Loading...
1/* yellowfin.c: A Packet Engines G-NIC ethernet driver for linux. */
2/*
3 Written 1997-2001 by Donald Becker.
4
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
11
12 This driver is for the Packet Engines G-NIC PCI Gigabit Ethernet adapter.
13 It also supports the Symbios Logic version of the same chip core.
14
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
19
20 Support and updates available at
21 http://www.scyld.com/network/yellowfin.html
22 [link no longer provides useful info -jgarzik]
23
24*/
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#define DRV_NAME "yellowfin"
29#define DRV_VERSION "2.1"
30#define DRV_RELDATE "Sep 11, 2006"
31
32/* The user-configurable values.
33 These may be modified when a driver module is loaded.*/
34
35static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
36/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
37static int max_interrupt_work = 20;
38static int mtu;
39#ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
40/* System-wide count of bogus-rx frames. */
41static int bogus_rx;
42static int dma_ctrl = 0x004A0263; /* Constrained by errata */
43static int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
44#elif defined(YF_NEW) /* A future perfect board :->. */
45static int dma_ctrl = 0x00CAC277; /* Override when loading module! */
46static int fifo_cfg = 0x0028;
47#else
48static const int dma_ctrl = 0x004A0263; /* Constrained by errata */
49static const int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
50#endif
51
52/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
53 Setting to > 1514 effectively disables this feature. */
54static int rx_copybreak;
55
56/* Used to pass the media type, etc.
57 No media types are currently defined. These exist for driver
58 interoperability.
59*/
60#define MAX_UNITS 8 /* More are supported, limit only on options */
61static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
62static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
63
64/* Do ugly workaround for GX server chipset errata. */
65static int gx_fix;
66
67/* Operational parameters that are set at compile time. */
68
69/* Keep the ring sizes a power of two for efficiency.
70 Making the Tx ring too long decreases the effectiveness of channel
71 bonding and packet priority.
72 There are no ill effects from too-large receive rings. */
73#define TX_RING_SIZE 16
74#define TX_QUEUE_SIZE 12 /* Must be > 4 && <= TX_RING_SIZE */
75#define RX_RING_SIZE 64
76#define STATUS_TOTAL_SIZE TX_RING_SIZE*sizeof(struct tx_status_words)
77#define TX_TOTAL_SIZE 2*TX_RING_SIZE*sizeof(struct yellowfin_desc)
78#define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct yellowfin_desc)
79
80/* Operational parameters that usually are not changed. */
81/* Time in jiffies before concluding the transmitter is hung. */
82#define TX_TIMEOUT (2*HZ)
83#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
84
85#define yellowfin_debug debug
86
87#include <linux/module.h>
88#include <linux/kernel.h>
89#include <linux/string.h>
90#include <linux/timer.h>
91#include <linux/errno.h>
92#include <linux/ioport.h>
93#include <linux/interrupt.h>
94#include <linux/pci.h>
95#include <linux/init.h>
96#include <linux/mii.h>
97#include <linux/netdevice.h>
98#include <linux/etherdevice.h>
99#include <linux/skbuff.h>
100#include <linux/ethtool.h>
101#include <linux/crc32.h>
102#include <linux/bitops.h>
103#include <linux/uaccess.h>
104#include <asm/processor.h> /* Processor type for cache alignment. */
105#include <asm/unaligned.h>
106#include <asm/io.h>
107
108/* These identify the driver base version and may not be removed. */
109static const char version[] =
110 KERN_INFO DRV_NAME ".c:v1.05 1/09/2001 Written by Donald Becker <becker@scyld.com>\n"
111 " (unofficial 2.4.x port, " DRV_VERSION ", " DRV_RELDATE ")\n";
112
113MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
114MODULE_DESCRIPTION("Packet Engines Yellowfin G-NIC Gigabit Ethernet driver");
115MODULE_LICENSE("GPL");
116
117module_param(max_interrupt_work, int, 0);
118module_param(mtu, int, 0);
119module_param(debug, int, 0);
120module_param(rx_copybreak, int, 0);
121module_param_array(options, int, NULL, 0);
122module_param_array(full_duplex, int, NULL, 0);
123module_param(gx_fix, int, 0);
124MODULE_PARM_DESC(max_interrupt_work, "G-NIC maximum events handled per interrupt");
125MODULE_PARM_DESC(mtu, "G-NIC MTU (all boards)");
126MODULE_PARM_DESC(debug, "G-NIC debug level (0-7)");
127MODULE_PARM_DESC(rx_copybreak, "G-NIC copy breakpoint for copy-only-tiny-frames");
128MODULE_PARM_DESC(options, "G-NIC: Bits 0-3: media type, bit 17: full duplex");
129MODULE_PARM_DESC(full_duplex, "G-NIC full duplex setting(s) (1)");
130MODULE_PARM_DESC(gx_fix, "G-NIC: enable GX server chipset bug workaround (0-1)");
131
132/*
133 Theory of Operation
134
135I. Board Compatibility
136
137This device driver is designed for the Packet Engines "Yellowfin" Gigabit
138Ethernet adapter. The G-NIC 64-bit PCI card is supported, as well as the
139Symbios 53C885E dual function chip.
140
141II. Board-specific settings
142
143PCI bus devices are configured by the system at boot time, so no jumpers
144need to be set on the board. The system BIOS preferably should assign the
145PCI INTA signal to an otherwise unused system IRQ line.
146Note: Kernel versions earlier than 1.3.73 do not support shared PCI
147interrupt lines.
148
149III. Driver operation
150
151IIIa. Ring buffers
152
153The Yellowfin uses the Descriptor Based DMA Architecture specified by Apple.
154This is a descriptor list scheme similar to that used by the EEPro100 and
155Tulip. This driver uses two statically allocated fixed-size descriptor lists
156formed into rings by a branch from the final descriptor to the beginning of
157the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
158
159The driver allocates full frame size skbuffs for the Rx ring buffers at
160open() time and passes the skb->data field to the Yellowfin as receive data
161buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
162a fresh skbuff is allocated and the frame is copied to the new skbuff.
163When the incoming frame is larger, the skbuff is passed directly up the
164protocol stack and replaced by a newly allocated skbuff.
165
166The RX_COPYBREAK value is chosen to trade-off the memory wasted by
167using a full-sized skbuff for small frames vs. the copying costs of larger
168frames. For small frames the copying cost is negligible (esp. considering
169that we are pre-loading the cache with immediately useful header
170information). For large frames the copying cost is non-trivial, and the
171larger copy might flush the cache of useful data.
172
173IIIC. Synchronization
174
175The driver runs as two independent, single-threaded flows of control. One
176is the send-packet routine, which enforces single-threaded use by the
177dev->tbusy flag. The other thread is the interrupt handler, which is single
178threaded by the hardware and other software.
179
180The send packet thread has partial control over the Tx ring and 'dev->tbusy'
181flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
182queue slot is empty, it clears the tbusy flag when finished otherwise it sets
183the 'yp->tx_full' flag.
184
185The interrupt handler has exclusive control over the Rx ring and records stats
186from the Tx ring. After reaping the stats, it marks the Tx queue entry as
187empty by incrementing the dirty_tx mark. Iff the 'yp->tx_full' flag is set, it
188clears both the tx_full and tbusy flags.
189
190IV. Notes
191
192Thanks to Kim Stearns of Packet Engines for providing a pair of G-NIC boards.
193Thanks to Bruce Faust of Digitalscape for providing both their SYM53C885 board
194and an AlphaStation to verify the Alpha port!
195
196IVb. References
197
198Yellowfin Engineering Design Specification, 4/23/97 Preliminary/Confidential
199Symbios SYM53C885 PCI-SCSI/Fast Ethernet Multifunction Controller Preliminary
200 Data Manual v3.0
201http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html
202http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html
203
204IVc. Errata
205
206See Packet Engines confidential appendix (prototype chips only).
207*/
208
209
210
211enum capability_flags {
212 HasMII=1, FullTxStatus=2, IsGigabit=4, HasMulticastBug=8, FullRxStatus=16,
213 HasMACAddrBug=32, /* Only on early revs. */
214 DontUseEeprom=64, /* Don't read the MAC from the EEPROm. */
215};
216
217/* The PCI I/O space extent. */
218enum {
219 YELLOWFIN_SIZE = 0x100,
220};
221
222struct pci_id_info {
223 const char *name;
224 struct match_info {
225 int pci, pci_mask, subsystem, subsystem_mask;
226 int revision, revision_mask; /* Only 8 bits. */
227 } id;
228 int drv_flags; /* Driver use, intended as capability flags. */
229};
230
231static const struct pci_id_info pci_id_tbl[] = {
232 {"Yellowfin G-NIC Gigabit Ethernet", { 0x07021000, 0xffffffff},
233 FullTxStatus | IsGigabit | HasMulticastBug | HasMACAddrBug | DontUseEeprom},
234 {"Symbios SYM83C885", { 0x07011000, 0xffffffff},
235 HasMII | DontUseEeprom },
236 { }
237};
238
239static const struct pci_device_id yellowfin_pci_tbl[] = {
240 { 0x1000, 0x0702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
241 { 0x1000, 0x0701, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
242 { }
243};
244MODULE_DEVICE_TABLE (pci, yellowfin_pci_tbl);
245
246
247/* Offsets to the Yellowfin registers. Various sizes and alignments. */
248enum yellowfin_offsets {
249 TxCtrl=0x00, TxStatus=0x04, TxPtr=0x0C,
250 TxIntrSel=0x10, TxBranchSel=0x14, TxWaitSel=0x18,
251 RxCtrl=0x40, RxStatus=0x44, RxPtr=0x4C,
252 RxIntrSel=0x50, RxBranchSel=0x54, RxWaitSel=0x58,
253 EventStatus=0x80, IntrEnb=0x82, IntrClear=0x84, IntrStatus=0x86,
254 ChipRev=0x8C, DMACtrl=0x90, TxThreshold=0x94,
255 Cnfg=0xA0, FrameGap0=0xA2, FrameGap1=0xA4,
256 MII_Cmd=0xA6, MII_Addr=0xA8, MII_Wr_Data=0xAA, MII_Rd_Data=0xAC,
257 MII_Status=0xAE,
258 RxDepth=0xB8, FlowCtrl=0xBC,
259 AddrMode=0xD0, StnAddr=0xD2, HashTbl=0xD8, FIFOcfg=0xF8,
260 EEStatus=0xF0, EECtrl=0xF1, EEAddr=0xF2, EERead=0xF3, EEWrite=0xF4,
261 EEFeature=0xF5,
262};
263
264/* The Yellowfin Rx and Tx buffer descriptors.
265 Elements are written as 32 bit for endian portability. */
266struct yellowfin_desc {
267 __le32 dbdma_cmd;
268 __le32 addr;
269 __le32 branch_addr;
270 __le32 result_status;
271};
272
273struct tx_status_words {
274#ifdef __BIG_ENDIAN
275 u16 tx_errs;
276 u16 tx_cnt;
277 u16 paused;
278 u16 total_tx_cnt;
279#else /* Little endian chips. */
280 u16 tx_cnt;
281 u16 tx_errs;
282 u16 total_tx_cnt;
283 u16 paused;
284#endif /* __BIG_ENDIAN */
285};
286
287/* Bits in yellowfin_desc.cmd */
288enum desc_cmd_bits {
289 CMD_TX_PKT=0x10000000, CMD_RX_BUF=0x20000000, CMD_TXSTATUS=0x30000000,
290 CMD_NOP=0x60000000, CMD_STOP=0x70000000,
291 BRANCH_ALWAYS=0x0C0000, INTR_ALWAYS=0x300000, WAIT_ALWAYS=0x030000,
292 BRANCH_IFTRUE=0x040000,
293};
294
295/* Bits in yellowfin_desc.status */
296enum desc_status_bits { RX_EOP=0x0040, };
297
298/* Bits in the interrupt status/mask registers. */
299enum intr_status_bits {
300 IntrRxDone=0x01, IntrRxInvalid=0x02, IntrRxPCIFault=0x04,IntrRxPCIErr=0x08,
301 IntrTxDone=0x10, IntrTxInvalid=0x20, IntrTxPCIFault=0x40,IntrTxPCIErr=0x80,
302 IntrEarlyRx=0x100, IntrWakeup=0x200, };
303
304#define PRIV_ALIGN 31 /* Required alignment mask */
305#define MII_CNT 4
306struct yellowfin_private {
307 /* Descriptor rings first for alignment.
