Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/******************************************************************************
   3
   4  Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
   5
   6
   7  Contact Information:
   8  Intel Linux Wireless <ilw@linux.intel.com>
   9  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  10
  11  Portions of this file are based on the sample_* files provided by Wireless
  12  Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
  13  <jt@hpl.hp.com>
  14
  15  Portions of this file are based on the Host AP project,
  16  Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
  17    <j@w1.fi>
  18  Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
  19
  20  Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
  21  ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
  22  available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
  23
  24******************************************************************************/
  25/*
  26
  27 Initial driver on which this is based was developed by Janusz Gorycki,
  28 Maciej Urbaniak, and Maciej Sosnowski.
  29
  30 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
  31
  32Theory of Operation
  33
  34Tx - Commands and Data
  35
  36Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
  37Each TBD contains a pointer to the physical (dma_addr_t) address of data being
  38sent to the firmware as well as the length of the data.
  39
  40The host writes to the TBD queue at the WRITE index.  The WRITE index points
  41to the _next_ packet to be written and is advanced when after the TBD has been
  42filled.
  43
  44The firmware pulls from the TBD queue at the READ index.  The READ index points
  45to the currently being read entry, and is advanced once the firmware is
  46done with a packet.
  47
  48When data is sent to the firmware, the first TBD is used to indicate to the
  49firmware if a Command or Data is being sent.  If it is Command, all of the
  50command information is contained within the physical address referred to by the
  51TBD.  If it is Data, the first TBD indicates the type of data packet, number
  52of fragments, etc.  The next TBD then refers to the actual packet location.
  53
  54The Tx flow cycle is as follows:
  55
  561) ipw2100_tx() is called by kernel with SKB to transmit
  572) Packet is move from the tx_free_list and appended to the transmit pending
  58   list (tx_pend_list)
  593) work is scheduled to move pending packets into the shared circular queue.
  604) when placing packet in the circular queue, the incoming SKB is DMA mapped
  61   to a physical address.  That address is entered into a TBD.  Two TBDs are
  62   filled out.  The first indicating a data packet, the second referring to the
  63   actual payload data.
  645) the packet is removed from tx_pend_list and placed on the end of the
  65   firmware pending list (fw_pend_list)
  666) firmware is notified that the WRITE index has
  677) Once the firmware has processed the TBD, INTA is triggered.
  688) For each Tx interrupt received from the firmware, the READ index is checked
  69   to see which TBDs are done being processed.
  709) For each TBD that has been processed, the ISR pulls the oldest packet
  71   from the fw_pend_list.
  7210)The packet structure contained in the fw_pend_list is then used
  73   to unmap the DMA address and to free the SKB originally passed to the driver
  74   from the kernel.
  7511)The packet structure is placed onto the tx_free_list
  76
  77The above steps are the same for commands, only the msg_free_list/msg_pend_list
  78are used instead of tx_free_list/tx_pend_list
  79
  80...
  81
  82Critical Sections / Locking :
  83
  84There are two locks utilized.  The first is the low level lock (priv->low_lock)
  85that protects the following:
  86
  87- Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
  88
  89  tx_free_list : Holds pre-allocated Tx buffers.
  90    TAIL modified in __ipw2100_tx_process()
  91    HEAD modified in ipw2100_tx()
  92
  93  tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
  94    TAIL modified ipw2100_tx()
  95    HEAD modified by ipw2100_tx_send_data()
  96
  97  msg_free_list : Holds pre-allocated Msg (Command) buffers
  98    TAIL modified in __ipw2100_tx_process()
  99    HEAD modified in ipw2100_hw_send_command()
 100
 101  msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
 102    TAIL modified in ipw2100_hw_send_command()
 103    HEAD modified in ipw2100_tx_send_commands()
 104
 105  The flow of data on the TX side is as follows:
 106
 107  MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
 108  TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
 109
 110  The methods that work on the TBD ring are protected via priv->low_lock.
 111
 112- The internal data state of the device itself
 113- Access to the firmware read/write indexes for the BD queues
 114  and associated logic
 115
 116All external entry functions are locked with the priv->action_lock to ensure
 117that only one external action is invoked at a time.
 118
 119
 120*/
 121
 122#include <linux/compiler.h>
 123#include <linux/errno.h>
 124#include <linux/if_arp.h>
 125#include <linux/in6.h>
 126#include <linux/in.h>
 127#include <linux/ip.h>
 128#include <linux/kernel.h>
 129#include <linux/kmod.h>
 130#include <linux/module.h>
 131#include <linux/netdevice.h>
 132#include <linux/ethtool.h>
 133#include <linux/pci.h>
 134#include <linux/dma-mapping.h>
 135#include <linux/proc_fs.h>
 136#include <linux/skbuff.h>
 137#include <linux/uaccess.h>
 138#include <asm/io.h>
 139#include <linux/fs.h>
 140#include <linux/mm.h>
 141#include <linux/slab.h>
 142#include <linux/unistd.h>
 143#include <linux/stringify.h>
 144#include <linux/tcp.h>
 145#include <linux/types.h>
 146#include <linux/time.h>
 147#include <linux/firmware.h>
 148#include <linux/acpi.h>
 149#include <linux/ctype.h>
 150#include <linux/pm_qos.h>
 151
 152#include <net/lib80211.h>
 153
 154#include "ipw2100.h"
 155#include "ipw.h"
 156
 157#define IPW2100_VERSION "git-1.2.2"
 158
 159#define DRV_NAME	"ipw2100"
 160#define DRV_VERSION	IPW2100_VERSION
 161#define DRV_DESCRIPTION	"Intel(R) PRO/Wireless 2100 Network Driver"
 162#define DRV_COPYRIGHT	"Copyright(c) 2003-2006 Intel Corporation"
 163
 164static struct pm_qos_request ipw2100_pm_qos_req;
 165
 166/* Debugging stuff */
 167#ifdef CONFIG_IPW2100_DEBUG
 168#define IPW2100_RX_DEBUG	/* Reception debugging */
 169#endif
 170
 171MODULE_DESCRIPTION(DRV_DESCRIPTION);
 172MODULE_VERSION(DRV_VERSION);
 173MODULE_AUTHOR(DRV_COPYRIGHT);
 174MODULE_LICENSE("GPL");
 175
 176static int debug = 0;
 177static int network_mode = 0;
 178static int channel = 0;
 179static int associate = 0;
 180static int disable = 0;
 181#ifdef CONFIG_PM
 182static struct ipw2100_fw ipw2100_firmware;
 183#endif
 184
 185#include <linux/moduleparam.h>
 186module_param(debug, int, 0444);
 187module_param_named(mode, network_mode, int, 0444);
 188module_param(channel, int, 0444);
 189module_param(associate, int, 0444);
 190module_param(disable, int, 0444);
 191
 192MODULE_PARM_DESC(debug, "debug level");
 193MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
 194MODULE_PARM_DESC(channel, "channel");
 195MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
 196MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
 197
 198static u32 ipw2100_debug_level = IPW_DL_NONE;
 199
 200#ifdef CONFIG_IPW2100_DEBUG
 201#define IPW_DEBUG(level, message...) \
 202do { \
 203	if (ipw2100_debug_level & (level)) { \
 204		printk(KERN_DEBUG "ipw2100: %s ", __func__); \
 
 205		printk(message); \
 206	} \
 207} while (0)
 208#else
 209#define IPW_DEBUG(level, message...) do {} while (0)
 210#endif				/* CONFIG_IPW2100_DEBUG */
 211
 212#ifdef CONFIG_IPW2100_DEBUG
 213static const char *command_types[] = {
 214	"undefined",
 215	"unused",		/* HOST_ATTENTION */
 216	"HOST_COMPLETE",
 217	"unused",		/* SLEEP */
 218	"unused",		/* HOST_POWER_DOWN */
 219	"unused",
 220	"SYSTEM_CONFIG",
 221	"unused",		/* SET_IMR */
 222	"SSID",
 223	"MANDATORY_BSSID",
 224	"AUTHENTICATION_TYPE",
 225	"ADAPTER_ADDRESS",
 226	"PORT_TYPE",
 227	"INTERNATIONAL_MODE",
 228	"CHANNEL",
 229	"RTS_THRESHOLD",
 230	"FRAG_THRESHOLD",
 231	"POWER_MODE",
 232	"TX_RATES",
 233	"BASIC_TX_RATES",
 234	"WEP_KEY_INFO",
 235	"unused",
 236	"unused",
 237	"unused",
 238	"unused",
 239	"WEP_KEY_INDEX",
 240	"WEP_FLAGS",
 241	"ADD_MULTICAST",
 242	"CLEAR_ALL_MULTICAST",
 243	"BEACON_INTERVAL",
 244	"ATIM_WINDOW",
 245	"CLEAR_STATISTICS",
 246	"undefined",
 247	"undefined",
 248	"undefined",
 249	"undefined",
 250	"TX_POWER_INDEX",
 251	"undefined",
 252	"undefined",
 253	"undefined",
 254	"undefined",
 255	"undefined",
 256	"undefined",
 257	"BROADCAST_SCAN",
 258	"CARD_DISABLE",
 259	"PREFERRED_BSSID",
 260	"SET_SCAN_OPTIONS",
 261	"SCAN_DWELL_TIME",
 262	"SWEEP_TABLE",
 263	"AP_OR_STATION_TABLE",
 264	"GROUP_ORDINALS",
 265	"SHORT_RETRY_LIMIT",
 266	"LONG_RETRY_LIMIT",
 267	"unused",		/* SAVE_CALIBRATION */
 268	"unused",		/* RESTORE_CALIBRATION */
 269	"undefined",
 270	"undefined",
 271	"undefined",
 272	"HOST_PRE_POWER_DOWN",
 273	"unused",		/* HOST_INTERRUPT_COALESCING */
 274	"undefined",
 275	"CARD_DISABLE_PHY_OFF",
 276	"MSDU_TX_RATES",
 277	"undefined",
 278	"SET_STATION_STAT_BITS",
 279	"CLEAR_STATIONS_STAT_BITS",
 280	"LEAP_ROGUE_MODE",
 281	"SET_SECURITY_INFORMATION",
 282	"DISASSOCIATION_BSSID",
 283	"SET_WPA_ASS_IE"
 284};
 285#endif
 286
 287static const long ipw2100_frequencies[] = {
 288	2412, 2417, 2422, 2427,
 289	2432, 2437, 2442, 2447,
 290	2452, 2457, 2462, 2467,
 291	2472, 2484
 292};
 293
 294#define FREQ_COUNT	ARRAY_SIZE(ipw2100_frequencies)
 295
 296static struct ieee80211_rate ipw2100_bg_rates[] = {
 297	{ .bitrate = 10 },
 298	{ .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 299	{ .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 300	{ .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 301};
 302
 303#define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
 304
 305/* Pre-decl until we get the code solid and then we can clean it up */
 306static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
 307static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
 308static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
 309
 310static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
 311static void ipw2100_queues_free(struct ipw2100_priv *priv);
 312static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
 313
 314static int ipw2100_fw_download(struct ipw2100_priv *priv,
 315			       struct ipw2100_fw *fw);
 316static int ipw2100_get_firmware(struct ipw2100_priv *priv,
 317				struct ipw2100_fw *fw);
 318static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
 319				 size_t max);
 
 
 320static void ipw2100_release_firmware(struct ipw2100_priv *priv,
 321				     struct ipw2100_fw *fw);
 322static int ipw2100_ucode_download(struct ipw2100_priv *priv,
 323				  struct ipw2100_fw *fw);
 324static void ipw2100_wx_event_work(struct work_struct *work);
 325static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
 326static const struct iw_handler_def ipw2100_wx_handler_def;
 327
 328static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
 329{
 330	struct ipw2100_priv *priv = libipw_priv(dev);
 331
 332	*val = ioread32(priv->ioaddr + reg);
 333	IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
 334}
 335
 336static inline void write_register(struct net_device *dev, u32 reg, u32 val)
 337{
 338	struct ipw2100_priv *priv = libipw_priv(dev);
 339
 340	iowrite32(val, priv->ioaddr + reg);
 341	IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
 342}
 343
 344static inline void read_register_word(struct net_device *dev, u32 reg,
 345				      u16 * val)
 346{
 347	struct ipw2100_priv *priv = libipw_priv(dev);
 348
 349	*val = ioread16(priv->ioaddr + reg);
 350	IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
 351}
 352
 353static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
 354{
 355	struct ipw2100_priv *priv = libipw_priv(dev);
 356
 357	*val = ioread8(priv->ioaddr + reg);
 358	IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
 359}
 360
 361static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
 362{
 363	struct ipw2100_priv *priv = libipw_priv(dev);
 364
 365	iowrite16(val, priv->ioaddr + reg);
 366	IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
 367}
 368
 369static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
 370{
 371	struct ipw2100_priv *priv = libipw_priv(dev);
 372
 373	iowrite8(val, priv->ioaddr + reg);
 374	IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
 375}
 376
 377static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
 378{
 379	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
 380		       addr & IPW_REG_INDIRECT_ADDR_MASK);
 381	read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
 382}
 383
 384static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
 385{
 386	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
 387		       addr & IPW_REG_INDIRECT_ADDR_MASK);
 388	write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
 389}
 390
 391static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
 392{
 393	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
 394		       addr & IPW_REG_INDIRECT_ADDR_MASK);
 395	read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
 396}
 397
 398static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
 399{
 400	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
 401		       addr & IPW_REG_INDIRECT_ADDR_MASK);
 402	write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
 403}
 404
 405static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
 406{
 407	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
 408		       addr & IPW_REG_INDIRECT_ADDR_MASK);
 409	read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
 410}
 411
 412static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
 413{
 414	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
 415		       addr & IPW_REG_INDIRECT_ADDR_MASK);
 416	write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
 417}
 418
 
 
 
 
 
 
 
 
 
 
 
