Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2//
3// Driver for Cadence QSPI Controller
4//
5// Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6// Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7// Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8
9#include <linux/clk.h>
10#include <linux/completion.h>
11#include <linux/delay.h>
12#include <linux/dma-mapping.h>
13#include <linux/dmaengine.h>
14#include <linux/err.h>
15#include <linux/errno.h>
16#include <linux/firmware/xlnx-zynqmp.h>
17#include <linux/interrupt.h>
18#include <linux/io.h>
19#include <linux/iopoll.h>
20#include <linux/jiffies.h>
21#include <linux/kernel.h>
22#include <linux/log2.h>
23#include <linux/module.h>
24#include <linux/of.h>
25#include <linux/platform_device.h>
26#include <linux/pm_runtime.h>
27#include <linux/reset.h>
28#include <linux/sched.h>
29#include <linux/spi/spi.h>
30#include <linux/spi/spi-mem.h>
31#include <linux/timer.h>
32
33#define CQSPI_NAME "cadence-qspi"
34#define CQSPI_MAX_CHIPSELECT 16
35
36/* Quirks */
37#define CQSPI_NEEDS_WR_DELAY BIT(0)
38#define CQSPI_DISABLE_DAC_MODE BIT(1)
39#define CQSPI_SUPPORT_EXTERNAL_DMA BIT(2)
40#define CQSPI_NO_SUPPORT_WR_COMPLETION BIT(3)
41#define CQSPI_SLOW_SRAM BIT(4)
42#define CQSPI_NEEDS_APB_AHB_HAZARD_WAR BIT(5)
43
44/* Capabilities */
45#define CQSPI_SUPPORTS_OCTAL BIT(0)
46
47#define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
48
49enum {
50 CLK_QSPI_APB = 0,
51 CLK_QSPI_AHB,
52 CLK_QSPI_NUM,
53};
54
55struct cqspi_st;
56
57struct cqspi_flash_pdata {
58 struct cqspi_st *cqspi;
59 u32 clk_rate;
60 u32 read_delay;
61 u32 tshsl_ns;
62 u32 tsd2d_ns;
63 u32 tchsh_ns;
64 u32 tslch_ns;
65 u8 cs;
66};
67
68struct cqspi_st {
69 struct platform_device *pdev;
70 struct spi_controller *host;
71 struct clk *clk;
72 struct clk *clks[CLK_QSPI_NUM];
73 unsigned int sclk;
74
75 void __iomem *iobase;
76 void __iomem *ahb_base;
77 resource_size_t ahb_size;
78 struct completion transfer_complete;
79
80 struct dma_chan *rx_chan;
81 struct completion rx_dma_complete;
82 dma_addr_t mmap_phys_base;
83
84 int current_cs;
85 unsigned long master_ref_clk_hz;
86 bool is_decoded_cs;
87 u32 fifo_depth;
88 u32 fifo_width;
89 u32 num_chipselect;
90 bool rclk_en;
91 u32 trigger_address;
92 u32 wr_delay;
93 bool use_direct_mode;
94 bool use_direct_mode_wr;
95 struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
96 bool use_dma_read;
97 u32 pd_dev_id;
98 bool wr_completion;
99 bool slow_sram;
100 bool apb_ahb_hazard;
101
102 bool is_jh7110; /* Flag for StarFive JH7110 SoC */
103};
104
105struct cqspi_driver_platdata {
106 u32 hwcaps_mask;
107 u8 quirks;
108 int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
109 u_char *rxbuf, loff_t from_addr, size_t n_rx);
110 u32 (*get_dma_status)(struct cqspi_st *cqspi);
111 int (*jh7110_clk_init)(struct platform_device *pdev,
112 struct cqspi_st *cqspi);
113};
114
115/* Operation timeout value */
116#define CQSPI_TIMEOUT_MS 500
117#define CQSPI_READ_TIMEOUT_MS 10
118
119/* Runtime_pm autosuspend delay */
120#define CQSPI_AUTOSUSPEND_TIMEOUT 2000
121
122#define CQSPI_DUMMY_CLKS_PER_BYTE 8
123#define CQSPI_DUMMY_BYTES_MAX 4
124#define CQSPI_DUMMY_CLKS_MAX 31
125
126#define CQSPI_STIG_DATA_LEN_MAX 8
127
128/* Register map */
129#define CQSPI_REG_CONFIG 0x00
130#define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
131#define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL BIT(7)
132#define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
133#define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
134#define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
135#define CQSPI_REG_CONFIG_BAUD_LSB 19
136#define CQSPI_REG_CONFIG_DTR_PROTO BIT(24)
137#define CQSPI_REG_CONFIG_DUAL_OPCODE BIT(30)
138#define CQSPI_REG_CONFIG_IDLE_LSB 31
139#define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
140#define CQSPI_REG_CONFIG_BAUD_MASK 0xF
141
142#define CQSPI_REG_RD_INSTR 0x04
143#define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
144#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
145#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
146#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
147#define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
148#define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
149#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
150#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
151#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
152#define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
153
154#define CQSPI_REG_WR_INSTR 0x08
155#define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
156#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12
157#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16
158
159#define CQSPI_REG_DELAY 0x0C
160#define CQSPI_REG_DELAY_TSLCH_LSB 0
161#define CQSPI_REG_DELAY_TCHSH_LSB 8
162#define CQSPI_REG_DELAY_TSD2D_LSB 16
163#define CQSPI_REG_DELAY_TSHSL_LSB 24
164#define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
165#define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
166#define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
167#define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
168
169#define CQSPI_REG_READCAPTURE 0x10
170#define CQSPI_REG_READCAPTURE_BYPASS_LSB 0
171#define CQSPI_REG_READCAPTURE_DELAY_LSB 1
172#define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF
173
174#define CQSPI_REG_SIZE 0x14
175#define CQSPI_REG_SIZE_ADDRESS_LSB 0
176#define CQSPI_REG_SIZE_PAGE_LSB 4
177#define CQSPI_REG_SIZE_BLOCK_LSB 16
178#define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
179#define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
180#define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
181
182#define CQSPI_REG_SRAMPARTITION 0x18
183#define CQSPI_REG_INDIRECTTRIGGER 0x1C
184
185#define CQSPI_REG_DMA 0x20
186#define CQSPI_REG_DMA_SINGLE_LSB 0
187#define CQSPI_REG_DMA_BURST_LSB 8
188#define CQSPI_REG_DMA_SINGLE_MASK 0xFF
189#define CQSPI_REG_DMA_BURST_MASK 0xFF
190
191#define CQSPI_REG_REMAP 0x24
192#define CQSPI_REG_MODE_BIT 0x28
193
194#define CQSPI_REG_SDRAMLEVEL 0x2C
195#define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
196#define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
197#define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
198#define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
199
200#define CQSPI_REG_WR_COMPLETION_CTRL 0x38
201#define CQSPI_REG_WR_DISABLE_AUTO_POLL BIT(14)
202
203#define CQSPI_REG_IRQSTATUS 0x40
204#define CQSPI_REG_IRQMASK 0x44
205
206#define CQSPI_REG_INDIRECTRD 0x60
207#define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
208#define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
209#define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
210
211#define CQSPI_REG_INDIRECTRDWATERMARK 0x64
212#define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
213#define CQSPI_REG_INDIRECTRDBYTES 0x6C
214
215#define CQSPI_REG_CMDCTRL 0x90
216#define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
217#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
218#define CQSPI_REG_CMDCTRL_DUMMY_LSB 7
219#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
220#define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
221#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
222#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
223#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
224#define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
225#define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
226#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
227#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
228#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
229#define CQSPI_REG_CMDCTRL_DUMMY_MASK 0x1F
230
231#define CQSPI_REG_INDIRECTWR 0x70
232#define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
233#define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
234#define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
235
236#define CQSPI_REG_INDIRECTWRWATERMARK 0x74
237#define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
238#define CQSPI_REG_INDIRECTWRBYTES 0x7C
239
240#define CQSPI_REG_INDTRIG_ADDRRANGE 0x80
241
242#define CQSPI_REG_CMDADDRESS 0x94
243#define CQSPI_REG_CMDREADDATALOWER 0xA0
244#define CQSPI_REG_CMDREADDATAUPPER 0xA4
245#define CQSPI_REG_CMDWRITEDATALOWER 0xA8
246#define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
247
248#define CQSPI_REG_POLLING_STATUS 0xB0
249#define CQSPI_REG_POLLING_STATUS_DUMMY_LSB 16
250
251#define CQSPI_REG_OP_EXT_LOWER 0xE0
252#define CQSPI_REG_OP_EXT_READ_LSB 24
253#define CQSPI_REG_OP_EXT_WRITE_LSB 16
254#define CQSPI_REG_OP_EXT_STIG_LSB 0
255
256#define CQSPI_REG_VERSAL_DMA_SRC_ADDR 0x1000
257
258#define CQSPI_REG_VERSAL_DMA_DST_ADDR 0x1800
259#define CQSPI_REG_VERSAL_DMA_DST_SIZE 0x1804
260
261#define CQSPI_REG_VERSAL_DMA_DST_CTRL 0x180C
262
263#define CQSPI_REG_VERSAL_DMA_DST_I_STS 0x1814
264#define CQSPI_REG_VERSAL_DMA_DST_I_EN 0x1818
265#define CQSPI_REG_VERSAL_DMA_DST_I_DIS 0x181C
266#define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK BIT(1)
267
268#define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB 0x1828
269
270#define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL 0xF43FFA00
271#define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL 0x6
272
273/* Interrupt status bits */
274#define CQSPI_REG_IRQ_MODE_ERR BIT(0)
275#define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
276#define CQSPI_REG_IRQ_IND_COMP BIT(2)
277#define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3)
278#define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4)
279#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5)
280#define CQSPI_REG_IRQ_WATERMARK BIT(6)
281#define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12)
282
283#define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \
284 CQSPI_REG_IRQ_IND_SRAM_FULL | \
285 CQSPI_REG_IRQ_IND_COMP)
286
287#define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \
288 CQSPI_REG_IRQ_WATERMARK | \
289 CQSPI_REG_IRQ_UNDERFLOW)
290
291#define CQSPI_IRQ_STATUS_MASK 0x1FFFF
292#define CQSPI_DMA_UNALIGN 0x3
293
294#define CQSPI_REG_VERSAL_DMA_VAL 0x602
295
296static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
297{
298 u32 val;
299
300 return readl_relaxed_poll_timeout(reg, val,
301 (((clr ? ~val : val) & mask) == mask),
302 10, CQSPI_TIMEOUT_MS * 1000);
303}
304
305static bool cqspi_is_idle(struct cqspi_st *cqspi)
306{
307 u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
308
309 return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
310}
311
312static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
313{
314 u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
315
316 reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
317 return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
318}
319
320static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
321{
322 u32 dma_status;
323
324 dma_status = readl(cqspi->iobase +
325 CQSPI_REG_VERSAL_DMA_DST_I_STS);
326 writel(dma_status, cqspi->iobase +
327 CQSPI_REG_VERSAL_DMA_DST_I_STS);
328
329 return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
330}
331
332static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
333{
334 struct cqspi_st *cqspi = dev;
335 unsigned int irq_status;
336 struct device *device = &cqspi->pdev->dev;
337 const struct cqspi_driver_platdata *ddata;
338
339 ddata = of_device_get_match_data(device);
340
341 /* Read interrupt status */
342 irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
343
344 /* Clear interrupt */
345 writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
346
347 if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
348 if (ddata->get_dma_status(cqspi)) {
349 complete(&cqspi->transfer_complete);
350 return IRQ_HANDLED;
351 }
352 }
353
354 else if (!cqspi->slow_sram)
355 irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
356 else
357 irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
358
359 if (irq_status)
360 complete(&cqspi->transfer_complete);
361
362 return IRQ_HANDLED;
363}
364
365static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
366{
367 u32 rdreg = 0;
368
369 rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
370 rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
371 rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
372
373 return rdreg;
374}
375
376static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
377{
378 unsigned int dummy_clk;
379
380 if (!op->dummy.nbytes)
381 return 0;
382
383 dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
384 if (op->cmd.dtr)
385 dummy_clk /= 2;
386
387 return dummy_clk;
388}
389
390static int cqspi_wait_idle(struct cqspi_st *cqspi)
391{
392 const unsigned int poll_idle_retry = 3;
393 unsigned int count = 0;
394 unsigned long timeout;
395
396 timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
397 while (1) {
398 /*
399 * Read few times in succession to ensure the controller
400 * is indeed idle, that is, the bit does not transition
401 * low again.
