Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
4 *
5 * Copyright © 2006 Texas Instruments.
6 *
7 * Port to 2.6.23 Copyright © 2008 by:
8 * Sander Huijsen <Shuijsen@optelecom-nkf.com>
9 * Troy Kisky <troy.kisky@boundarydevices.com>
10 * Dirk Behme <Dirk.Behme@gmail.com>
11 */
12
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/platform_device.h>
16#include <linux/err.h>
17#include <linux/iopoll.h>
18#include <linux/mtd/rawnand.h>
19#include <linux/mtd/partitions.h>
20#include <linux/slab.h>
21#include <linux/of.h>
22
23#include <linux/platform_data/mtd-davinci.h>
24#include <linux/platform_data/mtd-davinci-aemif.h>
25
26/*
27 * This is a device driver for the NAND flash controller found on the
28 * various DaVinci family chips. It handles up to four SoC chipselects,
29 * and some flavors of secondary chipselect (e.g. based on A12) as used
30 * with multichip packages.
31 *
32 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
33 * available on chips like the DM355 and OMAP-L137 and needed with the
34 * more error-prone MLC NAND chips.
35 *
36 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
37 * outputs in a "wire-AND" configuration, with no per-chip signals.
38 */
39struct davinci_nand_info {
40 struct nand_controller controller;
41 struct nand_chip chip;
42
43 struct platform_device *pdev;
44
45 bool is_readmode;
46
47 void __iomem *base;
48 void __iomem *vaddr;
49
50 void __iomem *current_cs;
51
52 uint32_t mask_chipsel;
53 uint32_t mask_ale;
54 uint32_t mask_cle;
55
56 uint32_t core_chipsel;
57
58 struct davinci_aemif_timing *timing;
59};
60
61static DEFINE_SPINLOCK(davinci_nand_lock);
62static bool ecc4_busy;
63
64static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd)
65{
66 return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip);
67}
68
69static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
70 int offset)
71{
72 return __raw_readl(info->base + offset);
73}
74
75static inline void davinci_nand_writel(struct davinci_nand_info *info,
76 int offset, unsigned long value)
77{
78 __raw_writel(value, info->base + offset);
79}
80
81/*----------------------------------------------------------------------*/
82
83/*
84 * 1-bit hardware ECC ... context maintained for each core chipselect
85 */
86
87static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
88{
89 struct davinci_nand_info *info = to_davinci_nand(mtd);
90
91 return davinci_nand_readl(info, NANDF1ECC_OFFSET
92 + 4 * info->core_chipsel);
93}
94
95static void nand_davinci_hwctl_1bit(struct nand_chip *chip, int mode)
96{
97 struct davinci_nand_info *info;
98 uint32_t nandcfr;
99 unsigned long flags;
100
101 info = to_davinci_nand(nand_to_mtd(chip));
102
103 /* Reset ECC hardware */
104 nand_davinci_readecc_1bit(nand_to_mtd(chip));
105
106 spin_lock_irqsave(&davinci_nand_lock, flags);
107
108 /* Restart ECC hardware */
109 nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
110 nandcfr |= BIT(8 + info->core_chipsel);
111 davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
112
113 spin_unlock_irqrestore(&davinci_nand_lock, flags);
114}
115
116/*
117 * Read hardware ECC value and pack into three bytes
118 */
119static int nand_davinci_calculate_1bit(struct nand_chip *chip,
120 const u_char *dat, u_char *ecc_code)
121{
122 unsigned int ecc_val = nand_davinci_readecc_1bit(nand_to_mtd(chip));
123 unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
124
125 /* invert so that erased block ecc is correct */
126 ecc24 = ~ecc24;
127 ecc_code[0] = (u_char)(ecc24);
128 ecc_code[1] = (u_char)(ecc24 >> 8);
129 ecc_code[2] = (u_char)(ecc24 >> 16);
130
131 return 0;
132}
133
134static int nand_davinci_correct_1bit(struct nand_chip *chip, u_char *dat,
135 u_char *read_ecc, u_char *calc_ecc)
136{
137 uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
138 (read_ecc[2] << 16);
139 uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
140 (calc_ecc[2] << 16);
141 uint32_t diff = eccCalc ^ eccNand;
142
143 if (diff) {
144 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
145 /* Correctable error */
146 if ((diff >> (12 + 3)) < chip->ecc.size) {
147 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
148 return 1;
149 } else {
150 return -EBADMSG;
151 }
152 } else if (!(diff & (diff - 1))) {
153 /* Single bit ECC error in the ECC itself,
154 * nothing to fix */
155 return 1;
156 } else {
157 /* Uncorrectable error */
158 return -EBADMSG;
159 }
160
161 }
162 return 0;
163}
164
165/*----------------------------------------------------------------------*/
166
167/*
168 * 4-bit hardware ECC ... context maintained over entire AEMIF
169 *
170 * This is a syndrome engine, but we avoid NAND_ECC_PLACEMENT_INTERLEAVED
171 * since that forces use of a problematic "infix OOB" layout.
172 * Among other things, it trashes manufacturer bad block markers.
173 * Also, and specific to this hardware, it ECC-protects the "prepad"
174 * in the OOB ... while having ECC protection for parts of OOB would
175 * seem useful, the current MTD stack sometimes wants to update the
176 * OOB without recomputing ECC.
177 */
178
179static void nand_davinci_hwctl_4bit(struct nand_chip *chip, int mode)
180{
181 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
182 unsigned long flags;
183 u32 val;
184
185 /* Reset ECC hardware */
186 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
187
188 spin_lock_irqsave(&davinci_nand_lock, flags);
189
190 /* Start 4-bit ECC calculation for read/write */
191 val = davinci_nand_readl(info, NANDFCR_OFFSET);
192 val &= ~(0x03 << 4);
193 val |= (info->core_chipsel << 4) | BIT(12);
194 davinci_nand_writel(info, NANDFCR_OFFSET, val);
195
196 info->is_readmode = (mode == NAND_ECC_READ);
197
198 spin_unlock_irqrestore(&davinci_nand_lock, flags);
199}
200
201/* Read raw ECC code after writing to NAND. */
202static void
203nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
204{
205 const u32 mask = 0x03ff03ff;
206
207 code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
208 code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
209 code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
210 code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
211}
212
213/* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
214static int nand_davinci_calculate_4bit(struct nand_chip *chip,
215 const u_char *dat, u_char *ecc_code)
216{
217 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
218 u32 raw_ecc[4], *p;
219 unsigned i;
220
221 /* After a read, terminate ECC calculation by a dummy read
222 * of some 4-bit ECC register. ECC covers everything that
223 * was read; correct() just uses the hardware state, so
224 * ecc_code is not needed.
225 */
226 if (info->is_readmode) {
227 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
228 return 0;
229 }
230
231 /* Pack eight raw 10-bit ecc values into ten bytes, making
232 * two passes which each convert four values (in upper and
233 * lower halves of two 32-bit words) into five bytes. The
234 * ROM boot loader uses this same packing scheme.
