Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Based on arch/arm/mm/fault.c
4 *
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 1995-2004 Russell King
7 * Copyright (C) 2012 ARM Ltd.
8 */
9
10#include <linux/acpi.h>
11#include <linux/bitfield.h>
12#include <linux/extable.h>
13#include <linux/kfence.h>
14#include <linux/signal.h>
15#include <linux/mm.h>
16#include <linux/hardirq.h>
17#include <linux/init.h>
18#include <linux/kasan.h>
19#include <linux/kprobes.h>
20#include <linux/uaccess.h>
21#include <linux/page-flags.h>
22#include <linux/sched/signal.h>
23#include <linux/sched/debug.h>
24#include <linux/highmem.h>
25#include <linux/perf_event.h>
26#include <linux/preempt.h>
27#include <linux/hugetlb.h>
28
29#include <asm/acpi.h>
30#include <asm/bug.h>
31#include <asm/cmpxchg.h>
32#include <asm/cpufeature.h>
33#include <asm/efi.h>
34#include <asm/exception.h>
35#include <asm/daifflags.h>
36#include <asm/debug-monitors.h>
37#include <asm/esr.h>
38#include <asm/kprobes.h>
39#include <asm/mte.h>
40#include <asm/processor.h>
41#include <asm/sysreg.h>
42#include <asm/system_misc.h>
43#include <asm/tlbflush.h>
44#include <asm/traps.h>
45
46struct fault_info {
47 int (*fn)(unsigned long far, unsigned long esr,
48 struct pt_regs *regs);
49 int sig;
50 int code;
51 const char *name;
52};
53
54static const struct fault_info fault_info[];
55static struct fault_info debug_fault_info[];
56
57static inline const struct fault_info *esr_to_fault_info(unsigned long esr)
58{
59 return fault_info + (esr & ESR_ELx_FSC);
60}
61
62static inline const struct fault_info *esr_to_debug_fault_info(unsigned long esr)
63{
64 return debug_fault_info + DBG_ESR_EVT(esr);
65}
66
67static void data_abort_decode(unsigned long esr)
68{
69 unsigned long iss2 = ESR_ELx_ISS2(esr);
70
71 pr_alert("Data abort info:\n");
72
73 if (esr & ESR_ELx_ISV) {
74 pr_alert(" Access size = %u byte(s)\n",
75 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
76 pr_alert(" SSE = %lu, SRT = %lu\n",
77 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
78 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
79 pr_alert(" SF = %lu, AR = %lu\n",
80 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
81 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
82 } else {
83 pr_alert(" ISV = 0, ISS = 0x%08lx, ISS2 = 0x%08lx\n",
84 esr & ESR_ELx_ISS_MASK, iss2);
85 }
86
87 pr_alert(" CM = %lu, WnR = %lu, TnD = %lu, TagAccess = %lu\n",
88 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
89 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT,
90 (iss2 & ESR_ELx_TnD) >> ESR_ELx_TnD_SHIFT,
91 (iss2 & ESR_ELx_TagAccess) >> ESR_ELx_TagAccess_SHIFT);
92
93 pr_alert(" GCS = %ld, Overlay = %lu, DirtyBit = %lu, Xs = %llu\n",
94 (iss2 & ESR_ELx_GCS) >> ESR_ELx_GCS_SHIFT,
95 (iss2 & ESR_ELx_Overlay) >> ESR_ELx_Overlay_SHIFT,
96 (iss2 & ESR_ELx_DirtyBit) >> ESR_ELx_DirtyBit_SHIFT,
97 (iss2 & ESR_ELx_Xs_MASK) >> ESR_ELx_Xs_SHIFT);
98}
99
100static void mem_abort_decode(unsigned long esr)
101{
102 pr_alert("Mem abort info:\n");
103
104 pr_alert(" ESR = 0x%016lx\n", esr);
105 pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n",
106 ESR_ELx_EC(esr), esr_get_class_string(esr),
107 (esr & ESR_ELx_IL) ? 32 : 16);
108 pr_alert(" SET = %lu, FnV = %lu\n",
109 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
110 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
111 pr_alert(" EA = %lu, S1PTW = %lu\n",
112 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
113 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
114 pr_alert(" FSC = 0x%02lx: %s\n", (esr & ESR_ELx_FSC),
115 esr_to_fault_info(esr)->name);
116
117 if (esr_is_data_abort(esr))
118 data_abort_decode(esr);
119}
120
121static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
122{
123 /* Either init_pg_dir or swapper_pg_dir */
124 if (mm == &init_mm)
125 return __pa_symbol(mm->pgd);
126
127 return (unsigned long)virt_to_phys(mm->pgd);
128}
129
130/*
131 * Dump out the page tables associated with 'addr' in the currently active mm.
132 */
133static void show_pte(unsigned long addr)
134{
135 struct mm_struct *mm;
136 pgd_t *pgdp;
137 pgd_t pgd;
138
139 if (is_ttbr0_addr(addr)) {
140 /* TTBR0 */
141 mm = current->active_mm;
142 if (mm == &init_mm) {
143 pr_alert("[%016lx] user address but active_mm is swapper\n",
144 addr);
145 return;
146 }
147 } else if (is_ttbr1_addr(addr)) {
148 /* TTBR1 */
149 mm = &init_mm;
150 } else {
151 pr_alert("[%016lx] address between user and kernel address ranges\n",
152 addr);
153 return;
154 }
155
156 pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
157 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
158 vabits_actual, mm_to_pgd_phys(mm));
159 pgdp = pgd_offset(mm, addr);
160 pgd = READ_ONCE(*pgdp);
161 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
162
163 do {
164 p4d_t *p4dp, p4d;
165 pud_t *pudp, pud;
166 pmd_t *pmdp, pmd;
167 pte_t *ptep, pte;
168
169 if (pgd_none(pgd) || pgd_bad(pgd))
170 break;
171
172 p4dp = p4d_offset(pgdp, addr);
173 p4d = READ_ONCE(*p4dp);
174 pr_cont(", p4d=%016llx", p4d_val(p4d));
175 if (p4d_none(p4d) || p4d_bad(p4d))
176 break;
177
178 pudp = pud_offset(p4dp, addr);
179 pud = READ_ONCE(*pudp);
180 pr_cont(", pud=%016llx", pud_val(pud));
181 if (pud_none(pud) || pud_bad(pud))
182 break;
183
184 pmdp = pmd_offset(pudp, addr);
185 pmd = READ_ONCE(*pmdp);
186 pr_cont(", pmd=%016llx", pmd_val(pmd));
187 if (pmd_none(pmd) || pmd_bad(pmd))
188 break;
189
190 ptep = pte_offset_map(pmdp, addr);
191 if (!ptep)
192 break;
193
194 pte = READ_ONCE(*ptep);
195 pr_cont(", pte=%016llx", pte_val(pte));
196 pte_unmap(ptep);
197 } while(0);
198
199 pr_cont("\n");
200}
201
202/*
203 * This function sets the access flags (dirty, accessed), as well as write
204 * permission, and only to a more permissive setting.
205 *
206 * It needs to cope with hardware update of the accessed/dirty state by other
207 * agents in the system and can safely skip the __sync_icache_dcache() call as,
208 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
209 *
210 * Returns whether or not the PTE actually changed.
