_iface(struct bcm63xx_udc *udc)
1891{
1892	u32 reg = usbd_readl(udc, USBD_STATUS_REG);
1893
1894	udc->cfg = (reg & USBD_STATUS_CFG_MASK) >> USBD_STATUS_CFG_SHIFT;
1895	udc->iface = (reg & USBD_STATUS_INTF_MASK) >> USBD_STATUS_INTF_SHIFT;
1896	udc->alt_iface = (reg & USBD_STATUS_ALTINTF_MASK) >>
1897			 USBD_STATUS_ALTINTF_SHIFT;
1898	bcm63xx_ep_setup(udc);
1899}
1900
1901/**
1902 * bcm63xx_update_link_speed - Check to see if the link speed has changed.
1903 * @udc: Reference to the device controller.
1904 *
1905 * The link speed update coincides with a SETUP IRQ.  Returns 1 if the
1906 * speed has changed, so that the caller can update the endpoint settings.
1907 */
1908static int bcm63xx_update_link_speed(struct bcm63xx_udc *udc)
1909{
1910	u32 reg = usbd_readl(udc, USBD_STATUS_REG);
1911	enum usb_device_speed oldspeed = udc->gadget.speed;
1912
1913	switch ((reg & USBD_STATUS_SPD_MASK) >> USBD_STATUS_SPD_SHIFT) {
1914	case BCM63XX_SPD_HIGH:
1915		udc->gadget.speed = USB_SPEED_HIGH;
1916		break;
1917	case BCM63XX_SPD_FULL:
1918		udc->gadget.speed = USB_SPEED_FULL;
1919		break;
1920	default:
1921		/* this should never happen */
1922		udc->gadget.speed = USB_SPEED_UNKNOWN;
1923		dev_err(udc->dev,
1924			"received SETUP packet with invalid link speed\n");
1925		return 0;
1926	}
1927
1928	if (udc->gadget.speed != oldspeed) {
1929		dev_info(udc->dev, "link up, %s-speed mode\n",
1930			 udc->gadget.speed == USB_SPEED_HIGH ? "high" : "full");
1931		return 1;
1932	} else {
1933		return 0;
1934	}
1935}
1936
1937/**
1938 * bcm63xx_update_wedge - Iterate through wedged endpoints.
1939 * @udc: Reference to the device controller.
1940 * @new_status: true to "refresh" wedge status; false to clear it.
1941 *
1942 * On a SETUP interrupt, we need to manually "refresh" the wedge status
1943 * because the controller hardware is designed to automatically clear
1944 * stalls in response to a CLEAR_FEATURE request from the host.
1945 *
1946 * On a RESET interrupt, we do want to restore all wedged endpoints.
1947 */
1948static void bcm63xx_update_wedge(struct bcm63xx_udc *udc, bool new_status)
1949{
1950	int i;
1951
1952	for_each_set_bit(i, &udc->wedgemap, BCM63XX_NUM_EP) {
1953		bcm63xx_set_stall(udc, &udc->bep[i], new_status);
1954		if (!new_status)
1955			clear_bit(i, &udc->wedgemap);
1956	}
1957}
1958
1959/**
1960 * bcm63xx_udc_ctrl_isr - ISR for control path events (USBD).
1961 * @irq: IRQ number (unused).
1962 * @dev_id: Reference to the device controller.
1963 *
1964 * This is where we handle link (VBUS) down, USB reset, speed changes,
1965 * SET_CONFIGURATION, and SET_INTERFACE events.
1966 */
1967static irqreturn_t bcm63xx_udc_ctrl_isr(int irq, void *dev_id)
1968{
1969	struct bcm63xx_udc *udc = dev_id;
1970	u32 stat;
1971	bool disconnected = false, bus_reset = false;
1972
1973	stat = usbd_readl(udc, USBD_EVENT_IRQ_STATUS_REG) &
1974	       usbd_readl(udc, USBD_EVENT_IRQ_MASK_REG);
1975
1976	usbd_writel(udc, stat, USBD_EVENT_IRQ_STATUS_REG);
1977
1978	spin_lock(&udc->lock);
1979	if (stat & BIT(USBD_EVENT_IRQ_USB_LINK)) {
1980		/* VBUS toggled */
1981
1982		if (!(usbd_readl(udc, USBD_EVENTS_REG) &
1983		      USBD_EVENTS_USB_LINK_MASK) &&
1984		      udc->gadget.speed != USB_SPEED_UNKNOWN)
1985			dev_info(udc->dev, "link down\n");
1986
1987		udc->gadget.speed = USB_SPEED_UNKNOWN;
1988		disconnected = true;
1989	}
1990	if (stat & BIT(USBD_EVENT_IRQ_USB_RESET)) {
1991		bcm63xx_fifo_setup(udc);
1992		bcm63xx_fifo_reset(udc);
1993		bcm63xx_ep_setup(udc);
1994
1995		bcm63xx_update_wedge(udc, false);
1996
1997		udc->ep0_req_reset = 1;
1998		schedule_work(&udc->ep0_wq);
1999		bus_reset = true;
2000	}
2001	if (stat & BIT(USBD_EVENT_IRQ_SETUP)) {
2002		if (bcm63xx_update_link_speed(udc)) {
2003			bcm63xx_fifo_setup(udc);
2004			bcm63xx_ep_setup(udc);
2005		}
2006		bcm63xx_update_wedge(udc, true);
2007	}
2008	if (stat & BIT(USBD_EVENT_IRQ_SETCFG)) {
2009		bcm63xx_update_cfg_iface(udc);
2010		udc->ep0_req_set_cfg = 1;
2011		schedule_work(&udc->ep0_wq);
2012	}
2013	if (stat & BIT(USBD_EVENT_IRQ_SETINTF)) {
2014		bcm63xx_update_cfg_iface(udc);
2015		udc->ep0_req_set_iface = 1;
2016		schedule_work(&udc->ep0_wq);
2017	}
2018	spin_unlock(&udc->lock);
2019
2020	if (disconnected && udc->driver)
2021		udc->driver->disconnect(&udc->gadget);
2022	else if (bus_reset && udc->driver)
2023		usb_gadget_udc_reset(&udc->gadget, udc->driver);
2024
2025	return IRQ_HANDLED;
2026}
2027
2028/**
2029 * bcm63xx_udc_data_isr - ISR for data path events (IUDMA).
2030 * @irq: IRQ number (unused).
2031 * @dev_id: Reference to the IUDMA channel that generated the interrupt.
2032 *
2033 * For the two ep0 channels, we have special handling that triggers the
2034 * ep0 worker thread.  For normal bulk/intr channels, either queue up
2035 * the next buffer descriptor for the transaction (incomplete transaction),
2036 * or invoke the completion callback (complete transactions).
2037 */
2038static irqreturn_t bcm63xx_udc_data_isr(int irq, void *dev_id)
2039{
2040	struct iudma_ch *iudma = dev_id;
2041	struct bcm63xx_udc *udc = iudma->udc;
2042	struct bcm63xx_ep *bep;
2043	struct usb_request *req = NULL;
2044	struct bcm63xx_req *breq = NULL;
2045	int rc;
2046	bool is_done = false;
2047
2048	spin_lock(&udc->lock);
2049
2050	usb_dmac_writel(udc, ENETDMAC_IR_BUFDONE_MASK,
2051			ENETDMAC_IR_REG, iudma->ch_idx);
2052	bep = iudma->bep;
2053	rc = iudma_read(udc, iudma);
2054
2055	/* special handling for EP0 RX (0) and TX (1) */
2056	if (iudma->ch_idx == IUDMA_EP0_RXCHAN ||
2057	    iudma->ch_idx == IUDMA_EP0_TXCHAN) {
2058		req = udc->ep0_request;
2059		breq = our_req(req);
2060
2061		/* a single request could require multiple submissions */
2062		if (rc >= 0) {
2063			req->actual += rc;
2064
2065			if (req->actual >= req->length || breq->bd_bytes > rc) {
2066				udc->ep0_req_completed = 1;
2067				is_done = true;
2068				schedule_work(&udc->ep0_wq);
2069
2070				/* "actual" on a ZLP is 1 byte */
2071				req->actual = min(req->actual, req->length);
2072			} else {
2073				/* queue up the next BD (same request) */
2074				iudma_write(udc, iudma, breq);
2075			}
2076		}
2077	} else if (!list_empty(&bep->queue)) {
2078		breq = list_first_entry(&bep->queue, struct bcm63xx_req, queue);
2079		req = &breq->req;
2080
2081		if (rc >= 0) {
2082			req->actual += rc;
2083
2084			if (req->actual >= req->length || breq->bd_bytes > rc) {
2085				is_done = true;
2086				list_del(&breq->queue);
2087
2088				req->actual = min(req->actual, req->length);
2089
2090				if (!list_empty(&bep->queue)) {
2091					struct bcm63xx_req *next;
2092
2093					next = list_first_entry(&bep->queue,
2094						struct bcm63xx_req, queue);
2095					iudma_write(udc, iudma, next);
2096				}
2097			} else {
2098				iudma_write(udc, iudma, breq);
2099			}
2100		}
2101	}
2102	spin_unlock(&udc->lock);
2103
2104	if (is_done) {
2105		usb_gadget_unmap_request(&udc->gadget, req, iudma->is_tx);
2106		if (req->complete)
2107			req->complete(&bep->ep, req);
2108	}
2109
2110	return IRQ_HANDLED;
2111}
2112
2113/***********************************************************************
2114 * Debug filesystem
2115 ***********************************************************************/
2116
2117/*
2118 * bcm63xx_usbd_dbg_show - Show USBD controller state.
2119 * @s: seq_file to which the information will be written.
2120 * @p: Unused.
2121 *
2122 * This file nominally shows up as /sys/kernel/debug/bcm63xx_udc/usbd
2123 */
2124static int bcm63xx_usbd_dbg_show(struct seq_file *s, void *p)
2125{
2126	struct bcm63xx_udc *udc = s->private;
2127
2128	if (!udc->driver)
2129		return -ENODEV;
2130
2131	seq_printf(s, "ep0 state: %s\n",
2132		   bcm63xx_ep0_state_names[udc->ep0state]);
2133	seq_printf(s, "  pending requests: %s%s%s%s%s%s%s\n",
2134		   udc->ep0_req_reset ? "reset " : "",
2135		   udc->ep0_req_set_cfg ? "set_cfg " : "",
2136		   udc->ep0_req_set_iface ? "set_iface " : "",
2137		   udc->ep0_req_shutdown ? "shutdown " : "",
2138		   udc->ep0_request ? "pending " : "",
2139		   udc->ep0_req_completed ? "completed " : "",
2140		   udc->ep0_reply ? "reply " : "");
2141	seq_printf(s, "cfg: %d; iface: %d; alt_iface: %d\n",
2142		   udc->cfg, udc->iface, udc->alt_iface);
2143	seq_printf(s, "regs:\n");
2144	seq_printf(s, "  control: %08x; straps: %08x; status: %08x\n",
2145		   usbd_readl(udc, USBD_CONTROL_REG),
2146		   usbd_readl(udc, USBD_STRAPS_REG),
2147		   usbd_readl(udc, USBD_STATUS_REG));
2148	seq_printf(s, "  events:  %08x; stall:  %08x\n",
2149		   usbd_readl(udc, USBD_EVENTS_REG),
2150		   usbd_readl(udc, USBD_STALL_REG));
2151
2152	return 0;
2153}
2154DEFINE_SHOW_ATTRIBUTE(bcm63xx_usbd_dbg);
2155
2156/*
2157 * bcm63xx_iudma_dbg_show - Show IUDMA status and descriptors.
2158 * @s: seq_file to which the information will be written.
2159 * @p: Unused.
2160 *
2161 * This file nominally shows up as /sys/kernel/debug/bcm63xx_udc/iudma
2162 */
2163static int bcm63xx_iudma_dbg_show(struct seq_file *s, void *p)
2164{
2165	struct bcm63xx_udc *udc = s->private;
2166	int ch_idx, i;
2167	u32 sram2, sram3;
2168
2169	if (!udc->driver)
2170		return -ENODEV;
2171
2172	for (ch_idx = 0; ch_idx < BCM63XX_NUM_IUDMA; ch_idx++) {
2173		struct iudma_ch *iudma = &udc->iudma[ch_idx];
 
2174
2175		seq_printf(s, "IUDMA channel %d -- ", ch_idx);
2176		switch (iudma_defaults[ch_idx].ep_type) {
2177		case BCMEP_CTRL:
2178			seq_printf(s, "control");
2179			break;
2180		case BCMEP_BULK:
2181			seq_printf(s, "bulk");
2182			break;
2183		case BCMEP_INTR:
2184			seq_printf(s, "interrupt");
2185			break;
2186		}
2187		seq_printf(s, ch_idx & 0x01 ? " tx" : " rx");
2188		seq_printf(s, " [ep%d]:\n",
2189			   max_t(int, iudma_defaults[ch_idx].ep_num, 0));
2190		seq_printf(s, "  cfg: %08x; irqstat: %08x; irqmask: %08x; maxburst: %08x\n",
2191			   usb_dmac_readl(udc, ENETDMAC_CHANCFG_REG, ch_idx),
2192			   usb_dmac_readl(udc, ENETDMAC_IR_REG, ch_idx),
2193			   usb_dmac_readl(udc, ENETDMAC_IRMASK_REG, ch_idx),
2194			   usb_dmac_readl(udc, ENETDMAC_MAXBURST_REG, ch_idx));
2195
2196		sram2 = usb_dmas_readl(udc, ENETDMAS_SRAM2_REG, ch_idx);
2197		sram3 = usb_dmas_readl(udc, ENETDMAS_SRAM3_REG, ch_idx);
2198		seq_printf(s, "  base: %08x; index: %04x_%04x; desc: %04x_%04x %08x\n",
2199			   usb_dmas_readl(udc, ENETDMAS_RSTART_REG, ch_idx),
2200			   sram2 >> 16, sram2 & 0xffff,
2201			   sram3 >> 16, sram3 & 0xffff,
2202			   usb_dmas_readl(udc, ENETDMAS_SRAM4_REG, ch_idx));
2203		seq_printf(s, "  desc: %d/%d used", iudma->n_bds_used,
2204			   iudma->n_bds);
2205
2206		if (iudma->bep)
2207			seq_printf(s, "; %zu queued\n", list_count_nodes(&iudma->bep->queue));
2208		else
 
 
 
2209			seq_printf(s, "\n");
 
2210
2211		for (i = 0; i < iudma->n_bds; i++) {
2212			struct bcm_enet_desc *d = &iudma->bd_ring[i];
2213
2214			seq_printf(s, "  %03x (%02x): len_stat: %04x_%04x; pa %08x",
2215				   i * sizeof(*d), i,
2216				   d->len_stat >> 16, d->len_stat & 0xffff,
2217				   d->address);
2218			if (d == iudma->read_bd)
2219				seq_printf(s, "   <<RD");
2220			if (d == iudma->write_bd)
2221				seq_printf(s, "   <<WR");
2222			seq_printf(s, "\n");
2223		}
2224
2225		seq_printf(s, "\n");
2226	}
2227
2228	return 0;
2229}
2230DEFINE_SHOW_ATTRIBUTE(bcm63xx_iudma_dbg);
2231
2232/**
2233 * bcm63xx_udc_init_debugfs - Create debugfs entries.
2234 * @udc: Reference to the device controller.
