Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2019, Intel Corporation. */
   3
   4#include "ice_common.h"
   5#include "ice_flow.h"
   6#include <net/gre.h>
   7
   8/* Describe properties of a protocol header field */
   9struct ice_flow_field_info {
  10	enum ice_flow_seg_hdr hdr;
  11	s16 off;	/* Offset from start of a protocol header, in bits */
  12	u16 size;	/* Size of fields in bits */
  13	u16 mask;	/* 16-bit mask for field */
  14};
  15
  16#define ICE_FLOW_FLD_INFO(_hdr, _offset_bytes, _size_bytes) { \
  17	.hdr = _hdr, \
  18	.off = (_offset_bytes) * BITS_PER_BYTE, \
  19	.size = (_size_bytes) * BITS_PER_BYTE, \
  20	.mask = 0, \
  21}
  22
  23#define ICE_FLOW_FLD_INFO_MSK(_hdr, _offset_bytes, _size_bytes, _mask) { \
  24	.hdr = _hdr, \
  25	.off = (_offset_bytes) * BITS_PER_BYTE, \
  26	.size = (_size_bytes) * BITS_PER_BYTE, \
  27	.mask = _mask, \
  28}
  29
  30/* Table containing properties of supported protocol header fields */
  31static const
  32struct ice_flow_field_info ice_flds_info[ICE_FLOW_FIELD_IDX_MAX] = {
  33	/* Ether */
  34	/* ICE_FLOW_FIELD_IDX_ETH_DA */
  35	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 0, ETH_ALEN),
  36	/* ICE_FLOW_FIELD_IDX_ETH_SA */
  37	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, ETH_ALEN, ETH_ALEN),
  38	/* ICE_FLOW_FIELD_IDX_S_VLAN */
  39	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 12, sizeof(__be16)),
  40	/* ICE_FLOW_FIELD_IDX_C_VLAN */
  41	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 14, sizeof(__be16)),
  42	/* ICE_FLOW_FIELD_IDX_ETH_TYPE */
  43	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 0, sizeof(__be16)),
  44	/* IPv4 / IPv6 */
  45	/* ICE_FLOW_FIELD_IDX_IPV4_DSCP */
  46	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_IPV4, 0, 1, 0x00fc),
  47	/* ICE_FLOW_FIELD_IDX_IPV6_DSCP */
  48	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_IPV6, 0, 1, 0x0ff0),
  49	/* ICE_FLOW_FIELD_IDX_IPV4_TTL */
  50	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 8, 1, 0xff00),
  51	/* ICE_FLOW_FIELD_IDX_IPV4_PROT */
  52	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 8, 1, 0x00ff),
  53	/* ICE_FLOW_FIELD_IDX_IPV6_TTL */
  54	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 6, 1, 0x00ff),
  55	/* ICE_FLOW_FIELD_IDX_IPV6_PROT */
  56	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 6, 1, 0xff00),
  57	/* ICE_FLOW_FIELD_IDX_IPV4_SA */
  58	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 12, sizeof(struct in_addr)),
  59	/* ICE_FLOW_FIELD_IDX_IPV4_DA */
  60	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 16, sizeof(struct in_addr)),
  61	/* ICE_FLOW_FIELD_IDX_IPV6_SA */
  62	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 8, sizeof(struct in6_addr)),
  63	/* ICE_FLOW_FIELD_IDX_IPV6_DA */
  64	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 24, sizeof(struct in6_addr)),
  65	/* Transport */
  66	/* ICE_FLOW_FIELD_IDX_TCP_SRC_PORT */
  67	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 0, sizeof(__be16)),
  68	/* ICE_FLOW_FIELD_IDX_TCP_DST_PORT */
  69	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 2, sizeof(__be16)),
  70	/* ICE_FLOW_FIELD_IDX_UDP_SRC_PORT */
  71	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 0, sizeof(__be16)),
  72	/* ICE_FLOW_FIELD_IDX_UDP_DST_PORT */
  73	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 2, sizeof(__be16)),
  74	/* ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT */
  75	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 0, sizeof(__be16)),
  76	/* ICE_FLOW_FIELD_IDX_SCTP_DST_PORT */
  77	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 2, sizeof(__be16)),
  78	/* ICE_FLOW_FIELD_IDX_TCP_FLAGS */
  79	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 13, 1),
  80	/* ARP */
  81	/* ICE_FLOW_FIELD_IDX_ARP_SIP */
  82	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 14, sizeof(struct in_addr)),
  83	/* ICE_FLOW_FIELD_IDX_ARP_DIP */
  84	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 24, sizeof(struct in_addr)),
  85	/* ICE_FLOW_FIELD_IDX_ARP_SHA */
  86	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 8, ETH_ALEN),
  87	/* ICE_FLOW_FIELD_IDX_ARP_DHA */
  88	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 18, ETH_ALEN),
  89	/* ICE_FLOW_FIELD_IDX_ARP_OP */
  90	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 6, sizeof(__be16)),
  91	/* ICMP */
  92	/* ICE_FLOW_FIELD_IDX_ICMP_TYPE */
  93	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 0, 1),
  94	/* ICE_FLOW_FIELD_IDX_ICMP_CODE */
  95	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 1, 1),
  96	/* GRE */
  97	/* ICE_FLOW_FIELD_IDX_GRE_KEYID */
  98	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GRE, 12,
  99			  sizeof_field(struct gre_full_hdr, key)),
 100	/* GTP */
 101	/* ICE_FLOW_FIELD_IDX_GTPC_TEID */
 102	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPC_TEID, 12, sizeof(__be32)),
 103	/* ICE_FLOW_FIELD_IDX_GTPU_IP_TEID */
 104	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_IP, 12, sizeof(__be32)),
 105	/* ICE_FLOW_FIELD_IDX_GTPU_EH_TEID */
 106	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_EH, 12, sizeof(__be32)),
 107	/* ICE_FLOW_FIELD_IDX_GTPU_EH_QFI */
 108	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_GTPU_EH, 22, sizeof(__be16),
 109			      0x3f00),
 110	/* ICE_FLOW_FIELD_IDX_GTPU_UP_TEID */
 111	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_UP, 12, sizeof(__be32)),
 112	/* ICE_FLOW_FIELD_IDX_GTPU_DWN_TEID */
 113	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_DWN, 12, sizeof(__be32)),
 114	/* PPPoE */
 115	/* ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID */
 116	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_PPPOE, 2, sizeof(__be16)),
 117	/* PFCP */
 118	/* ICE_FLOW_FIELD_IDX_PFCP_SEID */
 119	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_PFCP_SESSION, 12, sizeof(__be64)),
 120	/* L2TPv3 */
 121	/* ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID */
 122	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_L2TPV3, 0, sizeof(__be32)),
 123	/* ESP */
 124	/* ICE_FLOW_FIELD_IDX_ESP_SPI */
 125	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ESP, 0, sizeof(__be32)),
 126	/* AH */
 127	/* ICE_FLOW_FIELD_IDX_AH_SPI */
 128	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_AH, 4, sizeof(__be32)),
 129	/* NAT_T_ESP */
 130	/* ICE_FLOW_FIELD_IDX_NAT_T_ESP_SPI */
 131	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_NAT_T_ESP, 8, sizeof(__be32)),
 132};
 133
 134/* Bitmaps indicating relevant packet types for a particular protocol header
 135 *
 136 * Packet types for packets with an Outer/First/Single MAC header
 137 */
 138static const u32 ice_ptypes_mac_ofos[] = {
 139	0xFDC00846, 0xBFBF7F7E, 0xF70001DF, 0xFEFDFDFB,
 140	0x0000077E, 0x00000000, 0x00000000, 0x00000000,
 141	0x00400000, 0x03FFF000, 0x7FFFFFE0, 0x00000000,
 142	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 143	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 144	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 145	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 146	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 147};
 148
 149/* Packet types for packets with an Innermost/Last MAC VLAN header */
 150static const u32 ice_ptypes_macvlan_il[] = {
 151	0x00000000, 0xBC000000, 0x000001DF, 0xF0000000,
 152	0x0000077E, 0x00000000, 0x00000000, 0x00000000,
 153	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 154	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 155	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 156	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 157	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 158	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 159};
 160
 161/* Packet types for packets with an Outer/First/Single IPv4 header, does NOT
 162 * include IPv4 other PTYPEs
 163 */
 164static const u32 ice_ptypes_ipv4_ofos[] = {
 165	0x1DC00000, 0x04000800, 0x00000000, 0x00000000,
 166	0x00000000, 0x00000155, 0x00000000, 0x00000000,
 167	0x00000000, 0x000FC000, 0x00000000, 0x00000000,
 168	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 169	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 170	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 171	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 172	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 173};
 174
 175/* Packet types for packets with an Outer/First/Single IPv4 header, includes
 176 * IPv4 other PTYPEs
 177 */
 178static const u32 ice_ptypes_ipv4_ofos_all[] = {
 179	0x1DC00000, 0x04000800, 0x00000000, 0x00000000,
 180	0x00000000, 0x00000155, 0x00000000, 0x00000000,
 181	0x00000000, 0x000FC000, 0x83E0F800, 0x00000101,
 182	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 183	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 184	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 185	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 186	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 187};
 188
 189/* Packet types for packets with an Innermost/Last IPv4 header */
 190static const u32 ice_ptypes_ipv4_il[] = {
 191	0xE0000000, 0xB807700E, 0x80000003, 0xE01DC03B,
 192	0x0000000E, 0x00000000, 0x00000000, 0x00000000,
 193	0x00000000, 0x00000000, 0x001FF800, 0x00000000,
 194	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 195	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 196	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 197	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 198	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 199};
 200
 201/* Packet types for packets with an Outer/First/Single IPv6 header, does NOT
 202 * include IPv6 other PTYPEs
 203 */
 204static const u32 ice_ptypes_ipv6_ofos[] = {
 205	0x00000000, 0x00000000, 0x77000000, 0x10002000,
 206	0x00000000, 0x000002AA, 0x00000000, 0x00000000,
 207	0x00000000, 0x03F00000, 0x00000000, 0x00000000,
 208	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 209	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 210	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 211	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 212	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 213};
 214
 215/* Packet types for packets with an Outer/First/Single IPv6 header, includes
 216 * IPv6 other PTYPEs
 217 */
 218static const u32 ice_ptypes_ipv6_ofos_all[] = {
 219	0x00000000, 0x00000000, 0x77000000, 0x10002000,
 220	0x00000000, 0x000002AA, 0x00000000, 0x00000000,
 221	0x00080F00, 0x03F00000, 0x7C1F0000, 0x00000206,
 222	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 223	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 224	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 225	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 226	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 227};
 228
 229/* Packet types for packets with an Innermost/Last IPv6 header */
 230static const u32 ice_ptypes_ipv6_il[] = {
 231	0x00000000, 0x03B80770, 0x000001DC, 0x0EE00000,
 232	0x00000770, 0x00000000, 0x00000000, 0x00000000,
 233	0x00000000, 0x00000000, 0x7FE00000, 0x00000000,
 234	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 235	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 236	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 237	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 238	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 239};
 240
 241/* Packet types for packets with an Outer/First/Single IPv4 header - no L4 */
 242static const u32 ice_ptypes_ipv4_ofos_no_l4[] = {
 243	0x10C00000, 0x04000800, 0x00000000, 0x00000000,
 244	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 245	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 246	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 247	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 248	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 249	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 250	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 251};
 252
 253/* Packet types for packets with an Outermost/First ARP header */
 254static const u32 ice_ptypes_arp_of[] = {
 255	0x00000800, 0x00000000, 0x00000000, 0x00000000,
 256	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 257	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 258	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 259	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 260	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 261	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 262	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 263};
 264
 265/* Packet types for packets with an Innermost/Last IPv4 header - no L4 */
 266static const u32 ice_ptypes_ipv4_il_no_l4[] = {
 267	0x60000000, 0x18043008, 0x80000002, 0x6010c021,
 268	0x00000008, 0x00000000, 0x00000000, 0x00000000,
 269	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 270	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 271	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 272	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 273	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 274	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 275};
 276
 277/* Packet types for packets with an Outer/First/Single IPv6 header - no L4 */
 278static const u32 ice_ptypes_ipv6_ofos_no_l4[] = {
 279	0x00000000, 0x00000000, 0x43000000, 0x10002000,
 280	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 281	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 282	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 283	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 284	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 285	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 286	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 287};
 288
 289/* Packet types for packets with an Innermost/Last IPv6 header - no L4 */
 290static const u32 ice_ptypes_ipv6_il_no_l4[] = {
 291	0x00000000, 0x02180430, 0x0000010c, 0x086010c0,
 292	0x00000430, 0x00000000, 0x00000000, 0x00000000,
 293	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 294	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 295	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 296	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 297	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 298	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 299};
 300
 301/* UDP Packet types for non-tunneled packets or tunneled
 302 * packets with inner UDP.
 303 */
 304static const u32 ice_ptypes_udp_il[] = {
 305	0x81000000, 0x20204040, 0x04000010, 0x80810102,
 306	0x00000040, 0x00000000, 0x00000000, 0x00000000,
 307	0x00000000, 0x00410000, 0x90842000, 0x00000007,
 308	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 309	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 310	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 311	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 312	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 313};
 314
 315/* Packet types for packets with an Innermost/Last TCP header */
 316static const u32 ice_ptypes_tcp_il[] = {
 317	0x04000000, 0x80810102, 0x10000040, 0x02040408,
 318	0x00000102, 0x00000000, 0x00000000, 0x00000000,
 319	0x00000000, 0x00820000, 0x21084000, 0x00000000,
 320	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 321	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 322	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 323	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 324	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 325};
 326
 327/* Packet types for packets with an Innermost/Last SCTP header */
 328static const u32 ice_ptypes_sctp_il[] = {
 329	0x08000000, 0x01020204, 0x20000081, 0x04080810,
 330	0x00000204, 0x00000000, 0x00000000, 0x00000000,
 331	0x00000000, 0x01040000, 0x00000000, 0x00000000,
 332	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 333	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 334	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 335	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 336	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 337};
 338
 339/* Packet types for packets with an Outermost/First ICMP header */
 340static const u32 ice_ptypes_icmp_of[] = {
 341	0x10000000, 0x00000000, 0x00000000, 0x00000000,
 342	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 343	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 344	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 345	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 346	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 347	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 348	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 349};
 350
 351/* Packet types for packets with an Innermost/Last ICMP header */
 352static const u32 ice_ptypes_icmp_il[] = {
 353	0x00000000, 0x02040408, 0x40000102, 0x08101020,
 354	0x00000408, 0x00000000, 0x00000000, 0x00000000,
 355	0x00000000, 0x00000000, 0x42108000, 0x00000000,
 356	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 357	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 358	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 359	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 360	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 361};
 362
 363/* Packet types for packets with an Outermost/First GRE header */
 364static const u32 ice_ptypes_gre_of[] = {
 365	0x00000000, 0xBFBF7800, 0x000001DF, 0xFEFDE000,
 366	0x0000017E, 0x00000000, 0x00000000, 0x00000000,
 367	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 368	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 369	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 370	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 371	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 372	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 373};
 374
 375/* Packet types for packets with an Innermost/Last MAC header */
 376static const u32 ice_ptypes_mac_il[] = {
 377	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 378	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 379	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 380	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 381	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 382	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 383	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 384	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 385};
 386
 387/* Packet types for GTPC */
 388static const u32 ice_ptypes_gtpc[] = {
 389	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 390	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 391	0x00000000, 0x00000000, 0x00000180, 0x00000000,
 392	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 393	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 394	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 395	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 396	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 397};
 398
 399/* Packet types for GTPC with TEID */
 400static const u32 ice_ptypes_gtpc_tid[] = {
 401	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 402	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 403	0x00000000, 0x00000000, 0x00000060, 0x00000000,
 404	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 405	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 406	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 407	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 408	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 409};
 410
 411/* Packet types for GTPU */
 412static const struct ice_ptype_attributes ice_attr_gtpu_eh[] = {
 413	{ ICE_MAC_IPV4_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 414	{ ICE_MAC_IPV4_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 415	{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
 416	{ ICE_MAC_IPV4_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 417	{ ICE_MAC_IPV4_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 418	{ ICE_MAC_IPV6_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 419	{ ICE_MAC_IPV6_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 420	{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
 421	{ ICE_MAC_IPV6_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 422	{ ICE_MAC_IPV6_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 423	{ ICE_MAC_IPV4_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 424	{ ICE_MAC_IPV4_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 425	{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
 426	{ ICE_MAC_IPV4_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 427	{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_PDU_EH },
 428	{ ICE_MAC_IPV6_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 429	{ ICE_MAC_IPV6_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 430	{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
 431	{ ICE_MAC_IPV6_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 432	{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_PDU_EH },
 433};
 434
 435static const struct ice_ptype_attributes ice_attr_gtpu_down[] = {
 436	{ ICE_MAC_IPV4_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 437	{ ICE_MAC_IPV4_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 438	{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
 439	{ ICE_MAC_IPV4_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 440	{ ICE_MAC_IPV4_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 441	{ ICE_MAC_IPV6_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 442	{ ICE_MAC_IPV6_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 443	{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
 444	{ ICE_MAC_IPV6_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 445	{ ICE_MAC_IPV6_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 446	{ ICE_MAC_IPV4_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 447	{ ICE_MAC_IPV4_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 448	{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
 449	{ ICE_MAC_IPV4_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 450	{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 451	{ ICE_MAC_IPV6_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 452	{ ICE_MAC_IPV6_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 453	{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
 454	{ ICE_MAC_IPV6_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 455	{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 456};
 457
 458static const struct ice_ptype_attributes ice_attr_gtpu_up[] = {
 459	{ ICE_MAC_IPV4_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 460	{ ICE_MAC_IPV4_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 461	{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
 462	{ ICE_MAC_IPV4_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 463	{ ICE_MAC_IPV4_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 464	{ ICE_MAC_IPV6_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 465	{ ICE_MAC_IPV6_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 466	{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
 467	{ ICE_MAC_IPV6_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 468	{ ICE_MAC_IPV6_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 469	{ ICE_MAC_IPV4_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 470	{ ICE_MAC_IPV4_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 471	{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
 472	{ ICE_MAC_IPV4_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 473	{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_UPLINK },
 474	{ ICE_MAC_IPV6_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 475	{ ICE_MAC_IPV6_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 476	{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
 477	{ ICE_MAC_IPV6_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 478	{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_UPLINK },
 479};
 480
 481static const u32 ice_ptypes_gtpu[] = {
 482	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 483	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 484	0x00000000, 0x00000000, 0x7FFFFE00, 0x00000000,
 485	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 486	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 487	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 488	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 489	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 490};
 491
 492/* Packet types for PPPoE */
 493static const u32 ice_ptypes_pppoe[] = {
 494	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 495	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 496	0x00000000, 0x03ffe000, 0x00000000, 0x00000000,
 497	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 498	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 499	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 500	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 501	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 502};
 503
 504/* Packet types for packets with PFCP NODE header */
 505static const u32 ice_ptypes_pfcp_node[] = {
 506	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 507	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 508	0x00000000, 0x00000000, 0x80000000, 0x00000002,
 509	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 510	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 511	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 512	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 513	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 514};
 515
 516/* Packet types for packets with PFCP SESSION header */
 517static const u32 ice_ptypes_pfcp_session[] = {
 518	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 519	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 520	0x00000000, 0x00000000, 0x00000000, 0x00000005,
 521	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 522	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 523	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 524	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 525	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 526};
 527
 528/* Packet types for L2TPv3 */
 529static const u32 ice_ptypes_l2tpv3[] = {
 530	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 531	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 532	0x00000000, 0x00000000, 0x00000000, 0x00000300,
 533	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 534	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 535	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 536	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 537	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 538};
 539
 540/* Packet types for ESP */
 541static const u32 ice_ptypes_esp[] = {
 542	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 543	0x00000000, 0x00000003, 0x00000000, 0x00000000,
 544	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 545	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 546	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 547	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 548	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 549	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 550};
 551
 552/* Packet types for AH */
 553static const u32 ice_ptypes_ah[] = {
 554	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 555	0x00000000, 0x0000000C, 0x00000000, 0x00000000,
 556	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 557	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 558	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 559	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 560	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 561	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 562};
 563
 564/* Packet types for packets with NAT_T ESP header */
 565static const u32 ice_ptypes_nat_t_esp[] = {
 566	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 567	0x00000000, 0x00000030, 0x00000000, 0x00000000,
 568	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 569	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 570	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 571	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 572	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 573	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 574};
 575
 576static const u32 ice_ptypes_mac_non_ip_ofos[] = {
 577	0x00000846, 0x00000000, 0x00000000, 0x00000000,
 578	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 579	0x00400000, 0x03FFF000, 0x00000000, 0x00000000,
 580	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 581	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 582	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 583	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 584	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 585};
 586
 587/* Manage parameters and info. used during the creation of a flow profile */
 588struct ice_flow_prof_params {
 589	enum ice_block blk;
 590	u16 entry_length; /* # of bytes formatted entry will require */
 591	u8 es_cnt;
 592	struct ice_flow_prof *prof;
 593
 594	/* For ACL, the es[0] will have the data of ICE_RX_MDID_PKT_FLAGS_15_0
 595	 * This will give us the direction flags.
 596	 */
 597	struct ice_fv_word es[ICE_MAX_FV_WORDS];
 598	/* attributes can be used to add attributes to a particular PTYPE */
 599	const struct ice_ptype_attributes *attr;
 600	u16 attr_cnt;
 601
 602	u16 mask[ICE_MAX_FV_WORDS];
 603	DECLARE_BITMAP(ptypes, ICE_FLOW_PTYPE_MAX);
 604};
 605
 606#define ICE_FLOW_RSS_HDRS_INNER_MASK \
 607	(ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_GTPC | \
 608	ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_GTPU | \
 609	ICE_FLOW_SEG_HDR_PFCP_SESSION | ICE_FLOW_SEG_HDR_L2TPV3 | \
 610	ICE_FLOW_SEG_HDR_ESP | ICE_FLOW_SEG_HDR_AH | \
 611	ICE_FLOW_SEG_HDR_NAT_T_ESP)
 612
 613#define ICE_FLOW_SEG_HDRS_L3_MASK	\
 614	(ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_ARP)
 615#define ICE_FLOW_SEG_HDRS_L4_MASK	\
 616	(ICE_FLOW_SEG_HDR_ICMP | ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | \
 617	 ICE_FLOW_SEG_HDR_SCTP)
 618/* mask for L4 protocols that are NOT part of IPv4/6 OTHER PTYPE groups */
 619#define ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER	\
 620	(ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP)
 621
 622/**
 623 * ice_flow_val_hdrs - validates packet segments for valid protocol headers
 624 * @segs: array of one or more packet segments that describe the flow
 625 * @segs_cnt: number of packet segments provided
 626 */
 627static int ice_flow_val_hdrs(struct ice_flow_seg_info *segs, u8 segs_cnt)
 
