Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
  4 *
  5 * Copyright © 2006 Texas Instruments.
  6 *
  7 * Port to 2.6.23 Copyright © 2008 by:
  8 *   Sander Huijsen <Shuijsen@optelecom-nkf.com>
  9 *   Troy Kisky <troy.kisky@boundarydevices.com>
 10 *   Dirk Behme <Dirk.Behme@gmail.com>
 11 */
 12
 13#include <linux/kernel.h>
 14#include <linux/module.h>
 15#include <linux/platform_device.h>
 16#include <linux/err.h>
 17#include <linux/iopoll.h>
 18#include <linux/mtd/rawnand.h>
 19#include <linux/mtd/partitions.h>
 20#include <linux/slab.h>
 
 21#include <linux/of.h>
 22
 23#include <linux/platform_data/mtd-davinci.h>
 24#include <linux/platform_data/mtd-davinci-aemif.h>
 25
 26/*
 27 * This is a device driver for the NAND flash controller found on the
 28 * various DaVinci family chips.  It handles up to four SoC chipselects,
 29 * and some flavors of secondary chipselect (e.g. based on A12) as used
 30 * with multichip packages.
 31 *
 32 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
 33 * available on chips like the DM355 and OMAP-L137 and needed with the
 34 * more error-prone MLC NAND chips.
 35 *
 36 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
 37 * outputs in a "wire-AND" configuration, with no per-chip signals.
 38 */
 39struct davinci_nand_info {
 40	struct nand_controller	controller;
 41	struct nand_chip	chip;
 42
 43	struct platform_device	*pdev;
 44
 45	bool			is_readmode;
 46
 47	void __iomem		*base;
 48	void __iomem		*vaddr;
 49
 50	void __iomem		*current_cs;
 51
 52	uint32_t		mask_chipsel;
 53	uint32_t		mask_ale;
 54	uint32_t		mask_cle;
 55
 56	uint32_t		core_chipsel;
 57
 58	struct davinci_aemif_timing	*timing;
 59};
 60
 61static DEFINE_SPINLOCK(davinci_nand_lock);
 62static bool ecc4_busy;
 63
 64static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd)
 65{
 66	return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip);
 67}
 68
 69static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
 70		int offset)
 71{
 72	return __raw_readl(info->base + offset);
 73}
 74
 75static inline void davinci_nand_writel(struct davinci_nand_info *info,
 76		int offset, unsigned long value)
 77{
 78	__raw_writel(value, info->base + offset);
 79}
 80
 81/*----------------------------------------------------------------------*/
 82
 83/*
 84 * 1-bit hardware ECC ... context maintained for each core chipselect
 85 */
 86
 87static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
 88{
 89	struct davinci_nand_info *info = to_davinci_nand(mtd);
 90
 91	return davinci_nand_readl(info, NANDF1ECC_OFFSET
 92			+ 4 * info->core_chipsel);
 93}
 94
 95static void nand_davinci_hwctl_1bit(struct nand_chip *chip, int mode)
 96{
 97	struct davinci_nand_info *info;
 98	uint32_t nandcfr;
 99	unsigned long flags;
100
101	info = to_davinci_nand(nand_to_mtd(chip));
102
103	/* Reset ECC hardware */
104	nand_davinci_readecc_1bit(nand_to_mtd(chip));
105
106	spin_lock_irqsave(&davinci_nand_lock, flags);
107
108	/* Restart ECC hardware */
109	nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
110	nandcfr |= BIT(8 + info->core_chipsel);
111	davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
112
113	spin_unlock_irqrestore(&davinci_nand_lock, flags);
114}
115
116/*
117 * Read hardware ECC value and pack into three bytes
118 */
119static int nand_davinci_calculate_1bit(struct nand_chip *chip,
120				       const u_char *dat, u_char *ecc_code)
121{
122	unsigned int ecc_val = nand_davinci_readecc_1bit(nand_to_mtd(chip));
123	unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
124
125	/* invert so that erased block ecc is correct */
126	ecc24 = ~ecc24;
127	ecc_code[0] = (u_char)(ecc24);
128	ecc_code[1] = (u_char)(ecc24 >> 8);
129	ecc_code[2] = (u_char)(ecc24 >> 16);
130
131	return 0;
132}
133
134static int nand_davinci_correct_1bit(struct nand_chip *chip, u_char *dat,
135				     u_char *read_ecc, u_char *calc_ecc)
136{
137	uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
138					  (read_ecc[2] << 16);
139	uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
140					  (calc_ecc[2] << 16);
141	uint32_t diff = eccCalc ^ eccNand;
142
143	if (diff) {
144		if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
145			/* Correctable error */
146			if ((diff >> (12 + 3)) < chip->ecc.size) {
147				dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
148				return 1;
149			} else {
150				return -EBADMSG;
151			}
152		} else if (!(diff & (diff - 1))) {
153			/* Single bit ECC error in the ECC itself,
154			 * nothing to fix */
155			return 1;
156		} else {
157			/* Uncorrectable error */
158			return -EBADMSG;
159		}
160
161	}
162	return 0;
163}
164
165/*----------------------------------------------------------------------*/
166
167/*
168 * 4-bit hardware ECC ... context maintained over entire AEMIF
169 *
170 * This is a syndrome engine, but we avoid NAND_ECC_PLACEMENT_INTERLEAVED
171 * since that forces use of a problematic "infix OOB" layout.
172 * Among other things, it trashes manufacturer bad block markers.
173 * Also, and specific to this hardware, it ECC-protects the "prepad"
174 * in the OOB ... while having ECC protection for parts of OOB would
175 * seem useful, the current MTD stack sometimes wants to update the
176 * OOB without recomputing ECC.
177 */
178
179static void nand_davinci_hwctl_4bit(struct nand_chip *chip, int mode)
180{
181	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
182	unsigned long flags;
183	u32 val;
184
185	/* Reset ECC hardware */
186	davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
187
188	spin_lock_irqsave(&davinci_nand_lock, flags);
189
190	/* Start 4-bit ECC calculation for read/write */
191	val = davinci_nand_readl(info, NANDFCR_OFFSET);
192	val &= ~(0x03 << 4);
193	val |= (info->core_chipsel << 4) | BIT(12);
194	davinci_nand_writel(info, NANDFCR_OFFSET, val);
195
196	info->is_readmode = (mode == NAND_ECC_READ);
197
198	spin_unlock_irqrestore(&davinci_nand_lock, flags);
199}
200
201/* Read raw ECC code after writing to NAND. */
202static void
203nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
204{
205	const u32 mask = 0x03ff03ff;
206
207	code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
208	code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
209	code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
210	code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
211}
212
213/* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
214static int nand_davinci_calculate_4bit(struct nand_chip *chip,
215				       const u_char *dat, u_char *ecc_code)
216{
217	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
218	u32 raw_ecc[4], *p;
219	unsigned i;
220
221	/* After a read, terminate ECC calculation by a dummy read
222	 * of some 4-bit ECC register.  ECC covers everything that
223	 * was read; correct() just uses the hardware state, so
224	 * ecc_code is not needed.
225	 */
226	if (info->is_readmode) {
227		davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
228		return 0;
229	}
230
231	/* Pack eight raw 10-bit ecc values into ten bytes, making
232	 * two passes which each convert four values (in upper and
233	 * lower halves of two 32-bit words) into five bytes.  The
234	 * ROM boot loader uses this same packing scheme.
