Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * KVM/MIPS: Support for hardware virtualization extensions
   7 *
   8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
   9 * Authors: Yann Le Du <ledu@kymasys.com>
  10 */
  11
  12#include <linux/errno.h>
  13#include <linux/err.h>
  14#include <linux/module.h>
  15#include <linux/preempt.h>
  16#include <linux/vmalloc.h>
  17#include <asm/cacheflush.h>
  18#include <asm/cacheops.h>
  19#include <asm/cmpxchg.h>
  20#include <asm/fpu.h>
  21#include <asm/hazards.h>
  22#include <asm/inst.h>
  23#include <asm/mmu_context.h>
  24#include <asm/r4kcache.h>
  25#include <asm/time.h>
  26#include <asm/tlb.h>
  27#include <asm/tlbex.h>
  28
  29#include <linux/kvm_host.h>
  30
  31#include "interrupt.h"
  32#ifdef CONFIG_CPU_LOONGSON64
  33#include "loongson_regs.h"
  34#endif
  35
  36#include "trace.h"
  37
  38/* Pointers to last VCPU loaded on each physical CPU */
  39static struct kvm_vcpu *last_vcpu[NR_CPUS];
  40/* Pointers to last VCPU executed on each physical CPU */
  41static struct kvm_vcpu *last_exec_vcpu[NR_CPUS];
  42
  43/*
  44 * Number of guest VTLB entries to use, so we can catch inconsistency between
  45 * CPUs.
  46 */
  47static unsigned int kvm_vz_guest_vtlb_size;
  48
  49static inline long kvm_vz_read_gc0_ebase(void)
  50{
  51	if (sizeof(long) == 8 && cpu_has_ebase_wg)
  52		return read_gc0_ebase_64();
  53	else
  54		return read_gc0_ebase();
  55}
  56
  57static inline void kvm_vz_write_gc0_ebase(long v)
  58{
  59	/*
  60	 * First write with WG=1 to write upper bits, then write again in case
  61	 * WG should be left at 0.
  62	 * write_gc0_ebase_64() is no longer UNDEFINED since R6.
  63	 */
  64	if (sizeof(long) == 8 &&
  65	    (cpu_has_mips64r6 || cpu_has_ebase_wg)) {
  66		write_gc0_ebase_64(v | MIPS_EBASE_WG);
  67		write_gc0_ebase_64(v);
  68	} else {
  69		write_gc0_ebase(v | MIPS_EBASE_WG);
  70		write_gc0_ebase(v);
  71	}
  72}
  73
  74/*
  75 * These Config bits may be writable by the guest:
  76 * Config:	[K23, KU] (!TLB), K0
  77 * Config1:	(none)
  78 * Config2:	[TU, SU] (impl)
  79 * Config3:	ISAOnExc
  80 * Config4:	FTLBPageSize
  81 * Config5:	K, CV, MSAEn, UFE, FRE, SBRI, UFR
  82 */
  83
  84static inline unsigned int kvm_vz_config_guest_wrmask(struct kvm_vcpu *vcpu)
  85{
  86	return CONF_CM_CMASK;
  87}
  88
  89static inline unsigned int kvm_vz_config1_guest_wrmask(struct kvm_vcpu *vcpu)
  90{
  91	return 0;
  92}
  93
  94static inline unsigned int kvm_vz_config2_guest_wrmask(struct kvm_vcpu *vcpu)
  95{
  96	return 0;
  97}
  98
  99static inline unsigned int kvm_vz_config3_guest_wrmask(struct kvm_vcpu *vcpu)
 100{
 101	return MIPS_CONF3_ISA_OE;
 102}
 103
 104static inline unsigned int kvm_vz_config4_guest_wrmask(struct kvm_vcpu *vcpu)
 105{
 106	/* no need to be exact */
 107	return MIPS_CONF4_VFTLBPAGESIZE;
 108}
 109
 110static inline unsigned int kvm_vz_config5_guest_wrmask(struct kvm_vcpu *vcpu)
 111{
 112	unsigned int mask = MIPS_CONF5_K | MIPS_CONF5_CV | MIPS_CONF5_SBRI;
 113
 114	/* Permit MSAEn changes if MSA supported and enabled */
 115	if (kvm_mips_guest_has_msa(&vcpu->arch))
 116		mask |= MIPS_CONF5_MSAEN;
 117
 118	/*
 119	 * Permit guest FPU mode changes if FPU is enabled and the relevant
 120	 * feature exists according to FIR register.
 121	 */
 122	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
 123		if (cpu_has_ufr)
 124			mask |= MIPS_CONF5_UFR;
 125		if (cpu_has_fre)
 126			mask |= MIPS_CONF5_FRE | MIPS_CONF5_UFE;
 127	}
 128
 129	return mask;
 130}
 131
 132static inline unsigned int kvm_vz_config6_guest_wrmask(struct kvm_vcpu *vcpu)
 133{
 134	return LOONGSON_CONF6_INTIMER | LOONGSON_CONF6_EXTIMER;
 135}
 136
 137/*
 138 * VZ optionally allows these additional Config bits to be written by root:
 139 * Config:	M, [MT]
 140 * Config1:	M, [MMUSize-1, C2, MD, PC, WR, CA], FP
 141 * Config2:	M
 142 * Config3:	M, MSAP, [BPG], ULRI, [DSP2P, DSPP], CTXTC, [ITL, LPA, VEIC,
 143 *		VInt, SP, CDMM, MT, SM, TL]
 144 * Config4:	M, [VTLBSizeExt, MMUSizeExt]
 145 * Config5:	MRP
 146 */
 147
 148static inline unsigned int kvm_vz_config_user_wrmask(struct kvm_vcpu *vcpu)
 149{
 150	return kvm_vz_config_guest_wrmask(vcpu) | MIPS_CONF_M;
 151}
 152
 153static inline unsigned int kvm_vz_config1_user_wrmask(struct kvm_vcpu *vcpu)
 154{
 155	unsigned int mask = kvm_vz_config1_guest_wrmask(vcpu) | MIPS_CONF_M;
 156
 157	/* Permit FPU to be present if FPU is supported */
 158	if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
 159		mask |= MIPS_CONF1_FP;
 160
 161	return mask;
 162}
 163
 164static inline unsigned int kvm_vz_config2_user_wrmask(struct kvm_vcpu *vcpu)
 165{
 166	return kvm_vz_config2_guest_wrmask(vcpu) | MIPS_CONF_M;
 167}
 168
 169static inline unsigned int kvm_vz_config3_user_wrmask(struct kvm_vcpu *vcpu)
 170{
 171	unsigned int mask = kvm_vz_config3_guest_wrmask(vcpu) | MIPS_CONF_M |
 172		MIPS_CONF3_ULRI | MIPS_CONF3_CTXTC;
 173
 174	/* Permit MSA to be present if MSA is supported */
 175	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
 176		mask |= MIPS_CONF3_MSA;
 177
 178	return mask;
 179}
 180
 181static inline unsigned int kvm_vz_config4_user_wrmask(struct kvm_vcpu *vcpu)
 182{
 183	return kvm_vz_config4_guest_wrmask(vcpu) | MIPS_CONF_M;
 184}
 185
 186static inline unsigned int kvm_vz_config5_user_wrmask(struct kvm_vcpu *vcpu)
 187{
 188	return kvm_vz_config5_guest_wrmask(vcpu) | MIPS_CONF5_MRP;
 189}
 190
 191static inline unsigned int kvm_vz_config6_user_wrmask(struct kvm_vcpu *vcpu)
 192{
 193	return kvm_vz_config6_guest_wrmask(vcpu) |
 194		LOONGSON_CONF6_SFBEN | LOONGSON_CONF6_FTLBDIS;
 195}
 196
 197static gpa_t kvm_vz_gva_to_gpa_cb(gva_t gva)
 198{
 199	/* VZ guest has already converted gva to gpa */
 200	return gva;
 201}
 202
 203static void kvm_vz_queue_irq(struct kvm_vcpu *vcpu, unsigned int priority)
 204{
 205	set_bit(priority, &vcpu->arch.pending_exceptions);
 206	clear_bit(priority, &vcpu->arch.pending_exceptions_clr);
 207}
 208
 209static void kvm_vz_dequeue_irq(struct kvm_vcpu *vcpu, unsigned int priority)
 210{
 211	clear_bit(priority, &vcpu->arch.pending_exceptions);
 212	set_bit(priority, &vcpu->arch.pending_exceptions_clr);
 213}
 214
 215static void kvm_vz_queue_timer_int_cb(struct kvm_vcpu *vcpu)
 216{
 217	/*
 218	 * timer expiry is asynchronous to vcpu execution therefore defer guest
 219	 * cp0 accesses
 220	 */
 221	kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
 222}
 223
 224static void kvm_vz_dequeue_timer_int_cb(struct kvm_vcpu *vcpu)
 225{
 226	/*
 227	 * timer expiry is asynchronous to vcpu execution therefore defer guest
 228	 * cp0 accesses
 229	 */
 230	kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_TIMER);
 231}
 232
 233static void kvm_vz_queue_io_int_cb(struct kvm_vcpu *vcpu,
 234				   struct kvm_mips_interrupt *irq)
 235{
 236	int intr = (int)irq->irq;
 237
 238	/*
 239	 * interrupts are asynchronous to vcpu execution therefore defer guest
 240	 * cp0 accesses
 241	 */
 242	kvm_vz_queue_irq(vcpu, kvm_irq_to_priority(intr));
 243}
 244
 245static void kvm_vz_dequeue_io_int_cb(struct kvm_vcpu *vcpu,
 246				     struct kvm_mips_interrupt *irq)
 247{
 248	int intr = (int)irq->irq;
 249
 250	/*
 251	 * interrupts are asynchronous to vcpu execution therefore defer guest
 252	 * cp0 accesses
 253	 */
 254	kvm_vz_dequeue_irq(vcpu, kvm_irq_to_priority(-intr));
 255}
 256
 257static int kvm_vz_irq_deliver_cb(struct kvm_vcpu *vcpu, unsigned int priority,
 258				 u32 cause)
 259{
 260	u32 irq = (priority < MIPS_EXC_MAX) ?
 261		kvm_priority_to_irq[priority] : 0;
 262
 263	switch (priority) {
 264	case MIPS_EXC_INT_TIMER:
 265		set_gc0_cause(C_TI);
 266		break;
 267
 268	case MIPS_EXC_INT_IO_1:
 269	case MIPS_EXC_INT_IO_2:
 270	case MIPS_EXC_INT_IPI_1:
 271	case MIPS_EXC_INT_IPI_2:
 272		if (cpu_has_guestctl2)
 273			set_c0_guestctl2(irq);
 274		else
 275			set_gc0_cause(irq);
 276		break;
 277
 278	default:
 279		break;
 280	}
 281
 282	clear_bit(priority, &vcpu->arch.pending_exceptions);
 283	return 1;
 284}
 285
 286static int kvm_vz_irq_clear_cb(struct kvm_vcpu *vcpu, unsigned int priority,
 287			       u32 cause)
 288{
 289	u32 irq = (priority < MIPS_EXC_MAX) ?
 290		kvm_priority_to_irq[priority] : 0;
 291
 292	switch (priority) {
 293	case MIPS_EXC_INT_TIMER:
 294		/*
 295		 * Explicitly clear irq associated with Cause.IP[IPTI]
 296		 * if GuestCtl2 virtual interrupt register not
 
 297		 * supported or if not using GuestCtl2 Hardware Clear.
 298		 */
 299		if (cpu_has_guestctl2) {
 300			if (!(read_c0_guestctl2() & (irq << 14)))
 301				clear_c0_guestctl2(irq);
 302		} else {
 303			clear_gc0_cause(irq);
 304		}
 305		break;
 306
 307	case MIPS_EXC_INT_IO_1:
 308	case MIPS_EXC_INT_IO_2:
 309	case MIPS_EXC_INT_IPI_1:
 310	case MIPS_EXC_INT_IPI_2:
 311		/* Clear GuestCtl2.VIP irq if not using Hardware Clear */
 312		if (cpu_has_guestctl2) {
 313			if (!(read_c0_guestctl2() & (irq << 14)))
 314				clear_c0_guestctl2(irq);
 315		} else {
 316			clear_gc0_cause(irq);
 317		}
 318		break;
 319
 320	default:
 321		break;
 322	}
 323
 324	clear_bit(priority, &vcpu->arch.pending_exceptions_clr);
 325	return 1;
 326}
 327
 328/*
 329 * VZ guest timer handling.
 330 */
 331
 332/**
 333 * kvm_vz_should_use_htimer() - Find whether to use the VZ hard guest timer.
 334 * @vcpu:	Virtual CPU.
 335 *
 336 * Returns:	true if the VZ GTOffset & real guest CP0_Count should be used
 337 *		instead of software emulation of guest timer.
 338 *		false otherwise.
 339 */
 340static bool kvm_vz_should_use_htimer(struct kvm_vcpu *vcpu)
 341{
 342	if (kvm_mips_count_disabled(vcpu))
 343		return false;
 344
 345	/* Chosen frequency must match real frequency */
 346	if (mips_hpt_frequency != vcpu->arch.count_hz)
 347		return false;
 348
 349	/* We don't support a CP0_GTOffset with fewer bits than CP0_Count */
 350	if (current_cpu_data.gtoffset_mask != 0xffffffff)
 351		return false;
 352
 353	return true;
 354}
 355
 356/**
 357 * _kvm_vz_restore_stimer() - Restore soft timer state.
 358 * @vcpu:	Virtual CPU.
 359 * @compare:	CP0_Compare register value, restored by caller.
 360 * @cause:	CP0_Cause register to restore.
 361 *
 362 * Restore VZ state relating to the soft timer. The hard timer can be enabled
 363 * later.
 364 */
 365static void _kvm_vz_restore_stimer(struct kvm_vcpu *vcpu, u32 compare,
 366				   u32 cause)
 367{
 368	/*
 369	 * Avoid spurious counter interrupts by setting Guest CP0_Count to just
 370	 * after Guest CP0_Compare.
 371	 */
 372	write_c0_gtoffset(compare - read_c0_count());
 373
 374	back_to_back_c0_hazard();
 375	write_gc0_cause(cause);
 376}
 377
 378/**
 379 * _kvm_vz_restore_htimer() - Restore hard timer state.
 380 * @vcpu:	Virtual CPU.
 381 * @compare:	CP0_Compare register value, restored by caller.
 382 * @cause:	CP0_Cause register to restore.
 383 *
 384 * Restore hard timer Guest.Count & Guest.Cause taking care to preserve the
 385 * value of Guest.CP0_Cause.TI while restoring Guest.CP0_Cause.
 386 */
 387static void _kvm_vz_restore_htimer(struct kvm_vcpu *vcpu,
 388				   u32 compare, u32 cause)
 389{
 390	u32 start_count, after_count;
 