 628{
 629	u8 i;
 630
 631	for (i = 0; i < segs_cnt; i++) {
 632		/* Multiple L3 headers */
 633		if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK &&
 634		    !is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK))
 635			return -EINVAL;
 636
 637		/* Multiple L4 headers */
 638		if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK &&
 639		    !is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK))
 640			return -EINVAL;
 641	}
 642
 643	return 0;
 644}
 645
 646/* Sizes of fixed known protocol headers without header options */
 647#define ICE_FLOW_PROT_HDR_SZ_MAC	14
 648#define ICE_FLOW_PROT_HDR_SZ_MAC_VLAN	(ICE_FLOW_PROT_HDR_SZ_MAC + 2)
 649#define ICE_FLOW_PROT_HDR_SZ_IPV4	20
 650#define ICE_FLOW_PROT_HDR_SZ_IPV6	40
 651#define ICE_FLOW_PROT_HDR_SZ_ARP	28
 652#define ICE_FLOW_PROT_HDR_SZ_ICMP	8
 653#define ICE_FLOW_PROT_HDR_SZ_TCP	20
 654#define ICE_FLOW_PROT_HDR_SZ_UDP	8
 655#define ICE_FLOW_PROT_HDR_SZ_SCTP	12
 656
 657/**
 658 * ice_flow_calc_seg_sz - calculates size of a packet segment based on headers
 659 * @params: information about the flow to be processed
 660 * @seg: index of packet segment whose header size is to be determined
 661 */
 662static u16 ice_flow_calc_seg_sz(struct ice_flow_prof_params *params, u8 seg)
 663{
 664	u16 sz;
 665
 666	/* L2 headers */
 667	sz = (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_VLAN) ?
 668		ICE_FLOW_PROT_HDR_SZ_MAC_VLAN : ICE_FLOW_PROT_HDR_SZ_MAC;
 669
 670	/* L3 headers */
 671	if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV4)
 672		sz += ICE_FLOW_PROT_HDR_SZ_IPV4;
 673	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV6)
 674		sz += ICE_FLOW_PROT_HDR_SZ_IPV6;
 675	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_ARP)
 676		sz += ICE_FLOW_PROT_HDR_SZ_ARP;
 677	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK)
 678		/* An L3 header is required if L4 is specified */
 679		return 0;
 680
 681	/* L4 headers */
 682	if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_ICMP)
 683		sz += ICE_FLOW_PROT_HDR_SZ_ICMP;
 684	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_TCP)
 685		sz += ICE_FLOW_PROT_HDR_SZ_TCP;
 686	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_UDP)
 687		sz += ICE_FLOW_PROT_HDR_SZ_UDP;
 688	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_SCTP)
 689		sz += ICE_FLOW_PROT_HDR_SZ_SCTP;
 690
 691	return sz;
 692}
 693
 694/**
 695 * ice_flow_proc_seg_hdrs - process protocol headers present in pkt segments
 696 * @params: information about the flow to be processed
 697 *
 698 * This function identifies the packet types associated with the protocol
 699 * headers being present in packet segments of the specified flow profile.
 700 */
 701static int ice_flow_proc_seg_hdrs(struct ice_flow_prof_params *params)
 
 702{
 703	struct ice_flow_prof *prof;
 704	u8 i;
 705
 706	memset(params->ptypes, 0xff, sizeof(params->ptypes));
 707
 708	prof = params->prof;
 709
 710	for (i = 0; i < params->prof->segs_cnt; i++) {
 711		const unsigned long *src;
 712		u32 hdrs;
 713
 714		hdrs = prof->segs[i].hdrs;
 715
 716		if (hdrs & ICE_FLOW_SEG_HDR_ETH) {
 717			src = !i ? (const unsigned long *)ice_ptypes_mac_ofos :
 718				(const unsigned long *)ice_ptypes_mac_il;
 719			bitmap_and(params->ptypes, params->ptypes, src,
 720				   ICE_FLOW_PTYPE_MAX);
 721		}
 722
 723		if (i && hdrs & ICE_FLOW_SEG_HDR_VLAN) {
 724			src = (const unsigned long *)ice_ptypes_macvlan_il;
 725			bitmap_and(params->ptypes, params->ptypes, src,
 726				   ICE_FLOW_PTYPE_MAX);
 727		}
 728
 729		if (!i && hdrs & ICE_FLOW_SEG_HDR_ARP) {
 730			bitmap_and(params->ptypes, params->ptypes,
 731				   (const unsigned long *)ice_ptypes_arp_of,
 732				   ICE_FLOW_PTYPE_MAX);
 733		}
 734
 735		if ((hdrs & ICE_FLOW_SEG_HDR_IPV4) &&
 736		    (hdrs & ICE_FLOW_SEG_HDR_IPV_OTHER)) {
 737			src = i ? (const unsigned long *)ice_ptypes_ipv4_il :
 738				(const unsigned long *)ice_ptypes_ipv4_ofos_all;
 739			bitmap_and(params->ptypes, params->ptypes, src,
 740				   ICE_FLOW_PTYPE_MAX);
 741		} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV6) &&
 742			   (hdrs & ICE_FLOW_SEG_HDR_IPV_OTHER)) {
 743			src = i ? (const unsigned long *)ice_ptypes_ipv6_il :
 744				(const unsigned long *)ice_ptypes_ipv6_ofos_all;
 745			bitmap_and(params->ptypes, params->ptypes, src,
 746				   ICE_FLOW_PTYPE_MAX);
 747		} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV4) &&
 748			   !(hdrs & ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER)) {
 749			src = !i ? (const unsigned long *)ice_ptypes_ipv4_ofos_no_l4 :
 750				(const unsigned long *)ice_ptypes_ipv4_il_no_l4;
 751			bitmap_and(params->ptypes, params->ptypes, src,
 752				   ICE_FLOW_PTYPE_MAX);
 753		} else if (hdrs & ICE_FLOW_SEG_HDR_IPV4) {
 754			src = !i ? (const unsigned long *)ice_ptypes_ipv4_ofos :
 755				(const unsigned long *)ice_ptypes_ipv4_il;
 756			bitmap_and(params->ptypes, params->ptypes, src,
 757				   ICE_FLOW_PTYPE_MAX);
 758		} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV6) &&
 759			   !(hdrs & ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER)) {
 760			src = !i ? (const unsigned long *)ice_ptypes_ipv6_ofos_no_l4 :
 761				(const unsigned long *)ice_ptypes_ipv6_il_no_l4;
 762			bitmap_and(params->ptypes, params->ptypes, src,
 763				   ICE_FLOW_PTYPE_MAX);
 764		} else if (hdrs & ICE_FLOW_SEG_HDR_IPV6) {
 765			src = !i ? (const unsigned long *)ice_ptypes_ipv6_ofos :
 766				(const unsigned long *)ice_ptypes_ipv6_il;
 767			bitmap_and(params->ptypes, params->ptypes, src,
 768				   ICE_FLOW_PTYPE_MAX);
 769		}
 770
 771		if (hdrs & ICE_FLOW_SEG_HDR_ETH_NON_IP) {
 772			src = (const unsigned long *)ice_ptypes_mac_non_ip_ofos;
 773			bitmap_and(params->ptypes, params->ptypes, src,
 774				   ICE_FLOW_PTYPE_MAX);
 775		} else if (hdrs & ICE_FLOW_SEG_HDR_PPPOE) {
 776			src = (const unsigned long *)ice_ptypes_pppoe;
 777			bitmap_and(params->ptypes, params->ptypes, src,
 778				   ICE_FLOW_PTYPE_MAX);
 779		} else {
 780			src = (const unsigned long *)ice_ptypes_pppoe;
 781			bitmap_andnot(params->ptypes, params->ptypes, src,
 782				      ICE_FLOW_PTYPE_MAX);
 783		}
 784
 785		if (hdrs & ICE_FLOW_SEG_HDR_UDP) {
 786			src = (const unsigned long *)ice_ptypes_udp_il;
 787			bitmap_and(params->ptypes, params->ptypes, src,
 788				   ICE_FLOW_PTYPE_MAX);
 789		} else if (hdrs & ICE_FLOW_SEG_HDR_TCP) {
 790			bitmap_and(params->ptypes, params->ptypes,
 791				   (const unsigned long *)ice_ptypes_tcp_il,
 792				   ICE_FLOW_PTYPE_MAX);
 793		} else if (hdrs & ICE_FLOW_SEG_HDR_SCTP) {
 794			src = (const unsigned long *)ice_ptypes_sctp_il;
 795			bitmap_and(params->ptypes, params->ptypes, src,
 796				   ICE_FLOW_PTYPE_MAX);
 797		}
 798
 799		if (hdrs & ICE_FLOW_SEG_HDR_ICMP) {
 800			src = !i ? (const unsigned long *)ice_ptypes_icmp_of :
 801				(const unsigned long *)ice_ptypes_icmp_il;
 802			bitmap_and(params->ptypes, params->ptypes, src,
 803				   ICE_FLOW_PTYPE_MAX);
 804		} else if (hdrs & ICE_FLOW_SEG_HDR_GRE) {
 805			if (!i) {
 806				src = (const unsigned long *)ice_ptypes_gre_of;
 807				bitmap_and(params->ptypes, params->ptypes,
 808					   src, ICE_FLOW_PTYPE_MAX);
 809			}
 810		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPC) {
 811			src = (const unsigned long *)ice_ptypes_gtpc;
 812			bitmap_and(params->ptypes, params->ptypes, src,
 813				   ICE_FLOW_PTYPE_MAX);
 814		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPC_TEID) {
 815			src = (const unsigned long *)ice_ptypes_gtpc_tid;
 816			bitmap_and(params->ptypes, params->ptypes, src,
 817				   ICE_FLOW_PTYPE_MAX);
 818		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_DWN) {
 819			src = (const unsigned long *)ice_ptypes_gtpu;
 820			bitmap_and(params->ptypes, params->ptypes, src,
 821				   ICE_FLOW_PTYPE_MAX);
 822
 823			/* Attributes for GTP packet with downlink */
 824			params->attr = ice_attr_gtpu_down;
 825			params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_down);
 826		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_UP) {
 827			src = (const unsigned long *)ice_ptypes_gtpu;
 828			bitmap_and(params->ptypes, params->ptypes, src,
 829				   ICE_FLOW_PTYPE_MAX);
 830
 831			/* Attributes for GTP packet with uplink */
 832			params->attr = ice_attr_gtpu_up;
 833			params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_up);
 834		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_EH) {
 835			src = (const unsigned long *)ice_ptypes_gtpu;
 836			bitmap_and(params->ptypes, params->ptypes, src,
 837				   ICE_FLOW_PTYPE_MAX);
 838
 839			/* Attributes for GTP packet with Extension Header */
 840			params->attr = ice_attr_gtpu_eh;
 841			params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_eh);
 842		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_IP) {
 843			src = (const unsigned long *)ice_ptypes_gtpu;
 844			bitmap_and(params->ptypes, params->ptypes, src,
 845				   ICE_FLOW_PTYPE_MAX);
 846		} else if (hdrs & ICE_FLOW_SEG_HDR_L2TPV3) {
 847			src = (const unsigned long *)ice_ptypes_l2tpv3;
 848			bitmap_and(params->ptypes, params->ptypes, src,
 849				   ICE_FLOW_PTYPE_MAX);
 850		} else if (hdrs & ICE_FLOW_SEG_HDR_ESP) {
 851			src = (const unsigned long *)ice_ptypes_esp;
 852			bitmap_and(params->ptypes, params->ptypes, src,
 853				   ICE_FLOW_PTYPE_MAX);
 854		} else if (hdrs & ICE_FLOW_SEG_HDR_AH) {
 855			src = (const unsigned long *)ice_ptypes_ah;
 856			bitmap_and(params->ptypes, params->ptypes, src,
 857				   ICE_FLOW_PTYPE_MAX);
 858		} else if (hdrs & ICE_FLOW_SEG_HDR_NAT_T_ESP) {
 859			src = (const unsigned long *)ice_ptypes_nat_t_esp;
 860			bitmap_and(params->ptypes, params->ptypes, src,
 861				   ICE_FLOW_PTYPE_MAX);
 862		}
 863
 864		if (hdrs & ICE_FLOW_SEG_HDR_PFCP) {
 865			if (hdrs & ICE_FLOW_SEG_HDR_PFCP_NODE)
 866				src = (const unsigned long *)ice_ptypes_pfcp_node;
 867			else
 868				src = (const unsigned long *)ice_ptypes_pfcp_session;
 869
 870			bitmap_and(params->ptypes, params->ptypes, src,
 871				   ICE_FLOW_PTYPE_MAX);
 872		} else {
 873			src = (const unsigned long *)ice_ptypes_pfcp_node;
 874			bitmap_andnot(params->ptypes, params->ptypes, src,
 875				      ICE_FLOW_PTYPE_MAX);
 876
 877			src = (const unsigned long *)ice_ptypes_pfcp_session;
 878			bitmap_andnot(params->ptypes, params->ptypes, src,
 879				      ICE_FLOW_PTYPE_MAX);
 880		}
 881	}
 882
 883	return 0;
 884}
 885
 886/**
 887 * ice_flow_xtract_fld - Create an extraction sequence entry for the given field
 888 * @hw: pointer to the HW struct
 889 * @params: information about the flow to be processed
 890 * @seg: packet segment index of the field to be extracted
 891 * @fld: ID of field to be extracted
 892 * @match: bit field of all fields
 893 *
 894 * This function determines the protocol ID, offset, and size of the given
 895 * field. It then allocates one or more extraction sequence entries for the
 896 * given field, and fill the entries with protocol ID and offset information.
 897 */
 898static int
 899ice_flow_xtract_fld(struct ice_hw *hw, struct ice_flow_prof_params *params,
 900		    u8 seg, enum ice_flow_field fld, u64 match)
 901{
 902	enum ice_flow_field sib = ICE_FLOW_FIELD_IDX_MAX;
 903	enum ice_prot_id prot_id = ICE_PROT_ID_INVAL;
 904	u8 fv_words = hw->blk[params->blk].es.fvw;
 905	struct ice_flow_fld_info *flds;
 906	u16 cnt, ese_bits, i;
 907	u16 sib_mask = 0;
 908	u16 mask;
 909	u16 off;
 910
 911	flds = params->prof->segs[seg].fields;
 912
 913	switch (fld) {
 914	case ICE_FLOW_FIELD_IDX_ETH_DA:
 915	case ICE_FLOW_FIELD_IDX_ETH_SA:
 916	case ICE_FLOW_FIELD_IDX_S_VLAN:
 917	case ICE_FLOW_FIELD_IDX_C_VLAN:
 918		prot_id = seg == 0 ? ICE_PROT_MAC_OF_OR_S : ICE_PROT_MAC_IL;
 919		break;
 920	case ICE_FLOW_FIELD_IDX_ETH_TYPE:
 921		prot_id = seg == 0 ? ICE_PROT_ETYPE_OL : ICE_PROT_ETYPE_IL;
 922		break;
 923	case ICE_FLOW_FIELD_IDX_IPV4_DSCP:
 924		prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
 925		break;
 926	case ICE_FLOW_FIELD_IDX_IPV6_DSCP:
 927		prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
 928		break;
 929	case ICE_FLOW_FIELD_IDX_IPV4_TTL:
 930	case ICE_FLOW_FIELD_IDX_IPV4_PROT:
 931		prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
 932
 933		/* TTL and PROT share the same extraction seq. entry.
 934		 * Each is considered a sibling to the other in terms of sharing
 935		 * the same extraction sequence entry.
 936		 */
 937		if (fld == ICE_FLOW_FIELD_IDX_IPV4_TTL)
 938			sib = ICE_FLOW_FIELD_IDX_IPV4_PROT;
 939		else if (fld == ICE_FLOW_FIELD_IDX_IPV4_PROT)
 940			sib = ICE_FLOW_FIELD_IDX_IPV4_TTL;
 941
 942		/* If the sibling field is also included, that field's
 943		 * mask needs to be included.
 944		 */
 945		if (match & BIT(sib))
 946			sib_mask = ice_flds_info[sib].mask;
 947		break;
 948	case ICE_FLOW_FIELD_IDX_IPV6_TTL:
 949	case ICE_FLOW_FIELD_IDX_IPV6_PROT:
 950		prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
 951
 952		/* TTL and PROT share the same extraction seq. entry.
 953		 * Each is considered a sibling to the other in terms of sharing
 954		 * the same extraction sequence entry.
 955		 */
 956		if (fld == ICE_FLOW_FIELD_IDX_IPV6_TTL)
 957			sib = ICE_FLOW_FIELD_IDX_IPV6_PROT;
 958		else if (fld == ICE_FLOW_FIELD_IDX_IPV6_PROT)
 959			sib = ICE_FLOW_FIELD_IDX_IPV6_TTL;
 960
 961		/* If the sibling field is also included, that field's
 962		 * mask needs to be included.
 963		 */
 964		if (match & BIT(sib))
 965			sib_mask = ice_flds_info[sib].mask;
 966		break;
 967	case ICE_FLOW_FIELD_IDX_IPV4_SA:
 968	case ICE_FLOW_FIELD_IDX_IPV4_DA:
 969		prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
 970		break;
 971	case ICE_FLOW_FIELD_IDX_IPV6_SA:
 972	case ICE_FLOW_FIELD_IDX_IPV6_DA:
 973		prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
 974		break;
 975	case ICE_FLOW_FIELD_IDX_TCP_SRC_PORT:
 976	case ICE_FLOW_FIELD_IDX_TCP_DST_PORT:
 977	case ICE_FLOW_FIELD_IDX_TCP_FLAGS:
 978		prot_id = ICE_PROT_TCP_IL;
 979		break;
 980	case ICE_FLOW_FIELD_IDX_UDP_SRC_PORT:
 981	case ICE_FLOW_FIELD_IDX_UDP_DST_PORT:
 982		prot_id = ICE_PROT_UDP_IL_OR_S;
 983		break;
 984	case ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT:
 985	case ICE_FLOW_FIELD_IDX_SCTP_DST_PORT:
 986		prot_id = ICE_PROT_SCTP_IL;
 987		break;
 988	case ICE_FLOW_FIELD_IDX_GTPC_TEID:
 989	case ICE_FLOW_FIELD_IDX_GTPU_IP_TEID:
 990	case ICE_FLOW_FIELD_IDX_GTPU_UP_TEID:
 991	case ICE_FLOW_FIELD_IDX_GTPU_DWN_TEID:
 992	case ICE_FLOW_FIELD_IDX_GTPU_EH_TEID:
 993	case ICE_FLOW_FIELD_IDX_GTPU_EH_QFI:
 994		/* GTP is accessed through UDP OF protocol */
 995		prot_id = ICE_PROT_UDP_OF;
 996		break;
 997	case ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID:
 998		prot_id = ICE_PROT_PPPOE;
 999		break;
1000	case ICE_FLOW_FIELD_IDX_PFCP_SEID:
1001		prot_id = ICE_PROT_UDP_IL_OR_S;
1002		break;
1003	case ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID:
1004		prot_id = ICE_PROT_L2TPV3;
1005		break;
1006	case ICE_FLOW_FIELD_IDX_ESP_SPI:
1007		prot_id = ICE_PROT_ESP_F;
1008		break;
1009	case ICE_FLOW_FIELD_IDX_AH_SPI:
1010		prot_id = ICE_PROT_ESP_2;
1011		break;
1012	case ICE_FLOW_FIELD_IDX_NAT_T_ESP_SPI:
1013		prot_id = ICE_PROT_UDP_IL_OR_S;
1014		break;
1015	case ICE_FLOW_FIELD_IDX_ARP_SIP:
1016	case ICE_FLOW_FIELD_IDX_ARP_DIP:
1017	case ICE_FLOW_FIELD_IDX_ARP_SHA:
1018	case ICE_FLOW_FIELD_IDX_ARP_DHA:
1019	case ICE_FLOW_FIELD_IDX_ARP_OP:
1020		prot_id = ICE_PROT_ARP_OF;
1021		break;
1022	case ICE_FLOW_FIELD_IDX_ICMP_TYPE:
1023	case ICE_FLOW_FIELD_IDX_ICMP_CODE:
1024		/* ICMP type and code share the same extraction seq. entry */
1025		prot_id = (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV4) ?
1026				ICE_PROT_ICMP_IL : ICE_PROT_ICMPV6_IL;
1027		sib = fld == ICE_FLOW_FIELD_IDX_ICMP_TYPE ?
1028			ICE_FLOW_FIELD_IDX_ICMP_CODE :
1029			ICE_FLOW_FIELD_IDX_ICMP_TYPE;
1030		break;
1031	case ICE_FLOW_FIELD_IDX_GRE_KEYID:
1032		prot_id = ICE_PROT_GRE_OF;
1033		break;
1034	default:
1035		return -EOPNOTSUPP;
1036	}
1037
1038	/* Each extraction sequence entry is a word in size, and extracts a
1039	 * word-aligned offset from a protocol header.
1040	 */
1041	ese_bits = ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE;
1042
1043	flds[fld].xtrct.prot_id = prot_id;
1044	flds[fld].xtrct.off = (ice_flds_info[fld].off / ese_bits) *
1045		ICE_FLOW_FV_EXTRACT_SZ;
1046	flds[fld].xtrct.disp = (u8)(ice_flds_info[fld].off % ese_bits);
1047	flds[fld].xtrct.idx = params->es_cnt;
1048	flds[fld].xtrct.mask = ice_flds_info[fld].mask;
1049
1050	/* Adjust the next field-entry index after accommodating the number of
1051	 * entries this field consumes
1052	 */
1053	cnt = DIV_ROUND_UP(flds[fld].xtrct.disp + ice_flds_info[fld].size,
1054			   ese_bits);
1055
1056	/* Fill in the extraction sequence entries needed for this field */
1057	off = flds[fld].xtrct.off;
1058	mask = flds[fld].xtrct.mask;
1059	for (i = 0; i < cnt; i++) {
1060		/* Only consume an extraction sequence entry if there is no
1061		 * sibling field associated with this field or the sibling entry
1062		 * already extracts the word shared with this field.
1063		 */
1064		if (sib == ICE_FLOW_FIELD_IDX_MAX ||
1065		    flds[sib].xtrct.prot_id == ICE_PROT_ID_INVAL ||
1066		    flds[sib].xtrct.off != off) {
1067			u8 idx;
1068
1069			/* Make sure the number of extraction sequence required
1070			 * does not exceed the block's capability
1071			 */
1072			if (params->es_cnt >= fv_words)
1073				return -ENOSPC;
1074
1075			/* some blocks require a reversed field vector layout */
1076			if (hw->blk[params->blk].es.reverse)
1077				idx = fv_words - params->es_cnt - 1;
1078			else
1079				idx = params->es_cnt;
1080
1081			params->es[idx].prot_id = prot_id;
1082			params->es[idx].off = off;
1083			params->mask[idx] = mask | sib_mask;
1084			params->es_cnt++;
1085		}
1086
1087		off += ICE_FLOW_FV_EXTRACT_SZ;
1088	}
1089
1090	return 0;
1091}
1092
1093/**
1094 * ice_flow_xtract_raws - Create extract sequence entries for raw bytes
1095 * @hw: pointer to the HW struct
1096 * @params: information about the flow to be processed
1097 * @seg: index of packet segment whose raw fields are to be extracted
1098 */
1099static int
1100ice_flow_xtract_raws(struct ice_hw *hw, struct ice_flow_prof_params *params,
1101		     u8 seg)
1102{
1103	u16 fv_words;
1104	u16 hdrs_sz;
1105	u8 i;
1106
1107	if (!params->prof->segs[seg].raws_cnt)
1108		return 0;
1109
1110	if (params->prof->segs[seg].raws_cnt >
1111	    ARRAY_SIZE(params->prof->segs[seg].raws))
1112		return -ENOSPC;
1113
1114	/* Offsets within the segment headers are not supported */
1115	hdrs_sz = ice_flow_calc_seg_sz(params, seg);
1116	if (!hdrs_sz)
1117		return -EINVAL;
1118
1119	fv_words = hw->blk[params->blk].es.fvw;
1120
1121	for (i = 0; i < params->prof->segs[seg].raws_cnt; i++) {
1122		struct ice_flow_seg_fld_raw *raw;
1123		u16 off, cnt, j;
1124
1125		raw = &params->prof->segs[seg].raws[i];
1126
1127		/* Storing extraction information */
1128		raw->info.xtrct.prot_id = ICE_PROT_MAC_OF_OR_S;
1129		raw->info.xtrct.off = (raw->off / ICE_FLOW_FV_EXTRACT_SZ) *
1130			ICE_FLOW_FV_EXTRACT_SZ;
1131		raw->info.xtrct.disp = (raw->off % ICE_FLOW_FV_EXTRACT_SZ) *
1132			BITS_PER_BYTE;
1133		raw->info.xtrct.idx = params->es_cnt;
1134
1135		/* Determine the number of field vector entries this raw field
1136		 * consumes.
1137		 */
1138		cnt = DIV_ROUND_UP(raw->info.xtrct.disp +
1139				   (raw->info.src.last * BITS_PER_BYTE),
1140				   (ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE));
1141		off = raw->info.xtrct.off;
1142		for (j = 0; j < cnt; j++) {
1143			u16 idx;
1144
1145			/* Make sure the number of extraction sequence required
1146			 * does not exceed the block's capability
1147			 */
1148			if (params->es_cnt >= hw->blk[params->blk].es.count ||
1149			    params->es_cnt >= ICE_MAX_FV_WORDS)
1150				return -ENOSPC;
1151
1152			/* some blocks require a reversed field vector layout */
1153			if (hw->blk[params->blk].es.reverse)
1154				idx = fv_words - params->es_cnt - 1;
1155			else
1156				idx = params->es_cnt;
1157
1158			params->es[idx].prot_id = raw->info.xtrct.prot_id;
1159			params->es[idx].off = off;
1160			params->es_cnt++;
1161			off += ICE_FLOW_FV_EXTRACT_SZ;
1162		}
1163	}
1164
1165	return 0;
1166}
1167
1168/**
1169 * ice_flow_create_xtrct_seq - Create an extraction sequence for given segments
1170 * @hw: pointer to the HW struct
1171 * @params: information about the flow to be processed
1172 *
1173 * This function iterates through all matched fields in the given segments, and
1174 * creates an extraction sequence for the fields.
1175 */
1176static int
1177ice_flow_create_xtrct_seq(struct ice_hw *hw,
1178			  struct ice_flow_prof_params *params)
1179{
1180	struct ice_flow_prof *prof = params->prof;
1181	int status = 0;
1182	u8 i;
1183
1184	for (i = 0; i < prof->segs_cnt; i++) {
1185		u64 match = params->prof->segs[i].match;
1186		enum ice_flow_field j;
1187
1188		for_each_set_bit(j, (unsigned long *)&match,
1189				 ICE_FLOW_FIELD_IDX_MAX) {
1190			status = ice_flow_xtract_fld(hw, params, i, j, match);
 
