Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2015, Sony Mobile Communications AB.
4 * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
5 */
6
7#include <linux/hwspinlock.h>
8#include <linux/io.h>
9#include <linux/module.h>
10#include <linux/of.h>
11#include <linux/of_address.h>
12#include <linux/of_reserved_mem.h>
13#include <linux/platform_device.h>
14#include <linux/sizes.h>
15#include <linux/slab.h>
16#include <linux/soc/qcom/smem.h>
17#include <linux/soc/qcom/socinfo.h>
18
19/*
20 * The Qualcomm shared memory system is a allocate only heap structure that
21 * consists of one of more memory areas that can be accessed by the processors
22 * in the SoC.
23 *
24 * All systems contains a global heap, accessible by all processors in the SoC,
25 * with a table of contents data structure (@smem_header) at the beginning of
26 * the main shared memory block.
27 *
28 * The global header contains meta data for allocations as well as a fixed list
29 * of 512 entries (@smem_global_entry) that can be initialized to reference
30 * parts of the shared memory space.
31 *
32 *
33 * In addition to this global heap a set of "private" heaps can be set up at
34 * boot time with access restrictions so that only certain processor pairs can
35 * access the data.
36 *
37 * These partitions are referenced from an optional partition table
38 * (@smem_ptable), that is found 4kB from the end of the main smem region. The
39 * partition table entries (@smem_ptable_entry) lists the involved processors
40 * (or hosts) and their location in the main shared memory region.
41 *
42 * Each partition starts with a header (@smem_partition_header) that identifies
43 * the partition and holds properties for the two internal memory regions. The
44 * two regions are cached and non-cached memory respectively. Each region
45 * contain a link list of allocation headers (@smem_private_entry) followed by
46 * their data.
47 *
48 * Items in the non-cached region are allocated from the start of the partition
49 * while items in the cached region are allocated from the end. The free area
50 * is hence the region between the cached and non-cached offsets. The header of
51 * cached items comes after the data.
52 *
53 * Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure
54 * for the global heap. A new global partition is created from the global heap
55 * region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is
56 * set by the bootloader.
57 *
58 * To synchronize allocations in the shared memory heaps a remote spinlock must
59 * be held - currently lock number 3 of the sfpb or tcsr is used for this on all
60 * platforms.
61 *
62 */
63
64/*
65 * The version member of the smem header contains an array of versions for the
66 * various software components in the SoC. We verify that the boot loader
67 * version is a valid version as a sanity check.
68 */
69#define SMEM_MASTER_SBL_VERSION_INDEX 7
70#define SMEM_GLOBAL_HEAP_VERSION 11
71#define SMEM_GLOBAL_PART_VERSION 12
72
73/*
74 * The first 8 items are only to be allocated by the boot loader while
75 * initializing the heap.
76 */
77#define SMEM_ITEM_LAST_FIXED 8
78
79/* Highest accepted item number, for both global and private heaps */
80#define SMEM_ITEM_COUNT 512
81
82/* Processor/host identifier for the application processor */
83#define SMEM_HOST_APPS 0
84
85/* Processor/host identifier for the global partition */
86#define SMEM_GLOBAL_HOST 0xfffe
87
88/* Max number of processors/hosts in a system */
89#define SMEM_HOST_COUNT 20
90
91/**
92 * struct smem_proc_comm - proc_comm communication struct (legacy)
93 * @command: current command to be executed
94 * @status: status of the currently requested command
95 * @params: parameters to the command
96 */
97struct smem_proc_comm {
98 __le32 command;
99 __le32 status;
100 __le32 params[2];
101};
102
103/**
104 * struct smem_global_entry - entry to reference smem items on the heap
105 * @allocated: boolean to indicate if this entry is used
106 * @offset: offset to the allocated space
107 * @size: size of the allocated space, 8 byte aligned
108 * @aux_base: base address for the memory region used by this unit, or 0 for
109 * the default region. bits 0,1 are reserved
110 */
111struct smem_global_entry {
112 __le32 allocated;
113 __le32 offset;
114 __le32 size;
115 __le32 aux_base; /* bits 1:0 reserved */
116};
117#define AUX_BASE_MASK 0xfffffffc
118
119/**
120 * struct smem_header - header found in beginning of primary smem region
121 * @proc_comm: proc_comm communication interface (legacy)
122 * @version: array of versions for the various subsystems
123 * @initialized: boolean to indicate that smem is initialized
124 * @free_offset: index of the first unallocated byte in smem
125 * @available: number of bytes available for allocation
126 * @reserved: reserved field, must be 0
127 * @toc: array of references to items
128 */
129struct smem_header {
130 struct smem_proc_comm proc_comm[4];
131 __le32 version[32];
132 __le32 initialized;
133 __le32 free_offset;
134 __le32 available;
135 __le32 reserved;
136 struct smem_global_entry toc[SMEM_ITEM_COUNT];
137};
138
139/**
140 * struct smem_ptable_entry - one entry in the @smem_ptable list
141 * @offset: offset, within the main shared memory region, of the partition
142 * @size: size of the partition
143 * @flags: flags for the partition (currently unused)
144 * @host0: first processor/host with access to this partition
145 * @host1: second processor/host with access to this partition
146 * @cacheline: alignment for "cached" entries
147 * @reserved: reserved entries for later use
148 */
149struct smem_ptable_entry {
150 __le32 offset;
151 __le32 size;
152 __le32 flags;
153 __le16 host0;
154 __le16 host1;
155 __le32 cacheline;
156 __le32 reserved[7];
157};
158
159/**
160 * struct smem_ptable - partition table for the private partitions
161 * @magic: magic number, must be SMEM_PTABLE_MAGIC
162 * @version: version of the partition table
