Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 * edac_mc kernel module
   3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
   4 * This file may be distributed under the terms of the
   5 * GNU General Public License.
   6 *
   7 * Written by Thayne Harbaugh
   8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
   9 *	http://www.anime.net/~goemon/linux-ecc/
  10 *
  11 * Modified by Dave Peterson and Doug Thompson
  12 *
  13 */
  14
  15#include <linux/module.h>
  16#include <linux/proc_fs.h>
  17#include <linux/kernel.h>
  18#include <linux/types.h>
  19#include <linux/smp.h>
  20#include <linux/init.h>
  21#include <linux/sysctl.h>
  22#include <linux/highmem.h>
  23#include <linux/timer.h>
  24#include <linux/slab.h>
  25#include <linux/jiffies.h>
  26#include <linux/spinlock.h>
  27#include <linux/list.h>
  28#include <linux/ctype.h>
  29#include <linux/edac.h>
  30#include <linux/bitops.h>
  31#include <linux/uaccess.h>
  32#include <asm/page.h>
  33#include "edac_mc.h"
  34#include "edac_module.h"
  35#include <ras/ras_event.h>
  36
  37#ifdef CONFIG_EDAC_ATOMIC_SCRUB
  38#include <asm/edac.h>
  39#else
  40#define edac_atomic_scrub(va, size) do { } while (0)
  41#endif
  42
  43int edac_op_state = EDAC_OPSTATE_INVAL;
  44EXPORT_SYMBOL_GPL(edac_op_state);
  45
  46/* lock to memory controller's control array */
  47static DEFINE_MUTEX(mem_ctls_mutex);
  48static LIST_HEAD(mc_devices);
  49
  50/*
  51 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
  52 *	apei/ghes and i7core_edac to be used at the same time.
  53 */
  54static const char *edac_mc_owner;
  55
  56static struct mem_ctl_info *error_desc_to_mci(struct edac_raw_error_desc *e)
  57{
  58	return container_of(e, struct mem_ctl_info, error_desc);
  59}
  60
  61unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf,
  62				     unsigned int len)
  63{
  64	struct mem_ctl_info *mci = dimm->mci;
  65	int i, n, count = 0;
  66	char *p = buf;
  67
  68	for (i = 0; i < mci->n_layers; i++) {
  69		n = scnprintf(p, len, "%s %d ",
  70			      edac_layer_name[mci->layers[i].type],
  71			      dimm->location[i]);
  72		p += n;
  73		len -= n;
  74		count += n;
 
 
  75	}
  76
  77	return count;
  78}
  79
  80#ifdef CONFIG_EDAC_DEBUG
  81
  82static void edac_mc_dump_channel(struct rank_info *chan)
  83{
  84	edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
  85	edac_dbg(4, "    channel = %p\n", chan);
  86	edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
  87	edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
  88}
  89
  90static void edac_mc_dump_dimm(struct dimm_info *dimm)
  91{
  92	char location[80];
  93
  94	if (!dimm->nr_pages)
  95		return;
  96
  97	edac_dimm_info_location(dimm, location, sizeof(location));
  98
  99	edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
 100		 dimm->mci->csbased ? "rank" : "dimm",
 101		 dimm->idx, location, dimm->csrow, dimm->cschannel);
 102	edac_dbg(4, "  dimm = %p\n", dimm);
 103	edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
 104	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
 105	edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
 
 106}
 107
 108static void edac_mc_dump_csrow(struct csrow_info *csrow)
 109{
 110	edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
 111	edac_dbg(4, "  csrow = %p\n", csrow);
 112	edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
 113	edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
 114	edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
 115	edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
 116	edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
 117	edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
 118}
 119
 120static void edac_mc_dump_mci(struct mem_ctl_info *mci)
 121{
 122	edac_dbg(3, "\tmci = %p\n", mci);
 123	edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
 124	edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
 125	edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
 126	edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
 127	edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
 128		 mci->nr_csrows, mci->csrows);
 129	edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
 130		 mci->tot_dimms, mci->dimms);
 131	edac_dbg(3, "\tdev = %p\n", mci->pdev);
 132	edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
 133		 mci->mod_name, mci->ctl_name);
 134	edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
 135}
 136
 137#endif				/* CONFIG_EDAC_DEBUG */
 138
 139const char * const edac_mem_types[] = {
 140	[MEM_EMPTY]	= "Empty",
 141	[MEM_RESERVED]	= "Reserved",
 142	[MEM_UNKNOWN]	= "Unknown",
 143	[MEM_FPM]	= "FPM",
 144	[MEM_EDO]	= "EDO",
 145	[MEM_BEDO]	= "BEDO",
 146	[MEM_SDR]	= "Unbuffered-SDR",
 147	[MEM_RDR]	= "Registered-SDR",
 148	[MEM_DDR]	= "Unbuffered-DDR",
 149	[MEM_RDDR]	= "Registered-DDR",
 150	[MEM_RMBS]	= "RMBS",
 151	[MEM_DDR2]	= "Unbuffered-DDR2",
 152	[MEM_FB_DDR2]	= "FullyBuffered-DDR2",
 153	[MEM_RDDR2]	= "Registered-DDR2",
 154	[MEM_XDR]	= "XDR",
 155	[MEM_DDR3]	= "Unbuffered-DDR3",
 156	[MEM_RDDR3]	= "Registered-DDR3",
 157	[MEM_LRDDR3]	= "Load-Reduced-DDR3-RAM",
 158	[MEM_LPDDR3]	= "Low-Power-DDR3-RAM",
 159	[MEM_DDR4]	= "Unbuffered-DDR4",
 160	[MEM_RDDR4]	= "Registered-DDR4",
 161	[MEM_LPDDR4]	= "Low-Power-DDR4-RAM",
 162	[MEM_LRDDR4]	= "Load-Reduced-DDR4-RAM",
 163	[MEM_DDR5]	= "Unbuffered-DDR5",
 164	[MEM_RDDR5]	= "Registered-DDR5",
 165	[MEM_LRDDR5]	= "Load-Reduced-DDR5-RAM",
 166	[MEM_NVDIMM]	= "Non-volatile-RAM",
 167	[MEM_WIO2]	= "Wide-IO-2",
 168	[MEM_HBM2]	= "High-bandwidth-memory-Gen2",
 169	[MEM_HBM3]	= "High-bandwidth-memory-Gen3",
 170};
 171EXPORT_SYMBOL_GPL(edac_mem_types);
 172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 173static void _edac_mc_free(struct mem_ctl_info *mci)
 174{
 175	put_device(&mci->dev);
 176}
 177
 178static void mci_release(struct device *dev)
 179{
 180	struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
 181	struct csrow_info *csr;
 182	int i, chn, row;
 183
 184	if (mci->dimms) {
 185		for (i = 0; i < mci->tot_dimms; i++)
 186			kfree(mci->dimms[i]);
 187		kfree(mci->dimms);
 188	}
 189
 190	if (mci->csrows) {
 191		for (row = 0; row < mci->nr_csrows; row++) {
 192			csr = mci->csrows[row];
 193			if (!csr)
 194				continue;
 195
 196			if (csr->channels) {
 197				for (chn = 0; chn < mci->num_cschannel; chn++)
 198					kfree(csr->channels[chn]);
 199				kfree(csr->channels);
 200			}
 201			kfree(csr);
 202		}
 203		kfree(mci->csrows);
 204	}
 205	kfree(mci->pvt_info);
 206	kfree(mci->layers);
 207	kfree(mci);
 208}
 209
 210static int edac_mc_alloc_csrows(struct mem_ctl_info *mci)
 211{
 212	unsigned int tot_channels = mci->num_cschannel;
 213	unsigned int tot_csrows = mci->nr_csrows;
 214	unsigned int row, chn;
 215
 216	/*
 217	 * Alocate and fill the csrow/channels structs
 218	 */
 219	mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
 220	if (!mci->csrows)
 221		return -ENOMEM;
 222
 223	for (row = 0; row < tot_csrows; row++) {
 224		struct csrow_info *csr;
 225
 226		csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
 227		if (!csr)
 228			return -ENOMEM;
 229
 230		mci->csrows[row] = csr;
 231		csr->csrow_idx = row;
 232		csr->mci = mci;
 233		csr->nr_channels = tot_channels;
 234		csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
 235					GFP_KERNEL);
 236		if (!csr->channels)
 237			return -ENOMEM;
 238
 239		for (chn = 0; chn < tot_channels; chn++) {
 240			struct rank_info *chan;
 241
 242			chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
 243			if (!chan)
 244				return -ENOMEM;
 245
 246			csr->channels[chn] = chan;
 247			chan->chan_idx = chn;
 248			chan->csrow = csr;
 249		}
 250	}
 251
 252	return 0;
 253}
 254
 255static int edac_mc_alloc_dimms(struct mem_ctl_info *mci)
 256{
 257	unsigned int pos[EDAC_MAX_LAYERS];
 258	unsigned int row, chn, idx;
 259	int layer;
 260	void *p;
 261
 262	/*
 263	 * Allocate and fill the dimm structs
 264	 */
 265	mci->dimms  = kcalloc(mci->tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
 266	if (!mci->dimms)
 267		return -ENOMEM;
 268
 269	memset(&pos, 0, sizeof(pos));
 270	row = 0;
 271	chn = 0;
 272	for (idx = 0; idx < mci->tot_dimms; idx++) {
 273		struct dimm_info *dimm;
 274		struct rank_info *chan;
 275		int n, len;
 276
 277		chan = mci->csrows[row]->channels[chn];
 278
 279		dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
 280		if (!dimm)
 281			return -ENOMEM;
 282		mci->dimms[idx] = dimm;
 283		dimm->mci = mci;
 284		dimm->idx = idx;
 285
 286		/*
 287		 * Copy DIMM location and initialize it.
 288		 */
 289		len = sizeof(dimm->label);
 290		p = dimm->label;
 291		n = scnprintf(p, len, "mc#%u", mci->mc_idx);
 292		p += n;
 293		len -= n;
 294		for (layer = 0; layer < mci->n_layers; layer++) {
 295			n = scnprintf(p, len, "%s#%u",
 296				      edac_layer_name[mci->layers[layer].type],
 297				      pos[layer]);
 298			p += n;
 299			len -= n;
 300			dimm->location[layer] = pos[layer];
 