1191			if (status)
1192				return status;
1193			clear_bit(j, (unsigned long *)&match);
1194		}
1195
1196		/* Process raw matching bytes */
1197		status = ice_flow_xtract_raws(hw, params, i);
1198		if (status)
1199			return status;
1200	}
1201
1202	return status;
1203}
1204
1205/**
1206 * ice_flow_proc_segs - process all packet segments associated with a profile
1207 * @hw: pointer to the HW struct
1208 * @params: information about the flow to be processed
1209 */
1210static int
1211ice_flow_proc_segs(struct ice_hw *hw, struct ice_flow_prof_params *params)
1212{
1213	int status;
1214
1215	status = ice_flow_proc_seg_hdrs(params);
1216	if (status)
1217		return status;
1218
1219	status = ice_flow_create_xtrct_seq(hw, params);
1220	if (status)
1221		return status;
1222
1223	switch (params->blk) {
1224	case ICE_BLK_FD:
1225	case ICE_BLK_RSS:
1226		status = 0;
1227		break;
1228	default:
1229		return -EOPNOTSUPP;
1230	}
1231
1232	return status;
1233}
1234
1235#define ICE_FLOW_FIND_PROF_CHK_FLDS	0x00000001
1236#define ICE_FLOW_FIND_PROF_CHK_VSI	0x00000002
1237#define ICE_FLOW_FIND_PROF_NOT_CHK_DIR	0x00000004
1238#define ICE_FLOW_FIND_PROF_CHK_SYMM	0x00000008
1239
1240/**
1241 * ice_flow_find_prof_conds - Find a profile matching headers and conditions
1242 * @hw: pointer to the HW struct
1243 * @blk: classification stage
1244 * @dir: flow direction
1245 * @segs: array of one or more packet segments that describe the flow
1246 * @segs_cnt: number of packet segments provided
1247 * @symm: symmetric setting for RSS profiles
1248 * @vsi_handle: software VSI handle to check VSI (ICE_FLOW_FIND_PROF_CHK_VSI)
1249 * @conds: additional conditions to be checked (ICE_FLOW_FIND_PROF_CHK_*)
1250 */
1251static struct ice_flow_prof *
1252ice_flow_find_prof_conds(struct ice_hw *hw, enum ice_block blk,
1253			 enum ice_flow_dir dir, struct ice_flow_seg_info *segs,
1254			 u8 segs_cnt, bool symm, u16 vsi_handle, u32 conds)
1255{
1256	struct ice_flow_prof *p, *prof = NULL;
1257
1258	mutex_lock(&hw->fl_profs_locks[blk]);
1259	list_for_each_entry(p, &hw->fl_profs[blk], l_entry)
1260		if ((p->dir == dir || conds & ICE_FLOW_FIND_PROF_NOT_CHK_DIR) &&
1261		    segs_cnt && segs_cnt == p->segs_cnt) {
1262			u8 i;
1263
1264			/* Check for profile-VSI association if specified */
1265			if ((conds & ICE_FLOW_FIND_PROF_CHK_VSI) &&
1266			    ice_is_vsi_valid(hw, vsi_handle) &&
1267			    !test_bit(vsi_handle, p->vsis))
1268				continue;
1269
1270			/* Check for symmetric settings */
1271			if ((conds & ICE_FLOW_FIND_PROF_CHK_SYMM) &&
1272			    p->symm != symm)
1273				continue;
1274
1275			/* Protocol headers must be checked. Matched fields are
1276			 * checked if specified.
1277			 */
1278			for (i = 0; i < segs_cnt; i++)
1279				if (segs[i].hdrs != p->segs[i].hdrs ||
1280				    ((conds & ICE_FLOW_FIND_PROF_CHK_FLDS) &&
1281				     segs[i].match != p->segs[i].match))
1282					break;
1283
1284			/* A match is found if all segments are matched */
1285			if (i == segs_cnt) {
1286				prof = p;
1287				break;
1288			}
1289		}
1290	mutex_unlock(&hw->fl_profs_locks[blk]);
1291
1292	return prof;
1293}
1294
1295/**
1296 * ice_flow_find_prof_id - Look up a profile with given profile ID
1297 * @hw: pointer to the HW struct
1298 * @blk: classification stage
1299 * @prof_id: unique ID to identify this flow profile
1300 */
1301static struct ice_flow_prof *
1302ice_flow_find_prof_id(struct ice_hw *hw, enum ice_block blk, u64 prof_id)
1303{
1304	struct ice_flow_prof *p;
1305
1306	list_for_each_entry(p, &hw->fl_profs[blk], l_entry)
1307		if (p->id == prof_id)
1308			return p;
1309
1310	return NULL;
1311}
1312
1313/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1314 * ice_flow_rem_entry_sync - Remove a flow entry
1315 * @hw: pointer to the HW struct
1316 * @blk: classification stage
1317 * @entry: flow entry to be removed
1318 */
1319static int
1320ice_flow_rem_entry_sync(struct ice_hw *hw, enum ice_block __always_unused blk,
1321			struct ice_flow_entry *entry)
1322{
1323	if (!entry)
1324		return -EINVAL;
1325
1326	list_del(&entry->l_entry);
1327
1328	devm_kfree(ice_hw_to_dev(hw), entry);
1329
1330	return 0;
1331}
1332
1333/**
1334 * ice_flow_add_prof_sync - Add a flow profile for packet segments and fields
1335 * @hw: pointer to the HW struct
1336 * @blk: classification stage
1337 * @dir: flow direction
 
1338 * @segs: array of one or more packet segments that describe the flow
1339 * @segs_cnt: number of packet segments provided
1340 * @symm: symmetric setting for RSS profiles
1341 * @prof: stores the returned flow profile added
1342 *
1343 * Assumption: the caller has acquired the lock to the profile list
1344 */
1345static int
1346ice_flow_add_prof_sync(struct ice_hw *hw, enum ice_block blk,
1347		       enum ice_flow_dir dir,
1348		       struct ice_flow_seg_info *segs, u8 segs_cnt,
1349		       bool symm, struct ice_flow_prof **prof)
1350{
1351	struct ice_flow_prof_params *params;
1352	struct ice_prof_id *ids;
1353	int status;
1354	u64 prof_id;
1355	u8 i;
1356
1357	if (!prof)
1358		return -EINVAL;
1359
1360	ids = &hw->blk[blk].prof_id;
1361	prof_id = find_first_zero_bit(ids->id, ids->count);
1362	if (prof_id >= ids->count)
1363		return -ENOSPC;
1364
1365	params = kzalloc(sizeof(*params), GFP_KERNEL);
1366	if (!params)
1367		return -ENOMEM;
1368
1369	params->prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*params->prof),
1370				    GFP_KERNEL);
1371	if (!params->prof) {
1372		status = -ENOMEM;
1373		goto free_params;
1374	}
1375
1376	/* initialize extraction sequence to all invalid (0xff) */
1377	for (i = 0; i < ICE_MAX_FV_WORDS; i++) {
1378		params->es[i].prot_id = ICE_PROT_INVALID;
1379		params->es[i].off = ICE_FV_OFFSET_INVAL;
1380	}
1381
1382	params->blk = blk;
1383	params->prof->id = prof_id;
1384	params->prof->dir = dir;
1385	params->prof->segs_cnt = segs_cnt;
1386	params->prof->symm = symm;
1387
1388	/* Make a copy of the segments that need to be persistent in the flow
1389	 * profile instance
1390	 */
1391	for (i = 0; i < segs_cnt; i++)
1392		memcpy(&params->prof->segs[i], &segs[i], sizeof(*segs));
1393
1394	status = ice_flow_proc_segs(hw, params);
1395	if (status) {
1396		ice_debug(hw, ICE_DBG_FLOW, "Error processing a flow's packet segments\n");
 
1397		goto out;
1398	}
1399
1400	/* Add a HW profile for this flow profile */
1401	status = ice_add_prof(hw, blk, prof_id, (u8 *)params->ptypes,
1402			      params->attr, params->attr_cnt, params->es,
1403			      params->mask, symm);
1404	if (status) {
1405		ice_debug(hw, ICE_DBG_FLOW, "Error adding a HW flow profile\n");
1406		goto out;
1407	}
1408
1409	INIT_LIST_HEAD(&params->prof->entries);
1410	mutex_init(&params->prof->entries_lock);
1411	set_bit(prof_id, ids->id);
1412	*prof = params->prof;
1413
1414out:
1415	if (status)
1416		devm_kfree(ice_hw_to_dev(hw), params->prof);
1417free_params:
1418	kfree(params);
1419
1420	return status;
1421}
1422
1423/**
1424 * ice_flow_rem_prof_sync - remove a flow profile
1425 * @hw: pointer to the hardware structure
1426 * @blk: classification stage
1427 * @prof: pointer to flow profile to remove
1428 *
1429 * Assumption: the caller has acquired the lock to the profile list
1430 */
1431static int
1432ice_flow_rem_prof_sync(struct ice_hw *hw, enum ice_block blk,
1433		       struct ice_flow_prof *prof)
1434{
1435	int status;
1436
1437	/* Remove all remaining flow entries before removing the flow profile */
1438	if (!list_empty(&prof->entries)) {
1439		struct ice_flow_entry *e, *t;
1440
1441		mutex_lock(&prof->entries_lock);
1442
1443		list_for_each_entry_safe(e, t, &prof->entries, l_entry) {
1444			status = ice_flow_rem_entry_sync(hw, blk, e);
1445			if (status)
1446				break;
1447		}
1448
1449		mutex_unlock(&prof->entries_lock);
1450	}
1451
1452	/* Remove all hardware profiles associated with this flow profile */
1453	status = ice_rem_prof(hw, blk, prof->id);
1454	if (!status) {
1455		clear_bit(prof->id, hw->blk[blk].prof_id.id);
1456		list_del(&prof->l_entry);
1457		mutex_destroy(&prof->entries_lock);
1458		devm_kfree(ice_hw_to_dev(hw), prof);
1459	}
1460
1461	return status;
1462}
1463
1464/**
1465 * ice_flow_assoc_prof - associate a VSI with a flow profile
1466 * @hw: pointer to the hardware structure
1467 * @blk: classification stage
1468 * @prof: pointer to flow profile
1469 * @vsi_handle: software VSI handle
1470 *
1471 * Assumption: the caller has acquired the lock to the profile list
1472 * and the software VSI handle has been validated
1473 */
1474static int
1475ice_flow_assoc_prof(struct ice_hw *hw, enum ice_block blk,
1476		    struct ice_flow_prof *prof, u16 vsi_handle)
1477{
1478	int status = 0;
1479
1480	if (!test_bit(vsi_handle, prof->vsis)) {
1481		status = ice_add_prof_id_flow(hw, blk,
1482					      ice_get_hw_vsi_num(hw,
1483								 vsi_handle),
1484					      prof->id);
1485		if (!status)
1486			set_bit(vsi_handle, prof->vsis);
1487		else
1488			ice_debug(hw, ICE_DBG_FLOW, "HW profile add failed, %d\n",
 
1489				  status);
1490	}
1491
1492	return status;
1493}
1494
1495/**
1496 * ice_flow_disassoc_prof - disassociate a VSI from a flow profile
1497 * @hw: pointer to the hardware structure
1498 * @blk: classification stage
1499 * @prof: pointer to flow profile
1500 * @vsi_handle: software VSI handle
1501 *
1502 * Assumption: the caller has acquired the lock to the profile list
1503 * and the software VSI handle has been validated
1504 */
1505static int
1506ice_flow_disassoc_prof(struct ice_hw *hw, enum ice_block blk,
1507		       struct ice_flow_prof *prof, u16 vsi_handle)
1508{
1509	int status = 0;
1510
1511	if (test_bit(vsi_handle, prof->vsis)) {
1512		status = ice_rem_prof_id_flow(hw, blk,
1513					      ice_get_hw_vsi_num(hw,
1514								 vsi_handle),
1515					      prof->id);
1516		if (!status)
1517			clear_bit(vsi_handle, prof->vsis);
1518		else
1519			ice_debug(hw, ICE_DBG_FLOW, "HW profile remove failed, %d\n",
 
1520				  status);
1521	}
1522
1523	return status;
1524}
1525
1526/**
1527 * ice_flow_add_prof - Add a flow profile for packet segments and matched fields
1528 * @hw: pointer to the HW struct
1529 * @blk: classification stage
1530 * @dir: flow direction
 
1531 * @segs: array of one or more packet segments that describe the flow
1532 * @segs_cnt: number of packet segments provided
1533 * @symm: symmetric setting for RSS profiles
1534 * @prof: stores the returned flow profile added
1535 */
1536int
1537ice_flow_add_prof(struct ice_hw *hw, enum ice_block blk, enum ice_flow_dir dir,
1538		  struct ice_flow_seg_info *segs, u8 segs_cnt,
1539		  bool symm, struct ice_flow_prof **prof)
1540{
1541	int status;
1542
1543	if (segs_cnt > ICE_FLOW_SEG_MAX)
1544		return -ENOSPC;
1545
1546	if (!segs_cnt)
1547		return -EINVAL;
1548
1549	if (!segs)
1550		return -EINVAL;
1551
1552	status = ice_flow_val_hdrs(segs, segs_cnt);
1553	if (status)
1554		return status;
1555
1556	mutex_lock(&hw->fl_profs_locks[blk]);
1557
1558	status = ice_flow_add_prof_sync(hw, blk, dir, segs, segs_cnt,
1559					symm, prof);
1560	if (!status)
1561		list_add(&(*prof)->l_entry, &hw->fl_profs[blk]);
1562
1563	mutex_unlock(&hw->fl_profs_locks[blk]);
1564
1565	return status;
1566}
1567
1568/**
1569 * ice_flow_rem_prof - Remove a flow profile and all entries associated with it
1570 * @hw: pointer to the HW struct
1571 * @blk: the block for which the flow profile is to be removed
1572 * @prof_id: unique ID of the flow profile to be removed
1573 */
1574int ice_flow_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 prof_id)
 
1575{
1576	struct ice_flow_prof *prof;
1577	int status;
1578
1579	mutex_lock(&hw->fl_profs_locks[blk]);
1580
1581	prof = ice_flow_find_prof_id(hw, blk, prof_id);
1582	if (!prof) {
1583		status = -ENOENT;
1584		goto out;
1585	}
1586
1587	/* prof becomes invalid after the call */
1588	status = ice_flow_rem_prof_sync(hw, blk, prof);
1589
1590out:
1591	mutex_unlock(&hw->fl_profs_locks[blk]);
1592
1593	return status;
1594}
1595
1596/**
1597 * ice_flow_add_entry - Add a flow entry
1598 * @hw: pointer to the HW struct
1599 * @blk: classification stage
1600 * @prof_id: ID of the profile to add a new flow entry to
1601 * @entry_id: unique ID to identify this flow entry
1602 * @vsi_handle: software VSI handle for the flow entry
1603 * @prio: priority of the flow entry
1604 * @data: pointer to a data buffer containing flow entry's match values/masks
1605 * @entry_h: pointer to buffer that receives the new flow entry's handle
1606 */
1607int
1608ice_flow_add_entry(struct ice_hw *hw, enum ice_block blk, u64 prof_id,
1609		   u64 entry_id, u16 vsi_handle, enum ice_flow_priority prio,
1610		   void *data, u64 *entry_h)
1611{
1612	struct ice_flow_entry *e = NULL;
1613	struct ice_flow_prof *prof;
1614	int status;
1615
1616	/* No flow entry data is expected for RSS */
1617	if (!entry_h || (!data && blk != ICE_BLK_RSS))
1618		return -EINVAL;
1619
1620	if (!ice_is_vsi_valid(hw, vsi_handle))
1621		return -EINVAL;
1622
1623	mutex_lock(&hw->fl_profs_locks[blk]);
1624
1625	prof = ice_flow_find_prof_id(hw, blk, prof_id);
1626	if (!prof) {
1627		status = -ENOENT;
1628	} else {
1629		/* Allocate memory for the entry being added and associate
1630		 * the VSI to the found flow profile
1631		 */
1632		e = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*e), GFP_KERNEL);
1633		if (!e)
1634			status = -ENOMEM;
1635		else
1636			status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
1637	}
1638
1639	mutex_unlock(&hw->fl_profs_locks[blk]);
1640	if (status)
1641		goto out;
1642
1643	e->id = entry_id;
1644	e->vsi_handle = vsi_handle;
1645	e->prof = prof;
1646	e->priority = prio;
1647
1648	switch (blk) {
1649	case ICE_BLK_FD:
1650	case ICE_BLK_RSS:
1651		break;
1652	default:
1653		status = -EOPNOTSUPP;
1654		goto out;
1655	}
1656
1657	mutex_lock(&prof->entries_lock);
1658	list_add(&e->l_entry, &prof->entries);
1659	mutex_unlock(&prof->entries_lock);
1660
1661	*entry_h = ICE_FLOW_ENTRY_HNDL(e);
1662
1663out:
1664	if (status)
 