163 * @num_entries: number of partitions in the table
164 * @reserved: for now reserved entries
165 * @entry: list of @smem_ptable_entry for the @num_entries partitions
166 */
167struct smem_ptable {
168 u8 magic[4];
169 __le32 version;
170 __le32 num_entries;
171 __le32 reserved[5];
172 struct smem_ptable_entry entry[];
173};
174
175static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */
176
177/**
178 * struct smem_partition_header - header of the partitions
179 * @magic: magic number, must be SMEM_PART_MAGIC
180 * @host0: first processor/host with access to this partition
181 * @host1: second processor/host with access to this partition
182 * @size: size of the partition
183 * @offset_free_uncached: offset to the first free byte of uncached memory in
184 * this partition
185 * @offset_free_cached: offset to the first free byte of cached memory in this
186 * partition
187 * @reserved: for now reserved entries
188 */
189struct smem_partition_header {
190 u8 magic[4];
191 __le16 host0;
192 __le16 host1;
193 __le32 size;
194 __le32 offset_free_uncached;
195 __le32 offset_free_cached;
196 __le32 reserved[3];
197};
198
199/**
200 * struct smem_partition - describes smem partition
201 * @virt_base: starting virtual address of partition
202 * @phys_base: starting physical address of partition
203 * @cacheline: alignment for "cached" entries
204 * @size: size of partition
205 */
206struct smem_partition {
207 void __iomem *virt_base;
208 phys_addr_t phys_base;
209 size_t cacheline;
210 size_t size;
211};
212
213static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 };
214
215/**
216 * struct smem_private_entry - header of each item in the private partition
217 * @canary: magic number, must be SMEM_PRIVATE_CANARY
218 * @item: identifying number of the smem item
219 * @size: size of the data, including padding bytes
220 * @padding_data: number of bytes of padding of data
221 * @padding_hdr: number of bytes of padding between the header and the data
222 * @reserved: for now reserved entry
223 */
224struct smem_private_entry {
225 u16 canary; /* bytes are the same so no swapping needed */
226 __le16 item;
227 __le32 size; /* includes padding bytes */
228 __le16 padding_data;
229 __le16 padding_hdr;
230 __le32 reserved;
231};
232#define SMEM_PRIVATE_CANARY 0xa5a5
233
234/**
235 * struct smem_info - smem region info located after the table of contents
236 * @magic: magic number, must be SMEM_INFO_MAGIC
237 * @size: size of the smem region
238 * @base_addr: base address of the smem region
239 * @reserved: for now reserved entry
240 * @num_items: highest accepted item number
241 */
242struct smem_info {
243 u8 magic[4];
244 __le32 size;
245 __le32 base_addr;
246 __le32 reserved;
247 __le16 num_items;
248};
249
250static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */
251
252/**
253 * struct smem_region - representation of a chunk of memory used for smem
254 * @aux_base: identifier of aux_mem base
255 * @virt_base: virtual base address of memory with this aux_mem identifier
256 * @size: size of the memory region
257 */
258struct smem_region {
259 phys_addr_t aux_base;
260 void __iomem *virt_base;
261 size_t size;
262};
263
264/**
265 * struct qcom_smem - device data for the smem device
266 * @dev: device pointer
267 * @hwlock: reference to a hwspinlock
268 * @ptable: virtual base of partition table
269 * @global_partition: describes for global partition when in use
270 * @partitions: list of partitions of current processor/host
271 * @item_count: max accepted item number
272 * @socinfo: platform device pointer
273 * @num_regions: number of @regions
274 * @regions: list of the memory regions defining the shared memory
275 */
276struct qcom_smem {
277 struct device *dev;
278
279 struct hwspinlock *hwlock;
280
281 u32 item_count;
282 struct platform_device *socinfo;
283 struct smem_ptable *ptable;
284 struct smem_partition global_partition;
285 struct smem_partition partitions[SMEM_HOST_COUNT];
286
287 unsigned num_regions;
288 struct smem_region regions[] __counted_by(num_regions);
289};
290
291static void *
292phdr_to_last_uncached_entry(struct smem_partition_header *phdr)
293{
294 void *p = phdr;
295
296 return p + le32_to_cpu(phdr->offset_free_uncached);
297}
298
299static struct smem_private_entry *
300phdr_to_first_cached_entry(struct smem_partition_header *phdr,
301 size_t cacheline)
302{
303 void *p = phdr;
304 struct smem_private_entry *e;
305
306 return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*e), cacheline);
307}
308
309static void *
310phdr_to_last_cached_entry(struct smem_partition_header *phdr)
311{
312 void *p = phdr;
313
314 return p + le32_to_cpu(phdr->offset_free_cached);
315}
316
317static struct smem_private_entry *
318phdr_to_first_uncached_entry(struct smem_partition_header *phdr)
319{
320 void *p = phdr;
321
322 return p + sizeof(*phdr);
323}
324
325static struct smem_private_entry *
326uncached_entry_next(struct smem_private_entry *e)
327{
328 void *p = e;
329
330 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) +
331 le32_to_cpu(e->size);
332}
333
334static struct smem_private_entry *
335cached_entry_next(struct smem_private_entry *e, size_t cacheline)
336{
337 void *p = e;
338
339 return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline);
340}
341
342static void *uncached_entry_to_item(struct smem_private_entry *e)
343{
344 void *p = e;
345
346 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr);
347}
348
349static void *cached_entry_to_item(struct smem_private_entry *e)
350{
351 void *p = e;
352
353 return p - le32_to_cpu(e->size);
354}
355
356/* Pointer to the one and only smem handle */
357static struct qcom_smem *__smem;
358
359/* Timeout (ms) for the trylock of remote spinlocks */
360#define HWSPINLOCK_TIMEOUT 1000
361
362/**
363 * qcom_smem_is_available() - Check if SMEM is available
364 *
365 * Return: true if SMEM is available, false otherwise.