2235 */
2236static void bcm63xx_udc_init_debugfs(struct bcm63xx_udc *udc)
2237{
2238	struct dentry *root;
2239
2240	if (!IS_ENABLED(CONFIG_USB_GADGET_DEBUG_FS))
2241		return;
2242
2243	root = debugfs_create_dir(udc->gadget.name, usb_debug_root);
 
 
2244	debugfs_create_file("usbd", 0400, root, udc, &bcm63xx_usbd_dbg_fops);
2245	debugfs_create_file("iudma", 0400, root, udc, &bcm63xx_iudma_dbg_fops);
2246}
2247
2248/**
2249 * bcm63xx_udc_cleanup_debugfs - Remove debugfs entries.
2250 * @udc: Reference to the device controller.
2251 *
2252 * debugfs_remove() is safe to call with a NULL argument.
2253 */
2254static void bcm63xx_udc_cleanup_debugfs(struct bcm63xx_udc *udc)
2255{
2256	debugfs_lookup_and_remove(udc->gadget.name, usb_debug_root);
2257}
2258
2259/***********************************************************************
2260 * Driver init/exit
2261 ***********************************************************************/
2262
2263/**
2264 * bcm63xx_udc_probe - Initialize a new instance of the UDC.
2265 * @pdev: Platform device struct from the bcm63xx BSP code.
2266 *
2267 * Note that platform data is required, because pd.port_no varies from chip
2268 * to chip and is used to switch the correct USB port to device mode.
2269 */
2270static int bcm63xx_udc_probe(struct platform_device *pdev)
2271{
2272	struct device *dev = &pdev->dev;
2273	struct bcm63xx_usbd_platform_data *pd = dev_get_platdata(dev);
2274	struct bcm63xx_udc *udc;
2275	int rc = -ENOMEM, i, irq;
2276
2277	udc = devm_kzalloc(dev, sizeof(*udc), GFP_KERNEL);
2278	if (!udc)
2279		return -ENOMEM;
2280
2281	platform_set_drvdata(pdev, udc);
2282	udc->dev = dev;
2283	udc->pd = pd;
2284
2285	if (!pd) {
2286		dev_err(dev, "missing platform data\n");
2287		return -EINVAL;
2288	}
2289
2290	udc->usbd_regs = devm_platform_ioremap_resource(pdev, 0);
2291	if (IS_ERR(udc->usbd_regs))
2292		return PTR_ERR(udc->usbd_regs);
2293
2294	udc->iudma_regs = devm_platform_ioremap_resource(pdev, 1);
2295	if (IS_ERR(udc->iudma_regs))
2296		return PTR_ERR(udc->iudma_regs);
2297
2298	spin_lock_init(&udc->lock);
2299	INIT_WORK(&udc->ep0_wq, bcm63xx_ep0_process);
2300
2301	udc->gadget.ops = &bcm63xx_udc_ops;
2302	udc->gadget.name = dev_name(dev);
2303
2304	if (!pd->use_fullspeed && !use_fullspeed)
2305		udc->gadget.max_speed = USB_SPEED_HIGH;
2306	else
2307		udc->gadget.max_speed = USB_SPEED_FULL;
2308
2309	/* request clocks, allocate buffers, and clear any pending IRQs */
2310	rc = bcm63xx_init_udc_hw(udc);
2311	if (rc)
2312		return rc;
2313
2314	rc = -ENXIO;
2315
2316	/* IRQ resource #0: control interrupt (VBUS, speed, etc.) */
2317	irq = platform_get_irq(pdev, 0);
2318	if (irq < 0) {
2319		rc = irq;
2320		goto out_uninit;
2321	}
2322	if (devm_request_irq(dev, irq, &bcm63xx_udc_ctrl_isr, 0,
2323			     dev_name(dev), udc) < 0)
2324		goto report_request_failure;
2325
2326	/* IRQ resources #1-6: data interrupts for IUDMA channels 0-5 */
2327	for (i = 0; i < BCM63XX_NUM_IUDMA; i++) {
2328		irq = platform_get_irq(pdev, i + 1);
2329		if (irq < 0) {
2330			rc = irq;
2331			goto out_uninit;
2332		}
2333		if (devm_request_irq(dev, irq, &bcm63xx_udc_data_isr, 0,
2334				     dev_name(dev), &udc->iudma[i]) < 0)
2335			goto report_request_failure;
2336	}
2337
2338	bcm63xx_udc_init_debugfs(udc);
2339	rc = usb_add_gadget_udc(dev, &udc->gadget);
2340	if (!rc)
2341		return 0;
2342
2343	bcm63xx_udc_cleanup_debugfs(udc);
2344out_uninit:
2345	bcm63xx_uninit_udc_hw(udc);
2346	return rc;
2347
2348report_request_failure:
2349	dev_err(dev, "error requesting IRQ #%d\n", irq);
2350	goto out_uninit;
2351}
2352
2353/**
2354 * bcm63xx_udc_remove - Remove the device from the system.
2355 * @pdev: Platform device struct from the bcm63xx BSP code.
2356 */
2357static void bcm63xx_udc_remove(struct platform_device *pdev)
2358{
2359	struct bcm63xx_udc *udc = platform_get_drvdata(pdev);
2360
2361	bcm63xx_udc_cleanup_debugfs(udc);
2362	usb_del_gadget_udc(&udc->gadget);
2363	BUG_ON(udc->driver);
2364
2365	bcm63xx_uninit_udc_hw(udc);
 
 
2366}
2367
2368static struct platform_driver bcm63xx_udc_driver = {
2369	.probe		= bcm63xx_udc_probe,
2370	.remove_new	= bcm63xx_udc_remove,
2371	.driver		= {
2372		.name	= DRV_MODULE_NAME,
2373	},
2374};
2375module_platform_driver(bcm63xx_udc_driver);
2376
2377MODULE_DESCRIPTION("BCM63xx USB Peripheral Controller");
2378MODULE_AUTHOR("Kevin Cernekee <cernekee@gmail.com>");
2379MODULE_LICENSE("GPL");
2380MODULE_ALIAS("platform:" DRV_MODULE_NAME);
v5.9
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * bcm63xx_udc.c -- BCM63xx UDC high/full speed USB device controller
   4 *
   5 * Copyright (C) 2012 Kevin Cernekee <cernekee@gmail.com>
   6 * Copyright (C) 2012 Broadcom Corporation
   7 */
   8
   9#include <linux/bitops.h>
  10#include <linux/bug.h>
  11#include <linux/clk.h>
  12#include <linux/compiler.h>
  13#include <linux/debugfs.h>
  14#include <linux/delay.h>
  15#include <linux/device.h>
  16#include <linux/dma-mapping.h>
  17#include <linux/errno.h>
  18#include <linux/interrupt.h>
  19#include <linux/ioport.h>
  20#include <linux/kernel.h>
  21#include <linux/list.h>
  22#include <linux/module.h>
  23#include <linux/moduleparam.h>
  24#include <linux/platform_device.h>
  25#include <linux/sched.h>
  26#include <linux/seq_file.h>
  27#include <linux/slab.h>
  28#include <linux/timer.h>
 
  29#include <linux/usb/ch9.h>
  30#include <linux/usb/gadget.h>
  31#include <linux/workqueue.h>
  32
  33#include <bcm63xx_cpu.h>
  34#include <bcm63xx_iudma.h>
  35#include <bcm63xx_dev_usb_usbd.h>
  36#include <bcm63xx_io.h>
  37#include <bcm63xx_regs.h>
  38
  39#define DRV_MODULE_NAME		"bcm63xx_udc"
  40
  41static const char bcm63xx_ep0name[] = "ep0";
  42
  43static const struct {
  44	const char *name;
  45	const struct usb_ep_caps caps;
  46} bcm63xx_ep_info[] = {
  47#define EP_INFO(_name, _caps) \
  48	{ \
  49		.name = _name, \
  50		.caps = _caps, \
  51	}
  52
  53	EP_INFO(bcm63xx_ep0name,
  54		USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL, USB_EP_CAPS_DIR_ALL)),
  55	EP_INFO("ep1in-bulk",
  56		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  57	EP_INFO("ep2out-bulk",
  58		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  59	EP_INFO("ep3in-int",
  60		USB_EP_CAPS(USB_EP_CAPS_TYPE_INT, USB_EP_CAPS_DIR_IN)),
  61	EP_INFO("ep4out-int",
  62		USB_EP_CAPS(USB_EP_CAPS_TYPE_INT, USB_EP_CAPS_DIR_OUT)),
  63
  64#undef EP_INFO
  65};
  66
  67static bool use_fullspeed;
  68module_param(use_fullspeed, bool, S_IRUGO);
  69MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
  70
  71/*
  72 * RX IRQ coalescing options:
  73 *
  74 * false (default) - one IRQ per DATAx packet.  Slow but reliable.  The
  75 * driver is able to pass the "testusb" suite and recover from conditions like:
  76 *
  77 *   1) Device queues up a 2048-byte RX IUDMA transaction on an OUT bulk ep
  78 *   2) Host sends 512 bytes of data
  79 *   3) Host decides to reconfigure the device and sends SET_INTERFACE
  80 *   4) Device shuts down the endpoint and cancels the RX transaction
  81 *
  82 * true - one IRQ per transfer, for transfers <= 2048B.  Generates
  83 * considerably fewer IRQs, but error recovery is less robust.  Does not
  84 * reliably pass "testusb".
  85 *
  86 * TX always uses coalescing, because we can cancel partially complete TX
  87 * transfers by repeatedly flushing the FIFO.  The hardware doesn't allow
  88 * this on RX.
  89 */
  90static bool irq_coalesce;
  91module_param(irq_coalesce, bool, S_IRUGO);
  92MODULE_PARM_DESC(irq_coalesce, "take one IRQ per RX transfer");
  93
  94#define BCM63XX_NUM_EP			5
  95#define BCM63XX_NUM_IUDMA		6
  96#define BCM63XX_NUM_FIFO_PAIRS		3
  97
  98#define IUDMA_RESET_TIMEOUT_US		10000
  99
 100#define IUDMA_EP0_RXCHAN		0
 101#define IUDMA_EP0_TXCHAN		1
 102
 103#define IUDMA_MAX_FRAGMENT		2048
 104#define BCM63XX_MAX_CTRL_PKT		64
 105
 106#define BCMEP_CTRL			0x00
 107#define BCMEP_ISOC			0x01
 108#define BCMEP_BULK			0x02
 109#define BCMEP_INTR			0x03
 110
 111#define BCMEP_OUT			0x00
 112#define BCMEP_IN			0x01
 113
 114#define BCM63XX_SPD_FULL		1
 115#define BCM63XX_SPD_HIGH		0
 116
 117#define IUDMA_DMAC_OFFSET		0x200
 118#define IUDMA_DMAS_OFFSET		0x400
 119
 120enum bcm63xx_ep0_state {
 121	EP0_REQUEUE,
 122	EP0_IDLE,
 123	EP0_IN_DATA_PHASE_SETUP,
 124	EP0_IN_DATA_PHASE_COMPLETE,
 125	EP0_OUT_DATA_PHASE_SETUP,
 126	EP0_OUT_DATA_PHASE_COMPLETE,
 127	EP0_OUT_STATUS_PHASE,
 128	EP0_IN_FAKE_STATUS_PHASE,
 129	EP0_SHUTDOWN,
 130};
 131
 132static const char __maybe_unused bcm63xx_ep0_state_names[][32] = {
 133	"REQUEUE",
 134	"IDLE",
 135	"IN_DATA_PHASE_SETUP",
 136	"IN_DATA_PHASE_COMPLETE",
 137	"OUT_DATA_PHASE_SETUP",
 138	"OUT_DATA_PHASE_COMPLETE",
 139	"OUT_STATUS_PHASE",
 140	"IN_FAKE_STATUS_PHASE",
 141	"SHUTDOWN",
 142};
 143
 144/**
 145 * struct iudma_ch_cfg - Static configuration for an IUDMA channel.
 146 * @ep_num: USB endpoint number.
 147 * @n_bds: Number of buffer descriptors in the ring.
 148 * @ep_type: Endpoint type (control, bulk, interrupt).
 149 * @dir: Direction (in, out).
 150 * @n_fifo_slots: Number of FIFO entries to allocate for this channel.
 151 * @max_pkt_hs: Maximum packet size in high speed mode.
 152 * @max_pkt_fs: Maximum packet size in full speed mode.
 153 */
 154struct iudma_ch_cfg {
 155	int				ep_num;
 156	int				n_bds;
 157	int				ep_type;
 158	int				dir;
 159	int				n_fifo_slots;
 160	int				max_pkt_hs;
 161	int				max_pkt_fs;
 162};
 163
 164static const struct iudma_ch_cfg iudma_defaults[] = {
 165
 166	/* This controller was designed to support a CDC/RNDIS application.
 167	   It may be possible to reconfigure some of the endpoints, but
 168	   the hardware limitations (FIFO sizing and number of DMA channels)
 169	   may significantly impact flexibility and/or stability.  Change
 170	   these values at your own risk.
 171
 172	      ep_num       ep_type           n_fifo_slots    max_pkt_fs
 173	idx      |  n_bds     |         dir       |  max_pkt_hs  |
 174	 |       |    |       |          |        |      |       |       */
 175	[0] = { -1,   4, BCMEP_CTRL, BCMEP_OUT,  32,    64,     64 },
 176	[1] = {  0,   4, BCMEP_CTRL, BCMEP_OUT,  32,    64,     64 },
 177	[2] = {  2,  16, BCMEP_BULK, BCMEP_OUT, 128,   512,     64 },
 178	[3] = {  1,  16, BCMEP_BULK, BCMEP_IN,  128,   512,     64 },
 179	[4] = {  4,   4, BCMEP_INTR, BCMEP_OUT,  32,    64,     64 },
 180	[5] = {  3,   4, BCMEP_INTR, BCMEP_IN,   32,    64,     64 },
 181};
 182
 183struct bcm63xx_udc;
 184
 185/**
 186 * struct iudma_ch - Represents the current state of a single IUDMA channel.
 187 * @ch_idx: IUDMA channel index (0 to BCM63XX_NUM_IUDMA-1).
 188 * @ep_num: USB endpoint number.  -1 for ep0 RX.
 189 * @enabled: Whether bcm63xx_ep_enable() has been called.
 190 * @max_pkt: "Chunk size" on the USB interface.  Based on interface speed.
 191 * @is_tx: true for TX, false for RX.
 192 * @bep: Pointer to the associated endpoint.  NULL for ep0 RX.
 193 * @udc: Reference to the device controller.
 194 * @read_bd: Next buffer descriptor to reap from the hardware.
 195 * @write_bd: Next BD available for a new packet.
 196 * @end_bd: Points to the final BD in the ring.
 197 * @n_bds_used: Number of BD entries currently occupied.
 198 * @bd_ring: Base pointer to the BD ring.
 199 * @bd_ring_dma: Physical (DMA) address of bd_ring.
 200 * @n_bds: Total number of BDs in the ring.
 201 *
 202 * ep0 has two IUDMA channels (IUDMA_EP0_RXCHAN and IUDMA_EP0_TXCHAN), as it is
 203 * bidirectional.  The "struct usb_ep" associated with ep0 is for TX (IN)
 204 * only.
 205 *
 206 * Each bulk/intr endpoint has a single IUDMA channel and a single
 207 * struct usb_ep.