211 */
212int ptep_set_access_flags(struct vm_area_struct *vma,
213 unsigned long address, pte_t *ptep,
214 pte_t entry, int dirty)
215{
216 pteval_t old_pteval, pteval;
217 pte_t pte = READ_ONCE(*ptep);
218
219 if (pte_same(pte, entry))
220 return 0;
221
222 /* only preserve the access flags and write permission */
223 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
224
225 /*
226 * Setting the flags must be done atomically to avoid racing with the
227 * hardware update of the access/dirty state. The PTE_RDONLY bit must
228 * be set to the most permissive (lowest value) of *ptep and entry
229 * (calculated as: a & b == ~(~a | ~b)).
230 */
231 pte_val(entry) ^= PTE_RDONLY;
232 pteval = pte_val(pte);
233 do {
234 old_pteval = pteval;
235 pteval ^= PTE_RDONLY;
236 pteval |= pte_val(entry);
237 pteval ^= PTE_RDONLY;
238 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
239 } while (pteval != old_pteval);
240
241 /* Invalidate a stale read-only entry */
242 if (dirty)
243 flush_tlb_page(vma, address);
244 return 1;
245}
246
247static bool is_el1_instruction_abort(unsigned long esr)
248{
249 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
250}
251
252static bool is_el1_data_abort(unsigned long esr)
253{
254 return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR;
255}
256
257static inline bool is_el1_permission_fault(unsigned long addr, unsigned long esr,
258 struct pt_regs *regs)
259{
260 unsigned long fsc_type = esr & ESR_ELx_FSC_TYPE;
261
262 if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr))
263 return false;
264
265 if (fsc_type == ESR_ELx_FSC_PERM)
266 return true;
267
268 if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
269 return fsc_type == ESR_ELx_FSC_FAULT &&
270 (regs->pstate & PSR_PAN_BIT);
271
272 return false;
273}
274
275static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
276 unsigned long esr,
277 struct pt_regs *regs)
278{
279 unsigned long flags;
280 u64 par, dfsc;
281
282 if (!is_el1_data_abort(esr) ||
283 (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
284 return false;
285
286 local_irq_save(flags);
287 asm volatile("at s1e1r, %0" :: "r" (addr));
288 isb();
289 par = read_sysreg_par();
290 local_irq_restore(flags);
291
292 /*
293 * If we now have a valid translation, treat the translation fault as
294 * spurious.
295 */
296 if (!(par & SYS_PAR_EL1_F))
297 return true;
298
299 /*
300 * If we got a different type of fault from the AT instruction,
301 * treat the translation fault as spurious.
302 */
303 dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
304 return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
305}
306
307static void die_kernel_fault(const char *msg, unsigned long addr,
308 unsigned long esr, struct pt_regs *regs)
309{
310 bust_spinlocks(1);
311
312 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
313 addr);
314
315 kasan_non_canonical_hook(addr);
316
317 mem_abort_decode(esr);
318
319 show_pte(addr);
320 die("Oops", regs, esr);
321 bust_spinlocks(0);
322 make_task_dead(SIGKILL);
323}
324
325#ifdef CONFIG_KASAN_HW_TAGS
326static void report_tag_fault(unsigned long addr, unsigned long esr,
327 struct pt_regs *regs)
328{
329 /*
330 * SAS bits aren't set for all faults reported in EL1, so we can't
331 * find out access size.
332 */
333 bool is_write = !!(esr & ESR_ELx_WNR);
334 kasan_report((void *)addr, 0, is_write, regs->pc);
335}
336#else
337/* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */
338static inline void report_tag_fault(unsigned long addr, unsigned long esr,
339 struct pt_regs *regs) { }
340#endif
341
342static void do_tag_recovery(unsigned long addr, unsigned long esr,
343 struct pt_regs *regs)
344{
345
346 report_tag_fault(addr, esr, regs);
347
348 /*
349 * Disable MTE Tag Checking on the local CPU for the current EL.
350 * It will be done lazily on the other CPUs when they will hit a
351 * tag fault.
352 */
353 sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
354 SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF, NONE));
355 isb();
356}
357
358static bool is_el1_mte_sync_tag_check_fault(unsigned long esr)
359{
360 unsigned long fsc = esr & ESR_ELx_FSC;
361
362 if (!is_el1_data_abort(esr))
363 return false;
364
365 if (fsc == ESR_ELx_FSC_MTE)
366 return true;
367
368 return false;
369}
370
371static bool is_translation_fault(unsigned long esr)
372{
373 return (esr & ESR_ELx_FSC_TYPE) == ESR_ELx_FSC_FAULT;
374}
375
376static void __do_kernel_fault(unsigned long addr, unsigned long esr,
377 struct pt_regs *regs)
378{
379 const char *msg;
380
381 /*
382 * Are we prepared to handle this kernel fault?
383 * We are almost certainly not prepared to handle instruction faults.
384 */
385 if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
386 return;
387
388 if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
389 "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
390 return;
391
392 if (is_el1_mte_sync_tag_check_fault(esr)) {
393 do_tag_recovery(addr, esr, regs);
394
395 return;
396 }
397
398 if (is_el1_permission_fault(addr, esr, regs)) {
399 if (esr & ESR_ELx_WNR)
400 msg = "write to read-only memory";
401 else if (is_el1_instruction_abort(esr))
402 msg = "execute from non-executable memory";
403 else
404 msg = "read from unreadable memory";
405 } else if (addr < PAGE_SIZE) {
406 msg = "NULL pointer dereference";
407 } else {
408 if (is_translation_fault(esr) &&
409 kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs))
410 return;
411
412 msg = "paging request";
413 }
414
415 if (efi_runtime_fixup_exception(regs, msg))
416 return;
417
418 die_kernel_fault(msg, addr, esr, regs);
419}
420
421static void set_thread_esr(unsigned long address, unsigned long esr)
422{
423 current->thread.fault_address = address;
424
425 /*
426 * If the faulting address is in the kernel, we must sanitize the ESR.
427 * From userspace's point of view, kernel-only mappings don't exist
428 * at all, so we report them as level 0 translation faults.
429 * (This is not quite the way that "no mapping there at all" behaves:
430 * an alignment fault not caused by the memory type would take
431 * precedence over translation fault for a real access to empty
432 * space. Unfortunately we can't easily distinguish "alignment fault
433 * not caused by memory type" from "alignment fault caused by memory
434 * type", so we ignore this wrinkle and just return the translation
435 * fault.)
436 */
437 if (!is_ttbr0_addr(current->thread.fault_address)) {
438 switch (ESR_ELx_EC(esr)) {
439 case ESR_ELx_EC_DABT_LOW:
440 /*
441 * These bits provide only information about the
442 * faulting instruction, which userspace knows already.
443 * We explicitly clear bits which are architecturally
444 * RES0 in case they are given meanings in future.
445 * We always report the ESR as if the fault was taken
446 * to EL1 and so ISV and the bits in ISS[23:14] are
447 * clear. (In fact it always will be a fault to EL1.)
448 */
449 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
450 ESR_ELx_CM | ESR_ELx_WNR;
451 esr |= ESR_ELx_FSC_FAULT;
452 break;
453 case ESR_ELx_EC_IABT_LOW:
454 /*
455 * Claim a level 0 translation fault.
456 * All other bits are architecturally RES0 for faults
457 * reported with that DFSC value, so we clear them.