235 */
236 nand_davinci_readecc_4bit(info, raw_ecc);
237 for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
238 *ecc_code++ = p[0] & 0xff;
239 *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
240 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
241 *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
242 *ecc_code++ = (p[1] >> 18) & 0xff;
243 }
244
245 return 0;
246}
247
248/* Correct up to 4 bits in data we just read, using state left in the
249 * hardware plus the ecc_code computed when it was first written.
250 */
251static int nand_davinci_correct_4bit(struct nand_chip *chip, u_char *data,
252 u_char *ecc_code, u_char *null)
253{
254 int i;
255 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
256 unsigned short ecc10[8];
257 unsigned short *ecc16;
258 u32 syndrome[4];
259 u32 ecc_state;
260 unsigned num_errors, corrected;
261 unsigned long timeo;
262
263 /* Unpack ten bytes into eight 10 bit values. We know we're
264 * little-endian, and use type punning for less shifting/masking.
265 */
266 if (WARN_ON(0x01 & (uintptr_t)ecc_code))
267 return -EINVAL;
268 ecc16 = (unsigned short *)ecc_code;
269
270 ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
271 ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
272 ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
273 ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
274 ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
275 ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
276 ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
277 ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
278
279 /* Tell ECC controller about the expected ECC codes. */
280 for (i = 7; i >= 0; i--)
281 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
282
283 /* Allow time for syndrome calculation ... then read it.
284 * A syndrome of all zeroes 0 means no detected errors.
285 */
286 davinci_nand_readl(info, NANDFSR_OFFSET);
287 nand_davinci_readecc_4bit(info, syndrome);
288 if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
289 return 0;
290
291 /*
292 * Clear any previous address calculation by doing a dummy read of an
293 * error address register.
294 */
295 davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
296
297 /* Start address calculation, and wait for it to complete.
298 * We _could_ start reading more data while this is working,
299 * to speed up the overall page read.
300 */
301 davinci_nand_writel(info, NANDFCR_OFFSET,
302 davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
303
304 /*
305 * ECC_STATE field reads 0x3 (Error correction complete) immediately
306 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
307 * begin trying to poll for the state, you may fall right out of your
308 * loop without any of the correction calculations having taken place.
309 * The recommendation from the hardware team is to initially delay as
310 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
311 * correction state.
312 */
313 timeo = jiffies + usecs_to_jiffies(100);
314 do {
315 ecc_state = (davinci_nand_readl(info,
316 NANDFSR_OFFSET) >> 8) & 0x0f;
317 cpu_relax();
318 } while ((ecc_state < 4) && time_before(jiffies, timeo));
319
320 for (;;) {
321 u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
322
323 switch ((fsr >> 8) & 0x0f) {
324 case 0: /* no error, should not happen */
325 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
326 return 0;
327 case 1: /* five or more errors detected */
328 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
329 return -EBADMSG;
330 case 2: /* error addresses computed */
331 case 3:
332 num_errors = 1 + ((fsr >> 16) & 0x03);
333 goto correct;
334 default: /* still working on it */
335 cpu_relax();
336 continue;
337 }
338 }
339
340correct:
341 /* correct each error */
342 for (i = 0, corrected = 0; i < num_errors; i++) {
343 int error_address, error_value;
344
345 if (i > 1) {
346 error_address = davinci_nand_readl(info,
347 NAND_ERR_ADD2_OFFSET);
348 error_value = davinci_nand_readl(info,
349 NAND_ERR_ERRVAL2_OFFSET);
350 } else {
351 error_address = davinci_nand_readl(info,
352 NAND_ERR_ADD1_OFFSET);
353 error_value = davinci_nand_readl(info,
354 NAND_ERR_ERRVAL1_OFFSET);
355 }
356
357 if (i & 1) {
358 error_address >>= 16;
359 error_value >>= 16;
360 }
361 error_address &= 0x3ff;
362 error_address = (512 + 7) - error_address;
363
364 if (error_address < 512) {
365 data[error_address] ^= error_value;
366 corrected++;
367 }
368 }
369
370 return corrected;
371}
372
373/*----------------------------------------------------------------------*/
374
375/* An ECC layout for using 4-bit ECC with small-page flash, storing
376 * ten ECC bytes plus the manufacturer's bad block marker byte, and
377 * and not overlapping the default BBT markers.
378 */
379static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section,
380 struct mtd_oob_region *oobregion)
381{
382 if (section > 2)
383 return -ERANGE;
384
385 if (!section) {
386 oobregion->offset = 0;
387 oobregion->length = 5;
388 } else if (section == 1) {
389 oobregion->offset = 6;
390 oobregion->length = 2;
391 } else {
392 oobregion->offset = 13;
393 oobregion->length = 3;
394 }
395
396 return 0;
397}
398
399static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section,
400 struct mtd_oob_region *oobregion)
401{
402 if (section > 1)
403 return -ERANGE;
404
405 if (!section) {
406 oobregion->offset = 8;
407 oobregion->length = 5;
408 } else {
409 oobregion->offset = 16;
410 oobregion->length = mtd->oobsize - 16;
411 }
412
413 return 0;
414}
415
416static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = {
417 .ecc = hwecc4_ooblayout_small_ecc,
418 .free = hwecc4_ooblayout_small_free,
419};
420
421#if defined(CONFIG_OF)
422static const struct of_device_id davinci_nand_of_match[] = {
423 {.compatible = "ti,davinci-nand", },
424 {.compatible = "ti,keystone-nand", },
425 {},
426};
427MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
428
429static struct davinci_nand_pdata
430 *nand_davinci_get_pdata(struct platform_device *pdev)
431{
432 if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
433 struct davinci_nand_pdata *pdata;
434 const char *mode;
435 u32 prop;
436
437 pdata = devm_kzalloc(&pdev->dev,
438 sizeof(struct davinci_nand_pdata),
439 GFP_KERNEL);
440 pdev->dev.platform_data = pdata;
441 if (!pdata)
442 return ERR_PTR(-ENOMEM);
443 if (!of_property_read_u32(pdev->dev.of_node,
444 "ti,davinci-chipselect", &prop))
445 pdata->core_chipsel = prop;
446 else
447 return ERR_PTR(-EINVAL);
448
449 if (!of_property_read_u32(pdev->dev.of_node,
450 "ti,davinci-mask-ale", &prop))
451 pdata->mask_ale = prop;
452 if (!of_property_read_u32(pdev->dev.of_node,
453 "ti,davinci-mask-cle", &prop))
454 pdata->mask_cle = prop;
455 if (!of_property_read_u32(pdev->dev.of_node,
456 "ti,davinci-mask-chipsel", &prop))
457 pdata->mask_chipsel = prop;
458 if (!of_property_read_string(pdev->dev.of_node,
459 "ti,davinci-ecc-mode", &mode)) {
460 if (!strncmp("none", mode, 4))
461 pdata->engine_type = NAND_ECC_ENGINE_TYPE_NONE;
462 if (!strncmp("soft", mode, 4))
463 pdata->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
464 if (!strncmp("hw", mode, 2))
465 pdata->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
466 }
467 if (!of_property_read_u32(pdev->dev.of_node,
468 "ti,davinci-ecc-bits", &prop))
469 pdata->ecc_bits = prop;
470
471 if (!of_property_read_u32(pdev->dev.of_node,
472 "ti,davinci-nand-buswidth", &prop) && prop == 16)
473 pdata->options |= NAND_BUSWIDTH_16;
474
475 if (of_property_read_bool(pdev->dev.of_node,
476 "ti,davinci-nand-use-bbt"))
477 pdata->bbt_options = NAND_BBT_USE_FLASH;
478
479 /*
480 * Since kernel v4.8, this driver has been fixed to enable
481 * use of 4-bit hardware ECC with subpages and verified on
482 * TI's keystone EVMs (K2L, K2HK and K2E).