402 */
403 if (cqspi_is_idle(cqspi))
404 count++;
405 else
406 count = 0;
407
408 if (count >= poll_idle_retry)
409 return 0;
410
411 if (time_after(jiffies, timeout)) {
412 /* Timeout, in busy mode. */
413 dev_err(&cqspi->pdev->dev,
414 "QSPI is still busy after %dms timeout.\n",
415 CQSPI_TIMEOUT_MS);
416 return -ETIMEDOUT;
417 }
418
419 cpu_relax();
420 }
421}
422
423static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
424{
425 void __iomem *reg_base = cqspi->iobase;
426 int ret;
427
428 /* Write the CMDCTRL without start execution. */
429 writel(reg, reg_base + CQSPI_REG_CMDCTRL);
430 /* Start execute */
431 reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
432 writel(reg, reg_base + CQSPI_REG_CMDCTRL);
433
434 /* Polling for completion. */
435 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
436 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
437 if (ret) {
438 dev_err(&cqspi->pdev->dev,
439 "Flash command execution timed out.\n");
440 return ret;
441 }
442
443 /* Polling QSPI idle status. */
444 return cqspi_wait_idle(cqspi);
445}
446
447static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
448 const struct spi_mem_op *op,
449 unsigned int shift)
450{
451 struct cqspi_st *cqspi = f_pdata->cqspi;
452 void __iomem *reg_base = cqspi->iobase;
453 unsigned int reg;
454 u8 ext;
455
456 if (op->cmd.nbytes != 2)
457 return -EINVAL;
458
459 /* Opcode extension is the LSB. */
460 ext = op->cmd.opcode & 0xff;
461
462 reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
463 reg &= ~(0xff << shift);
464 reg |= ext << shift;
465 writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
466
467 return 0;
468}
469
470static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
471 const struct spi_mem_op *op, unsigned int shift)
472{
473 struct cqspi_st *cqspi = f_pdata->cqspi;
474 void __iomem *reg_base = cqspi->iobase;
475 unsigned int reg;
476 int ret;
477
478 reg = readl(reg_base + CQSPI_REG_CONFIG);
479
480 /*
481 * We enable dual byte opcode here. The callers have to set up the
482 * extension opcode based on which type of operation it is.
483 */
484 if (op->cmd.dtr) {
485 reg |= CQSPI_REG_CONFIG_DTR_PROTO;
486 reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
487
488 /* Set up command opcode extension. */
489 ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
490 if (ret)
491 return ret;
492 } else {
493 reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
494 reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
495 }
496
497 writel(reg, reg_base + CQSPI_REG_CONFIG);
498
499 return cqspi_wait_idle(cqspi);
500}
501
502static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
503 const struct spi_mem_op *op)
504{
505 struct cqspi_st *cqspi = f_pdata->cqspi;
506 void __iomem *reg_base = cqspi->iobase;
507 u8 *rxbuf = op->data.buf.in;
508 u8 opcode;
509 size_t n_rx = op->data.nbytes;
510 unsigned int rdreg;
511 unsigned int reg;
512 unsigned int dummy_clk;
513 size_t read_len;
514 int status;
515
516 status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
517 if (status)
518 return status;
519
520 if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
521 dev_err(&cqspi->pdev->dev,
522 "Invalid input argument, len %zu rxbuf 0x%p\n",
523 n_rx, rxbuf);
524 return -EINVAL;
525 }
526
527 if (op->cmd.dtr)
528 opcode = op->cmd.opcode >> 8;
529 else
530 opcode = op->cmd.opcode;
531
532 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
533
534 rdreg = cqspi_calc_rdreg(op);
535 writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
536
537 dummy_clk = cqspi_calc_dummy(op);
538 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
539 return -EOPNOTSUPP;
540
541 if (dummy_clk)
542 reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
543 << CQSPI_REG_CMDCTRL_DUMMY_LSB;
544
545 reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
546
547 /* 0 means 1 byte. */
548 reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
549 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
550
551 /* setup ADDR BIT field */
552 if (op->addr.nbytes) {
553 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
554 reg |= ((op->addr.nbytes - 1) &
555 CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
556 << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
557
558 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
559 }
560
561 status = cqspi_exec_flash_cmd(cqspi, reg);
562 if (status)
563 return status;
564
565 reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
566
567 /* Put the read value into rx_buf */
568 read_len = (n_rx > 4) ? 4 : n_rx;
569 memcpy(rxbuf, ®, read_len);
570 rxbuf += read_len;
571
572 if (n_rx > 4) {
573 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
574
575 read_len = n_rx - read_len;
576 memcpy(rxbuf, ®, read_len);
577 }
578
579 /* Reset CMD_CTRL Reg once command read completes */
580 writel(0, reg_base + CQSPI_REG_CMDCTRL);
581
582 return 0;
583}
584
585static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
586 const struct spi_mem_op *op)
587{
588 struct cqspi_st *cqspi = f_pdata->cqspi;
589 void __iomem *reg_base = cqspi->iobase;
590 u8 opcode;
591 const u8 *txbuf = op->data.buf.out;
592 size_t n_tx = op->data.nbytes;
593 unsigned int reg;
594 unsigned int data;
595 size_t write_len;
596 int ret;
597
598 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
599 if (ret)
600 return ret;
601
602 if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
603 dev_err(&cqspi->pdev->dev,
604 "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
605 n_tx, txbuf);
606 return -EINVAL;
607 }
608
609 reg = cqspi_calc_rdreg(op);
610 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
611
612 if (op->cmd.dtr)
613 opcode = op->cmd.opcode >> 8;
614 else
615 opcode = op->cmd.opcode;
616
617 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
618
619 if (op->addr.nbytes) {
620 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
621 reg |= ((op->addr.nbytes - 1) &
622 CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
623 << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
624
625 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
626 }
627
628 if (n_tx) {
629 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
630 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
631 << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
632 data = 0;
633 write_len = (n_tx > 4) ? 4 : n_tx;
634 memcpy(&data, txbuf, write_len);
635 txbuf += write_len;
636 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
637
638 if (n_tx > 4) {
639 data = 0;
640 write_len = n_tx - 4;
641 memcpy(&data, txbuf, write_len);
642 writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
643 }
644 }
645
646 ret = cqspi_exec_flash_cmd(cqspi, reg);
647
648 /* Reset CMD_CTRL Reg once command write completes */
649 writel(0, reg_base + CQSPI_REG_CMDCTRL);
650
651 return ret;
652}
653
654static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
655 const struct spi_mem_op *op)
656{
657 struct cqspi_st *cqspi = f_pdata->cqspi;
658 void __iomem *reg_base = cqspi->iobase;
659 unsigned int dummy_clk = 0;
660 unsigned int reg;
661 int ret;
662 u8 opcode;
663
664 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
665 if (ret)
666 return ret;
667
668 if (op->cmd.dtr)
669 opcode = op->cmd.opcode >> 8;
670 else
671 opcode = op->cmd.opcode;
672
673 reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
674 reg |= cqspi_calc_rdreg(op);
675
676 /* Setup dummy clock cycles */
677 dummy_clk = cqspi_calc_dummy(op);
678
679 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
680 return -EOPNOTSUPP;
681
682 if (dummy_clk)
683 reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
684 << CQSPI_REG_RD_INSTR_DUMMY_LSB;
685
686 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
687
688 /* Set address width */
689 reg = readl(reg_base + CQSPI_REG_SIZE);
690 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
691 reg |= (op->addr.nbytes - 1);
692 writel(reg, reg_base + CQSPI_REG_SIZE);
693 return 0;
694}
695
696static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
697 u8 *rxbuf, loff_t from_addr,
698 const size_t n_rx)
699{
700 struct cqspi_st *cqspi = f_pdata->cqspi;
701 struct device *dev = &cqspi->pdev->dev;
702 void __iomem *reg_base = cqspi->iobase;
703 void __iomem *ahb_base = cqspi->ahb_base;
704 unsigned int remaining = n_rx;
705 unsigned int mod_bytes = n_rx % 4;
706 unsigned int bytes_to_read = 0;
707 u8 *rxbuf_end = rxbuf + n_rx;
708 int ret = 0;
709
710 writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
711 writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
712
713 /* Clear all interrupts. */
714 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
715
716 /*
717 * On SoCFPGA platform reading the SRAM is slow due to
718 * hardware limitation and causing read interrupt storm to CPU,
719 * so enabling only watermark interrupt to disable all read
720 * interrupts later as we want to run "bytes to read" loop with
721 * all the read interrupts disabled for max performance.
722 */
723
724 if (!cqspi->slow_sram)
725 writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
726 else
727 writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
728
729 reinit_completion(&cqspi->transfer_complete);
730 writel(CQSPI_REG_INDIRECTRD_START_MASK,
731 reg_base + CQSPI_REG_INDIRECTRD);
732
733 while (remaining > 0) {
734 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
735 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
736 ret = -ETIMEDOUT;
737
738 /*
739 * Disable all read interrupts until
740 * we are out of "bytes to read"
741 */
742 if (cqspi->slow_sram)
743 writel(0x0, reg_base + CQSPI_REG_IRQMASK);
744
745 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
746
747 if (ret && bytes_to_read == 0) {
748 dev_err(dev, "Indirect read timeout, no bytes\n");
749 goto failrd;
750 }
751
752 while (bytes_to_read != 0) {
753 unsigned int word_remain = round_down(remaining, 4);
754
755 bytes_to_read *= cqspi->fifo_width;
756 bytes_to_read = bytes_to_read > remaining ?
757 remaining : bytes_to_read;
758 bytes_to_read = round_down(bytes_to_read, 4);
759 /* Read 4 byte word chunks then single bytes */
760 if (bytes_to_read) {
761 ioread32_rep(ahb_base, rxbuf,
762 (bytes_to_read / 4));
763 } else if (!word_remain && mod_bytes) {
764 unsigned int temp = ioread32(ahb_base);
765
766 bytes_to_read = mod_bytes;
767 memcpy(rxbuf, &temp, min((unsigned int)
768 (rxbuf_end - rxbuf),
769 bytes_to_read));
770 }
771 rxbuf += bytes_to_read;
772 remaining -= bytes_to_read;
773 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
774 }
775
776 if (remaining > 0) {
777 reinit_completion(&cqspi->transfer_complete);
778 if (cqspi->slow_sram)
779 writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
780 }
781 }
782
783 /* Check indirect done status */
784 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
785 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
786 if (ret) {
787 dev_err(dev, "Indirect read completion error (%i)\n", ret);
788 goto failrd;
789 }
790
791 /* Disable interrupt */
792 writel(0, reg_base + CQSPI_REG_IRQMASK);
793
794 /* Clear indirect completion status */
795 writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
796
797 return 0;
798
799failrd:
800 /* Disable interrupt */
801 writel(0, reg_base + CQSPI_REG_IRQMASK);
802
803 /* Cancel the indirect read */
804 writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
805 reg_base + CQSPI_REG_INDIRECTRD);
806 return ret;
807}
808
809static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
810{
811 void __iomem *reg_base = cqspi->iobase;
812 unsigned int reg;
813
814 reg = readl(reg_base + CQSPI_REG_CONFIG);
815
816 if (enable)
817 reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
818 else
819 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
820
821 writel(reg, reg_base + CQSPI_REG_CONFIG);
822}
823
824static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
825 u_char *rxbuf, loff_t from_addr,
826 size_t n_rx)
827{
828 struct cqspi_st *cqspi = f_pdata->cqspi;
829 struct device *dev = &cqspi->pdev->dev;
830 void __iomem *reg_base = cqspi->iobase;
831 u32 reg, bytes_to_dma;
832 loff_t addr = from_addr;
833 void *buf = rxbuf;
834 dma_addr_t dma_addr;
835 u8 bytes_rem;
836 int ret = 0;
837
838 bytes_rem = n_rx % 4;
839 bytes_to_dma = (n_rx - bytes_rem);
840
841 if (!bytes_to_dma)
842 goto nondmard;
843
844 ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
845 if (ret)
846 return ret;
847
848 cqspi_controller_enable(cqspi, 0);
849
850 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
851 reg |= CQSPI_REG_CONFIG_DMA_MASK;
852 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
853
854 cqspi_controller_enable(cqspi, 1);
855
856 dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
857 if (dma_mapping_error(dev, dma_addr)) {
858 dev_err(dev, "dma mapping failed\n");
859 return -ENOMEM;
860 }
861
862 writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
863 writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
864 writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
865 reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
866
867 /* Clear all interrupts. */
868 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
869
870 /* Enable DMA done interrupt */
871 writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
872 reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
873
874 /* Default DMA periph configuration */
875 writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
876
877 /* Configure DMA Dst address */
878 writel(lower_32_bits(dma_addr),
879 reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
880 writel(upper_32_bits(dma_addr),
881 reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
882
883 /* Configure DMA Src address */
884 writel(cqspi->trigger_address, reg_base +
885 CQSPI_REG_VERSAL_DMA_SRC_ADDR);
886
887 /* Set DMA destination size */
888 writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
889
890 /* Set DMA destination control */
891 writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
892 reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
893
894 writel(CQSPI_REG_INDIRECTRD_START_MASK,
895 reg_base + CQSPI_REG_INDIRECTRD);
896
897 reinit_completion(&cqspi->transfer_complete);
898
899 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
900 msecs_to_jiffies(max_t(size_t, bytes_to_dma, 500)))) {
901 ret = -ETIMEDOUT;
902 goto failrd;
903 }
904
905 /* Disable DMA interrupt */
906 writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
907
908 /* Clear indirect completion status */
909 writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
910 cqspi->iobase + CQSPI_REG_INDIRECTRD);
911 dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
912
913 cqspi_controller_enable(cqspi, 0);
914
915 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
916 reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
917 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
918
919 cqspi_controller_enable(cqspi, 1);
920
921 ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
922 PM_OSPI_MUX_SEL_LINEAR);
923 if (ret)
924 return ret;
925
926nondmard:
927 if (bytes_rem) {
928 addr += bytes_to_dma;
929 buf += bytes_to_dma;
930 ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
931 bytes_rem);
932 if (ret)
933 return ret;
934 }
935
936 return 0;
937
938failrd:
939 /* Disable DMA interrupt */
940 writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
941
942 /* Cancel the indirect read */
943 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
944 reg_base + CQSPI_REG_INDIRECTRD);
945
946 dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
947
948 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
949 reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
950 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
951
952 zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
953
954 return ret;
955}
956
957static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
958 const struct spi_mem_op *op)
959{
960 unsigned int reg;
961 int ret;
962 struct cqspi_st *cqspi = f_pdata->cqspi;
963 void __iomem *reg_base = cqspi->iobase;
964 u8 opcode;
965
966 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
967 if (ret)
968 return ret;
969
970 if (op->cmd.dtr)
971 opcode = op->cmd.opcode >> 8;
972 else
973 opcode = op->cmd.opcode;
974
975 /* Set opcode. */
976 reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
977 reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
978 reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
979 writel(reg, reg_base + CQSPI_REG_WR_INSTR);
980 reg = cqspi_calc_rdreg(op);
981 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
982
983 /*
984 * SPI NAND flashes require the address of the status register to be
985 * passed in the Read SR command. Also, some SPI NOR flashes like the
986 * cypress Semper flash expect a 4-byte dummy address in the Read SR
987 * command in DTR mode.