 
 
 301		}
 302
 303		/* Link it to the csrows old API data */
 304		chan->dimm = dimm;
 305		dimm->csrow = row;
 306		dimm->cschannel = chn;
 307
 308		/* Increment csrow location */
 309		if (mci->layers[0].is_virt_csrow) {
 310			chn++;
 311			if (chn == mci->num_cschannel) {
 312				chn = 0;
 313				row++;
 314			}
 315		} else {
 316			row++;
 317			if (row == mci->nr_csrows) {
 318				row = 0;
 319				chn++;
 320			}
 321		}
 322
 323		/* Increment dimm location */
 324		for (layer = mci->n_layers - 1; layer >= 0; layer--) {
 325			pos[layer]++;
 326			if (pos[layer] < mci->layers[layer].size)
 327				break;
 328			pos[layer] = 0;
 329		}
 330	}
 331
 332	return 0;
 333}
 334
 335struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num,
 336				   unsigned int n_layers,
 337				   struct edac_mc_layer *layers,
 338				   unsigned int sz_pvt)
 339{
 340	struct mem_ctl_info *mci;
 341	struct edac_mc_layer *layer;
 342	unsigned int idx, tot_dimms = 1;
 343	unsigned int tot_csrows = 1, tot_channels = 1;
 
 344	bool per_rank = false;
 345
 346	if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0))
 347		return NULL;
 348
 349	/*
 350	 * Calculate the total amount of dimms and csrows/cschannels while
 351	 * in the old API emulation mode
 352	 */
 353	for (idx = 0; idx < n_layers; idx++) {
 354		tot_dimms *= layers[idx].size;
 355
 356		if (layers[idx].is_virt_csrow)
 357			tot_csrows *= layers[idx].size;
 358		else
 359			tot_channels *= layers[idx].size;
 360
 361		if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT)
 362			per_rank = true;
 363	}
 364
 365	mci = kzalloc(sizeof(struct mem_ctl_info), GFP_KERNEL);
 366	if (!mci)
 367		return NULL;
 368
 369	mci->layers = kcalloc(n_layers, sizeof(struct edac_mc_layer), GFP_KERNEL);
 370	if (!mci->layers)
 371		goto error;
 
 
 
 
 
 
 
 
 372
 373	mci->pvt_info = kzalloc(sz_pvt, GFP_KERNEL);
 374	if (!mci->pvt_info)
 375		goto error;
 376
 377	mci->dev.release = mci_release;
 378	device_initialize(&mci->dev);
 379
 
 
 
 
 
 
 380	/* setup index and various internal pointers */
 381	mci->mc_idx = mc_num;
 382	mci->tot_dimms = tot_dimms;
 
 383	mci->n_layers = n_layers;
 