483 * However, in the interest of not breaking systems using
484 * existing UBI partitions, sub-page writes are not being
485 * (re)enabled. If you want to use subpage writes on Keystone
486 * platforms (i.e. do not have any existing UBI partitions),
487 * then use "ti,davinci-nand" as the compatible in your
488 * device-tree file.
489 */
490 if (of_device_is_compatible(pdev->dev.of_node,
491 "ti,keystone-nand")) {
492 pdata->options |= NAND_NO_SUBPAGE_WRITE;
493 }
494 }
495
496 return dev_get_platdata(&pdev->dev);
497}
498#else
499static struct davinci_nand_pdata
500 *nand_davinci_get_pdata(struct platform_device *pdev)
501{
502 return dev_get_platdata(&pdev->dev);
503}
504#endif
505
506static int davinci_nand_attach_chip(struct nand_chip *chip)
507{
508 struct mtd_info *mtd = nand_to_mtd(chip);
509 struct davinci_nand_info *info = to_davinci_nand(mtd);
510 struct davinci_nand_pdata *pdata = nand_davinci_get_pdata(info->pdev);
511 int ret = 0;
512
513 if (IS_ERR(pdata))
514 return PTR_ERR(pdata);
515
516 /* Use board-specific ECC config */
517 chip->ecc.engine_type = pdata->engine_type;
518 chip->ecc.placement = pdata->ecc_placement;
519
520 switch (chip->ecc.engine_type) {
521 case NAND_ECC_ENGINE_TYPE_NONE:
522 pdata->ecc_bits = 0;
523 break;
524 case NAND_ECC_ENGINE_TYPE_SOFT:
525 pdata->ecc_bits = 0;
526 /*
527 * This driver expects Hamming based ECC when engine_type is set
528 * to NAND_ECC_ENGINE_TYPE_SOFT. Force ecc.algo to
529 * NAND_ECC_ALGO_HAMMING to avoid adding an extra ->ecc_algo
530 * field to davinci_nand_pdata.
531 */
532 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
533 break;
534 case NAND_ECC_ENGINE_TYPE_ON_HOST:
535 if (pdata->ecc_bits == 4) {
536 int chunks = mtd->writesize / 512;
537
538 if (!chunks || mtd->oobsize < 16) {
539 dev_dbg(&info->pdev->dev, "too small\n");
540 return -EINVAL;
541 }
542
543 /*
544 * No sanity checks: CPUs must support this,
545 * and the chips may not use NAND_BUSWIDTH_16.
546 */
547
548 /* No sharing 4-bit hardware between chipselects yet */
549 spin_lock_irq(&davinci_nand_lock);
550 if (ecc4_busy)
551 ret = -EBUSY;
552 else
553 ecc4_busy = true;
554 spin_unlock_irq(&davinci_nand_lock);
555
556 if (ret == -EBUSY)
557 return ret;
558
559 chip->ecc.calculate = nand_davinci_calculate_4bit;
560 chip->ecc.correct = nand_davinci_correct_4bit;
561 chip->ecc.hwctl = nand_davinci_hwctl_4bit;
562 chip->ecc.bytes = 10;
563 chip->ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
564 chip->ecc.algo = NAND_ECC_ALGO_BCH;
565
566 /*
567 * Update ECC layout if needed ... for 1-bit HW ECC, the
568 * default is OK, but it allocates 6 bytes when only 3
569 * are needed (for each 512 bytes). For 4-bit HW ECC,
570 * the default is not usable: 10 bytes needed, not 6.
571 *
572 * For small page chips, preserve the manufacturer's
573 * badblock marking data ... and make sure a flash BBT
574 * table marker fits in the free bytes.
575 */
576 if (chunks == 1) {
577 mtd_set_ooblayout(mtd,
578 &hwecc4_small_ooblayout_ops);
579 } else if (chunks == 4 || chunks == 8) {
580 mtd_set_ooblayout(mtd,
581 nand_get_large_page_ooblayout());
582 chip->ecc.read_page = nand_read_page_hwecc_oob_first;
583 } else {
584 return -EIO;
585 }
586 } else {
587 /* 1bit ecc hamming */
588 chip->ecc.calculate = nand_davinci_calculate_1bit;
589 chip->ecc.correct = nand_davinci_correct_1bit;
590 chip->ecc.hwctl = nand_davinci_hwctl_1bit;
591 chip->ecc.bytes = 3;
592 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
593 }
594 chip->ecc.size = 512;
595 chip->ecc.strength = pdata->ecc_bits;
596 break;
597 default:
598 return -EINVAL;
599 }
600
601 return ret;
602}
603
604static void nand_davinci_data_in(struct davinci_nand_info *info, void *buf,
605 unsigned int len, bool force_8bit)
606{
607 u32 alignment = ((uintptr_t)buf | len) & 3;
608
609 if (force_8bit || (alignment & 1))
610 ioread8_rep(info->current_cs, buf, len);
611 else if (alignment & 3)
612 ioread16_rep(info->current_cs, buf, len >> 1);
613 else
614 ioread32_rep(info->current_cs, buf, len >> 2);
615}
616
617static void nand_davinci_data_out(struct davinci_nand_info *info,
618 const void *buf, unsigned int len,
619 bool force_8bit)
620{
621 u32 alignment = ((uintptr_t)buf | len) & 3;
622
623 if (force_8bit || (alignment & 1))
624 iowrite8_rep(info->current_cs, buf, len);
625 else if (alignment & 3)
626 iowrite16_rep(info->current_cs, buf, len >> 1);
627 else
628 iowrite32_rep(info->current_cs, buf, len >> 2);
629}
630
631static int davinci_nand_exec_instr(struct davinci_nand_info *info,
632 const struct nand_op_instr *instr)
633{
634 unsigned int i, timeout_us;
635 u32 status;
636 int ret;
637
638 switch (instr->type) {
639 case NAND_OP_CMD_INSTR:
640 iowrite8(instr->ctx.cmd.opcode,
641 info->current_cs + info->mask_cle);
642 break;
643
644 case NAND_OP_ADDR_INSTR:
645 for (i = 0; i < instr->ctx.addr.naddrs; i++) {
646 iowrite8(instr->ctx.addr.addrs[i],
647 info->current_cs + info->mask_ale);
648 }
649 break;
650
651 case NAND_OP_DATA_IN_INSTR:
652 nand_davinci_data_in(info, instr->ctx.data.buf.in,
653 instr->ctx.data.len,
654 instr->ctx.data.force_8bit);
655 break;
656
657 case NAND_OP_DATA_OUT_INSTR:
658 nand_davinci_data_out(info, instr->ctx.data.buf.out,
659 instr->ctx.data.len,
660 instr->ctx.data.force_8bit);
661 break;
662
663 case NAND_OP_WAITRDY_INSTR:
664 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000;
665 ret = readl_relaxed_poll_timeout(info->base + NANDFSR_OFFSET,
666 status, status & BIT(0), 100,
667 timeout_us);
668 if (ret)
669 return ret;
670
671 break;
672 }
673
674 if (instr->delay_ns)
675 ndelay(instr->delay_ns);
676
677 return 0;
678}
679
680static int davinci_nand_exec_op(struct nand_chip *chip,
681 const struct nand_operation *op,
682 bool check_only)
683{