458 */
459 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
460 esr |= ESR_ELx_FSC_FAULT;
461 break;
462 default:
463 /*
464 * This should never happen (entry.S only brings us
465 * into this code for insn and data aborts from a lower
466 * exception level). Fail safe by not providing an ESR
467 * context record at all.
468 */
469 WARN(1, "ESR 0x%lx is not DABT or IABT from EL0\n", esr);
470 esr = 0;
471 break;
472 }
473 }
474
475 current->thread.fault_code = esr;
476}
477
478static void do_bad_area(unsigned long far, unsigned long esr,
479 struct pt_regs *regs)
480{
481 unsigned long addr = untagged_addr(far);
482
483 /*
484 * If we are in kernel mode at this point, we have no context to
485 * handle this fault with.
486 */
487 if (user_mode(regs)) {
488 const struct fault_info *inf = esr_to_fault_info(esr);
489
490 set_thread_esr(addr, esr);
491 arm64_force_sig_fault(inf->sig, inf->code, far, inf->name);
492 } else {
493 __do_kernel_fault(addr, esr, regs);
494 }
495}
496
497#define VM_FAULT_BADMAP ((__force vm_fault_t)0x010000)
498#define VM_FAULT_BADACCESS ((__force vm_fault_t)0x020000)
499
500static vm_fault_t __do_page_fault(struct mm_struct *mm,
501 struct vm_area_struct *vma, unsigned long addr,
502 unsigned int mm_flags, unsigned long vm_flags,
503 struct pt_regs *regs)
504{
505 /*
506 * Ok, we have a good vm_area for this memory access, so we can handle
507 * it.
508 * Check that the permissions on the VMA allow for the fault which
509 * occurred.
510 */
511 if (!(vma->vm_flags & vm_flags))
512 return VM_FAULT_BADACCESS;
513 return handle_mm_fault(vma, addr, mm_flags, regs);
514}
515
516static bool is_el0_instruction_abort(unsigned long esr)
517{
518 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
519}
520
521/*
522 * Note: not valid for EL1 DC IVAC, but we never use that such that it
523 * should fault. EL0 cannot issue DC IVAC (undef).
524 */
525static bool is_write_abort(unsigned long esr)
526{
527 return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
528}
529
530static int __kprobes do_page_fault(unsigned long far, unsigned long esr,
531 struct pt_regs *regs)
532{
533 const struct fault_info *inf;
534 struct mm_struct *mm = current->mm;
535 vm_fault_t fault;
536 unsigned long vm_flags;
537 unsigned int mm_flags = FAULT_FLAG_DEFAULT;
538 unsigned long addr = untagged_addr(far);
539 struct vm_area_struct *vma;
540
541 if (kprobe_page_fault(regs, esr))
542 return 0;
543
544 /*
545 * If we're in an interrupt or have no user context, we must not take
546 * the fault.
547 */
548 if (faulthandler_disabled() || !mm)
549 goto no_context;
550
551 if (user_mode(regs))
552 mm_flags |= FAULT_FLAG_USER;
553
554 /*
555 * vm_flags tells us what bits we must have in vma->vm_flags
556 * for the fault to be benign, __do_page_fault() would check
557 * vma->vm_flags & vm_flags and returns an error if the
558 * intersection is empty
559 */
560 if (is_el0_instruction_abort(esr)) {
561 /* It was exec fault */
562 vm_flags = VM_EXEC;
563 mm_flags |= FAULT_FLAG_INSTRUCTION;
564 } else if (is_write_abort(esr)) {
565 /* It was write fault */
566 vm_flags = VM_WRITE;
567 mm_flags |= FAULT_FLAG_WRITE;
568 } else {
569 /* It was read fault */
570 vm_flags = VM_READ;
571 /* Write implies read */
572 vm_flags |= VM_WRITE;
573 /* If EPAN is absent then exec implies read */
574 if (!alternative_has_cap_unlikely(ARM64_HAS_EPAN))
575 vm_flags |= VM_EXEC;
576 }
577
578 if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
579 if (is_el1_instruction_abort(esr))
580 die_kernel_fault("execution of user memory",
581 addr, esr, regs);
582
583 if (!search_exception_tables(regs->pc))
584 die_kernel_fault("access to user memory outside uaccess routines",
585 addr, esr, regs);
586 }
587
588 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
589
590 if (!(mm_flags & FAULT_FLAG_USER))
591 goto lock_mmap;
592
593 vma = lock_vma_under_rcu(mm, addr);
594 if (!vma)
595 goto lock_mmap;
596
597 if (!(vma->vm_flags & vm_flags)) {
598 vma_end_read(vma);
599 goto lock_mmap;
600 }
601 fault = handle_mm_fault(vma, addr, mm_flags | FAULT_FLAG_VMA_LOCK, regs);
602 if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
603 vma_end_read(vma);
604
605 if (!(fault & VM_FAULT_RETRY)) {
606 count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
607 goto done;
608 }
609 count_vm_vma_lock_event(VMA_LOCK_RETRY);
610 if (fault & VM_FAULT_MAJOR)
611 mm_flags |= FAULT_FLAG_TRIED;
612
613 /* Quick path to respond to signals */
614 if (fault_signal_pending(fault, regs)) {
615 if (!user_mode(regs))
616 goto no_context;
617 return 0;
618 }
619lock_mmap:
620
621retry:
622 vma = lock_mm_and_find_vma(mm, addr, regs);
623 if (unlikely(!vma)) {
624 fault = VM_FAULT_BADMAP;
625 goto done;
626 }
627
628 fault = __do_page_fault(mm, vma, addr, mm_flags, vm_flags, regs);
629
630 /* Quick path to respond to signals */
631 if (fault_signal_pending(fault, regs)) {
632 if (!user_mode(regs))
633 goto no_context;
634 return 0;
635 }
636
637 /* The fault is fully completed (including releasing mmap lock) */
638 if (fault & VM_FAULT_COMPLETED)
639 return 0;
640
641 if (fault & VM_FAULT_RETRY) {
642 mm_flags |= FAULT_FLAG_TRIED;
643 goto retry;
644 }
645 mmap_read_unlock(mm);
646
647done:
648 /*
649 * Handle the "normal" (no error) case first.
650 */
651 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
652 VM_FAULT_BADACCESS))))
653 return 0;
654
655 /*
656 * If we are in kernel mode at this point, we have no context to
657 * handle this fault with.
658 */
659 if (!user_mode(regs))
660 goto no_context;
661
662 if (fault & VM_FAULT_OOM) {
663 /*
664 * We ran out of memory, call the OOM killer, and return to
665 * userspace (which will retry the fault, or kill us if we got
666 * oom-killed).
667 */
668 pagefault_out_of_memory();
669 return 0;
670 }
671
672 inf = esr_to_fault_info(esr);
673 set_thread_esr(addr, esr);
674 if (fault & VM_FAULT_SIGBUS) {
675 /*
676 * We had some memory, but were unable to successfully fix up
677 * this page fault.
678 */
679 arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name);
680 } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
681 unsigned int lsb;
682
683 lsb = PAGE_SHIFT;
684 if (fault & VM_FAULT_HWPOISON_LARGE)
685 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
686
687 arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name);
688 } else {
689 /*
690 * Something tried to access memory that isn't in our memory
691 * map.