 391	unsigned long flags;
 392
 393	/*
 394	 * Freeze the soft-timer and sync the guest CP0_Count with it. We do
 395	 * this with interrupts disabled to avoid latency.
 396	 */
 397	local_irq_save(flags);
 398	kvm_mips_freeze_hrtimer(vcpu, &start_count);
 399	write_c0_gtoffset(start_count - read_c0_count());
 400	local_irq_restore(flags);
 401
 402	/* restore guest CP0_Cause, as TI may already be set */
 403	back_to_back_c0_hazard();
 404	write_gc0_cause(cause);
 405
 406	/*
 407	 * The above sequence isn't atomic and would result in lost timer
 408	 * interrupts if we're not careful. Detect if a timer interrupt is due
 409	 * and assert it.
 410	 */
 411	back_to_back_c0_hazard();
 412	after_count = read_gc0_count();
 413	if (after_count - start_count > compare - start_count - 1)
 414		kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
 415}
 416
 417/**
 418 * kvm_vz_restore_timer() - Restore timer state.
 419 * @vcpu:	Virtual CPU.
 420 *
 421 * Restore soft timer state from saved context.
 422 */
 423static void kvm_vz_restore_timer(struct kvm_vcpu *vcpu)
 424{
 425	struct mips_coproc *cop0 = &vcpu->arch.cop0;
 426	u32 cause, compare;
 427
 428	compare = kvm_read_sw_gc0_compare(cop0);
 429	cause = kvm_read_sw_gc0_cause(cop0);
 430
 431	write_gc0_compare(compare);
 432	_kvm_vz_restore_stimer(vcpu, compare, cause);
 433}
 434
 435/**
 436 * kvm_vz_acquire_htimer() - Switch to hard timer state.
 437 * @vcpu:	Virtual CPU.
 438 *
 439 * Restore hard timer state on top of existing soft timer state if possible.
 440 *
 441 * Since hard timer won't remain active over preemption, preemption should be
 442 * disabled by the caller.
 443 */
 444void kvm_vz_acquire_htimer(struct kvm_vcpu *vcpu)
 445{
 446	u32 gctl0;
 447
 448	gctl0 = read_c0_guestctl0();
 449	if (!(gctl0 & MIPS_GCTL0_GT) && kvm_vz_should_use_htimer(vcpu)) {
 450		/* enable guest access to hard timer */
 451		write_c0_guestctl0(gctl0 | MIPS_GCTL0_GT);
 452
 453		_kvm_vz_restore_htimer(vcpu, read_gc0_compare(),
 454				       read_gc0_cause());
 455	}
 456}
 457
 458/**
 459 * _kvm_vz_save_htimer() - Switch to software emulation of guest timer.
 460 * @vcpu:	Virtual CPU.
 461 * @out_compare: Pointer to write compare value to.
 462 * @out_cause:	Pointer to write cause value to.
 463 *
 464 * Save VZ guest timer state and switch to software emulation of guest CP0
 465 * timer. The hard timer must already be in use, so preemption should be
 466 * disabled.
 467 */
 468static void _kvm_vz_save_htimer(struct kvm_vcpu *vcpu,
 469				u32 *out_compare, u32 *out_cause)
 470{
 471	u32 cause, compare, before_count, end_count;
 472	ktime_t before_time;
 473
 474	compare = read_gc0_compare();
 475	*out_compare = compare;
 476
 477	before_time = ktime_get();
 478
 479	/*
 480	 * Record the CP0_Count *prior* to saving CP0_Cause, so we have a time
 481	 * at which no pending timer interrupt is missing.
 482	 */
 483	before_count = read_gc0_count();
 484	back_to_back_c0_hazard();
 485	cause = read_gc0_cause();
 486	*out_cause = cause;
 487
 488	/*
 489	 * Record a final CP0_Count which we will transfer to the soft-timer.
 490	 * This is recorded *after* saving CP0_Cause, so we don't get any timer
 491	 * interrupts from just after the final CP0_Count point.
 492	 */
 493	back_to_back_c0_hazard();
 494	end_count = read_gc0_count();
 495
 496	/*
 497	 * The above sequence isn't atomic, so we could miss a timer interrupt
 498	 * between reading CP0_Cause and end_count. Detect and record any timer
 499	 * interrupt due between before_count and end_count.
 500	 */
 501	if (end_count - before_count > compare - before_count - 1)
 502		kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
 503
 504	/*
 505	 * Restore soft-timer, ignoring a small amount of negative drift due to
 506	 * delay between freeze_hrtimer and setting CP0_GTOffset.
 507	 */
 508	kvm_mips_restore_hrtimer(vcpu, before_time, end_count, -0x10000);
 509}
 510
 511/**
 512 * kvm_vz_save_timer() - Save guest timer state.
 513 * @vcpu:	Virtual CPU.
 514 *
 515 * Save VZ guest timer state and switch to soft guest timer if hard timer was in
 516 * use.
 517 */
 518static void kvm_vz_save_timer(struct kvm_vcpu *vcpu)
 519{
 520	struct mips_coproc *cop0 = &vcpu->arch.cop0;
 521	u32 gctl0, compare, cause;
 522
 523	gctl0 = read_c0_guestctl0();
 524	if (gctl0 & MIPS_GCTL0_GT) {
 525		/* disable guest use of hard timer */
 526		write_c0_guestctl0(gctl0 & ~MIPS_GCTL0_GT);
 527
 528		/* save hard timer state */
 529		_kvm_vz_save_htimer(vcpu, &compare, &cause);
 530	} else {
 531		compare = read_gc0_compare();
 532		cause = read_gc0_cause();
 533	}
 534
 535	/* save timer-related state to VCPU context */
 536	kvm_write_sw_gc0_cause(cop0, cause);
 537	kvm_write_sw_gc0_compare(cop0, compare);
 538}
 539
 540/**
 541 * kvm_vz_lose_htimer() - Ensure hard guest timer is not in use.
 542 * @vcpu:	Virtual CPU.
 543 *
 544 * Transfers the state of the hard guest timer to the soft guest timer, leaving
 545 * guest state intact so it can continue to be used with the soft timer.
 546 */
 547void kvm_vz_lose_htimer(struct kvm_vcpu *vcpu)
 548{
 549	u32 gctl0, compare, cause;
 550
 551	preempt_disable();
 552	gctl0 = read_c0_guestctl0();
 553	if (gctl0 & MIPS_GCTL0_GT) {
 554		/* disable guest use of timer */
 555		write_c0_guestctl0(gctl0 & ~MIPS_GCTL0_GT);
 556
 557		/* switch to soft timer */
 558		_kvm_vz_save_htimer(vcpu, &compare, &cause);
 559
 560		/* leave soft timer in usable state */
 561		_kvm_vz_restore_stimer(vcpu, compare, cause);
 562	}
 563	preempt_enable();
 564}
 565
 566/**
 567 * is_eva_access() - Find whether an instruction is an EVA memory accessor.
 568 * @inst:	32-bit instruction encoding.
 569 *
 570 * Finds whether @inst encodes an EVA memory access instruction, which would
 571 * indicate that emulation of it should access the user mode address space
 572 * instead of the kernel mode address space. This matters for MUSUK segments
 573 * which are TLB mapped for user mode but unmapped for kernel mode.
 574 *
 575 * Returns:	Whether @inst encodes an EVA accessor instruction.
 576 */
 577static bool is_eva_access(union mips_instruction inst)
 578{
 579	if (inst.spec3_format.opcode != spec3_op)
 580		return false;
 581
 582	switch (inst.spec3_format.func) {
 583	case lwle_op:
 584	case lwre_op:
 585	case cachee_op:
 586	case sbe_op:
 587	case she_op:
 588	case sce_op:
 589	case swe_op:
 590	case swle_op:
 591	case swre_op:
 592	case prefe_op:
 593	case lbue_op:
 594	case lhue_op:
 595	case lbe_op:
 596	case lhe_op:
 597	case lle_op:
 598	case lwe_op:
 599		return true;
 600	default:
 601		return false;
 602	}
 603}
 604
 605/**
 606 * is_eva_am_mapped() - Find whether an access mode is mapped.
 607 * @vcpu:	KVM VCPU state.
 608 * @am:		3-bit encoded access mode.
 609 * @eu:		Segment becomes unmapped and uncached when Status.ERL=1.
 610 *
 611 * Decode @am to find whether it encodes a mapped segment for the current VCPU
 612 * state. Where necessary @eu and the actual instruction causing the fault are
 613 * taken into account to make the decision.
 614 *
 615 * Returns:	Whether the VCPU faulted on a TLB mapped address.
 616 */
 617static bool is_eva_am_mapped(struct kvm_vcpu *vcpu, unsigned int am, bool eu)
 618{
 619	u32 am_lookup;
 620	int err;
 621
 622	/*
 623	 * Interpret access control mode. We assume address errors will already
 624	 * have been caught by the guest, leaving us with:
 625	 *      AM      UM  SM  KM  31..24 23..16
 626	 * UK    0 000          Unm   0      0
 627	 * MK    1 001          TLB   1
 628	 * MSK   2 010      TLB TLB   1
 629	 * MUSK  3 011  TLB TLB TLB   1
 630	 * MUSUK 4 100  TLB TLB Unm   0      1
 631	 * USK   5 101      Unm Unm   0      0
 632	 * -     6 110                0      0
 633	 * UUSK  7 111  Unm Unm Unm   0      0
 634	 *
 635	 * We shift a magic value by AM across the sign bit to find if always
 636	 * TLB mapped, and if not shift by 8 again to find if it depends on KM.
 637	 */
 638	am_lookup = 0x70080000 << am;
 639	if ((s32)am_lookup < 0) {
 640		/*
 641		 * MK, MSK, MUSK
 642		 * Always TLB mapped, unless SegCtl.EU && ERL
 643		 */
 644		if (!eu || !(read_gc0_status() & ST0_ERL))
 645			return true;
 646	} else {
 647		am_lookup <<= 8;
 648		if ((s32)am_lookup < 0) {
 649			union mips_instruction inst;
 650			unsigned int status;
 651			u32 *opc;
 652
 653			/*
 654			 * MUSUK
 655			 * TLB mapped if not in kernel mode
 656			 */
 657			status = read_gc0_status();
 658			if (!(status & (ST0_EXL | ST0_ERL)) &&
 659			    (status & ST0_KSU))
 660				return true;
 661			/*
 662			 * EVA access instructions in kernel
 663			 * mode access user address space.
 664			 */
 665			opc = (u32 *)vcpu->arch.pc;
 666			if (vcpu->arch.host_cp0_cause & CAUSEF_BD)
 667				opc += 1;
 668			err = kvm_get_badinstr(opc, vcpu, &inst.word);
 669			if (!err && is_eva_access(inst))
 670				return true;
 671		}
 672	}
 673
 674	return false;
 675}
 676
 677/**
 678 * kvm_vz_gva_to_gpa() - Convert valid GVA to GPA.
 679 * @vcpu:	KVM VCPU state.
 680 * @gva:	Guest virtual address to convert.
 681 * @gpa:	Output guest physical address.
 682 *
 683 * Convert a guest virtual address (GVA) which is valid according to the guest
 684 * context, to a guest physical address (GPA).
 685 *
 686 * Returns:	0 on success.
 687 *		-errno on failure.
 688 */
 689static int kvm_vz_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
 690			     unsigned long *gpa)
 691{
 692	u32 gva32 = gva;
 693	unsigned long segctl;
 694
 695	if ((long)gva == (s32)gva32) {
 696		/* Handle canonical 32-bit virtual address */
 697		if (cpu_guest_has_segments) {
 698			unsigned long mask, pa;
 699
 700			switch (gva32 >> 29) {
 701			case 0:
 702			case 1: /* CFG5 (1GB) */
 703				segctl = read_gc0_segctl2() >> 16;
 704				mask = (unsigned long)0xfc0000000ull;
 705				break;
 706			case 2:
 707			case 3: /* CFG4 (1GB) */
 708				segctl = read_gc0_segctl2();
 709				mask = (unsigned long)0xfc0000000ull;
 710				break;
 711			case 4: /* CFG3 (512MB) */
 712				segctl = read_gc0_segctl1() >> 16;
 713				mask = (unsigned long)0xfe0000000ull;
 714				break;
 715			case 5: /* CFG2 (512MB) */
 716				segctl = read_gc0_segctl1();
 717				mask = (unsigned long)0xfe0000000ull;
 718				break;
 719			case 6: /* CFG1 (512MB) */
 720				segctl = read_gc0_segctl0() >> 16;
 721				mask = (unsigned long)0xfe0000000ull;
 722				break;
 723			case 7: /* CFG0 (512MB) */
 724				segctl = read_gc0_segctl0();
 725				mask = (unsigned long)0xfe0000000ull;
 726				break;
 727			default:
 728				/*
 729				 * GCC 4.9 isn't smart enough to figure out that
 730				 * segctl and mask are always initialised.
 731				 */
 732				unreachable();
 733			}
 734
 735			if (is_eva_am_mapped(vcpu, (segctl >> 4) & 0x7,
 736					     segctl & 0x0008))
 737				goto tlb_mapped;
 738
 739			/* Unmapped, find guest physical address */
 740			pa = (segctl << 20) & mask;
 741			pa |= gva32 & ~mask;
 742			*gpa = pa;
 743			return 0;
 744		} else if ((s32)gva32 < (s32)0xc0000000) {
 745			/* legacy unmapped KSeg0 or KSeg1 */
 746			*gpa = gva32 & 0x1fffffff;
 747			return 0;
 748		}
 749#ifdef CONFIG_64BIT
 750	} else if ((gva & 0xc000000000000000) == 0x8000000000000000) {
 751		/* XKPHYS */
 752		if (cpu_guest_has_segments) {
 753			/*
 754			 * Each of the 8 regions can be overridden by SegCtl2.XR
 755			 * to use SegCtl1.XAM.
 756			 */
 757			segctl = read_gc0_segctl2();
 758			if (segctl & (1ull << (56 + ((gva >> 59) & 0x7)))) {
 759				segctl = read_gc0_segctl1();
 760				if (is_eva_am_mapped(vcpu, (segctl >> 59) & 0x7,
 761						     0))
 762					goto tlb_mapped;
 763			}
 764
 765		}
 766		/*
 767		 * Traditionally fully unmapped.
 768		 * Bits 61:59 specify the CCA, which we can just mask off here.
 769		 * Bits 58:PABITS should be zero, but we shouldn't have got here
 770		 * if it wasn't.
 771		 */
 772		*gpa = gva & 0x07ffffffffffffff;
 773		return 0;
 774#endif
 775	}
 776
 777tlb_mapped:
 778	return kvm_vz_guest_tlb_lookup(vcpu, gva, gpa);
 779}
 780
 781/**
 782 * kvm_vz_badvaddr_to_gpa() - Convert GVA BadVAddr from root exception to GPA.
 783 * @vcpu:	KVM VCPU state.
 784 * @badvaddr:	Root BadVAddr.
 785 * @gpa:	Output guest physical address.
 786 *
 787 * VZ implementations are permitted to report guest virtual addresses (GVA) in
 788 * BadVAddr on a root exception during guest execution, instead of the more
 789 * convenient guest physical addresses (GPA). When we get a GVA, this function
 790 * converts it to a GPA, taking into account guest segmentation and guest TLB
 791 * state.
 792 *
 793 * Returns:	0 on success.
 794 *		-errno on failure.
 795 */
 796static int kvm_vz_badvaddr_to_gpa(struct kvm_vcpu *vcpu, unsigned long badvaddr,
 797				  unsigned long *gpa)
 798{
 799	unsigned int gexccode = (vcpu->arch.host_cp0_guestctl0 &
 800				 MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT;
 801
 802	/* If BadVAddr is GPA, then all is well in the world */
 803	if (likely(gexccode == MIPS_GCTL0_GEXC_GPA)) {
 804		*gpa = badvaddr;
 805		return 0;
 806	}
 807
 808	/* Otherwise we'd expect it to be GVA ... */
 809	if (WARN(gexccode != MIPS_GCTL0_GEXC_GVA,
 810		 "Unexpected gexccode %#x\n", gexccode))
 811		return -EINVAL;
 812
 813	/* ... and we need to perform the GVA->GPA translation in software */
 814	return kvm_vz_gva_to_gpa(vcpu, badvaddr, gpa);
 815}
 816
 817static int kvm_trap_vz_no_handler(struct kvm_vcpu *vcpu)
 818{
 819	u32 *opc = (u32 *) vcpu->arch.pc;
 820	u32 cause = vcpu->arch.host_cp0_cause;
 821	u32 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
 822	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
 823	u32 inst = 0;
 824
 825	/*
 826	 *  Fetch the instruction.
 827	 */
 828	if (cause & CAUSEF_BD)
 829		opc += 1;
 830	kvm_get_badinstr(opc, vcpu, &inst);
 831
 832	kvm_err("Exception Code: %d not handled @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n",
 833		exccode, opc, inst, badvaddr,
 834		read_gc0_status());
 835	kvm_arch_vcpu_dump_regs(vcpu);
 836	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 837	return RESUME_HOST;
 838}
 839
 840static unsigned long mips_process_maar(unsigned int op, unsigned long val)
 841{
 842	/* Mask off unused bits */
 843	unsigned long mask = 0xfffff000 | MIPS_MAAR_S | MIPS_MAAR_VL;
 844
 845	if (read_gc0_pagegrain() & PG_ELPA)
 846		mask |= 0x00ffffff00000000ull;
 847	if (cpu_guest_has_mvh)
 848		mask |= MIPS_MAAR_VH;
 849
 850	/* Set or clear VH */
 851	if (op == mtc_op) {
 852		/* clear VH */
 853		val &= ~MIPS_MAAR_VH;
 854	} else if (op == dmtc_op) {
 855		/* set VH to match VL */
 856		val &= ~MIPS_MAAR_VH;
 857		if (val & MIPS_MAAR_VL)
 858			val |= MIPS_MAAR_VH;
 859	}
 860
 861	return val & mask;
 862}
 863
 864static void kvm_write_maari(struct kvm_vcpu *vcpu, unsigned long val)
 865{
 866	struct mips_coproc *cop0 = &vcpu->arch.cop0;
 867
 868	val &= MIPS_MAARI_INDEX;
 869	if (val == MIPS_MAARI_INDEX)
 870		kvm_write_sw_gc0_maari(cop0, ARRAY_SIZE(vcpu->arch.maar) - 1);
 871	else if (val < ARRAY_SIZE(vcpu->arch.maar))
 872		kvm_write_sw_gc0_maari(cop0, val);
 873}
 874
 875static enum emulation_result kvm_vz_gpsi_cop0(union mips_instruction inst,
 876					      u32 *opc, u32 cause,
 877					      struct kvm_vcpu *vcpu)
 878{
 879	struct mips_coproc *cop0 = &vcpu->arch.cop0;
 880	enum emulation_result er = EMULATE_DONE;
 881	u32 rt, rd, sel;
 882	unsigned long curr_pc;
 883	unsigned long val;
 884
 885	/*
 886	 * Update PC and hold onto current PC in case there is
 887	 * an error and we want to rollback the PC
 888	 */
 889	curr_pc = vcpu->arch.pc;
 890	er = update_pc(vcpu, cause);
 891	if (er == EMULATE_FAIL)
 892		return er;
 893
 894	if (inst.co_format.co) {
 895		switch (inst.co_format.func) {
 896		case wait_op:
 897			er = kvm_mips_emul_wait(vcpu);
 898			break;
 899		default:
 900			er = EMULATE_FAIL;
 901		}
 902	} else {
 903		rt = inst.c0r_format.rt;
 904		rd = inst.c0r_format.rd;
 905		sel = inst.c0r_format.sel;
 906
 907		switch (inst.c0r_format.rs) {
 908		case dmfc_op:
 909		case mfc_op:
 910#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
 911			cop0->stat[rd][sel]++;
 912#endif
 913			if (rd == MIPS_CP0_COUNT &&
 914			    sel == 0) {			/* Count */
 915				val = kvm_mips_read_count(vcpu);
 916			} else if (rd == MIPS_CP0_COMPARE &&
 917				   sel == 0) {		/* Compare */
 918				val = read_gc0_compare();
 919			} else if (rd == MIPS_CP0_LLADDR &&
 920				   sel == 0) {		/* LLAddr */
 921				if (cpu_guest_has_rw_llb)
 922					val = read_gc0_lladdr() &
 923						MIPS_LLADDR_LLB;
 924				else
 925					val = 0;
 926			} else if (rd == MIPS_CP0_LLADDR &&
 927				   sel == 1 &&		/* MAAR */
 928				   cpu_guest_has_maar &&
 929				   !cpu_guest_has_dyn_maar) {
 930				/* MAARI must be in range */
 931				BUG_ON(kvm_read_sw_gc0_maari(cop0) >=
 932						ARRAY_SIZE(vcpu->arch.maar));
 933				val = vcpu->arch.maar[
 934					kvm_read_sw_gc0_maari(cop0)];
 935			} else if ((rd == MIPS_CP0_PRID &&
 936				    (sel == 0 ||	/* PRid */
 937				     sel == 2 ||	/* CDMMBase */
 938				     sel == 3)) ||	/* CMGCRBase */
 939				   (rd == MIPS_CP0_STATUS &&
 940				    (sel == 2 ||	/* SRSCtl */
 941				     sel == 3)) ||	/* SRSMap */
 942				   (rd == MIPS_CP0_CONFIG &&
 943				    (sel == 6 ||	/* Config6 */
 944				     sel == 7)) ||	/* Config7 */
 945				   (rd == MIPS_CP0_LLADDR &&
 946				    (sel == 2) &&	/* MAARI */
 947				    cpu_guest_has_maar &&
 948				    !cpu_guest_has_dyn_maar) ||
 949				   (rd == MIPS_CP0_ERRCTL &&
 950				    (sel == 0))) {	/* ErrCtl */
 951				val = cop0->reg[rd][sel];
 952#ifdef CONFIG_CPU_LOONGSON64
 953			} else if (rd == MIPS_CP0_DIAG &&
 954				   (sel == 0)) {	/* Diag */
 955				val = cop0->reg[rd][sel];
 956#endif
 957			} else {
 958				val = 0;
 959				er = EMULATE_FAIL;
 960			}
 961
 962			if (er != EMULATE_FAIL) {
 963				/* Sign extend */
 964				if (inst.c0r_format.rs == mfc_op)
 965					val = (int)val;
 966				vcpu->arch.gprs[rt] = val;
 967			}
 968
 969			trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mfc_op) ?
 970					KVM_TRACE_MFC0 : KVM_TRACE_DMFC0,
 971				      KVM_TRACE_COP0(rd, sel), val);
 972			break;
 973
 974		case dmtc_op:
 975		case mtc_op:
 976#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
 977			cop0->stat[rd][sel]++;
 978#endif
 979			val = vcpu->arch.gprs[rt];
 980			trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mtc_op) ?
 981					KVM_TRACE_MTC0 : KVM_TRACE_DMTC0,
 982				      KVM_TRACE_COP0(rd, sel), val);
 983
 984			if (rd == MIPS_CP0_COUNT &&
 985			    sel == 0) {			/* Count */
 986				kvm_vz_lose_htimer(vcpu);
 987				kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
 988			} else if (rd == MIPS_CP0_COMPARE &&
 989				   sel == 0) {		/* Compare */
 990				kvm_mips_write_compare(vcpu,
 991						       vcpu->arch.gprs[rt],
 992						       true);
 993			} else if (rd == MIPS_CP0_LLADDR &&
 994				   sel == 0) {		/* LLAddr */
 995				/*
 996				 * P5600 generates GPSI on guest MTC0 LLAddr.
 997				 * Only allow the guest to clear LLB.
 998				 */
 999				if (cpu_guest_has_rw_llb &&
1000				    !(val & MIPS_LLADDR_LLB))
1001					write_gc0_lladdr(0);
1002			} else if (rd == MIPS_CP0_LLADDR &&
1003				   sel == 1 &&		/* MAAR */
1004				   cpu_guest_has_maar &&
1005				   !cpu_guest_has_dyn_maar) {
1006				val = mips_process_maar(inst.c0r_format.rs,
1007							val);
1008
1009				/* MAARI must be in range */
1010				BUG_ON(kvm_read_sw_gc0_maari(cop0) >=
1011						ARRAY_SIZE(vcpu->arch.maar));
1012				vcpu->arch.maar[kvm_read_sw_gc0_maari(cop0)] =
1013									val;
1014			} else if (rd == MIPS_CP0_LLADDR &&
1015				   (sel == 2) &&	/* MAARI */
1016				   cpu_guest_has_maar &&
1017				   !cpu_guest_has_dyn_maar) {
1018				kvm_write_maari(vcpu, val);
1019			} else if (rd == MIPS_CP0_CONFIG &&
1020				   (sel == 6)) {
1021				cop0->reg[rd][sel] = (int)val;
1022			} else if (rd == MIPS_CP0_ERRCTL &&
1023				   (sel == 0)) {	/* ErrCtl */
1024				/* ignore the written value */
1025#ifdef CONFIG_CPU_LOONGSON64
1026			} else if (rd == MIPS_CP0_DIAG &&
1027				   (sel == 0)) {	/* Diag */
1028				unsigned long flags;
1029
1030				local_irq_save(flags);
1031				if (val & LOONGSON_DIAG_BTB) {
1032					/* Flush BTB */
1033					set_c0_diag(LOONGSON_DIAG_BTB);
1034				}
1035				if (val & LOONGSON_DIAG_ITLB) {
1036					/* Flush ITLB */
1037					set_c0_diag(LOONGSON_DIAG_ITLB);
1038				}
1039				if (val & LOONGSON_DIAG_DTLB) {
1040					/* Flush DTLB */
1041					set_c0_diag(LOONGSON_DIAG_DTLB);
1042				}
1043				if (val & LOONGSON_DIAG_VTLB) {
1044					/* Flush VTLB */
1045					kvm_loongson_clear_guest_vtlb();
1046				}
1047				if (val & LOONGSON_DIAG_FTLB) {
1048					/* Flush FTLB */
1049					kvm_loongson_clear_guest_ftlb();
1050				}
1051				local_irq_restore(flags);
1052#endif
1053			} else {
1054				er = EMULATE_FAIL;
1055			}
1056			break;
1057
1058		default:
1059			er = EMULATE_FAIL;
1060			break;
1061		}
1062	}
1063	/* Rollback PC only if emulation was unsuccessful */
1064	if (er == EMULATE_FAIL) {
1065		kvm_err("[%#lx]%s: unsupported cop0 instruction 0x%08x\n",
1066			curr_pc, __func__, inst.word);
1067
1068		vcpu->arch.pc = curr_pc;
1069	}
1070
1071	return er;
1072}
1073
1074static enum emulation_result kvm_vz_gpsi_cache(union mips_instruction inst,
1075					       u32 *opc, u32 cause,
1076					       struct kvm_vcpu *vcpu)
1077{
1078	enum emulation_result er = EMULATE_DONE;
1079	u32 cache, op_inst, op, base;
1080	s16 offset;
1081	struct kvm_vcpu_arch *arch = &vcpu->arch;
1082	unsigned long va, curr_pc;
1083
1084	/*
1085	 * Update PC and hold onto current PC in case there is
1086	 * an error and we want to rollback the PC
1087	 */
1088	curr_pc = vcpu->arch.pc;
1089	er = update_pc(vcpu, cause);
1090	if (er == EMULATE_FAIL)
1091		return er;
1092
1093	base = inst.i_format.rs;
1094	op_inst = inst.i_format.rt;
1095	if (cpu_has_mips_r6)
1096		offset = inst.spec3_format.simmediate;
1097	else
1098		offset = inst.i_format.simmediate;
1099	cache = op_inst & CacheOp_Cache;
1100	op = op_inst & CacheOp_Op;
1101
1102	va = arch->gprs[base] + offset;
1103
1104	kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1105		  cache, op, base, arch->gprs[base], offset);
1106
1107	/* Secondary or tirtiary cache ops ignored */
1108	if (cache != Cache_I && cache != Cache_D)
1109		return EMULATE_DONE;
1110
1111	switch (op_inst) {
1112	case Index_Invalidate_I:
1113		flush_icache_line_indexed(va);
1114		return EMULATE_DONE;
1115	case Index_Writeback_Inv_D:
1116		flush_dcache_line_indexed(va);
1117		return EMULATE_DONE;
1118	case Hit_Invalidate_I:
1119	case Hit_Invalidate_D:
1120	case Hit_Writeback_Inv_D:
1121		if (boot_cpu_type() == CPU_CAVIUM_OCTEON3) {
1122			/* We can just flush entire icache */
1123			local_flush_icache_range(0, 0);
1124			return EMULATE_DONE;
1125		}
1126
1127		/* So far, other platforms support guest hit cache ops */
1128		break;
1129	default:
1130		break;
1131	}
1132
1133	kvm_err("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1134		curr_pc, vcpu->arch.gprs[31], cache, op, base, arch->gprs[base],
1135		offset);
1136	/* Rollback PC */
1137	vcpu->arch.pc = curr_pc;
1138
1139	return EMULATE_FAIL;
1140}
1141
1142#ifdef CONFIG_CPU_LOONGSON64
1143static enum emulation_result kvm_vz_gpsi_lwc2(union mips_instruction inst,
1144					      u32 *opc, u32 cause,
1145					      struct kvm_vcpu *vcpu)
1146{
1147	unsigned int rs, rd;
1148	unsigned int hostcfg;
1149	unsigned long curr_pc;
1150	enum emulation_result er = EMULATE_DONE;
1151
1152	/*
1153	 * Update PC and hold onto current PC in case there is
1154	 * an error and we want to rollback the PC
1155	 */
1156	curr_pc = vcpu->arch.pc;
1157	er = update_pc(vcpu, cause);
1158	if (er == EMULATE_FAIL)
1159		return er;
1160
1161	rs = inst.loongson3_lscsr_format.rs;
1162	rd = inst.loongson3_lscsr_format.rd;
1163	switch (inst.loongson3_lscsr_format.fr) {
1164	case 0x8:  /* Read CPUCFG */
1165		++vcpu->stat.vz_cpucfg_exits;
1166		hostcfg = read_cpucfg(vcpu->arch.gprs[rs]);
1167
1168		switch (vcpu->arch.gprs[rs]) {
1169		case LOONGSON_CFG0:
1170			vcpu->arch.gprs[rd] = 0x14c000;
1171			break;
1172		case LOONGSON_CFG1:
1173			hostcfg &= (LOONGSON_CFG1_FP | LOONGSON_CFG1_MMI |
1174				    LOONGSON_CFG1_MSA1 | LOONGSON_CFG1_MSA2 |
1175				    LOONGSON_CFG1_SFBP);
1176			vcpu->arch.gprs[rd] = hostcfg;
1177			break;
1178		case LOONGSON_CFG2:
1179			hostcfg &= (LOONGSON_CFG2_LEXT1 | LOONGSON_CFG2_LEXT2 |
1180				    LOONGSON_CFG2_LEXT3 | LOONGSON_CFG2_LSPW);
1181			vcpu->arch.gprs[rd] = hostcfg;
1182			break;
1183		case LOONGSON_CFG3:
1184			vcpu->arch.gprs[rd] = hostcfg;
1185			break;
1186		default:
1187			/* Don't export any other advanced features to guest */
1188			vcpu->arch.gprs[rd] = 0;
1189			break;
1190		}
1191		break;
1192
1193	default:
1194		kvm_err("lwc2 emulate not impl %d rs %lx @%lx\n",
1195			inst.loongson3_lscsr_format.fr, vcpu->arch.gprs[rs], curr_pc);
1196		er = EMULATE_FAIL;
1197		break;
1198	}
1199
1200	/* Rollback PC only if emulation was unsuccessful */
1201	if (er == EMULATE_FAIL) {
1202		kvm_err("[%#lx]%s: unsupported lwc2 instruction 0x%08x 0x%08x\n",
1203			curr_pc, __func__, inst.word, inst.loongson3_lscsr_format.fr);
1204
1205		vcpu->arch.pc = curr_pc;
1206	}
1207
1208	return er;
1209}
1210#endif
1211
1212static enum emulation_result kvm_trap_vz_handle_gpsi(u32 cause, u32 *opc,
1213						     struct kvm_vcpu *vcpu)
1214{
1215	enum emulation_result er = EMULATE_DONE;
1216	struct kvm_vcpu_arch *arch = &vcpu->arch;
1217	union mips_instruction inst;
1218	int rd, rt, sel;
1219	int err;
1220
1221	/*
1222	 *  Fetch the instruction.
1223	 */
1224	if (cause & CAUSEF_BD)
1225		opc += 1;
1226	err = kvm_get_badinstr(opc, vcpu, &inst.word);
1227	if (err)
1228		return EMULATE_FAIL;
1229
1230	switch (inst.r_format.opcode) {
1231	case cop0_op:
1232		er = kvm_vz_gpsi_cop0(inst, opc, cause, vcpu);
1233		break;
1234#ifndef CONFIG_CPU_MIPSR6
1235	case cache_op:
1236		trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1237		er = kvm_vz_gpsi_cache(inst, opc, cause, vcpu);
1238		break;
1239#endif
1240#ifdef CONFIG_CPU_LOONGSON64
1241	case lwc2_op:
1242		er = kvm_vz_gpsi_lwc2(inst, opc, cause, vcpu);
1243		break;
1244#endif
1245	case spec3_op:
1246		switch (inst.spec3_format.func) {
1247#ifdef CONFIG_CPU_MIPSR6
1248		case cache6_op:
1249			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1250			er = kvm_vz_gpsi_cache(inst, opc, cause, vcpu);
1251			break;
1252#endif
1253		case rdhwr_op:
1254			if (inst.r_format.rs || (inst.r_format.re >> 3))
1255				goto unknown;
1256
1257			rd = inst.r_format.rd;
1258			rt = inst.r_format.rt;
1259			sel = inst.r_format.re & 0x7;
1260
1261			switch (rd) {
1262			case MIPS_HWR_CC:	/* Read count register */
1263				arch->gprs[rt] =
1264					(long)(int)kvm_mips_read_count(vcpu);
1265				break;
1266			default:
1267				trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR,
1268					      KVM_TRACE_HWR(rd, sel), 0);
1269				goto unknown;
1270			}
1271
1272			trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR,
1273				      KVM_TRACE_HWR(rd, sel), arch->gprs[rt]);
1274
1275			er = update_pc(vcpu, cause);
1276			break;
1277		default:
1278			goto unknown;
1279		}
1280		break;
1281unknown:
1282
1283	default:
1284		kvm_err("GPSI exception not supported (%p/%#x)\n",
1285				opc, inst.word);
1286		kvm_arch_vcpu_dump_regs(vcpu);
1287		er = EMULATE_FAIL;
1288		break;
1289	}
1290
1291	return er;
1292}
1293
1294static enum emulation_result kvm_trap_vz_handle_gsfc(u32 cause, u32 *opc,
1295						     struct kvm_vcpu *vcpu)
1296{
1297	enum emulation_result er = EMULATE_DONE;
1298	struct kvm_vcpu_arch *arch = &vcpu->arch;
1299	union mips_instruction inst;
1300	int err;
1301
1302	/*
1303	 *  Fetch the instruction.
1304	 */
1305	if (cause & CAUSEF_BD)
1306		opc += 1;
1307	err = kvm_get_badinstr(opc, vcpu, &inst.word);
1308	if (err)
1309		return EMULATE_FAIL;
1310
1311	/* complete MTC0 on behalf of guest and advance EPC */
1312	if (inst.c0r_format.opcode == cop0_op &&
1313	    inst.c0r_format.rs == mtc_op &&
1314	    inst.c0r_format.z == 0) {
1315		int rt = inst.c0r_format.rt;
1316		int rd = inst.c0r_format.rd;
1317		int sel = inst.c0r_format.sel;
1318		unsigned int val = arch->gprs[rt];
1319		unsigned int old_val, change;
1320
1321		trace_kvm_hwr(vcpu, KVM_TRACE_MTC0, KVM_TRACE_COP0(rd, sel),
1322			      val);
1323
1324		if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1325			/* FR bit should read as zero if no FPU */
1326			if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1327				val &= ~(ST0_CU1 | ST0_FR);
1328
1329			/*
1330			 * Also don't allow FR to be set if host doesn't support
1331			 * it.
1332			 */
1333			if (!(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
1334				val &= ~ST0_FR;
1335
1336			old_val = read_gc0_status();
1337			change = val ^ old_val;
1338