366 */
367bool qcom_smem_is_available(void)
368{
369 return !!__smem;
370}
371EXPORT_SYMBOL_GPL(qcom_smem_is_available);
372
373static int qcom_smem_alloc_private(struct qcom_smem *smem,
374 struct smem_partition *part,
375 unsigned item,
376 size_t size)
377{
378 struct smem_private_entry *hdr, *end;
379 struct smem_partition_header *phdr;
380 size_t alloc_size;
381 void *cached;
382 void *p_end;
383
384 phdr = (struct smem_partition_header __force *)part->virt_base;
385 p_end = (void *)phdr + part->size;
386
387 hdr = phdr_to_first_uncached_entry(phdr);
388 end = phdr_to_last_uncached_entry(phdr);
389 cached = phdr_to_last_cached_entry(phdr);
390
391 if (WARN_ON((void *)end > p_end || cached > p_end))
392 return -EINVAL;
393
394 while (hdr < end) {
395 if (hdr->canary != SMEM_PRIVATE_CANARY)
396 goto bad_canary;
397 if (le16_to_cpu(hdr->item) == item)
398 return -EEXIST;
399
400 hdr = uncached_entry_next(hdr);
401 }
402
403 if (WARN_ON((void *)hdr > p_end))
404 return -EINVAL;
405
406 /* Check that we don't grow into the cached region */
407 alloc_size = sizeof(*hdr) + ALIGN(size, 8);
408 if ((void *)hdr + alloc_size > cached) {
409 dev_err(smem->dev, "Out of memory\n");
410 return -ENOSPC;
411 }
412
413 hdr->canary = SMEM_PRIVATE_CANARY;
414 hdr->item = cpu_to_le16(item);
415 hdr->size = cpu_to_le32(ALIGN(size, 8));
416 hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size);
417 hdr->padding_hdr = 0;
418
419 /*
420 * Ensure the header is written before we advance the free offset, so
421 * that remote processors that does not take the remote spinlock still
422 * gets a consistent view of the linked list.
423 */
424 wmb();
425 le32_add_cpu(&phdr->offset_free_uncached, alloc_size);
426
427 return 0;
428bad_canary:
429 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
430 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
431
432 return -EINVAL;
433}
434
435static int qcom_smem_alloc_global(struct qcom_smem *smem,
436 unsigned item,
437 size_t size)
438{
439 struct smem_global_entry *entry;
440 struct smem_header *header;
441
442 header = smem->regions[0].virt_base;
443 entry = &header->toc[item];
444 if (entry->allocated)
445 return -EEXIST;
446
447 size = ALIGN(size, 8);
448 if (WARN_ON(size > le32_to_cpu(header->available)))
449 return -ENOMEM;
450
451 entry->offset = header->free_offset;
452 entry->size = cpu_to_le32(size);
453
454 /*
455 * Ensure the header is consistent before we mark the item allocated,
456 * so that remote processors will get a consistent view of the item
457 * even though they do not take the spinlock on read.
458 */
459 wmb();
460 entry->allocated = cpu_to_le32(1);
461
462 le32_add_cpu(&header->free_offset, size);
463 le32_add_cpu(&header->available, -size);
464
465 return 0;
466}
467
468/**
469 * qcom_smem_alloc() - allocate space for a smem item
470 * @host: remote processor id, or -1
471 * @item: smem item handle
472 * @size: number of bytes to be allocated
473 *
474 * Allocate space for a given smem item of size @size, given that the item is
475 * not yet allocated.
476 */
477int qcom_smem_alloc(unsigned host, unsigned item, size_t size)
478{
479 struct smem_partition *part;
480 unsigned long flags;
481 int ret;
482
483 if (!__smem)
484 return -EPROBE_DEFER;
485
486 if (item < SMEM_ITEM_LAST_FIXED) {
487 dev_err(__smem->dev,
488 "Rejecting allocation of static entry %d\n", item);
489 return -EINVAL;
490 }
491
492 if (WARN_ON(item >= __smem->item_count))
493 return -EINVAL;
494
495 ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
496 HWSPINLOCK_TIMEOUT,
497 &flags);
498 if (ret)
499 return ret;
500
501 if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) {
502 part = &__smem->partitions[host];
503 ret = qcom_smem_alloc_private(__smem, part, item, size);
504 } else if (__smem->global_partition.virt_base) {
505 part = &__smem->global_partition;
506 ret = qcom_smem_alloc_private(__smem, part, item, size);
507 } else {
508 ret = qcom_smem_alloc_global(__smem, item, size);
509 }
510
511 hwspin_unlock_irqrestore(__smem->hwlock, &flags);
512
513 return ret;
514}
515EXPORT_SYMBOL_GPL(qcom_smem_alloc);
516
517static void *qcom_smem_get_global(struct qcom_smem *smem,
518 unsigned item,
519 size_t *size)
520{
521 struct smem_header *header;
522 struct smem_region *region;
523 struct smem_global_entry *entry;
524 u64 entry_offset;
525 u32 e_size;
526 u32 aux_base;
527 unsigned i;
528
529 header = smem->regions[0].virt_base;
530 entry = &header->toc[item];
531 if (!entry->allocated)
532 return ERR_PTR(-ENXIO);
533
534 aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK;
535
536 for (i = 0; i < smem->num_regions; i++) {
537 region = &smem->regions[i];
538
539 if ((u32)region->aux_base == aux_base || !aux_base) {
540 e_size = le32_to_cpu(entry->size);
541 entry_offset = le32_to_cpu(entry->offset);
542
543 if (WARN_ON(e_size + entry_offset > region->size))
544 return ERR_PTR(-EINVAL);
545
546 if (size != NULL)
547 *size = e_size;
548
549 return region->virt_base + entry_offset;
550 }
551 }
552
553 return ERR_PTR(-ENOENT);
554}
555
556static void *qcom_smem_get_private(struct qcom_smem *smem,
557 struct smem_partition *part,
558 unsigned item,
559 size_t *size)
560{
561 struct smem_private_entry *e, *end;
562 struct smem_partition_header *phdr;
563 void *item_ptr, *p_end;
564 u32 padding_data;
565 u32 e_size;
566
567 phdr = (struct smem_partition_header __force *)part->virt_base;
568 p_end = (void *)phdr + part->size;
569
570 e = phdr_to_first_uncached_entry(phdr);
571 end = phdr_to_last_uncached_entry(phdr);
572
573 while (e < end) {
574 if (e->canary != SMEM_PRIVATE_CANARY)
575 goto invalid_canary;
576
577 if (le16_to_cpu(e->item) == item) {
578 if (size != NULL) {
579 e_size = le32_to_cpu(e->size);
580 padding_data = le16_to_cpu(e->padding_data);
581
582 if (WARN_ON(e_size > part->size || padding_data > e_size))
583 return ERR_PTR(-EINVAL);
584
585 *size = e_size - padding_data;
586 }
587
588 item_ptr = uncached_entry_to_item(e);
589 if (WARN_ON(item_ptr > p_end))
590 return ERR_PTR(-EINVAL);
591
592 return item_ptr;
593 }
594
595 e = uncached_entry_next(e);
596 }
597
598 if (WARN_ON((void *)e > p_end))
599 return ERR_PTR(-EINVAL);
600
601 /* Item was not found in the uncached list, search the cached list */
602
603 e = phdr_to_first_cached_entry(phdr, part->cacheline);
604 end = phdr_to_last_cached_entry(phdr);
605
606 if (WARN_ON((void *)e < (void *)phdr || (void *)end > p_end))
607 return ERR_PTR(-EINVAL);
608
609 while (e > end) {
610 if (e->canary != SMEM_PRIVATE_CANARY)
611 goto invalid_canary;
612
613 if (le16_to_cpu(e->item) == item) {
614 if (size != NULL) {
615 e_size = le32_to_cpu(e->size);
616 padding_data = le16_to_cpu(e->padding_data);
617
618 if (WARN_ON(e_size > part->size || padding_data > e_size))
619 return ERR_PTR(-EINVAL);
620
621 *size = e_size - padding_data;
622 }
623
624 item_ptr = cached_entry_to_item(e);
625 if (WARN_ON(item_ptr < (void *)phdr))
626 return ERR_PTR(-EINVAL);
627
628 return item_ptr;
629 }
630
631 e = cached_entry_next(e, part->cacheline);
632 }
633
634 if (WARN_ON((void *)e < (void *)phdr))
635 return ERR_PTR(-EINVAL);
636
637 return ERR_PTR(-ENOENT);
638
639invalid_canary:
640 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
641 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
642
643 return ERR_PTR(-EINVAL);
644}
645
646/**
647 * qcom_smem_get() - resolve ptr of size of a smem item
648 * @host: the remote processor, or -1
649 * @item: smem item handle
650 * @size: pointer to be filled out with size of the item
651 *
652 * Looks up smem item and returns pointer to it. Size of smem
653 * item is returned in @size.