988 *
989 * But this controller does not support address phase in the Read SR
990 * command when doing auto-HW polling. So, disable write completion
991 * polling on the controller's side. spinand and spi-nor will take
992 * care of polling the status register.
993 */
994 if (cqspi->wr_completion) {
995 reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
996 reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
997 writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
998 /*
999 * DAC mode require auto polling as flash needs to be polled
1000 * for write completion in case of bubble in SPI transaction
1001 * due to slow CPU/DMA master.
1002 */
1003 cqspi->use_direct_mode_wr = false;
1004 }
1005
1006 reg = readl(reg_base + CQSPI_REG_SIZE);
1007 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
1008 reg |= (op->addr.nbytes - 1);
1009 writel(reg, reg_base + CQSPI_REG_SIZE);
1010 return 0;
1011}
1012
1013static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
1014 loff_t to_addr, const u8 *txbuf,
1015 const size_t n_tx)
1016{
1017 struct cqspi_st *cqspi = f_pdata->cqspi;
1018 struct device *dev = &cqspi->pdev->dev;
1019 void __iomem *reg_base = cqspi->iobase;
1020 unsigned int remaining = n_tx;
1021 unsigned int write_bytes;
1022 int ret;
1023
1024 writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1025 writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
1026
1027 /* Clear all interrupts. */
1028 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
1029
1030 writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
1031
1032 reinit_completion(&cqspi->transfer_complete);
1033 writel(CQSPI_REG_INDIRECTWR_START_MASK,
1034 reg_base + CQSPI_REG_INDIRECTWR);
1035 /*
1036 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1037 * Controller programming sequence, couple of cycles of
1038 * QSPI_REF_CLK delay is required for the above bit to
1039 * be internally synchronized by the QSPI module. Provide 5
1040 * cycles of delay.
1041 */
1042 if (cqspi->wr_delay)
1043 ndelay(cqspi->wr_delay);
1044
1045 /*
1046 * If a hazard exists between the APB and AHB interfaces, perform a
1047 * dummy readback from the controller to ensure synchronization.
1048 */
1049 if (cqspi->apb_ahb_hazard)
1050 readl(reg_base + CQSPI_REG_INDIRECTWR);
1051
1052 while (remaining > 0) {
1053 size_t write_words, mod_bytes;
1054
1055 write_bytes = remaining;
1056 write_words = write_bytes / 4;
1057 mod_bytes = write_bytes % 4;
1058 /* Write 4 bytes at a time then single bytes. */
1059 if (write_words) {
1060 iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1061 txbuf += (write_words * 4);
1062 }
1063 if (mod_bytes) {
1064 unsigned int temp = 0xFFFFFFFF;
1065
1066 memcpy(&temp, txbuf, mod_bytes);
1067 iowrite32(temp, cqspi->ahb_base);
1068 txbuf += mod_bytes;
1069 }
1070
1071 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1072 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1073 dev_err(dev, "Indirect write timeout\n");
1074 ret = -ETIMEDOUT;
1075 goto failwr;
1076 }
1077
1078 remaining -= write_bytes;
1079
1080 if (remaining > 0)
1081 reinit_completion(&cqspi->transfer_complete);
1082 }
1083
1084 /* Check indirect done status */
1085 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
1086 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
1087 if (ret) {
1088 dev_err(dev, "Indirect write completion error (%i)\n", ret);
1089 goto failwr;
1090 }
1091
1092 /* Disable interrupt. */
1093 writel(0, reg_base + CQSPI_REG_IRQMASK);
1094
1095 /* Clear indirect completion status */
1096 writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1097
1098 cqspi_wait_idle(cqspi);
1099
1100 return 0;
1101
1102failwr:
1103 /* Disable interrupt. */
1104 writel(0, reg_base + CQSPI_REG_IRQMASK);
1105
1106 /* Cancel the indirect write */
1107 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1108 reg_base + CQSPI_REG_INDIRECTWR);
1109 return ret;
1110}
1111
1112static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1113{
1114 struct cqspi_st *cqspi = f_pdata->cqspi;
1115 void __iomem *reg_base = cqspi->iobase;
1116 unsigned int chip_select = f_pdata->cs;
1117 unsigned int reg;
1118
1119 reg = readl(reg_base + CQSPI_REG_CONFIG);
1120 if (cqspi->is_decoded_cs) {
1121 reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1122 } else {
1123 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1124
1125 /* Convert CS if without decoder.
1126 * CS0 to 4b'1110
1127 * CS1 to 4b'1101
1128 * CS2 to 4b'1011
1129 * CS3 to 4b'0111
1130 */
1131 chip_select = 0xF & ~(1 << chip_select);
1132 }
1133
1134 reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1135 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1136 reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1137 << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1138 writel(reg, reg_base + CQSPI_REG_CONFIG);
1139}
1140
1141static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1142 const unsigned int ns_val)
1143{
1144 unsigned int ticks;
1145
1146 ticks = ref_clk_hz / 1000; /* kHz */
1147 ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1148
1149 return ticks;
1150}
1151
1152static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1153{
1154 struct cqspi_st *cqspi = f_pdata->cqspi;
1155 void __iomem *iobase = cqspi->iobase;
1156 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1157 unsigned int tshsl, tchsh, tslch, tsd2d;
1158 unsigned int reg;
1159 unsigned int tsclk;
1160
1161 /* calculate the number of ref ticks for one sclk tick */
1162 tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1163
1164 tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1165 /* this particular value must be at least one sclk */
1166 if (tshsl < tsclk)
1167 tshsl = tsclk;
1168
1169 tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1170 tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1171 tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1172
1173 reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1174 << CQSPI_REG_DELAY_TSHSL_LSB;
1175 reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1176 << CQSPI_REG_DELAY_TCHSH_LSB;
1177 reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1178 << CQSPI_REG_DELAY_TSLCH_LSB;
1179 reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1180 << CQSPI_REG_DELAY_TSD2D_LSB;
1181 writel(reg, iobase + CQSPI_REG_DELAY);
1182}
1183
1184static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1185{
1186 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1187 void __iomem *reg_base = cqspi->iobase;
1188 u32 reg, div;
1189
1190 /* Recalculate the baudrate divisor based on QSPI specification. */
1191 div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1192
1193 /* Maximum baud divisor */
1194 if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1195 div = CQSPI_REG_CONFIG_BAUD_MASK;
1196 dev_warn(&cqspi->pdev->dev,
1197 "Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1198 cqspi->sclk, ref_clk_hz/((div+1)*2));
1199 }
1200
1201 reg = readl(reg_base + CQSPI_REG_CONFIG);
1202 reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1203 reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1204 writel(reg, reg_base + CQSPI_REG_CONFIG);
1205}
1206
1207static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1208 const bool bypass,
1209 const unsigned int delay)
1210{
1211 void __iomem *reg_base = cqspi->iobase;
1212 unsigned int reg;
1213
1214 reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1215
1216 if (bypass)
1217 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1218 else
1219 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1220
1221 reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1222 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1223
1224 reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1225 << CQSPI_REG_READCAPTURE_DELAY_LSB;
1226
1227 writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1228}
1229
1230static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1231 unsigned long sclk)
1232{
1233 struct cqspi_st *cqspi = f_pdata->cqspi;
1234 int switch_cs = (cqspi->current_cs != f_pdata->cs);
1235 int switch_ck = (cqspi->sclk != sclk);
1236
1237 if (switch_cs || switch_ck)
1238 cqspi_controller_enable(cqspi, 0);
1239
1240 /* Switch chip select. */
1241 if (switch_cs) {
1242 cqspi->current_cs = f_pdata->cs;
1243 cqspi_chipselect(f_pdata);
1244 }
1245
1246 /* Setup baudrate divisor and delays */
1247 if (switch_ck) {
1248 cqspi->sclk = sclk;
1249 cqspi_config_baudrate_div(cqspi);
1250 cqspi_delay(f_pdata);
1251 cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1252 f_pdata->read_delay);
1253 }
1254
1255 if (switch_cs || switch_ck)
1256 cqspi_controller_enable(cqspi, 1);
1257}
1258
1259static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1260 const struct spi_mem_op *op)
1261{
1262 struct cqspi_st *cqspi = f_pdata->cqspi;
1263 loff_t to = op->addr.val;
1264 size_t len = op->data.nbytes;
1265 const u_char *buf = op->data.buf.out;
1266 int ret;
1267
1268 ret = cqspi_write_setup(f_pdata, op);
1269 if (ret)
1270 return ret;
1271
1272 /*
1273 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1274 * address (all 0s) with the read status register command in DTR mode.
1275 * But this controller does not support sending dummy address bytes to
1276 * the flash when it is polling the write completion register in DTR
1277 * mode. So, we can not use direct mode when in DTR mode for writing
1278 * data.