692 */
693 arm64_force_sig_fault(SIGSEGV,
694 fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
695 far, inf->name);
696 }
697
698 return 0;
699
700no_context:
701 __do_kernel_fault(addr, esr, regs);
702 return 0;
703}
704
705static int __kprobes do_translation_fault(unsigned long far,
706 unsigned long esr,
707 struct pt_regs *regs)
708{
709 unsigned long addr = untagged_addr(far);
710
711 if (is_ttbr0_addr(addr))
712 return do_page_fault(far, esr, regs);
713
714 do_bad_area(far, esr, regs);
715 return 0;
716}
717
718static int do_alignment_fault(unsigned long far, unsigned long esr,
719 struct pt_regs *regs)
720{
721 if (IS_ENABLED(CONFIG_COMPAT_ALIGNMENT_FIXUPS) &&
722 compat_user_mode(regs))
723 return do_compat_alignment_fixup(far, regs);
724 do_bad_area(far, esr, regs);
725 return 0;
726}
727
728static int do_bad(unsigned long far, unsigned long esr, struct pt_regs *regs)
729{
730 return 1; /* "fault" */
731}
732
733static int do_sea(unsigned long far, unsigned long esr, struct pt_regs *regs)
734{
735 const struct fault_info *inf;
736 unsigned long siaddr;
737
738 inf = esr_to_fault_info(esr);
739
740 if (user_mode(regs) && apei_claim_sea(regs) == 0) {
741 /*
742 * APEI claimed this as a firmware-first notification.
743 * Some processing deferred to task_work before ret_to_user().
744 */
745 return 0;
746 }
747
748 if (esr & ESR_ELx_FnV) {
749 siaddr = 0;
750 } else {
751 /*
752 * The architecture specifies that the tag bits of FAR_EL1 are
753 * UNKNOWN for synchronous external aborts. Mask them out now
754 * so that userspace doesn't see them.
755 */
756 siaddr = untagged_addr(far);
757 }
758 arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
759
760 return 0;
761}
762
763static int do_tag_check_fault(unsigned long far, unsigned long esr,
764 struct pt_regs *regs)
765{
766 /*
767 * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN
768 * for tag check faults. Set them to corresponding bits in the untagged
769 * address.
770 */
771 far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK);
772 do_bad_area(far, esr, regs);
773 return 0;
774}
775
776static const struct fault_info fault_info[] = {
777 { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" },
778 { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" },
779 { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" },
780 { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" },
781 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
782 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
783 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
784 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
785 { do_bad, SIGKILL, SI_KERNEL, "unknown 8" },
786 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
787 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
788 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
789 { do_bad, SIGKILL, SI_KERNEL, "unknown 12" },
790 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
791 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
792 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
793 { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" },
794 { do_tag_check_fault, SIGSEGV, SEGV_MTESERR, "synchronous tag check fault" },
795 { do_bad, SIGKILL, SI_KERNEL, "unknown 18" },
796 { do_bad, SIGKILL, SI_KERNEL, "unknown 19" },
797 { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" },
798 { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" },
799 { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" },
800 { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" },
801 { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
802 { do_bad, SIGKILL, SI_KERNEL, "unknown 25" },
803 { do_bad, SIGKILL, SI_KERNEL, "unknown 26" },
804 { do_bad, SIGKILL, SI_KERNEL, "unknown 27" },
805 { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
806 { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
807 { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
808 { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
809 { do_bad, SIGKILL, SI_KERNEL, "unknown 32" },
810 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
811 { do_bad, SIGKILL, SI_KERNEL, "unknown 34" },
812 { do_bad, SIGKILL, SI_KERNEL, "unknown 35" },
813 { do_bad, SIGKILL, SI_KERNEL, "unknown 36" },
814 { do_bad, SIGKILL, SI_KERNEL, "unknown 37" },
815 { do_bad, SIGKILL, SI_KERNEL, "unknown 38" },
816 { do_bad, SIGKILL, SI_KERNEL, "unknown 39" },
817 { do_bad, SIGKILL, SI_KERNEL, "unknown 40" },
818 { do_bad, SIGKILL, SI_KERNEL, "unknown 41" },
819 { do_bad, SIGKILL, SI_KERNEL, "unknown 42" },
820 { do_bad, SIGKILL, SI_KERNEL, "unknown 43" },
821 { do_bad, SIGKILL, SI_KERNEL, "unknown 44" },
822 { do_bad, SIGKILL, SI_KERNEL, "unknown 45" },
823 { do_bad, SIGKILL, SI_KERNEL, "unknown 46" },
824 { do_bad, SIGKILL, SI_KERNEL, "unknown 47" },
825 { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" },
826 { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" },
827 { do_bad, SIGKILL, SI_KERNEL, "unknown 50" },
828 { do_bad, SIGKILL, SI_KERNEL, "unknown 51" },
829 { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" },
830 { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" },
831 { do_bad, SIGKILL, SI_KERNEL, "unknown 54" },
832 { do_bad, SIGKILL, SI_KERNEL, "unknown 55" },
833 { do_bad, SIGKILL, SI_KERNEL, "unknown 56" },
834 { do_bad, SIGKILL, SI_KERNEL, "unknown 57" },
835 { do_bad, SIGKILL, SI_KERNEL, "unknown 58" },
836 { do_bad, SIGKILL, SI_KERNEL, "unknown 59" },
837 { do_bad, SIGKILL, SI_KERNEL, "unknown 60" },
838 { do_bad, SIGKILL, SI_KERNEL, "section domain fault" },
839 { do_bad, SIGKILL, SI_KERNEL, "page domain fault" },
840 { do_bad, SIGKILL, SI_KERNEL, "unknown 63" },
841};
842
843void do_mem_abort(unsigned long far, unsigned long esr, struct pt_regs *regs)
844{
845 const struct fault_info *inf = esr_to_fault_info(esr);
846 unsigned long addr = untagged_addr(far);
847
848 if (!inf->fn(far, esr, regs))
849 return;
850
851 if (!user_mode(regs))
852 die_kernel_fault(inf->name, addr, esr, regs);
853
854 /*
855 * At this point we have an unrecognized fault type whose tag bits may
856 * have been defined as UNKNOWN. Therefore we only expose the untagged
857 * address to the signal handler.
858 */
859 arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr);
860}
861NOKPROBE_SYMBOL(do_mem_abort);
862
863void do_sp_pc_abort(unsigned long addr, unsigned long esr, struct pt_regs *regs)
864{
865 arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN,
866 addr, esr);
867}
868NOKPROBE_SYMBOL(do_sp_pc_abort);
869
870/*
871 * __refdata because early_brk64 is __init, but the reference to it is
872 * clobbered at arch_initcall time.
873 * See traps.c and debug-monitors.c:debug_traps_init().
874 */
875static struct fault_info __refdata debug_fault_info[] = {
876 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
877 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
878 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
879 { do_bad, SIGKILL, SI_KERNEL, "unknown 3" },
880 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
881 { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" },
882 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
883 { do_bad, SIGKILL, SI_KERNEL, "unknown 7" },
884};
885
886void __init hook_debug_fault_code(int nr,
887 int (*fn)(unsigned long, unsigned long, struct pt_regs *),
888 int sig, int code, const char *name)
889{
890 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
891
892 debug_fault_info[nr].fn = fn;
893 debug_fault_info[nr].sig = sig;
894 debug_fault_info[nr].code = code;
895 debug_fault_info[nr].name = name;
896}
897
898/*
899 * In debug exception context, we explicitly disable preemption despite
900 * having interrupts disabled.
