Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Based on arch/arm/mm/fault.c
  4 *
  5 * Copyright (C) 1995  Linus Torvalds
  6 * Copyright (C) 1995-2004 Russell King
  7 * Copyright (C) 2012 ARM Ltd.
  8 */
  9
 10#include <linux/acpi.h>
 11#include <linux/bitfield.h>
 12#include <linux/extable.h>
 13#include <linux/kfence.h>
 14#include <linux/signal.h>
 15#include <linux/mm.h>
 16#include <linux/hardirq.h>
 17#include <linux/init.h>
 18#include <linux/kasan.h>
 19#include <linux/kprobes.h>
 20#include <linux/uaccess.h>
 21#include <linux/page-flags.h>
 22#include <linux/sched/signal.h>
 23#include <linux/sched/debug.h>
 24#include <linux/highmem.h>
 25#include <linux/perf_event.h>
 26#include <linux/preempt.h>
 27#include <linux/hugetlb.h>
 28
 29#include <asm/acpi.h>
 30#include <asm/bug.h>
 31#include <asm/cmpxchg.h>
 32#include <asm/cpufeature.h>
 33#include <asm/efi.h>
 34#include <asm/exception.h>
 35#include <asm/daifflags.h>
 36#include <asm/debug-monitors.h>
 37#include <asm/esr.h>
 38#include <asm/kprobes.h>
 39#include <asm/mte.h>
 40#include <asm/processor.h>
 41#include <asm/sysreg.h>
 42#include <asm/system_misc.h>
 43#include <asm/tlbflush.h>
 44#include <asm/traps.h>
 45
 46struct fault_info {
 47	int	(*fn)(unsigned long far, unsigned long esr,
 48		      struct pt_regs *regs);
 49	int	sig;
 50	int	code;
 51	const char *name;
 52};
 53
 54static const struct fault_info fault_info[];
 55static struct fault_info debug_fault_info[];
 56
 57static inline const struct fault_info *esr_to_fault_info(unsigned long esr)
 58{
 59	return fault_info + (esr & ESR_ELx_FSC);
 60}
 61
 62static inline const struct fault_info *esr_to_debug_fault_info(unsigned long esr)
 63{
 64	return debug_fault_info + DBG_ESR_EVT(esr);
 65}
 66
 67static void data_abort_decode(unsigned long esr)
 68{
 69	unsigned long iss2 = ESR_ELx_ISS2(esr);
 70
 71	pr_alert("Data abort info:\n");
 72
 73	if (esr & ESR_ELx_ISV) {
 74		pr_alert("  Access size = %u byte(s)\n",
 75			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
 76		pr_alert("  SSE = %lu, SRT = %lu\n",
 77			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
 78			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
 79		pr_alert("  SF = %lu, AR = %lu\n",
 80			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
 81			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
 82	} else {
 83		pr_alert("  ISV = 0, ISS = 0x%08lx, ISS2 = 0x%08lx\n",
 84			 esr & ESR_ELx_ISS_MASK, iss2);
 85	}
 86
 87	pr_alert("  CM = %lu, WnR = %lu, TnD = %lu, TagAccess = %lu\n",
 88		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
 89		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT,
 90		 (iss2 & ESR_ELx_TnD) >> ESR_ELx_TnD_SHIFT,
 91		 (iss2 & ESR_ELx_TagAccess) >> ESR_ELx_TagAccess_SHIFT);
 92
 93	pr_alert("  GCS = %ld, Overlay = %lu, DirtyBit = %lu, Xs = %llu\n",
 94		 (iss2 & ESR_ELx_GCS) >> ESR_ELx_GCS_SHIFT,
 95		 (iss2 & ESR_ELx_Overlay) >> ESR_ELx_Overlay_SHIFT,
 96		 (iss2 & ESR_ELx_DirtyBit) >> ESR_ELx_DirtyBit_SHIFT,
 97		 (iss2 & ESR_ELx_Xs_MASK) >> ESR_ELx_Xs_SHIFT);
 98}
 99
100static void mem_abort_decode(unsigned long esr)
101{
102	pr_alert("Mem abort info:\n");
103
104	pr_alert("  ESR = 0x%016lx\n", esr);
105	pr_alert("  EC = 0x%02lx: %s, IL = %u bits\n",
106		 ESR_ELx_EC(esr), esr_get_class_string(esr),
107		 (esr & ESR_ELx_IL) ? 32 : 16);
108	pr_alert("  SET = %lu, FnV = %lu\n",
109		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
110		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
111	pr_alert("  EA = %lu, S1PTW = %lu\n",
112		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
113		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
114	pr_alert("  FSC = 0x%02lx: %s\n", (esr & ESR_ELx_FSC),
115		 esr_to_fault_info(esr)->name);
116
117	if (esr_is_data_abort(esr))
118		data_abort_decode(esr);
119}
120
121static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
122{
123	/* Either init_pg_dir or swapper_pg_dir */
124	if (mm == &init_mm)
125		return __pa_symbol(mm->pgd);
126
127	return (unsigned long)virt_to_phys(mm->pgd);
128}
129
130/*
131 * Dump out the page tables associated with 'addr' in the currently active mm.
132 */
133static void show_pte(unsigned long addr)
134{
135	struct mm_struct *mm;
136	pgd_t *pgdp;
137	pgd_t pgd;
138
139	if (is_ttbr0_addr(addr)) {
140		/* TTBR0 */
141		mm = current->active_mm;
142		if (mm == &init_mm) {
143			pr_alert("[%016lx] user address but active_mm is swapper\n",
144				 addr);
145			return;
146		}
147	} else if (is_ttbr1_addr(addr)) {
148		/* TTBR1 */
149		mm = &init_mm;
150	} else {
151		pr_alert("[%016lx] address between user and kernel address ranges\n",
152			 addr);
153		return;
154	}
155
156	pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
157		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
158		 vabits_actual, mm_to_pgd_phys(mm));
159	pgdp = pgd_offset(mm, addr);
160	pgd = READ_ONCE(*pgdp);
161	pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
162
163	do {
164		p4d_t *p4dp, p4d;
165		pud_t *pudp, pud;
166		pmd_t *pmdp, pmd;
167		pte_t *ptep, pte;
168
169		if (pgd_none(pgd) || pgd_bad(pgd))
170			break;
171
172		p4dp = p4d_offset(pgdp, addr);
173		p4d = READ_ONCE(*p4dp);
174		pr_cont(", p4d=%016llx", p4d_val(p4d));
175		if (p4d_none(p4d) || p4d_bad(p4d))
176			break;
177
178		pudp = pud_offset(p4dp, addr);
179		pud = READ_ONCE(*pudp);
180		pr_cont(", pud=%016llx", pud_val(pud));
181		if (pud_none(pud) || pud_bad(pud))
182			break;
183
184		pmdp = pmd_offset(pudp, addr);
185		pmd = READ_ONCE(*pmdp);
186		pr_cont(", pmd=%016llx", pmd_val(pmd));
187		if (pmd_none(pmd) || pmd_bad(pmd))
188			break;
189
190		ptep = pte_offset_map(pmdp, addr);
191		if (!ptep)
192			break;
193
194		pte = READ_ONCE(*ptep);
195		pr_cont(", pte=%016llx", pte_val(pte));
196		pte_unmap(ptep);
197	} while(0);
198
199	pr_cont("\n");
200}
201
202/*
203 * This function sets the access flags (dirty, accessed), as well as write
204 * permission, and only to a more permissive setting.
205 *
206 * It needs to cope with hardware update of the accessed/dirty state by other
207 * agents in the system and can safely skip the __sync_icache_dcache() call as,
208 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
209 *
210 * Returns whether or not the PTE actually changed.
211 */
212int ptep_set_access_flags(struct vm_area_struct *vma,
213			  unsigned long address, pte_t *ptep,
214			  pte_t entry, int dirty)
215{
216	pteval_t old_pteval, pteval;
217	pte_t pte = READ_ONCE(*ptep);
218
219	if (pte_same(pte, entry))
220		return 0;
221
222	/* only preserve the access flags and write permission */
223	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
224
225	/*
226	 * Setting the flags must be done atomically to avoid racing with the
227	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
228	 * be set to the most permissive (lowest value) of *ptep and entry
229	 * (calculated as: a & b == ~(~a | ~b)).
230	 */
231	pte_val(entry) ^= PTE_RDONLY;
232	pteval = pte_val(pte);
233	do {
234		old_pteval = pteval;
235		pteval ^= PTE_RDONLY;
236		pteval |= pte_val(entry);
237		pteval ^= PTE_RDONLY;
238		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
239	} while (pteval != old_pteval);
240
241	/* Invalidate a stale read-only entry */
242	if (dirty)
243		flush_tlb_page(vma, address);
244	return 1;
245}
246
247static bool is_el1_instruction_abort(unsigned long esr)
248{
249	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
250}
251
252static bool is_el1_data_abort(unsigned long esr)
253{
254	return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR;
255}
256
257static inline bool is_el1_permission_fault(unsigned long addr, unsigned long esr,
258					   struct pt_regs *regs)
259{
260	unsigned long fsc_type = esr & ESR_ELx_FSC_TYPE;
 