654 */
655void *qcom_smem_get(unsigned host, unsigned item, size_t *size)
656{
657 struct smem_partition *part;
658 unsigned long flags;
659 int ret;
660 void *ptr = ERR_PTR(-EPROBE_DEFER);
661
662 if (!__smem)
663 return ptr;
664
665 if (WARN_ON(item >= __smem->item_count))
666 return ERR_PTR(-EINVAL);
667
668 ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
669 HWSPINLOCK_TIMEOUT,
670 &flags);
671 if (ret)
672 return ERR_PTR(ret);
673
674 if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) {
675 part = &__smem->partitions[host];
676 ptr = qcom_smem_get_private(__smem, part, item, size);
677 } else if (__smem->global_partition.virt_base) {
678 part = &__smem->global_partition;
679 ptr = qcom_smem_get_private(__smem, part, item, size);
680 } else {
681 ptr = qcom_smem_get_global(__smem, item, size);
682 }
683
684 hwspin_unlock_irqrestore(__smem->hwlock, &flags);
685
686 return ptr;
687
688}
689EXPORT_SYMBOL_GPL(qcom_smem_get);
690
691/**
692 * qcom_smem_get_free_space() - retrieve amount of free space in a partition
693 * @host: the remote processor identifying a partition, or -1
694 *
695 * To be used by smem clients as a quick way to determine if any new
696 * allocations has been made.
697 */
698int qcom_smem_get_free_space(unsigned host)
699{
700 struct smem_partition *part;
701 struct smem_partition_header *phdr;
702 struct smem_header *header;
703 unsigned ret;
704
705 if (!__smem)
706 return -EPROBE_DEFER;
707
708 if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) {
709 part = &__smem->partitions[host];
710 phdr = part->virt_base;
711 ret = le32_to_cpu(phdr->offset_free_cached) -
712 le32_to_cpu(phdr->offset_free_uncached);
713
714 if (ret > le32_to_cpu(part->size))
715 return -EINVAL;
716 } else if (__smem->global_partition.virt_base) {
717 part = &__smem->global_partition;
718 phdr = part->virt_base;
719 ret = le32_to_cpu(phdr->offset_free_cached) -
720 le32_to_cpu(phdr->offset_free_uncached);
721
722 if (ret > le32_to_cpu(part->size))
723 return -EINVAL;
724 } else {
725 header = __smem->regions[0].virt_base;
726 ret = le32_to_cpu(header->available);
727
728 if (ret > __smem->regions[0].size)
729 return -EINVAL;
730 }
731
732 return ret;
733}
734EXPORT_SYMBOL_GPL(qcom_smem_get_free_space);
735
736static bool addr_in_range(void __iomem *base, size_t size, void *addr)
737{
738 return base && ((void __iomem *)addr >= base && (void __iomem *)addr < base + size);
739}
740
741/**
742 * qcom_smem_virt_to_phys() - return the physical address associated
743 * with an smem item pointer (previously returned by qcom_smem_get()
744 * @p: the virtual address to convert
745 *
746 * Returns 0 if the pointer provided is not within any smem region.
747 */
748phys_addr_t qcom_smem_virt_to_phys(void *p)
749{
750 struct smem_partition *part;
751 struct smem_region *area;
752 u64 offset;
753 u32 i;
754
755 for (i = 0; i < SMEM_HOST_COUNT; i++) {
756 part = &__smem->partitions[i];
757
758 if (addr_in_range(part->virt_base, part->size, p)) {
759 offset = p - part->virt_base;
760
761 return (phys_addr_t)part->phys_base + offset;
762 }
763 }
764
765 part = &__smem->global_partition;
766
767 if (addr_in_range(part->virt_base, part->size, p)) {
768 offset = p - part->virt_base;
769
770 return (phys_addr_t)part->phys_base + offset;
771 }
772
773 for (i = 0; i < __smem->num_regions; i++) {
774 area = &__smem->regions[i];
775
776 if (addr_in_range(area->virt_base, area->size, p)) {
777 offset = p - area->virt_base;
778
779 return (phys_addr_t)area->aux_base + offset;
780 }
781 }
782
783 return 0;
784}
785EXPORT_SYMBOL_GPL(qcom_smem_virt_to_phys);
786
787/**
788 * qcom_smem_get_soc_id() - return the SoC ID
789 * @id: On success, we return the SoC ID here.
790 *
791 * Look up SoC ID from HW/SW build ID and return it.