684 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
685 unsigned int i;
686
687 if (check_only)
688 return 0;
689
690 info->current_cs = info->vaddr + (op->cs * info->mask_chipsel);
691
692 for (i = 0; i < op->ninstrs; i++) {
693 int ret;
694
695 ret = davinci_nand_exec_instr(info, &op->instrs[i]);
696 if (ret)
697 return ret;
698 }
699
700 return 0;
701}
702
703static const struct nand_controller_ops davinci_nand_controller_ops = {
704 .attach_chip = davinci_nand_attach_chip,
705 .exec_op = davinci_nand_exec_op,
706};
707
708static int nand_davinci_probe(struct platform_device *pdev)
709{
710 struct davinci_nand_pdata *pdata;
711 struct davinci_nand_info *info;
712 struct resource *res1;
713 struct resource *res2;
714 void __iomem *vaddr;
715 void __iomem *base;
716 int ret;
717 uint32_t val;
718 struct mtd_info *mtd;
719
720 pdata = nand_davinci_get_pdata(pdev);
721 if (IS_ERR(pdata))
722 return PTR_ERR(pdata);
723
724 /* insist on board-specific configuration */
725 if (!pdata)
726 return -ENODEV;
727
728 /* which external chipselect will we be managing? */
729 if (pdata->core_chipsel > 3)
730 return -ENODEV;
731
732 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
733 if (!info)
734 return -ENOMEM;
735
736 platform_set_drvdata(pdev, info);
737
738 res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
739 res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
740 if (!res1 || !res2) {
741 dev_err(&pdev->dev, "resource missing\n");
742 return -EINVAL;
743 }
744
745 vaddr = devm_ioremap_resource(&pdev->dev, res1);
746 if (IS_ERR(vaddr))
747 return PTR_ERR(vaddr);
748
749 /*
750 * This registers range is used to setup NAND settings. In case with
751 * TI AEMIF driver, the same memory address range is requested already
752 * by AEMIF, so we cannot request it twice, just ioremap.
753 * The AEMIF and NAND drivers not use the same registers in this range.
754 */
755 base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
756 if (!base) {
757 dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
758 return -EADDRNOTAVAIL;
759 }
760
761 info->pdev = pdev;
762 info->base = base;
763 info->vaddr = vaddr;
764
765 mtd = nand_to_mtd(&info->chip);
766 mtd->dev.parent = &pdev->dev;
767 nand_set_flash_node(&info->chip, pdev->dev.of_node);
768
769 /* options such as NAND_BBT_USE_FLASH */
770 info->chip.bbt_options = pdata->bbt_options;
771 /* options such as 16-bit widths */
772 info->chip.options = pdata->options;
773 info->chip.bbt_td = pdata->bbt_td;
774 info->chip.bbt_md = pdata->bbt_md;
775 info->timing = pdata->timing;
776
777 info->current_cs = info->vaddr;
778 info->core_chipsel = pdata->core_chipsel;
779 info->mask_chipsel = pdata->mask_chipsel;
780
781 /* use nandboot-capable ALE/CLE masks by default */
782 info->mask_ale = pdata->mask_ale ? : MASK_ALE;
783 info->mask_cle = pdata->mask_cle ? : MASK_CLE;
784
785 spin_lock_irq(&davinci_nand_lock);
786
787 /* put CSxNAND into NAND mode */
788 val = davinci_nand_readl(info, NANDFCR_OFFSET);
789 val |= BIT(info->core_chipsel);
790 davinci_nand_writel(info, NANDFCR_OFFSET, val);
791
792 spin_unlock_irq(&davinci_nand_lock);
793
794 /* Scan to find existence of the device(s) */
795 nand_controller_init(&info->controller);
796 info->controller.ops = &davinci_nand_controller_ops;
797 info->chip.controller = &info->controller;
798 ret = nand_scan(&info->chip, pdata->mask_chipsel ? 2 : 1);
799 if (ret < 0) {
800 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
801 return ret;
802 }
803
804 if (pdata->parts)
805 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
806 else
807 ret = mtd_device_register(mtd, NULL, 0);
808 if (ret < 0)
809 goto err_cleanup_nand;
810
811 val = davinci_nand_readl(info, NRCSR_OFFSET);
812 dev_info(&pdev->dev, "controller rev. %d.%d\n",
813 (val >> 8) & 0xff, val & 0xff);
814
815 return 0;
816
817err_cleanup_nand:
818 nand_cleanup(&info->chip);
819
820 return ret;
821}
822
823static void nand_davinci_remove(struct platform_device *pdev)
824{
825 struct davinci_nand_info *info = platform_get_drvdata(pdev);
826 struct nand_chip *chip = &info->chip;
827 int ret;
828
829 spin_lock_irq(&davinci_nand_lock);
830 if (chip->ecc.placement == NAND_ECC_PLACEMENT_INTERLEAVED)
831 ecc4_busy = false;
832 spin_unlock_irq(&davinci_nand_lock);
833
834 ret = mtd_device_unregister(nand_to_mtd(chip));
835 WARN_ON(ret);
836 nand_cleanup(chip);
837}
838
839static struct platform_driver nand_davinci_driver = {
840 .probe = nand_davinci_probe,
841 .remove_new = nand_davinci_remove,
842 .driver = {
843 .name = "davinci_nand",
844 .of_match_table = of_match_ptr(davinci_nand_of_match),
845 },
846};
847MODULE_ALIAS("platform:davinci_nand");
848
849module_platform_driver(nand_davinci_driver);
850
851MODULE_LICENSE("GPL");
852MODULE_AUTHOR("Texas Instruments");
853MODULE_DESCRIPTION("Davinci NAND flash driver");
854
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
4 *
5 * Copyright © 2006 Texas Instruments.
6 *
7 * Port to 2.6.23 Copyright © 2008 by:
8 * Sander Huijsen <Shuijsen@optelecom-nkf.com>
9 * Troy Kisky <troy.kisky@boundarydevices.com>
10 * Dirk Behme <Dirk.Behme@gmail.com>
11 */
12
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/platform_device.h>
16#include <linux/err.h>
17#include <linux/iopoll.h>
18#include <linux/mtd/rawnand.h>
19#include <linux/mtd/partitions.h>
20#include <linux/slab.h>
21#include <linux/of_device.h>
22#include <linux/of.h>
23
24#include <linux/platform_data/mtd-davinci.h>
25#include <linux/platform_data/mtd-davinci-aemif.h>
26
27/*
28 * This is a device driver for the NAND flash controller found on the
29 * various DaVinci family chips. It handles up to four SoC chipselects,
30 * and some flavors of secondary chipselect (e.g. based on A12) as used
31 * with multichip packages.