 208 */
 209struct iudma_ch {
 210	unsigned int			ch_idx;
 211	int				ep_num;
 212	bool				enabled;
 213	int				max_pkt;
 214	bool				is_tx;
 215	struct bcm63xx_ep		*bep;
 216	struct bcm63xx_udc		*udc;
 217
 218	struct bcm_enet_desc		*read_bd;
 219	struct bcm_enet_desc		*write_bd;
 220	struct bcm_enet_desc		*end_bd;
 221	int				n_bds_used;
 222
 223	struct bcm_enet_desc		*bd_ring;
 224	dma_addr_t			bd_ring_dma;
 225	unsigned int			n_bds;
 226};
 227
 228/**
 229 * struct bcm63xx_ep - Internal (driver) state of a single endpoint.
 230 * @ep_num: USB endpoint number.
 231 * @iudma: Pointer to IUDMA channel state.
 232 * @ep: USB gadget layer representation of the EP.
 233 * @udc: Reference to the device controller.
 234 * @queue: Linked list of outstanding requests for this EP.
 235 * @halted: 1 if the EP is stalled; 0 otherwise.
 236 */
 237struct bcm63xx_ep {
 238	unsigned int			ep_num;
 239	struct iudma_ch			*iudma;
 240	struct usb_ep			ep;
 241	struct bcm63xx_udc		*udc;
 242	struct list_head		queue;
 243	unsigned			halted:1;
 244};
 245
 246/**
 247 * struct bcm63xx_req - Internal (driver) state of a single request.
 248 * @queue: Links back to the EP's request list.
 249 * @req: USB gadget layer representation of the request.
 250 * @offset: Current byte offset into the data buffer (next byte to queue).
 251 * @bd_bytes: Number of data bytes in outstanding BD entries.
 252 * @iudma: IUDMA channel used for the request.
 253 */
 254struct bcm63xx_req {
 255	struct list_head		queue;		/* ep's requests */
 256	struct usb_request		req;
 257	unsigned int			offset;
 258	unsigned int			bd_bytes;
 259	struct iudma_ch			*iudma;
 260};
 261
 262/**
 263 * struct bcm63xx_udc - Driver/hardware private context.
 264 * @lock: Spinlock to mediate access to this struct, and (most) HW regs.
 265 * @dev: Generic Linux device structure.
 266 * @pd: Platform data (board/port info).
 267 * @usbd_clk: Clock descriptor for the USB device block.
 268 * @usbh_clk: Clock descriptor for the USB host block.
 269 * @gadget: USB device.
 270 * @driver: Driver for USB device.
 271 * @usbd_regs: Base address of the USBD/USB20D block.
 272 * @iudma_regs: Base address of the USBD's associated IUDMA block.
 273 * @bep: Array of endpoints, including ep0.
 274 * @iudma: Array of all IUDMA channels used by this controller.
 275 * @cfg: USB configuration number, from SET_CONFIGURATION wValue.
 276 * @iface: USB interface number, from SET_INTERFACE wIndex.
 277 * @alt_iface: USB alt interface number, from SET_INTERFACE wValue.
 278 * @ep0_ctrl_req: Request object for bcm63xx_udc-initiated ep0 transactions.
 279 * @ep0_ctrl_buf: Data buffer for ep0_ctrl_req.
 280 * @ep0state: Current state of the ep0 state machine.
 281 * @ep0_wq: Workqueue struct used to wake up the ep0 state machine.
 282 * @wedgemap: Bitmap of wedged endpoints.
 283 * @ep0_req_reset: USB reset is pending.
 284 * @ep0_req_set_cfg: Need to spoof a SET_CONFIGURATION packet.
 285 * @ep0_req_set_iface: Need to spoof a SET_INTERFACE packet.
 286 * @ep0_req_shutdown: Driver is shutting down; requesting ep0 to halt activity.
 287 * @ep0_req_completed: ep0 request has completed; worker has not seen it yet.
 288 * @ep0_reply: Pending reply from gadget driver.
 289 * @ep0_request: Outstanding ep0 request.
 290 * @debugfs_root: debugfs directory: /sys/kernel/debug/<DRV_MODULE_NAME>.
 291 */
 292struct bcm63xx_udc {
 293	spinlock_t			lock;
 294
 295	struct device			*dev;
 296	struct bcm63xx_usbd_platform_data *pd;
 297	struct clk			*usbd_clk;
 298	struct clk			*usbh_clk;
 299
 300	struct usb_gadget		gadget;
 301	struct usb_gadget_driver	*driver;
 302
 303	void __iomem			*usbd_regs;
 304	void __iomem			*iudma_regs;
 305
 306	struct bcm63xx_ep		bep[BCM63XX_NUM_EP];
 307	struct iudma_ch			iudma[BCM63XX_NUM_IUDMA];
 308
 309	int				cfg;
 310	int				iface;
 311	int				alt_iface;
 312
 313	struct bcm63xx_req		ep0_ctrl_req;
 314	u8				*ep0_ctrl_buf;
 315
 316	int				ep0state;
 317	struct work_struct		ep0_wq;
 318
 319	unsigned long			wedgemap;
 320
 321	unsigned			ep0_req_reset:1;
 322	unsigned			ep0_req_set_cfg:1;
 323	unsigned			ep0_req_set_iface:1;
 324	unsigned			ep0_req_shutdown:1;
 325
 326	unsigned			ep0_req_completed:1;
 327	struct usb_request		*ep0_reply;
 328	struct usb_request		*ep0_request;
 329
 330	struct dentry			*debugfs_root;
 331};
 332
 333static const struct usb_ep_ops bcm63xx_udc_ep_ops;
 334
 335/***********************************************************************
 336 * Convenience functions
 337 ***********************************************************************/
 338
 339static inline struct bcm63xx_udc *gadget_to_udc(struct usb_gadget *g)
 340{
 341	return container_of(g, struct bcm63xx_udc, gadget);
 342}
 343
 344static inline struct bcm63xx_ep *our_ep(struct usb_ep *ep)
 345{
 346	return container_of(ep, struct bcm63xx_ep, ep);
 347}
 348
 349static inline struct bcm63xx_req *our_req(struct usb_request *req)
 350{
 351	return container_of(req, struct bcm63xx_req, req);
 352}
 353
 354static inline u32 usbd_readl(struct bcm63xx_udc *udc, u32 off)
 355{
 356	return bcm_readl(udc->usbd_regs + off);
 357}
 358
 359static inline void usbd_writel(struct bcm63xx_udc *udc, u32 val, u32 off)
 360{
 361	bcm_writel(val, udc->usbd_regs + off);
 362}
 363
 364static inline u32 usb_dma_readl(struct bcm63xx_udc *udc, u32 off)
 365{
 366	return bcm_readl(udc->iudma_regs + off);
 367}
 368
 369static inline void usb_dma_writel(struct bcm63xx_udc *udc, u32 val, u32 off)
 370{
 371	bcm_writel(val, udc->iudma_regs + off);
 372}
 373
 374static inline u32 usb_dmac_readl(struct bcm63xx_udc *udc, u32 off, int chan)
 375{
 376	return bcm_readl(udc->iudma_regs + IUDMA_DMAC_OFFSET + off +
 377			(ENETDMA_CHAN_WIDTH * chan));
 378}
 379
 380static inline void usb_dmac_writel(struct bcm63xx_udc *udc, u32 val, u32 off,
 381					int chan)
 382{
 383	bcm_writel(val, udc->iudma_regs + IUDMA_DMAC_OFFSET + off +
 384			(ENETDMA_CHAN_WIDTH * chan));
 385}
 386
 387static inline u32 usb_dmas_readl(struct bcm63xx_udc *udc, u32 off, int chan)
 388{
 389	return bcm_readl(udc->iudma_regs + IUDMA_DMAS_OFFSET + off +
 390			(ENETDMA_CHAN_WIDTH * chan));
 391}
 392
 393static inline void usb_dmas_writel(struct bcm63xx_udc *udc, u32 val, u32 off,
 394					int chan)
 395{
 396	bcm_writel(val, udc->iudma_regs + IUDMA_DMAS_OFFSET + off +
 397			(ENETDMA_CHAN_WIDTH * chan));
 398}
 399
 400static inline void set_clocks(struct bcm63xx_udc *udc, bool is_enabled)
 401{
 402	if (is_enabled) {
 403		clk_enable(udc->usbh_clk);
 404		clk_enable(udc->usbd_clk);
 405		udelay(10);
 406	} else {
 407		clk_disable(udc->usbd_clk);
 408		clk_disable(udc->usbh_clk);
 409	}
 410}
 411
 412/***********************************************************************
 413 * Low-level IUDMA / FIFO operations
 414 ***********************************************************************/
 415
 416/**
 417 * bcm63xx_ep_dma_select - Helper function to set up the init_sel signal.
 418 * @udc: Reference to the device controller.
 419 * @idx: Desired init_sel value.
 420 *
 421 * The "init_sel" signal is used as a selection index for both endpoints
 422 * and IUDMA channels.  Since these do not map 1:1, the use of this signal
 423 * depends on the context.
 424 */
 425static void bcm63xx_ep_dma_select(struct bcm63xx_udc *udc, int idx)
 426{
 427	u32 val = usbd_readl(udc, USBD_CONTROL_REG);
 428
 429	val &= ~USBD_CONTROL_INIT_SEL_MASK;
 430	val |= idx << USBD_CONTROL_INIT_SEL_SHIFT;
 431	usbd_writel(udc, val, USBD_CONTROL_REG);
 432}
 433
 434/**
 435 * bcm63xx_set_stall - Enable/disable stall on one endpoint.
 436 * @udc: Reference to the device controller.
 437 * @bep: Endpoint on which to operate.
 438 * @is_stalled: true to enable stall, false to disable.
 439 *
 440 * See notes in bcm63xx_update_wedge() regarding automatic clearing of
 441 * halt/stall conditions.
 442 */
 443static void bcm63xx_set_stall(struct bcm63xx_udc *udc, struct bcm63xx_ep *bep,
 444	bool is_stalled)
 445{
 446	u32 val;
 447
 448	val = USBD_STALL_UPDATE_MASK |
 449		(is_stalled ? USBD_STALL_ENABLE_MASK : 0) |
 450		(bep->ep_num << USBD_STALL_EPNUM_SHIFT);
 451	usbd_writel(udc, val, USBD_STALL_REG);
 452}
 453
 454/**
 455 * bcm63xx_fifo_setup - (Re)initialize FIFO boundaries and settings.
 456 * @udc: Reference to the device controller.
 457 *
 458 * These parameters depend on the USB link speed.  Settings are
 459 * per-IUDMA-channel-pair.
 460 */
 461static void bcm63xx_fifo_setup(struct bcm63xx_udc *udc)
 462{
 463	int is_hs = udc->gadget.speed == USB_SPEED_HIGH;
 464	u32 i, val, rx_fifo_slot, tx_fifo_slot;
 465
 466	/* set up FIFO boundaries and packet sizes; this is done in pairs */
 467	rx_fifo_slot = tx_fifo_slot = 0;
 468	for (i = 0; i < BCM63XX_NUM_IUDMA; i += 2) {
 469		const struct iudma_ch_cfg *rx_cfg = &iudma_defaults[i];
 470		const struct iudma_ch_cfg *tx_cfg = &iudma_defaults[i + 1];
 471
 472		bcm63xx_ep_dma_select(udc, i >> 1);
 473
 474		val = (rx_fifo_slot << USBD_RXFIFO_CONFIG_START_SHIFT) |
 475			((rx_fifo_slot + rx_cfg->n_fifo_slots - 1) <<
 476			 USBD_RXFIFO_CONFIG_END_SHIFT);
 477		rx_fifo_slot += rx_cfg->n_fifo_slots;
 478		usbd_writel(udc, val, USBD_RXFIFO_CONFIG_REG);
 479		usbd_writel(udc,
 480			    is_hs ? rx_cfg->max_pkt_hs : rx_cfg->max_pkt_fs,
 481			    USBD_RXFIFO_EPSIZE_REG);
 482
 483		val = (tx_fifo_slot << USBD_TXFIFO_CONFIG_START_SHIFT) |
 484			((tx_fifo_slot + tx_cfg->n_fifo_slots - 1) <<
 485			 USBD_TXFIFO_CONFIG_END_SHIFT);
 486		tx_fifo_slot += tx_cfg->n_fifo_slots;
 487		usbd_writel(udc, val, USBD_TXFIFO_CONFIG_REG);
 488		usbd_writel(udc,
 489			    is_hs ? tx_cfg->max_pkt_hs : tx_cfg->max_pkt_fs,
 490			    USBD_TXFIFO_EPSIZE_REG);
 491
 492		usbd_readl(udc, USBD_TXFIFO_EPSIZE_REG);
 493	}
 494}
 495
 496/**
 497 * bcm63xx_fifo_reset_ep - Flush a single endpoint's FIFO.
 498 * @udc: Reference to the device controller.
 499 * @ep_num: Endpoint number.
 500 */
 501static void bcm63xx_fifo_reset_ep(struct bcm63xx_udc *udc, int ep_num)
 502{
 503	u32 val;
 504
 505	bcm63xx_ep_dma_select(udc, ep_num);
 506
 507	val = usbd_readl(udc, USBD_CONTROL_REG);
 508	val |= USBD_CONTROL_FIFO_RESET_MASK;
 509	usbd_writel(udc, val, USBD_CONTROL_REG);
 510	usbd_readl(udc, USBD_CONTROL_REG);
 511}
 512
 513/**
 514 * bcm63xx_fifo_reset - Flush all hardware FIFOs.
 515 * @udc: Reference to the device controller.
 516 */
 517static void bcm63xx_fifo_reset(struct bcm63xx_udc *udc)
 518{
 519	int i;
 520
 521	for (i = 0; i < BCM63XX_NUM_FIFO_PAIRS; i++)
 522		bcm63xx_fifo_reset_ep(udc, i);
 523}
 524
 525/**
 526 * bcm63xx_ep_init - Initial (one-time) endpoint initialization.
 527 * @udc: Reference to the device controller.
 528 */
 529static void bcm63xx_ep_init(struct bcm63xx_udc *udc)
 530{
 531	u32 i, val;
 532
 533	for (i = 0; i < BCM63XX_NUM_IUDMA; i++) {
 534		const struct iudma_ch_cfg *cfg = &iudma_defaults[i];
 535
 536		if (cfg->ep_num < 0)
 537			continue;
 538
 539		bcm63xx_ep_dma_select(udc, cfg->ep_num);
 540		val = (cfg->ep_type << USBD_EPNUM_TYPEMAP_TYPE_SHIFT) |
 541			((i >> 1) << USBD_EPNUM_TYPEMAP_DMA_CH_SHIFT);
 542		usbd_writel(udc, val, USBD_EPNUM_TYPEMAP_REG);
 543	}
 544}
 545
 546/**
 547 * bcm63xx_ep_setup - Configure per-endpoint settings.
 548 * @udc: Reference to the device controller.
 549 *
 550 * This needs to be rerun if the speed/cfg/intf/altintf changes.
 551 */
 552static void bcm63xx_ep_setup(struct bcm63xx_udc *udc)
 553{
 554	u32 val, i;
 555
 556	usbd_writel(udc, USBD_CSR_SETUPADDR_DEF, USBD_CSR_SETUPADDR_REG);
 557
 558	for (i = 0; i < BCM63XX_NUM_IUDMA; i++) {
 559		const struct iudma_ch_cfg *cfg = &iudma_defaults[i];
 560		int max_pkt = udc->gadget.speed == USB_SPEED_HIGH ?