901 * This serves two purposes: it makes it much less likely that we would
902 * accidentally schedule in exception context and it will force a warning
903 * if we somehow manage to schedule by accident.
904 */
905static void debug_exception_enter(struct pt_regs *regs)
906{
907 preempt_disable();
908
909 /* This code is a bit fragile. Test it. */
910 RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
911}
912NOKPROBE_SYMBOL(debug_exception_enter);
913
914static void debug_exception_exit(struct pt_regs *regs)
915{
916 preempt_enable_no_resched();
917}
918NOKPROBE_SYMBOL(debug_exception_exit);
919
920void do_debug_exception(unsigned long addr_if_watchpoint, unsigned long esr,
921 struct pt_regs *regs)
922{
923 const struct fault_info *inf = esr_to_debug_fault_info(esr);
924 unsigned long pc = instruction_pointer(regs);
925
926 debug_exception_enter(regs);
927
928 if (user_mode(regs) && !is_ttbr0_addr(pc))
929 arm64_apply_bp_hardening();
930
931 if (inf->fn(addr_if_watchpoint, esr, regs)) {
932 arm64_notify_die(inf->name, regs, inf->sig, inf->code, pc, esr);
933 }
934
935 debug_exception_exit(regs);
936}
937NOKPROBE_SYMBOL(do_debug_exception);
938
939/*
940 * Used during anonymous page fault handling.
941 */
942struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma,
943 unsigned long vaddr)
944{
945 gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO;
946
947 /*
948 * If the page is mapped with PROT_MTE, initialise the tags at the
949 * point of allocation and page zeroing as this is usually faster than
950 * separate DC ZVA and STGM.
951 */
952 if (vma->vm_flags & VM_MTE)
953 flags |= __GFP_ZEROTAGS;
954
955 return vma_alloc_folio(flags, 0, vma, vaddr, false);
956}
957
958void tag_clear_highpage(struct page *page)
959{
960 /* Newly allocated page, shouldn't have been tagged yet */
961 WARN_ON_ONCE(!try_page_mte_tagging(page));
962 mte_zero_clear_page_tags(page_address(page));
963 set_page_mte_tagged(page);
964}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Based on arch/arm/mm/fault.c
4 *
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 1995-2004 Russell King
7 * Copyright (C) 2012 ARM Ltd.
8 */
9
10#include <linux/acpi.h>
11#include <linux/bitfield.h>
12#include <linux/extable.h>
13#include <linux/signal.h>
14#include <linux/mm.h>
15#include <linux/hardirq.h>
16#include <linux/init.h>
17#include <linux/kprobes.h>
18#include <linux/uaccess.h>
19#include <linux/page-flags.h>
20#include <linux/sched/signal.h>
21#include <linux/sched/debug.h>
22#include <linux/highmem.h>
23#include <linux/perf_event.h>
24#include <linux/preempt.h>
25#include <linux/hugetlb.h>
26
27#include <asm/acpi.h>
28#include <asm/bug.h>
29#include <asm/cmpxchg.h>
30#include <asm/cpufeature.h>
31#include <asm/exception.h>
32#include <asm/daifflags.h>
33#include <asm/debug-monitors.h>
34#include <asm/esr.h>
35#include <asm/kprobes.h>
36#include <asm/processor.h>
37#include <asm/sysreg.h>
38#include <asm/system_misc.h>
39#include <asm/tlbflush.h>
40#include <asm/traps.h>
41
42struct fault_info {
43 int (*fn)(unsigned long addr, unsigned int esr,
44 struct pt_regs *regs);
45 int sig;
46 int code;
47 const char *name;
48};
49
50static const struct fault_info fault_info[];
51static struct fault_info debug_fault_info[];
52
53static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
54{
55 return fault_info + (esr & ESR_ELx_FSC);
56}
57
58static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
59{
60 return debug_fault_info + DBG_ESR_EVT(esr);
61}
62
63static void data_abort_decode(unsigned int esr)
64{
65 pr_alert("Data abort info:\n");
66
67 if (esr & ESR_ELx_ISV) {
68 pr_alert(" Access size = %u byte(s)\n",
69 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
70 pr_alert(" SSE = %lu, SRT = %lu\n",
71 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
72 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
73 pr_alert(" SF = %lu, AR = %lu\n",
74 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
75 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
76 } else {
77 pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
78 }
79
80 pr_alert(" CM = %lu, WnR = %lu\n",
81 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
82 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
83}
84
85static void mem_abort_decode(unsigned int esr)
86{
87 pr_alert("Mem abort info:\n");
88
89 pr_alert(" ESR = 0x%08x\n", esr);
90 pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n",
91 ESR_ELx_EC(esr), esr_get_class_string(esr),
92 (esr & ESR_ELx_IL) ? 32 : 16);
93 pr_alert(" SET = %lu, FnV = %lu\n",
94 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
95 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
96 pr_alert(" EA = %lu, S1PTW = %lu\n",
97 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
98 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
99
100 if (esr_is_data_abort(esr))
101 data_abort_decode(esr);
102}
103
104static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
105{
106 /* Either init_pg_dir or swapper_pg_dir */
107 if (mm == &init_mm)
108 return __pa_symbol(mm->pgd);
109
110 return (unsigned long)virt_to_phys(mm->pgd);
111}
112
113/*
114 * Dump out the page tables associated with 'addr' in the currently active mm.
115 */
116static void show_pte(unsigned long addr)
117{
118 struct mm_struct *mm;
119 pgd_t *pgdp;
120 pgd_t pgd;
121
122 if (is_ttbr0_addr(addr)) {
123 /* TTBR0 */
124 mm = current->active_mm;
125 if (mm == &init_mm) {
126 pr_alert("[%016lx] user address but active_mm is swapper\n",
127 addr);
128 return;
129 }
130 } else if (is_ttbr1_addr(addr)) {
131 /* TTBR1 */
132 mm = &init_mm;
133 } else {
134 pr_alert("[%016lx] address between user and kernel address ranges\n",
135 addr);
136 return;
137 }
138
139 pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
140 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
141 vabits_actual, mm_to_pgd_phys(mm));
142 pgdp = pgd_offset(mm, addr);
143 pgd = READ_ONCE(*pgdp);
144 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
145
146 do {
147 p4d_t *p4dp, p4d;
148 pud_t *pudp, pud;
149 pmd_t *pmdp, pmd;
150 pte_t *ptep, pte;
151
152 if (pgd_none(pgd) || pgd_bad(pgd))
153 break;
154
155 p4dp = p4d_offset(pgdp, addr);
156 p4d = READ_ONCE(*p4dp);
157 pr_cont(", p4d=%016llx", p4d_val(p4d));
158 if (p4d_none(p4d) || p4d_bad(p4d))
159 break;
160
161 pudp = pud_offset(p4dp, addr);
162 pud = READ_ONCE(*pudp);
163 pr_cont(", pud=%016llx", pud_val(pud));
164 if (pud_none(pud) || pud_bad(pud))
165 break;
166
167 pmdp = pmd_offset(pudp, addr);
168 pmd = READ_ONCE(*pmdp);
169 pr_cont(", pmd=%016llx", pmd_val(pmd));
170 if (pmd_none(pmd) || pmd_bad(pmd))
171 break;
172
173 ptep = pte_offset_map(pmdp, addr);
174 pte = READ_ONCE(*ptep);
175 pr_cont(", pte=%016llx", pte_val(pte));
176 pte_unmap(ptep);
177 } while(0);
178
179 pr_cont("\n");
180}
181
182/*
183 * This function sets the access flags (dirty, accessed), as well as write
184 * permission, and only to a more permissive setting.