261
262	if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr))
263		return false;
264
265	if (fsc_type == ESR_ELx_FSC_PERM)
266		return true;
267
268	if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
269		return fsc_type == ESR_ELx_FSC_FAULT &&
270			(regs->pstate & PSR_PAN_BIT);
271
272	return false;
273}
274
275static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
276							unsigned long esr,
277							struct pt_regs *regs)
278{
279	unsigned long flags;
280	u64 par, dfsc;
281
282	if (!is_el1_data_abort(esr) ||
283	    (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
284		return false;
285
286	local_irq_save(flags);
287	asm volatile("at s1e1r, %0" :: "r" (addr));
288	isb();
289	par = read_sysreg_par();
290	local_irq_restore(flags);
291
292	/*
293	 * If we now have a valid translation, treat the translation fault as
294	 * spurious.
295	 */
296	if (!(par & SYS_PAR_EL1_F))
297		return true;
298
299	/*
300	 * If we got a different type of fault from the AT instruction,
301	 * treat the translation fault as spurious.
302	 */
303	dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
304	return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
305}
306
307static void die_kernel_fault(const char *msg, unsigned long addr,
308			     unsigned long esr, struct pt_regs *regs)
309{
310	bust_spinlocks(1);
311
312	pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
313		 addr);
314
315	kasan_non_canonical_hook(addr);
316
317	mem_abort_decode(esr);
318
319	show_pte(addr);
320	die("Oops", regs, esr);
321	bust_spinlocks(0);
322	make_task_dead(SIGKILL);
323}
324
325#ifdef CONFIG_KASAN_HW_TAGS
326static void report_tag_fault(unsigned long addr, unsigned long esr,
327			     struct pt_regs *regs)
328{
329	/*
330	 * SAS bits aren't set for all faults reported in EL1, so we can't
331	 * find out access size.
332	 */
333	bool is_write = !!(esr & ESR_ELx_WNR);
334	kasan_report((void *)addr, 0, is_write, regs->pc);
335}
336#else
337/* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */
338static inline void report_tag_fault(unsigned long addr, unsigned long esr,
339				    struct pt_regs *regs) { }
340#endif
341
342static void do_tag_recovery(unsigned long addr, unsigned long esr,
343			   struct pt_regs *regs)
344{
345
346	report_tag_fault(addr, esr, regs);
347
348	/*
349	 * Disable MTE Tag Checking on the local CPU for the current EL.
350	 * It will be done lazily on the other CPUs when they will hit a
351	 * tag fault.
352	 */
353	sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
354			 SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF, NONE));
355	isb();
356}
357
358static bool is_el1_mte_sync_tag_check_fault(unsigned long esr)
359{
360	unsigned long fsc = esr & ESR_ELx_FSC;
361
362	if (!is_el1_data_abort(esr))
363		return false;
364
365	if (fsc == ESR_ELx_FSC_MTE)
366		return true;
367
368	return false;
369}
370
371static bool is_translation_fault(unsigned long esr)
372{
373	return (esr & ESR_ELx_FSC_TYPE) == ESR_ELx_FSC_FAULT;
374}
375
376static void __do_kernel_fault(unsigned long addr, unsigned long esr,
377			      struct pt_regs *regs)
378{
379	const char *msg;
380
381	/*
382	 * Are we prepared to handle this kernel fault?
383	 * We are almost certainly not prepared to handle instruction faults.
384	 */
385	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
386		return;
387
388	if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
389	    "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
390		return;
391
392	if (is_el1_mte_sync_tag_check_fault(esr)) {
393		do_tag_recovery(addr, esr, regs);
394
395		return;
396	}
397
398	if (is_el1_permission_fault(addr, esr, regs)) {
399		if (esr & ESR_ELx_WNR)
400			msg = "write to read-only memory";
401		else if (is_el1_instruction_abort(esr))
402			msg = "execute from non-executable memory";
403		else
404			msg = "read from unreadable memory";
405	} else if (addr < PAGE_SIZE) {
406		msg = "NULL pointer dereference";
407	} else {
408		if (is_translation_fault(esr) &&
409		    kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs))
410			return;
411
412		msg = "paging request";
413	}
414
415	if (efi_runtime_fixup_exception(regs, msg))
416		return;
417
418	die_kernel_fault(msg, addr, esr, regs);
419}
420
421static void set_thread_esr(unsigned long address, unsigned long esr)
422{
423	current->thread.fault_address = address;
424
425	/*
426	 * If the faulting address is in the kernel, we must sanitize the ESR.
427	 * From userspace's point of view, kernel-only mappings don't exist
428	 * at all, so we report them as level 0 translation faults.
429	 * (This is not quite the way that "no mapping there at all" behaves:
430	 * an alignment fault not caused by the memory type would take
431	 * precedence over translation fault for a real access to empty
432	 * space. Unfortunately we can't easily distinguish "alignment fault
433	 * not caused by memory type" from "alignment fault caused by memory
434	 * type", so we ignore this wrinkle and just return the translation
435	 * fault.)
436	 */
437	if (!is_ttbr0_addr(current->thread.fault_address)) {
438		switch (ESR_ELx_EC(esr)) {
439		case ESR_ELx_EC_DABT_LOW:
440			/*
441			 * These bits provide only information about the
442			 * faulting instruction, which userspace knows already.
443			 * We explicitly clear bits which are architecturally
444			 * RES0 in case they are given meanings in future.
445			 * We always report the ESR as if the fault was taken
446			 * to EL1 and so ISV and the bits in ISS[23:14] are
447			 * clear. (In fact it always will be a fault to EL1.)
448			 */
449			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
450				ESR_ELx_CM | ESR_ELx_WNR;
451			esr |= ESR_ELx_FSC_FAULT;
452			break;
453		case ESR_ELx_EC_IABT_LOW:
454			/*
455			 * Claim a level 0 translation fault.
456			 * All other bits are architecturally RES0 for faults
457			 * reported with that DFSC value, so we clear them.
458			 */
459			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
460			esr |= ESR_ELx_FSC_FAULT;
461			break;
462		default:
463			/*
464			 * This should never happen (entry.S only brings us
465			 * into this code for insn and data aborts from a lower
466			 * exception level). Fail safe by not providing an ESR
467			 * context record at all.
468			 */
469			WARN(1, "ESR 0x%lx is not DABT or IABT from EL0\n", esr);
470			esr = 0;
471			break;
472		}
473	}
474
475	current->thread.fault_code = esr;
476}
477
478static void do_bad_area(unsigned long far, unsigned long esr,
479			struct pt_regs *regs)
480{
481	unsigned long addr = untagged_addr(far);
482
483	/*
484	 * If we are in kernel mode at this point, we have no context to
485	 * handle this fault with.
486	 */
487	if (user_mode(regs)) {
488		const struct fault_info *inf = esr_to_fault_info(esr);
489
490		set_thread_esr(addr, esr);
491		arm64_force_sig_fault(inf->sig, inf->code, far, inf->name);
 