1279 */
1280 if (!op->cmd.dtr && cqspi->use_direct_mode &&
1281 cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) {
1282 memcpy_toio(cqspi->ahb_base + to, buf, len);
1283 return cqspi_wait_idle(cqspi);
1284 }
1285
1286 return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1287}
1288
1289static void cqspi_rx_dma_callback(void *param)
1290{
1291 struct cqspi_st *cqspi = param;
1292
1293 complete(&cqspi->rx_dma_complete);
1294}
1295
1296static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1297 u_char *buf, loff_t from, size_t len)
1298{
1299 struct cqspi_st *cqspi = f_pdata->cqspi;
1300 struct device *dev = &cqspi->pdev->dev;
1301 enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1302 dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1303 int ret = 0;
1304 struct dma_async_tx_descriptor *tx;
1305 dma_cookie_t cookie;
1306 dma_addr_t dma_dst;
1307 struct device *ddev;
1308
1309 if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1310 memcpy_fromio(buf, cqspi->ahb_base + from, len);
1311 return 0;
1312 }
1313
1314 ddev = cqspi->rx_chan->device->dev;
1315 dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1316 if (dma_mapping_error(ddev, dma_dst)) {
1317 dev_err(dev, "dma mapping failed\n");
1318 return -ENOMEM;
1319 }
1320 tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1321 len, flags);
1322 if (!tx) {
1323 dev_err(dev, "device_prep_dma_memcpy error\n");
1324 ret = -EIO;
1325 goto err_unmap;
1326 }
1327
1328 tx->callback = cqspi_rx_dma_callback;
1329 tx->callback_param = cqspi;
1330 cookie = tx->tx_submit(tx);
1331 reinit_completion(&cqspi->rx_dma_complete);
1332
1333 ret = dma_submit_error(cookie);
1334 if (ret) {
1335 dev_err(dev, "dma_submit_error %d\n", cookie);
1336 ret = -EIO;
1337 goto err_unmap;
1338 }
1339
1340 dma_async_issue_pending(cqspi->rx_chan);
1341 if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1342 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1343 dmaengine_terminate_sync(cqspi->rx_chan);
1344 dev_err(dev, "DMA wait_for_completion_timeout\n");
1345 ret = -ETIMEDOUT;
1346 goto err_unmap;
1347 }
1348
1349err_unmap:
1350 dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1351
1352 return ret;
1353}
1354
1355static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1356 const struct spi_mem_op *op)
1357{
1358 struct cqspi_st *cqspi = f_pdata->cqspi;
1359 struct device *dev = &cqspi->pdev->dev;
1360 const struct cqspi_driver_platdata *ddata;
1361 loff_t from = op->addr.val;
1362 size_t len = op->data.nbytes;
1363 u_char *buf = op->data.buf.in;
1364 u64 dma_align = (u64)(uintptr_t)buf;
1365 int ret;
1366
1367 ddata = of_device_get_match_data(dev);
1368
1369 ret = cqspi_read_setup(f_pdata, op);
1370 if (ret)
1371 return ret;
1372
1373 if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1374 return cqspi_direct_read_execute(f_pdata, buf, from, len);
1375
1376 if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1377 virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1378 return ddata->indirect_read_dma(f_pdata, buf, from, len);
1379
1380 return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1381}
1382
1383static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1384{
1385 struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1386 struct cqspi_flash_pdata *f_pdata;
1387
1388 f_pdata = &cqspi->f_pdata[spi_get_chipselect(mem->spi, 0)];
1389 cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1390
1391 if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1392 /*
1393 * Performing reads in DAC mode forces to read minimum 4 bytes
1394 * which is unsupported on some flash devices during register
1395 * reads, prefer STIG mode for such small reads.
1396 */
1397 if (!op->addr.nbytes ||
1398 op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX)
1399 return cqspi_command_read(f_pdata, op);
1400
1401 return cqspi_read(f_pdata, op);
1402 }
1403
1404 if (!op->addr.nbytes || !op->data.buf.out)
1405 return cqspi_command_write(f_pdata, op);
1406
1407 return cqspi_write(f_pdata, op);
1408}
1409
1410static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1411{
1412 int ret;
1413 struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1414 struct device *dev = &cqspi->pdev->dev;
1415
1416 ret = pm_runtime_resume_and_get(dev);
1417 if (ret) {
1418 dev_err(&mem->spi->dev, "resume failed with %d\n", ret);
1419 return ret;
1420 }
1421
1422 ret = cqspi_mem_process(mem, op);
1423
1424 pm_runtime_mark_last_busy(dev);
1425 pm_runtime_put_autosuspend(dev);
1426
1427 if (ret)
1428 dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1429
1430 return ret;
1431}
1432
1433static bool cqspi_supports_mem_op(struct spi_mem *mem,
1434 const struct spi_mem_op *op)
1435{
1436 bool all_true, all_false;
1437
1438 /*
1439 * op->dummy.dtr is required for converting nbytes into ncycles.
1440 * Also, don't check the dtr field of the op phase having zero nbytes.
1441 */
1442 all_true = op->cmd.dtr &&
1443 (!op->addr.nbytes || op->addr.dtr) &&
1444 (!op->dummy.nbytes || op->dummy.dtr) &&
1445 (!op->data.nbytes || op->data.dtr);
1446
1447 all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1448 !op->data.dtr;
1449
1450 if (all_true) {
1451 /* Right now we only support 8-8-8 DTR mode. */
1452 if (op->cmd.nbytes && op->cmd.buswidth != 8)
1453 return false;
1454 if (op->addr.nbytes && op->addr.buswidth != 8)
1455 return false;
1456 if (op->data.nbytes && op->data.buswidth != 8)
1457 return false;
1458 } else if (!all_false) {
1459 /* Mixed DTR modes are not supported. */
1460 return false;
1461 }
1462
1463 return spi_mem_default_supports_op(mem, op);
1464}
1465
1466static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1467 struct cqspi_flash_pdata *f_pdata,
1468 struct device_node *np)
1469{
1470 if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1471 dev_err(&pdev->dev, "couldn't determine read-delay\n");
1472 return -ENXIO;
1473 }
1474
1475 if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1476 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1477 return -ENXIO;
1478 }
1479
1480 if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1481 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1482 return -ENXIO;
1483 }
1484
1485 if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1486 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1487 return -ENXIO;
1488 }
1489
1490 if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1491 dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1492 return -ENXIO;
1493 }
1494
1495 if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1496 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1497 return -ENXIO;
1498 }
1499
1500 return 0;
1501}
1502
1503static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1504{
1505 struct device *dev = &cqspi->pdev->dev;
1506 struct device_node *np = dev->of_node;
1507 u32 id[2];
1508
1509 cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1510
1511 if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1512 dev_err(dev, "couldn't determine fifo-depth\n");
1513 return -ENXIO;
1514 }
1515
1516 if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1517 dev_err(dev, "couldn't determine fifo-width\n");
1518 return -ENXIO;
1519 }
1520
1521 if (of_property_read_u32(np, "cdns,trigger-address",
1522 &cqspi->trigger_address)) {
1523 dev_err(dev, "couldn't determine trigger-address\n");
1524 return -ENXIO;
1525 }
1526
1527 if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1528 cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1529
1530 cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1531
1532 if (!of_property_read_u32_array(np, "power-domains", id,
1533 ARRAY_SIZE(id)))
1534 cqspi->pd_dev_id = id[1];
1535
1536 return 0;
1537}
1538
1539static void cqspi_controller_init(struct cqspi_st *cqspi)
1540{
1541 u32 reg;
1542
1543 cqspi_controller_enable(cqspi, 0);
1544
1545 /* Configure the remap address register, no remap */
1546 writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1547
1548 /* Disable all interrupts. */
1549 writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1550
1551 /* Configure the SRAM split to 1:1 . */
1552 writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1553
1554 /* Load indirect trigger address. */
1555 writel(cqspi->trigger_address,
1556 cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1557
1558 /* Program read watermark -- 1/2 of the FIFO. */
1559 writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1560 cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1561 /* Program write watermark -- 1/8 of the FIFO. */
1562 writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1563 cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1564
1565 /* Disable direct access controller */
1566 if (!cqspi->use_direct_mode) {
1567 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1568 reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1569 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1570 }
1571
1572 /* Enable DMA interface */
1573 if (cqspi->use_dma_read) {
1574 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1575 reg |= CQSPI_REG_CONFIG_DMA_MASK;
1576 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1577 }
1578
1579 cqspi_controller_enable(cqspi, 1);
1580}
1581
1582static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1583{
1584 dma_cap_mask_t mask;
1585
1586 dma_cap_zero(mask);
1587 dma_cap_set(DMA_MEMCPY, mask);
1588
1589 cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1590 if (IS_ERR(cqspi->rx_chan)) {
1591 int ret = PTR_ERR(cqspi->rx_chan);
1592
1593 cqspi->rx_chan = NULL;
1594 return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1595 }
1596 init_completion(&cqspi->rx_dma_complete);
1597
1598 return 0;
1599}
1600
1601static const char *cqspi_get_name(struct spi_mem *mem)
1602{
1603 struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1604 struct device *dev = &cqspi->pdev->dev;
1605
1606 return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
1607 spi_get_chipselect(mem->spi, 0));
1608}
1609
1610static const struct spi_controller_mem_ops cqspi_mem_ops = {
1611 .exec_op = cqspi_exec_mem_op,
1612 .get_name = cqspi_get_name,
1613 .supports_op = cqspi_supports_mem_op,
1614};
1615
1616static const struct spi_controller_mem_caps cqspi_mem_caps = {
1617 .dtr = true,
1618};
1619
1620static int cqspi_setup_flash(struct cqspi_st *cqspi)
1621{
1622 struct platform_device *pdev = cqspi->pdev;
1623 struct device *dev = &pdev->dev;
1624 struct device_node *np = dev->of_node;
1625 struct cqspi_flash_pdata *f_pdata;
1626 unsigned int cs;
1627 int ret;
1628
1629 /* Get flash device data */
1630 for_each_available_child_of_node(dev->of_node, np) {
1631 ret = of_property_read_u32(np, "reg", &cs);
1632 if (ret) {
1633 dev_err(dev, "Couldn't determine chip select.\n");
1634 of_node_put(np);
1635 return ret;
1636 }
1637
1638 if (cs >= CQSPI_MAX_CHIPSELECT) {
1639 dev_err(dev, "Chip select %d out of range.\n", cs);
1640 of_node_put(np);
1641 return -EINVAL;
1642 }
1643
1644 f_pdata = &cqspi->f_pdata[cs];
1645 f_pdata->cqspi = cqspi;
1646 f_pdata->cs = cs;
1647
1648 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1649 if (ret) {
1650 of_node_put(np);
1651 return ret;
1652 }
1653 }
1654
1655 return 0;
1656}
1657
1658static int cqspi_jh7110_clk_init(struct platform_device *pdev, struct cqspi_st *cqspi)
1659{
1660 static struct clk_bulk_data qspiclk[] = {
1661 { .id = "apb" },
1662 { .id = "ahb" },
1663 };
1664
1665 int ret = 0;
1666
1667 ret = devm_clk_bulk_get(&pdev->dev, ARRAY_SIZE(qspiclk), qspiclk);
1668 if (ret) {
1669 dev_err(&pdev->dev, "%s: failed to get qspi clocks\n", __func__);
1670 return ret;
1671 }
1672
1673 cqspi->clks[CLK_QSPI_APB] = qspiclk[0].clk;
1674 cqspi->clks[CLK_QSPI_AHB] = qspiclk[1].clk;
1675
1676 ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_APB]);
1677 if (ret) {
1678 dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_APB\n", __func__);
1679 return ret;
1680 }
1681
1682 ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_AHB]);
1683 if (ret) {
1684 dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_AHB\n", __func__);
1685 goto disable_apb_clk;
1686 }
1687
1688 cqspi->is_jh7110 = true;
1689
1690 return 0;
1691
1692disable_apb_clk:
1693 clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1694
1695 return ret;
1696}
1697
1698static void cqspi_jh7110_disable_clk(struct platform_device *pdev, struct cqspi_st *cqspi)
1699{
1700 clk_disable_unprepare(cqspi->clks[CLK_QSPI_AHB]);
1701 clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1702}
1703static int cqspi_probe(struct platform_device *pdev)
1704{
1705 const struct cqspi_driver_platdata *ddata;
1706 struct reset_control *rstc, *rstc_ocp, *rstc_ref;
1707 struct device *dev = &pdev->dev;
1708 struct spi_controller *host;
1709 struct resource *res_ahb;
1710 struct cqspi_st *cqspi;
1711 int ret;
1712 int irq;
1713
1714 host = devm_spi_alloc_host(&pdev->dev, sizeof(*cqspi));
1715 if (!host) {
1716 dev_err(&pdev->dev, "devm_spi_alloc_host failed\n");
1717 return -ENOMEM;
1718 }
1719 host->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1720 host->mem_ops = &cqspi_mem_ops;
1721 host->mem_caps = &cqspi_mem_caps;