792 *
793 * Return: 0 on success, negative errno on failure.
794 */
795int qcom_smem_get_soc_id(u32 *id)
796{
797 struct socinfo *info;
798
799 info = qcom_smem_get(QCOM_SMEM_HOST_ANY, SMEM_HW_SW_BUILD_ID, NULL);
800 if (IS_ERR(info))
801 return PTR_ERR(info);
802
803 *id = __le32_to_cpu(info->id);
804
805 return 0;
806}
807EXPORT_SYMBOL_GPL(qcom_smem_get_soc_id);
808
809static int qcom_smem_get_sbl_version(struct qcom_smem *smem)
810{
811 struct smem_header *header;
812 __le32 *versions;
813
814 header = smem->regions[0].virt_base;
815 versions = header->version;
816
817 return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]);
818}
819
820static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem)
821{
822 struct smem_ptable *ptable;
823 u32 version;
824
825 ptable = smem->ptable;
826 if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic)))
827 return ERR_PTR(-ENOENT);
828
829 version = le32_to_cpu(ptable->version);
830 if (version != 1) {
831 dev_err(smem->dev,
832 "Unsupported partition header version %d\n", version);
833 return ERR_PTR(-EINVAL);
834 }
835 return ptable;
836}
837
838static u32 qcom_smem_get_item_count(struct qcom_smem *smem)
839{
840 struct smem_ptable *ptable;
841 struct smem_info *info;
842
843 ptable = qcom_smem_get_ptable(smem);
844 if (IS_ERR_OR_NULL(ptable))
845 return SMEM_ITEM_COUNT;
846
847 info = (struct smem_info *)&ptable->entry[ptable->num_entries];
848 if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic)))
849 return SMEM_ITEM_COUNT;
850
851 return le16_to_cpu(info->num_items);
852}
853
854/*
855 * Validate the partition header for a partition whose partition
856 * table entry is supplied. Returns a pointer to its header if
857 * valid, or a null pointer otherwise.
858 */
859static struct smem_partition_header *
860qcom_smem_partition_header(struct qcom_smem *smem,
861 struct smem_ptable_entry *entry, u16 host0, u16 host1)
862{
863 struct smem_partition_header *header;
864 u32 phys_addr;
865 u32 size;
866
867 phys_addr = smem->regions[0].aux_base + le32_to_cpu(entry->offset);
868 header = devm_ioremap_wc(smem->dev, phys_addr, le32_to_cpu(entry->size));
869
870 if (!header)
871 return NULL;
872
873 if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) {
874 dev_err(smem->dev, "bad partition magic %4ph\n", header->magic);
875 return NULL;
876 }
877
878 if (host0 != le16_to_cpu(header->host0)) {
879 dev_err(smem->dev, "bad host0 (%hu != %hu)\n",
880 host0, le16_to_cpu(header->host0));
881 return NULL;
882 }
883 if (host1 != le16_to_cpu(header->host1)) {
884 dev_err(smem->dev, "bad host1 (%hu != %hu)\n",
885 host1, le16_to_cpu(header->host1));
886 return NULL;
887 }
888
889 size = le32_to_cpu(header->size);
890 if (size != le32_to_cpu(entry->size)) {
891 dev_err(smem->dev, "bad partition size (%u != %u)\n",
892 size, le32_to_cpu(entry->size));
893 return NULL;
894 }
895
896 if (le32_to_cpu(header->offset_free_uncached) > size) {
897 dev_err(smem->dev, "bad partition free uncached (%u > %u)\n",
898 le32_to_cpu(header->offset_free_uncached), size);
899 return NULL;
900 }
901
902 return header;
903}
904
905static int qcom_smem_set_global_partition(struct qcom_smem *smem)
906{
907 struct smem_partition_header *header;
908 struct smem_ptable_entry *entry;
909 struct smem_ptable *ptable;
910 bool found = false;
911 int i;
912
913 if (smem->global_partition.virt_base) {
914 dev_err(smem->dev, "Already found the global partition\n");
915 return -EINVAL;
916 }
917
918 ptable = qcom_smem_get_ptable(smem);
919 if (IS_ERR(ptable))
920 return PTR_ERR(ptable);
921
922 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
923 entry = &ptable->entry[i];
924 if (!le32_to_cpu(entry->offset))
925 continue;
926 if (!le32_to_cpu(entry->size))
927 continue;
928
929 if (le16_to_cpu(entry->host0) != SMEM_GLOBAL_HOST)
930 continue;
931
932 if (le16_to_cpu(entry->host1) == SMEM_GLOBAL_HOST) {
933 found = true;
934 break;
935 }
936 }
937
938 if (!found) {
939 dev_err(smem->dev, "Missing entry for global partition\n");
940 return -EINVAL;
941 }
942
943 header = qcom_smem_partition_header(smem, entry,
944 SMEM_GLOBAL_HOST, SMEM_GLOBAL_HOST);
945 if (!header)
946 return -EINVAL;
947
948 smem->global_partition.virt_base = (void __iomem *)header;
949 smem->global_partition.phys_base = smem->regions[0].aux_base +
950 le32_to_cpu(entry->offset);
951 smem->global_partition.size = le32_to_cpu(entry->size);
952 smem->global_partition.cacheline = le32_to_cpu(entry->cacheline);
953
954 return 0;
955}
956
957static int
958qcom_smem_enumerate_partitions(struct qcom_smem *smem, u16 local_host)
959{
960 struct smem_partition_header *header;
961 struct smem_ptable_entry *entry;
962 struct smem_ptable *ptable;
963 u16 remote_host;
964 u16 host0, host1;
965 int i;
966
967 ptable = qcom_smem_get_ptable(smem);
968 if (IS_ERR(ptable))
969 return PTR_ERR(ptable);
970
971 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
972 entry = &ptable->entry[i];
973 if (!le32_to_cpu(entry->offset))
974 continue;
975 if (!le32_to_cpu(entry->size))
976 continue;