 
1665		devm_kfree(ice_hw_to_dev(hw), e);
 
1666
1667	return status;
1668}
1669
1670/**
1671 * ice_flow_rem_entry - Remove a flow entry
1672 * @hw: pointer to the HW struct
1673 * @blk: classification stage
1674 * @entry_h: handle to the flow entry to be removed
1675 */
1676int ice_flow_rem_entry(struct ice_hw *hw, enum ice_block blk, u64 entry_h)
 
1677{
1678	struct ice_flow_entry *entry;
1679	struct ice_flow_prof *prof;
1680	int status = 0;
1681
1682	if (entry_h == ICE_FLOW_ENTRY_HANDLE_INVAL)
1683		return -EINVAL;
1684
1685	entry = ICE_FLOW_ENTRY_PTR(entry_h);
1686
1687	/* Retain the pointer to the flow profile as the entry will be freed */
1688	prof = entry->prof;
1689
1690	if (prof) {
1691		mutex_lock(&prof->entries_lock);
1692		status = ice_flow_rem_entry_sync(hw, blk, entry);
1693		mutex_unlock(&prof->entries_lock);
1694	}
1695
1696	return status;
1697}
1698
1699/**
1700 * ice_flow_set_fld_ext - specifies locations of field from entry's input buffer
1701 * @seg: packet segment the field being set belongs to
1702 * @fld: field to be set
1703 * @field_type: type of the field
1704 * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
1705 *           entry's input buffer
1706 * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
1707 *            input buffer
1708 * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
1709 *            entry's input buffer
1710 *
1711 * This helper function stores information of a field being matched, including
1712 * the type of the field and the locations of the value to match, the mask, and
1713 * the upper-bound value in the start of the input buffer for a flow entry.
1714 * This function should only be used for fixed-size data structures.
1715 *
1716 * This function also opportunistically determines the protocol headers to be
1717 * present based on the fields being set. Some fields cannot be used alone to
1718 * determine the protocol headers present. Sometimes, fields for particular
1719 * protocol headers are not matched. In those cases, the protocol headers
1720 * must be explicitly set.
1721 */
1722static void
1723ice_flow_set_fld_ext(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
1724		     enum ice_flow_fld_match_type field_type, u16 val_loc,
1725		     u16 mask_loc, u16 last_loc)
1726{
1727	u64 bit = BIT_ULL(fld);
1728
1729	seg->match |= bit;
1730	if (field_type == ICE_FLOW_FLD_TYPE_RANGE)
1731		seg->range |= bit;
1732
1733	seg->fields[fld].type = field_type;
1734	seg->fields[fld].src.val = val_loc;
1735	seg->fields[fld].src.mask = mask_loc;
1736	seg->fields[fld].src.last = last_loc;
1737
1738	ICE_FLOW_SET_HDRS(seg, ice_flds_info[fld].hdr);
1739}
1740
1741/**
1742 * ice_flow_set_fld - specifies locations of field from entry's input buffer
1743 * @seg: packet segment the field being set belongs to
1744 * @fld: field to be set
1745 * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
1746 *           entry's input buffer
1747 * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
1748 *            input buffer
1749 * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
1750 *            entry's input buffer
1751 * @range: indicate if field being matched is to be in a range
1752 *
1753 * This function specifies the locations, in the form of byte offsets from the
1754 * start of the input buffer for a flow entry, from where the value to match,
1755 * the mask value, and upper value can be extracted. These locations are then
1756 * stored in the flow profile. When adding a flow entry associated with the
1757 * flow profile, these locations will be used to quickly extract the values and
1758 * create the content of a match entry. This function should only be used for
1759 * fixed-size data structures.
1760 */
1761void
1762ice_flow_set_fld(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
1763		 u16 val_loc, u16 mask_loc, u16 last_loc, bool range)
1764{
1765	enum ice_flow_fld_match_type t = range ?
1766		ICE_FLOW_FLD_TYPE_RANGE : ICE_FLOW_FLD_TYPE_REG;
1767
1768	ice_flow_set_fld_ext(seg, fld, t, val_loc, mask_loc, last_loc);
1769}
1770
1771/**
1772 * ice_flow_add_fld_raw - sets locations of a raw field from entry's input buf
1773 * @seg: packet segment the field being set belongs to
1774 * @off: offset of the raw field from the beginning of the segment in bytes
1775 * @len: length of the raw pattern to be matched
1776 * @val_loc: location of the value to match from entry's input buffer
1777 * @mask_loc: location of mask value from entry's input buffer
1778 *
1779 * This function specifies the offset of the raw field to be match from the
1780 * beginning of the specified packet segment, and the locations, in the form of
1781 * byte offsets from the start of the input buffer for a flow entry, from where
1782 * the value to match and the mask value to be extracted. These locations are
1783 * then stored in the flow profile. When adding flow entries to the associated
1784 * flow profile, these locations can be used to quickly extract the values to
1785 * create the content of a match entry. This function should only be used for
1786 * fixed-size data structures.
1787 */
1788void
1789ice_flow_add_fld_raw(struct ice_flow_seg_info *seg, u16 off, u8 len,
1790		     u16 val_loc, u16 mask_loc)
1791{
1792	if (seg->raws_cnt < ICE_FLOW_SEG_RAW_FLD_MAX) {
1793		seg->raws[seg->raws_cnt].off = off;
1794		seg->raws[seg->raws_cnt].info.type = ICE_FLOW_FLD_TYPE_SIZE;
1795		seg->raws[seg->raws_cnt].info.src.val = val_loc;
1796		seg->raws[seg->raws_cnt].info.src.mask = mask_loc;
1797		/* The "last" field is used to store the length of the field */
1798		seg->raws[seg->raws_cnt].info.src.last = len;
1799	}
1800
1801	/* Overflows of "raws" will be handled as an error condition later in
1802	 * the flow when this information is processed.
1803	 */
1804	seg->raws_cnt++;
1805}
1806
1807/**
1808 * ice_flow_rem_vsi_prof - remove VSI from flow profile
1809 * @hw: pointer to the hardware structure
1810 * @vsi_handle: software VSI handle
1811 * @prof_id: unique ID to identify this flow profile
1812 *
1813 * This function removes the flow entries associated to the input
1814 * VSI handle and disassociate the VSI from the flow profile.
1815 */
1816int ice_flow_rem_vsi_prof(struct ice_hw *hw, u16 vsi_handle, u64 prof_id)
1817{
1818	struct ice_flow_prof *prof;
1819	int status = 0;
1820
1821	if (!ice_is_vsi_valid(hw, vsi_handle))
1822		return -EINVAL;
1823
1824	/* find flow profile pointer with input package block and profile ID */
1825	prof = ice_flow_find_prof_id(hw, ICE_BLK_FD, prof_id);
1826	if (!prof) {
1827		ice_debug(hw, ICE_DBG_PKG, "Cannot find flow profile id=%llu\n",
1828			  prof_id);
1829		return -ENOENT;
1830	}
1831
1832	/* Remove all remaining flow entries before removing the flow profile */
1833	if (!list_empty(&prof->entries)) {
1834		struct ice_flow_entry *e, *t;
1835
1836		mutex_lock(&prof->entries_lock);
1837		list_for_each_entry_safe(e, t, &prof->entries, l_entry) {
1838			if (e->vsi_handle != vsi_handle)
1839				continue;
1840
1841			status = ice_flow_rem_entry_sync(hw, ICE_BLK_FD, e);
1842			if (status)
1843				break;
1844		}
1845		mutex_unlock(&prof->entries_lock);
1846	}
1847	if (status)
1848		return status;
1849
1850	/* disassociate the flow profile from sw VSI handle */
1851	status = ice_flow_disassoc_prof(hw, ICE_BLK_FD, prof, vsi_handle);
1852	if (status)
1853		ice_debug(hw, ICE_DBG_PKG, "ice_flow_disassoc_prof() failed with status=%d\n",
1854			  status);
1855	return status;
1856}
1857
1858#define ICE_FLOW_RSS_SEG_HDR_L2_MASKS \
1859	(ICE_FLOW_SEG_HDR_ETH | ICE_FLOW_SEG_HDR_VLAN)
1860
1861#define ICE_FLOW_RSS_SEG_HDR_L3_MASKS \
1862	(ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6)
1863
1864#define ICE_FLOW_RSS_SEG_HDR_L4_MASKS \
1865	(ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP)
1866
1867#define ICE_FLOW_RSS_SEG_HDR_VAL_MASKS \
1868	(ICE_FLOW_RSS_SEG_HDR_L2_MASKS | \
1869	 ICE_FLOW_RSS_SEG_HDR_L3_MASKS | \
1870	 ICE_FLOW_RSS_SEG_HDR_L4_MASKS)
1871
1872/**
1873 * ice_flow_set_rss_seg_info - setup packet segments for RSS
1874 * @segs: pointer to the flow field segment(s)
1875 * @seg_cnt: segment count
1876 * @cfg: configure parameters
1877 *
1878 * Helper function to extract fields from hash bitmap and use flow
1879 * header value to set flow field segment for further use in flow
1880 * profile entry or removal.
1881 */
1882static int
1883ice_flow_set_rss_seg_info(struct ice_flow_seg_info *segs, u8 seg_cnt,
1884			  const struct ice_rss_hash_cfg *cfg)
1885{
1886	struct ice_flow_seg_info *seg;
1887	u64 val;
1888	u16 i;
1889
1890	/* set inner most segment */
1891	seg = &segs[seg_cnt - 1];
1892
1893	for_each_set_bit(i, (const unsigned long *)&cfg->hash_flds,
1894			 (u16)ICE_FLOW_FIELD_IDX_MAX)
1895		ice_flow_set_fld(seg, (enum ice_flow_field)i,
1896				 ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL,
1897				 ICE_FLOW_FLD_OFF_INVAL, false);
1898
1899	ICE_FLOW_SET_HDRS(seg, cfg->addl_hdrs);
1900
1901	/* set outer most header */
1902	if (cfg->hdr_type == ICE_RSS_INNER_HEADERS_W_OUTER_IPV4)
1903		segs[ICE_RSS_OUTER_HEADERS].hdrs |= ICE_FLOW_SEG_HDR_IPV4 |
1904						    ICE_FLOW_SEG_HDR_IPV_OTHER;
1905	else if (cfg->hdr_type == ICE_RSS_INNER_HEADERS_W_OUTER_IPV6)
1906		segs[ICE_RSS_OUTER_HEADERS].hdrs |= ICE_FLOW_SEG_HDR_IPV6 |
1907						    ICE_FLOW_SEG_HDR_IPV_OTHER;
1908
1909	if (seg->hdrs & ~ICE_FLOW_RSS_SEG_HDR_VAL_MASKS &
1910	    ~ICE_FLOW_RSS_HDRS_INNER_MASK & ~ICE_FLOW_SEG_HDR_IPV_OTHER)
1911		return -EINVAL;
1912
1913	val = (u64)(seg->hdrs & ICE_FLOW_RSS_SEG_HDR_L3_MASKS);
1914	if (val && !is_power_of_2(val))
1915		return -EIO;
1916
1917	val = (u64)(seg->hdrs & ICE_FLOW_RSS_SEG_HDR_L4_MASKS);
1918	if (val && !is_power_of_2(val))
1919		return -EIO;
1920
1921	return 0;
1922}
1923
1924/**
1925 * ice_rem_vsi_rss_list - remove VSI from RSS list
1926 * @hw: pointer to the hardware structure
1927 * @vsi_handle: software VSI handle
1928 *
1929 * Remove the VSI from all RSS configurations in the list.
1930 */
1931void ice_rem_vsi_rss_list(struct ice_hw *hw, u16 vsi_handle)
1932{
1933	struct ice_rss_cfg *r, *tmp;
1934
1935	if (list_empty(&hw->rss_list_head))
1936		return;
1937
1938	mutex_lock(&hw->rss_locks);
1939	list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry)
1940		if (test_and_clear_bit(vsi_handle, r->vsis))
1941			if (bitmap_empty(r->vsis, ICE_MAX_VSI)) {
1942				list_del(&r->l_entry);
1943				devm_kfree(ice_hw_to_dev(hw), r);
1944			}
1945	mutex_unlock(&hw->rss_locks);
1946}
1947
1948/**
1949 * ice_rem_vsi_rss_cfg - remove RSS configurations associated with VSI
1950 * @hw: pointer to the hardware structure
1951 * @vsi_handle: software VSI handle
1952 *
1953 * This function will iterate through all flow profiles and disassociate
1954 * the VSI from that profile. If the flow profile has no VSIs it will
1955 * be removed.
1956 */
1957int ice_rem_vsi_rss_cfg(struct ice_hw *hw, u16 vsi_handle)
1958{
1959	const enum ice_block blk = ICE_BLK_RSS;
1960	struct ice_flow_prof *p, *t;
1961	int status = 0;
1962
1963	if (!ice_is_vsi_valid(hw, vsi_handle))
1964		return -EINVAL;
1965
1966	if (list_empty(&hw->fl_profs[blk]))
1967		return 0;
1968
1969	mutex_lock(&hw->rss_locks);
1970	list_for_each_entry_safe(p, t, &hw->fl_profs[blk], l_entry)
1971		if (test_bit(vsi_handle, p->vsis)) {
1972			status = ice_flow_disassoc_prof(hw, blk, p, vsi_handle);
1973			if (status)
1974				break;
1975
1976			if (bitmap_empty(p->vsis, ICE_MAX_VSI)) {
1977				status = ice_flow_rem_prof(hw, blk, p->id);
1978				if (status)
1979					break;
1980			}
1981		}
1982	mutex_unlock(&hw->rss_locks);
1983
1984	return status;
1985}
1986
1987/**
1988 * ice_get_rss_hdr_type - get a RSS profile's header type
1989 * @prof: RSS flow profile
1990 */
1991static enum ice_rss_cfg_hdr_type
1992ice_get_rss_hdr_type(struct ice_flow_prof *prof)
1993{
1994	if (prof->segs_cnt == ICE_FLOW_SEG_SINGLE) {
1995		return ICE_RSS_OUTER_HEADERS;
1996	} else if (prof->segs_cnt == ICE_FLOW_SEG_MAX) {
1997		const struct ice_flow_seg_info *s;
1998
1999		s = &prof->segs[ICE_RSS_OUTER_HEADERS];
2000		if (s->hdrs == ICE_FLOW_SEG_HDR_NONE)
2001			return ICE_RSS_INNER_HEADERS;
2002		if (s->hdrs & ICE_FLOW_SEG_HDR_IPV4)
2003			return ICE_RSS_INNER_HEADERS_W_OUTER_IPV4;
2004		if (s->hdrs & ICE_FLOW_SEG_HDR_IPV6)
2005			return ICE_RSS_INNER_HEADERS_W_OUTER_IPV6;
2006	}
2007
2008	return ICE_RSS_ANY_HEADERS;
2009}
2010
2011static bool
2012ice_rss_match_prof(struct ice_rss_cfg *r, struct ice_flow_prof *prof,
2013		   enum ice_rss_cfg_hdr_type hdr_type)
2014{
2015	return (r->hash.hdr_type == hdr_type &&
2016		r->hash.hash_flds == prof->segs[prof->segs_cnt - 1].match &&
2017		r->hash.addl_hdrs == prof->segs[prof->segs_cnt - 1].hdrs);
2018}
2019
2020/**
2021 * ice_rem_rss_list - remove RSS configuration from list
2022 * @hw: pointer to the hardware structure
2023 * @vsi_handle: software VSI handle
2024 * @prof: pointer to flow profile
2025 *
2026 * Assumption: lock has already been acquired for RSS list
2027 */
2028static void
2029ice_rem_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof)
2030{
2031	enum ice_rss_cfg_hdr_type hdr_type;
2032	struct ice_rss_cfg *r, *tmp;
2033
2034	/* Search for RSS hash fields associated to the VSI that match the
2035	 * hash configurations associated to the flow profile. If found
2036	 * remove from the RSS entry list of the VSI context and delete entry.
2037	 */
2038	hdr_type = ice_get_rss_hdr_type(prof);
2039	list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry)
2040		if (ice_rss_match_prof(r, prof, hdr_type)) {
 
2041			clear_bit(vsi_handle, r->vsis);
2042			if (bitmap_empty(r->vsis, ICE_MAX_VSI)) {
2043				list_del(&r->l_entry);
2044				devm_kfree(ice_hw_to_dev(hw), r);
2045			}
2046			return;
2047		}
2048}
2049
2050/**
2051 * ice_add_rss_list - add RSS configuration to list
2052 * @hw: pointer to the hardware structure
2053 * @vsi_handle: software VSI handle
2054 * @prof: pointer to flow profile
2055 *
2056 * Assumption: lock has already been acquired for RSS list
2057 */
2058static int
2059ice_add_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof)
2060{
2061	enum ice_rss_cfg_hdr_type hdr_type;
2062	struct ice_rss_cfg *r, *rss_cfg;
2063
2064	hdr_type = ice_get_rss_hdr_type(prof);
2065	list_for_each_entry(r, &hw->rss_list_head, l_entry)
2066		if (ice_rss_match_prof(r, prof, hdr_type)) {
 