235	 */
236	nand_davinci_readecc_4bit(info, raw_ecc);
237	for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
238		*ecc_code++ =   p[0]        & 0xff;
239		*ecc_code++ = ((p[0] >>  8) & 0x03) | ((p[0] >> 14) & 0xfc);
240		*ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] <<  4) & 0xf0);
241		*ecc_code++ = ((p[1] >>  4) & 0x3f) | ((p[1] >> 10) & 0xc0);
242		*ecc_code++ =  (p[1] >> 18) & 0xff;
243	}
244
245	return 0;
246}
247
248/* Correct up to 4 bits in data we just read, using state left in the
249 * hardware plus the ecc_code computed when it was first written.
250 */
251static int nand_davinci_correct_4bit(struct nand_chip *chip, u_char *data,
252				     u_char *ecc_code, u_char *null)
253{
254	int i;
255	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
256	unsigned short ecc10[8];
257	unsigned short *ecc16;
258	u32 syndrome[4];
259	u32 ecc_state;
260	unsigned num_errors, corrected;
261	unsigned long timeo;
262
263	/* Unpack ten bytes into eight 10 bit values.  We know we're
264	 * little-endian, and use type punning for less shifting/masking.
265	 */
266	if (WARN_ON(0x01 & (uintptr_t)ecc_code))
267		return -EINVAL;
268	ecc16 = (unsigned short *)ecc_code;
269
270	ecc10[0] =  (ecc16[0] >>  0) & 0x3ff;
271	ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
272	ecc10[2] =  (ecc16[1] >>  4) & 0x3ff;
273	ecc10[3] = ((ecc16[1] >> 14) & 0x3)  | ((ecc16[2] << 2) & 0x3fc);
274	ecc10[4] =  (ecc16[2] >>  8)         | ((ecc16[3] << 8) & 0x300);
275	ecc10[5] =  (ecc16[3] >>  2) & 0x3ff;
276	ecc10[6] = ((ecc16[3] >> 12) & 0xf)  | ((ecc16[4] << 4) & 0x3f0);
277	ecc10[7] =  (ecc16[4] >>  6) & 0x3ff;
278
279	/* Tell ECC controller about the expected ECC codes. */
280	for (i = 7; i >= 0; i--)
281		davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
282
283	/* Allow time for syndrome calculation ... then read it.
284	 * A syndrome of all zeroes 0 means no detected errors.
285	 */
286	davinci_nand_readl(info, NANDFSR_OFFSET);
287	nand_davinci_readecc_4bit(info, syndrome);
288	if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
289		return 0;
290
291	/*
292	 * Clear any previous address calculation by doing a dummy read of an
293	 * error address register.
294	 */
295	davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
296
297	/* Start address calculation, and wait for it to complete.
298	 * We _could_ start reading more data while this is working,
299	 * to speed up the overall page read.
300	 */
301	davinci_nand_writel(info, NANDFCR_OFFSET,
302			davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
303
304	/*
305	 * ECC_STATE field reads 0x3 (Error correction complete) immediately
306	 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
307	 * begin trying to poll for the state, you may fall right out of your
308	 * loop without any of the correction calculations having taken place.
309	 * The recommendation from the hardware team is to initially delay as
310	 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
311	 * correction state.
312	 */
313	timeo = jiffies + usecs_to_jiffies(100);
314	do {
315		ecc_state = (davinci_nand_readl(info,
316				NANDFSR_OFFSET) >> 8) & 0x0f;
317		cpu_relax();
318	} while ((ecc_state < 4) && time_before(jiffies, timeo));
319
320	for (;;) {
321		u32	fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
322
323		switch ((fsr >> 8) & 0x0f) {
324		case 0:		/* no error, should not happen */
325			davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
326			return 0;
327		case 1:		/* five or more errors detected */
328			davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
329			return -EBADMSG;
330		case 2:		/* error addresses computed */
331		case 3:
332			num_errors = 1 + ((fsr >> 16) & 0x03);
333			goto correct;
334		default:	/* still working on it */
335			cpu_relax();
336			continue;
337		}
338	}
339
340correct:
341	/* correct each error */
342	for (i = 0, corrected = 0; i < num_errors; i++) {
343		int error_address, error_value;
344
345		if (i > 1) {
346			error_address = davinci_nand_readl(info,
347						NAND_ERR_ADD2_OFFSET);
348			error_value = davinci_nand_readl(info,
349						NAND_ERR_ERRVAL2_OFFSET);
350		} else {
351			error_address = davinci_nand_readl(info,
352						NAND_ERR_ADD1_OFFSET);
353			error_value = davinci_nand_readl(info,
354						NAND_ERR_ERRVAL1_OFFSET);
355		}
356
357		if (i & 1) {
358			error_address >>= 16;
359			error_value >>= 16;
360		}
361		error_address &= 0x3ff;
362		error_address = (512 + 7) - error_address;
363
364		if (error_address < 512) {
365			data[error_address] ^= error_value;
366			corrected++;
367		}
368	}
369
370	return corrected;
371}
372
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
373/*----------------------------------------------------------------------*/
374
375/* An ECC layout for using 4-bit ECC with small-page flash, storing
376 * ten ECC bytes plus the manufacturer's bad block marker byte, and
377 * and not overlapping the default BBT markers.
378 */
379static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section,
380				      struct mtd_oob_region *oobregion)
381{
382	if (section > 2)
383		return -ERANGE;
384
385	if (!section) {
386		oobregion->offset = 0;
387		oobregion->length = 5;
388	} else if (section == 1) {
389		oobregion->offset = 6;
390		oobregion->length = 2;
391	} else {
392		oobregion->offset = 13;
393		oobregion->length = 3;
394	}
395
396	return 0;
397}
398
399static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section,
400				       struct mtd_oob_region *oobregion)
401{
402	if (section > 1)
403		return -ERANGE;
404
405	if (!section) {
406		oobregion->offset = 8;
407		oobregion->length = 5;
408	} else {
409		oobregion->offset = 16;
410		oobregion->length = mtd->oobsize - 16;
411	}
412
413	return 0;
414}
415
416static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = {
417	.ecc = hwecc4_ooblayout_small_ecc,
418	.free = hwecc4_ooblayout_small_free,
419};
420
421#if defined(CONFIG_OF)
422static const struct of_device_id davinci_nand_of_match[] = {
423	{.compatible = "ti,davinci-nand", },
424	{.compatible = "ti,keystone-nand", },
425	{},
426};
427MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
428
429static struct davinci_nand_pdata
430	*nand_davinci_get_pdata(struct platform_device *pdev)
431{
432	if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
433		struct davinci_nand_pdata *pdata;
434		const char *mode;
435		u32 prop;
436
437		pdata =  devm_kzalloc(&pdev->dev,
438				sizeof(struct davinci_nand_pdata),
439				GFP_KERNEL);
440		pdev->dev.platform_data = pdata;
441		if (!pdata)
442			return ERR_PTR(-ENOMEM);
443		if (!of_property_read_u32(pdev->dev.of_node,
444			"ti,davinci-chipselect", &prop))
445			pdata->core_chipsel = prop;
446		else
447			return ERR_PTR(-EINVAL);
448
449		if (!of_property_read_u32(pdev->dev.of_node,
450			"ti,davinci-mask-ale", &prop))
451			pdata->mask_ale = prop;
452		if (!of_property_read_u32(pdev->dev.of_node,
453			"ti,davinci-mask-cle", &prop))
454			pdata->mask_cle = prop;
455		if (!of_property_read_u32(pdev->dev.of_node,
456			"ti,davinci-mask-chipsel", &prop))
457			pdata->mask_chipsel = prop;
458		if (!of_property_read_string(pdev->dev.of_node,
459			"ti,davinci-ecc-mode", &mode)) {
460			if (!strncmp("none", mode, 4))
461				pdata->engine_type = NAND_ECC_ENGINE_TYPE_NONE;
462			if (!strncmp("soft", mode, 4))
463				pdata->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
464			if (!strncmp("hw", mode, 2))
465				pdata->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
466		}
467		if (!of_property_read_u32(pdev->dev.of_node,
468			"ti,davinci-ecc-bits", &prop))
469			pdata->ecc_bits = prop;
470
471		if (!of_property_read_u32(pdev->dev.of_node,
472			"ti,davinci-nand-buswidth", &prop) && prop == 16)
473			pdata->options |= NAND_BUSWIDTH_16;
474
475		if (of_property_read_bool(pdev->dev.of_node,
476			"ti,davinci-nand-use-bbt"))
477			pdata->bbt_options = NAND_BBT_USE_FLASH;
478
479		/*
480		 * Since kernel v4.8, this driver has been fixed to enable
481		 * use of 4-bit hardware ECC with subpages and verified on
482		 * TI's keystone EVMs (K2L, K2HK and K2E).