308 Tx requires a second descriptor for status. */
309 struct yellowfin_desc *rx_ring;
310 struct yellowfin_desc *tx_ring;
311 struct sk_buff* rx_skbuff[RX_RING_SIZE];
312 struct sk_buff* tx_skbuff[TX_RING_SIZE];
313 dma_addr_t rx_ring_dma;
314 dma_addr_t tx_ring_dma;
315
316 struct tx_status_words *tx_status;
317 dma_addr_t tx_status_dma;
318
319 struct timer_list timer; /* Media selection timer. */
320 /* Frequently used and paired value: keep adjacent for cache effect. */
321 int chip_id, drv_flags;
322 struct pci_dev *pci_dev;
323 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
324 unsigned int rx_buf_sz; /* Based on MTU+slack. */
325 struct tx_status_words *tx_tail_desc;
326 unsigned int cur_tx, dirty_tx;
327 int tx_threshold;
328 unsigned int tx_full:1; /* The Tx queue is full. */
329 unsigned int full_duplex:1; /* Full-duplex operation requested. */
330 unsigned int duplex_lock:1;
331 unsigned int medialock:1; /* Do not sense media. */
332 unsigned int default_port:4; /* Last dev->if_port value. */
333 /* MII transceiver section. */
334 int mii_cnt; /* MII device addresses. */
335 u16 advertising; /* NWay media advertisement */
336 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used */
337 spinlock_t lock;
338 void __iomem *base;
339};
340
341static int read_eeprom(void __iomem *ioaddr, int location);
342static int mdio_read(void __iomem *ioaddr, int phy_id, int location);
343static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value);
344static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
345static int yellowfin_open(struct net_device *dev);
346static void yellowfin_timer(struct timer_list *t);
347static void yellowfin_tx_timeout(struct net_device *dev, unsigned int txqueue);
348static int yellowfin_init_ring(struct net_device *dev);
349static netdev_tx_t yellowfin_start_xmit(struct sk_buff *skb,
350 struct net_device *dev);
351static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance);
352static int yellowfin_rx(struct net_device *dev);
353static void yellowfin_error(struct net_device *dev, int intr_status);
354static int yellowfin_close(struct net_device *dev);
355static void set_rx_mode(struct net_device *dev);
356static const struct ethtool_ops ethtool_ops;
357
358static const struct net_device_ops netdev_ops = {
359 .ndo_open = yellowfin_open,
360 .ndo_stop = yellowfin_close,
361 .ndo_start_xmit = yellowfin_start_xmit,
362 .ndo_set_rx_mode = set_rx_mode,
363 .ndo_validate_addr = eth_validate_addr,
364 .ndo_set_mac_address = eth_mac_addr,
365 .ndo_eth_ioctl = netdev_ioctl,
366 .ndo_tx_timeout = yellowfin_tx_timeout,
367};
368
369static int yellowfin_init_one(struct pci_dev *pdev,
370 const struct pci_device_id *ent)
371{
372 struct net_device *dev;
373 struct yellowfin_private *np;
374 int irq;
375 int chip_idx = ent->driver_data;
376 static int find_cnt;
377 void __iomem *ioaddr;
378 int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
379 int drv_flags = pci_id_tbl[chip_idx].drv_flags;
380 void *ring_space;
381 dma_addr_t ring_dma;
382#ifdef USE_IO_OPS
383 int bar = 0;
384#else
385 int bar = 1;
386#endif
387 u8 addr[ETH_ALEN];
388
389/* when built into the kernel, we only print version if device is found */
390#ifndef MODULE
391 static int printed_version;
392 if (!printed_version++)
393 printk(version);
394#endif
395
396 i = pci_enable_device(pdev);
397 if (i) return i;
398
399 dev = alloc_etherdev(sizeof(*np));
400 if (!dev)
401 return -ENOMEM;
402
403 SET_NETDEV_DEV(dev, &pdev->dev);
404
405 np = netdev_priv(dev);
406
407 if (pci_request_regions(pdev, DRV_NAME))
408 goto err_out_free_netdev;
409
410 pci_set_master (pdev);
411
412 ioaddr = pci_iomap(pdev, bar, YELLOWFIN_SIZE);
413 if (!ioaddr)
414 goto err_out_free_res;
415
416 irq = pdev->irq;
417
418 if (drv_flags & DontUseEeprom)
419 for (i = 0; i < 6; i++)
420 addr[i] = ioread8(ioaddr + StnAddr + i);
421 else {
422 int ee_offset = (read_eeprom(ioaddr, 6) == 0xff ? 0x100 : 0);
423 for (i = 0; i < 6; i++)
424 addr[i] = read_eeprom(ioaddr, ee_offset + i);
425 }
426 eth_hw_addr_set(dev, addr);
427
428 /* Reset the chip. */
429 iowrite32(0x80000000, ioaddr + DMACtrl);
430
431 pci_set_drvdata(pdev, dev);
432 spin_lock_init(&np->lock);
433
434 np->pci_dev = pdev;
435 np->chip_id = chip_idx;
436 np->drv_flags = drv_flags;
437 np->base = ioaddr;
438
439 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
440 GFP_KERNEL);
441 if (!ring_space)
442 goto err_out_cleardev;
443 np->tx_ring = ring_space;
444 np->tx_ring_dma = ring_dma;
445
446 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
447 GFP_KERNEL);
448 if (!ring_space)
449 goto err_out_unmap_tx;
450 np->rx_ring = ring_space;
451 np->rx_ring_dma = ring_dma;
452
453 ring_space = dma_alloc_coherent(&pdev->dev, STATUS_TOTAL_SIZE,
454 &ring_dma, GFP_KERNEL);
455 if (!ring_space)
456 goto err_out_unmap_rx;
457 np->tx_status = ring_space;
458 np->tx_status_dma = ring_dma;
459
460 if (dev->mem_start)
461 option = dev->mem_start;
462
463 /* The lower four bits are the media type. */
464 if (option > 0) {
465 if (option & 0x200)
466 np->full_duplex = 1;
467 np->default_port = option & 15;
468 if (np->default_port)
469 np->medialock = 1;
470 }
471 if (find_cnt < MAX_UNITS && full_duplex[find_cnt] > 0)
472 np->full_duplex = 1;
473
474 if (np->full_duplex)
475 np->duplex_lock = 1;
476
477 /* The Yellowfin-specific entries in the device structure. */
478 dev->netdev_ops = &netdev_ops;
479 dev->ethtool_ops = ðtool_ops;
480 dev->watchdog_timeo = TX_TIMEOUT;
481
482 if (mtu)
483 dev->mtu = mtu;
484
485 i = register_netdev(dev);
486 if (i)
487 goto err_out_unmap_status;
488
489 netdev_info(dev, "%s type %8x at %p, %pM, IRQ %d\n",
490 pci_id_tbl[chip_idx].name,
491 ioread32(ioaddr + ChipRev), ioaddr,
492 dev->dev_addr, irq);
493
494 if (np->drv_flags & HasMII) {
495 int phy, phy_idx = 0;
496 for (phy = 0; phy < 32 && phy_idx < MII_CNT; phy++) {
497 int mii_status = mdio_read(ioaddr, phy, 1);
498 if (mii_status != 0xffff && mii_status != 0x0000) {
499 np->phys[phy_idx++] = phy;
500 np->advertising = mdio_read(ioaddr, phy, 4);
501 netdev_info(dev, "MII PHY found at address %d, status 0x%04x advertising %04x\n",
502 phy, mii_status, np->advertising);
503 }
504 }
505 np->mii_cnt = phy_idx;
506 }
507
508 find_cnt++;
509
510 return 0;
511
512err_out_unmap_status:
513 dma_free_coherent(&pdev->dev, STATUS_TOTAL_SIZE, np->tx_status,
514 np->tx_status_dma);
515err_out_unmap_rx:
516 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
517 np->rx_ring_dma);
518err_out_unmap_tx:
519 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
520 np->tx_ring_dma);
521err_out_cleardev:
522 pci_iounmap(pdev, ioaddr);
523err_out_free_res:
524 pci_release_regions(pdev);
525err_out_free_netdev:
526 free_netdev (dev);
527 return -ENODEV;
528}
529
530static int read_eeprom(void __iomem *ioaddr, int location)
531{
532 int bogus_cnt = 10000; /* Typical 33Mhz: 1050 ticks */
533
534 iowrite8(location, ioaddr + EEAddr);
535 iowrite8(0x30 | ((location >> 8) & 7), ioaddr + EECtrl);
536 while ((ioread8(ioaddr + EEStatus) & 0x80) && --bogus_cnt > 0)
537 ;
538 return ioread8(ioaddr + EERead);
539}
540
541/* MII Managemen Data I/O accesses.
542 These routines assume the MDIO controller is idle, and do not exit until
543 the command is finished. */
544
545static int mdio_read(void __iomem *ioaddr, int phy_id, int location)
546{
547 int i;
548
549 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
550 iowrite16(1, ioaddr + MII_Cmd);
551 for (i = 10000; i >= 0; i--)
552 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
553 break;
554 return ioread16(ioaddr + MII_Rd_Data);
555}
556
557static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value)
558{
559 int i;
560
561 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
562 iowrite16(value, ioaddr + MII_Wr_Data);
563
564 /* Wait for the command to finish. */
565 for (i = 10000; i >= 0; i--)
566 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
567 break;
568}
569
570
571static int yellowfin_open(struct net_device *dev)
572{
573 struct yellowfin_private *yp = netdev_priv(dev);
574 const int irq = yp->pci_dev->irq;
575 void __iomem *ioaddr = yp->base;
576 int i, rc;
577
578 /* Reset the chip. */
579 iowrite32(0x80000000, ioaddr + DMACtrl);
580
581 rc = request_irq(irq, yellowfin_interrupt, IRQF_SHARED, dev->name, dev);
582 if (rc)
583 return rc;
584
585 rc = yellowfin_init_ring(dev);
586 if (rc < 0)
587 goto err_free_irq;
588
589 iowrite32(yp->rx_ring_dma, ioaddr + RxPtr);
590 iowrite32(yp->tx_ring_dma, ioaddr + TxPtr);
591
592 for (i = 0; i < 6; i++)
593 iowrite8(dev->dev_addr[i], ioaddr + StnAddr + i);
594
595 /* Set up various condition 'select' registers.
596 There are no options here. */
597 iowrite32(0x00800080, ioaddr + TxIntrSel); /* Interrupt on Tx abort */
598 iowrite32(0x00800080, ioaddr + TxBranchSel); /* Branch on Tx abort */
599 iowrite32(0x00400040, ioaddr + TxWaitSel); /* Wait on Tx status */
600 iowrite32(0x00400040, ioaddr + RxIntrSel); /* Interrupt on Rx done */
601 iowrite32(0x00400040, ioaddr + RxBranchSel); /* Branch on Rx error */
602 iowrite32(0x00400040, ioaddr + RxWaitSel); /* Wait on Rx done */
603
604 /* Initialize other registers: with so many this eventually this will
605 converted to an offset/value list. */
606 iowrite32(dma_ctrl, ioaddr + DMACtrl);
607 iowrite16(fifo_cfg, ioaddr + FIFOcfg);
608 /* Enable automatic generation of flow control frames, period 0xffff. */
609 iowrite32(0x0030FFFF, ioaddr + FlowCtrl);
610
611 yp->tx_threshold = 32;
612 iowrite32(yp->tx_threshold, ioaddr + TxThreshold);
613
614 if (dev->if_port == 0)
615 dev->if_port = yp->default_port;
616
617 netif_start_queue(dev);
618
619 /* Setting the Rx mode will start the Rx process. */
620 if (yp->drv_flags & IsGigabit) {
621 /* We are always in full-duplex mode with gigabit! */
622 yp->full_duplex = 1;
623 iowrite16(0x01CF, ioaddr + Cnfg);
624 } else {
625 iowrite16(0x0018, ioaddr + FrameGap0); /* 0060/4060 for non-MII 10baseT */
626 iowrite16(0x1018, ioaddr + FrameGap1);
627 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
628 }
629 set_rx_mode(dev);
630
631 /* Enable interrupts by setting the interrupt mask. */
632 iowrite16(0x81ff, ioaddr + IntrEnb); /* See enum intr_status_bits */
633 iowrite16(0x0000, ioaddr + EventStatus); /* Clear non-interrupting events */
634 iowrite32(0x80008000, ioaddr + RxCtrl); /* Start Rx and Tx channels. */
635 iowrite32(0x80008000, ioaddr + TxCtrl);
636
637 if (yellowfin_debug > 2) {
638 netdev_printk(KERN_DEBUG, dev, "Done %s()\n", __func__);
639 }
640
641 /* Set the timer to check for link beat. */
642 timer_setup(&yp->timer, yellowfin_timer, 0);
643 yp->timer.expires = jiffies + 3*HZ;
644 add_timer(&yp->timer);
645out:
646 return rc;
647
648err_free_irq:
649 free_irq(irq, dev);
650 goto out;
651}
652
653static void yellowfin_timer(struct timer_list *t)
654{
655 struct yellowfin_private *yp = from_timer(yp, t, timer);
656 struct net_device *dev = pci_get_drvdata(yp->pci_dev);
657 void __iomem *ioaddr = yp->base;
658 int next_tick = 60*HZ;
659
660 if (yellowfin_debug > 3) {
661 netdev_printk(KERN_DEBUG, dev, "Yellowfin timer tick, status %08x\n",
662 ioread16(ioaddr + IntrStatus));
663 }
664
665 if (yp->mii_cnt) {
666 int bmsr = mdio_read(ioaddr, yp->phys[0], MII_BMSR);
667 int lpa = mdio_read(ioaddr, yp->phys[0], MII_LPA);
668 int negotiated = lpa & yp->advertising;
669 if (yellowfin_debug > 1)
670 netdev_printk(KERN_DEBUG, dev, "MII #%d status register is %04x, link partner capability %04x\n",
671 yp->phys[0], bmsr, lpa);
672
673 yp->full_duplex = mii_duplex(yp->duplex_lock, negotiated);
674
675 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
676
677 if (bmsr & BMSR_LSTATUS)
678 next_tick = 60*HZ;
679 else
680 next_tick = 3*HZ;
681 }
682
683 yp->timer.expires = jiffies + next_tick;
684 add_timer(&yp->timer);
685}
686
687static void yellowfin_tx_timeout(struct net_device *dev, unsigned int txqueue)
688{
689 struct yellowfin_private *yp = netdev_priv(dev);
690 void __iomem *ioaddr = yp->base;
691
692 netdev_warn(dev, "Yellowfin transmit timed out at %d/%d Tx status %04x, Rx status %04x, resetting...\n",
693 yp->cur_tx, yp->dirty_tx,
694 ioread32(ioaddr + TxStatus),
695 ioread32(ioaddr + RxStatus));
696
697 /* Note: these should be KERN_DEBUG. */
698 if (yellowfin_debug) {
699 int i;
700 pr_warn(" Rx ring %p: ", yp->rx_ring);
701 for (i = 0; i < RX_RING_SIZE; i++)
702 pr_cont(" %08x", yp->rx_ring[i].result_status);