 561			      cfg->max_pkt_hs : cfg->max_pkt_fs;
 562		int idx = cfg->ep_num;
 563
 564		udc->iudma[i].max_pkt = max_pkt;
 565
 566		if (idx < 0)
 567			continue;
 568		usb_ep_set_maxpacket_limit(&udc->bep[idx].ep, max_pkt);
 569
 570		val = (idx << USBD_CSR_EP_LOG_SHIFT) |
 571		      (cfg->dir << USBD_CSR_EP_DIR_SHIFT) |
 572		      (cfg->ep_type << USBD_CSR_EP_TYPE_SHIFT) |
 573		      (udc->cfg << USBD_CSR_EP_CFG_SHIFT) |
 574		      (udc->iface << USBD_CSR_EP_IFACE_SHIFT) |
 575		      (udc->alt_iface << USBD_CSR_EP_ALTIFACE_SHIFT) |
 576		      (max_pkt << USBD_CSR_EP_MAXPKT_SHIFT);
 577		usbd_writel(udc, val, USBD_CSR_EP_REG(idx));
 578	}
 579}
 580
 581/**
 582 * iudma_write - Queue a single IUDMA transaction.
 583 * @udc: Reference to the device controller.
 584 * @iudma: IUDMA channel to use.
 585 * @breq: Request containing the transaction data.
 586 *
 587 * For RX IUDMA, this will queue a single buffer descriptor, as RX IUDMA
 588 * does not honor SOP/EOP so the handling of multiple buffers is ambiguous.
 589 * So iudma_write() may be called several times to fulfill a single
 590 * usb_request.
 591 *
 592 * For TX IUDMA, this can queue multiple buffer descriptors if needed.
 593 */
 594static void iudma_write(struct bcm63xx_udc *udc, struct iudma_ch *iudma,
 595	struct bcm63xx_req *breq)
 596{
 597	int first_bd = 1, last_bd = 0, extra_zero_pkt = 0;
 598	unsigned int bytes_left = breq->req.length - breq->offset;
 599	const int max_bd_bytes = !irq_coalesce && !iudma->is_tx ?
 600		iudma->max_pkt : IUDMA_MAX_FRAGMENT;
 601
 602	iudma->n_bds_used = 0;
 603	breq->bd_bytes = 0;
 604	breq->iudma = iudma;
 605
 606	if ((bytes_left % iudma->max_pkt == 0) && bytes_left && breq->req.zero)
 607		extra_zero_pkt = 1;
 608
 609	do {
 610		struct bcm_enet_desc *d = iudma->write_bd;
 611		u32 dmaflags = 0;
 612		unsigned int n_bytes;
 613
 614		if (d == iudma->end_bd) {
 615			dmaflags |= DMADESC_WRAP_MASK;
 616			iudma->write_bd = iudma->bd_ring;
 617		} else {
 618			iudma->write_bd++;
 619		}
 620		iudma->n_bds_used++;
 621
 622		n_bytes = min_t(int, bytes_left, max_bd_bytes);
 623		if (n_bytes)
 624			dmaflags |= n_bytes << DMADESC_LENGTH_SHIFT;
 625		else
 626			dmaflags |= (1 << DMADESC_LENGTH_SHIFT) |
 627				    DMADESC_USB_ZERO_MASK;
 628
 629		dmaflags |= DMADESC_OWNER_MASK;
 630		if (first_bd) {
 631			dmaflags |= DMADESC_SOP_MASK;
 632			first_bd = 0;
 633		}
 634
 635		/*
 636		 * extra_zero_pkt forces one more iteration through the loop
 637		 * after all data is queued up, to send the zero packet
 638		 */
 639		if (extra_zero_pkt && !bytes_left)
 640			extra_zero_pkt = 0;
 641
 642		if (!iudma->is_tx || iudma->n_bds_used == iudma->n_bds ||
 643		    (n_bytes == bytes_left && !extra_zero_pkt)) {
 644			last_bd = 1;
 645			dmaflags |= DMADESC_EOP_MASK;
 646		}
 647
 648		d->address = breq->req.dma + breq->offset;
 649		mb();
 650		d->len_stat = dmaflags;
 651
 652		breq->offset += n_bytes;
 653		breq->bd_bytes += n_bytes;
 654		bytes_left -= n_bytes;
 655	} while (!last_bd);
 656
 657	usb_dmac_writel(udc, ENETDMAC_CHANCFG_EN_MASK,
 658			ENETDMAC_CHANCFG_REG, iudma->ch_idx);
 659}
 660
 661/**
 662 * iudma_read - Check for IUDMA buffer completion.
 663 * @udc: Reference to the device controller.
 664 * @iudma: IUDMA channel to use.
 665 *
 666 * This checks to see if ALL of the outstanding BDs on the DMA channel
 667 * have been filled.  If so, it returns the actual transfer length;
 668 * otherwise it returns -EBUSY.
 669 */
 670static int iudma_read(struct bcm63xx_udc *udc, struct iudma_ch *iudma)
 671{
 672	int i, actual_len = 0;
 673	struct bcm_enet_desc *d = iudma->read_bd;
 674
 675	if (!iudma->n_bds_used)
 676		return -EINVAL;
 677
 678	for (i = 0; i < iudma->n_bds_used; i++) {
 679		u32 dmaflags;
 680
 681		dmaflags = d->len_stat;
 682
 683		if (dmaflags & DMADESC_OWNER_MASK)
 684			return -EBUSY;
 685
 686		actual_len += (dmaflags & DMADESC_LENGTH_MASK) >>
 687			      DMADESC_LENGTH_SHIFT;
 688		if (d == iudma->end_bd)
 689			d = iudma->bd_ring;
 690		else
 691			d++;
 692	}
 693
 694	iudma->read_bd = d;
 695	iudma->n_bds_used = 0;
 696	return actual_len;
 697}
 698
 699/**
 700 * iudma_reset_channel - Stop DMA on a single channel.
 701 * @udc: Reference to the device controller.
 702 * @iudma: IUDMA channel to reset.
 703 */
 704static void iudma_reset_channel(struct bcm63xx_udc *udc, struct iudma_ch *iudma)
 705{
 706	int timeout = IUDMA_RESET_TIMEOUT_US;
 707	struct bcm_enet_desc *d;
 708	int ch_idx = iudma->ch_idx;
 709
 710	if (!iudma->is_tx)
 711		bcm63xx_fifo_reset_ep(udc, max(0, iudma->ep_num));
 712
 713	/* stop DMA, then wait for the hardware to wrap up */
 714	usb_dmac_writel(udc, 0, ENETDMAC_CHANCFG_REG, ch_idx);
 715
 716	while (usb_dmac_readl(udc, ENETDMAC_CHANCFG_REG, ch_idx) &
 717				   ENETDMAC_CHANCFG_EN_MASK) {
 718		udelay(1);
 719
 720		/* repeatedly flush the FIFO data until the BD completes */
 721		if (iudma->is_tx && iudma->ep_num >= 0)
 722			bcm63xx_fifo_reset_ep(udc, iudma->ep_num);
 723
 724		if (!timeout--) {
 725			dev_err(udc->dev, "can't reset IUDMA channel %d\n",
 726				ch_idx);
 727			break;
 728		}
 729		if (timeout == IUDMA_RESET_TIMEOUT_US / 2) {
 730			dev_warn(udc->dev, "forcibly halting IUDMA channel %d\n",
 731				 ch_idx);
 732			usb_dmac_writel(udc, ENETDMAC_CHANCFG_BUFHALT_MASK,
 733					ENETDMAC_CHANCFG_REG, ch_idx);
 734		}
 735	}
 736	usb_dmac_writel(udc, ~0, ENETDMAC_IR_REG, ch_idx);
 737
 738	/* don't leave "live" HW-owned entries for the next guy to step on */
 739	for (d = iudma->bd_ring; d <= iudma->end_bd; d++)
 740		d->len_stat = 0;
 741	mb();
 742
 743	iudma->read_bd = iudma->write_bd = iudma->bd_ring;
 744	iudma->n_bds_used = 0;
 745
 746	/* set up IRQs, UBUS burst size, and BD base for this channel */
 747	usb_dmac_writel(udc, ENETDMAC_IR_BUFDONE_MASK,
 748			ENETDMAC_IRMASK_REG, ch_idx);
 749	usb_dmac_writel(udc, 8, ENETDMAC_MAXBURST_REG, ch_idx);
 750
 751	usb_dmas_writel(udc, iudma->bd_ring_dma, ENETDMAS_RSTART_REG, ch_idx);
 752	usb_dmas_writel(udc, 0, ENETDMAS_SRAM2_REG, ch_idx);
 753}
 754
 755/**
 756 * iudma_init_channel - One-time IUDMA channel initialization.
 757 * @udc: Reference to the device controller.
 758 * @ch_idx: Channel to initialize.
 759 */
 760static int iudma_init_channel(struct bcm63xx_udc *udc, unsigned int ch_idx)
 761{
 762	struct iudma_ch *iudma = &udc->iudma[ch_idx];
 763	const struct iudma_ch_cfg *cfg = &iudma_defaults[ch_idx];
 764	unsigned int n_bds = cfg->n_bds;
 765	struct bcm63xx_ep *bep = NULL;
 766
 767	iudma->ep_num = cfg->ep_num;
 768	iudma->ch_idx = ch_idx;
 769	iudma->is_tx = !!(ch_idx & 0x01);
 770	if (iudma->ep_num >= 0) {
 771		bep = &udc->bep[iudma->ep_num];
 772		bep->iudma = iudma;
 773		INIT_LIST_HEAD(&bep->queue);
 774	}
 775
 776	iudma->bep = bep;
 777	iudma->udc = udc;
 778
 779	/* ep0 is always active; others are controlled by the gadget driver */
 780	if (iudma->ep_num <= 0)
 781		iudma->enabled = true;
 782
 783	iudma->n_bds = n_bds;
 784	iudma->bd_ring = dmam_alloc_coherent(udc->dev,
 785		n_bds * sizeof(struct bcm_enet_desc),
 786		&iudma->bd_ring_dma, GFP_KERNEL);
 787	if (!iudma->bd_ring)
 788		return -ENOMEM;
 789	iudma->end_bd = &iudma->bd_ring[n_bds - 1];
 790
 791	return 0;
 792}
 793
 794/**
 795 * iudma_init - One-time initialization of all IUDMA channels.
 796 * @udc: Reference to the device controller.
 797 *
 798 * Enable DMA, flush channels, and enable global IUDMA IRQs.
 799 */
 800static int iudma_init(struct bcm63xx_udc *udc)
 801{
 802	int i, rc;
 803
 804	usb_dma_writel(udc, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
 805
 806	for (i = 0; i < BCM63XX_NUM_IUDMA; i++) {
 807		rc = iudma_init_channel(udc, i);
 808		if (rc)
 809			return rc;
 810		iudma_reset_channel(udc, &udc->iudma[i]);
 811	}
 812
 813	usb_dma_writel(udc, BIT(BCM63XX_NUM_IUDMA)-1, ENETDMA_GLB_IRQMASK_REG);
 814	return 0;
 815}
 816
 817/**
 818 * iudma_uninit - Uninitialize IUDMA channels.
 819 * @udc: Reference to the device controller.
 820 *
 821 * Kill global IUDMA IRQs, flush channels, and kill DMA.
 822 */
 823static void iudma_uninit(struct bcm63xx_udc *udc)
 824{
 825	int i;
 826
 827	usb_dma_writel(udc, 0, ENETDMA_GLB_IRQMASK_REG);
 828
 829	for (i = 0; i < BCM63XX_NUM_IUDMA; i++)
 830		iudma_reset_channel(udc, &udc->iudma[i]);
 831
 832	usb_dma_writel(udc, 0, ENETDMA_CFG_REG);
 833}
 834
 835/***********************************************************************
 836 * Other low-level USBD operations
 837 ***********************************************************************/
 838
 839/**
 840 * bcm63xx_set_ctrl_irqs - Mask/unmask control path interrupts.
 841 * @udc: Reference to the device controller.
 842 * @enable_irqs: true to enable, false to disable.
 843 */
 844static void bcm63xx_set_ctrl_irqs(struct bcm63xx_udc *udc, bool enable_irqs)
 845{
 846	u32 val;
 847
 848	usbd_writel(udc, 0, USBD_STATUS_REG);
 849
 850	val = BIT(USBD_EVENT_IRQ_USB_RESET) |
 851	      BIT(USBD_EVENT_IRQ_SETUP) |
 852	      BIT(USBD_EVENT_IRQ_SETCFG) |
 853	      BIT(USBD_EVENT_IRQ_SETINTF) |
 854	      BIT(USBD_EVENT_IRQ_USB_LINK);
 855	usbd_writel(udc, enable_irqs ? val : 0, USBD_EVENT_IRQ_MASK_REG);
 856	usbd_writel(udc, val, USBD_EVENT_IRQ_STATUS_REG);
 857}
 858
 859/**
 860 * bcm63xx_select_phy_mode - Select between USB device and host mode.
 861 * @udc: Reference to the device controller.
 862 * @is_device: true for device, false for host.
 863 *
 864 * This should probably be reworked to use the drivers/usb/otg
 865 * infrastructure.
 866 *
 867 * By default, the AFE/pullups are disabled in device mode, until
 868 * bcm63xx_select_pullup() is called.
 869 */
 870static void bcm63xx_select_phy_mode(struct bcm63xx_udc *udc, bool is_device)
 871{
 872	u32 val, portmask = BIT(udc->pd->port_no);
 873
 874	if (BCMCPU_IS_6328()) {
 875		/* configure pinmux to sense VBUS signal */
 876		val = bcm_gpio_readl(GPIO_PINMUX_OTHR_REG);
 877		val &= ~GPIO_PINMUX_OTHR_6328_USB_MASK;
 878		val |= is_device ? GPIO_PINMUX_OTHR_6328_USB_DEV :
 879			       GPIO_PINMUX_OTHR_6328_USB_HOST;
 880		bcm_gpio_writel(val, GPIO_PINMUX_OTHR_REG);
 881	}
 882
 883	val = bcm_rset_readl(RSET_USBH_PRIV, USBH_PRIV_UTMI_CTL_6368_REG);
 884	if (is_device) {
 885		val |= (portmask << USBH_PRIV_UTMI_CTL_HOSTB_SHIFT);
 886		val |= (portmask << USBH_PRIV_UTMI_CTL_NODRIV_SHIFT);
 887	} else {
 888		val &= ~(portmask << USBH_PRIV_UTMI_CTL_HOSTB_SHIFT);
 889		val &= ~(portmask << USBH_PRIV_UTMI_CTL_NODRIV_SHIFT);
 890	}
 891	bcm_rset_writel(RSET_USBH_PRIV, val, USBH_PRIV_UTMI_CTL_6368_REG);
 892
 893	val = bcm_rset_readl(RSET_USBH_PRIV, USBH_PRIV_SWAP_6368_REG);
 894	if (is_device)
 895		val |= USBH_PRIV_SWAP_USBD_MASK;
 896	else
 897		val &= ~USBH_PRIV_SWAP_USBD_MASK;
 898	bcm_rset_writel(RSET_USBH_PRIV, val, USBH_PRIV_SWAP_6368_REG);
 899}
 900
 901/**
 902 * bcm63xx_select_pullup - Enable/disable the pullup on D+
 903 * @udc: Reference to the device controller.
 904 * @is_on: true to enable the pullup, false to disable.
 905 *
 906 * If the pullup is active, the host will sense a FS/HS device connected to
 907 * the port.  If the pullup is inactive, the host will think the USB
 908 * device has been disconnected.