2067			set_bit(vsi_handle, r->vsis);
2068			return 0;
2069		}
2070
2071	rss_cfg = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rss_cfg),
2072			       GFP_KERNEL);
2073	if (!rss_cfg)
2074		return -ENOMEM;
2075
2076	rss_cfg->hash.hash_flds = prof->segs[prof->segs_cnt - 1].match;
2077	rss_cfg->hash.addl_hdrs = prof->segs[prof->segs_cnt - 1].hdrs;
2078	rss_cfg->hash.hdr_type = hdr_type;
2079	rss_cfg->hash.symm = prof->symm;
2080	set_bit(vsi_handle, rss_cfg->vsis);
2081
2082	list_add_tail(&rss_cfg->l_entry, &hw->rss_list_head);
2083
2084	return 0;
2085}
2086
2087/**
2088 * ice_rss_config_xor_word - set the HSYMM registers for one input set word
2089 * @hw: pointer to the hardware structure
2090 * @prof_id: RSS hardware profile id
2091 * @src: the FV index used by the protocol's source field
2092 * @dst: the FV index used by the protocol's destination field
2093 *
2094 * Write to the HSYMM register with the index of @src FV the value of the @dst
2095 * FV index. This will tell the hardware to XOR HSYMM[src] with INSET[dst]
2096 * while calculating the RSS input set.
2097 */
2098static void
2099ice_rss_config_xor_word(struct ice_hw *hw, u8 prof_id, u8 src, u8 dst)
2100{
2101	u32 val, reg, bits_shift;
2102	u8 reg_idx;
2103
2104	reg_idx = src / GLQF_HSYMM_REG_SIZE;
2105	bits_shift = ((src % GLQF_HSYMM_REG_SIZE) << 3);
2106	val = dst | GLQF_HSYMM_ENABLE_BIT;
2107
2108	reg = rd32(hw, GLQF_HSYMM(prof_id, reg_idx));
2109	reg = (reg & ~(0xff << bits_shift)) | (val << bits_shift);
2110	wr32(hw, GLQF_HSYMM(prof_id, reg_idx), reg);
2111}
2112
2113/**
2114 * ice_rss_config_xor - set the symmetric registers for a profile's protocol
2115 * @hw: pointer to the hardware structure
2116 * @prof_id: RSS hardware profile id
2117 * @src: the FV index used by the protocol's source field
2118 * @dst: the FV index used by the protocol's destination field
2119 * @len: length of the source/destination fields in words
2120 */
2121static void
2122ice_rss_config_xor(struct ice_hw *hw, u8 prof_id, u8 src, u8 dst, u8 len)
2123{
2124	int fv_last_word =
2125		ICE_FLOW_SW_FIELD_VECTOR_MAX / ICE_FLOW_FV_EXTRACT_SZ - 1;
2126	int i;
2127
2128	for (i = 0; i < len; i++) {
2129		ice_rss_config_xor_word(hw, prof_id,
2130					/* Yes, field vector in GLQF_HSYMM and
2131					 * GLQF_HINSET is inversed!
2132					 */
2133					fv_last_word - (src + i),
2134					fv_last_word - (dst + i));
2135		ice_rss_config_xor_word(hw, prof_id,
2136					fv_last_word - (dst + i),
2137					fv_last_word - (src + i));
2138	}
2139}
2140
2141/**
2142 * ice_rss_set_symm - set the symmetric settings for an RSS profile
2143 * @hw: pointer to the hardware structure
2144 * @prof: pointer to flow profile
2145 *
2146 * The symmetric hash will result from XORing the protocol's fields with
2147 * indexes in GLQF_HSYMM and GLQF_HINSET. This function configures the profile's
2148 * GLQF_HSYMM registers.
2149 */
2150static void ice_rss_set_symm(struct ice_hw *hw, struct ice_flow_prof *prof)
2151{
2152	struct ice_prof_map *map;
2153	u8 prof_id, m;
2154
2155	mutex_lock(&hw->blk[ICE_BLK_RSS].es.prof_map_lock);
2156	map = ice_search_prof_id(hw, ICE_BLK_RSS, prof->id);
2157	if (map)
2158		prof_id = map->prof_id;
2159	mutex_unlock(&hw->blk[ICE_BLK_RSS].es.prof_map_lock);
2160
2161	if (!map)
2162		return;
2163
2164	/* clear to default */
2165	for (m = 0; m < GLQF_HSYMM_REG_PER_PROF; m++)
2166		wr32(hw, GLQF_HSYMM(prof_id, m), 0);
2167
2168	if (prof->symm) {
2169		struct ice_flow_seg_xtrct *ipv4_src, *ipv4_dst;
2170		struct ice_flow_seg_xtrct *ipv6_src, *ipv6_dst;
2171		struct ice_flow_seg_xtrct *sctp_src, *sctp_dst;
2172		struct ice_flow_seg_xtrct *tcp_src, *tcp_dst;
2173		struct ice_flow_seg_xtrct *udp_src, *udp_dst;
2174		struct ice_flow_seg_info *seg;
2175
2176		seg = &prof->segs[prof->segs_cnt - 1];
2177
2178		ipv4_src = &seg->fields[ICE_FLOW_FIELD_IDX_IPV4_SA].xtrct;
2179		ipv4_dst = &seg->fields[ICE_FLOW_FIELD_IDX_IPV4_DA].xtrct;
2180
2181		ipv6_src = &seg->fields[ICE_FLOW_FIELD_IDX_IPV6_SA].xtrct;
2182		ipv6_dst = &seg->fields[ICE_FLOW_FIELD_IDX_IPV6_DA].xtrct;
2183
2184		tcp_src = &seg->fields[ICE_FLOW_FIELD_IDX_TCP_SRC_PORT].xtrct;
2185		tcp_dst = &seg->fields[ICE_FLOW_FIELD_IDX_TCP_DST_PORT].xtrct;
2186
2187		udp_src = &seg->fields[ICE_FLOW_FIELD_IDX_UDP_SRC_PORT].xtrct;
2188		udp_dst = &seg->fields[ICE_FLOW_FIELD_IDX_UDP_DST_PORT].xtrct;
2189
2190		sctp_src = &seg->fields[ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT].xtrct;
2191		sctp_dst = &seg->fields[ICE_FLOW_FIELD_IDX_SCTP_DST_PORT].xtrct;
2192
2193		/* xor IPv4 */
2194		if (ipv4_src->prot_id != 0 && ipv4_dst->prot_id != 0)
2195			ice_rss_config_xor(hw, prof_id,
2196					   ipv4_src->idx, ipv4_dst->idx, 2);
2197
2198		/* xor IPv6 */
2199		if (ipv6_src->prot_id != 0 && ipv6_dst->prot_id != 0)
2200			ice_rss_config_xor(hw, prof_id,
2201					   ipv6_src->idx, ipv6_dst->idx, 8);
2202
2203		/* xor TCP */
2204		if (tcp_src->prot_id != 0 && tcp_dst->prot_id != 0)
2205			ice_rss_config_xor(hw, prof_id,
2206					   tcp_src->idx, tcp_dst->idx, 1);
2207
2208		/* xor UDP */
2209		if (udp_src->prot_id != 0 && udp_dst->prot_id != 0)
2210			ice_rss_config_xor(hw, prof_id,
2211					   udp_src->idx, udp_dst->idx, 1);
2212
2213		/* xor SCTP */
2214		if (sctp_src->prot_id != 0 && sctp_dst->prot_id != 0)
2215			ice_rss_config_xor(hw, prof_id,
2216					   sctp_src->idx, sctp_dst->idx, 1);
2217	}
2218}
2219
2220/**
2221 * ice_add_rss_cfg_sync - add an RSS configuration
2222 * @hw: pointer to the hardware structure
2223 * @vsi_handle: software VSI handle
2224 * @cfg: configure parameters
 
 
2225 *
2226 * Assumption: lock has already been acquired for RSS list
2227 */
2228static int
2229ice_add_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle,
2230		     const struct ice_rss_hash_cfg *cfg)
2231{
2232	const enum ice_block blk = ICE_BLK_RSS;
2233	struct ice_flow_prof *prof = NULL;
2234	struct ice_flow_seg_info *segs;
2235	u8 segs_cnt;
2236	int status;
2237
2238	segs_cnt = (cfg->hdr_type == ICE_RSS_OUTER_HEADERS) ?
2239			ICE_FLOW_SEG_SINGLE : ICE_FLOW_SEG_MAX;
2240
2241	segs = kcalloc(segs_cnt, sizeof(*segs), GFP_KERNEL);
2242	if (!segs)
2243		return -ENOMEM;
2244
2245	/* Construct the packet segment info from the hashed fields */
2246	status = ice_flow_set_rss_seg_info(segs, segs_cnt, cfg);
 
2247	if (status)
2248		goto exit;
2249
2250	/* Search for a flow profile that has matching headers, hash fields,
2251	 * symm and has the input VSI associated to it. If found, no further
2252	 * operations required and exit.
2253	 */
2254	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2255					cfg->symm, vsi_handle,
2256					ICE_FLOW_FIND_PROF_CHK_FLDS |
2257					ICE_FLOW_FIND_PROF_CHK_SYMM |
2258					ICE_FLOW_FIND_PROF_CHK_VSI);
2259	if (prof)
2260		goto exit;
2261
2262	/* Check if a flow profile exists with the same protocol headers and
2263	 * associated with the input VSI. If so disassociate the VSI from
2264	 * this profile. The VSI will be added to a new profile created with
2265	 * the protocol header and new hash field configuration.
2266	 */
2267	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2268					cfg->symm, vsi_handle,
2269					ICE_FLOW_FIND_PROF_CHK_VSI);
2270	if (prof) {
2271		status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle);
2272		if (!status)
2273			ice_rem_rss_list(hw, vsi_handle, prof);
2274		else
2275			goto exit;
2276
2277		/* Remove profile if it has no VSIs associated */
2278		if (bitmap_empty(prof->vsis, ICE_MAX_VSI)) {
2279			status = ice_flow_rem_prof(hw, blk, prof->id);
2280			if (status)
2281				goto exit;
2282		}
2283	}
2284
2285	/* Search for a profile that has the same match fields and symmetric
2286	 * setting. If this exists then associate the VSI to this profile.
2287	 */
2288	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2289					cfg->symm, vsi_handle,
2290					ICE_FLOW_FIND_PROF_CHK_SYMM |
2291					ICE_FLOW_FIND_PROF_CHK_FLDS);
2292	if (prof) {
2293		status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
2294		if (!status)
2295			status = ice_add_rss_list(hw, vsi_handle, prof);
2296		goto exit;
2297	}
2298
2299	/* Create a new flow profile with packet segment information. */
 
 
2300	status = ice_flow_add_prof(hw, blk, ICE_FLOW_RX,
2301				   segs, segs_cnt, cfg->symm, &prof);
 
 
 
2302	if (status)
2303		goto exit;
2304
2305	prof->symm = cfg->symm;
2306	ice_rss_set_symm(hw, prof);
2307	status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
2308	/* If association to a new flow profile failed then this profile can
2309	 * be removed.
2310	 */
2311	if (status) {
2312		ice_flow_rem_prof(hw, blk, prof->id);
2313		goto exit;
2314	}
2315
2316	status = ice_add_rss_list(hw, vsi_handle, prof);
2317
2318exit:
2319	kfree(segs);
2320	return status;
2321}
2322
2323/**
2324 * ice_add_rss_cfg - add an RSS configuration with specified hashed fields
2325 * @hw: pointer to the hardware structure
2326 * @vsi: VSI to add the RSS configuration to
2327 * @cfg: configure parameters
 
2328 *
2329 * This function will generate a flow profile based on fields associated with
2330 * the input fields to hash on, the flow type and use the VSI number to add
2331 * a flow entry to the profile.
2332 */
2333int
2334ice_add_rss_cfg(struct ice_hw *hw, struct ice_vsi *vsi,
2335		const struct ice_rss_hash_cfg *cfg)
2336{
2337	struct ice_rss_hash_cfg local_cfg;
2338	u16 vsi_handle;
2339	int status;
2340
2341	if (!vsi)
2342		return -EINVAL;
2343
2344	vsi_handle = vsi->idx;
2345	if (!ice_is_vsi_valid(hw, vsi_handle) ||
2346	    !cfg || cfg->hdr_type > ICE_RSS_ANY_HEADERS ||
2347	    cfg->hash_flds == ICE_HASH_INVALID)
2348		return -EINVAL;
2349
2350	mutex_lock(&hw->rss_locks);
2351	local_cfg = *cfg;
2352	if (cfg->hdr_type < ICE_RSS_ANY_HEADERS) {
2353		status = ice_add_rss_cfg_sync(hw, vsi_handle, &local_cfg);
2354	} else {
2355		local_cfg.hdr_type = ICE_RSS_OUTER_HEADERS;
2356		status = ice_add_rss_cfg_sync(hw, vsi_handle, &local_cfg);
2357		if (!status) {
2358			local_cfg.hdr_type = ICE_RSS_INNER_HEADERS;
2359			status = ice_add_rss_cfg_sync(hw, vsi_handle,
2360						      &local_cfg);
2361		}
2362	}
2363	mutex_unlock(&hw->rss_locks);
2364
2365	return status;
2366}
2367
2368/**
2369 * ice_rem_rss_cfg_sync - remove an existing RSS configuration
2370 * @hw: pointer to the hardware structure
2371 * @vsi_handle: software VSI handle
2372 * @cfg: configure parameters
2373 *
2374 * Assumption: lock has already been acquired for RSS list
2375 */
2376static int
2377ice_rem_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle,
2378		     const struct ice_rss_hash_cfg *cfg)
2379{
2380	const enum ice_block blk = ICE_BLK_RSS;
2381	struct ice_flow_seg_info *segs;
2382	struct ice_flow_prof *prof;
2383	u8 segs_cnt;
2384	int status;
2385
2386	segs_cnt = (cfg->hdr_type == ICE_RSS_OUTER_HEADERS) ?
2387			ICE_FLOW_SEG_SINGLE : ICE_FLOW_SEG_MAX;
2388	segs = kcalloc(segs_cnt, sizeof(*segs), GFP_KERNEL);
2389	if (!segs)
2390		return -ENOMEM;
2391
2392	/* Construct the packet segment info from the hashed fields */
2393	status = ice_flow_set_rss_seg_info(segs, segs_cnt, cfg);
2394	if (status)
2395		goto out;
2396
2397	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2398					cfg->symm, vsi_handle,
2399					ICE_FLOW_FIND_PROF_CHK_FLDS);
2400	if (!prof) {
2401		status = -ENOENT;
2402		goto out;
2403	}
2404
2405	status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle);
2406	if (status)
2407		goto out;
2408
2409	/* Remove RSS configuration from VSI context before deleting
2410	 * the flow profile.
2411	 */
2412	ice_rem_rss_list(hw, vsi_handle, prof);
2413
2414	if (bitmap_empty(prof->vsis, ICE_MAX_VSI))
2415		status = ice_flow_rem_prof(hw, blk, prof->id);
2416
2417out:
2418	kfree(segs);
2419	return status;
2420}
2421
2422/**
2423 * ice_rem_rss_cfg - remove an existing RSS config with matching hashed fields
2424 * @hw: pointer to the hardware structure
2425 * @vsi_handle: software VSI handle
2426 * @cfg: configure parameters
2427 *
2428 * This function will lookup the flow profile based on the input
2429 * hash field bitmap, iterate through the profile entry list of
2430 * that profile and find entry associated with input VSI to be
2431 * removed. Calls are made to underlying flow apis which will in
2432 * turn build or update buffers for RSS XLT1 section.
2433 */
2434int
2435ice_rem_rss_cfg(struct ice_hw *hw, u16 vsi_handle,
2436		const struct ice_rss_hash_cfg *cfg)
2437{
2438	struct ice_rss_hash_cfg local_cfg;
2439	int status;
2440
2441	if (!ice_is_vsi_valid(hw, vsi_handle) ||
2442	    !cfg || cfg->hdr_type > ICE_RSS_ANY_HEADERS ||
2443	    cfg->hash_flds == ICE_HASH_INVALID)
2444		return -EINVAL;
2445
2446	mutex_lock(&hw->rss_locks);
2447	local_cfg = *cfg;
2448	if (cfg->hdr_type < ICE_RSS_ANY_HEADERS) {
2449		status = ice_rem_rss_cfg_sync(hw, vsi_handle, &local_cfg);
2450	} else {
2451		local_cfg.hdr_type = ICE_RSS_OUTER_HEADERS;
2452		status = ice_rem_rss_cfg_sync(hw, vsi_handle, &local_cfg);
2453		if (!status) {
2454			local_cfg.hdr_type = ICE_RSS_INNER_HEADERS;
2455			status = ice_rem_rss_cfg_sync(hw, vsi_handle,
2456						      &local_cfg);
2457		}
2458	}
2459	mutex_unlock(&hw->rss_locks);
2460
2461	return status;
2462}
2463
2464/* Mapping of AVF hash bit fields to an L3-L4 hash combination.
2465 * As the ice_flow_avf_hdr_field represent individual bit shifts in a hash,
2466 * convert its values to their appropriate flow L3, L4 values.
2467 */
2468#define ICE_FLOW_AVF_RSS_IPV4_MASKS \
2469	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_OTHER) | \
2470	 BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV4))
2471#define ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS \
2472	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP_SYN_NO_ACK) | \
2473	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP))
2474#define ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS \
2475	(BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV4_UDP) | \
2476	 BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV4_UDP) | \
2477	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_UDP))
2478#define ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS \
2479	(ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS | \
2480	 ICE_FLOW_AVF_RSS_IPV4_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP))
2481
2482#define ICE_FLOW_AVF_RSS_IPV6_MASKS \
2483	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_OTHER) | \
2484	 BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV6))
2485#define ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS \
2486	(BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV6_UDP) | \
2487	 BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV6_UDP) | \
2488	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_UDP))
2489#define ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS \
2490	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP_SYN_NO_ACK) | \
2491	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP))
2492#define ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS \
2493	(ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS | \
2494	 ICE_FLOW_AVF_RSS_IPV6_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP))
2495
2496/**
2497 * ice_add_avf_rss_cfg - add an RSS configuration for AVF driver
2498 * @hw: pointer to the hardware structure
2499 * @vsi: VF's VSI
2500 * @avf_hash: hash bit fields (ICE_AVF_FLOW_FIELD_*) to configure
2501 *
2502 * This function will take the hash bitmap provided by the AVF driver via a
2503 * message, convert it to ICE-compatible values, and configure RSS flow
2504 * profiles.
2505 */
2506int ice_add_avf_rss_cfg(struct ice_hw *hw, struct ice_vsi *vsi, u64 avf_hash)
 
2507{
2508	struct ice_rss_hash_cfg hcfg;
2509	u16 vsi_handle;
2510	int status = 0;
2511	u64 hash_flds;
2512
2513	if (!vsi)
2514		return -EINVAL;
2515
2516	vsi_handle = vsi->idx;
2517	if (avf_hash == ICE_AVF_FLOW_FIELD_INVALID ||
2518	    !ice_is_vsi_valid(hw, vsi_handle))
2519		return -EINVAL;
2520
2521	/* Make sure no unsupported bits are specified */
2522	if (avf_hash & ~(ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS |
2523			 ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS))
2524		return -EIO;
2525
2526	hash_flds = avf_hash;
2527
2528	/* Always create an L3 RSS configuration for any L4 RSS configuration */
2529	if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS)
2530		hash_flds |= ICE_FLOW_AVF_RSS_IPV4_MASKS;
2531
2532	if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS)
2533		hash_flds |= ICE_FLOW_AVF_RSS_IPV6_MASKS;
2534
2535	/* Create the corresponding RSS configuration for each valid hash bit */
2536	while (hash_flds) {
2537		u64 rss_hash = ICE_HASH_INVALID;
2538
2539		if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS) {
2540			if (hash_flds & ICE_FLOW_AVF_RSS_IPV4_MASKS) {
2541				rss_hash = ICE_FLOW_HASH_IPV4;
2542				hash_flds &= ~ICE_FLOW_AVF_RSS_IPV4_MASKS;
2543			} else if (hash_flds &
2544				   ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS) {
2545				rss_hash = ICE_FLOW_HASH_IPV4 |
2546					ICE_FLOW_HASH_TCP_PORT;
2547				hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS;
2548			} else if (hash_flds &
2549				   ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS) {
2550				rss_hash = ICE_FLOW_HASH_IPV4 |
2551					ICE_FLOW_HASH_UDP_PORT;
2552				hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS;
2553			} else if (hash_flds &
2554				   BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP)) {
2555				rss_hash = ICE_FLOW_HASH_IPV4 |
2556					ICE_FLOW_HASH_SCTP_PORT;
2557				hash_flds &=
2558					~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP);
2559			}
2560		} else if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS) {
2561			if (hash_flds & ICE_FLOW_AVF_RSS_IPV6_MASKS) {
2562				rss_hash = ICE_FLOW_HASH_IPV6;
2563				hash_flds &= ~ICE_FLOW_AVF_RSS_IPV6_MASKS;
2564			} else if (hash_flds &
2565				   ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS) {
2566				rss_hash = ICE_FLOW_HASH_IPV6 |
2567					ICE_FLOW_HASH_TCP_PORT;
2568				hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS;
2569			} else if (hash_flds &
2570				   ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS) {
2571				rss_hash = ICE_FLOW_HASH_IPV6 |
2572					ICE_FLOW_HASH_UDP_PORT;
2573				hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS;
2574			} else if (hash_flds &
2575				   BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP)) {
2576				rss_hash = ICE_FLOW_HASH_IPV6 |
2577					ICE_FLOW_HASH_SCTP_PORT;
2578				hash_flds &=
2579					~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP);
2580			}
2581		}
2582
2583		if (rss_hash == ICE_HASH_INVALID)
2584			return -EIO;
2585
2586		hcfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
2587		hcfg.hash_flds = rss_hash;
2588		hcfg.hdr_type = ICE_RSS_ANY_HEADERS;
2589		hcfg.symm = false;
2590		status = ice_add_rss_cfg(hw, vsi, &hcfg);
2591		if (status)
2592			break;
2593	}
2594
2595	return status;
2596}
2597
2598static bool rss_cfg_symm_valid(u64 hfld)
2599{
2600	return !((!!(hfld & ICE_FLOW_HASH_FLD_IPV4_SA) ^
2601		  !!(hfld & ICE_FLOW_HASH_FLD_IPV4_DA)) ||
2602		 (!!(hfld & ICE_FLOW_HASH_FLD_IPV6_SA) ^
2603		  !!(hfld & ICE_FLOW_HASH_FLD_IPV6_DA)) ||
2604		 (!!(hfld & ICE_FLOW_HASH_FLD_TCP_SRC_PORT) ^
2605		  !!(hfld & ICE_FLOW_HASH_FLD_TCP_DST_PORT)) ||
2606		 (!!(hfld & ICE_FLOW_HASH_FLD_UDP_SRC_PORT) ^
2607		  !!(hfld & ICE_FLOW_HASH_FLD_UDP_DST_PORT)) ||
2608		 (!!(hfld & ICE_FLOW_HASH_FLD_SCTP_SRC_PORT) ^
2609		  !!(hfld & ICE_FLOW_HASH_FLD_SCTP_DST_PORT)));
2610}
2611
2612/**
2613 * ice_set_rss_cfg_symm - set symmtery for all VSI's RSS configurations
2614 * @hw: pointer to the hardware structure
2615 * @vsi: VSI to set/unset Symmetric RSS
2616 * @symm: TRUE to set Symmetric RSS hashing
2617 */
2618int ice_set_rss_cfg_symm(struct ice_hw *hw, struct ice_vsi *vsi, bool symm)
2619{
2620	struct ice_rss_hash_cfg	local;
2621	struct ice_rss_cfg *r, *tmp;
2622	u16 vsi_handle = vsi->idx;
2623	int status = 0;
2624
2625	if (!ice_is_vsi_valid(hw, vsi_handle))
2626		return -EINVAL;
2627
2628	mutex_lock(&hw->rss_locks);
2629	list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry) {
2630		if (test_bit(vsi_handle, r->vsis) && r->hash.symm != symm) {
2631			local = r->hash;
2632			local.symm = symm;
2633			if (symm && !rss_cfg_symm_valid(r->hash.hash_flds))
2634				continue;
2635
2636			status = ice_add_rss_cfg_sync(hw, vsi_handle, &local);
2637			if (status)
2638				break;
2639		}
2640	}
2641	mutex_unlock(&hw->rss_locks);
2642
2643	return status;
2644}
2645
2646/**
2647 * ice_replay_rss_cfg - replay RSS configurations associated with VSI
2648 * @hw: pointer to the hardware structure
2649 * @vsi_handle: software VSI handle
2650 */
2651int ice_replay_rss_cfg(struct ice_hw *hw, u16 vsi_handle)
2652{
 
2653	struct ice_rss_cfg *r;
2654	int status = 0;
2655
2656	if (!ice_is_vsi_valid(hw, vsi_handle))
2657		return -EINVAL;
2658
2659	mutex_lock(&hw->rss_locks);
2660	list_for_each_entry(r, &hw->rss_list_head, l_entry) {
2661		if (test_bit(vsi_handle, r->vsis)) {
2662			status = ice_add_rss_cfg_sync(hw, vsi_handle, &r->hash);
 