492	} else {
493		__do_kernel_fault(addr, esr, regs);
494	}
495}
496
497#define VM_FAULT_BADMAP		((__force vm_fault_t)0x010000)
498#define VM_FAULT_BADACCESS	((__force vm_fault_t)0x020000)
499
500static vm_fault_t __do_page_fault(struct mm_struct *mm,
501				  struct vm_area_struct *vma, unsigned long addr,
502				  unsigned int mm_flags, unsigned long vm_flags,
503				  struct pt_regs *regs)
504{
 
 
 
 
 
505	/*
506	 * Ok, we have a good vm_area for this memory access, so we can handle
507	 * it.
 
 
 
 
 
 
 
 
 
508	 * Check that the permissions on the VMA allow for the fault which
509	 * occurred.
510	 */
511	if (!(vma->vm_flags & vm_flags))
512		return VM_FAULT_BADACCESS;
513	return handle_mm_fault(vma, addr, mm_flags, regs);
514}
515
516static bool is_el0_instruction_abort(unsigned long esr)
517{
518	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
519}
520
521/*
522 * Note: not valid for EL1 DC IVAC, but we never use that such that it
523 * should fault. EL0 cannot issue DC IVAC (undef).
524 */
525static bool is_write_abort(unsigned long esr)
526{
527	return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
528}
529
530static int __kprobes do_page_fault(unsigned long far, unsigned long esr,
531				   struct pt_regs *regs)
532{
533	const struct fault_info *inf;
534	struct mm_struct *mm = current->mm;
535	vm_fault_t fault;
536	unsigned long vm_flags;
537	unsigned int mm_flags = FAULT_FLAG_DEFAULT;
538	unsigned long addr = untagged_addr(far);
539	struct vm_area_struct *vma;
540
541	if (kprobe_page_fault(regs, esr))
542		return 0;
543
544	/*
545	 * If we're in an interrupt or have no user context, we must not take
546	 * the fault.
547	 */
548	if (faulthandler_disabled() || !mm)
549		goto no_context;
550
551	if (user_mode(regs))
552		mm_flags |= FAULT_FLAG_USER;
553
554	/*
555	 * vm_flags tells us what bits we must have in vma->vm_flags
556	 * for the fault to be benign, __do_page_fault() would check
557	 * vma->vm_flags & vm_flags and returns an error if the
558	 * intersection is empty
559	 */
560	if (is_el0_instruction_abort(esr)) {
561		/* It was exec fault */
562		vm_flags = VM_EXEC;
563		mm_flags |= FAULT_FLAG_INSTRUCTION;
564	} else if (is_write_abort(esr)) {
565		/* It was write fault */
566		vm_flags = VM_WRITE;
567		mm_flags |= FAULT_FLAG_WRITE;
568	} else {
569		/* It was read fault */
570		vm_flags = VM_READ;
571		/* Write implies read */
572		vm_flags |= VM_WRITE;
573		/* If EPAN is absent then exec implies read */
574		if (!alternative_has_cap_unlikely(ARM64_HAS_EPAN))
575			vm_flags |= VM_EXEC;
576	}
577
578	if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
 
 
 
 
 
579		if (is_el1_instruction_abort(esr))
580			die_kernel_fault("execution of user memory",
581					 addr, esr, regs);
582
583		if (!search_exception_tables(regs->pc))
584			die_kernel_fault("access to user memory outside uaccess routines",
585					 addr, esr, regs);
586	}
587
588	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
589
590	if (!(mm_flags & FAULT_FLAG_USER))
591		goto lock_mmap;
592
593	vma = lock_vma_under_rcu(mm, addr);
594	if (!vma)
595		goto lock_mmap;
596
597	if (!(vma->vm_flags & vm_flags)) {
598		vma_end_read(vma);
599		goto lock_mmap;
600	}
601	fault = handle_mm_fault(vma, addr, mm_flags | FAULT_FLAG_VMA_LOCK, regs);
602	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
603		vma_end_read(vma);
604
605	if (!(fault & VM_FAULT_RETRY)) {
606		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
607		goto done;
608	}
609	count_vm_vma_lock_event(VMA_LOCK_RETRY);
610	if (fault & VM_FAULT_MAJOR)
611		mm_flags |= FAULT_FLAG_TRIED;
612
613	/* Quick path to respond to signals */
614	if (fault_signal_pending(fault, regs)) {
615		if (!user_mode(regs))
616			goto no_context;
617		return 0;
618	}
619lock_mmap:
620
621retry:
622	vma = lock_mm_and_find_vma(mm, addr, regs);
623	if (unlikely(!vma)) {
624		fault = VM_FAULT_BADMAP;
625		goto done;
 
 
 
 
 
 
 
 
 
626	}
627
628	fault = __do_page_fault(mm, vma, addr, mm_flags, vm_flags, regs);
629
630	/* Quick path to respond to signals */
631	if (fault_signal_pending(fault, regs)) {
632		if (!user_mode(regs))
633			goto no_context;
634		return 0;
635	}
636
637	/* The fault is fully completed (including releasing mmap lock) */
638	if (fault & VM_FAULT_COMPLETED)
639		return 0;
640
641	if (fault & VM_FAULT_RETRY) {
642		mm_flags |= FAULT_FLAG_TRIED;
643		goto retry;
 
 
644	}
645	mmap_read_unlock(mm);
646
647done:
648	/*
649	 * Handle the "normal" (no error) case first.
650	 */
651	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
652			      VM_FAULT_BADACCESS))))
653		return 0;
654
655	/*
656	 * If we are in kernel mode at this point, we have no context to
657	 * handle this fault with.
658	 */
659	if (!user_mode(regs))
660		goto no_context;
661
662	if (fault & VM_FAULT_OOM) {
663		/*
664		 * We ran out of memory, call the OOM killer, and return to
665		 * userspace (which will retry the fault, or kill us if we got
666		 * oom-killed).
667		 */
668		pagefault_out_of_memory();
669		return 0;
670	}
671
672	inf = esr_to_fault_info(esr);
673	set_thread_esr(addr, esr);
674	if (fault & VM_FAULT_SIGBUS) {
675		/*
676		 * We had some memory, but were unable to successfully fix up
677		 * this page fault.
678		 */
679		arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name);
 