 909 */
 910static void bcm63xx_select_pullup(struct bcm63xx_udc *udc, bool is_on)
 911{
 912	u32 val, portmask = BIT(udc->pd->port_no);
 913
 914	val = bcm_rset_readl(RSET_USBH_PRIV, USBH_PRIV_UTMI_CTL_6368_REG);
 915	if (is_on)
 916		val &= ~(portmask << USBH_PRIV_UTMI_CTL_NODRIV_SHIFT);
 917	else
 918		val |= (portmask << USBH_PRIV_UTMI_CTL_NODRIV_SHIFT);
 919	bcm_rset_writel(RSET_USBH_PRIV, val, USBH_PRIV_UTMI_CTL_6368_REG);
 920}
 921
 922/**
 923 * bcm63xx_uninit_udc_hw - Shut down the hardware prior to driver removal.
 924 * @udc: Reference to the device controller.
 925 *
 926 * This just masks the IUDMA IRQs and releases the clocks.  It is assumed
 927 * that bcm63xx_udc_stop() has already run, and the clocks are stopped.
 928 */
 929static void bcm63xx_uninit_udc_hw(struct bcm63xx_udc *udc)
 930{
 931	set_clocks(udc, true);
 932	iudma_uninit(udc);
 933	set_clocks(udc, false);
 934
 935	clk_put(udc->usbd_clk);
 936	clk_put(udc->usbh_clk);
 937}
 938
 939/**
 940 * bcm63xx_init_udc_hw - Initialize the controller hardware and data structures.
 941 * @udc: Reference to the device controller.
 942 */
 943static int bcm63xx_init_udc_hw(struct bcm63xx_udc *udc)
 944{
 945	int i, rc = 0;
 946	u32 val;
 947
 948	udc->ep0_ctrl_buf = devm_kzalloc(udc->dev, BCM63XX_MAX_CTRL_PKT,
 949					 GFP_KERNEL);
 950	if (!udc->ep0_ctrl_buf)
 951		return -ENOMEM;
 952
 953	INIT_LIST_HEAD(&udc->gadget.ep_list);
 954	for (i = 0; i < BCM63XX_NUM_EP; i++) {
 955		struct bcm63xx_ep *bep = &udc->bep[i];
 956
 957		bep->ep.name = bcm63xx_ep_info[i].name;
 958		bep->ep.caps = bcm63xx_ep_info[i].caps;
 959		bep->ep_num = i;
 960		bep->ep.ops = &bcm63xx_udc_ep_ops;
 961		list_add_tail(&bep->ep.ep_list, &udc->gadget.ep_list);
 962		bep->halted = 0;
 963		usb_ep_set_maxpacket_limit(&bep->ep, BCM63XX_MAX_CTRL_PKT);
 964		bep->udc = udc;
 965		bep->ep.desc = NULL;
 966		INIT_LIST_HEAD(&bep->queue);
 967	}
 968
 969	udc->gadget.ep0 = &udc->bep[0].ep;
 970	list_del(&udc->bep[0].ep.ep_list);
 971
 972	udc->gadget.speed = USB_SPEED_UNKNOWN;
 973	udc->ep0state = EP0_SHUTDOWN;
 974
 975	udc->usbh_clk = clk_get(udc->dev, "usbh");
 976	if (IS_ERR(udc->usbh_clk))
 977		return -EIO;
 978
 979	udc->usbd_clk = clk_get(udc->dev, "usbd");
 980	if (IS_ERR(udc->usbd_clk)) {
 981		clk_put(udc->usbh_clk);
 982		return -EIO;
 983	}
 984
 985	set_clocks(udc, true);
 986
 987	val = USBD_CONTROL_AUTO_CSRS_MASK |
 988	      USBD_CONTROL_DONE_CSRS_MASK |
 989	      (irq_coalesce ? USBD_CONTROL_RXZSCFG_MASK : 0);
 990	usbd_writel(udc, val, USBD_CONTROL_REG);
 991
 992	val = USBD_STRAPS_APP_SELF_PWR_MASK |
 993	      USBD_STRAPS_APP_RAM_IF_MASK |
 994	      USBD_STRAPS_APP_CSRPRGSUP_MASK |
 995	      USBD_STRAPS_APP_8BITPHY_MASK |
 996	      USBD_STRAPS_APP_RMTWKUP_MASK;
 997
 998	if (udc->gadget.max_speed == USB_SPEED_HIGH)
 999		val |= (BCM63XX_SPD_HIGH << USBD_STRAPS_SPEED_SHIFT);
1000	else
1001		val |= (BCM63XX_SPD_FULL << USBD_STRAPS_SPEED_SHIFT);
1002	usbd_writel(udc, val, USBD_STRAPS_REG);
1003
1004	bcm63xx_set_ctrl_irqs(udc, false);
1005
1006	usbd_writel(udc, 0, USBD_EVENT_IRQ_CFG_LO_REG);
1007
1008	val = USBD_EVENT_IRQ_CFG_FALLING(USBD_EVENT_IRQ_ENUM_ON) |
1009	      USBD_EVENT_IRQ_CFG_FALLING(USBD_EVENT_IRQ_SET_CSRS);
1010	usbd_writel(udc, val, USBD_EVENT_IRQ_CFG_HI_REG);
1011
1012	rc = iudma_init(udc);
1013	set_clocks(udc, false);
1014	if (rc)
1015		bcm63xx_uninit_udc_hw(udc);
1016
1017	return 0;
1018}
1019
1020/***********************************************************************
1021 * Standard EP gadget operations
1022 ***********************************************************************/
1023
1024/**
1025 * bcm63xx_ep_enable - Enable one endpoint.
1026 * @ep: Endpoint to enable.
1027 * @desc: Contains max packet, direction, etc.
1028 *
1029 * Most of the endpoint parameters are fixed in this controller, so there
1030 * isn't much for this function to do.
1031 */
1032static int bcm63xx_ep_enable(struct usb_ep *ep,
1033	const struct usb_endpoint_descriptor *desc)
1034{
1035	struct bcm63xx_ep *bep = our_ep(ep);
1036	struct bcm63xx_udc *udc = bep->udc;
1037	struct iudma_ch *iudma = bep->iudma;
1038	unsigned long flags;
1039
1040	if (!ep || !desc || ep->name == bcm63xx_ep0name)
1041		return -EINVAL;
1042
1043	if (!udc->driver)
1044		return -ESHUTDOWN;
1045
1046	spin_lock_irqsave(&udc->lock, flags);
1047	if (iudma->enabled) {
1048		spin_unlock_irqrestore(&udc->lock, flags);
1049		return -EINVAL;
1050	}
1051
1052	iudma->enabled = true;
1053	BUG_ON(!list_empty(&bep->queue));
1054
1055	iudma_reset_channel(udc, iudma);
1056
1057	bep->halted = 0;
1058	bcm63xx_set_stall(udc, bep, false);
1059	clear_bit(bep->ep_num, &udc->wedgemap);
1060
1061	ep->desc = desc;
1062	ep->maxpacket = usb_endpoint_maxp(desc);
1063
1064	spin_unlock_irqrestore(&udc->lock, flags);
1065	return 0;
1066}
1067
1068/**
1069 * bcm63xx_ep_disable - Disable one endpoint.
1070 * @ep: Endpoint to disable.
1071 */
1072static int bcm63xx_ep_disable(struct usb_ep *ep)
1073{
1074	struct bcm63xx_ep *bep = our_ep(ep);
1075	struct bcm63xx_udc *udc = bep->udc;
1076	struct iudma_ch *iudma = bep->iudma;
1077	struct bcm63xx_req *breq, *n;
1078	unsigned long flags;
1079
1080	if (!ep || !ep->desc)
1081		return -EINVAL;
1082
1083	spin_lock_irqsave(&udc->lock, flags);
1084	if (!iudma->enabled) {
1085		spin_unlock_irqrestore(&udc->lock, flags);
1086		return -EINVAL;
1087	}
1088	iudma->enabled = false;
1089
1090	iudma_reset_channel(udc, iudma);
1091
1092	if (!list_empty(&bep->queue)) {
1093		list_for_each_entry_safe(breq, n, &bep->queue, queue) {
1094			usb_gadget_unmap_request(&udc->gadget, &breq->req,
1095						 iudma->is_tx);
1096			list_del(&breq->queue);
1097			breq->req.status = -ESHUTDOWN;
1098
1099			spin_unlock_irqrestore(&udc->lock, flags);
1100			usb_gadget_giveback_request(&iudma->bep->ep, &breq->req);
1101			spin_lock_irqsave(&udc->lock, flags);
1102		}
1103	}
1104	ep->desc = NULL;
1105
1106	spin_unlock_irqrestore(&udc->lock, flags);
1107	return 0;
1108}
1109
1110/**
1111 * bcm63xx_udc_alloc_request - Allocate a new request.
1112 * @ep: Endpoint associated with the request.
1113 * @mem_flags: Flags to pass to kzalloc().
1114 */
1115static struct usb_request *bcm63xx_udc_alloc_request(struct usb_ep *ep,
1116	gfp_t mem_flags)
1117{
1118	struct bcm63xx_req *breq;
1119
1120	breq = kzalloc(sizeof(*breq), mem_flags);
1121	if (!breq)
1122		return NULL;
1123	return &breq->req;
1124}
1125
1126/**
1127 * bcm63xx_udc_free_request - Free a request.
1128 * @ep: Endpoint associated with the request.
1129 * @req: Request to free.
1130 */
1131static void bcm63xx_udc_free_request(struct usb_ep *ep,
1132	struct usb_request *req)
1133{
1134	struct bcm63xx_req *breq = our_req(req);
1135	kfree(breq);
1136}
1137
1138/**
1139 * bcm63xx_udc_queue - Queue up a new request.
1140 * @ep: Endpoint associated with the request.
1141 * @req: Request to add.
1142 * @mem_flags: Unused.
1143 *
1144 * If the queue is empty, start this request immediately.  Otherwise, add
1145 * it to the list.
1146 *
1147 * ep0 replies are sent through this function from the gadget driver, but
1148 * they are treated differently because they need to be handled by the ep0
1149 * state machine.  (Sometimes they are replies to control requests that
1150 * were spoofed by this driver, and so they shouldn't be transmitted at all.)
1151 */
1152static int bcm63xx_udc_queue(struct usb_ep *ep, struct usb_request *req,
1153	gfp_t mem_flags)
1154{
1155	struct bcm63xx_ep *bep = our_ep(ep);
1156	struct bcm63xx_udc *udc = bep->udc;
1157	struct bcm63xx_req *breq = our_req(req);
1158	unsigned long flags;
1159	int rc = 0;
1160
1161	if (unlikely(!req || !req->complete || !req->buf || !ep))
1162		return -EINVAL;
1163
1164	req->actual = 0;
1165	req->status = 0;
1166	breq->offset = 0;
1167
1168	if (bep == &udc->bep[0]) {
1169		/* only one reply per request, please */
1170		if (udc->ep0_reply)
1171			return -EINVAL;
1172
1173		udc->ep0_reply = req;
1174		schedule_work(&udc->ep0_wq);
1175		return 0;
1176	}
1177
1178	spin_lock_irqsave(&udc->lock, flags);
1179	if (!bep->iudma->enabled) {
1180		rc = -ESHUTDOWN;
1181		goto out;
1182	}
1183
1184	rc = usb_gadget_map_request(&udc->gadget, req, bep->iudma->is_tx);
1185	if (rc == 0) {
1186		list_add_tail(&breq->queue, &bep->queue);
1187		if (list_is_singular(&bep->queue))
1188			iudma_write(udc, bep->iudma, breq);
1189	}
1190
1191out:
1192	spin_unlock_irqrestore(&udc->lock, flags);
1193	return rc;
1194}
1195
1196/**
1197 * bcm63xx_udc_dequeue - Remove a pending request from the queue.
1198 * @ep: Endpoint associated with the request.
1199 * @req: Request to remove.
1200 *
1201 * If the request is not at the head of the queue, this is easy - just nuke
1202 * it.  If the request is at the head of the queue, we'll need to stop the
1203 * DMA transaction and then queue up the successor.
1204 */
1205static int bcm63xx_udc_dequeue(struct usb_ep *ep, struct usb_request *req)
1206{
1207	struct bcm63xx_ep *bep = our_ep(ep);
1208	struct bcm63xx_udc *udc = bep->udc;
1209	struct bcm63xx_req *breq = our_req(req), *cur;
1210	unsigned long flags;
1211	int rc = 0;
1212
1213	spin_lock_irqsave(&udc->lock, flags);
1214	if (list_empty(&bep->queue)) {
1215		rc = -EINVAL;
1216		goto out;
1217	}
1218
1219	cur = list_first_entry(&bep->queue, struct bcm63xx_req, queue);
1220	usb_gadget_unmap_request(&udc->gadget, &breq->req, bep->iudma->is_tx);
1221
1222	if (breq == cur) {
1223		iudma_reset_channel(udc, bep->iudma);
1224		list_del(&breq->queue);
1225
1226		if (!list_empty(&bep->queue)) {
1227			struct bcm63xx_req *next;
1228
1229			next = list_first_entry(&bep->queue,
1230				struct bcm63xx_req, queue);
1231			iudma_write(udc, bep->iudma, next);
1232		}
1233	} else {
1234		list_del(&breq->queue);
1235	}
1236
1237out:
1238	spin_unlock_irqrestore(&udc->lock, flags);
1239
1240	req->status = -ESHUTDOWN;
1241	req->complete(ep, req);
1242
1243	return rc;
1244}
1245
1246/**
1247 * bcm63xx_udc_set_halt - Enable/disable STALL flag in the hardware.
1248 * @ep: Endpoint to halt.
1249 * @value: Zero to clear halt; nonzero to set halt.
1250 *
1251 * See comments in bcm63xx_update_wedge().
1252 */
1253static int bcm63xx_udc_set_halt(struct usb_ep *ep, int value)
1254{
1255	struct bcm63xx_ep *bep = our_ep(ep);
1256	struct bcm63xx_udc *udc = bep->udc;
1257	unsigned long flags;
1258
1259	spin_lock_irqsave(&udc->lock, flags);
1260	bcm63xx_set_stall(udc, bep, !!value);
1261	bep->halted = value;
1262	spin_unlock_irqrestore(&udc->lock, flags);
1263
1264	return 0;
1265}
1266
1267/**
1268 * bcm63xx_udc_set_wedge - Stall the endpoint until the next reset.
1269 * @ep: Endpoint to wedge.
1270 *
1271 * See comments in bcm63xx_update_wedge().
1272 */
1273static int bcm63xx_udc_set_wedge(struct usb_ep *ep)
1274{
1275	struct bcm63xx_ep *bep = our_ep(ep);
1276	struct bcm63xx_udc *udc = bep->udc;
1277	unsigned long flags;
1278
1279	spin_lock_irqsave(&udc->lock, flags);
1280	set_bit(bep->ep_num, &udc->wedgemap);
1281	bcm63xx_set_stall(udc, bep, true);
1282	spin_unlock_irqrestore(&udc->lock, flags);
1283
1284	return 0;
1285}
1286
1287static const struct usb_ep_ops bcm63xx_udc_ep_ops = {
1288	.enable		= bcm63xx_ep_enable,
1289	.disable	= bcm63xx_ep_disable,
1290
1291	.alloc_request	= bcm63xx_udc_alloc_request,
1292	.free_request	= bcm63xx_udc_free_request,
1293
1294	.queue		= bcm63xx_udc_queue,
1295	.dequeue	= bcm63xx_udc_dequeue,
1296
1297	.set_halt	= bcm63xx_udc_set_halt,
1298	.set_wedge	= bcm63xx_udc_set_wedge,
1299};
1300
1301/***********************************************************************
1302 * EP0 handling
1303 ***********************************************************************/
1304
1305/**
1306 * bcm63xx_ep0_setup_callback - Drop spinlock to invoke ->setup callback.