1339			if (change & ST0_FR) {
1340				/*
1341				 * FPU and Vector register state is made
1342				 * UNPREDICTABLE by a change of FR, so don't
1343				 * even bother saving it.
1344				 */
1345				kvm_drop_fpu(vcpu);
1346			}
1347
1348			/*
1349			 * If MSA state is already live, it is undefined how it
1350			 * interacts with FR=0 FPU state, and we don't want to
1351			 * hit reserved instruction exceptions trying to save
1352			 * the MSA state later when CU=1 && FR=1, so play it
1353			 * safe and save it first.
1354			 */
1355			if (change & ST0_CU1 && !(val & ST0_FR) &&
1356			    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1357				kvm_lose_fpu(vcpu);
1358
1359			write_gc0_status(val);
1360		} else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1361			u32 old_cause = read_gc0_cause();
1362			u32 change = old_cause ^ val;
1363
1364			/* DC bit enabling/disabling timer? */
1365			if (change & CAUSEF_DC) {
1366				if (val & CAUSEF_DC) {
1367					kvm_vz_lose_htimer(vcpu);
1368					kvm_mips_count_disable_cause(vcpu);
1369				} else {
1370					kvm_mips_count_enable_cause(vcpu);
1371				}
1372			}
1373
1374			/* Only certain bits are RW to the guest */
1375			change &= (CAUSEF_DC | CAUSEF_IV | CAUSEF_WP |
1376				   CAUSEF_IP0 | CAUSEF_IP1);
1377
1378			/* WP can only be cleared */
1379			change &= ~CAUSEF_WP | old_cause;
1380
1381			write_gc0_cause(old_cause ^ change);
1382		} else if ((rd == MIPS_CP0_STATUS) && (sel == 1)) { /* IntCtl */
1383			write_gc0_intctl(val);
1384		} else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1385			old_val = read_gc0_config5();
1386			change = val ^ old_val;
1387			/* Handle changes in FPU/MSA modes */
1388			preempt_disable();
1389
1390			/*
1391			 * Propagate FRE changes immediately if the FPU
1392			 * context is already loaded.
1393			 */
1394			if (change & MIPS_CONF5_FRE &&
1395			    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1396				change_c0_config5(MIPS_CONF5_FRE, val);
1397
1398			preempt_enable();
1399
1400			val = old_val ^
1401				(change & kvm_vz_config5_guest_wrmask(vcpu));
1402			write_gc0_config5(val);
1403		} else {
1404			kvm_err("Handle GSFC, unsupported field change @ %p: %#x\n",
1405			    opc, inst.word);
1406			er = EMULATE_FAIL;
1407		}
1408
1409		if (er != EMULATE_FAIL)
1410			er = update_pc(vcpu, cause);
1411	} else {
1412		kvm_err("Handle GSFC, unrecognized instruction @ %p: %#x\n",
1413			opc, inst.word);
1414		er = EMULATE_FAIL;
1415	}
1416
1417	return er;
1418}
1419
1420static enum emulation_result kvm_trap_vz_handle_ghfc(u32 cause, u32 *opc,
1421						     struct kvm_vcpu *vcpu)
1422{
1423	/*
1424	 * Presumably this is due to MC (guest mode change), so lets trace some
1425	 * relevant info.
1426	 */
1427	trace_kvm_guest_mode_change(vcpu);
1428
1429	return EMULATE_DONE;
1430}
1431
1432static enum emulation_result kvm_trap_vz_handle_hc(u32 cause, u32 *opc,
1433						   struct kvm_vcpu *vcpu)
1434{
1435	enum emulation_result er;
1436	union mips_instruction inst;
1437	unsigned long curr_pc;
1438	int err;
1439
1440	if (cause & CAUSEF_BD)
1441		opc += 1;
1442	err = kvm_get_badinstr(opc, vcpu, &inst.word);
1443	if (err)
1444		return EMULATE_FAIL;
1445
1446	/*
1447	 * Update PC and hold onto current PC in case there is
1448	 * an error and we want to rollback the PC
1449	 */
1450	curr_pc = vcpu->arch.pc;
1451	er = update_pc(vcpu, cause);
1452	if (er == EMULATE_FAIL)
1453		return er;
1454
1455	er = kvm_mips_emul_hypcall(vcpu, inst);
1456	if (er == EMULATE_FAIL)
1457		vcpu->arch.pc = curr_pc;
1458
1459	return er;
1460}
1461
1462static enum emulation_result kvm_trap_vz_no_handler_guest_exit(u32 gexccode,
1463							u32 cause,
1464							u32 *opc,
1465							struct kvm_vcpu *vcpu)
1466{
1467	u32 inst;
1468
1469	/*
1470	 *  Fetch the instruction.
1471	 */
1472	if (cause & CAUSEF_BD)
1473		opc += 1;
1474	kvm_get_badinstr(opc, vcpu, &inst);
1475
1476	kvm_err("Guest Exception Code: %d not yet handled @ PC: %p, inst: 0x%08x  Status: %#x\n",
1477		gexccode, opc, inst, read_gc0_status());
1478
1479	return EMULATE_FAIL;
1480}
1481
1482static int kvm_trap_vz_handle_guest_exit(struct kvm_vcpu *vcpu)
1483{
1484	u32 *opc = (u32 *) vcpu->arch.pc;
1485	u32 cause = vcpu->arch.host_cp0_cause;
1486	enum emulation_result er = EMULATE_DONE;
1487	u32 gexccode = (vcpu->arch.host_cp0_guestctl0 &
1488			MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT;
1489	int ret = RESUME_GUEST;
1490
1491	trace_kvm_exit(vcpu, KVM_TRACE_EXIT_GEXCCODE_BASE + gexccode);
1492	switch (gexccode) {
1493	case MIPS_GCTL0_GEXC_GPSI:
1494		++vcpu->stat.vz_gpsi_exits;
1495		er = kvm_trap_vz_handle_gpsi(cause, opc, vcpu);
1496		break;
1497	case MIPS_GCTL0_GEXC_GSFC:
1498		++vcpu->stat.vz_gsfc_exits;
1499		er = kvm_trap_vz_handle_gsfc(cause, opc, vcpu);
1500		break;
1501	case MIPS_GCTL0_GEXC_HC:
1502		++vcpu->stat.vz_hc_exits;
1503		er = kvm_trap_vz_handle_hc(cause, opc, vcpu);
1504		break;
1505	case MIPS_GCTL0_GEXC_GRR:
1506		++vcpu->stat.vz_grr_exits;
1507		er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1508						       vcpu);
1509		break;
1510	case MIPS_GCTL0_GEXC_GVA:
1511		++vcpu->stat.vz_gva_exits;
1512		er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1513						       vcpu);
1514		break;
1515	case MIPS_GCTL0_GEXC_GHFC:
1516		++vcpu->stat.vz_ghfc_exits;
1517		er = kvm_trap_vz_handle_ghfc(cause, opc, vcpu);
1518		break;
1519	case MIPS_GCTL0_GEXC_GPA:
1520		++vcpu->stat.vz_gpa_exits;
1521		er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1522						       vcpu);
1523		break;
1524	default:
1525		++vcpu->stat.vz_resvd_exits;
1526		er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1527						       vcpu);
1528		break;
1529
1530	}
1531
1532	if (er == EMULATE_DONE) {
1533		ret = RESUME_GUEST;
1534	} else if (er == EMULATE_HYPERCALL) {
1535		ret = kvm_mips_handle_hypcall(vcpu);
1536	} else {
1537		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1538		ret = RESUME_HOST;
1539	}
1540	return ret;
1541}
1542
1543/**
1544 * kvm_trap_vz_handle_cop_unusable() - Guest used unusable coprocessor.
1545 * @vcpu:	Virtual CPU context.
1546 *
1547 * Handle when the guest attempts to use a coprocessor which hasn't been allowed
1548 * by the root context.
1549 *
1550 * Return: value indicating whether to resume the host or the guest
1551 * 	   (RESUME_HOST or RESUME_GUEST)
1552 */
1553static int kvm_trap_vz_handle_cop_unusable(struct kvm_vcpu *vcpu)
1554{
1555	u32 cause = vcpu->arch.host_cp0_cause;
1556	enum emulation_result er = EMULATE_FAIL;
1557	int ret = RESUME_GUEST;
1558
1559	if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 1) {
1560		/*
1561		 * If guest FPU not present, the FPU operation should have been
1562		 * treated as a reserved instruction!
1563		 * If FPU already in use, we shouldn't get this at all.
1564		 */
1565		if (WARN_ON(!kvm_mips_guest_has_fpu(&vcpu->arch) ||
1566			    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1567			preempt_enable();
1568			return EMULATE_FAIL;
1569		}
1570
1571		kvm_own_fpu(vcpu);
1572		er = EMULATE_DONE;
1573	}
1574	/* other coprocessors not handled */
1575
1576	switch (er) {
1577	case EMULATE_DONE:
1578		ret = RESUME_GUEST;
1579		break;
1580
1581	case EMULATE_FAIL:
1582		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1583		ret = RESUME_HOST;
1584		break;
1585
1586	default:
1587		BUG();
1588	}
1589	return ret;
1590}
1591
1592/**
1593 * kvm_trap_vz_handle_msa_disabled() - Guest used MSA while disabled in root.
1594 * @vcpu:	Virtual CPU context.
1595 *
1596 * Handle when the guest attempts to use MSA when it is disabled in the root
1597 * context.
1598 *
1599 * Return: value indicating whether to resume the host or the guest
1600 * 	   (RESUME_HOST or RESUME_GUEST)
1601 */
1602static int kvm_trap_vz_handle_msa_disabled(struct kvm_vcpu *vcpu)
1603{
1604	/*
1605	 * If MSA not present or not exposed to guest or FR=0, the MSA operation
1606	 * should have been treated as a reserved instruction!
1607	 * Same if CU1=1, FR=0.
1608	 * If MSA already in use, we shouldn't get this at all.
1609	 */
1610	if (!kvm_mips_guest_has_msa(&vcpu->arch) ||
1611	    (read_gc0_status() & (ST0_CU1 | ST0_FR)) == ST0_CU1 ||
1612	    !(read_gc0_config5() & MIPS_CONF5_MSAEN) ||
1613	    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1614		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1615		return RESUME_HOST;
1616	}
1617
1618	kvm_own_msa(vcpu);
1619
1620	return RESUME_GUEST;
1621}
1622
1623static int kvm_trap_vz_handle_tlb_ld_miss(struct kvm_vcpu *vcpu)
1624{
1625	struct kvm_run *run = vcpu->run;
1626	u32 *opc = (u32 *) vcpu->arch.pc;
1627	u32 cause = vcpu->arch.host_cp0_cause;
1628	ulong badvaddr = vcpu->arch.host_cp0_badvaddr;
1629	union mips_instruction inst;
1630	enum emulation_result er = EMULATE_DONE;
1631	int err, ret = RESUME_GUEST;
1632
1633	if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, false)) {
1634		/* A code fetch fault doesn't count as an MMIO */
1635		if (kvm_is_ifetch_fault(&vcpu->arch)) {
1636			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1637			return RESUME_HOST;
1638		}
1639
1640		/* Fetch the instruction */
1641		if (cause & CAUSEF_BD)
1642			opc += 1;
1643		err = kvm_get_badinstr(opc, vcpu, &inst.word);
1644		if (err) {
1645			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1646			return RESUME_HOST;
1647		}
1648
1649		/* Treat as MMIO */
1650		er = kvm_mips_emulate_load(inst, cause, vcpu);
1651		if (er == EMULATE_FAIL) {
1652			kvm_err("Guest Emulate Load from MMIO space failed: PC: %p, BadVaddr: %#lx\n",
1653				opc, badvaddr);
1654			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1655		}
1656	}
1657
1658	if (er == EMULATE_DONE) {
1659		ret = RESUME_GUEST;
1660	} else if (er == EMULATE_DO_MMIO) {
1661		run->exit_reason = KVM_EXIT_MMIO;
1662		ret = RESUME_HOST;
1663	} else {
1664		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1665		ret = RESUME_HOST;
1666	}
1667	return ret;
1668}
1669
1670static int kvm_trap_vz_handle_tlb_st_miss(struct kvm_vcpu *vcpu)
1671{
1672	struct kvm_run *run = vcpu->run;
1673	u32 *opc = (u32 *) vcpu->arch.pc;
1674	u32 cause = vcpu->arch.host_cp0_cause;
1675	ulong badvaddr = vcpu->arch.host_cp0_badvaddr;
1676	union mips_instruction inst;
1677	enum emulation_result er = EMULATE_DONE;
1678	int err;
1679	int ret = RESUME_GUEST;
1680
1681	/* Just try the access again if we couldn't do the translation */
1682	if (kvm_vz_badvaddr_to_gpa(vcpu, badvaddr, &badvaddr))
1683		return RESUME_GUEST;
1684	vcpu->arch.host_cp0_badvaddr = badvaddr;
1685
1686	if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, true)) {
1687		/* Fetch the instruction */
1688		if (cause & CAUSEF_BD)
1689			opc += 1;
1690		err = kvm_get_badinstr(opc, vcpu, &inst.word);
1691		if (err) {
1692			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1693			return RESUME_HOST;
1694		}
1695
1696		/* Treat as MMIO */
1697		er = kvm_mips_emulate_store(inst, cause, vcpu);
1698		if (er == EMULATE_FAIL) {
1699			kvm_err("Guest Emulate Store to MMIO space failed: PC: %p, BadVaddr: %#lx\n",
1700				opc, badvaddr);
1701			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1702		}
1703	}
1704
1705	if (er == EMULATE_DONE) {
1706		ret = RESUME_GUEST;
1707	} else if (er == EMULATE_DO_MMIO) {
1708		run->exit_reason = KVM_EXIT_MMIO;
1709		ret = RESUME_HOST;
1710	} else {
1711		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1712		ret = RESUME_HOST;
1713	}
1714	return ret;
1715}
1716
1717static u64 kvm_vz_get_one_regs[] = {
1718	KVM_REG_MIPS_CP0_INDEX,
1719	KVM_REG_MIPS_CP0_ENTRYLO0,
1720	KVM_REG_MIPS_CP0_ENTRYLO1,
1721	KVM_REG_MIPS_CP0_CONTEXT,
1722	KVM_REG_MIPS_CP0_PAGEMASK,
1723	KVM_REG_MIPS_CP0_PAGEGRAIN,
1724	KVM_REG_MIPS_CP0_WIRED,
1725	KVM_REG_MIPS_CP0_HWRENA,
1726	KVM_REG_MIPS_CP0_BADVADDR,
1727	KVM_REG_MIPS_CP0_COUNT,
1728	KVM_REG_MIPS_CP0_ENTRYHI,
1729	KVM_REG_MIPS_CP0_COMPARE,
1730	KVM_REG_MIPS_CP0_STATUS,
1731	KVM_REG_MIPS_CP0_INTCTL,
1732	KVM_REG_MIPS_CP0_CAUSE,
1733	KVM_REG_MIPS_CP0_EPC,
1734	KVM_REG_MIPS_CP0_PRID,
1735	KVM_REG_MIPS_CP0_EBASE,
1736	KVM_REG_MIPS_CP0_CONFIG,
1737	KVM_REG_MIPS_CP0_CONFIG1,
1738	KVM_REG_MIPS_CP0_CONFIG2,
1739	KVM_REG_MIPS_CP0_CONFIG3,
1740	KVM_REG_MIPS_CP0_CONFIG4,
1741	KVM_REG_MIPS_CP0_CONFIG5,
1742	KVM_REG_MIPS_CP0_CONFIG6,
1743#ifdef CONFIG_64BIT
1744	KVM_REG_MIPS_CP0_XCONTEXT,
1745#endif
1746	KVM_REG_MIPS_CP0_ERROREPC,
1747
1748	KVM_REG_MIPS_COUNT_CTL,
1749	KVM_REG_MIPS_COUNT_RESUME,
1750	KVM_REG_MIPS_COUNT_HZ,
1751};
1752
1753static u64 kvm_vz_get_one_regs_contextconfig[] = {
1754	KVM_REG_MIPS_CP0_CONTEXTCONFIG,
1755#ifdef CONFIG_64BIT
1756	KVM_REG_MIPS_CP0_XCONTEXTCONFIG,
1757#endif
1758};
1759
1760static u64 kvm_vz_get_one_regs_segments[] = {
1761	KVM_REG_MIPS_CP0_SEGCTL0,
1762	KVM_REG_MIPS_CP0_SEGCTL1,
1763	KVM_REG_MIPS_CP0_SEGCTL2,
1764};
1765
1766static u64 kvm_vz_get_one_regs_htw[] = {
1767	KVM_REG_MIPS_CP0_PWBASE,
1768	KVM_REG_MIPS_CP0_PWFIELD,
1769	KVM_REG_MIPS_CP0_PWSIZE,
1770	KVM_REG_MIPS_CP0_PWCTL,
1771};
1772
1773static u64 kvm_vz_get_one_regs_kscratch[] = {
1774	KVM_REG_MIPS_CP0_KSCRATCH1,
1775	KVM_REG_MIPS_CP0_KSCRATCH2,
1776	KVM_REG_MIPS_CP0_KSCRATCH3,
1777	KVM_REG_MIPS_CP0_KSCRATCH4,
1778	KVM_REG_MIPS_CP0_KSCRATCH5,
1779	KVM_REG_MIPS_CP0_KSCRATCH6,
1780};
1781
1782static unsigned long kvm_vz_num_regs(struct kvm_vcpu *vcpu)
1783{
1784	unsigned long ret;
1785
1786	ret = ARRAY_SIZE(kvm_vz_get_one_regs);
1787	if (cpu_guest_has_userlocal)
1788		++ret;
1789	if (cpu_guest_has_badinstr)
1790		++ret;
1791	if (cpu_guest_has_badinstrp)
1792		++ret;
1793	if (cpu_guest_has_contextconfig)
1794		ret += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig);
1795	if (cpu_guest_has_segments)
1796		ret += ARRAY_SIZE(kvm_vz_get_one_regs_segments);
1797	if (cpu_guest_has_htw || cpu_guest_has_ldpte)
1798		ret += ARRAY_SIZE(kvm_vz_get_one_regs_htw);
1799	if (cpu_guest_has_maar && !cpu_guest_has_dyn_maar)
1800		ret += 1 + ARRAY_SIZE(vcpu->arch.maar);
1801	ret += __arch_hweight8(cpu_data[0].guest.kscratch_mask);
1802
1803	return ret;
1804}
1805
1806static int kvm_vz_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
1807{
1808	u64 index;
1809	unsigned int i;
1810
1811	if (copy_to_user(indices, kvm_vz_get_one_regs,
1812			 sizeof(kvm_vz_get_one_regs)))
1813		return -EFAULT;
1814	indices += ARRAY_SIZE(kvm_vz_get_one_regs);
1815
1816	if (cpu_guest_has_userlocal) {
1817		index = KVM_REG_MIPS_CP0_USERLOCAL;
1818		if (copy_to_user(indices, &index, sizeof(index)))
1819			return -EFAULT;
1820		++indices;
1821	}
1822	if (cpu_guest_has_badinstr) {
1823		index = KVM_REG_MIPS_CP0_BADINSTR;
1824		if (copy_to_user(indices, &index, sizeof(index)))
1825			return -EFAULT;
1826		++indices;
1827	}
1828	if (cpu_guest_has_badinstrp) {
1829		index = KVM_REG_MIPS_CP0_BADINSTRP;
1830		if (copy_to_user(indices, &index, sizeof(index)))
1831			return -EFAULT;
1832		++indices;
1833	}
1834	if (cpu_guest_has_contextconfig) {
1835		if (copy_to_user(indices, kvm_vz_get_one_regs_contextconfig,
1836				 sizeof(kvm_vz_get_one_regs_contextconfig)))
1837			return -EFAULT;
1838		indices += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig);
1839	}
1840	if (cpu_guest_has_segments) {
1841		if (copy_to_user(indices, kvm_vz_get_one_regs_segments,
1842				 sizeof(kvm_vz_get_one_regs_segments)))
1843			return -EFAULT;
1844		indices += ARRAY_SIZE(kvm_vz_get_one_regs_segments);
1845	}
1846	if (cpu_guest_has_htw || cpu_guest_has_ldpte) {
1847		if (copy_to_user(indices, kvm_vz_get_one_regs_htw,
1848				 sizeof(kvm_vz_get_one_regs_htw)))
1849			return -EFAULT;
1850		indices += ARRAY_SIZE(kvm_vz_get_one_regs_htw);
1851	}
1852	if (cpu_guest_has_maar && !cpu_guest_has_dyn_maar) {
1853		for (i = 0; i < ARRAY_SIZE(vcpu->arch.maar); ++i) {
1854			index = KVM_REG_MIPS_CP0_MAAR(i);
1855			if (copy_to_user(indices, &index, sizeof(index)))
1856				return -EFAULT;
1857			++indices;
1858		}
1859
1860		index = KVM_REG_MIPS_CP0_MAARI;
1861		if (copy_to_user(indices, &index, sizeof(index)))
1862			return -EFAULT;
1863		++indices;
1864	}
1865	for (i = 0; i < 6; ++i) {
1866		if (!cpu_guest_has_kscr(i + 2))
1867			continue;
1868
1869		if (copy_to_user(indices, &kvm_vz_get_one_regs_kscratch[i],
1870				 sizeof(kvm_vz_get_one_regs_kscratch[i])))
1871			return -EFAULT;
1872		++indices;
1873	}
1874
1875	return 0;
1876}
1877
1878static inline s64 entrylo_kvm_to_user(unsigned long v)
1879{
1880	s64 mask, ret = v;
1881
1882	if (BITS_PER_LONG == 32) {
1883		/*
1884		 * KVM API exposes 64-bit version of the register, so move the
1885		 * RI/XI bits up into place.
1886		 */
1887		mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI;
1888		ret &= ~mask;
1889		ret |= ((s64)v & mask) << 32;
1890	}
1891	return ret;
1892}
1893
1894static inline unsigned long entrylo_user_to_kvm(s64 v)
1895{
1896	unsigned long mask, ret = v;
1897
1898	if (BITS_PER_LONG == 32) {
1899		/*
1900		 * KVM API exposes 64-bit versiono of the register, so move the
1901		 * RI/XI bits down into place.
1902		 */
1903		mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI;
1904		ret &= ~mask;
1905		ret |= (v >> 32) & mask;
1906	}
1907	return ret;
1908}
1909
1910static int kvm_vz_get_one_reg(struct kvm_vcpu *vcpu,
1911			      const struct kvm_one_reg *reg,
1912			      s64 *v)
1913{
1914	struct mips_coproc *cop0 = &vcpu->arch.cop0;
1915	unsigned int idx;
1916
1917	switch (reg->id) {
1918	case KVM_REG_MIPS_CP0_INDEX:
1919		*v = (long)read_gc0_index();
1920		break;
1921	case KVM_REG_MIPS_CP0_ENTRYLO0:
1922		*v = entrylo_kvm_to_user(read_gc0_entrylo0());
1923		break;
1924	case KVM_REG_MIPS_CP0_ENTRYLO1:
1925		*v = entrylo_kvm_to_user(read_gc0_entrylo1());
1926		break;
1927	case KVM_REG_MIPS_CP0_CONTEXT:
1928		*v = (long)read_gc0_context();
1929		break;
1930	case KVM_REG_MIPS_CP0_CONTEXTCONFIG:
1931		if (!cpu_guest_has_contextconfig)
1932			return -EINVAL;
1933		*v = read_gc0_contextconfig();
1934		break;
1935	case KVM_REG_MIPS_CP0_USERLOCAL:
1936		if (!cpu_guest_has_userlocal)
1937			return -EINVAL;
1938		*v = read_gc0_userlocal();
1939		break;
1940#ifdef CONFIG_64BIT
1941	case KVM_REG_MIPS_CP0_XCONTEXTCONFIG:
1942		if (!cpu_guest_has_contextconfig)
1943			return -EINVAL;
1944		*v = read_gc0_xcontextconfig();
1945		break;
1946#endif
1947	case KVM_REG_MIPS_CP0_PAGEMASK:
1948		*v = (long)read_gc0_pagemask();
1949		break;
1950	case KVM_REG_MIPS_CP0_PAGEGRAIN:
1951		*v = (long)read_gc0_pagegrain();
1952		break;
1953	case KVM_REG_MIPS_CP0_SEGCTL0:
1954		if (!cpu_guest_has_segments)
1955			return -EINVAL;
1956		*v = read_gc0_segctl0();
1957		break;
1958	case KVM_REG_MIPS_CP0_SEGCTL1:
1959		if (!cpu_guest_has_segments)
1960			return -EINVAL;
1961		*v = read_gc0_segctl1();
1962		break;
1963	case KVM_REG_MIPS_CP0_SEGCTL2:
1964		if (!cpu_guest_has_segments)
1965			return -EINVAL;
1966		*v = read_gc0_segctl2();
1967		break;
1968	case KVM_REG_MIPS_CP0_PWBASE:
1969		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
1970			return -EINVAL;
1971		*v = read_gc0_pwbase();
1972		break;
1973	case KVM_REG_MIPS_CP0_PWFIELD:
1974		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
1975			return -EINVAL;
1976		*v = read_gc0_pwfield();
1977		break;
1978	case KVM_REG_MIPS_CP0_PWSIZE:
1979		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
1980			return -EINVAL;
1981		*v = read_gc0_pwsize();
1982		break;
1983	case KVM_REG_MIPS_CP0_WIRED:
1984		*v = (long)read_gc0_wired();
1985		break;
1986	case KVM_REG_MIPS_CP0_PWCTL:
1987		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
1988			return -EINVAL;
1989		*v = read_gc0_pwctl();
1990		break;
1991	case KVM_REG_MIPS_CP0_HWRENA:
1992		*v = (long)read_gc0_hwrena();
1993		break;
1994	case KVM_REG_MIPS_CP0_BADVADDR:
1995		*v = (long)read_gc0_badvaddr();
1996		break;
1997	case KVM_REG_MIPS_CP0_BADINSTR:
1998		if (!cpu_guest_has_badinstr)
1999			return -EINVAL;
2000		*v = read_gc0_badinstr();
2001		break;
2002	case KVM_REG_MIPS_CP0_BADINSTRP:
2003		if (!cpu_guest_has_badinstrp)
2004			return -EINVAL;
2005		*v = read_gc0_badinstrp();
2006		break;
2007	case KVM_REG_MIPS_CP0_COUNT:
2008		*v = kvm_mips_read_count(vcpu);
2009		break;
2010	case KVM_REG_MIPS_CP0_ENTRYHI:
2011		*v = (long)read_gc0_entryhi();
2012		break;
2013	case KVM_REG_MIPS_CP0_COMPARE:
2014		*v = (long)read_gc0_compare();
2015		break;
2016	case KVM_REG_MIPS_CP0_STATUS:
2017		*v = (long)read_gc0_status();
2018		break;
2019	case KVM_REG_MIPS_CP0_INTCTL:
2020		*v = read_gc0_intctl();
2021		break;
2022	case KVM_REG_MIPS_CP0_CAUSE:
2023		*v = (long)read_gc0_cause();
2024		break;
2025	case KVM_REG_MIPS_CP0_EPC:
2026		*v = (long)read_gc0_epc();
2027		break;
2028	case KVM_REG_MIPS_CP0_PRID:
2029		switch (boot_cpu_type()) {
2030		case CPU_CAVIUM_OCTEON3:
2031			/* Octeon III has a read-only guest.PRid */
2032			*v = read_gc0_prid();
2033			break;
2034		default:
2035			*v = (long)kvm_read_c0_guest_prid(cop0);
2036			break;
2037		}
2038		break;
2039	case KVM_REG_MIPS_CP0_EBASE:
2040		*v = kvm_vz_read_gc0_ebase();
2041		break;
2042	case KVM_REG_MIPS_CP0_CONFIG:
2043		*v = read_gc0_config();
2044		break;
2045	case KVM_REG_MIPS_CP0_CONFIG1:
2046		if (!cpu_guest_has_conf1)
2047			return -EINVAL;
2048		*v = read_gc0_config1();
2049		break;
2050	case KVM_REG_MIPS_CP0_CONFIG2:
2051		if (!cpu_guest_has_conf2)
2052			return -EINVAL;
2053		*v = read_gc0_config2();
2054		break;
2055	case KVM_REG_MIPS_CP0_CONFIG3:
2056		if (!cpu_guest_has_conf3)
2057			return -EINVAL;
2058		*v = read_gc0_config3();
2059		break;
2060	case KVM_REG_MIPS_CP0_CONFIG4:
2061		if (!cpu_guest_has_conf4)
2062			return -EINVAL;
2063		*v = read_gc0_config4();
2064		break;
2065	case KVM_REG_MIPS_CP0_CONFIG5:
2066		if (!cpu_guest_has_conf5)
2067			return -EINVAL;
2068		*v = read_gc0_config5();
2069		break;
2070	case KVM_REG_MIPS_CP0_CONFIG6:
2071		*v = kvm_read_sw_gc0_config6(cop0);
2072		break;
2073	case KVM_REG_MIPS_CP0_MAAR(0) ... KVM_REG_MIPS_CP0_MAAR(0x3f):
2074		if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
2075			return -EINVAL;
2076		idx = reg->id - KVM_REG_MIPS_CP0_MAAR(0);
2077		if (idx >= ARRAY_SIZE(vcpu->arch.maar))
2078			return -EINVAL;
2079		*v = vcpu->arch.maar[idx];
2080		break;
2081	case KVM_REG_MIPS_CP0_MAARI:
2082		if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
2083			return -EINVAL;
2084		*v = kvm_read_sw_gc0_maari(&vcpu->arch.cop0);
2085		break;
2086#ifdef CONFIG_64BIT
2087	case KVM_REG_MIPS_CP0_XCONTEXT:
2088		*v = read_gc0_xcontext();
2089		break;
2090#endif
2091	case KVM_REG_MIPS_CP0_ERROREPC:
2092		*v = (long)read_gc0_errorepc();
2093		break;
2094	case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
2095		idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
2096		if (!cpu_guest_has_kscr(idx))
2097			return -EINVAL;
2098		switch (idx) {
2099		case 2:
2100			*v = (long)read_gc0_kscratch1();
2101			break;
2102		case 3:
2103			*v = (long)read_gc0_kscratch2();
2104			break;
2105		case 4:
2106			*v = (long)read_gc0_kscratch3();
2107			break;
2108		case 5:
2109			*v = (long)read_gc0_kscratch4();
2110			break;
2111		case 6:
2112			*v = (long)read_gc0_kscratch5();
2113			break;
2114		case 7:
2115			*v = (long)read_gc0_kscratch6();
2116			break;
2117		}
2118		break;
2119	case KVM_REG_MIPS_COUNT_CTL:
2120		*v = vcpu->arch.count_ctl;
2121		break;
2122	case KVM_REG_MIPS_COUNT_RESUME:
2123		*v = ktime_to_ns(vcpu->arch.count_resume);
2124		break;
2125	case KVM_REG_MIPS_COUNT_HZ:
2126		*v = vcpu->arch.count_hz;
2127		break;
2128	default:
2129		return -EINVAL;
2130	}
2131	return 0;
2132}
2133
2134static int kvm_vz_set_one_reg(struct kvm_vcpu *vcpu,
2135			      const struct kvm_one_reg *reg,
2136			      s64 v)
2137{
2138	struct mips_coproc *cop0 = &vcpu->arch.cop0;
2139	unsigned int idx;
2140	int ret = 0;
2141	unsigned int cur, change;
2142
2143	switch (reg->id) {
2144	case KVM_REG_MIPS_CP0_INDEX:
2145		write_gc0_index(v);
2146		break;
2147	case KVM_REG_MIPS_CP0_ENTRYLO0:
2148		write_gc0_entrylo0(entrylo_user_to_kvm(v));
2149		break;
2150	case KVM_REG_MIPS_CP0_ENTRYLO1:
2151		write_gc0_entrylo1(entrylo_user_to_kvm(v));
2152		break;
2153	case KVM_REG_MIPS_CP0_CONTEXT:
2154		write_gc0_context(v);
2155		break;
2156	case KVM_REG_MIPS_CP0_CONTEXTCONFIG:
2157		if (!cpu_guest_has_contextconfig)
2158			return -EINVAL;
2159		write_gc0_contextconfig(v);
2160		break;
2161	case KVM_REG_MIPS_CP0_USERLOCAL:
2162		if (!cpu_guest_has_userlocal)
2163			return -EINVAL;
2164		write_gc0_userlocal(v);
2165		break;
2166#ifdef CONFIG_64BIT
2167	case KVM_REG_MIPS_CP0_XCONTEXTCONFIG:
2168		if (!cpu_guest_has_contextconfig)
2169			return -EINVAL;
2170		write_gc0_xcontextconfig(v);
2171		break;
2172#endif
2173	case KVM_REG_MIPS_CP0_PAGEMASK:
2174		write_gc0_pagemask(v);
2175		break;
2176	case KVM_REG_MIPS_CP0_PAGEGRAIN:
2177		write_gc0_pagegrain(v);
2178		break;
2179	case KVM_REG_MIPS_CP0_SEGCTL0:
2180		if (!cpu_guest_has_segments)
2181			return -EINVAL;
2182		write_gc0_segctl0(v);
2183		break;
2184	case KVM_REG_MIPS_CP0_SEGCTL1:
2185		if (!cpu_guest_has_segments)
2186			return -EINVAL;
2187		write_gc0_segctl1(v);
2188		break;
2189	case KVM_REG_MIPS_CP0_SEGCTL2:
2190		if (!cpu_guest_has_segments)
2191			return -EINVAL;
2192		write_gc0_segctl2(v);
2193		break;
2194	case KVM_REG_MIPS_CP0_PWBASE:
2195		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
2196			return -EINVAL;
2197		write_gc0_pwbase(v);
2198		break;
2199	case KVM_REG_MIPS_CP0_PWFIELD:
2200		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
2201			return -EINVAL;
2202		write_gc0_pwfield(v);
2203		break;
2204	case KVM_REG_MIPS_CP0_PWSIZE:
2205		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
2206			return -EINVAL;
2207		write_gc0_pwsize(v);
2208		break;
2209	case KVM_REG_MIPS_CP0_WIRED:
2210		change_gc0_wired(MIPSR6_WIRED_WIRED, v);
2211		break;
2212	case KVM_REG_MIPS_CP0_PWCTL:
2213		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
2214			return -EINVAL;
2215		write_gc0_pwctl(v);
2216		break;
2217	case KVM_REG_MIPS_CP0_HWRENA:
2218		write_gc0_hwrena(v);
2219		break;
2220	case KVM_REG_MIPS_CP0_BADVADDR:
2221		write_gc0_badvaddr(v);
2222		break;
2223	case KVM_REG_MIPS_CP0_BADINSTR:
2224		if (!cpu_guest_has_badinstr)
2225			return -EINVAL;
2226		write_gc0_badinstr(v);
2227		break;
2228	case KVM_REG_MIPS_CP0_BADINSTRP:
2229		if (!cpu_guest_has_badinstrp)
2230			return -EINVAL;
2231		write_gc0_badinstrp(v);
2232		break;
2233	case KVM_REG_MIPS_CP0_COUNT:
2234		kvm_mips_write_count(vcpu, v);
2235		break;
2236	case KVM_REG_MIPS_CP0_ENTRYHI:
2237		write_gc0_entryhi(v);
2238		break;
2239	case KVM_REG_MIPS_CP0_COMPARE:
2240		kvm_mips_write_compare(vcpu, v, false);
2241		break;
2242	case KVM_REG_MIPS_CP0_STATUS:
2243		write_gc0_status(v);
2244		break;
2245	case KVM_REG_MIPS_CP0_INTCTL:
2246		write_gc0_intctl(v);
2247		break;
2248	case KVM_REG_MIPS_CP0_CAUSE:
2249		/*
2250		 * If the timer is stopped or started (DC bit) it must look
2251		 * atomic with changes to the timer interrupt pending bit (TI).
2252		 * A timer interrupt should not happen in between.
2253		 */
2254		if ((read_gc0_cause() ^ v) & CAUSEF_DC) {
2255			if (v & CAUSEF_DC) {
2256				/* disable timer first */
2257				kvm_mips_count_disable_cause(vcpu);
2258				change_gc0_cause((u32)~CAUSEF_DC, v);
2259			} else {
2260				/* enable timer last */
2261				change_gc0_cause((u32)~CAUSEF_DC, v);
2262				kvm_mips_count_enable_cause(vcpu);
2263			}
2264		} else {
2265			write_gc0_cause(v);
2266		}
2267		break;
2268	case KVM_REG_MIPS_CP0_EPC:
2269		write_gc0_epc(v);
2270		break;
2271	case KVM_REG_MIPS_CP0_PRID:
2272		switch (boot_cpu_type()) {
2273		case CPU_CAVIUM_OCTEON3:
2274			/* Octeon III has a guest.PRid, but its read-only */
2275			break;
2276		default:
2277			kvm_write_c0_guest_prid(cop0, v);
2278			break;
2279		}
2280		break;
2281	case KVM_REG_MIPS_CP0_EBASE:
2282		kvm_vz_write_gc0_ebase(v);
2283		break;
2284	case KVM_REG_MIPS_CP0_CONFIG:
2285		cur = read_gc0_config();
2286		change = (cur ^ v) & kvm_vz_config_user_wrmask(vcpu);
2287		if (change) {
2288			v = cur ^ change;
2289			write_gc0_config(v);
2290		}
2291		break;
2292	case KVM_REG_MIPS_CP0_CONFIG1:
2293		if (!cpu_guest_has_conf1)
2294			break;
2295		cur = read_gc0_config1();
2296		change = (cur ^ v) & kvm_vz_config1_user_wrmask(vcpu);
2297		if (change) {
2298			v = cur ^ change;
2299			write_gc0_config1(v);
2300		}
2301		break;
2302	case KVM_REG_MIPS_CP0_CONFIG2:
2303		if (!cpu_guest_has_conf2)
2304			break;
2305		cur = read_gc0_config2();
2306		change = (cur ^ v) & kvm_vz_config2_user_wrmask(vcpu);
2307		if (change) {
2308			v = cur ^ change;
2309			write_gc0_config2(v);
2310		}
2311		break;
2312	case KVM_REG_MIPS_CP0_CONFIG3:
2313		if (!cpu_guest_has_conf3)
2314			break;
2315		cur = read_gc0_config3();
2316		change = (cur ^ v) & kvm_vz_config3_user_wrmask(vcpu);
2317		if (change) {
2318			v = cur ^ change;
2319			write_gc0_config3(v);
2320		}
2321		break;
2322	case KVM_REG_MIPS_CP0_CONFIG4:
2323		if (!cpu_guest_has_conf4)
2324			break;
2325		cur = read_gc0_config4();
2326		change = (cur ^ v) & kvm_vz_config4_user_wrmask(vcpu);