680	} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
681		unsigned int lsb;
682
683		lsb = PAGE_SHIFT;
684		if (fault & VM_FAULT_HWPOISON_LARGE)
685			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
686
687		arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name);
 
688	} else {
689		/*
690		 * Something tried to access memory that isn't in our memory
691		 * map.
692		 */
693		arm64_force_sig_fault(SIGSEGV,
694				      fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
695				      far, inf->name);
 
696	}
697
698	return 0;
699
700no_context:
701	__do_kernel_fault(addr, esr, regs);
702	return 0;
703}
704
705static int __kprobes do_translation_fault(unsigned long far,
706					  unsigned long esr,
707					  struct pt_regs *regs)
708{
709	unsigned long addr = untagged_addr(far);
710
711	if (is_ttbr0_addr(addr))
712		return do_page_fault(far, esr, regs);
713
714	do_bad_area(far, esr, regs);
715	return 0;
716}
717
718static int do_alignment_fault(unsigned long far, unsigned long esr,
719			      struct pt_regs *regs)
720{
721	if (IS_ENABLED(CONFIG_COMPAT_ALIGNMENT_FIXUPS) &&
722	    compat_user_mode(regs))
723		return do_compat_alignment_fixup(far, regs);
724	do_bad_area(far, esr, regs);
725	return 0;
726}
727
728static int do_bad(unsigned long far, unsigned long esr, struct pt_regs *regs)
729{
730	return 1; /* "fault" */
731}
732
733static int do_sea(unsigned long far, unsigned long esr, struct pt_regs *regs)
734{
735	const struct fault_info *inf;
736	unsigned long siaddr;
737
738	inf = esr_to_fault_info(esr);
739
740	if (user_mode(regs) && apei_claim_sea(regs) == 0) {
741		/*
742		 * APEI claimed this as a firmware-first notification.
743		 * Some processing deferred to task_work before ret_to_user().
744		 */
745		return 0;
746	}
747
748	if (esr & ESR_ELx_FnV) {
749		siaddr = 0;
750	} else {
751		/*
752		 * The architecture specifies that the tag bits of FAR_EL1 are
753		 * UNKNOWN for synchronous external aborts. Mask them out now
754		 * so that userspace doesn't see them.
755		 */
756		siaddr  = untagged_addr(far);
757	}
758	arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
759
760	return 0;
761}
762
763static int do_tag_check_fault(unsigned long far, unsigned long esr,
764			      struct pt_regs *regs)
765{
766	/*
767	 * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN
768	 * for tag check faults. Set them to corresponding bits in the untagged
769	 * address.
770	 */
771	far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK);
772	do_bad_area(far, esr, regs);
773	return 0;
774}
775
776static const struct fault_info fault_info[] = {
777	{ do_bad,		SIGKILL, SI_KERNEL,	"ttbr address size fault"	},
778	{ do_bad,		SIGKILL, SI_KERNEL,	"level 1 address size fault"	},
779	{ do_bad,		SIGKILL, SI_KERNEL,	"level 2 address size fault"	},
780	{ do_bad,		SIGKILL, SI_KERNEL,	"level 3 address size fault"	},
781	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
782	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
783	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
784	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
785	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 8"			},
786	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
787	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
788	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
789	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 12"			},
790	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
791	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
792	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
793	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous external abort"	},
794	{ do_tag_check_fault,	SIGSEGV, SEGV_MTESERR,	"synchronous tag check fault"	},
795	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 18"			},
796	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 19"			},
797	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 (translation table walk)"	},
798	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 (translation table walk)"	},
799	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 (translation table walk)"	},
800	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 (translation table walk)"	},
801	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous parity or ECC error" },	// Reserved when RAS is implemented
802	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 25"			},
803	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 26"			},
804	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 27"			},
805	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
806	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
807	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
808	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
809	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 32"			},
810	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
811	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 34"			},
812	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 35"			},
813	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 36"			},
814	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 37"			},
815	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 38"			},
816	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 39"			},
817	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 40"			},
818	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 41"			},
819	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 42"			},
820	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 43"			},
821	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 44"			},
822	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 45"			},
823	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 46"			},
824	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 47"			},
825	{ do_bad,		SIGKILL, SI_KERNEL,	"TLB conflict abort"		},
826	{ do_bad,		SIGKILL, SI_KERNEL,	"Unsupported atomic hardware update fault"	},
827	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 50"			},
828	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 51"			},
829	{ do_bad,		SIGKILL, SI_KERNEL,	"implementation fault (lockdown abort)" },
830	{ do_bad,		SIGBUS,  BUS_OBJERR,	"implementation fault (unsupported exclusive)" },
831	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 54"			},
832	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 55"			},
833	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 56"			},
834	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 57"			},
835	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 58" 			},
836	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 59"			},
837	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 60"			},
838	{ do_bad,		SIGKILL, SI_KERNEL,	"section domain fault"		},
839	{ do_bad,		SIGKILL, SI_KERNEL,	"page domain fault"		},
840	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 63"			},
841};
842
843void do_mem_abort(unsigned long far, unsigned long esr, struct pt_regs *regs)
844{
845	const struct fault_info *inf = esr_to_fault_info(esr);
846	unsigned long addr = untagged_addr(far);
847
848	if (!inf->fn(far, esr, regs))
849		return;
850
851	if (!user_mode(regs))
852		die_kernel_fault(inf->name, addr, esr, regs);
 
 
 
853
854	/*
855	 * At this point we have an unrecognized fault type whose tag bits may
856	 * have been defined as UNKNOWN. Therefore we only expose the untagged
857	 * address to the signal handler.
858	 */
859	arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr);
860}
861NOKPROBE_SYMBOL(do_mem_abort);
862
863void do_sp_pc_abort(unsigned long addr, unsigned long esr, struct pt_regs *regs)
864{
865	arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN,
866			 addr, esr);
 
 
 
 
 
 
 
867}
868NOKPROBE_SYMBOL(do_sp_pc_abort);
869
 
 
 
870/*
871 * __refdata because early_brk64 is __init, but the reference to it is
872 * clobbered at arch_initcall time.
873 * See traps.c and debug-monitors.c:debug_traps_init().
874 */
875static struct fault_info __refdata debug_fault_info[] = {
876	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
877	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
878	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
879	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 3"		},
880	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
881	{ do_bad,	SIGKILL,	SI_KERNEL,	"aarch32 vector catch"	},
882	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
883	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 7"		},
884};
885
886void __init hook_debug_fault_code(int nr,
887				  int (*fn)(unsigned long, unsigned long, struct pt_regs *),
888				  int sig, int code, const char *name)
889{
890	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
891
892	debug_fault_info[nr].fn		= fn;
893	debug_fault_info[nr].sig	= sig;
894	debug_fault_info[nr].code	= code;
895	debug_fault_info[nr].name	= name;
896}
897
898/*
899 * In debug exception context, we explicitly disable preemption despite
900 * having interrupts disabled.
901 * This serves two purposes: it makes it much less likely that we would
902 * accidentally schedule in exception context and it will force a warning
903 * if we somehow manage to schedule by accident.
904 */
905static void debug_exception_enter(struct pt_regs *regs)
906{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
907	preempt_disable();
908
909	/* This code is a bit fragile.  Test it. */
910	RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
911}
912NOKPROBE_SYMBOL(debug_exception_enter);
913
914static void debug_exception_exit(struct pt_regs *regs)
915{
916	preempt_enable_no_resched();
 