483		 * However, in the interest of not breaking systems using
484		 * existing UBI partitions, sub-page writes are not being
485		 * (re)enabled. If you want to use subpage writes on Keystone
486		 * platforms (i.e. do not have any existing UBI partitions),
487		 * then use "ti,davinci-nand" as the compatible in your
488		 * device-tree file.
489		 */
490		if (of_device_is_compatible(pdev->dev.of_node,
491					    "ti,keystone-nand")) {
492			pdata->options |= NAND_NO_SUBPAGE_WRITE;
493		}
494	}
495
496	return dev_get_platdata(&pdev->dev);
497}
498#else
499static struct davinci_nand_pdata
500	*nand_davinci_get_pdata(struct platform_device *pdev)
501{
502	return dev_get_platdata(&pdev->dev);
503}
504#endif
505
506static int davinci_nand_attach_chip(struct nand_chip *chip)
507{
508	struct mtd_info *mtd = nand_to_mtd(chip);
509	struct davinci_nand_info *info = to_davinci_nand(mtd);
510	struct davinci_nand_pdata *pdata = nand_davinci_get_pdata(info->pdev);
511	int ret = 0;
512
513	if (IS_ERR(pdata))
514		return PTR_ERR(pdata);
515
516	/* Use board-specific ECC config */
517	chip->ecc.engine_type = pdata->engine_type;
518	chip->ecc.placement = pdata->ecc_placement;
519
520	switch (chip->ecc.engine_type) {
521	case NAND_ECC_ENGINE_TYPE_NONE:
522		pdata->ecc_bits = 0;
523		break;
524	case NAND_ECC_ENGINE_TYPE_SOFT:
525		pdata->ecc_bits = 0;
526		/*
527		 * This driver expects Hamming based ECC when engine_type is set
528		 * to NAND_ECC_ENGINE_TYPE_SOFT. Force ecc.algo to
529		 * NAND_ECC_ALGO_HAMMING to avoid adding an extra ->ecc_algo
530		 * field to davinci_nand_pdata.
531		 */
532		chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
533		break;
534	case NAND_ECC_ENGINE_TYPE_ON_HOST:
535		if (pdata->ecc_bits == 4) {
536			int chunks = mtd->writesize / 512;
537
538			if (!chunks || mtd->oobsize < 16) {
539				dev_dbg(&info->pdev->dev, "too small\n");
540				return -EINVAL;
541			}
542
543			/*
544			 * No sanity checks:  CPUs must support this,
545			 * and the chips may not use NAND_BUSWIDTH_16.
546			 */
547
548			/* No sharing 4-bit hardware between chipselects yet */
549			spin_lock_irq(&davinci_nand_lock);
550			if (ecc4_busy)
551				ret = -EBUSY;
552			else
553				ecc4_busy = true;
554			spin_unlock_irq(&davinci_nand_lock);
555
556			if (ret == -EBUSY)
557				return ret;
558
559			chip->ecc.calculate = nand_davinci_calculate_4bit;
560			chip->ecc.correct = nand_davinci_correct_4bit;
561			chip->ecc.hwctl = nand_davinci_hwctl_4bit;
562			chip->ecc.bytes = 10;
563			chip->ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
564			chip->ecc.algo = NAND_ECC_ALGO_BCH;
565
566			/*
567			 * Update ECC layout if needed ... for 1-bit HW ECC, the
568			 * default is OK, but it allocates 6 bytes when only 3
569			 * are needed (for each 512 bytes). For 4-bit HW ECC,
570			 * the default is not usable: 10 bytes needed, not 6.
571			 *
572			 * For small page chips, preserve the manufacturer's
573			 * badblock marking data ... and make sure a flash BBT
574			 * table marker fits in the free bytes.
575			 */
576			if (chunks == 1) {
577				mtd_set_ooblayout(mtd,
578						  &hwecc4_small_ooblayout_ops);
579			} else if (chunks == 4 || chunks == 8) {
580				mtd_set_ooblayout(mtd,
581						  nand_get_large_page_ooblayout());
582				chip->ecc.read_page = nand_read_page_hwecc_oob_first;
583			} else {
584				return -EIO;
585			}
586		} else {
587			/* 1bit ecc hamming */
588			chip->ecc.calculate = nand_davinci_calculate_1bit;
589			chip->ecc.correct = nand_davinci_correct_1bit;
590			chip->ecc.hwctl = nand_davinci_hwctl_1bit;
591			chip->ecc.bytes = 3;
592			chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
593		}
594		chip->ecc.size = 512;
595		chip->ecc.strength = pdata->ecc_bits;
596		break;
597	default:
598		return -EINVAL;
599	}
600
601	return ret;
602}
603
604static void nand_davinci_data_in(struct davinci_nand_info *info, void *buf,
605				 unsigned int len, bool force_8bit)
606{
607	u32 alignment = ((uintptr_t)buf | len) & 3;
608
609	if (force_8bit || (alignment & 1))
610		ioread8_rep(info->current_cs, buf, len);
611	else if (alignment & 3)
612		ioread16_rep(info->current_cs, buf, len >> 1);
613	else
614		ioread32_rep(info->current_cs, buf, len >> 2);
615}
616
617static void nand_davinci_data_out(struct davinci_nand_info *info,
618				  const void *buf, unsigned int len,
619				  bool force_8bit)
620{
621	u32 alignment = ((uintptr_t)buf | len) & 3;
622
623	if (force_8bit || (alignment & 1))
624		iowrite8_rep(info->current_cs, buf, len);
625	else if (alignment & 3)
626		iowrite16_rep(info->current_cs, buf, len >> 1);
627	else
628		iowrite32_rep(info->current_cs, buf, len >> 2);
629}
630
631static int davinci_nand_exec_instr(struct davinci_nand_info *info,
632				   const struct nand_op_instr *instr)
633{
634	unsigned int i, timeout_us;
635	u32 status;
636	int ret;
637
638	switch (instr->type) {
639	case NAND_OP_CMD_INSTR:
640		iowrite8(instr->ctx.cmd.opcode,
641			 info->current_cs + info->mask_cle);
642		break;
643
644	case NAND_OP_ADDR_INSTR:
645		for (i = 0; i < instr->ctx.addr.naddrs; i++) {
646			iowrite8(instr->ctx.addr.addrs[i],
647				 info->current_cs + info->mask_ale);
648		}
649		break;
650
651	case NAND_OP_DATA_IN_INSTR:
652		nand_davinci_data_in(info, instr->ctx.data.buf.in,
653				     instr->ctx.data.len,
654				     instr->ctx.data.force_8bit);
655		break;
656
657	case NAND_OP_DATA_OUT_INSTR:
658		nand_davinci_data_out(info, instr->ctx.data.buf.out,
659				      instr->ctx.data.len,
660				      instr->ctx.data.force_8bit);
661		break;
662
663	case NAND_OP_WAITRDY_INSTR:
664		timeout_us = instr->ctx.waitrdy.timeout_ms * 1000;
665		ret = readl_relaxed_poll_timeout(info->base + NANDFSR_OFFSET,
666						 status, status & BIT(0), 100,
667						 timeout_us);
668		if (ret)
669			return ret;
670
671		break;
672	}
673
674	if (instr->delay_ns)
675		ndelay(instr->delay_ns);
676
677	return 0;
678}
679
680static int davinci_nand_exec_op(struct nand_chip *chip,