 
 
 
 
 
 
 
 
2663			if (status)
2664				break;
2665		}
2666	}
2667	mutex_unlock(&hw->rss_locks);
2668
2669	return status;
2670}
2671
2672/**
2673 * ice_get_rss_cfg - returns hashed fields for the given header types
2674 * @hw: pointer to the hardware structure
2675 * @vsi_handle: software VSI handle
2676 * @hdrs: protocol header type
2677 * @symm: whether the RSS is symmetric (bool, output)
2678 *
2679 * This function will return the match fields of the first instance of flow
2680 * profile having the given header types and containing input VSI
2681 */
2682u64 ice_get_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u32 hdrs, bool *symm)
2683{
2684	u64 rss_hash = ICE_HASH_INVALID;
2685	struct ice_rss_cfg *r;
2686
2687	/* verify if the protocol header is non zero and VSI is valid */
2688	if (hdrs == ICE_FLOW_SEG_HDR_NONE || !ice_is_vsi_valid(hw, vsi_handle))
2689		return ICE_HASH_INVALID;
2690
2691	mutex_lock(&hw->rss_locks);
2692	list_for_each_entry(r, &hw->rss_list_head, l_entry)
2693		if (test_bit(vsi_handle, r->vsis) &&
2694		    r->hash.addl_hdrs == hdrs) {
2695			rss_hash = r->hash.hash_flds;
2696			*symm = r->hash.symm;
2697			break;
2698		}
2699	mutex_unlock(&hw->rss_locks);
2700
2701	return rss_hash;
2702}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2019, Intel Corporation. */
   3
   4#include "ice_common.h"
   5#include "ice_flow.h"
 
   6
   7/* Describe properties of a protocol header field */
   8struct ice_flow_field_info {
   9	enum ice_flow_seg_hdr hdr;
  10	s16 off;	/* Offset from start of a protocol header, in bits */
  11	u16 size;	/* Size of fields in bits */
 
  12};
  13
  14#define ICE_FLOW_FLD_INFO(_hdr, _offset_bytes, _size_bytes) { \
  15	.hdr = _hdr, \
  16	.off = (_offset_bytes) * BITS_PER_BYTE, \
  17	.size = (_size_bytes) * BITS_PER_BYTE, \
 
 
 
 
 
 
 
 
  18}
  19
  20/* Table containing properties of supported protocol header fields */
  21static const
  22struct ice_flow_field_info ice_flds_info[ICE_FLOW_FIELD_IDX_MAX] = {
 
 
 
 
 
 
 
 
 
 
 
  23	/* IPv4 / IPv6 */
 
 
 
 
 
 
 
 
 
 
 
 
  24	/* ICE_FLOW_FIELD_IDX_IPV4_SA */
  25	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 12, sizeof(struct in_addr)),
  26	/* ICE_FLOW_FIELD_IDX_IPV4_DA */
  27	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 16, sizeof(struct in_addr)),
  28	/* ICE_FLOW_FIELD_IDX_IPV6_SA */
  29	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 8, sizeof(struct in6_addr)),
  30	/* ICE_FLOW_FIELD_IDX_IPV6_DA */
  31	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 24, sizeof(struct in6_addr)),
  32	/* Transport */
  33	/* ICE_FLOW_FIELD_IDX_TCP_SRC_PORT */
  34	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 0, sizeof(__be16)),
  35	/* ICE_FLOW_FIELD_IDX_TCP_DST_PORT */
  36	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 2, sizeof(__be16)),
  37	/* ICE_FLOW_FIELD_IDX_UDP_SRC_PORT */
  38	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 0, sizeof(__be16)),
  39	/* ICE_FLOW_FIELD_IDX_UDP_DST_PORT */
  40	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 2, sizeof(__be16)),
  41	/* ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT */
  42	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 0, sizeof(__be16)),
  43	/* ICE_FLOW_FIELD_IDX_SCTP_DST_PORT */
  44	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 2, sizeof(__be16)),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  45	/* GRE */
  46	/* ICE_FLOW_FIELD_IDX_GRE_KEYID */
  47	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GRE, 12,
  48			  sizeof_field(struct gre_full_hdr, key)),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  49};
  50
  51/* Bitmaps indicating relevant packet types for a particular protocol header
  52 *
  53 * Packet types for packets with an Outer/First/Single IPv4 header
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  54 */
  55static const u32 ice_ptypes_ipv4_ofos[] = {
  56	0x1DC00000, 0x04000800, 0x00000000, 0x00000000,
 
 
 
 
 
  57	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  58	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 
 
 
 
 
 
 
 
 
  59	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  60	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  61	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  62	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  63	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  64};
  65
  66/* Packet types for packets with an Innermost/Last IPv4 header */
  67static const u32 ice_ptypes_ipv4_il[] = {
  68	0xE0000000, 0xB807700E, 0x80000003, 0xE01DC03B,
  69	0x0000000E, 0x00000000, 0x00000000, 0x00000000,
  70	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  71	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  72	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  73	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  74	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  75	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  76};
  77
  78/* Packet types for packets with an Outer/First/Single IPv6 header */
 
 
  79static const u32 ice_ptypes_ipv6_ofos[] = {
  80	0x00000000, 0x00000000, 0x77000000, 0x10002000,
 
 
  81	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  82	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  83	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  84	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  85	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 
 
 
 
 
 
 
 
 
 
 
 
  86	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  87	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  88};
  89
  90/* Packet types for packets with an Innermost/Last IPv6 header */
  91static const u32 ice_ptypes_ipv6_il[] = {
  92	0x00000000, 0x03B80770, 0x000001DC, 0x0EE00000,
  93	0x00000770, 0x00000000, 0x00000000, 0x00000000,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  94	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  95	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  96	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  97	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  98	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  99	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 100};
 101
 102/* UDP Packet types for non-tunneled packets or tunneled
 103 * packets with inner UDP.
 104 */
 105static const u32 ice_ptypes_udp_il[] = {
 106	0x81000000, 0x20204040, 0x04000010, 0x80810102,
 107	0x00000040, 0x00000000, 0x00000000, 0x00000000,
 108	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 109	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 110	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 111	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 112	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 113	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 114};
 115
 116/* Packet types for packets with an Innermost/Last TCP header */
 117static const u32 ice_ptypes_tcp_il[] = {
 118	0x04000000, 0x80810102, 0x10000040, 0x02040408,
 119	0x00000102, 0x00000000, 0x00000000, 0x00000000,
 120	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 121	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 122	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 123	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 124	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 125	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 126};
 127
 128/* Packet types for packets with an Innermost/Last SCTP header */
 129static const u32 ice_ptypes_sctp_il[] = {
 130	0x08000000, 0x01020204, 0x20000081, 0x04080810,
 131	0x00000204, 0x00000000, 0x00000000, 0x00000000,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 
 
 
 
 
 
 
 133	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 134	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 135	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 136	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 137	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 138};
 139
 140/* Packet types for packets with an Outermost/First GRE header */
 141static const u32 ice_ptypes_gre_of[] = {
 142	0x00000000, 0xBFBF7800, 0x000001DF, 0xFEFDE000,
 143	0x0000017E, 0x00000000, 0x00000000, 0x00000000,
 144	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 145	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 146	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 147	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 148	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 149	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 150};
 151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152/* Manage parameters and info. used during the creation of a flow profile */
 153struct ice_flow_prof_params {
 154	enum ice_block blk;
 155	u16 entry_length; /* # of bytes formatted entry will require */
 156	u8 es_cnt;
 157	struct ice_flow_prof *prof;
 158
 159	/* For ACL, the es[0] will have the data of ICE_RX_MDID_PKT_FLAGS_15_0
 160	 * This will give us the direction flags.
 161	 */
 162	struct ice_fv_word es[ICE_MAX_FV_WORDS];
 
 
 
 
 
 163	DECLARE_BITMAP(ptypes, ICE_FLOW_PTYPE_MAX);
 164};
 165
 
 
 
 
 
 
 
 166#define ICE_FLOW_SEG_HDRS_L3_MASK	\
 167	(ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6)
 168#define ICE_FLOW_SEG_HDRS_L4_MASK	\
 
 
 
 
 169	(ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP)
 170
 171/**
 172 * ice_flow_val_hdrs - validates packet segments for valid protocol headers
 173 * @segs: array of one or more packet segments that describe the flow
 174 * @segs_cnt: number of packet segments provided
 175 */
 176static enum ice_status
 177ice_flow_val_hdrs(struct ice_flow_seg_info *segs, u8 segs_cnt)
 178{
 179	u8 i;
 180
 181	for (i = 0; i < segs_cnt; i++) {
 182		/* Multiple L3 headers */
 183		if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK &&
 184		    !is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK))
 185			return ICE_ERR_PARAM;
 186
 187		/* Multiple L4 headers */
 188		if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK &&
 189		    !is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK))
 190			return ICE_ERR_PARAM;
 191	}
 192
 193	return 0;
 194}
 195
 196/* Sizes of fixed known protocol headers without header options */
 197#define ICE_FLOW_PROT_HDR_SZ_MAC	14
 
 198#define ICE_FLOW_PROT_HDR_SZ_IPV4	20
 199#define ICE_FLOW_PROT_HDR_SZ_IPV6	40
 
 
 200#define ICE_FLOW_PROT_HDR_SZ_TCP	20
 201#define ICE_FLOW_PROT_HDR_SZ_UDP	8
 202#define ICE_FLOW_PROT_HDR_SZ_SCTP	12
 203
 204/**
 205 * ice_flow_calc_seg_sz - calculates size of a packet segment based on headers
 206 * @params: information about the flow to be processed
 207 * @seg: index of packet segment whose header size is to be determined
 208 */
 209static u16 ice_flow_calc_seg_sz(struct ice_flow_prof_params *params, u8 seg)
 210{
 211	u16 sz = ICE_FLOW_PROT_HDR_SZ_MAC;
 
 
 
 
 212
 213	/* L3 headers */
 214	if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV4)
 215		sz += ICE_FLOW_PROT_HDR_SZ_IPV4;
 216	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV6)
 217		sz += ICE_FLOW_PROT_HDR_SZ_IPV6;
 
 
 
 
 
 218
 219	/* L4 headers */
 220	if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_TCP)
 
 
 221		sz += ICE_FLOW_PROT_HDR_SZ_TCP;
 222	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_UDP)
 223		sz += ICE_FLOW_PROT_HDR_SZ_UDP;
 224	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_SCTP)
 225		sz += ICE_FLOW_PROT_HDR_SZ_SCTP;
 226
 227	return sz;
 228}
 229
 230/**
 231 * ice_flow_proc_seg_hdrs - process protocol headers present in pkt segments
 232 * @params: information about the flow to be processed
 233 *
 234 * This function identifies the packet types associated with the protocol
 235 * headers being present in packet segments of the specified flow profile.
 236 */
 237static enum ice_status
 238ice_flow_proc_seg_hdrs(struct ice_flow_prof_params *params)
 239{
 240	struct ice_flow_prof *prof;
 241	u8 i;
 242
 243	memset(params->ptypes, 0xff, sizeof(params->ptypes));
 244
 245	prof = params->prof;
 246
 247	for (i = 0; i < params->prof->segs_cnt; i++) {
 248		const unsigned long *src;
 249		u32 hdrs;
 250
 251		hdrs = prof->segs[i].hdrs;
 252
 253		if (hdrs & ICE_FLOW_SEG_HDR_IPV4) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 254			src = !i ? (const unsigned long *)ice_ptypes_ipv4_ofos :
 255				(const unsigned long *)ice_ptypes_ipv4_il;
 256			bitmap_and(params->ptypes, params->ptypes, src,
 257				   ICE_FLOW_PTYPE_MAX);
 
 
 
 
 
 
 258		} else if (hdrs & ICE_FLOW_SEG_HDR_IPV6) {
 259			src = !i ? (const unsigned long *)ice_ptypes_ipv6_ofos :
 260				(const unsigned long *)ice_ptypes_ipv6_il;
 261			bitmap_and(params->ptypes, params->ptypes, src,
 262				   ICE_FLOW_PTYPE_MAX);
 263		}
 264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 265		if (hdrs & ICE_FLOW_SEG_HDR_UDP) {
 266			src = (const unsigned long *)ice_ptypes_udp_il;
 267			bitmap_and(params->ptypes, params->ptypes, src,
 268				   ICE_FLOW_PTYPE_MAX);
 269		} else if (hdrs & ICE_FLOW_SEG_HDR_TCP) {
 270			bitmap_and(params->ptypes, params->ptypes,
 271				   (const unsigned long *)ice_ptypes_tcp_il,
 272				   ICE_FLOW_PTYPE_MAX);
 273		} else if (hdrs & ICE_FLOW_SEG_HDR_SCTP) {
 274			src = (const unsigned long *)ice_ptypes_sctp_il;
 275			bitmap_and(params->ptypes, params->ptypes, src,
 276				   ICE_FLOW_PTYPE_MAX);
 
 
 
 
 
 
 
 277		} else if (hdrs & ICE_FLOW_SEG_HDR_GRE) {
 278			if (!i) {
 279				src = (const unsigned long *)ice_ptypes_gre_of;
 280				bitmap_and(params->ptypes, params->ptypes,
 281					   src, ICE_FLOW_PTYPE_MAX);
 282			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 283		}
 284	}
 285
 286	return 0;
 287}
 288
 289/**
 290 * ice_flow_xtract_fld - Create an extraction sequence entry for the given field
 291 * @hw: pointer to the HW struct
 292 * @params: information about the flow to be processed
 293 * @seg: packet segment index of the field to be extracted
 294 * @fld: ID of field to be extracted
 
 295 *
 296 * This function determines the protocol ID, offset, and size of the given
 297 * field. It then allocates one or more extraction sequence entries for the
 298 * given field, and fill the entries with protocol ID and offset information.
 299 */
 300static enum ice_status
 301ice_flow_xtract_fld(struct ice_hw *hw, struct ice_flow_prof_params *params,
 302		    u8 seg, enum ice_flow_field fld)
 303{
 
 304	enum ice_prot_id prot_id = ICE_PROT_ID_INVAL;
 305	u8 fv_words = hw->blk[params->blk].es.fvw;
 306	struct ice_flow_fld_info *flds;
 307	u16 cnt, ese_bits, i;
 
 
 308	u16 off;
 309
 310	flds = params->prof->segs[seg].fields;
 311
 312	switch (fld) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 313	case ICE_FLOW_FIELD_IDX_IPV4_SA:
 314	case ICE_FLOW_FIELD_IDX_IPV4_DA:
 315		prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
 316		break;
 317	case ICE_FLOW_FIELD_IDX_IPV6_SA:
 318	case ICE_FLOW_FIELD_IDX_IPV6_DA:
 319		prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
 320		break;
 321	case ICE_FLOW_FIELD_IDX_TCP_SRC_PORT:
 322	case ICE_FLOW_FIELD_IDX_TCP_DST_PORT:
 
 323		prot_id = ICE_PROT_TCP_IL;
 324		break;
 325	case ICE_FLOW_FIELD_IDX_UDP_SRC_PORT:
 326	case ICE_FLOW_FIELD_IDX_UDP_DST_PORT:
 327		prot_id = ICE_PROT_UDP_IL_OR_S;
 328		break;
 329	case ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT:
 330	case ICE_FLOW_FIELD_IDX_SCTP_DST_PORT:
 331		prot_id = ICE_PROT_SCTP_IL;
 332		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 333	case ICE_FLOW_FIELD_IDX_GRE_KEYID:
 334		prot_id = ICE_PROT_GRE_OF;
 335		break;
 336	default:
 337		return ICE_ERR_NOT_IMPL;
 338	}
 339
 340	/* Each extraction sequence entry is a word in size, and extracts a
 341	 * word-aligned offset from a protocol header.
 342	 */
 343	ese_bits = ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE;
 344
 345	flds[fld].xtrct.prot_id = prot_id;
 346	flds[fld].xtrct.off = (ice_flds_info[fld].off / ese_bits) *
 347		ICE_FLOW_FV_EXTRACT_SZ;
 348	flds[fld].xtrct.disp = (u8)(ice_flds_info[fld].off % ese_bits);
 349	flds[fld].xtrct.idx = params->es_cnt;
 
 350
 351	/* Adjust the next field-entry index after accommodating the number of
 352	 * entries this field consumes
 353	 */
 354	cnt = DIV_ROUND_UP(flds[fld].xtrct.disp + ice_flds_info[fld].size,
 355			   ese_bits);
 356
 357	/* Fill in the extraction sequence entries needed for this field */
 358	off = flds[fld].xtrct.off;
 
 359	for (i = 0; i < cnt; i++) {
 360		u8 idx;
 
 
 
 
 
 
 
 361
 362		/* Make sure the number of extraction sequence required
 363		 * does not exceed the block's capability
 364		 */
 365		if (params->es_cnt >= fv_words)
 366			return ICE_ERR_MAX_LIMIT;
 367
 368		/* some blocks require a reversed field vector layout */
 369		if (hw->blk[params->blk].es.reverse)
 370			idx = fv_words - params->es_cnt - 1;
 371		else
 372			idx = params->es_cnt;
 373
 374		params->es[idx].prot_id = prot_id;
 375		params->es[idx].off = off;
 376		params->es_cnt++;
 
 
 377
 378		off += ICE_FLOW_FV_EXTRACT_SZ;
 379	}
 380
 381	return 0;
 382}
 383
 384/**
 385 * ice_flow_xtract_raws - Create extract sequence entries for raw bytes
 386 * @hw: pointer to the HW struct
 387 * @params: information about the flow to be processed
 388 * @seg: index of packet segment whose raw fields are to be be extracted
 389 */
 390static enum ice_status
 391ice_flow_xtract_raws(struct ice_hw *hw, struct ice_flow_prof_params *params,
 392		     u8 seg)
 393{
 394	u16 fv_words;
 395	u16 hdrs_sz;
 396	u8 i;
 397
 398	if (!params->prof->segs[seg].raws_cnt)
 399		return 0;
 400
 401	if (params->prof->segs[seg].raws_cnt >
 402	    ARRAY_SIZE(params->prof->segs[seg].raws))
 403		return ICE_ERR_MAX_LIMIT;
 404
 405	/* Offsets within the segment headers are not supported */
 406	hdrs_sz = ice_flow_calc_seg_sz(params, seg);
 407	if (!hdrs_sz)
 408		return ICE_ERR_PARAM;
 409
 410	fv_words = hw->blk[params->blk].es.fvw;
 411
 412	for (i = 0; i < params->prof->segs[seg].raws_cnt; i++) {
 413		struct ice_flow_seg_fld_raw *raw;
 414		u16 off, cnt, j;
 415
 416		raw = &params->prof->segs[seg].raws[i];
 417
 418		/* Storing extraction information */
 419		raw->info.xtrct.prot_id = ICE_PROT_MAC_OF_OR_S;
 420		raw->info.xtrct.off = (raw->off / ICE_FLOW_FV_EXTRACT_SZ) *
 421			ICE_FLOW_FV_EXTRACT_SZ;
 422		raw->info.xtrct.disp = (raw->off % ICE_FLOW_FV_EXTRACT_SZ) *
 423			BITS_PER_BYTE;
 424		raw->info.xtrct.idx = params->es_cnt;
 425
 426		/* Determine the number of field vector entries this raw field
 427		 * consumes.
 428		 */
 429		cnt = DIV_ROUND_UP(raw->info.xtrct.disp +
 430				   (raw->info.src.last * BITS_PER_BYTE),
 431				   (ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE));
 432		off = raw->info.xtrct.off;
 433		for (j = 0; j < cnt; j++) {
 434			u16 idx;
 435
 436			/* Make sure the number of extraction sequence required
 437			 * does not exceed the block's capability
 438			 */
 439			if (params->es_cnt >= hw->blk[params->blk].es.count ||
 440			    params->es_cnt >= ICE_MAX_FV_WORDS)
 441				return ICE_ERR_MAX_LIMIT;
 442
 443			/* some blocks require a reversed field vector layout */
 444			if (hw->blk[params->blk].es.reverse)
 445				idx = fv_words - params->es_cnt - 1;
 446			else
 447				idx = params->es_cnt;
 448
 449			params->es[idx].prot_id = raw->info.xtrct.prot_id;
 450			params->es[idx].off = off;
 451			params->es_cnt++;
 452			off += ICE_FLOW_FV_EXTRACT_SZ;
 453		}
 454	}
 455
 456	return 0;
 457}
 458
 459/**
 460 * ice_flow_create_xtrct_seq - Create an extraction sequence for given segments
 461 * @hw: pointer to the HW struct
 462 * @params: information about the flow to be processed
 463 *
 464 * This function iterates through all matched fields in the given segments, and
 465 * creates an extraction sequence for the fields.
 466 */
 467static enum ice_status
 468ice_flow_create_xtrct_seq(struct ice_hw *hw,
 469			  struct ice_flow_prof_params *params)
 470{
 471	struct ice_flow_prof *prof = params->prof;
 472	enum ice_status status = 0;
 473	u8 i;
 474
 475	for (i = 0; i < prof->segs_cnt; i++) {
 476		u8 j;
 
 477
 478		for_each_set_bit(j, (unsigned long *)&prof->segs[i].match,
 479				 ICE_FLOW_FIELD_IDX_MAX) {
 480			status = ice_flow_xtract_fld(hw, params, i,
 481						     (enum ice_flow_field)j);
 482			if (status)
 483				return status;
 