2327		if (change) {
2328			v = cur ^ change;
2329			write_gc0_config4(v);
2330		}
2331		break;
2332	case KVM_REG_MIPS_CP0_CONFIG5:
2333		if (!cpu_guest_has_conf5)
2334			break;
2335		cur = read_gc0_config5();
2336		change = (cur ^ v) & kvm_vz_config5_user_wrmask(vcpu);
2337		if (change) {
2338			v = cur ^ change;
2339			write_gc0_config5(v);
2340		}
2341		break;
2342	case KVM_REG_MIPS_CP0_CONFIG6:
2343		cur = kvm_read_sw_gc0_config6(cop0);
2344		change = (cur ^ v) & kvm_vz_config6_user_wrmask(vcpu);
2345		if (change) {
2346			v = cur ^ change;
2347			kvm_write_sw_gc0_config6(cop0, (int)v);
2348		}
2349		break;
2350	case KVM_REG_MIPS_CP0_MAAR(0) ... KVM_REG_MIPS_CP0_MAAR(0x3f):
2351		if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
2352			return -EINVAL;
2353		idx = reg->id - KVM_REG_MIPS_CP0_MAAR(0);
2354		if (idx >= ARRAY_SIZE(vcpu->arch.maar))
2355			return -EINVAL;
2356		vcpu->arch.maar[idx] = mips_process_maar(dmtc_op, v);
2357		break;
2358	case KVM_REG_MIPS_CP0_MAARI:
2359		if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
2360			return -EINVAL;
2361		kvm_write_maari(vcpu, v);
2362		break;
2363#ifdef CONFIG_64BIT
2364	case KVM_REG_MIPS_CP0_XCONTEXT:
2365		write_gc0_xcontext(v);
2366		break;
2367#endif
2368	case KVM_REG_MIPS_CP0_ERROREPC:
2369		write_gc0_errorepc(v);
2370		break;
2371	case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
2372		idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
2373		if (!cpu_guest_has_kscr(idx))
2374			return -EINVAL;
2375		switch (idx) {
2376		case 2:
2377			write_gc0_kscratch1(v);
2378			break;
2379		case 3:
2380			write_gc0_kscratch2(v);
2381			break;
2382		case 4:
2383			write_gc0_kscratch3(v);
2384			break;
2385		case 5:
2386			write_gc0_kscratch4(v);
2387			break;
2388		case 6:
2389			write_gc0_kscratch5(v);
2390			break;
2391		case 7:
2392			write_gc0_kscratch6(v);
2393			break;
2394		}
2395		break;
2396	case KVM_REG_MIPS_COUNT_CTL:
2397		ret = kvm_mips_set_count_ctl(vcpu, v);
2398		break;
2399	case KVM_REG_MIPS_COUNT_RESUME:
2400		ret = kvm_mips_set_count_resume(vcpu, v);
2401		break;
2402	case KVM_REG_MIPS_COUNT_HZ:
2403		ret = kvm_mips_set_count_hz(vcpu, v);
2404		break;
2405	default:
2406		return -EINVAL;
2407	}
2408	return ret;
2409}
2410
2411#define guestid_cache(cpu)	(cpu_data[cpu].guestid_cache)
2412static void kvm_vz_get_new_guestid(unsigned long cpu, struct kvm_vcpu *vcpu)
2413{
2414	unsigned long guestid = guestid_cache(cpu);
2415
2416	if (!(++guestid & GUESTID_MASK)) {
2417		if (cpu_has_vtag_icache)
2418			flush_icache_all();
2419
2420		if (!guestid)		/* fix version if needed */
2421			guestid = GUESTID_FIRST_VERSION;
2422
2423		++guestid;		/* guestid 0 reserved for root */
2424
2425		/* start new guestid cycle */
2426		kvm_vz_local_flush_roottlb_all_guests();
2427		kvm_vz_local_flush_guesttlb_all();
2428	}
2429
2430	guestid_cache(cpu) = guestid;
2431}
2432
2433/* Returns 1 if the guest TLB may be clobbered */
2434static int kvm_vz_check_requests(struct kvm_vcpu *vcpu, int cpu)
2435{
2436	int ret = 0;
2437	int i;
2438
2439	if (!kvm_request_pending(vcpu))
2440		return 0;
2441
2442	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
2443		if (cpu_has_guestid) {
2444			/* Drop all GuestIDs for this VCPU */
2445			for_each_possible_cpu(i)
2446				vcpu->arch.vzguestid[i] = 0;
2447			/* This will clobber guest TLB contents too */
2448			ret = 1;
2449		}
2450		/*
2451		 * For Root ASID Dealias (RAD) we don't do anything here, but we
2452		 * still need the request to ensure we recheck asid_flush_mask.
2453		 * We can still return 0 as only the root TLB will be affected
2454		 * by a root ASID flush.
2455		 */
2456	}
2457
2458	return ret;
2459}
2460
2461static void kvm_vz_vcpu_save_wired(struct kvm_vcpu *vcpu)
2462{
2463	unsigned int wired = read_gc0_wired();
2464	struct kvm_mips_tlb *tlbs;
2465	int i;
2466
2467	/* Expand the wired TLB array if necessary */
2468	wired &= MIPSR6_WIRED_WIRED;
2469	if (wired > vcpu->arch.wired_tlb_limit) {
2470		tlbs = krealloc(vcpu->arch.wired_tlb, wired *
2471				sizeof(*vcpu->arch.wired_tlb), GFP_ATOMIC);
2472		if (WARN_ON(!tlbs)) {
2473			/* Save whatever we can */
2474			wired = vcpu->arch.wired_tlb_limit;
2475		} else {
2476			vcpu->arch.wired_tlb = tlbs;
2477			vcpu->arch.wired_tlb_limit = wired;
2478		}
2479	}
2480
2481	if (wired)
2482		/* Save wired entries from the guest TLB */
2483		kvm_vz_save_guesttlb(vcpu->arch.wired_tlb, 0, wired);
2484	/* Invalidate any dropped entries since last time */
2485	for (i = wired; i < vcpu->arch.wired_tlb_used; ++i) {
2486		vcpu->arch.wired_tlb[i].tlb_hi = UNIQUE_GUEST_ENTRYHI(i);
2487		vcpu->arch.wired_tlb[i].tlb_lo[0] = 0;
2488		vcpu->arch.wired_tlb[i].tlb_lo[1] = 0;
2489		vcpu->arch.wired_tlb[i].tlb_mask = 0;
2490	}
2491	vcpu->arch.wired_tlb_used = wired;
2492}
2493
2494static void kvm_vz_vcpu_load_wired(struct kvm_vcpu *vcpu)
2495{
2496	/* Load wired entries into the guest TLB */
2497	if (vcpu->arch.wired_tlb)
2498		kvm_vz_load_guesttlb(vcpu->arch.wired_tlb, 0,
2499				     vcpu->arch.wired_tlb_used);
2500}
2501
2502static void kvm_vz_vcpu_load_tlb(struct kvm_vcpu *vcpu, int cpu)
2503{
2504	struct kvm *kvm = vcpu->kvm;
2505	struct mm_struct *gpa_mm = &kvm->arch.gpa_mm;
2506	bool migrated;
2507
2508	/*
2509	 * Are we entering guest context on a different CPU to last time?
2510	 * If so, the VCPU's guest TLB state on this CPU may be stale.
2511	 */
2512	migrated = (vcpu->arch.last_exec_cpu != cpu);
2513	vcpu->arch.last_exec_cpu = cpu;
2514
2515	/*
2516	 * A vcpu's GuestID is set in GuestCtl1.ID when the vcpu is loaded and
2517	 * remains set until another vcpu is loaded in.  As a rule GuestRID
2518	 * remains zeroed when in root context unless the kernel is busy
2519	 * manipulating guest tlb entries.
2520	 */
2521	if (cpu_has_guestid) {
2522		/*
2523		 * Check if our GuestID is of an older version and thus invalid.
2524		 *
2525		 * We also discard the stored GuestID if we've executed on
2526		 * another CPU, as the guest mappings may have changed without
2527		 * hypervisor knowledge.
2528		 */
2529		if (migrated ||
2530		    (vcpu->arch.vzguestid[cpu] ^ guestid_cache(cpu)) &
2531					GUESTID_VERSION_MASK) {
2532			kvm_vz_get_new_guestid(cpu, vcpu);
2533			vcpu->arch.vzguestid[cpu] = guestid_cache(cpu);
2534			trace_kvm_guestid_change(vcpu,
2535						 vcpu->arch.vzguestid[cpu]);
2536		}
2537
2538		/* Restore GuestID */
2539		change_c0_guestctl1(GUESTID_MASK, vcpu->arch.vzguestid[cpu]);
2540	} else {
2541		/*
2542		 * The Guest TLB only stores a single guest's TLB state, so
2543		 * flush it if another VCPU has executed on this CPU.
2544		 *
2545		 * We also flush if we've executed on another CPU, as the guest
2546		 * mappings may have changed without hypervisor knowledge.
2547		 */
2548		if (migrated || last_exec_vcpu[cpu] != vcpu)
2549			kvm_vz_local_flush_guesttlb_all();
2550		last_exec_vcpu[cpu] = vcpu;
2551
2552		/*
2553		 * Root ASID dealiases guest GPA mappings in the root TLB.
2554		 * Allocate new root ASID if needed.
2555		 */
2556		if (cpumask_test_and_clear_cpu(cpu, &kvm->arch.asid_flush_mask))
2557			get_new_mmu_context(gpa_mm);
2558		else
2559			check_mmu_context(gpa_mm);
2560	}
2561}
2562
2563static int kvm_vz_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2564{
2565	struct mips_coproc *cop0 = &vcpu->arch.cop0;
2566	bool migrated, all;
2567
2568	/*
2569	 * Have we migrated to a different CPU?
2570	 * If so, any old guest TLB state may be stale.
2571	 */
2572	migrated = (vcpu->arch.last_sched_cpu != cpu);
2573
2574	/*
2575	 * Was this the last VCPU to run on this CPU?
2576	 * If not, any old guest state from this VCPU will have been clobbered.
2577	 */
2578	all = migrated || (last_vcpu[cpu] != vcpu);
2579	last_vcpu[cpu] = vcpu;
2580
2581	/*
2582	 * Restore CP0_Wired unconditionally as we clear it after use, and
2583	 * restore wired guest TLB entries (while in guest context).
2584	 */
2585	kvm_restore_gc0_wired(cop0);
2586	if (current->flags & PF_VCPU) {
2587		tlbw_use_hazard();
2588		kvm_vz_vcpu_load_tlb(vcpu, cpu);
2589		kvm_vz_vcpu_load_wired(vcpu);
2590	}
2591
2592	/*
2593	 * Restore timer state regardless, as e.g. Cause.TI can change over time
2594	 * if left unmaintained.
2595	 */
2596	kvm_vz_restore_timer(vcpu);
2597
2598	/* Set MC bit if we want to trace guest mode changes */
2599	if (kvm_trace_guest_mode_change)
2600		set_c0_guestctl0(MIPS_GCTL0_MC);
2601	else
2602		clear_c0_guestctl0(MIPS_GCTL0_MC);
2603
2604	/* Don't bother restoring registers multiple times unless necessary */
2605	if (!all)
2606		return 0;
2607
2608	/*
2609	 * Restore config registers first, as some implementations restrict
2610	 * writes to other registers when the corresponding feature bits aren't
2611	 * set. For example Status.CU1 cannot be set unless Config1.FP is set.
2612	 */
2613	kvm_restore_gc0_config(cop0);
2614	if (cpu_guest_has_conf1)
2615		kvm_restore_gc0_config1(cop0);
2616	if (cpu_guest_has_conf2)
2617		kvm_restore_gc0_config2(cop0);
2618	if (cpu_guest_has_conf3)
2619		kvm_restore_gc0_config3(cop0);
2620	if (cpu_guest_has_conf4)
2621		kvm_restore_gc0_config4(cop0);
2622	if (cpu_guest_has_conf5)
2623		kvm_restore_gc0_config5(cop0);
2624	if (cpu_guest_has_conf6)
2625		kvm_restore_gc0_config6(cop0);
2626	if (cpu_guest_has_conf7)
2627		kvm_restore_gc0_config7(cop0);
2628
2629	kvm_restore_gc0_index(cop0);
2630	kvm_restore_gc0_entrylo0(cop0);
2631	kvm_restore_gc0_entrylo1(cop0);
2632	kvm_restore_gc0_context(cop0);
2633	if (cpu_guest_has_contextconfig)
2634		kvm_restore_gc0_contextconfig(cop0);
2635#ifdef CONFIG_64BIT
2636	kvm_restore_gc0_xcontext(cop0);
2637	if (cpu_guest_has_contextconfig)
2638		kvm_restore_gc0_xcontextconfig(cop0);
2639#endif
2640	kvm_restore_gc0_pagemask(cop0);
2641	kvm_restore_gc0_pagegrain(cop0);
2642	kvm_restore_gc0_hwrena(cop0);
2643	kvm_restore_gc0_badvaddr(cop0);
2644	kvm_restore_gc0_entryhi(cop0);
2645	kvm_restore_gc0_status(cop0);
2646	kvm_restore_gc0_intctl(cop0);
2647	kvm_restore_gc0_epc(cop0);
2648	kvm_vz_write_gc0_ebase(kvm_read_sw_gc0_ebase(cop0));
2649	if (cpu_guest_has_userlocal)
2650		kvm_restore_gc0_userlocal(cop0);
2651
2652	kvm_restore_gc0_errorepc(cop0);
2653
2654	/* restore KScratch registers if enabled in guest */
2655	if (cpu_guest_has_conf4) {
2656		if (cpu_guest_has_kscr(2))
2657			kvm_restore_gc0_kscratch1(cop0);
2658		if (cpu_guest_has_kscr(3))
2659			kvm_restore_gc0_kscratch2(cop0);
2660		if (cpu_guest_has_kscr(4))
2661			kvm_restore_gc0_kscratch3(cop0);
2662		if (cpu_guest_has_kscr(5))
2663			kvm_restore_gc0_kscratch4(cop0);
2664		if (cpu_guest_has_kscr(6))
2665			kvm_restore_gc0_kscratch5(cop0);
2666		if (cpu_guest_has_kscr(7))
2667			kvm_restore_gc0_kscratch6(cop0);
2668	}
2669
2670	if (cpu_guest_has_badinstr)
2671		kvm_restore_gc0_badinstr(cop0);
2672	if (cpu_guest_has_badinstrp)
2673		kvm_restore_gc0_badinstrp(cop0);
2674
2675	if (cpu_guest_has_segments) {
2676		kvm_restore_gc0_segctl0(cop0);
2677		kvm_restore_gc0_segctl1(cop0);
2678		kvm_restore_gc0_segctl2(cop0);
2679	}
2680
2681	/* restore HTW registers */
2682	if (cpu_guest_has_htw || cpu_guest_has_ldpte) {
2683		kvm_restore_gc0_pwbase(cop0);
2684		kvm_restore_gc0_pwfield(cop0);
2685		kvm_restore_gc0_pwsize(cop0);
2686		kvm_restore_gc0_pwctl(cop0);
2687	}
2688
2689	/* restore Root.GuestCtl2 from unused Guest guestctl2 register */
2690	if (cpu_has_guestctl2)
2691		write_c0_guestctl2(
2692			cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL]);
2693
2694	/*
2695	 * We should clear linked load bit to break interrupted atomics. This
2696	 * prevents a SC on the next VCPU from succeeding by matching a LL on
2697	 * the previous VCPU.
2698	 */
2699	if (vcpu->kvm->created_vcpus > 1)
2700		write_gc0_lladdr(0);
2701
2702	return 0;
2703}
2704
2705static int kvm_vz_vcpu_put(struct kvm_vcpu *vcpu, int cpu)
2706{
2707	struct mips_coproc *cop0 = &vcpu->arch.cop0;
2708
2709	if (current->flags & PF_VCPU)
2710		kvm_vz_vcpu_save_wired(vcpu);
2711
2712	kvm_lose_fpu(vcpu);
2713
2714	kvm_save_gc0_index(cop0);
2715	kvm_save_gc0_entrylo0(cop0);
2716	kvm_save_gc0_entrylo1(cop0);
2717	kvm_save_gc0_context(cop0);
2718	if (cpu_guest_has_contextconfig)
2719		kvm_save_gc0_contextconfig(cop0);
2720#ifdef CONFIG_64BIT
2721	kvm_save_gc0_xcontext(cop0);
2722	if (cpu_guest_has_contextconfig)
2723		kvm_save_gc0_xcontextconfig(cop0);
2724#endif
2725	kvm_save_gc0_pagemask(cop0);
2726	kvm_save_gc0_pagegrain(cop0);
2727	kvm_save_gc0_wired(cop0);
2728	/* allow wired TLB entries to be overwritten */
2729	clear_gc0_wired(MIPSR6_WIRED_WIRED);
2730	kvm_save_gc0_hwrena(cop0);
2731	kvm_save_gc0_badvaddr(cop0);
2732	kvm_save_gc0_entryhi(cop0);
2733	kvm_save_gc0_status(cop0);
2734	kvm_save_gc0_intctl(cop0);
2735	kvm_save_gc0_epc(cop0);
2736	kvm_write_sw_gc0_ebase(cop0, kvm_vz_read_gc0_ebase());
2737	if (cpu_guest_has_userlocal)
2738		kvm_save_gc0_userlocal(cop0);
2739
2740	/* only save implemented config registers */
2741	kvm_save_gc0_config(cop0);
2742	if (cpu_guest_has_conf1)
2743		kvm_save_gc0_config1(cop0);
2744	if (cpu_guest_has_conf2)
2745		kvm_save_gc0_config2(cop0);
2746	if (cpu_guest_has_conf3)
2747		kvm_save_gc0_config3(cop0);
2748	if (cpu_guest_has_conf4)
2749		kvm_save_gc0_config4(cop0);
2750	if (cpu_guest_has_conf5)
2751		kvm_save_gc0_config5(cop0);
2752	if (cpu_guest_has_conf6)
2753		kvm_save_gc0_config6(cop0);
2754	if (cpu_guest_has_conf7)
2755		kvm_save_gc0_config7(cop0);
2756
2757	kvm_save_gc0_errorepc(cop0);
2758
2759	/* save KScratch registers if enabled in guest */
2760	if (cpu_guest_has_conf4) {
2761		if (cpu_guest_has_kscr(2))
2762			kvm_save_gc0_kscratch1(cop0);
2763		if (cpu_guest_has_kscr(3))
2764			kvm_save_gc0_kscratch2(cop0);
2765		if (cpu_guest_has_kscr(4))
2766			kvm_save_gc0_kscratch3(cop0);
2767		if (cpu_guest_has_kscr(5))
2768			kvm_save_gc0_kscratch4(cop0);
2769		if (cpu_guest_has_kscr(6))
2770			kvm_save_gc0_kscratch5(cop0);
2771		if (cpu_guest_has_kscr(7))
2772			kvm_save_gc0_kscratch6(cop0);
2773	}
2774
2775	if (cpu_guest_has_badinstr)
2776		kvm_save_gc0_badinstr(cop0);
2777	if (cpu_guest_has_badinstrp)
2778		kvm_save_gc0_badinstrp(cop0);
2779
2780	if (cpu_guest_has_segments) {
2781		kvm_save_gc0_segctl0(cop0);
2782		kvm_save_gc0_segctl1(cop0);
2783		kvm_save_gc0_segctl2(cop0);
2784	}
2785
2786	/* save HTW registers if enabled in guest */
2787	if (cpu_guest_has_ldpte || (cpu_guest_has_htw &&
2788	    kvm_read_sw_gc0_config3(cop0) & MIPS_CONF3_PW)) {
2789		kvm_save_gc0_pwbase(cop0);
2790		kvm_save_gc0_pwfield(cop0);
2791		kvm_save_gc0_pwsize(cop0);
2792		kvm_save_gc0_pwctl(cop0);
2793	}
2794
2795	kvm_vz_save_timer(vcpu);
2796
2797	/* save Root.GuestCtl2 in unused Guest guestctl2 register */
2798	if (cpu_has_guestctl2)
2799		cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] =
2800			read_c0_guestctl2();
2801
2802	return 0;
2803}
2804
2805/**
2806 * kvm_vz_resize_guest_vtlb() - Attempt to resize guest VTLB.
2807 * @size:	Number of guest VTLB entries (0 < @size <= root VTLB entries).
2808 *
2809 * Attempt to resize the guest VTLB by writing guest Config registers. This is
2810 * necessary for cores with a shared root/guest TLB to avoid overlap with wired
2811 * entries in the root VTLB.
2812 *
2813 * Returns:	The resulting guest VTLB size.
2814 */
2815static unsigned int kvm_vz_resize_guest_vtlb(unsigned int size)
2816{
2817	unsigned int config4 = 0, ret = 0, limit;
2818
2819	/* Write MMUSize - 1 into guest Config registers */
2820	if (cpu_guest_has_conf1)
2821		change_gc0_config1(MIPS_CONF1_TLBS,
2822				   (size - 1) << MIPS_CONF1_TLBS_SHIFT);
2823	if (cpu_guest_has_conf4) {
2824		config4 = read_gc0_config4();
2825		if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) ==
2826		    MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT) {
2827			config4 &= ~MIPS_CONF4_VTLBSIZEEXT;
2828			config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) <<
2829				MIPS_CONF4_VTLBSIZEEXT_SHIFT;
2830		} else if ((config4 & MIPS_CONF4_MMUEXTDEF) ==
2831			   MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT) {
2832			config4 &= ~MIPS_CONF4_MMUSIZEEXT;
2833			config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) <<
2834				MIPS_CONF4_MMUSIZEEXT_SHIFT;
2835		}
2836		write_gc0_config4(config4);
2837	}
2838
2839	/*
2840	 * Set Guest.Wired.Limit = 0 (no limit up to Guest.MMUSize-1), unless it
2841	 * would exceed Root.Wired.Limit (clearing Guest.Wired.Wired so write
2842	 * not dropped)
2843	 */
2844	if (cpu_has_mips_r6) {
2845		limit = (read_c0_wired() & MIPSR6_WIRED_LIMIT) >>
2846						MIPSR6_WIRED_LIMIT_SHIFT;
2847		if (size - 1 <= limit)
2848			limit = 0;
2849		write_gc0_wired(limit << MIPSR6_WIRED_LIMIT_SHIFT);
2850	}
2851
2852	/* Read back MMUSize - 1 */
2853	back_to_back_c0_hazard();
2854	if (cpu_guest_has_conf1)
2855		ret = (read_gc0_config1() & MIPS_CONF1_TLBS) >>
2856						MIPS_CONF1_TLBS_SHIFT;
2857	if (config4) {
2858		if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) ==
2859		    MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT)
2860			ret |= ((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
2861				MIPS_CONF4_VTLBSIZEEXT_SHIFT) <<
2862				MIPS_CONF1_TLBS_SIZE;
2863		else if ((config4 & MIPS_CONF4_MMUEXTDEF) ==
2864			 MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT)
2865			ret |= ((config4 & MIPS_CONF4_MMUSIZEEXT) >>
2866				MIPS_CONF4_MMUSIZEEXT_SHIFT) <<
2867				MIPS_CONF1_TLBS_SIZE;
2868	}
2869	return ret + 1;
2870}
2871
2872static int kvm_vz_hardware_enable(void)
2873{
2874	unsigned int mmu_size, guest_mmu_size, ftlb_size;
2875	u64 guest_cvmctl, cvmvmconfig;
2876
2877	switch (current_cpu_type()) {
2878	case CPU_CAVIUM_OCTEON3:
2879		/* Set up guest timer/perfcount IRQ lines */
2880		guest_cvmctl = read_gc0_cvmctl();
2881		guest_cvmctl &= ~CVMCTL_IPTI;
2882		guest_cvmctl |= 7ull << CVMCTL_IPTI_SHIFT;
2883		guest_cvmctl &= ~CVMCTL_IPPCI;
2884		guest_cvmctl |= 6ull << CVMCTL_IPPCI_SHIFT;
2885		write_gc0_cvmctl(guest_cvmctl);
2886
2887		cvmvmconfig = read_c0_cvmvmconfig();
2888		/* No I/O hole translation. */
2889		cvmvmconfig |= CVMVMCONF_DGHT;
2890		/* Halve the root MMU size */
2891		mmu_size = ((cvmvmconfig & CVMVMCONF_MMUSIZEM1)
2892			    >> CVMVMCONF_MMUSIZEM1_S) + 1;
2893		guest_mmu_size = mmu_size / 2;
2894		mmu_size -= guest_mmu_size;
2895		cvmvmconfig &= ~CVMVMCONF_RMMUSIZEM1;
2896		cvmvmconfig |= mmu_size - 1;
2897		write_c0_cvmvmconfig(cvmvmconfig);
2898
2899		/* Update our records */
2900		current_cpu_data.tlbsize = mmu_size;
2901		current_cpu_data.tlbsizevtlb = mmu_size;
2902		current_cpu_data.guest.tlbsize = guest_mmu_size;
2903
2904		/* Flush moved entries in new (guest) context */
2905		kvm_vz_local_flush_guesttlb_all();
2906		break;
2907	default:
2908		/*
2909		 * ImgTec cores tend to use a shared root/guest TLB. To avoid
2910		 * overlap of root wired and guest entries, the guest TLB may
2911		 * need resizing.
2912		 */
2913		mmu_size = current_cpu_data.tlbsizevtlb;
2914		ftlb_size = current_cpu_data.tlbsize - mmu_size;
2915
2916		/* Try switching to maximum guest VTLB size for flush */
2917		guest_mmu_size = kvm_vz_resize_guest_vtlb(mmu_size);
2918		current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size;
2919		kvm_vz_local_flush_guesttlb_all();
2920
2921		/*
2922		 * Reduce to make space for root wired entries and at least 2
2923		 * root non-wired entries. This does assume that long-term wired
2924		 * entries won't be added later.
2925		 */
2926		guest_mmu_size = mmu_size - num_wired_entries() - 2;
2927		guest_mmu_size = kvm_vz_resize_guest_vtlb(guest_mmu_size);
2928		current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size;
2929
2930		/*
2931		 * Write the VTLB size, but if another CPU has already written,
2932		 * check it matches or we won't provide a consistent view to the
2933		 * guest. If this ever happens it suggests an asymmetric number
2934		 * of wired entries.
2935		 */
2936		if (cmpxchg(&kvm_vz_guest_vtlb_size, 0, guest_mmu_size) &&
2937		    WARN(guest_mmu_size != kvm_vz_guest_vtlb_size,
2938			 "Available guest VTLB size mismatch"))
2939			return -EINVAL;
2940		break;
2941	}
2942
2943	/*
2944	 * Enable virtualization features granting guest direct control of
2945	 * certain features:
2946	 * CP0=1:	Guest coprocessor 0 context.
2947	 * AT=Guest:	Guest MMU.
2948	 * CG=1:	Hit (virtual address) CACHE operations (optional).
2949	 * CF=1:	Guest Config registers.
2950	 * CGI=1:	Indexed flush CACHE operations (optional).
2951	 */
2952	write_c0_guestctl0(MIPS_GCTL0_CP0 |
2953			   (MIPS_GCTL0_AT_GUEST << MIPS_GCTL0_AT_SHIFT) |
2954			   MIPS_GCTL0_CG | MIPS_GCTL0_CF);
2955	if (cpu_has_guestctl0ext) {
2956		if (current_cpu_type() != CPU_LOONGSON64)
2957			set_c0_guestctl0ext(MIPS_GCTL0EXT_CGI);
2958		else
2959			clear_c0_guestctl0ext(MIPS_GCTL0EXT_CGI);
2960	}
2961
2962	if (cpu_has_guestid) {
2963		write_c0_guestctl1(0);
2964		kvm_vz_local_flush_roottlb_all_guests();
2965
2966		GUESTID_MASK = current_cpu_data.guestid_mask;
2967		GUESTID_FIRST_VERSION = GUESTID_MASK + 1;
2968		GUESTID_VERSION_MASK = ~GUESTID_MASK;
2969
2970		current_cpu_data.guestid_cache = GUESTID_FIRST_VERSION;
2971	}
2972
2973	/* clear any pending injected virtual guest interrupts */
2974	if (cpu_has_guestctl2)
2975		clear_c0_guestctl2(0x3f << 10);
2976
2977#ifdef CONFIG_CPU_LOONGSON64
2978	/* Control guest CCA attribute */
2979	if (cpu_has_csr())
2980		csr_writel(csr_readl(0xffffffec) | 0x1, 0xffffffec);
2981#endif
2982
2983	return 0;
2984}
2985
2986static void kvm_vz_hardware_disable(void)
2987{
2988	u64 cvmvmconfig;
2989	unsigned int mmu_size;
2990
2991	/* Flush any remaining guest TLB entries */
2992	kvm_vz_local_flush_guesttlb_all();
2993
2994	switch (current_cpu_type()) {
2995	case CPU_CAVIUM_OCTEON3:
2996		/*
2997		 * Allocate whole TLB for root. Existing guest TLB entries will
2998		 * change ownership to the root TLB. We should be safe though as
2999		 * they've already been flushed above while in guest TLB.
3000		 */
3001		cvmvmconfig = read_c0_cvmvmconfig();
3002		mmu_size = ((cvmvmconfig & CVMVMCONF_MMUSIZEM1)
3003			    >> CVMVMCONF_MMUSIZEM1_S) + 1;
3004		cvmvmconfig &= ~CVMVMCONF_RMMUSIZEM1;
3005		cvmvmconfig |= mmu_size - 1;
3006		write_c0_cvmvmconfig(cvmvmconfig);
3007
3008		/* Update our records */
3009		current_cpu_data.tlbsize = mmu_size;
3010		current_cpu_data.tlbsizevtlb = mmu_size;
3011		current_cpu_data.guest.tlbsize = 0;
3012
3013		/* Flush moved entries in new (root) context */
3014		local_flush_tlb_all();
3015		break;
3016	}
3017
3018	if (cpu_has_guestid) {
3019		write_c0_guestctl1(0);
3020		kvm_vz_local_flush_roottlb_all_guests();
3021	}
3022}
3023
3024static int kvm_vz_check_extension(struct kvm *kvm, long ext)
3025{
3026	int r;
3027
3028	switch (ext) {
3029	case KVM_CAP_MIPS_VZ:
3030		/* we wouldn't be here unless cpu_has_vz */
3031		r = 1;
3032		break;
3033#ifdef CONFIG_64BIT
3034	case KVM_CAP_MIPS_64BIT:
3035		/* We support 64-bit registers/operations and addresses */
3036		r = 2;
3037		break;
3038#endif
3039	case KVM_CAP_IOEVENTFD:
3040		r = 1;
3041		break;
3042	default:
3043		r = 0;
3044		break;
3045	}
3046
3047	return r;
3048}
3049
3050static int kvm_vz_vcpu_init(struct kvm_vcpu *vcpu)
3051{
3052	int i;
3053
3054	for_each_possible_cpu(i)
3055		vcpu->arch.vzguestid[i] = 0;
3056
3057	return 0;
3058}
3059
3060static void kvm_vz_vcpu_uninit(struct kvm_vcpu *vcpu)
3061{
3062	int cpu;
3063
3064	/*
3065	 * If the VCPU is freed and reused as another VCPU, we don't want the
3066	 * matching pointer wrongly hanging around in last_vcpu[] or
3067	 * last_exec_vcpu[].
3068	 */
3069	for_each_possible_cpu(cpu) {
3070		if (last_vcpu[cpu] == vcpu)
3071			last_vcpu[cpu] = NULL;
3072		if (last_exec_vcpu[cpu] == vcpu)
3073			last_exec_vcpu[cpu] = NULL;
3074	}
3075}
3076
3077static int kvm_vz_vcpu_setup(struct kvm_vcpu *vcpu)
3078{
3079	struct mips_coproc *cop0 = &vcpu->arch.cop0;
3080	unsigned long count_hz = 100*1000*1000; /* default to 100 MHz */
3081
3082	/*
3083	 * Start off the timer at the same frequency as the host timer, but the
3084	 * soft timer doesn't handle frequencies greater than 1GHz yet.
3085	 */
3086	if (mips_hpt_frequency && mips_hpt_frequency <= NSEC_PER_SEC)
3087		count_hz = mips_hpt_frequency;
3088	kvm_mips_init_count(vcpu, count_hz);
3089
3090	/*
3091	 * Initialize guest register state to valid architectural reset state.
3092	 */
3093
3094	/* PageGrain */
3095	if (cpu_has_mips_r5 || cpu_has_mips_r6)
3096		kvm_write_sw_gc0_pagegrain(cop0, PG_RIE | PG_XIE | PG_IEC);
3097	/* Wired */
3098	if (cpu_has_mips_r6)
3099		kvm_write_sw_gc0_wired(cop0,
3100				       read_gc0_wired() & MIPSR6_WIRED_LIMIT);
3101	/* Status */
3102	kvm_write_sw_gc0_status(cop0, ST0_BEV | ST0_ERL);
3103	if (cpu_has_mips_r5 || cpu_has_mips_r6)
3104		kvm_change_sw_gc0_status(cop0, ST0_FR, read_gc0_status());
3105	/* IntCtl */
3106	kvm_write_sw_gc0_intctl(cop0, read_gc0_intctl() &
3107				(INTCTLF_IPFDC | INTCTLF_IPPCI | INTCTLF_IPTI));
3108	/* PRId */
3109	kvm_write_sw_gc0_prid(cop0, boot_cpu_data.processor_id);
3110	/* EBase */
3111	kvm_write_sw_gc0_ebase(cop0, (s32)0x80000000 | vcpu->vcpu_id);
3112	/* Config */
3113	kvm_save_gc0_config(cop0);
3114	/* architecturally writable (e.g. from guest) */
3115	kvm_change_sw_gc0_config(cop0, CONF_CM_CMASK,
3116				 _page_cachable_default >> _CACHE_SHIFT);
3117	/* architecturally read only, but maybe writable from root */
3118	kvm_change_sw_gc0_config(cop0, MIPS_CONF_MT, read_c0_config());
3119	if (cpu_guest_has_conf1) {
3120		kvm_set_sw_gc0_config(cop0, MIPS_CONF_M);
3121		/* Config1 */
3122		kvm_save_gc0_config1(cop0);
3123		/* architecturally read only, but maybe writable from root */
3124		kvm_clear_sw_gc0_config1(cop0, MIPS_CONF1_C2	|
3125					       MIPS_CONF1_MD	|
3126					       MIPS_CONF1_PC	|
3127					       MIPS_CONF1_WR	|
3128					       MIPS_CONF1_CA	|
3129					       MIPS_CONF1_FP);
3130	}
3131	if (cpu_guest_has_conf2) {
3132		kvm_set_sw_gc0_config1(cop0, MIPS_CONF_M);
3133		/* Config2 */
3134		kvm_save_gc0_config2(cop0);
3135	}
3136	if (cpu_guest_has_conf3) {
3137		kvm_set_sw_gc0_config2(cop0, MIPS_CONF_M);
3138		/* Config3 */
3139		kvm_save_gc0_config3(cop0);
3140		/* architecturally writable (e.g. from guest) */
3141		kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_ISA_OE);
3142		/* architecturally read only, but maybe writable from root */
3143		kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_MSA	|
3144					       MIPS_CONF3_BPG	|
3145					       MIPS_CONF3_ULRI	|
3146					       MIPS_CONF3_DSP	|
3147					       MIPS_CONF3_CTXTC	|
3148					       MIPS_CONF3_ITL	|
3149					       MIPS_CONF3_LPA	|
3150					       MIPS_CONF3_VEIC	|
3151					       MIPS_CONF3_VINT	|
3152					       MIPS_CONF3_SP	|
3153					       MIPS_CONF3_CDMM	|
3154					       MIPS_CONF3_MT	|
3155					       MIPS_CONF3_SM	|
3156					       MIPS_CONF3_TL);
3157	}
3158	if (cpu_guest_has_conf4) {
3159		kvm_set_sw_gc0_config3(cop0, MIPS_CONF_M);
3160		/* Config4 */
3161		kvm_save_gc0_config4(cop0);
3162	}
3163	if (cpu_guest_has_conf5) {
3164		kvm_set_sw_gc0_config4(cop0, MIPS_CONF_M);
3165		/* Config5 */
3166		kvm_save_gc0_config5(cop0);
3167		/* architecturally writable (e.g. from guest) */
3168		kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_K	|
3169					       MIPS_CONF5_CV	|
3170					       MIPS_CONF5_MSAEN	|
3171					       MIPS_CONF5_UFE	|
3172					       MIPS_CONF5_FRE	|
3173					       MIPS_CONF5_SBRI	|
3174					       MIPS_CONF5_UFR);
3175		/* architecturally read only, but maybe writable from root */
3176		kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_MRP);
3177	}
3178
3179	if (cpu_guest_has_contextconfig) {
3180		/* ContextConfig */
3181		kvm_write_sw_gc0_contextconfig(cop0, 0x007ffff0);
3182#ifdef CONFIG_64BIT
3183		/* XContextConfig */
3184		/* bits SEGBITS-13+3:4 set */
3185		kvm_write_sw_gc0_xcontextconfig(cop0,
3186					((1ull << (cpu_vmbits - 13)) - 1) << 4);
3187#endif
3188	}
3189
3190	/* Implementation dependent, use the legacy layout */
3191	if (cpu_guest_has_segments) {
3192		/* SegCtl0, SegCtl1, SegCtl2 */
3193		kvm_write_sw_gc0_segctl0(cop0, 0x00200010);
3194		kvm_write_sw_gc0_segctl1(cop0, 0x00000002 |
3195				(_page_cachable_default >> _CACHE_SHIFT) <<
3196						(16 + MIPS_SEGCFG_C_SHIFT));
3197		kvm_write_sw_gc0_segctl2(cop0, 0x00380438);
3198	}
3199
3200	/* reset HTW registers */
3201	if (cpu_guest_has_htw && (cpu_has_mips_r5 || cpu_has_mips_r6)) {
3202		/* PWField */
3203		kvm_write_sw_gc0_pwfield(cop0, 0x0c30c302);
3204		/* PWSize */
3205		kvm_write_sw_gc0_pwsize(cop0, 1 << MIPS_PWSIZE_PTW_SHIFT);
3206	}
3207
3208	/* start with no pending virtual guest interrupts */
3209	if (cpu_has_guestctl2)
3210		cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] = 0;
3211
3212	/* Put PC at reset vector */
3213	vcpu->arch.pc = CKSEG1ADDR(0x1fc00000);
3214
3215	return 0;
3216}
3217
3218static void kvm_vz_prepare_flush_shadow(struct kvm *kvm)
3219{
3220	if (!cpu_has_guestid) {
 