 419static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
 420				    const u8 * buf)
 421{
 422	u32 aligned_addr;
 423	u32 aligned_len;
 424	u32 dif_len;
 425	u32 i;
 426
 427	/* read first nibble byte by byte */
 428	aligned_addr = addr & (~0x3);
 429	dif_len = addr - aligned_addr;
 430	if (dif_len) {
 431		/* Start reading at aligned_addr + dif_len */
 432		write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
 433			       aligned_addr);
 434		for (i = dif_len; i < 4; i++, buf++)
 435			write_register_byte(dev,
 436					    IPW_REG_INDIRECT_ACCESS_DATA + i,
 437					    *buf);
 438
 439		len -= dif_len;
 440		aligned_addr += 4;
 441	}
 442
 443	/* read DWs through autoincrement registers */
 444	write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
 445	aligned_len = len & (~0x3);
 446	for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
 447		write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
 448
 449	/* copy the last nibble */
 450	dif_len = len - aligned_len;
 451	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
 452	for (i = 0; i < dif_len; i++, buf++)
 453		write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
 454				    *buf);
 455}
 456
 457static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
 458				   u8 * buf)
 459{
 460	u32 aligned_addr;
 461	u32 aligned_len;
 462	u32 dif_len;
 463	u32 i;
 464
 465	/* read first nibble byte by byte */
 466	aligned_addr = addr & (~0x3);
 467	dif_len = addr - aligned_addr;
 468	if (dif_len) {
 469		/* Start reading at aligned_addr + dif_len */
 470		write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
 471			       aligned_addr);
 472		for (i = dif_len; i < 4; i++, buf++)
 473			read_register_byte(dev,
 474					   IPW_REG_INDIRECT_ACCESS_DATA + i,
 475					   buf);
 476
 477		len -= dif_len;
 478		aligned_addr += 4;
 479	}
 480
 481	/* read DWs through autoincrement registers */
 482	write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
 483	aligned_len = len & (~0x3);
 484	for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
 485		read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
 486
 487	/* copy the last nibble */
 488	dif_len = len - aligned_len;
 489	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
 490	for (i = 0; i < dif_len; i++, buf++)
 491		read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
 492}
 493
 494static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
 495{
 496	u32 dbg;
 497
 498	read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
 499
 500	return dbg == IPW_DATA_DOA_DEBUG_VALUE;
 501}
 502
 503static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
 504			       void *val, u32 * len)
 505{
 506	struct ipw2100_ordinals *ordinals = &priv->ordinals;
 507	u32 addr;
 508	u32 field_info;
 509	u16 field_len;
 510	u16 field_count;
 511	u32 total_length;
 512
 513	if (ordinals->table1_addr == 0) {
 514		printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
 515		       "before they have been loaded.\n");
 516		return -EINVAL;
 517	}
 518
 519	if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
 520		if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
 521			*len = IPW_ORD_TAB_1_ENTRY_SIZE;
 522
 523			printk(KERN_WARNING DRV_NAME
 524			       ": ordinal buffer length too small, need %zd\n",
 525			       IPW_ORD_TAB_1_ENTRY_SIZE);
 526
 527			return -EINVAL;
 528		}
 529
 530		read_nic_dword(priv->net_dev,
 531			       ordinals->table1_addr + (ord << 2), &addr);
 532		read_nic_dword(priv->net_dev, addr, val);
 533
 534		*len = IPW_ORD_TAB_1_ENTRY_SIZE;
 535
 536		return 0;
 537	}
 538
 539	if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
 540
 541		ord -= IPW_START_ORD_TAB_2;
 542
 543		/* get the address of statistic */
 544		read_nic_dword(priv->net_dev,
 545			       ordinals->table2_addr + (ord << 3), &addr);
 546
 547		/* get the second DW of statistics ;
 548		 * two 16-bit words - first is length, second is count */
 549		read_nic_dword(priv->net_dev,
 550			       ordinals->table2_addr + (ord << 3) + sizeof(u32),
 551			       &field_info);
 552
 553		/* get each entry length */
 554		field_len = *((u16 *) & field_info);
 555
 556		/* get number of entries */
 557		field_count = *(((u16 *) & field_info) + 1);
 558
 559		/* abort if no enough memory */
 560		total_length = field_len * field_count;
 561		if (total_length > *len) {
 562			*len = total_length;
 563			return -EINVAL;
 564		}
 565
 566		*len = total_length;
 567		if (!total_length)
 568			return 0;
 569
 570		/* read the ordinal data from the SRAM */
 571		read_nic_memory(priv->net_dev, addr, total_length, val);
 572
 573		return 0;
 574	}
 575
 576	printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
 577	       "in table 2\n", ord);
 578
 579	return -EINVAL;
 580}
 581
 582static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
 583			       u32 * len)
 584{
 585	struct ipw2100_ordinals *ordinals = &priv->ordinals;
 586	u32 addr;
 587
 588	if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
 589		if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
 590			*len = IPW_ORD_TAB_1_ENTRY_SIZE;
 591			IPW_DEBUG_INFO("wrong size\n");
 592			return -EINVAL;
 593		}
 594
 595		read_nic_dword(priv->net_dev,
 596			       ordinals->table1_addr + (ord << 2), &addr);
 597
 598		write_nic_dword(priv->net_dev, addr, *val);
 599
 600		*len = IPW_ORD_TAB_1_ENTRY_SIZE;
 601
 602		return 0;
 603	}
 604
 605	IPW_DEBUG_INFO("wrong table\n");
 606	if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
 607		return -EINVAL;
 608
 609	return -EINVAL;
 610}
 611
 612static char *snprint_line(char *buf, size_t count,
 613			  const u8 * data, u32 len, u32 ofs)
 614{
 615	int out, i, j, l;
 616	char c;
 617
 618	out = scnprintf(buf, count, "%08X", ofs);
 619
 620	for (l = 0, i = 0; i < 2; i++) {
 621		out += scnprintf(buf + out, count - out, " ");
 622		for (j = 0; j < 8 && l < len; j++, l++)
 623			out += scnprintf(buf + out, count - out, "%02X ",
 624					data[(i * 8 + j)]);
 625		for (; j < 8; j++)
 626			out += scnprintf(buf + out, count - out, "   ");
 627	}
 628
 629	out += scnprintf(buf + out, count - out, " ");
 630	for (l = 0, i = 0; i < 2; i++) {
 631		out += scnprintf(buf + out, count - out, " ");
 632		for (j = 0; j < 8 && l < len; j++, l++) {
 633			c = data[(i * 8 + j)];
 634			if (!isascii(c) || !isprint(c))
 635				c = '.';
 636
 637			out += scnprintf(buf + out, count - out, "%c", c);
 638		}
 639
 640		for (; j < 8; j++)
 641			out += scnprintf(buf + out, count - out, " ");
 642	}
 643
 644	return buf;
 645}
 646
 647static void printk_buf(int level, const u8 * data, u32 len)
 648{
 649	char line[81];
 650	u32 ofs = 0;
 651	if (!(ipw2100_debug_level & level))
 652		return;
 653
 654	while (len) {
 655		printk(KERN_DEBUG "%s\n",
 656		       snprint_line(line, sizeof(line), &data[ofs],
 657				    min(len, 16U), ofs));
 658		ofs += 16;
 659		len -= min(len, 16U);
 660	}
 661}
 662
 663#define MAX_RESET_BACKOFF 10
 664
 665static void schedule_reset(struct ipw2100_priv *priv)
 666{
 667	time64_t now = ktime_get_boottime_seconds();
 668
 669	/* If we haven't received a reset request within the backoff period,
 670	 * then we can reset the backoff interval so this reset occurs
 671	 * immediately */
 672	if (priv->reset_backoff &&
 673	    (now - priv->last_reset > priv->reset_backoff))
 674		priv->reset_backoff = 0;
 675
 676	priv->last_reset = now;
 677
 678	if (!(priv->status & STATUS_RESET_PENDING)) {
 679		IPW_DEBUG_INFO("%s: Scheduling firmware restart (%llds).\n",
 680			       priv->net_dev->name, priv->reset_backoff);
 681		netif_carrier_off(priv->net_dev);
 682		netif_stop_queue(priv->net_dev);
 683		priv->status |= STATUS_RESET_PENDING;
 684		if (priv->reset_backoff)
 685			schedule_delayed_work(&priv->reset_work,
 686					      priv->reset_backoff * HZ);
 687		else
 688			schedule_delayed_work(&priv->reset_work, 0);
 689
 690		if (priv->reset_backoff < MAX_RESET_BACKOFF)
 691			priv->reset_backoff++;
 692
 693		wake_up_interruptible(&priv->wait_command_queue);
 694	} else
 695		IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
 696			       priv->net_dev->name);
 697
 698}
 699
 700#define HOST_COMPLETE_TIMEOUT (2 * HZ)
 701static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
 702				   struct host_command *cmd)
 703{
 704	struct list_head *element;
 705	struct ipw2100_tx_packet *packet;
 706	unsigned long flags;
 707	int err = 0;
 708
 709	IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
 710		     command_types[cmd->host_command], cmd->host_command,
 711		     cmd->host_command_length);
 712	printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
 713		   cmd->host_command_length);
 714
 715	spin_lock_irqsave(&priv->low_lock, flags);
 716
 717	if (priv->fatal_error) {
 718		IPW_DEBUG_INFO
 719		    ("Attempt to send command while hardware in fatal error condition.\n");
 720		err = -EIO;
 721		goto fail_unlock;
 722	}
 723
 724	if (!(priv->status & STATUS_RUNNING)) {
 725		IPW_DEBUG_INFO
 726		    ("Attempt to send command while hardware is not running.\n");
 727		err = -EIO;
 728		goto fail_unlock;
 729	}
 730
 731	if (priv->status & STATUS_CMD_ACTIVE) {
 732		IPW_DEBUG_INFO
 733		    ("Attempt to send command while another command is pending.\n");
 734		err = -EBUSY;
 735		goto fail_unlock;
 736	}
 737
 738	if (list_empty(&priv->msg_free_list)) {
 739		IPW_DEBUG_INFO("no available msg buffers\n");
 740		goto fail_unlock;
 741	}
 742
 743	priv->status |= STATUS_CMD_ACTIVE;
 744	priv->messages_sent++;
 745
 746	element = priv->msg_free_list.next;
 747
 748	packet = list_entry(element, struct ipw2100_tx_packet, list);
 749	packet->jiffy_start = jiffies;
 750
 751	/* initialize the firmware command packet */
 752	packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
 753	packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
 754	packet->info.c_struct.cmd->host_command_len_reg =
 755	    cmd->host_command_length;
 756	packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
 757
 758	memcpy(packet->info.c_struct.cmd->host_command_params_reg,
 759	       cmd->host_command_parameters,
 760	       sizeof(packet->info.c_struct.cmd->host_command_params_reg));
 761
 762	list_del(element);
 763	DEC_STAT(&priv->msg_free_stat);
 764
 765	list_add_tail(element, &priv->msg_pend_list);
 766	INC_STAT(&priv->msg_pend_stat);
 767
 768	ipw2100_tx_send_commands(priv);
 769	ipw2100_tx_send_data(priv);
 770
 771	spin_unlock_irqrestore(&priv->low_lock, flags);
 772
 773	/*
 774	 * We must wait for this command to complete before another
 775	 * command can be sent...  but if we wait more than 3 seconds
 776	 * then there is a problem.
 777	 */
 778
 779	err =
 780	    wait_event_interruptible_timeout(priv->wait_command_queue,
 781					     !(priv->
 782					       status & STATUS_CMD_ACTIVE),
 783					     HOST_COMPLETE_TIMEOUT);
 784
 785	if (err == 0) {
 786		IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
 787			       1000 * (HOST_COMPLETE_TIMEOUT / HZ));
 788		priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
 789		priv->status &= ~STATUS_CMD_ACTIVE;
 790		schedule_reset(priv);
 791		return -EIO;
 792	}
 793
 794	if (priv->fatal_error) {
 795		printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
 796		       priv->net_dev->name);
 797		return -EIO;
 798	}
 799
 800	/* !!!!! HACK TEST !!!!!
 801	 * When lots of debug trace statements are enabled, the driver
 802	 * doesn't seem to have as many firmware restart cycles...
 803	 *
 804	 * As a test, we're sticking in a 1/100s delay here */
 805	schedule_timeout_uninterruptible(msecs_to_jiffies(10));
 806
 807	return 0;
 808
 809      fail_unlock:
 810	spin_unlock_irqrestore(&priv->low_lock, flags);
 811
 812	return err;
 813}
 814
 815/*
 816 * Verify the values and data access of the hardware
 817 * No locks needed or used.  No functions called.
 818 */
 819static int ipw2100_verify(struct ipw2100_priv *priv)
 820{
 821	u32 data1, data2;
 822	u32 address;
 823
 824	u32 val1 = 0x76543210;
 825	u32 val2 = 0xFEDCBA98;
 826
 827	/* Domain 0 check - all values should be DOA_DEBUG */
 828	for (address = IPW_REG_DOA_DEBUG_AREA_START;
 829	     address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
 830		read_register(priv->net_dev, address, &data1);
 831		if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
 832			return -EIO;
 833	}
 834
 835	/* Domain 1 check - use arbitrary read/write compare  */
 836	for (address = 0; address < 5; address++) {
 837		/* The memory area is not used now */
 838		write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
 839			       val1);
 840		write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
 841			       val2);
 842		read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
 843			      &data1);
 844		read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
 845			      &data2);
 846		if (val1 == data1 && val2 == data2)
 847			return 0;
 848	}
 849
 850	return -EIO;
 851}
 852
 853/*
 854 *
 855 * Loop until the CARD_DISABLED bit is the same value as the
 856 * supplied parameter
 857 *
 858 * TODO: See if it would be more efficient to do a wait/wake
 859 *       cycle and have the completion event trigger the wakeup
 860 *
 861 */
 862#define IPW_CARD_DISABLE_COMPLETE_WAIT		    100	// 100 milli
 863static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
 864{
 865	int i;
 866	u32 card_state;
 867	u32 len = sizeof(card_state);
 868	int err;
 869
 870	for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
 871		err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
 872					  &card_state, &len);
 873		if (err) {
 874			IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
 875				       "failed.\n");
 876			return 0;
 877		}
 878
 879		/* We'll break out if either the HW state says it is
 880		 * in the state we want, or if HOST_COMPLETE command
 881		 * finishes */
 882		if ((card_state == state) ||
 883		    ((priv->status & STATUS_ENABLED) ?
 884		     IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
 885			if (state == IPW_HW_STATE_ENABLED)
 886				priv->status |= STATUS_ENABLED;
 887			else
 888				priv->status &= ~STATUS_ENABLED;
 889
 890			return 0;
 891		}
 892
 893		udelay(50);
 894	}
 895
 896	IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
 897		       state ? "DISABLED" : "ENABLED");
 898	return -EIO;
 899}
 900
 901/*********************************************************************
 902    Procedure   :   sw_reset_and_clock
 903    Purpose     :   Asserts s/w reset, asserts clock initialization
 904                    and waits for clock stabilization
 905 ********************************************************************/
 906static int sw_reset_and_clock(struct ipw2100_priv *priv)
 907{
 908	int i;
 909	u32 r;
 910
 911	// assert s/w reset
 912	write_register(priv->net_dev, IPW_REG_RESET_REG,
 913		       IPW_AUX_HOST_RESET_REG_SW_RESET);
 914
 915	// wait for clock stabilization
 916	for (i = 0; i < 1000; i++) {
 917		udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
 918
 919		// check clock ready bit
 920		read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
 921		if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
 922			break;
 923	}
 924
 925	if (i == 1000)
 926		return -EIO;	// TODO: better error value
 927
 928	/* set "initialization complete" bit to move adapter to
 929	 * D0 state */
 930	write_register(priv->net_dev, IPW_REG_GP_CNTRL,
 931		       IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
 932
 933	/* wait for clock stabilization */
 934	for (i = 0; i < 10000; i++) {
 935		udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
 936
 937		/* check clock ready bit */
 938		read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
 939		if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
 940			break;
 941	}
 942
 943	if (i == 10000)
 944		return -EIO;	/* TODO: better error value */
 945
 946	/* set D0 standby bit */
 947	read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
 948	write_register(priv->net_dev, IPW_REG_GP_CNTRL,
 949		       r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
 950
 951	return 0;
 952}
 953
 954/*********************************************************************
 955    Procedure   :   ipw2100_download_firmware
 956    Purpose     :   Initiaze adapter after power on.
 957                    The sequence is:
 958                    1. assert s/w reset first!
 959                    2. awake clocks & wait for clock stabilization
 960                    3. hold ARC (don't ask me why...)
 961                    4. load Dino ucode and reset/clock init again
 962                    5. zero-out shared mem
 963                    6. download f/w
 964 *******************************************************************/
 965static int ipw2100_download_firmware(struct ipw2100_priv *priv)
 966{
 967	u32 address;
 968	int err;
 969
 970#ifndef CONFIG_PM
 971	/* Fetch the firmware and microcode */
 972	struct ipw2100_fw ipw2100_firmware;
 973#endif
 974
 975	if (priv->fatal_error) {
 976		IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
 977				"fatal error %d.  Interface must be brought down.\n",
 978				priv->net_dev->name, priv->fatal_error);
 979		return -EINVAL;
 980	}
 981#ifdef CONFIG_PM
 982	if (!ipw2100_firmware.version) {
 983		err = ipw2100_get_firmware(priv, &ipw2100_firmware);
 984		if (err) {
 985			IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
 986					priv->net_dev->name, err);
 987			priv->fatal_error = IPW2100_ERR_FW_LOAD;
 988			goto fail;
 989		}
 990	}
 991#else
 992	err = ipw2100_get_firmware(priv, &ipw2100_firmware);
 993	if (err) {
 994		IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
 995				priv->net_dev->name, err);
 996		priv->fatal_error = IPW2100_ERR_FW_LOAD;
 997		goto fail;
 998	}
 999#endif
1000	priv->firmware_version = ipw2100_firmware.version;
1001
1002	/* s/w reset and clock stabilization */
1003	err = sw_reset_and_clock(priv);
1004	if (err) {
1005		IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1006				priv->net_dev->name, err);
1007		goto fail;
1008	}
1009
1010	err = ipw2100_verify(priv);
1011	if (err) {
1012		IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1013				priv->net_dev->name, err);
1014		goto fail;
1015	}
1016
1017	/* Hold ARC */
1018	write_nic_dword(priv->net_dev,
1019			IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1020
1021	/* allow ARC to run */
1022	write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1023
1024	/* load microcode */
1025	err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1026	if (err) {
1027		printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1028		       priv->net_dev->name, err);
1029		goto fail;
1030	}
1031
1032	/* release ARC */
1033	write_nic_dword(priv->net_dev,
1034			IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1035
1036	/* s/w reset and clock stabilization (again!!!) */
1037	err = sw_reset_and_clock(priv);
1038	if (err) {
1039		printk(KERN_ERR DRV_NAME
1040		       ": %s: sw_reset_and_clock failed: %d\n",
1041		       priv->net_dev->name, err);
1042		goto fail;
1043	}
1044
1045	/* load f/w */
1046	err = ipw2100_fw_download(priv, &ipw2100_firmware);
1047	if (err) {
1048		IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1049				priv->net_dev->name, err);
1050		goto fail;
1051	}
1052#ifndef CONFIG_PM
1053	/*
1054	 * When the .resume method of the driver is called, the other
1055	 * part of the system, i.e. the ide driver could still stay in
1056	 * the suspend stage. This prevents us from loading the firmware
1057	 * from the disk.  --YZ
1058	 */
1059
1060	/* free any storage allocated for firmware image */
1061	ipw2100_release_firmware(priv, &ipw2100_firmware);
1062#endif
1063
1064	/* zero out Domain 1 area indirectly (Si requirement) */
1065	for (address = IPW_HOST_FW_SHARED_AREA0;
1066	     address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1067		write_nic_dword(priv->net_dev, address, 0);
1068	for (address = IPW_HOST_FW_SHARED_AREA1;
1069	     address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1070		write_nic_dword(priv->net_dev, address, 0);
1071	for (address = IPW_HOST_FW_SHARED_AREA2;
1072	     address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1073		write_nic_dword(priv->net_dev, address, 0);
1074	for (address = IPW_HOST_FW_SHARED_AREA3;
1075	     address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1076		write_nic_dword(priv->net_dev, address, 0);
1077	for (address = IPW_HOST_FW_INTERRUPT_AREA;
1078	     address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1079		write_nic_dword(priv->net_dev, address, 0);
1080
1081	return 0;
1082
1083      fail:
1084	ipw2100_release_firmware(priv, &ipw2100_firmware);
1085	return err;
1086}
1087
1088static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1089{
1090	if (priv->status & STATUS_INT_ENABLED)
1091		return;
1092	priv->status |= STATUS_INT_ENABLED;
1093	write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1094}
1095
1096static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1097{
1098	if (!(priv->status & STATUS_INT_ENABLED))
1099		return;
1100	priv->status &= ~STATUS_INT_ENABLED;
1101	write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1102}
1103
1104static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1105{
1106	struct ipw2100_ordinals *ord = &priv->ordinals;
1107
1108	IPW_DEBUG_INFO("enter\n");
1109
1110	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1111		      &ord->table1_addr);
1112
1113	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1114		      &ord->table2_addr);
1115
1116	read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1117	read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1118
1119	ord->table2_size &= 0x0000FFFF;
1120
1121	IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1122	IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1123	IPW_DEBUG_INFO("exit\n");
1124}
1125
1126static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1127{
1128	u32 reg = 0;
1129	/*
1130	 * Set GPIO 3 writable by FW; GPIO 1 writable
1131	 * by driver and enable clock
1132	 */
1133	reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1134	       IPW_BIT_GPIO_LED_OFF);
1135	write_register(priv->net_dev, IPW_REG_GPIO, reg);
1136}
1137
1138static int rf_kill_active(struct ipw2100_priv *priv)
1139{
1140#define MAX_RF_KILL_CHECKS 5
1141#define RF_KILL_CHECK_DELAY 40
1142
1143	unsigned short value = 0;
1144	u32 reg = 0;
1145	int i;
1146
1147	if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1148		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1149		priv->status &= ~STATUS_RF_KILL_HW;
1150		return 0;
1151	}
1152
1153	for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1154		udelay(RF_KILL_CHECK_DELAY);
1155		read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1156		value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1157	}
1158
1159	if (value == 0) {
1160		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1161		priv->status |= STATUS_RF_KILL_HW;
1162	} else {
1163		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1164		priv->status &= ~STATUS_RF_KILL_HW;
1165	}
1166
1167	return (value == 0);
1168}
1169
1170static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1171{
1172	u32 addr, len;
1173	u32 val;
1174
1175	/*
1176	 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1177	 */
1178	len = sizeof(addr);
1179	if (ipw2100_get_ordinal
1180	    (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1181		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1182			       __LINE__);
1183		return -EIO;
1184	}
1185
1186	IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1187
1188	/*
1189	 * EEPROM version is the byte at offset 0xfd in firmware
1190	 * We read 4 bytes, then shift out the byte we actually want */
1191	read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1192	priv->eeprom_version = (val >> 24) & 0xFF;
1193	IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1194
1195	/*
1196	 *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1197	 *
1198	 *  notice that the EEPROM bit is reverse polarity, i.e.
1199	 *     bit = 0  signifies HW RF kill switch is supported
1200	 *     bit = 1  signifies HW RF kill switch is NOT supported
1201	 */
1202	read_nic_dword(priv->net_dev, addr + 0x20, &val);
1203	if (!((val >> 24) & 0x01))
1204		priv->hw_features |= HW_FEATURE_RFKILL;
1205
1206	IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1207		       (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1208
1209	return 0;
1210}
1211
1212/*
1213 * Start firmware execution after power on and initialization
1214 * The sequence is:
1215 *  1. Release ARC
1216 *  2. Wait for f/w initialization completes;
1217 */
1218static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1219{
1220	int i;
1221	u32 inta, inta_mask, gpio;
1222
1223	IPW_DEBUG_INFO("enter\n");
1224
1225	if (priv->status & STATUS_RUNNING)
1226		return 0;
1227
1228	/*
1229	 * Initialize the hw - drive adapter to DO state by setting
1230	 * init_done bit. Wait for clk_ready bit and Download
1231	 * fw & dino ucode
1232	 */
1233	if (ipw2100_download_firmware(priv)) {
1234		printk(KERN_ERR DRV_NAME
1235		       ": %s: Failed to power on the adapter.\n",
1236		       priv->net_dev->name);
1237		return -EIO;
1238	}
1239
1240	/* Clear the Tx, Rx and Msg queues and the r/w indexes
1241	 * in the firmware RBD and TBD ring queue */
1242	ipw2100_queues_initialize(priv);
1243
1244	ipw2100_hw_set_gpio(priv);
1245
1246	/* TODO -- Look at disabling interrupts here to make sure none
1247	 * get fired during FW initialization */
1248
1249	/* Release ARC - clear reset bit */
1250	write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1251
1252	/* wait for f/w initialization complete */
1253	IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1254	i = 5000;
1255	do {
1256		schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1257		/* Todo... wait for sync command ... */
1258
1259		read_register(priv->net_dev, IPW_REG_INTA, &inta);
1260
1261		/* check "init done" bit */
1262		if (inta & IPW2100_INTA_FW_INIT_DONE) {
1263			/* reset "init done" bit */
1264			write_register(priv->net_dev, IPW_REG_INTA,
1265				       IPW2100_INTA_FW_INIT_DONE);
1266			break;
1267		}
1268
1269		/* check error conditions : we check these after the firmware
1270		 * check so that if there is an error, the interrupt handler
1271		 * will see it and the adapter will be reset */
1272		if (inta &
1273		    (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1274			/* clear error conditions */
1275			write_register(priv->net_dev, IPW_REG_INTA,
1276				       IPW2100_INTA_FATAL_ERROR |
1277				       IPW2100_INTA_PARITY_ERROR);
1278		}
1279	} while (--i);
1280
1281	/* Clear out any pending INTAs since we aren't supposed to have
1282	 * interrupts enabled at this point... */
1283	read_register(priv->net_dev, IPW_REG_INTA, &inta);
1284	read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1285	inta &= IPW_INTERRUPT_MASK;
1286	/* Clear out any pending interrupts */
1287	if (inta & inta_mask)
1288		write_register(priv->net_dev, IPW_REG_INTA, inta);
1289
1290	IPW_DEBUG_FW("f/w initialization complete: %s\n",
1291		     i ? "SUCCESS" : "FAILED");
1292
1293	if (!i) {
1294		printk(KERN_WARNING DRV_NAME
1295		       ": %s: Firmware did not initialize.\n",
1296		       priv->net_dev->name);
1297		return -EIO;
1298	}
1299
1300	/* allow firmware to write to GPIO1 & GPIO3 */
1301	read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1302
1303	gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1304
1305	write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1306
1307	/* Ready to receive commands */
1308	priv->status |= STATUS_RUNNING;
1309
1310	/* The adapter has been reset; we are not associated */
1311	priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1312
1313	IPW_DEBUG_INFO("exit\n");
1314
1315	return 0;
1316}
1317
1318static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1319{
1320	if (!priv->fatal_error)
1321		return;
1322
1323	priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1324	priv->fatal_index %= IPW2100_ERROR_QUEUE;
1325	priv->fatal_error = 0;
1326}
1327
1328/* NOTE: Our interrupt is disabled when this method is called */
1329static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1330{
1331	u32 reg;
1332	int i;
1333
1334	IPW_DEBUG_INFO("Power cycling the hardware.\n");
1335
1336	ipw2100_hw_set_gpio(priv);
1337
1338	/* Step 1. Stop Master Assert */
1339	write_register(priv->net_dev, IPW_REG_RESET_REG,
1340		       IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1341
1342	/* Step 2. Wait for stop Master Assert
1343	 *         (not more than 50us, otherwise ret error */
1344	i = 5;
1345	do {
1346		udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1347		read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1348
1349		if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1350			break;
1351	} while (--i);
1352
1353	priv->status &= ~STATUS_RESET_PENDING;
1354
1355	if (!i) {
1356		IPW_DEBUG_INFO
1357		    ("exit - waited too long for master assert stop\n");
1358		return -EIO;
1359	}
1360
1361	write_register(priv->net_dev, IPW_REG_RESET_REG,
1362		       IPW_AUX_HOST_RESET_REG_SW_RESET);
1363
1364	/* Reset any fatal_error conditions */
1365	ipw2100_reset_fatalerror(priv);
1366
1367	/* At this point, the adapter is now stopped and disabled */
1368	priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1369			  STATUS_ASSOCIATED | STATUS_ENABLED);
1370
1371	return 0;
1372}
1373
1374/*
1375 * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1376 *
1377 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1378 *
1379 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1380 * if STATUS_ASSN_LOST is sent.
1381 */
1382static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1383{
1384
1385#define HW_PHY_OFF_LOOP_DELAY (msecs_to_jiffies(50))
1386
1387	struct host_command cmd = {
1388		.host_command = CARD_DISABLE_PHY_OFF,
1389		.host_command_sequence = 0,
1390		.host_command_length = 0,
1391	};
1392	int err, i;
1393	u32 val1, val2;
1394
1395	IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1396
1397	/* Turn off the radio */
1398	err = ipw2100_hw_send_command(priv, &cmd);
1399	if (err)
1400		return err;
1401
1402	for (i = 0; i < 2500; i++) {
1403		read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1404		read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1405
1406		if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1407		    (val2 & IPW2100_COMMAND_PHY_OFF))
1408			return 0;
1409
1410		schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1411	}
1412
1413	return -EIO;
1414}
1415
1416static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1417{
1418	struct host_command cmd = {
1419		.host_command = HOST_COMPLETE,
1420		.host_command_sequence = 0,
1421		.host_command_length = 0
1422	};
1423	int err = 0;
1424
1425	IPW_DEBUG_HC("HOST_COMPLETE\n");
1426
1427	if (priv->status & STATUS_ENABLED)
1428		return 0;
1429
1430	mutex_lock(&priv->adapter_mutex);
1431
1432	if (rf_kill_active(priv)) {
1433		IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1434		goto fail_up;
1435	}
1436
1437	err = ipw2100_hw_send_command(priv, &cmd);
1438	if (err) {
1439		IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1440		goto fail_up;
1441	}
1442
1443	err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1444	if (err) {
1445		IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1446			       priv->net_dev->name);
1447		goto fail_up;
1448	}
1449
1450	if (priv->stop_hang_check) {
1451		priv->stop_hang_check = 0;
1452		schedule_delayed_work(&priv->hang_check, HZ / 2);
1453	}
1454
1455      fail_up:
1456	mutex_unlock(&priv->adapter_mutex);
1457	return err;
1458}
1459
1460static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1461{
1462#define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1463
1464	struct host_command cmd = {
1465		.host_command = HOST_PRE_POWER_DOWN,
1466		.host_command_sequence = 0,
1467		.host_command_length = 0,
1468	};
1469	int err, i;
1470	u32 reg;
1471
1472	if (!(priv->status & STATUS_RUNNING))
1473		return 0;
1474
1475	priv->status |= STATUS_STOPPING;
1476
1477	/* We can only shut down the card if the firmware is operational.  So,
1478	 * if we haven't reset since a fatal_error, then we can not send the
1479	 * shutdown commands. */
1480	if (!priv->fatal_error) {
1481		/* First, make sure the adapter is enabled so that the PHY_OFF
1482		 * command can shut it down */
1483		ipw2100_enable_adapter(priv);
1484
1485		err = ipw2100_hw_phy_off(priv);
1486		if (err)
1487			printk(KERN_WARNING DRV_NAME
1488			       ": Error disabling radio %d\n", err);
1489
1490		/*
1491		 * If in D0-standby mode going directly to D3 may cause a
1492		 * PCI bus violation.  Therefore we must change out of the D0
1493		 * state.
1494		 *
1495		 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1496		 * hardware from going into standby mode and will transition
1497		 * out of D0-standby if it is already in that state.
1498		 *
1499		 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1500		 * driver upon completion.  Once received, the driver can
1501		 * proceed to the D3 state.
1502		 *
1503		 * Prepare for power down command to fw.  This command would
1504		 * take HW out of D0-standby and prepare it for D3 state.
1505		 *
1506		 * Currently FW does not support event notification for this
1507		 * event. Therefore, skip waiting for it.  Just wait a fixed
1508		 * 100ms
1509		 */
1510		IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1511
1512		err = ipw2100_hw_send_command(priv, &cmd);
1513		if (err)
1514			printk(KERN_WARNING DRV_NAME ": "
1515			       "%s: Power down command failed: Error %d\n",
1516			       priv->net_dev->name, err);
1517		else
1518			schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1519	}
1520
1521	priv->status &= ~STATUS_ENABLED;
1522
1523	/*
1524	 * Set GPIO 3 writable by FW; GPIO 1 writable
1525	 * by driver and enable clock
1526	 */
1527	ipw2100_hw_set_gpio(priv);
1528
1529	/*
1530	 * Power down adapter.  Sequence:
1531	 * 1. Stop master assert (RESET_REG[9]=1)
1532	 * 2. Wait for stop master (RESET_REG[8]==1)
1533	 * 3. S/w reset assert (RESET_REG[7] = 1)
1534	 */
1535
1536	/* Stop master assert */
1537	write_register(priv->net_dev, IPW_REG_RESET_REG,
1538		       IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1539
1540	/* wait stop master not more than 50 usec.
1541	 * Otherwise return error. */
1542	for (i = 5; i > 0; i--) {
1543		udelay(10);
1544
1545		/* Check master stop bit */
1546		read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1547
1548		if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1549			break;
1550	}
1551
1552	if (i == 0)
1553		printk(KERN_WARNING DRV_NAME
1554		       ": %s: Could now power down adapter.\n",
1555		       priv->net_dev->name);
1556
1557	/* assert s/w reset */
1558	write_register(priv->net_dev, IPW_REG_RESET_REG,
1559		       IPW_AUX_HOST_RESET_REG_SW_RESET);
1560
1561	priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1562
1563	return 0;
1564}
1565
1566static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1567{
1568	struct host_command cmd = {
1569		.host_command = CARD_DISABLE,
1570		.host_command_sequence = 0,
1571		.host_command_length = 0
1572	};
1573	int err = 0;
1574
1575	IPW_DEBUG_HC("CARD_DISABLE\n");
1576
1577	if (!(priv->status & STATUS_ENABLED))
1578		return 0;
1579
1580	/* Make sure we clear the associated state */
1581	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1582
1583	if (!priv->stop_hang_check) {
1584		priv->stop_hang_check = 1;
1585		cancel_delayed_work(&priv->hang_check);
1586	}
1587
1588	mutex_lock(&priv->adapter_mutex);
1589
1590	err = ipw2100_hw_send_command(priv, &cmd);
1591	if (err) {
1592		printk(KERN_WARNING DRV_NAME
1593		       ": exit - failed to send CARD_DISABLE command\n");
1594		goto fail_up;
1595	}
1596
1597	err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1598	if (err) {
1599		printk(KERN_WARNING DRV_NAME
1600		       ": exit - card failed to change to DISABLED\n");
1601		goto fail_up;
1602	}
1603
1604	IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1605
1606      fail_up:
1607	mutex_unlock(&priv->adapter_mutex);
1608	return err;
1609}
1610
1611static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1612{
1613	struct host_command cmd = {
1614		.host_command = SET_SCAN_OPTIONS,
1615		.host_command_sequence = 0,
1616		.host_command_length = 8
1617	};
1618	int err;
1619
1620	IPW_DEBUG_INFO("enter\n");
1621
1622	IPW_DEBUG_SCAN("setting scan options\n");
1623
1624	cmd.host_command_parameters[0] = 0;
1625
1626	if (!(priv->config & CFG_ASSOCIATE))
1627		cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1628	if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1629		cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1630	if (priv->config & CFG_PASSIVE_SCAN)
1631		cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1632
1633	cmd.host_command_parameters[1] = priv->channel_mask;
1634
1635	err = ipw2100_hw_send_command(priv, &cmd);
1636
1637	IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1638		     cmd.host_command_parameters[0]);
1639
1640	return err;
1641}
1642
1643static int ipw2100_start_scan(struct ipw2100_priv *priv)
1644{
1645	struct host_command cmd = {
1646		.host_command = BROADCAST_SCAN,
1647		.host_command_sequence = 0,
1648		.host_command_length = 4
1649	};
1650	int err;
1651
1652	IPW_DEBUG_HC("START_SCAN\n");
1653
1654	cmd.host_command_parameters[0] = 0;
1655
1656	/* No scanning if in monitor mode */
1657	if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1658		return 1;
1659
1660	if (priv->status & STATUS_SCANNING) {
1661		IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1662		return 0;
1663	}
1664
1665	IPW_DEBUG_INFO("enter\n");
1666
1667	/* Not clearing here; doing so makes iwlist always return nothing...
1668	 *
1669	 * We should modify the table logic to use aging tables vs. clearing
1670	 * the table on each scan start.
1671	 */
1672	IPW_DEBUG_SCAN("starting scan\n");
1673
1674	priv->status |= STATUS_SCANNING;
1675	err = ipw2100_hw_send_command(priv, &cmd);
1676	if (err)
1677		priv->status &= ~STATUS_SCANNING;
1678
1679	IPW_DEBUG_INFO("exit\n");
1680
1681	return err;
1682}
1683
1684static const struct libipw_geo ipw_geos[] = {
1685	{			/* Restricted */
1686	 "---",
1687	 .bg_channels = 14,
1688	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1689		{2427, 4}, {2432, 5}, {2437, 6},
1690		{2442, 7}, {2447, 8}, {2452, 9},
1691		{2457, 10}, {2462, 11}, {2467, 12},
1692		{2472, 13}, {2484, 14}},
1693	 },
1694};
1695
1696static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1697{
1698	unsigned long flags;
1699	int err = 0;
1700	u32 lock;
1701	u32 ord_len = sizeof(lock);
1702
1703	/* Age scan list entries found before suspend */
1704	if (priv->suspend_time) {
1705		libipw_networks_age(priv->ieee, priv->suspend_time);
1706		priv->suspend_time = 0;
1707	}
1708
1709	/* Quiet if manually disabled. */
1710	if (priv->status & STATUS_RF_KILL_SW) {
1711		IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1712			       "switch\n", priv->net_dev->name);
1713		return 0;
1714	}
1715
1716	/* the ipw2100 hardware really doesn't want power management delays
1717	 * longer than 175usec
1718	 */
1719	cpu_latency_qos_update_request(&ipw2100_pm_qos_req, 175);
1720
1721	/* If the interrupt is enabled, turn it off... */
1722	spin_lock_irqsave(&priv->low_lock, flags);
1723	ipw2100_disable_interrupts(priv);
1724
1725	/* Reset any fatal_error conditions */
1726	ipw2100_reset_fatalerror(priv);
1727	spin_unlock_irqrestore(&priv->low_lock, flags);
1728
1729	if (priv->status & STATUS_POWERED ||
1730	    (priv->status & STATUS_RESET_PENDING)) {
1731		/* Power cycle the card ... */
1732		err = ipw2100_power_cycle_adapter(priv);
1733		if (err) {
1734			printk(KERN_WARNING DRV_NAME
1735			       ": %s: Could not cycle adapter.\n",
1736			       priv->net_dev->name);
1737			goto exit;
1738		}
1739	} else
1740		priv->status |= STATUS_POWERED;
1741
1742	/* Load the firmware, start the clocks, etc. */
1743	err = ipw2100_start_adapter(priv);
1744	if (err) {
1745		printk(KERN_ERR DRV_NAME
1746		       ": %s: Failed to start the firmware.\n",
1747		       priv->net_dev->name);
1748		goto exit;
1749	}
1750
1751	ipw2100_initialize_ordinals(priv);
1752
1753	/* Determine capabilities of this particular HW configuration */
1754	err = ipw2100_get_hw_features(priv);
1755	if (err) {
1756		printk(KERN_ERR DRV_NAME
1757		       ": %s: Failed to determine HW features.\n",
1758		       priv->net_dev->name);
1759		goto exit;
1760	}
1761
1762	/* Initialize the geo */
1763	libipw_set_geo(priv->ieee, &ipw_geos[0]);
1764	priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1765
1766	lock = LOCK_NONE;
1767	err = ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len);
1768	if (err) {
1769		printk(KERN_ERR DRV_NAME
1770		       ": %s: Failed to clear ordinal lock.\n",
1771		       priv->net_dev->name);
1772		goto exit;
1773	}
1774
1775	priv->status &= ~STATUS_SCANNING;
1776
1777	if (rf_kill_active(priv)) {
1778		printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1779		       priv->net_dev->name);
1780
1781		if (priv->stop_rf_kill) {
1782			priv->stop_rf_kill = 0;
1783			schedule_delayed_work(&priv->rf_kill,
1784					      round_jiffies_relative(HZ));
1785		}
1786
1787		deferred = 1;
1788	}
1789
1790	/* Turn on the interrupt so that commands can be processed */
1791	ipw2100_enable_interrupts(priv);
1792
1793	/* Send all of the commands that must be sent prior to
1794	 * HOST_COMPLETE */
1795	err = ipw2100_adapter_setup(priv);
1796	if (err) {
1797		printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1798		       priv->net_dev->name);
1799		goto exit;
1800	}
1801
1802	if (!deferred) {
1803		/* Enable the adapter - sends HOST_COMPLETE */
1804		err = ipw2100_enable_adapter(priv);
1805		if (err) {
1806			printk(KERN_ERR DRV_NAME ": "
1807			       "%s: failed in call to enable adapter.\n",
1808			       priv->net_dev->name);
1809			ipw2100_hw_stop_adapter(priv);
1810			goto exit;
1811		}
1812
1813		/* Start a scan . . . */
1814		ipw2100_set_scan_options(priv);
1815		ipw2100_start_scan(priv);
1816	}
1817
1818      exit:
1819	return err;
1820}
1821
1822static void ipw2100_down(struct ipw2100_priv *priv)
1823{
1824	unsigned long flags;
1825	union iwreq_data wrqu = {
1826		.ap_addr = {
1827			    .sa_family = ARPHRD_ETHER}
1828	};
1829	int associated = priv->status & STATUS_ASSOCIATED;
1830
1831	/* Kill the RF switch timer */
1832	if (!priv->stop_rf_kill) {
1833		priv->stop_rf_kill = 1;
1834		cancel_delayed_work(&priv->rf_kill);
1835	}
1836
1837	/* Kill the firmware hang check timer */
1838	if (!priv->stop_hang_check) {
1839		priv->stop_hang_check = 1;
1840		cancel_delayed_work(&priv->hang_check);
1841	}
1842
1843	/* Kill any pending resets */
1844	if (priv->status & STATUS_RESET_PENDING)
1845		cancel_delayed_work(&priv->reset_work);
1846
1847	/* Make sure the interrupt is on so that FW commands will be
1848	 * processed correctly */
1849	spin_lock_irqsave(&priv->low_lock, flags);
1850	ipw2100_enable_interrupts(priv);
1851	spin_unlock_irqrestore(&priv->low_lock, flags);
1852
1853	if (ipw2100_hw_stop_adapter(priv))
1854		printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1855		       priv->net_dev->name);
1856
1857	/* Do not disable the interrupt until _after_ we disable
1858	 * the adaptor.  Otherwise the CARD_DISABLE command will never
1859	 * be ack'd by the firmware */
1860	spin_lock_irqsave(&priv->low_lock, flags);
1861	ipw2100_disable_interrupts(priv);
1862	spin_unlock_irqrestore(&priv->low_lock, flags);
1863
1864	cpu_latency_qos_update_request(&ipw2100_pm_qos_req,
1865				       PM_QOS_DEFAULT_VALUE);
1866
1867	/* We have to signal any supplicant if we are disassociating */
1868	if (associated)
1869		wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1870
1871	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1872	netif_carrier_off(priv->net_dev);
1873	netif_stop_queue(priv->net_dev);
1874}
1875
1876static int ipw2100_wdev_init(struct net_device *dev)
1877{
1878	struct ipw2100_priv *priv = libipw_priv(dev);
1879	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1880	struct wireless_dev *wdev = &priv->ieee->wdev;
1881	int i;
1882
1883	memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1884
1885	/* fill-out priv->ieee->bg_band */
1886	if (geo->bg_channels) {
1887		struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1888
1889		bg_band->band = NL80211_BAND_2GHZ;
1890		bg_band->n_channels = geo->bg_channels;
1891		bg_band->channels = kcalloc(geo->bg_channels,
1892					    sizeof(struct ieee80211_channel),
1893					    GFP_KERNEL);
1894		if (!bg_band->channels) {
1895			ipw2100_down(priv);
1896			return -ENOMEM;
1897		}
1898		/* translate geo->bg to bg_band.channels */
1899		for (i = 0; i < geo->bg_channels; i++) {
1900			bg_band->channels[i].band = NL80211_BAND_2GHZ;
1901			bg_band->channels[i].center_freq = geo->bg[i].freq;
1902			bg_band->channels[i].hw_value = geo->bg[i].channel;
1903			bg_band->channels[i].max_power = geo->bg[i].max_power;
1904			if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1905				bg_band->channels[i].flags |=
1906					IEEE80211_CHAN_NO_IR;
1907			if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1908				bg_band->channels[i].flags |=
1909					IEEE80211_CHAN_NO_IR;
1910			if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1911				bg_band->channels[i].flags |=
1912					IEEE80211_CHAN_RADAR;
1913			/* No equivalent for LIBIPW_CH_80211H_RULES,
1914			   LIBIPW_CH_UNIFORM_SPREADING, or
1915			   LIBIPW_CH_B_ONLY... */
1916		}
1917		/* point at bitrate info */
1918		bg_band->bitrates = ipw2100_bg_rates;
1919		bg_band->n_bitrates = RATE_COUNT;
1920
1921		wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
1922	}
1923
1924	wdev->wiphy->cipher_suites = ipw_cipher_suites;
1925	wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1926
1927	set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1928	if (wiphy_register(wdev->wiphy))
1929		return -EIO;
1930	return 0;
1931}
1932
1933static void ipw2100_reset_adapter(struct work_struct *work)
1934{
1935	struct ipw2100_priv *priv =
1936		container_of(work, struct ipw2100_priv, reset_work.work);
1937	unsigned long flags;
1938	union iwreq_data wrqu = {
1939		.ap_addr = {
1940			    .sa_family = ARPHRD_ETHER}
1941	};
1942	int associated = priv->status & STATUS_ASSOCIATED;
1943
1944	spin_lock_irqsave(&priv->low_lock, flags);
1945	IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1946	priv->resets++;
1947	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1948	priv->status |= STATUS_SECURITY_UPDATED;
1949
1950	/* Force a power cycle even if interface hasn't been opened
1951	 * yet */
1952	cancel_delayed_work(&priv->reset_work);
1953	priv->status |= STATUS_RESET_PENDING;
1954	spin_unlock_irqrestore(&priv->low_lock, flags);
1955
1956	mutex_lock(&priv->action_mutex);
1957	/* stop timed checks so that they don't interfere with reset */
1958	priv->stop_hang_check = 1;
1959	cancel_delayed_work(&priv->hang_check);
1960
1961	/* We have to signal any supplicant if we are disassociating */
1962	if (associated)
1963		wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1964
1965	ipw2100_up(priv, 0);
1966	mutex_unlock(&priv->action_mutex);
1967
1968}
1969
1970static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1971{
1972
1973#define MAC_ASSOCIATION_READ_DELAY (HZ)
1974	int ret;
1975	unsigned int len, essid_len;
1976	char essid[IW_ESSID_MAX_SIZE];
1977	u32 txrate;
1978	u32 chan;
1979	char *txratename;
1980	u8 bssid[ETH_ALEN];
1981
1982	/*
1983	 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1984	 *      an actual MAC of the AP. Seems like FW sets this
1985	 *      address too late. Read it later and expose through
1986	 *      /proc or schedule a later task to query and update
1987	 */
1988
1989	essid_len = IW_ESSID_MAX_SIZE;
1990	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1991				  essid, &essid_len);
1992	if (ret) {
1993		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1994			       __LINE__);
1995		return;
1996	}
1997
1998	len = sizeof(u32);
1999	ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2000	if (ret) {
2001		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2002			       __LINE__);
2003		return;
2004	}
2005
2006	len = sizeof(u32);
2007	ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2008	if (ret) {
2009		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2010			       __LINE__);
2011		return;
2012	}
2013	len = ETH_ALEN;
2014	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2015				  &len);
2016	if (ret) {
2017		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2018			       __LINE__);
2019		return;
2020	}
2021	memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2022
2023	switch (txrate) {
2024	case TX_RATE_1_MBIT:
2025		txratename = "1Mbps";
2026		break;
2027	case TX_RATE_2_MBIT:
2028		txratename = "2Mbsp";
2029		break;
2030	case TX_RATE_5_5_MBIT:
2031		txratename = "5.5Mbps";
2032		break;
2033	case TX_RATE_11_MBIT:
2034		txratename = "11Mbps";
2035		break;
2036	default:
2037		IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2038		txratename = "unknown rate";
2039		break;
2040	}
2041
2042	IPW_DEBUG_INFO("%s: Associated with '%*pE' at %s, channel %d (BSSID=%pM)\n",
2043		       priv->net_dev->name, essid_len, essid,
2044		       txratename, chan, bssid);
2045
2046	/* now we copy read ssid into dev */
2047	if (!(priv->config & CFG_STATIC_ESSID)) {
2048		priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2049		memcpy(priv->essid, essid, priv->essid_len);
2050	}
2051	priv->channel = chan;
2052	memcpy(priv->bssid, bssid, ETH_ALEN);
2053
2054	priv->status |= STATUS_ASSOCIATING;
2055	priv->connect_start = ktime_get_boottime_seconds();
2056
2057	schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2058}
2059
2060static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2061			     int length, int batch_mode)
2062{
2063	int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2064	struct host_command cmd = {
2065		.host_command = SSID,
2066		.host_command_sequence = 0,
2067		.host_command_length = ssid_len
2068	};
2069	int err;
2070
2071	IPW_DEBUG_HC("SSID: '%*pE'\n", ssid_len, essid);
2072
2073	if (ssid_len)
2074		memcpy(cmd.host_command_parameters, essid, ssid_len);
2075
2076	if (!batch_mode) {
2077		err = ipw2100_disable_adapter(priv);
2078		if (err)
2079			return err;
2080	}
2081
2082	/* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2083	 * disable auto association -- so we cheat by setting a bogus SSID */
2084	if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2085		int i;
2086		u8 *bogus = (u8 *) cmd.host_command_parameters;
2087		for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2088			bogus[i] = 0x18 + i;
2089		cmd.host_command_length = IW_ESSID_MAX_SIZE;
2090	}
2091
2092	/* NOTE:  We always send the SSID command even if the provided ESSID is
2093	 * the same as what we currently think is set. */
2094
2095	err = ipw2100_hw_send_command(priv, &cmd);
2096	if (!err) {
2097		memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2098		memcpy(priv->essid, essid, ssid_len);
2099		priv->essid_len = ssid_len;
2100	}
2101
2102	if (!batch_mode) {
2103		if (ipw2100_enable_adapter(priv))
2104			err = -EIO;
2105	}
2106
2107	return err;
2108}
2109
2110static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2111{
2112	IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2113		  "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid,
2114		  priv->bssid);
2115
2116	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2117
2118	if (priv->status & STATUS_STOPPING) {
2119		IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2120		return;
2121	}
2122
2123	eth_zero_addr(priv->bssid);
2124	eth_zero_addr(priv->ieee->bssid);
2125
2126	netif_carrier_off(priv->net_dev);
2127	netif_stop_queue(priv->net_dev);
2128
2129	if (!(priv->status & STATUS_RUNNING))
2130		return;
2131
2132	if (priv->status & STATUS_SECURITY_UPDATED)
2133		schedule_delayed_work(&priv->security_work, 0);
2134
2135	schedule_delayed_work(&priv->wx_event_work, 0);
2136}
2137
2138static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2139{
2140	IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2141		       priv->net_dev->name);
2142
2143	/* RF_KILL is now enabled (else we wouldn't be here) */
2144	wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2145	priv->status |= STATUS_RF_KILL_HW;
2146
2147	/* Make sure the RF Kill check timer is running */
2148	priv->stop_rf_kill = 0;
2149	mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2150}
2151
2152static void ipw2100_scan_event(struct work_struct *work)
2153{
2154	struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv,
2155						 scan_event.work);
2156	union iwreq_data wrqu;
2157
2158	wrqu.data.length = 0;
2159	wrqu.data.flags = 0;
2160	wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2161}
2162
2163static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2164{
2165	IPW_DEBUG_SCAN("scan complete\n");
2166	/* Age the scan results... */
2167	priv->ieee->scans++;
2168	priv->status &= ~STATUS_SCANNING;
2169
2170	/* Only userspace-requested scan completion events go out immediately */
2171	if (!priv->user_requested_scan) {
2172		schedule_delayed_work(&priv->scan_event,
2173				      round_jiffies_relative(msecs_to_jiffies(4000)));
2174	} else {
2175		priv->user_requested_scan = 0;
2176		mod_delayed_work(system_wq, &priv->scan_event, 0);
2177	}
2178}
2179
2180#ifdef CONFIG_IPW2100_DEBUG
2181#define IPW2100_HANDLER(v, f) { v, f, # v }
2182struct ipw2100_status_indicator {
2183	int status;
2184	void (*cb) (struct ipw2100_priv * priv, u32 status);
2185	char *name;
2186};
2187#else
2188#define IPW2100_HANDLER(v, f) { v, f }
2189struct ipw2100_status_indicator {
2190	int status;
2191	void (*cb) (struct ipw2100_priv * priv, u32 status);
2192};
2193#endif				/* CONFIG_IPW2100_DEBUG */
2194
2195static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2196{
2197	IPW_DEBUG_SCAN("Scanning...\n");
2198	priv->status |= STATUS_SCANNING;
2199}
2200
2201static const struct ipw2100_status_indicator status_handlers[] = {
2202	IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2203	IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2204	IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2205	IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2206	IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2207	IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2208	IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2209	IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2210	IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2211	IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2212	IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2213	IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2214	IPW2100_HANDLER(-1, NULL)
2215};
2216
2217static void isr_status_change(struct ipw2100_priv *priv, int status)
2218{
2219	int i;
2220
2221	if (status == IPW_STATE_SCANNING &&
2222	    priv->status & STATUS_ASSOCIATED &&
2223	    !(priv->status & STATUS_SCANNING)) {
2224		IPW_DEBUG_INFO("Scan detected while associated, with "
2225			       "no scan request.  Restarting firmware.\n");
2226
2227		/* Wake up any sleeping jobs */
2228		schedule_reset(priv);
2229	}
2230
2231	for (i = 0; status_handlers[i].status != -1; i++) {
2232		if (status == status_handlers[i].status) {
2233			IPW_DEBUG_NOTIF("Status change: %s\n",
2234					status_handlers[i].name);
2235			if (status_handlers[i].cb)
2236				status_handlers[i].cb(priv, status);
2237			priv->wstats.status = status;
2238			return;
2239		}
2240	}
2241
2242	IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2243}
2244
2245static void isr_rx_complete_command(struct ipw2100_priv *priv,
2246				    struct ipw2100_cmd_header *cmd)
2247{
2248#ifdef CONFIG_IPW2100_DEBUG
2249	if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2250		IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2251			     command_types[cmd->host_command_reg],
2252			     cmd->host_command_reg);
2253	}
2254#endif
2255	if (cmd->host_command_reg == HOST_COMPLETE)
2256		priv->status |= STATUS_ENABLED;
2257
2258	if (cmd->host_command_reg == CARD_DISABLE)
2259		priv->status &= ~STATUS_ENABLED;
2260
2261	priv->status &= ~STATUS_CMD_ACTIVE;
2262
2263	wake_up_interruptible(&priv->wait_command_queue);
2264}
2265
2266#ifdef CONFIG_IPW2100_DEBUG
2267static const char *frame_types[] = {
2268	"COMMAND_STATUS_VAL",
2269	"STATUS_CHANGE_VAL",
2270	"P80211_DATA_VAL",
2271	"P8023_DATA_VAL",
2272	"HOST_NOTIFICATION_VAL"
2273};
2274#endif
2275
2276static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2277				    struct ipw2100_rx_packet *packet)
2278{
2279	packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2280	if (!packet->skb)
2281		return -ENOMEM;
2282
2283	packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2284	packet->dma_addr = dma_map_single(&priv->pci_dev->dev,
2285					  packet->skb->data,
2286					  sizeof(struct ipw2100_rx),
2287					  DMA_FROM_DEVICE);
2288	if (dma_mapping_error(&priv->pci_dev->dev, packet->dma_addr)) {
2289		dev_kfree_skb(packet->skb);
2290		return -ENOMEM;
2291	}
2292
2293	return 0;
2294}
2295
2296#define SEARCH_ERROR   0xffffffff
2297#define SEARCH_FAIL    0xfffffffe
2298#define SEARCH_SUCCESS 0xfffffff0
2299#define SEARCH_DISCARD 0
2300#define SEARCH_SNAPSHOT 1
2301
2302#define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2303static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2304{
2305	int i;
2306	if (!priv->snapshot[0])
2307		return;
2308	for (i = 0; i < 0x30; i++)
2309		kfree(priv->snapshot[i]);
2310	priv->snapshot[0] = NULL;
2311}
2312
2313#ifdef IPW2100_DEBUG_C3
2314static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2315{
2316	int i;
2317	if (priv->snapshot[0])
2318		return 1;
2319	for (i = 0; i < 0x30; i++) {
2320		priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2321		if (!priv->snapshot[i]) {
2322			IPW_DEBUG_INFO("%s: Error allocating snapshot "
2323				       "buffer %d\n", priv->net_dev->name, i);
2324			while (i > 0)
2325				kfree(priv->snapshot[--i]);
2326			priv->snapshot[0] = NULL;
2327			return 0;
2328		}
2329	}
2330
2331	return 1;
2332}
2333
2334static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2335				    size_t len, int mode)
2336{
2337	u32 i, j;
2338	u32 tmp;
2339	u8 *s, *d;
2340	u32 ret;
2341
2342	s = in_buf;
2343	if (mode == SEARCH_SNAPSHOT) {
2344		if (!ipw2100_snapshot_alloc(priv))
2345			mode = SEARCH_DISCARD;
2346	}
2347
2348	for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2349		read_nic_dword(priv->net_dev, i, &tmp);
2350		if (mode == SEARCH_SNAPSHOT)
2351			*(u32 *) SNAPSHOT_ADDR(i) = tmp;
2352		if (ret == SEARCH_FAIL) {
2353			d = (u8 *) & tmp;
2354			for (j = 0; j < 4; j++) {
2355				if (*s != *d) {
2356					s = in_buf;
2357					continue;
2358				}
2359
2360				s++;
2361				d++;
2362
2363				if ((s - in_buf) == len)
2364					ret = (i + j) - len + 1;
2365			}
2366		} else if (mode == SEARCH_DISCARD)
2367			return ret;
2368	}
2369
2370	return ret;
2371}
2372#endif
2373
2374/*
2375 *
2376 * 0) Disconnect the SKB from the firmware (just unmap)
2377 * 1) Pack the ETH header into the SKB
2378 * 2) Pass the SKB to the network stack
2379 *
2380 * When packet is provided by the firmware, it contains the following:
2381 *
2382 * .  libipw_hdr
2383 * .  libipw_snap_hdr
2384 *
2385 * The size of the constructed ethernet
2386 *
2387 */
2388#ifdef IPW2100_RX_DEBUG
2389static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2390#endif
2391
2392static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2393{
2394#ifdef IPW2100_DEBUG_C3
2395	struct ipw2100_status *status = &priv->status_queue.drv[i];
2396	u32 match, reg;
2397	int j;
2398#endif
2399
2400	IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2401		       i * sizeof(struct ipw2100_status));
2402
2403#ifdef IPW2100_DEBUG_C3
2404	/* Halt the firmware so we can get a good image */
2405	write_register(priv->net_dev, IPW_REG_RESET_REG,
2406		       IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2407	j = 5;
2408	do {
2409		udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2410		read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2411
2412		if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2413			break;
2414	} while (j--);
2415
2416	match = ipw2100_match_buf(priv, (u8 *) status,
2417				  sizeof(struct ipw2100_status),
2418				  SEARCH_SNAPSHOT);
2419	if (match < SEARCH_SUCCESS)
2420		IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2421			       "offset 0x%06X, length %d:\n",
2422			       priv->net_dev->name, match,
2423			       sizeof(struct ipw2100_status));
2424	else
2425		IPW_DEBUG_INFO("%s: No DMA status match in "
2426			       "Firmware.\n", priv->net_dev->name);
2427
2428	printk_buf((u8 *) priv->status_queue.drv,
2429		   sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2430#endif
2431
2432	priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2433	priv->net_dev->stats.rx_errors++;
2434	schedule_reset(priv);
2435}
2436
2437static void isr_rx(struct ipw2100_priv *priv, int i,
2438			  struct libipw_rx_stats *stats)
2439{
2440	struct net_device *dev = priv->net_dev;
2441	struct ipw2100_status *status = &priv->status_queue.drv[i];
2442	struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2443
2444	IPW_DEBUG_RX("Handler...\n");
2445
2446	if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2447		IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2448			       "  Dropping.\n",
2449			       dev->name,
2450			       status->frame_size, skb_tailroom(packet->skb));
2451		dev->stats.rx_errors++;
2452		return;
2453	}
2454
2455	if (unlikely(!netif_running(dev))) {
2456		dev->stats.rx_errors++;
2457		priv->wstats.discard.misc++;
2458		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2459		return;
2460	}
2461
2462	if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2463		     !(priv->status & STATUS_ASSOCIATED))) {
2464		IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2465		priv->wstats.discard.misc++;
2466		return;
2467	}
2468
2469	dma_unmap_single(&priv->pci_dev->dev, packet->dma_addr,
2470			 sizeof(struct ipw2100_rx), DMA_FROM_DEVICE);
2471
2472	skb_put(packet->skb, status->frame_size);
2473
2474#ifdef IPW2100_RX_DEBUG
2475	/* Make a copy of the frame so we can dump it to the logs if
2476	 * libipw_rx fails */
2477	skb_copy_from_linear_data(packet->skb, packet_data,
2478				  min_t(u32, status->frame_size,
2479					     IPW_RX_NIC_BUFFER_LENGTH));
2480#endif
2481
2482	if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2483#ifdef IPW2100_RX_DEBUG
2484		IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2485			       dev->name);
2486		printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2487#endif
2488		dev->stats.rx_errors++;
2489
2490		/* libipw_rx failed, so it didn't free the SKB */
2491		dev_kfree_skb_any(packet->skb);
2492		packet->skb = NULL;
2493	}
2494
2495	/* We need to allocate a new SKB and attach it to the RDB. */
2496	if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2497		printk(KERN_WARNING DRV_NAME ": "
2498		       "%s: Unable to allocate SKB onto RBD ring - disabling "
2499		       "adapter.\n", dev->name);
2500		/* TODO: schedule adapter shutdown */
2501		IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2502	}
2503
2504	/* Update the RDB entry */
2505	priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2506}
2507
2508#ifdef CONFIG_IPW2100_MONITOR
2509
2510static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2511		   struct libipw_rx_stats *stats)
2512{
2513	struct net_device *dev = priv->net_dev;
2514	struct ipw2100_status *status = &priv->status_queue.drv[i];
2515	struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2516
2517	/* Magic struct that slots into the radiotap header -- no reason
2518	 * to build this manually element by element, we can write it much
2519	 * more efficiently than we can parse it. ORDER MATTERS HERE */
2520	struct ipw_rt_hdr {
2521		struct ieee80211_radiotap_header rt_hdr;
2522		s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2523	} *ipw_rt;
2524
2525	IPW_DEBUG_RX("Handler...\n");
2526
2527	if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2528				sizeof(struct ipw_rt_hdr))) {
2529		IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2530			       "  Dropping.\n",
2531			       dev->name,
2532			       status->frame_size,
2533			       skb_tailroom(packet->skb));
2534		dev->stats.rx_errors++;
2535		return;
2536	}
2537
2538	if (unlikely(!netif_running(dev))) {
2539		dev->stats.rx_errors++;
2540		priv->wstats.discard.misc++;
2541		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2542		return;
2543	}
2544
2545	if (unlikely(priv->config & CFG_CRC_CHECK &&
2546		     status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2547		IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2548		dev->stats.rx_errors++;
2549		return;
2550	}
2551
2552	dma_unmap_single(&priv->pci_dev->dev, packet->dma_addr,
2553			 sizeof(struct ipw2100_rx), DMA_FROM_DEVICE);
2554	memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2555		packet->skb->data, status->frame_size);
2556
2557	ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2558
2559	ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2560	ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2561	ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2562
2563	ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2564
2565	ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2566
2567	skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2568
2569	if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2570		dev->stats.rx_errors++;
2571
2572		/* libipw_rx failed, so it didn't free the SKB */
2573		dev_kfree_skb_any(packet->skb);
2574		packet->skb = NULL;
2575	}
2576
2577	/* We need to allocate a new SKB and attach it to the RDB. */
2578	if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2579		IPW_DEBUG_WARNING(
2580			"%s: Unable to allocate SKB onto RBD ring - disabling "
2581			"adapter.\n", dev->name);
2582		/* TODO: schedule adapter shutdown */
2583		IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2584	}
2585
2586	/* Update the RDB entry */
2587	priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2588}
2589
2590#endif
2591
2592static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2593{
2594	struct ipw2100_status *status = &priv->status_queue.drv[i];
2595	struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2596	u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2597
2598	switch (frame_type) {
2599	case COMMAND_STATUS_VAL:
2600		return (status->frame_size != sizeof(u->rx_data.command));
2601	case STATUS_CHANGE_VAL:
2602		return (status->frame_size != sizeof(u->rx_data.status));
2603	case HOST_NOTIFICATION_VAL:
2604		return (status->frame_size < sizeof(u->rx_data.notification));
2605	case P80211_DATA_VAL:
2606	case P8023_DATA_VAL:
2607#ifdef CONFIG_IPW2100_MONITOR
2608		return 0;
2609#else
2610		switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2611		case IEEE80211_FTYPE_MGMT:
2612		case IEEE80211_FTYPE_CTL:
2613			return 0;
2614		case IEEE80211_FTYPE_DATA:
2615			return (status->frame_size >
2616				IPW_MAX_802_11_PAYLOAD_LENGTH);
2617		}
2618#endif
2619	}
2620
2621	return 1;
2622}
2623
2624/*
2625 * ipw2100 interrupts are disabled at this point, and the ISR
2626 * is the only code that calls this method.  So, we do not need
2627 * to play with any locks.
2628 *
2629 * RX Queue works as follows:
2630 *
2631 * Read index - firmware places packet in entry identified by the
2632 *              Read index and advances Read index.  In this manner,
2633 *              Read index will always point to the next packet to
2634 *              be filled--but not yet valid.
2635 *
2636 * Write index - driver fills this entry with an unused RBD entry.
2637 *               This entry has not filled by the firmware yet.
2638 *
2639 * In between the W and R indexes are the RBDs that have been received
2640 * but not yet processed.
2641 *
2642 * The process of handling packets will start at WRITE + 1 and advance
2643 * until it reaches the READ index.
2644 *
2645 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2646 *
2647 */
2648static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2649{
2650	struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2651	struct ipw2100_status_queue *sq = &priv->status_queue;
2652	struct ipw2100_rx_packet *packet;
2653	u16 frame_type;
2654	u32 r, w, i, s;
2655	struct ipw2100_rx *u;
2656	struct libipw_rx_stats stats = {
2657		.mac_time = jiffies,
2658	};
2659
2660	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2661	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2662
2663	if (r >= rxq->entries) {
2664		IPW_DEBUG_RX("exit - bad read index\n");
2665		return;
2666	}
2667
2668	i = (rxq->next + 1) % rxq->entries;
2669	s = i;
2670	while (i != r) {
2671		/* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2672		   r, rxq->next, i); */
2673
2674		packet = &priv->rx_buffers[i];
2675
2676		/* Sync the DMA for the RX buffer so CPU is sure to get
2677		 * the correct values */
2678		dma_sync_single_for_cpu(&priv->pci_dev->dev, packet->dma_addr,
2679					sizeof(struct ipw2100_rx),
2680					DMA_FROM_DEVICE);
2681
2682		if (unlikely(ipw2100_corruption_check(priv, i))) {
2683			ipw2100_corruption_detected(priv, i);
2684			goto increment;
2685		}
2686
2687		u = packet->rxp;
2688		frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2689		stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2690		stats.len = sq->drv[i].frame_size;
2691
2692		stats.mask = 0;
2693		if (stats.rssi != 0)
2694			stats.mask |= LIBIPW_STATMASK_RSSI;
2695		stats.freq = LIBIPW_24GHZ_BAND;
2696
2697		IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2698			     priv->net_dev->name, frame_types[frame_type],
2699			     stats.len);
2700
2701		switch (frame_type) {
2702		case COMMAND_STATUS_VAL:
2703			/* Reset Rx watchdog */
2704			isr_rx_complete_command(priv, &u->rx_data.command);
2705			break;
2706
2707		case STATUS_CHANGE_VAL:
2708			isr_status_change(priv, u->rx_data.status);
2709			break;
2710
2711		case P80211_DATA_VAL:
2712		case P8023_DATA_VAL:
2713#ifdef CONFIG_IPW2100_MONITOR
2714			if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2715				isr_rx_monitor(priv, i, &stats);
2716				break;
2717			}
2718#endif
2719			if (stats.len < sizeof(struct libipw_hdr_3addr))
2720				break;
2721			switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2722			case IEEE80211_FTYPE_MGMT:
2723				libipw_rx_mgt(priv->ieee,
2724						 &u->rx_data.header, &stats);
2725				break;
2726
2727			case IEEE80211_FTYPE_CTL:
2728				break;
2729
2730			case IEEE80211_FTYPE_DATA:
2731				isr_rx(priv, i, &stats);
2732				break;
2733
2734			}
2735			break;
2736		}
2737
2738	      increment:
2739		/* clear status field associated with this RBD */
2740		rxq->drv[i].status.info.field = 0;
2741
2742		i = (i + 1) % rxq->entries;
2743	}
2744
2745	if (i != s) {
2746		/* backtrack one entry, wrapping to end if at 0 */
2747		rxq->next = (i ? i : rxq->entries) - 1;
2748
2749		write_register(priv->net_dev,
2750			       IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2751	}
2752}
2753
2754/*
2755 * __ipw2100_tx_process
2756 *
2757 * This routine will determine whether the next packet on
2758 * the fw_pend_list has been processed by the firmware yet.
2759 *
2760 * If not, then it does nothing and returns.
2761 *
2762 * If so, then it removes the item from the fw_pend_list, frees
2763 * any associated storage, and places the item back on the
2764 * free list of its source (either msg_free_list or tx_free_list)
2765 *
2766 * TX Queue works as follows:
2767 *
2768 * Read index - points to the next TBD that the firmware will
2769 *              process.  The firmware will read the data, and once
2770 *              done processing, it will advance the Read index.
2771 *
2772 * Write index - driver fills this entry with an constructed TBD
2773 *               entry.  The Write index is not advanced until the
2774 *               packet has been configured.
2775 *
2776 * In between the W and R indexes are the TBDs that have NOT been
2777 * processed.  Lagging behind the R index are packets that have
2778 * been processed but have not been freed by the driver.
2779 *
2780 * In order to free old storage, an internal index will be maintained
2781 * that points to the next packet to be freed.  When all used
2782 * packets have been freed, the oldest index will be the same as the
2783 * firmware's read index.
2784 *
2785 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2786 *
2787 * Because the TBD structure can not contain arbitrary data, the
2788 * driver must keep an internal queue of cached allocations such that
2789 * it can put that data back into the tx_free_list and msg_free_list
2790 * for use by future command and data packets.
2791 *
2792 */
2793static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2794{
2795	struct ipw2100_bd_queue *txq = &priv->tx_queue;
2796	struct ipw2100_bd *tbd;
2797	struct list_head *element;
2798	struct ipw2100_tx_packet *packet;
2799	int descriptors_used;
2800	int e, i;
2801	u32 r, w, frag_num = 0;
2802
2803	if (list_empty(&priv->fw_pend_list))
2804		return 0;
2805
2806	element = priv->fw_pend_list.next;
2807
2808	packet = list_entry(element, struct ipw2100_tx_packet, list);
2809	tbd = &txq->drv[packet->index];
2810
2811	/* Determine how many TBD entries must be finished... */
2812	switch (packet->type) {
2813	case COMMAND:
2814		/* COMMAND uses only one slot; don't advance */
2815		descriptors_used = 1;
2816		e = txq->oldest;
2817		break;
2818
2819	case DATA:
2820		/* DATA uses two slots; advance and loop position. */
2821		descriptors_used = tbd->num_fragments;
2822		frag_num = tbd->num_fragments - 1;
2823		e = txq->oldest + frag_num;
2824		e %= txq->entries;
2825		break;
2826
2827	default:
2828		printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2829		       priv->net_dev->name);
2830		return 0;
2831	}
2832
2833	/* if the last TBD is not done by NIC yet, then packet is
2834	 * not ready to be released.
2835	 *
2836	 */
2837	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2838		      &r);
2839	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2840		      &w);
2841	if (w != txq->next)
2842		printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2843		       priv->net_dev->name);
2844
2845	/*
2846	 * txq->next is the index of the last packet written txq->oldest is
2847	 * the index of the r is the index of the next packet to be read by
2848	 * firmware
2849	 */
2850
2851	/*
2852	 * Quick graphic to help you visualize the following
2853	 * if / else statement
2854	 *
2855	 * ===>|                     s---->|===============
2856	 *                               e>|
2857	 * | a | b | c | d | e | f | g | h | i | j | k | l
2858	 *       r---->|
2859	 *               w
2860	 *
2861	 * w - updated by driver
2862	 * r - updated by firmware
2863	 * s - start of oldest BD entry (txq->oldest)
2864	 * e - end of oldest BD entry
2865	 *
2866	 */
2867	if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2868		IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2869		return 0;
2870	}
2871
2872	list_del(element);
2873	DEC_STAT(&priv->fw_pend_stat);
2874
2875#ifdef CONFIG_IPW2100_DEBUG
2876	{
2877		i = txq->oldest;
2878		IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2879			     &txq->drv[i],
2880			     (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2881			     txq->drv[i].host_addr, txq->drv[i].buf_length);
2882
2883		if (packet->type == DATA) {
2884			i = (i + 1) % txq->entries;
2885
2886			IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2887				     &txq->drv[i],
2888				     (u32) (txq->nic + i *
2889					    sizeof(struct ipw2100_bd)),
2890				     (u32) txq->drv[i].host_addr,
2891				     txq->drv[i].buf_length);
2892		}
2893	}
2894#endif
2895
2896	switch (packet->type) {
2897	case DATA:
2898		if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2899			printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2900			       "Expecting DATA TBD but pulled "
2901			       "something else: ids %d=%d.\n",
2902			       priv->net_dev->name, txq->oldest, packet->index);
2903
2904		/* DATA packet; we have to unmap and free the SKB */
2905		for (i = 0; i < frag_num; i++) {
2906			tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2907
2908			IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2909				     (packet->index + 1 + i) % txq->entries,
2910				     tbd->host_addr, tbd->buf_length);
2911
2912			dma_unmap_single(&priv->pci_dev->dev, tbd->host_addr,
2913					 tbd->buf_length, DMA_TO_DEVICE);
2914		}
2915
2916		libipw_txb_free(packet->info.d_struct.txb);
2917		packet->info.d_struct.txb = NULL;
2918
2919		list_add_tail(element, &priv->tx_free_list);
2920		INC_STAT(&priv->tx_free_stat);
2921
2922		/* We have a free slot in the Tx queue, so wake up the
2923		 * transmit layer if it is stopped. */
2924		if (priv->status & STATUS_ASSOCIATED)
2925			netif_wake_queue(priv->net_dev);
2926
2927		/* A packet was processed by the hardware, so update the
2928		 * watchdog */
2929		netif_trans_update(priv->net_dev);
2930
2931		break;
2932
2933	case COMMAND:
2934		if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2935			printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2936			       "Expecting COMMAND TBD but pulled "
2937			       "something else: ids %d=%d.\n",
2938			       priv->net_dev->name, txq->oldest, packet->index);
2939
2940#ifdef CONFIG_IPW2100_DEBUG
2941		if (packet->info.c_struct.cmd->host_command_reg <
2942		    ARRAY_SIZE(command_types))
2943			IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2944				     command_types[packet->info.c_struct.cmd->
2945						   host_command_reg],
2946				     packet->info.c_struct.cmd->
2947				     host_command_reg,
2948				     packet->info.c_struct.cmd->cmd_status_reg);
2949#endif
2950
2951		list_add_tail(element, &priv->msg_free_list);
2952		INC_STAT(&priv->msg_free_stat);
2953		break;
2954	}
2955
2956	/* advance oldest used TBD pointer to start of next entry */
2957	txq->oldest = (e + 1) % txq->entries;
2958	/* increase available TBDs number */
2959	txq->available += descriptors_used;
2960	SET_STAT(&priv->txq_stat, txq->available);
2961
2962	IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2963		     jiffies - packet->jiffy_start);
2964
2965	return (!list_empty(&priv->fw_pend_list));
2966}
2967
2968static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2969{
2970	int i = 0;
2971
2972	while (__ipw2100_tx_process(priv) && i < 200)
2973		i++;
2974
2975	if (i == 200) {
2976		printk(KERN_WARNING DRV_NAME ": "
2977		       "%s: Driver is running slow (%d iters).\n",
2978		       priv->net_dev->name, i);
2979	}
2980}
2981
2982static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2983{
2984	struct list_head *element;
2985	struct ipw2100_tx_packet *packet;
2986	struct ipw2100_bd_queue *txq = &priv->tx_queue;
2987	struct ipw2100_bd *tbd;
2988	int next = txq->next;
2989
2990	while (!list_empty(&priv->msg_pend_list)) {
2991		/* if there isn't enough space in TBD queue, then
2992		 * don't stuff a new one in.
2993		 * NOTE: 3 are needed as a command will take one,
2994		 *       and there is a minimum of 2 that must be
2995		 *       maintained between the r and w indexes
2996		 */
2997		if (txq->available <= 3) {
2998			IPW_DEBUG_TX("no room in tx_queue\n");
2999			break;
3000		}
3001
3002		element = priv->msg_pend_list.next;
3003		list_del(element);
3004		DEC_STAT(&priv->msg_pend_stat);
3005
3006		packet = list_entry(element, struct ipw2100_tx_packet, list);
3007
3008		IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3009			     &txq->drv[txq->next],
3010			     (u32) (txq->nic + txq->next *
3011				      sizeof(struct ipw2100_bd)));
3012
3013		packet->index = txq->next;
3014
3015		tbd = &txq->drv[txq->next];
3016
3017		/* initialize TBD */
3018		tbd->host_addr = packet->info.c_struct.cmd_phys;
3019		tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3020		/* not marking number of fragments causes problems
3021		 * with f/w debug version */
3022		tbd->num_fragments = 1;
3023		tbd->status.info.field =
3024		    IPW_BD_STATUS_TX_FRAME_COMMAND |
3025		    IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3026
3027		/* update TBD queue counters */
3028		txq->next++;
3029		txq->next %= txq->entries;
3030		txq->available--;
3031		DEC_STAT(&priv->txq_stat);
3032
3033		list_add_tail(element, &priv->fw_pend_list);
3034		INC_STAT(&priv->fw_pend_stat);
3035	}
3036
3037	if (txq->next != next) {
3038		/* kick off the DMA by notifying firmware the
3039		 * write index has moved; make sure TBD stores are sync'd */
3040		wmb();
3041		write_register(priv->net_dev,
3042			       IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3043			       txq->next);
3044	}
3045}
3046
3047/*
3048 * ipw2100_tx_send_data
3049 *
3050 */
3051static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3052{
3053	struct list_head *element;
3054	struct ipw2100_tx_packet *packet;
3055	struct ipw2100_bd_queue *txq = &priv->tx_queue;
3056	struct ipw2100_bd *tbd;
3057	int next = txq->next;
3058	int i = 0;
3059	struct ipw2100_data_header *ipw_hdr;
3060	struct libipw_hdr_3addr *hdr;
3061
3062	while (!list_empty(&priv->tx_pend_list)) {
3063		/* if there isn't enough space in TBD queue, then
3064		 * don't stuff a new one in.
3065		 * NOTE: 4 are needed as a data will take two,
3066		 *       and there is a minimum of 2 that must be
3067		 *       maintained between the r and w indexes
3068		 */
3069		element = priv->tx_pend_list.next;
3070		packet = list_entry(element, struct ipw2100_tx_packet, list);
3071
3072		if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3073			     IPW_MAX_BDS)) {
3074			/* TODO: Support merging buffers if more than
3075			 * IPW_MAX_BDS are used */
3076			IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3077				       "Increase fragmentation level.\n",
3078				       priv->net_dev->name);
3079		}
3080
3081		if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3082			IPW_DEBUG_TX("no room in tx_queue\n");
3083			break;
3084		}
3085
3086		list_del(element);
3087		DEC_STAT(&priv->tx_pend_stat);
3088
3089		tbd = &txq->drv[txq->next];
3090
3091		packet->index = txq->next;
3092
3093		ipw_hdr = packet->info.d_struct.data;
3094		hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3095		    fragments[0]->data;
3096
3097		if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3098			/* To DS: Addr1 = BSSID, Addr2 = SA,
3099			   Addr3 = DA */
3100			memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3101			memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3102		} else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3103			/* not From/To DS: Addr1 = DA, Addr2 = SA,
3104			   Addr3 = BSSID */
3105			memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3106			memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3107		}
3108
3109		ipw_hdr->host_command_reg = SEND;
3110		ipw_hdr->host_command_reg1 = 0;
3111
3112		/* For now we only support host based encryption */
3113		ipw_hdr->needs_encryption = 0;
3114		ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3115		if (packet->info.d_struct.txb->nr_frags > 1)
3116			ipw_hdr->fragment_size =
3117			    packet->info.d_struct.txb->frag_size -
3118			    LIBIPW_3ADDR_LEN;
3119		else