 484		}
 485
 486		/* Process raw matching bytes */
 487		status = ice_flow_xtract_raws(hw, params, i);
 488		if (status)
 489			return status;
 490	}
 491
 492	return status;
 493}
 494
 495/**
 496 * ice_flow_proc_segs - process all packet segments associated with a profile
 497 * @hw: pointer to the HW struct
 498 * @params: information about the flow to be processed
 499 */
 500static enum ice_status
 501ice_flow_proc_segs(struct ice_hw *hw, struct ice_flow_prof_params *params)
 502{
 503	enum ice_status status;
 504
 505	status = ice_flow_proc_seg_hdrs(params);
 506	if (status)
 507		return status;
 508
 509	status = ice_flow_create_xtrct_seq(hw, params);
 510	if (status)
 511		return status;
 512
 513	switch (params->blk) {
 514	case ICE_BLK_FD:
 515	case ICE_BLK_RSS:
 516		status = 0;
 517		break;
 518	default:
 519		return ICE_ERR_NOT_IMPL;
 520	}
 521
 522	return status;
 523}
 524
 525#define ICE_FLOW_FIND_PROF_CHK_FLDS	0x00000001
 526#define ICE_FLOW_FIND_PROF_CHK_VSI	0x00000002
 527#define ICE_FLOW_FIND_PROF_NOT_CHK_DIR	0x00000004
 
 528
 529/**
 530 * ice_flow_find_prof_conds - Find a profile matching headers and conditions
 531 * @hw: pointer to the HW struct
 532 * @blk: classification stage
 533 * @dir: flow direction
 534 * @segs: array of one or more packet segments that describe the flow
 535 * @segs_cnt: number of packet segments provided
 
 536 * @vsi_handle: software VSI handle to check VSI (ICE_FLOW_FIND_PROF_CHK_VSI)
 537 * @conds: additional conditions to be checked (ICE_FLOW_FIND_PROF_CHK_*)
 538 */
 539static struct ice_flow_prof *
 540ice_flow_find_prof_conds(struct ice_hw *hw, enum ice_block blk,
 541			 enum ice_flow_dir dir, struct ice_flow_seg_info *segs,
 542			 u8 segs_cnt, u16 vsi_handle, u32 conds)
 543{
 544	struct ice_flow_prof *p, *prof = NULL;
 545
 546	mutex_lock(&hw->fl_profs_locks[blk]);
 547	list_for_each_entry(p, &hw->fl_profs[blk], l_entry)
 548		if ((p->dir == dir || conds & ICE_FLOW_FIND_PROF_NOT_CHK_DIR) &&
 549		    segs_cnt && segs_cnt == p->segs_cnt) {
 550			u8 i;
 551
 552			/* Check for profile-VSI association if specified */
 553			if ((conds & ICE_FLOW_FIND_PROF_CHK_VSI) &&
 554			    ice_is_vsi_valid(hw, vsi_handle) &&
 555			    !test_bit(vsi_handle, p->vsis))
 556				continue;
 557
 
 
 
 
 
 558			/* Protocol headers must be checked. Matched fields are
 559			 * checked if specified.
 560			 */
 561			for (i = 0; i < segs_cnt; i++)
 562				if (segs[i].hdrs != p->segs[i].hdrs ||
 563				    ((conds & ICE_FLOW_FIND_PROF_CHK_FLDS) &&
 564				     segs[i].match != p->segs[i].match))
 565					break;
 566
 567			/* A match is found if all segments are matched */
 568			if (i == segs_cnt) {
 569				prof = p;
 570				break;
 571			}
 572		}
 573	mutex_unlock(&hw->fl_profs_locks[blk]);
 574
 575	return prof;
 576}
 577
 578/**
 579 * ice_flow_find_prof_id - Look up a profile with given profile ID
 580 * @hw: pointer to the HW struct
 581 * @blk: classification stage
 582 * @prof_id: unique ID to identify this flow profile
 583 */
 584static struct ice_flow_prof *
 585ice_flow_find_prof_id(struct ice_hw *hw, enum ice_block blk, u64 prof_id)
 586{
 587	struct ice_flow_prof *p;
 588
 589	list_for_each_entry(p, &hw->fl_profs[blk], l_entry)
 590		if (p->id == prof_id)
 591			return p;
 592
 593	return NULL;
 594}
 595
 596/**
 597 * ice_dealloc_flow_entry - Deallocate flow entry memory
 598 * @hw: pointer to the HW struct
 599 * @entry: flow entry to be removed
 600 */
 601static void
 602ice_dealloc_flow_entry(struct ice_hw *hw, struct ice_flow_entry *entry)
 603{
 604	if (!entry)
 605		return;
 606
 607	if (entry->entry)
 608		devm_kfree(ice_hw_to_dev(hw), entry->entry);
 609
 610	devm_kfree(ice_hw_to_dev(hw), entry);
 611}
 612
 613/**
 614 * ice_flow_rem_entry_sync - Remove a flow entry
 615 * @hw: pointer to the HW struct
 616 * @blk: classification stage
 617 * @entry: flow entry to be removed
 618 */
 619static enum ice_status
 620ice_flow_rem_entry_sync(struct ice_hw *hw, enum ice_block __always_unused blk,
 621			struct ice_flow_entry *entry)
 622{
 623	if (!entry)
 624		return ICE_ERR_BAD_PTR;
 625
 626	list_del(&entry->l_entry);
 627
 628	ice_dealloc_flow_entry(hw, entry);
 629
 630	return 0;
 631}
 632
 633/**
 634 * ice_flow_add_prof_sync - Add a flow profile for packet segments and fields
 635 * @hw: pointer to the HW struct
 636 * @blk: classification stage
 637 * @dir: flow direction
 638 * @prof_id: unique ID to identify this flow profile
 639 * @segs: array of one or more packet segments that describe the flow
 640 * @segs_cnt: number of packet segments provided
 
 641 * @prof: stores the returned flow profile added
 642 *
 643 * Assumption: the caller has acquired the lock to the profile list
 644 */
 645static enum ice_status
 646ice_flow_add_prof_sync(struct ice_hw *hw, enum ice_block blk,
 647		       enum ice_flow_dir dir, u64 prof_id,
 648		       struct ice_flow_seg_info *segs, u8 segs_cnt,
 649		       struct ice_flow_prof **prof)
 650{
 651	struct ice_flow_prof_params params;
 652	enum ice_status status;
 
 
 653	u8 i;
 654
 655	if (!prof)
 656		return ICE_ERR_BAD_PTR;
 657
 658	memset(&params, 0, sizeof(params));
 659	params.prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*params.prof),
 660				   GFP_KERNEL);
 661	if (!params.prof)
 662		return ICE_ERR_NO_MEMORY;
 
 
 
 
 
 
 
 
 
 
 663
 664	/* initialize extraction sequence to all invalid (0xff) */
 665	for (i = 0; i < ICE_MAX_FV_WORDS; i++) {
 666		params.es[i].prot_id = ICE_PROT_INVALID;
 667		params.es[i].off = ICE_FV_OFFSET_INVAL;
 668	}
 669
 670	params.blk = blk;
 671	params.prof->id = prof_id;
 672	params.prof->dir = dir;
 673	params.prof->segs_cnt = segs_cnt;
 
 674
 675	/* Make a copy of the segments that need to be persistent in the flow
 676	 * profile instance
 677	 */
 678	for (i = 0; i < segs_cnt; i++)
 679		memcpy(&params.prof->segs[i], &segs[i], sizeof(*segs));
 680
 681	status = ice_flow_proc_segs(hw, &params);
 682	if (status) {
 683		ice_debug(hw, ICE_DBG_FLOW,
 684			  "Error processing a flow's packet segments\n");
 685		goto out;
 686	}
 687
 688	/* Add a HW profile for this flow profile */
 689	status = ice_add_prof(hw, blk, prof_id, (u8 *)params.ptypes, params.es);
 
 
 690	if (status) {
 691		ice_debug(hw, ICE_DBG_FLOW, "Error adding a HW flow profile\n");
 692		goto out;
 693	}
 694
 695	INIT_LIST_HEAD(&params.prof->entries);
 696	mutex_init(&params.prof->entries_lock);
 697	*prof = params.prof;
 
 698
 699out:
 700	if (status)
 701		devm_kfree(ice_hw_to_dev(hw), params.prof);
 
 
 702
 703	return status;
 704}
 705
 706/**
 707 * ice_flow_rem_prof_sync - remove a flow profile
 708 * @hw: pointer to the hardware structure
 709 * @blk: classification stage
 710 * @prof: pointer to flow profile to remove
 711 *
 712 * Assumption: the caller has acquired the lock to the profile list
 713 */
 714static enum ice_status
 715ice_flow_rem_prof_sync(struct ice_hw *hw, enum ice_block blk,
 716		       struct ice_flow_prof *prof)
 717{
 718	enum ice_status status;
 719
 720	/* Remove all remaining flow entries before removing the flow profile */
 721	if (!list_empty(&prof->entries)) {
 722		struct ice_flow_entry *e, *t;
 723
 724		mutex_lock(&prof->entries_lock);
 725
 726		list_for_each_entry_safe(e, t, &prof->entries, l_entry) {
 727			status = ice_flow_rem_entry_sync(hw, blk, e);
 728			if (status)
 729				break;
 730		}
 731
 732		mutex_unlock(&prof->entries_lock);
 733	}
 734
 735	/* Remove all hardware profiles associated with this flow profile */
 736	status = ice_rem_prof(hw, blk, prof->id);
 737	if (!status) {
 
 738		list_del(&prof->l_entry);
 739		mutex_destroy(&prof->entries_lock);
 740		devm_kfree(ice_hw_to_dev(hw), prof);
 741	}
 742
 743	return status;
 744}
 745
 746/**
 747 * ice_flow_assoc_prof - associate a VSI with a flow profile
 748 * @hw: pointer to the hardware structure
 749 * @blk: classification stage
 750 * @prof: pointer to flow profile
 751 * @vsi_handle: software VSI handle
 752 *
 753 * Assumption: the caller has acquired the lock to the profile list
 754 * and the software VSI handle has been validated
 755 */
 756static enum ice_status
 757ice_flow_assoc_prof(struct ice_hw *hw, enum ice_block blk,
 758		    struct ice_flow_prof *prof, u16 vsi_handle)
 759{
 760	enum ice_status status = 0;
 761
 762	if (!test_bit(vsi_handle, prof->vsis)) {
 763		status = ice_add_prof_id_flow(hw, blk,
 764					      ice_get_hw_vsi_num(hw,
 765								 vsi_handle),
 766					      prof->id);
 767		if (!status)
 768			set_bit(vsi_handle, prof->vsis);
 769		else
 770			ice_debug(hw, ICE_DBG_FLOW,
 771				  "HW profile add failed, %d\n",
 772				  status);
 773	}
 774
 775	return status;
 776}
 777
 778/**
 779 * ice_flow_disassoc_prof - disassociate a VSI from a flow profile
 780 * @hw: pointer to the hardware structure
 781 * @blk: classification stage
 782 * @prof: pointer to flow profile
 783 * @vsi_handle: software VSI handle
 784 *
 785 * Assumption: the caller has acquired the lock to the profile list
 786 * and the software VSI handle has been validated
 787 */
 788static enum ice_status
 789ice_flow_disassoc_prof(struct ice_hw *hw, enum ice_block blk,
 790		       struct ice_flow_prof *prof, u16 vsi_handle)
 791{
 792	enum ice_status status = 0;
 793
 794	if (test_bit(vsi_handle, prof->vsis)) {
 795		status = ice_rem_prof_id_flow(hw, blk,
 796					      ice_get_hw_vsi_num(hw,
 797								 vsi_handle),
 798					      prof->id);
 799		if (!status)
 800			clear_bit(vsi_handle, prof->vsis);
 801		else
 802			ice_debug(hw, ICE_DBG_FLOW,
 803				  "HW profile remove failed, %d\n",
 804				  status);
 805	}
 806
 807	return status;
 808}
 809
 810/**
 811 * ice_flow_add_prof - Add a flow profile for packet segments and matched fields
 812 * @hw: pointer to the HW struct
 813 * @blk: classification stage
 814 * @dir: flow direction
 815 * @prof_id: unique ID to identify this flow profile
 816 * @segs: array of one or more packet segments that describe the flow
 817 * @segs_cnt: number of packet segments provided
 
 818 * @prof: stores the returned flow profile added
 819 */
 820enum ice_status
 821ice_flow_add_prof(struct ice_hw *hw, enum ice_block blk, enum ice_flow_dir dir,
 822		  u64 prof_id, struct ice_flow_seg_info *segs, u8 segs_cnt,
 823		  struct ice_flow_prof **prof)
 824{
 825	enum ice_status status;
 826
 827	if (segs_cnt > ICE_FLOW_SEG_MAX)
 828		return ICE_ERR_MAX_LIMIT;
 829
 830	if (!segs_cnt)
 831		return ICE_ERR_PARAM;
 832
 833	if (!segs)
 834		return ICE_ERR_BAD_PTR;
 835
 836	status = ice_flow_val_hdrs(segs, segs_cnt);
 837	if (status)
 838		return status;
 839
 840	mutex_lock(&hw->fl_profs_locks[blk]);
 841
 842	status = ice_flow_add_prof_sync(hw, blk, dir, prof_id, segs, segs_cnt,
 843					prof);
 844	if (!status)
 845		list_add(&(*prof)->l_entry, &hw->fl_profs[blk]);
 846
 847	mutex_unlock(&hw->fl_profs_locks[blk]);
 848
 849	return status;
 850}
 851
 852/**
 853 * ice_flow_rem_prof - Remove a flow profile and all entries associated with it
 854 * @hw: pointer to the HW struct
 855 * @blk: the block for which the flow profile is to be removed
 856 * @prof_id: unique ID of the flow profile to be removed
 857 */
 858enum ice_status
 859ice_flow_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 prof_id)
 860{
 861	struct ice_flow_prof *prof;
 862	enum ice_status status;
 863
 864	mutex_lock(&hw->fl_profs_locks[blk]);
 865
 866	prof = ice_flow_find_prof_id(hw, blk, prof_id);
 867	if (!prof) {
 868		status = ICE_ERR_DOES_NOT_EXIST;
 869		goto out;
 870	}
 871
 872	/* prof becomes invalid after the call */
 873	status = ice_flow_rem_prof_sync(hw, blk, prof);
 874
 875out:
 876	mutex_unlock(&hw->fl_profs_locks[blk]);
 877
 878	return status;
 879}
 880
 881/**
 882 * ice_flow_add_entry - Add a flow entry
 883 * @hw: pointer to the HW struct
 884 * @blk: classification stage
 885 * @prof_id: ID of the profile to add a new flow entry to
 886 * @entry_id: unique ID to identify this flow entry
 887 * @vsi_handle: software VSI handle for the flow entry
 888 * @prio: priority of the flow entry
 889 * @data: pointer to a data buffer containing flow entry's match values/masks
 890 * @entry_h: pointer to buffer that receives the new flow entry's handle
 891 */
 892enum ice_status
 893ice_flow_add_entry(struct ice_hw *hw, enum ice_block blk, u64 prof_id,
 894		   u64 entry_id, u16 vsi_handle, enum ice_flow_priority prio,
 895		   void *data, u64 *entry_h)
 896{
 897	struct ice_flow_entry *e = NULL;
 898	struct ice_flow_prof *prof;
 899	enum ice_status status;
 900
 901	/* No flow entry data is expected for RSS */
 902	if (!entry_h || (!data && blk != ICE_BLK_RSS))
 903		return ICE_ERR_BAD_PTR;
 904
 905	if (!ice_is_vsi_valid(hw, vsi_handle))
 906		return ICE_ERR_PARAM;
 907
 908	mutex_lock(&hw->fl_profs_locks[blk]);
 909
 910	prof = ice_flow_find_prof_id(hw, blk, prof_id);
 911	if (!prof) {
 912		status = ICE_ERR_DOES_NOT_EXIST;
 913	} else {
 914		/* Allocate memory for the entry being added and associate
 915		 * the VSI to the found flow profile
 916		 */
 917		e = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*e), GFP_KERNEL);
 918		if (!e)
 919			status = ICE_ERR_NO_MEMORY;
 920		else
 921			status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
 922	}
 923
 924	mutex_unlock(&hw->fl_profs_locks[blk]);
 925	if (status)
 926		goto out;
 927
 928	e->id = entry_id;
 929	e->vsi_handle = vsi_handle;
 930	e->prof = prof;
 931	e->priority = prio;
 932
 933	switch (blk) {
 934	case ICE_BLK_FD:
 935	case ICE_BLK_RSS:
 936		break;
 937	default:
 938		status = ICE_ERR_NOT_IMPL;
 939		goto out;
 940	}
 941
 942	mutex_lock(&prof->entries_lock);
 943	list_add(&e->l_entry, &prof->entries);
 944	mutex_unlock(&prof->entries_lock);
 945
 946	*entry_h = ICE_FLOW_ENTRY_HNDL(e);
 947
 948out:
 949	if (status && e) {
 950		if (e->entry)
 951			devm_kfree(ice_hw_to_dev(hw), e->entry);
 952		devm_kfree(ice_hw_to_dev(hw), e);
 953	}
 954
 955	return status;
 956}
 957
 958/**
 959 * ice_flow_rem_entry - Remove a flow entry
 960 * @hw: pointer to the HW struct
 961 * @blk: classification stage
 962 * @entry_h: handle to the flow entry to be removed
 963 */
 964enum ice_status ice_flow_rem_entry(struct ice_hw *hw, enum ice_block blk,
 965				   u64 entry_h)
 966{
 967	struct ice_flow_entry *entry;
 968	struct ice_flow_prof *prof;
 969	enum ice_status status = 0;
 970
 971	if (entry_h == ICE_FLOW_ENTRY_HANDLE_INVAL)
 972		return ICE_ERR_PARAM;
 973
 974	entry = ICE_FLOW_ENTRY_PTR(entry_h);
 975
 976	/* Retain the pointer to the flow profile as the entry will be freed */
 977	prof = entry->prof;
 978
 979	if (prof) {
 980		mutex_lock(&prof->entries_lock);
 981		status = ice_flow_rem_entry_sync(hw, blk, entry);
 982		mutex_unlock(&prof->entries_lock);
 983	}
 984
 985	return status;
 986}
 987
 988/**
 989 * ice_flow_set_fld_ext - specifies locations of field from entry's input buffer
 990 * @seg: packet segment the field being set belongs to
 991 * @fld: field to be set
 992 * @field_type: type of the field
 993 * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
 994 *           entry's input buffer
 995 * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
 996 *            input buffer
 997 * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
 998 *            entry's input buffer
 999 *
1000 * This helper function stores information of a field being matched, including
1001 * the type of the field and the locations of the value to match, the mask, and
1002 * and the upper-bound value in the start of the input buffer for a flow entry.
1003 * This function should only be used for fixed-size data structures.
1004 *
1005 * This function also opportunistically determines the protocol headers to be
1006 * present based on the fields being set. Some fields cannot be used alone to
1007 * determine the protocol headers present. Sometimes, fields for particular
1008 * protocol headers are not matched. In those cases, the protocol headers
1009 * must be explicitly set.
1010 */
1011static void
1012ice_flow_set_fld_ext(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
1013		     enum ice_flow_fld_match_type field_type, u16 val_loc,
1014		     u16 mask_loc, u16 last_loc)
1015{
1016	u64 bit = BIT_ULL(fld);
1017
1018	seg->match |= bit;
1019	if (field_type == ICE_FLOW_FLD_TYPE_RANGE)
1020		seg->range |= bit;
1021
1022	seg->fields[fld].type = field_type;
1023	seg->fields[fld].src.val = val_loc;
1024	seg->fields[fld].src.mask = mask_loc;
1025	seg->fields[fld].src.last = last_loc;
1026
1027	ICE_FLOW_SET_HDRS(seg, ice_flds_info[fld].hdr);
1028}
1029
1030/**
1031 * ice_flow_set_fld - specifies locations of field from entry's input buffer
1032 * @seg: packet segment the field being set belongs to
1033 * @fld: field to be set
1034 * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
1035 *           entry's input buffer
1036 * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
1037 *            input buffer
1038 * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
1039 *            entry's input buffer
1040 * @range: indicate if field being matched is to be in a range
1041 *
1042 * This function specifies the locations, in the form of byte offsets from the
1043 * start of the input buffer for a flow entry, from where the value to match,
1044 * the mask value, and upper value can be extracted. These locations are then
1045 * stored in the flow profile. When adding a flow entry associated with the
1046 * flow profile, these locations will be used to quickly extract the values and
1047 * create the content of a match entry. This function should only be used for
1048 * fixed-size data structures.
1049 */
1050void
1051ice_flow_set_fld(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
1052		 u16 val_loc, u16 mask_loc, u16 last_loc, bool range)
1053{
1054	enum ice_flow_fld_match_type t = range ?
1055		ICE_FLOW_FLD_TYPE_RANGE : ICE_FLOW_FLD_TYPE_REG;
1056
1057	ice_flow_set_fld_ext(seg, fld, t, val_loc, mask_loc, last_loc);
1058}
1059
1060/**
1061 * ice_flow_add_fld_raw - sets locations of a raw field from entry's input buf
1062 * @seg: packet segment the field being set belongs to
1063 * @off: offset of the raw field from the beginning of the segment in bytes
1064 * @len: length of the raw pattern to be matched
1065 * @val_loc: location of the value to match from entry's input buffer
1066 * @mask_loc: location of mask value from entry's input buffer
1067 *
1068 * This function specifies the offset of the raw field to be match from the
1069 * beginning of the specified packet segment, and the locations, in the form of
1070 * byte offsets from the start of the input buffer for a flow entry, from where
1071 * the value to match and the mask value to be extracted. These locations are
1072 * then stored in the flow profile. When adding flow entries to the associated
1073 * flow profile, these locations can be used to quickly extract the values to
1074 * create the content of a match entry. This function should only be used for
1075 * fixed-size data structures.
1076 */
1077void
1078ice_flow_add_fld_raw(struct ice_flow_seg_info *seg, u16 off, u8 len,
1079		     u16 val_loc, u16 mask_loc)
1080{
1081	if (seg->raws_cnt < ICE_FLOW_SEG_RAW_FLD_MAX) {
1082		seg->raws[seg->raws_cnt].off = off;
1083		seg->raws[seg->raws_cnt].info.type = ICE_FLOW_FLD_TYPE_SIZE;
1084		seg->raws[seg->raws_cnt].info.src.val = val_loc;
1085		seg->raws[seg->raws_cnt].info.src.mask = mask_loc;
1086		/* The "last" field is used to store the length of the field */
1087		seg->raws[seg->raws_cnt].info.src.last = len;
1088	}
1089
1090	/* Overflows of "raws" will be handled as an error condition later in
1091	 * the flow when this information is processed.
1092	 */
1093	seg->raws_cnt++;
1094}
1095
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1096#define ICE_FLOW_RSS_SEG_HDR_L3_MASKS \
1097	(ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6)
1098
1099#define ICE_FLOW_RSS_SEG_HDR_L4_MASKS \
1100	(ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP)
1101
1102#define ICE_FLOW_RSS_SEG_HDR_VAL_MASKS \
1103	(ICE_FLOW_RSS_SEG_HDR_L3_MASKS | \
 