 
 
3221		/*
3222		 * For each CPU there is a single GPA ASID used by all VCPUs in
3223		 * the VM, so it doesn't make sense for the VCPUs to handle
3224		 * invalidation of these ASIDs individually.
3225		 *
3226		 * Instead mark all CPUs as needing ASID invalidation in
3227		 * asid_flush_mask, and kvm_flush_remote_tlbs(kvm) will
3228		 * kick any running VCPUs so they check asid_flush_mask.
3229		 */
3230		cpumask_setall(&kvm->arch.asid_flush_mask);
 
3231	}
3232}
3233
 
 
 
 
 
 
3234static void kvm_vz_vcpu_reenter(struct kvm_vcpu *vcpu)
3235{
3236	int cpu = smp_processor_id();
3237	int preserve_guest_tlb;
3238
3239	preserve_guest_tlb = kvm_vz_check_requests(vcpu, cpu);
3240
3241	if (preserve_guest_tlb)
3242		kvm_vz_vcpu_save_wired(vcpu);
3243
3244	kvm_vz_vcpu_load_tlb(vcpu, cpu);
3245
3246	if (preserve_guest_tlb)
3247		kvm_vz_vcpu_load_wired(vcpu);
3248}
3249
3250static int kvm_vz_vcpu_run(struct kvm_vcpu *vcpu)
3251{
3252	int cpu = smp_processor_id();
3253	int r;
3254
3255	kvm_vz_acquire_htimer(vcpu);
3256	/* Check if we have any exceptions/interrupts pending */
3257	kvm_mips_deliver_interrupts(vcpu, read_gc0_cause());
3258
3259	kvm_vz_check_requests(vcpu, cpu);
3260	kvm_vz_vcpu_load_tlb(vcpu, cpu);
3261	kvm_vz_vcpu_load_wired(vcpu);
3262
3263	r = vcpu->arch.vcpu_run(vcpu);
3264
3265	kvm_vz_vcpu_save_wired(vcpu);
3266
3267	return r;
3268}
3269
3270static struct kvm_mips_callbacks kvm_vz_callbacks = {
3271	.handle_cop_unusable = kvm_trap_vz_handle_cop_unusable,
3272	.handle_tlb_mod = kvm_trap_vz_handle_tlb_st_miss,
3273	.handle_tlb_ld_miss = kvm_trap_vz_handle_tlb_ld_miss,
3274	.handle_tlb_st_miss = kvm_trap_vz_handle_tlb_st_miss,
3275	.handle_addr_err_st = kvm_trap_vz_no_handler,
3276	.handle_addr_err_ld = kvm_trap_vz_no_handler,
3277	.handle_syscall = kvm_trap_vz_no_handler,
3278	.handle_res_inst = kvm_trap_vz_no_handler,
3279	.handle_break = kvm_trap_vz_no_handler,
3280	.handle_msa_disabled = kvm_trap_vz_handle_msa_disabled,
3281	.handle_guest_exit = kvm_trap_vz_handle_guest_exit,
3282
3283	.hardware_enable = kvm_vz_hardware_enable,
3284	.hardware_disable = kvm_vz_hardware_disable,
3285	.check_extension = kvm_vz_check_extension,
3286	.vcpu_init = kvm_vz_vcpu_init,
3287	.vcpu_uninit = kvm_vz_vcpu_uninit,
3288	.vcpu_setup = kvm_vz_vcpu_setup,
3289	.prepare_flush_shadow = kvm_vz_prepare_flush_shadow,
 
3290	.gva_to_gpa = kvm_vz_gva_to_gpa_cb,
3291	.queue_timer_int = kvm_vz_queue_timer_int_cb,
3292	.dequeue_timer_int = kvm_vz_dequeue_timer_int_cb,
3293	.queue_io_int = kvm_vz_queue_io_int_cb,
3294	.dequeue_io_int = kvm_vz_dequeue_io_int_cb,
3295	.irq_deliver = kvm_vz_irq_deliver_cb,
3296	.irq_clear = kvm_vz_irq_clear_cb,
3297	.num_regs = kvm_vz_num_regs,
3298	.copy_reg_indices = kvm_vz_copy_reg_indices,
3299	.get_one_reg = kvm_vz_get_one_reg,
3300	.set_one_reg = kvm_vz_set_one_reg,
3301	.vcpu_load = kvm_vz_vcpu_load,
3302	.vcpu_put = kvm_vz_vcpu_put,
3303	.vcpu_run = kvm_vz_vcpu_run,
3304	.vcpu_reenter = kvm_vz_vcpu_reenter,
3305};
3306
3307/* FIXME: Get rid of the callbacks now that trap-and-emulate is gone. */
3308const struct kvm_mips_callbacks * const kvm_mips_callbacks = &kvm_vz_callbacks;
3309
3310int kvm_mips_emulation_init(void)
3311{
3312	if (!cpu_has_vz)
3313		return -ENODEV;
3314
3315	/*
3316	 * VZ requires at least 2 KScratch registers, so it should have been
3317	 * possible to allocate pgd_reg.
3318	 */
3319	if (WARN(pgd_reg == -1,
3320		 "pgd_reg not allocated even though cpu_has_vz\n"))
3321		return -ENODEV;
3322
3323	pr_info("Starting KVM with MIPS VZ extensions\n");
 