3120			ipw_hdr->fragment_size = 0;
3121
3122		tbd->host_addr = packet->info.d_struct.data_phys;
3123		tbd->buf_length = sizeof(struct ipw2100_data_header);
3124		tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3125		tbd->status.info.field =
3126		    IPW_BD_STATUS_TX_FRAME_802_3 |
3127		    IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3128		txq->next++;
3129		txq->next %= txq->entries;
3130
3131		IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3132			     packet->index, tbd->host_addr, tbd->buf_length);
3133#ifdef CONFIG_IPW2100_DEBUG
3134		if (packet->info.d_struct.txb->nr_frags > 1)
3135			IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3136				       packet->info.d_struct.txb->nr_frags);
3137#endif
3138
3139		for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3140			tbd = &txq->drv[txq->next];
3141			if (i == packet->info.d_struct.txb->nr_frags - 1)
3142				tbd->status.info.field =
3143				    IPW_BD_STATUS_TX_FRAME_802_3 |
3144				    IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3145			else
3146				tbd->status.info.field =
3147				    IPW_BD_STATUS_TX_FRAME_802_3 |
3148				    IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3149
3150			tbd->buf_length = packet->info.d_struct.txb->
3151			    fragments[i]->len - LIBIPW_3ADDR_LEN;
3152
3153			tbd->host_addr = dma_map_single(&priv->pci_dev->dev,
3154							packet->info.d_struct.
3155							txb->fragments[i]->data +
3156							LIBIPW_3ADDR_LEN,
3157							tbd->buf_length,
3158							DMA_TO_DEVICE);
3159			if (dma_mapping_error(&priv->pci_dev->dev, tbd->host_addr)) {
3160				IPW_DEBUG_TX("dma mapping error\n");
3161				break;
3162			}
3163
3164			IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3165				     txq->next, tbd->host_addr,
3166				     tbd->buf_length);
3167
3168			dma_sync_single_for_device(&priv->pci_dev->dev,
3169						   tbd->host_addr,
3170						   tbd->buf_length,
3171						   DMA_TO_DEVICE);
3172
3173			txq->next++;
3174			txq->next %= txq->entries;
3175		}
3176
3177		txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3178		SET_STAT(&priv->txq_stat, txq->available);
3179
3180		list_add_tail(element, &priv->fw_pend_list);
3181		INC_STAT(&priv->fw_pend_stat);
3182	}
3183
3184	if (txq->next != next) {
3185		/* kick off the DMA by notifying firmware the
3186		 * write index has moved; make sure TBD stores are sync'd */
3187		write_register(priv->net_dev,
3188			       IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3189			       txq->next);
3190	}
3191}
3192
3193static void ipw2100_irq_tasklet(struct tasklet_struct *t)
3194{
3195	struct ipw2100_priv *priv = from_tasklet(priv, t, irq_tasklet);
3196	struct net_device *dev = priv->net_dev;
3197	unsigned long flags;
3198	u32 inta, tmp;
3199
3200	spin_lock_irqsave(&priv->low_lock, flags);
3201	ipw2100_disable_interrupts(priv);
3202
3203	read_register(dev, IPW_REG_INTA, &inta);
3204
3205	IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3206		      (unsigned long)inta & IPW_INTERRUPT_MASK);
3207
3208	priv->in_isr++;
3209	priv->interrupts++;
3210
3211	/* We do not loop and keep polling for more interrupts as this
3212	 * is frowned upon and doesn't play nicely with other potentially
3213	 * chained IRQs */
3214	IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3215		      (unsigned long)inta & IPW_INTERRUPT_MASK);
3216
3217	if (inta & IPW2100_INTA_FATAL_ERROR) {
3218		printk(KERN_WARNING DRV_NAME
3219		       ": Fatal interrupt. Scheduling firmware restart.\n");
3220		priv->inta_other++;
3221		write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3222
3223		read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3224		IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3225			       priv->net_dev->name, priv->fatal_error);
3226
3227		read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3228		IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3229			       priv->net_dev->name, tmp);
3230
3231		/* Wake up any sleeping jobs */
3232		schedule_reset(priv);
3233	}
3234
3235	if (inta & IPW2100_INTA_PARITY_ERROR) {
3236		printk(KERN_ERR DRV_NAME
3237		       ": ***** PARITY ERROR INTERRUPT !!!!\n");
3238		priv->inta_other++;
3239		write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3240	}
3241
3242	if (inta & IPW2100_INTA_RX_TRANSFER) {
3243		IPW_DEBUG_ISR("RX interrupt\n");
3244
3245		priv->rx_interrupts++;
3246
3247		write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3248
3249		__ipw2100_rx_process(priv);
3250		__ipw2100_tx_complete(priv);
3251	}
3252
3253	if (inta & IPW2100_INTA_TX_TRANSFER) {
3254		IPW_DEBUG_ISR("TX interrupt\n");
3255
3256		priv->tx_interrupts++;
3257
3258		write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3259
3260		__ipw2100_tx_complete(priv);
3261		ipw2100_tx_send_commands(priv);
3262		ipw2100_tx_send_data(priv);
3263	}
3264
3265	if (inta & IPW2100_INTA_TX_COMPLETE) {
3266		IPW_DEBUG_ISR("TX complete\n");
3267		priv->inta_other++;
3268		write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3269
3270		__ipw2100_tx_complete(priv);
3271	}
3272
3273	if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3274		/* ipw2100_handle_event(dev); */
3275		priv->inta_other++;
3276		write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3277	}
3278
3279	if (inta & IPW2100_INTA_FW_INIT_DONE) {
3280		IPW_DEBUG_ISR("FW init done interrupt\n");
3281		priv->inta_other++;
3282
3283		read_register(dev, IPW_REG_INTA, &tmp);
3284		if (tmp & (IPW2100_INTA_FATAL_ERROR |
3285			   IPW2100_INTA_PARITY_ERROR)) {
3286			write_register(dev, IPW_REG_INTA,
3287				       IPW2100_INTA_FATAL_ERROR |
3288				       IPW2100_INTA_PARITY_ERROR);
3289		}
3290
3291		write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3292	}
3293
3294	if (inta & IPW2100_INTA_STATUS_CHANGE) {
3295		IPW_DEBUG_ISR("Status change interrupt\n");
3296		priv->inta_other++;
3297		write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3298	}
3299
3300	if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3301		IPW_DEBUG_ISR("slave host mode interrupt\n");
3302		priv->inta_other++;
3303		write_register(dev, IPW_REG_INTA,
3304			       IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3305	}
3306
3307	priv->in_isr--;
3308	ipw2100_enable_interrupts(priv);
3309
3310	spin_unlock_irqrestore(&priv->low_lock, flags);
3311
3312	IPW_DEBUG_ISR("exit\n");
3313}
3314
3315static irqreturn_t ipw2100_interrupt(int irq, void *data)
3316{
3317	struct ipw2100_priv *priv = data;
3318	u32 inta, inta_mask;
3319
3320	if (!data)
3321		return IRQ_NONE;
3322
3323	spin_lock(&priv->low_lock);
3324
3325	/* We check to see if we should be ignoring interrupts before
3326	 * we touch the hardware.  During ucode load if we try and handle
3327	 * an interrupt we can cause keyboard problems as well as cause
3328	 * the ucode to fail to initialize */
3329	if (!(priv->status & STATUS_INT_ENABLED)) {
3330		/* Shared IRQ */
3331		goto none;
3332	}
3333
3334	read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3335	read_register(priv->net_dev, IPW_REG_INTA, &inta);
3336
3337	if (inta == 0xFFFFFFFF) {
3338		/* Hardware disappeared */
3339		printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3340		goto none;
3341	}
3342
3343	inta &= IPW_INTERRUPT_MASK;
3344
3345	if (!(inta & inta_mask)) {
3346		/* Shared interrupt */
3347		goto none;
3348	}
3349
3350	/* We disable the hardware interrupt here just to prevent unneeded
3351	 * calls to be made.  We disable this again within the actual
3352	 * work tasklet, so if another part of the code re-enables the
3353	 * interrupt, that is fine */
3354	ipw2100_disable_interrupts(priv);
3355
3356	tasklet_schedule(&priv->irq_tasklet);
3357	spin_unlock(&priv->low_lock);
3358
3359	return IRQ_HANDLED;
3360      none:
3361	spin_unlock(&priv->low_lock);
3362	return IRQ_NONE;
3363}
3364
3365static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3366			      struct net_device *dev, int pri)
3367{
3368	struct ipw2100_priv *priv = libipw_priv(dev);
3369	struct list_head *element;
3370	struct ipw2100_tx_packet *packet;
3371	unsigned long flags;
3372
3373	spin_lock_irqsave(&priv->low_lock, flags);
3374
3375	if (!(priv->status & STATUS_ASSOCIATED)) {
3376		IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3377		priv->net_dev->stats.tx_carrier_errors++;
3378		netif_stop_queue(dev);
3379		goto fail_unlock;
3380	}
3381
3382	if (list_empty(&priv->tx_free_list))
3383		goto fail_unlock;
3384
3385	element = priv->tx_free_list.next;
3386	packet = list_entry(element, struct ipw2100_tx_packet, list);
3387
3388	packet->info.d_struct.txb = txb;
3389
3390	IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3391	printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3392
3393	packet->jiffy_start = jiffies;
3394
3395	list_del(element);
3396	DEC_STAT(&priv->tx_free_stat);
3397
3398	list_add_tail(element, &priv->tx_pend_list);
3399	INC_STAT(&priv->tx_pend_stat);
3400
3401	ipw2100_tx_send_data(priv);
3402
3403	spin_unlock_irqrestore(&priv->low_lock, flags);
3404	return NETDEV_TX_OK;
3405
3406fail_unlock:
3407	netif_stop_queue(dev);
3408	spin_unlock_irqrestore(&priv->low_lock, flags);
3409	return NETDEV_TX_BUSY;
3410}
3411
3412static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3413{
3414	int i, j, err = -EINVAL;
3415	void *v;
3416	dma_addr_t p;
3417
3418	priv->msg_buffers =
3419	    kmalloc_array(IPW_COMMAND_POOL_SIZE,
3420			  sizeof(struct ipw2100_tx_packet),
3421			  GFP_KERNEL);
3422	if (!priv->msg_buffers)
3423		return -ENOMEM;
3424
3425	for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3426		v = dma_alloc_coherent(&priv->pci_dev->dev,
3427				       sizeof(struct ipw2100_cmd_header), &p,
3428				       GFP_KERNEL);
3429		if (!v) {
3430			printk(KERN_ERR DRV_NAME ": "
3431			       "%s: PCI alloc failed for msg "
3432			       "buffers.\n", priv->net_dev->name);
3433			err = -ENOMEM;
3434			break;
3435		}
3436
3437		priv->msg_buffers[i].type = COMMAND;
3438		priv->msg_buffers[i].info.c_struct.cmd =
3439		    (struct ipw2100_cmd_header *)v;
3440		priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3441	}
3442
3443	if (i == IPW_COMMAND_POOL_SIZE)
3444		return 0;
3445
3446	for (j = 0; j < i; j++) {
3447		dma_free_coherent(&priv->pci_dev->dev,
3448				  sizeof(struct ipw2100_cmd_header),
3449				  priv->msg_buffers[j].info.c_struct.cmd,
3450				  priv->msg_buffers[j].info.c_struct.cmd_phys);
3451	}
3452
3453	kfree(priv->msg_buffers);
3454	priv->msg_buffers = NULL;
3455
3456	return err;
3457}
3458
3459static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3460{
3461	int i;
3462
3463	INIT_LIST_HEAD(&priv->msg_free_list);
3464	INIT_LIST_HEAD(&priv->msg_pend_list);
3465
3466	for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3467		list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3468	SET_STAT(&priv->msg_free_stat, i);
3469
3470	return 0;
3471}
3472
3473static void ipw2100_msg_free(struct ipw2100_priv *priv)
3474{
3475	int i;
3476
3477	if (!priv->msg_buffers)
3478		return;
3479
3480	for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3481		dma_free_coherent(&priv->pci_dev->dev,
3482				  sizeof(struct ipw2100_cmd_header),
3483				  priv->msg_buffers[i].info.c_struct.cmd,
3484				  priv->msg_buffers[i].info.c_struct.cmd_phys);
3485	}
3486
3487	kfree(priv->msg_buffers);
3488	priv->msg_buffers = NULL;
3489}
3490
3491static ssize_t pci_show(struct device *d, struct device_attribute *attr,
3492			char *buf)
3493{
3494	struct pci_dev *pci_dev = to_pci_dev(d);
3495	char *out = buf;
3496	int i, j;
3497	u32 val;
3498
3499	for (i = 0; i < 16; i++) {
3500		out += sprintf(out, "[%08X] ", i * 16);
3501		for (j = 0; j < 16; j += 4) {
3502			pci_read_config_dword(pci_dev, i * 16 + j, &val);
3503			out += sprintf(out, "%08X ", val);
3504		}
3505		out += sprintf(out, "\n");
3506	}
3507
3508	return out - buf;
3509}
3510
3511static DEVICE_ATTR_RO(pci);
3512
3513static ssize_t cfg_show(struct device *d, struct device_attribute *attr,
3514			char *buf)
3515{
3516	struct ipw2100_priv *p = dev_get_drvdata(d);
3517	return sprintf(buf, "0x%08x\n", (int)p->config);
3518}
3519
3520static DEVICE_ATTR_RO(cfg);
3521
3522static ssize_t status_show(struct device *d, struct device_attribute *attr,
3523			   char *buf)
3524{
3525	struct ipw2100_priv *p = dev_get_drvdata(d);
3526	return sprintf(buf, "0x%08x\n", (int)p->status);
3527}
3528
3529static DEVICE_ATTR_RO(status);
3530
3531static ssize_t capability_show(struct device *d, struct device_attribute *attr,
3532			       char *buf)
3533{
3534	struct ipw2100_priv *p = dev_get_drvdata(d);
3535	return sprintf(buf, "0x%08x\n", (int)p->capability);
3536}
3537
3538static DEVICE_ATTR_RO(capability);
3539
3540#define IPW2100_REG(x) { IPW_ ##x, #x }
3541static const struct {
3542	u32 addr;
3543	const char *name;
3544} hw_data[] = {
3545IPW2100_REG(REG_GP_CNTRL),
3546	    IPW2100_REG(REG_GPIO),
3547	    IPW2100_REG(REG_INTA),
3548	    IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3549#define IPW2100_NIC(x, s) { x, #x, s }
3550static const struct {
3551	u32 addr;
3552	const char *name;
3553	size_t size;
3554} nic_data[] = {
3555IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3556	    IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3557#define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3558static const struct {
3559	u8 index;
3560	const char *name;
3561	const char *desc;
3562} ord_data[] = {
3563IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3564	    IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3565				"successful Host Tx's (MSDU)"),
3566	    IPW2100_ORD(STAT_TX_DIR_DATA,
3567				"successful Directed Tx's (MSDU)"),
3568	    IPW2100_ORD(STAT_TX_DIR_DATA1,
3569				"successful Directed Tx's (MSDU) @ 1MB"),
3570	    IPW2100_ORD(STAT_TX_DIR_DATA2,
3571				"successful Directed Tx's (MSDU) @ 2MB"),
3572	    IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3573				"successful Directed Tx's (MSDU) @ 5_5MB"),
3574	    IPW2100_ORD(STAT_TX_DIR_DATA11,
3575				"successful Directed Tx's (MSDU) @ 11MB"),
3576	    IPW2100_ORD(STAT_TX_NODIR_DATA1,
3577				"successful Non_Directed Tx's (MSDU) @ 1MB"),
3578	    IPW2100_ORD(STAT_TX_NODIR_DATA2,
3579				"successful Non_Directed Tx's (MSDU) @ 2MB"),
3580	    IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3581				"successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3582	    IPW2100_ORD(STAT_TX_NODIR_DATA11,
3583				"successful Non_Directed Tx's (MSDU) @ 11MB"),
3584	    IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3585	    IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3586	    IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3587	    IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3588	    IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3589	    IPW2100_ORD(STAT_TX_ASSN_RESP,
3590				"successful Association response Tx's"),
3591	    IPW2100_ORD(STAT_TX_REASSN,
3592				"successful Reassociation Tx's"),
3593	    IPW2100_ORD(STAT_TX_REASSN_RESP,
3594				"successful Reassociation response Tx's"),
3595	    IPW2100_ORD(STAT_TX_PROBE,
3596				"probes successfully transmitted"),
3597	    IPW2100_ORD(STAT_TX_PROBE_RESP,
3598				"probe responses successfully transmitted"),
3599	    IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3600	    IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3601	    IPW2100_ORD(STAT_TX_DISASSN,
3602				"successful Disassociation TX"),
3603	    IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3604	    IPW2100_ORD(STAT_TX_DEAUTH,
3605				"successful Deauthentication TX"),
3606	    IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3607				"Total successful Tx data bytes"),
3608	    IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3609	    IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3610	    IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3611	    IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3612	    IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3613	    IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3614	    IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3615				"times max tries in a hop failed"),
3616	    IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3617				"times disassociation failed"),
3618	    IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3619	    IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3620	    IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3621	    IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3622	    IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3623	    IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3624	    IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3625				"directed packets at 5.5MB"),
3626	    IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3627	    IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3628	    IPW2100_ORD(STAT_RX_NODIR_DATA1,
3629				"nondirected packets at 1MB"),
3630	    IPW2100_ORD(STAT_RX_NODIR_DATA2,
3631				"nondirected packets at 2MB"),
3632	    IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3633				"nondirected packets at 5.5MB"),
3634	    IPW2100_ORD(STAT_RX_NODIR_DATA11,
3635				"nondirected packets at 11MB"),
3636	    IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3637	    IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3638								    "Rx CTS"),
3639	    IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3640	    IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3641	    IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3642	    IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3643	    IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3644	    IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3645	    IPW2100_ORD(STAT_RX_REASSN_RESP,
3646				"Reassociation response Rx's"),
3647	    IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3648	    IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3649	    IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3650	    IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3651	    IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3652	    IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3653	    IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3654	    IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3655				"Total rx data bytes received"),
3656	    IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3657	    IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3658	    IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3659	    IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3660	    IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3661	    IPW2100_ORD(STAT_RX_DUPLICATE1,
3662				"duplicate rx packets at 1MB"),
3663	    IPW2100_ORD(STAT_RX_DUPLICATE2,
3664				"duplicate rx packets at 2MB"),
3665	    IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3666				"duplicate rx packets at 5.5MB"),
3667	    IPW2100_ORD(STAT_RX_DUPLICATE11,
3668				"duplicate rx packets at 11MB"),
3669	    IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3670	    IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3671	    IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3672	    IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3673	    IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3674				"rx frames with invalid protocol"),
3675	    IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3676	    IPW2100_ORD(STAT_RX_NO_BUFFER,
3677				"rx frames rejected due to no buffer"),
3678	    IPW2100_ORD(STAT_RX_MISSING_FRAG,
3679				"rx frames dropped due to missing fragment"),
3680	    IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3681				"rx frames dropped due to non-sequential fragment"),
3682	    IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3683				"rx frames dropped due to unmatched 1st frame"),
3684	    IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3685				"rx frames dropped due to uncompleted frame"),
3686	    IPW2100_ORD(STAT_RX_ICV_ERRORS,
3687				"ICV errors during decryption"),
3688	    IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3689	    IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3690	    IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3691				"poll response timeouts"),
3692	    IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3693				"timeouts waiting for last {broad,multi}cast pkt"),
3694	    IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3695	    IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3696	    IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3697	    IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3698	    IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3699				"current calculation of % missed beacons"),
3700	    IPW2100_ORD(STAT_PERCENT_RETRIES,
3701				"current calculation of % missed tx retries"),
3702	    IPW2100_ORD(ASSOCIATED_AP_PTR,
3703				"0 if not associated, else pointer to AP table entry"),
3704	    IPW2100_ORD(AVAILABLE_AP_CNT,
3705				"AP's described in the AP table"),
3706	    IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3707	    IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3708	    IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3709	    IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3710				"failures due to response fail"),
3711	    IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3712	    IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3713	    IPW2100_ORD(STAT_ROAM_INHIBIT,
3714				"times roaming was inhibited due to activity"),
3715	    IPW2100_ORD(RSSI_AT_ASSN,
3716				"RSSI of associated AP at time of association"),
3717	    IPW2100_ORD(STAT_ASSN_CAUSE1,
3718				"reassociation: no probe response or TX on hop"),
3719	    IPW2100_ORD(STAT_ASSN_CAUSE2,
3720				"reassociation: poor tx/rx quality"),
3721	    IPW2100_ORD(STAT_ASSN_CAUSE3,
3722				"reassociation: tx/rx quality (excessive AP load"),
3723	    IPW2100_ORD(STAT_ASSN_CAUSE4,
3724				"reassociation: AP RSSI level"),
3725	    IPW2100_ORD(STAT_ASSN_CAUSE5,
3726				"reassociations due to load leveling"),
3727	    IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3728	    IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3729				"times authentication response failed"),
3730	    IPW2100_ORD(STATION_TABLE_CNT,
3731				"entries in association table"),
3732	    IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3733	    IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3734	    IPW2100_ORD(COUNTRY_CODE,
3735				"IEEE country code as recv'd from beacon"),
3736	    IPW2100_ORD(COUNTRY_CHANNELS,
3737				"channels supported by country"),
3738	    IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3739	    IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3740	    IPW2100_ORD(ANTENNA_DIVERSITY,
3741				"TRUE if antenna diversity is disabled"),
3742	    IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3743	    IPW2100_ORD(OUR_FREQ,
3744				"current radio freq lower digits - channel ID"),
3745	    IPW2100_ORD(RTC_TIME, "current RTC time"),
3746	    IPW2100_ORD(PORT_TYPE, "operating mode"),
3747	    IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3748	    IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3749	    IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3750	    IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3751	    IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3752	    IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3753	    IPW2100_ORD(CAPABILITIES,
3754				"Management frame capability field"),
3755	    IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3756	    IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3757	    IPW2100_ORD(RTS_THRESHOLD,
3758				"Min packet length for RTS handshaking"),
3759	    IPW2100_ORD(INT_MODE, "International mode"),
3760	    IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3761				"protocol frag threshold"),
3762	    IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3763				"EEPROM offset in SRAM"),
3764	    IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3765				"EEPROM size in SRAM"),
3766	    IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3767	    IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3768				"EEPROM IBSS 11b channel set"),
3769	    IPW2100_ORD(MAC_VERSION, "MAC Version"),
3770	    IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3771	    IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3772	    IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3773	    IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3774
3775static ssize_t registers_show(struct device *d, struct device_attribute *attr,
3776			      char *buf)
3777{
3778	int i;
3779	struct ipw2100_priv *priv = dev_get_drvdata(d);
3780	struct net_device *dev = priv->net_dev;
3781	char *out = buf;
3782	u32 val = 0;
3783
3784	out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3785
3786	for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3787		read_register(dev, hw_data[i].addr, &val);
3788		out += sprintf(out, "%30s [%08X] : %08X\n",
3789			       hw_data[i].name, hw_data[i].addr, val);
3790	}
3791
3792	return out - buf;
3793}
3794
3795static DEVICE_ATTR_RO(registers);
3796
3797static ssize_t hardware_show(struct device *d, struct device_attribute *attr,
3798			     char *buf)
3799{
3800	struct ipw2100_priv *priv = dev_get_drvdata(d);
3801	struct net_device *dev = priv->net_dev;
3802	char *out = buf;
3803	int i;
3804
3805	out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3806
3807	for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3808		u8 tmp8;
3809		u16 tmp16;
3810		u32 tmp32;
3811
3812		switch (nic_data[i].size) {
3813		case 1:
3814			read_nic_byte(dev, nic_data[i].addr, &tmp8);
3815			out += sprintf(out, "%30s [%08X] : %02X\n",
3816				       nic_data[i].name, nic_data[i].addr,
3817				       tmp8);
3818			break;
3819		case 2:
3820			read_nic_word(dev, nic_data[i].addr, &tmp16);
3821			out += sprintf(out, "%30s [%08X] : %04X\n",
3822				       nic_data[i].name, nic_data[i].addr,
3823				       tmp16);
3824			break;
3825		case 4:
3826			read_nic_dword(dev, nic_data[i].addr, &tmp32);
3827			out += sprintf(out, "%30s [%08X] : %08X\n",
3828				       nic_data[i].name, nic_data[i].addr,
3829				       tmp32);
3830			break;
3831		}
3832	}
3833	return out - buf;
3834}
3835
3836static DEVICE_ATTR_RO(hardware);
3837
3838static ssize_t memory_show(struct device *d, struct device_attribute *attr,
3839			   char *buf)
3840{
3841	struct ipw2100_priv *priv = dev_get_drvdata(d);
3842	struct net_device *dev = priv->net_dev;
3843	static unsigned long loop = 0;
3844	int len = 0;
3845	u32 buffer[4];
3846	int i;
3847	char line[81];
3848
3849	if (loop >= 0x30000)
3850		loop = 0;
3851
3852	/* sysfs provides us PAGE_SIZE buffer */
3853	while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3854
3855		if (priv->snapshot[0])
3856			for (i = 0; i < 4; i++)
3857				buffer[i] =
3858				    *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3859		else
3860			for (i = 0; i < 4; i++)
3861				read_nic_dword(dev, loop + i * 4, &buffer[i]);
3862
3863		if (priv->dump_raw)
3864			len += sprintf(buf + len,
3865				       "%c%c%c%c"
3866				       "%c%c%c%c"
3867				       "%c%c%c%c"
3868				       "%c%c%c%c",
3869				       ((u8 *) buffer)[0x0],
3870				       ((u8 *) buffer)[0x1],
3871				       ((u8 *) buffer)[0x2],
3872				       ((u8 *) buffer)[0x3],
3873				       ((u8 *) buffer)[0x4],
3874				       ((u8 *) buffer)[0x5],
3875				       ((u8 *) buffer)[0x6],
3876				       ((u8 *) buffer)[0x7],
3877				       ((u8 *) buffer)[0x8],
3878				       ((u8 *) buffer)[0x9],
3879				       ((u8 *) buffer)[0xa],
3880				       ((u8 *) buffer)[0xb],
3881				       ((u8 *) buffer)[0xc],
3882				       ((u8 *) buffer)[0xd],
3883				       ((u8 *) buffer)[0xe],
3884				       ((u8 *) buffer)[0xf]);
3885		else
3886			len += sprintf(buf + len, "%s\n",
3887				       snprint_line(line, sizeof(line),
3888						    (u8 *) buffer, 16, loop));
3889		loop += 16;
3890	}
3891
3892	return len;
3893}
3894
3895static ssize_t memory_store(struct device *d, struct device_attribute *attr,
3896			    const char *buf, size_t count)
3897{
3898	struct ipw2100_priv *priv = dev_get_drvdata(d);
3899	struct net_device *dev = priv->net_dev;
3900	const char *p = buf;
3901
3902	(void)dev;		/* kill unused-var warning for debug-only code */
3903
3904	if (count < 1)
3905		return count;
3906
3907	if (p[0] == '1' ||
3908	    (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3909		IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3910			       dev->name);
3911		priv->dump_raw = 1;
3912
3913	} else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3914				   tolower(p[1]) == 'f')) {
3915		IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3916			       dev->name);
3917		priv->dump_raw = 0;
3918
3919	} else if (tolower(p[0]) == 'r') {
3920		IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3921		ipw2100_snapshot_free(priv);
3922
3923	} else
3924		IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3925			       "reset = clear memory snapshot\n", dev->name);
3926
3927	return count;
3928}
3929
3930static DEVICE_ATTR_RW(memory);
3931
3932static ssize_t ordinals_show(struct device *d, struct device_attribute *attr,
3933			     char *buf)
3934{
3935	struct ipw2100_priv *priv = dev_get_drvdata(d);
3936	u32 val = 0;
3937	int len = 0;
3938	u32 val_len;
3939	static int loop = 0;
3940
3941	if (priv->status & STATUS_RF_KILL_MASK)
3942		return 0;
3943
3944	if (loop >= ARRAY_SIZE(ord_data))
3945		loop = 0;
3946
3947	/* sysfs provides us PAGE_SIZE buffer */
3948	while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3949		val_len = sizeof(u32);
3950
3951		if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3952					&val_len))
3953			len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3954				       ord_data[loop].index,
3955				       ord_data[loop].desc);
3956		else
3957			len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3958				       ord_data[loop].index, val,
3959				       ord_data[loop].desc);
3960		loop++;
3961	}
3962
3963	return len;
3964}
3965
3966static DEVICE_ATTR_RO(ordinals);
3967
3968static ssize_t stats_show(struct device *d, struct device_attribute *attr,
3969			  char *buf)
3970{
3971	struct ipw2100_priv *priv = dev_get_drvdata(d);
3972	char *out = buf;
3973
3974	out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3975		       priv->interrupts, priv->tx_interrupts,
3976		       priv->rx_interrupts, priv->inta_other);
3977	out += sprintf(out, "firmware resets: %d\n", priv->resets);
3978	out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3979#ifdef CONFIG_IPW2100_DEBUG
3980	out += sprintf(out, "packet mismatch image: %s\n",
3981		       priv->snapshot[0] ? "YES" : "NO");
3982#endif
3983
3984	return out - buf;
3985}
3986
3987static DEVICE_ATTR_RO(stats);
3988
3989static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3990{
3991	int err;
3992
3993	if (mode == priv->ieee->iw_mode)
3994		return 0;
3995
3996	err = ipw2100_disable_adapter(priv);
3997	if (err) {
3998		printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3999		       priv->net_dev->name, err);
4000		return err;
4001	}
4002
4003	switch (mode) {
4004	case IW_MODE_INFRA:
4005		priv->net_dev->type = ARPHRD_ETHER;
4006		break;
4007	case IW_MODE_ADHOC:
4008		priv->net_dev->type = ARPHRD_ETHER;
4009		break;
4010#ifdef CONFIG_IPW2100_MONITOR
4011	case IW_MODE_MONITOR:
4012		priv->last_mode = priv->ieee->iw_mode;
4013		priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4014		break;
4015#endif				/* CONFIG_IPW2100_MONITOR */
4016	}
4017
4018	priv->ieee->iw_mode = mode;
4019
4020#ifdef CONFIG_PM
4021	/* Indicate ipw2100_download_firmware download firmware
4022	 * from disk instead of memory. */
4023	ipw2100_firmware.version = 0;
4024#endif
4025
4026	printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4027	priv->reset_backoff = 0;
4028	schedule_reset(priv);
4029
4030	return 0;
4031}
4032
4033static ssize_t internals_show(struct device *d, struct device_attribute *attr,
4034			      char *buf)
4035{
4036	struct ipw2100_priv *priv = dev_get_drvdata(d);
4037	int len = 0;
4038
4039#define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4040
4041	if (priv->status & STATUS_ASSOCIATED)
4042		len += sprintf(buf + len, "connected: %llu\n",
4043			       ktime_get_boottime_seconds() - priv->connect_start);
4044	else
4045		len += sprintf(buf + len, "not connected\n");
4046
4047	DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4048	DUMP_VAR(status, "08lx");
4049	DUMP_VAR(config, "08lx");
4050	DUMP_VAR(capability, "08lx");
4051
4052	len +=
4053	    sprintf(buf + len, "last_rtc: %lu\n",
4054		    (unsigned long)priv->last_rtc);
4055
4056	DUMP_VAR(fatal_error, "d");
4057	DUMP_VAR(stop_hang_check, "d");
4058	DUMP_VAR(stop_rf_kill, "d");
4059	DUMP_VAR(messages_sent, "d");
4060
4061	DUMP_VAR(tx_pend_stat.value, "d");
4062	DUMP_VAR(tx_pend_stat.hi, "d");
4063
4064	DUMP_VAR(tx_free_stat.value, "d");
4065	DUMP_VAR(tx_free_stat.lo, "d");
4066
4067	DUMP_VAR(msg_free_stat.value, "d");
4068	DUMP_VAR(msg_free_stat.lo, "d");
4069
4070	DUMP_VAR(msg_pend_stat.value, "d");
4071	DUMP_VAR(msg_pend_stat.hi, "d");
4072
4073	DUMP_VAR(fw_pend_stat.value, "d");
4074	DUMP_VAR(fw_pend_stat.hi, "d");
4075
4076	DUMP_VAR(txq_stat.value, "d");
4077	DUMP_VAR(txq_stat.lo, "d");
4078
4079	DUMP_VAR(ieee->scans, "d");
4080	DUMP_VAR(reset_backoff, "lld");
4081
4082	return len;
4083}
4084
4085static DEVICE_ATTR_RO(internals);
4086
4087static ssize_t bssinfo_show(struct device *d, struct device_attribute *attr,
4088			    char *buf)
4089{
4090	struct ipw2100_priv *priv = dev_get_drvdata(d);
4091	char essid[IW_ESSID_MAX_SIZE + 1];
4092	u8 bssid[ETH_ALEN];
4093	u32 chan = 0;
4094	char *out = buf;
4095	unsigned int length;
4096	int ret;
4097
4098	if (priv->status & STATUS_RF_KILL_MASK)
4099		return 0;
4100
4101	memset(essid, 0, sizeof(essid));
4102	memset(bssid, 0, sizeof(bssid));
4103
4104	length = IW_ESSID_MAX_SIZE;
4105	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4106	if (ret)
4107		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4108			       __LINE__);
4109
4110	length = sizeof(bssid);
4111	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4112				  bssid, &length);
4113	if (ret)
4114		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4115			       __LINE__);
4116
4117	length = sizeof(u32);
4118	ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4119	if (ret)
4120		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4121			       __LINE__);
4122
4123	out += sprintf(out, "ESSID: %s\n", essid);
4124	out += sprintf(out, "BSSID:   %pM\n", bssid);
4125	out += sprintf(out, "Channel: %d\n", chan);
4126
4127	return out - buf;
4128}
4129
4130static DEVICE_ATTR_RO(bssinfo);
4131
4132#ifdef CONFIG_IPW2100_DEBUG
4133static ssize_t debug_level_show(struct device_driver *d, char *buf)
4134{
4135	return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4136}
4137
4138static ssize_t debug_level_store(struct device_driver *d,
4139				 const char *buf, size_t count)
4140{
4141	u32 val;
4142	int ret;
4143
4144	ret = kstrtou32(buf, 0, &val);
4145	if (ret)
4146		IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4147	else
4148		ipw2100_debug_level = val;
4149
4150	return strnlen(buf, count);
4151}
4152static DRIVER_ATTR_RW(debug_level);
4153#endif				/* CONFIG_IPW2100_DEBUG */
4154
4155static ssize_t fatal_error_show(struct device *d,
4156				struct device_attribute *attr, char *buf)
4157{
4158	struct ipw2100_priv *priv = dev_get_drvdata(d);
4159	char *out = buf;
4160	int i;
4161
4162	if (priv->fatal_error)
4163		out += sprintf(out, "0x%08X\n", priv->fatal_error);
4164	else
4165		out += sprintf(out, "0\n");
4166
4167	for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4168		if (!priv->fatal_errors[(priv->fatal_index - i) %
4169					IPW2100_ERROR_QUEUE])
4170			continue;
4171
4172		out += sprintf(out, "%d. 0x%08X\n", i,
4173			       priv->fatal_errors[(priv->fatal_index - i) %
4174						  IPW2100_ERROR_QUEUE]);
4175	}
4176
4177	return out - buf;
4178}
4179
4180static ssize_t fatal_error_store(struct device *d,
4181				 struct device_attribute *attr, const char *buf,
4182				 size_t count)
4183{
4184	struct ipw2100_priv *priv = dev_get_drvdata(d);
4185	schedule_reset(priv);
4186	return count;
4187}
4188
4189static DEVICE_ATTR_RW(fatal_error);
4190
4191static ssize_t scan_age_show(struct device *d, struct device_attribute *attr,
4192			     char *buf)
4193{
4194	struct ipw2100_priv *priv = dev_get_drvdata(d);
4195	return sprintf(buf, "%d\n", priv->ieee->scan_age);
4196}
4197
4198static ssize_t scan_age_store(struct device *d, struct device_attribute *attr,
4199			      const char *buf, size_t count)
4200{
4201	struct ipw2100_priv *priv = dev_get_drvdata(d);
4202	struct net_device *dev = priv->net_dev;
4203	unsigned long val;
4204	int ret;
4205
4206	(void)dev;		/* kill unused-var warning for debug-only code */
4207
4208	IPW_DEBUG_INFO("enter\n");
4209
4210	ret = kstrtoul(buf, 0, &val);
4211	if (ret) {
4212		IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4213	} else {
4214		priv->ieee->scan_age = val;
4215		IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4216	}
4217
4218	IPW_DEBUG_INFO("exit\n");
4219	return strnlen(buf, count);
4220}
4221
4222static DEVICE_ATTR_RW(scan_age);
4223
4224static ssize_t rf_kill_show(struct device *d, struct device_attribute *attr,
4225			    char *buf)
4226{
4227	/* 0 - RF kill not enabled
4228	   1 - SW based RF kill active (sysfs)
4229	   2 - HW based RF kill active
4230	   3 - Both HW and SW baed RF kill active */
4231	struct ipw2100_priv *priv = dev_get_drvdata(d);
4232	int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4233	    (rf_kill_active(priv) ? 0x2 : 0x0);
4234	return sprintf(buf, "%i\n", val);
4235}
4236
4237static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4238{
4239	if ((disable_radio ? 1 : 0) ==
4240	    (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4241		return 0;
4242
4243	IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4244			  disable_radio ? "OFF" : "ON");
4245
4246	mutex_lock(&priv->action_mutex);
4247
4248	if (disable_radio) {
4249		priv->status |= STATUS_RF_KILL_SW;
4250		ipw2100_down(priv);
4251	} else {
4252		priv->status &= ~STATUS_RF_KILL_SW;
4253		if (rf_kill_active(priv)) {
4254			IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4255					  "disabled by HW switch\n");
4256			/* Make sure the RF_KILL check timer is running */
4257			priv->stop_rf_kill = 0;
4258			mod_delayed_work(system_wq, &priv->rf_kill,
4259					 round_jiffies_relative(HZ));
4260		} else
4261			schedule_reset(priv);
4262	}
4263
4264	mutex_unlock(&priv->action_mutex);
4265	return 1;
4266}
4267
4268static ssize_t rf_kill_store(struct device *d, struct device_attribute *attr,
4269			     const char *buf, size_t count)
4270{
4271	struct ipw2100_priv *priv = dev_get_drvdata(d);
4272	ipw_radio_kill_sw(priv, buf[0] == '1');
4273	return count;
4274}
4275
4276static DEVICE_ATTR_RW(rf_kill);
4277
4278static struct attribute *ipw2100_sysfs_entries[] = {
4279	&dev_attr_hardware.attr,
4280	&dev_attr_registers.attr,
4281	&dev_attr_ordinals.attr,
4282	&dev_attr_pci.attr,
4283	&dev_attr_stats.attr,
4284	&dev_attr_internals.attr,
4285	&dev_attr_bssinfo.attr,
4286	&dev_attr_memory.attr,
4287	&dev_attr_scan_age.attr,
4288	&dev_attr_fatal_error.attr,
4289	&dev_attr_rf_kill.attr,
4290	&dev_attr_cfg.attr,
4291	&dev_attr_status.attr,
4292	&dev_attr_capability.attr,
4293	NULL,
4294};
4295
4296static const struct attribute_group ipw2100_attribute_group = {
4297	.attrs = ipw2100_sysfs_entries,
4298};
4299
4300static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4301{
4302	struct ipw2100_status_queue *q = &priv->status_queue;
4303
4304	IPW_DEBUG_INFO("enter\n");
4305
4306	q->size = entries * sizeof(struct ipw2100_status);
4307	q->drv = dma_alloc_coherent(&priv->pci_dev->dev, q->size, &q->nic,
4308				    GFP_KERNEL);
4309	if (!q->drv) {
4310		IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4311		return -ENOMEM;
4312	}
4313
4314	IPW_DEBUG_INFO("exit\n");
4315
4316	return 0;
4317}
4318
4319static void status_queue_free(struct ipw2100_priv *priv)
4320{
4321	IPW_DEBUG_INFO("enter\n");
4322
4323	if (priv->status_queue.drv) {
4324		dma_free_coherent(&priv->pci_dev->dev,
4325				  priv->status_queue.size,
4326				  priv->status_queue.drv,
4327				  priv->status_queue.nic);
4328		priv->status_queue.drv = NULL;
4329	}
4330
4331	IPW_DEBUG_INFO("exit\n");
4332}
4333
4334static int bd_queue_allocate(struct ipw2100_priv *priv,
4335			     struct ipw2100_bd_queue *q, int entries)
4336{
4337	IPW_DEBUG_INFO("enter\n");
4338
4339	memset(q, 0, sizeof(struct ipw2100_bd_queue));
4340
4341	q->entries = entries;
4342	q->size = entries * sizeof(struct ipw2100_bd);
4343	q->drv = dma_alloc_coherent(&priv->pci_dev->dev, q->size, &q->nic,
4344				    GFP_KERNEL);
4345	if (!q->drv) {
4346		IPW_DEBUG_INFO
4347		    ("can't allocate shared memory for buffer descriptors\n");
4348		return -ENOMEM;
4349	}
4350
4351	IPW_DEBUG_INFO("exit\n");
4352
4353	return 0;
4354}
4355
4356static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4357{
4358	IPW_DEBUG_INFO("enter\n");
4359
4360	if (!q)
4361		return;
4362
4363	if (q->drv) {
4364		dma_free_coherent(&priv->pci_dev->dev, q->size, q->drv,
4365				  q->nic);
4366		q->drv = NULL;
4367	}
4368
4369	IPW_DEBUG_INFO("exit\n");
4370}
4371
4372static void bd_queue_initialize(struct ipw2100_priv *priv,
4373				struct ipw2100_bd_queue *q, u32 base, u32 size,
4374				u32 r, u32 w)
4375{
4376	IPW_DEBUG_INFO("enter\n");
4377
4378	IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4379		       (u32) q->nic);
4380
4381	write_register(priv->net_dev, base, q->nic);
4382	write_register(priv->net_dev, size, q->entries);
4383	write_register(priv->net_dev, r, q->oldest);
4384	write_register(priv->net_dev, w, q->next);
4385
4386	IPW_DEBUG_INFO("exit\n");
4387}
4388
4389static void ipw2100_kill_works(struct ipw2100_priv *priv)
4390{
4391	priv->stop_rf_kill = 1;
4392	priv->stop_hang_check = 1;
4393	cancel_delayed_work_sync(&priv->reset_work);
4394	cancel_delayed_work_sync(&priv->security_work);
4395	cancel_delayed_work_sync(&priv->wx_event_work);
4396	cancel_delayed_work_sync(&priv->hang_check);
4397	cancel_delayed_work_sync(&priv->rf_kill);
4398	cancel_delayed_work_sync(&priv->scan_event);
4399}
4400
4401static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4402{
4403	int i, j, err;
4404	void *v;
4405	dma_addr_t p;
4406
4407	IPW_DEBUG_INFO("enter\n");
4408
4409	err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4410	if (err) {
4411		IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4412				priv->net_dev->name);
4413		return err;
4414	}
4415
4416	priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH,
4417					 sizeof(struct ipw2100_tx_packet),
4418					 GFP_KERNEL);
4419	if (!priv->tx_buffers) {
4420		bd_queue_free(priv, &priv->tx_queue);
4421		return -ENOMEM;
4422	}
4423
4424	for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4425		v = dma_alloc_coherent(&priv->pci_dev->dev,
4426				       sizeof(struct ipw2100_data_header), &p,
4427				       GFP_KERNEL);
4428		if (!v) {
4429			printk(KERN_ERR DRV_NAME
4430			       ": %s: PCI alloc failed for tx " "buffers.\n",
4431			       priv->net_dev->name);
4432			err = -ENOMEM;
4433			break;
4434		}
4435
4436		priv->tx_buffers[i].type = DATA;
4437		priv->tx_buffers[i].info.d_struct.data =
4438		    (struct ipw2100_data_header *)v;
4439		priv->tx_buffers[i].info.d_struct.data_phys = p;
4440		priv->tx_buffers[i].info.d_struct.txb = NULL;
4441	}
4442
4443	if (i == TX_PENDED_QUEUE_LENGTH)
4444		return 0;
4445
4446	for (j = 0; j < i; j++) {
4447		dma_free_coherent(&priv->pci_dev->dev,
4448				  sizeof(struct ipw2100_data_header),
4449				  priv->tx_buffers[j].info.d_struct.data,
4450				  priv->tx_buffers[j].info.d_struct.data_phys);
4451	}
4452
4453	kfree(priv->tx_buffers);
4454	priv->tx_buffers = NULL;
4455
4456	return err;
4457}
4458
4459static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4460{
4461	int i;
4462
4463	IPW_DEBUG_INFO("enter\n");
4464
4465	/*
4466	 * reinitialize packet info lists
4467	 */
4468	INIT_LIST_HEAD(&priv->fw_pend_list);
4469	INIT_STAT(&priv->fw_pend_stat);
4470
4471	/*
4472	 * reinitialize lists
4473	 */
4474	INIT_LIST_HEAD(&priv->tx_pend_list);
4475	INIT_LIST_HEAD(&priv->tx_free_list);
4476	INIT_STAT(&priv->tx_pend_stat);
4477	INIT_STAT(&priv->tx_free_stat);
4478
4479	for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4480		/* We simply drop any SKBs that have been queued for
4481		 * transmit */
4482		if (priv->tx_buffers[i].info.d_struct.txb) {
4483			libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4484					   txb);
4485			priv->tx_buffers[i].info.d_struct.txb = NULL;
4486		}
4487
4488		list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4489	}
4490
4491	SET_STAT(&priv->tx_free_stat, i);
4492
4493	priv->tx_queue.oldest = 0;
4494	priv->tx_queue.available = priv->tx_queue.entries;
4495	priv->tx_queue.next = 0;
4496	INIT_STAT(&priv->txq_stat);
4497	SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4498
4499	bd_queue_initialize(priv, &priv->tx_queue,
4500			    IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4501			    IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4502			    IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4503			    IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4504
4505	IPW_DEBUG_INFO("exit\n");
4506
4507}
4508
4509static void ipw2100_tx_free(struct ipw2100_priv *priv)
4510{
4511	int i;
4512
4513	IPW_DEBUG_INFO("enter\n");
4514
4515	bd_queue_free(priv, &priv->tx_queue);
4516
4517	if (!priv->tx_buffers)
4518		return;
4519
4520	for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4521		if (priv->tx_buffers[i].info.d_struct.txb) {
4522			libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4523					   txb);
4524			priv->tx_buffers[i].info.d_struct.txb = NULL;
4525		}
4526		if (priv->tx_buffers[i].info.d_struct.data)
4527			dma_free_coherent(&priv->pci_dev->dev,
4528					  sizeof(struct ipw2100_data_header),
4529					  priv->tx_buffers[i].info.d_struct.data,
4530					  priv->tx_buffers[i].info.d_struct.data_phys);
4531	}
4532
4533	kfree(priv->tx_buffers);
4534	priv->tx_buffers = NULL;
4535
4536	IPW_DEBUG_INFO("exit\n");
4537}
4538
4539static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4540{
4541	int i, j, err = -EINVAL;
4542
4543	IPW_DEBUG_INFO("enter\n");
4544
4545	err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4546	if (err) {
4547		IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4548		return err;
4549	}
4550
4551	err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4552	if (err) {
4553		IPW_DEBUG_INFO("failed status_queue_allocate\n");
4554		bd_queue_free(priv, &priv->rx_queue);
4555		return err;
4556	}
4557
4558	/*
4559	 * allocate packets
4560	 */
4561	priv->rx_buffers = kmalloc_array(RX_QUEUE_LENGTH,
4562					 sizeof(struct ipw2100_rx_packet),
4563					 GFP_KERNEL);
4564	if (!priv->rx_buffers) {
4565		IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4566
4567		bd_queue_free(priv, &priv->rx_queue);
4568
4569		status_queue_free(priv);
4570
4571		return -ENOMEM;
4572	}
4573
4574	for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4575		struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4576
4577		err = ipw2100_alloc_skb(priv, packet);
4578		if (unlikely(err)) {
4579			err = -ENOMEM;
4580			break;
4581		}
4582
4583		/* The BD holds the cache aligned address */
4584		priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4585		priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4586		priv->status_queue.drv[i].status_fields = 0;
4587	}
4588
4589	if (i == RX_QUEUE_LENGTH)
4590		return 0;
4591
4592	for (j = 0; j < i; j++) {
4593		dma_unmap_single(&priv->pci_dev->dev,
4594				 priv->rx_buffers[j].dma_addr,
4595				 sizeof(struct ipw2100_rx_packet),
4596				 DMA_FROM_DEVICE);
4597		dev_kfree_skb(priv->rx_buffers[j].skb);
4598	}
4599
4600	kfree(priv->rx_buffers);
4601	priv->rx_buffers = NULL;
4602
4603	bd_queue_free(priv, &priv->rx_queue);
4604
4605	status_queue_free(priv);
4606
4607	return err;
4608}
4609
4610static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4611{
4612	IPW_DEBUG_INFO("enter\n");
4613
4614	priv->rx_queue.oldest = 0;
4615	priv->rx_queue.available = priv->rx_queue.entries - 1;
4616	priv->rx_queue.next = priv->rx_queue.entries - 1;
4617
4618	INIT_STAT(&priv->rxq_stat);
4619	SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4620
4621	bd_queue_initialize(priv, &priv->rx_queue,
4622			    IPW_MEM_HOST_SHARED_RX_BD_BASE,
4623			    IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4624			    IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4625			    IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4626
4627	/* set up the status queue */
4628	write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4629		       priv->status_queue.nic);
4630
4631	IPW_DEBUG_INFO("exit\n");
4632}
4633
4634static void ipw2100_rx_free(struct ipw2100_priv *priv)
4635{
4636	int i;
4637
4638	IPW_DEBUG_INFO("enter\n");
4639
4640	bd_queue_free(priv, &priv->rx_queue);
4641	status_queue_free(priv);
4642
4643	if (!priv->rx_buffers)
4644		return;
4645
4646	for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4647		if (priv->rx_buffers[i].rxp) {
4648			dma_unmap_single(&priv->pci_dev->dev,
4649					 priv->rx_buffers[i].dma_addr,
4650					 sizeof(struct ipw2100_rx),
4651					 DMA_FROM_DEVICE);
4652			dev_kfree_skb(priv->rx_buffers[i].skb);
4653		}
4654	}
4655
4656	kfree(priv->rx_buffers);
4657	priv->rx_buffers = NULL;
4658
4659	IPW_DEBUG_INFO("exit\n");
4660}
4661
4662static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4663{
4664	u32 length = ETH_ALEN;
4665	u8 addr[ETH_ALEN];
4666
4667	int err;
4668
4669	err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4670	if (err) {
4671		IPW_DEBUG_INFO("MAC address read failed\n");
4672		return -EIO;
4673	}
4674
4675	eth_hw_addr_set(priv->net_dev, addr);
4676	IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4677
4678	return 0;
4679}
4680
4681/********************************************************************
4682 *
4683 * Firmware Commands
4684 *
4685 ********************************************************************/
4686
4687static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4688{
4689	struct host_command cmd = {
4690		.host_command = ADAPTER_ADDRESS,
4691		.host_command_sequence = 0,
4692		.host_command_length = ETH_ALEN
4693	};
4694	int err;
4695
4696	IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4697
4698	IPW_DEBUG_INFO("enter\n");
4699
4700	if (priv->config & CFG_CUSTOM_MAC) {
4701		memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4702		eth_hw_addr_set(priv->net_dev, priv->mac_addr);
4703	} else
4704		memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4705		       ETH_ALEN);
4706
4707	err = ipw2100_hw_send_command(priv, &cmd);
4708
4709	IPW_DEBUG_INFO("exit\n");
4710	return err;
4711}
4712
4713static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4714				 int batch_mode)
4715{
4716	struct host_command cmd = {
4717		.host_command = PORT_TYPE,
4718		.host_command_sequence = 0,
4719		.host_command_length = sizeof(u32)
4720	};
4721	int err;
4722
4723	switch (port_type) {
4724	case IW_MODE_INFRA:
4725		cmd.host_command_parameters[0] = IPW_BSS;
4726		break;
4727	case IW_MODE_ADHOC:
4728		cmd.host_command_parameters[0] = IPW_IBSS;
4729		break;
4730	}
4731
4732	IPW_DEBUG_HC("PORT_TYPE: %s\n",
4733		     port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4734
4735	if (!batch_mode) {
4736		err = ipw2100_disable_adapter(priv);
4737		if (err) {
4738			printk(KERN_ERR DRV_NAME
4739			       ": %s: Could not disable adapter %d\n",
4740			       priv->net_dev->name, err);
4741			return err;
4742		}
4743	}
4744
4745	/* send cmd to firmware */
4746	err = ipw2100_hw_send_command(priv, &cmd);
4747
4748	if (!batch_mode)
4749		ipw2100_enable_adapter(priv);
4750
4751	return err;
4752}
4753
4754static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4755			       int batch_mode)
4756{
4757	struct host_command cmd = {
4758		.host_command = CHANNEL,
4759		.host_command_sequence = 0,
4760		.host_command_length = sizeof(u32)
4761	};
4762	int err;
4763
4764	cmd.host_command_parameters[0] = channel;
4765
4766	IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4767
4768	/* If BSS then we don't support channel selection */
4769	if (priv->ieee->iw_mode == IW_MODE_INFRA)
4770		return 0;
4771
4772	if ((channel != 0) &&
4773	    ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4774		return -EINVAL;
4775
4776	if (!batch_mode) {
4777		err = ipw2100_disable_adapter(priv);
4778		if (err)
4779			return err;
4780	}
4781
4782	err = ipw2100_hw_send_command(priv, &cmd);
4783	if (err) {
4784		IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4785		return err;
4786	}
4787
4788	if (channel)
4789		priv->config |= CFG_STATIC_CHANNEL;
4790	else
4791		priv->config &= ~CFG_STATIC_CHANNEL;
4792
4793	priv->channel = channel;
4794
4795	if (!batch_mode) {
4796		err = ipw2100_enable_adapter(priv);
4797		if (err)
4798			return err;
4799	}
4800
4801	return 0;
4802}
4803
4804static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4805{
4806	struct host_command cmd = {
4807		.host_command = SYSTEM_CONFIG,
4808		.host_command_sequence = 0,
4809		.host_command_length = 12,
4810	};
4811	u32 ibss_mask, len = sizeof(u32);
4812	int err;
4813
4814	/* Set system configuration */
4815
4816	if (!batch_mode) {
4817		err = ipw2100_disable_adapter(priv);
4818		if (err)
4819			return err;
4820	}
4821
4822	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4823		cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4824
4825	cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4826	    IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4827
4828	if (!(priv->config & CFG_LONG_PREAMBLE))
4829		cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4830
4831	err = ipw2100_get_ordinal(priv,
4832				  IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4833				  &ibss_mask, &len);
4834	if (err)
4835		ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4836
4837	cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4838	cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4839
4840	/* 11b only */
4841	/*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4842
4843	err = ipw2100_hw_send_command(priv, &cmd);
4844	if (err)
4845		return err;
4846
4847/* If IPv6 is configured in the kernel then we don't want to filter out all
4848 * of the multicast packets as IPv6 needs some. */
4849#if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4850	cmd.host_command = ADD_MULTICAST;
4851	cmd.host_command_sequence = 0;
4852	cmd.host_command_length = 0;
4853
4854	ipw2100_hw_send_command(priv, &cmd);
4855#endif
4856	if (!batch_mode) {
4857		err = ipw2100_enable_adapter(priv);
4858		if (err)
4859			return err;
4860	}
4861
4862	return 0;
4863}
4864
4865static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4866				int batch_mode)
4867{
4868	struct host_command cmd = {
4869		.host_command = BASIC_TX_RATES,
4870		.host_command_sequence = 0,
4871		.host_command_length = 4
4872	};
4873	int err;
4874
4875	cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4876
4877	if (!batch_mode) {
4878		err = ipw2100_disable_adapter(priv);
4879		if (err)
4880			return err;
4881	}
4882
4883	/* Set BASIC TX Rate first */
4884	ipw2100_hw_send_command(priv, &cmd);
4885
4886	/* Set TX Rate */
4887	cmd.host_command = TX_RATES;
4888	ipw2100_hw_send_command(priv, &cmd);
4889
4890	/* Set MSDU TX Rate */
4891	cmd.host_command = MSDU_TX_RATES;
4892	ipw2100_hw_send_command(priv, &cmd);
4893
4894	if (!batch_mode) {
4895		err = ipw2100_enable_adapter(priv);
4896		if (err)
4897			return err;
4898	}
4899
4900	priv->tx_rates = rate;
4901
4902	return 0;
4903}
4904
4905static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4906{
4907	struct host_command cmd = {
4908		.host_command = POWER_MODE,
4909		.host_command_sequence = 0,
4910		.host_command_length = 4
4911	};
4912	int err;
4913
4914	cmd.host_command_parameters[0] = power_level;
4915
4916	err = ipw2100_hw_send_command(priv, &cmd);
4917	if (err)
4918		return err;
4919
4920	if (power_level == IPW_POWER_MODE_CAM)
4921		priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4922	else
4923		priv->power_mode = IPW_POWER_ENABLED | power_level;
4924
4925#ifdef IPW2100_TX_POWER
4926	if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4927		/* Set beacon interval */
4928		cmd.host_command = TX_POWER_INDEX;
4929		cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4930
4931		err = ipw2100_hw_send_command(priv, &cmd);
4932		if (err)
4933			return err;
4934	}
4935#endif
4936
4937	return 0;
4938}
4939
4940static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4941{
4942	struct host_command cmd = {
4943		.host_command = RTS_THRESHOLD,
4944		.host_command_sequence = 0,
4945		.host_command_length = 4
4946	};
4947	int err;
4948
4949	if (threshold & RTS_DISABLED)
4950		cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4951	else
4952		cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4953
4954	err = ipw2100_hw_send_command(priv, &cmd);
4955	if (err)
4956		return err;
4957
4958	priv->rts_threshold = threshold;
4959
4960	return 0;
4961}
4962
4963#if 0
4964int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4965					u32 threshold, int batch_mode)
4966{
4967	struct host_command cmd = {
4968		.host_command = FRAG_THRESHOLD,
4969		.host_command_sequence = 0,
4970		.host_command_length = 4,
4971		.host_command_parameters[0] = 0,
4972	};
4973	int err;
4974
4975	if (!batch_mode) {
4976		err = ipw2100_disable_adapter(priv);
4977		if (err)
4978			return err;
4979	}
4980
4981	if (threshold == 0)
4982		threshold = DEFAULT_FRAG_THRESHOLD;
4983	else {
4984		threshold = max(threshold, MIN_FRAG_THRESHOLD);
4985		threshold = min(threshold, MAX_FRAG_THRESHOLD);
4986	}
4987
4988	cmd.host_command_parameters[0] = threshold;
4989
4990	IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4991
4992	err = ipw2100_hw_send_command(priv, &cmd);
4993
4994	if (!batch_mode)
4995		ipw2100_enable_adapter(priv);
4996
4997	if (!err)
4998		priv->frag_threshold = threshold;
4999
5000	return err;
5001}
5002#endif
5003
5004static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5005{
5006	struct host_command cmd = {
5007		.host_command = SHORT_RETRY_LIMIT,
5008		.host_command_sequence = 0,
5009		.host_command_length = 4
5010	};
5011	int err;
5012
5013	cmd.host_command_parameters[0] = retry;
5014
5015	err = ipw2100_hw_send_command(priv, &cmd);
5016	if (err)
5017		return err;
5018
5019	priv->short_retry_limit = retry;
5020
5021	return 0;
5022}
5023
5024static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5025{
5026	struct host_command cmd = {
5027		.host_command = LONG_RETRY_LIMIT,
5028		.host_command_sequence = 0,
5029		.host_command_length = 4
5030	};
5031	int err;
5032
5033	cmd.host_command_parameters[0] = retry;
5034
5035	err = ipw2100_hw_send_command(priv, &cmd);
5036	if (err)
5037		return err;
5038
5039	priv->long_retry_limit = retry;
5040
5041	return 0;
5042}
5043
5044static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5045				       int batch_mode)
5046{
5047	struct host_command cmd = {
5048		.host_command = MANDATORY_BSSID,
5049		.host_command_sequence = 0,
5050		.host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5051	};
5052	int err;
5053
5054#ifdef CONFIG_IPW2100_DEBUG
5055	if (bssid != NULL)
5056		IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5057	else
5058		IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5059#endif
5060	/* if BSSID is empty then we disable mandatory bssid mode */
5061	if (bssid != NULL)
5062		memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5063
5064	if (!batch_mode) {
5065		err = ipw2100_disable_adapter(priv);
5066		if (err)
5067			return err;
5068	}
5069
5070	err = ipw2100_hw_send_command(priv, &cmd);
5071
5072	if (!batch_mode)
5073		ipw2100_enable_adapter(priv);
5074
5075	return err;
5076}
5077
5078static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5079{
5080	struct host_command cmd = {
5081		.host_command = DISASSOCIATION_BSSID,
5082		.host_command_sequence = 0,
5083		.host_command_length = ETH_ALEN
5084	};
5085	int err;
5086
5087	IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5088
5089	/* The Firmware currently ignores the BSSID and just disassociates from
5090	 * the currently associated AP -- but in the off chance that a future
5091	 * firmware does use the BSSID provided here, we go ahead and try and
5092	 * set it to the currently associated AP's BSSID */
5093	memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5094
5095	err = ipw2100_hw_send_command(priv, &cmd);
5096
5097	return err;
5098}
5099
5100static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5101			      struct ipw2100_wpa_assoc_frame *, int)
5102    __attribute__ ((unused));
5103
5104static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5105			      struct ipw2100_wpa_assoc_frame *wpa_frame,
5106			      int batch_mode)
5107{
5108	struct host_command cmd = {
5109		.host_command = SET_WPA_IE,
5110		.host_command_sequence = 0,
5111		.host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5112	};
5113	int err;
5114
5115	IPW_DEBUG_HC("SET_WPA_IE\n");
5116
5117	if (!batch_mode) {
5118		err = ipw2100_disable_adapter(priv);
5119		if (err)
5120			return err;
5121	}
5122
5123	memcpy(cmd.host_command_parameters, wpa_frame,
5124	       sizeof(struct ipw2100_wpa_assoc_frame));
5125
5126	err = ipw2100_hw_send_command(priv, &cmd);
5127
5128	if (!batch_mode) {
5129		if (ipw2100_enable_adapter(priv))
5130			err = -EIO;
5131	}
5132
5133	return err;
5134}
5135
5136struct security_info_params {
5137	u32 allowed_ciphers;
5138	u16 version;
5139	u8 auth_mode;
5140	u8 replay_counters_number;
5141	u8 unicast_using_group;
5142} __packed;
5143
5144static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5145					    int auth_mode,
5146					    int security_level,
5147					    int unicast_using_group,
5148					    int batch_mode)
5149{
5150	struct host_command cmd = {
5151		.host_command = SET_SECURITY_INFORMATION,
5152		.host_command_sequence = 0,
5153		.host_command_length = sizeof(struct security_info_params)
5154	};
5155	struct security_info_params *security =
5156	    (struct security_info_params *)&cmd.host_command_parameters;
5157	int err;
5158	memset(security, 0, sizeof(*security));
5159
5160	/* If shared key AP authentication is turned on, then we need to
5161	 * configure the firmware to try and use it.
5162	 *
5163	 * Actual data encryption/decryption is handled by the host. */
5164	security->auth_mode = auth_mode;
5165	security->unicast_using_group = unicast_using_group;
5166
5167	switch (security_level) {
5168	default:
5169	case SEC_LEVEL_0:
5170		security->allowed_ciphers = IPW_NONE_CIPHER;
5171		break;
5172	case SEC_LEVEL_1:
5173		security->allowed_ciphers = IPW_WEP40_CIPHER |
5174		    IPW_WEP104_CIPHER;
5175		break;
5176	case SEC_LEVEL_2:
5177		security->allowed_ciphers = IPW_WEP40_CIPHER |
5178		    IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5179		break;
5180	case SEC_LEVEL_2_CKIP:
5181		security->allowed_ciphers = IPW_WEP40_CIPHER |
5182		    IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5183		break;
5184	case SEC_LEVEL_3:
5185		security->allowed_ciphers = IPW_WEP40_CIPHER |
5186		    IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5187		break;
5188	}
5189
5190	IPW_DEBUG_HC
5191	    ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5192	     security->auth_mode, security->allowed_ciphers, security_level);
5193
5194	security->replay_counters_number = 0;
5195
5196	if (!batch_mode) {
5197		err = ipw2100_disable_adapter(priv);
5198		if (err)
5199			return err;
5200	}
5201
5202	err = ipw2100_hw_send_command(priv, &cmd);
5203
5204	if (!batch_mode)
5205		ipw2100_enable_adapter(priv);
5206
5207	return err;
5208}
5209
5210static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5211{
5212	struct host_command cmd = {
5213		.host_command = TX_POWER_INDEX,
5214		.host_command_sequence = 0,
5215		.host_command_length = 4
5216	};
5217	int err = 0;
5218	u32 tmp = tx_power;
5219
5220	if (tx_power != IPW_TX_POWER_DEFAULT)
5221		tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5222		      (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5223
5224	cmd.host_command_parameters[0] = tmp;
5225
5226	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5227		err = ipw2100_hw_send_command(priv, &cmd);
5228	if (!err)
5229		priv->tx_power = tx_power;
5230
5231	return 0;
5232}
5233
5234static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5235					    u32 interval, int batch_mode)
5236{
5237	struct host_command cmd = {
5238		.host_command = BEACON_INTERVAL,
5239		.host_command_sequence = 0,
5240		.host_command_length = 4
5241	};
5242	int err;
5243
5244	cmd.host_command_parameters[0] = interval;
5245
5246	IPW_DEBUG_INFO("enter\n");
5247
5248	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5249		if (!batch_mode) {
5250			err = ipw2100_disable_adapter(priv);
5251			if (err)
5252				return err;
5253		}
5254
5255		ipw2100_hw_send_command(priv, &cmd);
5256
5257		if (!batch_mode) {
5258			err = ipw2100_enable_adapter(priv);
5259			if (err)
5260				return err;
5261		}
5262	}
5263
5264	IPW_DEBUG_INFO("exit\n");
5265
5266	return 0;
5267}
5268
5269static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5270{
5271	ipw2100_tx_initialize(priv);
5272	ipw2100_rx_initialize(priv);
5273	ipw2100_msg_initialize(priv);
5274}
5275
5276static void ipw2100_queues_free(struct ipw2100_priv *priv)
5277{
5278	ipw2100_tx_free(priv);
5279	ipw2100_rx_free(priv);
5280	ipw2100_msg_free(priv);
5281}
5282
5283static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5284{
5285	if (ipw2100_tx_allocate(priv) ||
5286	    ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5287		goto fail;
5288
5289	return 0;
5290
5291      fail:
5292	ipw2100_tx_free(priv);
5293	ipw2100_rx_free(priv);
5294	ipw2100_msg_free(priv);
5295	return -ENOMEM;
5296}
5297
5298#define IPW_PRIVACY_CAPABLE 0x0008
5299
5300static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5301				 int batch_mode)
5302{
5303	struct host_command cmd = {
5304		.host_command = WEP_FLAGS,
5305		.host_command_sequence = 0,
5306		.host_command_length = 4
5307	};
5308	int err;
5309
5310	cmd.host_command_parameters[0] = flags;
5311
5312	IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5313
5314	if (!batch_mode) {
5315		err = ipw2100_disable_adapter(priv);
5316		if (err) {
5317			printk(KERN_ERR DRV_NAME
5318			       ": %s: Could not disable adapter %d\n",
5319			       priv->net_dev->name, err);
5320			return err;
5321		}
5322	}
5323
5324	/* send cmd to firmware */
5325	err = ipw2100_hw_send_command(priv, &cmd);
5326
5327	if (!batch_mode)
5328		ipw2100_enable_adapter(priv);
5329
5330	return err;
5331}
5332
5333struct ipw2100_wep_key {
5334	u8 idx;
5335	u8 len;
5336	u8 key[13];
5337};
5338
5339/* Macros to ease up priting WEP keys */
5340#define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5341#define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5342#define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5343#define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5344
5345/**
5346 * ipw2100_set_key() - Set a the wep key
5347 *
5348 * @priv: struct to work on
5349 * @idx: index of the key we want to set
5350 * @key: ptr to the key data to set
5351 * @len: length of the buffer at @key
5352 * @batch_mode: FIXME perform the operation in batch mode, not
5353 *              disabling the device.
5354 *
5355 * @returns 0 if OK, < 0 errno code on error.
5356 *
5357 * Fill out a command structure with the new wep key, length an
5358 * index and send it down the wire.
5359 */
5360static int ipw2100_set_key(struct ipw2100_priv *priv,
5361			   int idx, char *key, int len, int batch_mode)
5362{
5363	int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5364	struct host_command cmd = {
5365		.host_command = WEP_KEY_INFO,
5366		.host_command_sequence = 0,
5367		.host_command_length = sizeof(struct ipw2100_wep_key),
5368	};
5369	struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5370	int err;
5371
5372	IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5373		     idx, keylen, len);
5374
5375	/* NOTE: We don't check cached values in case the firmware was reset
5376	 * or some other problem is occurring.  If the user is setting the key,
5377	 * then we push the change */
5378
5379	wep_key->idx = idx;
5380	wep_key->len = keylen;
5381
5382	if (keylen) {
5383		memcpy(wep_key->key, key, len);
5384		memset(wep_key->key + len, 0, keylen - len);
5385	}
5386
5387	/* Will be optimized out on debug not being configured in */
5388	if (keylen == 0)
5389		IPW_DEBUG_WEP("%s: Clearing key %d\n",
5390			      priv->net_dev->name, wep_key->idx);
5391	else if (keylen == 5)
5392		IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5393			      priv->net_dev->name, wep_key->idx, wep_key->len,
5394			      WEP_STR_64(wep_key->key));
5395	else
5396		IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5397			      "\n",
5398			      priv->net_dev->name, wep_key->idx, wep_key->len,
5399			      WEP_STR_128(wep_key->key));
5400
5401	if (!batch_mode) {
5402		err = ipw2100_disable_adapter(priv);
5403		/* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5404		if (err) {
5405			printk(KERN_ERR DRV_NAME
5406			       ": %s: Could not disable adapter %d\n",
5407			       priv->net_dev->name, err);
5408			return err;
5409		}
5410	}
5411
5412	/* send cmd to firmware */
5413	err = ipw2100_hw_send_command(priv, &cmd);
5414
5415	if (!batch_mode) {
5416		int err2 = ipw2100_enable_adapter(priv);
5417		if (err == 0)
5418			err = err2;
5419	}
5420	return err;
5421}
5422
5423static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5424				 int idx, int batch_mode)
5425{
5426	struct host_command cmd = {
5427		.host_command = WEP_KEY_INDEX,
5428		.host_command_sequence = 0,
5429		.host_command_length = 4,
5430		.host_command_parameters = {idx},
5431	};
5432	int err;
5433
5434	IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5435
5436	if (idx < 0 || idx > 3)
5437		return -EINVAL;
5438
5439	if (!batch_mode) {
5440		err = ipw2100_disable_adapter(priv);
5441		if (err) {
5442			printk(KERN_ERR DRV_NAME
5443			       ": %s: Could not disable adapter %d\n",
5444			       priv->net_dev->name, err);
5445			return err;
5446		}
5447	}
5448
5449	/* send cmd to firmware */
5450	err = ipw2100_hw_send_command(priv, &cmd);
5451
5452	if (!batch_mode)
5453		ipw2100_enable_adapter(priv);
5454
5455	return err;
5456}
5457
5458static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5459{
5460	int i, err, auth_mode, sec_level, use_group;
5461
5462	if (!(priv->status & STATUS_RUNNING))
5463		return 0;
5464
5465	if (!batch_mode) {
5466		err = ipw2100_disable_adapter(priv);
5467		if (err)
5468			return err;
5469	}
5470
5471	if (!priv->ieee->sec.enabled) {
5472		err =
5473		    ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5474						     SEC_LEVEL_0, 0, 1);
5475	} else {
5476		auth_mode = IPW_AUTH_OPEN;
5477		if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5478			if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5479				auth_mode = IPW_AUTH_SHARED;
5480			else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5481				auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5482		}
5483
5484		sec_level = SEC_LEVEL_0;
5485		if (priv->ieee->sec.flags & SEC_LEVEL)
5486			sec_level = priv->ieee->sec.level;
5487
5488		use_group = 0;
5489		if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5490			use_group = priv->ieee->sec.unicast_uses_group;
5491
5492		err =
5493		    ipw2100_set_security_information(priv, auth_mode, sec_level,
5494						     use_group, 1);
5495	}
5496
5497	if (err)
5498		goto exit;
5499
5500	if (priv->ieee->sec.enabled) {
5501		for (i = 0; i < 4; i++) {
5502			if (!(priv->ieee->sec.flags & (1 << i))) {
5503				memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5504				priv->ieee->sec.key_sizes[i] = 0;
5505			} else {
5506				err = ipw2100_set_key(priv, i,
5507						      priv->ieee->sec.keys[i],
5508						      priv->ieee->sec.
5509						      key_sizes[i], 1);
5510				if (err)
5511					goto exit;
5512			}
5513		}
5514
5515		ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5516	}
5517
5518	/* Always enable privacy so the Host can filter WEP packets if
5519	 * encrypted data is sent up */
5520	err =
5521	    ipw2100_set_wep_flags(priv,
5522				  priv->ieee->sec.
5523				  enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5524	if (err)
5525		goto exit;
5526
5527	priv->status &= ~STATUS_SECURITY_UPDATED;
5528
5529      exit:
5530	if (!batch_mode)
5531		ipw2100_enable_adapter(priv);
5532
5533	return err;
5534}
5535
5536static void ipw2100_security_work(struct work_struct *work)
5537{
5538	struct ipw2100_priv *priv =
5539		container_of(work, struct ipw2100_priv, security_work.work);
5540
5541	/* If we happen to have reconnected before we get a chance to
5542	 * process this, then update the security settings--which causes
5543	 * a disassociation to occur */
5544	if (!(priv->status & STATUS_ASSOCIATED) &&
5545	    priv->status & STATUS_SECURITY_UPDATED)
5546		ipw2100_configure_security(priv, 0);
5547}
5548
5549static void shim__set_security(struct net_device *dev,
5550			       struct libipw_security *sec)
5551{
5552	struct ipw2100_priv *priv = libipw_priv(dev);
5553	int i;
5554
5555	mutex_lock(&priv->action_mutex);
5556	if (!(priv->status & STATUS_INITIALIZED))
5557		goto done;
5558
5559	for (i = 0; i < 4; i++) {
5560		if (sec->flags & (1 << i)) {
5561			priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5562			if (sec->key_sizes[i] == 0)
5563				priv->ieee->sec.flags &= ~(1 << i);
5564			else
5565				memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5566				       sec->key_sizes[i]);
5567			if (sec->level == SEC_LEVEL_1) {
5568				priv->ieee->sec.flags |= (1 << i);
5569				priv->status |= STATUS_SECURITY_UPDATED;
5570			} else
5571				priv->ieee->sec.flags &= ~(1 << i);
5572		}
5573	}
5574
5575	if ((sec->flags & SEC_ACTIVE_KEY) &&
5576	    priv->ieee->sec.active_key != sec->active_key) {
5577		priv->ieee->sec.active_key = sec->active_key;
5578		priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5579		priv->status |= STATUS_SECURITY_UPDATED;
5580	}
5581
5582	if ((sec->flags & SEC_AUTH_MODE) &&
5583	    (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5584		priv->ieee->sec.auth_mode = sec->auth_mode;
5585		priv->ieee->sec.flags |= SEC_AUTH_MODE;
5586		priv->status |= STATUS_SECURITY_UPDATED;
5587	}
5588
5589	if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5590		priv->ieee->sec.flags |= SEC_ENABLED;
5591		priv->ieee->sec.enabled = sec->enabled;
5592		priv->status |= STATUS_SECURITY_UPDATED;
5593	}
5594
5595	if (sec->flags & SEC_ENCRYPT)
5596		priv->ieee->sec.encrypt = sec->encrypt;
5597
5598	if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5599		priv->ieee->sec.level = sec->level;
5600		priv->ieee->sec.flags |= SEC_LEVEL;
5601		priv->status |= STATUS_SECURITY_UPDATED;
5602	}
5603
5604	IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5605		      priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5606		      priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5607		      priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5608		      priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5609		      priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5610		      priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5611		      priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5612		      priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5613		      priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5614
5615/* As a temporary work around to enable WPA until we figure out why
5616 * wpa_supplicant toggles the security capability of the driver, which
5617 * forces a disassociation with force_update...
5618 *
5619 *	if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5620	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5621		ipw2100_configure_security(priv, 0);
5622      done:
5623	mutex_unlock(&priv->action_mutex);
5624}
5625
5626static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5627{
5628	int err;
5629	int batch_mode = 1;
5630	u8 *bssid;
5631
5632	IPW_DEBUG_INFO("enter\n");
5633
5634	err = ipw2100_disable_adapter(priv);
5635	if (err)
5636		return err;
5637#ifdef CONFIG_IPW2100_MONITOR
5638	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5639		err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5640		if (err)
5641			return err;
5642
5643		IPW_DEBUG_INFO("exit\n");
5644
5645		return 0;
5646	}
5647#endif				/* CONFIG_IPW2100_MONITOR */
5648
5649	err = ipw2100_read_mac_address(priv);
5650	if (err)
5651		return -EIO;
5652
5653	err = ipw2100_set_mac_address(priv, batch_mode);
5654	if (err)
5655		return err;
5656
5657	err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5658	if (err)
5659		return err;
5660
5661	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5662		err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5663		if (err)
5664			return err;
5665	}
5666
5667	err = ipw2100_system_config(priv, batch_mode);
5668	if (err)
5669		return err;
5670
5671	err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5672	if (err)
5673		return err;
5674
5675	/* Default to power mode OFF */
5676	err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5677	if (err)
5678		return err;
5679
5680	err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5681	if (err)
5682		return err;
5683
5684	if (priv->config & CFG_STATIC_BSSID)
5685		bssid = priv->bssid;
5686	else
5687		bssid = NULL;
5688	err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5689	if (err)
5690		return err;
5691
5692	if (priv->config & CFG_STATIC_ESSID)
5693		err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5694					batch_mode);
5695	else
5696		err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5697	if (err)
5698		return err;
5699
5700	err = ipw2100_configure_security(priv, batch_mode);
5701	if (err)
5702		return err;
5703
5704	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5705		err =
5706		    ipw2100_set_ibss_beacon_interval(priv,
5707						     priv->beacon_interval,
5708						     batch_mode);
5709		if (err)
5710			return err;
5711
5712		err = ipw2100_set_tx_power(priv, priv->tx_power);
5713		if (err)
5714			return err;
5715	}
5716
5717	/*
5718	   err = ipw2100_set_fragmentation_threshold(
5719	   priv, priv->frag_threshold, batch_mode);
5720	   if (err)
5721	   return err;
5722	 */
5723
5724	IPW_DEBUG_INFO("exit\n");
5725
5726	return 0;
5727}
5728
5729/*************************************************************************
5730 *
5731 * EXTERNALLY CALLED METHODS
5732 *
5733 *************************************************************************/
5734
5735/* This method is called by the network layer -- not to be confused with
5736 * ipw2100_set_mac_address() declared above called by this driver (and this
5737 * method as well) to talk to the firmware */
5738static int ipw2100_set_address(struct net_device *dev, void *p)
5739{
5740	struct ipw2100_priv *priv = libipw_priv(dev);
5741	struct sockaddr *addr = p;
5742	int err = 0;
5743
5744	if (!is_valid_ether_addr(addr->sa_data))
5745		return -EADDRNOTAVAIL;
5746
5747	mutex_lock(&priv->action_mutex);
5748
5749	priv->config |= CFG_CUSTOM_MAC;
5750	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5751
5752	err = ipw2100_set_mac_address(priv, 0);
5753	if (err)
5754		goto done;
5755
5756	priv->reset_backoff = 0;
5757	mutex_unlock(&priv->action_mutex);
5758	ipw2100_reset_adapter(&priv->reset_work.work);
5759	return 0;
5760
5761      done:
5762	mutex_unlock(&priv->action_mutex);
5763	return err;
5764}
5765
5766static int ipw2100_open(struct net_device *dev)
5767{
5768	struct ipw2100_priv *priv = libipw_priv(dev);
5769	unsigned long flags;
5770	IPW_DEBUG_INFO("dev->open\n");
5771
5772	spin_lock_irqsave(&priv->low_lock, flags);
5773	if (priv->status & STATUS_ASSOCIATED) {
5774		netif_carrier_on(dev);
5775		netif_start_queue(dev);
5776	}
5777	spin_unlock_irqrestore(&priv->low_lock, flags);
5778
5779	return 0;
5780}
5781
5782static int ipw2100_close(struct net_device *dev)
5783{
5784	struct ipw2100_priv *priv = libipw_priv(dev);
5785	unsigned long flags;
5786	struct list_head *element;
5787	struct ipw2100_tx_packet *packet;
5788
5789	IPW_DEBUG_INFO("enter\n");
5790
5791	spin_lock_irqsave(&priv->low_lock, flags);
5792
5793	if (priv->status & STATUS_ASSOCIATED)
5794		netif_carrier_off(dev);
5795	netif_stop_queue(dev);
5796
5797	/* Flush the TX queue ... */
5798	while (!list_empty(&priv->tx_pend_list)) {
5799		element = priv->tx_pend_list.next;
5800		packet = list_entry(element, struct ipw2100_tx_packet, list);
5801
5802		list_del(element);
5803		DEC_STAT(&priv->tx_pend_stat);
5804
5805		libipw_txb_free(packet->info.d_struct.txb);
5806		packet->info.d_struct.txb = NULL;
5807
5808		list_add_tail(element, &priv->tx_free_list);
5809		INC_STAT(&priv->tx_free_stat);
5810	}
5811	spin_unlock_irqrestore(&priv->low_lock, flags);
5812
5813	IPW_DEBUG_INFO("exit\n");
5814
5815	return 0;
5816}
5817
5818/*
5819 * TODO:  Fix this function... its just wrong
5820 */
5821static void ipw2100_tx_timeout(struct net_device *dev, unsigned int txqueue)
5822{
5823	struct ipw2100_priv *priv = libipw_priv(dev);
5824
5825	dev->stats.tx_errors++;
5826
5827#ifdef CONFIG_IPW2100_MONITOR
5828	if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5829		return;
5830#endif
5831
5832	IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5833		       dev->name);
5834	schedule_reset(priv);
5835}
5836
5837static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5838{
5839	/* This is called when wpa_supplicant loads and closes the driver
5840	 * interface. */
5841	priv->ieee->wpa_enabled = value;
5842	return 0;
5843}
5844
5845static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5846{
5847
5848	struct libipw_device *ieee = priv->ieee;
5849	struct libipw_security sec = {
5850		.flags = SEC_AUTH_MODE,
5851	};
5852	int ret = 0;
5853
5854	if (value & IW_AUTH_ALG_SHARED_KEY) {
5855		sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5856		ieee->open_wep = 0;
5857	} else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5858		sec.auth_mode = WLAN_AUTH_OPEN;
5859		ieee->open_wep = 1;
5860	} else if (value & IW_AUTH_ALG_LEAP) {
5861		sec.auth_mode = WLAN_AUTH_LEAP;
5862		ieee->open_wep = 1;
5863	} else
5864		return -EINVAL;
5865
5866	if (ieee->set_security)
5867		ieee->set_security(ieee->dev, &sec);
5868	else
5869		ret = -EOPNOTSUPP;
5870
5871	return ret;
5872}
5873
5874static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5875				    char *wpa_ie, int wpa_ie_len)
5876{
5877
5878	struct ipw2100_wpa_assoc_frame frame;
5879
5880	frame.fixed_ie_mask = 0;
5881
5882	/* copy WPA IE */
5883	memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5884	frame.var_ie_len = wpa_ie_len;
5885
5886	/* make sure WPA is enabled */
5887	ipw2100_wpa_enable(priv, 1);
5888	ipw2100_set_wpa_ie(priv, &frame, 0);
5889}
5890
5891static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5892				    struct ethtool_drvinfo *info)
5893{
5894	struct ipw2100_priv *priv = libipw_priv(dev);
5895	char fw_ver[64];
5896
5897	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
5898	strscpy(info->version, DRV_VERSION, sizeof(info->version));
5899
5900	ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
 