 384	memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
 385	mci->nr_csrows = tot_csrows;
 386	mci->num_cschannel = tot_channels;
 387	mci->csbased = per_rank;
 388
 389	if (edac_mc_alloc_csrows(mci))
 390		goto error;
 391
 392	if (edac_mc_alloc_dimms(mci))
 393		goto error;
 394
 395	mci->op_state = OP_ALLOC;
 396
 397	return mci;
 398
 399error:
 400	_edac_mc_free(mci);
 401
 402	return NULL;
 403}
 404EXPORT_SYMBOL_GPL(edac_mc_alloc);
 405
 406void edac_mc_free(struct mem_ctl_info *mci)
 407{
 408	edac_dbg(1, "\n");
 409
 410	_edac_mc_free(mci);
 411}
 412EXPORT_SYMBOL_GPL(edac_mc_free);
 413
 414bool edac_has_mcs(void)
 415{
 416	bool ret;
 417
 418	mutex_lock(&mem_ctls_mutex);
 419
 420	ret = list_empty(&mc_devices);
 421
 422	mutex_unlock(&mem_ctls_mutex);
 423
 424	return !ret;
 425}
 426EXPORT_SYMBOL_GPL(edac_has_mcs);
 427
 428/* Caller must hold mem_ctls_mutex */
 429static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
 430{
 431	struct mem_ctl_info *mci;
 432	struct list_head *item;
 433
 434	edac_dbg(3, "\n");
 435
 436	list_for_each(item, &mc_devices) {
 437		mci = list_entry(item, struct mem_ctl_info, link);
 438
 439		if (mci->pdev == dev)
 440			return mci;
 441	}
 442
 443	return NULL;
 444}
 445
 446/**
 447 * find_mci_by_dev
 448 *
 449 *	scan list of controllers looking for the one that manages
 450 *	the 'dev' device
 451 * @dev: pointer to a struct device related with the MCI
 452 */
 453struct mem_ctl_info *find_mci_by_dev(struct device *dev)
 454{
 455	struct mem_ctl_info *ret;
 456
 457	mutex_lock(&mem_ctls_mutex);
 458	ret = __find_mci_by_dev(dev);
 459	mutex_unlock(&mem_ctls_mutex);
 460
 461	return ret;
 462}
 463EXPORT_SYMBOL_GPL(find_mci_by_dev);
 464
 465/*
 466 * edac_mc_workq_function
 467 *	performs the operation scheduled by a workq request
 468 */
 469static void edac_mc_workq_function(struct work_struct *work_req)
 470{
 471	struct delayed_work *d_work = to_delayed_work(work_req);
 472	struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
 473
 474	mutex_lock(&mem_ctls_mutex);
 475
 476	if (mci->op_state != OP_RUNNING_POLL) {
 477		mutex_unlock(&mem_ctls_mutex);
 478		return;
 479	}
 480
 481	if (edac_op_state == EDAC_OPSTATE_POLL)
 482		mci->edac_check(mci);
 483
 484	mutex_unlock(&mem_ctls_mutex);
 485
 486	/* Queue ourselves again. */
 487	edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
 488}
 489
 490/*
 491 * edac_mc_reset_delay_period(unsigned long value)
 492 *
 493 *	user space has updated our poll period value, need to
 494 *	reset our workq delays
 495 */
 496void edac_mc_reset_delay_period(unsigned long value)
 497{
 498	struct mem_ctl_info *mci;
 499	struct list_head *item;
 500
 501	mutex_lock(&mem_ctls_mutex);
 502
 503	list_for_each(item, &mc_devices) {
 504		mci = list_entry(item, struct mem_ctl_info, link);
 505
 506		if (mci->op_state == OP_RUNNING_POLL)
 507			edac_mod_work(&mci->work, value);
 508	}
 509	mutex_unlock(&mem_ctls_mutex);
 510}
 511
 512
 513
 514/* Return 0 on success, 1 on failure.
 515 * Before calling this function, caller must
 516 * assign a unique value to mci->mc_idx.
 517 *
 518 *	locking model:
 519 *
 520 *		called with the mem_ctls_mutex lock held
 521 */
 522static int add_mc_to_global_list(struct mem_ctl_info *mci)
 523{
 524	struct list_head *item, *insert_before;
 525	struct mem_ctl_info *p;
 526
 527	insert_before = &mc_devices;
 528
 529	p = __find_mci_by_dev(mci->pdev);
 530	if (unlikely(p != NULL))
 531		goto fail0;
 532
 533	list_for_each(item, &mc_devices) {
 534		p = list_entry(item, struct mem_ctl_info, link);
 535
 536		if (p->mc_idx >= mci->mc_idx) {
 537			if (unlikely(p->mc_idx == mci->mc_idx))
 538				goto fail1;
 539
 540			insert_before = item;
 541			break;
 542		}
 543	}
 544
 545	list_add_tail_rcu(&mci->link, insert_before);
 546	return 0;
 547
 548fail0:
 549	edac_printk(KERN_WARNING, EDAC_MC,
 550		"%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
 551		edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
 552	return 1;
 553
 554fail1:
 555	edac_printk(KERN_WARNING, EDAC_MC,
 556		"bug in low-level driver: attempt to assign\n"
 557		"    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
 558	return 1;
 559}
 560
 561static int del_mc_from_global_list(struct mem_ctl_info *mci)
 562{
 563	list_del_rcu(&mci->link);
 564
 565	/* these are for safe removal of devices from global list while
 566	 * NMI handlers may be traversing list
 567	 */
 568	synchronize_rcu();
 569	INIT_LIST_HEAD(&mci->link);
 570
 571	return list_empty(&mc_devices);
 572}
 573
 574struct mem_ctl_info *edac_mc_find(int idx)
 575{
 576	struct mem_ctl_info *mci;
 577	struct list_head *item;
 578
 579	mutex_lock(&mem_ctls_mutex);
 580
 581	list_for_each(item, &mc_devices) {
 582		mci = list_entry(item, struct mem_ctl_info, link);
 583		if (mci->mc_idx == idx)
 584			goto unlock;
 585	}
 586
 587	mci = NULL;
 588unlock:
 589	mutex_unlock(&mem_ctls_mutex);
 590	return mci;
 591}
 592EXPORT_SYMBOL(edac_mc_find);
 593
 594const char *edac_get_owner(void)
 595{
 596	return edac_mc_owner;
 597}
 598EXPORT_SYMBOL_GPL(edac_get_owner);
 599
 600/* FIXME - should a warning be printed if no error detection? correction? */
 601int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
 602			       const struct attribute_group **groups)
 603{
 604	int ret = -EINVAL;
 605	edac_dbg(0, "\n");
 606
 607#ifdef CONFIG_EDAC_DEBUG
 608	if (edac_debug_level >= 3)
 609		edac_mc_dump_mci(mci);
 610
 611	if (edac_debug_level >= 4) {
 612		struct dimm_info *dimm;
 613		int i;
 614
 615		for (i = 0; i < mci->nr_csrows; i++) {
 616			struct csrow_info *csrow = mci->csrows[i];
 617			u32 nr_pages = 0;
 618			int j;
 619
 620			for (j = 0; j < csrow->nr_channels; j++)
 621				nr_pages += csrow->channels[j]->dimm->nr_pages;
 622			if (!nr_pages)
 623				continue;
 624			edac_mc_dump_csrow(csrow);
 625			for (j = 0; j < csrow->nr_channels; j++)
 626				if (csrow->channels[j]->dimm->nr_pages)
 627					edac_mc_dump_channel(csrow->channels[j]);
 628		}
 629
 630		mci_for_each_dimm(mci, dimm)
 631			edac_mc_dump_dimm(dimm);
 632	}
 633#endif
 634	mutex_lock(&mem_ctls_mutex);
 635
 636	if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
 637		ret = -EPERM;
 638		goto fail0;
 639	}
 640
 641	if (add_mc_to_global_list(mci))
 642		goto fail0;
 643
 644	/* set load time so that error rate can be tracked */
 645	mci->start_time = jiffies;
 646
 647	mci->bus = edac_get_sysfs_subsys();
 648
 649	if (edac_create_sysfs_mci_device(mci, groups)) {
 650		edac_mc_printk(mci, KERN_WARNING,
 651			"failed to create sysfs device\n");
 652		goto fail1;
 653	}
 654
 655	if (mci->edac_check) {
 656		mci->op_state = OP_RUNNING_POLL;
 657
 658		INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
 659		edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
 660
 661	} else {
 662		mci->op_state = OP_RUNNING_INTERRUPT;
 663	}
 664
 665	/* Report action taken */
 666	edac_mc_printk(mci, KERN_INFO,
 667		"Giving out device to module %s controller %s: DEV %s (%s)\n",
 668		mci->mod_name, mci->ctl_name, mci->dev_name,
 669		edac_op_state_to_string(mci->op_state));
 670
 671	edac_mc_owner = mci->mod_name;
 672
 673	mutex_unlock(&mem_ctls_mutex);
 674	return 0;
 675
 676fail1:
 677	del_mc_from_global_list(mci);
 678
 679fail0:
 680	mutex_unlock(&mem_ctls_mutex);
 681	return ret;
 682}
 683EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
 684
 685struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
 686{
 687	struct mem_ctl_info *mci;
 688
 689	edac_dbg(0, "\n");
 690
 691	mutex_lock(&mem_ctls_mutex);
 692
 693	/* find the requested mci struct in the global list */
 694	mci = __find_mci_by_dev(dev);
 695	if (mci == NULL) {
 696		mutex_unlock(&mem_ctls_mutex);
 697		return NULL;
 698	}
 699
 700	/* mark MCI offline: */
 701	mci->op_state = OP_OFFLINE;
 702
 703	if (del_mc_from_global_list(mci))
 704		edac_mc_owner = NULL;
 705
 706	mutex_unlock(&mem_ctls_mutex);
 707
 708	if (mci->edac_check)
 709		edac_stop_work(&mci->work);
 710
 711	/* remove from sysfs */
 712	edac_remove_sysfs_mci_device(mci);
 713
 714	edac_printk(KERN_INFO, EDAC_MC,
 715		"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
 716		mci->mod_name, mci->ctl_name, edac_dev_name(mci));
 717
 718	return mci;
 719}
 720EXPORT_SYMBOL_GPL(edac_mc_del_mc);
 721
 722static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
 723				u32 size)
 724{
 725	struct page *pg;
 726	void *virt_addr;
 727	unsigned long flags = 0;
 728
 729	edac_dbg(3, "\n");
 730
 731	/* ECC error page was not in our memory. Ignore it. */
 732	if (!pfn_valid(page))
 733		return;
 734
 735	/* Find the actual page structure then map it and fix */
 736	pg = pfn_to_page(page);
 737
 738	if (PageHighMem(pg))
 739		local_irq_save(flags);
 740
 741	virt_addr = kmap_atomic(pg);
 742
 743	/* Perform architecture specific atomic scrub operation */
 744	edac_atomic_scrub(virt_addr + offset, size);
 745
 746	/* Unmap and complete */
 747	kunmap_atomic(virt_addr);
 748
 749	if (PageHighMem(pg))
 750		local_irq_restore(flags);
 751}
 752
 753/* FIXME - should return -1 */
 754int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
 755{
 756	struct csrow_info **csrows = mci->csrows;
 757	int row, i, j, n;
 758
 759	edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
 760	row = -1;
 761
 762	for (i = 0; i < mci->nr_csrows; i++) {
 763		struct csrow_info *csrow = csrows[i];
 764		n = 0;
 765		for (j = 0; j < csrow->nr_channels; j++) {
 766			struct dimm_info *dimm = csrow->channels[j]->dimm;
 767			n += dimm->nr_pages;
 768		}
 769		if (n == 0)
 770			continue;
 771
 772		edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
 773			 mci->mc_idx,
 774			 csrow->first_page, page, csrow->last_page,
 775			 csrow->page_mask);
 776
 777		if ((page >= csrow->first_page) &&
 778		    (page <= csrow->last_page) &&
 779		    ((page & csrow->page_mask) ==
 780		     (csrow->first_page & csrow->page_mask))) {
 781			row = i;
 782			break;
 783		}
 784	}
 785
 786	if (row == -1)
 787		edac_mc_printk(mci, KERN_ERR,
 788			"could not look up page error address %lx\n",
 789			(unsigned long)page);
 790
 791	return row;
 792}
 793EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
 794
 795const char *edac_layer_name[] = {
 796	[EDAC_MC_LAYER_BRANCH] = "branch",
 797	[EDAC_MC_LAYER_CHANNEL] = "channel",
 798	[EDAC_MC_LAYER_SLOT] = "slot",
 799	[EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
 800	[EDAC_MC_LAYER_ALL_MEM] = "memory",
 801};
 802EXPORT_SYMBOL_GPL(edac_layer_name);
 803
 804static void edac_inc_ce_error(struct edac_raw_error_desc *e)
 805{
 806	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
 807	struct mem_ctl_info *mci = error_desc_to_mci(e);
 808	struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
 809
 810	mci->ce_mc += e->error_count;
 811
 812	if (dimm)
 813		dimm->ce_count += e->error_count;
 814	else
 815		mci->ce_noinfo_count += e->error_count;
 816}
 817
 818static void edac_inc_ue_error(struct edac_raw_error_desc *e)
 819{
 820	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
 821	struct mem_ctl_info *mci = error_desc_to_mci(e);
 822	struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
 823
 824	mci->ue_mc += e->error_count;
 825
 826	if (dimm)
 827		dimm->ue_count += e->error_count;
 828	else
 829		mci->ue_noinfo_count += e->error_count;
 830}
 831
 832static void edac_ce_error(struct edac_raw_error_desc *e)
 833{
 834	struct mem_ctl_info *mci = error_desc_to_mci(e);
 835	unsigned long remapped_page;
 836
 837	if (edac_mc_get_log_ce()) {
 838		edac_mc_printk(mci, KERN_WARNING,
 839			"%d CE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx%s%s)\n",
 840			e->error_count, e->msg,
 841			*e->msg ? " " : "",
 842			e->label, e->location, e->page_frame_number, e->offset_in_page,
 843			e->grain, e->syndrome,
 844			*e->other_detail ? " - " : "",
 845			e->other_detail);
 846	}
 847
 848	edac_inc_ce_error(e);
 849
 850	if (mci->scrub_mode == SCRUB_SW_SRC) {
 851		/*
 852			* Some memory controllers (called MCs below) can remap
 853			* memory so that it is still available at a different
 854			* address when PCI devices map into memory.
 855			* MC's that can't do this, lose the memory where PCI
 856			* devices are mapped. This mapping is MC-dependent
 857			* and so we call back into the MC driver for it to
 858			* map the MC page to a physical (CPU) page which can
 859			* then be mapped to a virtual page - which can then
 860			* be scrubbed.
 861			*/
 862		remapped_page = mci->ctl_page_to_phys ?
 863			mci->ctl_page_to_phys(mci, e->page_frame_number) :
 864			e->page_frame_number;
 865
 866		edac_mc_scrub_block(remapped_page, e->offset_in_page, e->grain);
 867	}
 868}
 869
 870static void edac_ue_error(struct edac_raw_error_desc *e)
 871{
 872	struct mem_ctl_info *mci = error_desc_to_mci(e);
 873
 874	if (edac_mc_get_log_ue()) {
 875		edac_mc_printk(mci, KERN_WARNING,
 876			"%d UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
 877			e->error_count, e->msg,
 878			*e->msg ? " " : "",
 879			e->label, e->location, e->page_frame_number, e->offset_in_page,
 880			e->grain,
 881			*e->other_detail ? " - " : "",
 882			e->other_detail);
 883	}
 884
 885	edac_inc_ue_error(e);
 886
 887	if (edac_mc_get_panic_on_ue()) {
 888		panic("UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
 889			e->msg,
 890			*e->msg ? " " : "",
 891			e->label, e->location, e->page_frame_number, e->offset_in_page,
 892			e->grain,
 893			*e->other_detail ? " - " : "",
 894			e->other_detail);
 895	}
 896}
 897
 898static void edac_inc_csrow(struct edac_raw_error_desc *e, int row, int chan)
 899{
 900	struct mem_ctl_info *mci = error_desc_to_mci(e);
 901	enum hw_event_mc_err_type type = e->type;
 902	u16 count = e->error_count;
 903
 904	if (row < 0)
 905		return;
 906
 907	edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
 908
 909	if (type == HW_EVENT_ERR_CORRECTED) {
 910		mci->csrows[row]->ce_count += count;
 911		if (chan >= 0)
 912			mci->csrows[row]->channels[chan]->ce_count += count;
 913	} else {
 914		mci->csrows[row]->ue_count += count;
 915	}
 916}
 917
 918void edac_raw_mc_handle_error(struct edac_raw_error_desc *e)
 919{
 920	struct mem_ctl_info *mci = error_desc_to_mci(e);
 921	u8 grain_bits;
 922
 923	/* Sanity-check driver-supplied grain value. */
 924	if (WARN_ON_ONCE(!e->grain))
 925		e->grain = 1;
 926
 927	grain_bits = fls_long(e->grain - 1);
 928
 929	/* Report the error via the trace interface */
 930	if (IS_ENABLED(CONFIG_RAS))
 931		trace_mc_event(e->type, e->msg, e->label, e->error_count,
 932			       mci->mc_idx, e->top_layer, e->mid_layer,
 933			       e->low_layer,
 934			       (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
 935			       grain_bits, e->syndrome, e->other_detail);
 936
 937	if (e->type == HW_EVENT_ERR_CORRECTED)
 938		edac_ce_error(e);
 939	else
 940		edac_ue_error(e);
 941}
 942EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
 943
 944void edac_mc_handle_error(const enum hw_event_mc_err_type type,
 945			  struct mem_ctl_info *mci,
 946			  const u16 error_count,
 947			  const unsigned long page_frame_number,
 948			  const unsigned long offset_in_page,
 949			  const unsigned long syndrome,
 950			  const int top_layer,
 951			  const int mid_layer,
 952			  const int low_layer,
 953			  const char *msg,
 954			  const char *other_detail)
 955{
 956	struct dimm_info *dimm;
 957	char *p, *end;
 958	int row = -1, chan = -1;
 959	int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
 960	int i, n_labels = 0;
 961	struct edac_raw_error_desc *e = &mci->error_desc;
 962	bool any_memory = true;
 963	const char *prefix;
 964
 965	edac_dbg(3, "MC%d\n", mci->mc_idx);
 966
 967	/* Fills the error report buffer */
 968	memset(e, 0, sizeof (*e));
 969	e->error_count = error_count;
 970	e->type = type;
 971	e->top_layer = top_layer;
 972	e->mid_layer = mid_layer;
 973	e->low_layer = low_layer;
 974	e->page_frame_number = page_frame_number;
 975	e->offset_in_page = offset_in_page;
 976	e->syndrome = syndrome;
 977	/* need valid strings here for both: */
 978	e->msg = msg ?: "";
 979	e->other_detail = other_detail ?: "";
 980
 981	/*
 982	 * Check if the event report is consistent and if the memory location is
 983	 * known. If it is, the DIMM(s) label info will be filled and the DIMM's
 984	 * error counters will be incremented.
 985	 */
 986	for (i = 0; i < mci->n_layers; i++) {
 987		if (pos[i] >= (int)mci->layers[i].size) {
 988
 989			edac_mc_printk(mci, KERN_ERR,
 990				       "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
 991				       edac_layer_name[mci->layers[i].type],
 992				       pos[i], mci->layers[i].size);
 993			/*
 994			 * Instead of just returning it, let's use what's
 995			 * known about the error. The increment routines and
 996			 * the DIMM filter logic will do the right thing by
 997			 * pointing the likely damaged DIMMs.
 998			 */
 999			pos[i] = -1;
1000		}
1001		if (pos[i] >= 0)
1002			any_memory = false;
1003	}
1004
1005	/*
1006	 * Get the dimm label/grain that applies to the match criteria.
1007	 * As the error algorithm may not be able to point to just one memory
1008	 * stick, the logic here will get all possible labels that could
1009	 * pottentially be affected by the error.
1010	 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1011	 * to have only the MC channel and the MC dimm (also called "branch")
1012	 * but the channel is not known, as the memory is arranged in pairs,
1013	 * where each memory belongs to a separate channel within the same
1014	 * branch.
1015	 */
1016	p = e->label;
1017	*p = '\0';
1018	end = p + sizeof(e->label);
1019	prefix = "";
1020
1021	mci_for_each_dimm(mci, dimm) {
1022		if (top_layer >= 0 && top_layer != dimm->location[0])
1023			continue;
1024		if (mid_layer >= 0 && mid_layer != dimm->location[1])
1025			continue;
1026		if (low_layer >= 0 && low_layer != dimm->location[2])
1027			continue;
1028
1029		/* get the max grain, over the error match range */
1030		if (dimm->grain > e->grain)
1031			e->grain = dimm->grain;
1032
1033		/*
1034		 * If the error is memory-controller wide, there's no need to
1035		 * seek for the affected DIMMs because the whole channel/memory
1036		 * controller/... may be affected. Also, don't show errors for
1037		 * empty DIMM slots.
1038		 */
1039		if (!dimm->nr_pages)
1040			continue;
1041
1042		n_labels++;
1043		if (n_labels > EDAC_MAX_LABELS) {
1044			p = e->label;
1045			*p = '\0';
1046		} else {
1047			p += scnprintf(p, end - p, "%s%s", prefix, dimm->label);
1048			prefix = OTHER_LABEL;
 