703 pr_cont("\n");
704 pr_warn(" Tx ring %p: ", yp->tx_ring);
705 for (i = 0; i < TX_RING_SIZE; i++)
706 pr_cont(" %04x /%08x",
707 yp->tx_status[i].tx_errs,
708 yp->tx_ring[i].result_status);
709 pr_cont("\n");
710 }
711
712 /* If the hardware is found to hang regularly, we will update the code
713 to reinitialize the chip here. */
714 dev->if_port = 0;
715
716 /* Wake the potentially-idle transmit channel. */
717 iowrite32(0x10001000, yp->base + TxCtrl);
718 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
719 netif_wake_queue (dev); /* Typical path */
720
721 netif_trans_update(dev); /* prevent tx timeout */
722 dev->stats.tx_errors++;
723}
724
725/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
726static int yellowfin_init_ring(struct net_device *dev)
727{
728 struct yellowfin_private *yp = netdev_priv(dev);
729 int i, j;
730
731 yp->tx_full = 0;
732 yp->cur_rx = yp->cur_tx = 0;
733 yp->dirty_tx = 0;
734
735 yp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
736
737 for (i = 0; i < RX_RING_SIZE; i++) {
738 yp->rx_ring[i].dbdma_cmd =
739 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
740 yp->rx_ring[i].branch_addr = cpu_to_le32(yp->rx_ring_dma +
741 ((i+1)%RX_RING_SIZE)*sizeof(struct yellowfin_desc));
742 }
743
744 for (i = 0; i < RX_RING_SIZE; i++) {
745 struct sk_buff *skb = netdev_alloc_skb(dev, yp->rx_buf_sz + 2);
746 yp->rx_skbuff[i] = skb;
747 if (skb == NULL)
748 break;
749 skb_reserve(skb, 2); /* 16 byte align the IP header. */
750 yp->rx_ring[i].addr = cpu_to_le32(dma_map_single(&yp->pci_dev->dev,
751 skb->data,
752 yp->rx_buf_sz,
753 DMA_FROM_DEVICE));
754 }
755 if (i != RX_RING_SIZE) {
756 for (j = 0; j < i; j++)
757 dev_kfree_skb(yp->rx_skbuff[j]);
758 return -ENOMEM;
759 }
760 yp->rx_ring[i-1].dbdma_cmd = cpu_to_le32(CMD_STOP);
761 yp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
762
763#define NO_TXSTATS
764#ifdef NO_TXSTATS
765 /* In this mode the Tx ring needs only a single descriptor. */
766 for (i = 0; i < TX_RING_SIZE; i++) {
767 yp->tx_skbuff[i] = NULL;
768 yp->tx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
769 yp->tx_ring[i].branch_addr = cpu_to_le32(yp->tx_ring_dma +
770 ((i+1)%TX_RING_SIZE)*sizeof(struct yellowfin_desc));
771 }
772 /* Wrap ring */
773 yp->tx_ring[--i].dbdma_cmd = cpu_to_le32(CMD_STOP | BRANCH_ALWAYS);
774#else
775{
776 /* Tx ring needs a pair of descriptors, the second for the status. */
777 for (i = 0; i < TX_RING_SIZE; i++) {
778 j = 2*i;
779 yp->tx_skbuff[i] = 0;
780 /* Branch on Tx error. */
781 yp->tx_ring[j].dbdma_cmd = cpu_to_le32(CMD_STOP);
782 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
783 (j+1)*sizeof(struct yellowfin_desc));
784 j++;
785 if (yp->flags & FullTxStatus) {
786 yp->tx_ring[j].dbdma_cmd =
787 cpu_to_le32(CMD_TXSTATUS | sizeof(*yp->tx_status));
788 yp->tx_ring[j].request_cnt = sizeof(*yp->tx_status);
789 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
790 i*sizeof(struct tx_status_words));
791 } else {
792 /* Symbios chips write only tx_errs word. */
793 yp->tx_ring[j].dbdma_cmd =
794 cpu_to_le32(CMD_TXSTATUS | INTR_ALWAYS | 2);
795 yp->tx_ring[j].request_cnt = 2;
796 /* Om pade ummmmm... */
797 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
798 i*sizeof(struct tx_status_words) +
799 &(yp->tx_status[0].tx_errs) -
800 &(yp->tx_status[0]));
801 }
802 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
803 ((j+1)%(2*TX_RING_SIZE))*sizeof(struct yellowfin_desc));
804 }
805 /* Wrap ring */
806 yp->tx_ring[++j].dbdma_cmd |= cpu_to_le32(BRANCH_ALWAYS | INTR_ALWAYS);
807}
808#endif
809 yp->tx_tail_desc = &yp->tx_status[0];
810 return 0;
811}
812
813static netdev_tx_t yellowfin_start_xmit(struct sk_buff *skb,
814 struct net_device *dev)
815{
816 struct yellowfin_private *yp = netdev_priv(dev);
817 unsigned entry;
818 int len = skb->len;
819
820 netif_stop_queue (dev);
821
822 /* Note: Ordering is important here, set the field with the
823 "ownership" bit last, and only then increment cur_tx. */
824
825 /* Calculate the next Tx descriptor entry. */
826 entry = yp->cur_tx % TX_RING_SIZE;
827
828 if (gx_fix) { /* Note: only works for paddable protocols e.g. IP. */
829 int cacheline_end = ((unsigned long)skb->data + skb->len) % 32;
830 /* Fix GX chipset errata. */
831 if (cacheline_end > 24 || cacheline_end == 0) {
832 len = skb->len + 32 - cacheline_end + 1;
833 if (skb_padto(skb, len)) {
834 yp->tx_skbuff[entry] = NULL;
835 netif_wake_queue(dev);
836 return NETDEV_TX_OK;
837 }
838 }
839 }
840 yp->tx_skbuff[entry] = skb;
841
842#ifdef NO_TXSTATS
843 yp->tx_ring[entry].addr = cpu_to_le32(dma_map_single(&yp->pci_dev->dev,
844 skb->data,
845 len, DMA_TO_DEVICE));
846 yp->tx_ring[entry].result_status = 0;
847 if (entry >= TX_RING_SIZE-1) {
848 /* New stop command. */
849 yp->tx_ring[0].dbdma_cmd = cpu_to_le32(CMD_STOP);
850 yp->tx_ring[TX_RING_SIZE-1].dbdma_cmd =
851 cpu_to_le32(CMD_TX_PKT|BRANCH_ALWAYS | len);
852 } else {
853 yp->tx_ring[entry+1].dbdma_cmd = cpu_to_le32(CMD_STOP);
854 yp->tx_ring[entry].dbdma_cmd =
855 cpu_to_le32(CMD_TX_PKT | BRANCH_IFTRUE | len);
856 }
857 yp->cur_tx++;
858#else
859 yp->tx_ring[entry<<1].request_cnt = len;
860 yp->tx_ring[entry<<1].addr = cpu_to_le32(dma_map_single(&yp->pci_dev->dev,
861 skb->data,
862 len, DMA_TO_DEVICE));
863 /* The input_last (status-write) command is constant, but we must
864 rewrite the subsequent 'stop' command. */
865
866 yp->cur_tx++;
867 {
868 unsigned next_entry = yp->cur_tx % TX_RING_SIZE;
869 yp->tx_ring[next_entry<<1].dbdma_cmd = cpu_to_le32(CMD_STOP);
870 }
871 /* Final step -- overwrite the old 'stop' command. */
872
873 yp->tx_ring[entry<<1].dbdma_cmd =
874 cpu_to_le32( ((entry % 6) == 0 ? CMD_TX_PKT|INTR_ALWAYS|BRANCH_IFTRUE :
875 CMD_TX_PKT | BRANCH_IFTRUE) | len);
876#endif
877
878 /* Non-x86 Todo: explicitly flush cache lines here. */
879
880 /* Wake the potentially-idle transmit channel. */
881 iowrite32(0x10001000, yp->base + TxCtrl);
882
883 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
884 netif_start_queue (dev); /* Typical path */
885 else
886 yp->tx_full = 1;
887
888 if (yellowfin_debug > 4) {
889 netdev_printk(KERN_DEBUG, dev, "Yellowfin transmit frame #%d queued in slot %d\n",
890 yp->cur_tx, entry);
891 }
892 return NETDEV_TX_OK;
893}
894
895/* The interrupt handler does all of the Rx thread work and cleans up
896 after the Tx thread. */
897static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance)
898{
899 struct net_device *dev = dev_instance;
900 struct yellowfin_private *yp;
901 void __iomem *ioaddr;
902 int boguscnt = max_interrupt_work;
903 unsigned int handled = 0;
904
905 yp = netdev_priv(dev);
906 ioaddr = yp->base;
907
908 spin_lock (&yp->lock);
909
910 do {
911 u16 intr_status = ioread16(ioaddr + IntrClear);
912
913 if (yellowfin_debug > 4)
914 netdev_printk(KERN_DEBUG, dev, "Yellowfin interrupt, status %04x\n",
915 intr_status);
916
917 if (intr_status == 0)
918 break;
919 handled = 1;
920
921 if (intr_status & (IntrRxDone | IntrEarlyRx)) {
922 yellowfin_rx(dev);
923 iowrite32(0x10001000, ioaddr + RxCtrl); /* Wake Rx engine. */
924 }
925
926#ifdef NO_TXSTATS
927 for (; yp->cur_tx - yp->dirty_tx > 0; yp->dirty_tx++) {
928 int entry = yp->dirty_tx % TX_RING_SIZE;
929 struct sk_buff *skb;
930
931 if (yp->tx_ring[entry].result_status == 0)
932 break;
933 skb = yp->tx_skbuff[entry];
934 dev->stats.tx_packets++;
935 dev->stats.tx_bytes += skb->len;
936 /* Free the original skb. */
937 dma_unmap_single(&yp->pci_dev->dev,
938 le32_to_cpu(yp->tx_ring[entry].addr),
939 skb->len, DMA_TO_DEVICE);
940 dev_consume_skb_irq(skb);
941 yp->tx_skbuff[entry] = NULL;
942 }
943 if (yp->tx_full &&
944 yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE - 4) {
945 /* The ring is no longer full, clear tbusy. */
946 yp->tx_full = 0;
947 netif_wake_queue(dev);
948 }
949#else
950 if ((intr_status & IntrTxDone) || (yp->tx_tail_desc->tx_errs)) {
951 unsigned dirty_tx = yp->dirty_tx;
952
953 for (dirty_tx = yp->dirty_tx; yp->cur_tx - dirty_tx > 0;
954 dirty_tx++) {
955 /* Todo: optimize this. */
956 int entry = dirty_tx % TX_RING_SIZE;
957 u16 tx_errs = yp->tx_status[entry].tx_errs;
958 struct sk_buff *skb;
959
960#ifndef final_version
961 if (yellowfin_debug > 5)
962 netdev_printk(KERN_DEBUG, dev, "Tx queue %d check, Tx status %04x %04x %04x %04x\n",
963 entry,
964 yp->tx_status[entry].tx_cnt,
965 yp->tx_status[entry].tx_errs,
966 yp->tx_status[entry].total_tx_cnt,
967 yp->tx_status[entry].paused);
968#endif
969 if (tx_errs == 0)
970 break; /* It still hasn't been Txed */
971 skb = yp->tx_skbuff[entry];
972 if (tx_errs & 0xF810) {
973 /* There was an major error, log it. */
974#ifndef final_version
975 if (yellowfin_debug > 1)
976 netdev_printk(KERN_DEBUG, dev, "Transmit error, Tx status %04x\n",
977 tx_errs);
978#endif
979 dev->stats.tx_errors++;
980 if (tx_errs & 0xF800) dev->stats.tx_aborted_errors++;
981 if (tx_errs & 0x0800) dev->stats.tx_carrier_errors++;
982 if (tx_errs & 0x2000) dev->stats.tx_window_errors++;
983 if (tx_errs & 0x8000) dev->stats.tx_fifo_errors++;
984 } else {
985#ifndef final_version
986 if (yellowfin_debug > 4)
987 netdev_printk(KERN_DEBUG, dev, "Normal transmit, Tx status %04x\n",
988 tx_errs);
989#endif
990 dev->stats.tx_bytes += skb->len;
991 dev->stats.collisions += tx_errs & 15;
992 dev->stats.tx_packets++;
993 }
994 /* Free the original skb. */
995 dma_unmap_single(&yp->pci_dev->dev,
996 yp->tx_ring[entry << 1].addr,
997 skb->len, DMA_TO_DEVICE);
998 dev_consume_skb_irq(skb);
999 yp->tx_skbuff[entry] = 0;
1000 /* Mark status as empty. */
1001 yp->tx_status[entry].tx_errs = 0;
1002 }
1003
1004#ifndef final_version
1005 if (yp->cur_tx - dirty_tx > TX_RING_SIZE) {
1006 netdev_err(dev, "Out-of-sync dirty pointer, %d vs. %d, full=%d\n",
1007 dirty_tx, yp->cur_tx, yp->tx_full);
1008 dirty_tx += TX_RING_SIZE;
1009 }
1010#endif
1011
1012 if (yp->tx_full &&
1013 yp->cur_tx - dirty_tx < TX_QUEUE_SIZE - 2) {
1014 /* The ring is no longer full, clear tbusy. */
1015 yp->tx_full = 0;
1016 netif_wake_queue(dev);
1017 }
1018
1019 yp->dirty_tx = dirty_tx;
1020 yp->tx_tail_desc = &yp->tx_status[dirty_tx % TX_RING_SIZE];
1021 }
1022#endif
1023
1024 /* Log errors and other uncommon events. */
1025 if (intr_status & 0x2ee) /* Abnormal error summary. */
1026 yellowfin_error(dev, intr_status);
1027
1028 if (--boguscnt < 0) {
1029 netdev_warn(dev, "Too much work at interrupt, status=%#04x\n",
1030 intr_status);
1031 break;
1032 }
1033 } while (1);
1034
1035 if (yellowfin_debug > 3)
1036 netdev_printk(KERN_DEBUG, dev, "exiting interrupt, status=%#04x\n",
1037 ioread16(ioaddr + IntrStatus));
1038
1039 spin_unlock (&yp->lock);
1040 return IRQ_RETVAL(handled);
1041}
1042
1043/* This routine is logically part of the interrupt handler, but separated
1044 for clarity and better register allocation. */
1045static int yellowfin_rx(struct net_device *dev)
1046{
1047 struct yellowfin_private *yp = netdev_priv(dev);
1048 int entry = yp->cur_rx % RX_RING_SIZE;
1049 int boguscnt = yp->dirty_rx + RX_RING_SIZE - yp->cur_rx;
1050
1051 if (yellowfin_debug > 4) {
1052 printk(KERN_DEBUG " In yellowfin_rx(), entry %d status %08x\n",
1053 entry, yp->rx_ring[entry].result_status);
1054 printk(KERN_DEBUG " #%d desc. %08x %08x %08x\n",
1055 entry, yp->rx_ring[entry].dbdma_cmd, yp->rx_ring[entry].addr,
1056 yp->rx_ring[entry].result_status);
1057 }
1058
1059 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1060 while (1) {
1061 struct yellowfin_desc *desc = &yp->rx_ring[entry];
1062 struct sk_buff *rx_skb = yp->rx_skbuff[entry];
1063 s16 frame_status;
1064 u16 desc_status;
1065 int data_size, __maybe_unused yf_size;
1066 u8 *buf_addr;
1067
1068 if(!desc->result_status)
1069 break;
1070 dma_sync_single_for_cpu(&yp->pci_dev->dev,
1071 le32_to_cpu(desc->addr),
1072 yp->rx_buf_sz, DMA_FROM_DEVICE);
1073 desc_status = le32_to_cpu(desc->result_status) >> 16;
1074 buf_addr = rx_skb->data;
1075 data_size = (le32_to_cpu(desc->dbdma_cmd) -
1076 le32_to_cpu(desc->result_status)) & 0xffff;
1077 frame_status = get_unaligned_le16(&(buf_addr[data_size - 2]));
1078 if (yellowfin_debug > 4)
1079 printk(KERN_DEBUG " %s() status was %04x\n",
1080 __func__, frame_status);
1081 if (--boguscnt < 0)
1082 break;
1083
1084 yf_size = sizeof(struct yellowfin_desc);
1085
1086 if ( ! (desc_status & RX_EOP)) {
1087 if (data_size != 0)
1088 netdev_warn(dev, "Oversized Ethernet frame spanned multiple buffers, status %04x, data_size %d!\n",
1089 desc_status, data_size);