 
 
 
5901
5902	strscpy(info->fw_version, fw_ver, sizeof(info->fw_version));
5903	strscpy(info->bus_info, pci_name(priv->pci_dev),
5904		sizeof(info->bus_info));
5905}
5906
5907static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5908{
5909	struct ipw2100_priv *priv = libipw_priv(dev);
5910	return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5911}
5912
5913static const struct ethtool_ops ipw2100_ethtool_ops = {
5914	.get_link = ipw2100_ethtool_get_link,
5915	.get_drvinfo = ipw_ethtool_get_drvinfo,
5916};
5917
5918static void ipw2100_hang_check(struct work_struct *work)
5919{
5920	struct ipw2100_priv *priv =
5921		container_of(work, struct ipw2100_priv, hang_check.work);
5922	unsigned long flags;
5923	u32 rtc = 0xa5a5a5a5;
5924	u32 len = sizeof(rtc);
5925	int restart = 0;
5926
5927	spin_lock_irqsave(&priv->low_lock, flags);
5928
5929	if (priv->fatal_error != 0) {
5930		/* If fatal_error is set then we need to restart */
5931		IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5932			       priv->net_dev->name);
5933
5934		restart = 1;
5935	} else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5936		   (rtc == priv->last_rtc)) {
5937		/* Check if firmware is hung */
5938		IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5939			       priv->net_dev->name);
5940
5941		restart = 1;
5942	}
5943
5944	if (restart) {
5945		/* Kill timer */
5946		priv->stop_hang_check = 1;
5947		priv->hangs++;
5948
5949		/* Restart the NIC */
5950		schedule_reset(priv);
5951	}
5952
5953	priv->last_rtc = rtc;
5954
5955	if (!priv->stop_hang_check)
5956		schedule_delayed_work(&priv->hang_check, HZ / 2);
5957
5958	spin_unlock_irqrestore(&priv->low_lock, flags);
5959}
5960
5961static void ipw2100_rf_kill(struct work_struct *work)
5962{
5963	struct ipw2100_priv *priv =
5964		container_of(work, struct ipw2100_priv, rf_kill.work);
5965	unsigned long flags;
5966
5967	spin_lock_irqsave(&priv->low_lock, flags);
5968
5969	if (rf_kill_active(priv)) {
5970		IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5971		if (!priv->stop_rf_kill)
5972			schedule_delayed_work(&priv->rf_kill,
5973					      round_jiffies_relative(HZ));
5974		goto exit_unlock;
5975	}
5976
5977	/* RF Kill is now disabled, so bring the device back up */
5978
5979	if (!(priv->status & STATUS_RF_KILL_MASK)) {
5980		IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5981				  "device\n");
5982		schedule_reset(priv);
5983	} else
5984		IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
5985				  "enabled\n");
5986
5987      exit_unlock:
5988	spin_unlock_irqrestore(&priv->low_lock, flags);
5989}
5990
5991static void ipw2100_irq_tasklet(struct tasklet_struct *t);
5992
5993static const struct net_device_ops ipw2100_netdev_ops = {
5994	.ndo_open		= ipw2100_open,
5995	.ndo_stop		= ipw2100_close,
5996	.ndo_start_xmit		= libipw_xmit,
5997	.ndo_tx_timeout		= ipw2100_tx_timeout,
5998	.ndo_set_mac_address	= ipw2100_set_address,
5999	.ndo_validate_addr	= eth_validate_addr,
6000};
6001
6002/* Look into using netdev destructor to shutdown libipw? */
6003
6004static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6005					       void __iomem * ioaddr)
6006{
6007	struct ipw2100_priv *priv;
6008	struct net_device *dev;
6009
6010	dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6011	if (!dev)
6012		return NULL;
6013	priv = libipw_priv(dev);
6014	priv->ieee = netdev_priv(dev);
6015	priv->pci_dev = pci_dev;
6016	priv->net_dev = dev;
6017	priv->ioaddr = ioaddr;
6018
6019	priv->ieee->hard_start_xmit = ipw2100_tx;
6020	priv->ieee->set_security = shim__set_security;
6021
6022	priv->ieee->perfect_rssi = -20;
6023	priv->ieee->worst_rssi = -85;
6024
6025	dev->netdev_ops = &ipw2100_netdev_ops;
6026	dev->ethtool_ops = &ipw2100_ethtool_ops;
6027	dev->wireless_handlers = &ipw2100_wx_handler_def;
6028	priv->wireless_data.libipw = priv->ieee;
6029	dev->wireless_data = &priv->wireless_data;
6030	dev->watchdog_timeo = 3 * HZ;
6031	dev->irq = 0;
6032	dev->min_mtu = 68;
6033	dev->max_mtu = LIBIPW_DATA_LEN;
6034
6035	/* NOTE: We don't use the wireless_handlers hook
6036	 * in dev as the system will start throwing WX requests
6037	 * to us before we're actually initialized and it just
6038	 * ends up causing problems.  So, we just handle
6039	 * the WX extensions through the ipw2100_ioctl interface */
6040
6041	/* memset() puts everything to 0, so we only have explicitly set
6042	 * those values that need to be something else */
6043
6044	/* If power management is turned on, default to AUTO mode */
6045	priv->power_mode = IPW_POWER_AUTO;
6046
6047#ifdef CONFIG_IPW2100_MONITOR
6048	priv->config |= CFG_CRC_CHECK;
6049#endif
6050	priv->ieee->wpa_enabled = 0;
6051	priv->ieee->drop_unencrypted = 0;
6052	priv->ieee->privacy_invoked = 0;
6053	priv->ieee->ieee802_1x = 1;
6054
6055	/* Set module parameters */
6056	switch (network_mode) {
6057	case 1:
6058		priv->ieee->iw_mode = IW_MODE_ADHOC;
6059		break;
6060#ifdef CONFIG_IPW2100_MONITOR
6061	case 2:
6062		priv->ieee->iw_mode = IW_MODE_MONITOR;
6063		break;
6064#endif
6065	default:
6066	case 0:
6067		priv->ieee->iw_mode = IW_MODE_INFRA;
6068		break;
6069	}
6070
6071	if (disable == 1)
6072		priv->status |= STATUS_RF_KILL_SW;
6073
6074	if (channel != 0 &&
6075	    ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6076		priv->config |= CFG_STATIC_CHANNEL;
6077		priv->channel = channel;
6078	}
6079
6080	if (associate)
6081		priv->config |= CFG_ASSOCIATE;
6082
6083	priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6084	priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6085	priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6086	priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6087	priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6088	priv->tx_power = IPW_TX_POWER_DEFAULT;
6089	priv->tx_rates = DEFAULT_TX_RATES;
6090
6091	strcpy(priv->nick, "ipw2100");
6092
6093	spin_lock_init(&priv->low_lock);
6094	mutex_init(&priv->action_mutex);
6095	mutex_init(&priv->adapter_mutex);
6096
6097	init_waitqueue_head(&priv->wait_command_queue);
6098
6099	netif_carrier_off(dev);
6100
6101	INIT_LIST_HEAD(&priv->msg_free_list);
6102	INIT_LIST_HEAD(&priv->msg_pend_list);
6103	INIT_STAT(&priv->msg_free_stat);
6104	INIT_STAT(&priv->msg_pend_stat);
6105
6106	INIT_LIST_HEAD(&priv->tx_free_list);
6107	INIT_LIST_HEAD(&priv->tx_pend_list);
6108	INIT_STAT(&priv->tx_free_stat);
6109	INIT_STAT(&priv->tx_pend_stat);
6110
6111	INIT_LIST_HEAD(&priv->fw_pend_list);
6112	INIT_STAT(&priv->fw_pend_stat);
6113
6114	INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6115	INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6116	INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6117	INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6118	INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6119	INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event);
6120
6121	tasklet_setup(&priv->irq_tasklet, ipw2100_irq_tasklet);
 