681				const struct nand_operation *op,
682				bool check_only)
683{
684	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
685	unsigned int i;
686
687	if (check_only)
688		return 0;
689
690	info->current_cs = info->vaddr + (op->cs * info->mask_chipsel);
691
692	for (i = 0; i < op->ninstrs; i++) {
693		int ret;
694
695		ret = davinci_nand_exec_instr(info, &op->instrs[i]);
696		if (ret)
697			return ret;
698	}
699
700	return 0;
701}
702
703static const struct nand_controller_ops davinci_nand_controller_ops = {
704	.attach_chip = davinci_nand_attach_chip,
705	.exec_op = davinci_nand_exec_op,
706};
707
708static int nand_davinci_probe(struct platform_device *pdev)
709{
710	struct davinci_nand_pdata	*pdata;
711	struct davinci_nand_info	*info;
712	struct resource			*res1;
713	struct resource			*res2;
714	void __iomem			*vaddr;
715	void __iomem			*base;
716	int				ret;
717	uint32_t			val;
718	struct mtd_info			*mtd;
719
720	pdata = nand_davinci_get_pdata(pdev);
721	if (IS_ERR(pdata))
722		return PTR_ERR(pdata);
723
724	/* insist on board-specific configuration */
725	if (!pdata)
726		return -ENODEV;
727
728	/* which external chipselect will we be managing? */
729	if (pdata->core_chipsel > 3)
730		return -ENODEV;
731
732	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
733	if (!info)
734		return -ENOMEM;
735
736	platform_set_drvdata(pdev, info);
737
738	res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
739	res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
740	if (!res1 || !res2) {
741		dev_err(&pdev->dev, "resource missing\n");
742		return -EINVAL;
743	}
744
745	vaddr = devm_ioremap_resource(&pdev->dev, res1);
746	if (IS_ERR(vaddr))
747		return PTR_ERR(vaddr);
748
749	/*
750	 * This registers range is used to setup NAND settings. In case with
751	 * TI AEMIF driver, the same memory address range is requested already
752	 * by AEMIF, so we cannot request it twice, just ioremap.
753	 * The AEMIF and NAND drivers not use the same registers in this range.
754	 */
755	base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
756	if (!base) {
757		dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
758		return -EADDRNOTAVAIL;
759	}
760
761	info->pdev		= pdev;
762	info->base		= base;
763	info->vaddr		= vaddr;
764
765	mtd			= nand_to_mtd(&info->chip);
766	mtd->dev.parent		= &pdev->dev;
767	nand_set_flash_node(&info->chip, pdev->dev.of_node);
768
769	/* options such as NAND_BBT_USE_FLASH */
770	info->chip.bbt_options	= pdata->bbt_options;
771	/* options such as 16-bit widths */
772	info->chip.options	= pdata->options;
773	info->chip.bbt_td	= pdata->bbt_td;
774	info->chip.bbt_md	= pdata->bbt_md;
775	info->timing		= pdata->timing;
776
777	info->current_cs	= info->vaddr;
778	info->core_chipsel	= pdata->core_chipsel;
779	info->mask_chipsel	= pdata->mask_chipsel;
780
781	/* use nandboot-capable ALE/CLE masks by default */
782	info->mask_ale		= pdata->mask_ale ? : MASK_ALE;
783	info->mask_cle		= pdata->mask_cle ? : MASK_CLE;
784
 
 
 
785	spin_lock_irq(&davinci_nand_lock);
786
787	/* put CSxNAND into NAND mode */
788	val = davinci_nand_readl(info, NANDFCR_OFFSET);
789	val |= BIT(info->core_chipsel);
790	davinci_nand_writel(info, NANDFCR_OFFSET, val);
791
792	spin_unlock_irq(&davinci_nand_lock);
793
794	/* Scan to find existence of the device(s) */
795	nand_controller_init(&info->controller);
796	info->controller.ops = &davinci_nand_controller_ops;
797	info->chip.controller = &info->controller;
798	ret = nand_scan(&info->chip, pdata->mask_chipsel ? 2 : 1);
799	if (ret < 0) {
800		dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
801		return ret;
802	}
803
804	if (pdata->parts)
805		ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
806	else
807		ret = mtd_device_register(mtd, NULL, 0);
808	if (ret < 0)
809		goto err_cleanup_nand;
810
811	val = davinci_nand_readl(info, NRCSR_OFFSET);
812	dev_info(&pdev->dev, "controller rev. %d.%d\n",
813	       (val >> 8) & 0xff, val & 0xff);
814
815	return 0;
816
817err_cleanup_nand:
818	nand_cleanup(&info->chip);
819
820	return ret;
821}
822
823static void nand_davinci_remove(struct platform_device *pdev)
824{
825	struct davinci_nand_info *info = platform_get_drvdata(pdev);
826	struct nand_chip *chip = &info->chip;
827	int ret;
828
829	spin_lock_irq(&davinci_nand_lock);
830	if (chip->ecc.placement == NAND_ECC_PLACEMENT_INTERLEAVED)
831		ecc4_busy = false;
832	spin_unlock_irq(&davinci_nand_lock);
833
834	ret = mtd_device_unregister(nand_to_mtd(chip));
835	WARN_ON(ret);
836	nand_cleanup(chip);
 
 
837}
838
839static struct platform_driver nand_davinci_driver = {
840	.probe		= nand_davinci_probe,
841	.remove_new	= nand_davinci_remove,
842	.driver		= {
843		.name	= "davinci_nand",
844		.of_match_table = of_match_ptr(davinci_nand_of_match),
845	},
846};
847MODULE_ALIAS("platform:davinci_nand");
848
849module_platform_driver(nand_davinci_driver);
850
851MODULE_LICENSE("GPL");
852MODULE_AUTHOR("Texas Instruments");
853MODULE_DESCRIPTION("Davinci NAND flash driver");
854
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
  4 *
  5 * Copyright © 2006 Texas Instruments.
  6 *
  7 * Port to 2.6.23 Copyright © 2008 by:
  8 *   Sander Huijsen <Shuijsen@optelecom-nkf.com>
  9 *   Troy Kisky <troy.kisky@boundarydevices.com>
 10 *   Dirk Behme <Dirk.Behme@gmail.com>
 11 */
 12
 13#include <linux/kernel.h>
 14#include <linux/module.h>
 15#include <linux/platform_device.h>
 16#include <linux/err.h>
 17#include <linux/iopoll.h>
 18#include <linux/mtd/rawnand.h>
 19#include <linux/mtd/partitions.h>
 20#include <linux/slab.h>
 21#include <linux/of_device.h>
 22#include <linux/of.h>
 23
 24#include <linux/platform_data/mtd-davinci.h>
 25#include <linux/platform_data/mtd-davinci-aemif.h>
 26
 27/*
 28 * This is a device driver for the NAND flash controller found on the
 29 * various DaVinci family chips.  It handles up to four SoC chipselects,
 30 * and some flavors of secondary chipselect (e.g. based on A12) as used
 31 * with multichip packages.