185 *
186 * It needs to cope with hardware update of the accessed/dirty state by other
187 * agents in the system and can safely skip the __sync_icache_dcache() call as,
188 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
189 *
190 * Returns whether or not the PTE actually changed.
191 */
192int ptep_set_access_flags(struct vm_area_struct *vma,
193 unsigned long address, pte_t *ptep,
194 pte_t entry, int dirty)
195{
196 pteval_t old_pteval, pteval;
197 pte_t pte = READ_ONCE(*ptep);
198
199 if (pte_same(pte, entry))
200 return 0;
201
202 /* only preserve the access flags and write permission */
203 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
204
205 /*
206 * Setting the flags must be done atomically to avoid racing with the
207 * hardware update of the access/dirty state. The PTE_RDONLY bit must
208 * be set to the most permissive (lowest value) of *ptep and entry
209 * (calculated as: a & b == ~(~a | ~b)).
210 */
211 pte_val(entry) ^= PTE_RDONLY;
212 pteval = pte_val(pte);
213 do {
214 old_pteval = pteval;
215 pteval ^= PTE_RDONLY;
216 pteval |= pte_val(entry);
217 pteval ^= PTE_RDONLY;
218 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
219 } while (pteval != old_pteval);
220
221 flush_tlb_fix_spurious_fault(vma, address);
222 return 1;
223}
224
225static bool is_el1_instruction_abort(unsigned int esr)
226{
227 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
228}
229
230static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
231 struct pt_regs *regs)
232{
233 unsigned int ec = ESR_ELx_EC(esr);
234 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
235
236 if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
237 return false;
238
239 if (fsc_type == ESR_ELx_FSC_PERM)
240 return true;
241
242 if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
243 return fsc_type == ESR_ELx_FSC_FAULT &&
244 (regs->pstate & PSR_PAN_BIT);
245
246 return false;
247}
248
249static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
250 unsigned int esr,
251 struct pt_regs *regs)
252{
253 unsigned long flags;
254 u64 par, dfsc;
255
256 if (ESR_ELx_EC(esr) != ESR_ELx_EC_DABT_CUR ||
257 (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
258 return false;
259
260 local_irq_save(flags);
261 asm volatile("at s1e1r, %0" :: "r" (addr));
262 isb();
263 par = read_sysreg(par_el1);
264 local_irq_restore(flags);
265
266 /*
267 * If we now have a valid translation, treat the translation fault as
268 * spurious.
269 */
270 if (!(par & SYS_PAR_EL1_F))
271 return true;
272
273 /*
274 * If we got a different type of fault from the AT instruction,
275 * treat the translation fault as spurious.
276 */
277 dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
278 return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
279}
280
281static void die_kernel_fault(const char *msg, unsigned long addr,
282 unsigned int esr, struct pt_regs *regs)
283{
284 bust_spinlocks(1);
285
286 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
287 addr);
288
289 mem_abort_decode(esr);
290
291 show_pte(addr);
292 die("Oops", regs, esr);
293 bust_spinlocks(0);
294 do_exit(SIGKILL);
295}
296
297static void __do_kernel_fault(unsigned long addr, unsigned int esr,
298 struct pt_regs *regs)
299{
300 const char *msg;
301
302 /*
303 * Are we prepared to handle this kernel fault?
304 * We are almost certainly not prepared to handle instruction faults.
305 */
306 if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
307 return;
308
309 if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
310 "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
311 return;
312
313 if (is_el1_permission_fault(addr, esr, regs)) {
314 if (esr & ESR_ELx_WNR)
315 msg = "write to read-only memory";
316 else if (is_el1_instruction_abort(esr))
317 msg = "execute from non-executable memory";
318 else
319 msg = "read from unreadable memory";
320 } else if (addr < PAGE_SIZE) {
321 msg = "NULL pointer dereference";
322 } else {
323 msg = "paging request";
324 }
325
326 die_kernel_fault(msg, addr, esr, regs);
327}
328
329static void set_thread_esr(unsigned long address, unsigned int esr)
330{
331 current->thread.fault_address = address;
332
333 /*
334 * If the faulting address is in the kernel, we must sanitize the ESR.
335 * From userspace's point of view, kernel-only mappings don't exist
336 * at all, so we report them as level 0 translation faults.
337 * (This is not quite the way that "no mapping there at all" behaves:
338 * an alignment fault not caused by the memory type would take
339 * precedence over translation fault for a real access to empty
340 * space. Unfortunately we can't easily distinguish "alignment fault
341 * not caused by memory type" from "alignment fault caused by memory
342 * type", so we ignore this wrinkle and just return the translation
343 * fault.)
344 */
345 if (!is_ttbr0_addr(current->thread.fault_address)) {
346 switch (ESR_ELx_EC(esr)) {
347 case ESR_ELx_EC_DABT_LOW:
348 /*
349 * These bits provide only information about the
350 * faulting instruction, which userspace knows already.
351 * We explicitly clear bits which are architecturally
352 * RES0 in case they are given meanings in future.
353 * We always report the ESR as if the fault was taken
354 * to EL1 and so ISV and the bits in ISS[23:14] are
355 * clear. (In fact it always will be a fault to EL1.)
356 */
357 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
358 ESR_ELx_CM | ESR_ELx_WNR;
359 esr |= ESR_ELx_FSC_FAULT;
360 break;
361 case ESR_ELx_EC_IABT_LOW:
362 /*
363 * Claim a level 0 translation fault.
364 * All other bits are architecturally RES0 for faults
365 * reported with that DFSC value, so we clear them.
366 */
367 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
368 esr |= ESR_ELx_FSC_FAULT;
369 break;
370 default:
371 /*
372 * This should never happen (entry.S only brings us
373 * into this code for insn and data aborts from a lower
374 * exception level). Fail safe by not providing an ESR
375 * context record at all.
376 */
377 WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
378 esr = 0;
379 break;
380 }
381 }
382
383 current->thread.fault_code = esr;
384}
385
386static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
387{
388 /*
389 * If we are in kernel mode at this point, we have no context to
390 * handle this fault with.
391 */
392 if (user_mode(regs)) {
393 const struct fault_info *inf = esr_to_fault_info(esr);
394
395 set_thread_esr(addr, esr);
396 arm64_force_sig_fault(inf->sig, inf->code, (void __user *)addr,
397 inf->name);
398 } else {
399 __do_kernel_fault(addr, esr, regs);
400 }
401}
402
403#define VM_FAULT_BADMAP 0x010000
404#define VM_FAULT_BADACCESS 0x020000
405
406static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
407 unsigned int mm_flags, unsigned long vm_flags,
408 struct pt_regs *regs)
409{
410 struct vm_area_struct *vma = find_vma(mm, addr);
411
412 if (unlikely(!vma))
413 return VM_FAULT_BADMAP;
414
415 /*
416 * Ok, we have a good vm_area for this memory access, so we can handle
417 * it.