977
978 host0 = le16_to_cpu(entry->host0);
979 host1 = le16_to_cpu(entry->host1);
980 if (host0 == local_host)
981 remote_host = host1;
982 else if (host1 == local_host)
983 remote_host = host0;
984 else
985 continue;
986
987 if (remote_host >= SMEM_HOST_COUNT) {
988 dev_err(smem->dev, "bad host %u\n", remote_host);
989 return -EINVAL;
990 }
991
992 if (smem->partitions[remote_host].virt_base) {
993 dev_err(smem->dev, "duplicate host %u\n", remote_host);
994 return -EINVAL;
995 }
996
997 header = qcom_smem_partition_header(smem, entry, host0, host1);
998 if (!header)
999 return -EINVAL;
1000
1001 smem->partitions[remote_host].virt_base = (void __iomem *)header;
1002 smem->partitions[remote_host].phys_base = smem->regions[0].aux_base +
1003 le32_to_cpu(entry->offset);
1004 smem->partitions[remote_host].size = le32_to_cpu(entry->size);
1005 smem->partitions[remote_host].cacheline = le32_to_cpu(entry->cacheline);
1006 }
1007
1008 return 0;
1009}
1010
1011static int qcom_smem_map_toc(struct qcom_smem *smem, struct smem_region *region)
1012{
1013 u32 ptable_start;
1014
1015 /* map starting 4K for smem header */
1016 region->virt_base = devm_ioremap_wc(smem->dev, region->aux_base, SZ_4K);
1017 ptable_start = region->aux_base + region->size - SZ_4K;
1018 /* map last 4k for toc */
1019 smem->ptable = devm_ioremap_wc(smem->dev, ptable_start, SZ_4K);
1020
1021 if (!region->virt_base || !smem->ptable)
1022 return -ENOMEM;
1023
1024 return 0;
1025}
1026
1027static int qcom_smem_map_global(struct qcom_smem *smem, u32 size)
1028{
1029 u32 phys_addr;
1030
1031 phys_addr = smem->regions[0].aux_base;
1032
1033 smem->regions[0].size = size;
1034 smem->regions[0].virt_base = devm_ioremap_wc(smem->dev, phys_addr, size);
1035
1036 if (!smem->regions[0].virt_base)
1037 return -ENOMEM;
1038
1039 return 0;
1040}
1041
1042static int qcom_smem_resolve_mem(struct qcom_smem *smem, const char *name,
1043 struct smem_region *region)
1044{
1045 struct device *dev = smem->dev;
1046 struct device_node *np;
1047 struct resource r;
1048 int ret;
1049
1050 np = of_parse_phandle(dev->of_node, name, 0);
1051 if (!np) {
1052 dev_err(dev, "No %s specified\n", name);
1053 return -EINVAL;
1054 }
1055
1056 ret = of_address_to_resource(np, 0, &r);
1057 of_node_put(np);
1058 if (ret)
1059 return ret;
1060
1061 region->aux_base = r.start;
1062 region->size = resource_size(&r);
1063
1064 return 0;
1065}
1066
1067static int qcom_smem_probe(struct platform_device *pdev)
1068{
1069 struct smem_header *header;
1070 struct reserved_mem *rmem;
1071 struct qcom_smem *smem;
1072 unsigned long flags;
1073 int num_regions;
1074 int hwlock_id;
1075 u32 version;
1076 u32 size;
1077 int ret;
1078 int i;
1079
1080 num_regions = 1;
1081 if (of_property_present(pdev->dev.of_node, "qcom,rpm-msg-ram"))
1082 num_regions++;
1083
1084 smem = devm_kzalloc(&pdev->dev, struct_size(smem, regions, num_regions),
1085 GFP_KERNEL);
1086 if (!smem)
1087 return -ENOMEM;
1088
1089 smem->dev = &pdev->dev;
1090 smem->num_regions = num_regions;
1091
1092 rmem = of_reserved_mem_lookup(pdev->dev.of_node);
1093 if (rmem) {
1094 smem->regions[0].aux_base = rmem->base;
1095 smem->regions[0].size = rmem->size;
1096 } else {
1097 /*
1098 * Fall back to the memory-region reference, if we're not a
1099 * reserved-memory node.
1100 */
1101 ret = qcom_smem_resolve_mem(smem, "memory-region", &smem->regions[0]);
1102 if (ret)
1103 return ret;
1104 }
1105
1106 if (num_regions > 1) {
1107 ret = qcom_smem_resolve_mem(smem, "qcom,rpm-msg-ram", &smem->regions[1]);
1108 if (ret)
1109 return ret;
1110 }
1111
1112
1113 ret = qcom_smem_map_toc(smem, &smem->regions[0]);
1114 if (ret)
1115 return ret;
1116
1117 for (i = 1; i < num_regions; i++) {
1118 smem->regions[i].virt_base = devm_ioremap_wc(&pdev->dev,
1119 smem->regions[i].aux_base,
1120 smem->regions[i].size);
1121 if (!smem->regions[i].virt_base) {
1122 dev_err(&pdev->dev, "failed to remap %pa\n", &smem->regions[i].aux_base);
1123 return -ENOMEM;
1124 }
1125 }
1126
1127 header = smem->regions[0].virt_base;
1128 if (le32_to_cpu(header->initialized) != 1 ||
1129 le32_to_cpu(header->reserved)) {
1130 dev_err(&pdev->dev, "SMEM is not initialized by SBL\n");
1131 return -EINVAL;
1132 }
1133
1134 hwlock_id = of_hwspin_lock_get_id(pdev->dev.of_node, 0);
1135 if (hwlock_id < 0) {
1136 if (hwlock_id != -EPROBE_DEFER)
1137 dev_err(&pdev->dev, "failed to retrieve hwlock\n");
1138 return hwlock_id;
1139 }
1140
1141 smem->hwlock = hwspin_lock_request_specific(hwlock_id);
1142 if (!smem->hwlock)
1143 return -ENXIO;
1144
1145 ret = hwspin_lock_timeout_irqsave(smem->hwlock, HWSPINLOCK_TIMEOUT, &flags);
1146 if (ret)
1147 return ret;
1148 size = readl_relaxed(&header->available) + readl_relaxed(&header->free_offset);
1149 hwspin_unlock_irqrestore(smem->hwlock, &flags);
1150
1151 version = qcom_smem_get_sbl_version(smem);
1152 /*
1153 * smem header mapping is required only in heap version scheme, so unmap
1154 * it here. It will be remapped in qcom_smem_map_global() when whole
1155 * partition is mapped again.