 
 
 
1049		}
1050
1051		/*
1052		 * get csrow/channel of the DIMM, in order to allow
1053		 * incrementing the compat API counters
1054		 */
1055		edac_dbg(4, "%s csrows map: (%d,%d)\n",
1056			mci->csbased ? "rank" : "dimm",
1057			dimm->csrow, dimm->cschannel);
1058		if (row == -1)
1059			row = dimm->csrow;
1060		else if (row >= 0 && row != dimm->csrow)
1061			row = -2;
1062
1063		if (chan == -1)
1064			chan = dimm->cschannel;
1065		else if (chan >= 0 && chan != dimm->cschannel)
1066			chan = -2;
1067	}
1068
1069	if (any_memory)
1070		strscpy(e->label, "any memory", sizeof(e->label));
1071	else if (!*e->label)
1072		strscpy(e->label, "unknown memory", sizeof(e->label));
1073
1074	edac_inc_csrow(e, row, chan);
1075
1076	/* Fill the RAM location data */
1077	p = e->location;
1078	end = p + sizeof(e->location);
1079	prefix = "";
1080
1081	for (i = 0; i < mci->n_layers; i++) {
1082		if (pos[i] < 0)
1083			continue;
1084
1085		p += scnprintf(p, end - p, "%s%s:%d", prefix,
1086			       edac_layer_name[mci->layers[i].type], pos[i]);
1087		prefix = " ";
1088	}
 