6122
6123	/* NOTE:  We do not start the deferred work for status checks yet */
6124	priv->stop_rf_kill = 1;
6125	priv->stop_hang_check = 1;
6126
6127	return dev;
6128}
6129
6130static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6131				const struct pci_device_id *ent)
6132{
6133	void __iomem *ioaddr;
6134	struct net_device *dev = NULL;
6135	struct ipw2100_priv *priv = NULL;
6136	int err = 0;
6137	int registered = 0;
6138	u32 val;
6139
6140	IPW_DEBUG_INFO("enter\n");
6141
6142	if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6143		IPW_DEBUG_INFO("weird - resource type is not memory\n");
6144		err = -ENODEV;
6145		goto out;
6146	}
6147
6148	ioaddr = pci_iomap(pci_dev, 0, 0);
6149	if (!ioaddr) {
6150		printk(KERN_WARNING DRV_NAME
6151		       "Error calling ioremap.\n");
6152		err = -EIO;
6153		goto fail;
6154	}
6155
6156	/* allocate and initialize our net_device */
6157	dev = ipw2100_alloc_device(pci_dev, ioaddr);
6158	if (!dev) {
6159		printk(KERN_WARNING DRV_NAME
6160		       "Error calling ipw2100_alloc_device.\n");
6161		err = -ENOMEM;
6162		goto fail;
6163	}
6164
6165	/* set up PCI mappings for device */
6166	err = pci_enable_device(pci_dev);
6167	if (err) {
6168		printk(KERN_WARNING DRV_NAME
6169		       "Error calling pci_enable_device.\n");
6170		return err;
6171	}
6172
6173	priv = libipw_priv(dev);
6174
6175	pci_set_master(pci_dev);
6176	pci_set_drvdata(pci_dev, priv);
6177
6178	err = dma_set_mask(&pci_dev->dev, DMA_BIT_MASK(32));
6179	if (err) {
6180		printk(KERN_WARNING DRV_NAME
6181		       "Error calling pci_set_dma_mask.\n");
6182		pci_disable_device(pci_dev);
6183		return err;
6184	}
6185
6186	err = pci_request_regions(pci_dev, DRV_NAME);
6187	if (err) {
6188		printk(KERN_WARNING DRV_NAME
6189		       "Error calling pci_request_regions.\n");
6190		pci_disable_device(pci_dev);
6191		return err;
6192	}
6193
6194	/* We disable the RETRY_TIMEOUT register (0x41) to keep
6195	 * PCI Tx retries from interfering with C3 CPU state */
6196	pci_read_config_dword(pci_dev, 0x40, &val);
6197	if ((val & 0x0000ff00) != 0)
6198		pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6199
6200	if (!ipw2100_hw_is_adapter_in_system(dev)) {
6201		printk(KERN_WARNING DRV_NAME
6202		       "Device not found via register read.\n");
6203		err = -ENODEV;
6204		goto fail;
6205	}
6206
6207	SET_NETDEV_DEV(dev, &pci_dev->dev);
6208
6209	/* Force interrupts to be shut off on the device */
6210	priv->status |= STATUS_INT_ENABLED;
6211	ipw2100_disable_interrupts(priv);
6212
6213	/* Allocate and initialize the Tx/Rx queues and lists */
6214	if (ipw2100_queues_allocate(priv)) {
6215		printk(KERN_WARNING DRV_NAME
6216		       "Error calling ipw2100_queues_allocate.\n");
6217		err = -ENOMEM;
6218		goto fail;
6219	}
6220	ipw2100_queues_initialize(priv);
6221
6222	err = request_irq(pci_dev->irq,
6223			  ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6224	if (err) {
6225		printk(KERN_WARNING DRV_NAME
6226		       "Error calling request_irq: %d.\n", pci_dev->irq);
6227		goto fail;
6228	}
6229	dev->irq = pci_dev->irq;
6230
6231	IPW_DEBUG_INFO("Attempting to register device...\n");
6232
6233	printk(KERN_INFO DRV_NAME
6234	       ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6235
6236	err = ipw2100_up(priv, 1);
6237	if (err)
6238		goto fail;
6239
6240	err = ipw2100_wdev_init(dev);
6241	if (err)
6242		goto fail;
6243	registered = 1;
6244
6245	/* Bring up the interface.  Pre 0.46, after we registered the
6246	 * network device we would call ipw2100_up.  This introduced a race
6247	 * condition with newer hotplug configurations (network was coming
6248	 * up and making calls before the device was initialized).
6249	 */
6250	err = register_netdev(dev);
6251	if (err) {
6252		printk(KERN_WARNING DRV_NAME
6253		       "Error calling register_netdev.\n");
6254		goto fail;
6255	}
6256	registered = 2;
6257
6258	mutex_lock(&priv->action_mutex);
6259
6260	IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6261
6262	/* perform this after register_netdev so that dev->name is set */
6263	err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6264	if (err)
6265		goto fail_unlock;
6266
6267	/* If the RF Kill switch is disabled, go ahead and complete the
6268	 * startup sequence */
6269	if (!(priv->status & STATUS_RF_KILL_MASK)) {
6270		/* Enable the adapter - sends HOST_COMPLETE */
6271		if (ipw2100_enable_adapter(priv)) {
6272			printk(KERN_WARNING DRV_NAME
6273			       ": %s: failed in call to enable adapter.\n",
6274			       priv->net_dev->name);
6275			ipw2100_hw_stop_adapter(priv);
6276			err = -EIO;
6277			goto fail_unlock;
6278		}
6279
6280		/* Start a scan . . . */
6281		ipw2100_set_scan_options(priv);
6282		ipw2100_start_scan(priv);
6283	}
6284
6285	IPW_DEBUG_INFO("exit\n");
6286
6287	priv->status |= STATUS_INITIALIZED;
6288
6289	mutex_unlock(&priv->action_mutex);
6290out:
6291	return err;
6292
6293      fail_unlock:
6294	mutex_unlock(&priv->action_mutex);
6295      fail:
6296	if (dev) {
6297		if (registered >= 2)
6298			unregister_netdev(dev);
6299
6300		if (registered) {
6301			wiphy_unregister(priv->ieee->wdev.wiphy);
6302			kfree(priv->ieee->bg_band.channels);
6303		}
6304
6305		ipw2100_hw_stop_adapter(priv);
6306
6307		ipw2100_disable_interrupts(priv);
6308
6309		if (dev->irq)
6310			free_irq(dev->irq, priv);
6311
6312		ipw2100_kill_works(priv);
6313
6314		/* These are safe to call even if they weren't allocated */
6315		ipw2100_queues_free(priv);
6316		sysfs_remove_group(&pci_dev->dev.kobj,
6317				   &ipw2100_attribute_group);
6318
6319		free_libipw(dev, 0);
6320	}
6321
6322	pci_iounmap(pci_dev, ioaddr);
6323
6324	pci_release_regions(pci_dev);
6325	pci_disable_device(pci_dev);
6326	goto out;
6327}
6328
6329static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6330{
6331	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6332	struct net_device *dev = priv->net_dev;
6333
6334	mutex_lock(&priv->action_mutex);
6335
6336	priv->status &= ~STATUS_INITIALIZED;
6337
6338	sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6339
6340#ifdef CONFIG_PM
6341	if (ipw2100_firmware.version)
6342		ipw2100_release_firmware(priv, &ipw2100_firmware);
6343#endif
6344	/* Take down the hardware */
6345	ipw2100_down(priv);
6346
6347	/* Release the mutex so that the network subsystem can
6348	 * complete any needed calls into the driver... */
6349	mutex_unlock(&priv->action_mutex);
6350
6351	/* Unregister the device first - this results in close()
6352	 * being called if the device is open.  If we free storage
6353	 * first, then close() will crash.
6354	 * FIXME: remove the comment above. */
6355	unregister_netdev(dev);
6356
6357	ipw2100_kill_works(priv);
6358
6359	ipw2100_queues_free(priv);
6360
6361	/* Free potential debugging firmware snapshot */
6362	ipw2100_snapshot_free(priv);
6363
6364	free_irq(dev->irq, priv);
6365
6366	pci_iounmap(pci_dev, priv->ioaddr);
6367
6368	/* wiphy_unregister needs to be here, before free_libipw */
6369	wiphy_unregister(priv->ieee->wdev.wiphy);
6370	kfree(priv->ieee->bg_band.channels);
6371	free_libipw(dev, 0);
6372
6373	pci_release_regions(pci_dev);
6374	pci_disable_device(pci_dev);
6375
6376	IPW_DEBUG_INFO("exit\n");
6377}
6378
6379static int __maybe_unused ipw2100_suspend(struct device *dev_d)
6380{
6381	struct ipw2100_priv *priv = dev_get_drvdata(dev_d);
6382	struct net_device *dev = priv->net_dev;
6383
6384	IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6385
6386	mutex_lock(&priv->action_mutex);
6387	if (priv->status & STATUS_INITIALIZED) {
6388		/* Take down the device; powers it off, etc. */
6389		ipw2100_down(priv);
6390	}
6391
6392	/* Remove the PRESENT state of the device */
6393	netif_device_detach(dev);
6394
6395	priv->suspend_at = ktime_get_boottime_seconds();
6396
6397	mutex_unlock(&priv->action_mutex);
6398
6399	return 0;
6400}
6401
6402static int __maybe_unused ipw2100_resume(struct device *dev_d)
6403{
6404	struct pci_dev *pci_dev = to_pci_dev(dev_d);
6405	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6406	struct net_device *dev = priv->net_dev;
6407	u32 val;
6408
6409	if (IPW2100_PM_DISABLED)
6410		return 0;
6411
6412	mutex_lock(&priv->action_mutex);
6413
6414	IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6415
6416	/*
6417	 * Suspend/Resume resets the PCI configuration space, so we have to
6418	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6419	 * from interfering with C3 CPU state. pci_restore_state won't help
6420	 * here since it only restores the first 64 bytes pci config header.
6421	 */
6422	pci_read_config_dword(pci_dev, 0x40, &val);
6423	if ((val & 0x0000ff00) != 0)
6424		pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6425
6426	/* Set the device back into the PRESENT state; this will also wake
6427	 * the queue of needed */
6428	netif_device_attach(dev);
6429
6430	priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at;
6431
6432	/* Bring the device back up */
6433	if (!(priv->status & STATUS_RF_KILL_SW))
6434		ipw2100_up(priv, 0);
6435
6436	mutex_unlock(&priv->action_mutex);
6437
6438	return 0;
6439}
6440
6441static void ipw2100_shutdown(struct pci_dev *pci_dev)
6442{
6443	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6444
6445	/* Take down the device; powers it off, etc. */
6446	ipw2100_down(priv);
6447
6448	pci_disable_device(pci_dev);
6449}
6450
6451#define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6452
6453static const struct pci_device_id ipw2100_pci_id_table[] = {
6454	IPW2100_DEV_ID(0x2520),	/* IN 2100A mPCI 3A */
6455	IPW2100_DEV_ID(0x2521),	/* IN 2100A mPCI 3B */
6456	IPW2100_DEV_ID(0x2524),	/* IN 2100A mPCI 3B */
6457	IPW2100_DEV_ID(0x2525),	/* IN 2100A mPCI 3B */
6458	IPW2100_DEV_ID(0x2526),	/* IN 2100A mPCI Gen A3 */
6459	IPW2100_DEV_ID(0x2522),	/* IN 2100 mPCI 3B */
6460	IPW2100_DEV_ID(0x2523),	/* IN 2100 mPCI 3A */
6461	IPW2100_DEV_ID(0x2527),	/* IN 2100 mPCI 3B */
6462	IPW2100_DEV_ID(0x2528),	/* IN 2100 mPCI 3B */
6463	IPW2100_DEV_ID(0x2529),	/* IN 2100 mPCI 3B */
6464	IPW2100_DEV_ID(0x252B),	/* IN 2100 mPCI 3A */
6465	IPW2100_DEV_ID(0x252C),	/* IN 2100 mPCI 3A */
6466	IPW2100_DEV_ID(0x252D),	/* IN 2100 mPCI 3A */
6467
6468	IPW2100_DEV_ID(0x2550),	/* IB 2100A mPCI 3B */
6469	IPW2100_DEV_ID(0x2551),	/* IB 2100 mPCI 3B */
6470	IPW2100_DEV_ID(0x2553),	/* IB 2100 mPCI 3B */
6471	IPW2100_DEV_ID(0x2554),	/* IB 2100 mPCI 3B */
6472	IPW2100_DEV_ID(0x2555),	/* IB 2100 mPCI 3B */
6473
6474	IPW2100_DEV_ID(0x2560),	/* DE 2100A mPCI 3A */
6475	IPW2100_DEV_ID(0x2562),	/* DE 2100A mPCI 3A */
6476	IPW2100_DEV_ID(0x2563),	/* DE 2100A mPCI 3A */
6477	IPW2100_DEV_ID(0x2561),	/* DE 2100 mPCI 3A */
6478	IPW2100_DEV_ID(0x2565),	/* DE 2100 mPCI 3A */
6479	IPW2100_DEV_ID(0x2566),	/* DE 2100 mPCI 3A */
6480	IPW2100_DEV_ID(0x2567),	/* DE 2100 mPCI 3A */
6481
6482	IPW2100_DEV_ID(0x2570),	/* GA 2100 mPCI 3B */
6483
6484	IPW2100_DEV_ID(0x2580),	/* TO 2100A mPCI 3B */
6485	IPW2100_DEV_ID(0x2582),	/* TO 2100A mPCI 3B */
6486	IPW2100_DEV_ID(0x2583),	/* TO 2100A mPCI 3B */
6487	IPW2100_DEV_ID(0x2581),	/* TO 2100 mPCI 3B */
6488	IPW2100_DEV_ID(0x2585),	/* TO 2100 mPCI 3B */
6489	IPW2100_DEV_ID(0x2586),	/* TO 2100 mPCI 3B */
6490	IPW2100_DEV_ID(0x2587),	/* TO 2100 mPCI 3B */
6491
6492	IPW2100_DEV_ID(0x2590),	/* SO 2100A mPCI 3B */
6493	IPW2100_DEV_ID(0x2592),	/* SO 2100A mPCI 3B */
6494	IPW2100_DEV_ID(0x2591),	/* SO 2100 mPCI 3B */
6495	IPW2100_DEV_ID(0x2593),	/* SO 2100 mPCI 3B */
6496	IPW2100_DEV_ID(0x2596),	/* SO 2100 mPCI 3B */
6497	IPW2100_DEV_ID(0x2598),	/* SO 2100 mPCI 3B */
6498
6499	IPW2100_DEV_ID(0x25A0),	/* HP 2100 mPCI 3B */
6500	{0,},
6501};
6502
6503MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6504
6505static SIMPLE_DEV_PM_OPS(ipw2100_pm_ops, ipw2100_suspend, ipw2100_resume);
6506
6507static struct pci_driver ipw2100_pci_driver = {
6508	.name = DRV_NAME,
6509	.id_table = ipw2100_pci_id_table,
6510	.probe = ipw2100_pci_init_one,
6511	.remove = ipw2100_pci_remove_one,
6512	.driver.pm = &ipw2100_pm_ops,
6513	.shutdown = ipw2100_shutdown,
6514};
6515
6516/*
6517 * Initialize the ipw2100 driver/module
6518 *
6519 * @returns 0 if ok, < 0 errno node con error.
6520 *
6521 * Note: we cannot init the /proc stuff until the PCI driver is there,
6522 * or we risk an unlikely race condition on someone accessing
6523 * uninitialized data in the PCI dev struct through /proc.
6524 */
6525static int __init ipw2100_init(void)
6526{
6527	int ret;
6528
6529	printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6530	printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6531
6532	cpu_latency_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
6533
6534	ret = pci_register_driver(&ipw2100_pci_driver);
6535	if (ret)
6536		goto out;
6537
6538#ifdef CONFIG_IPW2100_DEBUG
6539	ipw2100_debug_level = debug;
6540	ret = driver_create_file(&ipw2100_pci_driver.driver,
6541				 &driver_attr_debug_level);
6542#endif
6543
6544out:
6545	return ret;
6546}
6547
6548/*
6549 * Cleanup ipw2100 driver registration
6550 */
6551static void __exit ipw2100_exit(void)
6552{
6553	/* FIXME: IPG: check that we have no instances of the devices open */
6554#ifdef CONFIG_IPW2100_DEBUG
6555	driver_remove_file(&ipw2100_pci_driver.driver,
6556			   &driver_attr_debug_level);
6557#endif
6558	pci_unregister_driver(&ipw2100_pci_driver);
6559	cpu_latency_qos_remove_request(&ipw2100_pm_qos_req);
6560}
6561
6562module_init(ipw2100_init);
6563module_exit(ipw2100_exit);
6564
6565static int ipw2100_wx_get_name(struct net_device *dev,
6566			       struct iw_request_info *info,
6567			       union iwreq_data *wrqu, char *extra)
6568{
6569	/*
6570	 * This can be called at any time.  No action lock required
6571	 */
6572
6573	struct ipw2100_priv *priv = libipw_priv(dev);
6574	if (!(priv->status & STATUS_ASSOCIATED))
6575		strcpy(wrqu->name, "unassociated");
6576	else
6577		snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6578
6579	IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6580	return 0;
6581}
6582
6583static int ipw2100_wx_set_freq(struct net_device *dev,
6584			       struct iw_request_info *info,
6585			       union iwreq_data *wrqu, char *extra)
6586{
6587	struct ipw2100_priv *priv = libipw_priv(dev);
6588	struct iw_freq *fwrq = &wrqu->freq;
6589	int err = 0;
6590
6591	if (priv->ieee->iw_mode == IW_MODE_INFRA)
6592		return -EOPNOTSUPP;
6593
6594	mutex_lock(&priv->action_mutex);
6595	if (!(priv->status & STATUS_INITIALIZED)) {
6596		err = -EIO;
6597		goto done;
6598	}
6599
6600	/* if setting by freq convert to channel */
6601	if (fwrq->e == 1) {
6602		if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6603			int f = fwrq->m / 100000;
6604			int c = 0;
6605
6606			while ((c < REG_MAX_CHANNEL) &&
6607			       (f != ipw2100_frequencies[c]))
6608				c++;
6609
6610			/* hack to fall through */
6611			fwrq->e = 0;
6612			fwrq->m = c + 1;
6613		}
6614	}
6615
6616	if (fwrq->e > 0 || fwrq->m > 1000) {
6617		err = -EOPNOTSUPP;
6618		goto done;
6619	} else {		/* Set the channel */
6620		IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6621		err = ipw2100_set_channel(priv, fwrq->m, 0);
6622	}
6623
6624      done:
6625	mutex_unlock(&priv->action_mutex);
6626	return err;
6627}
6628
6629static int ipw2100_wx_get_freq(struct net_device *dev,
6630			       struct iw_request_info *info,
6631			       union iwreq_data *wrqu, char *extra)
6632{
6633	/*
6634	 * This can be called at any time.  No action lock required
6635	 */
6636
6637	struct ipw2100_priv *priv = libipw_priv(dev);
6638
6639	wrqu->freq.e = 0;
6640
6641	/* If we are associated, trying to associate, or have a statically
6642	 * configured CHANNEL then return that; otherwise return ANY */
6643	if (priv->config & CFG_STATIC_CHANNEL ||
6644	    priv->status & STATUS_ASSOCIATED)
6645		wrqu->freq.m = priv->channel;
6646	else
6647		wrqu->freq.m = 0;
6648
6649	IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6650	return 0;
6651
6652}
6653
6654static int ipw2100_wx_set_mode(struct net_device *dev,
6655			       struct iw_request_info *info,
6656			       union iwreq_data *wrqu, char *extra)
6657{
6658	struct ipw2100_priv *priv = libipw_priv(dev);
6659	int err = 0;
6660
6661	IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6662
6663	if (wrqu->mode == priv->ieee->iw_mode)
6664		return 0;
6665
6666	mutex_lock(&priv->action_mutex);
6667	if (!(priv->status & STATUS_INITIALIZED)) {
6668		err = -EIO;
6669		goto done;
6670	}
6671
6672	switch (wrqu->mode) {
6673#ifdef CONFIG_IPW2100_MONITOR
6674	case IW_MODE_MONITOR:
6675		err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6676		break;
6677#endif				/* CONFIG_IPW2100_MONITOR */
6678	case IW_MODE_ADHOC:
6679		err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6680		break;
6681	case IW_MODE_INFRA:
6682	case IW_MODE_AUTO:
6683	default:
6684		err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6685		break;
6686	}
6687
6688      done:
6689	mutex_unlock(&priv->action_mutex);
6690	return err;
6691}
6692
6693static int ipw2100_wx_get_mode(struct net_device *dev,
6694			       struct iw_request_info *info,
6695			       union iwreq_data *wrqu, char *extra)
6696{
6697	/*
6698	 * This can be called at any time.  No action lock required
6699	 */
6700
6701	struct ipw2100_priv *priv = libipw_priv(dev);
6702
6703	wrqu->mode = priv->ieee->iw_mode;
6704	IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6705
6706	return 0;
6707}
6708
6709#define POWER_MODES 5
6710
6711/* Values are in microsecond */
6712static const s32 timeout_duration[POWER_MODES] = {
6713	350000,
6714	250000,
6715	75000,
6716	37000,
6717	25000,
6718};
6719
6720static const s32 period_duration[POWER_MODES] = {
6721	400000,
6722	700000,
6723	1000000,
6724	1000000,
6725	1000000
6726};
6727
6728static int ipw2100_wx_get_range(struct net_device *dev,
6729				struct iw_request_info *info,
6730				union iwreq_data *wrqu, char *extra)
6731{
6732	/*
6733	 * This can be called at any time.  No action lock required
6734	 */
6735
6736	struct ipw2100_priv *priv = libipw_priv(dev);
6737	struct iw_range *range = (struct iw_range *)extra;
6738	u16 val;
6739	int i, level;
6740
6741	wrqu->data.length = sizeof(*range);
6742	memset(range, 0, sizeof(*range));
6743
6744	/* Let's try to keep this struct in the same order as in
6745	 * linux/include/wireless.h
6746	 */
6747
6748	/* TODO: See what values we can set, and remove the ones we can't
6749	 * set, or fill them with some default data.
6750	 */
6751
6752	/* ~5 Mb/s real (802.11b) */
6753	range->throughput = 5 * 1000 * 1000;
6754
6755//      range->sensitivity;     /* signal level threshold range */
6756
6757	range->max_qual.qual = 100;
6758	/* TODO: Find real max RSSI and stick here */
6759	range->max_qual.level = 0;
6760	range->max_qual.noise = 0;
6761	range->max_qual.updated = 7;	/* Updated all three */
6762
6763	range->avg_qual.qual = 70;	/* > 8% missed beacons is 'bad' */
6764	/* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6765	range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6766	range->avg_qual.noise = 0;
6767	range->avg_qual.updated = 7;	/* Updated all three */
6768
6769	range->num_bitrates = RATE_COUNT;
6770
6771	for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6772		range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6773	}
6774
6775	range->min_rts = MIN_RTS_THRESHOLD;
6776	range->max_rts = MAX_RTS_THRESHOLD;
6777	range->min_frag = MIN_FRAG_THRESHOLD;
6778	range->max_frag = MAX_FRAG_THRESHOLD;
6779
6780	range->min_pmp = period_duration[0];	/* Minimal PM period */
6781	range->max_pmp = period_duration[POWER_MODES - 1];	/* Maximal PM period */
6782	range->min_pmt = timeout_duration[POWER_MODES - 1];	/* Minimal PM timeout */
6783	range->max_pmt = timeout_duration[0];	/* Maximal PM timeout */
6784
6785	/* How to decode max/min PM period */
6786	range->pmp_flags = IW_POWER_PERIOD;
6787	/* How to decode max/min PM period */
6788	range->pmt_flags = IW_POWER_TIMEOUT;
6789	/* What PM options are supported */
6790	range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6791
6792	range->encoding_size[0] = 5;
6793	range->encoding_size[1] = 13;	/* Different token sizes */
6794	range->num_encoding_sizes = 2;	/* Number of entry in the list */
6795	range->max_encoding_tokens = WEP_KEYS;	/* Max number of tokens */
6796//      range->encoding_login_index;            /* token index for login token */
6797
6798	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6799		range->txpower_capa = IW_TXPOW_DBM;
6800		range->num_txpower = IW_MAX_TXPOWER;
6801		for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6802		     i < IW_MAX_TXPOWER;
6803		     i++, level -=
6804		     ((IPW_TX_POWER_MAX_DBM -
6805		       IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6806			range->txpower[i] = level / 16;
6807	} else {
6808		range->txpower_capa = 0;
6809		range->num_txpower = 0;
6810	}
6811
6812	/* Set the Wireless Extension versions */
6813	range->we_version_compiled = WIRELESS_EXT;
6814	range->we_version_source = 18;
6815
6816//      range->retry_capa;      /* What retry options are supported */
6817//      range->retry_flags;     /* How to decode max/min retry limit */
6818//      range->r_time_flags;    /* How to decode max/min retry life */
6819//      range->min_retry;       /* Minimal number of retries */
6820//      range->max_retry;       /* Maximal number of retries */
6821//      range->min_r_time;      /* Minimal retry lifetime */
6822//      range->max_r_time;      /* Maximal retry lifetime */
6823
6824	range->num_channels = FREQ_COUNT;
6825
6826	val = 0;
6827	for (i = 0; i < FREQ_COUNT; i++) {
6828		// TODO: Include only legal frequencies for some countries
6829//              if (local->channel_mask & (1 << i)) {
6830		range->freq[val].i = i + 1;
6831		range->freq[val].m = ipw2100_frequencies[i] * 100000;
6832		range->freq[val].e = 1;
6833		val++;
6834//              }
6835		if (val == IW_MAX_FREQUENCIES)
6836			break;
6837	}
6838	range->num_frequency = val;
6839
6840	/* Event capability (kernel + driver) */
6841	range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6842				IW_EVENT_CAPA_MASK(SIOCGIWAP));
6843	range->event_capa[1] = IW_EVENT_CAPA_K_1;
6844
6845	range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6846		IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6847
6848	IPW_DEBUG_WX("GET Range\n");
6849
6850	return 0;
6851}
6852
6853static int ipw2100_wx_set_wap(struct net_device *dev,
6854			      struct iw_request_info *info,
6855			      union iwreq_data *wrqu, char *extra)
6856{
6857	struct ipw2100_priv *priv = libipw_priv(dev);
6858	int err = 0;
6859
6860	// sanity checks
6861	if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6862		return -EINVAL;
6863
6864	mutex_lock(&priv->action_mutex);
6865	if (!(priv->status & STATUS_INITIALIZED)) {
6866		err = -EIO;
6867		goto done;
6868	}
6869
6870	if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6871	    is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6872		/* we disable mandatory BSSID association */
6873		IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6874		priv->config &= ~CFG_STATIC_BSSID;
6875		err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6876		goto done;
6877	}
6878
6879	priv->config |= CFG_STATIC_BSSID;
6880	memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6881
6882	err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6883
6884	IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6885
6886      done:
6887	mutex_unlock(&priv->action_mutex);
6888	return err;
6889}
6890
6891static int ipw2100_wx_get_wap(struct net_device *dev,
6892			      struct iw_request_info *info,
6893			      union iwreq_data *wrqu, char *extra)
6894{
6895	/*
6896	 * This can be called at any time.  No action lock required
6897	 */
6898
6899	struct ipw2100_priv *priv = libipw_priv(dev);
6900
6901	/* If we are associated, trying to associate, or have a statically
6902	 * configured BSSID then return that; otherwise return ANY */
6903	if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6904		wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6905		memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6906	} else
6907		eth_zero_addr(wrqu->ap_addr.sa_data);
6908
6909	IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6910	return 0;
6911}
6912
6913static int ipw2100_wx_set_essid(struct net_device *dev,
6914				struct iw_request_info *info,
6915				union iwreq_data *wrqu, char *extra)
6916{
6917	struct ipw2100_priv *priv = libipw_priv(dev);
6918	char *essid = "";	/* ANY */
6919	int length = 0;
6920	int err = 0;
6921
6922	mutex_lock(&priv->action_mutex);
6923	if (!(priv->status & STATUS_INITIALIZED)) {
6924		err = -EIO;
6925		goto done;
6926	}
6927
6928	if (wrqu->essid.flags && wrqu->essid.length) {
6929		length = wrqu->essid.length;
6930		essid = extra;
6931	}
6932
6933	if (length == 0) {
6934		IPW_DEBUG_WX("Setting ESSID to ANY\n");
6935		priv->config &= ~CFG_STATIC_ESSID;
6936		err = ipw2100_set_essid(priv, NULL, 0, 0);
6937		goto done;
6938	}
6939
6940	length = min(length, IW_ESSID_MAX_SIZE);
6941
6942	priv->config |= CFG_STATIC_ESSID;
6943
6944	if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6945		IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6946		err = 0;
6947		goto done;
6948	}
6949
6950	IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, essid, length);
6951
6952	priv->essid_len = length;
6953	memcpy(priv->essid, essid, priv->essid_len);
6954
6955	err = ipw2100_set_essid(priv, essid, length, 0);
6956
6957      done:
6958	mutex_unlock(&priv->action_mutex);
6959	return err;
6960}
6961
6962static int ipw2100_wx_get_essid(struct net_device *dev,
6963				struct iw_request_info *info,
6964				union iwreq_data *wrqu, char *extra)
6965{
6966	/*
6967	 * This can be called at any time.  No action lock required
6968	 */
6969
6970	struct ipw2100_priv *priv = libipw_priv(dev);
6971
6972	/* If we are associated, trying to associate, or have a statically
6973	 * configured ESSID then return that; otherwise return ANY */
6974	if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
6975		IPW_DEBUG_WX("Getting essid: '%*pE'\n",
6976			     priv->essid_len, priv->essid);
6977		memcpy(extra, priv->essid, priv->essid_len);
6978		wrqu->essid.length = priv->essid_len;
6979		wrqu->essid.flags = 1;	/* active */
6980	} else {
6981		IPW_DEBUG_WX("Getting essid: ANY\n");
6982		wrqu->essid.length = 0;
6983		wrqu->essid.flags = 0;	/* active */
6984	}
6985
6986	return 0;
6987}
6988
6989static int ipw2100_wx_set_nick(struct net_device *dev,
6990			       struct iw_request_info *info,
6991			       union iwreq_data *wrqu, char *extra)
6992{
6993	/*
6994	 * This can be called at any time.  No action lock required
6995	 */
6996
6997	struct ipw2100_priv *priv = libipw_priv(dev);
6998
6999	if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7000		return -E2BIG;
7001
7002	wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
7003	memset(priv->nick, 0, sizeof(priv->nick));
7004	memcpy(priv->nick, extra, wrqu->data.length);
7005
7006	IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7007
7008	return 0;
7009}
7010
7011static int ipw2100_wx_get_nick(struct net_device *dev,
7012			       struct iw_request_info *info,
7013			       union iwreq_data *wrqu, char *extra)
7014{
7015	/*
7016	 * This can be called at any time.  No action lock required
7017	 */
7018
7019	struct ipw2100_priv *priv = libipw_priv(dev);
7020
7021	wrqu->data.length = strlen(priv->nick);
7022	memcpy(extra, priv->nick, wrqu->data.length);
7023	wrqu->data.flags = 1;	/* active */
7024
7025	IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7026
7027	return 0;
7028}
7029
7030static int ipw2100_wx_set_rate(struct net_device *dev,
7031			       struct iw_request_info *info,
7032			       union iwreq_data *wrqu, char *extra)
7033{
7034	struct ipw2100_priv *priv = libipw_priv(dev);
7035	u32 target_rate = wrqu->bitrate.value;
7036	u32 rate;
7037	int err = 0;
7038
7039	mutex_lock(&priv->action_mutex);
7040	if (!(priv->status & STATUS_INITIALIZED)) {
7041		err = -EIO;
7042		goto done;
7043	}
7044
7045	rate = 0;
7046
7047	if (target_rate == 1000000 ||
7048	    (!wrqu->bitrate.fixed && target_rate > 1000000))
7049		rate |= TX_RATE_1_MBIT;
7050	if (target_rate == 2000000 ||
7051	    (!wrqu->bitrate.fixed && target_rate > 2000000))
7052		rate |= TX_RATE_2_MBIT;
7053	if (target_rate == 5500000 ||
7054	    (!wrqu->bitrate.fixed && target_rate > 5500000))
7055		rate |= TX_RATE_5_5_MBIT;
7056	if (target_rate == 11000000 ||
7057	    (!wrqu->bitrate.fixed && target_rate > 11000000))
7058		rate |= TX_RATE_11_MBIT;
7059	if (rate == 0)
7060		rate = DEFAULT_TX_RATES;
7061
7062	err = ipw2100_set_tx_rates(priv, rate, 0);
7063
7064	IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7065      done:
7066	mutex_unlock(&priv->action_mutex);
7067	return err;
7068}
7069
7070static int ipw2100_wx_get_rate(struct net_device *dev,
7071			       struct iw_request_info *info,
7072			       union iwreq_data *wrqu, char *extra)
7073{
7074	struct ipw2100_priv *priv = libipw_priv(dev);
7075	int val;
7076	unsigned int len = sizeof(val);
7077	int err = 0;
7078
7079	if (!(priv->status & STATUS_ENABLED) ||
7080	    priv->status & STATUS_RF_KILL_MASK ||
7081	    !(priv->status & STATUS_ASSOCIATED)) {
7082		wrqu->bitrate.value = 0;
7083		return 0;
7084	}
7085
7086	mutex_lock(&priv->action_mutex);
7087	if (!(priv->status & STATUS_INITIALIZED)) {
7088		err = -EIO;
7089		goto done;
7090	}
7091
7092	err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7093	if (err) {
7094		IPW_DEBUG_WX("failed querying ordinals.\n");
7095		goto done;
7096	}
7097
7098	switch (val & TX_RATE_MASK) {
7099	case TX_RATE_1_MBIT:
7100		wrqu->bitrate.value = 1000000;
7101		break;
7102	case TX_RATE_2_MBIT:
7103		wrqu->bitrate.value = 2000000;
7104		break;
7105	case TX_RATE_5_5_MBIT:
7106		wrqu->bitrate.value = 5500000;
7107		break;
7108	case TX_RATE_11_MBIT:
7109		wrqu->bitrate.value = 11000000;
7110		break;
7111	default:
7112		wrqu->bitrate.value = 0;
7113	}
7114
7115	IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7116
7117      done:
7118	mutex_unlock(&priv->action_mutex);
7119	return err;
7120}
7121
7122static int ipw2100_wx_set_rts(struct net_device *dev,
7123			      struct iw_request_info *info,
7124			      union iwreq_data *wrqu, char *extra)
7125{
7126	struct ipw2100_priv *priv = libipw_priv(dev);
7127	int value, err;
7128
7129	/* Auto RTS not yet supported */
7130	if (wrqu->rts.fixed == 0)
7131		return -EINVAL;
7132
7133	mutex_lock(&priv->action_mutex);
7134	if (!(priv->status & STATUS_INITIALIZED)) {
7135		err = -EIO;
7136		goto done;
7137	}
7138
7139	if (wrqu->rts.disabled)
7140		value = priv->rts_threshold | RTS_DISABLED;
7141	else {
7142		if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7143			err = -EINVAL;
7144			goto done;
7145		}
7146		value = wrqu->rts.value;
7147	}
7148
7149	err = ipw2100_set_rts_threshold(priv, value);
7150
7151	IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7152      done:
7153	mutex_unlock(&priv->action_mutex);
7154	return err;
7155}
7156
7157static int ipw2100_wx_get_rts(struct net_device *dev,
7158			      struct iw_request_info *info,
7159			      union iwreq_data *wrqu, char *extra)
7160{
7161	/*
7162	 * This can be called at any time.  No action lock required
7163	 */
7164
7165	struct ipw2100_priv *priv = libipw_priv(dev);
7166
7167	wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7168	wrqu->rts.fixed = 1;	/* no auto select */
7169
7170	/* If RTS is set to the default value, then it is disabled */
7171	wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7172
7173	IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7174
7175	return 0;
7176}
7177
7178static int ipw2100_wx_set_txpow(struct net_device *dev,
7179				struct iw_request_info *info,
7180				union iwreq_data *wrqu, char *extra)
7181{
7182	struct ipw2100_priv *priv = libipw_priv(dev);
7183	int err = 0, value;
7184	
7185	if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7186		return -EINPROGRESS;
7187
7188	if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7189		return 0;
7190
7191	if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7192		return -EINVAL;
7193
7194	if (wrqu->txpower.fixed == 0)
7195		value = IPW_TX_POWER_DEFAULT;
7196	else {
7197		if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7198		    wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7199			return -EINVAL;
7200
7201		value = wrqu->txpower.value;
7202	}
7203
7204	mutex_lock(&priv->action_mutex);
7205	if (!(priv->status & STATUS_INITIALIZED)) {
7206		err = -EIO;
7207		goto done;
7208	}
7209
7210	err = ipw2100_set_tx_power(priv, value);
7211
7212	IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7213
7214      done:
7215	mutex_unlock(&priv->action_mutex);
7216	return err;
7217}
7218
7219static int ipw2100_wx_get_txpow(struct net_device *dev,
7220				struct iw_request_info *info,
7221				union iwreq_data *wrqu, char *extra)
7222{
7223	/*
7224	 * This can be called at any time.  No action lock required
7225	 */
7226
7227	struct ipw2100_priv *priv = libipw_priv(dev);
7228
7229	wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7230
7231	if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7232		wrqu->txpower.fixed = 0;
7233		wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7234	} else {
7235		wrqu->txpower.fixed = 1;
7236		wrqu->txpower.value = priv->tx_power;
7237	}
7238
7239	wrqu->txpower.flags = IW_TXPOW_DBM;
7240
7241	IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7242
7243	return 0;
7244}
7245
7246static int ipw2100_wx_set_frag(struct net_device *dev,
7247			       struct iw_request_info *info,
7248			       union iwreq_data *wrqu, char *extra)
7249{
7250	/*
7251	 * This can be called at any time.  No action lock required
7252	 */
7253
7254	struct ipw2100_priv *priv = libipw_priv(dev);
7255
7256	if (!wrqu->frag.fixed)
7257		return -EINVAL;
7258
7259	if (wrqu->frag.disabled) {
7260		priv->frag_threshold |= FRAG_DISABLED;
7261		priv->ieee->fts = DEFAULT_FTS;
7262	} else {
7263		if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7264		    wrqu->frag.value > MAX_FRAG_THRESHOLD)
7265			return -EINVAL;
7266
7267		priv->ieee->fts = wrqu->frag.value & ~0x1;
7268		priv->frag_threshold = priv->ieee->fts;
7269	}
7270
7271	IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7272
7273	return 0;
7274}
7275
7276static int ipw2100_wx_get_frag(struct net_device *dev,
7277			       struct iw_request_info *info,
7278			       union iwreq_data *wrqu, char *extra)
7279{
7280	/*
7281	 * This can be called at any time.  No action lock required
7282	 */
7283
7284	struct ipw2100_priv *priv = libipw_priv(dev);
7285	wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7286	wrqu->frag.fixed = 0;	/* no auto select */
7287	wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7288
7289	IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7290
7291	return 0;
7292}
7293
7294static int ipw2100_wx_set_retry(struct net_device *dev,
7295				struct iw_request_info *info,
7296				union iwreq_data *wrqu, char *extra)
7297{
7298	struct ipw2100_priv *priv = libipw_priv(dev);
7299	int err = 0;
7300
7301	if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7302		return -EINVAL;
7303
7304	if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7305		return 0;
7306
7307	mutex_lock(&priv->action_mutex);
7308	if (!(priv->status & STATUS_INITIALIZED)) {
7309		err = -EIO;
7310		goto done;
7311	}
7312
7313	if (wrqu->retry.flags & IW_RETRY_SHORT) {
7314		err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7315		IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7316			     wrqu->retry.value);
7317		goto done;
7318	}
7319
7320	if (wrqu->retry.flags & IW_RETRY_LONG) {
7321		err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7322		IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7323			     wrqu->retry.value);
7324		goto done;
7325	}
7326
7327	err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7328	if (!err)
7329		err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7330
7331	IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7332
7333      done:
7334	mutex_unlock(&priv->action_mutex);
7335	return err;
7336}
7337
7338static int ipw2100_wx_get_retry(struct net_device *dev,
7339				struct iw_request_info *info,
7340				union iwreq_data *wrqu, char *extra)
7341{
7342	/*
7343	 * This can be called at any time.  No action lock required
7344	 */
7345
7346	struct ipw2100_priv *priv = libipw_priv(dev);
7347
7348	wrqu->retry.disabled = 0;	/* can't be disabled */
7349
7350	if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7351		return -EINVAL;
7352
7353	if (wrqu->retry.flags & IW_RETRY_LONG) {
7354		wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7355		wrqu->retry.value = priv->long_retry_limit;
7356	} else {
7357		wrqu->retry.flags =
7358		    (priv->short_retry_limit !=
7359		     priv->long_retry_limit) ?
7360		    IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7361
7362		wrqu->retry.value = priv->short_retry_limit;
7363	}
7364
7365	IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7366
7367	return 0;
7368}
7369
7370static int ipw2100_wx_set_scan(struct net_device *dev,
7371			       struct iw_request_info *info,
7372			       union iwreq_data *wrqu, char *extra)
7373{
7374	struct ipw2100_priv *priv = libipw_priv(dev);
7375	int err = 0;
7376
7377	mutex_lock(&priv->action_mutex);
7378	if (!(priv->status & STATUS_INITIALIZED)) {
7379		err = -EIO;
7380		goto done;
7381	}
7382
7383	IPW_DEBUG_WX("Initiating scan...\n");
7384
7385	priv->user_requested_scan = 1;
7386	if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7387		IPW_DEBUG_WX("Start scan failed.\n");
7388
7389		/* TODO: Mark a scan as pending so when hardware initialized
7390		 *       a scan starts */
7391	}
7392
7393      done:
7394	mutex_unlock(&priv->action_mutex);
7395	return err;
7396}
7397
7398static int ipw2100_wx_get_scan(struct net_device *dev,
7399			       struct iw_request_info *info,
7400			       union iwreq_data *wrqu, char *extra)
7401{
7402	/*
7403	 * This can be called at any time.  No action lock required
7404	 */
7405
7406	struct ipw2100_priv *priv = libipw_priv(dev);
7407	return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7408}
7409
7410/*
7411 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7412 */
7413static int ipw2100_wx_set_encode(struct net_device *dev,
7414				 struct iw_request_info *info,
7415				 union iwreq_data *wrqu, char *key)
7416{
7417	/*
7418	 * No check of STATUS_INITIALIZED required
7419	 */
7420
7421	struct ipw2100_priv *priv = libipw_priv(dev);
7422	return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7423}
7424
7425static int ipw2100_wx_get_encode(struct net_device *dev,
7426				 struct iw_request_info *info,
7427				 union iwreq_data *wrqu, char *key)
7428{
7429	/*
7430	 * This can be called at any time.  No action lock required
7431	 */
7432
7433	struct ipw2100_priv *priv = libipw_priv(dev);
7434	return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7435}
7436
7437static int ipw2100_wx_set_power(struct net_device *dev,
7438				struct iw_request_info *info,
7439				union iwreq_data *wrqu, char *extra)
7440{
7441	struct ipw2100_priv *priv = libipw_priv(dev);
7442	int err = 0;
7443
7444	mutex_lock(&priv->action_mutex);
7445	if (!(priv->status & STATUS_INITIALIZED)) {
7446		err = -EIO;
7447		goto done;
7448	}
7449
7450	if (wrqu->power.disabled) {
7451		priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7452		err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7453		IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7454		goto done;
7455	}
7456
7457	switch (wrqu->power.flags & IW_POWER_MODE) {
7458	case IW_POWER_ON:	/* If not specified */
7459	case IW_POWER_MODE:	/* If set all mask */
7460	case IW_POWER_ALL_R:	/* If explicitly state all */
7461		break;
7462	default:		/* Otherwise we don't support it */
7463		IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7464			     wrqu->power.flags);
7465		err = -EOPNOTSUPP;
7466		goto done;
7467	}
7468
7469	/* If the user hasn't specified a power management mode yet, default
7470	 * to BATTERY */
7471	priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7472	err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7473
7474	IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7475
7476      done:
7477	mutex_unlock(&priv->action_mutex);
7478	return err;
7479
7480}
7481
7482static int ipw2100_wx_get_power(struct net_device *dev,
7483				struct iw_request_info *info,
7484				union iwreq_data *wrqu, char *extra)
7485{
7486	/*
7487	 * This can be called at any time.  No action lock required
7488	 */
7489
7490	struct ipw2100_priv *priv = libipw_priv(dev);
7491
7492	if (!(priv->power_mode & IPW_POWER_ENABLED))
7493		wrqu->power.disabled = 1;
7494	else {
7495		wrqu->power.disabled = 0;
7496		wrqu->power.flags = 0;
7497	}
7498
7499	IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7500
7501	return 0;
7502}
7503
7504/*
7505 * WE-18 WPA support
7506 */
7507
7508/* SIOCSIWGENIE */
7509static int ipw2100_wx_set_genie(struct net_device *dev,
7510				struct iw_request_info *info,
7511				union iwreq_data *wrqu, char *extra)
7512{
7513
7514	struct ipw2100_priv *priv = libipw_priv(dev);
7515	struct libipw_device *ieee = priv->ieee;
7516	u8 *buf;
7517
7518	if (!ieee->wpa_enabled)
7519		return -EOPNOTSUPP;
7520
7521	if (wrqu->data.length > MAX_WPA_IE_LEN ||
7522	    (wrqu->data.length && extra == NULL))
7523		return -EINVAL;
7524
7525	if (wrqu->data.length) {
7526		buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7527		if (buf == NULL)
7528			return -ENOMEM;
7529
7530		kfree(ieee->wpa_ie);
7531		ieee->wpa_ie = buf;
7532		ieee->wpa_ie_len = wrqu->data.length;
7533	} else {
7534		kfree(ieee->wpa_ie);
7535		ieee->wpa_ie = NULL;
7536		ieee->wpa_ie_len = 0;
7537	}
7538
7539	ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7540
7541	return 0;
7542}
7543
7544/* SIOCGIWGENIE */
7545static int ipw2100_wx_get_genie(struct net_device *dev,
7546				struct iw_request_info *info,
7547				union iwreq_data *wrqu, char *extra)
7548{
7549	struct ipw2100_priv *priv = libipw_priv(dev);
7550	struct libipw_device *ieee = priv->ieee;
7551
7552	if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7553		wrqu->data.length = 0;
7554		return 0;
7555	}
7556
7557	if (wrqu->data.length < ieee->wpa_ie_len)
7558		return -E2BIG;
7559
7560	wrqu->data.length = ieee->wpa_ie_len;
7561	memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7562
7563	return 0;
7564}
7565
7566/* SIOCSIWAUTH */
7567static int ipw2100_wx_set_auth(struct net_device *dev,
7568			       struct iw_request_info *info,
7569			       union iwreq_data *wrqu, char *extra)
7570{
7571	struct ipw2100_priv *priv = libipw_priv(dev);
7572	struct libipw_device *ieee = priv->ieee;
7573	struct iw_param *param = &wrqu->param;
7574	struct lib80211_crypt_data *crypt;
7575	unsigned long flags;
7576	int ret = 0;
7577
7578	switch (param->flags & IW_AUTH_INDEX) {
7579	case IW_AUTH_WPA_VERSION:
7580	case IW_AUTH_CIPHER_PAIRWISE:
7581	case IW_AUTH_CIPHER_GROUP:
7582	case IW_AUTH_KEY_MGMT:
7583		/*
7584		 * ipw2200 does not use these parameters
7585		 */
7586		break;
7587
7588	case IW_AUTH_TKIP_COUNTERMEASURES:
7589		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7590		if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7591			break;
7592
7593		flags = crypt->ops->get_flags(crypt->priv);
7594
7595		if (param->value)
7596			flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7597		else
7598			flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7599
7600		crypt->ops->set_flags(flags, crypt->priv);
7601
7602		break;
7603
7604	case IW_AUTH_DROP_UNENCRYPTED:{
7605			/* HACK:
7606			 *
7607			 * wpa_supplicant calls set_wpa_enabled when the driver
7608			 * is loaded and unloaded, regardless of if WPA is being
7609			 * used.  No other calls are made which can be used to
7610			 * determine if encryption will be used or not prior to
7611			 * association being expected.  If encryption is not being
7612			 * used, drop_unencrypted is set to false, else true -- we
7613			 * can use this to determine if the CAP_PRIVACY_ON bit should
7614			 * be set.
7615			 */
7616			struct libipw_security sec = {
7617				.flags = SEC_ENABLED,
7618				.enabled = param->value,
7619			};
7620			priv->ieee->drop_unencrypted = param->value;
7621			/* We only change SEC_LEVEL for open mode. Others
7622			 * are set by ipw_wpa_set_encryption.
7623			 */
7624			if (!param->value) {
7625				sec.flags |= SEC_LEVEL;
7626				sec.level = SEC_LEVEL_0;
7627			} else {
7628				sec.flags |= SEC_LEVEL;
7629				sec.level = SEC_LEVEL_1;
7630			}
7631			if (priv->ieee->set_security)
7632				priv->ieee->set_security(priv->ieee->dev, &sec);
7633			break;
7634		}
7635
7636	case IW_AUTH_80211_AUTH_ALG:
7637		ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7638		break;
7639
7640	case IW_AUTH_WPA_ENABLED:
7641		ret = ipw2100_wpa_enable(priv, param->value);
7642		break;
7643
7644	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7645		ieee->ieee802_1x = param->value;
7646		break;
7647
7648		//case IW_AUTH_ROAMING_CONTROL:
7649	case IW_AUTH_PRIVACY_INVOKED:
7650		ieee->privacy_invoked = param->value;
7651		break;
7652
7653	default:
7654		return -EOPNOTSUPP;
7655	}
7656	return ret;
7657}
7658
7659/* SIOCGIWAUTH */
7660static int ipw2100_wx_get_auth(struct net_device *dev,
7661			       struct iw_request_info *info,
7662			       union iwreq_data *wrqu, char *extra)
7663{
7664	struct ipw2100_priv *priv = libipw_priv(dev);
7665	struct libipw_device *ieee = priv->ieee;
7666	struct lib80211_crypt_data *crypt;
7667	struct iw_param *param = &wrqu->param;
7668
7669	switch (param->flags & IW_AUTH_INDEX) {
7670	case IW_AUTH_WPA_VERSION:
7671	case IW_AUTH_CIPHER_PAIRWISE:
7672	case IW_AUTH_CIPHER_GROUP:
7673	case IW_AUTH_KEY_MGMT:
7674		/*
7675		 * wpa_supplicant will control these internally
7676		 */
7677		break;
7678
7679	case IW_AUTH_TKIP_COUNTERMEASURES:
7680		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7681		if (!crypt || !crypt->ops->get_flags) {
7682			IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7683					  "crypt not set!\n");
7684			break;
7685		}
7686
7687		param->value = (crypt->ops->get_flags(crypt->priv) &
7688				IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7689
7690		break;
7691
7692	case IW_AUTH_DROP_UNENCRYPTED:
7693		param->value = ieee->drop_unencrypted;
7694		break;
7695
7696	case IW_AUTH_80211_AUTH_ALG:
7697		param->value = priv->ieee->sec.auth_mode;
7698		break;
7699
7700	case IW_AUTH_WPA_ENABLED:
7701		param->value = ieee->wpa_enabled;
7702		break;
7703
7704	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7705		param->value = ieee->ieee802_1x;
7706		break;
7707
7708	case IW_AUTH_ROAMING_CONTROL:
7709	case IW_AUTH_PRIVACY_INVOKED:
7710		param->value = ieee->privacy_invoked;
7711		break;
7712
7713	default:
7714		return -EOPNOTSUPP;
7715	}
7716	return 0;
7717}
7718
7719/* SIOCSIWENCODEEXT */
7720static int ipw2100_wx_set_encodeext(struct net_device *dev,
7721				    struct iw_request_info *info,
7722				    union iwreq_data *wrqu, char *extra)
7723{
7724	struct ipw2100_priv *priv = libipw_priv(dev);
7725	return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7726}
7727
7728/* SIOCGIWENCODEEXT */
7729static int ipw2100_wx_get_encodeext(struct net_device *dev,
7730				    struct iw_request_info *info,
7731				    union iwreq_data *wrqu, char *extra)
7732{
7733	struct ipw2100_priv *priv = libipw_priv(dev);
7734	return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7735}
7736
7737/* SIOCSIWMLME */
7738static int ipw2100_wx_set_mlme(struct net_device *dev,
7739			       struct iw_request_info *info,
7740			       union iwreq_data *wrqu, char *extra)
7741{
7742	struct ipw2100_priv *priv = libipw_priv(dev);
7743	struct iw_mlme *mlme = (struct iw_mlme *)extra;
7744
7745	switch (mlme->cmd) {
7746	case IW_MLME_DEAUTH:
7747		// silently ignore
7748		break;
7749
7750	case IW_MLME_DISASSOC:
7751		ipw2100_disassociate_bssid(priv);
7752		break;
7753
7754	default:
7755		return -EOPNOTSUPP;
7756	}
7757	return 0;
7758}
7759
7760/*
7761 *
7762 * IWPRIV handlers
7763 *
7764 */
7765#ifdef CONFIG_IPW2100_MONITOR
7766static int ipw2100_wx_set_promisc(struct net_device *dev,
7767				  struct iw_request_info *info,
7768				  union iwreq_data *wrqu, char *extra)
7769{
7770	struct ipw2100_priv *priv = libipw_priv(dev);
7771	int *parms = (int *)extra;
7772	int enable = (parms[0] > 0);
7773	int err = 0;
7774
7775	mutex_lock(&priv->action_mutex);
7776	if (!(priv->status & STATUS_INITIALIZED)) {
7777		err = -EIO;
7778		goto done;
7779	}
7780
7781	if (enable) {
7782		if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7783			err = ipw2100_set_channel(priv, parms[1], 0);
7784			goto done;
7785		}
7786		priv->channel = parms[1];
7787		err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7788	} else {
7789		if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7790			err = ipw2100_switch_mode(priv, priv->last_mode);
7791	}
7792      done:
7793	mutex_unlock(&priv->action_mutex);
7794	return err;
7795}
7796
7797static int ipw2100_wx_reset(struct net_device *dev,
7798			    struct iw_request_info *info,
7799			    union iwreq_data *wrqu, char *extra)
7800{
7801	struct ipw2100_priv *priv = libipw_priv(dev);
7802	if (priv->status & STATUS_INITIALIZED)
7803		schedule_reset(priv);
7804	return 0;
7805}
7806
7807#endif
7808
7809static int ipw2100_wx_set_powermode(struct net_device *dev,
7810				    struct iw_request_info *info,
7811				    union iwreq_data *wrqu, char *extra)
7812{
7813	struct ipw2100_priv *priv = libipw_priv(dev);
7814	int err = 0, mode = *(int *)extra;
7815
7816	mutex_lock(&priv->action_mutex);
7817	if (!(priv->status & STATUS_INITIALIZED)) {
7818		err = -EIO;
7819		goto done;
7820	}
7821
7822	if ((mode < 0) || (mode > POWER_MODES))
7823		mode = IPW_POWER_AUTO;
7824
7825	if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7826		err = ipw2100_set_power_mode(priv, mode);
7827      done:
7828	mutex_unlock(&priv->action_mutex);
7829	return err;
7830}
7831
7832#define MAX_POWER_STRING 80
7833static int ipw2100_wx_get_powermode(struct net_device *dev,
7834				    struct iw_request_info *info,
7835				    union iwreq_data *wrqu, char *extra)
7836{
7837	/*
7838	 * This can be called at any time.  No action lock required
7839	 */
7840
7841	struct ipw2100_priv *priv = libipw_priv(dev);
7842	int level = IPW_POWER_LEVEL(priv->power_mode);
7843	s32 timeout, period;
7844
7845	if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7846		snprintf(extra, MAX_POWER_STRING,
7847			 "Power save level: %d (Off)", level);
7848	} else {
7849		switch (level) {
7850		case IPW_POWER_MODE_CAM:
7851			snprintf(extra, MAX_POWER_STRING,
7852				 "Power save level: %d (None)", level);
7853			break;
7854		case IPW_POWER_AUTO:
7855			snprintf(extra, MAX_POWER_STRING,
7856				 "Power save level: %d (Auto)", level);
7857			break;
7858		default:
7859			timeout = timeout_duration[level - 1] / 1000;
7860			period = period_duration[level - 1] / 1000;
7861			snprintf(extra, MAX_POWER_STRING,
7862				 "Power save level: %d "
7863				 "(Timeout %dms, Period %dms)",
7864				 level, timeout, period);
7865		}
7866	}
7867
7868	wrqu->data.length = strlen(extra) + 1;
7869
7870	return 0;
7871}
7872
7873static int ipw2100_wx_set_preamble(struct net_device *dev,
7874				   struct iw_request_info *info,
7875				   union iwreq_data *wrqu, char *extra)
7876{
7877	struct ipw2100_priv *priv = libipw_priv(dev);
7878	int err, mode = *(int *)extra;
7879
7880	mutex_lock(&priv->action_mutex);
7881	if (!(priv->status & STATUS_INITIALIZED)) {
7882		err = -EIO;
7883		goto done;
7884	}
7885
7886	if (mode == 1)
7887		priv->config |= CFG_LONG_PREAMBLE;
7888	else if (mode == 0)
7889		priv->config &= ~CFG_LONG_PREAMBLE;
7890	else {
7891		err = -EINVAL;
7892		goto done;
7893	}
7894
7895	err = ipw2100_system_config(priv, 0);
7896
7897      done:
7898	mutex_unlock(&priv->action_mutex);
7899	return err;
7900}
7901
7902static int ipw2100_wx_get_preamble(struct net_device *dev,
7903				   struct iw_request_info *info,
7904				   union iwreq_data *wrqu, char *extra)
7905{
7906	/*
7907	 * This can be called at any time.  No action lock required
7908	 */
7909
7910	struct ipw2100_priv *priv = libipw_priv(dev);
7911
7912	if (priv->config & CFG_LONG_PREAMBLE)
7913		snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7914	else
7915		snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7916
7917	return 0;
7918}
7919
7920#ifdef CONFIG_IPW2100_MONITOR
7921static int ipw2100_wx_set_crc_check(struct net_device *dev,
7922				    struct iw_request_info *info,
7923				    union iwreq_data *wrqu, char *extra)
7924{
7925	struct ipw2100_priv *priv = libipw_priv(dev);
7926	int err, mode = *(int *)extra;
7927
7928	mutex_lock(&priv->action_mutex);
7929	if (!(priv->status & STATUS_INITIALIZED)) {
7930		err = -EIO;
7931		goto done;
7932	}
7933
7934	if (mode == 1)
7935		priv->config |= CFG_CRC_CHECK;
7936	else if (mode == 0)
7937		priv->config &= ~CFG_CRC_CHECK;
7938	else {
7939		err = -EINVAL;
7940		goto done;
7941	}
7942	err = 0;
7943
7944      done:
7945	mutex_unlock(&priv->action_mutex);
7946	return err;
7947}
7948
7949static int ipw2100_wx_get_crc_check(struct net_device *dev,
7950				    struct iw_request_info *info,
7951				    union iwreq_data *wrqu, char *extra)
7952{
7953	/*
7954	 * This can be called at any time.  No action lock required
7955	 */
7956
7957	struct ipw2100_priv *priv = libipw_priv(dev);
7958
7959	if (priv->config & CFG_CRC_CHECK)
7960		snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
7961	else
7962		snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
7963
7964	return 0;
7965}
7966#endif				/* CONFIG_IPW2100_MONITOR */
7967
7968static iw_handler ipw2100_wx_handlers[] = {
7969	IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
7970	IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
7971	IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
7972	IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
7973	IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
7974	IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
7975	IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
7976	IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
7977	IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
7978	IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
7979	IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
7980	IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
7981	IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
7982	IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
7983	IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
7984	IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
7985	IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
7986	IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
7987	IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
7988	IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
7989	IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
7990	IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
7991	IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
7992	IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
7993	IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
7994	IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
7995	IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
7996	IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
7997	IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
7998	IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
7999	IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8000	IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8001	IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8002	IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8003	IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8004};
8005
8006#define IPW2100_PRIV_SET_MONITOR	SIOCIWFIRSTPRIV
8007#define IPW2100_PRIV_RESET		SIOCIWFIRSTPRIV+1
8008#define IPW2100_PRIV_SET_POWER		SIOCIWFIRSTPRIV+2
8009#define IPW2100_PRIV_GET_POWER		SIOCIWFIRSTPRIV+3
8010#define IPW2100_PRIV_SET_LONGPREAMBLE	SIOCIWFIRSTPRIV+4
8011#define IPW2100_PRIV_GET_LONGPREAMBLE	SIOCIWFIRSTPRIV+5
8012#define IPW2100_PRIV_SET_CRC_CHECK	SIOCIWFIRSTPRIV+6
8013#define IPW2100_PRIV_GET_CRC_CHECK	SIOCIWFIRSTPRIV+7
8014
8015static const struct iw_priv_args ipw2100_private_args[] = {
8016
8017#ifdef CONFIG_IPW2100_MONITOR
8018	{
8019	 IPW2100_PRIV_SET_MONITOR,
8020	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8021	{
8022	 IPW2100_PRIV_RESET,
8023	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8024#endif				/* CONFIG_IPW2100_MONITOR */
8025
8026	{
8027	 IPW2100_PRIV_SET_POWER,
8028	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8029	{
8030	 IPW2100_PRIV_GET_POWER,
8031	 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8032	 "get_power"},
8033	{
8034	 IPW2100_PRIV_SET_LONGPREAMBLE,
8035	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8036	{
8037	 IPW2100_PRIV_GET_LONGPREAMBLE,
8038	 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8039#ifdef CONFIG_IPW2100_MONITOR
8040	{
8041	 IPW2100_PRIV_SET_CRC_CHECK,
8042	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8043	{
8044	 IPW2100_PRIV_GET_CRC_CHECK,
8045	 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8046#endif				/* CONFIG_IPW2100_MONITOR */
8047};
8048
8049static iw_handler ipw2100_private_handler[] = {
8050#ifdef CONFIG_IPW2100_MONITOR
8051	ipw2100_wx_set_promisc,
8052	ipw2100_wx_reset,
8053#else				/* CONFIG_IPW2100_MONITOR */
8054	NULL,
8055	NULL,
8056#endif				/* CONFIG_IPW2100_MONITOR */
8057	ipw2100_wx_set_powermode,
8058	ipw2100_wx_get_powermode,
8059	ipw2100_wx_set_preamble,
8060	ipw2100_wx_get_preamble,
8061#ifdef CONFIG_IPW2100_MONITOR
8062	ipw2100_wx_set_crc_check,
8063	ipw2100_wx_get_crc_check,
8064#else				/* CONFIG_IPW2100_MONITOR */
8065	NULL,
8066	NULL,
8067#endif				/* CONFIG_IPW2100_MONITOR */
8068};
8069
8070/*
8071 * Get wireless statistics.
8072 * Called by /proc/net/wireless
8073 * Also called by SIOCGIWSTATS
8074 */
8075static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8076{
8077	enum {
8078		POOR = 30,
8079		FAIR = 60,
8080		GOOD = 80,
8081		VERY_GOOD = 90,
8082		EXCELLENT = 95,
8083		PERFECT = 100
8084	};
8085	int rssi_qual;
8086	int tx_qual;
8087	int beacon_qual;
8088	int quality;
8089
8090	struct ipw2100_priv *priv = libipw_priv(dev);
8091	struct iw_statistics *wstats;
8092	u32 rssi, tx_retries, missed_beacons, tx_failures;
8093	u32 ord_len = sizeof(u32);
8094
8095	if (!priv)
8096		return (struct iw_statistics *)NULL;
8097
8098	wstats = &priv->wstats;
8099
8100	/* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8101	 * ipw2100_wx_wireless_stats seems to be called before fw is
8102	 * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8103	 * and associated; if not associcated, the values are all meaningless
8104	 * anyway, so set them all to NULL and INVALID */
8105	if (!(priv->status & STATUS_ASSOCIATED)) {
8106		wstats->miss.beacon = 0;
8107		wstats->discard.retries = 0;
8108		wstats->qual.qual = 0;
8109		wstats->qual.level = 0;
8110		wstats->qual.noise = 0;
8111		wstats->qual.updated = 7;
8112		wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8113		    IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8114		return wstats;
8115	}
8116
8117	if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8118				&missed_beacons, &ord_len))
8119		goto fail_get_ordinal;
8120
8121	/* If we don't have a connection the quality and level is 0 */
8122	if (!(priv->status & STATUS_ASSOCIATED)) {
8123		wstats->qual.qual = 0;
8124		wstats->qual.level = 0;
8125	} else {
8126		if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8127					&rssi, &ord_len))
8128			goto fail_get_ordinal;
8129		wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8130		if (rssi < 10)
8131			rssi_qual = rssi * POOR / 10;
8132		else if (rssi < 15)
8133			rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8134		else if (rssi < 20)
8135			rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8136		else if (rssi < 30)
8137			rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8138			    10 + GOOD;
8139		else
8140			rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8141			    10 + VERY_GOOD;
8142
8143		if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8144					&tx_retries, &ord_len))
8145			goto fail_get_ordinal;
8146
8147		if (tx_retries > 75)
8148			tx_qual = (90 - tx_retries) * POOR / 15;
8149		else if (tx_retries > 70)
8150			tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8151		else if (tx_retries > 65)
8152			tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8153		else if (tx_retries > 50)
8154			tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8155			    15 + GOOD;
8156		else
8157			tx_qual = (50 - tx_retries) *
8158			    (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8159
8160		if (missed_beacons > 50)
8161			beacon_qual = (60 - missed_beacons) * POOR / 10;
8162		else if (missed_beacons > 40)
8163			beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8164			    10 + POOR;
8165		else if (missed_beacons > 32)
8166			beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8167			    18 + FAIR;
8168		else if (missed_beacons > 20)
8169			beacon_qual = (32 - missed_beacons) *
8170			    (VERY_GOOD - GOOD) / 20 + GOOD;
8171		else
8172			beacon_qual = (20 - missed_beacons) *
8173			    (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8174
8175		quality = min(tx_qual, rssi_qual);
8176		quality = min(beacon_qual, quality);
8177
8178#ifdef CONFIG_IPW2100_DEBUG
8179		if (beacon_qual == quality)
8180			IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8181		else if (tx_qual == quality)
8182			IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8183		else if (quality != 100)
8184			IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8185		else
8186			IPW_DEBUG_WX("Quality not clamped.\n");
8187#endif
8188
8189		wstats->qual.qual = quality;
8190		wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8191	}
8192
8193	wstats->qual.noise = 0;
8194	wstats->qual.updated = 7;
8195	wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8196
8197	/* FIXME: this is percent and not a # */
8198	wstats->miss.beacon = missed_beacons;
8199
8200	if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8201				&tx_failures, &ord_len))
8202		goto fail_get_ordinal;
8203	wstats->discard.retries = tx_failures;
8204
8205	return wstats;
8206
8207      fail_get_ordinal:
8208	IPW_DEBUG_WX("failed querying ordinals.\n");
8209
8210	return (struct iw_statistics *)NULL;
8211}
8212
8213static const struct iw_handler_def ipw2100_wx_handler_def = {
8214	.standard = ipw2100_wx_handlers,
8215	.num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8216	.num_private = ARRAY_SIZE(ipw2100_private_handler),
8217	.num_private_args = ARRAY_SIZE(ipw2100_private_args),
8218	.private = (iw_handler *) ipw2100_private_handler,
8219	.private_args = (struct iw_priv_args *)ipw2100_private_args,
8220	.get_wireless_stats = ipw2100_wx_wireless_stats,
8221};
8222
8223static void ipw2100_wx_event_work(struct work_struct *work)
8224{
8225	struct ipw2100_priv *priv =
8226		container_of(work, struct ipw2100_priv, wx_event_work.work);
8227	union iwreq_data wrqu;
8228	unsigned int len = ETH_ALEN;
8229
8230	if (priv->status & STATUS_STOPPING)
8231		return;
8232
8233	mutex_lock(&priv->action_mutex);
8234
8235	IPW_DEBUG_WX("enter\n");
8236
8237	mutex_unlock(&priv->action_mutex);
8238
8239	wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8240
8241	/* Fetch BSSID from the hardware */
8242	if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8243	    priv->status & STATUS_RF_KILL_MASK ||
8244	    ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8245				&priv->bssid, &len)) {
8246		eth_zero_addr(wrqu.ap_addr.sa_data);
8247	} else {
8248		/* We now have the BSSID, so can finish setting to the full
8249		 * associated state */
8250		memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8251		memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8252		priv->status &= ~STATUS_ASSOCIATING;
8253		priv->status |= STATUS_ASSOCIATED;
8254		netif_carrier_on(priv->net_dev);
8255		netif_wake_queue(priv->net_dev);
8256	}
8257
8258	if (!(priv->status & STATUS_ASSOCIATED)) {
8259		IPW_DEBUG_WX("Configuring ESSID\n");
8260		mutex_lock(&priv->action_mutex);
8261		/* This is a disassociation event, so kick the firmware to
8262		 * look for another AP */
8263		if (priv->config & CFG_STATIC_ESSID)
8264			ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8265					  0);
8266		else
8267			ipw2100_set_essid(priv, NULL, 0, 0);
8268		mutex_unlock(&priv->action_mutex);
8269	}
8270
8271	wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8272}
8273
8274#define IPW2100_FW_MAJOR_VERSION 1
8275#define IPW2100_FW_MINOR_VERSION 3
8276
8277#define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8278#define IPW2100_FW_MAJOR(x) (x & 0xff)
8279
8280#define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8281                             IPW2100_FW_MAJOR_VERSION)
8282
8283#define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8284"." __stringify(IPW2100_FW_MINOR_VERSION)
8285
8286#define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8287
8288/*
8289
8290BINARY FIRMWARE HEADER FORMAT
8291
8292offset      length   desc
82930           2        version
82942           2        mode == 0:BSS,1:IBSS,2:MONITOR
82954           4        fw_len
82968           4        uc_len
8297C           fw_len   firmware data
829812 + fw_len uc_len   microcode data
8299
8300*/
8301
8302struct ipw2100_fw_header {
8303	short version;
8304	short mode;
8305	unsigned int fw_size;
8306	unsigned int uc_size;
8307} __packed;
8308
8309static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8310{
8311	struct ipw2100_fw_header *h =
8312	    (struct ipw2100_fw_header *)fw->fw_entry->data;
8313
8314	if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8315		printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8316		       "(detected version id of %u). "
8317		       "See Documentation/networking/device_drivers/wifi/intel/ipw2100.rst\n",
8318		       h->version);
8319		return 1;
8320	}
8321
8322	fw->version = h->version;
8323	fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8324	fw->fw.size = h->fw_size;
8325	fw->uc.data = fw->fw.data + h->fw_size;
8326	fw->uc.size = h->uc_size;
8327
8328	return 0;
8329}
8330
8331static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8332				struct ipw2100_fw *fw)
8333{
8334	char *fw_name;
8335	int rc;
8336
8337	IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8338		       priv->net_dev->name);
8339
8340	switch (priv->ieee->iw_mode) {
8341	case IW_MODE_ADHOC:
8342		fw_name = IPW2100_FW_NAME("-i");
8343		break;
8344#ifdef CONFIG_IPW2100_MONITOR
8345	case IW_MODE_MONITOR:
8346		fw_name = IPW2100_FW_NAME("-p");
8347		break;
8348#endif
8349	case IW_MODE_INFRA:
8350	default:
8351		fw_name = IPW2100_FW_NAME("");
8352		break;
8353	}
8354
8355	rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8356
8357	if (rc < 0) {
8358		printk(KERN_ERR DRV_NAME ": "
8359		       "%s: Firmware '%s' not available or load failed.\n",
8360		       priv->net_dev->name, fw_name);
8361		return rc;
8362	}
8363	IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8364		       fw->fw_entry->size);
8365
8366	ipw2100_mod_firmware_load(fw);
8367
8368	return 0;
8369}
8370
8371MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8372#ifdef CONFIG_IPW2100_MONITOR
8373MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8374#endif
8375MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8376
8377static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8378				     struct ipw2100_fw *fw)
8379{
8380	fw->version = 0;
8381	release_firmware(fw->fw_entry);
8382	fw->fw_entry = NULL;
8383}
8384
8385static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8386				 size_t max)
8387{
8388	char ver[MAX_FW_VERSION_LEN];
8389	u32 len = MAX_FW_VERSION_LEN;
8390	u32 tmp;
8391	int i;
8392	/* firmware version is an ascii string (max len of 14) */
8393	if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8394		return -EIO;
8395	tmp = max;
8396	if (len >= max)
8397		len = max - 1;
8398	for (i = 0; i < len; i++)
8399		buf[i] = ver[i];
8400	buf[i] = '\0';
8401	return tmp;
 
 
 
 
 
 
 
 
 
 
 