418 */
419 if (unlikely(vma->vm_start > addr)) {
420 if (!(vma->vm_flags & VM_GROWSDOWN))
421 return VM_FAULT_BADMAP;
422 if (expand_stack(vma, addr))
423 return VM_FAULT_BADMAP;
424 }
425
426 /*
427 * Check that the permissions on the VMA allow for the fault which
428 * occurred.
429 */
430 if (!(vma->vm_flags & vm_flags))
431 return VM_FAULT_BADACCESS;
432 return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags, regs);
433}
434
435static bool is_el0_instruction_abort(unsigned int esr)
436{
437 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
438}
439
440/*
441 * Note: not valid for EL1 DC IVAC, but we never use that such that it
442 * should fault. EL0 cannot issue DC IVAC (undef).
443 */
444static bool is_write_abort(unsigned int esr)
445{
446 return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
447}
448
449static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
450 struct pt_regs *regs)
451{
452 const struct fault_info *inf;
453 struct mm_struct *mm = current->mm;
454 vm_fault_t fault;
455 unsigned long vm_flags = VM_ACCESS_FLAGS;
456 unsigned int mm_flags = FAULT_FLAG_DEFAULT;
457
458 if (kprobe_page_fault(regs, esr))
459 return 0;
460
461 /*
462 * If we're in an interrupt or have no user context, we must not take
463 * the fault.
464 */
465 if (faulthandler_disabled() || !mm)
466 goto no_context;
467
468 if (user_mode(regs))
469 mm_flags |= FAULT_FLAG_USER;
470
471 if (is_el0_instruction_abort(esr)) {
472 vm_flags = VM_EXEC;
473 mm_flags |= FAULT_FLAG_INSTRUCTION;
474 } else if (is_write_abort(esr)) {
475 vm_flags = VM_WRITE;
476 mm_flags |= FAULT_FLAG_WRITE;
477 }
478
479 if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
480 /* regs->orig_addr_limit may be 0 if we entered from EL0 */
481 if (regs->orig_addr_limit == KERNEL_DS)
482 die_kernel_fault("access to user memory with fs=KERNEL_DS",
483 addr, esr, regs);
484
485 if (is_el1_instruction_abort(esr))
486 die_kernel_fault("execution of user memory",
487 addr, esr, regs);
488
489 if (!search_exception_tables(regs->pc))
490 die_kernel_fault("access to user memory outside uaccess routines",
491 addr, esr, regs);
492 }
493
494 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
495
496 /*
497 * As per x86, we may deadlock here. However, since the kernel only
498 * validly references user space from well defined areas of the code,
499 * we can bug out early if this is from code which shouldn't.
500 */
501 if (!mmap_read_trylock(mm)) {
502 if (!user_mode(regs) && !search_exception_tables(regs->pc))
503 goto no_context;
504retry:
505 mmap_read_lock(mm);
506 } else {
507 /*
508 * The above down_read_trylock() might have succeeded in which
509 * case, we'll have missed the might_sleep() from down_read().
510 */
511 might_sleep();
512#ifdef CONFIG_DEBUG_VM
513 if (!user_mode(regs) && !search_exception_tables(regs->pc)) {
514 mmap_read_unlock(mm);
515 goto no_context;
516 }
517#endif
518 }
519
520 fault = __do_page_fault(mm, addr, mm_flags, vm_flags, regs);
521
522 /* Quick path to respond to signals */
523 if (fault_signal_pending(fault, regs)) {
524 if (!user_mode(regs))
525 goto no_context;
526 return 0;
527 }
528
529 if (fault & VM_FAULT_RETRY) {
530 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
531 mm_flags |= FAULT_FLAG_TRIED;
532 goto retry;
533 }
534 }
535 mmap_read_unlock(mm);
536
537 /*
538 * Handle the "normal" (no error) case first.
539 */
540 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
541 VM_FAULT_BADACCESS))))
542 return 0;
543
544 /*
545 * If we are in kernel mode at this point, we have no context to
546 * handle this fault with.
547 */
548 if (!user_mode(regs))
549 goto no_context;
550
551 if (fault & VM_FAULT_OOM) {
552 /*
553 * We ran out of memory, call the OOM killer, and return to
554 * userspace (which will retry the fault, or kill us if we got
555 * oom-killed).
556 */
557 pagefault_out_of_memory();
558 return 0;
559 }
560
561 inf = esr_to_fault_info(esr);
562 set_thread_esr(addr, esr);
563 if (fault & VM_FAULT_SIGBUS) {
564 /*
565 * We had some memory, but were unable to successfully fix up
566 * this page fault.
567 */
568 arm64_force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr,
569 inf->name);
570 } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
571 unsigned int lsb;
572
573 lsb = PAGE_SHIFT;
574 if (fault & VM_FAULT_HWPOISON_LARGE)
575 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
576
577 arm64_force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, lsb,
578 inf->name);
579 } else {
580 /*
581 * Something tried to access memory that isn't in our memory
582 * map.
583 */
584 arm64_force_sig_fault(SIGSEGV,
585 fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
586 (void __user *)addr,
587 inf->name);
588 }
589
590 return 0;
591
592no_context:
593 __do_kernel_fault(addr, esr, regs);
594 return 0;
595}
596
597static int __kprobes do_translation_fault(unsigned long addr,
598 unsigned int esr,
599 struct pt_regs *regs)
600{
601 if (is_ttbr0_addr(addr))
602 return do_page_fault(addr, esr, regs);
603
604 do_bad_area(addr, esr, regs);
605 return 0;
606}
607
608static int do_alignment_fault(unsigned long addr, unsigned int esr,
609 struct pt_regs *regs)
610{
611 do_bad_area(addr, esr, regs);
612 return 0;
613}
614
615static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
616{
617 return 1; /* "fault" */
618}
619
620static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
621{
622 const struct fault_info *inf;
623 void __user *siaddr;
624
625 inf = esr_to_fault_info(esr);
626
627 if (user_mode(regs) && apei_claim_sea(regs) == 0) {
628 /*
629 * APEI claimed this as a firmware-first notification.
630 * Some processing deferred to task_work before ret_to_user().