 
1089
1090	edac_raw_mc_handle_error(e);
1091}
1092EXPORT_SYMBOL_GPL(edac_mc_handle_error);
v5.9
   1/*
   2 * edac_mc kernel module
   3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
   4 * This file may be distributed under the terms of the
   5 * GNU General Public License.
   6 *
   7 * Written by Thayne Harbaugh
   8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
   9 *	http://www.anime.net/~goemon/linux-ecc/
  10 *
  11 * Modified by Dave Peterson and Doug Thompson
  12 *
  13 */
  14
  15#include <linux/module.h>
  16#include <linux/proc_fs.h>
  17#include <linux/kernel.h>
  18#include <linux/types.h>
  19#include <linux/smp.h>
  20#include <linux/init.h>
  21#include <linux/sysctl.h>
  22#include <linux/highmem.h>
  23#include <linux/timer.h>
  24#include <linux/slab.h>
  25#include <linux/jiffies.h>
  26#include <linux/spinlock.h>
  27#include <linux/list.h>
  28#include <linux/ctype.h>
  29#include <linux/edac.h>
  30#include <linux/bitops.h>
  31#include <linux/uaccess.h>
  32#include <asm/page.h>
  33#include "edac_mc.h"
  34#include "edac_module.h"
  35#include <ras/ras_event.h>
  36
  37#ifdef CONFIG_EDAC_ATOMIC_SCRUB
  38#include <asm/edac.h>
  39#else
  40#define edac_atomic_scrub(va, size) do { } while (0)
  41#endif
  42
  43int edac_op_state = EDAC_OPSTATE_INVAL;
  44EXPORT_SYMBOL_GPL(edac_op_state);
  45
  46/* lock to memory controller's control array */
  47static DEFINE_MUTEX(mem_ctls_mutex);
  48static LIST_HEAD(mc_devices);
  49
  50/*
  51 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
  52 *	apei/ghes and i7core_edac to be used at the same time.
  53 */
  54static const char *edac_mc_owner;
  55
  56static struct mem_ctl_info *error_desc_to_mci(struct edac_raw_error_desc *e)
  57{
  58	return container_of(e, struct mem_ctl_info, error_desc);
  59}
  60
  61unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf,
  62				     unsigned int len)
  63{
  64	struct mem_ctl_info *mci = dimm->mci;
  65	int i, n, count = 0;
  66	char *p = buf;
  67
  68	for (i = 0; i < mci->n_layers; i++) {
  69		n = snprintf(p, len, "%s %d ",
  70			      edac_layer_name[mci->layers[i].type],
  71			      dimm->location[i]);
  72		p += n;
  73		len -= n;
  74		count += n;
  75		if (!len)
  76			break;
  77	}
  78
  79	return count;
  80}
  81
  82#ifdef CONFIG_EDAC_DEBUG
  83
  84static void edac_mc_dump_channel(struct rank_info *chan)
  85{
  86	edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
  87	edac_dbg(4, "    channel = %p\n", chan);
  88	edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
  89	edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
  90}
  91
  92static void edac_mc_dump_dimm(struct dimm_info *dimm)
  93{
  94	char location[80];
  95
  96	if (!dimm->nr_pages)
  97		return;
  98
  99	edac_dimm_info_location(dimm, location, sizeof(location));
 100
 101	edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
 102		 dimm->mci->csbased ? "rank" : "dimm",
 103		 dimm->idx, location, dimm->csrow, dimm->cschannel);
 104	edac_dbg(4, "  dimm = %p\n", dimm);
 105	edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
 106	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
 107	edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
 108	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
 109}
 110
 111static void edac_mc_dump_csrow(struct csrow_info *csrow)
 112{
 113	edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
 114	edac_dbg(4, "  csrow = %p\n", csrow);
 115	edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
 116	edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
 117	edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
 118	edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
 119	edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
 120	edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
 121}
 122
 123static void edac_mc_dump_mci(struct mem_ctl_info *mci)
 124{
 125	edac_dbg(3, "\tmci = %p\n", mci);
 126	edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
 127	edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
 128	edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
 129	edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
 130	edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
 131		 mci->nr_csrows, mci->csrows);
 132	edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
 133		 mci->tot_dimms, mci->dimms);
 134	edac_dbg(3, "\tdev = %p\n", mci->pdev);
 135	edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
 136		 mci->mod_name, mci->ctl_name);
 137	edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
 138}
 139
 140#endif				/* CONFIG_EDAC_DEBUG */
 141
 142const char * const edac_mem_types[] = {
 143	[MEM_EMPTY]	= "Empty",
 144	[MEM_RESERVED]	= "Reserved",
 145	[MEM_UNKNOWN]	= "Unknown",
 146	[MEM_FPM]	= "FPM",
 147	[MEM_EDO]	= "EDO",
 148	[MEM_BEDO]	= "BEDO",
 149	[MEM_SDR]	= "Unbuffered-SDR",
 150	[MEM_RDR]	= "Registered-SDR",
 151	[MEM_DDR]	= "Unbuffered-DDR",
 152	[MEM_RDDR]	= "Registered-DDR",
 153	[MEM_RMBS]	= "RMBS",
 154	[MEM_DDR2]	= "Unbuffered-DDR2",
 155	[MEM_FB_DDR2]	= "FullyBuffered-DDR2",
 156	[MEM_RDDR2]	= "Registered-DDR2",
 157	[MEM_XDR]	= "XDR",
 158	[MEM_DDR3]	= "Unbuffered-DDR3",
 159	[MEM_RDDR3]	= "Registered-DDR3",
 160	[MEM_LRDDR3]	= "Load-Reduced-DDR3-RAM",
 
 161	[MEM_DDR4]	= "Unbuffered-DDR4",
 162	[MEM_RDDR4]	= "Registered-DDR4",
 
 163	[MEM_LRDDR4]	= "Load-Reduced-DDR4-RAM",
 
 
 
 164	[MEM_NVDIMM]	= "Non-volatile-RAM",
 
 
 
 165};
 166EXPORT_SYMBOL_GPL(edac_mem_types);
 167
 168/**
 169 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
 170 * @p:		pointer to a pointer with the memory offset to be used. At
 171 *		return, this will be incremented to point to the next offset
 172 * @size:	Size of the data structure to be reserved
 173 * @n_elems:	Number of elements that should be reserved
 174 *
 175 * If 'size' is a constant, the compiler will optimize this whole function
 176 * down to either a no-op or the addition of a constant to the value of '*p'.
 177 *
 178 * The 'p' pointer is absolutely needed to keep the proper advancing
 179 * further in memory to the proper offsets when allocating the struct along
 180 * with its embedded structs, as edac_device_alloc_ctl_info() does it
 181 * above, for example.
 182 *
 183 * At return, the pointer 'p' will be incremented to be used on a next call
 184 * to this function.
 185 */
 186void *edac_align_ptr(void **p, unsigned int size, int n_elems)
 187{
 188	unsigned int align, r;
 189	void *ptr = *p;
 190
 191	*p += size * n_elems;
 192
 193	/*
 194	 * 'p' can possibly be an unaligned item X such that sizeof(X) is
 195	 * 'size'.  Adjust 'p' so that its alignment is at least as
 196	 * stringent as what the compiler would provide for X and return
 197	 * the aligned result.
 198	 * Here we assume that the alignment of a "long long" is the most
 199	 * stringent alignment that the compiler will ever provide by default.
 200	 * As far as I know, this is a reasonable assumption.
 201	 */
 202	if (size > sizeof(long))
 203		align = sizeof(long long);
 204	else if (size > sizeof(int))
 205		align = sizeof(long);
 206	else if (size > sizeof(short))
 207		align = sizeof(int);
 208	else if (size > sizeof(char))
 209		align = sizeof(short);
 210	else
 211		return (char *)ptr;
 212
 213	r = (unsigned long)p % align;
 214
 215	if (r == 0)
 216		return (char *)ptr;
 217
 218	*p += align - r;
 219
 220	return (void *)(((unsigned long)ptr) + align - r);
 221}
 222
 223static void _edac_mc_free(struct mem_ctl_info *mci)
 224{
 225	put_device(&mci->dev);
 226}
 227
 228static void mci_release(struct device *dev)
 229{
 230	struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
 231	struct csrow_info *csr;
 232	int i, chn, row;
 233
 234	if (mci->dimms) {
 235		for (i = 0; i < mci->tot_dimms; i++)
 236			kfree(mci->dimms[i]);
 237		kfree(mci->dimms);
 238	}
 239
 240	if (mci->csrows) {
 241		for (row = 0; row < mci->nr_csrows; row++) {
 242			csr = mci->csrows[row];
 243			if (!csr)
 244				continue;
 245
 246			if (csr->channels) {
 247				for (chn = 0; chn < mci->num_cschannel; chn++)
 248					kfree(csr->channels[chn]);
 249				kfree(csr->channels);
 250			}
 251			kfree(csr);
 252		}
 253		kfree(mci->csrows);
 254	}
 