 
 
 
 
 
917}
918NOKPROBE_SYMBOL(debug_exception_exit);
919
920void do_debug_exception(unsigned long addr_if_watchpoint, unsigned long esr,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
921			struct pt_regs *regs)
922{
923	const struct fault_info *inf = esr_to_debug_fault_info(esr);
924	unsigned long pc = instruction_pointer(regs);
925
 
 
 
926	debug_exception_enter(regs);
927
928	if (user_mode(regs) && !is_ttbr0_addr(pc))
929		arm64_apply_bp_hardening();
930
931	if (inf->fn(addr_if_watchpoint, esr, regs)) {
932		arm64_notify_die(inf->name, regs, inf->sig, inf->code, pc, esr);
 
933	}
934
935	debug_exception_exit(regs);
936}
937NOKPROBE_SYMBOL(do_debug_exception);
938
939/*
940 * Used during anonymous page fault handling.
941 */
942struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma,
943						unsigned long vaddr)
944{
945	gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO;
946
947	/*
948	 * If the page is mapped with PROT_MTE, initialise the tags at the
949	 * point of allocation and page zeroing as this is usually faster than
950	 * separate DC ZVA and STGM.
951	 */
952	if (vma->vm_flags & VM_MTE)
953		flags |= __GFP_ZEROTAGS;
954
955	return vma_alloc_folio(flags, 0, vma, vaddr, false);
956}
957
958void tag_clear_highpage(struct page *page)
959{
960	/* Newly allocated page, shouldn't have been tagged yet */
961	WARN_ON_ONCE(!try_page_mte_tagging(page));
962	mte_zero_clear_page_tags(page_address(page));
963	set_page_mte_tagged(page);
964}
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Based on arch/arm/mm/fault.c
  4 *
  5 * Copyright (C) 1995  Linus Torvalds
  6 * Copyright (C) 1995-2004 Russell King
  7 * Copyright (C) 2012 ARM Ltd.
  8 */
  9
 10#include <linux/acpi.h>
 11#include <linux/bitfield.h>
 12#include <linux/extable.h>
 
 13#include <linux/signal.h>
 14#include <linux/mm.h>
 15#include <linux/hardirq.h>
 16#include <linux/init.h>
 
 17#include <linux/kprobes.h>
 18#include <linux/uaccess.h>
 19#include <linux/page-flags.h>
 20#include <linux/sched/signal.h>
 21#include <linux/sched/debug.h>
 22#include <linux/highmem.h>
 23#include <linux/perf_event.h>
 24#include <linux/preempt.h>
 25#include <linux/hugetlb.h>
 26
 27#include <asm/acpi.h>
 28#include <asm/bug.h>
 29#include <asm/cmpxchg.h>
 30#include <asm/cpufeature.h>
 
 31#include <asm/exception.h>
 32#include <asm/daifflags.h>
 33#include <asm/debug-monitors.h>
 34#include <asm/esr.h>
 35#include <asm/kprobes.h>
 
 36#include <asm/processor.h>
 37#include <asm/sysreg.h>
 38#include <asm/system_misc.h>
 39#include <asm/tlbflush.h>
 40#include <asm/traps.h>
 41
 42struct fault_info {
 43	int	(*fn)(unsigned long addr, unsigned int esr,
 44		      struct pt_regs *regs);
 45	int	sig;
 46	int	code;
 47	const char *name;
 48};
 49
 50static const struct fault_info fault_info[];
 51static struct fault_info debug_fault_info[];
 52
 53static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
 54{
 55	return fault_info + (esr & ESR_ELx_FSC);
 56}
 57
 58static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
 59{
 60	return debug_fault_info + DBG_ESR_EVT(esr);
 61}
 62
 63static void data_abort_decode(unsigned int esr)
 64{
 
 
 65	pr_alert("Data abort info:\n");
 66
 67	if (esr & ESR_ELx_ISV) {
 68		pr_alert("  Access size = %u byte(s)\n",
 69			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
 70		pr_alert("  SSE = %lu, SRT = %lu\n",
 71			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
 72			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
 73		pr_alert("  SF = %lu, AR = %lu\n",
 74			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
 75			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
 76	} else {
 77		pr_alert("  ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
 
 78	}
 79
 80	pr_alert("  CM = %lu, WnR = %lu\n",
 81		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
 82		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
 
 
 
 
 
 
 
 
 83}
 84
 85static void mem_abort_decode(unsigned int esr)
 86{
 87	pr_alert("Mem abort info:\n");
 88
 89	pr_alert("  ESR = 0x%08x\n", esr);
 90	pr_alert("  EC = 0x%02lx: %s, IL = %u bits\n",
 91		 ESR_ELx_EC(esr), esr_get_class_string(esr),
 92		 (esr & ESR_ELx_IL) ? 32 : 16);
 93	pr_alert("  SET = %lu, FnV = %lu\n",
 94		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
 95		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
 96	pr_alert("  EA = %lu, S1PTW = %lu\n",
 97		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
 98		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
 
 
 99
100	if (esr_is_data_abort(esr))
101		data_abort_decode(esr);
102}
103
104static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
105{
106	/* Either init_pg_dir or swapper_pg_dir */
107	if (mm == &init_mm)
108		return __pa_symbol(mm->pgd);
109
110	return (unsigned long)virt_to_phys(mm->pgd);
111}
112
113/*
114 * Dump out the page tables associated with 'addr' in the currently active mm.
115 */
116static void show_pte(unsigned long addr)
117{
118	struct mm_struct *mm;
119	pgd_t *pgdp;
120	pgd_t pgd;
121
122	if (is_ttbr0_addr(addr)) {
123		/* TTBR0 */
124		mm = current->active_mm;
125		if (mm == &init_mm) {
126			pr_alert("[%016lx] user address but active_mm is swapper\n",
127				 addr);
128			return;
129		}
130	} else if (is_ttbr1_addr(addr)) {
131		/* TTBR1 */
132		mm = &init_mm;
133	} else {
134		pr_alert("[%016lx] address between user and kernel address ranges\n",
135			 addr);
136		return;
137	}
138
139	pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
140		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
141		 vabits_actual, mm_to_pgd_phys(mm));
142	pgdp = pgd_offset(mm, addr);
143	pgd = READ_ONCE(*pgdp);
144	pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
145
146	do {
147		p4d_t *p4dp, p4d;
148		pud_t *pudp, pud;
149		pmd_t *pmdp, pmd;
150		pte_t *ptep, pte;
151
152		if (pgd_none(pgd) || pgd_bad(pgd))
153			break;
154
155		p4dp = p4d_offset(pgdp, addr);
156		p4d = READ_ONCE(*p4dp);
157		pr_cont(", p4d=%016llx", p4d_val(p4d));
158		if (p4d_none(p4d) || p4d_bad(p4d))
159			break;
160
161		pudp = pud_offset(p4dp, addr);
162		pud = READ_ONCE(*pudp);
163		pr_cont(", pud=%016llx", pud_val(pud));
164		if (pud_none(pud) || pud_bad(pud))
165			break;
166
167		pmdp = pmd_offset(pudp, addr);
168		pmd = READ_ONCE(*pmdp);
169		pr_cont(", pmd=%016llx", pmd_val(pmd));
170		if (pmd_none(pmd) || pmd_bad(pmd))
171			break;
172
173		ptep = pte_offset_map(pmdp, addr);
 