1090 dev->stats.rx_length_errors++;
1091 } else if ((yp->drv_flags & IsGigabit) && (frame_status & 0x0038)) {
1092 /* There was a error. */
1093 if (yellowfin_debug > 3)
1094 printk(KERN_DEBUG " %s() Rx error was %04x\n",
1095 __func__, frame_status);
1096 dev->stats.rx_errors++;
1097 if (frame_status & 0x0060) dev->stats.rx_length_errors++;
1098 if (frame_status & 0x0008) dev->stats.rx_frame_errors++;
1099 if (frame_status & 0x0010) dev->stats.rx_crc_errors++;
1100 if (frame_status < 0) dev->stats.rx_dropped++;
1101 } else if ( !(yp->drv_flags & IsGigabit) &&
1102 ((buf_addr[data_size-1] & 0x85) || buf_addr[data_size-2] & 0xC0)) {
1103 u8 status1 = buf_addr[data_size-2];
1104 u8 status2 = buf_addr[data_size-1];
1105 dev->stats.rx_errors++;
1106 if (status1 & 0xC0) dev->stats.rx_length_errors++;
1107 if (status2 & 0x03) dev->stats.rx_frame_errors++;
1108 if (status2 & 0x04) dev->stats.rx_crc_errors++;
1109 if (status2 & 0x80) dev->stats.rx_dropped++;
1110#ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1111 } else if ((yp->flags & HasMACAddrBug) &&
1112 !ether_addr_equal(le32_to_cpu(yp->rx_ring_dma +
1113 entry * yf_size),
1114 dev->dev_addr) &&
1115 !ether_addr_equal(le32_to_cpu(yp->rx_ring_dma +
1116 entry * yf_size),
1117 "\377\377\377\377\377\377")) {
1118 if (bogus_rx++ == 0)
1119 netdev_warn(dev, "Bad frame to %pM\n",
1120 buf_addr);
1121#endif
1122 } else {
1123 struct sk_buff *skb;
1124 int pkt_len = data_size -
1125 (yp->chip_id ? 7 : 8 + buf_addr[data_size - 8]);
1126 /* To verify: Yellowfin Length should omit the CRC! */
1127
1128#ifndef final_version
1129 if (yellowfin_debug > 4)
1130 printk(KERN_DEBUG " %s() normal Rx pkt length %d of %d, bogus_cnt %d\n",
1131 __func__, pkt_len, data_size, boguscnt);
1132#endif
1133 /* Check if the packet is long enough to just pass up the skbuff
1134 without copying to a properly sized skbuff. */
1135 if (pkt_len > rx_copybreak) {
1136 skb_put(skb = rx_skb, pkt_len);
1137 dma_unmap_single(&yp->pci_dev->dev,
1138 le32_to_cpu(yp->rx_ring[entry].addr),
1139 yp->rx_buf_sz,
1140 DMA_FROM_DEVICE);
1141 yp->rx_skbuff[entry] = NULL;
1142 } else {
1143 skb = netdev_alloc_skb(dev, pkt_len + 2);
1144 if (skb == NULL)
1145 break;
1146 skb_reserve(skb, 2); /* 16 byte align the IP header */
1147 skb_copy_to_linear_data(skb, rx_skb->data, pkt_len);
1148 skb_put(skb, pkt_len);
1149 dma_sync_single_for_device(&yp->pci_dev->dev,
1150 le32_to_cpu(desc->addr),
1151 yp->rx_buf_sz,
1152 DMA_FROM_DEVICE);
1153 }
1154 skb->protocol = eth_type_trans(skb, dev);
1155 netif_rx(skb);
1156 dev->stats.rx_packets++;
1157 dev->stats.rx_bytes += pkt_len;
1158 }
1159 entry = (++yp->cur_rx) % RX_RING_SIZE;
1160 }
1161
1162 /* Refill the Rx ring buffers. */
1163 for (; yp->cur_rx - yp->dirty_rx > 0; yp->dirty_rx++) {
1164 entry = yp->dirty_rx % RX_RING_SIZE;
1165 if (yp->rx_skbuff[entry] == NULL) {
1166 struct sk_buff *skb = netdev_alloc_skb(dev, yp->rx_buf_sz + 2);
1167 if (skb == NULL)
1168 break; /* Better luck next round. */
1169 yp->rx_skbuff[entry] = skb;
1170 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1171 yp->rx_ring[entry].addr = cpu_to_le32(dma_map_single(&yp->pci_dev->dev,
1172 skb->data,
1173 yp->rx_buf_sz,
1174 DMA_FROM_DEVICE));
1175 }
1176 yp->rx_ring[entry].dbdma_cmd = cpu_to_le32(CMD_STOP);
1177 yp->rx_ring[entry].result_status = 0; /* Clear complete bit. */
1178 if (entry != 0)
1179 yp->rx_ring[entry - 1].dbdma_cmd =
1180 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
1181 else
1182 yp->rx_ring[RX_RING_SIZE - 1].dbdma_cmd =
1183 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | BRANCH_ALWAYS
1184 | yp->rx_buf_sz);
1185 }
1186
1187 return 0;
1188}
1189
1190static void yellowfin_error(struct net_device *dev, int intr_status)
1191{
1192 netdev_err(dev, "Something Wicked happened! %04x\n", intr_status);
1193 /* Hmmmmm, it's not clear what to do here. */
1194 if (intr_status & (IntrTxPCIErr | IntrTxPCIFault))
1195 dev->stats.tx_errors++;
1196 if (intr_status & (IntrRxPCIErr | IntrRxPCIFault))
1197 dev->stats.rx_errors++;
1198}
1199
1200static int yellowfin_close(struct net_device *dev)
1201{
1202 struct yellowfin_private *yp = netdev_priv(dev);
1203 void __iomem *ioaddr = yp->base;
1204 int i;
1205
1206 netif_stop_queue (dev);
1207
1208 if (yellowfin_debug > 1) {
1209 netdev_printk(KERN_DEBUG, dev, "Shutting down ethercard, status was Tx %04x Rx %04x Int %02x\n",
1210 ioread16(ioaddr + TxStatus),
1211 ioread16(ioaddr + RxStatus),
1212 ioread16(ioaddr + IntrStatus));
1213 netdev_printk(KERN_DEBUG, dev, "Queue pointers were Tx %d / %d, Rx %d / %d\n",
1214 yp->cur_tx, yp->dirty_tx,
1215 yp->cur_rx, yp->dirty_rx);
1216 }
1217
1218 /* Disable interrupts by clearing the interrupt mask. */
1219 iowrite16(0x0000, ioaddr + IntrEnb);
1220
1221 /* Stop the chip's Tx and Rx processes. */
1222 iowrite32(0x80000000, ioaddr + RxCtrl);
1223 iowrite32(0x80000000, ioaddr + TxCtrl);
1224
1225 del_timer(&yp->timer);
1226
1227#if defined(__i386__)
1228 if (yellowfin_debug > 2) {
1229 printk(KERN_DEBUG " Tx ring at %08llx:\n",
1230 (unsigned long long)yp->tx_ring_dma);
1231 for (i = 0; i < TX_RING_SIZE*2; i++)
1232 printk(KERN_DEBUG " %c #%d desc. %08x %08x %08x %08x\n",
1233 ioread32(ioaddr + TxPtr) == (long)&yp->tx_ring[i] ? '>' : ' ',
1234 i, yp->tx_ring[i].dbdma_cmd, yp->tx_ring[i].addr,
1235 yp->tx_ring[i].branch_addr, yp->tx_ring[i].result_status);
1236 printk(KERN_DEBUG " Tx status %p:\n", yp->tx_status);
1237 for (i = 0; i < TX_RING_SIZE; i++)
1238 printk(KERN_DEBUG " #%d status %04x %04x %04x %04x\n",
1239 i, yp->tx_status[i].tx_cnt, yp->tx_status[i].tx_errs,
1240 yp->tx_status[i].total_tx_cnt, yp->tx_status[i].paused);
1241
1242 printk(KERN_DEBUG " Rx ring %08llx:\n",
1243 (unsigned long long)yp->rx_ring_dma);
1244 for (i = 0; i < RX_RING_SIZE; i++) {
1245 printk(KERN_DEBUG " %c #%d desc. %08x %08x %08x\n",
1246 ioread32(ioaddr + RxPtr) == (long)&yp->rx_ring[i] ? '>' : ' ',
1247 i, yp->rx_ring[i].dbdma_cmd, yp->rx_ring[i].addr,
1248 yp->rx_ring[i].result_status);
1249 if (yellowfin_debug > 6) {
1250 if (get_unaligned((u8*)yp->rx_ring[i].addr) != 0x69) {
1251 int j;
1252
1253 printk(KERN_DEBUG);
1254 for (j = 0; j < 0x50; j++)
1255 pr_cont(" %04x",
1256 get_unaligned(((u16*)yp->rx_ring[i].addr) + j));
1257 pr_cont("\n");
1258 }
1259 }
1260 }
1261 }
1262#endif /* __i386__ debugging only */
1263
1264 free_irq(yp->pci_dev->irq, dev);
1265
1266 /* Free all the skbuffs in the Rx queue. */
1267 for (i = 0; i < RX_RING_SIZE; i++) {
1268 yp->rx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
1269 yp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1270 if (yp->rx_skbuff[i]) {
1271 dev_kfree_skb(yp->rx_skbuff[i]);
1272 }
1273 yp->rx_skbuff[i] = NULL;
1274 }
1275 for (i = 0; i < TX_RING_SIZE; i++) {
1276 dev_kfree_skb(yp->tx_skbuff[i]);
1277 yp->tx_skbuff[i] = NULL;
1278 }
1279
1280#ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1281 if (yellowfin_debug > 0) {
1282 netdev_printk(KERN_DEBUG, dev, "Received %d frames that we should not have\n",
1283 bogus_rx);
1284 }
1285#endif
1286
1287 return 0;
1288}
1289
1290/* Set or clear the multicast filter for this adaptor. */
1291
1292static void set_rx_mode(struct net_device *dev)
1293{
1294 struct yellowfin_private *yp = netdev_priv(dev);
1295 void __iomem *ioaddr = yp->base;
1296 u16 cfg_value = ioread16(ioaddr + Cnfg);
1297
1298 /* Stop the Rx process to change any value. */
1299 iowrite16(cfg_value & ~0x1000, ioaddr + Cnfg);
1300 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1301 iowrite16(0x000F, ioaddr + AddrMode);
1302 } else if ((netdev_mc_count(dev) > 64) ||
1303 (dev->flags & IFF_ALLMULTI)) {
1304 /* Too many to filter well, or accept all multicasts. */
1305 iowrite16(0x000B, ioaddr + AddrMode);
1306 } else if (!netdev_mc_empty(dev)) { /* Must use the multicast hash table. */
1307 struct netdev_hw_addr *ha;
1308 u16 hash_table[4];
1309 int i;
1310
1311 memset(hash_table, 0, sizeof(hash_table));
1312 netdev_for_each_mc_addr(ha, dev) {
1313 unsigned int bit;
1314
1315 /* Due to a bug in the early chip versions, multiple filter
1316 slots must be set for each address. */
1317 if (yp->drv_flags & HasMulticastBug) {
1318 bit = (ether_crc_le(3, ha->addr) >> 3) & 0x3f;
1319 hash_table[bit >> 4] |= (1 << bit);
1320 bit = (ether_crc_le(4, ha->addr) >> 3) & 0x3f;
1321 hash_table[bit >> 4] |= (1 << bit);
1322 bit = (ether_crc_le(5, ha->addr) >> 3) & 0x3f;
1323 hash_table[bit >> 4] |= (1 << bit);
1324 }
1325 bit = (ether_crc_le(6, ha->addr) >> 3) & 0x3f;
1326 hash_table[bit >> 4] |= (1 << bit);
1327 }
1328 /* Copy the hash table to the chip. */
1329 for (i = 0; i < 4; i++)
1330 iowrite16(hash_table[i], ioaddr + HashTbl + i*2);
1331 iowrite16(0x0003, ioaddr + AddrMode);
1332 } else { /* Normal, unicast/broadcast-only mode. */
1333 iowrite16(0x0001, ioaddr + AddrMode);
1334 }
1335 /* Restart the Rx process. */
1336 iowrite16(cfg_value | 0x1000, ioaddr + Cnfg);
1337}
1338
1339static void yellowfin_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1340{
1341 struct yellowfin_private *np = netdev_priv(dev);
1342
1343 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1344 strscpy(info->version, DRV_VERSION, sizeof(info->version));
1345 strscpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1346}
1347
1348static const struct ethtool_ops ethtool_ops = {
1349 .get_drvinfo = yellowfin_get_drvinfo
1350};
1351
1352static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1353{
1354 struct yellowfin_private *np = netdev_priv(dev);
1355 void __iomem *ioaddr = np->base;
1356 struct mii_ioctl_data *data = if_mii(rq);
1357
1358 switch(cmd) {
1359 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
1360 data->phy_id = np->phys[0] & 0x1f;
1361 fallthrough;
1362
1363 case SIOCGMIIREG: /* Read MII PHY register. */
1364 data->val_out = mdio_read(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f);
1365 return 0;
1366
1367 case SIOCSMIIREG: /* Write MII PHY register. */
1368 if (data->phy_id == np->phys[0]) {
1369 u16 value = data->val_in;
1370 switch (data->reg_num) {
1371 case 0:
1372 /* Check for autonegotiation on or reset. */
1373 np->medialock = (value & 0x9000) ? 0 : 1;
1374 if (np->medialock)
1375 np->full_duplex = (value & 0x0100) ? 1 : 0;
1376 break;
1377 case 4: np->advertising = value; break;
1378 }
1379 /* Perhaps check_duplex(dev), depending on chip semantics. */
1380 }
1381 mdio_write(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1382 return 0;
1383 default:
1384 return -EOPNOTSUPP;
1385 }
1386}
1387
1388
1389static void yellowfin_remove_one(struct pci_dev *pdev)
1390{
1391 struct net_device *dev = pci_get_drvdata(pdev);
1392 struct yellowfin_private *np;
1393
1394 BUG_ON(!dev);
1395 np = netdev_priv(dev);
1396
1397 dma_free_coherent(&pdev->dev, STATUS_TOTAL_SIZE, np->tx_status,
1398 np->tx_status_dma);
1399 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
1400 np->rx_ring_dma);
1401 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
1402 np->tx_ring_dma);
1403 unregister_netdev (dev);
1404
1405 pci_iounmap(pdev, np->base);
1406
1407 pci_release_regions (pdev);
1408
1409 free_netdev (dev);
1410}
1411
1412
1413static struct pci_driver yellowfin_driver = {
1414 .name = DRV_NAME,
1415 .id_table = yellowfin_pci_tbl,
1416 .probe = yellowfin_init_one,
1417 .remove = yellowfin_remove_one,
1418};
1419
1420
1421static int __init yellowfin_init (void)
1422{
1423/* when a module, this is printed whether or not devices are found in probe */
1424#ifdef MODULE
1425 printk(version);
1426#endif
1427 return pci_register_driver(&yellowfin_driver);
1428}
1429
1430
1431static void __exit yellowfin_cleanup (void)
1432{
1433 pci_unregister_driver (&yellowfin_driver);
1434}
1435
1436
1437module_init(yellowfin_init);
1438module_exit(yellowfin_cleanup);
1/* yellowfin.c: A Packet Engines G-NIC ethernet driver for linux. */
2/*
3 Written 1997-2001 by Donald Becker.
4
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
11
12 This driver is for the Packet Engines G-NIC PCI Gigabit Ethernet adapter.
13 It also supports the Symbios Logic version of the same chip core.
14
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
19
20 Support and updates available at
21 http://www.scyld.com/network/yellowfin.html
22 [link no longer provides useful info -jgarzik]
23
24*/
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#define DRV_NAME "yellowfin"
29#define DRV_VERSION "2.1"
30#define DRV_RELDATE "Sep 11, 2006"
31
32/* The user-configurable values.