 
 255	kfree(mci);
 256}
 257
 258static int edac_mc_alloc_csrows(struct mem_ctl_info *mci)
 259{
 260	unsigned int tot_channels = mci->num_cschannel;
 261	unsigned int tot_csrows = mci->nr_csrows;
 262	unsigned int row, chn;
 263
 264	/*
 265	 * Alocate and fill the csrow/channels structs
 266	 */
 267	mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
 268	if (!mci->csrows)
 269		return -ENOMEM;
 270
 271	for (row = 0; row < tot_csrows; row++) {
 272		struct csrow_info *csr;
 273
 274		csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
 275		if (!csr)
 276			return -ENOMEM;
 277
 278		mci->csrows[row] = csr;
 279		csr->csrow_idx = row;
 280		csr->mci = mci;
 281		csr->nr_channels = tot_channels;
 282		csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
 283					GFP_KERNEL);
 284		if (!csr->channels)
 285			return -ENOMEM;
 286
 287		for (chn = 0; chn < tot_channels; chn++) {
 288			struct rank_info *chan;
 289
 290			chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
 291			if (!chan)
 292				return -ENOMEM;
 293
 294			csr->channels[chn] = chan;
 295			chan->chan_idx = chn;
 296			chan->csrow = csr;
 297		}
 298	}
 299
 300	return 0;
 301}
 302
 303static int edac_mc_alloc_dimms(struct mem_ctl_info *mci)
 304{
 305	unsigned int pos[EDAC_MAX_LAYERS];
 306	unsigned int row, chn, idx;
 307	int layer;
 308	void *p;
 309
 310	/*
 311	 * Allocate and fill the dimm structs
 312	 */
 313	mci->dimms  = kcalloc(mci->tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
 314	if (!mci->dimms)
 315		return -ENOMEM;
 316
 317	memset(&pos, 0, sizeof(pos));
 318	row = 0;
 319	chn = 0;
 320	for (idx = 0; idx < mci->tot_dimms; idx++) {
 321		struct dimm_info *dimm;
 322		struct rank_info *chan;
 323		int n, len;
 324
 325		chan = mci->csrows[row]->channels[chn];
 326
 327		dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
 328		if (!dimm)
 329			return -ENOMEM;
 330		mci->dimms[idx] = dimm;
 331		dimm->mci = mci;
 332		dimm->idx = idx;
 333
 334		/*
 335		 * Copy DIMM location and initialize it.
 336		 */
 337		len = sizeof(dimm->label);
 338		p = dimm->label;
 339		n = snprintf(p, len, "mc#%u", mci->mc_idx);
 340		p += n;
 341		len -= n;
 342		for (layer = 0; layer < mci->n_layers; layer++) {
 343			n = snprintf(p, len, "%s#%u",
 344				     edac_layer_name[mci->layers[layer].type],
 345				     pos[layer]);
 346			p += n;
 347			len -= n;
 348			dimm->location[layer] = pos[layer];
 349
 350			if (len <= 0)
 351				break;
 352		}
 353
 354		/* Link it to the csrows old API data */
 355		chan->dimm = dimm;
 356		dimm->csrow = row;
 357		dimm->cschannel = chn;
 358
 359		/* Increment csrow location */
 360		if (mci->layers[0].is_virt_csrow) {
 361			chn++;
 362			if (chn == mci->num_cschannel) {
 363				chn = 0;
 364				row++;
 365			}
 366		} else {
 367			row++;
 368			if (row == mci->nr_csrows) {
 369				row = 0;
 370				chn++;
 371			}
 372		}
 373
 374		/* Increment dimm location */
 375		for (layer = mci->n_layers - 1; layer >= 0; layer--) {
 376			pos[layer]++;
 377			if (pos[layer] < mci->layers[layer].size)
 378				break;
 379			pos[layer] = 0;
 380		}
 381	}
 382
 383	return 0;
 384}
 385
 386struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num,
 387				   unsigned int n_layers,
 388				   struct edac_mc_layer *layers,
 389				   unsigned int sz_pvt)
 390{
 391	struct mem_ctl_info *mci;
 392	struct edac_mc_layer *layer;
 393	unsigned int idx, size, tot_dimms = 1;
 394	unsigned int tot_csrows = 1, tot_channels = 1;
 395	void *pvt, *ptr = NULL;
 396	bool per_rank = false;
 397
 398	if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0))
 399		return NULL;
 400
 401	/*
 402	 * Calculate the total amount of dimms and csrows/cschannels while
 403	 * in the old API emulation mode
 404	 */
 405	for (idx = 0; idx < n_layers; idx++) {
 406		tot_dimms *= layers[idx].size;
 407
 408		if (layers[idx].is_virt_csrow)
 409			tot_csrows *= layers[idx].size;
 410		else
 411			tot_channels *= layers[idx].size;
 412
 413		if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT)
 414			per_rank = true;
 415	}
 416
 417	/* Figure out the offsets of the various items from the start of an mc
 418	 * structure.  We want the alignment of each item to be at least as
 419	 * stringent as what the compiler would provide if we could simply
 420	 * hardcode everything into a single struct.
 421	 */
 422	mci	= edac_align_ptr(&ptr, sizeof(*mci), 1);
 423	layer	= edac_align_ptr(&ptr, sizeof(*layer), n_layers);
 424	pvt	= edac_align_ptr(&ptr, sz_pvt, 1);
 425	size	= ((unsigned long)pvt) + sz_pvt;
 426
 427	edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
 428		 size,
 429		 tot_dimms,
 430		 per_rank ? "ranks" : "dimms",
 431		 tot_csrows * tot_channels);
 432
 433	mci = kzalloc(size, GFP_KERNEL);
 434	if (mci == NULL)
 435		return NULL;
 436
 437	mci->dev.release = mci_release;
 438	device_initialize(&mci->dev);
 439
 440	/* Adjust pointers so they point within the memory we just allocated
 441	 * rather than an imaginary chunk of memory located at address 0.
 442	 */
 443	layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
 444	pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
 445
 446	/* setup index and various internal pointers */
 447	mci->mc_idx = mc_num;
 448	mci->tot_dimms = tot_dimms;
 449	mci->pvt_info = pvt;
 450	mci->n_layers = n_layers;
 451	mci->layers = layer;
 452	memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
 453	mci->nr_csrows = tot_csrows;
 454	mci->num_cschannel = tot_channels;
 455	mci->csbased = per_rank;
 456
 457	if (edac_mc_alloc_csrows(mci))
 458		goto error;
 459
 460	if (edac_mc_alloc_dimms(mci))
 461		goto error;
 462
 463	mci->op_state = OP_ALLOC;
 464
 465	return mci;
 466
 467error:
 468	_edac_mc_free(mci);
 469
 470	return NULL;
 471}
 472EXPORT_SYMBOL_GPL(edac_mc_alloc);
 473
 474void edac_mc_free(struct mem_ctl_info *mci)
 475{
 476	edac_dbg(1, "\n");
 477
 478	_edac_mc_free(mci);
 479}
 480EXPORT_SYMBOL_GPL(edac_mc_free);
 481
 482bool edac_has_mcs(void)
 483{
 484	bool ret;
 485
 486	mutex_lock(&mem_ctls_mutex);
 487
 488	ret = list_empty(&mc_devices);
 489
 490	mutex_unlock(&mem_ctls_mutex);
 491
 492	return !ret;
 493}
 494EXPORT_SYMBOL_GPL(edac_has_mcs);
 495
 496/* Caller must hold mem_ctls_mutex */
 497static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
 498{
 499	struct mem_ctl_info *mci;
 500	struct list_head *item;
 501
 502	edac_dbg(3, "\n");
 503
 504	list_for_each(item, &mc_devices) {
 505		mci = list_entry(item, struct mem_ctl_info, link);
 506
 507		if (mci->pdev == dev)
 508			return mci;
 509	}
 510
 511	return NULL;
 512}
 513
 514/**
 515 * find_mci_by_dev
 516 *
 517 *	scan list of controllers looking for the one that manages
 518 *	the 'dev' device
 519 * @dev: pointer to a struct device related with the MCI
 520 */
 521struct mem_ctl_info *find_mci_by_dev(struct device *dev)
 522{
 523	struct mem_ctl_info *ret;
 524
 525	mutex_lock(&mem_ctls_mutex);
 526	ret = __find_mci_by_dev(dev);
 527	mutex_unlock(&mem_ctls_mutex);
 528
 529	return ret;
 530}
 531EXPORT_SYMBOL_GPL(find_mci_by_dev);
 532
 533/*
 534 * edac_mc_workq_function
 535 *	performs the operation scheduled by a workq request
 536 */
 537static void edac_mc_workq_function(struct work_struct *work_req)
 538{
 539	struct delayed_work *d_work = to_delayed_work(work_req);
 540	struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
 541
 542	mutex_lock(&mem_ctls_mutex);
 543
 544	if (mci->op_state != OP_RUNNING_POLL) {
 545		mutex_unlock(&mem_ctls_mutex);
 546		return;
 547	}
 548
 549	if (edac_op_state == EDAC_OPSTATE_POLL)
 550		mci->edac_check(mci);
 551
 552	mutex_unlock(&mem_ctls_mutex);
 553
 554	/* Queue ourselves again. */
 555	edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
 556}
 557
 558/*
 559 * edac_mc_reset_delay_period(unsigned long value)
 560 *
 561 *	user space has updated our poll period value, need to
 562 *	reset our workq delays
 563 */
 564void edac_mc_reset_delay_period(unsigned long value)
 565{
 566	struct mem_ctl_info *mci;
 567	struct list_head *item;
 568
 569	mutex_lock(&mem_ctls_mutex);
 570
 571	list_for_each(item, &mc_devices) {
 572		mci = list_entry(item, struct mem_ctl_info, link);
 573
 574		if (mci->op_state == OP_RUNNING_POLL)
 575			edac_mod_work(&mci->work, value);
 576	}
 577	mutex_unlock(&mem_ctls_mutex);
 578}
 579
 580
 581
 582/* Return 0 on success, 1 on failure.
 583 * Before calling this function, caller must
 584 * assign a unique value to mci->mc_idx.
 585 *
 586 *	locking model:
 587 *
 588 *		called with the mem_ctls_mutex lock held
 589 */
 590static int add_mc_to_global_list(struct mem_ctl_info *mci)
 591{
 592	struct list_head *item, *insert_before;
 593	struct mem_ctl_info *p;
 594
 595	insert_before = &mc_devices;
 596
 597	p = __find_mci_by_dev(mci->pdev);
 598	if (unlikely(p != NULL))
 599		goto fail0;
 600
 601	list_for_each(item, &mc_devices) {
 602		p = list_entry(item, struct mem_ctl_info, link);
 603
 604		if (p->mc_idx >= mci->mc_idx) {
 605			if (unlikely(p->mc_idx == mci->mc_idx))
 606				goto fail1;
 607
 608			insert_before = item;
 609			break;
 610		}
 611	}
 612
 613	list_add_tail_rcu(&mci->link, insert_before);
 614	return 0;
 615
 616fail0:
 617	edac_printk(KERN_WARNING, EDAC_MC,
 618		"%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
 619		edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
 620	return 1;
 621
 622fail1:
 623	edac_printk(KERN_WARNING, EDAC_MC,
 624		"bug in low-level driver: attempt to assign\n"
 625		"    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
 626	return 1;
 627}
 628
 629static int del_mc_from_global_list(struct mem_ctl_info *mci)
 630{
 631	list_del_rcu(&mci->link);
 632
 633	/* these are for safe removal of devices from global list while
 634	 * NMI handlers may be traversing list
 635	 */
 636	synchronize_rcu();
 637	INIT_LIST_HEAD(&mci->link);
 638
 639	return list_empty(&mc_devices);
 640}
 641
 642struct mem_ctl_info *edac_mc_find(int idx)
 643{
 644	struct mem_ctl_info *mci;
 645	struct list_head *item;
 646
 647	mutex_lock(&mem_ctls_mutex);
 648
 649	list_for_each(item, &mc_devices) {
 650		mci = list_entry(item, struct mem_ctl_info, link);
 651		if (mci->mc_idx == idx)
 652			goto unlock;
 653	}
 654
 655	mci = NULL;
 656unlock:
 657	mutex_unlock(&mem_ctls_mutex);
 658	return mci;
 659}
 660EXPORT_SYMBOL(edac_mc_find);
 661
 662const char *edac_get_owner(void)
 663{
 664	return edac_mc_owner;
 665}
 666EXPORT_SYMBOL_GPL(edac_get_owner);
 667
 668/* FIXME - should a warning be printed if no error detection? correction? */
 669int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
 670			       const struct attribute_group **groups)
 671{
 672	int ret = -EINVAL;
 673	edac_dbg(0, "\n");
 674
 675#ifdef CONFIG_EDAC_DEBUG
 676	if (edac_debug_level >= 3)
 677		edac_mc_dump_mci(mci);
 678
 679	if (edac_debug_level >= 4) {
 680		struct dimm_info *dimm;
 681		int i;
 682
 683		for (i = 0; i < mci->nr_csrows; i++) {
 684			struct csrow_info *csrow = mci->csrows[i];
 685			u32 nr_pages = 0;
 686			int j;
 687
 688			for (j = 0; j < csrow->nr_channels; j++)
 689				nr_pages += csrow->channels[j]->dimm->nr_pages;
 690			if (!nr_pages)
 691				continue;
 692			edac_mc_dump_csrow(csrow);
 693			for (j = 0; j < csrow->nr_channels; j++)
 694				if (csrow->channels[j]->dimm->nr_pages)
 695					edac_mc_dump_channel(csrow->channels[j]);
 696		}
 697
 698		mci_for_each_dimm(mci, dimm)
 699			edac_mc_dump_dimm(dimm);
 700	}
 701#endif
 702	mutex_lock(&mem_ctls_mutex);
 703
 704	if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
 705		ret = -EPERM;
 706		goto fail0;
 707	}
 708
 709	if (add_mc_to_global_list(mci))
 710		goto fail0;
 711
 712	/* set load time so that error rate can be tracked */
 713	mci->start_time = jiffies;
 714
 715	mci->bus = edac_get_sysfs_subsys();
 716
 717	if (edac_create_sysfs_mci_device(mci, groups)) {
 718		edac_mc_printk(mci, KERN_WARNING,
 719			"failed to create sysfs device\n");
 720		goto fail1;
 721	}
 722
 723	if (mci->edac_check) {
 724		mci->op_state = OP_RUNNING_POLL;
 725
 726		INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
 727		edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
 728
 729	} else {
 730		mci->op_state = OP_RUNNING_INTERRUPT;
 731	}
 732
 733	/* Report action taken */
 734	edac_mc_printk(mci, KERN_INFO,
 735		"Giving out device to module %s controller %s: DEV %s (%s)\n",
 736		mci->mod_name, mci->ctl_name, mci->dev_name,
 737		edac_op_state_to_string(mci->op_state));
 738
 739	edac_mc_owner = mci->mod_name;
 740
 741	mutex_unlock(&mem_ctls_mutex);
 742	return 0;
 743
 744fail1:
 745	del_mc_from_global_list(mci);
 746
 747fail0:
 748	mutex_unlock(&mem_ctls_mutex);
 749	return ret;
 750}
 751EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
 752
 753struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
 754{
 755	struct mem_ctl_info *mci;
 756
 757	edac_dbg(0, "\n");
 758
 759	mutex_lock(&mem_ctls_mutex);
 760
 761	/* find the requested mci struct in the global list */
 762	mci = __find_mci_by_dev(dev);
 763	if (mci == NULL) {
 764		mutex_unlock(&mem_ctls_mutex);
 765		return NULL;
 766	}
 767
 768	/* mark MCI offline: */
 769	mci->op_state = OP_OFFLINE;
 770
 771	if (del_mc_from_global_list(mci))
 772		edac_mc_owner = NULL;
 773
 774	mutex_unlock(&mem_ctls_mutex);
 775
 776	if (mci->edac_check)
 777		edac_stop_work(&mci->work);
 778
 779	/* remove from sysfs */
 780	edac_remove_sysfs_mci_device(mci);
 781
 782	edac_printk(KERN_INFO, EDAC_MC,
 783		"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
 784		mci->mod_name, mci->ctl_name, edac_dev_name(mci));
 785
 786	return mci;
 787}
 788EXPORT_SYMBOL_GPL(edac_mc_del_mc);
 789
 790static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
 791				u32 size)
 792{
 793	struct page *pg;
 794	void *virt_addr;
 795	unsigned long flags = 0;
 796
 797	edac_dbg(3, "\n");
 798
 799	/* ECC error page was not in our memory. Ignore it. */
 800	if (!pfn_valid(page))
 801		return;
 802
 803	/* Find the actual page structure then map it and fix */
 804	pg = pfn_to_page(page);
 805
 806	if (PageHighMem(pg))
 807		local_irq_save(flags);
 808
 809	virt_addr = kmap_atomic(pg);
 810
 811	/* Perform architecture specific atomic scrub operation */
 812	edac_atomic_scrub(virt_addr + offset, size);
 813
 814	/* Unmap and complete */
 815	kunmap_atomic(virt_addr);
 816
 817	if (PageHighMem(pg))
 818		local_irq_restore(flags);
 819}
 820
 821/* FIXME - should return -1 */
 822int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
 823{
 824	struct csrow_info **csrows = mci->csrows;
 825	int row, i, j, n;
 826
 827	edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
 828	row = -1;
 829
 830	for (i = 0; i < mci->nr_csrows; i++) {
 831		struct csrow_info *csrow = csrows[i];
 832		n = 0;
 833		for (j = 0; j < csrow->nr_channels; j++) {
 834			struct dimm_info *dimm = csrow->channels[j]->dimm;
 835			n += dimm->nr_pages;
 836		}
 837		if (n == 0)
 838			continue;
 839
 840		edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
 841			 mci->mc_idx,
 842			 csrow->first_page, page, csrow->last_page,
 843			 csrow->page_mask);
 844
 845		if ((page >= csrow->first_page) &&
 846		    (page <= csrow->last_page) &&
 847		    ((page & csrow->page_mask) ==
 848		     (csrow->first_page & csrow->page_mask))) {
 849			row = i;
 850			break;
 851		}
 852	}
 853
 854	if (row == -1)
 855		edac_mc_printk(mci, KERN_ERR,
 856			"could not look up page error address %lx\n",
 857			(unsigned long)page);
 858
 859	return row;
 860}
 861EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
 862
 863const char *edac_layer_name[] = {
 864	[EDAC_MC_LAYER_BRANCH] = "branch",
 865	[EDAC_MC_LAYER_CHANNEL] = "channel",
 866	[EDAC_MC_LAYER_SLOT] = "slot",
 867	[EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
 868	[EDAC_MC_LAYER_ALL_MEM] = "memory",
 869};
 870EXPORT_SYMBOL_GPL(edac_layer_name);
 871
 872static void edac_inc_ce_error(struct edac_raw_error_desc *e)
 873{
 874	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
 875	struct mem_ctl_info *mci = error_desc_to_mci(e);
 876	struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
 877
 878	mci->ce_mc += e->error_count;
 879
 880	if (dimm)
 881		dimm->ce_count += e->error_count;
 882	else
 883		mci->ce_noinfo_count += e->error_count;
 884}
 885
 886static void edac_inc_ue_error(struct edac_raw_error_desc *e)
 887{
 888	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
 889	struct mem_ctl_info *mci = error_desc_to_mci(e);
 890	struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
 891
 892	mci->ue_mc += e->error_count;
 893
 894	if (dimm)
 895		dimm->ue_count += e->error_count;
 896	else
 897		mci->ue_noinfo_count += e->error_count;
 898}
 899
 900static void edac_ce_error(struct edac_raw_error_desc *e)
 901{
 902	struct mem_ctl_info *mci = error_desc_to_mci(e);
 903	unsigned long remapped_page;
 904
 905	if (edac_mc_get_log_ce()) {
 906		edac_mc_printk(mci, KERN_WARNING,
 907			"%d CE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx%s%s)\n",
 908			e->error_count, e->msg,
 909			*e->msg ? " " : "",
 910			e->label, e->location, e->page_frame_number, e->offset_in_page,
 911			e->grain, e->syndrome,
 912			*e->other_detail ? " - " : "",
 913			e->other_detail);
 914	}
 915
 916	edac_inc_ce_error(e);
 917
 918	if (mci->scrub_mode == SCRUB_SW_SRC) {
 919		/*
 920			* Some memory controllers (called MCs below) can remap
 921			* memory so that it is still available at a different
 922			* address when PCI devices map into memory.
 923			* MC's that can't do this, lose the memory where PCI
 924			* devices are mapped. This mapping is MC-dependent
 925			* and so we call back into the MC driver for it to
 926			* map the MC page to a physical (CPU) page which can
 927			* then be mapped to a virtual page - which can then
 928			* be scrubbed.
 929			*/
 930		remapped_page = mci->ctl_page_to_phys ?
 931			mci->ctl_page_to_phys(mci, e->page_frame_number) :
 932			e->page_frame_number;
 933
 934		edac_mc_scrub_block(remapped_page, e->offset_in_page, e->grain);
 935	}
 936}
 937
 938static void edac_ue_error(struct edac_raw_error_desc *e)
 939{
 940	struct mem_ctl_info *mci = error_desc_to_mci(e);
 941
 942	if (edac_mc_get_log_ue()) {
 943		edac_mc_printk(mci, KERN_WARNING,
 944			"%d UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
 945			e->error_count, e->msg,
 946			*e->msg ? " " : "",
 947			e->label, e->location, e->page_frame_number, e->offset_in_page,
 948			e->grain,
 949			*e->other_detail ? " - " : "",
 950			e->other_detail);
 951	}
 952
 953	edac_inc_ue_error(e);
 954
 955	if (edac_mc_get_panic_on_ue()) {
 956		panic("UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
 957			e->msg,
 958			*e->msg ? " " : "",
 959			e->label, e->location, e->page_frame_number, e->offset_in_page,
 960			e->grain,
 961			*e->other_detail ? " - " : "",
 962			e->other_detail);
 963	}
 964}
 965
 966static void edac_inc_csrow(struct edac_raw_error_desc *e, int row, int chan)
 967{
 968	struct mem_ctl_info *mci = error_desc_to_mci(e);
 969	enum hw_event_mc_err_type type = e->type;
 970	u16 count = e->error_count;
 971
 972	if (row < 0)
 973		return;
 974
 975	edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
 976
 977	if (type == HW_EVENT_ERR_CORRECTED) {
 978		mci->csrows[row]->ce_count += count;
 979		if (chan >= 0)
 980			mci->csrows[row]->channels[chan]->ce_count += count;
 981	} else {
 982		mci->csrows[row]->ue_count += count;
 983	}
 984}
 985
 986void edac_raw_mc_handle_error(struct edac_raw_error_desc *e)
 987{
 988	struct mem_ctl_info *mci = error_desc_to_mci(e);
 989	u8 grain_bits;
 990
 991	/* Sanity-check driver-supplied grain value. */
 992	if (WARN_ON_ONCE(!e->grain))
 993		e->grain = 1;
 994
 995	grain_bits = fls_long(e->grain - 1);
 996
 997	/* Report the error via the trace interface */
 998	if (IS_ENABLED(CONFIG_RAS))
 999		trace_mc_event(e->type, e->msg, e->label, e->error_count,
1000			       mci->mc_idx, e->top_layer, e->mid_layer,
1001			       e->low_layer,
1002			       (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1003			       grain_bits, e->syndrome, e->other_detail);
1004
1005	if (e->type == HW_EVENT_ERR_CORRECTED)
1006		edac_ce_error(e);
1007	else
1008		edac_ue_error(e);
1009}
1010EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1011
1012void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1013			  struct mem_ctl_info *mci,
1014			  const u16 error_count,
1015			  const unsigned long page_frame_number,
1016			  const unsigned long offset_in_page,
1017			  const unsigned long syndrome,
1018			  const int top_layer,
1019			  const int mid_layer,
1020			  const int low_layer,
1021			  const char *msg,
1022			  const char *other_detail)
1023{
1024	struct dimm_info *dimm;
1025	char *p;
1026	int row = -1, chan = -1;
1027	int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1028	int i, n_labels = 0;
1029	struct edac_raw_error_desc *e = &mci->error_desc;
1030	bool any_memory = true;
 