8402}
8403
8404/*
8405 * On exit, the firmware will have been freed from the fw list
8406 */
8407static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8408{
8409	/* firmware is constructed of N contiguous entries, each entry is
8410	 * structured as:
8411	 *
8412	 * offset    sie         desc
8413	 * 0         4           address to write to
8414	 * 4         2           length of data run
8415	 * 6         length      data
8416	 */
8417	unsigned int addr;
8418	unsigned short len;
8419
8420	const unsigned char *firmware_data = fw->fw.data;
8421	unsigned int firmware_data_left = fw->fw.size;
8422
8423	while (firmware_data_left > 0) {
8424		addr = *(u32 *) (firmware_data);
8425		firmware_data += 4;
8426		firmware_data_left -= 4;
8427
8428		len = *(u16 *) (firmware_data);
8429		firmware_data += 2;
8430		firmware_data_left -= 2;
8431
8432		if (len > 32) {
8433			printk(KERN_ERR DRV_NAME ": "
8434			       "Invalid firmware run-length of %d bytes\n",
8435			       len);
8436			return -EINVAL;
8437		}
8438
8439		write_nic_memory(priv->net_dev, addr, len, firmware_data);
8440		firmware_data += len;
8441		firmware_data_left -= len;
8442	}
8443
8444	return 0;
8445}
8446
8447struct symbol_alive_response {
8448	u8 cmd_id;
8449	u8 seq_num;
8450	u8 ucode_rev;
8451	u8 eeprom_valid;
8452	u16 valid_flags;
8453	u8 IEEE_addr[6];
8454	u16 flags;
8455	u16 pcb_rev;
8456	u16 clock_settle_time;	// 1us LSB
8457	u16 powerup_settle_time;	// 1us LSB
8458	u16 hop_settle_time;	// 1us LSB
8459	u8 date[3];		// month, day, year
8460	u8 time[2];		// hours, minutes
8461	u8 ucode_valid;
8462};
8463
8464static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8465				  struct ipw2100_fw *fw)
8466{
8467	struct net_device *dev = priv->net_dev;
8468	const unsigned char *microcode_data = fw->uc.data;
8469	unsigned int microcode_data_left = fw->uc.size;
8470	void __iomem *reg = priv->ioaddr;
8471
8472	struct symbol_alive_response response;
8473	int i, j;
8474	u8 data;
8475
8476	/* Symbol control */
8477	write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8478	readl(reg);
8479	write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8480	readl(reg);
8481
8482	/* HW config */
8483	write_nic_byte(dev, 0x210014, 0x72);	/* fifo width =16 */
8484	readl(reg);
8485	write_nic_byte(dev, 0x210014, 0x72);	/* fifo width =16 */
8486	readl(reg);
8487
8488	/* EN_CS_ACCESS bit to reset control store pointer */
8489	write_nic_byte(dev, 0x210000, 0x40);
8490	readl(reg);
8491	write_nic_byte(dev, 0x210000, 0x0);
8492	readl(reg);
8493	write_nic_byte(dev, 0x210000, 0x40);
8494	readl(reg);
8495
8496	/* copy microcode from buffer into Symbol */
8497
8498	while (microcode_data_left > 0) {
8499		write_nic_byte(dev, 0x210010, *microcode_data++);
8500		write_nic_byte(dev, 0x210010, *microcode_data++);
8501		microcode_data_left -= 2;
8502	}
8503
8504	/* EN_CS_ACCESS bit to reset the control store pointer */
8505	write_nic_byte(dev, 0x210000, 0x0);
8506	readl(reg);
8507
8508	/* Enable System (Reg 0)
8509	 * first enable causes garbage in RX FIFO */
8510	write_nic_byte(dev, 0x210000, 0x0);
8511	readl(reg);
8512	write_nic_byte(dev, 0x210000, 0x80);
8513	readl(reg);
8514
8515	/* Reset External Baseband Reg */
8516	write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8517	readl(reg);
8518	write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8519	readl(reg);
8520
8521	/* HW Config (Reg 5) */
8522	write_nic_byte(dev, 0x210014, 0x72);	// fifo width =16
8523	readl(reg);
8524	write_nic_byte(dev, 0x210014, 0x72);	// fifo width =16
8525	readl(reg);
8526
8527	/* Enable System (Reg 0)
8528	 * second enable should be OK */
8529	write_nic_byte(dev, 0x210000, 0x00);	// clear enable system
8530	readl(reg);
8531	write_nic_byte(dev, 0x210000, 0x80);	// set enable system
8532
8533	/* check Symbol is enabled - upped this from 5 as it wasn't always
8534	 * catching the update */
8535	for (i = 0; i < 10; i++) {
8536		udelay(10);
8537
8538		/* check Dino is enabled bit */
8539		read_nic_byte(dev, 0x210000, &data);
8540		if (data & 0x1)
8541			break;
8542	}
8543
8544	if (i == 10) {
8545		printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8546		       dev->name);
8547		return -EIO;
8548	}
8549
8550	/* Get Symbol alive response */
8551	for (i = 0; i < 30; i++) {
8552		/* Read alive response structure */
8553		for (j = 0;
8554		     j < (sizeof(struct symbol_alive_response) >> 1); j++)
8555			read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8556
8557		if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8558			break;
8559		udelay(10);
8560	}
8561
8562	if (i == 30) {
8563		printk(KERN_ERR DRV_NAME
8564		       ": %s: No response from Symbol - hw not alive\n",
8565		       dev->name);
8566		printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8567		return -EIO;
8568	}
8569
8570	return 0;
8571}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/******************************************************************************
   3
   4  Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
   5
   6
   7  Contact Information:
   8  Intel Linux Wireless <ilw@linux.intel.com>
   9  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  10
  11  Portions of this file are based on the sample_* files provided by Wireless
  12  Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
  13  <jt@hpl.hp.com>
  14
  15  Portions of this file are based on the Host AP project,
  16  Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
  17    <j@w1.fi>
  18  Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
  19
  20  Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
  21  ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
  22  available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
  23
  24******************************************************************************/
  25/*
  26
  27 Initial driver on which this is based was developed by Janusz Gorycki,
  28 Maciej Urbaniak, and Maciej Sosnowski.
  29
  30 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
  31
  32Theory of Operation
  33
  34Tx - Commands and Data
  35
  36Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
  37Each TBD contains a pointer to the physical (dma_addr_t) address of data being
  38sent to the firmware as well as the length of the data.
  39
  40The host writes to the TBD queue at the WRITE index.  The WRITE index points
  41to the _next_ packet to be written and is advanced when after the TBD has been
  42filled.
  43
  44The firmware pulls from the TBD queue at the READ index.  The READ index points
  45to the currently being read entry, and is advanced once the firmware is
  46done with a packet.
  47
  48When data is sent to the firmware, the first TBD is used to indicate to the
  49firmware if a Command or Data is being sent.  If it is Command, all of the
  50command information is contained within the physical address referred to by the
  51TBD.  If it is Data, the first TBD indicates the type of data packet, number
  52of fragments, etc.  The next TBD then refers to the actual packet location.
  53
  54The Tx flow cycle is as follows:
  55
  561) ipw2100_tx() is called by kernel with SKB to transmit
  572) Packet is move from the tx_free_list and appended to the transmit pending
  58   list (tx_pend_list)
  593) work is scheduled to move pending packets into the shared circular queue.
  604) when placing packet in the circular queue, the incoming SKB is DMA mapped
  61   to a physical address.  That address is entered into a TBD.  Two TBDs are
  62   filled out.  The first indicating a data packet, the second referring to the
  63   actual payload data.
  645) the packet is removed from tx_pend_list and placed on the end of the
  65   firmware pending list (fw_pend_list)
  666) firmware is notified that the WRITE index has
  677) Once the firmware has processed the TBD, INTA is triggered.
  688) For each Tx interrupt received from the firmware, the READ index is checked
  69   to see which TBDs are done being processed.
  709) For each TBD that has been processed, the ISR pulls the oldest packet
  71   from the fw_pend_list.
  7210)The packet structure contained in the fw_pend_list is then used
  73   to unmap the DMA address and to free the SKB originally passed to the driver
  74   from the kernel.
  7511)The packet structure is placed onto the tx_free_list
  76
  77The above steps are the same for commands, only the msg_free_list/msg_pend_list
  78are used instead of tx_free_list/tx_pend_list
  79
  80...
  81
  82Critical Sections / Locking :
  83
  84There are two locks utilized.  The first is the low level lock (priv->low_lock)
  85that protects the following:
  86
  87- Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
  88
  89  tx_free_list : Holds pre-allocated Tx buffers.
  90    TAIL modified in __ipw2100_tx_process()
  91    HEAD modified in ipw2100_tx()
  92
  93  tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
  94    TAIL modified ipw2100_tx()
  95    HEAD modified by ipw2100_tx_send_data()
  96
  97  msg_free_list : Holds pre-allocated Msg (Command) buffers
  98    TAIL modified in __ipw2100_tx_process()
  99    HEAD modified in ipw2100_hw_send_command()
 100
 101  msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
 102    TAIL modified in ipw2100_hw_send_command()
 103    HEAD modified in ipw2100_tx_send_commands()
 104
 105  The flow of data on the TX side is as follows:
 106
 107  MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
 108  TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
 109
 110  The methods that work on the TBD ring are protected via priv->low_lock.
 111
 112- The internal data state of the device itself
 113- Access to the firmware read/write indexes for the BD queues
 114  and associated logic
 115
 116All external entry functions are locked with the priv->action_lock to ensure
 117that only one external action is invoked at a time.
 118
 119
 120*/
 121
 122#include <linux/compiler.h>
 123#include <linux/errno.h>
 124#include <linux/if_arp.h>
 125#include <linux/in6.h>
 126#include <linux/in.h>
 127#include <linux/ip.h>
 128#include <linux/kernel.h>
 129#include <linux/kmod.h>
 130#include <linux/module.h>
 131#include <linux/netdevice.h>
 132#include <linux/ethtool.h>
 133#include <linux/pci.h>
 134#include <linux/dma-mapping.h>
 135#include <linux/proc_fs.h>
 136#include <linux/skbuff.h>
 137#include <linux/uaccess.h>
 138#include <asm/io.h>
 139#include <linux/fs.h>
 140#include <linux/mm.h>
 141#include <linux/slab.h>
 142#include <linux/unistd.h>
 143#include <linux/stringify.h>
 144#include <linux/tcp.h>
 145#include <linux/types.h>
 146#include <linux/time.h>
 147#include <linux/firmware.h>
 148#include <linux/acpi.h>
 149#include <linux/ctype.h>
 150#include <linux/pm_qos.h>
 151
 152#include <net/lib80211.h>
 153
 154#include "ipw2100.h"
 155#include "ipw.h"
 156
 157#define IPW2100_VERSION "git-1.2.2"
 158
 159#define DRV_NAME	"ipw2100"
 160#define DRV_VERSION	IPW2100_VERSION
 161#define DRV_DESCRIPTION	"Intel(R) PRO/Wireless 2100 Network Driver"
 162#define DRV_COPYRIGHT	"Copyright(c) 2003-2006 Intel Corporation"
 163
 164static struct pm_qos_request ipw2100_pm_qos_req;
 165
 166/* Debugging stuff */
 167#ifdef CONFIG_IPW2100_DEBUG
 168#define IPW2100_RX_DEBUG	/* Reception debugging */
 169#endif
 170
 171MODULE_DESCRIPTION(DRV_DESCRIPTION);
 172MODULE_VERSION(DRV_VERSION);
 173MODULE_AUTHOR(DRV_COPYRIGHT);
 174MODULE_LICENSE("GPL");
 175
 176static int debug = 0;
 177static int network_mode = 0;
 178static int channel = 0;
 179static int associate = 0;
 180static int disable = 0;
 181#ifdef CONFIG_PM
 182static struct ipw2100_fw ipw2100_firmware;
 183#endif
 184
 185#include <linux/moduleparam.h>
 186module_param(debug, int, 0444);
 187module_param_named(mode, network_mode, int, 0444);
 188module_param(channel, int, 0444);
 189module_param(associate, int, 0444);
 190module_param(disable, int, 0444);
 191
 192MODULE_PARM_DESC(debug, "debug level");
 193MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
 194MODULE_PARM_DESC(channel, "channel");
 195MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
 196MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
 197
 198static u32 ipw2100_debug_level = IPW_DL_NONE;
 199
 200#ifdef CONFIG_IPW2100_DEBUG
 201#define IPW_DEBUG(level, message...) \
 202do { \
 203	if (ipw2100_debug_level & (level)) { \
 204		printk(KERN_DEBUG "ipw2100: %c %s ", \
 205                       in_interrupt() ? 'I' : 'U',  __func__); \
 206		printk(message); \
 207	} \
 208} while (0)
 209#else
 210#define IPW_DEBUG(level, message...) do {} while (0)
 211#endif				/* CONFIG_IPW2100_DEBUG */
 212
 213#ifdef CONFIG_IPW2100_DEBUG
 214static const char *command_types[] = {
 215	"undefined",
 216	"unused",		/* HOST_ATTENTION */
 217	"HOST_COMPLETE",
 218	"unused",		/* SLEEP */
 219	"unused",		/* HOST_POWER_DOWN */
 220	"unused",
 221	"SYSTEM_CONFIG",
 222	"unused",		/* SET_IMR */
 223	"SSID",
 224	"MANDATORY_BSSID",
 225	"AUTHENTICATION_TYPE",
 226	"ADAPTER_ADDRESS",
 227	"PORT_TYPE",
 228	"INTERNATIONAL_MODE",
 229	"CHANNEL",
 230	"RTS_THRESHOLD",
 231	"FRAG_THRESHOLD",
 232	"POWER_MODE",
 233	"TX_RATES",
 234	"BASIC_TX_RATES",
 235	"WEP_KEY_INFO",
 236	"unused",
 237	"unused",
 238	"unused",
 239	"unused",
 240	"WEP_KEY_INDEX",
 241	"WEP_FLAGS",
 242	"ADD_MULTICAST",
 243	"CLEAR_ALL_MULTICAST",
 244	"BEACON_INTERVAL",
 245	"ATIM_WINDOW",
 246	"CLEAR_STATISTICS",
 247	"undefined",
 248	"undefined",
 249	"undefined",
 250	"undefined",
 251	"TX_POWER_INDEX",
 252	"undefined",
 253	"undefined",
 254	"undefined",
 255	"undefined",
 256	"undefined",
 257	"undefined",
 258	"BROADCAST_SCAN",
 259	"CARD_DISABLE",
 260	"PREFERRED_BSSID",
 261	"SET_SCAN_OPTIONS",
 262	"SCAN_DWELL_TIME",
 263	"SWEEP_TABLE",
 264	"AP_OR_STATION_TABLE",
 265	"GROUP_ORDINALS",
 266	"SHORT_RETRY_LIMIT",
 267	"LONG_RETRY_LIMIT",
 268	"unused",		/* SAVE_CALIBRATION */
 269	"unused",		/* RESTORE_CALIBRATION */
 270	"undefined",
 271	"undefined",
 272	"undefined",
 273	"HOST_PRE_POWER_DOWN",
 274	"unused",		/* HOST_INTERRUPT_COALESCING */
 275	"undefined",
 276	"CARD_DISABLE_PHY_OFF",
 277	"MSDU_TX_RATES",
 278	"undefined",
 279	"SET_STATION_STAT_BITS",
 280	"CLEAR_STATIONS_STAT_BITS",
 281	"LEAP_ROGUE_MODE",
 282	"SET_SECURITY_INFORMATION",
 283	"DISASSOCIATION_BSSID",
 284	"SET_WPA_ASS_IE"
 285};
 286#endif
 287
 288static const long ipw2100_frequencies[] = {
 289	2412, 2417, 2422, 2427,
 290	2432, 2437, 2442, 2447,
 291	2452, 2457, 2462, 2467,
 292	2472, 2484
 293};
 294
 295#define FREQ_COUNT	ARRAY_SIZE(ipw2100_frequencies)
 296
 297static struct ieee80211_rate ipw2100_bg_rates[] = {
 298	{ .bitrate = 10 },
 299	{ .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 300	{ .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 301	{ .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 302};
 303
 304#define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
 305
 306/* Pre-decl until we get the code solid and then we can clean it up */
 307static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
 308static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
 309static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
 310
 311static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
 312static void ipw2100_queues_free(struct ipw2100_priv *priv);
 313static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
 314
 315static int ipw2100_fw_download(struct ipw2100_priv *priv,
 316			       struct ipw2100_fw *fw);
 317static int ipw2100_get_firmware(struct ipw2100_priv *priv,
 318				struct ipw2100_fw *fw);
 319static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
 320				 size_t max);
 321static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
 322				    size_t max);
 323static void ipw2100_release_firmware(struct ipw2100_priv *priv,
 324				     struct ipw2100_fw *fw);
 325static int ipw2100_ucode_download(struct ipw2100_priv *priv,
 326				  struct ipw2100_fw *fw);
 327static void ipw2100_wx_event_work(struct work_struct *work);
 328static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
 329static const struct iw_handler_def ipw2100_wx_handler_def;
 330
 331static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
 332{
 333	struct ipw2100_priv *priv = libipw_priv(dev);
 334
 335	*val = ioread32(priv->ioaddr + reg);
 336	IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
 337}
 338
 339static inline void write_register(struct net_device *dev, u32 reg, u32 val)
 340{
 341	struct ipw2100_priv *priv = libipw_priv(dev);
 342
 343	iowrite32(val, priv->ioaddr + reg);
 344	IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
 345}
 346
 347static inline void read_register_word(struct net_device *dev, u32 reg,
 348				      u16 * val)
 349{
 350	struct ipw2100_priv *priv = libipw_priv(dev);
 351
 352	*val = ioread16(priv->ioaddr + reg);
 353	IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
 354}
 355
 356static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
 357{
 358	struct ipw2100_priv *priv = libipw_priv(dev);
 359
 360	*val = ioread8(priv->ioaddr + reg);
 361	IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
 362}
 363
 364static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
 365{
 366	struct ipw2100_priv *priv = libipw_priv(dev);
 367
 368	iowrite16(val, priv->ioaddr + reg);
 369	IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
 370}
 371
 372static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
 373{
 374	struct ipw2100_priv *priv = libipw_priv(dev);
 375
 376	iowrite8(val, priv->ioaddr + reg);
 377	IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
 378}
 379
 380static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
 381{
 382	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
 383		       addr & IPW_REG_INDIRECT_ADDR_MASK);
 384	read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
 385}
 386
 387static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
 388{
 389	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
 390		       addr & IPW_REG_INDIRECT_ADDR_MASK);
 391	write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
 392}
 393
 394static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
 395{
 396	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
 397		       addr & IPW_REG_INDIRECT_ADDR_MASK);
 398	read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
 399}
 400
 401static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
 402{
 403	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
 404		       addr & IPW_REG_INDIRECT_ADDR_MASK);
 405	write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
 406}
 407
 408static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
 409{
 410	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
 411		       addr & IPW_REG_INDIRECT_ADDR_MASK);
 412	read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
 413}
 414
 415static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
 416{
 417	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
 418		       addr & IPW_REG_INDIRECT_ADDR_MASK);
 419	write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
 420}
 421
 422static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
 423{
 424	write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
 425		       addr & IPW_REG_INDIRECT_ADDR_MASK);
 426}
 427
 428static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
 429{
 430	write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
 431}
 432
 433static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
 434				    const u8 * buf)
 435{
 436	u32 aligned_addr;
 437	u32 aligned_len;
 438	u32 dif_len;
 439	u32 i;
 440
 441	/* read first nibble byte by byte */
 442	aligned_addr = addr & (~0x3);
 443	dif_len = addr - aligned_addr;
 444	if (dif_len) {
 445		/* Start reading at aligned_addr + dif_len */
 446		write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
 447			       aligned_addr);
 448		for (i = dif_len; i < 4; i++, buf++)
 449			write_register_byte(dev,
 450					    IPW_REG_INDIRECT_ACCESS_DATA + i,
 451					    *buf);
 452
 453		len -= dif_len;
 454		aligned_addr += 4;
 455	}
 456
 457	/* read DWs through autoincrement registers */
 458	write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
 459	aligned_len = len & (~0x3);
 460	for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
 461		write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
 462
 463	/* copy the last nibble */
 464	dif_len = len - aligned_len;
 465	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
 466	for (i = 0; i < dif_len; i++, buf++)
 467		write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
 468				    *buf);
 469}
 470
 471static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
 472				   u8 * buf)
 473{
 474	u32 aligned_addr;
 475	u32 aligned_len;
 476	u32 dif_len;
 477	u32 i;
 478
 479	/* read first nibble byte by byte */
 480	aligned_addr = addr & (~0x3);
 481	dif_len = addr - aligned_addr;
 482	if (dif_len) {
 483		/* Start reading at aligned_addr + dif_len */
 484		write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
 485			       aligned_addr);
 486		for (i = dif_len; i < 4; i++, buf++)
 487			read_register_byte(dev,
 488					   IPW_REG_INDIRECT_ACCESS_DATA + i,
 489					   buf);
 490
 491		len -= dif_len;
 492		aligned_addr += 4;
 493	}
 494
 495	/* read DWs through autoincrement registers */
 496	write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
 497	aligned_len = len & (~0x3);
 498	for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
 499		read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
 500
 501	/* copy the last nibble */
 502	dif_len = len - aligned_len;
 503	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
 504	for (i = 0; i < dif_len; i++, buf++)
 505		read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
 506}
 507
 508static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
 509{
 510	u32 dbg;
 511
 512	read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
 513
 514	return dbg == IPW_DATA_DOA_DEBUG_VALUE;
 515}
 516
 517static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
 518			       void *val, u32 * len)
 519{
 520	struct ipw2100_ordinals *ordinals = &priv->ordinals;
 521	u32 addr;
 522	u32 field_info;
 523	u16 field_len;
 524	u16 field_count;
 525	u32 total_length;
 526
 527	if (ordinals->table1_addr == 0) {
 528		printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
 529		       "before they have been loaded.\n");
 530		return -EINVAL;
 531	}
 532
 533	if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
 534		if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
 535			*len = IPW_ORD_TAB_1_ENTRY_SIZE;
 536
 537			printk(KERN_WARNING DRV_NAME
 538			       ": ordinal buffer length too small, need %zd\n",
 539			       IPW_ORD_TAB_1_ENTRY_SIZE);
 540
 541			return -EINVAL;
 542		}
 543
 544		read_nic_dword(priv->net_dev,
 545			       ordinals->table1_addr + (ord << 2), &addr);
 546		read_nic_dword(priv->net_dev, addr, val);
 547
 548		*len = IPW_ORD_TAB_1_ENTRY_SIZE;
 549
 550		return 0;
 551	}
 552
 553	if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
 554
 555		ord -= IPW_START_ORD_TAB_2;
 556
 557		/* get the address of statistic */
 558		read_nic_dword(priv->net_dev,
 559			       ordinals->table2_addr + (ord << 3), &addr);
 560
 561		/* get the second DW of statistics ;
 562		 * two 16-bit words - first is length, second is count */
 563		read_nic_dword(priv->net_dev,
 564			       ordinals->table2_addr + (ord << 3) + sizeof(u32),
 565			       &field_info);
 566
 567		/* get each entry length */
 568		field_len = *((u16 *) & field_info);
 569
 570		/* get number of entries */
 571		field_count = *(((u16 *) & field_info) + 1);
 572
 573		/* abort if no enough memory */
 574		total_length = field_len * field_count;
 575		if (total_length > *len) {
 576			*len = total_length;
 577			return -EINVAL;
 578		}
 579
 580		*len = total_length;
 581		if (!total_length)
 582			return 0;
 583
 584		/* read the ordinal data from the SRAM */
 585		read_nic_memory(priv->net_dev, addr, total_length, val);
 586
 587		return 0;
 588	}
 589
 590	printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
 591	       "in table 2\n", ord);
 592
 593	return -EINVAL;
 594}
 595
 596static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
 597			       u32 * len)
 598{
 599	struct ipw2100_ordinals *ordinals = &priv->ordinals;
 600	u32 addr;
 601
 602	if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
 603		if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
 604			*len = IPW_ORD_TAB_1_ENTRY_SIZE;
 605			IPW_DEBUG_INFO("wrong size\n");
 606			return -EINVAL;
 607		}
 608
 609		read_nic_dword(priv->net_dev,
 610			       ordinals->table1_addr + (ord << 2), &addr);
 611
 612		write_nic_dword(priv->net_dev, addr, *val);
 613
 614		*len = IPW_ORD_TAB_1_ENTRY_SIZE;
 615
 616		return 0;
 617	}
 618
 619	IPW_DEBUG_INFO("wrong table\n");
 620	if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
 621		return -EINVAL;
 622
 623	return -EINVAL;
 624}
 625
 626static char *snprint_line(char *buf, size_t count,
 627			  const u8 * data, u32 len, u32 ofs)
 628{
 629	int out, i, j, l;
 630	char c;
 631
 632	out = scnprintf(buf, count, "%08X", ofs);
 633
 634	for (l = 0, i = 0; i < 2; i++) {
 635		out += scnprintf(buf + out, count - out, " ");
 636		for (j = 0; j < 8 && l < len; j++, l++)
 637			out += scnprintf(buf + out, count - out, "%02X ",
 638					data[(i * 8 + j)]);
 639		for (; j < 8; j++)
 640			out += scnprintf(buf + out, count - out, "   ");
 641	}
 642
 643	out += scnprintf(buf + out, count - out, " ");
 644	for (l = 0, i = 0; i < 2; i++) {
 645		out += scnprintf(buf + out, count - out, " ");
 646		for (j = 0; j < 8 && l < len; j++, l++) {
 647			c = data[(i * 8 + j)];
 648			if (!isascii(c) || !isprint(c))
 649				c = '.';
 650
 651			out += scnprintf(buf + out, count - out, "%c", c);
 652		}
 653
 654		for (; j < 8; j++)
 655			out += scnprintf(buf + out, count - out, " ");
 656	}
 657
 658	return buf;
 659}
 660
 661static void printk_buf(int level, const u8 * data, u32 len)
 662{
 663	char line[81];
 664	u32 ofs = 0;
 665	if (!(ipw2100_debug_level & level))
 666		return;
 667
 668	while (len) {
 669		printk(KERN_DEBUG "%s\n",
 670		       snprint_line(line, sizeof(line), &data[ofs],
 671				    min(len, 16U), ofs));
 672		ofs += 16;
 673		len -= min(len, 16U);
 674	}
 675}
 676
 677#define MAX_RESET_BACKOFF 10
 678
 679static void schedule_reset(struct ipw2100_priv *priv)
 680{
 681	time64_t now = ktime_get_boottime_seconds();
 682
 683	/* If we haven't received a reset request within the backoff period,
 684	 * then we can reset the backoff interval so this reset occurs
 685	 * immediately */
 686	if (priv->reset_backoff &&
 687	    (now - priv->last_reset > priv->reset_backoff))
 688		priv->reset_backoff = 0;
 689
 690	priv->last_reset = now;
 691
 692	if (!(priv->status & STATUS_RESET_PENDING)) {
 693		IPW_DEBUG_INFO("%s: Scheduling firmware restart (%llds).\n",
 694			       priv->net_dev->name, priv->reset_backoff);
 695		netif_carrier_off(priv->net_dev);
 696		netif_stop_queue(priv->net_dev);
 697		priv->status |= STATUS_RESET_PENDING;
 698		if (priv->reset_backoff)
 699			schedule_delayed_work(&priv->reset_work,
 700					      priv->reset_backoff * HZ);
 701		else
 702			schedule_delayed_work(&priv->reset_work, 0);
 703
 704		if (priv->reset_backoff < MAX_RESET_BACKOFF)
 705			priv->reset_backoff++;
 706
 707		wake_up_interruptible(&priv->wait_command_queue);
 708	} else
 709		IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
 710			       priv->net_dev->name);
 711
 712}
 713
 714#define HOST_COMPLETE_TIMEOUT (2 * HZ)
 715static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
 716				   struct host_command *cmd)
 717{
 718	struct list_head *element;
 719	struct ipw2100_tx_packet *packet;
 720	unsigned long flags;
 721	int err = 0;
 722
 723	IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
 724		     command_types[cmd->host_command], cmd->host_command,
 725		     cmd->host_command_length);
 726	printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
 727		   cmd->host_command_length);
 728
 729	spin_lock_irqsave(&priv->low_lock, flags);
 730
 731	if (priv->fatal_error) {
 732		IPW_DEBUG_INFO
 733		    ("Attempt to send command while hardware in fatal error condition.\n");
 734		err = -EIO;
 735		goto fail_unlock;
 736	}
 737
 738	if (!(priv->status & STATUS_RUNNING)) {
 739		IPW_DEBUG_INFO
 740		    ("Attempt to send command while hardware is not running.\n");
 741		err = -EIO;
 742		goto fail_unlock;
 743	}
 744
 745	if (priv->status & STATUS_CMD_ACTIVE) {
 746		IPW_DEBUG_INFO
 747		    ("Attempt to send command while another command is pending.\n");
 748		err = -EBUSY;
 749		goto fail_unlock;
 750	}
 751
 752	if (list_empty(&priv->msg_free_list)) {
 753		IPW_DEBUG_INFO("no available msg buffers\n");
 754		goto fail_unlock;
 755	}
 756
 757	priv->status |= STATUS_CMD_ACTIVE;
 758	priv->messages_sent++;
 759
 760	element = priv->msg_free_list.next;
 761
 762	packet = list_entry(element, struct ipw2100_tx_packet, list);
 763	packet->jiffy_start = jiffies;
 764
 765	/* initialize the firmware command packet */
 766	packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
 767	packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
 768	packet->info.c_struct.cmd->host_command_len_reg =
 769	    cmd->host_command_length;
 770	packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
 771
 772	memcpy(packet->info.c_struct.cmd->host_command_params_reg,
 773	       cmd->host_command_parameters,
 774	       sizeof(packet->info.c_struct.cmd->host_command_params_reg));
 775
 776	list_del(element);
 777	DEC_STAT(&priv->msg_free_stat);
 778
 779	list_add_tail(element, &priv->msg_pend_list);
 780	INC_STAT(&priv->msg_pend_stat);
 781
 782	ipw2100_tx_send_commands(priv);
 783	ipw2100_tx_send_data(priv);
 784
 785	spin_unlock_irqrestore(&priv->low_lock, flags);
 786
 787	/*
 788	 * We must wait for this command to complete before another
 789	 * command can be sent...  but if we wait more than 3 seconds
 790	 * then there is a problem.
 791	 */
 792
 793	err =
 794	    wait_event_interruptible_timeout(priv->wait_command_queue,
 795					     !(priv->
 796					       status & STATUS_CMD_ACTIVE),
 797					     HOST_COMPLETE_TIMEOUT);
 798
 799	if (err == 0) {
 800		IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
 801			       1000 * (HOST_COMPLETE_TIMEOUT / HZ));
 802		priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
 803		priv->status &= ~STATUS_CMD_ACTIVE;
 804		schedule_reset(priv);
 805		return -EIO;
 806	}
 807
 808	if (priv->fatal_error) {
 809		printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
 810		       priv->net_dev->name);
 811		return -EIO;
 812	}
 813
 814	/* !!!!! HACK TEST !!!!!
 815	 * When lots of debug trace statements are enabled, the driver
 816	 * doesn't seem to have as many firmware restart cycles...
 817	 *
 818	 * As a test, we're sticking in a 1/100s delay here */
 819	schedule_timeout_uninterruptible(msecs_to_jiffies(10));
 820
 821	return 0;
 822
 823      fail_unlock:
 824	spin_unlock_irqrestore(&priv->low_lock, flags);
 825
 826	return err;
 827}
 828
 829/*
 830 * Verify the values and data access of the hardware
 831 * No locks needed or used.  No functions called.
 832 */
 833static int ipw2100_verify(struct ipw2100_priv *priv)
 834{
 835	u32 data1, data2;
 836	u32 address;
 837
 838	u32 val1 = 0x76543210;
 839	u32 val2 = 0xFEDCBA98;
 840
 841	/* Domain 0 check - all values should be DOA_DEBUG */
 842	for (address = IPW_REG_DOA_DEBUG_AREA_START;
 843	     address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
 844		read_register(priv->net_dev, address, &data1);
 845		if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
 846			return -EIO;
 847	}
 848
 849	/* Domain 1 check - use arbitrary read/write compare  */
 850	for (address = 0; address < 5; address++) {
 851		/* The memory area is not used now */
 852		write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
 853			       val1);
 854		write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
 855			       val2);
 856		read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
 857			      &data1);
 858		read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
 859			      &data2);
 860		if (val1 == data1 && val2 == data2)
 861			return 0;
 862	}
 863
 864	return -EIO;
 865}
 866
 867/*
 868 *
 869 * Loop until the CARD_DISABLED bit is the same value as the
 870 * supplied parameter
 871 *
 872 * TODO: See if it would be more efficient to do a wait/wake
 873 *       cycle and have the completion event trigger the wakeup
 874 *
 875 */
 876#define IPW_CARD_DISABLE_COMPLETE_WAIT		    100	// 100 milli
 877static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
 878{
 879	int i;
 880	u32 card_state;
 881	u32 len = sizeof(card_state);
 882	int err;
 883
 884	for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
 885		err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
 886					  &card_state, &len);
 887		if (err) {
 888			IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
 889				       "failed.\n");
 890			return 0;
 891		}
 892
 893		/* We'll break out if either the HW state says it is
 894		 * in the state we want, or if HOST_COMPLETE command
 895		 * finishes */
 896		if ((card_state == state) ||
 897		    ((priv->status & STATUS_ENABLED) ?
 898		     IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
 899			if (state == IPW_HW_STATE_ENABLED)
 900				priv->status |= STATUS_ENABLED;
 901			else
 902				priv->status &= ~STATUS_ENABLED;
 903
 904			return 0;
 905		}
 906
 907		udelay(50);
 908	}
 909
 910	IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
 911		       state ? "DISABLED" : "ENABLED");
 912	return -EIO;
 913}
 914
 915/*********************************************************************
 916    Procedure   :   sw_reset_and_clock
 917    Purpose     :   Asserts s/w reset, asserts clock initialization
 918                    and waits for clock stabilization
 919 ********************************************************************/
 920static int sw_reset_and_clock(struct ipw2100_priv *priv)
 921{
 922	int i;
 923	u32 r;
 924
 925	// assert s/w reset
 926	write_register(priv->net_dev, IPW_REG_RESET_REG,
 927		       IPW_AUX_HOST_RESET_REG_SW_RESET);
 928
 929	// wait for clock stabilization
 930	for (i = 0; i < 1000; i++) {
 931		udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
 932
 933		// check clock ready bit
 934		read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
 935		if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
 936			break;
 937	}
 938
 939	if (i == 1000)
 940		return -EIO;	// TODO: better error value
 941
 942	/* set "initialization complete" bit to move adapter to
 943	 * D0 state */
 944	write_register(priv->net_dev, IPW_REG_GP_CNTRL,
 945		       IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
 946
 947	/* wait for clock stabilization */
 948	for (i = 0; i < 10000; i++) {
 949		udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
 950
 951		/* check clock ready bit */
 952		read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
 953		if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
 954			break;
 955	}
 956
 957	if (i == 10000)
 958		return -EIO;	/* TODO: better error value */
 959
 960	/* set D0 standby bit */
 961	read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
 962	write_register(priv->net_dev, IPW_REG_GP_CNTRL,
 963		       r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
 964
 965	return 0;
 966}
 967
 968/*********************************************************************
 969    Procedure   :   ipw2100_download_firmware
 970    Purpose     :   Initiaze adapter after power on.
 971                    The sequence is:
 972                    1. assert s/w reset first!
 973                    2. awake clocks & wait for clock stabilization
 974                    3. hold ARC (don't ask me why...)
 975                    4. load Dino ucode and reset/clock init again
 976                    5. zero-out shared mem
 977                    6. download f/w
 978 *******************************************************************/
 979static int ipw2100_download_firmware(struct ipw2100_priv *priv)
 980{
 981	u32 address;
 982	int err;
 983
 984#ifndef CONFIG_PM
 985	/* Fetch the firmware and microcode */
 986	struct ipw2100_fw ipw2100_firmware;
 987#endif
 988
 989	if (priv->fatal_error) {
 990		IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
 991				"fatal error %d.  Interface must be brought down.\n",
 992				priv->net_dev->name, priv->fatal_error);
 993		return -EINVAL;
 994	}
 995#ifdef CONFIG_PM
 996	if (!ipw2100_firmware.version) {
 997		err = ipw2100_get_firmware(priv, &ipw2100_firmware);
 998		if (err) {
 999			IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1000					priv->net_dev->name, err);
1001			priv->fatal_error = IPW2100_ERR_FW_LOAD;
1002			goto fail;
1003		}
1004	}
1005#else
1006	err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1007	if (err) {
1008		IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1009				priv->net_dev->name, err);
1010		priv->fatal_error = IPW2100_ERR_FW_LOAD;
1011		goto fail;
1012	}
1013#endif
1014	priv->firmware_version = ipw2100_firmware.version;
1015
1016	/* s/w reset and clock stabilization */
1017	err = sw_reset_and_clock(priv);
1018	if (err) {
1019		IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1020				priv->net_dev->name, err);
1021		goto fail;
1022	}
1023
1024	err = ipw2100_verify(priv);
1025	if (err) {
1026		IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1027				priv->net_dev->name, err);
1028		goto fail;
1029	}
1030
1031	/* Hold ARC */
1032	write_nic_dword(priv->net_dev,
1033			IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1034
1035	/* allow ARC to run */
1036	write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1037
1038	/* load microcode */
1039	err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1040	if (err) {
1041		printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1042		       priv->net_dev->name, err);
1043		goto fail;
1044	}
1045
1046	/* release ARC */
1047	write_nic_dword(priv->net_dev,
1048			IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1049
1050	/* s/w reset and clock stabilization (again!!!) */
1051	err = sw_reset_and_clock(priv);
1052	if (err) {
1053		printk(KERN_ERR DRV_NAME
1054		       ": %s: sw_reset_and_clock failed: %d\n",
1055		       priv->net_dev->name, err);
1056		goto fail;
1057	}
1058
1059	/* load f/w */
1060	err = ipw2100_fw_download(priv, &ipw2100_firmware);
1061	if (err) {
1062		IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1063				priv->net_dev->name, err);
1064		goto fail;
1065	}
1066#ifndef CONFIG_PM
1067	/*
1068	 * When the .resume method of the driver is called, the other
1069	 * part of the system, i.e. the ide driver could still stay in
1070	 * the suspend stage. This prevents us from loading the firmware
1071	 * from the disk.  --YZ
1072	 */
1073
1074	/* free any storage allocated for firmware image */
1075	ipw2100_release_firmware(priv, &ipw2100_firmware);
1076#endif
1077
1078	/* zero out Domain 1 area indirectly (Si requirement) */
1079	for (address = IPW_HOST_FW_SHARED_AREA0;
1080	     address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1081		write_nic_dword(priv->net_dev, address, 0);
1082	for (address = IPW_HOST_FW_SHARED_AREA1;
1083	     address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1084		write_nic_dword(priv->net_dev, address, 0);
1085	for (address = IPW_HOST_FW_SHARED_AREA2;
1086	     address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1087		write_nic_dword(priv->net_dev, address, 0);
1088	for (address = IPW_HOST_FW_SHARED_AREA3;
1089	     address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1090		write_nic_dword(priv->net_dev, address, 0);
1091	for (address = IPW_HOST_FW_INTERRUPT_AREA;
1092	     address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1093		write_nic_dword(priv->net_dev, address, 0);
1094
1095	return 0;
1096
1097      fail:
1098	ipw2100_release_firmware(priv, &ipw2100_firmware);
1099	return err;
1100}
1101
1102static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1103{
1104	if (priv->status & STATUS_INT_ENABLED)
1105		return;
1106	priv->status |= STATUS_INT_ENABLED;
1107	write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1108}
1109
1110static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1111{
1112	if (!(priv->status & STATUS_INT_ENABLED))
1113		return;
1114	priv->status &= ~STATUS_INT_ENABLED;
1115	write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1116}
1117
1118static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1119{
1120	struct ipw2100_ordinals *ord = &priv->ordinals;
1121
1122	IPW_DEBUG_INFO("enter\n");
1123
1124	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1125		      &ord->table1_addr);
1126
1127	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1128		      &ord->table2_addr);
1129
1130	read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1131	read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1132
1133	ord->table2_size &= 0x0000FFFF;
1134
1135	IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1136	IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1137	IPW_DEBUG_INFO("exit\n");
1138}
1139
1140static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1141{
1142	u32 reg = 0;
1143	/*
1144	 * Set GPIO 3 writable by FW; GPIO 1 writable
1145	 * by driver and enable clock
1146	 */
1147	reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1148	       IPW_BIT_GPIO_LED_OFF);
1149	write_register(priv->net_dev, IPW_REG_GPIO, reg);
1150}
1151
1152static int rf_kill_active(struct ipw2100_priv *priv)
1153{
1154#define MAX_RF_KILL_CHECKS 5
1155#define RF_KILL_CHECK_DELAY 40
1156
1157	unsigned short value = 0;
1158	u32 reg = 0;
1159	int i;
1160
1161	if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1162		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1163		priv->status &= ~STATUS_RF_KILL_HW;
1164		return 0;
1165	}
1166
1167	for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1168		udelay(RF_KILL_CHECK_DELAY);
1169		read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1170		value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1171	}
1172
1173	if (value == 0) {
1174		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1175		priv->status |= STATUS_RF_KILL_HW;
1176	} else {
1177		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1178		priv->status &= ~STATUS_RF_KILL_HW;
1179	}
1180
1181	return (value == 0);
1182}
1183
1184static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1185{
1186	u32 addr, len;
1187	u32 val;
1188
1189	/*
1190	 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1191	 */
1192	len = sizeof(addr);
1193	if (ipw2100_get_ordinal
1194	    (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1195		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1196			       __LINE__);
1197		return -EIO;
1198	}
1199
1200	IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1201
1202	/*
1203	 * EEPROM version is the byte at offset 0xfd in firmware
1204	 * We read 4 bytes, then shift out the byte we actually want */
1205	read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1206	priv->eeprom_version = (val >> 24) & 0xFF;
1207	IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1208
1209	/*
1210	 *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1211	 *
1212	 *  notice that the EEPROM bit is reverse polarity, i.e.
1213	 *     bit = 0  signifies HW RF kill switch is supported
1214	 *     bit = 1  signifies HW RF kill switch is NOT supported
1215	 */
1216	read_nic_dword(priv->net_dev, addr + 0x20, &val);
1217	if (!((val >> 24) & 0x01))
1218		priv->hw_features |= HW_FEATURE_RFKILL;
1219
1220	IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1221		       (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1222
1223	return 0;
1224}
1225
1226/*
1227 * Start firmware execution after power on and initialization
1228 * The sequence is:
1229 *  1. Release ARC
1230 *  2. Wait for f/w initialization completes;
1231 */
1232static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1233{
1234	int i;
1235	u32 inta, inta_mask, gpio;
1236
1237	IPW_DEBUG_INFO("enter\n");
1238
1239	if (priv->status & STATUS_RUNNING)
1240		return 0;
1241
1242	/*
1243	 * Initialize the hw - drive adapter to DO state by setting
1244	 * init_done bit. Wait for clk_ready bit and Download
1245	 * fw & dino ucode
1246	 */
1247	if (ipw2100_download_firmware(priv)) {
1248		printk(KERN_ERR DRV_NAME
1249		       ": %s: Failed to power on the adapter.\n",
1250		       priv->net_dev->name);
1251		return -EIO;
1252	}
1253
1254	/* Clear the Tx, Rx and Msg queues and the r/w indexes
1255	 * in the firmware RBD and TBD ring queue */
1256	ipw2100_queues_initialize(priv);
1257
1258	ipw2100_hw_set_gpio(priv);
1259
1260	/* TODO -- Look at disabling interrupts here to make sure none
1261	 * get fired during FW initialization */
1262
1263	/* Release ARC - clear reset bit */
1264	write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1265
1266	/* wait for f/w initialization complete */
1267	IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1268	i = 5000;
1269	do {
1270		schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1271		/* Todo... wait for sync command ... */
1272
1273		read_register(priv->net_dev, IPW_REG_INTA, &inta);
1274
1275		/* check "init done" bit */
1276		if (inta & IPW2100_INTA_FW_INIT_DONE) {
1277			/* reset "init done" bit */
1278			write_register(priv->net_dev, IPW_REG_INTA,
1279				       IPW2100_INTA_FW_INIT_DONE);
1280			break;
1281		}
1282
1283		/* check error conditions : we check these after the firmware
1284		 * check so that if there is an error, the interrupt handler
1285		 * will see it and the adapter will be reset */
1286		if (inta &
1287		    (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1288			/* clear error conditions */
1289			write_register(priv->net_dev, IPW_REG_INTA,
1290				       IPW2100_INTA_FATAL_ERROR |
1291				       IPW2100_INTA_PARITY_ERROR);
1292		}
1293	} while (--i);
1294
1295	/* Clear out any pending INTAs since we aren't supposed to have
1296	 * interrupts enabled at this point... */
1297	read_register(priv->net_dev, IPW_REG_INTA, &inta);
1298	read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1299	inta &= IPW_INTERRUPT_MASK;
1300	/* Clear out any pending interrupts */
1301	if (inta & inta_mask)
1302		write_register(priv->net_dev, IPW_REG_INTA, inta);
1303
1304	IPW_DEBUG_FW("f/w initialization complete: %s\n",
1305		     i ? "SUCCESS" : "FAILED");
1306
1307	if (!i) {
1308		printk(KERN_WARNING DRV_NAME
1309		       ": %s: Firmware did not initialize.\n",
1310		       priv->net_dev->name);
1311		return -EIO;
1312	}
1313
1314	/* allow firmware to write to GPIO1 & GPIO3 */
1315	read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1316
1317	gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1318
1319	write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1320
1321	/* Ready to receive commands */
1322	priv->status |= STATUS_RUNNING;
1323
1324	/* The adapter has been reset; we are not associated */
1325	priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1326
1327	IPW_DEBUG_INFO("exit\n");
1328
1329	return 0;
1330}
1331
1332static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1333{
1334	if (!priv->fatal_error)
1335		return;
1336
1337	priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1338	priv->fatal_index %= IPW2100_ERROR_QUEUE;
1339	priv->fatal_error = 0;
1340}
1341
1342/* NOTE: Our interrupt is disabled when this method is called */
1343static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1344{
1345	u32 reg;
1346	int i;
1347
1348	IPW_DEBUG_INFO("Power cycling the hardware.\n");
1349
1350	ipw2100_hw_set_gpio(priv);
1351
1352	/* Step 1. Stop Master Assert */
1353	write_register(priv->net_dev, IPW_REG_RESET_REG,
1354		       IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1355
1356	/* Step 2. Wait for stop Master Assert
1357	 *         (not more than 50us, otherwise ret error */
1358	i = 5;
1359	do {
1360		udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1361		read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1362
1363		if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1364			break;
1365	} while (--i);
1366
1367	priv->status &= ~STATUS_RESET_PENDING;
1368
1369	if (!i) {
1370		IPW_DEBUG_INFO
1371		    ("exit - waited too long for master assert stop\n");
1372		return -EIO;
1373	}
1374
1375	write_register(priv->net_dev, IPW_REG_RESET_REG,
1376		       IPW_AUX_HOST_RESET_REG_SW_RESET);
1377
1378	/* Reset any fatal_error conditions */
1379	ipw2100_reset_fatalerror(priv);
1380
1381	/* At this point, the adapter is now stopped and disabled */
1382	priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1383			  STATUS_ASSOCIATED | STATUS_ENABLED);
1384
1385	return 0;
1386}
1387
1388/*
1389 * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1390 *
1391 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1392 *
1393 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1394 * if STATUS_ASSN_LOST is sent.
1395 */
1396static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1397{
1398
1399#define HW_PHY_OFF_LOOP_DELAY (msecs_to_jiffies(50))
1400
1401	struct host_command cmd = {
1402		.host_command = CARD_DISABLE_PHY_OFF,
1403		.host_command_sequence = 0,
1404		.host_command_length = 0,
1405	};
1406	int err, i;
1407	u32 val1, val2;
1408
1409	IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1410
1411	/* Turn off the radio */
1412	err = ipw2100_hw_send_command(priv, &cmd);
1413	if (err)
1414		return err;
1415
1416	for (i = 0; i < 2500; i++) {
1417		read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1418		read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1419
1420		if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1421		    (val2 & IPW2100_COMMAND_PHY_OFF))
1422			return 0;
1423
1424		schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1425	}
1426
1427	return -EIO;
1428}
1429
1430static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1431{
1432	struct host_command cmd = {
1433		.host_command = HOST_COMPLETE,
1434		.host_command_sequence = 0,
1435		.host_command_length = 0
1436	};
1437	int err = 0;
1438
1439	IPW_DEBUG_HC("HOST_COMPLETE\n");
1440
1441	if (priv->status & STATUS_ENABLED)
1442		return 0;
1443
1444	mutex_lock(&priv->adapter_mutex);
1445
1446	if (rf_kill_active(priv)) {
1447		IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1448		goto fail_up;
1449	}
1450
1451	err = ipw2100_hw_send_command(priv, &cmd);
1452	if (err) {
1453		IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1454		goto fail_up;
1455	}
1456
1457	err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1458	if (err) {
1459		IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1460			       priv->net_dev->name);
1461		goto fail_up;
1462	}
1463
1464	if (priv->stop_hang_check) {
1465		priv->stop_hang_check = 0;
1466		schedule_delayed_work(&priv->hang_check, HZ / 2);
1467	}
1468
1469      fail_up:
1470	mutex_unlock(&priv->adapter_mutex);
1471	return err;
1472}
1473
1474static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1475{
1476#define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1477
1478	struct host_command cmd = {
1479		.host_command = HOST_PRE_POWER_DOWN,
1480		.host_command_sequence = 0,
1481		.host_command_length = 0,
1482	};
1483	int err, i;
1484	u32 reg;
1485
1486	if (!(priv->status & STATUS_RUNNING))
1487		return 0;
1488
1489	priv->status |= STATUS_STOPPING;
1490
1491	/* We can only shut down the card if the firmware is operational.  So,
1492	 * if we haven't reset since a fatal_error, then we can not send the
1493	 * shutdown commands. */
1494	if (!priv->fatal_error) {
1495		/* First, make sure the adapter is enabled so that the PHY_OFF
1496		 * command can shut it down */
1497		ipw2100_enable_adapter(priv);
1498
1499		err = ipw2100_hw_phy_off(priv);
1500		if (err)
1501			printk(KERN_WARNING DRV_NAME
1502			       ": Error disabling radio %d\n", err);
1503
1504		/*
1505		 * If in D0-standby mode going directly to D3 may cause a
1506		 * PCI bus violation.  Therefore we must change out of the D0
1507		 * state.
1508		 *
1509		 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1510		 * hardware from going into standby mode and will transition
1511		 * out of D0-standby if it is already in that state.
1512		 *
1513		 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1514		 * driver upon completion.  Once received, the driver can
1515		 * proceed to the D3 state.
1516		 *
1517		 * Prepare for power down command to fw.  This command would
1518		 * take HW out of D0-standby and prepare it for D3 state.
1519		 *
1520		 * Currently FW does not support event notification for this
1521		 * event. Therefore, skip waiting for it.  Just wait a fixed
1522		 * 100ms
1523		 */
1524		IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1525
1526		err = ipw2100_hw_send_command(priv, &cmd);
1527		if (err)
1528			printk(KERN_WARNING DRV_NAME ": "
1529			       "%s: Power down command failed: Error %d\n",
1530			       priv->net_dev->name, err);
1531		else
1532			schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1533	}
1534
1535	priv->status &= ~STATUS_ENABLED;
1536
1537	/*
1538	 * Set GPIO 3 writable by FW; GPIO 1 writable
1539	 * by driver and enable clock
1540	 */
1541	ipw2100_hw_set_gpio(priv);
1542
1543	/*
1544	 * Power down adapter.  Sequence:
1545	 * 1. Stop master assert (RESET_REG[9]=1)
1546	 * 2. Wait for stop master (RESET_REG[8]==1)
1547	 * 3. S/w reset assert (RESET_REG[7] = 1)
1548	 */
1549
1550	/* Stop master assert */
1551	write_register(priv->net_dev, IPW_REG_RESET_REG,
1552		       IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1553
1554	/* wait stop master not more than 50 usec.
1555	 * Otherwise return error. */
1556	for (i = 5; i > 0; i--) {
1557		udelay(10);
1558
1559		/* Check master stop bit */
1560		read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1561
1562		if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1563			break;
1564	}
1565
1566	if (i == 0)
1567		printk(KERN_WARNING DRV_NAME
1568		       ": %s: Could now power down adapter.\n",
1569		       priv->net_dev->name);
1570
1571	/* assert s/w reset */
1572	write_register(priv->net_dev, IPW_REG_RESET_REG,
1573		       IPW_AUX_HOST_RESET_REG_SW_RESET);
1574
1575	priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1576
1577	return 0;
1578}
1579
1580static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1581{
1582	struct host_command cmd = {
1583		.host_command = CARD_DISABLE,
1584		.host_command_sequence = 0,
1585		.host_command_length = 0
1586	};
1587	int err = 0;
1588
1589	IPW_DEBUG_HC("CARD_DISABLE\n");
1590
1591	if (!(priv->status & STATUS_ENABLED))
1592		return 0;
1593
1594	/* Make sure we clear the associated state */
1595	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1596
1597	if (!priv->stop_hang_check) {
1598		priv->stop_hang_check = 1;
1599		cancel_delayed_work(&priv->hang_check);
1600	}
1601
1602	mutex_lock(&priv->adapter_mutex);
1603
1604	err = ipw2100_hw_send_command(priv, &cmd);
1605	if (err) {
1606		printk(KERN_WARNING DRV_NAME
1607		       ": exit - failed to send CARD_DISABLE command\n");
1608		goto fail_up;
1609	}
1610
1611	err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1612	if (err) {
1613		printk(KERN_WARNING DRV_NAME
1614		       ": exit - card failed to change to DISABLED\n");
1615		goto fail_up;
1616	}
1617
1618	IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1619
1620      fail_up:
1621	mutex_unlock(&priv->adapter_mutex);
1622	return err;
1623}
1624
1625static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1626{
1627	struct host_command cmd = {
1628		.host_command = SET_SCAN_OPTIONS,
1629		.host_command_sequence = 0,
1630		.host_command_length = 8
1631	};
1632	int err;
1633
1634	IPW_DEBUG_INFO("enter\n");
1635
1636	IPW_DEBUG_SCAN("setting scan options\n");
1637
1638	cmd.host_command_parameters[0] = 0;
1639
1640	if (!(priv->config & CFG_ASSOCIATE))
1641		cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1642	if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1643		cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1644	if (priv->config & CFG_PASSIVE_SCAN)
1645		cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1646
1647	cmd.host_command_parameters[1] = priv->channel_mask;
1648
1649	err = ipw2100_hw_send_command(priv, &cmd);
1650
1651	IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1652		     cmd.host_command_parameters[0]);
1653
1654	return err;
1655}
1656
1657static int ipw2100_start_scan(struct ipw2100_priv *priv)
1658{
1659	struct host_command cmd = {
1660		.host_command = BROADCAST_SCAN,
1661		.host_command_sequence = 0,
1662		.host_command_length = 4
1663	};
1664	int err;
1665
1666	IPW_DEBUG_HC("START_SCAN\n");
1667
1668	cmd.host_command_parameters[0] = 0;
1669
1670	/* No scanning if in monitor mode */
1671	if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1672		return 1;
1673
1674	if (priv->status & STATUS_SCANNING) {
1675		IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1676		return 0;
1677	}
1678
1679	IPW_DEBUG_INFO("enter\n");
1680
1681	/* Not clearing here; doing so makes iwlist always return nothing...
1682	 *
1683	 * We should modify the table logic to use aging tables vs. clearing
1684	 * the table on each scan start.
1685	 */
1686	IPW_DEBUG_SCAN("starting scan\n");
1687
1688	priv->status |= STATUS_SCANNING;
1689	err = ipw2100_hw_send_command(priv, &cmd);
1690	if (err)
1691		priv->status &= ~STATUS_SCANNING;
1692
1693	IPW_DEBUG_INFO("exit\n");
1694
1695	return err;
1696}
1697
1698static const struct libipw_geo ipw_geos[] = {
1699	{			/* Restricted */
1700	 "---",
1701	 .bg_channels = 14,
1702	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1703		{2427, 4}, {2432, 5}, {2437, 6},
1704		{2442, 7}, {2447, 8}, {2452, 9},
1705		{2457, 10}, {2462, 11}, {2467, 12},
1706		{2472, 13}, {2484, 14}},
1707	 },
1708};
1709
1710static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1711{
1712	unsigned long flags;
1713	int err = 0;
1714	u32 lock;
1715	u32 ord_len = sizeof(lock);
1716
1717	/* Age scan list entries found before suspend */
1718	if (priv->suspend_time) {
1719		libipw_networks_age(priv->ieee, priv->suspend_time);
1720		priv->suspend_time = 0;
1721	}
1722
1723	/* Quiet if manually disabled. */
1724	if (priv->status & STATUS_RF_KILL_SW) {
1725		IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1726			       "switch\n", priv->net_dev->name);
1727		return 0;
1728	}
1729
1730	/* the ipw2100 hardware really doesn't want power management delays
1731	 * longer than 175usec
1732	 */
1733	cpu_latency_qos_update_request(&ipw2100_pm_qos_req, 175);
1734
1735	/* If the interrupt is enabled, turn it off... */
1736	spin_lock_irqsave(&priv->low_lock, flags);
1737	ipw2100_disable_interrupts(priv);
1738
1739	/* Reset any fatal_error conditions */
1740	ipw2100_reset_fatalerror(priv);
1741	spin_unlock_irqrestore(&priv->low_lock, flags);
1742
1743	if (priv->status & STATUS_POWERED ||
1744	    (priv->status & STATUS_RESET_PENDING)) {
1745		/* Power cycle the card ... */
1746		err = ipw2100_power_cycle_adapter(priv);
1747		if (err) {
1748			printk(KERN_WARNING DRV_NAME
1749			       ": %s: Could not cycle adapter.\n",
1750			       priv->net_dev->name);
1751			goto exit;
1752		}
1753	} else
1754		priv->status |= STATUS_POWERED;
1755
1756	/* Load the firmware, start the clocks, etc. */
1757	err = ipw2100_start_adapter(priv);
1758	if (err) {
1759		printk(KERN_ERR DRV_NAME
1760		       ": %s: Failed to start the firmware.\n",
1761		       priv->net_dev->name);
1762		goto exit;
1763	}
1764
1765	ipw2100_initialize_ordinals(priv);
1766
1767	/* Determine capabilities of this particular HW configuration */
1768	err = ipw2100_get_hw_features(priv);
1769	if (err) {
1770		printk(KERN_ERR DRV_NAME
1771		       ": %s: Failed to determine HW features.\n",
1772		       priv->net_dev->name);
1773		goto exit;
1774	}
1775
1776	/* Initialize the geo */
1777	libipw_set_geo(priv->ieee, &ipw_geos[0]);
1778	priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1779
1780	lock = LOCK_NONE;
1781	err = ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len);
1782	if (err) {
1783		printk(KERN_ERR DRV_NAME
1784		       ": %s: Failed to clear ordinal lock.\n",
1785		       priv->net_dev->name);
1786		goto exit;
1787	}
1788
1789	priv->status &= ~STATUS_SCANNING;
1790
1791	if (rf_kill_active(priv)) {
1792		printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1793		       priv->net_dev->name);
1794
1795		if (priv->stop_rf_kill) {
1796			priv->stop_rf_kill = 0;
1797			schedule_delayed_work(&priv->rf_kill,
1798					      round_jiffies_relative(HZ));
1799		}
1800
1801		deferred = 1;
1802	}
1803
1804	/* Turn on the interrupt so that commands can be processed */
1805	ipw2100_enable_interrupts(priv);
1806
1807	/* Send all of the commands that must be sent prior to
1808	 * HOST_COMPLETE */
1809	err = ipw2100_adapter_setup(priv);
1810	if (err) {
1811		printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1812		       priv->net_dev->name);
1813		goto exit;
1814	}
1815
1816	if (!deferred) {
1817		/* Enable the adapter - sends HOST_COMPLETE */
1818		err = ipw2100_enable_adapter(priv);
1819		if (err) {
1820			printk(KERN_ERR DRV_NAME ": "
1821			       "%s: failed in call to enable adapter.\n",
1822			       priv->net_dev->name);
1823			ipw2100_hw_stop_adapter(priv);
1824			goto exit;
1825		}
1826
1827		/* Start a scan . . . */
1828		ipw2100_set_scan_options(priv);
1829		ipw2100_start_scan(priv);
1830	}
1831
1832      exit:
1833	return err;
1834}
1835
1836static void ipw2100_down(struct ipw2100_priv *priv)
1837{
1838	unsigned long flags;
1839	union iwreq_data wrqu = {
1840		.ap_addr = {
1841			    .sa_family = ARPHRD_ETHER}
1842	};
1843	int associated = priv->status & STATUS_ASSOCIATED;
1844
1845	/* Kill the RF switch timer */
1846	if (!priv->stop_rf_kill) {
1847		priv->stop_rf_kill = 1;
1848		cancel_delayed_work(&priv->rf_kill);
1849	}
1850
1851	/* Kill the firmware hang check timer */
1852	if (!priv->stop_hang_check) {
1853		priv->stop_hang_check = 1;
1854		cancel_delayed_work(&priv->hang_check);
1855	}
1856
1857	/* Kill any pending resets */
1858	if (priv->status & STATUS_RESET_PENDING)
1859		cancel_delayed_work(&priv->reset_work);
1860
1861	/* Make sure the interrupt is on so that FW commands will be
1862	 * processed correctly */
1863	spin_lock_irqsave(&priv->low_lock, flags);
1864	ipw2100_enable_interrupts(priv);
1865	spin_unlock_irqrestore(&priv->low_lock, flags);
1866
1867	if (ipw2100_hw_stop_adapter(priv))
1868		printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1869		       priv->net_dev->name);
1870
1871	/* Do not disable the interrupt until _after_ we disable
1872	 * the adaptor.  Otherwise the CARD_DISABLE command will never
1873	 * be ack'd by the firmware */
1874	spin_lock_irqsave(&priv->low_lock, flags);
1875	ipw2100_disable_interrupts(priv);
1876	spin_unlock_irqrestore(&priv->low_lock, flags);
1877
1878	cpu_latency_qos_update_request(&ipw2100_pm_qos_req,
1879				       PM_QOS_DEFAULT_VALUE);
1880
1881	/* We have to signal any supplicant if we are disassociating */
1882	if (associated)
1883		wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1884
1885	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1886	netif_carrier_off(priv->net_dev);
1887	netif_stop_queue(priv->net_dev);
1888}
1889
1890static int ipw2100_wdev_init(struct net_device *dev)
1891{
1892	struct ipw2100_priv *priv = libipw_priv(dev);
1893	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1894	struct wireless_dev *wdev = &priv->ieee->wdev;
1895	int i;
1896
1897	memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1898
1899	/* fill-out priv->ieee->bg_band */
1900	if (geo->bg_channels) {
1901		struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1902
1903		bg_band->band = NL80211_BAND_2GHZ;
1904		bg_band->n_channels = geo->bg_channels;
1905		bg_band->channels = kcalloc(geo->bg_channels,
1906					    sizeof(struct ieee80211_channel),
1907					    GFP_KERNEL);
1908		if (!bg_band->channels) {
1909			ipw2100_down(priv);
1910			return -ENOMEM;
1911		}
1912		/* translate geo->bg to bg_band.channels */
1913		for (i = 0; i < geo->bg_channels; i++) {
1914			bg_band->channels[i].band = NL80211_BAND_2GHZ;
1915			bg_band->channels[i].center_freq = geo->bg[i].freq;
1916			bg_band->channels[i].hw_value = geo->bg[i].channel;
1917			bg_band->channels[i].max_power = geo->bg[i].max_power;
1918			if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1919				bg_band->channels[i].flags |=
1920					IEEE80211_CHAN_NO_IR;
1921			if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1922				bg_band->channels[i].flags |=
1923					IEEE80211_CHAN_NO_IR;
1924			if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1925				bg_band->channels[i].flags |=
1926					IEEE80211_CHAN_RADAR;
1927			/* No equivalent for LIBIPW_CH_80211H_RULES,
1928			   LIBIPW_CH_UNIFORM_SPREADING, or
1929			   LIBIPW_CH_B_ONLY... */
1930		}
1931		/* point at bitrate info */
1932		bg_band->bitrates = ipw2100_bg_rates;
1933		bg_band->n_bitrates = RATE_COUNT;
1934
1935		wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
1936	}
1937
1938	wdev->wiphy->cipher_suites = ipw_cipher_suites;
1939	wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1940
1941	set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1942	if (wiphy_register(wdev->wiphy))
1943		return -EIO;
1944	return 0;
1945}
1946
1947static void ipw2100_reset_adapter(struct work_struct *work)
1948{
1949	struct ipw2100_priv *priv =
1950		container_of(work, struct ipw2100_priv, reset_work.work);
1951	unsigned long flags;
1952	union iwreq_data wrqu = {
1953		.ap_addr = {
1954			    .sa_family = ARPHRD_ETHER}
1955	};
1956	int associated = priv->status & STATUS_ASSOCIATED;
1957
1958	spin_lock_irqsave(&priv->low_lock, flags);
1959	IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1960	priv->resets++;
1961	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1962	priv->status |= STATUS_SECURITY_UPDATED;
1963
1964	/* Force a power cycle even if interface hasn't been opened
1965	 * yet */
1966	cancel_delayed_work(&priv->reset_work);
1967	priv->status |= STATUS_RESET_PENDING;
1968	spin_unlock_irqrestore(&priv->low_lock, flags);
1969
1970	mutex_lock(&priv->action_mutex);
1971	/* stop timed checks so that they don't interfere with reset */
1972	priv->stop_hang_check = 1;
1973	cancel_delayed_work(&priv->hang_check);
1974
1975	/* We have to signal any supplicant if we are disassociating */
1976	if (associated)
1977		wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1978
1979	ipw2100_up(priv, 0);
1980	mutex_unlock(&priv->action_mutex);
1981
1982}
1983
1984static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1985{
1986
1987#define MAC_ASSOCIATION_READ_DELAY (HZ)
1988	int ret;
1989	unsigned int len, essid_len;
1990	char essid[IW_ESSID_MAX_SIZE];
1991	u32 txrate;
1992	u32 chan;
1993	char *txratename;
1994	u8 bssid[ETH_ALEN];
1995
1996	/*
1997	 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1998	 *      an actual MAC of the AP. Seems like FW sets this
1999	 *      address too late. Read it later and expose through
2000	 *      /proc or schedule a later task to query and update
2001	 */
2002
2003	essid_len = IW_ESSID_MAX_SIZE;
2004	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2005				  essid, &essid_len);
2006	if (ret) {
2007		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2008			       __LINE__);
2009		return;
2010	}
2011
2012	len = sizeof(u32);
2013	ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2014	if (ret) {
2015		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2016			       __LINE__);
2017		return;
2018	}
2019
2020	len = sizeof(u32);
2021	ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2022	if (ret) {
2023		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2024			       __LINE__);
2025		return;
2026	}
2027	len = ETH_ALEN;
2028	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2029				  &len);
2030	if (ret) {
2031		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2032			       __LINE__);
2033		return;
2034	}
2035	memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2036
2037	switch (txrate) {
2038	case TX_RATE_1_MBIT:
2039		txratename = "1Mbps";
2040		break;
2041	case TX_RATE_2_MBIT:
2042		txratename = "2Mbsp";
2043		break;
2044	case TX_RATE_5_5_MBIT:
2045		txratename = "5.5Mbps";
2046		break;
2047	case TX_RATE_11_MBIT:
2048		txratename = "11Mbps";
2049		break;
2050	default:
2051		IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2052		txratename = "unknown rate";
2053		break;
2054	}
2055
2056	IPW_DEBUG_INFO("%s: Associated with '%*pE' at %s, channel %d (BSSID=%pM)\n",
2057		       priv->net_dev->name, essid_len, essid,
2058		       txratename, chan, bssid);
2059
2060	/* now we copy read ssid into dev */
2061	if (!(priv->config & CFG_STATIC_ESSID)) {
2062		priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2063		memcpy(priv->essid, essid, priv->essid_len);
2064	}
2065	priv->channel = chan;
2066	memcpy(priv->bssid, bssid, ETH_ALEN);
2067
2068	priv->status |= STATUS_ASSOCIATING;
2069	priv->connect_start = ktime_get_boottime_seconds();
2070
2071	schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2072}
2073
2074static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2075			     int length, int batch_mode)
2076{
2077	int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2078	struct host_command cmd = {
2079		.host_command = SSID,
2080		.host_command_sequence = 0,
2081		.host_command_length = ssid_len
2082	};
2083	int err;
2084
2085	IPW_DEBUG_HC("SSID: '%*pE'\n", ssid_len, essid);
2086
2087	if (ssid_len)
2088		memcpy(cmd.host_command_parameters, essid, ssid_len);
2089
2090	if (!batch_mode) {
2091		err = ipw2100_disable_adapter(priv);
2092		if (err)
2093			return err;
2094	}
2095
2096	/* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2097	 * disable auto association -- so we cheat by setting a bogus SSID */
2098	if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2099		int i;
2100		u8 *bogus = (u8 *) cmd.host_command_parameters;
2101		for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2102			bogus[i] = 0x18 + i;
2103		cmd.host_command_length = IW_ESSID_MAX_SIZE;
2104	}
2105
2106	/* NOTE:  We always send the SSID command even if the provided ESSID is
2107	 * the same as what we currently think is set. */
2108
2109	err = ipw2100_hw_send_command(priv, &cmd);
2110	if (!err) {
2111		memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2112		memcpy(priv->essid, essid, ssid_len);
2113		priv->essid_len = ssid_len;
2114	}
2115
2116	if (!batch_mode) {
2117		if (ipw2100_enable_adapter(priv))
2118			err = -EIO;
2119	}
2120
2121	return err;
2122}
2123
2124static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2125{
2126	IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2127		  "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid,
2128		  priv->bssid);
2129
2130	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2131
2132	if (priv->status & STATUS_STOPPING) {
2133		IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2134		return;
2135	}
2136
2137	eth_zero_addr(priv->bssid);
2138	eth_zero_addr(priv->ieee->bssid);
2139
2140	netif_carrier_off(priv->net_dev);
2141	netif_stop_queue(priv->net_dev);
2142
2143	if (!(priv->status & STATUS_RUNNING))
2144		return;
2145
2146	if (priv->status & STATUS_SECURITY_UPDATED)
2147		schedule_delayed_work(&priv->security_work, 0);
2148
2149	schedule_delayed_work(&priv->wx_event_work, 0);
2150}
2151
2152static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2153{
2154	IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2155		       priv->net_dev->name);
2156
2157	/* RF_KILL is now enabled (else we wouldn't be here) */
2158	wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2159	priv->status |= STATUS_RF_KILL_HW;
2160
2161	/* Make sure the RF Kill check timer is running */
2162	priv->stop_rf_kill = 0;
2163	mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2164}
2165
2166static void ipw2100_scan_event(struct work_struct *work)
2167{
2168	struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv,
2169						 scan_event.work);
2170	union iwreq_data wrqu;
2171
2172	wrqu.data.length = 0;
2173	wrqu.data.flags = 0;
2174	wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2175}
2176
2177static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2178{
2179	IPW_DEBUG_SCAN("scan complete\n");
2180	/* Age the scan results... */
2181	priv->ieee->scans++;
2182	priv->status &= ~STATUS_SCANNING;
2183
2184	/* Only userspace-requested scan completion events go out immediately */
2185	if (!priv->user_requested_scan) {
2186		schedule_delayed_work(&priv->scan_event,
2187				      round_jiffies_relative(msecs_to_jiffies(4000)));
2188	} else {
2189		priv->user_requested_scan = 0;
2190		mod_delayed_work(system_wq, &priv->scan_event, 0);
2191	}
2192}
2193
2194#ifdef CONFIG_IPW2100_DEBUG
2195#define IPW2100_HANDLER(v, f) { v, f, # v }
2196struct ipw2100_status_indicator {
2197	int status;
2198	void (*cb) (struct ipw2100_priv * priv, u32 status);
2199	char *name;
2200};
2201#else
2202#define IPW2100_HANDLER(v, f) { v, f }
2203struct ipw2100_status_indicator {
2204	int status;
2205	void (*cb) (struct ipw2100_priv * priv, u32 status);
2206};
2207#endif				/* CONFIG_IPW2100_DEBUG */
2208
2209static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2210{
2211	IPW_DEBUG_SCAN("Scanning...\n");
2212	priv->status |= STATUS_SCANNING;
2213}
2214
2215static const struct ipw2100_status_indicator status_handlers[] = {
2216	IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2217	IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2218	IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2219	IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2220	IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2221	IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2222	IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2223	IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2224	IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2225	IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2226	IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2227	IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2228	IPW2100_HANDLER(-1, NULL)
2229};
2230
2231static void isr_status_change(struct ipw2100_priv *priv, int status)
2232{
2233	int i;
2234
2235	if (status == IPW_STATE_SCANNING &&
2236	    priv->status & STATUS_ASSOCIATED &&
2237	    !(priv->status & STATUS_SCANNING)) {
2238		IPW_DEBUG_INFO("Scan detected while associated, with "
2239			       "no scan request.  Restarting firmware.\n");
2240
2241		/* Wake up any sleeping jobs */
2242		schedule_reset(priv);
2243	}
2244
2245	for (i = 0; status_handlers[i].status != -1; i++) {
2246		if (status == status_handlers[i].status) {
2247			IPW_DEBUG_NOTIF("Status change: %s\n",
2248					status_handlers[i].name);
2249			if (status_handlers[i].cb)
2250				status_handlers[i].cb(priv, status);
2251			priv->wstats.status = status;
2252			return;
2253		}
2254	}
2255
2256	IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2257}
2258
2259static void isr_rx_complete_command(struct ipw2100_priv *priv,
2260				    struct ipw2100_cmd_header *cmd)
2261{
2262#ifdef CONFIG_IPW2100_DEBUG
2263	if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2264		IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2265			     command_types[cmd->host_command_reg],
2266			     cmd->host_command_reg);
2267	}
2268#endif
2269	if (cmd->host_command_reg == HOST_COMPLETE)
2270		priv->status |= STATUS_ENABLED;
2271
2272	if (cmd->host_command_reg == CARD_DISABLE)
2273		priv->status &= ~STATUS_ENABLED;
2274
2275	priv->status &= ~STATUS_CMD_ACTIVE;
2276
2277	wake_up_interruptible(&priv->wait_command_queue);
2278}
2279
2280#ifdef CONFIG_IPW2100_DEBUG
2281static const char *frame_types[] = {
2282	"COMMAND_STATUS_VAL",
2283	"STATUS_CHANGE_VAL",
2284	"P80211_DATA_VAL",
2285	"P8023_DATA_VAL",
2286	"HOST_NOTIFICATION_VAL"
2287};
2288#endif
2289
2290static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2291				    struct ipw2100_rx_packet *packet)
2292{
2293	packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2294	if (!packet->skb)
2295		return -ENOMEM;
2296
2297	packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2298	packet->dma_addr = dma_map_single(&priv->pci_dev->dev,
2299					  packet->skb->data,
2300					  sizeof(struct ipw2100_rx),
2301					  DMA_FROM_DEVICE);
2302	if (dma_mapping_error(&priv->pci_dev->dev, packet->dma_addr)) {
2303		dev_kfree_skb(packet->skb);
2304		return -ENOMEM;
2305	}
2306
2307	return 0;
2308}
2309
2310#define SEARCH_ERROR   0xffffffff
2311#define SEARCH_FAIL    0xfffffffe
2312#define SEARCH_SUCCESS 0xfffffff0
2313#define SEARCH_DISCARD 0
2314#define SEARCH_SNAPSHOT 1
2315
2316#define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2317static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2318{
2319	int i;
2320	if (!priv->snapshot[0])
2321		return;
2322	for (i = 0; i < 0x30; i++)
2323		kfree(priv->snapshot[i]);
2324	priv->snapshot[0] = NULL;
2325}
2326
2327#ifdef IPW2100_DEBUG_C3
2328static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2329{
2330	int i;
2331	if (priv->snapshot[0])
2332		return 1;
2333	for (i = 0; i < 0x30; i++) {
2334		priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2335		if (!priv->snapshot[i]) {
2336			IPW_DEBUG_INFO("%s: Error allocating snapshot "
2337				       "buffer %d\n", priv->net_dev->name, i);
2338			while (i > 0)
2339				kfree(priv->snapshot[--i]);
2340			priv->snapshot[0] = NULL;
2341			return 0;
2342		}
2343	}
2344
2345	return 1;
2346}
2347
2348static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2349				    size_t len, int mode)
2350{
2351	u32 i, j;
2352	u32 tmp;
2353	u8 *s, *d;
2354	u32 ret;
2355
2356	s = in_buf;
2357	if (mode == SEARCH_SNAPSHOT) {
2358		if (!ipw2100_snapshot_alloc(priv))
2359			mode = SEARCH_DISCARD;
2360	}
2361
2362	for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2363		read_nic_dword(priv->net_dev, i, &tmp);
2364		if (mode == SEARCH_SNAPSHOT)
2365			*(u32 *) SNAPSHOT_ADDR(i) = tmp;
2366		if (ret == SEARCH_FAIL) {
2367			d = (u8 *) & tmp;
2368			for (j = 0; j < 4; j++) {
2369				if (*s != *d) {
2370					s = in_buf;
2371					continue;
2372				}
2373
2374				s++;
2375				d++;
2376
2377				if ((s - in_buf) == len)
2378					ret = (i + j) - len + 1;
2379			}
2380		} else if (mode == SEARCH_DISCARD)
2381			return ret;
2382	}
2383
2384	return ret;
2385}
2386#endif
2387
2388/*
2389 *
2390 * 0) Disconnect the SKB from the firmware (just unmap)
2391 * 1) Pack the ETH header into the SKB
2392 * 2) Pass the SKB to the network stack
2393 *
2394 * When packet is provided by the firmware, it contains the following:
2395 *
2396 * .  libipw_hdr
2397 * .  libipw_snap_hdr
2398 *
2399 * The size of the constructed ethernet
2400 *
2401 */
2402#ifdef IPW2100_RX_DEBUG
2403static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2404#endif
2405
2406static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2407{
2408#ifdef IPW2100_DEBUG_C3
2409	struct ipw2100_status *status = &priv->status_queue.drv[i];
2410	u32 match, reg;
2411	int j;
2412#endif
2413
2414	IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2415		       i * sizeof(struct ipw2100_status));
2416
2417#ifdef IPW2100_DEBUG_C3
2418	/* Halt the firmware so we can get a good image */
2419	write_register(priv->net_dev, IPW_REG_RESET_REG,
2420		       IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2421	j = 5;
2422	do {
2423		udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2424		read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2425
2426		if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2427			break;
2428	} while (j--);
2429
2430	match = ipw2100_match_buf(priv, (u8 *) status,
2431				  sizeof(struct ipw2100_status),
2432				  SEARCH_SNAPSHOT);
2433	if (match < SEARCH_SUCCESS)
2434		IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2435			       "offset 0x%06X, length %d:\n",
2436			       priv->net_dev->name, match,
2437			       sizeof(struct ipw2100_status));
2438	else
2439		IPW_DEBUG_INFO("%s: No DMA status match in "
2440			       "Firmware.\n", priv->net_dev->name);
2441
2442	printk_buf((u8 *) priv->status_queue.drv,
2443		   sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2444#endif
2445
2446	priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2447	priv->net_dev->stats.rx_errors++;
2448	schedule_reset(priv);
2449}
2450
2451static void isr_rx(struct ipw2100_priv *priv, int i,
2452			  struct libipw_rx_stats *stats)
2453{
2454	struct net_device *dev = priv->net_dev;
2455	struct ipw2100_status *status = &priv->status_queue.drv[i];
2456	struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2457
2458	IPW_DEBUG_RX("Handler...\n");
2459
2460	if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2461		IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2462			       "  Dropping.\n",
2463			       dev->name,
2464			       status->frame_size, skb_tailroom(packet->skb));
2465		dev->stats.rx_errors++;
2466		return;
2467	}
2468
2469	if (unlikely(!netif_running(dev))) {
2470		dev->stats.rx_errors++;
2471		priv->wstats.discard.misc++;
2472		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2473		return;
2474	}
2475
2476	if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2477		     !(priv->status & STATUS_ASSOCIATED))) {
2478		IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2479		priv->wstats.discard.misc++;
2480		return;
2481	}
2482
2483	dma_unmap_single(&priv->pci_dev->dev, packet->dma_addr,
2484			 sizeof(struct ipw2100_rx), DMA_FROM_DEVICE);
2485
2486	skb_put(packet->skb, status->frame_size);
2487
2488#ifdef IPW2100_RX_DEBUG
2489	/* Make a copy of the frame so we can dump it to the logs if
2490	 * libipw_rx fails */
2491	skb_copy_from_linear_data(packet->skb, packet_data,
2492				  min_t(u32, status->frame_size,
2493					     IPW_RX_NIC_BUFFER_LENGTH));
2494#endif
2495
2496	if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2497#ifdef IPW2100_RX_DEBUG
2498		IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2499			       dev->name);
2500		printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2501#endif
2502		dev->stats.rx_errors++;
2503
2504		/* libipw_rx failed, so it didn't free the SKB */
2505		dev_kfree_skb_any(packet->skb);
2506		packet->skb = NULL;
2507	}
2508
2509	/* We need to allocate a new SKB and attach it to the RDB. */
2510	if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2511		printk(KERN_WARNING DRV_NAME ": "
2512		       "%s: Unable to allocate SKB onto RBD ring - disabling "
2513		       "adapter.\n", dev->name);
2514		/* TODO: schedule adapter shutdown */
2515		IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2516	}
2517
2518	/* Update the RDB entry */
2519	priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2520}
2521
2522#ifdef CONFIG_IPW2100_MONITOR
2523
2524static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2525		   struct libipw_rx_stats *stats)
2526{
2527	struct net_device *dev = priv->net_dev;
2528	struct ipw2100_status *status = &priv->status_queue.drv[i];
2529	struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2530
2531	/* Magic struct that slots into the radiotap header -- no reason
2532	 * to build this manually element by element, we can write it much
2533	 * more efficiently than we can parse it. ORDER MATTERS HERE */
2534	struct ipw_rt_hdr {
2535		struct ieee80211_radiotap_header rt_hdr;
2536		s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2537	} *ipw_rt;
2538
2539	IPW_DEBUG_RX("Handler...\n");
2540
2541	if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2542				sizeof(struct ipw_rt_hdr))) {
2543		IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2544			       "  Dropping.\n",
2545			       dev->name,
2546			       status->frame_size,
2547			       skb_tailroom(packet->skb));
2548		dev->stats.rx_errors++;
2549		return;
2550	}
2551
2552	if (unlikely(!netif_running(dev))) {
2553		dev->stats.rx_errors++;
2554		priv->wstats.discard.misc++;
2555		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2556		return;
2557	}
2558
2559	if (unlikely(priv->config & CFG_CRC_CHECK &&
2560		     status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2561		IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2562		dev->stats.rx_errors++;
2563		return;
2564	}
2565
2566	dma_unmap_single(&priv->pci_dev->dev, packet->dma_addr,
2567			 sizeof(struct ipw2100_rx), DMA_FROM_DEVICE);
2568	memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2569		packet->skb->data, status->frame_size);
2570
2571	ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2572
2573	ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2574	ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2575	ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2576
2577	ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2578
2579	ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2580
2581	skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2582
2583	if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2584		dev->stats.rx_errors++;
2585
2586		/* libipw_rx failed, so it didn't free the SKB */
2587		dev_kfree_skb_any(packet->skb);
2588		packet->skb = NULL;
2589	}
2590
2591	/* We need to allocate a new SKB and attach it to the RDB. */
2592	if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2593		IPW_DEBUG_WARNING(
2594			"%s: Unable to allocate SKB onto RBD ring - disabling "
2595			"adapter.\n", dev->name);
2596		/* TODO: schedule adapter shutdown */
2597		IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2598	}
2599
2600	/* Update the RDB entry */
2601	priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2602}
2603
2604#endif
2605
2606static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2607{
2608	struct ipw2100_status *status = &priv->status_queue.drv[i];
2609	struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2610	u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2611
2612	switch (frame_type) {
2613	case COMMAND_STATUS_VAL:
2614		return (status->frame_size != sizeof(u->rx_data.command));
2615	case STATUS_CHANGE_VAL:
2616		return (status->frame_size != sizeof(u->rx_data.status));
2617	case HOST_NOTIFICATION_VAL:
2618		return (status->frame_size < sizeof(u->rx_data.notification));
2619	case P80211_DATA_VAL:
2620	case P8023_DATA_VAL:
2621#ifdef CONFIG_IPW2100_MONITOR
2622		return 0;
2623#else
2624		switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2625		case IEEE80211_FTYPE_MGMT:
2626		case IEEE80211_FTYPE_CTL:
2627			return 0;
2628		case IEEE80211_FTYPE_DATA:
2629			return (status->frame_size >
2630				IPW_MAX_802_11_PAYLOAD_LENGTH);
2631		}
2632#endif
2633	}
2634
2635	return 1;
2636}
2637
2638/*
2639 * ipw2100 interrupts are disabled at this point, and the ISR
2640 * is the only code that calls this method.  So, we do not need
2641 * to play with any locks.
2642 *
2643 * RX Queue works as follows:
2644 *
2645 * Read index - firmware places packet in entry identified by the
2646 *              Read index and advances Read index.  In this manner,
2647 *              Read index will always point to the next packet to
2648 *              be filled--but not yet valid.
2649 *
2650 * Write index - driver fills this entry with an unused RBD entry.
2651 *               This entry has not filled by the firmware yet.
2652 *
2653 * In between the W and R indexes are the RBDs that have been received
2654 * but not yet processed.
2655 *
2656 * The process of handling packets will start at WRITE + 1 and advance
2657 * until it reaches the READ index.
2658 *
2659 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2660 *
2661 */
2662static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2663{
2664	struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2665	struct ipw2100_status_queue *sq = &priv->status_queue;
2666	struct ipw2100_rx_packet *packet;
2667	u16 frame_type;
2668	u32 r, w, i, s;
2669	struct ipw2100_rx *u;
2670	struct libipw_rx_stats stats = {
2671		.mac_time = jiffies,
2672	};
2673
2674	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2675	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2676
2677	if (r >= rxq->entries) {
2678		IPW_DEBUG_RX("exit - bad read index\n");
2679		return;
2680	}
2681
2682	i = (rxq->next + 1) % rxq->entries;
2683	s = i;
2684	while (i != r) {
2685		/* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2686		   r, rxq->next, i); */
2687
2688		packet = &priv->rx_buffers[i];
2689
2690		/* Sync the DMA for the RX buffer so CPU is sure to get
2691		 * the correct values */
2692		dma_sync_single_for_cpu(&priv->pci_dev->dev, packet->dma_addr,
2693					sizeof(struct ipw2100_rx),
2694					DMA_FROM_DEVICE);
2695
2696		if (unlikely(ipw2100_corruption_check(priv, i))) {
2697			ipw2100_corruption_detected(priv, i);
2698			goto increment;
2699		}
2700
2701		u = packet->rxp;
2702		frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2703		stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2704		stats.len = sq->drv[i].frame_size;
2705
2706		stats.mask = 0;
2707		if (stats.rssi != 0)
2708			stats.mask |= LIBIPW_STATMASK_RSSI;
2709		stats.freq = LIBIPW_24GHZ_BAND;
2710
2711		IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2712			     priv->net_dev->name, frame_types[frame_type],
2713			     stats.len);
2714
2715		switch (frame_type) {
2716		case COMMAND_STATUS_VAL:
2717			/* Reset Rx watchdog */
2718			isr_rx_complete_command(priv, &u->rx_data.command);
2719			break;
2720
2721		case STATUS_CHANGE_VAL:
2722			isr_status_change(priv, u->rx_data.status);
2723			break;
2724
2725		case P80211_DATA_VAL:
2726		case P8023_DATA_VAL:
2727#ifdef CONFIG_IPW2100_MONITOR
2728			if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2729				isr_rx_monitor(priv, i, &stats);
2730				break;
2731			}
2732#endif
2733			if (stats.len < sizeof(struct libipw_hdr_3addr))
2734				break;
2735			switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2736			case IEEE80211_FTYPE_MGMT:
2737				libipw_rx_mgt(priv->ieee,
2738						 &u->rx_data.header, &stats);
2739				break;
2740
2741			case IEEE80211_FTYPE_CTL:
2742				break;
2743
2744			case IEEE80211_FTYPE_DATA:
2745				isr_rx(priv, i, &stats);
2746				break;
2747
2748			}
2749			break;
2750		}
2751
2752	      increment:
2753		/* clear status field associated with this RBD */
2754		rxq->drv[i].status.info.field = 0;
2755
2756		i = (i + 1) % rxq->entries;
2757	}
2758
2759	if (i != s) {
2760		/* backtrack one entry, wrapping to end if at 0 */
2761		rxq->next = (i ? i : rxq->entries) - 1;
2762
2763		write_register(priv->net_dev,
2764			       IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2765	}
2766}
2767
2768/*
2769 * __ipw2100_tx_process
2770 *
2771 * This routine will determine whether the next packet on
2772 * the fw_pend_list has been processed by the firmware yet.
2773 *
2774 * If not, then it does nothing and returns.
2775 *
2776 * If so, then it removes the item from the fw_pend_list, frees
2777 * any associated storage, and places the item back on the
2778 * free list of its source (either msg_free_list or tx_free_list)
2779 *
2780 * TX Queue works as follows:
2781 *
2782 * Read index - points to the next TBD that the firmware will
2783 *              process.  The firmware will read the data, and once
2784 *              done processing, it will advance the Read index.
2785 *
2786 * Write index - driver fills this entry with an constructed TBD
2787 *               entry.  The Write index is not advanced until the
2788 *               packet has been configured.
2789 *
2790 * In between the W and R indexes are the TBDs that have NOT been
2791 * processed.  Lagging behind the R index are packets that have
2792 * been processed but have not been freed by the driver.
2793 *
2794 * In order to free old storage, an internal index will be maintained
2795 * that points to the next packet to be freed.  When all used
2796 * packets have been freed, the oldest index will be the same as the
2797 * firmware's read index.
2798 *
2799 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2800 *
2801 * Because the TBD structure can not contain arbitrary data, the
2802 * driver must keep an internal queue of cached allocations such that
2803 * it can put that data back into the tx_free_list and msg_free_list
2804 * for use by future command and data packets.
2805 *
2806 */
2807static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2808{
2809	struct ipw2100_bd_queue *txq = &priv->tx_queue;
2810	struct ipw2100_bd *tbd;
2811	struct list_head *element;
2812	struct ipw2100_tx_packet *packet;
2813	int descriptors_used;
2814	int e, i;
2815	u32 r, w, frag_num = 0;
2816
2817	if (list_empty(&priv->fw_pend_list))
2818		return 0;
2819
2820	element = priv->fw_pend_list.next;
2821
2822	packet = list_entry(element, struct ipw2100_tx_packet, list);
2823	tbd = &txq->drv[packet->index];
2824
2825	/* Determine how many TBD entries must be finished... */
2826	switch (packet->type) {
2827	case COMMAND:
2828		/* COMMAND uses only one slot; don't advance */
2829		descriptors_used = 1;
2830		e = txq->oldest;
2831		break;
2832
2833	case DATA:
2834		/* DATA uses two slots; advance and loop position. */
2835		descriptors_used = tbd->num_fragments;
2836		frag_num = tbd->num_fragments - 1;