33 These may be modified when a driver module is loaded.*/
34
35static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
36/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
37static int max_interrupt_work = 20;
38static int mtu;
39#ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
40/* System-wide count of bogus-rx frames. */
41static int bogus_rx;
42static int dma_ctrl = 0x004A0263; /* Constrained by errata */
43static int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
44#elif defined(YF_NEW) /* A future perfect board :->. */
45static int dma_ctrl = 0x00CAC277; /* Override when loading module! */
46static int fifo_cfg = 0x0028;
47#else
48static const int dma_ctrl = 0x004A0263; /* Constrained by errata */
49static const int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
50#endif
51
52/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
53 Setting to > 1514 effectively disables this feature. */
54static int rx_copybreak;
55
56/* Used to pass the media type, etc.
57 No media types are currently defined. These exist for driver
58 interoperability.
59*/
60#define MAX_UNITS 8 /* More are supported, limit only on options */
61static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
62static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
63
64/* Do ugly workaround for GX server chipset errata. */
65static int gx_fix;
66
67/* Operational parameters that are set at compile time. */
68
69/* Keep the ring sizes a power of two for efficiency.
70 Making the Tx ring too long decreases the effectiveness of channel
71 bonding and packet priority.
72 There are no ill effects from too-large receive rings. */
73#define TX_RING_SIZE 16
74#define TX_QUEUE_SIZE 12 /* Must be > 4 && <= TX_RING_SIZE */
75#define RX_RING_SIZE 64
76#define STATUS_TOTAL_SIZE TX_RING_SIZE*sizeof(struct tx_status_words)
77#define TX_TOTAL_SIZE 2*TX_RING_SIZE*sizeof(struct yellowfin_desc)
78#define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct yellowfin_desc)
79
80/* Operational parameters that usually are not changed. */
81/* Time in jiffies before concluding the transmitter is hung. */
82#define TX_TIMEOUT (2*HZ)
83#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
84
85#define yellowfin_debug debug
86
87#include <linux/module.h>
88#include <linux/kernel.h>
89#include <linux/string.h>
90#include <linux/timer.h>
91#include <linux/errno.h>
92#include <linux/ioport.h>
93#include <linux/interrupt.h>
94#include <linux/pci.h>
95#include <linux/init.h>
96#include <linux/mii.h>
97#include <linux/netdevice.h>
98#include <linux/etherdevice.h>
99#include <linux/skbuff.h>
100#include <linux/ethtool.h>
101#include <linux/crc32.h>
102#include <linux/bitops.h>
103#include <linux/uaccess.h>
104#include <asm/processor.h> /* Processor type for cache alignment. */
105#include <asm/unaligned.h>
106#include <asm/io.h>
107
108/* These identify the driver base version and may not be removed. */
109static const char version[] =
110 KERN_INFO DRV_NAME ".c:v1.05 1/09/2001 Written by Donald Becker <becker@scyld.com>\n"
111 " (unofficial 2.4.x port, " DRV_VERSION ", " DRV_RELDATE ")\n";
112
113MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
114MODULE_DESCRIPTION("Packet Engines Yellowfin G-NIC Gigabit Ethernet driver");
115MODULE_LICENSE("GPL");
116
117module_param(max_interrupt_work, int, 0);
118module_param(mtu, int, 0);
119module_param(debug, int, 0);
120module_param(rx_copybreak, int, 0);
121module_param_array(options, int, NULL, 0);
122module_param_array(full_duplex, int, NULL, 0);
123module_param(gx_fix, int, 0);
124MODULE_PARM_DESC(max_interrupt_work, "G-NIC maximum events handled per interrupt");
125MODULE_PARM_DESC(mtu, "G-NIC MTU (all boards)");
126MODULE_PARM_DESC(debug, "G-NIC debug level (0-7)");
127MODULE_PARM_DESC(rx_copybreak, "G-NIC copy breakpoint for copy-only-tiny-frames");
128MODULE_PARM_DESC(options, "G-NIC: Bits 0-3: media type, bit 17: full duplex");
129MODULE_PARM_DESC(full_duplex, "G-NIC full duplex setting(s) (1)");
130MODULE_PARM_DESC(gx_fix, "G-NIC: enable GX server chipset bug workaround (0-1)");
131
132/*
133 Theory of Operation
134
135I. Board Compatibility
136
137This device driver is designed for the Packet Engines "Yellowfin" Gigabit
138Ethernet adapter. The G-NIC 64-bit PCI card is supported, as well as the
139Symbios 53C885E dual function chip.
140
141II. Board-specific settings
142
143PCI bus devices are configured by the system at boot time, so no jumpers
144need to be set on the board. The system BIOS preferably should assign the
145PCI INTA signal to an otherwise unused system IRQ line.
146Note: Kernel versions earlier than 1.3.73 do not support shared PCI
147interrupt lines.
148
149III. Driver operation
150
151IIIa. Ring buffers
152
153The Yellowfin uses the Descriptor Based DMA Architecture specified by Apple.
154This is a descriptor list scheme similar to that used by the EEPro100 and
155Tulip. This driver uses two statically allocated fixed-size descriptor lists
156formed into rings by a branch from the final descriptor to the beginning of
157the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
158
159The driver allocates full frame size skbuffs for the Rx ring buffers at
160open() time and passes the skb->data field to the Yellowfin as receive data
161buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
162a fresh skbuff is allocated and the frame is copied to the new skbuff.
163When the incoming frame is larger, the skbuff is passed directly up the
164protocol stack and replaced by a newly allocated skbuff.
165
166The RX_COPYBREAK value is chosen to trade-off the memory wasted by
167using a full-sized skbuff for small frames vs. the copying costs of larger
168frames. For small frames the copying cost is negligible (esp. considering
169that we are pre-loading the cache with immediately useful header
170information). For large frames the copying cost is non-trivial, and the
171larger copy might flush the cache of useful data.
172
173IIIC. Synchronization
174
175The driver runs as two independent, single-threaded flows of control. One
176is the send-packet routine, which enforces single-threaded use by the
177dev->tbusy flag. The other thread is the interrupt handler, which is single
178threaded by the hardware and other software.
179
180The send packet thread has partial control over the Tx ring and 'dev->tbusy'
181flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
182queue slot is empty, it clears the tbusy flag when finished otherwise it sets
183the 'yp->tx_full' flag.
184
185The interrupt handler has exclusive control over the Rx ring and records stats
186from the Tx ring. After reaping the stats, it marks the Tx queue entry as
187empty by incrementing the dirty_tx mark. Iff the 'yp->tx_full' flag is set, it
188clears both the tx_full and tbusy flags.
189
190IV. Notes
191
192Thanks to Kim Stearns of Packet Engines for providing a pair of G-NIC boards.
193Thanks to Bruce Faust of Digitalscape for providing both their SYM53C885 board
194and an AlphaStation to verifty the Alpha port!
195
196IVb. References
197
198Yellowfin Engineering Design Specification, 4/23/97 Preliminary/Confidential
199Symbios SYM53C885 PCI-SCSI/Fast Ethernet Multifunction Controller Preliminary
200 Data Manual v3.0
201http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html
202http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html
203
204IVc. Errata
205
206See Packet Engines confidential appendix (prototype chips only).
207*/
208
209
210
211enum capability_flags {
212 HasMII=1, FullTxStatus=2, IsGigabit=4, HasMulticastBug=8, FullRxStatus=16,
213 HasMACAddrBug=32, /* Only on early revs. */
214 DontUseEeprom=64, /* Don't read the MAC from the EEPROm. */
215};
216
217/* The PCI I/O space extent. */
218enum {
219 YELLOWFIN_SIZE = 0x100,
220};
221
222struct pci_id_info {
223 const char *name;
224 struct match_info {
225 int pci, pci_mask, subsystem, subsystem_mask;
226 int revision, revision_mask; /* Only 8 bits. */
227 } id;
228 int drv_flags; /* Driver use, intended as capability flags. */
229};
230
231static const struct pci_id_info pci_id_tbl[] = {
232 {"Yellowfin G-NIC Gigabit Ethernet", { 0x07021000, 0xffffffff},
233 FullTxStatus | IsGigabit | HasMulticastBug | HasMACAddrBug | DontUseEeprom},
234 {"Symbios SYM83C885", { 0x07011000, 0xffffffff},
235 HasMII | DontUseEeprom },
236 { }
237};
238
239static const struct pci_device_id yellowfin_pci_tbl[] = {
240 { 0x1000, 0x0702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
241 { 0x1000, 0x0701, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
242 { }
243};
244MODULE_DEVICE_TABLE (pci, yellowfin_pci_tbl);
245
246
247/* Offsets to the Yellowfin registers. Various sizes and alignments. */
248enum yellowfin_offsets {
249 TxCtrl=0x00, TxStatus=0x04, TxPtr=0x0C,
250 TxIntrSel=0x10, TxBranchSel=0x14, TxWaitSel=0x18,
251 RxCtrl=0x40, RxStatus=0x44, RxPtr=0x4C,
252 RxIntrSel=0x50, RxBranchSel=0x54, RxWaitSel=0x58,
253 EventStatus=0x80, IntrEnb=0x82, IntrClear=0x84, IntrStatus=0x86,
254 ChipRev=0x8C, DMACtrl=0x90, TxThreshold=0x94,
255 Cnfg=0xA0, FrameGap0=0xA2, FrameGap1=0xA4,
256 MII_Cmd=0xA6, MII_Addr=0xA8, MII_Wr_Data=0xAA, MII_Rd_Data=0xAC,
257 MII_Status=0xAE,
258 RxDepth=0xB8, FlowCtrl=0xBC,
259 AddrMode=0xD0, StnAddr=0xD2, HashTbl=0xD8, FIFOcfg=0xF8,
260 EEStatus=0xF0, EECtrl=0xF1, EEAddr=0xF2, EERead=0xF3, EEWrite=0xF4,
261 EEFeature=0xF5,
262};
263
264/* The Yellowfin Rx and Tx buffer descriptors.
265 Elements are written as 32 bit for endian portability. */
266struct yellowfin_desc {
267 __le32 dbdma_cmd;
268 __le32 addr;
269 __le32 branch_addr;
270 __le32 result_status;
271};
272
273struct tx_status_words {
274#ifdef __BIG_ENDIAN
275 u16 tx_errs;
276 u16 tx_cnt;
277 u16 paused;
278 u16 total_tx_cnt;
279#else /* Little endian chips. */
280 u16 tx_cnt;
281 u16 tx_errs;
282 u16 total_tx_cnt;
283 u16 paused;
284#endif /* __BIG_ENDIAN */
285};
286
287/* Bits in yellowfin_desc.cmd */
288enum desc_cmd_bits {
289 CMD_TX_PKT=0x10000000, CMD_RX_BUF=0x20000000, CMD_TXSTATUS=0x30000000,
290 CMD_NOP=0x60000000, CMD_STOP=0x70000000,
291 BRANCH_ALWAYS=0x0C0000, INTR_ALWAYS=0x300000, WAIT_ALWAYS=0x030000,
292 BRANCH_IFTRUE=0x040000,
293};
294
295/* Bits in yellowfin_desc.status */
296enum desc_status_bits { RX_EOP=0x0040, };
297
298/* Bits in the interrupt status/mask registers. */
299enum intr_status_bits {
300 IntrRxDone=0x01, IntrRxInvalid=0x02, IntrRxPCIFault=0x04,IntrRxPCIErr=0x08,
301 IntrTxDone=0x10, IntrTxInvalid=0x20, IntrTxPCIFault=0x40,IntrTxPCIErr=0x80,
302 IntrEarlyRx=0x100, IntrWakeup=0x200, };
303
304#define PRIV_ALIGN 31 /* Required alignment mask */
305#define MII_CNT 4
306struct yellowfin_private {
307 /* Descriptor rings first for alignment.