1156 */
1157 devm_iounmap(smem->dev, smem->regions[0].virt_base);
1158 switch (version >> 16) {
1159 case SMEM_GLOBAL_PART_VERSION:
1160 ret = qcom_smem_set_global_partition(smem);
1161 if (ret < 0)
1162 return ret;
1163 smem->item_count = qcom_smem_get_item_count(smem);
1164 break;
1165 case SMEM_GLOBAL_HEAP_VERSION:
1166 qcom_smem_map_global(smem, size);
1167 smem->item_count = SMEM_ITEM_COUNT;
1168 break;
1169 default:
1170 dev_err(&pdev->dev, "Unsupported SMEM version 0x%x\n", version);
1171 return -EINVAL;
1172 }
1173
1174 BUILD_BUG_ON(SMEM_HOST_APPS >= SMEM_HOST_COUNT);
1175 ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS);
1176 if (ret < 0 && ret != -ENOENT)
1177 return ret;
1178
1179 __smem = smem;
1180
1181 smem->socinfo = platform_device_register_data(&pdev->dev, "qcom-socinfo",
1182 PLATFORM_DEVID_NONE, NULL,
1183 0);
1184 if (IS_ERR(smem->socinfo))
1185 dev_dbg(&pdev->dev, "failed to register socinfo device\n");
1186
1187 return 0;
1188}
1189
1190static void qcom_smem_remove(struct platform_device *pdev)
1191{
1192 platform_device_unregister(__smem->socinfo);
1193
1194 hwspin_lock_free(__smem->hwlock);
1195 __smem = NULL;
1196}
1197
1198static const struct of_device_id qcom_smem_of_match[] = {
1199 { .compatible = "qcom,smem" },
1200 {}
1201};
1202MODULE_DEVICE_TABLE(of, qcom_smem_of_match);
1203
1204static struct platform_driver qcom_smem_driver = {
1205 .probe = qcom_smem_probe,
1206 .remove_new = qcom_smem_remove,
1207 .driver = {
1208 .name = "qcom-smem",
1209 .of_match_table = qcom_smem_of_match,
1210 .suppress_bind_attrs = true,
1211 },
1212};
1213
1214static int __init qcom_smem_init(void)
1215{
1216 return platform_driver_register(&qcom_smem_driver);
1217}
1218arch_initcall(qcom_smem_init);
1219
1220static void __exit qcom_smem_exit(void)
1221{
1222 platform_driver_unregister(&qcom_smem_driver);
1223}
1224module_exit(qcom_smem_exit)
1225
1226MODULE_AUTHOR("Bjorn Andersson <bjorn.andersson@sonymobile.com>");
1227MODULE_DESCRIPTION("Qualcomm Shared Memory Manager");
1228MODULE_LICENSE("GPL v2");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2015, Sony Mobile Communications AB.
4 * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
5 */
6
7#include <linux/hwspinlock.h>
8#include <linux/io.h>
9#include <linux/module.h>
10#include <linux/of.h>
11#include <linux/of_address.h>
12#include <linux/platform_device.h>
13#include <linux/sizes.h>
14#include <linux/slab.h>
15#include <linux/soc/qcom/smem.h>
16
17/*
18 * The Qualcomm shared memory system is a allocate only heap structure that
19 * consists of one of more memory areas that can be accessed by the processors
20 * in the SoC.
21 *
22 * All systems contains a global heap, accessible by all processors in the SoC,
23 * with a table of contents data structure (@smem_header) at the beginning of
24 * the main shared memory block.
25 *
26 * The global header contains meta data for allocations as well as a fixed list
27 * of 512 entries (@smem_global_entry) that can be initialized to reference
28 * parts of the shared memory space.
29 *
30 *
31 * In addition to this global heap a set of "private" heaps can be set up at
32 * boot time with access restrictions so that only certain processor pairs can
33 * access the data.
34 *
35 * These partitions are referenced from an optional partition table
36 * (@smem_ptable), that is found 4kB from the end of the main smem region. The
37 * partition table entries (@smem_ptable_entry) lists the involved processors
38 * (or hosts) and their location in the main shared memory region.
39 *
40 * Each partition starts with a header (@smem_partition_header) that identifies
41 * the partition and holds properties for the two internal memory regions. The
42 * two regions are cached and non-cached memory respectively. Each region
43 * contain a link list of allocation headers (@smem_private_entry) followed by
44 * their data.
45 *
46 * Items in the non-cached region are allocated from the start of the partition
47 * while items in the cached region are allocated from the end. The free area
48 * is hence the region between the cached and non-cached offsets. The header of
49 * cached items comes after the data.
50 *
51 * Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure
52 * for the global heap. A new global partition is created from the global heap
53 * region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is
54 * set by the bootloader.
55 *
56 * To synchronize allocations in the shared memory heaps a remote spinlock must
57 * be held - currently lock number 3 of the sfpb or tcsr is used for this on all
58 * platforms.
59 *
60 */
61
62/*
63 * The version member of the smem header contains an array of versions for the
64 * various software components in the SoC. We verify that the boot loader
65 * version is a valid version as a sanity check.
66 */
67#define SMEM_MASTER_SBL_VERSION_INDEX 7
68#define SMEM_GLOBAL_HEAP_VERSION 11
69#define SMEM_GLOBAL_PART_VERSION 12
70
71/*
72 * The first 8 items are only to be allocated by the boot loader while
73 * initializing the heap.