1307 * @udc: Reference to the device controller.
1308 * @ctrl: 8-byte SETUP request.
1309 */
1310static int bcm63xx_ep0_setup_callback(struct bcm63xx_udc *udc,
1311	struct usb_ctrlrequest *ctrl)
1312{
1313	int rc;
1314
1315	spin_unlock_irq(&udc->lock);
1316	rc = udc->driver->setup(&udc->gadget, ctrl);
1317	spin_lock_irq(&udc->lock);
1318	return rc;
1319}
1320
1321/**
1322 * bcm63xx_ep0_spoof_set_cfg - Synthesize a SET_CONFIGURATION request.
1323 * @udc: Reference to the device controller.
1324 *
1325 * Many standard requests are handled automatically in the hardware, but
1326 * we still need to pass them to the gadget driver so that it can
1327 * reconfigure the interfaces/endpoints if necessary.
1328 *
1329 * Unfortunately we are not able to send a STALL response if the host
1330 * requests an invalid configuration.  If this happens, we'll have to be
1331 * content with printing a warning.
1332 */
1333static int bcm63xx_ep0_spoof_set_cfg(struct bcm63xx_udc *udc)
1334{
1335	struct usb_ctrlrequest ctrl;
1336	int rc;
1337
1338	ctrl.bRequestType = USB_DIR_OUT | USB_RECIP_DEVICE;
1339	ctrl.bRequest = USB_REQ_SET_CONFIGURATION;
1340	ctrl.wValue = cpu_to_le16(udc->cfg);
1341	ctrl.wIndex = 0;
1342	ctrl.wLength = 0;
1343
1344	rc = bcm63xx_ep0_setup_callback(udc, &ctrl);
1345	if (rc < 0) {
1346		dev_warn_ratelimited(udc->dev,
1347			"hardware auto-acked bad SET_CONFIGURATION(%d) request\n",
1348			udc->cfg);
1349	}
1350	return rc;
1351}
1352
1353/**
1354 * bcm63xx_ep0_spoof_set_iface - Synthesize a SET_INTERFACE request.
1355 * @udc: Reference to the device controller.
1356 */
1357static int bcm63xx_ep0_spoof_set_iface(struct bcm63xx_udc *udc)
1358{
1359	struct usb_ctrlrequest ctrl;
1360	int rc;
1361
1362	ctrl.bRequestType = USB_DIR_OUT | USB_RECIP_INTERFACE;
1363	ctrl.bRequest = USB_REQ_SET_INTERFACE;
1364	ctrl.wValue = cpu_to_le16(udc->alt_iface);
1365	ctrl.wIndex = cpu_to_le16(udc->iface);
1366	ctrl.wLength = 0;
1367
1368	rc = bcm63xx_ep0_setup_callback(udc, &ctrl);
1369	if (rc < 0) {
1370		dev_warn_ratelimited(udc->dev,
1371			"hardware auto-acked bad SET_INTERFACE(%d,%d) request\n",
1372			udc->iface, udc->alt_iface);
1373	}
1374	return rc;
1375}
1376
1377/**
1378 * bcm63xx_ep0_map_write - dma_map and iudma_write a single request.
1379 * @udc: Reference to the device controller.
1380 * @ch_idx: IUDMA channel number.
1381 * @req: USB gadget layer representation of the request.
1382 */
1383static void bcm63xx_ep0_map_write(struct bcm63xx_udc *udc, int ch_idx,
1384	struct usb_request *req)
1385{
1386	struct bcm63xx_req *breq = our_req(req);
1387	struct iudma_ch *iudma = &udc->iudma[ch_idx];
1388
1389	BUG_ON(udc->ep0_request);
1390	udc->ep0_request = req;
1391
1392	req->actual = 0;
1393	breq->offset = 0;
1394	usb_gadget_map_request(&udc->gadget, req, iudma->is_tx);
1395	iudma_write(udc, iudma, breq);
1396}
1397
1398/**
1399 * bcm63xx_ep0_complete - Set completion status and "stage" the callback.
1400 * @udc: Reference to the device controller.
1401 * @req: USB gadget layer representation of the request.
1402 * @status: Status to return to the gadget driver.
1403 */
1404static void bcm63xx_ep0_complete(struct bcm63xx_udc *udc,
1405	struct usb_request *req, int status)
1406{
1407	req->status = status;
1408	if (status)
1409		req->actual = 0;
1410	if (req->complete) {
1411		spin_unlock_irq(&udc->lock);
1412		req->complete(&udc->bep[0].ep, req);
1413		spin_lock_irq(&udc->lock);
1414	}
1415}
1416
1417/**
1418 * bcm63xx_ep0_nuke_reply - Abort request from the gadget driver due to
1419 *   reset/shutdown.
1420 * @udc: Reference to the device controller.
1421 * @is_tx: Nonzero for TX (IN), zero for RX (OUT).
1422 */
1423static void bcm63xx_ep0_nuke_reply(struct bcm63xx_udc *udc, int is_tx)
1424{
1425	struct usb_request *req = udc->ep0_reply;
1426
1427	udc->ep0_reply = NULL;
1428	usb_gadget_unmap_request(&udc->gadget, req, is_tx);
1429	if (udc->ep0_request == req) {
1430		udc->ep0_req_completed = 0;
1431		udc->ep0_request = NULL;
1432	}
1433	bcm63xx_ep0_complete(udc, req, -ESHUTDOWN);
1434}
1435
1436/**
1437 * bcm63xx_ep0_read_complete - Close out the pending ep0 request; return
1438 *   transfer len.
1439 * @udc: Reference to the device controller.
1440 */
1441static int bcm63xx_ep0_read_complete(struct bcm63xx_udc *udc)
1442{
1443	struct usb_request *req = udc->ep0_request;
1444
1445	udc->ep0_req_completed = 0;
1446	udc->ep0_request = NULL;
1447
1448	return req->actual;
1449}
1450
1451/**
1452 * bcm63xx_ep0_internal_request - Helper function to submit an ep0 request.
1453 * @udc: Reference to the device controller.
1454 * @ch_idx: IUDMA channel number.
1455 * @length: Number of bytes to TX/RX.
1456 *
1457 * Used for simple transfers performed by the ep0 worker.  This will always
1458 * use ep0_ctrl_req / ep0_ctrl_buf.
1459 */
1460static void bcm63xx_ep0_internal_request(struct bcm63xx_udc *udc, int ch_idx,
1461	int length)
1462{
1463	struct usb_request *req = &udc->ep0_ctrl_req.req;
1464
1465	req->buf = udc->ep0_ctrl_buf;
1466	req->length = length;
1467	req->complete = NULL;
1468
1469	bcm63xx_ep0_map_write(udc, ch_idx, req);
1470}
1471
1472/**
1473 * bcm63xx_ep0_do_setup - Parse new SETUP packet and decide how to handle it.
1474 * @udc: Reference to the device controller.
1475 *
1476 * EP0_IDLE probably shouldn't ever happen.  EP0_REQUEUE means we're ready
1477 * for the next packet.  Anything else means the transaction requires multiple
1478 * stages of handling.
1479 */
1480static enum bcm63xx_ep0_state bcm63xx_ep0_do_setup(struct bcm63xx_udc *udc)
1481{
1482	int rc;
1483	struct usb_ctrlrequest *ctrl = (void *)udc->ep0_ctrl_buf;
1484
1485	rc = bcm63xx_ep0_read_complete(udc);
1486
1487	if (rc < 0) {
1488		dev_err(udc->dev, "missing SETUP packet\n");
1489		return EP0_IDLE;
1490	}
1491
1492	/*
1493	 * Handle 0-byte IN STATUS acknowledgement.  The hardware doesn't
1494	 * ALWAYS deliver these 100% of the time, so if we happen to see one,
1495	 * just throw it away.
1496	 */
1497	if (rc == 0)
1498		return EP0_REQUEUE;
1499
1500	/* Drop malformed SETUP packets */
1501	if (rc != sizeof(*ctrl)) {
1502		dev_warn_ratelimited(udc->dev,
1503			"malformed SETUP packet (%d bytes)\n", rc);
1504		return EP0_REQUEUE;
1505	}
1506
1507	/* Process new SETUP packet arriving on ep0 */
1508	rc = bcm63xx_ep0_setup_callback(udc, ctrl);
1509	if (rc < 0) {
1510		bcm63xx_set_stall(udc, &udc->bep[0], true);
1511		return EP0_REQUEUE;
1512	}
1513
1514	if (!ctrl->wLength)
1515		return EP0_REQUEUE;
1516	else if (ctrl->bRequestType & USB_DIR_IN)
1517		return EP0_IN_DATA_PHASE_SETUP;
1518	else
1519		return EP0_OUT_DATA_PHASE_SETUP;
1520}
1521
1522/**
1523 * bcm63xx_ep0_do_idle - Check for outstanding requests if ep0 is idle.
1524 * @udc: Reference to the device controller.
1525 *
1526 * In state EP0_IDLE, the RX descriptor is either pending, or has been
1527 * filled with a SETUP packet from the host.  This function handles new
1528 * SETUP packets, control IRQ events (which can generate fake SETUP packets),
1529 * and reset/shutdown events.
1530 *
1531 * Returns 0 if work was done; -EAGAIN if nothing to do.
1532 */
1533static int bcm63xx_ep0_do_idle(struct bcm63xx_udc *udc)
1534{
1535	if (udc->ep0_req_reset) {
1536		udc->ep0_req_reset = 0;
1537	} else if (udc->ep0_req_set_cfg) {
1538		udc->ep0_req_set_cfg = 0;
1539		if (bcm63xx_ep0_spoof_set_cfg(udc) >= 0)
1540			udc->ep0state = EP0_IN_FAKE_STATUS_PHASE;
1541	} else if (udc->ep0_req_set_iface) {
1542		udc->ep0_req_set_iface = 0;
1543		if (bcm63xx_ep0_spoof_set_iface(udc) >= 0)
1544			udc->ep0state = EP0_IN_FAKE_STATUS_PHASE;
1545	} else if (udc->ep0_req_completed) {
1546		udc->ep0state = bcm63xx_ep0_do_setup(udc);
1547		return udc->ep0state == EP0_IDLE ? -EAGAIN : 0;
1548	} else if (udc->ep0_req_shutdown) {
1549		udc->ep0_req_shutdown = 0;
1550		udc->ep0_req_completed = 0;
1551		udc->ep0_request = NULL;
1552		iudma_reset_channel(udc, &udc->iudma[IUDMA_EP0_RXCHAN]);
1553		usb_gadget_unmap_request(&udc->gadget,
1554			&udc->ep0_ctrl_req.req, 0);
1555
1556		/* bcm63xx_udc_pullup() is waiting for this */
1557		mb();
1558		udc->ep0state = EP0_SHUTDOWN;
1559	} else if (udc->ep0_reply) {
1560		/*
1561		 * This could happen if a USB RESET shows up during an ep0
1562		 * transaction (especially if a laggy driver like gadgetfs
1563		 * is in use).
1564		 */
1565		dev_warn(udc->dev, "nuking unexpected reply\n");
1566		bcm63xx_ep0_nuke_reply(udc, 0);
1567	} else {
1568		return -EAGAIN;
1569	}
1570
1571	return 0;
1572}
1573
1574/**
1575 * bcm63xx_ep0_one_round - Handle the current ep0 state.
1576 * @udc: Reference to the device controller.
1577 *
1578 * Returns 0 if work was done; -EAGAIN if nothing to do.
1579 */
1580static int bcm63xx_ep0_one_round(struct bcm63xx_udc *udc)
1581{
1582	enum bcm63xx_ep0_state ep0state = udc->ep0state;
1583	bool shutdown = udc->ep0_req_reset || udc->ep0_req_shutdown;
1584
1585	switch (udc->ep0state) {
1586	case EP0_REQUEUE:
1587		/* set up descriptor to receive SETUP packet */
1588		bcm63xx_ep0_internal_request(udc, IUDMA_EP0_RXCHAN,
1589					     BCM63XX_MAX_CTRL_PKT);
1590		ep0state = EP0_IDLE;
1591		break;
1592	case EP0_IDLE:
1593		return bcm63xx_ep0_do_idle(udc);
1594	case EP0_IN_DATA_PHASE_SETUP:
1595		/*
1596		 * Normal case: TX request is in ep0_reply (queued by the
1597		 * callback), or will be queued shortly.  When it's here,
1598		 * send it to the HW and go to EP0_IN_DATA_PHASE_COMPLETE.
1599		 *
1600		 * Shutdown case: Stop waiting for the reply.  Just
1601		 * REQUEUE->IDLE.  The gadget driver is NOT expected to
1602		 * queue anything else now.
1603		 */
1604		if (udc->ep0_reply) {
1605			bcm63xx_ep0_map_write(udc, IUDMA_EP0_TXCHAN,
1606					      udc->ep0_reply);
1607			ep0state = EP0_IN_DATA_PHASE_COMPLETE;
1608		} else if (shutdown) {
1609			ep0state = EP0_REQUEUE;
1610		}
1611		break;
1612	case EP0_IN_DATA_PHASE_COMPLETE: {
1613		/*
1614		 * Normal case: TX packet (ep0_reply) is in flight; wait for
1615		 * it to finish, then go back to REQUEUE->IDLE.
1616		 *
1617		 * Shutdown case: Reset the TX channel, send -ESHUTDOWN
1618		 * completion to the gadget driver, then REQUEUE->IDLE.
1619		 */
1620		if (udc->ep0_req_completed) {
1621			udc->ep0_reply = NULL;
1622			bcm63xx_ep0_read_complete(udc);
1623			/*
1624			 * the "ack" sometimes gets eaten (see
1625			 * bcm63xx_ep0_do_idle)
1626			 */
1627			ep0state = EP0_REQUEUE;
1628		} else if (shutdown) {
1629			iudma_reset_channel(udc, &udc->iudma[IUDMA_EP0_TXCHAN]);
1630			bcm63xx_ep0_nuke_reply(udc, 1);
1631			ep0state = EP0_REQUEUE;
1632		}
1633		break;
1634	}
1635	case EP0_OUT_DATA_PHASE_SETUP:
1636		/* Similar behavior to EP0_IN_DATA_PHASE_SETUP */
1637		if (udc->ep0_reply) {
1638			bcm63xx_ep0_map_write(udc, IUDMA_EP0_RXCHAN,
1639					      udc->ep0_reply);
1640			ep0state = EP0_OUT_DATA_PHASE_COMPLETE;
1641		} else if (shutdown) {
1642			ep0state = EP0_REQUEUE;
1643		}
1644		break;
1645	case EP0_OUT_DATA_PHASE_COMPLETE: {
1646		/* Similar behavior to EP0_IN_DATA_PHASE_COMPLETE */
1647		if (udc->ep0_req_completed) {
1648			udc->ep0_reply = NULL;
1649			bcm63xx_ep0_read_complete(udc);
1650
1651			/* send 0-byte ack to host */
1652			bcm63xx_ep0_internal_request(udc, IUDMA_EP0_TXCHAN, 0);
1653			ep0state = EP0_OUT_STATUS_PHASE;
1654		} else if (shutdown) {
1655			iudma_reset_channel(udc, &udc->iudma[IUDMA_EP0_RXCHAN]);
1656			bcm63xx_ep0_nuke_reply(udc, 0);
1657			ep0state = EP0_REQUEUE;
1658		}
1659		break;
1660	}
1661	case EP0_OUT_STATUS_PHASE:
1662		/*
1663		 * Normal case: 0-byte OUT ack packet is in flight; wait
1664		 * for it to finish, then go back to REQUEUE->IDLE.