308 Tx requires a second descriptor for status. */
309 struct yellowfin_desc *rx_ring;
310 struct yellowfin_desc *tx_ring;
311 struct sk_buff* rx_skbuff[RX_RING_SIZE];
312 struct sk_buff* tx_skbuff[TX_RING_SIZE];
313 dma_addr_t rx_ring_dma;
314 dma_addr_t tx_ring_dma;
315
316 struct tx_status_words *tx_status;
317 dma_addr_t tx_status_dma;
318
319 struct timer_list timer; /* Media selection timer. */
320 /* Frequently used and paired value: keep adjacent for cache effect. */
321 int chip_id, drv_flags;
322 struct pci_dev *pci_dev;
323 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
324 unsigned int rx_buf_sz; /* Based on MTU+slack. */
325 struct tx_status_words *tx_tail_desc;
326 unsigned int cur_tx, dirty_tx;
327 int tx_threshold;
328 unsigned int tx_full:1; /* The Tx queue is full. */
329 unsigned int full_duplex:1; /* Full-duplex operation requested. */
330 unsigned int duplex_lock:1;
331 unsigned int medialock:1; /* Do not sense media. */
332 unsigned int default_port:4; /* Last dev->if_port value. */
333 /* MII transceiver section. */
334 int mii_cnt; /* MII device addresses. */
335 u16 advertising; /* NWay media advertisement */
336 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used */
337 spinlock_t lock;
338 void __iomem *base;
339};
340
341static int read_eeprom(void __iomem *ioaddr, int location);
342static int mdio_read(void __iomem *ioaddr, int phy_id, int location);
343static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value);
344static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
345static int yellowfin_open(struct net_device *dev);
346static void yellowfin_timer(struct timer_list *t);
347static void yellowfin_tx_timeout(struct net_device *dev, unsigned int txqueue);
348static int yellowfin_init_ring(struct net_device *dev);
349static netdev_tx_t yellowfin_start_xmit(struct sk_buff *skb,
350 struct net_device *dev);
351static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance);
352static int yellowfin_rx(struct net_device *dev);
353static void yellowfin_error(struct net_device *dev, int intr_status);
354static int yellowfin_close(struct net_device *dev);
355static void set_rx_mode(struct net_device *dev);
356static const struct ethtool_ops ethtool_ops;
357
358static const struct net_device_ops netdev_ops = {
359 .ndo_open = yellowfin_open,
360 .ndo_stop = yellowfin_close,
361 .ndo_start_xmit = yellowfin_start_xmit,
362 .ndo_set_rx_mode = set_rx_mode,
363 .ndo_validate_addr = eth_validate_addr,
364 .ndo_set_mac_address = eth_mac_addr,
365 .ndo_do_ioctl = netdev_ioctl,
366 .ndo_tx_timeout = yellowfin_tx_timeout,
367};
368
369static int yellowfin_init_one(struct pci_dev *pdev,
370 const struct pci_device_id *ent)
371{
372 struct net_device *dev;
373 struct yellowfin_private *np;
374 int irq;
375 int chip_idx = ent->driver_data;
376 static int find_cnt;
377 void __iomem *ioaddr;
378 int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
379 int drv_flags = pci_id_tbl[chip_idx].drv_flags;
380 void *ring_space;
381 dma_addr_t ring_dma;
382#ifdef USE_IO_OPS
383 int bar = 0;
384#else
385 int bar = 1;
386#endif
387
388/* when built into the kernel, we only print version if device is found */
389#ifndef MODULE
390 static int printed_version;
391 if (!printed_version++)
392 printk(version);
393#endif
394
395 i = pci_enable_device(pdev);
396 if (i) return i;
397
398 dev = alloc_etherdev(sizeof(*np));
399 if (!dev)
400 return -ENOMEM;
401
402 SET_NETDEV_DEV(dev, &pdev->dev);
403
404 np = netdev_priv(dev);
405
406 if (pci_request_regions(pdev, DRV_NAME))
407 goto err_out_free_netdev;
408
409 pci_set_master (pdev);
410
411 ioaddr = pci_iomap(pdev, bar, YELLOWFIN_SIZE);
412 if (!ioaddr)
413 goto err_out_free_res;
414
415 irq = pdev->irq;
416
417 if (drv_flags & DontUseEeprom)
418 for (i = 0; i < 6; i++)
419 dev->dev_addr[i] = ioread8(ioaddr + StnAddr + i);
420 else {
421 int ee_offset = (read_eeprom(ioaddr, 6) == 0xff ? 0x100 : 0);
422 for (i = 0; i < 6; i++)
423 dev->dev_addr[i] = read_eeprom(ioaddr, ee_offset + i);
424 }
425
426 /* Reset the chip. */
427 iowrite32(0x80000000, ioaddr + DMACtrl);
428
429 pci_set_drvdata(pdev, dev);
430 spin_lock_init(&np->lock);
431
432 np->pci_dev = pdev;
433 np->chip_id = chip_idx;
434 np->drv_flags = drv_flags;
435 np->base = ioaddr;
436
437 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
438 GFP_KERNEL);
439 if (!ring_space)
440 goto err_out_cleardev;
441 np->tx_ring = ring_space;
442 np->tx_ring_dma = ring_dma;
443
444 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
445 GFP_KERNEL);
446 if (!ring_space)
447 goto err_out_unmap_tx;
448 np->rx_ring = ring_space;
449 np->rx_ring_dma = ring_dma;
450
451 ring_space = dma_alloc_coherent(&pdev->dev, STATUS_TOTAL_SIZE,
452 &ring_dma, GFP_KERNEL);
453 if (!ring_space)
454 goto err_out_unmap_rx;
455 np->tx_status = ring_space;
456 np->tx_status_dma = ring_dma;
457
458 if (dev->mem_start)
459 option = dev->mem_start;
460
461 /* The lower four bits are the media type. */
462 if (option > 0) {
463 if (option & 0x200)
464 np->full_duplex = 1;
465 np->default_port = option & 15;
466 if (np->default_port)
467 np->medialock = 1;
468 }
469 if (find_cnt < MAX_UNITS && full_duplex[find_cnt] > 0)
470 np->full_duplex = 1;
471
472 if (np->full_duplex)
473 np->duplex_lock = 1;
474
475 /* The Yellowfin-specific entries in the device structure. */
476 dev->netdev_ops = &netdev_ops;
477 dev->ethtool_ops = ðtool_ops;
478 dev->watchdog_timeo = TX_TIMEOUT;
479
480 if (mtu)
481 dev->mtu = mtu;
482
483 i = register_netdev(dev);
484 if (i)
485 goto err_out_unmap_status;
486
487 netdev_info(dev, "%s type %8x at %p, %pM, IRQ %d\n",
488 pci_id_tbl[chip_idx].name,
489 ioread32(ioaddr + ChipRev), ioaddr,
490 dev->dev_addr, irq);
491
492 if (np->drv_flags & HasMII) {
493 int phy, phy_idx = 0;
494 for (phy = 0; phy < 32 && phy_idx < MII_CNT; phy++) {
495 int mii_status = mdio_read(ioaddr, phy, 1);
496 if (mii_status != 0xffff && mii_status != 0x0000) {
497 np->phys[phy_idx++] = phy;
498 np->advertising = mdio_read(ioaddr, phy, 4);
499 netdev_info(dev, "MII PHY found at address %d, status 0x%04x advertising %04x\n",
500 phy, mii_status, np->advertising);
501 }
502 }
503 np->mii_cnt = phy_idx;
504 }
505
506 find_cnt++;
507
508 return 0;
509
510err_out_unmap_status:
511 dma_free_coherent(&pdev->dev, STATUS_TOTAL_SIZE, np->tx_status,
512 np->tx_status_dma);
513err_out_unmap_rx:
514 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
515 np->rx_ring_dma);
516err_out_unmap_tx:
517 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
518 np->tx_ring_dma);
519err_out_cleardev:
520 pci_iounmap(pdev, ioaddr);
521err_out_free_res:
522 pci_release_regions(pdev);
523err_out_free_netdev:
524 free_netdev (dev);
525 return -ENODEV;
526}
527
528static int read_eeprom(void __iomem *ioaddr, int location)
529{
530 int bogus_cnt = 10000; /* Typical 33Mhz: 1050 ticks */
531
532 iowrite8(location, ioaddr + EEAddr);
533 iowrite8(0x30 | ((location >> 8) & 7), ioaddr + EECtrl);
534 while ((ioread8(ioaddr + EEStatus) & 0x80) && --bogus_cnt > 0)
535 ;
536 return ioread8(ioaddr + EERead);
537}
538
539/* MII Managemen Data I/O accesses.
540 These routines assume the MDIO controller is idle, and do not exit until
541 the command is finished. */
542
543static int mdio_read(void __iomem *ioaddr, int phy_id, int location)
544{
545 int i;
546
547 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
548 iowrite16(1, ioaddr + MII_Cmd);
549 for (i = 10000; i >= 0; i--)
550 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
551 break;
552 return ioread16(ioaddr + MII_Rd_Data);
553}
554
555static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value)
556{
557 int i;
558
559 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
560 iowrite16(value, ioaddr + MII_Wr_Data);
561
562 /* Wait for the command to finish. */
563 for (i = 10000; i >= 0; i--)
564 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
565 break;
566}
567
568
569static int yellowfin_open(struct net_device *dev)
570{
571 struct yellowfin_private *yp = netdev_priv(dev);
572 const int irq = yp->pci_dev->irq;
573 void __iomem *ioaddr = yp->base;
574 int i, rc;
575
576 /* Reset the chip. */
577 iowrite32(0x80000000, ioaddr + DMACtrl);
578
579 rc = request_irq(irq, yellowfin_interrupt, IRQF_SHARED, dev->name, dev);
580 if (rc)
581 return rc;
582
583 rc = yellowfin_init_ring(dev);
584 if (rc < 0)
585 goto err_free_irq;
586
587 iowrite32(yp->rx_ring_dma, ioaddr + RxPtr);
588 iowrite32(yp->tx_ring_dma, ioaddr + TxPtr);
589
590 for (i = 0; i < 6; i++)
591 iowrite8(dev->dev_addr[i], ioaddr + StnAddr + i);
592
593 /* Set up various condition 'select' registers.
594 There are no options here. */
595 iowrite32(0x00800080, ioaddr + TxIntrSel); /* Interrupt on Tx abort */
596 iowrite32(0x00800080, ioaddr + TxBranchSel); /* Branch on Tx abort */
597 iowrite32(0x00400040, ioaddr + TxWaitSel); /* Wait on Tx status */
598 iowrite32(0x00400040, ioaddr + RxIntrSel); /* Interrupt on Rx done */
599 iowrite32(0x00400040, ioaddr + RxBranchSel); /* Branch on Rx error */
600 iowrite32(0x00400040, ioaddr + RxWaitSel); /* Wait on Rx done */
601
602 /* Initialize other registers: with so many this eventually this will
603 converted to an offset/value list. */
604 iowrite32(dma_ctrl, ioaddr + DMACtrl);
605 iowrite16(fifo_cfg, ioaddr + FIFOcfg);
606 /* Enable automatic generation of flow control frames, period 0xffff. */
607 iowrite32(0x0030FFFF, ioaddr + FlowCtrl);
608
609 yp->tx_threshold = 32;
610 iowrite32(yp->tx_threshold, ioaddr + TxThreshold);
611
612 if (dev->if_port == 0)
613 dev->if_port = yp->default_port;
614
615 netif_start_queue(dev);
616
617 /* Setting the Rx mode will start the Rx process. */
618 if (yp->drv_flags & IsGigabit) {
619 /* We are always in full-duplex mode with gigabit! */
620 yp->full_duplex = 1;
621 iowrite16(0x01CF, ioaddr + Cnfg);
622 } else {
623 iowrite16(0x0018, ioaddr + FrameGap0); /* 0060/4060 for non-MII 10baseT */
624 iowrite16(0x1018, ioaddr + FrameGap1);
625 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
626 }
627 set_rx_mode(dev);
628
629 /* Enable interrupts by setting the interrupt mask. */
630 iowrite16(0x81ff, ioaddr + IntrEnb); /* See enum intr_status_bits */
631 iowrite16(0x0000, ioaddr + EventStatus); /* Clear non-interrupting events */
632 iowrite32(0x80008000, ioaddr + RxCtrl); /* Start Rx and Tx channels. */
633 iowrite32(0x80008000, ioaddr + TxCtrl);
634
635 if (yellowfin_debug > 2) {
636 netdev_printk(KERN_DEBUG, dev, "Done %s()\n", __func__);
637 }
638
639 /* Set the timer to check for link beat. */
640 timer_setup(&yp->timer, yellowfin_timer, 0);
641 yp->timer.expires = jiffies + 3*HZ;
642 add_timer(&yp->timer);
643out:
644 return rc;
645
646err_free_irq:
647 free_irq(irq, dev);
648 goto out;
649}
650
651static void yellowfin_timer(struct timer_list *t)
652{
653 struct yellowfin_private *yp = from_timer(yp, t, timer);
654 struct net_device *dev = pci_get_drvdata(yp->pci_dev);
655 void __iomem *ioaddr = yp->base;
656 int next_tick = 60*HZ;
657
658 if (yellowfin_debug > 3) {
659 netdev_printk(KERN_DEBUG, dev, "Yellowfin timer tick, status %08x\n",
660 ioread16(ioaddr + IntrStatus));
661 }
662
663 if (yp->mii_cnt) {
664 int bmsr = mdio_read(ioaddr, yp->phys[0], MII_BMSR);
665 int lpa = mdio_read(ioaddr, yp->phys[0], MII_LPA);
666 int negotiated = lpa & yp->advertising;
667 if (yellowfin_debug > 1)
668 netdev_printk(KERN_DEBUG, dev, "MII #%d status register is %04x, link partner capability %04x\n",
669 yp->phys[0], bmsr, lpa);
670
671 yp->full_duplex = mii_duplex(yp->duplex_lock, negotiated);
672
673 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
674
675 if (bmsr & BMSR_LSTATUS)
676 next_tick = 60*HZ;
677 else
678 next_tick = 3*HZ;
679 }
680
681 yp->timer.expires = jiffies + next_tick;
682 add_timer(&yp->timer);
683}
684
685static void yellowfin_tx_timeout(struct net_device *dev, unsigned int txqueue)
686{
687 struct yellowfin_private *yp = netdev_priv(dev);
688 void __iomem *ioaddr = yp->base;
689
690 netdev_warn(dev, "Yellowfin transmit timed out at %d/%d Tx status %04x, Rx status %04x, resetting...\n",
691 yp->cur_tx, yp->dirty_tx,
692 ioread32(ioaddr + TxStatus),
693 ioread32(ioaddr + RxStatus));
694