32 *
33 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
34 * available on chips like the DM355 and OMAP-L137 and needed with the
35 * more error-prone MLC NAND chips.
36 *
37 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
38 * outputs in a "wire-AND" configuration, with no per-chip signals.
39 */
40struct davinci_nand_info {
41 struct nand_controller controller;
42 struct nand_chip chip;
43
44 struct platform_device *pdev;
45
46 bool is_readmode;
47
48 void __iomem *base;
49 void __iomem *vaddr;
50
51 void __iomem *current_cs;
52
53 uint32_t mask_chipsel;
54 uint32_t mask_ale;
55 uint32_t mask_cle;
56
57 uint32_t core_chipsel;
58
59 struct davinci_aemif_timing *timing;
60};
61
62static DEFINE_SPINLOCK(davinci_nand_lock);
63static bool ecc4_busy;
64
65static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd)
66{
67 return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip);
68}
69
70static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
71 int offset)
72{
73 return __raw_readl(info->base + offset);
74}
75
76static inline void davinci_nand_writel(struct davinci_nand_info *info,
77 int offset, unsigned long value)
78{
79 __raw_writel(value, info->base + offset);
80}
81
82/*----------------------------------------------------------------------*/
83
84/*
85 * 1-bit hardware ECC ... context maintained for each core chipselect
86 */
87
88static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
89{
90 struct davinci_nand_info *info = to_davinci_nand(mtd);
91
92 return davinci_nand_readl(info, NANDF1ECC_OFFSET
93 + 4 * info->core_chipsel);
94}
95
96static void nand_davinci_hwctl_1bit(struct nand_chip *chip, int mode)
97{
98 struct davinci_nand_info *info;
99 uint32_t nandcfr;
100 unsigned long flags;
101
102 info = to_davinci_nand(nand_to_mtd(chip));
103
104 /* Reset ECC hardware */
105 nand_davinci_readecc_1bit(nand_to_mtd(chip));
106
107 spin_lock_irqsave(&davinci_nand_lock, flags);
108
109 /* Restart ECC hardware */
110 nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
111 nandcfr |= BIT(8 + info->core_chipsel);
112 davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
113
114 spin_unlock_irqrestore(&davinci_nand_lock, flags);
115}
116
117/*
118 * Read hardware ECC value and pack into three bytes
119 */
120static int nand_davinci_calculate_1bit(struct nand_chip *chip,
121 const u_char *dat, u_char *ecc_code)
122{
123 unsigned int ecc_val = nand_davinci_readecc_1bit(nand_to_mtd(chip));
124 unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
125
126 /* invert so that erased block ecc is correct */
127 ecc24 = ~ecc24;
128 ecc_code[0] = (u_char)(ecc24);
129 ecc_code[1] = (u_char)(ecc24 >> 8);
130 ecc_code[2] = (u_char)(ecc24 >> 16);
131
132 return 0;
133}
134
135static int nand_davinci_correct_1bit(struct nand_chip *chip, u_char *dat,
136 u_char *read_ecc, u_char *calc_ecc)
137{
138 uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
139 (read_ecc[2] << 16);
140 uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
141 (calc_ecc[2] << 16);
142 uint32_t diff = eccCalc ^ eccNand;
143
144 if (diff) {
145 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
146 /* Correctable error */
147 if ((diff >> (12 + 3)) < chip->ecc.size) {
148 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
149 return 1;
150 } else {
151 return -EBADMSG;
152 }
153 } else if (!(diff & (diff - 1))) {
154 /* Single bit ECC error in the ECC itself,
155 * nothing to fix */
156 return 1;
157 } else {
158 /* Uncorrectable error */
159 return -EBADMSG;
160 }
161
162 }
163 return 0;
164}
165
166/*----------------------------------------------------------------------*/
167
168/*
169 * 4-bit hardware ECC ... context maintained over entire AEMIF
170 *
171 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
172 * since that forces use of a problematic "infix OOB" layout.
173 * Among other things, it trashes manufacturer bad block markers.
174 * Also, and specific to this hardware, it ECC-protects the "prepad"
175 * in the OOB ... while having ECC protection for parts of OOB would
176 * seem useful, the current MTD stack sometimes wants to update the
177 * OOB without recomputing ECC.
178 */
179
180static void nand_davinci_hwctl_4bit(struct nand_chip *chip, int mode)
181{
182 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
183 unsigned long flags;
184 u32 val;
185
186 /* Reset ECC hardware */
187 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
188
189 spin_lock_irqsave(&davinci_nand_lock, flags);
190
191 /* Start 4-bit ECC calculation for read/write */
192 val = davinci_nand_readl(info, NANDFCR_OFFSET);
193 val &= ~(0x03 << 4);
194 val |= (info->core_chipsel << 4) | BIT(12);
195 davinci_nand_writel(info, NANDFCR_OFFSET, val);
196
197 info->is_readmode = (mode == NAND_ECC_READ);
198
199 spin_unlock_irqrestore(&davinci_nand_lock, flags);
200}
201
202/* Read raw ECC code after writing to NAND. */
203static void
204nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
205{
206 const u32 mask = 0x03ff03ff;
207
208 code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
209 code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
210 code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
211 code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
212}
213
214/* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
215static int nand_davinci_calculate_4bit(struct nand_chip *chip,
216 const u_char *dat, u_char *ecc_code)
217{
218 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
219 u32 raw_ecc[4], *p;
220 unsigned i;
221
222 /* After a read, terminate ECC calculation by a dummy read
223 * of some 4-bit ECC register. ECC covers everything that
224 * was read; correct() just uses the hardware state, so
225 * ecc_code is not needed.
226 */
227 if (info->is_readmode) {
228 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
229 return 0;
230 }
231
232 /* Pack eight raw 10-bit ecc values into ten bytes, making
233 * two passes which each convert four values (in upper and
234 * lower halves of two 32-bit words) into five bytes. The
235 * ROM boot loader uses this same packing scheme.
236 */
237 nand_davinci_readecc_4bit(info, raw_ecc);
238 for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
239 *ecc_code++ = p[0] & 0xff;
240 *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
241 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
242 *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
243 *ecc_code++ = (p[1] >> 18) & 0xff;
244 }
245
246 return 0;
247}
248
249/* Correct up to 4 bits in data we just read, using state left in the
250 * hardware plus the ecc_code computed when it was first written.
251 */
252static int nand_davinci_correct_4bit(struct nand_chip *chip, u_char *data,
253 u_char *ecc_code, u_char *null)
254{
255 int i;
256 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
257 unsigned short ecc10[8];
258 unsigned short *ecc16;
259 u32 syndrome[4];
260 u32 ecc_state;
261 unsigned num_errors, corrected;
262 unsigned long timeo;
263
264 /* Unpack ten bytes into eight 10 bit values. We know we're
265 * little-endian, and use type punning for less shifting/masking.
266 */
267 if (WARN_ON(0x01 & (uintptr_t)ecc_code))
268 return -EINVAL;
269 ecc16 = (unsigned short *)ecc_code;
270
271 ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
272 ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
273 ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
274 ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
275 ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
276 ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
277 ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
278 ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
279
280 /* Tell ECC controller about the expected ECC codes. */
281 for (i = 7; i >= 0; i--)
282 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
283
284 /* Allow time for syndrome calculation ... then read it.