 
3324	return 0;
3325}
v5.9
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * KVM/MIPS: Support for hardware virtualization extensions
   7 *
   8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
   9 * Authors: Yann Le Du <ledu@kymasys.com>
  10 */
  11
  12#include <linux/errno.h>
  13#include <linux/err.h>
  14#include <linux/module.h>
  15#include <linux/preempt.h>
  16#include <linux/vmalloc.h>
  17#include <asm/cacheflush.h>
  18#include <asm/cacheops.h>
  19#include <asm/cmpxchg.h>
  20#include <asm/fpu.h>
  21#include <asm/hazards.h>
  22#include <asm/inst.h>
  23#include <asm/mmu_context.h>
  24#include <asm/r4kcache.h>
  25#include <asm/time.h>
  26#include <asm/tlb.h>
  27#include <asm/tlbex.h>
  28
  29#include <linux/kvm_host.h>
  30
  31#include "interrupt.h"
  32#ifdef CONFIG_CPU_LOONGSON64
  33#include "loongson_regs.h"
  34#endif
  35
  36#include "trace.h"
  37
  38/* Pointers to last VCPU loaded on each physical CPU */
  39static struct kvm_vcpu *last_vcpu[NR_CPUS];
  40/* Pointers to last VCPU executed on each physical CPU */
  41static struct kvm_vcpu *last_exec_vcpu[NR_CPUS];
  42
  43/*
  44 * Number of guest VTLB entries to use, so we can catch inconsistency between
  45 * CPUs.
  46 */
  47static unsigned int kvm_vz_guest_vtlb_size;
  48
  49static inline long kvm_vz_read_gc0_ebase(void)
  50{
  51	if (sizeof(long) == 8 && cpu_has_ebase_wg)
  52		return read_gc0_ebase_64();
  53	else
  54		return read_gc0_ebase();
  55}
  56
  57static inline void kvm_vz_write_gc0_ebase(long v)
  58{
  59	/*
  60	 * First write with WG=1 to write upper bits, then write again in case
  61	 * WG should be left at 0.
  62	 * write_gc0_ebase_64() is no longer UNDEFINED since R6.
  63	 */
  64	if (sizeof(long) == 8 &&
  65	    (cpu_has_mips64r6 || cpu_has_ebase_wg)) {
  66		write_gc0_ebase_64(v | MIPS_EBASE_WG);
  67		write_gc0_ebase_64(v);
  68	} else {
  69		write_gc0_ebase(v | MIPS_EBASE_WG);
  70		write_gc0_ebase(v);
  71	}
  72}
  73
  74/*
  75 * These Config bits may be writable by the guest:
  76 * Config:	[K23, KU] (!TLB), K0
  77 * Config1:	(none)
  78 * Config2:	[TU, SU] (impl)
  79 * Config3:	ISAOnExc
  80 * Config4:	FTLBPageSize
  81 * Config5:	K, CV, MSAEn, UFE, FRE, SBRI, UFR
  82 */
  83
  84static inline unsigned int kvm_vz_config_guest_wrmask(struct kvm_vcpu *vcpu)
  85{
  86	return CONF_CM_CMASK;
  87}
  88
  89static inline unsigned int kvm_vz_config1_guest_wrmask(struct kvm_vcpu *vcpu)
  90{
  91	return 0;
  92}
  93
  94static inline unsigned int kvm_vz_config2_guest_wrmask(struct kvm_vcpu *vcpu)
  95{
  96	return 0;
  97}
  98
  99static inline unsigned int kvm_vz_config3_guest_wrmask(struct kvm_vcpu *vcpu)
 100{
 101	return MIPS_CONF3_ISA_OE;
 102}
 103
 104static inline unsigned int kvm_vz_config4_guest_wrmask(struct kvm_vcpu *vcpu)
 105{
 106	/* no need to be exact */
 107	return MIPS_CONF4_VFTLBPAGESIZE;
 108}
 109
 110static inline unsigned int kvm_vz_config5_guest_wrmask(struct kvm_vcpu *vcpu)
 111{
 112	unsigned int mask = MIPS_CONF5_K | MIPS_CONF5_CV | MIPS_CONF5_SBRI;
 113
 114	/* Permit MSAEn changes if MSA supported and enabled */
 115	if (kvm_mips_guest_has_msa(&vcpu->arch))
 116		mask |= MIPS_CONF5_MSAEN;
 117
 118	/*
 119	 * Permit guest FPU mode changes if FPU is enabled and the relevant
 120	 * feature exists according to FIR register.
 121	 */
 122	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
 123		if (cpu_has_ufr)
 124			mask |= MIPS_CONF5_UFR;
 125		if (cpu_has_fre)
 126			mask |= MIPS_CONF5_FRE | MIPS_CONF5_UFE;
 127	}
 128
 129	return mask;
 130}
 131
 132static inline unsigned int kvm_vz_config6_guest_wrmask(struct kvm_vcpu *vcpu)
 133{
 134	return LOONGSON_CONF6_INTIMER | LOONGSON_CONF6_EXTIMER;
 135}
 136
 137/*
 138 * VZ optionally allows these additional Config bits to be written by root:
 139 * Config:	M, [MT]
 140 * Config1:	M, [MMUSize-1, C2, MD, PC, WR, CA], FP
 141 * Config2:	M
 142 * Config3:	M, MSAP, [BPG], ULRI, [DSP2P, DSPP], CTXTC, [ITL, LPA, VEIC,
 143 *		VInt, SP, CDMM, MT, SM, TL]
 144 * Config4:	M, [VTLBSizeExt, MMUSizeExt]
 145 * Config5:	MRP
 146 */
 147
 148static inline unsigned int kvm_vz_config_user_wrmask(struct kvm_vcpu *vcpu)
 149{
 150	return kvm_vz_config_guest_wrmask(vcpu) | MIPS_CONF_M;
 151}
 152
 153static inline unsigned int kvm_vz_config1_user_wrmask(struct kvm_vcpu *vcpu)
 154{
 155	unsigned int mask = kvm_vz_config1_guest_wrmask(vcpu) | MIPS_CONF_M;
 156
 157	/* Permit FPU to be present if FPU is supported */
 158	if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
 159		mask |= MIPS_CONF1_FP;
 160
 161	return mask;
 162}
 163
 164static inline unsigned int kvm_vz_config2_user_wrmask(struct kvm_vcpu *vcpu)
 165{
 166	return kvm_vz_config2_guest_wrmask(vcpu) | MIPS_CONF_M;
 167}
 168
 169static inline unsigned int kvm_vz_config3_user_wrmask(struct kvm_vcpu *vcpu)
 170{
 171	unsigned int mask = kvm_vz_config3_guest_wrmask(vcpu) | MIPS_CONF_M |
 172		MIPS_CONF3_ULRI | MIPS_CONF3_CTXTC;
 173
 174	/* Permit MSA to be present if MSA is supported */
 175	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
 176		mask |= MIPS_CONF3_MSA;
 177
 178	return mask;
 179}
 180
 181static inline unsigned int kvm_vz_config4_user_wrmask(struct kvm_vcpu *vcpu)
 182{
 183	return kvm_vz_config4_guest_wrmask(vcpu) | MIPS_CONF_M;
 184}
 185
 186static inline unsigned int kvm_vz_config5_user_wrmask(struct kvm_vcpu *vcpu)
 187{
 188	return kvm_vz_config5_guest_wrmask(vcpu) | MIPS_CONF5_MRP;
 189}
 190
 191static inline unsigned int kvm_vz_config6_user_wrmask(struct kvm_vcpu *vcpu)
 192{
 193	return kvm_vz_config6_guest_wrmask(vcpu) |
 194		LOONGSON_CONF6_SFBEN | LOONGSON_CONF6_FTLBDIS;
 195}
 196
 197static gpa_t kvm_vz_gva_to_gpa_cb(gva_t gva)
 198{
 199	/* VZ guest has already converted gva to gpa */
 200	return gva;
 201}
 202
 203static void kvm_vz_queue_irq(struct kvm_vcpu *vcpu, unsigned int priority)
 204{
 205	set_bit(priority, &vcpu->arch.pending_exceptions);
 206	clear_bit(priority, &vcpu->arch.pending_exceptions_clr);
 207}
 208
 209static void kvm_vz_dequeue_irq(struct kvm_vcpu *vcpu, unsigned int priority)
 210{
 211	clear_bit(priority, &vcpu->arch.pending_exceptions);
 212	set_bit(priority, &vcpu->arch.pending_exceptions_clr);
 213}
 214
 215static void kvm_vz_queue_timer_int_cb(struct kvm_vcpu *vcpu)
 216{
 217	/*
 218	 * timer expiry is asynchronous to vcpu execution therefore defer guest
 219	 * cp0 accesses
 220	 */
 221	kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
 222}
 223
 224static void kvm_vz_dequeue_timer_int_cb(struct kvm_vcpu *vcpu)
 225{
 226	/*
 227	 * timer expiry is asynchronous to vcpu execution therefore defer guest
 228	 * cp0 accesses
 229	 */
 230	kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_TIMER);
 231}
 232
 233static void kvm_vz_queue_io_int_cb(struct kvm_vcpu *vcpu,
 234				   struct kvm_mips_interrupt *irq)
 235{
 236	int intr = (int)irq->irq;
 237
 238	/*
 239	 * interrupts are asynchronous to vcpu execution therefore defer guest
 240	 * cp0 accesses
 241	 */
 242	kvm_vz_queue_irq(vcpu, kvm_irq_to_priority(intr));
 243}
 244
 245static void kvm_vz_dequeue_io_int_cb(struct kvm_vcpu *vcpu,
 246				     struct kvm_mips_interrupt *irq)
 247{
 248	int intr = (int)irq->irq;
 249
 250	/*
 251	 * interrupts are asynchronous to vcpu execution therefore defer guest
 252	 * cp0 accesses
 253	 */
 254	kvm_vz_dequeue_irq(vcpu, kvm_irq_to_priority(-intr));
 255}
 256
 257static int kvm_vz_irq_deliver_cb(struct kvm_vcpu *vcpu, unsigned int priority,
 258				 u32 cause)
 259{
 260	u32 irq = (priority < MIPS_EXC_MAX) ?
 261		kvm_priority_to_irq[priority] : 0;
 262
 263	switch (priority) {
 264	case MIPS_EXC_INT_TIMER:
 265		set_gc0_cause(C_TI);
 266		break;
 267
 268	case MIPS_EXC_INT_IO_1:
 269	case MIPS_EXC_INT_IO_2:
 270	case MIPS_EXC_INT_IPI_1:
 271	case MIPS_EXC_INT_IPI_2:
 272		if (cpu_has_guestctl2)
 273			set_c0_guestctl2(irq);
 274		else
 275			set_gc0_cause(irq);
 276		break;
 277
 278	default:
 279		break;
 280	}
 281
 282	clear_bit(priority, &vcpu->arch.pending_exceptions);
 283	return 1;
 284}
 285
 286static int kvm_vz_irq_clear_cb(struct kvm_vcpu *vcpu, unsigned int priority,
 287			       u32 cause)
 288{
 289	u32 irq = (priority < MIPS_EXC_MAX) ?
 290		kvm_priority_to_irq[priority] : 0;
 291
 292	switch (priority) {
 293	case MIPS_EXC_INT_TIMER:
 294		/*
 295		 * Call to kvm_write_c0_guest_compare() clears Cause.TI in
 296		 * kvm_mips_emulate_CP0(). Explicitly clear irq associated with
 297		 * Cause.IP[IPTI] if GuestCtl2 virtual interrupt register not
 298		 * supported or if not using GuestCtl2 Hardware Clear.
 299		 */
 300		if (cpu_has_guestctl2) {
 301			if (!(read_c0_guestctl2() & (irq << 14)))
 302				clear_c0_guestctl2(irq);
 303		} else {
 304			clear_gc0_cause(irq);
 305		}
 306		break;
 307
 308	case MIPS_EXC_INT_IO_1:
 309	case MIPS_EXC_INT_IO_2:
 310	case MIPS_EXC_INT_IPI_1:
 311	case MIPS_EXC_INT_IPI_2:
 312		/* Clear GuestCtl2.VIP irq if not using Hardware Clear */
 313		if (cpu_has_guestctl2) {
 314			if (!(read_c0_guestctl2() & (irq << 14)))
 315				clear_c0_guestctl2(irq);
 316		} else {
 317			clear_gc0_cause(irq);
 318		}
 319		break;
 320
 321	default:
 322		break;
 323	}
 324
 325	clear_bit(priority, &vcpu->arch.pending_exceptions_clr);
 326	return 1;
 327}
 328
 329/*
 330 * VZ guest timer handling.
 331 */
 332
 333/**
 334 * kvm_vz_should_use_htimer() - Find whether to use the VZ hard guest timer.
 335 * @vcpu:	Virtual CPU.
 336 *
 337 * Returns:	true if the VZ GTOffset & real guest CP0_Count should be used
 338 *		instead of software emulation of guest timer.
 339 *		false otherwise.
 340 */
 341static bool kvm_vz_should_use_htimer(struct kvm_vcpu *vcpu)
 342{
 343	if (kvm_mips_count_disabled(vcpu))
 344		return false;
 345
 346	/* Chosen frequency must match real frequency */
 347	if (mips_hpt_frequency != vcpu->arch.count_hz)
 348		return false;
 349
 350	/* We don't support a CP0_GTOffset with fewer bits than CP0_Count */
 351	if (current_cpu_data.gtoffset_mask != 0xffffffff)
 352		return false;
 353
 354	return true;
 355}
 356
 357/**
 358 * _kvm_vz_restore_stimer() - Restore soft timer state.
 359 * @vcpu:	Virtual CPU.
 360 * @compare:	CP0_Compare register value, restored by caller.
 361 * @cause:	CP0_Cause register to restore.
 362 *
 363 * Restore VZ state relating to the soft timer. The hard timer can be enabled
 364 * later.
 365 */
 366static void _kvm_vz_restore_stimer(struct kvm_vcpu *vcpu, u32 compare,
 367				   u32 cause)
 368{
 369	/*
 370	 * Avoid spurious counter interrupts by setting Guest CP0_Count to just
 371	 * after Guest CP0_Compare.
 372	 */
 373	write_c0_gtoffset(compare - read_c0_count());
 374
 375	back_to_back_c0_hazard();
 376	write_gc0_cause(cause);
 377}
 378
 379/**
 380 * _kvm_vz_restore_htimer() - Restore hard timer state.
 381 * @vcpu:	Virtual CPU.
 382 * @compare:	CP0_Compare register value, restored by caller.
 383 * @cause:	CP0_Cause register to restore.
 384 *
 385 * Restore hard timer Guest.Count & Guest.Cause taking care to preserve the
 386 * value of Guest.CP0_Cause.TI while restoring Guest.CP0_Cause.
 387 */
 388static void _kvm_vz_restore_htimer(struct kvm_vcpu *vcpu,
 389				   u32 compare, u32 cause)
 390{
 391	u32 start_count, after_count;
 392	ktime_t freeze_time;
 393	unsigned long flags;
 394
 395	/*
 396	 * Freeze the soft-timer and sync the guest CP0_Count with it. We do
 397	 * this with interrupts disabled to avoid latency.
 398	 */
 399	local_irq_save(flags);
 400	freeze_time = kvm_mips_freeze_hrtimer(vcpu, &start_count);
 401	write_c0_gtoffset(start_count - read_c0_count());
 402	local_irq_restore(flags);
 403
 404	/* restore guest CP0_Cause, as TI may already be set */
 405	back_to_back_c0_hazard();
 406	write_gc0_cause(cause);
 407
 408	/*
 409	 * The above sequence isn't atomic and would result in lost timer
 410	 * interrupts if we're not careful. Detect if a timer interrupt is due
 411	 * and assert it.
 412	 */
 413	back_to_back_c0_hazard();
 414	after_count = read_gc0_count();
 415	if (after_count - start_count > compare - start_count - 1)
 416		kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
 417}
 418
 419/**
 420 * kvm_vz_restore_timer() - Restore timer state.
 421 * @vcpu:	Virtual CPU.
 422 *
 423 * Restore soft timer state from saved context.
 424 */
 425static void kvm_vz_restore_timer(struct kvm_vcpu *vcpu)
 426{
 427	struct mips_coproc *cop0 = vcpu->arch.cop0;
 428	u32 cause, compare;
 429
 430	compare = kvm_read_sw_gc0_compare(cop0);
 431	cause = kvm_read_sw_gc0_cause(cop0);
 432
 433	write_gc0_compare(compare);
 434	_kvm_vz_restore_stimer(vcpu, compare, cause);
 435}
 436
 437/**
 438 * kvm_vz_acquire_htimer() - Switch to hard timer state.
 439 * @vcpu:	Virtual CPU.
 440 *
 441 * Restore hard timer state on top of existing soft timer state if possible.
 442 *
 443 * Since hard timer won't remain active over preemption, preemption should be
 444 * disabled by the caller.
 445 */
 446void kvm_vz_acquire_htimer(struct kvm_vcpu *vcpu)
 447{
 448	u32 gctl0;
 449
 450	gctl0 = read_c0_guestctl0();
 451	if (!(gctl0 & MIPS_GCTL0_GT) && kvm_vz_should_use_htimer(vcpu)) {
 452		/* enable guest access to hard timer */
 453		write_c0_guestctl0(gctl0 | MIPS_GCTL0_GT);
 454
 455		_kvm_vz_restore_htimer(vcpu, read_gc0_compare(),
 456				       read_gc0_cause());
 457	}
 458}
 459
 460/**
 461 * _kvm_vz_save_htimer() - Switch to software emulation of guest timer.
 462 * @vcpu:	Virtual CPU.
 463 * @compare:	Pointer to write compare value to.
 464 * @cause:	Pointer to write cause value to.
 465 *
 466 * Save VZ guest timer state and switch to software emulation of guest CP0
 467 * timer. The hard timer must already be in use, so preemption should be
 468 * disabled.
 469 */
 470static void _kvm_vz_save_htimer(struct kvm_vcpu *vcpu,
 471				u32 *out_compare, u32 *out_cause)
 472{
 473	u32 cause, compare, before_count, end_count;
 474	ktime_t before_time;
 475
 476	compare = read_gc0_compare();
 477	*out_compare = compare;
 478
 479	before_time = ktime_get();
 480
 481	/*
 482	 * Record the CP0_Count *prior* to saving CP0_Cause, so we have a time
 483	 * at which no pending timer interrupt is missing.
 484	 */
 485	before_count = read_gc0_count();
 486	back_to_back_c0_hazard();
 487	cause = read_gc0_cause();
 488	*out_cause = cause;
 489
 490	/*
 491	 * Record a final CP0_Count which we will transfer to the soft-timer.
 492	 * This is recorded *after* saving CP0_Cause, so we don't get any timer
 493	 * interrupts from just after the final CP0_Count point.
 494	 */
 495	back_to_back_c0_hazard();
 496	end_count = read_gc0_count();
 497
 498	/*
 499	 * The above sequence isn't atomic, so we could miss a timer interrupt
 500	 * between reading CP0_Cause and end_count. Detect and record any timer
 501	 * interrupt due between before_count and end_count.
 502	 */
 503	if (end_count - before_count > compare - before_count - 1)
 504		kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
 505
 506	/*
 507	 * Restore soft-timer, ignoring a small amount of negative drift due to
 508	 * delay between freeze_hrtimer and setting CP0_GTOffset.
 509	 */
 510	kvm_mips_restore_hrtimer(vcpu, before_time, end_count, -0x10000);
 511}
 512
 513/**
 514 * kvm_vz_save_timer() - Save guest timer state.
 515 * @vcpu:	Virtual CPU.
 516 *
 517 * Save VZ guest timer state and switch to soft guest timer if hard timer was in
 518 * use.
 519 */
 520static void kvm_vz_save_timer(struct kvm_vcpu *vcpu)
 521{
 522	struct mips_coproc *cop0 = vcpu->arch.cop0;
 523	u32 gctl0, compare, cause;
 524
 525	gctl0 = read_c0_guestctl0();
 526	if (gctl0 & MIPS_GCTL0_GT) {
 527		/* disable guest use of hard timer */
 528		write_c0_guestctl0(gctl0 & ~MIPS_GCTL0_GT);
 529
 530		/* save hard timer state */
 531		_kvm_vz_save_htimer(vcpu, &compare, &cause);
 532	} else {
 533		compare = read_gc0_compare();
 534		cause = read_gc0_cause();
 535	}
 536
 537	/* save timer-related state to VCPU context */
 538	kvm_write_sw_gc0_cause(cop0, cause);
 539	kvm_write_sw_gc0_compare(cop0, compare);
 540}
 541
 542/**
 543 * kvm_vz_lose_htimer() - Ensure hard guest timer is not in use.
 544 * @vcpu:	Virtual CPU.
 545 *
 546 * Transfers the state of the hard guest timer to the soft guest timer, leaving
 547 * guest state intact so it can continue to be used with the soft timer.
 548 */
 549void kvm_vz_lose_htimer(struct kvm_vcpu *vcpu)
 550{
 551	u32 gctl0, compare, cause;
 552
 553	preempt_disable();
 554	gctl0 = read_c0_guestctl0();
 555	if (gctl0 & MIPS_GCTL0_GT) {
 556		/* disable guest use of timer */
 557		write_c0_guestctl0(gctl0 & ~MIPS_GCTL0_GT);
 558
 559		/* switch to soft timer */
 560		_kvm_vz_save_htimer(vcpu, &compare, &cause);
 561
 562		/* leave soft timer in usable state */
 563		_kvm_vz_restore_stimer(vcpu, compare, cause);
 564	}
 565	preempt_enable();
 566}
 567
 568/**
 569 * is_eva_access() - Find whether an instruction is an EVA memory accessor.
 570 * @inst:	32-bit instruction encoding.
 571 *
 572 * Finds whether @inst encodes an EVA memory access instruction, which would
 573 * indicate that emulation of it should access the user mode address space
 574 * instead of the kernel mode address space. This matters for MUSUK segments
 575 * which are TLB mapped for user mode but unmapped for kernel mode.
 576 *
 577 * Returns:	Whether @inst encodes an EVA accessor instruction.
 578 */
 579static bool is_eva_access(union mips_instruction inst)
 580{
 581	if (inst.spec3_format.opcode != spec3_op)
 582		return false;
 583
 584	switch (inst.spec3_format.func) {
 585	case lwle_op:
 586	case lwre_op:
 587	case cachee_op:
 588	case sbe_op:
 589	case she_op:
 590	case sce_op:
 591	case swe_op:
 592	case swle_op:
 593	case swre_op:
 594	case prefe_op:
 595	case lbue_op:
 596	case lhue_op:
 597	case lbe_op:
 598	case lhe_op:
 599	case lle_op:
 600	case lwe_op:
 601		return true;
 602	default:
 603		return false;
 604	}
 605}
 606
 607/**
 608 * is_eva_am_mapped() - Find whether an access mode is mapped.
 609 * @vcpu:	KVM VCPU state.
 610 * @am:		3-bit encoded access mode.
 611 * @eu:		Segment becomes unmapped and uncached when Status.ERL=1.
 612 *
 613 * Decode @am to find whether it encodes a mapped segment for the current VCPU
 614 * state. Where necessary @eu and the actual instruction causing the fault are
 615 * taken into account to make the decision.
 616 *
 617 * Returns:	Whether the VCPU faulted on a TLB mapped address.
 618 */
 619static bool is_eva_am_mapped(struct kvm_vcpu *vcpu, unsigned int am, bool eu)
 620{
 621	u32 am_lookup;
 622	int err;
 623
 624	/*
 625	 * Interpret access control mode. We assume address errors will already
 626	 * have been caught by the guest, leaving us with:
 627	 *      AM      UM  SM  KM  31..24 23..16
 628	 * UK    0 000          Unm   0      0
 629	 * MK    1 001          TLB   1
 630	 * MSK   2 010      TLB TLB   1
 631	 * MUSK  3 011  TLB TLB TLB   1
 632	 * MUSUK 4 100  TLB TLB Unm   0      1
 633	 * USK   5 101      Unm Unm   0      0
 634	 * -     6 110                0      0
 635	 * UUSK  7 111  Unm Unm Unm   0      0
 636	 *
 637	 * We shift a magic value by AM across the sign bit to find if always
 638	 * TLB mapped, and if not shift by 8 again to find if it depends on KM.
 639	 */
 640	am_lookup = 0x70080000 << am;
 641	if ((s32)am_lookup < 0) {
 642		/*
 643		 * MK, MSK, MUSK
 644		 * Always TLB mapped, unless SegCtl.EU && ERL
 645		 */
 646		if (!eu || !(read_gc0_status() & ST0_ERL))
 647			return true;
 648	} else {
 649		am_lookup <<= 8;
 650		if ((s32)am_lookup < 0) {
 651			union mips_instruction inst;
 652			unsigned int status;
 653			u32 *opc;
 654
 655			/*
 656			 * MUSUK
 657			 * TLB mapped if not in kernel mode
 658			 */
 659			status = read_gc0_status();
 660			if (!(status & (ST0_EXL | ST0_ERL)) &&
 661			    (status & ST0_KSU))
 662				return true;
 663			/*
 664			 * EVA access instructions in kernel
 665			 * mode access user address space.
 666			 */
 667			opc = (u32 *)vcpu->arch.pc;
 668			if (vcpu->arch.host_cp0_cause & CAUSEF_BD)
 669				opc += 1;
 670			err = kvm_get_badinstr(opc, vcpu, &inst.word);
 671			if (!err && is_eva_access(inst))
 672				return true;
 673		}
 674	}
 675
 676	return false;
 677}
 678
 679/**
 680 * kvm_vz_gva_to_gpa() - Convert valid GVA to GPA.
 681 * @vcpu:	KVM VCPU state.
 682 * @gva:	Guest virtual address to convert.
 683 * @gpa:	Output guest physical address.
 684 *
 685 * Convert a guest virtual address (GVA) which is valid according to the guest
 686 * context, to a guest physical address (GPA).
 687 *
 688 * Returns:	0 on success.
 689 *		-errno on failure.
 690 */
 691static int kvm_vz_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
 692			     unsigned long *gpa)
 693{
 694	u32 gva32 = gva;
 695	unsigned long segctl;
 696
 697	if ((long)gva == (s32)gva32) {
 698		/* Handle canonical 32-bit virtual address */
 699		if (cpu_guest_has_segments) {
 700			unsigned long mask, pa;
 701
 702			switch (gva32 >> 29) {
 703			case 0:
 704			case 1: /* CFG5 (1GB) */
 705				segctl = read_gc0_segctl2() >> 16;
 706				mask = (unsigned long)0xfc0000000ull;
 707				break;
 708			case 2:
 709			case 3: /* CFG4 (1GB) */
 710				segctl = read_gc0_segctl2();
 711				mask = (unsigned long)0xfc0000000ull;
 712				break;
 713			case 4: /* CFG3 (512MB) */
 714				segctl = read_gc0_segctl1() >> 16;
 715				mask = (unsigned long)0xfe0000000ull;
 716				break;
 717			case 5: /* CFG2 (512MB) */
 718				segctl = read_gc0_segctl1();
 719				mask = (unsigned long)0xfe0000000ull;
 720				break;
 721			case 6: /* CFG1 (512MB) */
 722				segctl = read_gc0_segctl0() >> 16;
 723				mask = (unsigned long)0xfe0000000ull;
 724				break;
 725			case 7: /* CFG0 (512MB) */
 726				segctl = read_gc0_segctl0();
 727				mask = (unsigned long)0xfe0000000ull;
 728				break;
 729			default:
 730				/*
 731				 * GCC 4.9 isn't smart enough to figure out that
 732				 * segctl and mask are always initialised.
 733				 */
 734				unreachable();
 735			}
 736
 737			if (is_eva_am_mapped(vcpu, (segctl >> 4) & 0x7,
 738					     segctl & 0x0008))
 739				goto tlb_mapped;
 740
 741			/* Unmapped, find guest physical address */
 742			pa = (segctl << 20) & mask;
 743			pa |= gva32 & ~mask;
 744			*gpa = pa;
 745			return 0;
 746		} else if ((s32)gva32 < (s32)0xc0000000) {
 747			/* legacy unmapped KSeg0 or KSeg1 */
 748			*gpa = gva32 & 0x1fffffff;
 749			return 0;
 750		}
 751#ifdef CONFIG_64BIT
 752	} else if ((gva & 0xc000000000000000) == 0x8000000000000000) {
 753		/* XKPHYS */
 754		if (cpu_guest_has_segments) {
 755			/*
 756			 * Each of the 8 regions can be overridden by SegCtl2.XR
 757			 * to use SegCtl1.XAM.
 758			 */
 759			segctl = read_gc0_segctl2();
 760			if (segctl & (1ull << (56 + ((gva >> 59) & 0x7)))) {
 761				segctl = read_gc0_segctl1();
 762				if (is_eva_am_mapped(vcpu, (segctl >> 59) & 0x7,
 763						     0))
 764					goto tlb_mapped;
 765			}
 766
 767		}
 768		/*
 769		 * Traditionally fully unmapped.
 770		 * Bits 61:59 specify the CCA, which we can just mask off here.
 771		 * Bits 58:PABITS should be zero, but we shouldn't have got here
 772		 * if it wasn't.
 773		 */
 774		*gpa = gva & 0x07ffffffffffffff;
 775		return 0;
 776#endif
 777	}
 778
 779tlb_mapped:
 780	return kvm_vz_guest_tlb_lookup(vcpu, gva, gpa);
 781}
 782
 783/**
 784 * kvm_vz_badvaddr_to_gpa() - Convert GVA BadVAddr from root exception to GPA.
 785 * @vcpu:	KVM VCPU state.
 786 * @badvaddr:	Root BadVAddr.
 787 * @gpa:	Output guest physical address.
 788 *
 789 * VZ implementations are permitted to report guest virtual addresses (GVA) in
 790 * BadVAddr on a root exception during guest execution, instead of the more
 791 * convenient guest physical addresses (GPA). When we get a GVA, this function
 792 * converts it to a GPA, taking into account guest segmentation and guest TLB
 793 * state.
 794 *
 795 * Returns:	0 on success.
 796 *		-errno on failure.
 797 */
 798static int kvm_vz_badvaddr_to_gpa(struct kvm_vcpu *vcpu, unsigned long badvaddr,
 799				  unsigned long *gpa)
 800{
 801	unsigned int gexccode = (vcpu->arch.host_cp0_guestctl0 &
 802				 MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT;
 803
 804	/* If BadVAddr is GPA, then all is well in the world */
 805	if (likely(gexccode == MIPS_GCTL0_GEXC_GPA)) {
 806		*gpa = badvaddr;
 807		return 0;
 808	}
 809
 810	/* Otherwise we'd expect it to be GVA ... */
 811	if (WARN(gexccode != MIPS_GCTL0_GEXC_GVA,
 812		 "Unexpected gexccode %#x\n", gexccode))
 813		return -EINVAL;
 814
 815	/* ... and we need to perform the GVA->GPA translation in software */
 816	return kvm_vz_gva_to_gpa(vcpu, badvaddr, gpa);
 817}
 818
 819static int kvm_trap_vz_no_handler(struct kvm_vcpu *vcpu)
 820{
 821	u32 *opc = (u32 *) vcpu->arch.pc;
 822	u32 cause = vcpu->arch.host_cp0_cause;
 823	u32 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
 824	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
 825	u32 inst = 0;
 826
 827	/*
 828	 *  Fetch the instruction.
 829	 */
 830	if (cause & CAUSEF_BD)
 831		opc += 1;
 832	kvm_get_badinstr(opc, vcpu, &inst);
 833
 834	kvm_err("Exception Code: %d not handled @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n",
 835		exccode, opc, inst, badvaddr,
 836		read_gc0_status());
 837	kvm_arch_vcpu_dump_regs(vcpu);
 838	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 839	return RESUME_HOST;
 840}
 841
 842static unsigned long mips_process_maar(unsigned int op, unsigned long val)
 843{
 844	/* Mask off unused bits */
 845	unsigned long mask = 0xfffff000 | MIPS_MAAR_S | MIPS_MAAR_VL;
 846
 847	if (read_gc0_pagegrain() & PG_ELPA)
 848		mask |= 0x00ffffff00000000ull;
 849	if (cpu_guest_has_mvh)
 850		mask |= MIPS_MAAR_VH;
 851
 852	/* Set or clear VH */
 853	if (op == mtc_op) {
 854		/* clear VH */
 855		val &= ~MIPS_MAAR_VH;
 856	} else if (op == dmtc_op) {
 857		/* set VH to match VL */
 858		val &= ~MIPS_MAAR_VH;
 859		if (val & MIPS_MAAR_VL)
 860			val |= MIPS_MAAR_VH;
 861	}
 862
 863	return val & mask;
 864}
 865
 866static void kvm_write_maari(struct kvm_vcpu *vcpu, unsigned long val)
 867{
 868	struct mips_coproc *cop0 = vcpu->arch.cop0;
 869
 870	val &= MIPS_MAARI_INDEX;
 871	if (val == MIPS_MAARI_INDEX)
 872		kvm_write_sw_gc0_maari(cop0, ARRAY_SIZE(vcpu->arch.maar) - 1);
 873	else if (val < ARRAY_SIZE(vcpu->arch.maar))
 874		kvm_write_sw_gc0_maari(cop0, val);
 875}
 876
 877static enum emulation_result kvm_vz_gpsi_cop0(union mips_instruction inst,
 878					      u32 *opc, u32 cause,
 879					      struct kvm_vcpu *vcpu)
 880{
 881	struct mips_coproc *cop0 = vcpu->arch.cop0;
 882	enum emulation_result er = EMULATE_DONE;
 883	u32 rt, rd, sel;
 884	unsigned long curr_pc;
 885	unsigned long val;
 886
 887	/*
 888	 * Update PC and hold onto current PC in case there is
 889	 * an error and we want to rollback the PC
 890	 */
 891	curr_pc = vcpu->arch.pc;
 892	er = update_pc(vcpu, cause);
 893	if (er == EMULATE_FAIL)
 894		return er;
 895
 896	if (inst.co_format.co) {
 897		switch (inst.co_format.func) {
 898		case wait_op:
 899			er = kvm_mips_emul_wait(vcpu);
 900			break;
 901		default:
 902			er = EMULATE_FAIL;
 903		}
 904	} else {
 905		rt = inst.c0r_format.rt;
 906		rd = inst.c0r_format.rd;
 907		sel = inst.c0r_format.sel;
 908
 909		switch (inst.c0r_format.rs) {
 910		case dmfc_op:
 911		case mfc_op:
 912#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
 913			cop0->stat[rd][sel]++;
 914#endif
 915			if (rd == MIPS_CP0_COUNT &&
 916			    sel == 0) {			/* Count */
 917				val = kvm_mips_read_count(vcpu);
 918			} else if (rd == MIPS_CP0_COMPARE &&
 919				   sel == 0) {		/* Compare */
 920				val = read_gc0_compare();
 921			} else if (rd == MIPS_CP0_LLADDR &&
 922				   sel == 0) {		/* LLAddr */
 923				if (cpu_guest_has_rw_llb)
 924					val = read_gc0_lladdr() &
 925						MIPS_LLADDR_LLB;
 926				else
 927					val = 0;
 928			} else if (rd == MIPS_CP0_LLADDR &&
 929				   sel == 1 &&		/* MAAR */
 930				   cpu_guest_has_maar &&
 931				   !cpu_guest_has_dyn_maar) {
 932				/* MAARI must be in range */
 933				BUG_ON(kvm_read_sw_gc0_maari(cop0) >=
 934						ARRAY_SIZE(vcpu->arch.maar));
 935				val = vcpu->arch.maar[
 936					kvm_read_sw_gc0_maari(cop0)];
 937			} else if ((rd == MIPS_CP0_PRID &&
 938				    (sel == 0 ||	/* PRid */
 939				     sel == 2 ||	/* CDMMBase */
 940				     sel == 3)) ||	/* CMGCRBase */
 941				   (rd == MIPS_CP0_STATUS &&
 942				    (sel == 2 ||	/* SRSCtl */
 943				     sel == 3)) ||	/* SRSMap */
 944				   (rd == MIPS_CP0_CONFIG &&
 945				    (sel == 6 ||	/* Config6 */
 946				     sel == 7)) ||	/* Config7 */
 947				   (rd == MIPS_CP0_LLADDR &&
 948				    (sel == 2) &&	/* MAARI */
 949				    cpu_guest_has_maar &&
 950				    !cpu_guest_has_dyn_maar) ||
 951				   (rd == MIPS_CP0_ERRCTL &&
 952				    (sel == 0))) {	/* ErrCtl */
 953				val = cop0->reg[rd][sel];
 954#ifdef CONFIG_CPU_LOONGSON64
 955			} else if (rd == MIPS_CP0_DIAG &&
 956				   (sel == 0)) {	/* Diag */
 957				val = cop0->reg[rd][sel];
 958#endif
 959			} else {
 960				val = 0;
 961				er = EMULATE_FAIL;
 962			}
 963
 964			if (er != EMULATE_FAIL) {
 965				/* Sign extend */
 966				if (inst.c0r_format.rs == mfc_op)
 967					val = (int)val;
 968				vcpu->arch.gprs[rt] = val;
 969			}
 970
 971			trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mfc_op) ?
 972					KVM_TRACE_MFC0 : KVM_TRACE_DMFC0,
 973				      KVM_TRACE_COP0(rd, sel), val);
 974			break;
 975
 976		case dmtc_op:
 977		case mtc_op:
 978#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
 979			cop0->stat[rd][sel]++;
 980#endif
 981			val = vcpu->arch.gprs[rt];
 982			trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mtc_op) ?
 983					KVM_TRACE_MTC0 : KVM_TRACE_DMTC0,
 984				      KVM_TRACE_COP0(rd, sel), val);
 985
 986			if (rd == MIPS_CP0_COUNT &&
 987			    sel == 0) {			/* Count */
 988				kvm_vz_lose_htimer(vcpu);
 989				kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
 990			} else if (rd == MIPS_CP0_COMPARE &&
 991				   sel == 0) {		/* Compare */
 992				kvm_mips_write_compare(vcpu,
 993						       vcpu->arch.gprs[rt],
 994						       true);
 995			} else if (rd == MIPS_CP0_LLADDR &&
 996				   sel == 0) {		/* LLAddr */
 997				/*
 998				 * P5600 generates GPSI on guest MTC0 LLAddr.
 999				 * Only allow the guest to clear LLB.
1000				 */
1001				if (cpu_guest_has_rw_llb &&
1002				    !(val & MIPS_LLADDR_LLB))
1003					write_gc0_lladdr(0);
1004			} else if (rd == MIPS_CP0_LLADDR &&
1005				   sel == 1 &&		/* MAAR */
1006				   cpu_guest_has_maar &&
1007				   !cpu_guest_has_dyn_maar) {
1008				val = mips_process_maar(inst.c0r_format.rs,
1009							val);
1010
1011				/* MAARI must be in range */
1012				BUG_ON(kvm_read_sw_gc0_maari(cop0) >=
1013						ARRAY_SIZE(vcpu->arch.maar));
1014				vcpu->arch.maar[kvm_read_sw_gc0_maari(cop0)] =
1015									val;
1016			} else if (rd == MIPS_CP0_LLADDR &&
1017				   (sel == 2) &&	/* MAARI */
1018				   cpu_guest_has_maar &&
1019				   !cpu_guest_has_dyn_maar) {
1020				kvm_write_maari(vcpu, val);
1021			} else if (rd == MIPS_CP0_CONFIG &&
1022				   (sel == 6)) {
1023				cop0->reg[rd][sel] = (int)val;
1024			} else if (rd == MIPS_CP0_ERRCTL &&
1025				   (sel == 0)) {	/* ErrCtl */
1026				/* ignore the written value */
1027#ifdef CONFIG_CPU_LOONGSON64
1028			} else if (rd == MIPS_CP0_DIAG &&
1029				   (sel == 0)) {	/* Diag */
1030				unsigned long flags;
1031
1032				local_irq_save(flags);
1033				if (val & LOONGSON_DIAG_BTB) {
1034					/* Flush BTB */
1035					set_c0_diag(LOONGSON_DIAG_BTB);
1036				}
1037				if (val & LOONGSON_DIAG_ITLB) {
1038					/* Flush ITLB */
1039					set_c0_diag(LOONGSON_DIAG_ITLB);
1040				}
1041				if (val & LOONGSON_DIAG_DTLB) {
1042					/* Flush DTLB */
1043					set_c0_diag(LOONGSON_DIAG_DTLB);
1044				}
1045				if (val & LOONGSON_DIAG_VTLB) {
1046					/* Flush VTLB */
1047					kvm_loongson_clear_guest_vtlb();
1048				}
1049				if (val & LOONGSON_DIAG_FTLB) {
1050					/* Flush FTLB */
1051					kvm_loongson_clear_guest_ftlb();
1052				}
1053				local_irq_restore(flags);
1054#endif
1055			} else {
1056				er = EMULATE_FAIL;
1057			}
1058			break;
1059
1060		default:
1061			er = EMULATE_FAIL;
1062			break;
1063		}
1064	}
1065	/* Rollback PC only if emulation was unsuccessful */
1066	if (er == EMULATE_FAIL) {
1067		kvm_err("[%#lx]%s: unsupported cop0 instruction 0x%08x\n",
1068			curr_pc, __func__, inst.word);
1069
1070		vcpu->arch.pc = curr_pc;
1071	}
1072
1073	return er;
1074}
1075
1076static enum emulation_result kvm_vz_gpsi_cache(union mips_instruction inst,
1077					       u32 *opc, u32 cause,
1078					       struct kvm_vcpu *vcpu)
1079{
1080	enum emulation_result er = EMULATE_DONE;
1081	u32 cache, op_inst, op, base;
1082	s16 offset;
1083	struct kvm_vcpu_arch *arch = &vcpu->arch;
1084	unsigned long va, curr_pc;
1085
1086	/*
1087	 * Update PC and hold onto current PC in case there is
1088	 * an error and we want to rollback the PC
1089	 */
1090	curr_pc = vcpu->arch.pc;
1091	er = update_pc(vcpu, cause);
1092	if (er == EMULATE_FAIL)
1093		return er;
1094
1095	base = inst.i_format.rs;
1096	op_inst = inst.i_format.rt;
1097	if (cpu_has_mips_r6)
1098		offset = inst.spec3_format.simmediate;
1099	else
1100		offset = inst.i_format.simmediate;
1101	cache = op_inst & CacheOp_Cache;
1102	op = op_inst & CacheOp_Op;
1103
1104	va = arch->gprs[base] + offset;
1105
1106	kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1107		  cache, op, base, arch->gprs[base], offset);
1108
1109	/* Secondary or tirtiary cache ops ignored */
1110	if (cache != Cache_I && cache != Cache_D)
1111		return EMULATE_DONE;
1112
1113	switch (op_inst) {
1114	case Index_Invalidate_I:
1115		flush_icache_line_indexed(va);
1116		return EMULATE_DONE;
1117	case Index_Writeback_Inv_D:
1118		flush_dcache_line_indexed(va);
1119		return EMULATE_DONE;
1120	case Hit_Invalidate_I:
1121	case Hit_Invalidate_D:
1122	case Hit_Writeback_Inv_D:
1123		if (boot_cpu_type() == CPU_CAVIUM_OCTEON3) {
1124			/* We can just flush entire icache */
1125			local_flush_icache_range(0, 0);
1126			return EMULATE_DONE;
1127		}
1128
1129		/* So far, other platforms support guest hit cache ops */
1130		break;
1131	default:
1132		break;
1133	}
1134
1135	kvm_err("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1136		curr_pc, vcpu->arch.gprs[31], cache, op, base, arch->gprs[base],
1137		offset);
1138	/* Rollback PC */
1139	vcpu->arch.pc = curr_pc;
1140
1141	return EMULATE_FAIL;
1142}
1143
1144#ifdef CONFIG_CPU_LOONGSON64
1145static enum emulation_result kvm_vz_gpsi_lwc2(union mips_instruction inst,
1146					      u32 *opc, u32 cause,
1147					      struct kvm_vcpu *vcpu)
1148{
1149	unsigned int rs, rd;
1150	unsigned int hostcfg;
1151	unsigned long curr_pc;
1152	enum emulation_result er = EMULATE_DONE;
1153
1154	/*
1155	 * Update PC and hold onto current PC in case there is
1156	 * an error and we want to rollback the PC
1157	 */
1158	curr_pc = vcpu->arch.pc;
1159	er = update_pc(vcpu, cause);
1160	if (er == EMULATE_FAIL)
1161		return er;
1162
1163	rs = inst.loongson3_lscsr_format.rs;
1164	rd = inst.loongson3_lscsr_format.rd;
1165	switch (inst.loongson3_lscsr_format.fr) {
1166	case 0x8:  /* Read CPUCFG */
1167		++vcpu->stat.vz_cpucfg_exits;
1168		hostcfg = read_cpucfg(vcpu->arch.gprs[rs]);
1169
1170		switch (vcpu->arch.gprs[rs]) {
1171		case LOONGSON_CFG0:
1172			vcpu->arch.gprs[rd] = 0x14c000;
1173			break;
1174		case LOONGSON_CFG1:
1175			hostcfg &= (LOONGSON_CFG1_FP | LOONGSON_CFG1_MMI |
1176				    LOONGSON_CFG1_MSA1 | LOONGSON_CFG1_MSA2 |
1177				    LOONGSON_CFG1_SFBP);
1178			vcpu->arch.gprs[rd] = hostcfg;
1179			break;
1180		case LOONGSON_CFG2:
1181			hostcfg &= (LOONGSON_CFG2_LEXT1 | LOONGSON_CFG2_LEXT2 |
1182				    LOONGSON_CFG2_LEXT3 | LOONGSON_CFG2_LSPW);
1183			vcpu->arch.gprs[rd] = hostcfg;
1184			break;
1185		case LOONGSON_CFG3:
1186			vcpu->arch.gprs[rd] = hostcfg;
1187			break;
1188		default:
1189			/* Don't export any other advanced features to guest */
1190			vcpu->arch.gprs[rd] = 0;
1191			break;
1192		}
1193		break;
1194
1195	default:
1196		kvm_err("lwc2 emulate not impl %d rs %lx @%lx\n",
1197			inst.loongson3_lscsr_format.fr, vcpu->arch.gprs[rs], curr_pc);
1198		er = EMULATE_FAIL;
1199		break;
1200	}
1201
1202	/* Rollback PC only if emulation was unsuccessful */
1203	if (er == EMULATE_FAIL) {
1204		kvm_err("[%#lx]%s: unsupported lwc2 instruction 0x%08x 0x%08x\n",
1205			curr_pc, __func__, inst.word, inst.loongson3_lscsr_format.fr);
1206
1207		vcpu->arch.pc = curr_pc;
1208	}
1209
1210	return er;
1211}
1212#endif
1213
1214static enum emulation_result kvm_trap_vz_handle_gpsi(u32 cause, u32 *opc,
1215						     struct kvm_vcpu *vcpu)
1216{
1217	enum emulation_result er = EMULATE_DONE;
1218	struct kvm_vcpu_arch *arch = &vcpu->arch;
1219	union mips_instruction inst;
1220	int rd, rt, sel;
1221	int err;
1222
1223	/*
1224	 *  Fetch the instruction.
1225	 */
1226	if (cause & CAUSEF_BD)
1227		opc += 1;
1228	err = kvm_get_badinstr(opc, vcpu, &inst.word);
1229	if (err)
1230		return EMULATE_FAIL;
1231
1232	switch (inst.r_format.opcode) {
1233	case cop0_op:
1234		er = kvm_vz_gpsi_cop0(inst, opc, cause, vcpu);
1235		break;
1236#ifndef CONFIG_CPU_MIPSR6
1237	case cache_op:
1238		trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1239		er = kvm_vz_gpsi_cache(inst, opc, cause, vcpu);
1240		break;
1241#endif
1242#ifdef CONFIG_CPU_LOONGSON64
1243	case lwc2_op:
1244		er = kvm_vz_gpsi_lwc2(inst, opc, cause, vcpu);
1245		break;
1246#endif
1247	case spec3_op:
1248		switch (inst.spec3_format.func) {
1249#ifdef CONFIG_CPU_MIPSR6
1250		case cache6_op:
1251			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1252			er = kvm_vz_gpsi_cache(inst, opc, cause, vcpu);
1253			break;
1254#endif
1255		case rdhwr_op:
1256			if (inst.r_format.rs || (inst.r_format.re >> 3))
1257				goto unknown;
1258
1259			rd = inst.r_format.rd;
1260			rt = inst.r_format.rt;
1261			sel = inst.r_format.re & 0x7;
1262
1263			switch (rd) {
1264			case MIPS_HWR_CC:	/* Read count register */
1265				arch->gprs[rt] =
1266					(long)(int)kvm_mips_read_count(vcpu);
1267				break;
1268			default:
1269				trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR,
1270					      KVM_TRACE_HWR(rd, sel), 0);
1271				goto unknown;
1272			}
1273
1274			trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR,
1275				      KVM_TRACE_HWR(rd, sel), arch->gprs[rt]);
1276
1277			er = update_pc(vcpu, cause);
1278			break;
1279		default:
1280			goto unknown;
1281		}
1282		break;
1283unknown:
1284
1285	default:
1286		kvm_err("GPSI exception not supported (%p/%#x)\n",
1287				opc, inst.word);
1288		kvm_arch_vcpu_dump_regs(vcpu);
1289		er = EMULATE_FAIL;
1290		break;
1291	}
1292
1293	return er;
1294}
1295
1296static enum emulation_result kvm_trap_vz_handle_gsfc(u32 cause, u32 *opc,
1297						     struct kvm_vcpu *vcpu)
1298{
1299	enum emulation_result er = EMULATE_DONE;
1300	struct kvm_vcpu_arch *arch = &vcpu->arch;
1301	union mips_instruction inst;
1302	int err;
1303
1304	/*
1305	 *  Fetch the instruction.
1306	 */
1307	if (cause & CAUSEF_BD)
1308		opc += 1;
1309	err = kvm_get_badinstr(opc, vcpu, &inst.word);
1310	if (err)
1311		return EMULATE_FAIL;
1312
1313	/* complete MTC0 on behalf of guest and advance EPC */
1314	if (inst.c0r_format.opcode == cop0_op &&
1315	    inst.c0r_format.rs == mtc_op &&
1316	    inst.c0r_format.z == 0) {
1317		int rt = inst.c0r_format.rt;
1318		int rd = inst.c0r_format.rd;
1319		int sel = inst.c0r_format.sel;
1320		unsigned int val = arch->gprs[rt];
1321		unsigned int old_val, change;
1322
1323		trace_kvm_hwr(vcpu, KVM_TRACE_MTC0, KVM_TRACE_COP0(rd, sel),
1324			      val);
1325
1326		if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1327			/* FR bit should read as zero if no FPU */
1328			if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1329				val &= ~(ST0_CU1 | ST0_FR);
1330
1331			/*
1332			 * Also don't allow FR to be set if host doesn't support
1333			 * it.
1334			 */
1335			if (!(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
1336				val &= ~ST0_FR;
1337
1338			old_val = read_gc0_status();
1339			change = val ^ old_val;
1340
1341			if (change & ST0_FR) {
1342				/*
1343				 * FPU and Vector register state is made
1344				 * UNPREDICTABLE by a change of FR, so don't
1345				 * even bother saving it.
1346				 */
1347				kvm_drop_fpu(vcpu);
1348			}
1349
1350			/*
1351			 * If MSA state is already live, it is undefined how it
1352			 * interacts with FR=0 FPU state, and we don't want to
1353			 * hit reserved instruction exceptions trying to save
1354			 * the MSA state later when CU=1 && FR=1, so play it
1355			 * safe and save it first.
1356			 */
1357			if (change & ST0_CU1 && !(val & ST0_FR) &&
1358			    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1359				kvm_lose_fpu(vcpu);
1360
1361			write_gc0_status(val);
1362		} else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1363			u32 old_cause = read_gc0_cause();
1364			u32 change = old_cause ^ val;
1365
1366			/* DC bit enabling/disabling timer? */
1367			if (change & CAUSEF_DC) {
1368				if (val & CAUSEF_DC) {
1369					kvm_vz_lose_htimer(vcpu);
1370					kvm_mips_count_disable_cause(vcpu);
1371				} else {
1372					kvm_mips_count_enable_cause(vcpu);
1373				}
1374			}
1375
1376			/* Only certain bits are RW to the guest */
1377			change &= (CAUSEF_DC | CAUSEF_IV | CAUSEF_WP |
1378				   CAUSEF_IP0 | CAUSEF_IP1);
1379
1380			/* WP can only be cleared */
1381			change &= ~CAUSEF_WP | old_cause;
1382
1383			write_gc0_cause(old_cause ^ change);
1384		} else if ((rd == MIPS_CP0_STATUS) && (sel == 1)) { /* IntCtl */
1385			write_gc0_intctl(val);
1386		} else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1387			old_val = read_gc0_config5();
1388			change = val ^ old_val;
1389			/* Handle changes in FPU/MSA modes */
1390			preempt_disable();
1391
1392			/*
1393			 * Propagate FRE changes immediately if the FPU
1394			 * context is already loaded.
1395			 */
1396			if (change & MIPS_CONF5_FRE &&
1397			    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1398				change_c0_config5(MIPS_CONF5_FRE, val);
1399
1400			preempt_enable();
1401
1402			val = old_val ^
1403				(change & kvm_vz_config5_guest_wrmask(vcpu));
1404			write_gc0_config5(val);
1405		} else {
1406			kvm_err("Handle GSFC, unsupported field change @ %p: %#x\n",
1407			    opc, inst.word);
1408			er = EMULATE_FAIL;
1409		}
1410
1411		if (er != EMULATE_FAIL)
1412			er = update_pc(vcpu, cause);
1413	} else {
1414		kvm_err("Handle GSFC, unrecognized instruction @ %p: %#x\n",
1415			opc, inst.word);
1416		er = EMULATE_FAIL;
1417	}
1418
1419	return er;
1420}
1421
1422static enum emulation_result kvm_trap_vz_handle_ghfc(u32 cause, u32 *opc,
1423						     struct kvm_vcpu *vcpu)
1424{
1425	/*
1426	 * Presumably this is due to MC (guest mode change), so lets trace some
1427	 * relevant info.
1428	 */
1429	trace_kvm_guest_mode_change(vcpu);
1430
1431	return EMULATE_DONE;
1432}
1433
1434static enum emulation_result kvm_trap_vz_handle_hc(u32 cause, u32 *opc,
1435						   struct kvm_vcpu *vcpu)
1436{
1437	enum emulation_result er;
1438	union mips_instruction inst;
1439	unsigned long curr_pc;
1440	int err;
1441
1442	if (cause & CAUSEF_BD)
1443		opc += 1;
1444	err = kvm_get_badinstr(opc, vcpu, &inst.word);
1445	if (err)
1446		return EMULATE_FAIL;
1447
1448	/*
1449	 * Update PC and hold onto current PC in case there is
1450	 * an error and we want to rollback the PC
1451	 */
1452	curr_pc = vcpu->arch.pc;
1453	er = update_pc(vcpu, cause);
1454	if (er == EMULATE_FAIL)
1455		return er;
1456
1457	er = kvm_mips_emul_hypcall(vcpu, inst);
1458	if (er == EMULATE_FAIL)
1459		vcpu->arch.pc = curr_pc;
1460
1461	return er;
1462}
1463
1464static enum emulation_result kvm_trap_vz_no_handler_guest_exit(u32 gexccode,
1465							u32 cause,
1466							u32 *opc,
1467							struct kvm_vcpu *vcpu)
1468{
1469	u32 inst;
1470
1471	/*
1472	 *  Fetch the instruction.
1473	 */
1474	if (cause & CAUSEF_BD)
1475		opc += 1;
1476	kvm_get_badinstr(opc, vcpu, &inst);
1477
1478	kvm_err("Guest Exception Code: %d not yet handled @ PC: %p, inst: 0x%08x  Status: %#x\n",
1479		gexccode, opc, inst, read_gc0_status());
1480
1481	return EMULATE_FAIL;
1482}
1483
1484static int kvm_trap_vz_handle_guest_exit(struct kvm_vcpu *vcpu)
1485{
1486	u32 *opc = (u32 *) vcpu->arch.pc;
1487	u32 cause = vcpu->arch.host_cp0_cause;
1488	enum emulation_result er = EMULATE_DONE;
1489	u32 gexccode = (vcpu->arch.host_cp0_guestctl0 &
1490			MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT;
1491	int ret = RESUME_GUEST;
1492
1493	trace_kvm_exit(vcpu, KVM_TRACE_EXIT_GEXCCODE_BASE + gexccode);
1494	switch (gexccode) {
1495	case MIPS_GCTL0_GEXC_GPSI:
1496		++vcpu->stat.vz_gpsi_exits;
1497		er = kvm_trap_vz_handle_gpsi(cause, opc, vcpu);
1498		break;
1499	case MIPS_GCTL0_GEXC_GSFC:
1500		++vcpu->stat.vz_gsfc_exits;
1501		er = kvm_trap_vz_handle_gsfc(cause, opc, vcpu);
1502		break;
1503	case MIPS_GCTL0_GEXC_HC:
1504		++vcpu->stat.vz_hc_exits;
1505		er = kvm_trap_vz_handle_hc(cause, opc, vcpu);
1506		break;
1507	case MIPS_GCTL0_GEXC_GRR:
1508		++vcpu->stat.vz_grr_exits;
1509		er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1510						       vcpu);
1511		break;
1512	case MIPS_GCTL0_GEXC_GVA:
1513		++vcpu->stat.vz_gva_exits;
1514		er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1515						       vcpu);
1516		break;
1517	case MIPS_GCTL0_GEXC_GHFC:
1518		++vcpu->stat.vz_ghfc_exits;
1519		er = kvm_trap_vz_handle_ghfc(cause, opc, vcpu);
1520		break;
1521	case MIPS_GCTL0_GEXC_GPA:
1522		++vcpu->stat.vz_gpa_exits;
1523		er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1524						       vcpu);
1525		break;
1526	default:
1527		++vcpu->stat.vz_resvd_exits;
1528		er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1529						       vcpu);
1530		break;
1531
1532	}
1533
1534	if (er == EMULATE_DONE) {
1535		ret = RESUME_GUEST;
1536	} else if (er == EMULATE_HYPERCALL) {
1537		ret = kvm_mips_handle_hypcall(vcpu);
1538	} else {
1539		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1540		ret = RESUME_HOST;
1541	}
1542	return ret;
1543}
1544
1545/**
1546 * kvm_trap_vz_handle_cop_unusuable() - Guest used unusable coprocessor.
1547 * @vcpu:	Virtual CPU context.
1548 *
1549 * Handle when the guest attempts to use a coprocessor which hasn't been allowed
1550 * by the root context.
 