 32 *
 33 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
 34 * available on chips like the DM355 and OMAP-L137 and needed with the
 35 * more error-prone MLC NAND chips.
 36 *
 37 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
 38 * outputs in a "wire-AND" configuration, with no per-chip signals.
 39 */
 40struct davinci_nand_info {
 41	struct nand_controller	controller;
 42	struct nand_chip	chip;
 43
 44	struct platform_device	*pdev;
 45
 46	bool			is_readmode;
 47
 48	void __iomem		*base;
 49	void __iomem		*vaddr;
 50
 51	void __iomem		*current_cs;
 52
 53	uint32_t		mask_chipsel;
 54	uint32_t		mask_ale;
 55	uint32_t		mask_cle;
 56
 57	uint32_t		core_chipsel;
 58
 59	struct davinci_aemif_timing	*timing;
 60};
 61
 62static DEFINE_SPINLOCK(davinci_nand_lock);
 63static bool ecc4_busy;
 64
 65static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd)
 66{
 67	return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip);
 68}
 69
 70static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
 71		int offset)
 72{
 73	return __raw_readl(info->base + offset);
 74}
 75
 76static inline void davinci_nand_writel(struct davinci_nand_info *info,
 77		int offset, unsigned long value)
 78{
 79	__raw_writel(value, info->base + offset);
 80}
 81
 82/*----------------------------------------------------------------------*/
 83
 84/*
 85 * 1-bit hardware ECC ... context maintained for each core chipselect
 86 */
 87
 88static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
 89{
 90	struct davinci_nand_info *info = to_davinci_nand(mtd);
 91
 92	return davinci_nand_readl(info, NANDF1ECC_OFFSET
 93			+ 4 * info->core_chipsel);
 94}
 95
 96static void nand_davinci_hwctl_1bit(struct nand_chip *chip, int mode)
 97{
 98	struct davinci_nand_info *info;
 99	uint32_t nandcfr;
100	unsigned long flags;
101
102	info = to_davinci_nand(nand_to_mtd(chip));
103
104	/* Reset ECC hardware */
105	nand_davinci_readecc_1bit(nand_to_mtd(chip));
106
107	spin_lock_irqsave(&davinci_nand_lock, flags);
108
109	/* Restart ECC hardware */
110	nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
111	nandcfr |= BIT(8 + info->core_chipsel);
112	davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
113
114	spin_unlock_irqrestore(&davinci_nand_lock, flags);
115}
116
117/*
118 * Read hardware ECC value and pack into three bytes
119 */
120static int nand_davinci_calculate_1bit(struct nand_chip *chip,
121				       const u_char *dat, u_char *ecc_code)
122{
123	unsigned int ecc_val = nand_davinci_readecc_1bit(nand_to_mtd(chip));
124	unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
125
126	/* invert so that erased block ecc is correct */
127	ecc24 = ~ecc24;
128	ecc_code[0] = (u_char)(ecc24);
129	ecc_code[1] = (u_char)(ecc24 >> 8);
130	ecc_code[2] = (u_char)(ecc24 >> 16);
131
132	return 0;
133}
134
135static int nand_davinci_correct_1bit(struct nand_chip *chip, u_char *dat,
136				     u_char *read_ecc, u_char *calc_ecc)
137{
138	uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
139					  (read_ecc[2] << 16);
140	uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
141					  (calc_ecc[2] << 16);
142	uint32_t diff = eccCalc ^ eccNand;
143
144	if (diff) {
145		if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
146			/* Correctable error */
147			if ((diff >> (12 + 3)) < chip->ecc.size) {
148				dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
149				return 1;
150			} else {
151				return -EBADMSG;
152			}
153		} else if (!(diff & (diff - 1))) {
154			/* Single bit ECC error in the ECC itself,
155			 * nothing to fix */
156			return 1;
157		} else {
158			/* Uncorrectable error */
159			return -EBADMSG;
160		}
161
162	}
163	return 0;
164}
165
166/*----------------------------------------------------------------------*/
167
168/*
169 * 4-bit hardware ECC ... context maintained over entire AEMIF
170 *
171 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
172 * since that forces use of a problematic "infix OOB" layout.
173 * Among other things, it trashes manufacturer bad block markers.
174 * Also, and specific to this hardware, it ECC-protects the "prepad"
175 * in the OOB ... while having ECC protection for parts of OOB would
176 * seem useful, the current MTD stack sometimes wants to update the
177 * OOB without recomputing ECC.
178 */
179
180static void nand_davinci_hwctl_4bit(struct nand_chip *chip, int mode)
181{
182	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
183	unsigned long flags;
184	u32 val;
185
186	/* Reset ECC hardware */
187	davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
188
189	spin_lock_irqsave(&davinci_nand_lock, flags);
190
191	/* Start 4-bit ECC calculation for read/write */
192	val = davinci_nand_readl(info, NANDFCR_OFFSET);
193	val &= ~(0x03 << 4);
194	val |= (info->core_chipsel << 4) | BIT(12);
195	davinci_nand_writel(info, NANDFCR_OFFSET, val);
196
197	info->is_readmode = (mode == NAND_ECC_READ);
198
199	spin_unlock_irqrestore(&davinci_nand_lock, flags);
200}
201
202/* Read raw ECC code after writing to NAND. */
203static void
204nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
205{
206	const u32 mask = 0x03ff03ff;
207
208	code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
209	code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
210	code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
211	code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
212}
213
214/* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
215static int nand_davinci_calculate_4bit(struct nand_chip *chip,
216				       const u_char *dat, u_char *ecc_code)
217{
218	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
219	u32 raw_ecc[4], *p;
220	unsigned i;
221
222	/* After a read, terminate ECC calculation by a dummy read
223	 * of some 4-bit ECC register.  ECC covers everything that
224	 * was read; correct() just uses the hardware state, so
225	 * ecc_code is not needed.
226	 */
227	if (info->is_readmode) {
228		davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
229		return 0;
230	}
231
232	/* Pack eight raw 10-bit ecc values into ten bytes, making
233	 * two passes which each convert four values (in upper and
234	 * lower halves of two 32-bit words) into five bytes.  The
235	 * ROM boot loader uses this same packing scheme.
236	 */
237	nand_davinci_readecc_4bit(info, raw_ecc);
238	for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
239		*ecc_code++ =   p[0]        & 0xff;
240		*ecc_code++ = ((p[0] >>  8) & 0x03) | ((p[0] >> 14) & 0xfc);
241		*ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] <<  4) & 0xf0);
242		*ecc_code++ = ((p[1] >>  4) & 0x3f) | ((p[1] >> 10) & 0xc0);
243		*ecc_code++ =  (p[1] >> 18) & 0xff;
244	}
245
246	return 0;
247}
248
249/* Correct up to 4 bits in data we just read, using state left in the
250 * hardware plus the ecc_code computed when it was first written.
251 */
252static int nand_davinci_correct_4bit(struct nand_chip *chip, u_char *data,
253				     u_char *ecc_code, u_char *null)
254{
255	int i;
256	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
257	unsigned short ecc10[8];
258	unsigned short *ecc16;
259	u32 syndrome[4];
260	u32 ecc_state;
261	unsigned num_errors, corrected;
262	unsigned long timeo;
263
264	/* Unpack ten bytes into eight 10 bit values.  We know we're
265	 * little-endian, and use type punning for less shifting/masking.