 
 
174		pte = READ_ONCE(*ptep);
175		pr_cont(", pte=%016llx", pte_val(pte));
176		pte_unmap(ptep);
177	} while(0);
178
179	pr_cont("\n");
180}
181
182/*
183 * This function sets the access flags (dirty, accessed), as well as write
184 * permission, and only to a more permissive setting.
185 *
186 * It needs to cope with hardware update of the accessed/dirty state by other
187 * agents in the system and can safely skip the __sync_icache_dcache() call as,
188 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
189 *
190 * Returns whether or not the PTE actually changed.
191 */
192int ptep_set_access_flags(struct vm_area_struct *vma,
193			  unsigned long address, pte_t *ptep,
194			  pte_t entry, int dirty)
195{
196	pteval_t old_pteval, pteval;
197	pte_t pte = READ_ONCE(*ptep);
198
199	if (pte_same(pte, entry))
200		return 0;
201
202	/* only preserve the access flags and write permission */
203	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
204
205	/*
206	 * Setting the flags must be done atomically to avoid racing with the
207	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
208	 * be set to the most permissive (lowest value) of *ptep and entry
209	 * (calculated as: a & b == ~(~a | ~b)).
210	 */
211	pte_val(entry) ^= PTE_RDONLY;
212	pteval = pte_val(pte);
213	do {
214		old_pteval = pteval;
215		pteval ^= PTE_RDONLY;
216		pteval |= pte_val(entry);
217		pteval ^= PTE_RDONLY;
218		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
219	} while (pteval != old_pteval);
220
221	flush_tlb_fix_spurious_fault(vma, address);
 
 
222	return 1;
223}
224
225static bool is_el1_instruction_abort(unsigned int esr)
226{
227	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
228}
229
230static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
 
 
 
 
 
231					   struct pt_regs *regs)
232{
233	unsigned int ec       = ESR_ELx_EC(esr);
234	unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
235
236	if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
237		return false;
238
239	if (fsc_type == ESR_ELx_FSC_PERM)
240		return true;
241
242	if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
243		return fsc_type == ESR_ELx_FSC_FAULT &&
244			(regs->pstate & PSR_PAN_BIT);
245
246	return false;
247}
248
249static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
250							unsigned int esr,
251							struct pt_regs *regs)
252{
253	unsigned long flags;
254	u64 par, dfsc;
255
256	if (ESR_ELx_EC(esr) != ESR_ELx_EC_DABT_CUR ||
257	    (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
258		return false;
259
260	local_irq_save(flags);
261	asm volatile("at s1e1r, %0" :: "r" (addr));
262	isb();
263	par = read_sysreg(par_el1);
264	local_irq_restore(flags);
265
266	/*
267	 * If we now have a valid translation, treat the translation fault as
268	 * spurious.
269	 */
270	if (!(par & SYS_PAR_EL1_F))
271		return true;
272
273	/*
274	 * If we got a different type of fault from the AT instruction,
275	 * treat the translation fault as spurious.
276	 */
277	dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
278	return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
279}
280
281static void die_kernel_fault(const char *msg, unsigned long addr,
282			     unsigned int esr, struct pt_regs *regs)
283{
284	bust_spinlocks(1);
285
286	pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
287		 addr);
288
 
 
289	mem_abort_decode(esr);
290
291	show_pte(addr);
292	die("Oops", regs, esr);
293	bust_spinlocks(0);
294	do_exit(SIGKILL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
295}
296
297static void __do_kernel_fault(unsigned long addr, unsigned int esr,
298			      struct pt_regs *regs)
299{
300	const char *msg;
301
302	/*
303	 * Are we prepared to handle this kernel fault?
304	 * We are almost certainly not prepared to handle instruction faults.
305	 */
306	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
307		return;
308
309	if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
310	    "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
311		return;
312
 
 
 
 
 
 
313	if (is_el1_permission_fault(addr, esr, regs)) {
314		if (esr & ESR_ELx_WNR)
315			msg = "write to read-only memory";
316		else if (is_el1_instruction_abort(esr))
317			msg = "execute from non-executable memory";
318		else
319			msg = "read from unreadable memory";
320	} else if (addr < PAGE_SIZE) {
321		msg = "NULL pointer dereference";
322	} else {
 
 
 
 
323		msg = "paging request";
324	}
325
 
 
 
326	die_kernel_fault(msg, addr, esr, regs);
327}
328
329static void set_thread_esr(unsigned long address, unsigned int esr)
330{
331	current->thread.fault_address = address;
332
333	/*
334	 * If the faulting address is in the kernel, we must sanitize the ESR.
335	 * From userspace's point of view, kernel-only mappings don't exist
336	 * at all, so we report them as level 0 translation faults.
337	 * (This is not quite the way that "no mapping there at all" behaves:
338	 * an alignment fault not caused by the memory type would take
339	 * precedence over translation fault for a real access to empty
340	 * space. Unfortunately we can't easily distinguish "alignment fault
341	 * not caused by memory type" from "alignment fault caused by memory
342	 * type", so we ignore this wrinkle and just return the translation
343	 * fault.)
344	 */
345	if (!is_ttbr0_addr(current->thread.fault_address)) {
346		switch (ESR_ELx_EC(esr)) {
347		case ESR_ELx_EC_DABT_LOW:
348			/*
349			 * These bits provide only information about the
350			 * faulting instruction, which userspace knows already.
351			 * We explicitly clear bits which are architecturally
352			 * RES0 in case they are given meanings in future.
353			 * We always report the ESR as if the fault was taken
354			 * to EL1 and so ISV and the bits in ISS[23:14] are
355			 * clear. (In fact it always will be a fault to EL1.)
356			 */
357			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
358				ESR_ELx_CM | ESR_ELx_WNR;
359			esr |= ESR_ELx_FSC_FAULT;
360			break;
361		case ESR_ELx_EC_IABT_LOW:
362			/*
363			 * Claim a level 0 translation fault.
364			 * All other bits are architecturally RES0 for faults
365			 * reported with that DFSC value, so we clear them.
366			 */
367			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
368			esr |= ESR_ELx_FSC_FAULT;
369			break;
370		default:
371			/*
372			 * This should never happen (entry.S only brings us
373			 * into this code for insn and data aborts from a lower
374			 * exception level). Fail safe by not providing an ESR
375			 * context record at all.
376			 */
377			WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
378			esr = 0;
379			break;
380		}
381	}
382
383	current->thread.fault_code = esr;
384}
385
386static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
 