631 */
632 return 0;
633 }
634
635 if (esr & ESR_ELx_FnV)
636 siaddr = NULL;
637 else
638 siaddr = (void __user *)addr;
639 arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
640
641 return 0;
642}
643
644static const struct fault_info fault_info[] = {
645 { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" },
646 { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" },
647 { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" },
648 { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" },
649 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
650 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
651 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
652 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
653 { do_bad, SIGKILL, SI_KERNEL, "unknown 8" },
654 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
655 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
656 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
657 { do_bad, SIGKILL, SI_KERNEL, "unknown 12" },
658 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
659 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
660 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
661 { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" },
662 { do_bad, SIGKILL, SI_KERNEL, "unknown 17" },
663 { do_bad, SIGKILL, SI_KERNEL, "unknown 18" },
664 { do_bad, SIGKILL, SI_KERNEL, "unknown 19" },
665 { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" },
666 { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" },
667 { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" },
668 { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" },
669 { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
670 { do_bad, SIGKILL, SI_KERNEL, "unknown 25" },
671 { do_bad, SIGKILL, SI_KERNEL, "unknown 26" },
672 { do_bad, SIGKILL, SI_KERNEL, "unknown 27" },
673 { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
674 { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
675 { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
676 { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
677 { do_bad, SIGKILL, SI_KERNEL, "unknown 32" },
678 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
679 { do_bad, SIGKILL, SI_KERNEL, "unknown 34" },
680 { do_bad, SIGKILL, SI_KERNEL, "unknown 35" },
681 { do_bad, SIGKILL, SI_KERNEL, "unknown 36" },
682 { do_bad, SIGKILL, SI_KERNEL, "unknown 37" },
683 { do_bad, SIGKILL, SI_KERNEL, "unknown 38" },
684 { do_bad, SIGKILL, SI_KERNEL, "unknown 39" },
685 { do_bad, SIGKILL, SI_KERNEL, "unknown 40" },
686 { do_bad, SIGKILL, SI_KERNEL, "unknown 41" },
687 { do_bad, SIGKILL, SI_KERNEL, "unknown 42" },
688 { do_bad, SIGKILL, SI_KERNEL, "unknown 43" },
689 { do_bad, SIGKILL, SI_KERNEL, "unknown 44" },
690 { do_bad, SIGKILL, SI_KERNEL, "unknown 45" },
691 { do_bad, SIGKILL, SI_KERNEL, "unknown 46" },
692 { do_bad, SIGKILL, SI_KERNEL, "unknown 47" },
693 { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" },
694 { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" },
695 { do_bad, SIGKILL, SI_KERNEL, "unknown 50" },
696 { do_bad, SIGKILL, SI_KERNEL, "unknown 51" },
697 { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" },
698 { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" },
699 { do_bad, SIGKILL, SI_KERNEL, "unknown 54" },
700 { do_bad, SIGKILL, SI_KERNEL, "unknown 55" },
701 { do_bad, SIGKILL, SI_KERNEL, "unknown 56" },
702 { do_bad, SIGKILL, SI_KERNEL, "unknown 57" },
703 { do_bad, SIGKILL, SI_KERNEL, "unknown 58" },
704 { do_bad, SIGKILL, SI_KERNEL, "unknown 59" },
705 { do_bad, SIGKILL, SI_KERNEL, "unknown 60" },
706 { do_bad, SIGKILL, SI_KERNEL, "section domain fault" },
707 { do_bad, SIGKILL, SI_KERNEL, "page domain fault" },
708 { do_bad, SIGKILL, SI_KERNEL, "unknown 63" },
709};
710
711void do_mem_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
712{
713 const struct fault_info *inf = esr_to_fault_info(esr);
714
715 if (!inf->fn(addr, esr, regs))
716 return;
717
718 if (!user_mode(regs)) {
719 pr_alert("Unhandled fault at 0x%016lx\n", addr);
720 mem_abort_decode(esr);
721 show_pte(addr);
722 }
723
724 arm64_notify_die(inf->name, regs,
725 inf->sig, inf->code, (void __user *)addr, esr);
726}
727NOKPROBE_SYMBOL(do_mem_abort);
728
729void do_el0_irq_bp_hardening(void)
730{
731 /* PC has already been checked in entry.S */
732 arm64_apply_bp_hardening();
733}
734NOKPROBE_SYMBOL(do_el0_irq_bp_hardening);
735
736void do_sp_pc_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
737{
738 arm64_notify_die("SP/PC alignment exception", regs,
739 SIGBUS, BUS_ADRALN, (void __user *)addr, esr);
740}
741NOKPROBE_SYMBOL(do_sp_pc_abort);
742
743int __init early_brk64(unsigned long addr, unsigned int esr,
744 struct pt_regs *regs);
745
746/*
747 * __refdata because early_brk64 is __init, but the reference to it is
748 * clobbered at arch_initcall time.
749 * See traps.c and debug-monitors.c:debug_traps_init().
750 */
751static struct fault_info __refdata debug_fault_info[] = {
752 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
753 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
754 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
755 { do_bad, SIGKILL, SI_KERNEL, "unknown 3" },
756 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
757 { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" },
758 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
759 { do_bad, SIGKILL, SI_KERNEL, "unknown 7" },
760};
761
762void __init hook_debug_fault_code(int nr,
763 int (*fn)(unsigned long, unsigned int, struct pt_regs *),
764 int sig, int code, const char *name)
765{
766 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
767
768 debug_fault_info[nr].fn = fn;
769 debug_fault_info[nr].sig = sig;
770 debug_fault_info[nr].code = code;
771 debug_fault_info[nr].name = name;
772}
773
774/*
775 * In debug exception context, we explicitly disable preemption despite
776 * having interrupts disabled.
777 * This serves two purposes: it makes it much less likely that we would
778 * accidentally schedule in exception context and it will force a warning
779 * if we somehow manage to schedule by accident.
780 */
781static void debug_exception_enter(struct pt_regs *regs)
782{
783 /*
784 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
785 * already disabled to preserve the last enabled/disabled addresses.
786 */
787 if (interrupts_enabled(regs))
788 trace_hardirqs_off();
789
790 if (user_mode(regs)) {
791 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
792 } else {
793 /*
794 * We might have interrupted pretty much anything. In
795 * fact, if we're a debug exception, we can even interrupt
796 * NMI processing. We don't want this code makes in_nmi()
797 * to return true, but we need to notify RCU.
798 */
799 rcu_nmi_enter();
800 }
801
802 preempt_disable();
803
804 /* This code is a bit fragile. Test it. */
805 RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
806}
807NOKPROBE_SYMBOL(debug_exception_enter);
808
809static void debug_exception_exit(struct pt_regs *regs)
810{
811 preempt_enable_no_resched();
812
813 if (!user_mode(regs))
814 rcu_nmi_exit();
815
816 if (interrupts_enabled(regs))
817 trace_hardirqs_on();
818}
819NOKPROBE_SYMBOL(debug_exception_exit);
820
821#ifdef CONFIG_ARM64_ERRATUM_1463225
822DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
823
824static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
825{
826 if (user_mode(regs))
827 return 0;
828
829 if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
830 return 0;
831
832 /*
833 * We've taken a dummy step exception from the kernel to ensure
834 * that interrupts are re-enabled on the syscall path. Return back
835 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
836 * masked so that we can safely restore the mdscr and get on with
837 * handling the syscall.
838 */
839 regs->pstate |= PSR_D_BIT;
840 return 1;
841}
842#else
843static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
844{
845 return 0;
846}
847#endif /* CONFIG_ARM64_ERRATUM_1463225 */
848NOKPROBE_SYMBOL(cortex_a76_erratum_1463225_debug_handler);
849
850void do_debug_exception(unsigned long addr_if_watchpoint, unsigned int esr,
851 struct pt_regs *regs)
852{
853 const struct fault_info *inf = esr_to_debug_fault_info(esr);
854 unsigned long pc = instruction_pointer(regs);
855
856 if (cortex_a76_erratum_1463225_debug_handler(regs))
857 return;
858
859 debug_exception_enter(regs);
860
861 if (user_mode(regs) && !is_ttbr0_addr(pc))
862 arm64_apply_bp_hardening();
863
864 if (inf->fn(addr_if_watchpoint, esr, regs)) {
865 arm64_notify_die(inf->name, regs,
866 inf->sig, inf->code, (void __user *)pc, esr);
867 }
868
869 debug_exception_exit(regs);
870}
871NOKPROBE_SYMBOL(do_debug_exception);