1031
1032	edac_dbg(3, "MC%d\n", mci->mc_idx);
1033
1034	/* Fills the error report buffer */
1035	memset(e, 0, sizeof (*e));
1036	e->error_count = error_count;
1037	e->type = type;
1038	e->top_layer = top_layer;
1039	e->mid_layer = mid_layer;
1040	e->low_layer = low_layer;
1041	e->page_frame_number = page_frame_number;
1042	e->offset_in_page = offset_in_page;
1043	e->syndrome = syndrome;
1044	/* need valid strings here for both: */
1045	e->msg = msg ?: "";
1046	e->other_detail = other_detail ?: "";
1047
1048	/*
1049	 * Check if the event report is consistent and if the memory location is
1050	 * known. If it is, the DIMM(s) label info will be filled and the DIMM's
1051	 * error counters will be incremented.
1052	 */
1053	for (i = 0; i < mci->n_layers; i++) {
1054		if (pos[i] >= (int)mci->layers[i].size) {
1055
1056			edac_mc_printk(mci, KERN_ERR,
1057				       "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1058				       edac_layer_name[mci->layers[i].type],
1059				       pos[i], mci->layers[i].size);
1060			/*
1061			 * Instead of just returning it, let's use what's
1062			 * known about the error. The increment routines and
1063			 * the DIMM filter logic will do the right thing by
1064			 * pointing the likely damaged DIMMs.
1065			 */
1066			pos[i] = -1;
1067		}
1068		if (pos[i] >= 0)
1069			any_memory = false;
1070	}
1071
1072	/*
1073	 * Get the dimm label/grain that applies to the match criteria.
1074	 * As the error algorithm may not be able to point to just one memory
1075	 * stick, the logic here will get all possible labels that could
1076	 * pottentially be affected by the error.
1077	 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1078	 * to have only the MC channel and the MC dimm (also called "branch")
1079	 * but the channel is not known, as the memory is arranged in pairs,
1080	 * where each memory belongs to a separate channel within the same
1081	 * branch.
1082	 */
1083	p = e->label;
1084	*p = '\0';
 