695 /* Note: these should be KERN_DEBUG. */
696 if (yellowfin_debug) {
697 int i;
698 pr_warn(" Rx ring %p: ", yp->rx_ring);
699 for (i = 0; i < RX_RING_SIZE; i++)
700 pr_cont(" %08x", yp->rx_ring[i].result_status);
701 pr_cont("\n");
702 pr_warn(" Tx ring %p: ", yp->tx_ring);
703 for (i = 0; i < TX_RING_SIZE; i++)
704 pr_cont(" %04x /%08x",
705 yp->tx_status[i].tx_errs,
706 yp->tx_ring[i].result_status);
707 pr_cont("\n");
708 }
709
710 /* If the hardware is found to hang regularly, we will update the code
711 to reinitialize the chip here. */
712 dev->if_port = 0;
713
714 /* Wake the potentially-idle transmit channel. */
715 iowrite32(0x10001000, yp->base + TxCtrl);
716 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
717 netif_wake_queue (dev); /* Typical path */
718
719 netif_trans_update(dev); /* prevent tx timeout */
720 dev->stats.tx_errors++;
721}
722
723/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
724static int yellowfin_init_ring(struct net_device *dev)
725{
726 struct yellowfin_private *yp = netdev_priv(dev);
727 int i, j;
728
729 yp->tx_full = 0;
730 yp->cur_rx = yp->cur_tx = 0;
731 yp->dirty_tx = 0;
732
733 yp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
734
735 for (i = 0; i < RX_RING_SIZE; i++) {
736 yp->rx_ring[i].dbdma_cmd =
737 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
738 yp->rx_ring[i].branch_addr = cpu_to_le32(yp->rx_ring_dma +
739 ((i+1)%RX_RING_SIZE)*sizeof(struct yellowfin_desc));
740 }
741
742 for (i = 0; i < RX_RING_SIZE; i++) {
743 struct sk_buff *skb = netdev_alloc_skb(dev, yp->rx_buf_sz + 2);
744 yp->rx_skbuff[i] = skb;
745 if (skb == NULL)
746 break;
747 skb_reserve(skb, 2); /* 16 byte align the IP header. */
748 yp->rx_ring[i].addr = cpu_to_le32(dma_map_single(&yp->pci_dev->dev,
749 skb->data,
750 yp->rx_buf_sz,
751 DMA_FROM_DEVICE));
752 }
753 if (i != RX_RING_SIZE) {
754 for (j = 0; j < i; j++)
755 dev_kfree_skb(yp->rx_skbuff[j]);
756 return -ENOMEM;
757 }
758 yp->rx_ring[i-1].dbdma_cmd = cpu_to_le32(CMD_STOP);
759 yp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
760
761#define NO_TXSTATS
762#ifdef NO_TXSTATS
763 /* In this mode the Tx ring needs only a single descriptor. */
764 for (i = 0; i < TX_RING_SIZE; i++) {
765 yp->tx_skbuff[i] = NULL;
766 yp->tx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
767 yp->tx_ring[i].branch_addr = cpu_to_le32(yp->tx_ring_dma +
768 ((i+1)%TX_RING_SIZE)*sizeof(struct yellowfin_desc));
769 }
770 /* Wrap ring */
771 yp->tx_ring[--i].dbdma_cmd = cpu_to_le32(CMD_STOP | BRANCH_ALWAYS);
772#else
773{
774 /* Tx ring needs a pair of descriptors, the second for the status. */
775 for (i = 0; i < TX_RING_SIZE; i++) {
776 j = 2*i;
777 yp->tx_skbuff[i] = 0;
778 /* Branch on Tx error. */
779 yp->tx_ring[j].dbdma_cmd = cpu_to_le32(CMD_STOP);
780 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
781 (j+1)*sizeof(struct yellowfin_desc));
782 j++;
783 if (yp->flags & FullTxStatus) {
784 yp->tx_ring[j].dbdma_cmd =
785 cpu_to_le32(CMD_TXSTATUS | sizeof(*yp->tx_status));
786 yp->tx_ring[j].request_cnt = sizeof(*yp->tx_status);
787 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
788 i*sizeof(struct tx_status_words));
789 } else {
790 /* Symbios chips write only tx_errs word. */
791 yp->tx_ring[j].dbdma_cmd =
792 cpu_to_le32(CMD_TXSTATUS | INTR_ALWAYS | 2);
793 yp->tx_ring[j].request_cnt = 2;
794 /* Om pade ummmmm... */
795 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
796 i*sizeof(struct tx_status_words) +
797 &(yp->tx_status[0].tx_errs) -
798 &(yp->tx_status[0]));
799 }
800 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
801 ((j+1)%(2*TX_RING_SIZE))*sizeof(struct yellowfin_desc));
802 }
803 /* Wrap ring */
804 yp->tx_ring[++j].dbdma_cmd |= cpu_to_le32(BRANCH_ALWAYS | INTR_ALWAYS);
805}
806#endif
807 yp->tx_tail_desc = &yp->tx_status[0];
808 return 0;
809}
810
811static netdev_tx_t yellowfin_start_xmit(struct sk_buff *skb,
812 struct net_device *dev)
813{
814 struct yellowfin_private *yp = netdev_priv(dev);
815 unsigned entry;
816 int len = skb->len;
817
818 netif_stop_queue (dev);
819
820 /* Note: Ordering is important here, set the field with the
821 "ownership" bit last, and only then increment cur_tx. */
822
823 /* Calculate the next Tx descriptor entry. */
824 entry = yp->cur_tx % TX_RING_SIZE;
825
826 if (gx_fix) { /* Note: only works for paddable protocols e.g. IP. */
827 int cacheline_end = ((unsigned long)skb->data + skb->len) % 32;
828 /* Fix GX chipset errata. */
829 if (cacheline_end > 24 || cacheline_end == 0) {
830 len = skb->len + 32 - cacheline_end + 1;
831 if (skb_padto(skb, len)) {
832 yp->tx_skbuff[entry] = NULL;
833 netif_wake_queue(dev);
834 return NETDEV_TX_OK;
835 }
836 }
837 }
838 yp->tx_skbuff[entry] = skb;
839
840#ifdef NO_TXSTATS
841 yp->tx_ring[entry].addr = cpu_to_le32(dma_map_single(&yp->pci_dev->dev,
842 skb->data,
843 len, DMA_TO_DEVICE));
844 yp->tx_ring[entry].result_status = 0;
845 if (entry >= TX_RING_SIZE-1) {
846 /* New stop command. */
847 yp->tx_ring[0].dbdma_cmd = cpu_to_le32(CMD_STOP);
848 yp->tx_ring[TX_RING_SIZE-1].dbdma_cmd =
849 cpu_to_le32(CMD_TX_PKT|BRANCH_ALWAYS | len);
850 } else {
851 yp->tx_ring[entry+1].dbdma_cmd = cpu_to_le32(CMD_STOP);
852 yp->tx_ring[entry].dbdma_cmd =
853 cpu_to_le32(CMD_TX_PKT | BRANCH_IFTRUE | len);
854 }
855 yp->cur_tx++;
856#else
857 yp->tx_ring[entry<<1].request_cnt = len;
858 yp->tx_ring[entry<<1].addr = cpu_to_le32(dma_map_single(&yp->pci_dev->dev,
859 skb->data,
860 len, DMA_TO_DEVICE));
861 /* The input_last (status-write) command is constant, but we must
862 rewrite the subsequent 'stop' command. */
863
864 yp->cur_tx++;
865 {
866 unsigned next_entry = yp->cur_tx % TX_RING_SIZE;
867 yp->tx_ring[next_entry<<1].dbdma_cmd = cpu_to_le32(CMD_STOP);
868 }
869 /* Final step -- overwrite the old 'stop' command. */
870
871 yp->tx_ring[entry<<1].dbdma_cmd =
872 cpu_to_le32( ((entry % 6) == 0 ? CMD_TX_PKT|INTR_ALWAYS|BRANCH_IFTRUE :
873 CMD_TX_PKT | BRANCH_IFTRUE) | len);
874#endif
875
876 /* Non-x86 Todo: explicitly flush cache lines here. */
877
878 /* Wake the potentially-idle transmit channel. */
879 iowrite32(0x10001000, yp->base + TxCtrl);
880
881 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
882 netif_start_queue (dev); /* Typical path */
883 else
884 yp->tx_full = 1;
885
886 if (yellowfin_debug > 4) {
887 netdev_printk(KERN_DEBUG, dev, "Yellowfin transmit frame #%d queued in slot %d\n",
888 yp->cur_tx, entry);
889 }
890 return NETDEV_TX_OK;
891}
892
893/* The interrupt handler does all of the Rx thread work and cleans up
894 after the Tx thread. */
895static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance)
896{
897 struct net_device *dev = dev_instance;
898 struct yellowfin_private *yp;
899 void __iomem *ioaddr;
900 int boguscnt = max_interrupt_work;
901 unsigned int handled = 0;
902
903 yp = netdev_priv(dev);
904 ioaddr = yp->base;
905
906 spin_lock (&yp->lock);
907
908 do {
909 u16 intr_status = ioread16(ioaddr + IntrClear);
910
911 if (yellowfin_debug > 4)
912 netdev_printk(KERN_DEBUG, dev, "Yellowfin interrupt, status %04x\n",
913 intr_status);
914
915 if (intr_status == 0)
916 break;
917 handled = 1;
918
919 if (intr_status & (IntrRxDone | IntrEarlyRx)) {
920 yellowfin_rx(dev);
921 iowrite32(0x10001000, ioaddr + RxCtrl); /* Wake Rx engine. */
922 }
923
924#ifdef NO_TXSTATS
925 for (; yp->cur_tx - yp->dirty_tx > 0; yp->dirty_tx++) {
926 int entry = yp->dirty_tx % TX_RING_SIZE;
927 struct sk_buff *skb;
928
929 if (yp->tx_ring[entry].result_status == 0)
930 break;
931 skb = yp->tx_skbuff[entry];
932 dev->stats.tx_packets++;
933 dev->stats.tx_bytes += skb->len;
934 /* Free the original skb. */
935 dma_unmap_single(&yp->pci_dev->dev,
936 le32_to_cpu(yp->tx_ring[entry].addr),
937 skb->len, DMA_TO_DEVICE);
938 dev_consume_skb_irq(skb);
939 yp->tx_skbuff[entry] = NULL;
940 }
941 if (yp->tx_full &&
942 yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE - 4) {
943 /* The ring is no longer full, clear tbusy. */
944 yp->tx_full = 0;
945 netif_wake_queue(dev);
946 }
947#else
948 if ((intr_status & IntrTxDone) || (yp->tx_tail_desc->tx_errs)) {
949 unsigned dirty_tx = yp->dirty_tx;
950
951 for (dirty_tx = yp->dirty_tx; yp->cur_tx - dirty_tx > 0;
952 dirty_tx++) {
953 /* Todo: optimize this. */
954 int entry = dirty_tx % TX_RING_SIZE;
955 u16 tx_errs = yp->tx_status[entry].tx_errs;
956 struct sk_buff *skb;
957
958#ifndef final_version
959 if (yellowfin_debug > 5)
960 netdev_printk(KERN_DEBUG, dev, "Tx queue %d check, Tx status %04x %04x %04x %04x\n",
961 entry,
962 yp->tx_status[entry].tx_cnt,
963 yp->tx_status[entry].tx_errs,
964 yp->tx_status[entry].total_tx_cnt,
965 yp->tx_status[entry].paused);
966#endif
967 if (tx_errs == 0)
968 break; /* It still hasn't been Txed */
969 skb = yp->tx_skbuff[entry];
970 if (tx_errs & 0xF810) {
971 /* There was an major error, log it. */
972#ifndef final_version
973 if (yellowfin_debug > 1)
974 netdev_printk(KERN_DEBUG, dev, "Transmit error, Tx status %04x\n",
975 tx_errs);
976#endif
977 dev->stats.tx_errors++;
978 if (tx_errs & 0xF800) dev->stats.tx_aborted_errors++;
979 if (tx_errs & 0x0800) dev->stats.tx_carrier_errors++;
980 if (tx_errs & 0x2000) dev->stats.tx_window_errors++;
981 if (tx_errs & 0x8000) dev->stats.tx_fifo_errors++;
982 } else {
983#ifndef final_version
984 if (yellowfin_debug > 4)
985 netdev_printk(KERN_DEBUG, dev, "Normal transmit, Tx status %04x\n",
986 tx_errs);
987#endif
988 dev->stats.tx_bytes += skb->len;
989 dev->stats.collisions += tx_errs & 15;
990 dev->stats.tx_packets++;
991 }
992 /* Free the original skb. */
993 dma_unmap_single(&yp->pci_dev->dev,
994 yp->tx_ring[entry << 1].addr,
995 skb->len, DMA_TO_DEVICE);
996 dev_consume_skb_irq(skb);
997 yp->tx_skbuff[entry] = 0;
998 /* Mark status as empty. */
999 yp->tx_status[entry].tx_errs = 0;
1000 }
1001
1002#ifndef final_version
1003 if (yp->cur_tx - dirty_tx > TX_RING_SIZE) {
1004 netdev_err(dev, "Out-of-sync dirty pointer, %d vs. %d, full=%d\n",
1005 dirty_tx, yp->cur_tx, yp->tx_full);
1006 dirty_tx += TX_RING_SIZE;
1007 }
1008#endif
1009
1010 if (yp->tx_full &&
1011 yp->cur_tx - dirty_tx < TX_QUEUE_SIZE - 2) {
1012 /* The ring is no longer full, clear tbusy. */
1013 yp->tx_full = 0;
1014 netif_wake_queue(dev);
1015 }
1016
1017 yp->dirty_tx = dirty_tx;
1018 yp->tx_tail_desc = &yp->tx_status[dirty_tx % TX_RING_SIZE];
1019 }
1020#endif
1021
1022 /* Log errors and other uncommon events. */
1023 if (intr_status & 0x2ee) /* Abnormal error summary. */
1024 yellowfin_error(dev, intr_status);
1025
1026 if (--boguscnt < 0) {
1027 netdev_warn(dev, "Too much work at interrupt, status=%#04x\n",
1028 intr_status);
1029 break;
1030 }
1031 } while (1);
1032
1033 if (yellowfin_debug > 3)
1034 netdev_printk(KERN_DEBUG, dev, "exiting interrupt, status=%#04x\n",
1035 ioread16(ioaddr + IntrStatus));
1036
1037 spin_unlock (&yp->lock);
1038 return IRQ_RETVAL(handled);
1039}
1040
1041/* This routine is logically part of the interrupt handler, but separated
1042 for clarity and better register allocation. */
1043static int yellowfin_rx(struct net_device *dev)
1044{
1045 struct yellowfin_private *yp = netdev_priv(dev);
1046 int entry = yp->cur_rx % RX_RING_SIZE;
1047 int boguscnt = yp->dirty_rx + RX_RING_SIZE - yp->cur_rx;
1048
1049 if (yellowfin_debug > 4) {
1050 printk(KERN_DEBUG " In yellowfin_rx(), entry %d status %08x\n",
1051 entry, yp->rx_ring[entry].result_status);
1052 printk(KERN_DEBUG " #%d desc. %08x %08x %08x\n",
1053 entry, yp->rx_ring[entry].dbdma_cmd, yp->rx_ring[entry].addr,
1054 yp->rx_ring[entry].result_status);
1055 }
1056
1057 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1058 while (1) {
1059 struct yellowfin_desc *desc = &yp->rx_ring[entry];
1060 struct sk_buff *rx_skb = yp->rx_skbuff[entry];
1061 s16 frame_status;
1062 u16 desc_status;
1063 int data_size, yf_size;
1064 u8 *buf_addr;
1065
1066 if(!desc->result_status)
1067 break;
1068 dma_sync_single_for_cpu(&yp->pci_dev->dev,
1069 le32_to_cpu(desc->addr),
1070 yp->rx_buf_sz, DMA_FROM_DEVICE);
1071 desc_status = le32_to_cpu(desc->result_status) >> 16;
1072 buf_addr = rx_skb->data;
1073 data_size = (le32_to_cpu(desc->dbdma_cmd) -
1074 le32_to_cpu(desc->result_status)) & 0xffff;