266	 */
267	if (WARN_ON(0x01 & (uintptr_t)ecc_code))
268		return -EINVAL;
269	ecc16 = (unsigned short *)ecc_code;
270
271	ecc10[0] =  (ecc16[0] >>  0) & 0x3ff;
272	ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
273	ecc10[2] =  (ecc16[1] >>  4) & 0x3ff;
274	ecc10[3] = ((ecc16[1] >> 14) & 0x3)  | ((ecc16[2] << 2) & 0x3fc);
275	ecc10[4] =  (ecc16[2] >>  8)         | ((ecc16[3] << 8) & 0x300);
276	ecc10[5] =  (ecc16[3] >>  2) & 0x3ff;
277	ecc10[6] = ((ecc16[3] >> 12) & 0xf)  | ((ecc16[4] << 4) & 0x3f0);
278	ecc10[7] =  (ecc16[4] >>  6) & 0x3ff;
279
280	/* Tell ECC controller about the expected ECC codes. */
281	for (i = 7; i >= 0; i--)
282		davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
283
284	/* Allow time for syndrome calculation ... then read it.
285	 * A syndrome of all zeroes 0 means no detected errors.
286	 */
287	davinci_nand_readl(info, NANDFSR_OFFSET);
288	nand_davinci_readecc_4bit(info, syndrome);
289	if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
290		return 0;
291
292	/*
293	 * Clear any previous address calculation by doing a dummy read of an
294	 * error address register.
295	 */
296	davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
297
298	/* Start address calculation, and wait for it to complete.
299	 * We _could_ start reading more data while this is working,
300	 * to speed up the overall page read.
301	 */
302	davinci_nand_writel(info, NANDFCR_OFFSET,
303			davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
304
305	/*
306	 * ECC_STATE field reads 0x3 (Error correction complete) immediately
307	 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
308	 * begin trying to poll for the state, you may fall right out of your
309	 * loop without any of the correction calculations having taken place.
310	 * The recommendation from the hardware team is to initially delay as
311	 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
312	 * correction state.
313	 */
314	timeo = jiffies + usecs_to_jiffies(100);
315	do {
316		ecc_state = (davinci_nand_readl(info,
317				NANDFSR_OFFSET) >> 8) & 0x0f;
318		cpu_relax();
319	} while ((ecc_state < 4) && time_before(jiffies, timeo));
320
321	for (;;) {
322		u32	fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
323
324		switch ((fsr >> 8) & 0x0f) {
325		case 0:		/* no error, should not happen */
326			davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
327			return 0;
328		case 1:		/* five or more errors detected */
329			davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
330			return -EBADMSG;
331		case 2:		/* error addresses computed */
332		case 3:
333			num_errors = 1 + ((fsr >> 16) & 0x03);
334			goto correct;
335		default:	/* still working on it */
336			cpu_relax();
337			continue;
338		}
339	}
340
341correct:
342	/* correct each error */
343	for (i = 0, corrected = 0; i < num_errors; i++) {
344		int error_address, error_value;
345
346		if (i > 1) {
347			error_address = davinci_nand_readl(info,
348						NAND_ERR_ADD2_OFFSET);
349			error_value = davinci_nand_readl(info,
350						NAND_ERR_ERRVAL2_OFFSET);
351		} else {
352			error_address = davinci_nand_readl(info,
353						NAND_ERR_ADD1_OFFSET);
354			error_value = davinci_nand_readl(info,
355						NAND_ERR_ERRVAL1_OFFSET);
356		}
357
358		if (i & 1) {
359			error_address >>= 16;
360			error_value >>= 16;
361		}
362		error_address &= 0x3ff;
363		error_address = (512 + 7) - error_address;
364
365		if (error_address < 512) {
366			data[error_address] ^= error_value;
367			corrected++;
368		}
369	}
370
371	return corrected;
372}
373
374/**
375 * nand_read_page_hwecc_oob_first - hw ecc, read oob first
376 * @chip: nand chip info structure
377 * @buf: buffer to store read data
378 * @oob_required: caller requires OOB data read to chip->oob_poi
379 * @page: page number to read
380 *
381 * Hardware ECC for large page chips, require OOB to be read first. For this
382 * ECC mode, the write_page method is re-used from ECC_HW. These methods
383 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
384 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
385 * the data area, by overwriting the NAND manufacturer bad block markings.
386 */
387static int nand_davinci_read_page_hwecc_oob_first(struct nand_chip *chip,
388						  uint8_t *buf,
389						  int oob_required, int page)
390{
391	struct mtd_info *mtd = nand_to_mtd(chip);
392	int i, eccsize = chip->ecc.size, ret;
393	int eccbytes = chip->ecc.bytes;
394	int eccsteps = chip->ecc.steps;
395	uint8_t *p = buf;
396	uint8_t *ecc_code = chip->ecc.code_buf;
397	uint8_t *ecc_calc = chip->ecc.calc_buf;
398	unsigned int max_bitflips = 0;
399
400	/* Read the OOB area first */
401	ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
402	if (ret)
403		return ret;
404
405	ret = nand_read_page_op(chip, page, 0, NULL, 0);
406	if (ret)
407		return ret;
408
409	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
410					 chip->ecc.total);
411	if (ret)
412		return ret;
413
414	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
415		int stat;
416
417		chip->ecc.hwctl(chip, NAND_ECC_READ);
418
419		ret = nand_read_data_op(chip, p, eccsize, false, false);
420		if (ret)
421			return ret;
422
423		chip->ecc.calculate(chip, p, &ecc_calc[i]);
424
425		stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
426		if (stat == -EBADMSG &&
427		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
428			/* check for empty pages with bitflips */
429			stat = nand_check_erased_ecc_chunk(p, eccsize,
430							   &ecc_code[i],
431							   eccbytes, NULL, 0,
432							   chip->ecc.strength);
433		}
434
435		if (stat < 0) {
436			mtd->ecc_stats.failed++;
437		} else {
438			mtd->ecc_stats.corrected += stat;
439			max_bitflips = max_t(unsigned int, max_bitflips, stat);
440		}
441	}
442	return max_bitflips;
443}
444
445/*----------------------------------------------------------------------*/
446
447/* An ECC layout for using 4-bit ECC with small-page flash, storing
448 * ten ECC bytes plus the manufacturer's bad block marker byte, and
449 * and not overlapping the default BBT markers.