 
1085
1086	mci_for_each_dimm(mci, dimm) {
1087		if (top_layer >= 0 && top_layer != dimm->location[0])
1088			continue;
1089		if (mid_layer >= 0 && mid_layer != dimm->location[1])
1090			continue;
1091		if (low_layer >= 0 && low_layer != dimm->location[2])
1092			continue;
1093
1094		/* get the max grain, over the error match range */
1095		if (dimm->grain > e->grain)
1096			e->grain = dimm->grain;
1097
1098		/*
1099		 * If the error is memory-controller wide, there's no need to
1100		 * seek for the affected DIMMs because the whole channel/memory
1101		 * controller/... may be affected. Also, don't show errors for
1102		 * empty DIMM slots.
1103		 */
1104		if (!dimm->nr_pages)
1105			continue;
1106
1107		n_labels++;
1108		if (n_labels > EDAC_MAX_LABELS) {
1109			p = e->label;
1110			*p = '\0';
1111		} else {
1112			if (p != e->label) {
1113				strcpy(p, OTHER_LABEL);
1114				p += strlen(OTHER_LABEL);
1115			}
1116			strcpy(p, dimm->label);
1117			p += strlen(p);
1118		}
1119
1120		/*
1121		 * get csrow/channel of the DIMM, in order to allow
1122		 * incrementing the compat API counters
1123		 */
1124		edac_dbg(4, "%s csrows map: (%d,%d)\n",
1125			mci->csbased ? "rank" : "dimm",
1126			dimm->csrow, dimm->cschannel);
1127		if (row == -1)
1128			row = dimm->csrow;
1129		else if (row >= 0 && row != dimm->csrow)
1130			row = -2;
1131
1132		if (chan == -1)
1133			chan = dimm->cschannel;
1134		else if (chan >= 0 && chan != dimm->cschannel)
1135			chan = -2;
1136	}
1137
1138	if (any_memory)
1139		strcpy(e->label, "any memory");
1140	else if (!*e->label)
1141		strcpy(e->label, "unknown memory");
1142
1143	edac_inc_csrow(e, row, chan);
1144
1145	/* Fill the RAM location data */
1146	p = e->location;
 
 
1147
1148	for (i = 0; i < mci->n_layers; i++) {
1149		if (pos[i] < 0)
1150			continue;
1151
1152		p += sprintf(p, "%s:%d ",
1153			     edac_layer_name[mci->layers[i].type],
1154			     pos[i]);
1155	}
1156	if (p > e->location)
1157		*(p - 1) = '\0';
1158
1159	edac_raw_mc_handle_error(e);
1160}
1161EXPORT_SYMBOL_GPL(edac_mc_handle_error);