2837		e = txq->oldest + frag_num;
2838		e %= txq->entries;
2839		break;
2840
2841	default:
2842		printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2843		       priv->net_dev->name);
2844		return 0;
2845	}
2846
2847	/* if the last TBD is not done by NIC yet, then packet is
2848	 * not ready to be released.
2849	 *
2850	 */
2851	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2852		      &r);
2853	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2854		      &w);
2855	if (w != txq->next)
2856		printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2857		       priv->net_dev->name);
2858
2859	/*
2860	 * txq->next is the index of the last packet written txq->oldest is
2861	 * the index of the r is the index of the next packet to be read by
2862	 * firmware
2863	 */
2864
2865	/*
2866	 * Quick graphic to help you visualize the following
2867	 * if / else statement
2868	 *
2869	 * ===>|                     s---->|===============
2870	 *                               e>|
2871	 * | a | b | c | d | e | f | g | h | i | j | k | l
2872	 *       r---->|
2873	 *               w
2874	 *
2875	 * w - updated by driver
2876	 * r - updated by firmware
2877	 * s - start of oldest BD entry (txq->oldest)
2878	 * e - end of oldest BD entry
2879	 *
2880	 */
2881	if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2882		IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2883		return 0;
2884	}
2885
2886	list_del(element);
2887	DEC_STAT(&priv->fw_pend_stat);
2888
2889#ifdef CONFIG_IPW2100_DEBUG
2890	{
2891		i = txq->oldest;
2892		IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2893			     &txq->drv[i],
2894			     (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2895			     txq->drv[i].host_addr, txq->drv[i].buf_length);
2896
2897		if (packet->type == DATA) {
2898			i = (i + 1) % txq->entries;
2899
2900			IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2901				     &txq->drv[i],
2902				     (u32) (txq->nic + i *
2903					    sizeof(struct ipw2100_bd)),
2904				     (u32) txq->drv[i].host_addr,
2905				     txq->drv[i].buf_length);
2906		}
2907	}
2908#endif
2909
2910	switch (packet->type) {
2911	case DATA:
2912		if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2913			printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2914			       "Expecting DATA TBD but pulled "
2915			       "something else: ids %d=%d.\n",
2916			       priv->net_dev->name, txq->oldest, packet->index);
2917
2918		/* DATA packet; we have to unmap and free the SKB */
2919		for (i = 0; i < frag_num; i++) {
2920			tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2921
2922			IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2923				     (packet->index + 1 + i) % txq->entries,
2924				     tbd->host_addr, tbd->buf_length);
2925
2926			dma_unmap_single(&priv->pci_dev->dev, tbd->host_addr,
2927					 tbd->buf_length, DMA_TO_DEVICE);
2928		}
2929
2930		libipw_txb_free(packet->info.d_struct.txb);
2931		packet->info.d_struct.txb = NULL;
2932
2933		list_add_tail(element, &priv->tx_free_list);
2934		INC_STAT(&priv->tx_free_stat);
2935
2936		/* We have a free slot in the Tx queue, so wake up the
2937		 * transmit layer if it is stopped. */
2938		if (priv->status & STATUS_ASSOCIATED)
2939			netif_wake_queue(priv->net_dev);
2940
2941		/* A packet was processed by the hardware, so update the
2942		 * watchdog */
2943		netif_trans_update(priv->net_dev);
2944
2945		break;
2946
2947	case COMMAND:
2948		if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2949			printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2950			       "Expecting COMMAND TBD but pulled "
2951			       "something else: ids %d=%d.\n",
2952			       priv->net_dev->name, txq->oldest, packet->index);
2953
2954#ifdef CONFIG_IPW2100_DEBUG
2955		if (packet->info.c_struct.cmd->host_command_reg <
2956		    ARRAY_SIZE(command_types))
2957			IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2958				     command_types[packet->info.c_struct.cmd->
2959						   host_command_reg],
2960				     packet->info.c_struct.cmd->
2961				     host_command_reg,
2962				     packet->info.c_struct.cmd->cmd_status_reg);
2963#endif
2964
2965		list_add_tail(element, &priv->msg_free_list);
2966		INC_STAT(&priv->msg_free_stat);
2967		break;
2968	}
2969
2970	/* advance oldest used TBD pointer to start of next entry */
2971	txq->oldest = (e + 1) % txq->entries;
2972	/* increase available TBDs number */
2973	txq->available += descriptors_used;
2974	SET_STAT(&priv->txq_stat, txq->available);
2975
2976	IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2977		     jiffies - packet->jiffy_start);
2978
2979	return (!list_empty(&priv->fw_pend_list));
2980}
2981
2982static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2983{
2984	int i = 0;
2985
2986	while (__ipw2100_tx_process(priv) && i < 200)
2987		i++;
2988
2989	if (i == 200) {
2990		printk(KERN_WARNING DRV_NAME ": "
2991		       "%s: Driver is running slow (%d iters).\n",
2992		       priv->net_dev->name, i);
2993	}
2994}
2995
2996static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2997{
2998	struct list_head *element;
2999	struct ipw2100_tx_packet *packet;
3000	struct ipw2100_bd_queue *txq = &priv->tx_queue;
3001	struct ipw2100_bd *tbd;
3002	int next = txq->next;
3003
3004	while (!list_empty(&priv->msg_pend_list)) {
3005		/* if there isn't enough space in TBD queue, then
3006		 * don't stuff a new one in.
3007		 * NOTE: 3 are needed as a command will take one,
3008		 *       and there is a minimum of 2 that must be
3009		 *       maintained between the r and w indexes
3010		 */
3011		if (txq->available <= 3) {
3012			IPW_DEBUG_TX("no room in tx_queue\n");
3013			break;
3014		}
3015
3016		element = priv->msg_pend_list.next;
3017		list_del(element);
3018		DEC_STAT(&priv->msg_pend_stat);
3019
3020		packet = list_entry(element, struct ipw2100_tx_packet, list);
3021
3022		IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3023			     &txq->drv[txq->next],
3024			     (u32) (txq->nic + txq->next *
3025				      sizeof(struct ipw2100_bd)));
3026
3027		packet->index = txq->next;
3028
3029		tbd = &txq->drv[txq->next];
3030
3031		/* initialize TBD */
3032		tbd->host_addr = packet->info.c_struct.cmd_phys;
3033		tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3034		/* not marking number of fragments causes problems
3035		 * with f/w debug version */
3036		tbd->num_fragments = 1;
3037		tbd->status.info.field =
3038		    IPW_BD_STATUS_TX_FRAME_COMMAND |
3039		    IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3040
3041		/* update TBD queue counters */
3042		txq->next++;
3043		txq->next %= txq->entries;
3044		txq->available--;
3045		DEC_STAT(&priv->txq_stat);
3046
3047		list_add_tail(element, &priv->fw_pend_list);
3048		INC_STAT(&priv->fw_pend_stat);
3049	}
3050
3051	if (txq->next != next) {
3052		/* kick off the DMA by notifying firmware the
3053		 * write index has moved; make sure TBD stores are sync'd */
3054		wmb();
3055		write_register(priv->net_dev,
3056			       IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3057			       txq->next);
3058	}
3059}
3060
3061/*
3062 * ipw2100_tx_send_data
3063 *
3064 */
3065static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3066{
3067	struct list_head *element;
3068	struct ipw2100_tx_packet *packet;
3069	struct ipw2100_bd_queue *txq = &priv->tx_queue;
3070	struct ipw2100_bd *tbd;
3071	int next = txq->next;
3072	int i = 0;
3073	struct ipw2100_data_header *ipw_hdr;
3074	struct libipw_hdr_3addr *hdr;
3075
3076	while (!list_empty(&priv->tx_pend_list)) {
3077		/* if there isn't enough space in TBD queue, then
3078		 * don't stuff a new one in.
3079		 * NOTE: 4 are needed as a data will take two,
3080		 *       and there is a minimum of 2 that must be
3081		 *       maintained between the r and w indexes
3082		 */
3083		element = priv->tx_pend_list.next;
3084		packet = list_entry(element, struct ipw2100_tx_packet, list);
3085
3086		if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3087			     IPW_MAX_BDS)) {
3088			/* TODO: Support merging buffers if more than
3089			 * IPW_MAX_BDS are used */
3090			IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3091				       "Increase fragmentation level.\n",
3092				       priv->net_dev->name);
3093		}
3094
3095		if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3096			IPW_DEBUG_TX("no room in tx_queue\n");
3097			break;
3098		}
3099
3100		list_del(element);
3101		DEC_STAT(&priv->tx_pend_stat);
3102
3103		tbd = &txq->drv[txq->next];
3104
3105		packet->index = txq->next;
3106
3107		ipw_hdr = packet->info.d_struct.data;
3108		hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3109		    fragments[0]->data;
3110
3111		if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3112			/* To DS: Addr1 = BSSID, Addr2 = SA,
3113			   Addr3 = DA */
3114			memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3115			memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3116		} else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3117			/* not From/To DS: Addr1 = DA, Addr2 = SA,
3118			   Addr3 = BSSID */
3119			memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3120			memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3121		}
3122
3123		ipw_hdr->host_command_reg = SEND;
3124		ipw_hdr->host_command_reg1 = 0;
3125
3126		/* For now we only support host based encryption */
3127		ipw_hdr->needs_encryption = 0;
3128		ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3129		if (packet->info.d_struct.txb->nr_frags > 1)
3130			ipw_hdr->fragment_size =
3131			    packet->info.d_struct.txb->frag_size -
3132			    LIBIPW_3ADDR_LEN;
3133		else
3134			ipw_hdr->fragment_size = 0;
3135
3136		tbd->host_addr = packet->info.d_struct.data_phys;
3137		tbd->buf_length = sizeof(struct ipw2100_data_header);
3138		tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3139		tbd->status.info.field =
3140		    IPW_BD_STATUS_TX_FRAME_802_3 |
3141		    IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3142		txq->next++;
3143		txq->next %= txq->entries;
3144
3145		IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3146			     packet->index, tbd->host_addr, tbd->buf_length);
3147#ifdef CONFIG_IPW2100_DEBUG
3148		if (packet->info.d_struct.txb->nr_frags > 1)
3149			IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3150				       packet->info.d_struct.txb->nr_frags);
3151#endif
3152
3153		for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3154			tbd = &txq->drv[txq->next];
3155			if (i == packet->info.d_struct.txb->nr_frags - 1)
3156				tbd->status.info.field =
3157				    IPW_BD_STATUS_TX_FRAME_802_3 |
3158				    IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3159			else
3160				tbd->status.info.field =
3161				    IPW_BD_STATUS_TX_FRAME_802_3 |
3162				    IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3163
3164			tbd->buf_length = packet->info.d_struct.txb->
3165			    fragments[i]->len - LIBIPW_3ADDR_LEN;
3166
3167			tbd->host_addr = dma_map_single(&priv->pci_dev->dev,
3168							packet->info.d_struct.
3169							txb->fragments[i]->data +
3170							LIBIPW_3ADDR_LEN,
3171							tbd->buf_length,
3172							DMA_TO_DEVICE);
3173			if (dma_mapping_error(&priv->pci_dev->dev, tbd->host_addr)) {
3174				IPW_DEBUG_TX("dma mapping error\n");
3175				break;
3176			}
3177
3178			IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3179				     txq->next, tbd->host_addr,
3180				     tbd->buf_length);
3181
3182			dma_sync_single_for_device(&priv->pci_dev->dev,
3183						   tbd->host_addr,
3184						   tbd->buf_length,
3185						   DMA_TO_DEVICE);
3186
3187			txq->next++;
3188			txq->next %= txq->entries;
3189		}
3190
3191		txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3192		SET_STAT(&priv->txq_stat, txq->available);
3193
3194		list_add_tail(element, &priv->fw_pend_list);
3195		INC_STAT(&priv->fw_pend_stat);
3196	}
3197
3198	if (txq->next != next) {
3199		/* kick off the DMA by notifying firmware the
3200		 * write index has moved; make sure TBD stores are sync'd */
3201		write_register(priv->net_dev,
3202			       IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3203			       txq->next);
3204	}
3205}
3206
3207static void ipw2100_irq_tasklet(unsigned long data)
3208{
3209	struct ipw2100_priv *priv = (struct ipw2100_priv *)data;
3210	struct net_device *dev = priv->net_dev;
3211	unsigned long flags;
3212	u32 inta, tmp;
3213
3214	spin_lock_irqsave(&priv->low_lock, flags);
3215	ipw2100_disable_interrupts(priv);
3216
3217	read_register(dev, IPW_REG_INTA, &inta);
3218
3219	IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3220		      (unsigned long)inta & IPW_INTERRUPT_MASK);
3221
3222	priv->in_isr++;
3223	priv->interrupts++;
3224
3225	/* We do not loop and keep polling for more interrupts as this
3226	 * is frowned upon and doesn't play nicely with other potentially
3227	 * chained IRQs */
3228	IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3229		      (unsigned long)inta & IPW_INTERRUPT_MASK);
3230
3231	if (inta & IPW2100_INTA_FATAL_ERROR) {
3232		printk(KERN_WARNING DRV_NAME
3233		       ": Fatal interrupt. Scheduling firmware restart.\n");
3234		priv->inta_other++;
3235		write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3236
3237		read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3238		IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3239			       priv->net_dev->name, priv->fatal_error);
3240
3241		read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3242		IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3243			       priv->net_dev->name, tmp);
3244
3245		/* Wake up any sleeping jobs */
3246		schedule_reset(priv);
3247	}
3248
3249	if (inta & IPW2100_INTA_PARITY_ERROR) {
3250		printk(KERN_ERR DRV_NAME
3251		       ": ***** PARITY ERROR INTERRUPT !!!!\n");
3252		priv->inta_other++;
3253		write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3254	}
3255
3256	if (inta & IPW2100_INTA_RX_TRANSFER) {
3257		IPW_DEBUG_ISR("RX interrupt\n");
3258
3259		priv->rx_interrupts++;
3260
3261		write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3262
3263		__ipw2100_rx_process(priv);
3264		__ipw2100_tx_complete(priv);
3265	}
3266
3267	if (inta & IPW2100_INTA_TX_TRANSFER) {
3268		IPW_DEBUG_ISR("TX interrupt\n");
3269
3270		priv->tx_interrupts++;
3271
3272		write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3273
3274		__ipw2100_tx_complete(priv);
3275		ipw2100_tx_send_commands(priv);
3276		ipw2100_tx_send_data(priv);
3277	}
3278
3279	if (inta & IPW2100_INTA_TX_COMPLETE) {
3280		IPW_DEBUG_ISR("TX complete\n");
3281		priv->inta_other++;
3282		write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3283
3284		__ipw2100_tx_complete(priv);
3285	}
3286
3287	if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3288		/* ipw2100_handle_event(dev); */
3289		priv->inta_other++;
3290		write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3291	}
3292
3293	if (inta & IPW2100_INTA_FW_INIT_DONE) {
3294		IPW_DEBUG_ISR("FW init done interrupt\n");
3295		priv->inta_other++;
3296
3297		read_register(dev, IPW_REG_INTA, &tmp);
3298		if (tmp & (IPW2100_INTA_FATAL_ERROR |
3299			   IPW2100_INTA_PARITY_ERROR)) {
3300			write_register(dev, IPW_REG_INTA,
3301				       IPW2100_INTA_FATAL_ERROR |
3302				       IPW2100_INTA_PARITY_ERROR);
3303		}
3304
3305		write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3306	}
3307
3308	if (inta & IPW2100_INTA_STATUS_CHANGE) {
3309		IPW_DEBUG_ISR("Status change interrupt\n");
3310		priv->inta_other++;
3311		write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3312	}
3313
3314	if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3315		IPW_DEBUG_ISR("slave host mode interrupt\n");
3316		priv->inta_other++;
3317		write_register(dev, IPW_REG_INTA,
3318			       IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3319	}
3320
3321	priv->in_isr--;
3322	ipw2100_enable_interrupts(priv);
3323
3324	spin_unlock_irqrestore(&priv->low_lock, flags);
3325
3326	IPW_DEBUG_ISR("exit\n");
3327}
3328
3329static irqreturn_t ipw2100_interrupt(int irq, void *data)
3330{
3331	struct ipw2100_priv *priv = data;
3332	u32 inta, inta_mask;
3333
3334	if (!data)
3335		return IRQ_NONE;
3336
3337	spin_lock(&priv->low_lock);
3338
3339	/* We check to see if we should be ignoring interrupts before
3340	 * we touch the hardware.  During ucode load if we try and handle
3341	 * an interrupt we can cause keyboard problems as well as cause
3342	 * the ucode to fail to initialize */
3343	if (!(priv->status & STATUS_INT_ENABLED)) {
3344		/* Shared IRQ */
3345		goto none;
3346	}
3347
3348	read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3349	read_register(priv->net_dev, IPW_REG_INTA, &inta);
3350
3351	if (inta == 0xFFFFFFFF) {
3352		/* Hardware disappeared */
3353		printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3354		goto none;
3355	}
3356
3357	inta &= IPW_INTERRUPT_MASK;
3358
3359	if (!(inta & inta_mask)) {
3360		/* Shared interrupt */
3361		goto none;
3362	}
3363
3364	/* We disable the hardware interrupt here just to prevent unneeded
3365	 * calls to be made.  We disable this again within the actual
3366	 * work tasklet, so if another part of the code re-enables the
3367	 * interrupt, that is fine */
3368	ipw2100_disable_interrupts(priv);
3369
3370	tasklet_schedule(&priv->irq_tasklet);
3371	spin_unlock(&priv->low_lock);
3372
3373	return IRQ_HANDLED;
3374      none:
3375	spin_unlock(&priv->low_lock);
3376	return IRQ_NONE;
3377}
3378
3379static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3380			      struct net_device *dev, int pri)
3381{
3382	struct ipw2100_priv *priv = libipw_priv(dev);
3383	struct list_head *element;
3384	struct ipw2100_tx_packet *packet;
3385	unsigned long flags;
3386
3387	spin_lock_irqsave(&priv->low_lock, flags);
3388
3389	if (!(priv->status & STATUS_ASSOCIATED)) {
3390		IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3391		priv->net_dev->stats.tx_carrier_errors++;
3392		netif_stop_queue(dev);
3393		goto fail_unlock;
3394	}
3395
3396	if (list_empty(&priv->tx_free_list))
3397		goto fail_unlock;
3398
3399	element = priv->tx_free_list.next;
3400	packet = list_entry(element, struct ipw2100_tx_packet, list);
3401
3402	packet->info.d_struct.txb = txb;
3403
3404	IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3405	printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3406
3407	packet->jiffy_start = jiffies;
3408
3409	list_del(element);
3410	DEC_STAT(&priv->tx_free_stat);
3411
3412	list_add_tail(element, &priv->tx_pend_list);
3413	INC_STAT(&priv->tx_pend_stat);
3414
3415	ipw2100_tx_send_data(priv);
3416
3417	spin_unlock_irqrestore(&priv->low_lock, flags);
3418	return NETDEV_TX_OK;
3419
3420fail_unlock:
3421	netif_stop_queue(dev);
3422	spin_unlock_irqrestore(&priv->low_lock, flags);
3423	return NETDEV_TX_BUSY;
3424}
3425
3426static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3427{
3428	int i, j, err = -EINVAL;
3429	void *v;
3430	dma_addr_t p;
3431
3432	priv->msg_buffers =
3433	    kmalloc_array(IPW_COMMAND_POOL_SIZE,
3434			  sizeof(struct ipw2100_tx_packet),
3435			  GFP_KERNEL);
3436	if (!priv->msg_buffers)
3437		return -ENOMEM;
3438
3439	for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3440		v = dma_alloc_coherent(&priv->pci_dev->dev,
3441				       sizeof(struct ipw2100_cmd_header), &p,
3442				       GFP_KERNEL);
3443		if (!v) {
3444			printk(KERN_ERR DRV_NAME ": "
3445			       "%s: PCI alloc failed for msg "
3446			       "buffers.\n", priv->net_dev->name);
3447			err = -ENOMEM;
3448			break;
3449		}
3450
3451		priv->msg_buffers[i].type = COMMAND;
3452		priv->msg_buffers[i].info.c_struct.cmd =
3453		    (struct ipw2100_cmd_header *)v;
3454		priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3455	}
3456
3457	if (i == IPW_COMMAND_POOL_SIZE)
3458		return 0;
3459
3460	for (j = 0; j < i; j++) {
3461		dma_free_coherent(&priv->pci_dev->dev,
3462				  sizeof(struct ipw2100_cmd_header),
3463				  priv->msg_buffers[j].info.c_struct.cmd,
3464				  priv->msg_buffers[j].info.c_struct.cmd_phys);
3465	}
3466
3467	kfree(priv->msg_buffers);
3468	priv->msg_buffers = NULL;
3469
3470	return err;
3471}
3472
3473static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3474{
3475	int i;
3476
3477	INIT_LIST_HEAD(&priv->msg_free_list);
3478	INIT_LIST_HEAD(&priv->msg_pend_list);
3479
3480	for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3481		list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3482	SET_STAT(&priv->msg_free_stat, i);
3483
3484	return 0;
3485}
3486
3487static void ipw2100_msg_free(struct ipw2100_priv *priv)
3488{
3489	int i;
3490
3491	if (!priv->msg_buffers)
3492		return;
3493
3494	for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3495		dma_free_coherent(&priv->pci_dev->dev,
3496				  sizeof(struct ipw2100_cmd_header),
3497				  priv->msg_buffers[i].info.c_struct.cmd,
3498				  priv->msg_buffers[i].info.c_struct.cmd_phys);
3499	}
3500
3501	kfree(priv->msg_buffers);
3502	priv->msg_buffers = NULL;
3503}
3504
3505static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3506			char *buf)
3507{
3508	struct pci_dev *pci_dev = to_pci_dev(d);
3509	char *out = buf;
3510	int i, j;
3511	u32 val;
3512
3513	for (i = 0; i < 16; i++) {
3514		out += sprintf(out, "[%08X] ", i * 16);
3515		for (j = 0; j < 16; j += 4) {
3516			pci_read_config_dword(pci_dev, i * 16 + j, &val);
3517			out += sprintf(out, "%08X ", val);
3518		}
3519		out += sprintf(out, "\n");
3520	}
3521
3522	return out - buf;
3523}
3524
3525static DEVICE_ATTR(pci, 0444, show_pci, NULL);
3526
3527static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3528			char *buf)
3529{
3530	struct ipw2100_priv *p = dev_get_drvdata(d);
3531	return sprintf(buf, "0x%08x\n", (int)p->config);
3532}
3533
3534static DEVICE_ATTR(cfg, 0444, show_cfg, NULL);
3535
3536static ssize_t show_status(struct device *d, struct device_attribute *attr,
3537			   char *buf)
3538{
3539	struct ipw2100_priv *p = dev_get_drvdata(d);
3540	return sprintf(buf, "0x%08x\n", (int)p->status);
3541}
3542
3543static DEVICE_ATTR(status, 0444, show_status, NULL);
3544
3545static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3546			       char *buf)
3547{
3548	struct ipw2100_priv *p = dev_get_drvdata(d);
3549	return sprintf(buf, "0x%08x\n", (int)p->capability);
3550}
3551
3552static DEVICE_ATTR(capability, 0444, show_capability, NULL);
3553
3554#define IPW2100_REG(x) { IPW_ ##x, #x }
3555static const struct {
3556	u32 addr;
3557	const char *name;
3558} hw_data[] = {
3559IPW2100_REG(REG_GP_CNTRL),
3560	    IPW2100_REG(REG_GPIO),
3561	    IPW2100_REG(REG_INTA),
3562	    IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3563#define IPW2100_NIC(x, s) { x, #x, s }
3564static const struct {
3565	u32 addr;
3566	const char *name;
3567	size_t size;
3568} nic_data[] = {
3569IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3570	    IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3571#define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3572static const struct {
3573	u8 index;
3574	const char *name;
3575	const char *desc;
3576} ord_data[] = {
3577IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3578	    IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3579				"successful Host Tx's (MSDU)"),
3580	    IPW2100_ORD(STAT_TX_DIR_DATA,
3581				"successful Directed Tx's (MSDU)"),
3582	    IPW2100_ORD(STAT_TX_DIR_DATA1,
3583				"successful Directed Tx's (MSDU) @ 1MB"),
3584	    IPW2100_ORD(STAT_TX_DIR_DATA2,
3585				"successful Directed Tx's (MSDU) @ 2MB"),
3586	    IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3587				"successful Directed Tx's (MSDU) @ 5_5MB"),
3588	    IPW2100_ORD(STAT_TX_DIR_DATA11,
3589				"successful Directed Tx's (MSDU) @ 11MB"),
3590	    IPW2100_ORD(STAT_TX_NODIR_DATA1,
3591				"successful Non_Directed Tx's (MSDU) @ 1MB"),
3592	    IPW2100_ORD(STAT_TX_NODIR_DATA2,
3593				"successful Non_Directed Tx's (MSDU) @ 2MB"),
3594	    IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3595				"successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3596	    IPW2100_ORD(STAT_TX_NODIR_DATA11,
3597				"successful Non_Directed Tx's (MSDU) @ 11MB"),
3598	    IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3599	    IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3600	    IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3601	    IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3602	    IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3603	    IPW2100_ORD(STAT_TX_ASSN_RESP,
3604				"successful Association response Tx's"),
3605	    IPW2100_ORD(STAT_TX_REASSN,
3606				"successful Reassociation Tx's"),
3607	    IPW2100_ORD(STAT_TX_REASSN_RESP,
3608				"successful Reassociation response Tx's"),
3609	    IPW2100_ORD(STAT_TX_PROBE,
3610				"probes successfully transmitted"),
3611	    IPW2100_ORD(STAT_TX_PROBE_RESP,
3612				"probe responses successfully transmitted"),
3613	    IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3614	    IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3615	    IPW2100_ORD(STAT_TX_DISASSN,
3616				"successful Disassociation TX"),
3617	    IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3618	    IPW2100_ORD(STAT_TX_DEAUTH,
3619				"successful Deauthentication TX"),
3620	    IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3621				"Total successful Tx data bytes"),
3622	    IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3623	    IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3624	    IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3625	    IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3626	    IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3627	    IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3628	    IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3629				"times max tries in a hop failed"),
3630	    IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3631				"times disassociation failed"),
3632	    IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3633	    IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3634	    IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3635	    IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3636	    IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3637	    IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3638	    IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3639				"directed packets at 5.5MB"),
3640	    IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3641	    IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3642	    IPW2100_ORD(STAT_RX_NODIR_DATA1,
3643				"nondirected packets at 1MB"),
3644	    IPW2100_ORD(STAT_RX_NODIR_DATA2,
3645				"nondirected packets at 2MB"),
3646	    IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3647				"nondirected packets at 5.5MB"),
3648	    IPW2100_ORD(STAT_RX_NODIR_DATA11,
3649				"nondirected packets at 11MB"),
3650	    IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3651	    IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3652								    "Rx CTS"),
3653	    IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3654	    IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3655	    IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3656	    IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3657	    IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3658	    IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3659	    IPW2100_ORD(STAT_RX_REASSN_RESP,
3660				"Reassociation response Rx's"),
3661	    IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3662	    IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3663	    IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3664	    IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3665	    IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3666	    IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3667	    IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3668	    IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3669				"Total rx data bytes received"),
3670	    IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3671	    IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3672	    IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3673	    IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3674	    IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3675	    IPW2100_ORD(STAT_RX_DUPLICATE1,
3676				"duplicate rx packets at 1MB"),
3677	    IPW2100_ORD(STAT_RX_DUPLICATE2,
3678				"duplicate rx packets at 2MB"),
3679	    IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3680				"duplicate rx packets at 5.5MB"),
3681	    IPW2100_ORD(STAT_RX_DUPLICATE11,
3682				"duplicate rx packets at 11MB"),
3683	    IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3684	    IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3685	    IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3686	    IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3687	    IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3688				"rx frames with invalid protocol"),
3689	    IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3690	    IPW2100_ORD(STAT_RX_NO_BUFFER,
3691				"rx frames rejected due to no buffer"),
3692	    IPW2100_ORD(STAT_RX_MISSING_FRAG,
3693				"rx frames dropped due to missing fragment"),
3694	    IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3695				"rx frames dropped due to non-sequential fragment"),
3696	    IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3697				"rx frames dropped due to unmatched 1st frame"),
3698	    IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3699				"rx frames dropped due to uncompleted frame"),
3700	    IPW2100_ORD(STAT_RX_ICV_ERRORS,
3701				"ICV errors during decryption"),
3702	    IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3703	    IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3704	    IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3705				"poll response timeouts"),
3706	    IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3707				"timeouts waiting for last {broad,multi}cast pkt"),
3708	    IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3709	    IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3710	    IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3711	    IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3712	    IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3713				"current calculation of % missed beacons"),
3714	    IPW2100_ORD(STAT_PERCENT_RETRIES,
3715				"current calculation of % missed tx retries"),
3716	    IPW2100_ORD(ASSOCIATED_AP_PTR,
3717				"0 if not associated, else pointer to AP table entry"),
3718	    IPW2100_ORD(AVAILABLE_AP_CNT,
3719				"AP's described in the AP table"),
3720	    IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3721	    IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3722	    IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3723	    IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3724				"failures due to response fail"),
3725	    IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3726	    IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3727	    IPW2100_ORD(STAT_ROAM_INHIBIT,
3728				"times roaming was inhibited due to activity"),
3729	    IPW2100_ORD(RSSI_AT_ASSN,
3730				"RSSI of associated AP at time of association"),
3731	    IPW2100_ORD(STAT_ASSN_CAUSE1,
3732				"reassociation: no probe response or TX on hop"),
3733	    IPW2100_ORD(STAT_ASSN_CAUSE2,
3734				"reassociation: poor tx/rx quality"),
3735	    IPW2100_ORD(STAT_ASSN_CAUSE3,
3736				"reassociation: tx/rx quality (excessive AP load"),
3737	    IPW2100_ORD(STAT_ASSN_CAUSE4,
3738				"reassociation: AP RSSI level"),
3739	    IPW2100_ORD(STAT_ASSN_CAUSE5,
3740				"reassociations due to load leveling"),
3741	    IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3742	    IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3743				"times authentication response failed"),
3744	    IPW2100_ORD(STATION_TABLE_CNT,
3745				"entries in association table"),
3746	    IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3747	    IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3748	    IPW2100_ORD(COUNTRY_CODE,
3749				"IEEE country code as recv'd from beacon"),
3750	    IPW2100_ORD(COUNTRY_CHANNELS,
3751				"channels supported by country"),
3752	    IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3753	    IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3754	    IPW2100_ORD(ANTENNA_DIVERSITY,
3755				"TRUE if antenna diversity is disabled"),
3756	    IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3757	    IPW2100_ORD(OUR_FREQ,
3758				"current radio freq lower digits - channel ID"),
3759	    IPW2100_ORD(RTC_TIME, "current RTC time"),
3760	    IPW2100_ORD(PORT_TYPE, "operating mode"),
3761	    IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3762	    IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3763	    IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3764	    IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3765	    IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3766	    IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3767	    IPW2100_ORD(CAPABILITIES,
3768				"Management frame capability field"),
3769	    IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3770	    IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3771	    IPW2100_ORD(RTS_THRESHOLD,
3772				"Min packet length for RTS handshaking"),
3773	    IPW2100_ORD(INT_MODE, "International mode"),
3774	    IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3775				"protocol frag threshold"),
3776	    IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3777				"EEPROM offset in SRAM"),
3778	    IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3779				"EEPROM size in SRAM"),
3780	    IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3781	    IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3782				"EEPROM IBSS 11b channel set"),
3783	    IPW2100_ORD(MAC_VERSION, "MAC Version"),
3784	    IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3785	    IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3786	    IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3787	    IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3788
3789static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3790			      char *buf)
3791{
3792	int i;
3793	struct ipw2100_priv *priv = dev_get_drvdata(d);
3794	struct net_device *dev = priv->net_dev;
3795	char *out = buf;
3796	u32 val = 0;
3797
3798	out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3799
3800	for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3801		read_register(dev, hw_data[i].addr, &val);
3802		out += sprintf(out, "%30s [%08X] : %08X\n",
3803			       hw_data[i].name, hw_data[i].addr, val);
3804	}
3805
3806	return out - buf;
3807}
3808
3809static DEVICE_ATTR(registers, 0444, show_registers, NULL);
3810
3811static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3812			     char *buf)
3813{
3814	struct ipw2100_priv *priv = dev_get_drvdata(d);
3815	struct net_device *dev = priv->net_dev;
3816	char *out = buf;
3817	int i;
3818
3819	out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3820
3821	for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3822		u8 tmp8;
3823		u16 tmp16;
3824		u32 tmp32;
3825
3826		switch (nic_data[i].size) {
3827		case 1:
3828			read_nic_byte(dev, nic_data[i].addr, &tmp8);
3829			out += sprintf(out, "%30s [%08X] : %02X\n",
3830				       nic_data[i].name, nic_data[i].addr,
3831				       tmp8);
3832			break;
3833		case 2:
3834			read_nic_word(dev, nic_data[i].addr, &tmp16);
3835			out += sprintf(out, "%30s [%08X] : %04X\n",
3836				       nic_data[i].name, nic_data[i].addr,
3837				       tmp16);
3838			break;
3839		case 4:
3840			read_nic_dword(dev, nic_data[i].addr, &tmp32);
3841			out += sprintf(out, "%30s [%08X] : %08X\n",
3842				       nic_data[i].name, nic_data[i].addr,
3843				       tmp32);
3844			break;
3845		}
3846	}
3847	return out - buf;
3848}
3849
3850static DEVICE_ATTR(hardware, 0444, show_hardware, NULL);
3851
3852static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3853			   char *buf)
3854{
3855	struct ipw2100_priv *priv = dev_get_drvdata(d);
3856	struct net_device *dev = priv->net_dev;
3857	static unsigned long loop = 0;
3858	int len = 0;
3859	u32 buffer[4];
3860	int i;
3861	char line[81];
3862
3863	if (loop >= 0x30000)
3864		loop = 0;
3865
3866	/* sysfs provides us PAGE_SIZE buffer */
3867	while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3868
3869		if (priv->snapshot[0])
3870			for (i = 0; i < 4; i++)
3871				buffer[i] =
3872				    *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3873		else
3874			for (i = 0; i < 4; i++)
3875				read_nic_dword(dev, loop + i * 4, &buffer[i]);
3876
3877		if (priv->dump_raw)
3878			len += sprintf(buf + len,
3879				       "%c%c%c%c"
3880				       "%c%c%c%c"
3881				       "%c%c%c%c"
3882				       "%c%c%c%c",
3883				       ((u8 *) buffer)[0x0],
3884				       ((u8 *) buffer)[0x1],
3885				       ((u8 *) buffer)[0x2],
3886				       ((u8 *) buffer)[0x3],
3887				       ((u8 *) buffer)[0x4],
3888				       ((u8 *) buffer)[0x5],
3889				       ((u8 *) buffer)[0x6],
3890				       ((u8 *) buffer)[0x7],
3891				       ((u8 *) buffer)[0x8],
3892				       ((u8 *) buffer)[0x9],
3893				       ((u8 *) buffer)[0xa],
3894				       ((u8 *) buffer)[0xb],
3895				       ((u8 *) buffer)[0xc],
3896				       ((u8 *) buffer)[0xd],
3897				       ((u8 *) buffer)[0xe],
3898				       ((u8 *) buffer)[0xf]);
3899		else
3900			len += sprintf(buf + len, "%s\n",
3901				       snprint_line(line, sizeof(line),
3902						    (u8 *) buffer, 16, loop));
3903		loop += 16;
3904	}
3905
3906	return len;
3907}
3908
3909static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3910			    const char *buf, size_t count)
3911{
3912	struct ipw2100_priv *priv = dev_get_drvdata(d);
3913	struct net_device *dev = priv->net_dev;
3914	const char *p = buf;
3915
3916	(void)dev;		/* kill unused-var warning for debug-only code */
3917
3918	if (count < 1)
3919		return count;
3920
3921	if (p[0] == '1' ||
3922	    (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3923		IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3924			       dev->name);
3925		priv->dump_raw = 1;
3926
3927	} else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3928				   tolower(p[1]) == 'f')) {
3929		IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3930			       dev->name);
3931		priv->dump_raw = 0;
3932
3933	} else if (tolower(p[0]) == 'r') {
3934		IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3935		ipw2100_snapshot_free(priv);
3936
3937	} else
3938		IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3939			       "reset = clear memory snapshot\n", dev->name);
3940
3941	return count;
3942}
3943
3944static DEVICE_ATTR(memory, 0644, show_memory, store_memory);
3945
3946static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3947			     char *buf)
3948{
3949	struct ipw2100_priv *priv = dev_get_drvdata(d);
3950	u32 val = 0;
3951	int len = 0;
3952	u32 val_len;
3953	static int loop = 0;
3954
3955	if (priv->status & STATUS_RF_KILL_MASK)
3956		return 0;
3957
3958	if (loop >= ARRAY_SIZE(ord_data))
3959		loop = 0;
3960
3961	/* sysfs provides us PAGE_SIZE buffer */
3962	while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3963		val_len = sizeof(u32);
3964
3965		if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3966					&val_len))
3967			len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3968				       ord_data[loop].index,
3969				       ord_data[loop].desc);
3970		else
3971			len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3972				       ord_data[loop].index, val,
3973				       ord_data[loop].desc);
3974		loop++;
3975	}
3976
3977	return len;
3978}
3979
3980static DEVICE_ATTR(ordinals, 0444, show_ordinals, NULL);
3981
3982static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3983			  char *buf)
3984{
3985	struct ipw2100_priv *priv = dev_get_drvdata(d);
3986	char *out = buf;
3987
3988	out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3989		       priv->interrupts, priv->tx_interrupts,
3990		       priv->rx_interrupts, priv->inta_other);
3991	out += sprintf(out, "firmware resets: %d\n", priv->resets);
3992	out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3993#ifdef CONFIG_IPW2100_DEBUG
3994	out += sprintf(out, "packet mismatch image: %s\n",
3995		       priv->snapshot[0] ? "YES" : "NO");
3996#endif
3997
3998	return out - buf;
3999}
4000
4001static DEVICE_ATTR(stats, 0444, show_stats, NULL);
4002
4003static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4004{
4005	int err;
4006
4007	if (mode == priv->ieee->iw_mode)
4008		return 0;
4009
4010	err = ipw2100_disable_adapter(priv);
4011	if (err) {
4012		printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4013		       priv->net_dev->name, err);
4014		return err;
4015	}
4016
4017	switch (mode) {
4018	case IW_MODE_INFRA:
4019		priv->net_dev->type = ARPHRD_ETHER;
4020		break;
4021	case IW_MODE_ADHOC:
4022		priv->net_dev->type = ARPHRD_ETHER;
4023		break;
4024#ifdef CONFIG_IPW2100_MONITOR
4025	case IW_MODE_MONITOR:
4026		priv->last_mode = priv->ieee->iw_mode;
4027		priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4028		break;
4029#endif				/* CONFIG_IPW2100_MONITOR */
4030	}
4031
4032	priv->ieee->iw_mode = mode;
4033
4034#ifdef CONFIG_PM
4035	/* Indicate ipw2100_download_firmware download firmware
4036	 * from disk instead of memory. */
4037	ipw2100_firmware.version = 0;
4038#endif
4039
4040	printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4041	priv->reset_backoff = 0;
4042	schedule_reset(priv);
4043
4044	return 0;
4045}
4046
4047static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4048			      char *buf)
4049{
4050	struct ipw2100_priv *priv = dev_get_drvdata(d);
4051	int len = 0;
4052
4053#define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4054
4055	if (priv->status & STATUS_ASSOCIATED)
4056		len += sprintf(buf + len, "connected: %llu\n",
4057			       ktime_get_boottime_seconds() - priv->connect_start);
4058	else
4059		len += sprintf(buf + len, "not connected\n");
4060
4061	DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4062	DUMP_VAR(status, "08lx");
4063	DUMP_VAR(config, "08lx");
4064	DUMP_VAR(capability, "08lx");
4065
4066	len +=
4067	    sprintf(buf + len, "last_rtc: %lu\n",
4068		    (unsigned long)priv->last_rtc);
4069
4070	DUMP_VAR(fatal_error, "d");
4071	DUMP_VAR(stop_hang_check, "d");
4072	DUMP_VAR(stop_rf_kill, "d");
4073	DUMP_VAR(messages_sent, "d");
4074
4075	DUMP_VAR(tx_pend_stat.value, "d");
4076	DUMP_VAR(tx_pend_stat.hi, "d");
4077
4078	DUMP_VAR(tx_free_stat.value, "d");
4079	DUMP_VAR(tx_free_stat.lo, "d");
4080
4081	DUMP_VAR(msg_free_stat.value, "d");
4082	DUMP_VAR(msg_free_stat.lo, "d");
4083
4084	DUMP_VAR(msg_pend_stat.value, "d");
4085	DUMP_VAR(msg_pend_stat.hi, "d");
4086
4087	DUMP_VAR(fw_pend_stat.value, "d");
4088	DUMP_VAR(fw_pend_stat.hi, "d");
4089
4090	DUMP_VAR(txq_stat.value, "d");
4091	DUMP_VAR(txq_stat.lo, "d");
4092
4093	DUMP_VAR(ieee->scans, "d");
4094	DUMP_VAR(reset_backoff, "lld");
4095
4096	return len;
4097}
4098
4099static DEVICE_ATTR(internals, 0444, show_internals, NULL);
4100
4101static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4102			    char *buf)
4103{
4104	struct ipw2100_priv *priv = dev_get_drvdata(d);
4105	char essid[IW_ESSID_MAX_SIZE + 1];
4106	u8 bssid[ETH_ALEN];
4107	u32 chan = 0;
4108	char *out = buf;
4109	unsigned int length;
4110	int ret;
4111
4112	if (priv->status & STATUS_RF_KILL_MASK)
4113		return 0;
4114
4115	memset(essid, 0, sizeof(essid));
4116	memset(bssid, 0, sizeof(bssid));
4117
4118	length = IW_ESSID_MAX_SIZE;
4119	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4120	if (ret)
4121		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4122			       __LINE__);
4123
4124	length = sizeof(bssid);
4125	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4126				  bssid, &length);
4127	if (ret)
4128		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4129			       __LINE__);
4130
4131	length = sizeof(u32);
4132	ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4133	if (ret)
4134		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4135			       __LINE__);
4136
4137	out += sprintf(out, "ESSID: %s\n", essid);
4138	out += sprintf(out, "BSSID:   %pM\n", bssid);
4139	out += sprintf(out, "Channel: %d\n", chan);
4140
4141	return out - buf;
4142}
4143
4144static DEVICE_ATTR(bssinfo, 0444, show_bssinfo, NULL);
4145
4146#ifdef CONFIG_IPW2100_DEBUG
4147static ssize_t debug_level_show(struct device_driver *d, char *buf)
4148{
4149	return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4150}
4151
4152static ssize_t debug_level_store(struct device_driver *d,
4153				 const char *buf, size_t count)
4154{
4155	u32 val;
4156	int ret;
4157
4158	ret = kstrtou32(buf, 0, &val);
4159	if (ret)
4160		IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4161	else
4162		ipw2100_debug_level = val;
4163
4164	return strnlen(buf, count);
4165}
4166static DRIVER_ATTR_RW(debug_level);
4167#endif				/* CONFIG_IPW2100_DEBUG */
4168
4169static ssize_t show_fatal_error(struct device *d,
4170				struct device_attribute *attr, char *buf)
4171{
4172	struct ipw2100_priv *priv = dev_get_drvdata(d);
4173	char *out = buf;
4174	int i;
4175
4176	if (priv->fatal_error)
4177		out += sprintf(out, "0x%08X\n", priv->fatal_error);
4178	else
4179		out += sprintf(out, "0\n");
4180
4181	for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4182		if (!priv->fatal_errors[(priv->fatal_index - i) %
4183					IPW2100_ERROR_QUEUE])
4184			continue;
4185
4186		out += sprintf(out, "%d. 0x%08X\n", i,
4187			       priv->fatal_errors[(priv->fatal_index - i) %
4188						  IPW2100_ERROR_QUEUE]);
4189	}
4190
4191	return out - buf;
4192}
4193
4194static ssize_t store_fatal_error(struct device *d,
4195				 struct device_attribute *attr, const char *buf,
4196				 size_t count)
4197{
4198	struct ipw2100_priv *priv = dev_get_drvdata(d);
4199	schedule_reset(priv);
4200	return count;
4201}
4202
4203static DEVICE_ATTR(fatal_error, 0644, show_fatal_error, store_fatal_error);
4204
4205static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4206			     char *buf)
4207{
4208	struct ipw2100_priv *priv = dev_get_drvdata(d);
4209	return sprintf(buf, "%d\n", priv->ieee->scan_age);
4210}
4211
4212static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4213			      const char *buf, size_t count)
4214{
4215	struct ipw2100_priv *priv = dev_get_drvdata(d);
4216	struct net_device *dev = priv->net_dev;
4217	unsigned long val;
4218	int ret;
4219
4220	(void)dev;		/* kill unused-var warning for debug-only code */
4221
4222	IPW_DEBUG_INFO("enter\n");
4223
4224	ret = kstrtoul(buf, 0, &val);
4225	if (ret) {
4226		IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4227	} else {
4228		priv->ieee->scan_age = val;
4229		IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4230	}
4231
4232	IPW_DEBUG_INFO("exit\n");
4233	return strnlen(buf, count);
4234}
4235
4236static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age);
4237
4238static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4239			    char *buf)
4240{
4241	/* 0 - RF kill not enabled
4242	   1 - SW based RF kill active (sysfs)
4243	   2 - HW based RF kill active
4244	   3 - Both HW and SW baed RF kill active */
4245	struct ipw2100_priv *priv = dev_get_drvdata(d);
4246	int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4247	    (rf_kill_active(priv) ? 0x2 : 0x0);
4248	return sprintf(buf, "%i\n", val);
4249}
4250
4251static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4252{
4253	if ((disable_radio ? 1 : 0) ==
4254	    (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4255		return 0;
4256
4257	IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4258			  disable_radio ? "OFF" : "ON");
4259
4260	mutex_lock(&priv->action_mutex);
4261
4262	if (disable_radio) {
4263		priv->status |= STATUS_RF_KILL_SW;
4264		ipw2100_down(priv);
4265	} else {
4266		priv->status &= ~STATUS_RF_KILL_SW;
4267		if (rf_kill_active(priv)) {
4268			IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4269					  "disabled by HW switch\n");
4270			/* Make sure the RF_KILL check timer is running */
4271			priv->stop_rf_kill = 0;
4272			mod_delayed_work(system_wq, &priv->rf_kill,
4273					 round_jiffies_relative(HZ));
4274		} else
4275			schedule_reset(priv);
4276	}
4277
4278	mutex_unlock(&priv->action_mutex);
4279	return 1;
4280}
4281
4282static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4283			     const char *buf, size_t count)
4284{
4285	struct ipw2100_priv *priv = dev_get_drvdata(d);
4286	ipw_radio_kill_sw(priv, buf[0] == '1');
4287	return count;
4288}
4289
4290static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill);
4291
4292static struct attribute *ipw2100_sysfs_entries[] = {
4293	&dev_attr_hardware.attr,
4294	&dev_attr_registers.attr,
4295	&dev_attr_ordinals.attr,
4296	&dev_attr_pci.attr,
4297	&dev_attr_stats.attr,
4298	&dev_attr_internals.attr,
4299	&dev_attr_bssinfo.attr,
4300	&dev_attr_memory.attr,
4301	&dev_attr_scan_age.attr,
4302	&dev_attr_fatal_error.attr,
4303	&dev_attr_rf_kill.attr,
4304	&dev_attr_cfg.attr,
4305	&dev_attr_status.attr,
4306	&dev_attr_capability.attr,
4307	NULL,
4308};
4309
4310static const struct attribute_group ipw2100_attribute_group = {
4311	.attrs = ipw2100_sysfs_entries,
4312};
4313
4314static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4315{
4316	struct ipw2100_status_queue *q = &priv->status_queue;
4317
4318	IPW_DEBUG_INFO("enter\n");
4319
4320	q->size = entries * sizeof(struct ipw2100_status);
4321	q->drv = dma_alloc_coherent(&priv->pci_dev->dev, q->size, &q->nic,
4322				    GFP_KERNEL);
4323	if (!q->drv) {
4324		IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4325		return -ENOMEM;
4326	}
4327
4328	IPW_DEBUG_INFO("exit\n");
4329
4330	return 0;
4331}
4332
4333static void status_queue_free(struct ipw2100_priv *priv)
4334{
4335	IPW_DEBUG_INFO("enter\n");
4336
4337	if (priv->status_queue.drv) {
4338		dma_free_coherent(&priv->pci_dev->dev,
4339				  priv->status_queue.size,
4340				  priv->status_queue.drv,
4341				  priv->status_queue.nic);
4342		priv->status_queue.drv = NULL;
4343	}
4344
4345	IPW_DEBUG_INFO("exit\n");
4346}
4347
4348static int bd_queue_allocate(struct ipw2100_priv *priv,
4349			     struct ipw2100_bd_queue *q, int entries)
4350{
4351	IPW_DEBUG_INFO("enter\n");
4352
4353	memset(q, 0, sizeof(struct ipw2100_bd_queue));
4354
4355	q->entries = entries;
4356	q->size = entries * sizeof(struct ipw2100_bd);
4357	q->drv = dma_alloc_coherent(&priv->pci_dev->dev, q->size, &q->nic,
4358				    GFP_KERNEL);
4359	if (!q->drv) {
4360		IPW_DEBUG_INFO
4361		    ("can't allocate shared memory for buffer descriptors\n");
4362		return -ENOMEM;
4363	}
4364
4365	IPW_DEBUG_INFO("exit\n");
4366
4367	return 0;
4368}
4369
4370static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4371{
4372	IPW_DEBUG_INFO("enter\n");
4373
4374	if (!q)
4375		return;
4376
4377	if (q->drv) {
4378		dma_free_coherent(&priv->pci_dev->dev, q->size, q->drv,
4379				  q->nic);
4380		q->drv = NULL;
4381	}
4382
4383	IPW_DEBUG_INFO("exit\n");
4384}
4385
4386static void bd_queue_initialize(struct ipw2100_priv *priv,
4387				struct ipw2100_bd_queue *q, u32 base, u32 size,
4388				u32 r, u32 w)
4389{
4390	IPW_DEBUG_INFO("enter\n");
4391
4392	IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4393		       (u32) q->nic);
4394
4395	write_register(priv->net_dev, base, q->nic);
4396	write_register(priv->net_dev, size, q->entries);
4397	write_register(priv->net_dev, r, q->oldest);
4398	write_register(priv->net_dev, w, q->next);
4399
4400	IPW_DEBUG_INFO("exit\n");
4401}
4402
4403static void ipw2100_kill_works(struct ipw2100_priv *priv)
4404{
4405	priv->stop_rf_kill = 1;
4406	priv->stop_hang_check = 1;
4407	cancel_delayed_work_sync(&priv->reset_work);
4408	cancel_delayed_work_sync(&priv->security_work);
4409	cancel_delayed_work_sync(&priv->wx_event_work);
4410	cancel_delayed_work_sync(&priv->hang_check);
4411	cancel_delayed_work_sync(&priv->rf_kill);
4412	cancel_delayed_work_sync(&priv->scan_event);
4413}
4414
4415static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4416{
4417	int i, j, err;
4418	void *v;
4419	dma_addr_t p;
4420
4421	IPW_DEBUG_INFO("enter\n");
4422
4423	err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4424	if (err) {
4425		IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4426				priv->net_dev->name);
4427		return err;
4428	}
4429
4430	priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH,
4431					 sizeof(struct ipw2100_tx_packet),
4432					 GFP_KERNEL);
4433	if (!priv->tx_buffers) {
4434		bd_queue_free(priv, &priv->tx_queue);
4435		return -ENOMEM;
4436	}
4437
4438	for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4439		v = dma_alloc_coherent(&priv->pci_dev->dev,
4440				       sizeof(struct ipw2100_data_header), &p,
4441				       GFP_KERNEL);
4442		if (!v) {
4443			printk(KERN_ERR DRV_NAME
4444			       ": %s: PCI alloc failed for tx " "buffers.\n",
4445			       priv->net_dev->name);
4446			err = -ENOMEM;
4447			break;
4448		}
4449
4450		priv->tx_buffers[i].type = DATA;
4451		priv->tx_buffers[i].info.d_struct.data =
4452		    (struct ipw2100_data_header *)v;
4453		priv->tx_buffers[i].info.d_struct.data_phys = p;
4454		priv->tx_buffers[i].info.d_struct.txb = NULL;
4455	}
4456
4457	if (i == TX_PENDED_QUEUE_LENGTH)
4458		return 0;
4459
4460	for (j = 0; j < i; j++) {
4461		dma_free_coherent(&priv->pci_dev->dev,
4462				  sizeof(struct ipw2100_data_header),
4463				  priv->tx_buffers[j].info.d_struct.data,
4464				  priv->tx_buffers[j].info.d_struct.data_phys);
4465	}
4466
4467	kfree(priv->tx_buffers);
4468	priv->tx_buffers = NULL;
4469
4470	return err;
4471}
4472
4473static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4474{
4475	int i;
4476
4477	IPW_DEBUG_INFO("enter\n");
4478
4479	/*
4480	 * reinitialize packet info lists
4481	 */
4482	INIT_LIST_HEAD(&priv->fw_pend_list);
4483	INIT_STAT(&priv->fw_pend_stat);
4484
4485	/*
4486	 * reinitialize lists
4487	 */
4488	INIT_LIST_HEAD(&priv->tx_pend_list);
4489	INIT_LIST_HEAD(&priv->tx_free_list);
4490	INIT_STAT(&priv->tx_pend_stat);
4491	INIT_STAT(&priv->tx_free_stat);
4492
4493	for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4494		/* We simply drop any SKBs that have been queued for
4495		 * transmit */
4496		if (priv->tx_buffers[i].info.d_struct.txb) {
4497			libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4498					   txb);
4499			priv->tx_buffers[i].info.d_struct.txb = NULL;
4500		}
4501
4502		list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4503	}
4504
4505	SET_STAT(&priv->tx_free_stat, i);
4506
4507	priv->tx_queue.oldest = 0;
4508	priv->tx_queue.available = priv->tx_queue.entries;
4509	priv->tx_queue.next = 0;
4510	INIT_STAT(&priv->txq_stat);
4511	SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4512
4513	bd_queue_initialize(priv, &priv->tx_queue,
4514			    IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4515			    IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4516			    IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4517			    IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4518
4519	IPW_DEBUG_INFO("exit\n");
4520
4521}
4522
4523static void ipw2100_tx_free(struct ipw2100_priv *priv)
4524{
4525	int i;
4526
4527	IPW_DEBUG_INFO("enter\n");
4528
4529	bd_queue_free(priv, &priv->tx_queue);
4530
4531	if (!priv->tx_buffers)
4532		return;
4533
4534	for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4535		if (priv->tx_buffers[i].info.d_struct.txb) {
4536			libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4537					   txb);
4538			priv->tx_buffers[i].info.d_struct.txb = NULL;
4539		}
4540		if (priv->tx_buffers[i].info.d_struct.data)
4541			dma_free_coherent(&priv->pci_dev->dev,
4542					  sizeof(struct ipw2100_data_header),
4543					  priv->tx_buffers[i].info.d_struct.data,
4544					  priv->tx_buffers[i].info.d_struct.data_phys);
4545	}
4546
4547	kfree(priv->tx_buffers);
4548	priv->tx_buffers = NULL;
4549
4550	IPW_DEBUG_INFO("exit\n");
4551}
4552
4553static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4554{
4555	int i, j, err = -EINVAL;
4556
4557	IPW_DEBUG_INFO("enter\n");
4558
4559	err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4560	if (err) {
4561		IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4562		return err;
4563	}
4564
4565	err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4566	if (err) {
4567		IPW_DEBUG_INFO("failed status_queue_allocate\n");
4568		bd_queue_free(priv, &priv->rx_queue);
4569		return err;
4570	}
4571
4572	/*
4573	 * allocate packets
4574	 */
4575	priv->rx_buffers = kmalloc_array(RX_QUEUE_LENGTH,
4576					 sizeof(struct ipw2100_rx_packet),
4577					 GFP_KERNEL);
4578	if (!priv->rx_buffers) {
4579		IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4580
4581		bd_queue_free(priv, &priv->rx_queue);
4582
4583		status_queue_free(priv);
4584
4585		return -ENOMEM;
4586	}
4587
4588	for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4589		struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4590
4591		err = ipw2100_alloc_skb(priv, packet);
4592		if (unlikely(err)) {
4593			err = -ENOMEM;
4594			break;
4595		}
4596
4597		/* The BD holds the cache aligned address */
4598		priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4599		priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4600		priv->status_queue.drv[i].status_fields = 0;
4601	}
4602
4603	if (i == RX_QUEUE_LENGTH)
4604		return 0;
4605
4606	for (j = 0; j < i; j++) {
4607		dma_unmap_single(&priv->pci_dev->dev,
4608				 priv->rx_buffers[j].dma_addr,
4609				 sizeof(struct ipw2100_rx_packet),
4610				 DMA_FROM_DEVICE);
4611		dev_kfree_skb(priv->rx_buffers[j].skb);
4612	}
4613
4614	kfree(priv->rx_buffers);
4615	priv->rx_buffers = NULL;
4616
4617	bd_queue_free(priv, &priv->rx_queue);
4618
4619	status_queue_free(priv);
4620
4621	return err;
4622}
4623
4624static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4625{
4626	IPW_DEBUG_INFO("enter\n");
4627
4628	priv->rx_queue.oldest = 0;
4629	priv->rx_queue.available = priv->rx_queue.entries - 1;
4630	priv->rx_queue.next = priv->rx_queue.entries - 1;
4631
4632	INIT_STAT(&priv->rxq_stat);
4633	SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4634
4635	bd_queue_initialize(priv, &priv->rx_queue,
4636			    IPW_MEM_HOST_SHARED_RX_BD_BASE,
4637			    IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4638			    IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4639			    IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4640
4641	/* set up the status queue */
4642	write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4643		       priv->status_queue.nic);
4644
4645	IPW_DEBUG_INFO("exit\n");
4646}
4647
4648static void ipw2100_rx_free(struct ipw2100_priv *priv)
4649{
4650	int i;
4651
4652	IPW_DEBUG_INFO("enter\n");
4653
4654	bd_queue_free(priv, &priv->rx_queue);
4655	status_queue_free(priv);
4656
4657	if (!priv->rx_buffers)
4658		return;
4659
4660	for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4661		if (priv->rx_buffers[i].rxp) {
4662			dma_unmap_single(&priv->pci_dev->dev,
4663					 priv->rx_buffers[i].dma_addr,
4664					 sizeof(struct ipw2100_rx),
4665					 DMA_FROM_DEVICE);
4666			dev_kfree_skb(priv->rx_buffers[i].skb);
4667		}
4668	}
4669
4670	kfree(priv->rx_buffers);
4671	priv->rx_buffers = NULL;
4672
4673	IPW_DEBUG_INFO("exit\n");
4674}
4675
4676static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4677{
4678	u32 length = ETH_ALEN;
4679	u8 addr[ETH_ALEN];
4680
4681	int err;
4682
4683	err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4684	if (err) {
4685		IPW_DEBUG_INFO("MAC address read failed\n");
4686		return -EIO;
4687	}
4688
4689	memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4690	IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4691
4692	return 0;
4693}
4694
4695/********************************************************************
4696 *
4697 * Firmware Commands
4698 *
4699 ********************************************************************/
4700
4701static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4702{
4703	struct host_command cmd = {
4704		.host_command = ADAPTER_ADDRESS,
4705		.host_command_sequence = 0,
4706		.host_command_length = ETH_ALEN
4707	};
4708	int err;
4709
4710	IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4711
4712	IPW_DEBUG_INFO("enter\n");
4713
4714	if (priv->config & CFG_CUSTOM_MAC) {
4715		memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4716		memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4717	} else
4718		memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4719		       ETH_ALEN);
4720
4721	err = ipw2100_hw_send_command(priv, &cmd);
4722
4723	IPW_DEBUG_INFO("exit\n");
4724	return err;
4725}
4726
4727static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4728				 int batch_mode)
4729{
4730	struct host_command cmd = {
4731		.host_command = PORT_TYPE,
4732		.host_command_sequence = 0,
4733		.host_command_length = sizeof(u32)
4734	};
4735	int err;
4736
4737	switch (port_type) {
4738	case IW_MODE_INFRA:
4739		cmd.host_command_parameters[0] = IPW_BSS;
4740		break;
4741	case IW_MODE_ADHOC:
4742		cmd.host_command_parameters[0] = IPW_IBSS;
4743		break;
4744	}
4745
4746	IPW_DEBUG_HC("PORT_TYPE: %s\n",
4747		     port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4748
4749	if (!batch_mode) {
4750		err = ipw2100_disable_adapter(priv);
4751		if (err) {
4752			printk(KERN_ERR DRV_NAME
4753			       ": %s: Could not disable adapter %d\n",
4754			       priv->net_dev->name, err);
4755			return err;
4756		}
4757	}
4758
4759	/* send cmd to firmware */
4760	err = ipw2100_hw_send_command(priv, &cmd);
4761
4762	if (!batch_mode)
4763		ipw2100_enable_adapter(priv);
4764
4765	return err;
4766}
4767
4768static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4769			       int batch_mode)
4770{
4771	struct host_command cmd = {
4772		.host_command = CHANNEL,
4773		.host_command_sequence = 0,
4774		.host_command_length = sizeof(u32)
4775	};
4776	int err;
4777
4778	cmd.host_command_parameters[0] = channel;
4779
4780	IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4781
4782	/* If BSS then we don't support channel selection */
4783	if (priv->ieee->iw_mode == IW_MODE_INFRA)
4784		return 0;
4785
4786	if ((channel != 0) &&
4787	    ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4788		return -EINVAL;
4789
4790	if (!batch_mode) {
4791		err = ipw2100_disable_adapter(priv);
4792		if (err)
4793			return err;
4794	}
4795
4796	err = ipw2100_hw_send_command(priv, &cmd);
4797	if (err) {
4798		IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4799		return err;
4800	}
4801
4802	if (channel)
4803		priv->config |= CFG_STATIC_CHANNEL;
4804	else
4805		priv->config &= ~CFG_STATIC_CHANNEL;
4806
4807	priv->channel = channel;
4808
4809	if (!batch_mode) {
4810		err = ipw2100_enable_adapter(priv);
4811		if (err)
4812			return err;
4813	}
4814
4815	return 0;
4816}
4817
4818static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4819{
4820	struct host_command cmd = {
4821		.host_command = SYSTEM_CONFIG,
4822		.host_command_sequence = 0,
4823		.host_command_length = 12,
4824	};
4825	u32 ibss_mask, len = sizeof(u32);
4826	int err;
4827
4828	/* Set system configuration */
4829
4830	if (!batch_mode) {
4831		err = ipw2100_disable_adapter(priv);
4832		if (err)
4833			return err;
4834	}
4835
4836	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4837		cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4838
4839	cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4840	    IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4841
4842	if (!(priv->config & CFG_LONG_PREAMBLE))
4843		cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4844
4845	err = ipw2100_get_ordinal(priv,
4846				  IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4847				  &ibss_mask, &len);
4848	if (err)
4849		ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4850
4851	cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4852	cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4853
4854	/* 11b only */
4855	/*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4856
4857	err = ipw2100_hw_send_command(priv, &cmd);
4858	if (err)
4859		return err;
4860
4861/* If IPv6 is configured in the kernel then we don't want to filter out all
4862 * of the multicast packets as IPv6 needs some. */
4863#if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4864	cmd.host_command = ADD_MULTICAST;
4865	cmd.host_command_sequence = 0;
4866	cmd.host_command_length = 0;
4867
4868	ipw2100_hw_send_command(priv, &cmd);
4869#endif
4870	if (!batch_mode) {
4871		err = ipw2100_enable_adapter(priv);
4872		if (err)
4873			return err;
4874	}
4875
4876	return 0;
4877}
4878
4879static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4880				int batch_mode)
4881{
4882	struct host_command cmd = {
4883		.host_command = BASIC_TX_RATES,
4884		.host_command_sequence = 0,
4885		.host_command_length = 4
4886	};
4887	int err;
4888
4889	cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4890
4891	if (!batch_mode) {
4892		err = ipw2100_disable_adapter(priv);
4893		if (err)
4894			return err;
4895	}
4896
4897	/* Set BASIC TX Rate first */
4898	ipw2100_hw_send_command(priv, &cmd);
4899
4900	/* Set TX Rate */
4901	cmd.host_command = TX_RATES;
4902	ipw2100_hw_send_command(priv, &cmd);
4903
4904	/* Set MSDU TX Rate */
4905	cmd.host_command = MSDU_TX_RATES;
4906	ipw2100_hw_send_command(priv, &cmd);
4907
4908	if (!batch_mode) {
4909		err = ipw2100_enable_adapter(priv);
4910		if (err)
4911			return err;
4912	}
4913
4914	priv->tx_rates = rate;
4915
4916	return 0;
4917}
4918
4919static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4920{
4921	struct host_command cmd = {
4922		.host_command = POWER_MODE,
4923		.host_command_sequence = 0,
4924		.host_command_length = 4
4925	};
4926	int err;
4927
4928	cmd.host_command_parameters[0] = power_level;
4929
4930	err = ipw2100_hw_send_command(priv, &cmd);
4931	if (err)
4932		return err;
4933
4934	if (power_level == IPW_POWER_MODE_CAM)
4935		priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4936	else
4937		priv->power_mode = IPW_POWER_ENABLED | power_level;
4938
4939#ifdef IPW2100_TX_POWER
4940	if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4941		/* Set beacon interval */
4942		cmd.host_command = TX_POWER_INDEX;
4943		cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4944
4945		err = ipw2100_hw_send_command(priv, &cmd);
4946		if (err)
4947			return err;
4948	}
4949#endif
4950
4951	return 0;
4952}
4953
4954static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4955{
4956	struct host_command cmd = {
4957		.host_command = RTS_THRESHOLD,
4958		.host_command_sequence = 0,
4959		.host_command_length = 4
4960	};
4961	int err;
4962
4963	if (threshold & RTS_DISABLED)
4964		cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4965	else
4966		cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4967
4968	err = ipw2100_hw_send_command(priv, &cmd);
4969	if (err)
4970		return err;
4971
4972	priv->rts_threshold = threshold;
4973
4974	return 0;
4975}
4976
4977#if 0
4978int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4979					u32 threshold, int batch_mode)
4980{
4981	struct host_command cmd = {
4982		.host_command = FRAG_THRESHOLD,
4983		.host_command_sequence = 0,
4984		.host_command_length = 4,
4985		.host_command_parameters[0] = 0,
4986	};
4987	int err;
4988
4989	if (!batch_mode) {
4990		err = ipw2100_disable_adapter(priv);
4991		if (err)
4992			return err;
4993	}
4994
4995	if (threshold == 0)
4996		threshold = DEFAULT_FRAG_THRESHOLD;
4997	else {
4998		threshold = max(threshold, MIN_FRAG_THRESHOLD);
4999		threshold = min(threshold, MAX_FRAG_THRESHOLD);
5000	}
5001
5002	cmd.host_command_parameters[0] = threshold;
5003
5004	IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5005
5006	err = ipw2100_hw_send_command(priv, &cmd);
5007
5008	if (!batch_mode)
5009		ipw2100_enable_adapter(priv);
5010
5011	if (!err)
5012		priv->frag_threshold = threshold;
5013
5014	return err;
5015}
5016#endif
5017
5018static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5019{
5020	struct host_command cmd = {
5021		.host_command = SHORT_RETRY_LIMIT,
5022		.host_command_sequence = 0,
5023		.host_command_length = 4
5024	};
5025	int err;
5026
5027	cmd.host_command_parameters[0] = retry;
5028
5029	err = ipw2100_hw_send_command(priv, &cmd);
5030	if (err)
5031		return err;
5032
5033	priv->short_retry_limit = retry;
5034
5035	return 0;
5036}
5037
5038static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5039{
5040	struct host_command cmd = {
5041		.host_command = LONG_RETRY_LIMIT,
5042		.host_command_sequence = 0,
5043		.host_command_length = 4
5044	};
5045	int err;
5046
5047	cmd.host_command_parameters[0] = retry;
5048
5049	err = ipw2100_hw_send_command(priv, &cmd);
5050	if (err)
5051		return err;
5052
5053	priv->long_retry_limit = retry;
5054
5055	return 0;
5056}
5057
5058static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5059				       int batch_mode)
5060{
5061	struct host_command cmd = {
5062		.host_command = MANDATORY_BSSID,
5063		.host_command_sequence = 0,
5064		.host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5065	};
5066	int err;
5067
5068#ifdef CONFIG_IPW2100_DEBUG
5069	if (bssid != NULL)
5070		IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5071	else
5072		IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5073#endif
5074	/* if BSSID is empty then we disable mandatory bssid mode */
5075	if (bssid != NULL)
5076		memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5077
5078	if (!batch_mode) {
5079		err = ipw2100_disable_adapter(priv);
5080		if (err)
5081			return err;
5082	}
5083
5084	err = ipw2100_hw_send_command(priv, &cmd);
5085
5086	if (!batch_mode)
5087		ipw2100_enable_adapter(priv);
5088
5089	return err;
5090}
5091
5092static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5093{
5094	struct host_command cmd = {
5095		.host_command = DISASSOCIATION_BSSID,
5096		.host_command_sequence = 0,
5097		.host_command_length = ETH_ALEN
5098	};
5099	int err;
5100
5101	IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5102
5103	/* The Firmware currently ignores the BSSID and just disassociates from
5104	 * the currently associated AP -- but in the off chance that a future
5105	 * firmware does use the BSSID provided here, we go ahead and try and
5106	 * set it to the currently associated AP's BSSID */
5107	memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5108
5109	err = ipw2100_hw_send_command(priv, &cmd);
5110
5111	return err;
5112}
5113
5114static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5115			      struct ipw2100_wpa_assoc_frame *, int)
5116    __attribute__ ((unused));
5117
5118static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5119			      struct ipw2100_wpa_assoc_frame *wpa_frame,
5120			      int batch_mode)
5121{
5122	struct host_command cmd = {
5123		.host_command = SET_WPA_IE,
5124		.host_command_sequence = 0,
5125		.host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5126	};
5127	int err;
5128
5129	IPW_DEBUG_HC("SET_WPA_IE\n");
5130
5131	if (!batch_mode) {
5132		err = ipw2100_disable_adapter(priv);
5133		if (err)
5134			return err;
5135	}
5136
5137	memcpy(cmd.host_command_parameters, wpa_frame,
5138	       sizeof(struct ipw2100_wpa_assoc_frame));
5139
5140	err = ipw2100_hw_send_command(priv, &cmd);
5141
5142	if (!batch_mode) {
5143		if (ipw2100_enable_adapter(priv))
5144			err = -EIO;
5145	}
5146
5147	return err;
5148}
5149
5150struct security_info_params {
5151	u32 allowed_ciphers;
5152	u16 version;
5153	u8 auth_mode;
5154	u8 replay_counters_number;
5155	u8 unicast_using_group;
5156} __packed;
5157
5158static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5159					    int auth_mode,
5160					    int security_level,
5161					    int unicast_using_group,
5162					    int batch_mode)
5163{
5164	struct host_command cmd = {
5165		.host_command = SET_SECURITY_INFORMATION,
5166		.host_command_sequence = 0,
5167		.host_command_length = sizeof(struct security_info_params)
5168	};
5169	struct security_info_params *security =
5170	    (struct security_info_params *)&cmd.host_command_parameters;
5171	int err;
5172	memset(security, 0, sizeof(*security));
5173
5174	/* If shared key AP authentication is turned on, then we need to
5175	 * configure the firmware to try and use it.
5176	 *
5177	 * Actual data encryption/decryption is handled by the host. */
5178	security->auth_mode = auth_mode;
5179	security->unicast_using_group = unicast_using_group;
5180
5181	switch (security_level) {
5182	default:
5183	case SEC_LEVEL_0:
5184		security->allowed_ciphers = IPW_NONE_CIPHER;
5185		break;
5186	case SEC_LEVEL_1:
5187		security->allowed_ciphers = IPW_WEP40_CIPHER |
5188		    IPW_WEP104_CIPHER;
5189		break;
5190	case SEC_LEVEL_2:
5191		security->allowed_ciphers = IPW_WEP40_CIPHER |
5192		    IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5193		break;
5194	case SEC_LEVEL_2_CKIP:
5195		security->allowed_ciphers = IPW_WEP40_CIPHER |
5196		    IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5197		break;
5198	case SEC_LEVEL_3:
5199		security->allowed_ciphers = IPW_WEP40_CIPHER |
5200		    IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5201		break;
5202	}
5203
5204	IPW_DEBUG_HC
5205	    ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5206	     security->auth_mode, security->allowed_ciphers, security_level);
5207
5208	security->replay_counters_number = 0;
5209
5210	if (!batch_mode) {
5211		err = ipw2100_disable_adapter(priv);
5212		if (err)
5213			return err;
5214	}
5215
5216	err = ipw2100_hw_send_command(priv, &cmd);
5217
5218	if (!batch_mode)
5219		ipw2100_enable_adapter(priv);
5220
5221	return err;
5222}
5223
5224static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5225{
5226	struct host_command cmd = {
5227		.host_command = TX_POWER_INDEX,
5228		.host_command_sequence = 0,
5229		.host_command_length = 4
5230	};
5231	int err = 0;
5232	u32 tmp = tx_power;
5233
5234	if (tx_power != IPW_TX_POWER_DEFAULT)
5235		tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5236		      (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5237
5238	cmd.host_command_parameters[0] = tmp;
5239
5240	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5241		err = ipw2100_hw_send_command(priv, &cmd);
5242	if (!err)
5243		priv->tx_power = tx_power;
5244
5245	return 0;
5246}
5247
5248static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5249					    u32 interval, int batch_mode)
5250{
5251	struct host_command cmd = {
5252		.host_command = BEACON_INTERVAL,
5253		.host_command_sequence = 0,
5254		.host_command_length = 4
5255	};
5256	int err;
5257
5258	cmd.host_command_parameters[0] = interval;
5259
5260	IPW_DEBUG_INFO("enter\n");
5261
5262	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5263		if (!batch_mode) {
5264			err = ipw2100_disable_adapter(priv);
5265			if (err)
5266				return err;
5267		}
5268
5269		ipw2100_hw_send_command(priv, &cmd);
5270
5271		if (!batch_mode) {
5272			err = ipw2100_enable_adapter(priv);
5273			if (err)
5274				return err;
5275		}
5276	}
5277
5278	IPW_DEBUG_INFO("exit\n");
5279
5280	return 0;
5281}
5282
5283static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5284{
5285	ipw2100_tx_initialize(priv);
5286	ipw2100_rx_initialize(priv);
5287	ipw2100_msg_initialize(priv);
5288}
5289
5290static void ipw2100_queues_free(struct ipw2100_priv *priv)
5291{
5292	ipw2100_tx_free(priv);
5293	ipw2100_rx_free(priv);
5294	ipw2100_msg_free(priv);
5295}
5296
5297static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5298{
5299	if (ipw2100_tx_allocate(priv) ||
5300	    ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5301		goto fail;
5302
5303	return 0;
5304
5305      fail:
5306	ipw2100_tx_free(priv);
5307	ipw2100_rx_free(priv);
5308	ipw2100_msg_free(priv);
5309	return -ENOMEM;
5310}
5311
5312#define IPW_PRIVACY_CAPABLE 0x0008
5313
5314static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5315				 int batch_mode)
5316{
5317	struct host_command cmd = {
5318		.host_command = WEP_FLAGS,
5319		.host_command_sequence = 0,
5320		.host_command_length = 4
5321	};
5322	int err;
5323
5324	cmd.host_command_parameters[0] = flags;
5325
5326	IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5327
5328	if (!batch_mode) {
5329		err = ipw2100_disable_adapter(priv);
5330		if (err) {
5331			printk(KERN_ERR DRV_NAME
5332			       ": %s: Could not disable adapter %d\n",
5333			       priv->net_dev->name, err);
5334			return err;
5335		}
5336	}
5337
5338	/* send cmd to firmware */
5339	err = ipw2100_hw_send_command(priv, &cmd);
5340
5341	if (!batch_mode)
5342		ipw2100_enable_adapter(priv);
5343
5344	return err;
5345}
5346
5347struct ipw2100_wep_key {
5348	u8 idx;
5349	u8 len;
5350	u8 key[13];
5351};
5352
5353/* Macros to ease up priting WEP keys */
5354#define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5355#define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5356#define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5357#define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5358
5359/**
5360 * Set a the wep key
5361 *
5362 * @priv: struct to work on
5363 * @idx: index of the key we want to set
5364 * @key: ptr to the key data to set
5365 * @len: length of the buffer at @key
5366 * @batch_mode: FIXME perform the operation in batch mode, not
5367 *              disabling the device.
5368 *
5369 * @returns 0 if OK, < 0 errno code on error.
5370 *
5371 * Fill out a command structure with the new wep key, length an
5372 * index and send it down the wire.
5373 */
5374static int ipw2100_set_key(struct ipw2100_priv *priv,
5375			   int idx, char *key, int len, int batch_mode)
5376{
5377	int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5378	struct host_command cmd = {
5379		.host_command = WEP_KEY_INFO,
5380		.host_command_sequence = 0,
5381		.host_command_length = sizeof(struct ipw2100_wep_key),
5382	};
5383	struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5384	int err;
5385
5386	IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5387		     idx, keylen, len);
5388
5389	/* NOTE: We don't check cached values in case the firmware was reset
5390	 * or some other problem is occurring.  If the user is setting the key,
5391	 * then we push the change */
5392
5393	wep_key->idx = idx;
5394	wep_key->len = keylen;
5395
5396	if (keylen) {
5397		memcpy(wep_key->key, key, len);
5398		memset(wep_key->key + len, 0, keylen - len);
5399	}
5400
5401	/* Will be optimized out on debug not being configured in */
5402	if (keylen == 0)
5403		IPW_DEBUG_WEP("%s: Clearing key %d\n",
5404			      priv->net_dev->name, wep_key->idx);
5405	else if (keylen == 5)
5406		IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5407			      priv->net_dev->name, wep_key->idx, wep_key->len,
5408			      WEP_STR_64(wep_key->key));
5409	else
5410		IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5411			      "\n",
5412			      priv->net_dev->name, wep_key->idx, wep_key->len,
5413			      WEP_STR_128(wep_key->key));
5414
5415	if (!batch_mode) {
5416		err = ipw2100_disable_adapter(priv);
5417		/* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5418		if (err) {
5419			printk(KERN_ERR DRV_NAME
5420			       ": %s: Could not disable adapter %d\n",
5421			       priv->net_dev->name, err);
5422			return err;
5423		}
5424	}
5425
5426	/* send cmd to firmware */
5427	err = ipw2100_hw_send_command(priv, &cmd);
5428
5429	if (!batch_mode) {
5430		int err2 = ipw2100_enable_adapter(priv);
5431		if (err == 0)
5432			err = err2;
5433	}
5434	return err;
5435}
5436
5437static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5438				 int idx, int batch_mode)
5439{
5440	struct host_command cmd = {
5441		.host_command = WEP_KEY_INDEX,
5442		.host_command_sequence = 0,
5443		.host_command_length = 4,
5444		.host_command_parameters = {idx},
5445	};
5446	int err;
5447
5448	IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5449
5450	if (idx < 0 || idx > 3)
5451		return -EINVAL;
5452
5453	if (!batch_mode) {
5454		err = ipw2100_disable_adapter(priv);
5455		if (err) {
5456			printk(KERN_ERR DRV_NAME
5457			       ": %s: Could not disable adapter %d\n",
5458			       priv->net_dev->name, err);
5459			return err;
5460		}
5461	}
5462
5463	/* send cmd to firmware */
5464	err = ipw2100_hw_send_command(priv, &cmd);
5465
5466	if (!batch_mode)
5467		ipw2100_enable_adapter(priv);
5468
5469	return err;
5470}
5471
5472static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5473{
5474	int i, err, auth_mode, sec_level, use_group;
5475
5476	if (!(priv->status & STATUS_RUNNING))
5477		return 0;
5478
5479	if (!batch_mode) {
5480		err = ipw2100_disable_adapter(priv);
5481		if (err)
5482			return err;
5483	}
5484
5485	if (!priv->ieee->sec.enabled) {
5486		err =
5487		    ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5488						     SEC_LEVEL_0, 0, 1);
5489	} else {
5490		auth_mode = IPW_AUTH_OPEN;
5491		if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5492			if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5493				auth_mode = IPW_AUTH_SHARED;
5494			else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5495				auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5496		}
5497
5498		sec_level = SEC_LEVEL_0;
5499		if (priv->ieee->sec.flags & SEC_LEVEL)
5500			sec_level = priv->ieee->sec.level;
5501
5502		use_group = 0;
5503		if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5504			use_group = priv->ieee->sec.unicast_uses_group;
5505
5506		err =
5507		    ipw2100_set_security_information(priv, auth_mode, sec_level,
5508						     use_group, 1);
5509	}
5510
5511	if (err)
5512		goto exit;
5513
5514	if (priv->ieee->sec.enabled) {
5515		for (i = 0; i < 4; i++) {
5516			if (!(priv->ieee->sec.flags & (1 << i))) {
5517				memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5518				priv->ieee->sec.key_sizes[i] = 0;
5519			} else {
5520				err = ipw2100_set_key(priv, i,
5521						      priv->ieee->sec.keys[i],
5522						      priv->ieee->sec.
5523						      key_sizes[i], 1);
5524				if (err)
5525					goto exit;
5526			}
5527		}
5528
5529		ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5530	}
5531
5532	/* Always enable privacy so the Host can filter WEP packets if
5533	 * encrypted data is sent up */
5534	err =
5535	    ipw2100_set_wep_flags(priv,
5536				  priv->ieee->sec.
5537				  enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5538	if (err)
5539		goto exit;
5540
5541	priv->status &= ~STATUS_SECURITY_UPDATED;
5542
5543      exit:
5544	if (!batch_mode)
5545		ipw2100_enable_adapter(priv);
5546
5547	return err;
5548}
5549
5550static void ipw2100_security_work(struct work_struct *work)
5551{
5552	struct ipw2100_priv *priv =
5553		container_of(work, struct ipw2100_priv, security_work.work);
5554
5555	/* If we happen to have reconnected before we get a chance to
5556	 * process this, then update the security settings--which causes
5557	 * a disassociation to occur */
5558	if (!(priv->status & STATUS_ASSOCIATED) &&
5559	    priv->status & STATUS_SECURITY_UPDATED)
5560		ipw2100_configure_security(priv, 0);
5561}
5562
5563static void shim__set_security(struct net_device *dev,
5564			       struct libipw_security *sec)
5565{
5566	struct ipw2100_priv *priv = libipw_priv(dev);
5567	int i;
5568
5569	mutex_lock(&priv->action_mutex);
5570	if (!(priv->status & STATUS_INITIALIZED))
5571		goto done;
5572
5573	for (i = 0; i < 4; i++) {
5574		if (sec->flags & (1 << i)) {
5575			priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5576			if (sec->key_sizes[i] == 0)
5577				priv->ieee->sec.flags &= ~(1 << i);
5578			else
5579				memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5580				       sec->key_sizes[i]);
5581			if (sec->level == SEC_LEVEL_1) {
5582				priv->ieee->sec.flags |= (1 << i);
5583				priv->status |= STATUS_SECURITY_UPDATED;
5584			} else
5585				priv->ieee->sec.flags &= ~(1 << i);
5586		}
5587	}
5588
5589	if ((sec->flags & SEC_ACTIVE_KEY) &&
5590	    priv->ieee->sec.active_key != sec->active_key) {
5591		priv->ieee->sec.active_key = sec->active_key;
5592		priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5593		priv->status |= STATUS_SECURITY_UPDATED;
5594	}
5595
5596	if ((sec->flags & SEC_AUTH_MODE) &&
5597	    (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5598		priv->ieee->sec.auth_mode = sec->auth_mode;
5599		priv->ieee->sec.flags |= SEC_AUTH_MODE;
5600		priv->status |= STATUS_SECURITY_UPDATED;
5601	}
5602
5603	if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5604		priv->ieee->sec.flags |= SEC_ENABLED;
5605		priv->ieee->sec.enabled = sec->enabled;
5606		priv->status |= STATUS_SECURITY_UPDATED;
5607	}
5608
5609	if (sec->flags & SEC_ENCRYPT)
5610		priv->ieee->sec.encrypt = sec->encrypt;
5611
5612	if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5613		priv->ieee->sec.level = sec->level;
5614		priv->ieee->sec.flags |= SEC_LEVEL;
5615		priv->status |= STATUS_SECURITY_UPDATED;
5616	}
5617
5618	IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5619		      priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5620		      priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5621		      priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5622		      priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5623		      priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5624		      priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5625		      priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5626		      priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5627		      priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5628
5629/* As a temporary work around to enable WPA until we figure out why
5630 * wpa_supplicant toggles the security capability of the driver, which
5631 * forces a disassociation with force_update...
5632 *
5633 *	if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5634	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5635		ipw2100_configure_security(priv, 0);
5636      done:
5637	mutex_unlock(&priv->action_mutex);
5638}
5639
5640static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5641{
5642	int err;
5643	int batch_mode = 1;
5644	u8 *bssid;
5645
5646	IPW_DEBUG_INFO("enter\n");
5647
5648	err = ipw2100_disable_adapter(priv);
5649	if (err)
5650		return err;
5651#ifdef CONFIG_IPW2100_MONITOR
5652	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5653		err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5654		if (err)
5655			return err;
5656
5657		IPW_DEBUG_INFO("exit\n");
5658
5659		return 0;
5660	}
5661#endif				/* CONFIG_IPW2100_MONITOR */
5662
5663	err = ipw2100_read_mac_address(priv);
5664	if (err)
5665		return -EIO;
5666
5667	err = ipw2100_set_mac_address(priv, batch_mode);
5668	if (err)
5669		return err;
5670
5671	err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5672	if (err)
5673		return err;
5674
5675	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5676		err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5677		if (err)
5678			return err;
5679	}
5680
5681	err = ipw2100_system_config(priv, batch_mode);
5682	if (err)
5683		return err;
5684
5685	err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5686	if (err)
5687		return err;
5688
5689	/* Default to power mode OFF */
5690	err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5691	if (err)
5692		return err;
5693
5694	err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5695	if (err)
5696		return err;
5697
5698	if (priv->config & CFG_STATIC_BSSID)
5699		bssid = priv->bssid;
5700	else
5701		bssid = NULL;
5702	err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5703	if (err)
5704		return err;
5705
5706	if (priv->config & CFG_STATIC_ESSID)
5707		err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5708					batch_mode);
5709	else
5710		err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5711	if (err)
5712		return err;
5713
5714	err = ipw2100_configure_security(priv, batch_mode);
5715	if (err)
5716		return err;
5717
5718	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5719		err =
5720		    ipw2100_set_ibss_beacon_interval(priv,
5721						     priv->beacon_interval,
5722						     batch_mode);
5723		if (err)
5724			return err;
5725
5726		err = ipw2100_set_tx_power(priv, priv->tx_power);
5727		if (err)
5728			return err;
5729	}
5730
5731	/*
5732	   err = ipw2100_set_fragmentation_threshold(
5733	   priv, priv->frag_threshold, batch_mode);
5734	   if (err)
5735	   return err;
5736	 */
5737
5738	IPW_DEBUG_INFO("exit\n");
5739
5740	return 0;
5741}
5742
5743/*************************************************************************
5744 *
5745 * EXTERNALLY CALLED METHODS
5746 *
5747 *************************************************************************/
5748
5749/* This method is called by the network layer -- not to be confused with
5750 * ipw2100_set_mac_address() declared above called by this driver (and this
5751 * method as well) to talk to the firmware */
5752static int ipw2100_set_address(struct net_device *dev, void *p)
5753{
5754	struct ipw2100_priv *priv = libipw_priv(dev);
5755	struct sockaddr *addr = p;
5756	int err = 0;
5757
5758	if (!is_valid_ether_addr(addr->sa_data))
5759		return -EADDRNOTAVAIL;
5760
5761	mutex_lock(&priv->action_mutex);
5762
5763	priv->config |= CFG_CUSTOM_MAC;
5764	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5765
5766	err = ipw2100_set_mac_address(priv, 0);
5767	if (err)
5768		goto done;
5769
5770	priv->reset_backoff = 0;
5771	mutex_unlock(&priv->action_mutex);
5772	ipw2100_reset_adapter(&priv->reset_work.work);
5773	return 0;
5774
5775      done:
5776	mutex_unlock(&priv->action_mutex);
5777	return err;
5778}
5779
5780static int ipw2100_open(struct net_device *dev)
5781{
5782	struct ipw2100_priv *priv = libipw_priv(dev);
5783	unsigned long flags;
5784	IPW_DEBUG_INFO("dev->open\n");
5785
5786	spin_lock_irqsave(&priv->low_lock, flags);
5787	if (priv->status & STATUS_ASSOCIATED) {
5788		netif_carrier_on(dev);
5789		netif_start_queue(dev);
5790	}
5791	spin_unlock_irqrestore(&priv->low_lock, flags);
5792
5793	return 0;
5794}
5795
5796static int ipw2100_close(struct net_device *dev)
5797{
5798	struct ipw2100_priv *priv = libipw_priv(dev);
5799	unsigned long flags;
5800	struct list_head *element;
5801	struct ipw2100_tx_packet *packet;
5802
5803	IPW_DEBUG_INFO("enter\n");
5804
5805	spin_lock_irqsave(&priv->low_lock, flags);
5806
5807	if (priv->status & STATUS_ASSOCIATED)
5808		netif_carrier_off(dev);
5809	netif_stop_queue(dev);
5810
5811	/* Flush the TX queue ... */
5812	while (!list_empty(&priv->tx_pend_list)) {
5813		element = priv->tx_pend_list.next;
5814		packet = list_entry(element, struct ipw2100_tx_packet, list);
5815
5816		list_del(element);
5817		DEC_STAT(&priv->tx_pend_stat);
5818
5819		libipw_txb_free(packet->info.d_struct.txb);
5820		packet->info.d_struct.txb = NULL;
5821
5822		list_add_tail(element, &priv->tx_free_list);
5823		INC_STAT(&priv->tx_free_stat);
5824	}
5825	spin_unlock_irqrestore(&priv->low_lock, flags);
5826
5827	IPW_DEBUG_INFO("exit\n");
5828
5829	return 0;
5830}
5831
5832/*
5833 * TODO:  Fix this function... its just wrong
5834 */
5835static void ipw2100_tx_timeout(struct net_device *dev, unsigned int txqueue)
5836{
5837	struct ipw2100_priv *priv = libipw_priv(dev);
5838
5839	dev->stats.tx_errors++;
5840
5841#ifdef CONFIG_IPW2100_MONITOR
5842	if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5843		return;
5844#endif
5845
5846	IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5847		       dev->name);
5848	schedule_reset(priv);
5849}
5850
5851static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5852{
5853	/* This is called when wpa_supplicant loads and closes the driver
5854	 * interface. */
5855	priv->ieee->wpa_enabled = value;
5856	return 0;
5857}
5858
5859static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5860{
5861
5862	struct libipw_device *ieee = priv->ieee;
5863	struct libipw_security sec = {
5864		.flags = SEC_AUTH_MODE,
5865	};
5866	int ret = 0;
5867
5868	if (value & IW_AUTH_ALG_SHARED_KEY) {
5869		sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5870		ieee->open_wep = 0;
5871	} else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5872		sec.auth_mode = WLAN_AUTH_OPEN;
5873		ieee->open_wep = 1;
5874	} else if (value & IW_AUTH_ALG_LEAP) {
5875		sec.auth_mode = WLAN_AUTH_LEAP;
5876		ieee->open_wep = 1;
5877	} else
5878		return -EINVAL;
5879
5880	if (ieee->set_security)
5881		ieee->set_security(ieee->dev, &sec);
5882	else
5883		ret = -EOPNOTSUPP;
5884
5885	return ret;
5886}
5887
5888static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5889				    char *wpa_ie, int wpa_ie_len)
5890{
5891
5892	struct ipw2100_wpa_assoc_frame frame;
5893
5894	frame.fixed_ie_mask = 0;
5895
5896	/* copy WPA IE */
5897	memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5898	frame.var_ie_len = wpa_ie_len;
5899
5900	/* make sure WPA is enabled */
5901	ipw2100_wpa_enable(priv, 1);
5902	ipw2100_set_wpa_ie(priv, &frame, 0);
5903}
5904
5905static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5906				    struct ethtool_drvinfo *info)
5907{
5908	struct ipw2100_priv *priv = libipw_priv(dev);
5909	char fw_ver[64], ucode_ver[64];
5910
5911	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5912	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5913
5914	ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5915	ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5916
5917	snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5918		 fw_ver, priv->eeprom_version, ucode_ver);
5919
5920	strlcpy(info->bus_info, pci_name(priv->pci_dev),
 