1722 host->dev.of_node = pdev->dev.of_node;
1723
1724 cqspi = spi_controller_get_devdata(host);
1725
1726 cqspi->pdev = pdev;
1727 cqspi->host = host;
1728 cqspi->is_jh7110 = false;
1729 platform_set_drvdata(pdev, cqspi);
1730
1731 /* Obtain configuration from OF. */
1732 ret = cqspi_of_get_pdata(cqspi);
1733 if (ret) {
1734 dev_err(dev, "Cannot get mandatory OF data.\n");
1735 return -ENODEV;
1736 }
1737
1738 /* Obtain QSPI clock. */
1739 cqspi->clk = devm_clk_get(dev, NULL);
1740 if (IS_ERR(cqspi->clk)) {
1741 dev_err(dev, "Cannot claim QSPI clock.\n");
1742 ret = PTR_ERR(cqspi->clk);
1743 return ret;
1744 }
1745
1746 /* Obtain and remap controller address. */
1747 cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
1748 if (IS_ERR(cqspi->iobase)) {
1749 dev_err(dev, "Cannot remap controller address.\n");
1750 ret = PTR_ERR(cqspi->iobase);
1751 return ret;
1752 }
1753
1754 /* Obtain and remap AHB address. */
1755 cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
1756 if (IS_ERR(cqspi->ahb_base)) {
1757 dev_err(dev, "Cannot remap AHB address.\n");
1758 ret = PTR_ERR(cqspi->ahb_base);
1759 return ret;
1760 }
1761 cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1762 cqspi->ahb_size = resource_size(res_ahb);
1763
1764 init_completion(&cqspi->transfer_complete);
1765
1766 /* Obtain IRQ line. */
1767 irq = platform_get_irq(pdev, 0);
1768 if (irq < 0)
1769 return -ENXIO;
1770
1771 ret = pm_runtime_set_active(dev);
1772 if (ret)
1773 return ret;
1774
1775
1776 ret = clk_prepare_enable(cqspi->clk);
1777 if (ret) {
1778 dev_err(dev, "Cannot enable QSPI clock.\n");
1779 goto probe_clk_failed;
1780 }
1781
1782 /* Obtain QSPI reset control */
1783 rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1784 if (IS_ERR(rstc)) {
1785 ret = PTR_ERR(rstc);
1786 dev_err(dev, "Cannot get QSPI reset.\n");
1787 goto probe_reset_failed;
1788 }
1789
1790 rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1791 if (IS_ERR(rstc_ocp)) {
1792 ret = PTR_ERR(rstc_ocp);
1793 dev_err(dev, "Cannot get QSPI OCP reset.\n");
1794 goto probe_reset_failed;
1795 }
1796
1797 if (of_device_is_compatible(pdev->dev.of_node, "starfive,jh7110-qspi")) {
1798 rstc_ref = devm_reset_control_get_optional_exclusive(dev, "rstc_ref");
1799 if (IS_ERR(rstc_ref)) {
1800 ret = PTR_ERR(rstc_ref);
1801 dev_err(dev, "Cannot get QSPI REF reset.\n");
1802 goto probe_reset_failed;
1803 }
1804 reset_control_assert(rstc_ref);
1805 reset_control_deassert(rstc_ref);
1806 }
1807
1808 reset_control_assert(rstc);
1809 reset_control_deassert(rstc);
1810
1811 reset_control_assert(rstc_ocp);
1812 reset_control_deassert(rstc_ocp);
1813
1814 cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1815 host->max_speed_hz = cqspi->master_ref_clk_hz;
1816
1817 /* write completion is supported by default */
1818 cqspi->wr_completion = true;
1819
1820 ddata = of_device_get_match_data(dev);
1821 if (ddata) {
1822 if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1823 cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1824 cqspi->master_ref_clk_hz);
1825 if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1826 host->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1827 if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
1828 cqspi->use_direct_mode = true;
1829 cqspi->use_direct_mode_wr = true;
1830 }
1831 if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1832 cqspi->use_dma_read = true;
1833 if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1834 cqspi->wr_completion = false;
1835 if (ddata->quirks & CQSPI_SLOW_SRAM)
1836 cqspi->slow_sram = true;
1837 if (ddata->quirks & CQSPI_NEEDS_APB_AHB_HAZARD_WAR)
1838 cqspi->apb_ahb_hazard = true;
1839
1840 if (ddata->jh7110_clk_init) {
1841 ret = cqspi_jh7110_clk_init(pdev, cqspi);
1842 if (ret)
1843 goto probe_reset_failed;
1844 }
1845
1846 if (of_device_is_compatible(pdev->dev.of_node,
1847 "xlnx,versal-ospi-1.0")) {
1848 ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1849 if (ret)
1850 goto probe_reset_failed;
1851 }
1852 }
1853
1854 ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1855 pdev->name, cqspi);
1856 if (ret) {
1857 dev_err(dev, "Cannot request IRQ.\n");
1858 goto probe_reset_failed;
1859 }
1860
1861 cqspi_wait_idle(cqspi);
1862 cqspi_controller_init(cqspi);
1863 cqspi->current_cs = -1;
1864 cqspi->sclk = 0;
1865
1866 host->num_chipselect = cqspi->num_chipselect;
1867
1868 ret = cqspi_setup_flash(cqspi);
1869 if (ret) {
1870 dev_err(dev, "failed to setup flash parameters %d\n", ret);
1871 goto probe_setup_failed;
1872 }
1873
1874 if (cqspi->use_direct_mode) {
1875 ret = cqspi_request_mmap_dma(cqspi);
1876 if (ret == -EPROBE_DEFER)
1877 goto probe_setup_failed;
1878 }
1879
1880 ret = devm_pm_runtime_enable(dev);
1881 if (ret) {
1882 if (cqspi->rx_chan)
1883 dma_release_channel(cqspi->rx_chan);
1884 goto probe_setup_failed;
1885 }
1886
1887 pm_runtime_set_autosuspend_delay(dev, CQSPI_AUTOSUSPEND_TIMEOUT);
1888 pm_runtime_use_autosuspend(dev);
1889 pm_runtime_get_noresume(dev);
1890
1891 ret = spi_register_controller(host);
1892 if (ret) {
1893 dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1894 goto probe_setup_failed;
1895 }
1896
1897 pm_runtime_mark_last_busy(dev);
1898 pm_runtime_put_autosuspend(dev);
1899
1900 return 0;
1901probe_setup_failed:
1902 cqspi_controller_enable(cqspi, 0);
1903probe_reset_failed:
1904 if (cqspi->is_jh7110)
1905 cqspi_jh7110_disable_clk(pdev, cqspi);
1906 clk_disable_unprepare(cqspi->clk);
1907probe_clk_failed:
1908 return ret;
1909}
1910
1911static void cqspi_remove(struct platform_device *pdev)
1912{
1913 struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1914
1915 spi_unregister_controller(cqspi->host);
1916 cqspi_controller_enable(cqspi, 0);
1917
1918 if (cqspi->rx_chan)
1919 dma_release_channel(cqspi->rx_chan);
1920
1921 clk_disable_unprepare(cqspi->clk);
1922
1923 if (cqspi->is_jh7110)
1924 cqspi_jh7110_disable_clk(pdev, cqspi);
1925
1926 pm_runtime_put_sync(&pdev->dev);
1927 pm_runtime_disable(&pdev->dev);
1928}
1929
1930static int cqspi_runtime_suspend(struct device *dev)
1931{
1932 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1933
1934 cqspi_controller_enable(cqspi, 0);
1935 clk_disable_unprepare(cqspi->clk);
1936 return 0;
1937}
1938
1939static int cqspi_runtime_resume(struct device *dev)
1940{
1941 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1942
1943 clk_prepare_enable(cqspi->clk);
1944 cqspi_wait_idle(cqspi);
1945 cqspi_controller_init(cqspi);
1946
1947 cqspi->current_cs = -1;
1948 cqspi->sclk = 0;
1949 return 0;
1950}
1951
1952static int cqspi_suspend(struct device *dev)
1953{
1954 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1955
1956 return spi_controller_suspend(cqspi->host);
1957}
1958
1959static int cqspi_resume(struct device *dev)
1960{
1961 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1962
1963 return spi_controller_resume(cqspi->host);
1964}
1965
1966static const struct dev_pm_ops cqspi_dev_pm_ops = {
1967 RUNTIME_PM_OPS(cqspi_runtime_suspend, cqspi_runtime_resume, NULL)
1968 SYSTEM_SLEEP_PM_OPS(cqspi_suspend, cqspi_resume)
1969};
1970
1971static const struct cqspi_driver_platdata cdns_qspi = {
1972 .quirks = CQSPI_DISABLE_DAC_MODE,
1973};
1974
1975static const struct cqspi_driver_platdata k2g_qspi = {
1976 .quirks = CQSPI_NEEDS_WR_DELAY,
1977};
1978
1979static const struct cqspi_driver_platdata am654_ospi = {
1980 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1981 .quirks = CQSPI_NEEDS_WR_DELAY,
1982};
1983
1984static const struct cqspi_driver_platdata intel_lgm_qspi = {
1985 .quirks = CQSPI_DISABLE_DAC_MODE,
1986};
1987
1988static const struct cqspi_driver_platdata socfpga_qspi = {
1989 .quirks = CQSPI_DISABLE_DAC_MODE
1990 | CQSPI_NO_SUPPORT_WR_COMPLETION
1991 | CQSPI_SLOW_SRAM,
1992};
1993
1994static const struct cqspi_driver_platdata versal_ospi = {
1995 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1996 .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
1997 .indirect_read_dma = cqspi_versal_indirect_read_dma,
1998 .get_dma_status = cqspi_get_versal_dma_status,
1999};
2000
2001static const struct cqspi_driver_platdata jh7110_qspi = {
2002 .quirks = CQSPI_DISABLE_DAC_MODE,
2003 .jh7110_clk_init = cqspi_jh7110_clk_init,
2004};
2005
2006static const struct cqspi_driver_platdata pensando_cdns_qspi = {
2007 .quirks = CQSPI_NEEDS_APB_AHB_HAZARD_WAR | CQSPI_DISABLE_DAC_MODE,
2008};
2009
2010static const struct of_device_id cqspi_dt_ids[] = {
2011 {
2012 .compatible = "cdns,qspi-nor",
2013 .data = &cdns_qspi,
2014 },
2015 {
2016 .compatible = "ti,k2g-qspi",
2017 .data = &k2g_qspi,
2018 },
2019 {
2020 .compatible = "ti,am654-ospi",
2021 .data = &am654_ospi,
2022 },
2023 {
2024 .compatible = "intel,lgm-qspi",
2025 .data = &intel_lgm_qspi,
2026 },
2027 {
2028 .compatible = "xlnx,versal-ospi-1.0",
2029 .data = &versal_ospi,
2030 },
2031 {
2032 .compatible = "intel,socfpga-qspi",
2033 .data = &socfpga_qspi,
2034 },
2035 {
2036 .compatible = "starfive,jh7110-qspi",
2037 .data = &jh7110_qspi,
2038 },
2039 {
2040 .compatible = "amd,pensando-elba-qspi",
2041 .data = &pensando_cdns_qspi,
2042 },
2043 { /* end of table */ }
2044};
2045
2046MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
2047
2048static struct platform_driver cqspi_platform_driver = {
2049 .probe = cqspi_probe,
2050 .remove_new = cqspi_remove,
2051 .driver = {
2052 .name = CQSPI_NAME,
2053 .pm = pm_ptr(&cqspi_dev_pm_ops),
2054 .of_match_table = cqspi_dt_ids,
2055 },
2056};
2057
2058module_platform_driver(cqspi_platform_driver);
2059
2060MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
2061MODULE_LICENSE("GPL v2");
2062MODULE_ALIAS("platform:" CQSPI_NAME);
2063MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
2064MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
2065MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
2066MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
2067MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");
1// SPDX-License-Identifier: GPL-2.0-only
2//
3// Driver for Cadence QSPI Controller
4//
5// Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6// Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7// Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8
9#include <linux/clk.h>
10#include <linux/completion.h>
11#include <linux/delay.h>
12#include <linux/dma-mapping.h>
13#include <linux/dmaengine.h>
14#include <linux/err.h>
15#include <linux/errno.h>
16#include <linux/interrupt.h>
17#include <linux/io.h>
18#include <linux/iopoll.h>
19#include <linux/jiffies.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/of_device.h>
23#include <linux/of.h>
24#include <linux/platform_device.h>
25#include <linux/pm_runtime.h>
26#include <linux/reset.h>
27#include <linux/sched.h>
28#include <linux/spi/spi.h>
29#include <linux/spi/spi-mem.h>
30#include <linux/timer.h>
31
32#define CQSPI_NAME "cadence-qspi"
33#define CQSPI_MAX_CHIPSELECT 16
34
35/* Quirks */
36#define CQSPI_NEEDS_WR_DELAY BIT(0)
37#define CQSPI_DISABLE_DAC_MODE BIT(1)
38
39/* Capabilities */
40#define CQSPI_SUPPORTS_OCTAL BIT(0)
41
42struct cqspi_st;
43
44struct cqspi_flash_pdata {
45 struct cqspi_st *cqspi;
46 u32 clk_rate;
47 u32 read_delay;
48 u32 tshsl_ns;
49 u32 tsd2d_ns;
50 u32 tchsh_ns;
51 u32 tslch_ns;
52 u8 inst_width;
53 u8 addr_width;
54 u8 data_width;
55 u8 cs;
56};
57
58struct cqspi_st {
59 struct platform_device *pdev;
60
61 struct clk *clk;
62 unsigned int sclk;
63
64 void __iomem *iobase;
65 void __iomem *ahb_base;
66 resource_size_t ahb_size;
67 struct completion transfer_complete;
68
69 struct dma_chan *rx_chan;
70 struct completion rx_dma_complete;
71 dma_addr_t mmap_phys_base;
72
73 int current_cs;
74 unsigned long master_ref_clk_hz;
75 bool is_decoded_cs;
76 u32 fifo_depth;
77 u32 fifo_width;
78 bool rclk_en;
79 u32 trigger_address;
80 u32 wr_delay;
81 bool use_direct_mode;
82 struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
83};
84
85struct cqspi_driver_platdata {
86 u32 hwcaps_mask;
87 u8 quirks;
88};
89
90/* Operation timeout value */
91#define CQSPI_TIMEOUT_MS 500
92#define CQSPI_READ_TIMEOUT_MS 10
93
94/* Instruction type */
95#define CQSPI_INST_TYPE_SINGLE 0
96#define CQSPI_INST_TYPE_DUAL 1
97#define CQSPI_INST_TYPE_QUAD 2
98#define CQSPI_INST_TYPE_OCTAL 3
99
100#define CQSPI_DUMMY_CLKS_PER_BYTE 8
101#define CQSPI_DUMMY_BYTES_MAX 4
102#define CQSPI_DUMMY_CLKS_MAX 31
103
104#define CQSPI_STIG_DATA_LEN_MAX 8
105
106/* Register map */
107#define CQSPI_REG_CONFIG 0x00
108#define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
109#define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL BIT(7)
110#define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
111#define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
112#define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
113#define CQSPI_REG_CONFIG_BAUD_LSB 19
114#define CQSPI_REG_CONFIG_IDLE_LSB 31
115#define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
116#define CQSPI_REG_CONFIG_BAUD_MASK 0xF
117
118#define CQSPI_REG_RD_INSTR 0x04
119#define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
120#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
121#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