1075 frame_status = get_unaligned_le16(&(buf_addr[data_size - 2]));
1076 if (yellowfin_debug > 4)
1077 printk(KERN_DEBUG " %s() status was %04x\n",
1078 __func__, frame_status);
1079 if (--boguscnt < 0)
1080 break;
1081
1082 yf_size = sizeof(struct yellowfin_desc);
1083
1084 if ( ! (desc_status & RX_EOP)) {
1085 if (data_size != 0)
1086 netdev_warn(dev, "Oversized Ethernet frame spanned multiple buffers, status %04x, data_size %d!\n",
1087 desc_status, data_size);
1088 dev->stats.rx_length_errors++;
1089 } else if ((yp->drv_flags & IsGigabit) && (frame_status & 0x0038)) {
1090 /* There was a error. */
1091 if (yellowfin_debug > 3)
1092 printk(KERN_DEBUG " %s() Rx error was %04x\n",
1093 __func__, frame_status);
1094 dev->stats.rx_errors++;
1095 if (frame_status & 0x0060) dev->stats.rx_length_errors++;
1096 if (frame_status & 0x0008) dev->stats.rx_frame_errors++;
1097 if (frame_status & 0x0010) dev->stats.rx_crc_errors++;
1098 if (frame_status < 0) dev->stats.rx_dropped++;
1099 } else if ( !(yp->drv_flags & IsGigabit) &&
1100 ((buf_addr[data_size-1] & 0x85) || buf_addr[data_size-2] & 0xC0)) {
1101 u8 status1 = buf_addr[data_size-2];
1102 u8 status2 = buf_addr[data_size-1];
1103 dev->stats.rx_errors++;
1104 if (status1 & 0xC0) dev->stats.rx_length_errors++;
1105 if (status2 & 0x03) dev->stats.rx_frame_errors++;
1106 if (status2 & 0x04) dev->stats.rx_crc_errors++;
1107 if (status2 & 0x80) dev->stats.rx_dropped++;
1108#ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1109 } else if ((yp->flags & HasMACAddrBug) &&
1110 !ether_addr_equal(le32_to_cpu(yp->rx_ring_dma +
1111 entry * yf_size),
1112 dev->dev_addr) &&
1113 !ether_addr_equal(le32_to_cpu(yp->rx_ring_dma +
1114 entry * yf_size),
1115 "\377\377\377\377\377\377")) {
1116 if (bogus_rx++ == 0)
1117 netdev_warn(dev, "Bad frame to %pM\n",
1118 buf_addr);
1119#endif
1120 } else {
1121 struct sk_buff *skb;
1122 int pkt_len = data_size -
1123 (yp->chip_id ? 7 : 8 + buf_addr[data_size - 8]);
1124 /* To verify: Yellowfin Length should omit the CRC! */
1125
1126#ifndef final_version
1127 if (yellowfin_debug > 4)
1128 printk(KERN_DEBUG " %s() normal Rx pkt length %d of %d, bogus_cnt %d\n",
1129 __func__, pkt_len, data_size, boguscnt);
1130#endif
1131 /* Check if the packet is long enough to just pass up the skbuff
1132 without copying to a properly sized skbuff. */
1133 if (pkt_len > rx_copybreak) {
1134 skb_put(skb = rx_skb, pkt_len);
1135 dma_unmap_single(&yp->pci_dev->dev,
1136 le32_to_cpu(yp->rx_ring[entry].addr),
1137 yp->rx_buf_sz,
1138 DMA_FROM_DEVICE);
1139 yp->rx_skbuff[entry] = NULL;
1140 } else {
1141 skb = netdev_alloc_skb(dev, pkt_len + 2);
1142 if (skb == NULL)
1143 break;
1144 skb_reserve(skb, 2); /* 16 byte align the IP header */
1145 skb_copy_to_linear_data(skb, rx_skb->data, pkt_len);
1146 skb_put(skb, pkt_len);
1147 dma_sync_single_for_device(&yp->pci_dev->dev,
1148 le32_to_cpu(desc->addr),
1149 yp->rx_buf_sz,
1150 DMA_FROM_DEVICE);
1151 }
1152 skb->protocol = eth_type_trans(skb, dev);
1153 netif_rx(skb);
1154 dev->stats.rx_packets++;
1155 dev->stats.rx_bytes += pkt_len;
1156 }
1157 entry = (++yp->cur_rx) % RX_RING_SIZE;
1158 }
1159
1160 /* Refill the Rx ring buffers. */
1161 for (; yp->cur_rx - yp->dirty_rx > 0; yp->dirty_rx++) {
1162 entry = yp->dirty_rx % RX_RING_SIZE;
1163 if (yp->rx_skbuff[entry] == NULL) {
1164 struct sk_buff *skb = netdev_alloc_skb(dev, yp->rx_buf_sz + 2);
1165 if (skb == NULL)
1166 break; /* Better luck next round. */
1167 yp->rx_skbuff[entry] = skb;
1168 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1169 yp->rx_ring[entry].addr = cpu_to_le32(dma_map_single(&yp->pci_dev->dev,
1170 skb->data,
1171 yp->rx_buf_sz,
1172 DMA_FROM_DEVICE));
1173 }
1174 yp->rx_ring[entry].dbdma_cmd = cpu_to_le32(CMD_STOP);
1175 yp->rx_ring[entry].result_status = 0; /* Clear complete bit. */
1176 if (entry != 0)
1177 yp->rx_ring[entry - 1].dbdma_cmd =
1178 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
1179 else
1180 yp->rx_ring[RX_RING_SIZE - 1].dbdma_cmd =
1181 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | BRANCH_ALWAYS
1182 | yp->rx_buf_sz);
1183 }
1184
1185 return 0;
1186}
1187
1188static void yellowfin_error(struct net_device *dev, int intr_status)
1189{
1190 netdev_err(dev, "Something Wicked happened! %04x\n", intr_status);
1191 /* Hmmmmm, it's not clear what to do here. */
1192 if (intr_status & (IntrTxPCIErr | IntrTxPCIFault))
1193 dev->stats.tx_errors++;
1194 if (intr_status & (IntrRxPCIErr | IntrRxPCIFault))
1195 dev->stats.rx_errors++;
1196}
1197
1198static int yellowfin_close(struct net_device *dev)
1199{
1200 struct yellowfin_private *yp = netdev_priv(dev);
1201 void __iomem *ioaddr = yp->base;
1202 int i;
1203
1204 netif_stop_queue (dev);
1205
1206 if (yellowfin_debug > 1) {
1207 netdev_printk(KERN_DEBUG, dev, "Shutting down ethercard, status was Tx %04x Rx %04x Int %02x\n",
1208 ioread16(ioaddr + TxStatus),
1209 ioread16(ioaddr + RxStatus),
1210 ioread16(ioaddr + IntrStatus));
1211 netdev_printk(KERN_DEBUG, dev, "Queue pointers were Tx %d / %d, Rx %d / %d\n",
1212 yp->cur_tx, yp->dirty_tx,
1213 yp->cur_rx, yp->dirty_rx);
1214 }
1215
1216 /* Disable interrupts by clearing the interrupt mask. */
1217 iowrite16(0x0000, ioaddr + IntrEnb);
1218
1219 /* Stop the chip's Tx and Rx processes. */
1220 iowrite32(0x80000000, ioaddr + RxCtrl);
1221 iowrite32(0x80000000, ioaddr + TxCtrl);
1222
1223 del_timer(&yp->timer);
1224
1225#if defined(__i386__)
1226 if (yellowfin_debug > 2) {
1227 printk(KERN_DEBUG " Tx ring at %08llx:\n",
1228 (unsigned long long)yp->tx_ring_dma);
1229 for (i = 0; i < TX_RING_SIZE*2; i++)
1230 printk(KERN_DEBUG " %c #%d desc. %08x %08x %08x %08x\n",
1231 ioread32(ioaddr + TxPtr) == (long)&yp->tx_ring[i] ? '>' : ' ',
1232 i, yp->tx_ring[i].dbdma_cmd, yp->tx_ring[i].addr,
1233 yp->tx_ring[i].branch_addr, yp->tx_ring[i].result_status);
1234 printk(KERN_DEBUG " Tx status %p:\n", yp->tx_status);
1235 for (i = 0; i < TX_RING_SIZE; i++)
1236 printk(KERN_DEBUG " #%d status %04x %04x %04x %04x\n",
1237 i, yp->tx_status[i].tx_cnt, yp->tx_status[i].tx_errs,
1238 yp->tx_status[i].total_tx_cnt, yp->tx_status[i].paused);
1239
1240 printk(KERN_DEBUG " Rx ring %08llx:\n",
1241 (unsigned long long)yp->rx_ring_dma);
1242 for (i = 0; i < RX_RING_SIZE; i++) {
1243 printk(KERN_DEBUG " %c #%d desc. %08x %08x %08x\n",
1244 ioread32(ioaddr + RxPtr) == (long)&yp->rx_ring[i] ? '>' : ' ',
1245 i, yp->rx_ring[i].dbdma_cmd, yp->rx_ring[i].addr,
1246 yp->rx_ring[i].result_status);
1247 if (yellowfin_debug > 6) {
1248 if (get_unaligned((u8*)yp->rx_ring[i].addr) != 0x69) {
1249 int j;
1250
1251 printk(KERN_DEBUG);
1252 for (j = 0; j < 0x50; j++)
1253 pr_cont(" %04x",
1254 get_unaligned(((u16*)yp->rx_ring[i].addr) + j));
1255 pr_cont("\n");
1256 }
1257 }
1258 }
1259 }
1260#endif /* __i386__ debugging only */
1261
1262 free_irq(yp->pci_dev->irq, dev);
1263
1264 /* Free all the skbuffs in the Rx queue. */
1265 for (i = 0; i < RX_RING_SIZE; i++) {
1266 yp->rx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
1267 yp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1268 if (yp->rx_skbuff[i]) {
1269 dev_kfree_skb(yp->rx_skbuff[i]);
1270 }
1271 yp->rx_skbuff[i] = NULL;
1272 }
1273 for (i = 0; i < TX_RING_SIZE; i++) {
1274 dev_kfree_skb(yp->tx_skbuff[i]);
1275 yp->tx_skbuff[i] = NULL;
1276 }
1277
1278#ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1279 if (yellowfin_debug > 0) {
1280 netdev_printk(KERN_DEBUG, dev, "Received %d frames that we should not have\n",
1281 bogus_rx);
1282 }
1283#endif
1284
1285 return 0;
1286}
1287
1288/* Set or clear the multicast filter for this adaptor. */
1289
1290static void set_rx_mode(struct net_device *dev)
1291{
1292 struct yellowfin_private *yp = netdev_priv(dev);
1293 void __iomem *ioaddr = yp->base;
1294 u16 cfg_value = ioread16(ioaddr + Cnfg);
1295
1296 /* Stop the Rx process to change any value. */
1297 iowrite16(cfg_value & ~0x1000, ioaddr + Cnfg);
1298 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1299 iowrite16(0x000F, ioaddr + AddrMode);
1300 } else if ((netdev_mc_count(dev) > 64) ||
1301 (dev->flags & IFF_ALLMULTI)) {
1302 /* Too many to filter well, or accept all multicasts. */
1303 iowrite16(0x000B, ioaddr + AddrMode);
1304 } else if (!netdev_mc_empty(dev)) { /* Must use the multicast hash table. */
1305 struct netdev_hw_addr *ha;
1306 u16 hash_table[4];
1307 int i;
1308
1309 memset(hash_table, 0, sizeof(hash_table));
1310 netdev_for_each_mc_addr(ha, dev) {
1311 unsigned int bit;
1312
1313 /* Due to a bug in the early chip versions, multiple filter
1314 slots must be set for each address. */
1315 if (yp->drv_flags & HasMulticastBug) {
1316 bit = (ether_crc_le(3, ha->addr) >> 3) & 0x3f;
1317 hash_table[bit >> 4] |= (1 << bit);
1318 bit = (ether_crc_le(4, ha->addr) >> 3) & 0x3f;
1319 hash_table[bit >> 4] |= (1 << bit);
1320 bit = (ether_crc_le(5, ha->addr) >> 3) & 0x3f;
1321 hash_table[bit >> 4] |= (1 << bit);
1322 }
1323 bit = (ether_crc_le(6, ha->addr) >> 3) & 0x3f;
1324 hash_table[bit >> 4] |= (1 << bit);
1325 }
1326 /* Copy the hash table to the chip. */
1327 for (i = 0; i < 4; i++)
1328 iowrite16(hash_table[i], ioaddr + HashTbl + i*2);
1329 iowrite16(0x0003, ioaddr + AddrMode);
1330 } else { /* Normal, unicast/broadcast-only mode. */
1331 iowrite16(0x0001, ioaddr + AddrMode);
1332 }
1333 /* Restart the Rx process. */
1334 iowrite16(cfg_value | 0x1000, ioaddr + Cnfg);
1335}
1336
1337static void yellowfin_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1338{
1339 struct yellowfin_private *np = netdev_priv(dev);
1340
1341 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1342 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1343 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1344}
1345
1346static const struct ethtool_ops ethtool_ops = {
1347 .get_drvinfo = yellowfin_get_drvinfo
1348};
1349
1350static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1351{
1352 struct yellowfin_private *np = netdev_priv(dev);
1353 void __iomem *ioaddr = np->base;
1354 struct mii_ioctl_data *data = if_mii(rq);
1355
1356 switch(cmd) {
1357 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
1358 data->phy_id = np->phys[0] & 0x1f;
1359 fallthrough;
1360
1361 case SIOCGMIIREG: /* Read MII PHY register. */
1362 data->val_out = mdio_read(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f);
1363 return 0;
1364
1365 case SIOCSMIIREG: /* Write MII PHY register. */
1366 if (data->phy_id == np->phys[0]) {
1367 u16 value = data->val_in;
1368 switch (data->reg_num) {
1369 case 0:
1370 /* Check for autonegotiation on or reset. */
1371 np->medialock = (value & 0x9000) ? 0 : 1;
1372 if (np->medialock)
1373 np->full_duplex = (value & 0x0100) ? 1 : 0;
1374 break;
1375 case 4: np->advertising = value; break;
1376 }
1377 /* Perhaps check_duplex(dev), depending on chip semantics. */
1378 }
1379 mdio_write(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1380 return 0;
1381 default:
1382 return -EOPNOTSUPP;
1383 }
1384}
1385
1386
1387static void yellowfin_remove_one(struct pci_dev *pdev)
1388{
1389 struct net_device *dev = pci_get_drvdata(pdev);
1390 struct yellowfin_private *np;
1391
1392 BUG_ON(!dev);
1393 np = netdev_priv(dev);
1394
1395 dma_free_coherent(&pdev->dev, STATUS_TOTAL_SIZE, np->tx_status,
1396 np->tx_status_dma);
1397 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
1398 np->rx_ring_dma);
1399 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
1400 np->tx_ring_dma);
1401 unregister_netdev (dev);
1402
1403 pci_iounmap(pdev, np->base);
1404
1405 pci_release_regions (pdev);
1406
1407 free_netdev (dev);
1408}
1409
1410
1411static struct pci_driver yellowfin_driver = {
1412 .name = DRV_NAME,
1413 .id_table = yellowfin_pci_tbl,
1414 .probe = yellowfin_init_one,
1415 .remove = yellowfin_remove_one,
1416};
1417
1418
1419static int __init yellowfin_init (void)
1420{
1421/* when a module, this is printed whether or not devices are found in probe */
1422#ifdef MODULE
1423 printk(version);
1424#endif
1425 return pci_register_driver(&yellowfin_driver);
1426}
1427
1428
1429static void __exit yellowfin_cleanup (void)
1430{
1431 pci_unregister_driver (&yellowfin_driver);
1432}
1433
1434
1435module_init(yellowfin_init);
1436module_exit(yellowfin_cleanup);