285 * A syndrome of all zeroes 0 means no detected errors.
286 */
287 davinci_nand_readl(info, NANDFSR_OFFSET);
288 nand_davinci_readecc_4bit(info, syndrome);
289 if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
290 return 0;
291
292 /*
293 * Clear any previous address calculation by doing a dummy read of an
294 * error address register.
295 */
296 davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
297
298 /* Start address calculation, and wait for it to complete.
299 * We _could_ start reading more data while this is working,
300 * to speed up the overall page read.
301 */
302 davinci_nand_writel(info, NANDFCR_OFFSET,
303 davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
304
305 /*
306 * ECC_STATE field reads 0x3 (Error correction complete) immediately
307 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
308 * begin trying to poll for the state, you may fall right out of your
309 * loop without any of the correction calculations having taken place.
310 * The recommendation from the hardware team is to initially delay as
311 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
312 * correction state.
313 */
314 timeo = jiffies + usecs_to_jiffies(100);
315 do {
316 ecc_state = (davinci_nand_readl(info,
317 NANDFSR_OFFSET) >> 8) & 0x0f;
318 cpu_relax();
319 } while ((ecc_state < 4) && time_before(jiffies, timeo));
320
321 for (;;) {
322 u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
323
324 switch ((fsr >> 8) & 0x0f) {
325 case 0: /* no error, should not happen */
326 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
327 return 0;
328 case 1: /* five or more errors detected */
329 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
330 return -EBADMSG;
331 case 2: /* error addresses computed */
332 case 3:
333 num_errors = 1 + ((fsr >> 16) & 0x03);
334 goto correct;
335 default: /* still working on it */
336 cpu_relax();
337 continue;
338 }
339 }
340
341correct:
342 /* correct each error */
343 for (i = 0, corrected = 0; i < num_errors; i++) {
344 int error_address, error_value;
345
346 if (i > 1) {
347 error_address = davinci_nand_readl(info,
348 NAND_ERR_ADD2_OFFSET);
349 error_value = davinci_nand_readl(info,
350 NAND_ERR_ERRVAL2_OFFSET);
351 } else {
352 error_address = davinci_nand_readl(info,
353 NAND_ERR_ADD1_OFFSET);
354 error_value = davinci_nand_readl(info,
355 NAND_ERR_ERRVAL1_OFFSET);
356 }
357
358 if (i & 1) {
359 error_address >>= 16;
360 error_value >>= 16;
361 }
362 error_address &= 0x3ff;
363 error_address = (512 + 7) - error_address;
364
365 if (error_address < 512) {
366 data[error_address] ^= error_value;
367 corrected++;
368 }
369 }
370
371 return corrected;
372}
373
374/**
375 * nand_read_page_hwecc_oob_first - hw ecc, read oob first
376 * @chip: nand chip info structure
377 * @buf: buffer to store read data
378 * @oob_required: caller requires OOB data read to chip->oob_poi
379 * @page: page number to read
380 *
381 * Hardware ECC for large page chips, require OOB to be read first. For this
382 * ECC mode, the write_page method is re-used from ECC_HW. These methods
383 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
384 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
385 * the data area, by overwriting the NAND manufacturer bad block markings.
386 */
387static int nand_davinci_read_page_hwecc_oob_first(struct nand_chip *chip,
388 uint8_t *buf,
389 int oob_required, int page)
390{
391 struct mtd_info *mtd = nand_to_mtd(chip);
392 int i, eccsize = chip->ecc.size, ret;
393 int eccbytes = chip->ecc.bytes;
394 int eccsteps = chip->ecc.steps;
395 uint8_t *p = buf;
396 uint8_t *ecc_code = chip->ecc.code_buf;
397 uint8_t *ecc_calc = chip->ecc.calc_buf;
398 unsigned int max_bitflips = 0;
399
400 /* Read the OOB area first */
401 ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
402 if (ret)
403 return ret;
404
405 ret = nand_read_page_op(chip, page, 0, NULL, 0);
406 if (ret)
407 return ret;
408
409 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
410 chip->ecc.total);
411 if (ret)
412 return ret;
413
414 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
415 int stat;
416
417 chip->ecc.hwctl(chip, NAND_ECC_READ);
418
419 ret = nand_read_data_op(chip, p, eccsize, false, false);
420 if (ret)
421 return ret;
422
423 chip->ecc.calculate(chip, p, &ecc_calc[i]);
424
425 stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
426 if (stat == -EBADMSG &&
427 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
428 /* check for empty pages with bitflips */
429 stat = nand_check_erased_ecc_chunk(p, eccsize,
430 &ecc_code[i],
431 eccbytes, NULL, 0,
432 chip->ecc.strength);
433 }
434
435 if (stat < 0) {
436 mtd->ecc_stats.failed++;
437 } else {
438 mtd->ecc_stats.corrected += stat;
439 max_bitflips = max_t(unsigned int, max_bitflips, stat);
440 }
441 }
442 return max_bitflips;
443}
444
445/*----------------------------------------------------------------------*/
446
447/* An ECC layout for using 4-bit ECC with small-page flash, storing
448 * ten ECC bytes plus the manufacturer's bad block marker byte, and
449 * and not overlapping the default BBT markers.
450 */
451static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section,
452 struct mtd_oob_region *oobregion)
453{
454 if (section > 2)
455 return -ERANGE;
456
457 if (!section) {
458 oobregion->offset = 0;
459 oobregion->length = 5;
460 } else if (section == 1) {
461 oobregion->offset = 6;
462 oobregion->length = 2;
463 } else {
464 oobregion->offset = 13;
465 oobregion->length = 3;
466 }
467
468 return 0;
469}
470
471static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section,
472 struct mtd_oob_region *oobregion)
473{
474 if (section > 1)
475 return -ERANGE;
476
477 if (!section) {
478 oobregion->offset = 8;
479 oobregion->length = 5;
480 } else {
481 oobregion->offset = 16;
482 oobregion->length = mtd->oobsize - 16;
483 }
484
485 return 0;
486}
487
488static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = {
489 .ecc = hwecc4_ooblayout_small_ecc,
490 .free = hwecc4_ooblayout_small_free,
491};
492
493#if defined(CONFIG_OF)
494static const struct of_device_id davinci_nand_of_match[] = {
495 {.compatible = "ti,davinci-nand", },
496 {.compatible = "ti,keystone-nand", },
497 {},
498};
499MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
500
501static struct davinci_nand_pdata
502 *nand_davinci_get_pdata(struct platform_device *pdev)
503{
504 if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
505 struct davinci_nand_pdata *pdata;
506 const char *mode;
507 u32 prop;
508
509 pdata = devm_kzalloc(&pdev->dev,
510 sizeof(struct davinci_nand_pdata),
511 GFP_KERNEL);
512 pdev->dev.platform_data = pdata;
513 if (!pdata)
514 return ERR_PTR(-ENOMEM);
515 if (!of_property_read_u32(pdev->dev.of_node,
516 "ti,davinci-chipselect", &prop))
517 pdata->core_chipsel = prop;
518 else
519 return ERR_PTR(-EINVAL);
520
521 if (!of_property_read_u32(pdev->dev.of_node,
522 "ti,davinci-mask-ale", &prop))
523 pdata->mask_ale = prop;
524 if (!of_property_read_u32(pdev->dev.of_node,
525 "ti,davinci-mask-cle", &prop))
526 pdata->mask_cle = prop;
527 if (!of_property_read_u32(pdev->dev.of_node,
528 "ti,davinci-mask-chipsel", &prop))
529 pdata->mask_chipsel = prop;
530 if (!of_property_read_string(pdev->dev.of_node,
531 "ti,davinci-ecc-mode", &mode)) {
532 if (!strncmp("none", mode, 4))
533 pdata->ecc_mode = NAND_ECC_NONE;
534 if (!strncmp("soft", mode, 4))
535 pdata->ecc_mode = NAND_ECC_SOFT;
536 if (!strncmp("hw", mode, 2))
537 pdata->ecc_mode = NAND_ECC_HW;
538 }
539 if (!of_property_read_u32(pdev->dev.of_node,
540 "ti,davinci-ecc-bits", &prop))
541 pdata->ecc_bits = prop;
542
543 if (!of_property_read_u32(pdev->dev.of_node,
544 "ti,davinci-nand-buswidth", &prop) && prop == 16)
545 pdata->options |= NAND_BUSWIDTH_16;
546
547 if (of_property_read_bool(pdev->dev.of_node,
548 "ti,davinci-nand-use-bbt"))
549 pdata->bbt_options = NAND_BBT_USE_FLASH;
550
551 /*
552 * Since kernel v4.8, this driver has been fixed to enable
553 * use of 4-bit hardware ECC with subpages and verified on
554 * TI's keystone EVMs (K2L, K2HK and K2E).