122#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
123#define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
124#define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
125#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
126#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
127#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
128#define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
129
130#define CQSPI_REG_WR_INSTR 0x08
131#define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
132#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12
133#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16
134
135#define CQSPI_REG_DELAY 0x0C
136#define CQSPI_REG_DELAY_TSLCH_LSB 0
137#define CQSPI_REG_DELAY_TCHSH_LSB 8
138#define CQSPI_REG_DELAY_TSD2D_LSB 16
139#define CQSPI_REG_DELAY_TSHSL_LSB 24
140#define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
141#define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
142#define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
143#define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
144
145#define CQSPI_REG_READCAPTURE 0x10
146#define CQSPI_REG_READCAPTURE_BYPASS_LSB 0
147#define CQSPI_REG_READCAPTURE_DELAY_LSB 1
148#define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF
149
150#define CQSPI_REG_SIZE 0x14
151#define CQSPI_REG_SIZE_ADDRESS_LSB 0
152#define CQSPI_REG_SIZE_PAGE_LSB 4
153#define CQSPI_REG_SIZE_BLOCK_LSB 16
154#define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
155#define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
156#define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
157
158#define CQSPI_REG_SRAMPARTITION 0x18
159#define CQSPI_REG_INDIRECTTRIGGER 0x1C
160
161#define CQSPI_REG_DMA 0x20
162#define CQSPI_REG_DMA_SINGLE_LSB 0
163#define CQSPI_REG_DMA_BURST_LSB 8
164#define CQSPI_REG_DMA_SINGLE_MASK 0xFF
165#define CQSPI_REG_DMA_BURST_MASK 0xFF
166
167#define CQSPI_REG_REMAP 0x24
168#define CQSPI_REG_MODE_BIT 0x28
169
170#define CQSPI_REG_SDRAMLEVEL 0x2C
171#define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
172#define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
173#define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
174#define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
175
176#define CQSPI_REG_IRQSTATUS 0x40
177#define CQSPI_REG_IRQMASK 0x44
178
179#define CQSPI_REG_INDIRECTRD 0x60
180#define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
181#define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
182#define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
183
184#define CQSPI_REG_INDIRECTRDWATERMARK 0x64
185#define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
186#define CQSPI_REG_INDIRECTRDBYTES 0x6C
187
188#define CQSPI_REG_CMDCTRL 0x90
189#define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
190#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
191#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
192#define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
193#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
194#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
195#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
196#define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
197#define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
198#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
199#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
200#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
201
202#define CQSPI_REG_INDIRECTWR 0x70
203#define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
204#define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
205#define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
206
207#define CQSPI_REG_INDIRECTWRWATERMARK 0x74
208#define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
209#define CQSPI_REG_INDIRECTWRBYTES 0x7C
210
211#define CQSPI_REG_CMDADDRESS 0x94
212#define CQSPI_REG_CMDREADDATALOWER 0xA0
213#define CQSPI_REG_CMDREADDATAUPPER 0xA4
214#define CQSPI_REG_CMDWRITEDATALOWER 0xA8
215#define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
216
217/* Interrupt status bits */
218#define CQSPI_REG_IRQ_MODE_ERR BIT(0)
219#define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
220#define CQSPI_REG_IRQ_IND_COMP BIT(2)
221#define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3)
222#define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4)
223#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5)
224#define CQSPI_REG_IRQ_WATERMARK BIT(6)
225#define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12)
226
227#define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \
228 CQSPI_REG_IRQ_IND_SRAM_FULL | \
229 CQSPI_REG_IRQ_IND_COMP)
230
231#define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \
232 CQSPI_REG_IRQ_WATERMARK | \
233 CQSPI_REG_IRQ_UNDERFLOW)
234
235#define CQSPI_IRQ_STATUS_MASK 0x1FFFF
236
237static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
238{
239 u32 val;
240
241 return readl_relaxed_poll_timeout(reg, val,
242 (((clr ? ~val : val) & mask) == mask),
243 10, CQSPI_TIMEOUT_MS * 1000);
244}
245
246static bool cqspi_is_idle(struct cqspi_st *cqspi)
247{
248 u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
249
250 return reg & (1 << CQSPI_REG_CONFIG_IDLE_LSB);
251}
252
253static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
254{
255 u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
256
257 reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
258 return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
259}
260
261static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
262{
263 struct cqspi_st *cqspi = dev;
264 unsigned int irq_status;
265
266 /* Read interrupt status */
267 irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
268
269 /* Clear interrupt */
270 writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
271
272 irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
273
274 if (irq_status)
275 complete(&cqspi->transfer_complete);
276
277 return IRQ_HANDLED;
278}
279
280static unsigned int cqspi_calc_rdreg(struct cqspi_flash_pdata *f_pdata)
281{
282 u32 rdreg = 0;
283
284 rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
285 rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
286 rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
287
288 return rdreg;
289}
290
291static int cqspi_wait_idle(struct cqspi_st *cqspi)
292{
293 const unsigned int poll_idle_retry = 3;
294 unsigned int count = 0;
295 unsigned long timeout;
296
297 timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
298 while (1) {
299 /*
300 * Read few times in succession to ensure the controller
301 * is indeed idle, that is, the bit does not transition
302 * low again.
303 */
304 if (cqspi_is_idle(cqspi))
305 count++;
306 else
307 count = 0;
308
309 if (count >= poll_idle_retry)
310 return 0;
311
312 if (time_after(jiffies, timeout)) {
313 /* Timeout, in busy mode. */
314 dev_err(&cqspi->pdev->dev,
315 "QSPI is still busy after %dms timeout.\n",
316 CQSPI_TIMEOUT_MS);
317 return -ETIMEDOUT;
318 }
319
320 cpu_relax();
321 }
322}
323
324static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
325{
326 void __iomem *reg_base = cqspi->iobase;
327 int ret;
328
329 /* Write the CMDCTRL without start execution. */
330 writel(reg, reg_base + CQSPI_REG_CMDCTRL);
331 /* Start execute */
332 reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
333 writel(reg, reg_base + CQSPI_REG_CMDCTRL);
334
335 /* Polling for completion. */
336 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
337 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
338 if (ret) {
339 dev_err(&cqspi->pdev->dev,
340 "Flash command execution timed out.\n");
341 return ret;
342 }
343
344 /* Polling QSPI idle status. */
345 return cqspi_wait_idle(cqspi);
346}
347
348static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
349 const struct spi_mem_op *op)
350{
351 struct cqspi_st *cqspi = f_pdata->cqspi;
352 void __iomem *reg_base = cqspi->iobase;
353 u8 *rxbuf = op->data.buf.in;
354 u8 opcode = op->cmd.opcode;
355 size_t n_rx = op->data.nbytes;
356 unsigned int rdreg;
357 unsigned int reg;
358 size_t read_len;
359 int status;
360
361 if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
362 dev_err(&cqspi->pdev->dev,
363 "Invalid input argument, len %zu rxbuf 0x%p\n",
364 n_rx, rxbuf);
365 return -EINVAL;
366 }
367
368 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
369
370 rdreg = cqspi_calc_rdreg(f_pdata);
371 writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
372
373 reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
374
375 /* 0 means 1 byte. */
376 reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
377 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
378 status = cqspi_exec_flash_cmd(cqspi, reg);
379 if (status)
380 return status;
381
382 reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
383
384 /* Put the read value into rx_buf */
385 read_len = (n_rx > 4) ? 4 : n_rx;
386 memcpy(rxbuf, ®, read_len);
387 rxbuf += read_len;
388
389 if (n_rx > 4) {
390 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
391
392 read_len = n_rx - read_len;
393 memcpy(rxbuf, ®, read_len);
394 }
395
396 return 0;
397}
398
399static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
400 const struct spi_mem_op *op)
401{
402 struct cqspi_st *cqspi = f_pdata->cqspi;
403 void __iomem *reg_base = cqspi->iobase;
404 const u8 opcode = op->cmd.opcode;
405 const u8 *txbuf = op->data.buf.out;
406 size_t n_tx = op->data.nbytes;
407 unsigned int reg;
408 unsigned int data;
409 size_t write_len;
410
411 if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
412 dev_err(&cqspi->pdev->dev,
413 "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
414 n_tx, txbuf);
415 return -EINVAL;
416 }
417
418 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
419
420 if (op->addr.nbytes) {
421 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
422 reg |= ((op->addr.nbytes - 1) &
423 CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
424 << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
425
426 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
427 }
428
429 if (n_tx) {
430 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
431 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
432 << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
433 data = 0;
434 write_len = (n_tx > 4) ? 4 : n_tx;
435 memcpy(&data, txbuf, write_len);
436 txbuf += write_len;
437 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
438
439 if (n_tx > 4) {
440 data = 0;
441 write_len = n_tx - 4;
442 memcpy(&data, txbuf, write_len);
443 writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
444 }
445 }
446
447 return cqspi_exec_flash_cmd(cqspi, reg);
448}
449
450static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
451 const struct spi_mem_op *op)
452{
453 struct cqspi_st *cqspi = f_pdata->cqspi;
454 void __iomem *reg_base = cqspi->iobase;
455 unsigned int dummy_clk = 0;
456 unsigned int reg;
457
458 reg = op->cmd.opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
459 reg |= cqspi_calc_rdreg(f_pdata);
460
461 /* Setup dummy clock cycles */
462 dummy_clk = op->dummy.nbytes * 8;
463 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
464 dummy_clk = CQSPI_DUMMY_CLKS_MAX;
465
466 if (dummy_clk)
467 reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
468 << CQSPI_REG_RD_INSTR_DUMMY_LSB;
469
470 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
471
472 /* Set address width */
473 reg = readl(reg_base + CQSPI_REG_SIZE);
474 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
475 reg |= (op->addr.nbytes - 1);
476 writel(reg, reg_base + CQSPI_REG_SIZE);
477 return 0;
478}
479
480static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
481 u8 *rxbuf, loff_t from_addr,
482 const size_t n_rx)
483{
484 struct cqspi_st *cqspi = f_pdata->cqspi;
485 struct device *dev = &cqspi->pdev->dev;
486 void __iomem *reg_base = cqspi->iobase;
487 void __iomem *ahb_base = cqspi->ahb_base;
488 unsigned int remaining = n_rx;
489 unsigned int mod_bytes = n_rx % 4;
490 unsigned int bytes_to_read = 0;
491 u8 *rxbuf_end = rxbuf + n_rx;
492 int ret = 0;
493
494 writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
495 writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
496
497 /* Clear all interrupts. */
498 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
499
500 writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
501
502 reinit_completion(&cqspi->transfer_complete);
503 writel(CQSPI_REG_INDIRECTRD_START_MASK,
504 reg_base + CQSPI_REG_INDIRECTRD);
505
506 while (remaining > 0) {
507 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
508 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
509 ret = -ETIMEDOUT;
510
511 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
512
513 if (ret && bytes_to_read == 0) {
514 dev_err(dev, "Indirect read timeout, no bytes\n");
515 goto failrd;
516 }
517
518 while (bytes_to_read != 0) {
519 unsigned int word_remain = round_down(remaining, 4);
520
521 bytes_to_read *= cqspi->fifo_width;
522 bytes_to_read = bytes_to_read > remaining ?