1665		 *
1666		 * Shutdown case: just cancel the transmission.  Don't bother
1667		 * calling the completion, because it originated from this
1668		 * function anyway.  Then go back to REQUEUE->IDLE.
1669		 */
1670		if (udc->ep0_req_completed) {
1671			bcm63xx_ep0_read_complete(udc);
1672			ep0state = EP0_REQUEUE;
1673		} else if (shutdown) {
1674			iudma_reset_channel(udc, &udc->iudma[IUDMA_EP0_TXCHAN]);
1675			udc->ep0_request = NULL;
1676			ep0state = EP0_REQUEUE;
1677		}
1678		break;
1679	case EP0_IN_FAKE_STATUS_PHASE: {
1680		/*
1681		 * Normal case: we spoofed a SETUP packet and are now
1682		 * waiting for the gadget driver to send a 0-byte reply.
1683		 * This doesn't actually get sent to the HW because the
1684		 * HW has already sent its own reply.  Once we get the
1685		 * response, return to IDLE.
1686		 *
1687		 * Shutdown case: return to IDLE immediately.
1688		 *
1689		 * Note that the ep0 RX descriptor has remained queued
1690		 * (and possibly unfilled) during this entire transaction.
1691		 * The HW datapath (IUDMA) never even sees SET_CONFIGURATION
1692		 * or SET_INTERFACE transactions.
1693		 */
1694		struct usb_request *r = udc->ep0_reply;
1695
1696		if (!r) {
1697			if (shutdown)
1698				ep0state = EP0_IDLE;
1699			break;
1700		}
1701
1702		bcm63xx_ep0_complete(udc, r, 0);
1703		udc->ep0_reply = NULL;
1704		ep0state = EP0_IDLE;
1705		break;
1706	}
1707	case EP0_SHUTDOWN:
1708		break;
1709	}
1710
1711	if (udc->ep0state == ep0state)
1712		return -EAGAIN;
1713
1714	udc->ep0state = ep0state;
1715	return 0;
1716}
1717
1718/**
1719 * bcm63xx_ep0_process - ep0 worker thread / state machine.
1720 * @w: Workqueue struct.
1721 *
1722 * bcm63xx_ep0_process is triggered any time an event occurs on ep0.  It
1723 * is used to synchronize ep0 events and ensure that both HW and SW events
1724 * occur in a well-defined order.  When the ep0 IUDMA queues are idle, it may
1725 * synthesize SET_CONFIGURATION / SET_INTERFACE requests that were consumed
1726 * by the USBD hardware.
1727 *
1728 * The worker function will continue iterating around the state machine
1729 * until there is nothing left to do.  Usually "nothing left to do" means
1730 * that we're waiting for a new event from the hardware.
1731 */
1732static void bcm63xx_ep0_process(struct work_struct *w)
1733{
1734	struct bcm63xx_udc *udc = container_of(w, struct bcm63xx_udc, ep0_wq);
1735	spin_lock_irq(&udc->lock);
1736	while (bcm63xx_ep0_one_round(udc) == 0)
1737		;
1738	spin_unlock_irq(&udc->lock);
1739}
1740
1741/***********************************************************************
1742 * Standard UDC gadget operations
1743 ***********************************************************************/
1744
1745/**
1746 * bcm63xx_udc_get_frame - Read current SOF frame number from the HW.
1747 * @gadget: USB device.
1748 */
1749static int bcm63xx_udc_get_frame(struct usb_gadget *gadget)
1750{
1751	struct bcm63xx_udc *udc = gadget_to_udc(gadget);
1752
1753	return (usbd_readl(udc, USBD_STATUS_REG) &
1754		USBD_STATUS_SOF_MASK) >> USBD_STATUS_SOF_SHIFT;
1755}
1756
1757/**
1758 * bcm63xx_udc_pullup - Enable/disable pullup on D+ line.
1759 * @gadget: USB device.
1760 * @is_on: 0 to disable pullup, 1 to enable.
1761 *
1762 * See notes in bcm63xx_select_pullup().
1763 */
1764static int bcm63xx_udc_pullup(struct usb_gadget *gadget, int is_on)
1765{
1766	struct bcm63xx_udc *udc = gadget_to_udc(gadget);
1767	unsigned long flags;
1768	int i, rc = -EINVAL;
1769
1770	spin_lock_irqsave(&udc->lock, flags);
1771	if (is_on && udc->ep0state == EP0_SHUTDOWN) {
1772		udc->gadget.speed = USB_SPEED_UNKNOWN;
1773		udc->ep0state = EP0_REQUEUE;
1774		bcm63xx_fifo_setup(udc);
1775		bcm63xx_fifo_reset(udc);
1776		bcm63xx_ep_setup(udc);
1777
1778		bitmap_zero(&udc->wedgemap, BCM63XX_NUM_EP);
1779		for (i = 0; i < BCM63XX_NUM_EP; i++)
1780			bcm63xx_set_stall(udc, &udc->bep[i], false);
1781
1782		bcm63xx_set_ctrl_irqs(udc, true);
1783		bcm63xx_select_pullup(gadget_to_udc(gadget), true);
1784		rc = 0;
1785	} else if (!is_on && udc->ep0state != EP0_SHUTDOWN) {
1786		bcm63xx_select_pullup(gadget_to_udc(gadget), false);
1787
1788		udc->ep0_req_shutdown = 1;
1789		spin_unlock_irqrestore(&udc->lock, flags);
1790
1791		while (1) {
1792			schedule_work(&udc->ep0_wq);
1793			if (udc->ep0state == EP0_SHUTDOWN)
1794				break;
1795			msleep(50);
1796		}
1797		bcm63xx_set_ctrl_irqs(udc, false);
1798		cancel_work_sync(&udc->ep0_wq);
1799		return 0;
1800	}
1801
1802	spin_unlock_irqrestore(&udc->lock, flags);
1803	return rc;
1804}
1805
1806/**
1807 * bcm63xx_udc_start - Start the controller.
1808 * @gadget: USB device.
1809 * @driver: Driver for USB device.
1810 */
1811static int bcm63xx_udc_start(struct usb_gadget *gadget,
1812		struct usb_gadget_driver *driver)
1813{
1814	struct bcm63xx_udc *udc = gadget_to_udc(gadget);
1815	unsigned long flags;
1816
1817	if (!driver || driver->max_speed < USB_SPEED_HIGH ||
1818	    !driver->setup)
1819		return -EINVAL;
1820	if (!udc)
1821		return -ENODEV;
1822	if (udc->driver)
1823		return -EBUSY;
1824
1825	spin_lock_irqsave(&udc->lock, flags);
1826
1827	set_clocks(udc, true);
1828	bcm63xx_fifo_setup(udc);
1829	bcm63xx_ep_init(udc);
1830	bcm63xx_ep_setup(udc);
1831	bcm63xx_fifo_reset(udc);
1832	bcm63xx_select_phy_mode(udc, true);
1833
1834	udc->driver = driver;
1835	driver->driver.bus = NULL;
1836	udc->gadget.dev.of_node = udc->dev->of_node;
1837
1838	spin_unlock_irqrestore(&udc->lock, flags);
1839
1840	return 0;
1841}
1842
1843/**
1844 * bcm63xx_udc_stop - Shut down the controller.
1845 * @gadget: USB device.
1846 * @driver: Driver for USB device.
1847 */
1848static int bcm63xx_udc_stop(struct usb_gadget *gadget)
1849{
1850	struct bcm63xx_udc *udc = gadget_to_udc(gadget);
1851	unsigned long flags;
1852
1853	spin_lock_irqsave(&udc->lock, flags);
1854
1855	udc->driver = NULL;
1856
1857	/*
1858	 * If we switch the PHY too abruptly after dropping D+, the host
1859	 * will often complain:
1860	 *
1861	 *     hub 1-0:1.0: port 1 disabled by hub (EMI?), re-enabling...
1862	 */
1863	msleep(100);
1864
1865	bcm63xx_select_phy_mode(udc, false);
1866	set_clocks(udc, false);
1867
1868	spin_unlock_irqrestore(&udc->lock, flags);
1869
1870	return 0;
1871}
1872
1873static const struct usb_gadget_ops bcm63xx_udc_ops = {
1874	.get_frame	= bcm63xx_udc_get_frame,
1875	.pullup		= bcm63xx_udc_pullup,
1876	.udc_start	= bcm63xx_udc_start,
1877	.udc_stop	= bcm63xx_udc_stop,
1878};
1879
1880/***********************************************************************
1881 * IRQ handling
1882 ***********************************************************************/
1883
1884/**
1885 * bcm63xx_update_cfg_iface - Read current configuration/interface settings.
1886 * @udc: Reference to the device controller.
1887 *
1888 * This controller intercepts SET_CONFIGURATION and SET_INTERFACE messages.
1889 * The driver never sees the raw control packets coming in on the ep0
1890 * IUDMA channel, but at least we get an interrupt event to tell us that
1891 * new values are waiting in the USBD_STATUS register.
1892 */
1893static void bcm63xx_update_cfg_iface(struct bcm63xx_udc *udc)
1894{
1895	u32 reg = usbd_readl(udc, USBD_STATUS_REG);
1896
1897	udc->cfg = (reg & USBD_STATUS_CFG_MASK) >> USBD_STATUS_CFG_SHIFT;
1898	udc->iface = (reg & USBD_STATUS_INTF_MASK) >> USBD_STATUS_INTF_SHIFT;
1899	udc->alt_iface = (reg & USBD_STATUS_ALTINTF_MASK) >>
1900			 USBD_STATUS_ALTINTF_SHIFT;
1901	bcm63xx_ep_setup(udc);
1902}
1903
1904/**
1905 * bcm63xx_update_link_speed - Check to see if the link speed has changed.
1906 * @udc: Reference to the device controller.
1907 *
1908 * The link speed update coincides with a SETUP IRQ.  Returns 1 if the
1909 * speed has changed, so that the caller can update the endpoint settings.
1910 */
1911static int bcm63xx_update_link_speed(struct bcm63xx_udc *udc)
1912{
1913	u32 reg = usbd_readl(udc, USBD_STATUS_REG);
1914	enum usb_device_speed oldspeed = udc->gadget.speed;
1915
1916	switch ((reg & USBD_STATUS_SPD_MASK) >> USBD_STATUS_SPD_SHIFT) {
1917	case BCM63XX_SPD_HIGH:
1918		udc->gadget.speed = USB_SPEED_HIGH;
1919		break;
1920	case BCM63XX_SPD_FULL:
1921		udc->gadget.speed = USB_SPEED_FULL;
1922		break;
1923	default:
1924		/* this should never happen */
1925		udc->gadget.speed = USB_SPEED_UNKNOWN;
1926		dev_err(udc->dev,
1927			"received SETUP packet with invalid link speed\n");
1928		return 0;
1929	}
1930
1931	if (udc->gadget.speed != oldspeed) {
1932		dev_info(udc->dev, "link up, %s-speed mode\n",
1933			 udc->gadget.speed == USB_SPEED_HIGH ? "high" : "full");
1934		return 1;
1935	} else {
1936		return 0;
1937	}
1938}
1939
1940/**
1941 * bcm63xx_update_wedge - Iterate through wedged endpoints.
1942 * @udc: Reference to the device controller.
1943 * @new_status: true to "refresh" wedge status; false to clear it.
1944 *
1945 * On a SETUP interrupt, we need to manually "refresh" the wedge status
1946 * because the controller hardware is designed to automatically clear
1947 * stalls in response to a CLEAR_FEATURE request from the host.
1948 *
1949 * On a RESET interrupt, we do want to restore all wedged endpoints.
1950 */
1951static void bcm63xx_update_wedge(struct bcm63xx_udc *udc, bool new_status)
1952{
1953	int i;
1954
1955	for_each_set_bit(i, &udc->wedgemap, BCM63XX_NUM_EP) {
1956		bcm63xx_set_stall(udc, &udc->bep[i], new_status);
1957		if (!new_status)
1958			clear_bit(i, &udc->wedgemap);
1959	}
1960}
1961
1962/**
1963 * bcm63xx_udc_ctrl_isr - ISR for control path events (USBD).
1964 * @irq: IRQ number (unused).
1965 * @dev_id: Reference to the device controller.
1966 *
1967 * This is where we handle link (VBUS) down, USB reset, speed changes,
1968 * SET_CONFIGURATION, and SET_INTERFACE events.
1969 */
1970static irqreturn_t bcm63xx_udc_ctrl_isr(int irq, void *dev_id)
1971{
1972	struct bcm63xx_udc *udc = dev_id;
1973	u32 stat;
1974	bool disconnected = false, bus_reset = false;
1975
1976	stat = usbd_readl(udc, USBD_EVENT_IRQ_STATUS_REG) &
1977	       usbd_readl(udc, USBD_EVENT_IRQ_MASK_REG);
1978
1979	usbd_writel(udc, stat, USBD_EVENT_IRQ_STATUS_REG);
1980
1981	spin_lock(&udc->lock);
1982	if (stat & BIT(USBD_EVENT_IRQ_USB_LINK)) {
1983		/* VBUS toggled */
1984
1985		if (!(usbd_readl(udc, USBD_EVENTS_REG) &
1986		      USBD_EVENTS_USB_LINK_MASK) &&
1987		      udc->gadget.speed != USB_SPEED_UNKNOWN)
1988			dev_info(udc->dev, "link down\n");
1989
1990		udc->gadget.speed = USB_SPEED_UNKNOWN;
1991		disconnected = true;
1992	}
1993	if (stat & BIT(USBD_EVENT_IRQ_USB_RESET)) {
1994		bcm63xx_fifo_setup(udc);
1995		bcm63xx_fifo_reset(udc);
1996		bcm63xx_ep_setup(udc);
1997
1998		bcm63xx_update_wedge(udc, false);
1999
2000		udc->ep0_req_reset = 1;
2001		schedule_work(&udc->ep0_wq);
2002		bus_reset = true;
2003	}
2004	if (stat & BIT(USBD_EVENT_IRQ_SETUP)) {
2005		if (bcm63xx_update_link_speed(udc)) {
2006			bcm63xx_fifo_setup(udc);
2007			bcm63xx_ep_setup(udc);
2008		}
2009		bcm63xx_update_wedge(udc, true);
2010	}
2011	if (stat & BIT(USBD_EVENT_IRQ_SETCFG)) {
2012		bcm63xx_update_cfg_iface(udc);
2013		udc->ep0_req_set_cfg = 1;
2014		schedule_work(&udc->ep0_wq);
2015	}
2016	if (stat & BIT(USBD_EVENT_IRQ_SETINTF)) {
2017		bcm63xx_update_cfg_iface(udc);
2018		udc->ep0_req_set_iface = 1;
2019		schedule_work(&udc->ep0_wq);
2020	}
2021	spin_unlock(&udc->lock);
2022
2023	if (disconnected && udc->driver)
2024		udc->driver->disconnect(&udc->gadget);
2025	else if (bus_reset && udc->driver)
2026		usb_gadget_udc_reset(&udc->gadget, udc->driver);
2027
2028	return IRQ_HANDLED;
2029}
2030
2031/**
2032 * bcm63xx_udc_data_isr - ISR for data path events (IUDMA).