387{
 
 
388	/*
389	 * If we are in kernel mode at this point, we have no context to
390	 * handle this fault with.
391	 */
392	if (user_mode(regs)) {
393		const struct fault_info *inf = esr_to_fault_info(esr);
394
395		set_thread_esr(addr, esr);
396		arm64_force_sig_fault(inf->sig, inf->code, (void __user *)addr,
397				      inf->name);
398	} else {
399		__do_kernel_fault(addr, esr, regs);
400	}
401}
402
403#define VM_FAULT_BADMAP		0x010000
404#define VM_FAULT_BADACCESS	0x020000
405
406static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
 
407				  unsigned int mm_flags, unsigned long vm_flags,
408				  struct pt_regs *regs)
409{
410	struct vm_area_struct *vma = find_vma(mm, addr);
411
412	if (unlikely(!vma))
413		return VM_FAULT_BADMAP;
414
415	/*
416	 * Ok, we have a good vm_area for this memory access, so we can handle
417	 * it.
418	 */
419	if (unlikely(vma->vm_start > addr)) {
420		if (!(vma->vm_flags & VM_GROWSDOWN))
421			return VM_FAULT_BADMAP;
422		if (expand_stack(vma, addr))
423			return VM_FAULT_BADMAP;
424	}
425
426	/*
427	 * Check that the permissions on the VMA allow for the fault which
428	 * occurred.
429	 */
430	if (!(vma->vm_flags & vm_flags))
431		return VM_FAULT_BADACCESS;
432	return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags, regs);
433}
434
435static bool is_el0_instruction_abort(unsigned int esr)
436{
437	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
438}
439
440/*
441 * Note: not valid for EL1 DC IVAC, but we never use that such that it
442 * should fault. EL0 cannot issue DC IVAC (undef).
443 */
444static bool is_write_abort(unsigned int esr)
445{
446	return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
447}
448
449static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
450				   struct pt_regs *regs)
451{
452	const struct fault_info *inf;
453	struct mm_struct *mm = current->mm;
454	vm_fault_t fault;
455	unsigned long vm_flags = VM_ACCESS_FLAGS;
456	unsigned int mm_flags = FAULT_FLAG_DEFAULT;
 
 
457
458	if (kprobe_page_fault(regs, esr))
459		return 0;
460
461	/*
462	 * If we're in an interrupt or have no user context, we must not take
463	 * the fault.
464	 */
465	if (faulthandler_disabled() || !mm)
466		goto no_context;
467
468	if (user_mode(regs))
469		mm_flags |= FAULT_FLAG_USER;
470
 
 
 
 
 
 
471	if (is_el0_instruction_abort(esr)) {
 
472		vm_flags = VM_EXEC;
473		mm_flags |= FAULT_FLAG_INSTRUCTION;
474	} else if (is_write_abort(esr)) {
 
475		vm_flags = VM_WRITE;
476		mm_flags |= FAULT_FLAG_WRITE;
 
 
 
 
 
 
 
 
477	}
478
479	if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
480		/* regs->orig_addr_limit may be 0 if we entered from EL0 */
481		if (regs->orig_addr_limit == KERNEL_DS)
482			die_kernel_fault("access to user memory with fs=KERNEL_DS",
483					 addr, esr, regs);
484
485		if (is_el1_instruction_abort(esr))
486			die_kernel_fault("execution of user memory",
487					 addr, esr, regs);
488
489		if (!search_exception_tables(regs->pc))
490			die_kernel_fault("access to user memory outside uaccess routines",
491					 addr, esr, regs);
492	}
493
494	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
495
496	/*
497	 * As per x86, we may deadlock here. However, since the kernel only
498	 * validly references user space from well defined areas of the code,
499	 * we can bug out early if this is from code which shouldn't.
500	 */
501	if (!mmap_read_trylock(mm)) {
502		if (!user_mode(regs) && !search_exception_tables(regs->pc))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
503			goto no_context;
 
 
 
 
504retry:
505		mmap_read_lock(mm);
506	} else {
507		/*
508		 * The above down_read_trylock() might have succeeded in which
509		 * case, we'll have missed the might_sleep() from down_read().
510		 */
511		might_sleep();
512#ifdef CONFIG_DEBUG_VM
513		if (!user_mode(regs) && !search_exception_tables(regs->pc)) {
514			mmap_read_unlock(mm);
515			goto no_context;
516		}
517#endif
518	}
519
520	fault = __do_page_fault(mm, addr, mm_flags, vm_flags, regs);
521
522	/* Quick path to respond to signals */
523	if (fault_signal_pending(fault, regs)) {
524		if (!user_mode(regs))
525			goto no_context;
526		return 0;
527	}
528
 
 
 
 
529	if (fault & VM_FAULT_RETRY) {
530		if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
531			mm_flags |= FAULT_FLAG_TRIED;
532			goto retry;
533		}
534	}
535	mmap_read_unlock(mm);
536
 
537	/*
538	 * Handle the "normal" (no error) case first.
539	 */
540	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
541			      VM_FAULT_BADACCESS))))
542		return 0;
543
544	/*
545	 * If we are in kernel mode at this point, we have no context to
546	 * handle this fault with.
547	 */
548	if (!user_mode(regs))
549		goto no_context;
550
551	if (fault & VM_FAULT_OOM) {
552		/*
553		 * We ran out of memory, call the OOM killer, and return to
554		 * userspace (which will retry the fault, or kill us if we got
555		 * oom-killed).
556		 */
557		pagefault_out_of_memory();
558		return 0;
559	}
560
561	inf = esr_to_fault_info(esr);
562	set_thread_esr(addr, esr);
563	if (fault & VM_FAULT_SIGBUS) {
564		/*
565		 * We had some memory, but were unable to successfully fix up
566		 * this page fault.
567		 */
568		arm64_force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr,
569				      inf->name);
570	} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
571		unsigned int lsb;
572
573		lsb = PAGE_SHIFT;
574		if (fault & VM_FAULT_HWPOISON_LARGE)
575			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
576
577		arm64_force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, lsb,
578				       inf->name);
579	} else {
580		/*
581		 * Something tried to access memory that isn't in our memory
582		 * map.
583		 */
584		arm64_force_sig_fault(SIGSEGV,
585				      fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
586				      (void __user *)addr,
587				      inf->name);
588	}
589
590	return 0;
591
592no_context:
593	__do_kernel_fault(addr, esr, regs);
594	return 0;
595}
596
597static int __kprobes do_translation_fault(unsigned long addr,
598					  unsigned int esr,
599					  struct pt_regs *regs)
600{
 
 
601	if (is_ttbr0_addr(addr))
602		return do_page_fault(addr, esr, regs);
603
604	do_bad_area(addr, esr, regs);
605	return 0;
606}
607
608static int do_alignment_fault(unsigned long addr, unsigned int esr,
609			      struct pt_regs *regs)
610{
611	do_bad_area(addr, esr, regs);
 
 
 
612	return 0;
613}
614
615static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
616{
617	return 1; /* "fault" */
618}
619
620static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
621{
622	const struct fault_info *inf;
623	void __user *siaddr;
624
625	inf = esr_to_fault_info(esr);
626
627	if (user_mode(regs) && apei_claim_sea(regs) == 0) {
628		/*
629		 * APEI claimed this as a firmware-first notification.
630		 * Some processing deferred to task_work before ret_to_user().
631		 */
632		return 0;
633	}
634
635	if (esr & ESR_ELx_FnV)
636		siaddr = NULL;
637	else
638		siaddr  = (void __user *)addr;
 
 
 