5921		sizeof(info->bus_info));
5922}
5923
5924static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5925{
5926	struct ipw2100_priv *priv = libipw_priv(dev);
5927	return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5928}
5929
5930static const struct ethtool_ops ipw2100_ethtool_ops = {
5931	.get_link = ipw2100_ethtool_get_link,
5932	.get_drvinfo = ipw_ethtool_get_drvinfo,
5933};
5934
5935static void ipw2100_hang_check(struct work_struct *work)
5936{
5937	struct ipw2100_priv *priv =
5938		container_of(work, struct ipw2100_priv, hang_check.work);
5939	unsigned long flags;
5940	u32 rtc = 0xa5a5a5a5;
5941	u32 len = sizeof(rtc);
5942	int restart = 0;
5943
5944	spin_lock_irqsave(&priv->low_lock, flags);
5945
5946	if (priv->fatal_error != 0) {
5947		/* If fatal_error is set then we need to restart */
5948		IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5949			       priv->net_dev->name);
5950
5951		restart = 1;
5952	} else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5953		   (rtc == priv->last_rtc)) {
5954		/* Check if firmware is hung */
5955		IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5956			       priv->net_dev->name);
5957
5958		restart = 1;
5959	}
5960
5961	if (restart) {
5962		/* Kill timer */
5963		priv->stop_hang_check = 1;
5964		priv->hangs++;
5965
5966		/* Restart the NIC */
5967		schedule_reset(priv);
5968	}
5969
5970	priv->last_rtc = rtc;
5971
5972	if (!priv->stop_hang_check)
5973		schedule_delayed_work(&priv->hang_check, HZ / 2);
5974
5975	spin_unlock_irqrestore(&priv->low_lock, flags);
5976}
5977
5978static void ipw2100_rf_kill(struct work_struct *work)
5979{
5980	struct ipw2100_priv *priv =
5981		container_of(work, struct ipw2100_priv, rf_kill.work);
5982	unsigned long flags;
5983
5984	spin_lock_irqsave(&priv->low_lock, flags);
5985
5986	if (rf_kill_active(priv)) {
5987		IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5988		if (!priv->stop_rf_kill)
5989			schedule_delayed_work(&priv->rf_kill,
5990					      round_jiffies_relative(HZ));
5991		goto exit_unlock;
5992	}
5993
5994	/* RF Kill is now disabled, so bring the device back up */
5995
5996	if (!(priv->status & STATUS_RF_KILL_MASK)) {
5997		IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5998				  "device\n");
5999		schedule_reset(priv);
6000	} else
6001		IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6002				  "enabled\n");
6003
6004      exit_unlock:
6005	spin_unlock_irqrestore(&priv->low_lock, flags);
6006}
6007
6008static void ipw2100_irq_tasklet(unsigned long data);
6009
6010static const struct net_device_ops ipw2100_netdev_ops = {
6011	.ndo_open		= ipw2100_open,
6012	.ndo_stop		= ipw2100_close,
6013	.ndo_start_xmit		= libipw_xmit,
6014	.ndo_tx_timeout		= ipw2100_tx_timeout,
6015	.ndo_set_mac_address	= ipw2100_set_address,
6016	.ndo_validate_addr	= eth_validate_addr,
6017};
6018
6019/* Look into using netdev destructor to shutdown libipw? */
6020
6021static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6022					       void __iomem * ioaddr)
6023{
6024	struct ipw2100_priv *priv;
6025	struct net_device *dev;
6026
6027	dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6028	if (!dev)
6029		return NULL;
6030	priv = libipw_priv(dev);
6031	priv->ieee = netdev_priv(dev);
6032	priv->pci_dev = pci_dev;
6033	priv->net_dev = dev;
6034	priv->ioaddr = ioaddr;
6035
6036	priv->ieee->hard_start_xmit = ipw2100_tx;
6037	priv->ieee->set_security = shim__set_security;
6038
6039	priv->ieee->perfect_rssi = -20;
6040	priv->ieee->worst_rssi = -85;
6041
6042	dev->netdev_ops = &ipw2100_netdev_ops;
6043	dev->ethtool_ops = &ipw2100_ethtool_ops;
6044	dev->wireless_handlers = &ipw2100_wx_handler_def;
6045	priv->wireless_data.libipw = priv->ieee;
6046	dev->wireless_data = &priv->wireless_data;
6047	dev->watchdog_timeo = 3 * HZ;
6048	dev->irq = 0;
6049	dev->min_mtu = 68;
6050	dev->max_mtu = LIBIPW_DATA_LEN;
6051
6052	/* NOTE: We don't use the wireless_handlers hook
6053	 * in dev as the system will start throwing WX requests
6054	 * to us before we're actually initialized and it just
6055	 * ends up causing problems.  So, we just handle
6056	 * the WX extensions through the ipw2100_ioctl interface */
6057
6058	/* memset() puts everything to 0, so we only have explicitly set
6059	 * those values that need to be something else */
6060
6061	/* If power management is turned on, default to AUTO mode */
6062	priv->power_mode = IPW_POWER_AUTO;
6063
6064#ifdef CONFIG_IPW2100_MONITOR
6065	priv->config |= CFG_CRC_CHECK;
6066#endif
6067	priv->ieee->wpa_enabled = 0;
6068	priv->ieee->drop_unencrypted = 0;
6069	priv->ieee->privacy_invoked = 0;
6070	priv->ieee->ieee802_1x = 1;
6071
6072	/* Set module parameters */
6073	switch (network_mode) {
6074	case 1:
6075		priv->ieee->iw_mode = IW_MODE_ADHOC;
6076		break;
6077#ifdef CONFIG_IPW2100_MONITOR
6078	case 2:
6079		priv->ieee->iw_mode = IW_MODE_MONITOR;
6080		break;
6081#endif
6082	default:
6083	case 0:
6084		priv->ieee->iw_mode = IW_MODE_INFRA;
6085		break;
6086	}
6087
6088	if (disable == 1)
6089		priv->status |= STATUS_RF_KILL_SW;
6090
6091	if (channel != 0 &&
6092	    ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6093		priv->config |= CFG_STATIC_CHANNEL;
6094		priv->channel = channel;
6095	}
6096
6097	if (associate)
6098		priv->config |= CFG_ASSOCIATE;
6099
6100	priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6101	priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6102	priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6103	priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6104	priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6105	priv->tx_power = IPW_TX_POWER_DEFAULT;
6106	priv->tx_rates = DEFAULT_TX_RATES;
6107
6108	strcpy(priv->nick, "ipw2100");
6109
6110	spin_lock_init(&priv->low_lock);
6111	mutex_init(&priv->action_mutex);
6112	mutex_init(&priv->adapter_mutex);
6113
6114	init_waitqueue_head(&priv->wait_command_queue);
6115
6116	netif_carrier_off(dev);
6117
6118	INIT_LIST_HEAD(&priv->msg_free_list);
6119	INIT_LIST_HEAD(&priv->msg_pend_list);
6120	INIT_STAT(&priv->msg_free_stat);
6121	INIT_STAT(&priv->msg_pend_stat);
6122
6123	INIT_LIST_HEAD(&priv->tx_free_list);
6124	INIT_LIST_HEAD(&priv->tx_pend_list);
6125	INIT_STAT(&priv->tx_free_stat);
6126	INIT_STAT(&priv->tx_pend_stat);
6127
6128	INIT_LIST_HEAD(&priv->fw_pend_list);
6129	INIT_STAT(&priv->fw_pend_stat);
6130
6131	INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6132	INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6133	INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6134	INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6135	INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6136	INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event);
6137
6138	tasklet_init(&priv->irq_tasklet,
6139		     ipw2100_irq_tasklet, (unsigned long)priv);
6140
6141	/* NOTE:  We do not start the deferred work for status checks yet */
6142	priv->stop_rf_kill = 1;
6143	priv->stop_hang_check = 1;
6144
6145	return dev;
6146}
6147
6148static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6149				const struct pci_device_id *ent)
6150{
6151	void __iomem *ioaddr;
6152	struct net_device *dev = NULL;
6153	struct ipw2100_priv *priv = NULL;
6154	int err = 0;
6155	int registered = 0;
6156	u32 val;
6157
6158	IPW_DEBUG_INFO("enter\n");
6159
6160	if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6161		IPW_DEBUG_INFO("weird - resource type is not memory\n");
6162		err = -ENODEV;
6163		goto out;
6164	}
6165
6166	ioaddr = pci_iomap(pci_dev, 0, 0);
6167	if (!ioaddr) {
6168		printk(KERN_WARNING DRV_NAME
6169		       "Error calling ioremap.\n");
6170		err = -EIO;
6171		goto fail;
6172	}
6173
6174	/* allocate and initialize our net_device */
6175	dev = ipw2100_alloc_device(pci_dev, ioaddr);
6176	if (!dev) {
6177		printk(KERN_WARNING DRV_NAME
6178		       "Error calling ipw2100_alloc_device.\n");
6179		err = -ENOMEM;
6180		goto fail;
6181	}
6182
6183	/* set up PCI mappings for device */
6184	err = pci_enable_device(pci_dev);
6185	if (err) {
6186		printk(KERN_WARNING DRV_NAME
6187		       "Error calling pci_enable_device.\n");
6188		return err;
6189	}
6190
6191	priv = libipw_priv(dev);
6192
6193	pci_set_master(pci_dev);
6194	pci_set_drvdata(pci_dev, priv);
6195
6196	err = dma_set_mask(&pci_dev->dev, DMA_BIT_MASK(32));
6197	if (err) {
6198		printk(KERN_WARNING DRV_NAME
6199		       "Error calling pci_set_dma_mask.\n");
6200		pci_disable_device(pci_dev);
6201		return err;
6202	}
6203
6204	err = pci_request_regions(pci_dev, DRV_NAME);
6205	if (err) {
6206		printk(KERN_WARNING DRV_NAME
6207		       "Error calling pci_request_regions.\n");
6208		pci_disable_device(pci_dev);
6209		return err;
6210	}
6211
6212	/* We disable the RETRY_TIMEOUT register (0x41) to keep
6213	 * PCI Tx retries from interfering with C3 CPU state */
6214	pci_read_config_dword(pci_dev, 0x40, &val);
6215	if ((val & 0x0000ff00) != 0)
6216		pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6217
6218	if (!ipw2100_hw_is_adapter_in_system(dev)) {
6219		printk(KERN_WARNING DRV_NAME
6220		       "Device not found via register read.\n");
6221		err = -ENODEV;
6222		goto fail;
6223	}
6224
6225	SET_NETDEV_DEV(dev, &pci_dev->dev);
6226
6227	/* Force interrupts to be shut off on the device */
6228	priv->status |= STATUS_INT_ENABLED;
6229	ipw2100_disable_interrupts(priv);
6230
6231	/* Allocate and initialize the Tx/Rx queues and lists */
6232	if (ipw2100_queues_allocate(priv)) {
6233		printk(KERN_WARNING DRV_NAME
6234		       "Error calling ipw2100_queues_allocate.\n");
6235		err = -ENOMEM;
6236		goto fail;
6237	}
6238	ipw2100_queues_initialize(priv);
6239
6240	err = request_irq(pci_dev->irq,
6241			  ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6242	if (err) {
6243		printk(KERN_WARNING DRV_NAME
6244		       "Error calling request_irq: %d.\n", pci_dev->irq);
6245		goto fail;
6246	}
6247	dev->irq = pci_dev->irq;
6248
6249	IPW_DEBUG_INFO("Attempting to register device...\n");
6250
6251	printk(KERN_INFO DRV_NAME
6252	       ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6253
6254	err = ipw2100_up(priv, 1);
6255	if (err)
6256		goto fail;
6257
6258	err = ipw2100_wdev_init(dev);
6259	if (err)
6260		goto fail;
6261	registered = 1;
6262
6263	/* Bring up the interface.  Pre 0.46, after we registered the
6264	 * network device we would call ipw2100_up.  This introduced a race
6265	 * condition with newer hotplug configurations (network was coming
6266	 * up and making calls before the device was initialized).
6267	 */
6268	err = register_netdev(dev);
6269	if (err) {
6270		printk(KERN_WARNING DRV_NAME
6271		       "Error calling register_netdev.\n");
6272		goto fail;
6273	}
6274	registered = 2;
6275
6276	mutex_lock(&priv->action_mutex);
6277
6278	IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6279
6280	/* perform this after register_netdev so that dev->name is set */
6281	err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6282	if (err)
6283		goto fail_unlock;
6284
6285	/* If the RF Kill switch is disabled, go ahead and complete the
6286	 * startup sequence */
6287	if (!(priv->status & STATUS_RF_KILL_MASK)) {
6288		/* Enable the adapter - sends HOST_COMPLETE */
6289		if (ipw2100_enable_adapter(priv)) {
6290			printk(KERN_WARNING DRV_NAME
6291			       ": %s: failed in call to enable adapter.\n",
6292			       priv->net_dev->name);
6293			ipw2100_hw_stop_adapter(priv);
6294			err = -EIO;
6295			goto fail_unlock;
6296		}
6297
6298		/* Start a scan . . . */
6299		ipw2100_set_scan_options(priv);
6300		ipw2100_start_scan(priv);
6301	}
6302
6303	IPW_DEBUG_INFO("exit\n");
6304
6305	priv->status |= STATUS_INITIALIZED;
6306
6307	mutex_unlock(&priv->action_mutex);
6308out:
6309	return err;
6310
6311      fail_unlock:
6312	mutex_unlock(&priv->action_mutex);
6313      fail:
6314	if (dev) {
6315		if (registered >= 2)
6316			unregister_netdev(dev);
6317
6318		if (registered) {
6319			wiphy_unregister(priv->ieee->wdev.wiphy);
6320			kfree(priv->ieee->bg_band.channels);
6321		}
6322
6323		ipw2100_hw_stop_adapter(priv);
6324
6325		ipw2100_disable_interrupts(priv);
6326
6327		if (dev->irq)
6328			free_irq(dev->irq, priv);
6329
6330		ipw2100_kill_works(priv);
6331
6332		/* These are safe to call even if they weren't allocated */
6333		ipw2100_queues_free(priv);
6334		sysfs_remove_group(&pci_dev->dev.kobj,
6335				   &ipw2100_attribute_group);
6336
6337		free_libipw(dev, 0);
6338	}
6339
6340	pci_iounmap(pci_dev, ioaddr);
6341
6342	pci_release_regions(pci_dev);
6343	pci_disable_device(pci_dev);
6344	goto out;
6345}
6346
6347static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6348{
6349	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6350	struct net_device *dev = priv->net_dev;
6351
6352	mutex_lock(&priv->action_mutex);
6353
6354	priv->status &= ~STATUS_INITIALIZED;
6355
6356	sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6357
6358#ifdef CONFIG_PM
6359	if (ipw2100_firmware.version)
6360		ipw2100_release_firmware(priv, &ipw2100_firmware);
6361#endif
6362	/* Take down the hardware */
6363	ipw2100_down(priv);
6364
6365	/* Release the mutex so that the network subsystem can
6366	 * complete any needed calls into the driver... */
6367	mutex_unlock(&priv->action_mutex);
6368
6369	/* Unregister the device first - this results in close()
6370	 * being called if the device is open.  If we free storage
6371	 * first, then close() will crash.
6372	 * FIXME: remove the comment above. */
6373	unregister_netdev(dev);
6374
6375	ipw2100_kill_works(priv);
6376
6377	ipw2100_queues_free(priv);
6378
6379	/* Free potential debugging firmware snapshot */
6380	ipw2100_snapshot_free(priv);
6381
6382	free_irq(dev->irq, priv);
6383
6384	pci_iounmap(pci_dev, priv->ioaddr);
6385
6386	/* wiphy_unregister needs to be here, before free_libipw */
6387	wiphy_unregister(priv->ieee->wdev.wiphy);
6388	kfree(priv->ieee->bg_band.channels);
6389	free_libipw(dev, 0);
6390
6391	pci_release_regions(pci_dev);
6392	pci_disable_device(pci_dev);
6393
6394	IPW_DEBUG_INFO("exit\n");
6395}
6396
6397static int __maybe_unused ipw2100_suspend(struct device *dev_d)
6398{
6399	struct ipw2100_priv *priv = dev_get_drvdata(dev_d);
6400	struct net_device *dev = priv->net_dev;
6401
6402	IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6403
6404	mutex_lock(&priv->action_mutex);
6405	if (priv->status & STATUS_INITIALIZED) {
6406		/* Take down the device; powers it off, etc. */
6407		ipw2100_down(priv);
6408	}
6409
6410	/* Remove the PRESENT state of the device */
6411	netif_device_detach(dev);
6412
6413	priv->suspend_at = ktime_get_boottime_seconds();
6414
6415	mutex_unlock(&priv->action_mutex);
6416
6417	return 0;
6418}
6419
6420static int __maybe_unused ipw2100_resume(struct device *dev_d)
6421{
6422	struct pci_dev *pci_dev = to_pci_dev(dev_d);
6423	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6424	struct net_device *dev = priv->net_dev;
6425	u32 val;
6426
6427	if (IPW2100_PM_DISABLED)
6428		return 0;
6429
6430	mutex_lock(&priv->action_mutex);
6431
6432	IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6433
6434	/*
6435	 * Suspend/Resume resets the PCI configuration space, so we have to
6436	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6437	 * from interfering with C3 CPU state. pci_restore_state won't help
6438	 * here since it only restores the first 64 bytes pci config header.
6439	 */
6440	pci_read_config_dword(pci_dev, 0x40, &val);
6441	if ((val & 0x0000ff00) != 0)
6442		pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6443
6444	/* Set the device back into the PRESENT state; this will also wake
6445	 * the queue of needed */
6446	netif_device_attach(dev);
6447
6448	priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at;
6449
6450	/* Bring the device back up */
6451	if (!(priv->status & STATUS_RF_KILL_SW))
6452		ipw2100_up(priv, 0);
6453
6454	mutex_unlock(&priv->action_mutex);
6455
6456	return 0;
6457}
6458
6459static void ipw2100_shutdown(struct pci_dev *pci_dev)
6460{
6461	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6462
6463	/* Take down the device; powers it off, etc. */
6464	ipw2100_down(priv);
6465
6466	pci_disable_device(pci_dev);
6467}
6468
6469#define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6470
6471static const struct pci_device_id ipw2100_pci_id_table[] = {
6472	IPW2100_DEV_ID(0x2520),	/* IN 2100A mPCI 3A */
6473	IPW2100_DEV_ID(0x2521),	/* IN 2100A mPCI 3B */
6474	IPW2100_DEV_ID(0x2524),	/* IN 2100A mPCI 3B */
6475	IPW2100_DEV_ID(0x2525),	/* IN 2100A mPCI 3B */
6476	IPW2100_DEV_ID(0x2526),	/* IN 2100A mPCI Gen A3 */
6477	IPW2100_DEV_ID(0x2522),	/* IN 2100 mPCI 3B */
6478	IPW2100_DEV_ID(0x2523),	/* IN 2100 mPCI 3A */
6479	IPW2100_DEV_ID(0x2527),	/* IN 2100 mPCI 3B */
6480	IPW2100_DEV_ID(0x2528),	/* IN 2100 mPCI 3B */
6481	IPW2100_DEV_ID(0x2529),	/* IN 2100 mPCI 3B */
6482	IPW2100_DEV_ID(0x252B),	/* IN 2100 mPCI 3A */
6483	IPW2100_DEV_ID(0x252C),	/* IN 2100 mPCI 3A */
6484	IPW2100_DEV_ID(0x252D),	/* IN 2100 mPCI 3A */
6485
6486	IPW2100_DEV_ID(0x2550),	/* IB 2100A mPCI 3B */
6487	IPW2100_DEV_ID(0x2551),	/* IB 2100 mPCI 3B */
6488	IPW2100_DEV_ID(0x2553),	/* IB 2100 mPCI 3B */
6489	IPW2100_DEV_ID(0x2554),	/* IB 2100 mPCI 3B */
6490	IPW2100_DEV_ID(0x2555),	/* IB 2100 mPCI 3B */
6491
6492	IPW2100_DEV_ID(0x2560),	/* DE 2100A mPCI 3A */
6493	IPW2100_DEV_ID(0x2562),	/* DE 2100A mPCI 3A */
6494	IPW2100_DEV_ID(0x2563),	/* DE 2100A mPCI 3A */
6495	IPW2100_DEV_ID(0x2561),	/* DE 2100 mPCI 3A */
6496	IPW2100_DEV_ID(0x2565),	/* DE 2100 mPCI 3A */
6497	IPW2100_DEV_ID(0x2566),	/* DE 2100 mPCI 3A */
6498	IPW2100_DEV_ID(0x2567),	/* DE 2100 mPCI 3A */
6499
6500	IPW2100_DEV_ID(0x2570),	/* GA 2100 mPCI 3B */
6501
6502	IPW2100_DEV_ID(0x2580),	/* TO 2100A mPCI 3B */
6503	IPW2100_DEV_ID(0x2582),	/* TO 2100A mPCI 3B */
6504	IPW2100_DEV_ID(0x2583),	/* TO 2100A mPCI 3B */
6505	IPW2100_DEV_ID(0x2581),	/* TO 2100 mPCI 3B */
6506	IPW2100_DEV_ID(0x2585),	/* TO 2100 mPCI 3B */
6507	IPW2100_DEV_ID(0x2586),	/* TO 2100 mPCI 3B */
6508	IPW2100_DEV_ID(0x2587),	/* TO 2100 mPCI 3B */
6509
6510	IPW2100_DEV_ID(0x2590),	/* SO 2100A mPCI 3B */
6511	IPW2100_DEV_ID(0x2592),	/* SO 2100A mPCI 3B */
6512	IPW2100_DEV_ID(0x2591),	/* SO 2100 mPCI 3B */
6513	IPW2100_DEV_ID(0x2593),	/* SO 2100 mPCI 3B */
6514	IPW2100_DEV_ID(0x2596),	/* SO 2100 mPCI 3B */
6515	IPW2100_DEV_ID(0x2598),	/* SO 2100 mPCI 3B */
6516
6517	IPW2100_DEV_ID(0x25A0),	/* HP 2100 mPCI 3B */
6518	{0,},
6519};
6520
6521MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6522
6523static SIMPLE_DEV_PM_OPS(ipw2100_pm_ops, ipw2100_suspend, ipw2100_resume);
6524
6525static struct pci_driver ipw2100_pci_driver = {
6526	.name = DRV_NAME,
6527	.id_table = ipw2100_pci_id_table,
6528	.probe = ipw2100_pci_init_one,
6529	.remove = ipw2100_pci_remove_one,
6530	.driver.pm = &ipw2100_pm_ops,
6531	.shutdown = ipw2100_shutdown,
6532};
6533
6534/**
6535 * Initialize the ipw2100 driver/module
6536 *
6537 * @returns 0 if ok, < 0 errno node con error.
6538 *
6539 * Note: we cannot init the /proc stuff until the PCI driver is there,
6540 * or we risk an unlikely race condition on someone accessing
6541 * uninitialized data in the PCI dev struct through /proc.
6542 */
6543static int __init ipw2100_init(void)
6544{
6545	int ret;
6546
6547	printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6548	printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6549
6550	cpu_latency_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
6551
6552	ret = pci_register_driver(&ipw2100_pci_driver);
6553	if (ret)
6554		goto out;
6555
6556#ifdef CONFIG_IPW2100_DEBUG
6557	ipw2100_debug_level = debug;
6558	ret = driver_create_file(&ipw2100_pci_driver.driver,
6559				 &driver_attr_debug_level);
6560#endif
6561
6562out:
6563	return ret;
6564}
6565
6566/**
6567 * Cleanup ipw2100 driver registration
6568 */
6569static void __exit ipw2100_exit(void)
6570{
6571	/* FIXME: IPG: check that we have no instances of the devices open */
6572#ifdef CONFIG_IPW2100_DEBUG
6573	driver_remove_file(&ipw2100_pci_driver.driver,
6574			   &driver_attr_debug_level);
6575#endif
6576	pci_unregister_driver(&ipw2100_pci_driver);
6577	cpu_latency_qos_remove_request(&ipw2100_pm_qos_req);
6578}
6579
6580module_init(ipw2100_init);
6581module_exit(ipw2100_exit);
6582
6583static int ipw2100_wx_get_name(struct net_device *dev,
6584			       struct iw_request_info *info,
6585			       union iwreq_data *wrqu, char *extra)
6586{
6587	/*
6588	 * This can be called at any time.  No action lock required
6589	 */
6590
6591	struct ipw2100_priv *priv = libipw_priv(dev);
6592	if (!(priv->status & STATUS_ASSOCIATED))
6593		strcpy(wrqu->name, "unassociated");
6594	else
6595		snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6596
6597	IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6598	return 0;
6599}
6600
6601static int ipw2100_wx_set_freq(struct net_device *dev,
6602			       struct iw_request_info *info,
6603			       union iwreq_data *wrqu, char *extra)
6604{
6605	struct ipw2100_priv *priv = libipw_priv(dev);
6606	struct iw_freq *fwrq = &wrqu->freq;
6607	int err = 0;
6608
6609	if (priv->ieee->iw_mode == IW_MODE_INFRA)
6610		return -EOPNOTSUPP;
6611
6612	mutex_lock(&priv->action_mutex);
6613	if (!(priv->status & STATUS_INITIALIZED)) {
6614		err = -EIO;
6615		goto done;
6616	}
6617
6618	/* if setting by freq convert to channel */
6619	if (fwrq->e == 1) {
6620		if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6621			int f = fwrq->m / 100000;
6622			int c = 0;
6623
6624			while ((c < REG_MAX_CHANNEL) &&
6625			       (f != ipw2100_frequencies[c]))
6626				c++;
6627
6628			/* hack to fall through */
6629			fwrq->e = 0;
6630			fwrq->m = c + 1;
6631		}
6632	}
6633
6634	if (fwrq->e > 0 || fwrq->m > 1000) {
6635		err = -EOPNOTSUPP;
6636		goto done;
6637	} else {		/* Set the channel */
6638		IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6639		err = ipw2100_set_channel(priv, fwrq->m, 0);
6640	}
6641
6642      done:
6643	mutex_unlock(&priv->action_mutex);
6644	return err;
6645}
6646
6647static int ipw2100_wx_get_freq(struct net_device *dev,
6648			       struct iw_request_info *info,
6649			       union iwreq_data *wrqu, char *extra)
6650{
6651	/*
6652	 * This can be called at any time.  No action lock required
6653	 */
6654
6655	struct ipw2100_priv *priv = libipw_priv(dev);
6656
6657	wrqu->freq.e = 0;
6658
6659	/* If we are associated, trying to associate, or have a statically
6660	 * configured CHANNEL then return that; otherwise return ANY */
6661	if (priv->config & CFG_STATIC_CHANNEL ||
6662	    priv->status & STATUS_ASSOCIATED)
6663		wrqu->freq.m = priv->channel;
6664	else
6665		wrqu->freq.m = 0;
6666
6667	IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6668	return 0;
6669
6670}
6671
6672static int ipw2100_wx_set_mode(struct net_device *dev,
6673			       struct iw_request_info *info,
6674			       union iwreq_data *wrqu, char *extra)
6675{
6676	struct ipw2100_priv *priv = libipw_priv(dev);
6677	int err = 0;
6678
6679	IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6680
6681	if (wrqu->mode == priv->ieee->iw_mode)
6682		return 0;
6683
6684	mutex_lock(&priv->action_mutex);
6685	if (!(priv->status & STATUS_INITIALIZED)) {
6686		err = -EIO;
6687		goto done;
6688	}
6689
6690	switch (wrqu->mode) {
6691#ifdef CONFIG_IPW2100_MONITOR
6692	case IW_MODE_MONITOR:
6693		err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6694		break;
6695#endif				/* CONFIG_IPW2100_MONITOR */
6696	case IW_MODE_ADHOC:
6697		err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6698		break;
6699	case IW_MODE_INFRA:
6700	case IW_MODE_AUTO:
6701	default:
6702		err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6703		break;
6704	}
6705
6706      done:
6707	mutex_unlock(&priv->action_mutex);
6708	return err;
6709}
6710
6711static int ipw2100_wx_get_mode(struct net_device *dev,
6712			       struct iw_request_info *info,
6713			       union iwreq_data *wrqu, char *extra)
6714{
6715	/*
6716	 * This can be called at any time.  No action lock required
6717	 */
6718
6719	struct ipw2100_priv *priv = libipw_priv(dev);
6720
6721	wrqu->mode = priv->ieee->iw_mode;
6722	IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6723
6724	return 0;
6725}
6726
6727#define POWER_MODES 5
6728
6729/* Values are in microsecond */
6730static const s32 timeout_duration[POWER_MODES] = {
6731	350000,
6732	250000,
6733	75000,
6734	37000,
6735	25000,
6736};
6737
6738static const s32 period_duration[POWER_MODES] = {
6739	400000,
6740	700000,
6741	1000000,
6742	1000000,
6743	1000000
6744};
6745
6746static int ipw2100_wx_get_range(struct net_device *dev,
6747				struct iw_request_info *info,
6748				union iwreq_data *wrqu, char *extra)
6749{
6750	/*
6751	 * This can be called at any time.  No action lock required
6752	 */
6753
6754	struct ipw2100_priv *priv = libipw_priv(dev);
6755	struct iw_range *range = (struct iw_range *)extra;
6756	u16 val;
6757	int i, level;
6758
6759	wrqu->data.length = sizeof(*range);
6760	memset(range, 0, sizeof(*range));
6761
6762	/* Let's try to keep this struct in the same order as in
6763	 * linux/include/wireless.h
6764	 */
6765
6766	/* TODO: See what values we can set, and remove the ones we can't
6767	 * set, or fill them with some default data.
6768	 */
6769
6770	/* ~5 Mb/s real (802.11b) */
6771	range->throughput = 5 * 1000 * 1000;
6772
6773//      range->sensitivity;     /* signal level threshold range */
6774
6775	range->max_qual.qual = 100;
6776	/* TODO: Find real max RSSI and stick here */
6777	range->max_qual.level = 0;
6778	range->max_qual.noise = 0;
6779	range->max_qual.updated = 7;	/* Updated all three */
6780
6781	range->avg_qual.qual = 70;	/* > 8% missed beacons is 'bad' */
6782	/* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6783	range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6784	range->avg_qual.noise = 0;
6785	range->avg_qual.updated = 7;	/* Updated all three */
6786
6787	range->num_bitrates = RATE_COUNT;
6788
6789	for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6790		range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6791	}
6792
6793	range->min_rts = MIN_RTS_THRESHOLD;
6794	range->max_rts = MAX_RTS_THRESHOLD;
6795	range->min_frag = MIN_FRAG_THRESHOLD;
6796	range->max_frag = MAX_FRAG_THRESHOLD;
6797
6798	range->min_pmp = period_duration[0];	/* Minimal PM period */
6799	range->max_pmp = period_duration[POWER_MODES - 1];	/* Maximal PM period */
6800	range->min_pmt = timeout_duration[POWER_MODES - 1];	/* Minimal PM timeout */
6801	range->max_pmt = timeout_duration[0];	/* Maximal PM timeout */
6802
6803	/* How to decode max/min PM period */
6804	range->pmp_flags = IW_POWER_PERIOD;
6805	/* How to decode max/min PM period */
6806	range->pmt_flags = IW_POWER_TIMEOUT;
6807	/* What PM options are supported */
6808	range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6809
6810	range->encoding_size[0] = 5;
6811	range->encoding_size[1] = 13;	/* Different token sizes */
6812	range->num_encoding_sizes = 2;	/* Number of entry in the list */
6813	range->max_encoding_tokens = WEP_KEYS;	/* Max number of tokens */
6814//      range->encoding_login_index;            /* token index for login token */
6815
6816	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6817		range->txpower_capa = IW_TXPOW_DBM;
6818		range->num_txpower = IW_MAX_TXPOWER;
6819		for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6820		     i < IW_MAX_TXPOWER;
6821		     i++, level -=
6822		     ((IPW_TX_POWER_MAX_DBM -
6823		       IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6824			range->txpower[i] = level / 16;
6825	} else {
6826		range->txpower_capa = 0;
6827		range->num_txpower = 0;
6828	}
6829
6830	/* Set the Wireless Extension versions */
6831	range->we_version_compiled = WIRELESS_EXT;
6832	range->we_version_source = 18;
6833
6834//      range->retry_capa;      /* What retry options are supported */
6835//      range->retry_flags;     /* How to decode max/min retry limit */
6836//      range->r_time_flags;    /* How to decode max/min retry life */
6837//      range->min_retry;       /* Minimal number of retries */
6838//      range->max_retry;       /* Maximal number of retries */
6839//      range->min_r_time;      /* Minimal retry lifetime */
6840//      range->max_r_time;      /* Maximal retry lifetime */
6841
6842	range->num_channels = FREQ_COUNT;
6843
6844	val = 0;
6845	for (i = 0; i < FREQ_COUNT; i++) {
6846		// TODO: Include only legal frequencies for some countries
6847//              if (local->channel_mask & (1 << i)) {
6848		range->freq[val].i = i + 1;
6849		range->freq[val].m = ipw2100_frequencies[i] * 100000;
6850		range->freq[val].e = 1;
6851		val++;
6852//              }
6853		if (val == IW_MAX_FREQUENCIES)
6854			break;
6855	}
6856	range->num_frequency = val;
6857
6858	/* Event capability (kernel + driver) */
6859	range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6860				IW_EVENT_CAPA_MASK(SIOCGIWAP));
6861	range->event_capa[1] = IW_EVENT_CAPA_K_1;
6862
6863	range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6864		IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6865
6866	IPW_DEBUG_WX("GET Range\n");
6867
6868	return 0;
6869}
6870
6871static int ipw2100_wx_set_wap(struct net_device *dev,
6872			      struct iw_request_info *info,
6873			      union iwreq_data *wrqu, char *extra)
6874{
6875	struct ipw2100_priv *priv = libipw_priv(dev);
6876	int err = 0;
6877
6878	// sanity checks
6879	if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6880		return -EINVAL;
6881
6882	mutex_lock(&priv->action_mutex);
6883	if (!(priv->status & STATUS_INITIALIZED)) {
6884		err = -EIO;
6885		goto done;
6886	}
6887
6888	if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6889	    is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6890		/* we disable mandatory BSSID association */
6891		IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6892		priv->config &= ~CFG_STATIC_BSSID;
6893		err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6894		goto done;
6895	}
6896
6897	priv->config |= CFG_STATIC_BSSID;
6898	memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6899
6900	err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6901
6902	IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6903
6904      done:
6905	mutex_unlock(&priv->action_mutex);
6906	return err;
6907}
6908
6909static int ipw2100_wx_get_wap(struct net_device *dev,
6910			      struct iw_request_info *info,
6911			      union iwreq_data *wrqu, char *extra)
6912{
6913	/*
6914	 * This can be called at any time.  No action lock required
6915	 */
6916
6917	struct ipw2100_priv *priv = libipw_priv(dev);
6918
6919	/* If we are associated, trying to associate, or have a statically
6920	 * configured BSSID then return that; otherwise return ANY */
6921	if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6922		wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6923		memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6924	} else
6925		eth_zero_addr(wrqu->ap_addr.sa_data);
6926
6927	IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6928	return 0;
6929}
6930
6931static int ipw2100_wx_set_essid(struct net_device *dev,
6932				struct iw_request_info *info,
6933				union iwreq_data *wrqu, char *extra)
6934{
6935	struct ipw2100_priv *priv = libipw_priv(dev);
6936	char *essid = "";	/* ANY */
6937	int length = 0;
6938	int err = 0;
6939
6940	mutex_lock(&priv->action_mutex);
6941	if (!(priv->status & STATUS_INITIALIZED)) {
6942		err = -EIO;
6943		goto done;
6944	}
6945
6946	if (wrqu->essid.flags && wrqu->essid.length) {
6947		length = wrqu->essid.length;
6948		essid = extra;
6949	}
6950
6951	if (length == 0) {
6952		IPW_DEBUG_WX("Setting ESSID to ANY\n");
6953		priv->config &= ~CFG_STATIC_ESSID;
6954		err = ipw2100_set_essid(priv, NULL, 0, 0);
6955		goto done;
6956	}
6957
6958	length = min(length, IW_ESSID_MAX_SIZE);
6959
6960	priv->config |= CFG_STATIC_ESSID;
6961
6962	if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6963		IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6964		err = 0;
6965		goto done;
6966	}
6967
6968	IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, essid, length);
6969
6970	priv->essid_len = length;
6971	memcpy(priv->essid, essid, priv->essid_len);
6972
6973	err = ipw2100_set_essid(priv, essid, length, 0);
6974
6975      done:
6976	mutex_unlock(&priv->action_mutex);
6977	return err;
6978}
6979
6980static int ipw2100_wx_get_essid(struct net_device *dev,
6981				struct iw_request_info *info,
6982				union iwreq_data *wrqu, char *extra)
6983{
6984	/*
6985	 * This can be called at any time.  No action lock required
6986	 */
6987
6988	struct ipw2100_priv *priv = libipw_priv(dev);
6989
6990	/* If we are associated, trying to associate, or have a statically
6991	 * configured ESSID then return that; otherwise return ANY */
6992	if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
6993		IPW_DEBUG_WX("Getting essid: '%*pE'\n",
6994			     priv->essid_len, priv->essid);
6995		memcpy(extra, priv->essid, priv->essid_len);
6996		wrqu->essid.length = priv->essid_len;
6997		wrqu->essid.flags = 1;	/* active */
6998	} else {
6999		IPW_DEBUG_WX("Getting essid: ANY\n");
7000		wrqu->essid.length = 0;
7001		wrqu->essid.flags = 0;	/* active */
7002	}
7003
7004	return 0;
7005}
7006
7007static int ipw2100_wx_set_nick(struct net_device *dev,
7008			       struct iw_request_info *info,
7009			       union iwreq_data *wrqu, char *extra)
7010{
7011	/*
7012	 * This can be called at any time.  No action lock required
7013	 */
7014
7015	struct ipw2100_priv *priv = libipw_priv(dev);
7016
7017	if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7018		return -E2BIG;
7019
7020	wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
7021	memset(priv->nick, 0, sizeof(priv->nick));
7022	memcpy(priv->nick, extra, wrqu->data.length);
7023
7024	IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7025
7026	return 0;
7027}
7028
7029static int ipw2100_wx_get_nick(struct net_device *dev,
7030			       struct iw_request_info *info,
7031			       union iwreq_data *wrqu, char *extra)
7032{
7033	/*
7034	 * This can be called at any time.  No action lock required
7035	 */
7036
7037	struct ipw2100_priv *priv = libipw_priv(dev);
7038
7039	wrqu->data.length = strlen(priv->nick);
7040	memcpy(extra, priv->nick, wrqu->data.length);
7041	wrqu->data.flags = 1;	/* active */
7042
7043	IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7044
7045	return 0;
7046}
7047
7048static int ipw2100_wx_set_rate(struct net_device *dev,
7049			       struct iw_request_info *info,
7050			       union iwreq_data *wrqu, char *extra)
7051{
7052	struct ipw2100_priv *priv = libipw_priv(dev);
7053	u32 target_rate = wrqu->bitrate.value;
7054	u32 rate;
7055	int err = 0;
7056
7057	mutex_lock(&priv->action_mutex);
7058	if (!(priv->status & STATUS_INITIALIZED)) {
7059		err = -EIO;
7060		goto done;
7061	}
7062
7063	rate = 0;
7064
7065	if (target_rate == 1000000 ||
7066	    (!wrqu->bitrate.fixed && target_rate > 1000000))
7067		rate |= TX_RATE_1_MBIT;
7068	if (target_rate == 2000000 ||
7069	    (!wrqu->bitrate.fixed && target_rate > 2000000))
7070		rate |= TX_RATE_2_MBIT;
7071	if (target_rate == 5500000 ||
7072	    (!wrqu->bitrate.fixed && target_rate > 5500000))
7073		rate |= TX_RATE_5_5_MBIT;
7074	if (target_rate == 11000000 ||
7075	    (!wrqu->bitrate.fixed && target_rate > 11000000))
7076		rate |= TX_RATE_11_MBIT;
7077	if (rate == 0)
7078		rate = DEFAULT_TX_RATES;
7079
7080	err = ipw2100_set_tx_rates(priv, rate, 0);
7081
7082	IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7083      done:
7084	mutex_unlock(&priv->action_mutex);
7085	return err;
7086}
7087
7088static int ipw2100_wx_get_rate(struct net_device *dev,
7089			       struct iw_request_info *info,
7090			       union iwreq_data *wrqu, char *extra)
7091{
7092	struct ipw2100_priv *priv = libipw_priv(dev);
7093	int val;
7094	unsigned int len = sizeof(val);
7095	int err = 0;
7096
7097	if (!(priv->status & STATUS_ENABLED) ||
7098	    priv->status & STATUS_RF_KILL_MASK ||
7099	    !(priv->status & STATUS_ASSOCIATED)) {
7100		wrqu->bitrate.value = 0;
7101		return 0;
7102	}
7103
7104	mutex_lock(&priv->action_mutex);
7105	if (!(priv->status & STATUS_INITIALIZED)) {
7106		err = -EIO;
7107		goto done;
7108	}
7109
7110	err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7111	if (err) {
7112		IPW_DEBUG_WX("failed querying ordinals.\n");
7113		goto done;
7114	}
7115
7116	switch (val & TX_RATE_MASK) {
7117	case TX_RATE_1_MBIT:
7118		wrqu->bitrate.value = 1000000;
7119		break;
7120	case TX_RATE_2_MBIT:
7121		wrqu->bitrate.value = 2000000;
7122		break;
7123	case TX_RATE_5_5_MBIT:
7124		wrqu->bitrate.value = 5500000;
7125		break;
7126	case TX_RATE_11_MBIT:
7127		wrqu->bitrate.value = 11000000;
7128		break;
7129	default:
7130		wrqu->bitrate.value = 0;
7131	}
7132
7133	IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7134
7135      done:
7136	mutex_unlock(&priv->action_mutex);
7137	return err;
7138}
7139
7140static int ipw2100_wx_set_rts(struct net_device *dev,
7141			      struct iw_request_info *info,
7142			      union iwreq_data *wrqu, char *extra)
7143{
7144	struct ipw2100_priv *priv = libipw_priv(dev);
7145	int value, err;
7146
7147	/* Auto RTS not yet supported */
7148	if (wrqu->rts.fixed == 0)
7149		return -EINVAL;
7150
7151	mutex_lock(&priv->action_mutex);
7152	if (!(priv->status & STATUS_INITIALIZED)) {
7153		err = -EIO;
7154		goto done;
7155	}
7156
7157	if (wrqu->rts.disabled)
7158		value = priv->rts_threshold | RTS_DISABLED;
7159	else {
7160		if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7161			err = -EINVAL;
7162			goto done;
7163		}
7164		value = wrqu->rts.value;
7165	}
7166
7167	err = ipw2100_set_rts_threshold(priv, value);
7168
7169	IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7170      done:
7171	mutex_unlock(&priv->action_mutex);
7172	return err;
7173}
7174
7175static int ipw2100_wx_get_rts(struct net_device *dev,
7176			      struct iw_request_info *info,
7177			      union iwreq_data *wrqu, char *extra)
7178{
7179	/*
7180	 * This can be called at any time.  No action lock required
7181	 */
7182
7183	struct ipw2100_priv *priv = libipw_priv(dev);
7184
7185	wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7186	wrqu->rts.fixed = 1;	/* no auto select */
7187
7188	/* If RTS is set to the default value, then it is disabled */
7189	wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7190
7191	IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7192
7193	return 0;
7194}
7195
7196static int ipw2100_wx_set_txpow(struct net_device *dev,
7197				struct iw_request_info *info,
7198				union iwreq_data *wrqu, char *extra)
7199{
7200	struct ipw2100_priv *priv = libipw_priv(dev);
7201	int err = 0, value;
7202	
7203	if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7204		return -EINPROGRESS;
7205
7206	if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7207		return 0;
7208
7209	if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7210		return -EINVAL;
7211
7212	if (wrqu->txpower.fixed == 0)
7213		value = IPW_TX_POWER_DEFAULT;
7214	else {
7215		if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7216		    wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7217			return -EINVAL;
7218
7219		value = wrqu->txpower.value;
7220	}
7221
7222	mutex_lock(&priv->action_mutex);
7223	if (!(priv->status & STATUS_INITIALIZED)) {
7224		err = -EIO;
7225		goto done;
7226	}
7227
7228	err = ipw2100_set_tx_power(priv, value);
7229
7230	IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7231
7232      done:
7233	mutex_unlock(&priv->action_mutex);
7234	return err;
7235}
7236
7237static int ipw2100_wx_get_txpow(struct net_device *dev,
7238				struct iw_request_info *info,
7239				union iwreq_data *wrqu, char *extra)
7240{
7241	/*
7242	 * This can be called at any time.  No action lock required
7243	 */
7244
7245	struct ipw2100_priv *priv = libipw_priv(dev);
7246
7247	wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7248
7249	if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7250		wrqu->txpower.fixed = 0;
7251		wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7252	} else {
7253		wrqu->txpower.fixed = 1;
7254		wrqu->txpower.value = priv->tx_power;
7255	}
7256
7257	wrqu->txpower.flags = IW_TXPOW_DBM;
7258
7259	IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7260
7261	return 0;
7262}
7263
7264static int ipw2100_wx_set_frag(struct net_device *dev,
7265			       struct iw_request_info *info,
7266			       union iwreq_data *wrqu, char *extra)
7267{
7268	/*
7269	 * This can be called at any time.  No action lock required
7270	 */
7271
7272	struct ipw2100_priv *priv = libipw_priv(dev);
7273
7274	if (!wrqu->frag.fixed)
7275		return -EINVAL;
7276
7277	if (wrqu->frag.disabled) {
7278		priv->frag_threshold |= FRAG_DISABLED;
7279		priv->ieee->fts = DEFAULT_FTS;
7280	} else {
7281		if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7282		    wrqu->frag.value > MAX_FRAG_THRESHOLD)
7283			return -EINVAL;
7284
7285		priv->ieee->fts = wrqu->frag.value & ~0x1;
7286		priv->frag_threshold = priv->ieee->fts;
7287	}
7288
7289	IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7290
7291	return 0;
7292}
7293
7294static int ipw2100_wx_get_frag(struct net_device *dev,
7295			       struct iw_request_info *info,
7296			       union iwreq_data *wrqu, char *extra)
7297{
7298	/*
7299	 * This can be called at any time.  No action lock required
7300	 */
7301
7302	struct ipw2100_priv *priv = libipw_priv(dev);
7303	wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7304	wrqu->frag.fixed = 0;	/* no auto select */
7305	wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7306
7307	IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7308
7309	return 0;
7310}
7311
7312static int ipw2100_wx_set_retry(struct net_device *dev,
7313				struct iw_request_info *info,
7314				union iwreq_data *wrqu, char *extra)
7315{
7316	struct ipw2100_priv *priv = libipw_priv(dev);
7317	int err = 0;
7318
7319	if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7320		return -EINVAL;
7321
7322	if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7323		return 0;
7324
7325	mutex_lock(&priv->action_mutex);
7326	if (!(priv->status & STATUS_INITIALIZED)) {
7327		err = -EIO;
7328		goto done;
7329	}
7330
7331	if (wrqu->retry.flags & IW_RETRY_SHORT) {
7332		err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7333		IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7334			     wrqu->retry.value);
7335		goto done;
7336	}
7337
7338	if (wrqu->retry.flags & IW_RETRY_LONG) {
7339		err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7340		IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7341			     wrqu->retry.value);
7342		goto done;
7343	}
7344
7345	err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7346	if (!err)
7347		err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7348
7349	IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7350
7351      done:
7352	mutex_unlock(&priv->action_mutex);
7353	return err;
7354}
7355
7356static int ipw2100_wx_get_retry(struct net_device *dev,
7357				struct iw_request_info *info,
7358				union iwreq_data *wrqu, char *extra)
7359{
7360	/*
7361	 * This can be called at any time.  No action lock required
7362	 */
7363
7364	struct ipw2100_priv *priv = libipw_priv(dev);
7365
7366	wrqu->retry.disabled = 0;	/* can't be disabled */
7367
7368	if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7369		return -EINVAL;
7370
7371	if (wrqu->retry.flags & IW_RETRY_LONG) {
7372		wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7373		wrqu->retry.value = priv->long_retry_limit;
7374	} else {
7375		wrqu->retry.flags =
7376		    (priv->short_retry_limit !=
7377		     priv->long_retry_limit) ?
7378		    IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7379
7380		wrqu->retry.value = priv->short_retry_limit;
7381	}
7382
7383	IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7384
7385	return 0;
7386}
7387
7388static int ipw2100_wx_set_scan(struct net_device *dev,
7389			       struct iw_request_info *info,
7390			       union iwreq_data *wrqu, char *extra)
7391{
7392	struct ipw2100_priv *priv = libipw_priv(dev);
7393	int err = 0;
7394
7395	mutex_lock(&priv->action_mutex);
7396	if (!(priv->status & STATUS_INITIALIZED)) {
7397		err = -EIO;
7398		goto done;
7399	}
7400
7401	IPW_DEBUG_WX("Initiating scan...\n");
7402
7403	priv->user_requested_scan = 1;
7404	if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7405		IPW_DEBUG_WX("Start scan failed.\n");
7406
7407		/* TODO: Mark a scan as pending so when hardware initialized
7408		 *       a scan starts */
7409	}
7410
7411      done:
7412	mutex_unlock(&priv->action_mutex);
7413	return err;
7414}
7415
7416static int ipw2100_wx_get_scan(struct net_device *dev,
7417			       struct iw_request_info *info,
7418			       union iwreq_data *wrqu, char *extra)
7419{
7420	/*
7421	 * This can be called at any time.  No action lock required
7422	 */
7423
7424	struct ipw2100_priv *priv = libipw_priv(dev);
7425	return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7426}
7427
7428/*
7429 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7430 */
7431static int ipw2100_wx_set_encode(struct net_device *dev,
7432				 struct iw_request_info *info,
7433				 union iwreq_data *wrqu, char *key)
7434{
7435	/*
7436	 * No check of STATUS_INITIALIZED required
7437	 */
7438
7439	struct ipw2100_priv *priv = libipw_priv(dev);
7440	return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7441}
7442
7443static int ipw2100_wx_get_encode(struct net_device *dev,
7444				 struct iw_request_info *info,
7445				 union iwreq_data *wrqu, char *key)
7446{
7447	/*
7448	 * This can be called at any time.  No action lock required
7449	 */
7450
7451	struct ipw2100_priv *priv = libipw_priv(dev);
7452	return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7453}
7454
7455static int ipw2100_wx_set_power(struct net_device *dev,
7456				struct iw_request_info *info,
7457				union iwreq_data *wrqu, char *extra)
7458{
7459	struct ipw2100_priv *priv = libipw_priv(dev);
7460	int err = 0;
7461
7462	mutex_lock(&priv->action_mutex);
7463	if (!(priv->status & STATUS_INITIALIZED)) {
7464		err = -EIO;
7465		goto done;
7466	}
7467
7468	if (wrqu->power.disabled) {
7469		priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7470		err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7471		IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7472		goto done;
7473	}
7474
7475	switch (wrqu->power.flags & IW_POWER_MODE) {
7476	case IW_POWER_ON:	/* If not specified */
7477	case IW_POWER_MODE:	/* If set all mask */
7478	case IW_POWER_ALL_R:	/* If explicitly state all */
7479		break;
7480	default:		/* Otherwise we don't support it */
7481		IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7482			     wrqu->power.flags);
7483		err = -EOPNOTSUPP;
7484		goto done;
7485	}
7486
7487	/* If the user hasn't specified a power management mode yet, default
7488	 * to BATTERY */
7489	priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7490	err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7491
7492	IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7493
7494      done:
7495	mutex_unlock(&priv->action_mutex);
7496	return err;
7497
7498}
7499
7500static int ipw2100_wx_get_power(struct net_device *dev,
7501				struct iw_request_info *info,
7502				union iwreq_data *wrqu, char *extra)
7503{
7504	/*
7505	 * This can be called at any time.  No action lock required
7506	 */
7507
7508	struct ipw2100_priv *priv = libipw_priv(dev);
7509
7510	if (!(priv->power_mode & IPW_POWER_ENABLED))
7511		wrqu->power.disabled = 1;
7512	else {
7513		wrqu->power.disabled = 0;
7514		wrqu->power.flags = 0;
7515	}
7516
7517	IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7518
7519	return 0;
7520}
7521
7522/*
7523 * WE-18 WPA support
7524 */
7525
7526/* SIOCSIWGENIE */
7527static int ipw2100_wx_set_genie(struct net_device *dev,
7528				struct iw_request_info *info,
7529				union iwreq_data *wrqu, char *extra)
7530{
7531
7532	struct ipw2100_priv *priv = libipw_priv(dev);
7533	struct libipw_device *ieee = priv->ieee;
7534	u8 *buf;
7535
7536	if (!ieee->wpa_enabled)
7537		return -EOPNOTSUPP;
7538
7539	if (wrqu->data.length > MAX_WPA_IE_LEN ||
7540	    (wrqu->data.length && extra == NULL))
7541		return -EINVAL;
7542
7543	if (wrqu->data.length) {
7544		buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7545		if (buf == NULL)
7546			return -ENOMEM;
7547
7548		kfree(ieee->wpa_ie);
7549		ieee->wpa_ie = buf;
7550		ieee->wpa_ie_len = wrqu->data.length;
7551	} else {
7552		kfree(ieee->wpa_ie);
7553		ieee->wpa_ie = NULL;
7554		ieee->wpa_ie_len = 0;
7555	}
7556
7557	ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7558
7559	return 0;
7560}
7561
7562/* SIOCGIWGENIE */
7563static int ipw2100_wx_get_genie(struct net_device *dev,
7564				struct iw_request_info *info,
7565				union iwreq_data *wrqu, char *extra)
7566{
7567	struct ipw2100_priv *priv = libipw_priv(dev);
7568	struct libipw_device *ieee = priv->ieee;
7569
7570	if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7571		wrqu->data.length = 0;
7572		return 0;
7573	}
7574
7575	if (wrqu->data.length < ieee->wpa_ie_len)
7576		return -E2BIG;
7577
7578	wrqu->data.length = ieee->wpa_ie_len;
7579	memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7580
7581	return 0;
7582}
7583
7584/* SIOCSIWAUTH */
7585static int ipw2100_wx_set_auth(struct net_device *dev,
7586			       struct iw_request_info *info,
7587			       union iwreq_data *wrqu, char *extra)
7588{
7589	struct ipw2100_priv *priv = libipw_priv(dev);
7590	struct libipw_device *ieee = priv->ieee;
7591	struct iw_param *param = &wrqu->param;
7592	struct lib80211_crypt_data *crypt;
7593	unsigned long flags;
7594	int ret = 0;
7595
7596	switch (param->flags & IW_AUTH_INDEX) {
7597	case IW_AUTH_WPA_VERSION:
7598	case IW_AUTH_CIPHER_PAIRWISE:
7599	case IW_AUTH_CIPHER_GROUP:
7600	case IW_AUTH_KEY_MGMT:
7601		/*
7602		 * ipw2200 does not use these parameters
7603		 */
7604		break;
7605
7606	case IW_AUTH_TKIP_COUNTERMEASURES:
7607		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7608		if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7609			break;
7610
7611		flags = crypt->ops->get_flags(crypt->priv);
7612
7613		if (param->value)
7614			flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7615		else
7616			flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7617
7618		crypt->ops->set_flags(flags, crypt->priv);
7619
7620		break;
7621
7622	case IW_AUTH_DROP_UNENCRYPTED:{
7623			/* HACK:
7624			 *
7625			 * wpa_supplicant calls set_wpa_enabled when the driver
7626			 * is loaded and unloaded, regardless of if WPA is being
7627			 * used.  No other calls are made which can be used to
7628			 * determine if encryption will be used or not prior to
7629			 * association being expected.  If encryption is not being
7630			 * used, drop_unencrypted is set to false, else true -- we
7631			 * can use this to determine if the CAP_PRIVACY_ON bit should
7632			 * be set.
7633			 */
7634			struct libipw_security sec = {
7635				.flags = SEC_ENABLED,
7636				.enabled = param->value,
7637			};
7638			priv->ieee->drop_unencrypted = param->value;
7639			/* We only change SEC_LEVEL for open mode. Others
7640			 * are set by ipw_wpa_set_encryption.
7641			 */
7642			if (!param->value) {
7643				sec.flags |= SEC_LEVEL;
7644				sec.level = SEC_LEVEL_0;
7645			} else {
7646				sec.flags |= SEC_LEVEL;
7647				sec.level = SEC_LEVEL_1;
7648			}
7649			if (priv->ieee->set_security)
7650				priv->ieee->set_security(priv->ieee->dev, &sec);
7651			break;
7652		}
7653
7654	case IW_AUTH_80211_AUTH_ALG:
7655		ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7656		break;
7657
7658	case IW_AUTH_WPA_ENABLED:
7659		ret = ipw2100_wpa_enable(priv, param->value);
7660		break;
7661
7662	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7663		ieee->ieee802_1x = param->value;
7664		break;
7665
7666		//case IW_AUTH_ROAMING_CONTROL:
7667	case IW_AUTH_PRIVACY_INVOKED:
7668		ieee->privacy_invoked = param->value;
7669		break;
7670
7671	default:
7672		return -EOPNOTSUPP;
7673	}
7674	return ret;
7675}
7676
7677/* SIOCGIWAUTH */
7678static int ipw2100_wx_get_auth(struct net_device *dev,
7679			       struct iw_request_info *info,
7680			       union iwreq_data *wrqu, char *extra)
7681{
7682	struct ipw2100_priv *priv = libipw_priv(dev);
7683	struct libipw_device *ieee = priv->ieee;
7684	struct lib80211_crypt_data *crypt;
7685	struct iw_param *param = &wrqu->param;
7686
7687	switch (param->flags & IW_AUTH_INDEX) {
7688	case IW_AUTH_WPA_VERSION:
7689	case IW_AUTH_CIPHER_PAIRWISE:
7690	case IW_AUTH_CIPHER_GROUP:
7691	case IW_AUTH_KEY_MGMT:
7692		/*
7693		 * wpa_supplicant will control these internally
7694		 */
7695		break;
7696
7697	case IW_AUTH_TKIP_COUNTERMEASURES:
7698		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7699		if (!crypt || !crypt->ops->get_flags) {
7700			IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7701					  "crypt not set!\n");
7702			break;
7703		}
7704
7705		param->value = (crypt->ops->get_flags(crypt->priv) &
7706				IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7707
7708		break;
7709
7710	case IW_AUTH_DROP_UNENCRYPTED:
7711		param->value = ieee->drop_unencrypted;
7712		break;
7713
7714	case IW_AUTH_80211_AUTH_ALG:
7715		param->value = priv->ieee->sec.auth_mode;
7716		break;
7717
7718	case IW_AUTH_WPA_ENABLED:
7719		param->value = ieee->wpa_enabled;
7720		break;
7721
7722	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7723		param->value = ieee->ieee802_1x;
7724		break;
7725
7726	case IW_AUTH_ROAMING_CONTROL:
7727	case IW_AUTH_PRIVACY_INVOKED:
7728		param->value = ieee->privacy_invoked;
7729		break;
7730
7731	default:
7732		return -EOPNOTSUPP;
7733	}
7734	return 0;
7735}
7736
7737/* SIOCSIWENCODEEXT */
7738static int ipw2100_wx_set_encodeext(struct net_device *dev,
7739				    struct iw_request_info *info,
7740				    union iwreq_data *wrqu, char *extra)
7741{
7742	struct ipw2100_priv *priv = libipw_priv(dev);
7743	return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7744}
7745
7746/* SIOCGIWENCODEEXT */
7747static int ipw2100_wx_get_encodeext(struct net_device *dev,
7748				    struct iw_request_info *info,
7749				    union iwreq_data *wrqu, char *extra)
7750{
7751	struct ipw2100_priv *priv = libipw_priv(dev);
7752	return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7753}
7754
7755/* SIOCSIWMLME */
7756static int ipw2100_wx_set_mlme(struct net_device *dev,
7757			       struct iw_request_info *info,
7758			       union iwreq_data *wrqu, char *extra)
7759{
7760	struct ipw2100_priv *priv = libipw_priv(dev);
7761	struct iw_mlme *mlme = (struct iw_mlme *)extra;
7762
7763	switch (mlme->cmd) {
7764	case IW_MLME_DEAUTH:
7765		// silently ignore
7766		break;
7767
7768	case IW_MLME_DISASSOC:
7769		ipw2100_disassociate_bssid(priv);
7770		break;
7771
7772	default:
7773		return -EOPNOTSUPP;
7774	}
7775	return 0;
7776}
7777
7778/*
7779 *
7780 * IWPRIV handlers
7781 *
7782 */
7783#ifdef CONFIG_IPW2100_MONITOR
7784static int ipw2100_wx_set_promisc(struct net_device *dev,
7785				  struct iw_request_info *info,
7786				  union iwreq_data *wrqu, char *extra)
7787{
7788	struct ipw2100_priv *priv = libipw_priv(dev);
7789	int *parms = (int *)extra;
7790	int enable = (parms[0] > 0);
7791	int err = 0;
7792
7793	mutex_lock(&priv->action_mutex);
7794	if (!(priv->status & STATUS_INITIALIZED)) {
7795		err = -EIO;
7796		goto done;
7797	}
7798
7799	if (enable) {
7800		if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7801			err = ipw2100_set_channel(priv, parms[1], 0);
7802			goto done;
7803		}
7804		priv->channel = parms[1];
7805		err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7806	} else {
7807		if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7808			err = ipw2100_switch_mode(priv, priv->last_mode);
7809	}
7810      done:
7811	mutex_unlock(&priv->action_mutex);
7812	return err;
7813}
7814
7815static int ipw2100_wx_reset(struct net_device *dev,
7816			    struct iw_request_info *info,
7817			    union iwreq_data *wrqu, char *extra)
7818{
7819	struct ipw2100_priv *priv = libipw_priv(dev);
7820	if (priv->status & STATUS_INITIALIZED)
7821		schedule_reset(priv);
7822	return 0;
7823}
7824
7825#endif
7826
7827static int ipw2100_wx_set_powermode(struct net_device *dev,
7828				    struct iw_request_info *info,
7829				    union iwreq_data *wrqu, char *extra)
7830{
7831	struct ipw2100_priv *priv = libipw_priv(dev);
7832	int err = 0, mode = *(int *)extra;
7833
7834	mutex_lock(&priv->action_mutex);
7835	if (!(priv->status & STATUS_INITIALIZED)) {
7836		err = -EIO;
7837		goto done;
7838	}
7839
7840	if ((mode < 0) || (mode > POWER_MODES))
7841		mode = IPW_POWER_AUTO;
7842
7843	if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7844		err = ipw2100_set_power_mode(priv, mode);
7845      done:
7846	mutex_unlock(&priv->action_mutex);
7847	return err;
7848}
7849
7850#define MAX_POWER_STRING 80
7851static int ipw2100_wx_get_powermode(struct net_device *dev,
7852				    struct iw_request_info *info,
7853				    union iwreq_data *wrqu, char *extra)
7854{
7855	/*
7856	 * This can be called at any time.  No action lock required
7857	 */
7858
7859	struct ipw2100_priv *priv = libipw_priv(dev);
7860	int level = IPW_POWER_LEVEL(priv->power_mode);
7861	s32 timeout, period;
7862
7863	if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7864		snprintf(extra, MAX_POWER_STRING,
7865			 "Power save level: %d (Off)", level);
7866	} else {
7867		switch (level) {
7868		case IPW_POWER_MODE_CAM:
7869			snprintf(extra, MAX_POWER_STRING,
7870				 "Power save level: %d (None)", level);
7871			break;
7872		case IPW_POWER_AUTO:
7873			snprintf(extra, MAX_POWER_STRING,
7874				 "Power save level: %d (Auto)", level);
7875			break;
7876		default:
7877			timeout = timeout_duration[level - 1] / 1000;
7878			period = period_duration[level - 1] / 1000;
7879			snprintf(extra, MAX_POWER_STRING,
7880				 "Power save level: %d "
7881				 "(Timeout %dms, Period %dms)",
7882				 level, timeout, period);
7883		}
7884	}
7885
7886	wrqu->data.length = strlen(extra) + 1;
7887
7888	return 0;
7889}
7890
7891static int ipw2100_wx_set_preamble(struct net_device *dev,
7892				   struct iw_request_info *info,
7893				   union iwreq_data *wrqu, char *extra)
7894{
7895	struct ipw2100_priv *priv = libipw_priv(dev);
7896	int err, mode = *(int *)extra;
7897
7898	mutex_lock(&priv->action_mutex);
7899	if (!(priv->status & STATUS_INITIALIZED)) {
7900		err = -EIO;
7901		goto done;
7902	}
7903
7904	if (mode == 1)
7905		priv->config |= CFG_LONG_PREAMBLE;
7906	else if (mode == 0)
7907		priv->config &= ~CFG_LONG_PREAMBLE;
7908	else {
7909		err = -EINVAL;
7910		goto done;
7911	}
7912
7913	err = ipw2100_system_config(priv, 0);
7914
7915      done:
7916	mutex_unlock(&priv->action_mutex);
7917	return err;
7918}
7919
7920static int ipw2100_wx_get_preamble(struct net_device *dev,
7921				   struct iw_request_info *info,
7922				   union iwreq_data *wrqu, char *extra)
7923{
7924	/*
7925	 * This can be called at any time.  No action lock required
7926	 */
7927
7928	struct ipw2100_priv *priv = libipw_priv(dev);
7929
7930	if (priv->config & CFG_LONG_PREAMBLE)
7931		snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7932	else
7933		snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7934
7935	return 0;
7936}
7937
7938#ifdef CONFIG_IPW2100_MONITOR
7939static int ipw2100_wx_set_crc_check(struct net_device *dev,
7940				    struct iw_request_info *info,
7941				    union iwreq_data *wrqu, char *extra)
7942{
7943	struct ipw2100_priv *priv = libipw_priv(dev);
7944	int err, mode = *(int *)extra;
7945
7946	mutex_lock(&priv->action_mutex);
7947	if (!(priv->status & STATUS_INITIALIZED)) {
7948		err = -EIO;
7949		goto done;
7950	}
7951
7952	if (mode == 1)
7953		priv->config |= CFG_CRC_CHECK;
7954	else if (mode == 0)
7955		priv->config &= ~CFG_CRC_CHECK;
7956	else {
7957		err = -EINVAL;
7958		goto done;
7959	}
7960	err = 0;
7961
7962      done:
7963	mutex_unlock(&priv->action_mutex);
7964	return err;
7965}
7966
7967static int ipw2100_wx_get_crc_check(struct net_device *dev,
7968				    struct iw_request_info *info,
7969				    union iwreq_data *wrqu, char *extra)
7970{
7971	/*
7972	 * This can be called at any time.  No action lock required
7973	 */
7974
7975	struct ipw2100_priv *priv = libipw_priv(dev);
7976
7977	if (priv->config & CFG_CRC_CHECK)
7978		snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
7979	else
7980		snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
7981
7982	return 0;
7983}
7984#endif				/* CONFIG_IPW2100_MONITOR */
7985
7986static iw_handler ipw2100_wx_handlers[] = {
7987	IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
7988	IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
7989	IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
7990	IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
7991	IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
7992	IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
7993	IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
7994	IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
7995	IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
7996	IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
7997	IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
7998	IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
7999	IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8000	IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8001	IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8002	IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8003	IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8004	IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8005	IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8006	IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8007	IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8008	IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8009	IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8010	IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8011	IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8012	IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8013	IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8014	IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8015	IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8016	IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8017	IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8018	IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8019	IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8020	IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8021	IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8022};
8023
8024#define IPW2100_PRIV_SET_MONITOR	SIOCIWFIRSTPRIV
8025#define IPW2100_PRIV_RESET		SIOCIWFIRSTPRIV+1
8026#define IPW2100_PRIV_SET_POWER		SIOCIWFIRSTPRIV+2
8027#define IPW2100_PRIV_GET_POWER		SIOCIWFIRSTPRIV+3
8028#define IPW2100_PRIV_SET_LONGPREAMBLE	SIOCIWFIRSTPRIV+4
8029#define IPW2100_PRIV_GET_LONGPREAMBLE	SIOCIWFIRSTPRIV+5
8030#define IPW2100_PRIV_SET_CRC_CHECK	SIOCIWFIRSTPRIV+6
8031#define IPW2100_PRIV_GET_CRC_CHECK	SIOCIWFIRSTPRIV+7
8032
8033static const struct iw_priv_args ipw2100_private_args[] = {
8034
8035#ifdef CONFIG_IPW2100_MONITOR
8036	{
8037	 IPW2100_PRIV_SET_MONITOR,
8038	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8039	{
8040	 IPW2100_PRIV_RESET,
8041	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8042#endif				/* CONFIG_IPW2100_MONITOR */
8043
8044	{
8045	 IPW2100_PRIV_SET_POWER,
8046	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8047	{
8048	 IPW2100_PRIV_GET_POWER,
8049	 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8050	 "get_power"},
8051	{
8052	 IPW2100_PRIV_SET_LONGPREAMBLE,
8053	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8054	{
8055	 IPW2100_PRIV_GET_LONGPREAMBLE,
8056	 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8057#ifdef CONFIG_IPW2100_MONITOR
8058	{
8059	 IPW2100_PRIV_SET_CRC_CHECK,
8060	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8061	{
8062	 IPW2100_PRIV_GET_CRC_CHECK,
8063	 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8064#endif				/* CONFIG_IPW2100_MONITOR */
8065};
8066
8067static iw_handler ipw2100_private_handler[] = {
8068#ifdef CONFIG_IPW2100_MONITOR
8069	ipw2100_wx_set_promisc,
8070	ipw2100_wx_reset,
8071#else				/* CONFIG_IPW2100_MONITOR */
8072	NULL,
8073	NULL,
8074#endif				/* CONFIG_IPW2100_MONITOR */
8075	ipw2100_wx_set_powermode,
8076	ipw2100_wx_get_powermode,
8077	ipw2100_wx_set_preamble,
8078	ipw2100_wx_get_preamble,
8079#ifdef CONFIG_IPW2100_MONITOR
8080	ipw2100_wx_set_crc_check,
8081	ipw2100_wx_get_crc_check,
8082#else				/* CONFIG_IPW2100_MONITOR */
8083	NULL,
8084	NULL,
8085#endif				/* CONFIG_IPW2100_MONITOR */
8086};
8087
8088/*
8089 * Get wireless statistics.
8090 * Called by /proc/net/wireless
8091 * Also called by SIOCGIWSTATS
8092 */
8093static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8094{
8095	enum {
8096		POOR = 30,
8097		FAIR = 60,
8098		GOOD = 80,
8099		VERY_GOOD = 90,
8100		EXCELLENT = 95,
8101		PERFECT = 100
8102	};
8103	int rssi_qual;
8104	int tx_qual;
8105	int beacon_qual;
8106	int quality;
8107
8108	struct ipw2100_priv *priv = libipw_priv(dev);
8109	struct iw_statistics *wstats;
8110	u32 rssi, tx_retries, missed_beacons, tx_failures;
8111	u32 ord_len = sizeof(u32);
8112
8113	if (!priv)
8114		return (struct iw_statistics *)NULL;
8115
8116	wstats = &priv->wstats;
8117
8118	/* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8119	 * ipw2100_wx_wireless_stats seems to be called before fw is
8120	 * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8121	 * and associated; if not associcated, the values are all meaningless
8122	 * anyway, so set them all to NULL and INVALID */
8123	if (!(priv->status & STATUS_ASSOCIATED)) {
8124		wstats->miss.beacon = 0;
8125		wstats->discard.retries = 0;
8126		wstats->qual.qual = 0;
8127		wstats->qual.level = 0;
8128		wstats->qual.noise = 0;
8129		wstats->qual.updated = 7;
8130		wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8131		    IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8132		return wstats;
8133	}
8134
8135	if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8136				&missed_beacons, &ord_len))
8137		goto fail_get_ordinal;
8138
8139	/* If we don't have a connection the quality and level is 0 */
8140	if (!(priv->status & STATUS_ASSOCIATED)) {
8141		wstats->qual.qual = 0;
8142		wstats->qual.level = 0;
8143	} else {
8144		if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8145					&rssi, &ord_len))
8146			goto fail_get_ordinal;
8147		wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8148		if (rssi < 10)
8149			rssi_qual = rssi * POOR / 10;
8150		else if (rssi < 15)
8151			rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8152		else if (rssi < 20)
8153			rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8154		else if (rssi < 30)
8155			rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8156			    10 + GOOD;
8157		else
8158			rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8159			    10 + VERY_GOOD;
8160
8161		if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8162					&tx_retries, &ord_len))
8163			goto fail_get_ordinal;
8164
8165		if (tx_retries > 75)
8166			tx_qual = (90 - tx_retries) * POOR / 15;
8167		else if (tx_retries > 70)
8168			tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8169		else if (tx_retries > 65)
8170			tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8171		else if (tx_retries > 50)
8172			tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8173			    15 + GOOD;
8174		else
8175			tx_qual = (50 - tx_retries) *
8176			    (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8177
8178		if (missed_beacons > 50)
8179			beacon_qual = (60 - missed_beacons) * POOR / 10;
8180		else if (missed_beacons > 40)
8181			beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8182			    10 + POOR;
8183		else if (missed_beacons > 32)
8184			beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8185			    18 + FAIR;
8186		else if (missed_beacons > 20)
8187			beacon_qual = (32 - missed_beacons) *
8188			    (VERY_GOOD - GOOD) / 20 + GOOD;
8189		else
8190			beacon_qual = (20 - missed_beacons) *
8191			    (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8192
8193		quality = min(tx_qual, rssi_qual);
8194		quality = min(beacon_qual, quality);
8195
8196#ifdef CONFIG_IPW2100_DEBUG
8197		if (beacon_qual == quality)
8198			IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8199		else if (tx_qual == quality)
8200			IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8201		else if (quality != 100)
8202			IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8203		else
8204			IPW_DEBUG_WX("Quality not clamped.\n");
8205#endif
8206
8207		wstats->qual.qual = quality;
8208		wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8209	}
8210
8211	wstats->qual.noise = 0;
8212	wstats->qual.updated = 7;
8213	wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8214
8215	/* FIXME: this is percent and not a # */
8216	wstats->miss.beacon = missed_beacons;
8217
8218	if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8219				&tx_failures, &ord_len))
8220		goto fail_get_ordinal;
8221	wstats->discard.retries = tx_failures;
8222
8223	return wstats;
8224
8225      fail_get_ordinal:
8226	IPW_DEBUG_WX("failed querying ordinals.\n");
8227
8228	return (struct iw_statistics *)NULL;
8229}
8230
8231static const struct iw_handler_def ipw2100_wx_handler_def = {
8232	.standard = ipw2100_wx_handlers,
8233	.num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8234	.num_private = ARRAY_SIZE(ipw2100_private_handler),
8235	.num_private_args = ARRAY_SIZE(ipw2100_private_args),
8236	.private = (iw_handler *) ipw2100_private_handler,
8237	.private_args = (struct iw_priv_args *)ipw2100_private_args,
8238	.get_wireless_stats = ipw2100_wx_wireless_stats,
8239};
8240
8241static void ipw2100_wx_event_work(struct work_struct *work)
8242{
8243	struct ipw2100_priv *priv =
8244		container_of(work, struct ipw2100_priv, wx_event_work.work);
8245	union iwreq_data wrqu;
8246	unsigned int len = ETH_ALEN;
8247
8248	if (priv->status & STATUS_STOPPING)
8249		return;
8250
8251	mutex_lock(&priv->action_mutex);
8252
8253	IPW_DEBUG_WX("enter\n");
8254
8255	mutex_unlock(&priv->action_mutex);
8256
8257	wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8258
8259	/* Fetch BSSID from the hardware */
8260	if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8261	    priv->status & STATUS_RF_KILL_MASK ||
8262	    ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8263				&priv->bssid, &len)) {
8264		eth_zero_addr(wrqu.ap_addr.sa_data);
8265	} else {
8266		/* We now have the BSSID, so can finish setting to the full
8267		 * associated state */
8268		memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8269		memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8270		priv->status &= ~STATUS_ASSOCIATING;
8271		priv->status |= STATUS_ASSOCIATED;
8272		netif_carrier_on(priv->net_dev);
8273		netif_wake_queue(priv->net_dev);
8274	}
8275
8276	if (!(priv->status & STATUS_ASSOCIATED)) {
8277		IPW_DEBUG_WX("Configuring ESSID\n");
8278		mutex_lock(&priv->action_mutex);
8279		/* This is a disassociation event, so kick the firmware to
8280		 * look for another AP */
8281		if (priv->config & CFG_STATIC_ESSID)
8282			ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8283					  0);
8284		else
8285			ipw2100_set_essid(priv, NULL, 0, 0);
8286		mutex_unlock(&priv->action_mutex);
8287	}
8288
8289	wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8290}
8291
8292#define IPW2100_FW_MAJOR_VERSION 1
8293#define IPW2100_FW_MINOR_VERSION 3
8294
8295#define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8296#define IPW2100_FW_MAJOR(x) (x & 0xff)
8297
8298#define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8299                             IPW2100_FW_MAJOR_VERSION)
8300
8301#define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8302"." __stringify(IPW2100_FW_MINOR_VERSION)
8303
8304#define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8305
8306/*
8307
8308BINARY FIRMWARE HEADER FORMAT
8309
8310offset      length   desc
83110           2        version
83122           2        mode == 0:BSS,1:IBSS,2:MONITOR
83134           4        fw_len
83148           4        uc_len
8315C           fw_len   firmware data
831612 + fw_len uc_len   microcode data
8317
8318*/
8319
8320struct ipw2100_fw_header {
8321	short version;
8322	short mode;
8323	unsigned int fw_size;
8324	unsigned int uc_size;
8325} __packed;
8326
8327static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8328{
8329	struct ipw2100_fw_header *h =
8330	    (struct ipw2100_fw_header *)fw->fw_entry->data;
8331
8332	if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8333		printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8334		       "(detected version id of %u). "
8335		       "See Documentation/networking/device_drivers/wifi/intel/ipw2100.rst\n",
8336		       h->version);
8337		return 1;
8338	}
8339
8340	fw->version = h->version;
8341	fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8342	fw->fw.size = h->fw_size;
8343	fw->uc.data = fw->fw.data + h->fw_size;
8344	fw->uc.size = h->uc_size;
8345
8346	return 0;
8347}
8348
8349static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8350				struct ipw2100_fw *fw)
8351{
8352	char *fw_name;
8353	int rc;
8354
8355	IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8356		       priv->net_dev->name);
8357
8358	switch (priv->ieee->iw_mode) {
8359	case IW_MODE_ADHOC:
8360		fw_name = IPW2100_FW_NAME("-i");
8361		break;
8362#ifdef CONFIG_IPW2100_MONITOR
8363	case IW_MODE_MONITOR:
8364		fw_name = IPW2100_FW_NAME("-p");
8365		break;
8366#endif
8367	case IW_MODE_INFRA:
8368	default:
8369		fw_name = IPW2100_FW_NAME("");
8370		break;
8371	}
8372
8373	rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8374
8375	if (rc < 0) {
8376		printk(KERN_ERR DRV_NAME ": "
8377		       "%s: Firmware '%s' not available or load failed.\n",
8378		       priv->net_dev->name, fw_name);
8379		return rc;
8380	}
8381	IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8382		       fw->fw_entry->size);
8383
8384	ipw2100_mod_firmware_load(fw);
8385
8386	return 0;
8387}
8388
8389MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8390#ifdef CONFIG_IPW2100_MONITOR
8391MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8392#endif
8393MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8394
8395static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8396				     struct ipw2100_fw *fw)
8397{
8398	fw->version = 0;
8399	release_firmware(fw->fw_entry);
8400	fw->fw_entry = NULL;
8401}
8402
8403static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8404				 size_t max)
8405{
8406	char ver[MAX_FW_VERSION_LEN];
8407	u32 len = MAX_FW_VERSION_LEN;
8408	u32 tmp;
8409	int i;
8410	/* firmware version is an ascii string (max len of 14) */
8411	if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8412		return -EIO;
8413	tmp = max;
8414	if (len >= max)
8415		len = max - 1;
8416	for (i = 0; i < len; i++)
8417		buf[i] = ver[i];
8418	buf[i] = '\0';
8419	return tmp;
8420}
8421
8422static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8423				    size_t max)
8424{
8425	u32 ver;
8426	u32 len = sizeof(ver);
8427	/* microcode version is a 32 bit integer */
8428	if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8429		return -EIO;
8430	return snprintf(buf, max, "%08X", ver);
8431}
8432
8433/*
8434 * On exit, the firmware will have been freed from the fw list
8435 */
8436static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8437{
8438	/* firmware is constructed of N contiguous entries, each entry is
8439	 * structured as:
8440	 *
8441	 * offset    sie         desc
8442	 * 0         4           address to write to
8443	 * 4         2           length of data run
8444	 * 6         length      data
8445	 */
8446	unsigned int addr;
8447	unsigned short len;
8448
8449	const unsigned char *firmware_data = fw->fw.data;
8450	unsigned int firmware_data_left = fw->fw.size;
8451
8452	while (firmware_data_left > 0) {
8453		addr = *(u32 *) (firmware_data);
8454		firmware_data += 4;
8455		firmware_data_left -= 4;
8456
8457		len = *(u16 *) (firmware_data);
8458		firmware_data += 2;
8459		firmware_data_left -= 2;
8460
8461		if (len > 32) {
8462			printk(KERN_ERR DRV_NAME ": "
8463			       "Invalid firmware run-length of %d bytes\n",
8464			       len);
8465			return -EINVAL;
8466		}
8467
8468		write_nic_memory(priv->net_dev, addr, len, firmware_data);
8469		firmware_data += len;
8470		firmware_data_left -= len;
8471	}
8472
8473	return 0;
8474}
8475
8476struct symbol_alive_response {
8477	u8 cmd_id;
8478	u8 seq_num;
8479	u8 ucode_rev;
8480	u8 eeprom_valid;
8481	u16 valid_flags;
8482	u8 IEEE_addr[6];
8483	u16 flags;
8484	u16 pcb_rev;
8485	u16 clock_settle_time;	// 1us LSB
8486	u16 powerup_settle_time;	// 1us LSB
8487	u16 hop_settle_time;	// 1us LSB
8488	u8 date[3];		// month, day, year
8489	u8 time[2];		// hours, minutes
8490	u8 ucode_valid;
8491};
8492
8493static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8494				  struct ipw2100_fw *fw)
8495{
8496	struct net_device *dev = priv->net_dev;
8497	const unsigned char *microcode_data = fw->uc.data;
8498	unsigned int microcode_data_left = fw->uc.size;
8499	void __iomem *reg = priv->ioaddr;
8500
8501	struct symbol_alive_response response;
8502	int i, j;
8503	u8 data;
8504
8505	/* Symbol control */
8506	write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8507	readl(reg);
8508	write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8509	readl(reg);
8510
8511	/* HW config */
8512	write_nic_byte(dev, 0x210014, 0x72);	/* fifo width =16 */
8513	readl(reg);
8514	write_nic_byte(dev, 0x210014, 0x72);	/* fifo width =16 */
8515	readl(reg);
8516
8517	/* EN_CS_ACCESS bit to reset control store pointer */
8518	write_nic_byte(dev, 0x210000, 0x40);
8519	readl(reg);
8520	write_nic_byte(dev, 0x210000, 0x0);
8521	readl(reg);
8522	write_nic_byte(dev, 0x210000, 0x40);
8523	readl(reg);
8524
8525	/* copy microcode from buffer into Symbol */
8526
8527	while (microcode_data_left > 0) {
8528		write_nic_byte(dev, 0x210010, *microcode_data++);
8529		write_nic_byte(dev, 0x210010, *microcode_data++);
8530		microcode_data_left -= 2;
8531	}
8532
8533	/* EN_CS_ACCESS bit to reset the control store pointer */
8534	write_nic_byte(dev, 0x210000, 0x0);
8535	readl(reg);
8536
8537	/* Enable System (Reg 0)
8538	 * first enable causes garbage in RX FIFO */
8539	write_nic_byte(dev, 0x210000, 0x0);
8540	readl(reg);
8541	write_nic_byte(dev, 0x210000, 0x80);
8542	readl(reg);
8543
8544	/* Reset External Baseband Reg */
8545	write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8546	readl(reg);
8547	write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8548	readl(reg);
8549
8550	/* HW Config (Reg 5) */
8551	write_nic_byte(dev, 0x210014, 0x72);	// fifo width =16
8552	readl(reg);
8553	write_nic_byte(dev, 0x210014, 0x72);	// fifo width =16
8554	readl(reg);
8555
8556	/* Enable System (Reg 0)
8557	 * second enable should be OK */
8558	write_nic_byte(dev, 0x210000, 0x00);	// clear enable system
8559	readl(reg);
8560	write_nic_byte(dev, 0x210000, 0x80);	// set enable system
8561
8562	/* check Symbol is enabled - upped this from 5 as it wasn't always
8563	 * catching the update */
8564	for (i = 0; i < 10; i++) {
8565		udelay(10);
8566
8567		/* check Dino is enabled bit */
8568		read_nic_byte(dev, 0x210000, &data);
8569		if (data & 0x1)
8570			break;
8571	}
8572
8573	if (i == 10) {
8574		printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8575		       dev->name);
8576		return -EIO;
8577	}
8578
8579	/* Get Symbol alive response */
8580	for (i = 0; i < 30; i++) {
8581		/* Read alive response structure */
8582		for (j = 0;
8583		     j < (sizeof(struct symbol_alive_response) >> 1); j++)
8584			read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8585
8586		if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8587			break;
8588		udelay(10);
8589	}
8590
8591	if (i == 30) {
8592		printk(KERN_ERR DRV_NAME
8593		       ": %s: No response from Symbol - hw not alive\n",
8594		       dev->name);
8595		printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8596		return -EIO;
8597	}
8598
8599	return 0;
8600}