555 * However, in the interest of not breaking systems using
556 * existing UBI partitions, sub-page writes are not being
557 * (re)enabled. If you want to use subpage writes on Keystone
558 * platforms (i.e. do not have any existing UBI partitions),
559 * then use "ti,davinci-nand" as the compatible in your
560 * device-tree file.
561 */
562 if (of_device_is_compatible(pdev->dev.of_node,
563 "ti,keystone-nand")) {
564 pdata->options |= NAND_NO_SUBPAGE_WRITE;
565 }
566 }
567
568 return dev_get_platdata(&pdev->dev);
569}
570#else
571static struct davinci_nand_pdata
572 *nand_davinci_get_pdata(struct platform_device *pdev)
573{
574 return dev_get_platdata(&pdev->dev);
575}
576#endif
577
578static int davinci_nand_attach_chip(struct nand_chip *chip)
579{
580 struct mtd_info *mtd = nand_to_mtd(chip);
581 struct davinci_nand_info *info = to_davinci_nand(mtd);
582 struct davinci_nand_pdata *pdata = nand_davinci_get_pdata(info->pdev);
583 int ret = 0;
584
585 if (IS_ERR(pdata))
586 return PTR_ERR(pdata);
587
588 switch (info->chip.ecc.mode) {
589 case NAND_ECC_NONE:
590 pdata->ecc_bits = 0;
591 break;
592 case NAND_ECC_SOFT:
593 pdata->ecc_bits = 0;
594 /*
595 * This driver expects Hamming based ECC when ecc_mode is set
596 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
597 * avoid adding an extra ->ecc_algo field to
598 * davinci_nand_pdata.
599 */
600 info->chip.ecc.algo = NAND_ECC_HAMMING;
601 break;
602 case NAND_ECC_HW:
603 if (pdata->ecc_bits == 4) {
604 int chunks = mtd->writesize / 512;
605
606 if (!chunks || mtd->oobsize < 16) {
607 dev_dbg(&info->pdev->dev, "too small\n");
608 return -EINVAL;
609 }
610
611 /*
612 * No sanity checks: CPUs must support this,
613 * and the chips may not use NAND_BUSWIDTH_16.
614 */
615
616 /* No sharing 4-bit hardware between chipselects yet */
617 spin_lock_irq(&davinci_nand_lock);
618 if (ecc4_busy)
619 ret = -EBUSY;
620 else
621 ecc4_busy = true;
622 spin_unlock_irq(&davinci_nand_lock);
623
624 if (ret == -EBUSY)
625 return ret;
626
627 info->chip.ecc.calculate = nand_davinci_calculate_4bit;
628 info->chip.ecc.correct = nand_davinci_correct_4bit;
629 info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
630 info->chip.ecc.bytes = 10;
631 info->chip.ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
632 info->chip.ecc.algo = NAND_ECC_BCH;
633
634 /*
635 * Update ECC layout if needed ... for 1-bit HW ECC, the
636 * default is OK, but it allocates 6 bytes when only 3
637 * are needed (for each 512 bytes). For 4-bit HW ECC,
638 * the default is not usable: 10 bytes needed, not 6.
639 *
640 * For small page chips, preserve the manufacturer's
641 * badblock marking data ... and make sure a flash BBT
642 * table marker fits in the free bytes.