 
 
 
639	arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
640
641	return 0;
642}
643
 
 
 
 
 
 
 
 
 
 
 
 
 
644static const struct fault_info fault_info[] = {
645	{ do_bad,		SIGKILL, SI_KERNEL,	"ttbr address size fault"	},
646	{ do_bad,		SIGKILL, SI_KERNEL,	"level 1 address size fault"	},
647	{ do_bad,		SIGKILL, SI_KERNEL,	"level 2 address size fault"	},
648	{ do_bad,		SIGKILL, SI_KERNEL,	"level 3 address size fault"	},
649	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
650	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
651	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
652	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
653	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 8"			},
654	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
655	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
656	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
657	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 12"			},
658	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
659	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
660	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
661	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous external abort"	},
662	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 17"			},
663	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 18"			},
664	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 19"			},
665	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 (translation table walk)"	},
666	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 (translation table walk)"	},
667	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 (translation table walk)"	},
668	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 (translation table walk)"	},
669	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous parity or ECC error" },	// Reserved when RAS is implemented
670	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 25"			},
671	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 26"			},
672	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 27"			},
673	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
674	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
675	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
676	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
677	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 32"			},
678	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
679	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 34"			},
680	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 35"			},
681	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 36"			},
682	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 37"			},
683	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 38"			},
684	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 39"			},
685	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 40"			},
686	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 41"			},
687	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 42"			},
688	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 43"			},
689	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 44"			},
690	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 45"			},
691	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 46"			},
692	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 47"			},
693	{ do_bad,		SIGKILL, SI_KERNEL,	"TLB conflict abort"		},
694	{ do_bad,		SIGKILL, SI_KERNEL,	"Unsupported atomic hardware update fault"	},
695	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 50"			},
696	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 51"			},
697	{ do_bad,		SIGKILL, SI_KERNEL,	"implementation fault (lockdown abort)" },
698	{ do_bad,		SIGBUS,  BUS_OBJERR,	"implementation fault (unsupported exclusive)" },
699	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 54"			},
700	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 55"			},
701	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 56"			},
702	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 57"			},
703	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 58" 			},
704	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 59"			},
705	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 60"			},
706	{ do_bad,		SIGKILL, SI_KERNEL,	"section domain fault"		},
707	{ do_bad,		SIGKILL, SI_KERNEL,	"page domain fault"		},
708	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 63"			},
709};
710
711void do_mem_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
712{
713	const struct fault_info *inf = esr_to_fault_info(esr);
 
714
715	if (!inf->fn(addr, esr, regs))
716		return;
717
718	if (!user_mode(regs)) {
719		pr_alert("Unhandled fault at 0x%016lx\n", addr);
720		mem_abort_decode(esr);
721		show_pte(addr);
722	}
723
724	arm64_notify_die(inf->name, regs,
725			 inf->sig, inf->code, (void __user *)addr, esr);
 
 
 
 
726}
727NOKPROBE_SYMBOL(do_mem_abort);
728
729void do_el0_irq_bp_hardening(void)
730{
731	/* PC has already been checked in entry.S */
732	arm64_apply_bp_hardening();
733}
734NOKPROBE_SYMBOL(do_el0_irq_bp_hardening);
735
736void do_sp_pc_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
737{
738	arm64_notify_die("SP/PC alignment exception", regs,
739			 SIGBUS, BUS_ADRALN, (void __user *)addr, esr);
740}
741NOKPROBE_SYMBOL(do_sp_pc_abort);
742
743int __init early_brk64(unsigned long addr, unsigned int esr,
744		       struct pt_regs *regs);
745
746/*
747 * __refdata because early_brk64 is __init, but the reference to it is
748 * clobbered at arch_initcall time.
749 * See traps.c and debug-monitors.c:debug_traps_init().
750 */
751static struct fault_info __refdata debug_fault_info[] = {
752	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
753	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
754	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
755	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 3"		},
756	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
757	{ do_bad,	SIGKILL,	SI_KERNEL,	"aarch32 vector catch"	},
758	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
759	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 7"		},
760};
761
762void __init hook_debug_fault_code(int nr,
763				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
764				  int sig, int code, const char *name)
765{
766	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
767
768	debug_fault_info[nr].fn		= fn;
769	debug_fault_info[nr].sig	= sig;
770	debug_fault_info[nr].code	= code;
771	debug_fault_info[nr].name	= name;
772}
773
774/*
775 * In debug exception context, we explicitly disable preemption despite
776 * having interrupts disabled.
777 * This serves two purposes: it makes it much less likely that we would
778 * accidentally schedule in exception context and it will force a warning
779 * if we somehow manage to schedule by accident.
780 */
781static void debug_exception_enter(struct pt_regs *regs)
782{
783	/*
784	 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
785	 * already disabled to preserve the last enabled/disabled addresses.
786	 */
787	if (interrupts_enabled(regs))
788		trace_hardirqs_off();
789
790	if (user_mode(regs)) {
791		RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
792	} else {
793		/*
794		 * We might have interrupted pretty much anything.  In
795		 * fact, if we're a debug exception, we can even interrupt
796		 * NMI processing. We don't want this code makes in_nmi()
797		 * to return true, but we need to notify RCU.
798		 */
799		rcu_nmi_enter();
800	}
801
802	preempt_disable();
803
804	/* This code is a bit fragile.  Test it. */
805	RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
806}
807NOKPROBE_SYMBOL(debug_exception_enter);
808
809static void debug_exception_exit(struct pt_regs *regs)
810{
811	preempt_enable_no_resched();
812
813	if (!user_mode(regs))
814		rcu_nmi_exit();
815
816	if (interrupts_enabled(regs))
817		trace_hardirqs_on();
818}
819NOKPROBE_SYMBOL(debug_exception_exit);
820
821#ifdef CONFIG_ARM64_ERRATUM_1463225
822DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
823
824static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
825{
826	if (user_mode(regs))
827		return 0;
828
829	if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
830		return 0;
831
832	/*
833	 * We've taken a dummy step exception from the kernel to ensure
834	 * that interrupts are re-enabled on the syscall path. Return back
835	 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
836	 * masked so that we can safely restore the mdscr and get on with
837	 * handling the syscall.
838	 */
839	regs->pstate |= PSR_D_BIT;
840	return 1;
841}
842#else
843static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
844{
845	return 0;
846}
847#endif /* CONFIG_ARM64_ERRATUM_1463225 */
848NOKPROBE_SYMBOL(cortex_a76_erratum_1463225_debug_handler);
849
850void do_debug_exception(unsigned long addr_if_watchpoint, unsigned int esr,
851			struct pt_regs *regs)
852{
853	const struct fault_info *inf = esr_to_debug_fault_info(esr);
854	unsigned long pc = instruction_pointer(regs);
855
856	if (cortex_a76_erratum_1463225_debug_handler(regs))
857		return;
858
859	debug_exception_enter(regs);
860
861	if (user_mode(regs) && !is_ttbr0_addr(pc))
862		arm64_apply_bp_hardening();
863
864	if (inf->fn(addr_if_watchpoint, esr, regs)) {
865		arm64_notify_die(inf->name, regs,
866				 inf->sig, inf->code, (void __user *)pc, esr);
867	}
868
869	debug_exception_exit(regs);
870}
871NOKPROBE_SYMBOL(do_debug_exception);