 
 
1551 */
1552static int kvm_trap_vz_handle_cop_unusable(struct kvm_vcpu *vcpu)
1553{
1554	u32 cause = vcpu->arch.host_cp0_cause;
1555	enum emulation_result er = EMULATE_FAIL;
1556	int ret = RESUME_GUEST;
1557
1558	if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 1) {
1559		/*
1560		 * If guest FPU not present, the FPU operation should have been
1561		 * treated as a reserved instruction!
1562		 * If FPU already in use, we shouldn't get this at all.
1563		 */
1564		if (WARN_ON(!kvm_mips_guest_has_fpu(&vcpu->arch) ||
1565			    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1566			preempt_enable();
1567			return EMULATE_FAIL;
1568		}
1569
1570		kvm_own_fpu(vcpu);
1571		er = EMULATE_DONE;
1572	}
1573	/* other coprocessors not handled */
1574
1575	switch (er) {
1576	case EMULATE_DONE:
1577		ret = RESUME_GUEST;
1578		break;
1579
1580	case EMULATE_FAIL:
1581		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1582		ret = RESUME_HOST;
1583		break;
1584
1585	default:
1586		BUG();
1587	}
1588	return ret;
1589}
1590
1591/**
1592 * kvm_trap_vz_handle_msa_disabled() - Guest used MSA while disabled in root.
1593 * @vcpu:	Virtual CPU context.
1594 *
1595 * Handle when the guest attempts to use MSA when it is disabled in the root
1596 * context.
 
 
 