523 remaining : bytes_to_read;
524 bytes_to_read = round_down(bytes_to_read, 4);
525 /* Read 4 byte word chunks then single bytes */
526 if (bytes_to_read) {
527 ioread32_rep(ahb_base, rxbuf,
528 (bytes_to_read / 4));
529 } else if (!word_remain && mod_bytes) {
530 unsigned int temp = ioread32(ahb_base);
531
532 bytes_to_read = mod_bytes;
533 memcpy(rxbuf, &temp, min((unsigned int)
534 (rxbuf_end - rxbuf),
535 bytes_to_read));
536 }
537 rxbuf += bytes_to_read;
538 remaining -= bytes_to_read;
539 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
540 }
541
542 if (remaining > 0)
543 reinit_completion(&cqspi->transfer_complete);
544 }
545
546 /* Check indirect done status */
547 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
548 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
549 if (ret) {
550 dev_err(dev, "Indirect read completion error (%i)\n", ret);
551 goto failrd;
552 }
553
554 /* Disable interrupt */
555 writel(0, reg_base + CQSPI_REG_IRQMASK);
556
557 /* Clear indirect completion status */
558 writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
559
560 return 0;
561
562failrd:
563 /* Disable interrupt */
564 writel(0, reg_base + CQSPI_REG_IRQMASK);
565
566 /* Cancel the indirect read */
567 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
568 reg_base + CQSPI_REG_INDIRECTRD);
569 return ret;
570}
571
572static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
573 const struct spi_mem_op *op)
574{
575 unsigned int reg;
576 struct cqspi_st *cqspi = f_pdata->cqspi;
577 void __iomem *reg_base = cqspi->iobase;
578
579 /* Set opcode. */
580 reg = op->cmd.opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
581 writel(reg, reg_base + CQSPI_REG_WR_INSTR);
582 reg = cqspi_calc_rdreg(f_pdata);
583 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
584
585 reg = readl(reg_base + CQSPI_REG_SIZE);
586 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
587 reg |= (op->addr.nbytes - 1);
588 writel(reg, reg_base + CQSPI_REG_SIZE);
589 return 0;
590}
591
592static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
593 loff_t to_addr, const u8 *txbuf,
594 const size_t n_tx)
595{
596 struct cqspi_st *cqspi = f_pdata->cqspi;
597 struct device *dev = &cqspi->pdev->dev;
598 void __iomem *reg_base = cqspi->iobase;
599 unsigned int remaining = n_tx;
600 unsigned int write_bytes;
601 int ret;
602
603 writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
604 writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
605
606 /* Clear all interrupts. */
607 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
608
609 writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
610
611 reinit_completion(&cqspi->transfer_complete);
612 writel(CQSPI_REG_INDIRECTWR_START_MASK,
613 reg_base + CQSPI_REG_INDIRECTWR);
614 /*
615 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
616 * Controller programming sequence, couple of cycles of
617 * QSPI_REF_CLK delay is required for the above bit to
618 * be internally synchronized by the QSPI module. Provide 5
619 * cycles of delay.
620 */
621 if (cqspi->wr_delay)
622 ndelay(cqspi->wr_delay);
623
624 while (remaining > 0) {
625 size_t write_words, mod_bytes;
626
627 write_bytes = remaining;
628 write_words = write_bytes / 4;
629 mod_bytes = write_bytes % 4;
630 /* Write 4 bytes at a time then single bytes. */
631 if (write_words) {
632 iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
633 txbuf += (write_words * 4);
634 }
635 if (mod_bytes) {
636 unsigned int temp = 0xFFFFFFFF;
637
638 memcpy(&temp, txbuf, mod_bytes);
639 iowrite32(temp, cqspi->ahb_base);
640 txbuf += mod_bytes;
641 }
642
643 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
644 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
645 dev_err(dev, "Indirect write timeout\n");
646 ret = -ETIMEDOUT;
647 goto failwr;
648 }
649
650 remaining -= write_bytes;
651
652 if (remaining > 0)
653 reinit_completion(&cqspi->transfer_complete);
654 }
655
656 /* Check indirect done status */
657 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
658 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
659 if (ret) {
660 dev_err(dev, "Indirect write completion error (%i)\n", ret);
661 goto failwr;
662 }
663
664 /* Disable interrupt. */
665 writel(0, reg_base + CQSPI_REG_IRQMASK);
666
667 /* Clear indirect completion status */
668 writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
669
670 cqspi_wait_idle(cqspi);
671
672 return 0;
673
674failwr:
675 /* Disable interrupt. */
676 writel(0, reg_base + CQSPI_REG_IRQMASK);
677
678 /* Cancel the indirect write */
679 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
680 reg_base + CQSPI_REG_INDIRECTWR);
681 return ret;
682}
683
684static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
685{
686 struct cqspi_st *cqspi = f_pdata->cqspi;
687 void __iomem *reg_base = cqspi->iobase;
688 unsigned int chip_select = f_pdata->cs;
689 unsigned int reg;
690
691 reg = readl(reg_base + CQSPI_REG_CONFIG);
692 if (cqspi->is_decoded_cs) {
693 reg |= CQSPI_REG_CONFIG_DECODE_MASK;
694 } else {
695 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
696
697 /* Convert CS if without decoder.
698 * CS0 to 4b'1110
699 * CS1 to 4b'1101
700 * CS2 to 4b'1011
701 * CS3 to 4b'0111
702 */
703 chip_select = 0xF & ~(1 << chip_select);
704 }
705
706 reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
707 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
708 reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
709 << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
710 writel(reg, reg_base + CQSPI_REG_CONFIG);
711}
712
713static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
714 const unsigned int ns_val)
715{
716 unsigned int ticks;
717
718 ticks = ref_clk_hz / 1000; /* kHz */
719 ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
720
721 return ticks;
722}
723
724static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
725{
726 struct cqspi_st *cqspi = f_pdata->cqspi;
727 void __iomem *iobase = cqspi->iobase;
728 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
729 unsigned int tshsl, tchsh, tslch, tsd2d;
730 unsigned int reg;
731 unsigned int tsclk;
732
733 /* calculate the number of ref ticks for one sclk tick */
734 tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
735
736 tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
737 /* this particular value must be at least one sclk */
738 if (tshsl < tsclk)
739 tshsl = tsclk;
740
741 tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
742 tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
743 tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
744
745 reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
746 << CQSPI_REG_DELAY_TSHSL_LSB;
747 reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
748 << CQSPI_REG_DELAY_TCHSH_LSB;
749 reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
750 << CQSPI_REG_DELAY_TSLCH_LSB;
751 reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
752 << CQSPI_REG_DELAY_TSD2D_LSB;
753 writel(reg, iobase + CQSPI_REG_DELAY);
754}
755
756static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
757{
758 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
759 void __iomem *reg_base = cqspi->iobase;
760 u32 reg, div;
761
762 /* Recalculate the baudrate divisor based on QSPI specification. */
763 div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
764
765 reg = readl(reg_base + CQSPI_REG_CONFIG);
766 reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
767 reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
768 writel(reg, reg_base + CQSPI_REG_CONFIG);
769}
770
771static void cqspi_readdata_capture(struct cqspi_st *cqspi,
772 const bool bypass,
773 const unsigned int delay)
774{
775 void __iomem *reg_base = cqspi->iobase;
776 unsigned int reg;
777
778 reg = readl(reg_base + CQSPI_REG_READCAPTURE);
779
780 if (bypass)
781 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
782 else
783 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
784
785 reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
786 << CQSPI_REG_READCAPTURE_DELAY_LSB);
787
788 reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
789 << CQSPI_REG_READCAPTURE_DELAY_LSB;
790
791 writel(reg, reg_base + CQSPI_REG_READCAPTURE);
792}
793
794static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
795{
796 void __iomem *reg_base = cqspi->iobase;
797 unsigned int reg;
798
799 reg = readl(reg_base + CQSPI_REG_CONFIG);
800
801 if (enable)
802 reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
803 else
804 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
805
806 writel(reg, reg_base + CQSPI_REG_CONFIG);
807}
808
809static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
810 unsigned long sclk)
811{
812 struct cqspi_st *cqspi = f_pdata->cqspi;
813 int switch_cs = (cqspi->current_cs != f_pdata->cs);
814 int switch_ck = (cqspi->sclk != sclk);
815
816 if (switch_cs || switch_ck)
817 cqspi_controller_enable(cqspi, 0);
818
819 /* Switch chip select. */
820 if (switch_cs) {
821 cqspi->current_cs = f_pdata->cs;
822 cqspi_chipselect(f_pdata);
823 }
824
825 /* Setup baudrate divisor and delays */
826 if (switch_ck) {
827 cqspi->sclk = sclk;
828 cqspi_config_baudrate_div(cqspi);
829 cqspi_delay(f_pdata);
830 cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
831 f_pdata->read_delay);
832 }
833
834 if (switch_cs || switch_ck)
835 cqspi_controller_enable(cqspi, 1);
836}
837
838static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata,
839 const struct spi_mem_op *op)
840{
841 f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
842 f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
843 f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
844
845 if (op->data.dir == SPI_MEM_DATA_IN) {
846 switch (op->data.buswidth) {
847 case 1:
848 f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
849 break;
850 case 2:
851 f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
852 break;
853 case 4:
854 f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
855 break;
856 case 8:
857 f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
858 break;
859 default:
860 return -EINVAL;
861 }
862 }
863
864 return 0;
865}
866
867static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
868 const struct spi_mem_op *op)
869{
870 struct cqspi_st *cqspi = f_pdata->cqspi;
871 loff_t to = op->addr.val;
872 size_t len = op->data.nbytes;
873 const u_char *buf = op->data.buf.out;
874 int ret;
875
876 ret = cqspi_set_protocol(f_pdata, op);
877 if (ret)
878 return ret;
879
880 ret = cqspi_write_setup(f_pdata, op);
881 if (ret)
882 return ret;
883
884 if (cqspi->use_direct_mode && ((to + len) <= cqspi->ahb_size)) {
885 memcpy_toio(cqspi->ahb_base + to, buf, len);
886 return cqspi_wait_idle(cqspi);
887 }
888
889 return cqspi_indirect_write_execute(f_pdata, to, buf, len);
890}
891
892static void cqspi_rx_dma_callback(void *param)
893{
894 struct cqspi_st *cqspi = param;
895
896 complete(&cqspi->rx_dma_complete);
897}
898
899static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
900 u_char *buf, loff_t from, size_t len)
901{
902 struct cqspi_st *cqspi = f_pdata->cqspi;
903 struct device *dev = &cqspi->pdev->dev;
904 enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
905 dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
906 int ret = 0;
907 struct dma_async_tx_descriptor *tx;
908 dma_cookie_t cookie;
909 dma_addr_t dma_dst;
910 struct device *ddev;
911
912 if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
913 memcpy_fromio(buf, cqspi->ahb_base + from, len);
914 return 0;
915 }
916
917 ddev = cqspi->rx_chan->device->dev;
918 dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
919 if (dma_mapping_error(ddev, dma_dst)) {
920 dev_err(dev, "dma mapping failed\n");
921 return -ENOMEM;
922 }
923 tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
924 len, flags);
925 if (!tx) {
926 dev_err(dev, "device_prep_dma_memcpy error\n");
927 ret = -EIO;
928 goto err_unmap;
929 }
930
931 tx->callback = cqspi_rx_dma_callback;
932 tx->callback_param = cqspi;
933 cookie = tx->tx_submit(tx);
934 reinit_completion(&cqspi->rx_dma_complete);
935
936 ret = dma_submit_error(cookie);
937 if (ret) {
938 dev_err(dev, "dma_submit_error %d\n", cookie);
939 ret = -EIO;
940 goto err_unmap;
941 }
942
943 dma_async_issue_pending(cqspi->rx_chan);
944 if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
945 msecs_to_jiffies(len))) {
946 dmaengine_terminate_sync(cqspi->rx_chan);
947 dev_err(dev, "DMA wait_for_completion_timeout\n");
948 ret = -ETIMEDOUT;
949 goto err_unmap;
950 }
951
952err_unmap:
953 dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
954
955 return ret;
956}
957
958static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
959 const struct spi_mem_op *op)
960{
961 struct cqspi_st *cqspi = f_pdata->cqspi;
962 loff_t from = op->addr.val;
963 size_t len = op->data.nbytes;
964 u_char *buf = op->data.buf.in;
965 int ret;
966
967 ret = cqspi_set_protocol(f_pdata, op);
968 if (ret)
969 return ret;
970