2033 * @irq: IRQ number (unused).
2034 * @dev_id: Reference to the IUDMA channel that generated the interrupt.
2035 *
2036 * For the two ep0 channels, we have special handling that triggers the
2037 * ep0 worker thread.  For normal bulk/intr channels, either queue up
2038 * the next buffer descriptor for the transaction (incomplete transaction),
2039 * or invoke the completion callback (complete transactions).
2040 */
2041static irqreturn_t bcm63xx_udc_data_isr(int irq, void *dev_id)
2042{
2043	struct iudma_ch *iudma = dev_id;
2044	struct bcm63xx_udc *udc = iudma->udc;
2045	struct bcm63xx_ep *bep;
2046	struct usb_request *req = NULL;
2047	struct bcm63xx_req *breq = NULL;
2048	int rc;
2049	bool is_done = false;
2050
2051	spin_lock(&udc->lock);
2052
2053	usb_dmac_writel(udc, ENETDMAC_IR_BUFDONE_MASK,
2054			ENETDMAC_IR_REG, iudma->ch_idx);
2055	bep = iudma->bep;
2056	rc = iudma_read(udc, iudma);
2057
2058	/* special handling for EP0 RX (0) and TX (1) */
2059	if (iudma->ch_idx == IUDMA_EP0_RXCHAN ||
2060	    iudma->ch_idx == IUDMA_EP0_TXCHAN) {
2061		req = udc->ep0_request;
2062		breq = our_req(req);
2063
2064		/* a single request could require multiple submissions */
2065		if (rc >= 0) {
2066			req->actual += rc;
2067
2068			if (req->actual >= req->length || breq->bd_bytes > rc) {
2069				udc->ep0_req_completed = 1;
2070				is_done = true;
2071				schedule_work(&udc->ep0_wq);
2072
2073				/* "actual" on a ZLP is 1 byte */
2074				req->actual = min(req->actual, req->length);
2075			} else {
2076				/* queue up the next BD (same request) */
2077				iudma_write(udc, iudma, breq);
2078			}
2079		}
2080	} else if (!list_empty(&bep->queue)) {
2081		breq = list_first_entry(&bep->queue, struct bcm63xx_req, queue);
2082		req = &breq->req;
2083
2084		if (rc >= 0) {
2085			req->actual += rc;
2086
2087			if (req->actual >= req->length || breq->bd_bytes > rc) {
2088				is_done = true;
2089				list_del(&breq->queue);
2090
2091				req->actual = min(req->actual, req->length);
2092
2093				if (!list_empty(&bep->queue)) {
2094					struct bcm63xx_req *next;
2095
2096					next = list_first_entry(&bep->queue,
2097						struct bcm63xx_req, queue);
2098					iudma_write(udc, iudma, next);
2099				}
2100			} else {
2101				iudma_write(udc, iudma, breq);
2102			}
2103		}
2104	}
2105	spin_unlock(&udc->lock);
2106
2107	if (is_done) {
2108		usb_gadget_unmap_request(&udc->gadget, req, iudma->is_tx);
2109		if (req->complete)
2110			req->complete(&bep->ep, req);
2111	}
2112
2113	return IRQ_HANDLED;
2114}
2115
2116/***********************************************************************
2117 * Debug filesystem
2118 ***********************************************************************/
2119
2120/*
2121 * bcm63xx_usbd_dbg_show - Show USBD controller state.
2122 * @s: seq_file to which the information will be written.
2123 * @p: Unused.
2124 *
2125 * This file nominally shows up as /sys/kernel/debug/bcm63xx_udc/usbd
2126 */
2127static int bcm63xx_usbd_dbg_show(struct seq_file *s, void *p)
2128{
2129	struct bcm63xx_udc *udc = s->private;
2130
2131	if (!udc->driver)
2132		return -ENODEV;
2133
2134	seq_printf(s, "ep0 state: %s\n",
2135		   bcm63xx_ep0_state_names[udc->ep0state]);
2136	seq_printf(s, "  pending requests: %s%s%s%s%s%s%s\n",
2137		   udc->ep0_req_reset ? "reset " : "",
2138		   udc->ep0_req_set_cfg ? "set_cfg " : "",
2139		   udc->ep0_req_set_iface ? "set_iface " : "",
2140		   udc->ep0_req_shutdown ? "shutdown " : "",
2141		   udc->ep0_request ? "pending " : "",
2142		   udc->ep0_req_completed ? "completed " : "",
2143		   udc->ep0_reply ? "reply " : "");
2144	seq_printf(s, "cfg: %d; iface: %d; alt_iface: %d\n",
2145		   udc->cfg, udc->iface, udc->alt_iface);
2146	seq_printf(s, "regs:\n");
2147	seq_printf(s, "  control: %08x; straps: %08x; status: %08x\n",
2148		   usbd_readl(udc, USBD_CONTROL_REG),
2149		   usbd_readl(udc, USBD_STRAPS_REG),
2150		   usbd_readl(udc, USBD_STATUS_REG));
2151	seq_printf(s, "  events:  %08x; stall:  %08x\n",
2152		   usbd_readl(udc, USBD_EVENTS_REG),
2153		   usbd_readl(udc, USBD_STALL_REG));
2154
2155	return 0;
2156}
2157DEFINE_SHOW_ATTRIBUTE(bcm63xx_usbd_dbg);
2158
2159/*
2160 * bcm63xx_iudma_dbg_show - Show IUDMA status and descriptors.
2161 * @s: seq_file to which the information will be written.
2162 * @p: Unused.
2163 *
2164 * This file nominally shows up as /sys/kernel/debug/bcm63xx_udc/iudma
2165 */
2166static int bcm63xx_iudma_dbg_show(struct seq_file *s, void *p)
2167{
2168	struct bcm63xx_udc *udc = s->private;
2169	int ch_idx, i;
2170	u32 sram2, sram3;
2171
2172	if (!udc->driver)
2173		return -ENODEV;
2174
2175	for (ch_idx = 0; ch_idx < BCM63XX_NUM_IUDMA; ch_idx++) {
2176		struct iudma_ch *iudma = &udc->iudma[ch_idx];
2177		struct list_head *pos;
2178
2179		seq_printf(s, "IUDMA channel %d -- ", ch_idx);
2180		switch (iudma_defaults[ch_idx].ep_type) {
2181		case BCMEP_CTRL:
2182			seq_printf(s, "control");
2183			break;
2184		case BCMEP_BULK:
2185			seq_printf(s, "bulk");
2186			break;
2187		case BCMEP_INTR:
2188			seq_printf(s, "interrupt");
2189			break;
2190		}
2191		seq_printf(s, ch_idx & 0x01 ? " tx" : " rx");
2192		seq_printf(s, " [ep%d]:\n",
2193			   max_t(int, iudma_defaults[ch_idx].ep_num, 0));
2194		seq_printf(s, "  cfg: %08x; irqstat: %08x; irqmask: %08x; maxburst: %08x\n",
2195			   usb_dmac_readl(udc, ENETDMAC_CHANCFG_REG, ch_idx),
2196			   usb_dmac_readl(udc, ENETDMAC_IR_REG, ch_idx),
2197			   usb_dmac_readl(udc, ENETDMAC_IRMASK_REG, ch_idx),
2198			   usb_dmac_readl(udc, ENETDMAC_MAXBURST_REG, ch_idx));
2199
2200		sram2 = usb_dmas_readl(udc, ENETDMAS_SRAM2_REG, ch_idx);
2201		sram3 = usb_dmas_readl(udc, ENETDMAS_SRAM3_REG, ch_idx);
2202		seq_printf(s, "  base: %08x; index: %04x_%04x; desc: %04x_%04x %08x\n",
2203			   usb_dmas_readl(udc, ENETDMAS_RSTART_REG, ch_idx),
2204			   sram2 >> 16, sram2 & 0xffff,
2205			   sram3 >> 16, sram3 & 0xffff,
2206			   usb_dmas_readl(udc, ENETDMAS_SRAM4_REG, ch_idx));
2207		seq_printf(s, "  desc: %d/%d used", iudma->n_bds_used,
2208			   iudma->n_bds);
2209
2210		if (iudma->bep) {
2211			i = 0;
2212			list_for_each(pos, &iudma->bep->queue)
2213				i++;
2214			seq_printf(s, "; %d queued\n", i);
2215		} else {
2216			seq_printf(s, "\n");
2217		}
2218
2219		for (i = 0; i < iudma->n_bds; i++) {
2220			struct bcm_enet_desc *d = &iudma->bd_ring[i];
2221
2222			seq_printf(s, "  %03x (%02x): len_stat: %04x_%04x; pa %08x",
2223				   i * sizeof(*d), i,
2224				   d->len_stat >> 16, d->len_stat & 0xffff,
2225				   d->address);
2226			if (d == iudma->read_bd)
2227				seq_printf(s, "   <<RD");
2228			if (d == iudma->write_bd)
2229				seq_printf(s, "   <<WR");
2230			seq_printf(s, "\n");
2231		}
2232
2233		seq_printf(s, "\n");
2234	}
2235
2236	return 0;
2237}
2238DEFINE_SHOW_ATTRIBUTE(bcm63xx_iudma_dbg);
2239
2240/**
2241 * bcm63xx_udc_init_debugfs - Create debugfs entries.
2242 * @udc: Reference to the device controller.
2243 */
2244static void bcm63xx_udc_init_debugfs(struct bcm63xx_udc *udc)
2245{
2246	struct dentry *root;
2247
2248	if (!IS_ENABLED(CONFIG_USB_GADGET_DEBUG_FS))
2249		return;
2250
2251	root = debugfs_create_dir(udc->gadget.name, usb_debug_root);
2252	udc->debugfs_root = root;
2253
2254	debugfs_create_file("usbd", 0400, root, udc, &bcm63xx_usbd_dbg_fops);
2255	debugfs_create_file("iudma", 0400, root, udc, &bcm63xx_iudma_dbg_fops);
2256}
2257
2258/**
2259 * bcm63xx_udc_cleanup_debugfs - Remove debugfs entries.
2260 * @udc: Reference to the device controller.
2261 *
2262 * debugfs_remove() is safe to call with a NULL argument.
2263 */
2264static void bcm63xx_udc_cleanup_debugfs(struct bcm63xx_udc *udc)
2265{
2266	debugfs_remove_recursive(udc->debugfs_root);
2267}
2268
2269/***********************************************************************
2270 * Driver init/exit
2271 ***********************************************************************/
2272
2273/**
2274 * bcm63xx_udc_probe - Initialize a new instance of the UDC.
2275 * @pdev: Platform device struct from the bcm63xx BSP code.
2276 *
2277 * Note that platform data is required, because pd.port_no varies from chip
2278 * to chip and is used to switch the correct USB port to device mode.
2279 */
2280static int bcm63xx_udc_probe(struct platform_device *pdev)
2281{
2282	struct device *dev = &pdev->dev;
2283	struct bcm63xx_usbd_platform_data *pd = dev_get_platdata(dev);
2284	struct bcm63xx_udc *udc;
2285	int rc = -ENOMEM, i, irq;
2286
2287	udc = devm_kzalloc(dev, sizeof(*udc), GFP_KERNEL);
2288	if (!udc)
2289		return -ENOMEM;
2290
2291	platform_set_drvdata(pdev, udc);
2292	udc->dev = dev;
2293	udc->pd = pd;
2294
2295	if (!pd) {
2296		dev_err(dev, "missing platform data\n");
2297		return -EINVAL;
2298	}
2299
2300	udc->usbd_regs = devm_platform_ioremap_resource(pdev, 0);
2301	if (IS_ERR(udc->usbd_regs))
2302		return PTR_ERR(udc->usbd_regs);
2303
2304	udc->iudma_regs = devm_platform_ioremap_resource(pdev, 1);
2305	if (IS_ERR(udc->iudma_regs))
2306		return PTR_ERR(udc->iudma_regs);
2307
2308	spin_lock_init(&udc->lock);
2309	INIT_WORK(&udc->ep0_wq, bcm63xx_ep0_process);
2310
2311	udc->gadget.ops = &bcm63xx_udc_ops;
2312	udc->gadget.name = dev_name(dev);
2313
2314	if (!pd->use_fullspeed && !use_fullspeed)
2315		udc->gadget.max_speed = USB_SPEED_HIGH;
2316	else
2317		udc->gadget.max_speed = USB_SPEED_FULL;
2318
2319	/* request clocks, allocate buffers, and clear any pending IRQs */
2320	rc = bcm63xx_init_udc_hw(udc);
2321	if (rc)
2322		return rc;
2323
2324	rc = -ENXIO;
2325
2326	/* IRQ resource #0: control interrupt (VBUS, speed, etc.) */
2327	irq = platform_get_irq(pdev, 0);
2328	if (irq < 0)
 
2329		goto out_uninit;
 
2330	if (devm_request_irq(dev, irq, &bcm63xx_udc_ctrl_isr, 0,
2331			     dev_name(dev), udc) < 0)
2332		goto report_request_failure;
2333
2334	/* IRQ resources #1-6: data interrupts for IUDMA channels 0-5 */
2335	for (i = 0; i < BCM63XX_NUM_IUDMA; i++) {
2336		irq = platform_get_irq(pdev, i + 1);
2337		if (irq < 0)
 
2338			goto out_uninit;
 
2339		if (devm_request_irq(dev, irq, &bcm63xx_udc_data_isr, 0,
2340				     dev_name(dev), &udc->iudma[i]) < 0)
2341			goto report_request_failure;
2342	}
2343
2344	bcm63xx_udc_init_debugfs(udc);
2345	rc = usb_add_gadget_udc(dev, &udc->gadget);
2346	if (!rc)
2347		return 0;
2348
2349	bcm63xx_udc_cleanup_debugfs(udc);
2350out_uninit:
2351	bcm63xx_uninit_udc_hw(udc);
2352	return rc;
2353
2354report_request_failure:
2355	dev_err(dev, "error requesting IRQ #%d\n", irq);
2356	goto out_uninit;
2357}
2358
2359/**
2360 * bcm63xx_udc_remove - Remove the device from the system.
2361 * @pdev: Platform device struct from the bcm63xx BSP code.
2362 */
2363static int bcm63xx_udc_remove(struct platform_device *pdev)
2364{
2365	struct bcm63xx_udc *udc = platform_get_drvdata(pdev);
2366
2367	bcm63xx_udc_cleanup_debugfs(udc);
2368	usb_del_gadget_udc(&udc->gadget);
2369	BUG_ON(udc->driver);
2370
2371	bcm63xx_uninit_udc_hw(udc);
2372
2373	return 0;
2374}
2375
2376static struct platform_driver bcm63xx_udc_driver = {
2377	.probe		= bcm63xx_udc_probe,
2378	.remove		= bcm63xx_udc_remove,
2379	.driver		= {
2380		.name	= DRV_MODULE_NAME,
2381	},
2382};
2383module_platform_driver(bcm63xx_udc_driver);
2384
2385MODULE_DESCRIPTION("BCM63xx USB Peripheral Controller");
2386MODULE_AUTHOR("Kevin Cernekee <cernekee@gmail.com>");
2387MODULE_LICENSE("GPL");
2388MODULE_ALIAS("platform:" DRV_MODULE_NAME);