450 */
451static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section,
452				      struct mtd_oob_region *oobregion)
453{
454	if (section > 2)
455		return -ERANGE;
456
457	if (!section) {
458		oobregion->offset = 0;
459		oobregion->length = 5;
460	} else if (section == 1) {
461		oobregion->offset = 6;
462		oobregion->length = 2;
463	} else {
464		oobregion->offset = 13;
465		oobregion->length = 3;
466	}
467
468	return 0;
469}
470
471static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section,
472				       struct mtd_oob_region *oobregion)
473{
474	if (section > 1)
475		return -ERANGE;
476
477	if (!section) {
478		oobregion->offset = 8;
479		oobregion->length = 5;
480	} else {
481		oobregion->offset = 16;
482		oobregion->length = mtd->oobsize - 16;
483	}
484
485	return 0;
486}
487
488static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = {
489	.ecc = hwecc4_ooblayout_small_ecc,
490	.free = hwecc4_ooblayout_small_free,
491};
492
493#if defined(CONFIG_OF)
494static const struct of_device_id davinci_nand_of_match[] = {
495	{.compatible = "ti,davinci-nand", },
496	{.compatible = "ti,keystone-nand", },
497	{},
498};
499MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
500
501static struct davinci_nand_pdata
502	*nand_davinci_get_pdata(struct platform_device *pdev)
503{
504	if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
505		struct davinci_nand_pdata *pdata;
506		const char *mode;
507		u32 prop;
508
509		pdata =  devm_kzalloc(&pdev->dev,
510				sizeof(struct davinci_nand_pdata),
511				GFP_KERNEL);
512		pdev->dev.platform_data = pdata;
513		if (!pdata)
514			return ERR_PTR(-ENOMEM);
515		if (!of_property_read_u32(pdev->dev.of_node,
516			"ti,davinci-chipselect", &prop))
517			pdata->core_chipsel = prop;
518		else
519			return ERR_PTR(-EINVAL);
520
521		if (!of_property_read_u32(pdev->dev.of_node,
522			"ti,davinci-mask-ale", &prop))
523			pdata->mask_ale = prop;
524		if (!of_property_read_u32(pdev->dev.of_node,
525			"ti,davinci-mask-cle", &prop))
526			pdata->mask_cle = prop;
527		if (!of_property_read_u32(pdev->dev.of_node,
528			"ti,davinci-mask-chipsel", &prop))
529			pdata->mask_chipsel = prop;
530		if (!of_property_read_string(pdev->dev.of_node,
531			"ti,davinci-ecc-mode", &mode)) {
532			if (!strncmp("none", mode, 4))
533				pdata->ecc_mode = NAND_ECC_NONE;
534			if (!strncmp("soft", mode, 4))
535				pdata->ecc_mode = NAND_ECC_SOFT;
536			if (!strncmp("hw", mode, 2))
537				pdata->ecc_mode = NAND_ECC_HW;
538		}
539		if (!of_property_read_u32(pdev->dev.of_node,
540			"ti,davinci-ecc-bits", &prop))
541			pdata->ecc_bits = prop;
542
543		if (!of_property_read_u32(pdev->dev.of_node,
544			"ti,davinci-nand-buswidth", &prop) && prop == 16)
545			pdata->options |= NAND_BUSWIDTH_16;
546
547		if (of_property_read_bool(pdev->dev.of_node,
548			"ti,davinci-nand-use-bbt"))
549			pdata->bbt_options = NAND_BBT_USE_FLASH;
550
551		/*
552		 * Since kernel v4.8, this driver has been fixed to enable
553		 * use of 4-bit hardware ECC with subpages and verified on
554		 * TI's keystone EVMs (K2L, K2HK and K2E).
555		 * However, in the interest of not breaking systems using
556		 * existing UBI partitions, sub-page writes are not being
557		 * (re)enabled. If you want to use subpage writes on Keystone
558		 * platforms (i.e. do not have any existing UBI partitions),
559		 * then use "ti,davinci-nand" as the compatible in your
560		 * device-tree file.
561		 */
562		if (of_device_is_compatible(pdev->dev.of_node,
563					    "ti,keystone-nand")) {
564			pdata->options |= NAND_NO_SUBPAGE_WRITE;
565		}
566	}
567
568	return dev_get_platdata(&pdev->dev);
569}
570#else
571static struct davinci_nand_pdata
572	*nand_davinci_get_pdata(struct platform_device *pdev)
573{
574	return dev_get_platdata(&pdev->dev);
575}
576#endif
577
578static int davinci_nand_attach_chip(struct nand_chip *chip)
579{
580	struct mtd_info *mtd = nand_to_mtd(chip);
581	struct davinci_nand_info *info = to_davinci_nand(mtd);
582	struct davinci_nand_pdata *pdata = nand_davinci_get_pdata(info->pdev);
583	int ret = 0;
584
585	if (IS_ERR(pdata))
586		return PTR_ERR(pdata);
587
588	switch (info->chip.ecc.mode) {
589	case NAND_ECC_NONE:
 
 
 
 
590		pdata->ecc_bits = 0;
591		break;
592	case NAND_ECC_SOFT:
593		pdata->ecc_bits = 0;
594		/*
595		 * This driver expects Hamming based ECC when ecc_mode is set
596		 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
597		 * avoid adding an extra ->ecc_algo field to
598		 * davinci_nand_pdata.
599		 */
600		info->chip.ecc.algo = NAND_ECC_HAMMING;
601		break;
602	case NAND_ECC_HW:
603		if (pdata->ecc_bits == 4) {
604			int chunks = mtd->writesize / 512;
605
606			if (!chunks || mtd->oobsize < 16) {
607				dev_dbg(&info->pdev->dev, "too small\n");
608				return -EINVAL;
609			}
610
611			/*
612			 * No sanity checks:  CPUs must support this,
613			 * and the chips may not use NAND_BUSWIDTH_16.
614			 */
615
616			/* No sharing 4-bit hardware between chipselects yet */
617			spin_lock_irq(&davinci_nand_lock);
618			if (ecc4_busy)
619				ret = -EBUSY;
620			else
621				ecc4_busy = true;
622			spin_unlock_irq(&davinci_nand_lock);
623
624			if (ret == -EBUSY)
625				return ret;
626
627			info->chip.ecc.calculate = nand_davinci_calculate_4bit;
628			info->chip.ecc.correct = nand_davinci_correct_4bit;
629			info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
630			info->chip.ecc.bytes = 10;
631			info->chip.ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
632			info->chip.ecc.algo = NAND_ECC_BCH;
633
634			/*
635			 * Update ECC layout if needed ... for 1-bit HW ECC, the
636			 * default is OK, but it allocates 6 bytes when only 3
637			 * are needed (for each 512 bytes). For 4-bit HW ECC,
638			 * the default is not usable: 10 bytes needed, not 6.
639			 *
640			 * For small page chips, preserve the manufacturer's
641			 * badblock marking data ... and make sure a flash BBT
642			 * table marker fits in the free bytes.