1104	 ICE_FLOW_RSS_SEG_HDR_L4_MASKS)
1105
1106/**
1107 * ice_flow_set_rss_seg_info - setup packet segments for RSS
1108 * @segs: pointer to the flow field segment(s)
1109 * @hash_fields: fields to be hashed on for the segment(s)
1110 * @flow_hdr: protocol header fields within a packet segment
1111 *
1112 * Helper function to extract fields from hash bitmap and use flow
1113 * header value to set flow field segment for further use in flow
1114 * profile entry or removal.
1115 */
1116static enum ice_status
1117ice_flow_set_rss_seg_info(struct ice_flow_seg_info *segs, u64 hash_fields,
1118			  u32 flow_hdr)
1119{
 
1120	u64 val;
1121	u8 i;
 
 
 
1122
1123	for_each_set_bit(i, (unsigned long *)&hash_fields,
1124			 ICE_FLOW_FIELD_IDX_MAX)
1125		ice_flow_set_fld(segs, (enum ice_flow_field)i,
1126				 ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL,
1127				 ICE_FLOW_FLD_OFF_INVAL, false);
1128
1129	ICE_FLOW_SET_HDRS(segs, flow_hdr);
1130
1131	if (segs->hdrs & ~ICE_FLOW_RSS_SEG_HDR_VAL_MASKS)
1132		return ICE_ERR_PARAM;
 
 
 
 
 
 
 
 
 
1133
1134	val = (u64)(segs->hdrs & ICE_FLOW_RSS_SEG_HDR_L3_MASKS);
1135	if (val && !is_power_of_2(val))
1136		return ICE_ERR_CFG;
1137
1138	val = (u64)(segs->hdrs & ICE_FLOW_RSS_SEG_HDR_L4_MASKS);
1139	if (val && !is_power_of_2(val))
1140		return ICE_ERR_CFG;
1141
1142	return 0;
1143}
1144
1145/**
1146 * ice_rem_vsi_rss_list - remove VSI from RSS list
1147 * @hw: pointer to the hardware structure
1148 * @vsi_handle: software VSI handle
1149 *
1150 * Remove the VSI from all RSS configurations in the list.
1151 */
1152void ice_rem_vsi_rss_list(struct ice_hw *hw, u16 vsi_handle)
1153{
1154	struct ice_rss_cfg *r, *tmp;
1155
1156	if (list_empty(&hw->rss_list_head))
1157		return;
1158
1159	mutex_lock(&hw->rss_locks);
1160	list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry)
1161		if (test_and_clear_bit(vsi_handle, r->vsis))
1162			if (bitmap_empty(r->vsis, ICE_MAX_VSI)) {
1163				list_del(&r->l_entry);
1164				devm_kfree(ice_hw_to_dev(hw), r);
1165			}
1166	mutex_unlock(&hw->rss_locks);
1167}
1168
1169/**
1170 * ice_rem_vsi_rss_cfg - remove RSS configurations associated with VSI
1171 * @hw: pointer to the hardware structure
1172 * @vsi_handle: software VSI handle
1173 *
1174 * This function will iterate through all flow profiles and disassociate
1175 * the VSI from that profile. If the flow profile has no VSIs it will
1176 * be removed.
1177 */
1178enum ice_status ice_rem_vsi_rss_cfg(struct ice_hw *hw, u16 vsi_handle)
1179{
1180	const enum ice_block blk = ICE_BLK_RSS;
1181	struct ice_flow_prof *p, *t;
1182	enum ice_status status = 0;
1183
1184	if (!ice_is_vsi_valid(hw, vsi_handle))
1185		return ICE_ERR_PARAM;
1186
1187	if (list_empty(&hw->fl_profs[blk]))
1188		return 0;
1189
1190	mutex_lock(&hw->rss_locks);
1191	list_for_each_entry_safe(p, t, &hw->fl_profs[blk], l_entry)
1192		if (test_bit(vsi_handle, p->vsis)) {
1193			status = ice_flow_disassoc_prof(hw, blk, p, vsi_handle);
1194			if (status)
1195				break;
1196
1197			if (bitmap_empty(p->vsis, ICE_MAX_VSI)) {
1198				status = ice_flow_rem_prof(hw, blk, p->id);
1199				if (status)
1200					break;
1201			}
1202		}
1203	mutex_unlock(&hw->rss_locks);
1204
1205	return status;
1206}
1207
1208/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1209 * ice_rem_rss_list - remove RSS configuration from list
1210 * @hw: pointer to the hardware structure
1211 * @vsi_handle: software VSI handle
1212 * @prof: pointer to flow profile
1213 *
1214 * Assumption: lock has already been acquired for RSS list
1215 */
1216static void
1217ice_rem_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof)
1218{
 
1219	struct ice_rss_cfg *r, *tmp;
1220
1221	/* Search for RSS hash fields associated to the VSI that match the
1222	 * hash configurations associated to the flow profile. If found
1223	 * remove from the RSS entry list of the VSI context and delete entry.
1224	 */
 
1225	list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry)
1226		if (r->hashed_flds == prof->segs[prof->segs_cnt - 1].match &&
1227		    r->packet_hdr == prof->segs[prof->segs_cnt - 1].hdrs) {
1228			clear_bit(vsi_handle, r->vsis);
1229			if (bitmap_empty(r->vsis, ICE_MAX_VSI)) {
1230				list_del(&r->l_entry);
1231				devm_kfree(ice_hw_to_dev(hw), r);
1232			}
1233			return;
1234		}
1235}
1236
1237/**
1238 * ice_add_rss_list - add RSS configuration to list
1239 * @hw: pointer to the hardware structure
1240 * @vsi_handle: software VSI handle
1241 * @prof: pointer to flow profile
1242 *
1243 * Assumption: lock has already been acquired for RSS list
1244 */
1245static enum ice_status
1246ice_add_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof)
1247{
 
1248	struct ice_rss_cfg *r, *rss_cfg;
1249
 
1250	list_for_each_entry(r, &hw->rss_list_head, l_entry)
1251		if (r->hashed_flds == prof->segs[prof->segs_cnt - 1].match &&
1252		    r->packet_hdr == prof->segs[prof->segs_cnt - 1].hdrs) {
1253			set_bit(vsi_handle, r->vsis);
1254			return 0;
1255		}
1256
1257	rss_cfg = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rss_cfg),
1258			       GFP_KERNEL);
1259	if (!rss_cfg)
1260		return ICE_ERR_NO_MEMORY;
1261
1262	rss_cfg->hashed_flds = prof->segs[prof->segs_cnt - 1].match;
1263	rss_cfg->packet_hdr = prof->segs[prof->segs_cnt - 1].hdrs;
 
 
1264	set_bit(vsi_handle, rss_cfg->vsis);
1265
1266	list_add_tail(&rss_cfg->l_entry, &hw->rss_list_head);
1267
1268	return 0;
1269}
1270
1271#define ICE_FLOW_PROF_HASH_S	0
1272#define ICE_FLOW_PROF_HASH_M	(0xFFFFFFFFULL << ICE_FLOW_PROF_HASH_S)
1273#define ICE_FLOW_PROF_HDR_S	32
1274#define ICE_FLOW_PROF_HDR_M	(0x3FFFFFFFULL << ICE_FLOW_PROF_HDR_S)
1275#define ICE_FLOW_PROF_ENCAP_S	63
1276#define ICE_FLOW_PROF_ENCAP_M	(BIT_ULL(ICE_FLOW_PROF_ENCAP_S))
1277
1278#define ICE_RSS_OUTER_HEADERS	1
1279#define ICE_RSS_INNER_HEADERS	2
1280
1281/* Flow profile ID format:
1282 * [0:31] - Packet match fields
1283 * [32:62] - Protocol header
1284 * [63] - Encapsulation flag, 0 if non-tunneled, 1 if tunneled
1285 */
1286#define ICE_FLOW_GEN_PROFID(hash, hdr, segs_cnt) \
1287	(u64)(((u64)(hash) & ICE_FLOW_PROF_HASH_M) | \
1288	      (((u64)(hdr) << ICE_FLOW_PROF_HDR_S) & ICE_FLOW_PROF_HDR_M) | \
1289	      ((u8)((segs_cnt) - 1) ? ICE_FLOW_PROF_ENCAP_M : 0))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1290
1291/**
1292 * ice_add_rss_cfg_sync - add an RSS configuration
1293 * @hw: pointer to the hardware structure
1294 * @vsi_handle: software VSI handle
1295 * @hashed_flds: hash bit fields (ICE_FLOW_HASH_*) to configure
1296 * @addl_hdrs: protocol header fields
1297 * @segs_cnt: packet segment count
1298 *
1299 * Assumption: lock has already been acquired for RSS list
1300 */
1301static enum ice_status
1302ice_add_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
1303		     u32 addl_hdrs, u8 segs_cnt)
1304{
1305	const enum ice_block blk = ICE_BLK_RSS;
1306	struct ice_flow_prof *prof = NULL;
1307	struct ice_flow_seg_info *segs;
1308	enum ice_status status;
 
1309
1310	if (!segs_cnt || segs_cnt > ICE_FLOW_SEG_MAX)
1311		return ICE_ERR_PARAM;
1312
1313	segs = kcalloc(segs_cnt, sizeof(*segs), GFP_KERNEL);
1314	if (!segs)
1315		return ICE_ERR_NO_MEMORY;
1316
1317	/* Construct the packet segment info from the hashed fields */
1318	status = ice_flow_set_rss_seg_info(&segs[segs_cnt - 1], hashed_flds,
1319					   addl_hdrs);
1320	if (status)
1321		goto exit;
1322
1323	/* Search for a flow profile that has matching headers, hash fields
1324	 * and has the input VSI associated to it. If found, no further
1325	 * operations required and exit.
1326	 */
1327	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
1328					vsi_handle,
1329					ICE_FLOW_FIND_PROF_CHK_FLDS |
 
1330					ICE_FLOW_FIND_PROF_CHK_VSI);
1331	if (prof)
1332		goto exit;
1333
1334	/* Check if a flow profile exists with the same protocol headers and
1335	 * associated with the input VSI. If so disassociate the VSI from
1336	 * this profile. The VSI will be added to a new profile created with
1337	 * the protocol header and new hash field configuration.
1338	 */
1339	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
1340					vsi_handle, ICE_FLOW_FIND_PROF_CHK_VSI);
 
1341	if (prof) {
1342		status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle);
1343		if (!status)
1344			ice_rem_rss_list(hw, vsi_handle, prof);
1345		else
1346			goto exit;
1347
1348		/* Remove profile if it has no VSIs associated */
1349		if (bitmap_empty(prof->vsis, ICE_MAX_VSI)) {
1350			status = ice_flow_rem_prof(hw, blk, prof->id);
1351			if (status)
1352				goto exit;
1353		}
1354	}
1355
1356	/* Search for a profile that has same match fields only. If this
1357	 * exists then associate the VSI to this profile.
1358	 */
1359	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
1360					vsi_handle,
 
1361					ICE_FLOW_FIND_PROF_CHK_FLDS);
1362	if (prof) {
1363		status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
1364		if (!status)
1365			status = ice_add_rss_list(hw, vsi_handle, prof);
1366		goto exit;
1367	}
1368
1369	/* Create a new flow profile with generated profile and packet
1370	 * segment information.
1371	 */
1372	status = ice_flow_add_prof(hw, blk, ICE_FLOW_RX,
1373				   ICE_FLOW_GEN_PROFID(hashed_flds,
1374						       segs[segs_cnt - 1].hdrs,
1375						       segs_cnt),
1376				   segs, segs_cnt, &prof);
1377	if (status)
1378		goto exit;
1379
 
 
1380	status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
1381	/* If association to a new flow profile failed then this profile can
1382	 * be removed.
1383	 */
1384	if (status) {
1385		ice_flow_rem_prof(hw, blk, prof->id);
1386		goto exit;
1387	}
1388
1389	status = ice_add_rss_list(hw, vsi_handle, prof);
1390
1391exit:
1392	kfree(segs);
1393	return status;
1394}
1395
1396/**
1397 * ice_add_rss_cfg - add an RSS configuration with specified hashed fields
1398 * @hw: pointer to the hardware structure
1399 * @vsi_handle: software VSI handle
1400 * @hashed_flds: hash bit fields (ICE_FLOW_HASH_*) to configure
1401 * @addl_hdrs: protocol header fields
1402 *
1403 * This function will generate a flow profile based on fields associated with
1404 * the input fields to hash on, the flow type and use the VSI number to add
1405 * a flow entry to the profile.
1406 */
1407enum ice_status
1408ice_add_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
1409		u32 addl_hdrs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1410{
1411	enum ice_status status;
 
 
 
 
1412
1413	if (hashed_flds == ICE_HASH_INVALID ||
1414	    !ice_is_vsi_valid(hw, vsi_handle))
1415		return ICE_ERR_PARAM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1416
1417	mutex_lock(&hw->rss_locks);
1418	status = ice_add_rss_cfg_sync(hw, vsi_handle, hashed_flds, addl_hdrs,
1419				      ICE_RSS_OUTER_HEADERS);
1420	if (!status)
1421		status = ice_add_rss_cfg_sync(hw, vsi_handle, hashed_flds,
1422					      addl_hdrs, ICE_RSS_INNER_HEADERS);
 
 
 
 
 
 
 
1423	mutex_unlock(&hw->rss_locks);
1424
1425	return status;
1426}
1427
1428/* Mapping of AVF hash bit fields to an L3-L4 hash combination.
1429 * As the ice_flow_avf_hdr_field represent individual bit shifts in a hash,
1430 * convert its values to their appropriate flow L3, L4 values.
1431 */
1432#define ICE_FLOW_AVF_RSS_IPV4_MASKS \
1433	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_OTHER) | \
1434	 BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV4))
1435#define ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS \
1436	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP_SYN_NO_ACK) | \
1437	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP))
1438#define ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS \
1439	(BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV4_UDP) | \
1440	 BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV4_UDP) | \
1441	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_UDP))
1442#define ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS \
1443	(ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS | \
1444	 ICE_FLOW_AVF_RSS_IPV4_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP))
1445
1446#define ICE_FLOW_AVF_RSS_IPV6_MASKS \
1447	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_OTHER) | \
1448	 BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV6))
1449#define ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS \
1450	(BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV6_UDP) | \
1451	 BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV6_UDP) | \
1452	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_UDP))
1453#define ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS \
1454	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP_SYN_NO_ACK) | \
1455	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP))
1456#define ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS \
1457	(ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS | \
1458	 ICE_FLOW_AVF_RSS_IPV6_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP))
1459
1460/**
1461 * ice_add_avf_rss_cfg - add an RSS configuration for AVF driver
1462 * @hw: pointer to the hardware structure
1463 * @vsi_handle: software VSI handle
1464 * @avf_hash: hash bit fields (ICE_AVF_FLOW_FIELD_*) to configure
1465 *
1466 * This function will take the hash bitmap provided by the AVF driver via a
1467 * message, convert it to ICE-compatible values, and configure RSS flow
1468 * profiles.
1469 */
1470enum ice_status
1471ice_add_avf_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 avf_hash)
1472{
1473	enum ice_status status = 0;
 
 
1474	u64 hash_flds;
1475
 
 
 
 
1476	if (avf_hash == ICE_AVF_FLOW_FIELD_INVALID ||
1477	    !ice_is_vsi_valid(hw, vsi_handle))
1478		return ICE_ERR_PARAM;
1479
1480	/* Make sure no unsupported bits are specified */
1481	if (avf_hash & ~(ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS |
1482			 ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS))
1483		return ICE_ERR_CFG;
1484
1485	hash_flds = avf_hash;
1486
1487	/* Always create an L3 RSS configuration for any L4 RSS configuration */
1488	if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS)
1489		hash_flds |= ICE_FLOW_AVF_RSS_IPV4_MASKS;
1490
1491	if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS)
1492		hash_flds |= ICE_FLOW_AVF_RSS_IPV6_MASKS;
1493
1494	/* Create the corresponding RSS configuration for each valid hash bit */
1495	while (hash_flds) {
1496		u64 rss_hash = ICE_HASH_INVALID;
1497
1498		if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS) {
1499			if (hash_flds & ICE_FLOW_AVF_RSS_IPV4_MASKS) {
1500				rss_hash = ICE_FLOW_HASH_IPV4;
1501				hash_flds &= ~ICE_FLOW_AVF_RSS_IPV4_MASKS;
1502			} else if (hash_flds &
1503				   ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS) {
1504				rss_hash = ICE_FLOW_HASH_IPV4 |
1505					ICE_FLOW_HASH_TCP_PORT;
1506				hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS;
1507			} else if (hash_flds &
1508				   ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS) {
1509				rss_hash = ICE_FLOW_HASH_IPV4 |
1510					ICE_FLOW_HASH_UDP_PORT;
1511				hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS;
1512			} else if (hash_flds &
1513				   BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP)) {
1514				rss_hash = ICE_FLOW_HASH_IPV4 |
1515					ICE_FLOW_HASH_SCTP_PORT;
1516				hash_flds &=
1517					~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP);
1518			}
1519		} else if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS) {
1520			if (hash_flds & ICE_FLOW_AVF_RSS_IPV6_MASKS) {
1521				rss_hash = ICE_FLOW_HASH_IPV6;
1522				hash_flds &= ~ICE_FLOW_AVF_RSS_IPV6_MASKS;
1523			} else if (hash_flds &
1524				   ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS) {
1525				rss_hash = ICE_FLOW_HASH_IPV6 |
1526					ICE_FLOW_HASH_TCP_PORT;
1527				hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS;
1528			} else if (hash_flds &
1529				   ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS) {
1530				rss_hash = ICE_FLOW_HASH_IPV6 |
1531					ICE_FLOW_HASH_UDP_PORT;
1532				hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS;
1533			} else if (hash_flds &
1534				   BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP)) {
1535				rss_hash = ICE_FLOW_HASH_IPV6 |
1536					ICE_FLOW_HASH_SCTP_PORT;
1537				hash_flds &=
1538					~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP);
1539			}
1540		}
1541
1542		if (rss_hash == ICE_HASH_INVALID)
1543			return ICE_ERR_OUT_OF_RANGE;
1544
1545		status = ice_add_rss_cfg(hw, vsi_handle, rss_hash,
1546					 ICE_FLOW_SEG_HDR_NONE);
 
 
 
1547		if (status)
1548			break;
1549	}
1550
1551	return status;
1552}
1553
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1554/**
1555 * ice_replay_rss_cfg - replay RSS configurations associated with VSI
1556 * @hw: pointer to the hardware structure
1557 * @vsi_handle: software VSI handle
1558 */
1559enum ice_status ice_replay_rss_cfg(struct ice_hw *hw, u16 vsi_handle)
1560{
1561	enum ice_status status = 0;
1562	struct ice_rss_cfg *r;
 
1563
1564	if (!ice_is_vsi_valid(hw, vsi_handle))
1565		return ICE_ERR_PARAM;
1566
1567	mutex_lock(&hw->rss_locks);
1568	list_for_each_entry(r, &hw->rss_list_head, l_entry) {
1569		if (test_bit(vsi_handle, r->vsis)) {
1570			status = ice_add_rss_cfg_sync(hw, vsi_handle,
1571						      r->hashed_flds,
1572						      r->packet_hdr,
1573						      ICE_RSS_OUTER_HEADERS);
1574			if (status)
1575				break;
1576			status = ice_add_rss_cfg_sync(hw, vsi_handle,
1577						      r->hashed_flds,
1578						      r->packet_hdr,
1579						      ICE_RSS_INNER_HEADERS);
1580			if (status)
1581				break;
1582		}
1583	}
1584	mutex_unlock(&hw->rss_locks);
1585
1586	return status;
1587}
1588
1589/**
1590 * ice_get_rss_cfg - returns hashed fields for the given header types
1591 * @hw: pointer to the hardware structure
1592 * @vsi_handle: software VSI handle
1593 * @hdrs: protocol header type
 
1594 *
1595 * This function will return the match fields of the first instance of flow
1596 * profile having the given header types and containing input VSI
1597 */
1598u64 ice_get_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u32 hdrs)
1599{
1600	u64 rss_hash = ICE_HASH_INVALID;
1601	struct ice_rss_cfg *r;
1602
1603	/* verify if the protocol header is non zero and VSI is valid */
1604	if (hdrs == ICE_FLOW_SEG_HDR_NONE || !ice_is_vsi_valid(hw, vsi_handle))
1605		return ICE_HASH_INVALID;
1606
1607	mutex_lock(&hw->rss_locks);
1608	list_for_each_entry(r, &hw->rss_list_head, l_entry)
1609		if (test_bit(vsi_handle, r->vsis) &&
1610		    r->packet_hdr == hdrs) {
1611			rss_hash = r->hashed_flds;
 
1612			break;
1613		}
1614	mutex_unlock(&hw->rss_locks);
1615
1616	return rss_hash;
1617}