643 */
644 if (chunks == 1) {
645 mtd_set_ooblayout(mtd,
646 &hwecc4_small_ooblayout_ops);
647 } else if (chunks == 4 || chunks == 8) {
648 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
649 info->chip.ecc.read_page = nand_davinci_read_page_hwecc_oob_first;
650 } else {
651 return -EIO;
652 }
653 } else {
654 /* 1bit ecc hamming */
655 info->chip.ecc.calculate = nand_davinci_calculate_1bit;
656 info->chip.ecc.correct = nand_davinci_correct_1bit;
657 info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
658 info->chip.ecc.bytes = 3;
659 info->chip.ecc.algo = NAND_ECC_HAMMING;
660 }
661 info->chip.ecc.size = 512;
662 info->chip.ecc.strength = pdata->ecc_bits;
663 break;
664 default:
665 return -EINVAL;
666 }
667
668 return ret;
669}
670
671static void nand_davinci_data_in(struct davinci_nand_info *info, void *buf,
672 unsigned int len, bool force_8bit)
673{
674 u32 alignment = ((uintptr_t)buf | len) & 3;
675
676 if (force_8bit || (alignment & 1))
677 ioread8_rep(info->current_cs, buf, len);
678 else if (alignment & 3)
679 ioread16_rep(info->current_cs, buf, len >> 1);
680 else
681 ioread32_rep(info->current_cs, buf, len >> 2);
682}
683
684static void nand_davinci_data_out(struct davinci_nand_info *info,
685 const void *buf, unsigned int len,
686 bool force_8bit)
687{
688 u32 alignment = ((uintptr_t)buf | len) & 3;
689
690 if (force_8bit || (alignment & 1))
691 iowrite8_rep(info->current_cs, buf, len);
692 else if (alignment & 3)
693 iowrite16_rep(info->current_cs, buf, len >> 1);
694 else
695 iowrite32_rep(info->current_cs, buf, len >> 2);
696}
697
698static int davinci_nand_exec_instr(struct davinci_nand_info *info,
699 const struct nand_op_instr *instr)
700{
701 unsigned int i, timeout_us;
702 u32 status;
703 int ret;
704
705 switch (instr->type) {
706 case NAND_OP_CMD_INSTR:
707 iowrite8(instr->ctx.cmd.opcode,
708 info->current_cs + info->mask_cle);
709 break;
710
711 case NAND_OP_ADDR_INSTR:
712 for (i = 0; i < instr->ctx.addr.naddrs; i++) {
713 iowrite8(instr->ctx.addr.addrs[i],
714 info->current_cs + info->mask_ale);
715 }
716 break;
717
718 case NAND_OP_DATA_IN_INSTR:
719 nand_davinci_data_in(info, instr->ctx.data.buf.in,
720 instr->ctx.data.len,
721 instr->ctx.data.force_8bit);
722 break;
723
724 case NAND_OP_DATA_OUT_INSTR:
725 nand_davinci_data_out(info, instr->ctx.data.buf.out,
726 instr->ctx.data.len,
727 instr->ctx.data.force_8bit);
728 break;
729
730 case NAND_OP_WAITRDY_INSTR:
731 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000;
732 ret = readl_relaxed_poll_timeout(info->base + NANDFSR_OFFSET,
733 status, status & BIT(0), 100,
734 timeout_us);
735 if (ret)
736 return ret;
737
738 break;
739 }
740
741 if (instr->delay_ns)
742 ndelay(instr->delay_ns);
743
744 return 0;
745}
746
747static int davinci_nand_exec_op(struct nand_chip *chip,
748 const struct nand_operation *op,
749 bool check_only)
750{
751 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
752 unsigned int i;
753
754 if (check_only)
755 return 0;
756
757 info->current_cs = info->vaddr + (op->cs * info->mask_chipsel);
758
759 for (i = 0; i < op->ninstrs; i++) {
760 int ret;
761
762 ret = davinci_nand_exec_instr(info, &op->instrs[i]);
763 if (ret)
764 return ret;
765 }
766
767 return 0;
768}
769
770static const struct nand_controller_ops davinci_nand_controller_ops = {
771 .attach_chip = davinci_nand_attach_chip,
772 .exec_op = davinci_nand_exec_op,
773};
774
775static int nand_davinci_probe(struct platform_device *pdev)
776{
777 struct davinci_nand_pdata *pdata;
778 struct davinci_nand_info *info;
779 struct resource *res1;
780 struct resource *res2;
781 void __iomem *vaddr;
782 void __iomem *base;
783 int ret;
784 uint32_t val;
785 struct mtd_info *mtd;
786
787 pdata = nand_davinci_get_pdata(pdev);
788 if (IS_ERR(pdata))
789 return PTR_ERR(pdata);
790
791 /* insist on board-specific configuration */
792 if (!pdata)
793 return -ENODEV;
794
795 /* which external chipselect will we be managing? */
796 if (pdata->core_chipsel < 0 || pdata->core_chipsel > 3)
797 return -ENODEV;
798
799 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
800 if (!info)
801 return -ENOMEM;
802
803 platform_set_drvdata(pdev, info);
804
805 res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
806 res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
807 if (!res1 || !res2) {
808 dev_err(&pdev->dev, "resource missing\n");
809 return -EINVAL;
810 }
811
812 vaddr = devm_ioremap_resource(&pdev->dev, res1);
813 if (IS_ERR(vaddr))
814 return PTR_ERR(vaddr);
815
816 /*
817 * This registers range is used to setup NAND settings. In case with
818 * TI AEMIF driver, the same memory address range is requested already
819 * by AEMIF, so we cannot request it twice, just ioremap.
820 * The AEMIF and NAND drivers not use the same registers in this range.
821 */
822 base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
823 if (!base) {
824 dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
825 return -EADDRNOTAVAIL;
826 }
827
828 info->pdev = pdev;
829 info->base = base;
830 info->vaddr = vaddr;
831
832 mtd = nand_to_mtd(&info->chip);
833 mtd->dev.parent = &pdev->dev;
834 nand_set_flash_node(&info->chip, pdev->dev.of_node);
835
836 /* options such as NAND_BBT_USE_FLASH */
837 info->chip.bbt_options = pdata->bbt_options;
838 /* options such as 16-bit widths */
839 info->chip.options = pdata->options;
840 info->chip.bbt_td = pdata->bbt_td;
841 info->chip.bbt_md = pdata->bbt_md;
842 info->timing = pdata->timing;
843
844 info->current_cs = info->vaddr;
845 info->core_chipsel = pdata->core_chipsel;
846 info->mask_chipsel = pdata->mask_chipsel;
847
848 /* use nandboot-capable ALE/CLE masks by default */
849 info->mask_ale = pdata->mask_ale ? : MASK_ALE;
850 info->mask_cle = pdata->mask_cle ? : MASK_CLE;
851
852 /* Use board-specific ECC config */
853 info->chip.ecc.mode = pdata->ecc_mode;
854
855 spin_lock_irq(&davinci_nand_lock);
856
857 /* put CSxNAND into NAND mode */
858 val = davinci_nand_readl(info, NANDFCR_OFFSET);
859 val |= BIT(info->core_chipsel);
860 davinci_nand_writel(info, NANDFCR_OFFSET, val);
861
862 spin_unlock_irq(&davinci_nand_lock);
863
864 /* Scan to find existence of the device(s) */
865 nand_controller_init(&info->controller);
866 info->controller.ops = &davinci_nand_controller_ops;
867 info->chip.controller = &info->controller;
868 ret = nand_scan(&info->chip, pdata->mask_chipsel ? 2 : 1);
869 if (ret < 0) {
870 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
871 return ret;
872 }
873
874 if (pdata->parts)
875 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
876 else
877 ret = mtd_device_register(mtd, NULL, 0);
878 if (ret < 0)
879 goto err_cleanup_nand;
880
881 val = davinci_nand_readl(info, NRCSR_OFFSET);
882 dev_info(&pdev->dev, "controller rev. %d.%d\n",
883 (val >> 8) & 0xff, val & 0xff);
884
885 return 0;
886
887err_cleanup_nand:
888 nand_cleanup(&info->chip);
889
890 return ret;
891}
892
893static int nand_davinci_remove(struct platform_device *pdev)
894{
895 struct davinci_nand_info *info = platform_get_drvdata(pdev);
896 struct nand_chip *chip = &info->chip;
897 int ret;
898
899 spin_lock_irq(&davinci_nand_lock);
900 if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
901 ecc4_busy = false;
902 spin_unlock_irq(&davinci_nand_lock);
903
904 ret = mtd_device_unregister(nand_to_mtd(chip));
905 WARN_ON(ret);
906 nand_cleanup(chip);
907
908 return 0;
909}
910
911static struct platform_driver nand_davinci_driver = {
912 .probe = nand_davinci_probe,
913 .remove = nand_davinci_remove,
914 .driver = {
915 .name = "davinci_nand",
916 .of_match_table = of_match_ptr(davinci_nand_of_match),
917 },
918};
919MODULE_ALIAS("platform:davinci_nand");
920
921module_platform_driver(nand_davinci_driver);
922
923MODULE_LICENSE("GPL");
924MODULE_AUTHOR("Texas Instruments");
925MODULE_DESCRIPTION("Davinci NAND flash driver");
926