643			 */
644			if (chunks == 1) {
645				mtd_set_ooblayout(mtd,
646						  &hwecc4_small_ooblayout_ops);
647			} else if (chunks == 4 || chunks == 8) {
648				mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
649				info->chip.ecc.read_page = nand_davinci_read_page_hwecc_oob_first;
 
650			} else {
651				return -EIO;
652			}
653		} else {
654			/* 1bit ecc hamming */
655			info->chip.ecc.calculate = nand_davinci_calculate_1bit;
656			info->chip.ecc.correct = nand_davinci_correct_1bit;
657			info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
658			info->chip.ecc.bytes = 3;
659			info->chip.ecc.algo = NAND_ECC_HAMMING;
660		}
661		info->chip.ecc.size = 512;
662		info->chip.ecc.strength = pdata->ecc_bits;
663		break;
664	default:
665		return -EINVAL;
666	}
667
668	return ret;
669}
670
671static void nand_davinci_data_in(struct davinci_nand_info *info, void *buf,
672				 unsigned int len, bool force_8bit)
673{
674	u32 alignment = ((uintptr_t)buf | len) & 3;
675
676	if (force_8bit || (alignment & 1))
677		ioread8_rep(info->current_cs, buf, len);
678	else if (alignment & 3)
679		ioread16_rep(info->current_cs, buf, len >> 1);
680	else
681		ioread32_rep(info->current_cs, buf, len >> 2);
682}
683
684static void nand_davinci_data_out(struct davinci_nand_info *info,
685				  const void *buf, unsigned int len,
686				  bool force_8bit)
687{
688	u32 alignment = ((uintptr_t)buf | len) & 3;
689
690	if (force_8bit || (alignment & 1))
691		iowrite8_rep(info->current_cs, buf, len);
692	else if (alignment & 3)
693		iowrite16_rep(info->current_cs, buf, len >> 1);
694	else
695		iowrite32_rep(info->current_cs, buf, len >> 2);
696}
697
698static int davinci_nand_exec_instr(struct davinci_nand_info *info,
699				   const struct nand_op_instr *instr)
700{
701	unsigned int i, timeout_us;
702	u32 status;
703	int ret;
704
705	switch (instr->type) {
706	case NAND_OP_CMD_INSTR:
707		iowrite8(instr->ctx.cmd.opcode,
708			 info->current_cs + info->mask_cle);
709		break;
710
711	case NAND_OP_ADDR_INSTR:
712		for (i = 0; i < instr->ctx.addr.naddrs; i++) {
713			iowrite8(instr->ctx.addr.addrs[i],
714				 info->current_cs + info->mask_ale);
715		}
716		break;
717
718	case NAND_OP_DATA_IN_INSTR:
719		nand_davinci_data_in(info, instr->ctx.data.buf.in,
720				     instr->ctx.data.len,
721				     instr->ctx.data.force_8bit);
722		break;
723
724	case NAND_OP_DATA_OUT_INSTR:
725		nand_davinci_data_out(info, instr->ctx.data.buf.out,
726				      instr->ctx.data.len,
727				      instr->ctx.data.force_8bit);
728		break;
729
730	case NAND_OP_WAITRDY_INSTR:
731		timeout_us = instr->ctx.waitrdy.timeout_ms * 1000;
732		ret = readl_relaxed_poll_timeout(info->base + NANDFSR_OFFSET,
733						 status, status & BIT(0), 100,
734						 timeout_us);
735		if (ret)
736			return ret;
737
738		break;
739	}
740
741	if (instr->delay_ns)
742		ndelay(instr->delay_ns);
743
744	return 0;
745}
746
747static int davinci_nand_exec_op(struct nand_chip *chip,
748				const struct nand_operation *op,
749				bool check_only)
750{
751	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
752	unsigned int i;
753
754	if (check_only)
755		return 0;
756
757	info->current_cs = info->vaddr + (op->cs * info->mask_chipsel);
758
759	for (i = 0; i < op->ninstrs; i++) {
760		int ret;
761
762		ret = davinci_nand_exec_instr(info, &op->instrs[i]);
763		if (ret)
764			return ret;
765	}
766
767	return 0;
768}
769
770static const struct nand_controller_ops davinci_nand_controller_ops = {
771	.attach_chip = davinci_nand_attach_chip,
772	.exec_op = davinci_nand_exec_op,
773};
774
775static int nand_davinci_probe(struct platform_device *pdev)
776{
777	struct davinci_nand_pdata	*pdata;
778	struct davinci_nand_info	*info;
779	struct resource			*res1;
780	struct resource			*res2;
781	void __iomem			*vaddr;
782	void __iomem			*base;
783	int				ret;
784	uint32_t			val;
785	struct mtd_info			*mtd;
786
787	pdata = nand_davinci_get_pdata(pdev);
788	if (IS_ERR(pdata))
789		return PTR_ERR(pdata);
790
791	/* insist on board-specific configuration */
792	if (!pdata)
793		return -ENODEV;
794
795	/* which external chipselect will we be managing? */
796	if (pdata->core_chipsel < 0 || pdata->core_chipsel > 3)
797		return -ENODEV;
798
799	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
800	if (!info)
801		return -ENOMEM;
802
803	platform_set_drvdata(pdev, info);
804
805	res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
806	res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
807	if (!res1 || !res2) {
808		dev_err(&pdev->dev, "resource missing\n");
809		return -EINVAL;
810	}
811
812	vaddr = devm_ioremap_resource(&pdev->dev, res1);
813	if (IS_ERR(vaddr))
814		return PTR_ERR(vaddr);
815
816	/*
817	 * This registers range is used to setup NAND settings. In case with
818	 * TI AEMIF driver, the same memory address range is requested already
819	 * by AEMIF, so we cannot request it twice, just ioremap.
820	 * The AEMIF and NAND drivers not use the same registers in this range.
821	 */
822	base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
823	if (!base) {
824		dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
825		return -EADDRNOTAVAIL;
826	}
827
828	info->pdev		= pdev;
829	info->base		= base;
830	info->vaddr		= vaddr;
831
832	mtd			= nand_to_mtd(&info->chip);
833	mtd->dev.parent		= &pdev->dev;
834	nand_set_flash_node(&info->chip, pdev->dev.of_node);
835
836	/* options such as NAND_BBT_USE_FLASH */
837	info->chip.bbt_options	= pdata->bbt_options;
838	/* options such as 16-bit widths */
839	info->chip.options	= pdata->options;
840	info->chip.bbt_td	= pdata->bbt_td;
841	info->chip.bbt_md	= pdata->bbt_md;
842	info->timing		= pdata->timing;
843
844	info->current_cs	= info->vaddr;
845	info->core_chipsel	= pdata->core_chipsel;
846	info->mask_chipsel	= pdata->mask_chipsel;
847
848	/* use nandboot-capable ALE/CLE masks by default */
849	info->mask_ale		= pdata->mask_ale ? : MASK_ALE;
850	info->mask_cle		= pdata->mask_cle ? : MASK_CLE;
851
852	/* Use board-specific ECC config */
853	info->chip.ecc.mode	= pdata->ecc_mode;
854
855	spin_lock_irq(&davinci_nand_lock);
856
857	/* put CSxNAND into NAND mode */
858	val = davinci_nand_readl(info, NANDFCR_OFFSET);
859	val |= BIT(info->core_chipsel);
860	davinci_nand_writel(info, NANDFCR_OFFSET, val);
861
862	spin_unlock_irq(&davinci_nand_lock);
863
864	/* Scan to find existence of the device(s) */
865	nand_controller_init(&info->controller);
866	info->controller.ops = &davinci_nand_controller_ops;
867	info->chip.controller = &info->controller;
868	ret = nand_scan(&info->chip, pdata->mask_chipsel ? 2 : 1);
869	if (ret < 0) {
870		dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
871		return ret;
872	}
873
874	if (pdata->parts)
875		ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
876	else
877		ret = mtd_device_register(mtd, NULL, 0);
878	if (ret < 0)
879		goto err_cleanup_nand;
880
881	val = davinci_nand_readl(info, NRCSR_OFFSET);
882	dev_info(&pdev->dev, "controller rev. %d.%d\n",
883	       (val >> 8) & 0xff, val & 0xff);
884
885	return 0;
886
887err_cleanup_nand:
888	nand_cleanup(&info->chip);
889
890	return ret;
891}
892
893static int nand_davinci_remove(struct platform_device *pdev)
894{
895	struct davinci_nand_info *info = platform_get_drvdata(pdev);
896	struct nand_chip *chip = &info->chip;
897	int ret;
898
899	spin_lock_irq(&davinci_nand_lock);
900	if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
901		ecc4_busy = false;
902	spin_unlock_irq(&davinci_nand_lock);
903
904	ret = mtd_device_unregister(nand_to_mtd(chip));
905	WARN_ON(ret);
906	nand_cleanup(chip);
907
908	return 0;
909}
910
911static struct platform_driver nand_davinci_driver = {
912	.probe		= nand_davinci_probe,
913	.remove		= nand_davinci_remove,
914	.driver		= {
915		.name	= "davinci_nand",
916		.of_match_table = of_match_ptr(davinci_nand_of_match),
917	},
918};
919MODULE_ALIAS("platform:davinci_nand");
920
921module_platform_driver(nand_davinci_driver);
922
923MODULE_LICENSE("GPL");
924MODULE_AUTHOR("Texas Instruments");
925MODULE_DESCRIPTION("Davinci NAND flash driver");
926