1597 */
1598static int kvm_trap_vz_handle_msa_disabled(struct kvm_vcpu *vcpu)
1599{
1600	/*
1601	 * If MSA not present or not exposed to guest or FR=0, the MSA operation
1602	 * should have been treated as a reserved instruction!
1603	 * Same if CU1=1, FR=0.
1604	 * If MSA already in use, we shouldn't get this at all.
1605	 */
1606	if (!kvm_mips_guest_has_msa(&vcpu->arch) ||
1607	    (read_gc0_status() & (ST0_CU1 | ST0_FR)) == ST0_CU1 ||
1608	    !(read_gc0_config5() & MIPS_CONF5_MSAEN) ||
1609	    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1610		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1611		return RESUME_HOST;
1612	}
1613
1614	kvm_own_msa(vcpu);
1615
1616	return RESUME_GUEST;
1617}
1618
1619static int kvm_trap_vz_handle_tlb_ld_miss(struct kvm_vcpu *vcpu)
1620{
1621	struct kvm_run *run = vcpu->run;
1622	u32 *opc = (u32 *) vcpu->arch.pc;
1623	u32 cause = vcpu->arch.host_cp0_cause;
1624	ulong badvaddr = vcpu->arch.host_cp0_badvaddr;
1625	union mips_instruction inst;
1626	enum emulation_result er = EMULATE_DONE;
1627	int err, ret = RESUME_GUEST;
1628
1629	if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, false)) {
1630		/* A code fetch fault doesn't count as an MMIO */
1631		if (kvm_is_ifetch_fault(&vcpu->arch)) {
1632			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1633			return RESUME_HOST;
1634		}
1635
1636		/* Fetch the instruction */
1637		if (cause & CAUSEF_BD)
1638			opc += 1;
1639		err = kvm_get_badinstr(opc, vcpu, &inst.word);
1640		if (err) {
1641			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1642			return RESUME_HOST;
1643		}
1644
1645		/* Treat as MMIO */
1646		er = kvm_mips_emulate_load(inst, cause, vcpu);
1647		if (er == EMULATE_FAIL) {
1648			kvm_err("Guest Emulate Load from MMIO space failed: PC: %p, BadVaddr: %#lx\n",
1649				opc, badvaddr);
1650			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1651		}
1652	}
1653
1654	if (er == EMULATE_DONE) {
1655		ret = RESUME_GUEST;
1656	} else if (er == EMULATE_DO_MMIO) {
1657		run->exit_reason = KVM_EXIT_MMIO;
1658		ret = RESUME_HOST;
1659	} else {
1660		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1661		ret = RESUME_HOST;
1662	}
1663	return ret;
1664}
1665
1666static int kvm_trap_vz_handle_tlb_st_miss(struct kvm_vcpu *vcpu)
1667{
1668	struct kvm_run *run = vcpu->run;
1669	u32 *opc = (u32 *) vcpu->arch.pc;
1670	u32 cause = vcpu->arch.host_cp0_cause;
1671	ulong badvaddr = vcpu->arch.host_cp0_badvaddr;
1672	union mips_instruction inst;
1673	enum emulation_result er = EMULATE_DONE;
1674	int err;
1675	int ret = RESUME_GUEST;
1676
1677	/* Just try the access again if we couldn't do the translation */
1678	if (kvm_vz_badvaddr_to_gpa(vcpu, badvaddr, &badvaddr))
1679		return RESUME_GUEST;
1680	vcpu->arch.host_cp0_badvaddr = badvaddr;
1681
1682	if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, true)) {
1683		/* Fetch the instruction */
1684		if (cause & CAUSEF_BD)
1685			opc += 1;
1686		err = kvm_get_badinstr(opc, vcpu, &inst.word);
1687		if (err) {
1688			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1689			return RESUME_HOST;
1690		}
1691
1692		/* Treat as MMIO */
1693		er = kvm_mips_emulate_store(inst, cause, vcpu);
1694		if (er == EMULATE_FAIL) {
1695			kvm_err("Guest Emulate Store to MMIO space failed: PC: %p, BadVaddr: %#lx\n",
1696				opc, badvaddr);
1697			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1698		}
1699	}
1700
1701	if (er == EMULATE_DONE) {
1702		ret = RESUME_GUEST;
1703	} else if (er == EMULATE_DO_MMIO) {
1704		run->exit_reason = KVM_EXIT_MMIO;
1705		ret = RESUME_HOST;
1706	} else {
1707		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1708		ret = RESUME_HOST;
1709	}
1710	return ret;
1711}
1712
1713static u64 kvm_vz_get_one_regs[] = {
1714	KVM_REG_MIPS_CP0_INDEX,
1715	KVM_REG_MIPS_CP0_ENTRYLO0,
1716	KVM_REG_MIPS_CP0_ENTRYLO1,
1717	KVM_REG_MIPS_CP0_CONTEXT,
1718	KVM_REG_MIPS_CP0_PAGEMASK,
1719	KVM_REG_MIPS_CP0_PAGEGRAIN,
1720	KVM_REG_MIPS_CP0_WIRED,
1721	KVM_REG_MIPS_CP0_HWRENA,
1722	KVM_REG_MIPS_CP0_BADVADDR,
1723	KVM_REG_MIPS_CP0_COUNT,
1724	KVM_REG_MIPS_CP0_ENTRYHI,
1725	KVM_REG_MIPS_CP0_COMPARE,
1726	KVM_REG_MIPS_CP0_STATUS,
1727	KVM_REG_MIPS_CP0_INTCTL,
1728	KVM_REG_MIPS_CP0_CAUSE,
1729	KVM_REG_MIPS_CP0_EPC,
1730	KVM_REG_MIPS_CP0_PRID,
1731	KVM_REG_MIPS_CP0_EBASE,
1732	KVM_REG_MIPS_CP0_CONFIG,
1733	KVM_REG_MIPS_CP0_CONFIG1,
1734	KVM_REG_MIPS_CP0_CONFIG2,
1735	KVM_REG_MIPS_CP0_CONFIG3,
1736	KVM_REG_MIPS_CP0_CONFIG4,
1737	KVM_REG_MIPS_CP0_CONFIG5,
1738	KVM_REG_MIPS_CP0_CONFIG6,
1739#ifdef CONFIG_64BIT
1740	KVM_REG_MIPS_CP0_XCONTEXT,
1741#endif
1742	KVM_REG_MIPS_CP0_ERROREPC,
1743
1744	KVM_REG_MIPS_COUNT_CTL,
1745	KVM_REG_MIPS_COUNT_RESUME,
1746	KVM_REG_MIPS_COUNT_HZ,
1747};
1748
1749static u64 kvm_vz_get_one_regs_contextconfig[] = {
1750	KVM_REG_MIPS_CP0_CONTEXTCONFIG,
1751#ifdef CONFIG_64BIT
1752	KVM_REG_MIPS_CP0_XCONTEXTCONFIG,
1753#endif
1754};
1755
1756static u64 kvm_vz_get_one_regs_segments[] = {
1757	KVM_REG_MIPS_CP0_SEGCTL0,
1758	KVM_REG_MIPS_CP0_SEGCTL1,
1759	KVM_REG_MIPS_CP0_SEGCTL2,
1760};
1761
1762static u64 kvm_vz_get_one_regs_htw[] = {
1763	KVM_REG_MIPS_CP0_PWBASE,
1764	KVM_REG_MIPS_CP0_PWFIELD,
1765	KVM_REG_MIPS_CP0_PWSIZE,
1766	KVM_REG_MIPS_CP0_PWCTL,
1767};
1768
1769static u64 kvm_vz_get_one_regs_kscratch[] = {
1770	KVM_REG_MIPS_CP0_KSCRATCH1,
1771	KVM_REG_MIPS_CP0_KSCRATCH2,
1772	KVM_REG_MIPS_CP0_KSCRATCH3,
1773	KVM_REG_MIPS_CP0_KSCRATCH4,
1774	KVM_REG_MIPS_CP0_KSCRATCH5,
1775	KVM_REG_MIPS_CP0_KSCRATCH6,
1776};
1777
1778static unsigned long kvm_vz_num_regs(struct kvm_vcpu *vcpu)
1779{
1780	unsigned long ret;
1781
1782	ret = ARRAY_SIZE(kvm_vz_get_one_regs);
1783	if (cpu_guest_has_userlocal)
1784		++ret;
1785	if (cpu_guest_has_badinstr)
1786		++ret;
1787	if (cpu_guest_has_badinstrp)
1788		++ret;
1789	if (cpu_guest_has_contextconfig)
1790		ret += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig);
1791	if (cpu_guest_has_segments)
1792		ret += ARRAY_SIZE(kvm_vz_get_one_regs_segments);
1793	if (cpu_guest_has_htw || cpu_guest_has_ldpte)
1794		ret += ARRAY_SIZE(kvm_vz_get_one_regs_htw);
1795	if (cpu_guest_has_maar && !cpu_guest_has_dyn_maar)
1796		ret += 1 + ARRAY_SIZE(vcpu->arch.maar);
1797	ret += __arch_hweight8(cpu_data[0].guest.kscratch_mask);
1798
1799	return ret;
1800}
1801
1802static int kvm_vz_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
1803{
1804	u64 index;
1805	unsigned int i;
1806
1807	if (copy_to_user(indices, kvm_vz_get_one_regs,
1808			 sizeof(kvm_vz_get_one_regs)))
1809		return -EFAULT;
1810	indices += ARRAY_SIZE(kvm_vz_get_one_regs);
1811
1812	if (cpu_guest_has_userlocal) {
1813		index = KVM_REG_MIPS_CP0_USERLOCAL;
1814		if (copy_to_user(indices, &index, sizeof(index)))
1815			return -EFAULT;
1816		++indices;
1817	}
1818	if (cpu_guest_has_badinstr) {
1819		index = KVM_REG_MIPS_CP0_BADINSTR;
1820		if (copy_to_user(indices, &index, sizeof(index)))
1821			return -EFAULT;
1822		++indices;
1823	}
1824	if (cpu_guest_has_badinstrp) {
1825		index = KVM_REG_MIPS_CP0_BADINSTRP;
1826		if (copy_to_user(indices, &index, sizeof(index)))
1827			return -EFAULT;
1828		++indices;
1829	}
1830	if (cpu_guest_has_contextconfig) {
1831		if (copy_to_user(indices, kvm_vz_get_one_regs_contextconfig,
1832				 sizeof(kvm_vz_get_one_regs_contextconfig)))
1833			return -EFAULT;
1834		indices += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig);
1835	}
1836	if (cpu_guest_has_segments) {
1837		if (copy_to_user(indices, kvm_vz_get_one_regs_segments,
1838				 sizeof(kvm_vz_get_one_regs_segments)))
1839			return -EFAULT;
1840		indices += ARRAY_SIZE(kvm_vz_get_one_regs_segments);
1841	}
1842	if (cpu_guest_has_htw || cpu_guest_has_ldpte) {
1843		if (copy_to_user(indices, kvm_vz_get_one_regs_htw,
1844				 sizeof(kvm_vz_get_one_regs_htw)))
1845			return -EFAULT;
1846		indices += ARRAY_SIZE(kvm_vz_get_one_regs_htw);
1847	}
1848	if (cpu_guest_has_maar && !cpu_guest_has_dyn_maar) {
1849		for (i = 0; i < ARRAY_SIZE(vcpu->arch.maar); ++i) {
1850			index = KVM_REG_MIPS_CP0_MAAR(i);
1851			if (copy_to_user(indices, &index, sizeof(index)))
1852				return -EFAULT;
1853			++indices;
1854		}
1855
1856		index = KVM_REG_MIPS_CP0_MAARI;
1857		if (copy_to_user(indices, &index, sizeof(index)))
1858			return -EFAULT;
1859		++indices;
1860	}
1861	for (i = 0; i < 6; ++i) {
1862		if (!cpu_guest_has_kscr(i + 2))
1863			continue;
1864
1865		if (copy_to_user(indices, &kvm_vz_get_one_regs_kscratch[i],
1866				 sizeof(kvm_vz_get_one_regs_kscratch[i])))
1867			return -EFAULT;
1868		++indices;
1869	}
1870
1871	return 0;
1872}
1873
1874static inline s64 entrylo_kvm_to_user(unsigned long v)
1875{
1876	s64 mask, ret = v;
1877
1878	if (BITS_PER_LONG == 32) {
1879		/*
1880		 * KVM API exposes 64-bit version of the register, so move the
1881		 * RI/XI bits up into place.
1882		 */
1883		mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI;
1884		ret &= ~mask;
1885		ret |= ((s64)v & mask) << 32;
1886	}
1887	return ret;
1888}
1889
1890static inline unsigned long entrylo_user_to_kvm(s64 v)
1891{
1892	unsigned long mask, ret = v;
1893
1894	if (BITS_PER_LONG == 32) {
1895		/*
1896		 * KVM API exposes 64-bit versiono of the register, so move the
1897		 * RI/XI bits down into place.
1898		 */
1899		mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI;
1900		ret &= ~mask;
1901		ret |= (v >> 32) & mask;
1902	}
1903	return ret;
1904}
1905
1906static int kvm_vz_get_one_reg(struct kvm_vcpu *vcpu,
1907			      const struct kvm_one_reg *reg,
1908			      s64 *v)
1909{
1910	struct mips_coproc *cop0 = vcpu->arch.cop0;
1911	unsigned int idx;
1912
1913	switch (reg->id) {
1914	case KVM_REG_MIPS_CP0_INDEX:
1915		*v = (long)read_gc0_index();
1916		break;
1917	case KVM_REG_MIPS_CP0_ENTRYLO0:
1918		*v = entrylo_kvm_to_user(read_gc0_entrylo0());
1919		break;
1920	case KVM_REG_MIPS_CP0_ENTRYLO1:
1921		*v = entrylo_kvm_to_user(read_gc0_entrylo1());
1922		break;
1923	case KVM_REG_MIPS_CP0_CONTEXT:
1924		*v = (long)read_gc0_context();
1925		break;
1926	case KVM_REG_MIPS_CP0_CONTEXTCONFIG:
1927		if (!cpu_guest_has_contextconfig)
1928			return -EINVAL;
1929		*v = read_gc0_contextconfig();
1930		break;
1931	case KVM_REG_MIPS_CP0_USERLOCAL:
1932		if (!cpu_guest_has_userlocal)
1933			return -EINVAL;
1934		*v = read_gc0_userlocal();
1935		break;
1936#ifdef CONFIG_64BIT
1937	case KVM_REG_MIPS_CP0_XCONTEXTCONFIG:
1938		if (!cpu_guest_has_contextconfig)
1939			return -EINVAL;
1940		*v = read_gc0_xcontextconfig();
1941		break;
1942#endif
1943	case KVM_REG_MIPS_CP0_PAGEMASK:
1944		*v = (long)read_gc0_pagemask();
1945		break;
1946	case KVM_REG_MIPS_CP0_PAGEGRAIN:
1947		*v = (long)read_gc0_pagegrain();
1948		break;
1949	case KVM_REG_MIPS_CP0_SEGCTL0:
1950		if (!cpu_guest_has_segments)
1951			return -EINVAL;
1952		*v = read_gc0_segctl0();
1953		break;
1954	case KVM_REG_MIPS_CP0_SEGCTL1:
1955		if (!cpu_guest_has_segments)
1956			return -EINVAL;
1957		*v = read_gc0_segctl1();
1958		break;
1959	case KVM_REG_MIPS_CP0_SEGCTL2:
1960		if (!cpu_guest_has_segments)
1961			return -EINVAL;
1962		*v = read_gc0_segctl2();
1963		break;
1964	case KVM_REG_MIPS_CP0_PWBASE:
1965		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
1966			return -EINVAL;
1967		*v = read_gc0_pwbase();
1968		break;
1969	case KVM_REG_MIPS_CP0_PWFIELD:
1970		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
1971			return -EINVAL;
1972		*v = read_gc0_pwfield();
1973		break;
1974	case KVM_REG_MIPS_CP0_PWSIZE:
1975		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
1976			return -EINVAL;
1977		*v = read_gc0_pwsize();
1978		break;
1979	case KVM_REG_MIPS_CP0_WIRED:
1980		*v = (long)read_gc0_wired();
1981		break;
1982	case KVM_REG_MIPS_CP0_PWCTL:
1983		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
1984			return -EINVAL;
1985		*v = read_gc0_pwctl();
1986		break;
1987	case KVM_REG_MIPS_CP0_HWRENA:
1988		*v = (long)read_gc0_hwrena();
1989		break;
1990	case KVM_REG_MIPS_CP0_BADVADDR:
1991		*v = (long)read_gc0_badvaddr();
1992		break;
1993	case KVM_REG_MIPS_CP0_BADINSTR:
1994		if (!cpu_guest_has_badinstr)
1995			return -EINVAL;
1996		*v = read_gc0_badinstr();
1997		break;
1998	case KVM_REG_MIPS_CP0_BADINSTRP:
1999		if (!cpu_guest_has_badinstrp)
2000			return -EINVAL;
2001		*v = read_gc0_badinstrp();
2002		break;
2003	case KVM_REG_MIPS_CP0_COUNT:
2004		*v = kvm_mips_read_count(vcpu);
2005		break;
2006	case KVM_REG_MIPS_CP0_ENTRYHI:
2007		*v = (long)read_gc0_entryhi();
2008		break;
2009	case KVM_REG_MIPS_CP0_COMPARE:
2010		*v = (long)read_gc0_compare();
2011		break;
2012	case KVM_REG_MIPS_CP0_STATUS:
2013		*v = (long)read_gc0_status();
2014		break;
2015	case KVM_REG_MIPS_CP0_INTCTL:
2016		*v = read_gc0_intctl();
2017		break;
2018	case KVM_REG_MIPS_CP0_CAUSE:
2019		*v = (long)read_gc0_cause();
2020		break;
2021	case KVM_REG_MIPS_CP0_EPC:
2022		*v = (long)read_gc0_epc();
2023		break;
2024	case KVM_REG_MIPS_CP0_PRID:
2025		switch (boot_cpu_type()) {
2026		case CPU_CAVIUM_OCTEON3:
2027			/* Octeon III has a read-only guest.PRid */
2028			*v = read_gc0_prid();
2029			break;
2030		default:
2031			*v = (long)kvm_read_c0_guest_prid(cop0);
2032			break;
2033		}
2034		break;
2035	case KVM_REG_MIPS_CP0_EBASE:
2036		*v = kvm_vz_read_gc0_ebase();
2037		break;
2038	case KVM_REG_MIPS_CP0_CONFIG:
2039		*v = read_gc0_config();
2040		break;
2041	case KVM_REG_MIPS_CP0_CONFIG1:
2042		if (!cpu_guest_has_conf1)
2043			return -EINVAL;
2044		*v = read_gc0_config1();
2045		break;
2046	case KVM_REG_MIPS_CP0_CONFIG2:
2047		if (!cpu_guest_has_conf2)
2048			return -EINVAL;
2049		*v = read_gc0_config2();
2050		break;
2051	case KVM_REG_MIPS_CP0_CONFIG3:
2052		if (!cpu_guest_has_conf3)
2053			return -EINVAL;
2054		*v = read_gc0_config3();
2055		break;
2056	case KVM_REG_MIPS_CP0_CONFIG4:
2057		if (!cpu_guest_has_conf4)
2058			return -EINVAL;
2059		*v = read_gc0_config4();
2060		break;
2061	case KVM_REG_MIPS_CP0_CONFIG5:
2062		if (!cpu_guest_has_conf5)
2063			return -EINVAL;
2064		*v = read_gc0_config5();
2065		break;
2066	case KVM_REG_MIPS_CP0_CONFIG6:
2067		*v = kvm_read_sw_gc0_config6(cop0);
2068		break;
2069	case KVM_REG_MIPS_CP0_MAAR(0) ... KVM_REG_MIPS_CP0_MAAR(0x3f):
2070		if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
2071			return -EINVAL;
2072		idx = reg->id - KVM_REG_MIPS_CP0_MAAR(0);
2073		if (idx >= ARRAY_SIZE(vcpu->arch.maar))
2074			return -EINVAL;
2075		*v = vcpu->arch.maar[idx];
2076		break;
2077	case KVM_REG_MIPS_CP0_MAARI:
2078		if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
2079			return -EINVAL;
2080		*v = kvm_read_sw_gc0_maari(vcpu->arch.cop0);
2081		break;
2082#ifdef CONFIG_64BIT
2083	case KVM_REG_MIPS_CP0_XCONTEXT:
2084		*v = read_gc0_xcontext();
2085		break;
2086#endif
2087	case KVM_REG_MIPS_CP0_ERROREPC:
2088		*v = (long)read_gc0_errorepc();
2089		break;
2090	case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
2091		idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
2092		if (!cpu_guest_has_kscr(idx))
2093			return -EINVAL;
2094		switch (idx) {
2095		case 2:
2096			*v = (long)read_gc0_kscratch1();
2097			break;
2098		case 3:
2099			*v = (long)read_gc0_kscratch2();
2100			break;
2101		case 4:
2102			*v = (long)read_gc0_kscratch3();
2103			break;
2104		case 5:
2105			*v = (long)read_gc0_kscratch4();
2106			break;
2107		case 6:
2108			*v = (long)read_gc0_kscratch5();
2109			break;
2110		case 7:
2111			*v = (long)read_gc0_kscratch6();
2112			break;
2113		}
2114		break;
2115	case KVM_REG_MIPS_COUNT_CTL:
2116		*v = vcpu->arch.count_ctl;
2117		break;
2118	case KVM_REG_MIPS_COUNT_RESUME:
2119		*v = ktime_to_ns(vcpu->arch.count_resume);
2120		break;
2121	case KVM_REG_MIPS_COUNT_HZ:
2122		*v = vcpu->arch.count_hz;
2123		break;
2124	default:
2125		return -EINVAL;
2126	}
2127	return 0;
2128}
2129
2130static int kvm_vz_set_one_reg(struct kvm_vcpu *vcpu,
2131			      const struct kvm_one_reg *reg,
2132			      s64 v)
2133{
2134	struct mips_coproc *cop0 = vcpu->arch.cop0;
2135	unsigned int idx;
2136	int ret = 0;
2137	unsigned int cur, change;
2138
2139	switch (reg->id) {
2140	case KVM_REG_MIPS_CP0_INDEX:
2141		write_gc0_index(v);
2142		break;
2143	case KVM_REG_MIPS_CP0_ENTRYLO0:
2144		write_gc0_entrylo0(entrylo_user_to_kvm(v));
2145		break;
2146	case KVM_REG_MIPS_CP0_ENTRYLO1:
2147		write_gc0_entrylo1(entrylo_user_to_kvm(v));
2148		break;
2149	case KVM_REG_MIPS_CP0_CONTEXT:
2150		write_gc0_context(v);
2151		break;
2152	case KVM_REG_MIPS_CP0_CONTEXTCONFIG:
2153		if (!cpu_guest_has_contextconfig)
2154			return -EINVAL;
2155		write_gc0_contextconfig(v);
2156		break;
2157	case KVM_REG_MIPS_CP0_USERLOCAL:
2158		if (!cpu_guest_has_userlocal)
2159			return -EINVAL;
2160		write_gc0_userlocal(v);
2161		break;
2162#ifdef CONFIG_64BIT
2163	case KVM_REG_MIPS_CP0_XCONTEXTCONFIG:
2164		if (!cpu_guest_has_contextconfig)
2165			return -EINVAL;
2166		write_gc0_xcontextconfig(v);
2167		break;
2168#endif
2169	case KVM_REG_MIPS_CP0_PAGEMASK:
2170		write_gc0_pagemask(v);
2171		break;
2172	case KVM_REG_MIPS_CP0_PAGEGRAIN:
2173		write_gc0_pagegrain(v);
2174		break;
2175	case KVM_REG_MIPS_CP0_SEGCTL0:
2176		if (!cpu_guest_has_segments)
2177			return -EINVAL;
2178		write_gc0_segctl0(v);
2179		break;
2180	case KVM_REG_MIPS_CP0_SEGCTL1:
2181		if (!cpu_guest_has_segments)
2182			return -EINVAL;
2183		write_gc0_segctl1(v);
2184		break;
2185	case KVM_REG_MIPS_CP0_SEGCTL2:
2186		if (!cpu_guest_has_segments)
2187			return -EINVAL;
2188		write_gc0_segctl2(v);
2189		break;
2190	case KVM_REG_MIPS_CP0_PWBASE:
2191		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
2192			return -EINVAL;
2193		write_gc0_pwbase(v);
2194		break;
2195	case KVM_REG_MIPS_CP0_PWFIELD:
2196		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
2197			return -EINVAL;
2198		write_gc0_pwfield(v);
2199		break;
2200	case KVM_REG_MIPS_CP0_PWSIZE:
2201		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
2202			return -EINVAL;
2203		write_gc0_pwsize(v);
2204		break;
2205	case KVM_REG_MIPS_CP0_WIRED:
2206		change_gc0_wired(MIPSR6_WIRED_WIRED, v);
2207		break;
2208	case KVM_REG_MIPS_CP0_PWCTL:
2209		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
2210			return -EINVAL;
2211		write_gc0_pwctl(v);
2212		break;
2213	case KVM_REG_MIPS_CP0_HWRENA:
2214		write_gc0_hwrena(v);
2215		break;
2216	case KVM_REG_MIPS_CP0_BADVADDR:
2217		write_gc0_badvaddr(v);
2218		break;
2219	case KVM_REG_MIPS_CP0_BADINSTR:
2220		if (!cpu_guest_has_badinstr)
2221			return -EINVAL;
2222		write_gc0_badinstr(v);
2223		break;
2224	case KVM_REG_MIPS_CP0_BADINSTRP:
2225		if (!cpu_guest_has_badinstrp)
2226			return -EINVAL;
2227		write_gc0_badinstrp(v);
2228		break;
2229	case KVM_REG_MIPS_CP0_COUNT:
2230		kvm_mips_write_count(vcpu, v);
2231		break;
2232	case KVM_REG_MIPS_CP0_ENTRYHI:
2233		write_gc0_entryhi(v);
2234		break;
2235	case KVM_REG_MIPS_CP0_COMPARE:
2236		kvm_mips_write_compare(vcpu, v, false);
2237		break;
2238	case KVM_REG_MIPS_CP0_STATUS:
2239		write_gc0_status(v);
2240		break;
2241	case KVM_REG_MIPS_CP0_INTCTL:
2242		write_gc0_intctl(v);
2243		break;
2244	case KVM_REG_MIPS_CP0_CAUSE:
2245		/*
2246		 * If the timer is stopped or started (DC bit) it must look
2247		 * atomic with changes to the timer interrupt pending bit (TI).
2248		 * A timer interrupt should not happen in between.
2249		 */
2250		if ((read_gc0_cause() ^ v) & CAUSEF_DC) {
2251			if (v & CAUSEF_DC) {
2252				/* disable timer first */
2253				kvm_mips_count_disable_cause(vcpu);
2254				change_gc0_cause((u32)~CAUSEF_DC, v);
2255			} else {
2256				/* enable timer last */
2257				change_gc0_cause((u32)~CAUSEF_DC, v);
2258				kvm_mips_count_enable_cause(vcpu);
2259			}
2260		} else {
2261			write_gc0_cause(v);
2262		}
2263		break;
2264	case KVM_REG_MIPS_CP0_EPC:
2265		write_gc0_epc(v);
2266		break;
2267	case KVM_REG_MIPS_CP0_PRID:
2268		switch (boot_cpu_type()) {
2269		case CPU_CAVIUM_OCTEON3:
2270			/* Octeon III has a guest.PRid, but its read-only */
2271			break;
2272		default:
2273			kvm_write_c0_guest_prid(cop0, v);
2274			break;
2275		}
2276		break;
2277	case KVM_REG_MIPS_CP0_EBASE:
2278		kvm_vz_write_gc0_ebase(v);
2279		break;
2280	case KVM_REG_MIPS_CP0_CONFIG:
2281		cur = read_gc0_config();
2282		change = (cur ^ v) & kvm_vz_config_user_wrmask(vcpu);
2283		if (change) {
2284			v = cur ^ change;
2285			write_gc0_config(v);
2286		}
2287		break;
2288	case KVM_REG_MIPS_CP0_CONFIG1:
2289		if (!cpu_guest_has_conf1)
2290			break;
2291		cur = read_gc0_config1();
2292		change = (cur ^ v) & kvm_vz_config1_user_wrmask(vcpu);
2293		if (change) {
2294			v = cur ^ change;
2295			write_gc0_config1(v);
2296		}
2297		break;
2298	case KVM_REG_MIPS_CP0_CONFIG2:
2299		if (!cpu_guest_has_conf2)
2300			break;
2301		cur = read_gc0_config2();
2302		change = (cur ^ v) & kvm_vz_config2_user_wrmask(vcpu);
2303		if (change) {
2304			v = cur ^ change;
2305			write_gc0_config2(v);
2306		}
2307		break;
2308	case KVM_REG_MIPS_CP0_CONFIG3:
2309		if (!cpu_guest_has_conf3)
2310			break;
2311		cur = read_gc0_config3();
2312		change = (cur ^ v) & kvm_vz_config3_user_wrmask(vcpu);
2313		if (change) {
2314			v = cur ^ change;
2315			write_gc0_config3(v);
2316		}
2317		break;
2318	case KVM_REG_MIPS_CP0_CONFIG4:
2319		if (!cpu_guest_has_conf4)
2320			break;
2321		cur = read_gc0_config4();
2322		change = (cur ^ v) & kvm_vz_config4_user_wrmask(vcpu);
2323		if (change) {
2324			v = cur ^ change;
2325			write_gc0_config4(v);
2326		}
2327		break;
2328	case KVM_REG_MIPS_CP0_CONFIG5:
2329		if (!cpu_guest_has_conf5)
2330			break;
2331		cur = read_gc0_config5();
2332		change = (cur ^ v) & kvm_vz_config5_user_wrmask(vcpu);
2333		if (change) {
2334			v = cur ^ change;
2335			write_gc0_config5(v);
2336		}
2337		break;
2338	case KVM_REG_MIPS_CP0_CONFIG6:
2339		cur = kvm_read_sw_gc0_config6(cop0);
2340		change = (cur ^ v) & kvm_vz_config6_user_wrmask(vcpu);
2341		if (change) {
2342			v = cur ^ change;
2343			kvm_write_sw_gc0_config6(cop0, (int)v);
2344		}
2345		break;
2346	case KVM_REG_MIPS_CP0_MAAR(0) ... KVM_REG_MIPS_CP0_MAAR(0x3f):
2347		if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
2348			return -EINVAL;
2349		idx = reg->id - KVM_REG_MIPS_CP0_MAAR(0);
2350		if (idx >= ARRAY_SIZE(vcpu->arch.maar))
2351			return -EINVAL;
2352		vcpu->arch.maar[idx] = mips_process_maar(dmtc_op, v);
2353		break;
2354	case KVM_REG_MIPS_CP0_MAARI:
2355		if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
2356			return -EINVAL;
2357		kvm_write_maari(vcpu, v);
2358		break;
2359#ifdef CONFIG_64BIT
2360	case KVM_REG_MIPS_CP0_XCONTEXT:
2361		write_gc0_xcontext(v);
2362		break;
2363#endif
2364	case KVM_REG_MIPS_CP0_ERROREPC:
2365		write_gc0_errorepc(v);
2366		break;
2367	case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
2368		idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
2369		if (!cpu_guest_has_kscr(idx))
2370			return -EINVAL;
2371		switch (idx) {
2372		case 2:
2373			write_gc0_kscratch1(v);
2374			break;
2375		case 3:
2376			write_gc0_kscratch2(v);
2377			break;
2378		case 4:
2379			write_gc0_kscratch3(v);
2380			break;
2381		case 5:
2382			write_gc0_kscratch4(v);
2383			break;
2384		case 6:
2385			write_gc0_kscratch5(v);
2386			break;
2387		case 7:
2388			write_gc0_kscratch6(v);
2389			break;
2390		}
2391		break;
2392	case KVM_REG_MIPS_COUNT_CTL:
2393		ret = kvm_mips_set_count_ctl(vcpu, v);
2394		break;
2395	case KVM_REG_MIPS_COUNT_RESUME:
2396		ret = kvm_mips_set_count_resume(vcpu, v);
2397		break;
2398	case KVM_REG_MIPS_COUNT_HZ:
2399		ret = kvm_mips_set_count_hz(vcpu, v);
2400		break;
2401	default:
2402		return -EINVAL;
2403	}
2404	return ret;
2405}
2406
2407#define guestid_cache(cpu)	(cpu_data[cpu].guestid_cache)
2408static void kvm_vz_get_new_guestid(unsigned long cpu, struct kvm_vcpu *vcpu)
2409{
2410	unsigned long guestid = guestid_cache(cpu);
2411
2412	if (!(++guestid & GUESTID_MASK)) {
2413		if (cpu_has_vtag_icache)
2414			flush_icache_all();
2415
2416		if (!guestid)		/* fix version if needed */
2417			guestid = GUESTID_FIRST_VERSION;
2418
2419		++guestid;		/* guestid 0 reserved for root */
2420
2421		/* start new guestid cycle */
2422		kvm_vz_local_flush_roottlb_all_guests();
2423		kvm_vz_local_flush_guesttlb_all();
2424	}
2425
2426	guestid_cache(cpu) = guestid;
2427}
2428
2429/* Returns 1 if the guest TLB may be clobbered */
2430static int kvm_vz_check_requests(struct kvm_vcpu *vcpu, int cpu)
2431{
2432	int ret = 0;
2433	int i;
2434
2435	if (!kvm_request_pending(vcpu))
2436		return 0;
2437
2438	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
2439		if (cpu_has_guestid) {
2440			/* Drop all GuestIDs for this VCPU */
2441			for_each_possible_cpu(i)
2442				vcpu->arch.vzguestid[i] = 0;
2443			/* This will clobber guest TLB contents too */
2444			ret = 1;
2445		}
2446		/*
2447		 * For Root ASID Dealias (RAD) we don't do anything here, but we
2448		 * still need the request to ensure we recheck asid_flush_mask.
2449		 * We can still return 0 as only the root TLB will be affected
2450		 * by a root ASID flush.
2451		 */
2452	}
2453
2454	return ret;
2455}
2456
2457static void kvm_vz_vcpu_save_wired(struct kvm_vcpu *vcpu)
2458{
2459	unsigned int wired = read_gc0_wired();
2460	struct kvm_mips_tlb *tlbs;
2461	int i;
2462
2463	/* Expand the wired TLB array if necessary */
2464	wired &= MIPSR6_WIRED_WIRED;
2465	if (wired > vcpu->arch.wired_tlb_limit) {
2466		tlbs = krealloc(vcpu->arch.wired_tlb, wired *
2467				sizeof(*vcpu->arch.wired_tlb), GFP_ATOMIC);
2468		if (WARN_ON(!tlbs)) {
2469			/* Save whatever we can */
2470			wired = vcpu->arch.wired_tlb_limit;
2471		} else {
2472			vcpu->arch.wired_tlb = tlbs;
2473			vcpu->arch.wired_tlb_limit = wired;
2474		}
2475	}
2476
2477	if (wired)
2478		/* Save wired entries from the guest TLB */
2479		kvm_vz_save_guesttlb(vcpu->arch.wired_tlb, 0, wired);
2480	/* Invalidate any dropped entries since last time */
2481	for (i = wired; i < vcpu->arch.wired_tlb_used; ++i) {
2482		vcpu->arch.wired_tlb[i].tlb_hi = UNIQUE_GUEST_ENTRYHI(i);
2483		vcpu->arch.wired_tlb[i].tlb_lo[0] = 0;
2484		vcpu->arch.wired_tlb[i].tlb_lo[1] = 0;
2485		vcpu->arch.wired_tlb[i].tlb_mask = 0;
2486	}
2487	vcpu->arch.wired_tlb_used = wired;
2488}
2489
2490static void kvm_vz_vcpu_load_wired(struct kvm_vcpu *vcpu)
2491{
2492	/* Load wired entries into the guest TLB */
2493	if (vcpu->arch.wired_tlb)
2494		kvm_vz_load_guesttlb(vcpu->arch.wired_tlb, 0,
2495				     vcpu->arch.wired_tlb_used);
2496}
2497
2498static void kvm_vz_vcpu_load_tlb(struct kvm_vcpu *vcpu, int cpu)
2499{
2500	struct kvm *kvm = vcpu->kvm;
2501	struct mm_struct *gpa_mm = &kvm->arch.gpa_mm;
2502	bool migrated;
2503
2504	/*
2505	 * Are we entering guest context on a different CPU to last time?
2506	 * If so, the VCPU's guest TLB state on this CPU may be stale.
2507	 */
2508	migrated = (vcpu->arch.last_exec_cpu != cpu);
2509	vcpu->arch.last_exec_cpu = cpu;
2510
2511	/*
2512	 * A vcpu's GuestID is set in GuestCtl1.ID when the vcpu is loaded and
2513	 * remains set until another vcpu is loaded in.  As a rule GuestRID
2514	 * remains zeroed when in root context unless the kernel is busy
2515	 * manipulating guest tlb entries.
2516	 */
2517	if (cpu_has_guestid) {
2518		/*
2519		 * Check if our GuestID is of an older version and thus invalid.
2520		 *
2521		 * We also discard the stored GuestID if we've executed on
2522		 * another CPU, as the guest mappings may have changed without
2523		 * hypervisor knowledge.
2524		 */
2525		if (migrated ||
2526		    (vcpu->arch.vzguestid[cpu] ^ guestid_cache(cpu)) &
2527					GUESTID_VERSION_MASK) {
2528			kvm_vz_get_new_guestid(cpu, vcpu);
2529			vcpu->arch.vzguestid[cpu] = guestid_cache(cpu);
2530			trace_kvm_guestid_change(vcpu,
2531						 vcpu->arch.vzguestid[cpu]);
2532		}
2533
2534		/* Restore GuestID */
2535		change_c0_guestctl1(GUESTID_MASK, vcpu->arch.vzguestid[cpu]);
2536	} else {
2537		/*
2538		 * The Guest TLB only stores a single guest's TLB state, so
2539		 * flush it if another VCPU has executed on this CPU.
2540		 *
2541		 * We also flush if we've executed on another CPU, as the guest
2542		 * mappings may have changed without hypervisor knowledge.
2543		 */
2544		if (migrated || last_exec_vcpu[cpu] != vcpu)
2545			kvm_vz_local_flush_guesttlb_all();
2546		last_exec_vcpu[cpu] = vcpu;
2547
2548		/*
2549		 * Root ASID dealiases guest GPA mappings in the root TLB.
2550		 * Allocate new root ASID if needed.
2551		 */
2552		if (cpumask_test_and_clear_cpu(cpu, &kvm->arch.asid_flush_mask))
2553			get_new_mmu_context(gpa_mm);
2554		else
2555			check_mmu_context(gpa_mm);
2556	}
2557}
2558
2559static int kvm_vz_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2560{
2561	struct mips_coproc *cop0 = vcpu->arch.cop0;
2562	bool migrated, all;
2563
2564	/*
2565	 * Have we migrated to a different CPU?
2566	 * If so, any old guest TLB state may be stale.
2567	 */
2568	migrated = (vcpu->arch.last_sched_cpu != cpu);
2569
2570	/*
2571	 * Was this the last VCPU to run on this CPU?
2572	 * If not, any old guest state from this VCPU will have been clobbered.
2573	 */
2574	all = migrated || (last_vcpu[cpu] != vcpu);
2575	last_vcpu[cpu] = vcpu;
2576
2577	/*
2578	 * Restore CP0_Wired unconditionally as we clear it after use, and
2579	 * restore wired guest TLB entries (while in guest context).
2580	 */
2581	kvm_restore_gc0_wired(cop0);
2582	if (current->flags & PF_VCPU) {
2583		tlbw_use_hazard();
2584		kvm_vz_vcpu_load_tlb(vcpu, cpu);
2585		kvm_vz_vcpu_load_wired(vcpu);
2586	}
2587
2588	/*
2589	 * Restore timer state regardless, as e.g. Cause.TI can change over time
2590	 * if left unmaintained.
2591	 */
2592	kvm_vz_restore_timer(vcpu);
2593
2594	/* Set MC bit if we want to trace guest mode changes */
2595	if (kvm_trace_guest_mode_change)
2596		set_c0_guestctl0(MIPS_GCTL0_MC);
2597	else
2598		clear_c0_guestctl0(MIPS_GCTL0_MC);
2599
2600	/* Don't bother restoring registers multiple times unless necessary */
2601	if (!all)
2602		return 0;
2603
2604	/*
2605	 * Restore config registers first, as some implementations restrict
2606	 * writes to other registers when the corresponding feature bits aren't
2607	 * set. For example Status.CU1 cannot be set unless Config1.FP is set.
2608	 */
2609	kvm_restore_gc0_config(cop0);
2610	if (cpu_guest_has_conf1)
2611		kvm_restore_gc0_config1(cop0);
2612	if (cpu_guest_has_conf2)
2613		kvm_restore_gc0_config2(cop0);
2614	if (cpu_guest_has_conf3)
2615		kvm_restore_gc0_config3(cop0);
2616	if (cpu_guest_has_conf4)
2617		kvm_restore_gc0_config4(cop0);
2618	if (cpu_guest_has_conf5)
2619		kvm_restore_gc0_config5(cop0);
2620	if (cpu_guest_has_conf6)
2621		kvm_restore_gc0_config6(cop0);
2622	if (cpu_guest_has_conf7)
2623		kvm_restore_gc0_config7(cop0);
2624
2625	kvm_restore_gc0_index(cop0);
2626	kvm_restore_gc0_entrylo0(cop0);
2627	kvm_restore_gc0_entrylo1(cop0);
2628	kvm_restore_gc0_context(cop0);
2629	if (cpu_guest_has_contextconfig)
2630		kvm_restore_gc0_contextconfig(cop0);
2631#ifdef CONFIG_64BIT
2632	kvm_restore_gc0_xcontext(cop0);
2633	if (cpu_guest_has_contextconfig)
2634		kvm_restore_gc0_xcontextconfig(cop0);
2635#endif
2636	kvm_restore_gc0_pagemask(cop0);
2637	kvm_restore_gc0_pagegrain(cop0);
2638	kvm_restore_gc0_hwrena(cop0);
2639	kvm_restore_gc0_badvaddr(cop0);
2640	kvm_restore_gc0_entryhi(cop0);
2641	kvm_restore_gc0_status(cop0);
2642	kvm_restore_gc0_intctl(cop0);
2643	kvm_restore_gc0_epc(cop0);
2644	kvm_vz_write_gc0_ebase(kvm_read_sw_gc0_ebase(cop0));
2645	if (cpu_guest_has_userlocal)
2646		kvm_restore_gc0_userlocal(cop0);
2647
2648	kvm_restore_gc0_errorepc(cop0);
2649
2650	/* restore KScratch registers if enabled in guest */
2651	if (cpu_guest_has_conf4) {
2652		if (cpu_guest_has_kscr(2))
2653			kvm_restore_gc0_kscratch1(cop0);
2654		if (cpu_guest_has_kscr(3))
2655			kvm_restore_gc0_kscratch2(cop0);
2656		if (cpu_guest_has_kscr(4))
2657			kvm_restore_gc0_kscratch3(cop0);
2658		if (cpu_guest_has_kscr(5))
2659			kvm_restore_gc0_kscratch4(cop0);
2660		if (cpu_guest_has_kscr(6))
2661			kvm_restore_gc0_kscratch5(cop0);
2662		if (cpu_guest_has_kscr(7))
2663			kvm_restore_gc0_kscratch6(cop0);
2664	}
2665
2666	if (cpu_guest_has_badinstr)
2667		kvm_restore_gc0_badinstr(cop0);
2668	if (cpu_guest_has_badinstrp)
2669		kvm_restore_gc0_badinstrp(cop0);
2670
2671	if (cpu_guest_has_segments) {
2672		kvm_restore_gc0_segctl0(cop0);
2673		kvm_restore_gc0_segctl1(cop0);
2674		kvm_restore_gc0_segctl2(cop0);
2675	}
2676
2677	/* restore HTW registers */
2678	if (cpu_guest_has_htw || cpu_guest_has_ldpte) {
2679		kvm_restore_gc0_pwbase(cop0);
2680		kvm_restore_gc0_pwfield(cop0);
2681		kvm_restore_gc0_pwsize(cop0);
2682		kvm_restore_gc0_pwctl(cop0);
2683	}
2684
2685	/* restore Root.GuestCtl2 from unused Guest guestctl2 register */
2686	if (cpu_has_guestctl2)
2687		write_c0_guestctl2(
2688			cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL]);
2689
2690	/*
2691	 * We should clear linked load bit to break interrupted atomics. This
2692	 * prevents a SC on the next VCPU from succeeding by matching a LL on
2693	 * the previous VCPU.
2694	 */
2695	if (vcpu->kvm->created_vcpus > 1)
2696		write_gc0_lladdr(0);
2697
2698	return 0;
2699}
2700
2701static int kvm_vz_vcpu_put(struct kvm_vcpu *vcpu, int cpu)
2702{
2703	struct mips_coproc *cop0 = vcpu->arch.cop0;
2704
2705	if (current->flags & PF_VCPU)
2706		kvm_vz_vcpu_save_wired(vcpu);
2707
2708	kvm_lose_fpu(vcpu);
2709
2710	kvm_save_gc0_index(cop0);
2711	kvm_save_gc0_entrylo0(cop0);
2712	kvm_save_gc0_entrylo1(cop0);
2713	kvm_save_gc0_context(cop0);
2714	if (cpu_guest_has_contextconfig)
2715		kvm_save_gc0_contextconfig(cop0);
2716#ifdef CONFIG_64BIT
2717	kvm_save_gc0_xcontext(cop0);
2718	if (cpu_guest_has_contextconfig)
2719		kvm_save_gc0_xcontextconfig(cop0);
2720#endif
2721	kvm_save_gc0_pagemask(cop0);
2722	kvm_save_gc0_pagegrain(cop0);
2723	kvm_save_gc0_wired(cop0);
2724	/* allow wired TLB entries to be overwritten */
2725	clear_gc0_wired(MIPSR6_WIRED_WIRED);
2726	kvm_save_gc0_hwrena(cop0);
2727	kvm_save_gc0_badvaddr(cop0);
2728	kvm_save_gc0_entryhi(cop0);
2729	kvm_save_gc0_status(cop0);
2730	kvm_save_gc0_intctl(cop0);
2731	kvm_save_gc0_epc(cop0);
2732	kvm_write_sw_gc0_ebase(cop0, kvm_vz_read_gc0_ebase());
2733	if (cpu_guest_has_userlocal)
2734		kvm_save_gc0_userlocal(cop0);
2735
2736	/* only save implemented config registers */
2737	kvm_save_gc0_config(cop0);
2738	if (cpu_guest_has_conf1)
2739		kvm_save_gc0_config1(cop0);
2740	if (cpu_guest_has_conf2)
2741		kvm_save_gc0_config2(cop0);
2742	if (cpu_guest_has_conf3)
2743		kvm_save_gc0_config3(cop0);
2744	if (cpu_guest_has_conf4)
2745		kvm_save_gc0_config4(cop0);
2746	if (cpu_guest_has_conf5)
2747		kvm_save_gc0_config5(cop0);
2748	if (cpu_guest_has_conf6)
2749		kvm_save_gc0_config6(cop0);
2750	if (cpu_guest_has_conf7)
2751		kvm_save_gc0_config7(cop0);
2752
2753	kvm_save_gc0_errorepc(cop0);
2754
2755	/* save KScratch registers if enabled in guest */
2756	if (cpu_guest_has_conf4) {
2757		if (cpu_guest_has_kscr(2))
2758			kvm_save_gc0_kscratch1(cop0);
2759		if (cpu_guest_has_kscr(3))
2760			kvm_save_gc0_kscratch2(cop0);
2761		if (cpu_guest_has_kscr(4))
2762			kvm_save_gc0_kscratch3(cop0);
2763		if (cpu_guest_has_kscr(5))
2764			kvm_save_gc0_kscratch4(cop0);
2765		if (cpu_guest_has_kscr(6))
2766			kvm_save_gc0_kscratch5(cop0);
2767		if (cpu_guest_has_kscr(7))
2768			kvm_save_gc0_kscratch6(cop0);
2769	}
2770
2771	if (cpu_guest_has_badinstr)
2772		kvm_save_gc0_badinstr(cop0);
2773	if (cpu_guest_has_badinstrp)
2774		kvm_save_gc0_badinstrp(cop0);
2775
2776	if (cpu_guest_has_segments) {
2777		kvm_save_gc0_segctl0(cop0);
2778		kvm_save_gc0_segctl1(cop0);
2779		kvm_save_gc0_segctl2(cop0);
2780	}
2781
2782	/* save HTW registers if enabled in guest */
2783	if (cpu_guest_has_ldpte || (cpu_guest_has_htw &&
2784	    kvm_read_sw_gc0_config3(cop0) & MIPS_CONF3_PW)) {
2785		kvm_save_gc0_pwbase(cop0);
2786		kvm_save_gc0_pwfield(cop0);
2787		kvm_save_gc0_pwsize(cop0);
2788		kvm_save_gc0_pwctl(cop0);
2789	}
2790
2791	kvm_vz_save_timer(vcpu);
2792
2793	/* save Root.GuestCtl2 in unused Guest guestctl2 register */
2794	if (cpu_has_guestctl2)
2795		cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] =
2796			read_c0_guestctl2();
2797
2798	return 0;
2799}
2800
2801/**
2802 * kvm_vz_resize_guest_vtlb() - Attempt to resize guest VTLB.
2803 * @size:	Number of guest VTLB entries (0 < @size <= root VTLB entries).
2804 *
2805 * Attempt to resize the guest VTLB by writing guest Config registers. This is
2806 * necessary for cores with a shared root/guest TLB to avoid overlap with wired
2807 * entries in the root VTLB.
2808 *
2809 * Returns:	The resulting guest VTLB size.
2810 */
2811static unsigned int kvm_vz_resize_guest_vtlb(unsigned int size)
2812{
2813	unsigned int config4 = 0, ret = 0, limit;
2814
2815	/* Write MMUSize - 1 into guest Config registers */
2816	if (cpu_guest_has_conf1)
2817		change_gc0_config1(MIPS_CONF1_TLBS,
2818				   (size - 1) << MIPS_CONF1_TLBS_SHIFT);
2819	if (cpu_guest_has_conf4) {
2820		config4 = read_gc0_config4();
2821		if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) ==
2822		    MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT) {
2823			config4 &= ~MIPS_CONF4_VTLBSIZEEXT;
2824			config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) <<
2825				MIPS_CONF4_VTLBSIZEEXT_SHIFT;
2826		} else if ((config4 & MIPS_CONF4_MMUEXTDEF) ==
2827			   MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT) {
2828			config4 &= ~MIPS_CONF4_MMUSIZEEXT;
2829			config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) <<
2830				MIPS_CONF4_MMUSIZEEXT_SHIFT;
2831		}
2832		write_gc0_config4(config4);
2833	}
2834
2835	/*
2836	 * Set Guest.Wired.Limit = 0 (no limit up to Guest.MMUSize-1), unless it
2837	 * would exceed Root.Wired.Limit (clearing Guest.Wired.Wired so write
2838	 * not dropped)
2839	 */
2840	if (cpu_has_mips_r6) {
2841		limit = (read_c0_wired() & MIPSR6_WIRED_LIMIT) >>
2842						MIPSR6_WIRED_LIMIT_SHIFT;
2843		if (size - 1 <= limit)
2844			limit = 0;
2845		write_gc0_wired(limit << MIPSR6_WIRED_LIMIT_SHIFT);
2846	}
2847
2848	/* Read back MMUSize - 1 */
2849	back_to_back_c0_hazard();
2850	if (cpu_guest_has_conf1)
2851		ret = (read_gc0_config1() & MIPS_CONF1_TLBS) >>
2852						MIPS_CONF1_TLBS_SHIFT;
2853	if (config4) {
2854		if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) ==
2855		    MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT)
2856			ret |= ((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
2857				MIPS_CONF4_VTLBSIZEEXT_SHIFT) <<
2858				MIPS_CONF1_TLBS_SIZE;
2859		else if ((config4 & MIPS_CONF4_MMUEXTDEF) ==
2860			 MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT)
2861			ret |= ((config4 & MIPS_CONF4_MMUSIZEEXT) >>
2862				MIPS_CONF4_MMUSIZEEXT_SHIFT) <<
2863				MIPS_CONF1_TLBS_SIZE;
2864	}
2865	return ret + 1;
2866}
2867
2868static int kvm_vz_hardware_enable(void)
2869{
2870	unsigned int mmu_size, guest_mmu_size, ftlb_size;
2871	u64 guest_cvmctl, cvmvmconfig;
2872
2873	switch (current_cpu_type()) {
2874	case CPU_CAVIUM_OCTEON3:
2875		/* Set up guest timer/perfcount IRQ lines */
2876		guest_cvmctl = read_gc0_cvmctl();
2877		guest_cvmctl &= ~CVMCTL_IPTI;
2878		guest_cvmctl |= 7ull << CVMCTL_IPTI_SHIFT;
2879		guest_cvmctl &= ~CVMCTL_IPPCI;
2880		guest_cvmctl |= 6ull << CVMCTL_IPPCI_SHIFT;
2881		write_gc0_cvmctl(guest_cvmctl);
2882
2883		cvmvmconfig = read_c0_cvmvmconfig();
2884		/* No I/O hole translation. */
2885		cvmvmconfig |= CVMVMCONF_DGHT;
2886		/* Halve the root MMU size */
2887		mmu_size = ((cvmvmconfig & CVMVMCONF_MMUSIZEM1)
2888			    >> CVMVMCONF_MMUSIZEM1_S) + 1;
2889		guest_mmu_size = mmu_size / 2;
2890		mmu_size -= guest_mmu_size;
2891		cvmvmconfig &= ~CVMVMCONF_RMMUSIZEM1;
2892		cvmvmconfig |= mmu_size - 1;
2893		write_c0_cvmvmconfig(cvmvmconfig);
2894
2895		/* Update our records */
2896		current_cpu_data.tlbsize = mmu_size;
2897		current_cpu_data.tlbsizevtlb = mmu_size;
2898		current_cpu_data.guest.tlbsize = guest_mmu_size;
2899
2900		/* Flush moved entries in new (guest) context */
2901		kvm_vz_local_flush_guesttlb_all();
2902		break;
2903	default:
2904		/*
2905		 * ImgTec cores tend to use a shared root/guest TLB. To avoid
2906		 * overlap of root wired and guest entries, the guest TLB may
2907		 * need resizing.
2908		 */
2909		mmu_size = current_cpu_data.tlbsizevtlb;
2910		ftlb_size = current_cpu_data.tlbsize - mmu_size;
2911
2912		/* Try switching to maximum guest VTLB size for flush */
2913		guest_mmu_size = kvm_vz_resize_guest_vtlb(mmu_size);
2914		current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size;
2915		kvm_vz_local_flush_guesttlb_all();
2916
2917		/*
2918		 * Reduce to make space for root wired entries and at least 2
2919		 * root non-wired entries. This does assume that long-term wired
2920		 * entries won't be added later.
2921		 */
2922		guest_mmu_size = mmu_size - num_wired_entries() - 2;
2923		guest_mmu_size = kvm_vz_resize_guest_vtlb(guest_mmu_size);
2924		current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size;
2925
2926		/*
2927		 * Write the VTLB size, but if another CPU has already written,
2928		 * check it matches or we won't provide a consistent view to the
2929		 * guest. If this ever happens it suggests an asymmetric number
2930		 * of wired entries.
2931		 */
2932		if (cmpxchg(&kvm_vz_guest_vtlb_size, 0, guest_mmu_size) &&
2933		    WARN(guest_mmu_size != kvm_vz_guest_vtlb_size,
2934			 "Available guest VTLB size mismatch"))
2935			return -EINVAL;
2936		break;
2937	}
2938
2939	/*
2940	 * Enable virtualization features granting guest direct control of
2941	 * certain features:
2942	 * CP0=1:	Guest coprocessor 0 context.
2943	 * AT=Guest:	Guest MMU.
2944	 * CG=1:	Hit (virtual address) CACHE operations (optional).
2945	 * CF=1:	Guest Config registers.
2946	 * CGI=1:	Indexed flush CACHE operations (optional).
2947	 */
2948	write_c0_guestctl0(MIPS_GCTL0_CP0 |
2949			   (MIPS_GCTL0_AT_GUEST << MIPS_GCTL0_AT_SHIFT) |
2950			   MIPS_GCTL0_CG | MIPS_GCTL0_CF);
2951	if (cpu_has_guestctl0ext) {
2952		if (current_cpu_type() != CPU_LOONGSON64)
2953			set_c0_guestctl0ext(MIPS_GCTL0EXT_CGI);
2954		else
2955			clear_c0_guestctl0ext(MIPS_GCTL0EXT_CGI);
2956	}
2957
2958	if (cpu_has_guestid) {
2959		write_c0_guestctl1(0);
2960		kvm_vz_local_flush_roottlb_all_guests();
2961
2962		GUESTID_MASK = current_cpu_data.guestid_mask;
2963		GUESTID_FIRST_VERSION = GUESTID_MASK + 1;
2964		GUESTID_VERSION_MASK = ~GUESTID_MASK;
2965
2966		current_cpu_data.guestid_cache = GUESTID_FIRST_VERSION;
2967	}
2968
2969	/* clear any pending injected virtual guest interrupts */
2970	if (cpu_has_guestctl2)
2971		clear_c0_guestctl2(0x3f << 10);
2972
2973#ifdef CONFIG_CPU_LOONGSON64
2974	/* Control guest CCA attribute */
2975	if (cpu_has_csr())
2976		csr_writel(csr_readl(0xffffffec) | 0x1, 0xffffffec);
2977#endif
2978
2979	return 0;
2980}
2981
2982static void kvm_vz_hardware_disable(void)
2983{
2984	u64 cvmvmconfig;
2985	unsigned int mmu_size;
2986
2987	/* Flush any remaining guest TLB entries */
2988	kvm_vz_local_flush_guesttlb_all();
2989
2990	switch (current_cpu_type()) {
2991	case CPU_CAVIUM_OCTEON3:
2992		/*
2993		 * Allocate whole TLB for root. Existing guest TLB entries will
2994		 * change ownership to the root TLB. We should be safe though as
2995		 * they've already been flushed above while in guest TLB.
2996		 */
2997		cvmvmconfig = read_c0_cvmvmconfig();
2998		mmu_size = ((cvmvmconfig & CVMVMCONF_MMUSIZEM1)
2999			    >> CVMVMCONF_MMUSIZEM1_S) + 1;
3000		cvmvmconfig &= ~CVMVMCONF_RMMUSIZEM1;
3001		cvmvmconfig |= mmu_size - 1;
3002		write_c0_cvmvmconfig(cvmvmconfig);
3003
3004		/* Update our records */
3005		current_cpu_data.tlbsize = mmu_size;
3006		current_cpu_data.tlbsizevtlb = mmu_size;
3007		current_cpu_data.guest.tlbsize = 0;
3008
3009		/* Flush moved entries in new (root) context */
3010		local_flush_tlb_all();
3011		break;
3012	}
3013
3014	if (cpu_has_guestid) {
3015		write_c0_guestctl1(0);
3016		kvm_vz_local_flush_roottlb_all_guests();
3017	}
3018}
3019
3020static int kvm_vz_check_extension(struct kvm *kvm, long ext)
3021{
3022	int r;
3023
3024	switch (ext) {
3025	case KVM_CAP_MIPS_VZ:
3026		/* we wouldn't be here unless cpu_has_vz */
3027		r = 1;
3028		break;
3029#ifdef CONFIG_64BIT
3030	case KVM_CAP_MIPS_64BIT:
3031		/* We support 64-bit registers/operations and addresses */
3032		r = 2;
3033		break;
3034#endif
3035	case KVM_CAP_IOEVENTFD:
3036		r = 1;
3037		break;
3038	default:
3039		r = 0;
3040		break;
3041	}
3042
3043	return r;
3044}
3045
3046static int kvm_vz_vcpu_init(struct kvm_vcpu *vcpu)
3047{
3048	int i;
3049
3050	for_each_possible_cpu(i)
3051		vcpu->arch.vzguestid[i] = 0;
3052
3053	return 0;
3054}
3055
3056static void kvm_vz_vcpu_uninit(struct kvm_vcpu *vcpu)
3057{
3058	int cpu;
3059
3060	/*
3061	 * If the VCPU is freed and reused as another VCPU, we don't want the
3062	 * matching pointer wrongly hanging around in last_vcpu[] or
3063	 * last_exec_vcpu[].
3064	 */
3065	for_each_possible_cpu(cpu) {
3066		if (last_vcpu[cpu] == vcpu)
3067			last_vcpu[cpu] = NULL;
3068		if (last_exec_vcpu[cpu] == vcpu)
3069			last_exec_vcpu[cpu] = NULL;
3070	}
3071}
3072
3073static int kvm_vz_vcpu_setup(struct kvm_vcpu *vcpu)
3074{
3075	struct mips_coproc *cop0 = vcpu->arch.cop0;
3076	unsigned long count_hz = 100*1000*1000; /* default to 100 MHz */
3077
3078	/*
3079	 * Start off the timer at the same frequency as the host timer, but the
3080	 * soft timer doesn't handle frequencies greater than 1GHz yet.
3081	 */
3082	if (mips_hpt_frequency && mips_hpt_frequency <= NSEC_PER_SEC)
3083		count_hz = mips_hpt_frequency;
3084	kvm_mips_init_count(vcpu, count_hz);
3085
3086	/*
3087	 * Initialize guest register state to valid architectural reset state.
3088	 */
3089
3090	/* PageGrain */
3091	if (cpu_has_mips_r5 || cpu_has_mips_r6)
3092		kvm_write_sw_gc0_pagegrain(cop0, PG_RIE | PG_XIE | PG_IEC);
3093	/* Wired */
3094	if (cpu_has_mips_r6)
3095		kvm_write_sw_gc0_wired(cop0,
3096				       read_gc0_wired() & MIPSR6_WIRED_LIMIT);
3097	/* Status */
3098	kvm_write_sw_gc0_status(cop0, ST0_BEV | ST0_ERL);
3099	if (cpu_has_mips_r5 || cpu_has_mips_r6)
3100		kvm_change_sw_gc0_status(cop0, ST0_FR, read_gc0_status());
3101	/* IntCtl */
3102	kvm_write_sw_gc0_intctl(cop0, read_gc0_intctl() &
3103				(INTCTLF_IPFDC | INTCTLF_IPPCI | INTCTLF_IPTI));
3104	/* PRId */
3105	kvm_write_sw_gc0_prid(cop0, boot_cpu_data.processor_id);
3106	/* EBase */
3107	kvm_write_sw_gc0_ebase(cop0, (s32)0x80000000 | vcpu->vcpu_id);
3108	/* Config */
3109	kvm_save_gc0_config(cop0);
3110	/* architecturally writable (e.g. from guest) */
3111	kvm_change_sw_gc0_config(cop0, CONF_CM_CMASK,
3112				 _page_cachable_default >> _CACHE_SHIFT);
3113	/* architecturally read only, but maybe writable from root */
3114	kvm_change_sw_gc0_config(cop0, MIPS_CONF_MT, read_c0_config());
3115	if (cpu_guest_has_conf1) {
3116		kvm_set_sw_gc0_config(cop0, MIPS_CONF_M);
3117		/* Config1 */
3118		kvm_save_gc0_config1(cop0);
3119		/* architecturally read only, but maybe writable from root */
3120		kvm_clear_sw_gc0_config1(cop0, MIPS_CONF1_C2	|
3121					       MIPS_CONF1_MD	|
3122					       MIPS_CONF1_PC	|
3123					       MIPS_CONF1_WR	|
3124					       MIPS_CONF1_CA	|
3125					       MIPS_CONF1_FP);
3126	}
3127	if (cpu_guest_has_conf2) {
3128		kvm_set_sw_gc0_config1(cop0, MIPS_CONF_M);
3129		/* Config2 */
3130		kvm_save_gc0_config2(cop0);
3131	}
3132	if (cpu_guest_has_conf3) {
3133		kvm_set_sw_gc0_config2(cop0, MIPS_CONF_M);
3134		/* Config3 */
3135		kvm_save_gc0_config3(cop0);
3136		/* architecturally writable (e.g. from guest) */
3137		kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_ISA_OE);
3138		/* architecturally read only, but maybe writable from root */
3139		kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_MSA	|
3140					       MIPS_CONF3_BPG	|
3141					       MIPS_CONF3_ULRI	|
3142					       MIPS_CONF3_DSP	|
3143					       MIPS_CONF3_CTXTC	|
3144					       MIPS_CONF3_ITL	|
3145					       MIPS_CONF3_LPA	|
3146					       MIPS_CONF3_VEIC	|
3147					       MIPS_CONF3_VINT	|
3148					       MIPS_CONF3_SP	|
3149					       MIPS_CONF3_CDMM	|
3150					       MIPS_CONF3_MT	|
3151					       MIPS_CONF3_SM	|
3152					       MIPS_CONF3_TL);
3153	}
3154	if (cpu_guest_has_conf4) {
3155		kvm_set_sw_gc0_config3(cop0, MIPS_CONF_M);
3156		/* Config4 */
3157		kvm_save_gc0_config4(cop0);
3158	}
3159	if (cpu_guest_has_conf5) {
3160		kvm_set_sw_gc0_config4(cop0, MIPS_CONF_M);
3161		/* Config5 */
3162		kvm_save_gc0_config5(cop0);
3163		/* architecturally writable (e.g. from guest) */
3164		kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_K	|
3165					       MIPS_CONF5_CV	|
3166					       MIPS_CONF5_MSAEN	|
3167					       MIPS_CONF5_UFE	|
3168					       MIPS_CONF5_FRE	|
3169					       MIPS_CONF5_SBRI	|
3170					       MIPS_CONF5_UFR);
3171		/* architecturally read only, but maybe writable from root */
3172		kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_MRP);
3173	}
3174
3175	if (cpu_guest_has_contextconfig) {
3176		/* ContextConfig */
3177		kvm_write_sw_gc0_contextconfig(cop0, 0x007ffff0);
3178#ifdef CONFIG_64BIT
3179		/* XContextConfig */
3180		/* bits SEGBITS-13+3:4 set */
3181		kvm_write_sw_gc0_xcontextconfig(cop0,
3182					((1ull << (cpu_vmbits - 13)) - 1) << 4);
3183#endif
3184	}
3185
3186	/* Implementation dependent, use the legacy layout */
3187	if (cpu_guest_has_segments) {
3188		/* SegCtl0, SegCtl1, SegCtl2 */
3189		kvm_write_sw_gc0_segctl0(cop0, 0x00200010);
3190		kvm_write_sw_gc0_segctl1(cop0, 0x00000002 |
3191				(_page_cachable_default >> _CACHE_SHIFT) <<
3192						(16 + MIPS_SEGCFG_C_SHIFT));
3193		kvm_write_sw_gc0_segctl2(cop0, 0x00380438);
3194	}
3195
3196	/* reset HTW registers */
3197	if (cpu_guest_has_htw && (cpu_has_mips_r5 || cpu_has_mips_r6)) {
3198		/* PWField */
3199		kvm_write_sw_gc0_pwfield(cop0, 0x0c30c302);
3200		/* PWSize */
3201		kvm_write_sw_gc0_pwsize(cop0, 1 << MIPS_PWSIZE_PTW_SHIFT);
3202	}
3203
3204	/* start with no pending virtual guest interrupts */
3205	if (cpu_has_guestctl2)
3206		cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] = 0;
3207
3208	/* Put PC at reset vector */
3209	vcpu->arch.pc = CKSEG1ADDR(0x1fc00000);
3210
3211	return 0;
3212}
3213
3214static void kvm_vz_flush_shadow_all(struct kvm *kvm)
3215{
3216	if (cpu_has_guestid) {
3217		/* Flush GuestID for each VCPU individually */
3218		kvm_flush_remote_tlbs(kvm);
3219	} else {
3220		/*
3221		 * For each CPU there is a single GPA ASID used by all VCPUs in
3222		 * the VM, so it doesn't make sense for the VCPUs to handle
3223		 * invalidation of these ASIDs individually.
3224		 *
3225		 * Instead mark all CPUs as needing ASID invalidation in
3226		 * asid_flush_mask, and just use kvm_flush_remote_tlbs(kvm) to
3227		 * kick any running VCPUs so they check asid_flush_mask.
3228		 */
3229		cpumask_setall(&kvm->arch.asid_flush_mask);
3230		kvm_flush_remote_tlbs(kvm);
3231	}
3232}
3233
3234static void kvm_vz_flush_shadow_memslot(struct kvm *kvm,
3235					const struct kvm_memory_slot *slot)
3236{
3237	kvm_vz_flush_shadow_all(kvm);
3238}
3239
3240static void kvm_vz_vcpu_reenter(struct kvm_vcpu *vcpu)
3241{
3242	int cpu = smp_processor_id();
3243	int preserve_guest_tlb;
3244
3245	preserve_guest_tlb = kvm_vz_check_requests(vcpu, cpu);
3246
3247	if (preserve_guest_tlb)
3248		kvm_vz_vcpu_save_wired(vcpu);
3249
3250	kvm_vz_vcpu_load_tlb(vcpu, cpu);
3251
3252	if (preserve_guest_tlb)
3253		kvm_vz_vcpu_load_wired(vcpu);
3254}
3255
3256static int kvm_vz_vcpu_run(struct kvm_vcpu *vcpu)
3257{
3258	int cpu = smp_processor_id();
3259	int r;
3260
3261	kvm_vz_acquire_htimer(vcpu);
3262	/* Check if we have any exceptions/interrupts pending */
3263	kvm_mips_deliver_interrupts(vcpu, read_gc0_cause());
3264
3265	kvm_vz_check_requests(vcpu, cpu);
3266	kvm_vz_vcpu_load_tlb(vcpu, cpu);
3267	kvm_vz_vcpu_load_wired(vcpu);
3268
3269	r = vcpu->arch.vcpu_run(vcpu->run, vcpu);
3270
3271	kvm_vz_vcpu_save_wired(vcpu);
3272
3273	return r;
3274}
3275
3276static struct kvm_mips_callbacks kvm_vz_callbacks = {
3277	.handle_cop_unusable = kvm_trap_vz_handle_cop_unusable,
3278	.handle_tlb_mod = kvm_trap_vz_handle_tlb_st_miss,
3279	.handle_tlb_ld_miss = kvm_trap_vz_handle_tlb_ld_miss,
3280	.handle_tlb_st_miss = kvm_trap_vz_handle_tlb_st_miss,
3281	.handle_addr_err_st = kvm_trap_vz_no_handler,
3282	.handle_addr_err_ld = kvm_trap_vz_no_handler,
3283	.handle_syscall = kvm_trap_vz_no_handler,
3284	.handle_res_inst = kvm_trap_vz_no_handler,
3285	.handle_break = kvm_trap_vz_no_handler,
3286	.handle_msa_disabled = kvm_trap_vz_handle_msa_disabled,
3287	.handle_guest_exit = kvm_trap_vz_handle_guest_exit,
3288
3289	.hardware_enable = kvm_vz_hardware_enable,
3290	.hardware_disable = kvm_vz_hardware_disable,
3291	.check_extension = kvm_vz_check_extension,
3292	.vcpu_init = kvm_vz_vcpu_init,
3293	.vcpu_uninit = kvm_vz_vcpu_uninit,
3294	.vcpu_setup = kvm_vz_vcpu_setup,
3295	.flush_shadow_all = kvm_vz_flush_shadow_all,
3296	.flush_shadow_memslot = kvm_vz_flush_shadow_memslot,
3297	.gva_to_gpa = kvm_vz_gva_to_gpa_cb,
3298	.queue_timer_int = kvm_vz_queue_timer_int_cb,
3299	.dequeue_timer_int = kvm_vz_dequeue_timer_int_cb,
3300	.queue_io_int = kvm_vz_queue_io_int_cb,
3301	.dequeue_io_int = kvm_vz_dequeue_io_int_cb,
3302	.irq_deliver = kvm_vz_irq_deliver_cb,
3303	.irq_clear = kvm_vz_irq_clear_cb,
3304	.num_regs = kvm_vz_num_regs,
3305	.copy_reg_indices = kvm_vz_copy_reg_indices,
3306	.get_one_reg = kvm_vz_get_one_reg,
3307	.set_one_reg = kvm_vz_set_one_reg,
3308	.vcpu_load = kvm_vz_vcpu_load,
3309	.vcpu_put = kvm_vz_vcpu_put,
3310	.vcpu_run = kvm_vz_vcpu_run,
3311	.vcpu_reenter = kvm_vz_vcpu_reenter,
3312};
3313
3314int kvm_mips_emulation_init(struct kvm_mips_callbacks **install_callbacks)
 
 
 
3315{
3316	if (!cpu_has_vz)
3317		return -ENODEV;
3318
3319	/*
3320	 * VZ requires at least 2 KScratch registers, so it should have been
3321	 * possible to allocate pgd_reg.
3322	 */
3323	if (WARN(pgd_reg == -1,
3324		 "pgd_reg not allocated even though cpu_has_vz\n"))
3325		return -ENODEV;
3326
3327	pr_info("Starting KVM with MIPS VZ extensions\n");
3328
3329	*install_callbacks = &kvm_vz_callbacks;
3330	return 0;
3331}