971 ret = cqspi_read_setup(f_pdata, op);
972 if (ret)
973 return ret;
974
975 if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
976 return cqspi_direct_read_execute(f_pdata, buf, from, len);
977
978 return cqspi_indirect_read_execute(f_pdata, buf, from, len);
979}
980
981static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
982{
983 struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
984 struct cqspi_flash_pdata *f_pdata;
985
986 f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
987 cqspi_configure(f_pdata, mem->spi->max_speed_hz);
988
989 if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
990 if (!op->addr.nbytes)
991 return cqspi_command_read(f_pdata, op);
992
993 return cqspi_read(f_pdata, op);
994 }
995
996 if (!op->addr.nbytes || !op->data.buf.out)
997 return cqspi_command_write(f_pdata, op);
998
999 return cqspi_write(f_pdata, op);
1000}
1001
1002static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1003{
1004 int ret;
1005
1006 ret = cqspi_mem_process(mem, op);
1007 if (ret)
1008 dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1009
1010 return ret;
1011}
1012
1013static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1014 struct cqspi_flash_pdata *f_pdata,
1015 struct device_node *np)
1016{
1017 if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1018 dev_err(&pdev->dev, "couldn't determine read-delay\n");
1019 return -ENXIO;
1020 }
1021
1022 if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1023 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1024 return -ENXIO;
1025 }
1026
1027 if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1028 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1029 return -ENXIO;
1030 }
1031
1032 if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1033 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1034 return -ENXIO;
1035 }
1036
1037 if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1038 dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1039 return -ENXIO;
1040 }
1041
1042 if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1043 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1044 return -ENXIO;
1045 }
1046
1047 return 0;
1048}
1049
1050static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1051{
1052 struct device *dev = &cqspi->pdev->dev;
1053 struct device_node *np = dev->of_node;
1054
1055 cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1056
1057 if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1058 dev_err(dev, "couldn't determine fifo-depth\n");
1059 return -ENXIO;
1060 }
1061
1062 if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1063 dev_err(dev, "couldn't determine fifo-width\n");
1064 return -ENXIO;
1065 }
1066
1067 if (of_property_read_u32(np, "cdns,trigger-address",
1068 &cqspi->trigger_address)) {
1069 dev_err(dev, "couldn't determine trigger-address\n");
1070 return -ENXIO;
1071 }
1072
1073 cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1074
1075 return 0;
1076}
1077
1078static void cqspi_controller_init(struct cqspi_st *cqspi)
1079{
1080 u32 reg;
1081
1082 cqspi_controller_enable(cqspi, 0);
1083
1084 /* Configure the remap address register, no remap */
1085 writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1086
1087 /* Disable all interrupts. */
1088 writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1089
1090 /* Configure the SRAM split to 1:1 . */
1091 writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1092
1093 /* Load indirect trigger address. */
1094 writel(cqspi->trigger_address,
1095 cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1096
1097 /* Program read watermark -- 1/2 of the FIFO. */
1098 writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1099 cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1100 /* Program write watermark -- 1/8 of the FIFO. */
1101 writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1102 cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1103
1104 /* Enable Direct Access Controller */
1105 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1106 reg |= CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1107 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1108
1109 cqspi_controller_enable(cqspi, 1);
1110}
1111
1112static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1113{
1114 dma_cap_mask_t mask;
1115
1116 dma_cap_zero(mask);
1117 dma_cap_set(DMA_MEMCPY, mask);
1118
1119 cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1120 if (IS_ERR(cqspi->rx_chan)) {
1121 int ret = PTR_ERR(cqspi->rx_chan);
1122
1123 if (ret != -EPROBE_DEFER)
1124 dev_err(&cqspi->pdev->dev, "No Rx DMA available\n");
1125 cqspi->rx_chan = NULL;
1126 return ret;
1127 }
1128 init_completion(&cqspi->rx_dma_complete);
1129
1130 return 0;
1131}
1132
1133static const char *cqspi_get_name(struct spi_mem *mem)
1134{
1135 struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1136 struct device *dev = &cqspi->pdev->dev;
1137
1138 return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
1139}
1140
1141static const struct spi_controller_mem_ops cqspi_mem_ops = {
1142 .exec_op = cqspi_exec_mem_op,
1143 .get_name = cqspi_get_name,
1144};
1145
1146static int cqspi_setup_flash(struct cqspi_st *cqspi)
1147{
1148 struct platform_device *pdev = cqspi->pdev;
1149 struct device *dev = &pdev->dev;
1150 struct device_node *np = dev->of_node;
1151 struct cqspi_flash_pdata *f_pdata;
1152 unsigned int cs;
1153 int ret;
1154
1155 /* Get flash device data */
1156 for_each_available_child_of_node(dev->of_node, np) {
1157 ret = of_property_read_u32(np, "reg", &cs);
1158 if (ret) {
1159 dev_err(dev, "Couldn't determine chip select.\n");
1160 return ret;
1161 }
1162
1163 if (cs >= CQSPI_MAX_CHIPSELECT) {
1164 dev_err(dev, "Chip select %d out of range.\n", cs);
1165 return -EINVAL;
1166 }
1167
1168 f_pdata = &cqspi->f_pdata[cs];
1169 f_pdata->cqspi = cqspi;
1170 f_pdata->cs = cs;
1171
1172 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1173 if (ret)
1174 return ret;
1175 }
1176
1177 return 0;
1178}
1179
1180static int cqspi_probe(struct platform_device *pdev)
1181{
1182 const struct cqspi_driver_platdata *ddata;
1183 struct reset_control *rstc, *rstc_ocp;
1184 struct device *dev = &pdev->dev;
1185 struct spi_master *master;
1186 struct resource *res_ahb;
1187 struct cqspi_st *cqspi;
1188 struct resource *res;
1189 int ret;
1190 int irq;
1191
1192 master = spi_alloc_master(&pdev->dev, sizeof(*cqspi));
1193 if (!master) {
1194 dev_err(&pdev->dev, "spi_alloc_master failed\n");
1195 return -ENOMEM;
1196 }
1197 master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1198 master->mem_ops = &cqspi_mem_ops;
1199 master->dev.of_node = pdev->dev.of_node;
1200
1201 cqspi = spi_master_get_devdata(master);
1202
1203 cqspi->pdev = pdev;
1204
1205 /* Obtain configuration from OF. */
1206 ret = cqspi_of_get_pdata(cqspi);
1207 if (ret) {
1208 dev_err(dev, "Cannot get mandatory OF data.\n");
1209 ret = -ENODEV;
1210 goto probe_master_put;
1211 }
1212
1213 /* Obtain QSPI clock. */
1214 cqspi->clk = devm_clk_get(dev, NULL);
1215 if (IS_ERR(cqspi->clk)) {
1216 dev_err(dev, "Cannot claim QSPI clock.\n");
1217 ret = PTR_ERR(cqspi->clk);
1218 goto probe_master_put;
1219 }
1220
1221 /* Obtain and remap controller address. */
1222 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1223 cqspi->iobase = devm_ioremap_resource(dev, res);
1224 if (IS_ERR(cqspi->iobase)) {
1225 dev_err(dev, "Cannot remap controller address.\n");
1226 ret = PTR_ERR(cqspi->iobase);
1227 goto probe_master_put;
1228 }
1229
1230 /* Obtain and remap AHB address. */
1231 res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1232 cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
1233 if (IS_ERR(cqspi->ahb_base)) {
1234 dev_err(dev, "Cannot remap AHB address.\n");
1235 ret = PTR_ERR(cqspi->ahb_base);
1236 goto probe_master_put;
1237 }
1238 cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1239 cqspi->ahb_size = resource_size(res_ahb);
1240
1241 init_completion(&cqspi->transfer_complete);
1242
1243 /* Obtain IRQ line. */
1244 irq = platform_get_irq(pdev, 0);
1245 if (irq < 0) {
1246 ret = -ENXIO;
1247 goto probe_master_put;
1248 }
1249
1250 pm_runtime_enable(dev);
1251 ret = pm_runtime_get_sync(dev);
1252 if (ret < 0) {
1253 pm_runtime_put_noidle(dev);
1254 goto probe_master_put;
1255 }
1256
1257 ret = clk_prepare_enable(cqspi->clk);
1258 if (ret) {
1259 dev_err(dev, "Cannot enable QSPI clock.\n");
1260 goto probe_clk_failed;
1261 }
1262
1263 /* Obtain QSPI reset control */
1264 rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1265 if (IS_ERR(rstc)) {
1266 dev_err(dev, "Cannot get QSPI reset.\n");
1267 goto probe_reset_failed;
1268 }
1269
1270 rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1271 if (IS_ERR(rstc_ocp)) {
1272 dev_err(dev, "Cannot get QSPI OCP reset.\n");
1273 goto probe_reset_failed;
1274 }
1275
1276 reset_control_assert(rstc);
1277 reset_control_deassert(rstc);
1278
1279 reset_control_assert(rstc_ocp);
1280 reset_control_deassert(rstc_ocp);
1281
1282 cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1283 ddata = of_device_get_match_data(dev);
1284 if (ddata) {
1285 if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1286 cqspi->wr_delay = 5 * DIV_ROUND_UP(NSEC_PER_SEC,
1287 cqspi->master_ref_clk_hz);
1288 if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1289 master->mode_bits |= SPI_RX_OCTAL;
1290 if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
1291 cqspi->use_direct_mode = true;
1292 }
1293
1294 ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1295 pdev->name, cqspi);
1296 if (ret) {
1297 dev_err(dev, "Cannot request IRQ.\n");
1298 goto probe_reset_failed;
1299 }
1300
1301 cqspi_wait_idle(cqspi);
1302 cqspi_controller_init(cqspi);
1303 cqspi->current_cs = -1;
1304 cqspi->sclk = 0;
1305
1306 ret = cqspi_setup_flash(cqspi);
1307 if (ret) {
1308 dev_err(dev, "failed to setup flash parameters %d\n", ret);
1309 goto probe_setup_failed;
1310 }
1311
1312 if (cqspi->use_direct_mode) {
1313 ret = cqspi_request_mmap_dma(cqspi);
1314 if (ret == -EPROBE_DEFER)
1315 goto probe_setup_failed;
1316 }
1317
1318 ret = devm_spi_register_master(dev, master);
1319 if (ret) {
1320 dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1321 goto probe_setup_failed;
1322 }
1323
1324 return 0;
1325probe_setup_failed:
1326 cqspi_controller_enable(cqspi, 0);
1327probe_reset_failed:
1328 clk_disable_unprepare(cqspi->clk);
1329probe_clk_failed:
1330 pm_runtime_put_sync(dev);
1331 pm_runtime_disable(dev);
1332probe_master_put:
1333 spi_master_put(master);
1334 return ret;
1335}
1336
1337static int cqspi_remove(struct platform_device *pdev)
1338{
1339 struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1340
1341 cqspi_controller_enable(cqspi, 0);
1342
1343 if (cqspi->rx_chan)
1344 dma_release_channel(cqspi->rx_chan);
1345
1346 clk_disable_unprepare(cqspi->clk);
1347
1348 pm_runtime_put_sync(&pdev->dev);
1349 pm_runtime_disable(&pdev->dev);
1350
1351 return 0;
1352}
1353
1354#ifdef CONFIG_PM_SLEEP
1355static int cqspi_suspend(struct device *dev)
1356{
1357 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1358
1359 cqspi_controller_enable(cqspi, 0);
1360 return 0;
1361}
1362
1363static int cqspi_resume(struct device *dev)
1364{
1365 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1366
1367 cqspi_controller_enable(cqspi, 1);
1368 return 0;
1369}
1370
1371static const struct dev_pm_ops cqspi__dev_pm_ops = {
1372 .suspend = cqspi_suspend,
1373 .resume = cqspi_resume,
1374};
1375
1376#define CQSPI_DEV_PM_OPS (&cqspi__dev_pm_ops)
1377#else
1378#define CQSPI_DEV_PM_OPS NULL
1379#endif
1380
1381static const struct cqspi_driver_platdata cdns_qspi = {
1382 .quirks = CQSPI_DISABLE_DAC_MODE,
1383};
1384
1385static const struct cqspi_driver_platdata k2g_qspi = {
1386 .quirks = CQSPI_NEEDS_WR_DELAY,
1387};
1388
1389static const struct cqspi_driver_platdata am654_ospi = {
1390 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1391 .quirks = CQSPI_NEEDS_WR_DELAY,
1392};
1393
1394static const struct of_device_id cqspi_dt_ids[] = {
1395 {
1396 .compatible = "cdns,qspi-nor",
1397 .data = &cdns_qspi,
1398 },
1399 {
1400 .compatible = "ti,k2g-qspi",
1401 .data = &k2g_qspi,
1402 },
1403 {
1404 .compatible = "ti,am654-ospi",
1405 .data = &am654_ospi,
1406 },
1407 { /* end of table */ }
1408};
1409
1410MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1411
1412static struct platform_driver cqspi_platform_driver = {
1413 .probe = cqspi_probe,
1414 .remove = cqspi_remove,
1415 .driver = {
1416 .name = CQSPI_NAME,
1417 .pm = CQSPI_DEV_PM_OPS,
1418 .of_match_table = cqspi_dt_ids,
1419 },
1420};
1421
1422module_platform_driver(cqspi_platform_driver);
1423
1424MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1425MODULE_LICENSE("GPL v2");
1426MODULE_ALIAS("platform:" CQSPI_NAME);
1427MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1428MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
1429MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
1430MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");