74 */
75#define SMEM_ITEM_LAST_FIXED 8
76
77/* Highest accepted item number, for both global and private heaps */
78#define SMEM_ITEM_COUNT 512
79
80/* Processor/host identifier for the application processor */
81#define SMEM_HOST_APPS 0
82
83/* Processor/host identifier for the global partition */
84#define SMEM_GLOBAL_HOST 0xfffe
85
86/* Max number of processors/hosts in a system */
87#define SMEM_HOST_COUNT 11
88
89/**
90 * struct smem_proc_comm - proc_comm communication struct (legacy)
91 * @command: current command to be executed
92 * @status: status of the currently requested command
93 * @params: parameters to the command
94 */
95struct smem_proc_comm {
96 __le32 command;
97 __le32 status;
98 __le32 params[2];
99};
100
101/**
102 * struct smem_global_entry - entry to reference smem items on the heap
103 * @allocated: boolean to indicate if this entry is used
104 * @offset: offset to the allocated space
105 * @size: size of the allocated space, 8 byte aligned
106 * @aux_base: base address for the memory region used by this unit, or 0 for
107 * the default region. bits 0,1 are reserved
108 */
109struct smem_global_entry {
110 __le32 allocated;
111 __le32 offset;
112 __le32 size;
113 __le32 aux_base; /* bits 1:0 reserved */
114};
115#define AUX_BASE_MASK 0xfffffffc
116
117/**
118 * struct smem_header - header found in beginning of primary smem region
119 * @proc_comm: proc_comm communication interface (legacy)
120 * @version: array of versions for the various subsystems
121 * @initialized: boolean to indicate that smem is initialized
122 * @free_offset: index of the first unallocated byte in smem
123 * @available: number of bytes available for allocation
124 * @reserved: reserved field, must be 0
125 * toc: array of references to items
126 */
127struct smem_header {
128 struct smem_proc_comm proc_comm[4];
129 __le32 version[32];
130 __le32 initialized;
131 __le32 free_offset;
132 __le32 available;
133 __le32 reserved;
134 struct smem_global_entry toc[SMEM_ITEM_COUNT];
135};
136
137/**
138 * struct smem_ptable_entry - one entry in the @smem_ptable list
139 * @offset: offset, within the main shared memory region, of the partition
140 * @size: size of the partition
141 * @flags: flags for the partition (currently unused)
142 * @host0: first processor/host with access to this partition
143 * @host1: second processor/host with access to this partition
144 * @cacheline: alignment for "cached" entries
145 * @reserved: reserved entries for later use
146 */
147struct smem_ptable_entry {
148 __le32 offset;
149 __le32 size;
150 __le32 flags;
151 __le16 host0;
152 __le16 host1;
153 __le32 cacheline;
154 __le32 reserved[7];
155};
156
157/**
158 * struct smem_ptable - partition table for the private partitions
159 * @magic: magic number, must be SMEM_PTABLE_MAGIC
160 * @version: version of the partition table
161 * @num_entries: number of partitions in the table
162 * @reserved: for now reserved entries
163 * @entry: list of @smem_ptable_entry for the @num_entries partitions
164 */
165struct smem_ptable {
166 u8 magic[4];
167 __le32 version;
168 __le32 num_entries;
169 __le32 reserved[5];
170 struct smem_ptable_entry entry[];
171};
172
173static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */
174
175/**
176 * struct smem_partition_header - header of the partitions
177 * @magic: magic number, must be SMEM_PART_MAGIC
178 * @host0: first processor/host with access to this partition
179 * @host1: second processor/host with access to this partition
180 * @size: size of the partition
181 * @offset_free_uncached: offset to the first free byte of uncached memory in
182 * this partition
183 * @offset_free_cached: offset to the first free byte of cached memory in this
184 * partition
185 * @reserved: for now reserved entries
186 */
187struct smem_partition_header {
188 u8 magic[4];
189 __le16 host0;
190 __le16 host1;
191 __le32 size;
192 __le32 offset_free_uncached;
193 __le32 offset_free_cached;
194 __le32 reserved[3];
195};
196
197static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 };
198
199/**
200 * struct smem_private_entry - header of each item in the private partition
201 * @canary: magic number, must be SMEM_PRIVATE_CANARY
202 * @item: identifying number of the smem item
203 * @size: size of the data, including padding bytes
204 * @padding_data: number of bytes of padding of data
205 * @padding_hdr: number of bytes of padding between the header and the data
206 * @reserved: for now reserved entry
207 */
208struct smem_private_entry {
209 u16 canary; /* bytes are the same so no swapping needed */
210 __le16 item;
211 __le32 size; /* includes padding bytes */
212 __le16 padding_data;
213 __le16 padding_hdr;
214 __le32 reserved;
215};
216#define SMEM_PRIVATE_CANARY 0xa5a5
217
218/**
219 * struct smem_info - smem region info located after the table of contents
220 * @magic: magic number, must be SMEM_INFO_MAGIC
221 * @size: size of the smem region
222 * @base_addr: base address of the smem region
223 * @reserved: for now reserved entry
224 * @num_items: highest accepted item number
225 */
226struct smem_info {
227 u8 magic[4];
228 __le32 size;
229 __le32 base_addr;
230 __le32 reserved;
231 __le16 num_items;
232};
233
234static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */
235
236/**
237 * struct smem_region - representation of a chunk of memory used for smem
238 * @aux_base: identifier of aux_mem base
239 * @virt_base: virtual base address of memory with this aux_mem identifier
240 * @size: size of the memory region
241 */
242struct smem_region {
243 u32 aux_base;
244 void __iomem *virt_base;
245 size_t size;
246};
247
248/**
249 * struct qcom_smem - device data for the smem device
250 * @dev: device pointer
251 * @hwlock: reference to a hwspinlock
252 * @global_partition: pointer to global partition when in use
253 * @global_cacheline: cacheline size for global partition
254 * @partitions: list of pointers to partitions affecting the current
255 * processor/host
256 * @cacheline: list of cacheline sizes for each host
257 * @item_count: max accepted item number
258 * @num_regions: number of @regions
259 * @regions: list of the memory regions defining the shared memory
260 */
261struct qcom_smem {
262 struct device *dev;
263
264 struct hwspinlock *hwlock;
265
266 struct smem_partition_header *global_partition;
267 size_t global_cacheline;
268 struct smem_partition_header *partitions[SMEM_HOST_COUNT];
269 size_t cacheline[SMEM_HOST_COUNT];
270 u32 item_count;
271 struct platform_device *socinfo;
272
273 unsigned num_regions;
274 struct smem_region regions[];
275};
276
277static void *
278phdr_to_last_uncached_entry(struct smem_partition_header *phdr)
279{
280 void *p = phdr;
281
282 return p + le32_to_cpu(phdr->offset_free_uncached);
283}
284
285static struct smem_private_entry *
286phdr_to_first_cached_entry(struct smem_partition_header *phdr,
287 size_t cacheline)
288{
289 void *p = phdr;
290 struct smem_private_entry *e;
291
292 return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*e), cacheline);
293}
294
295static void *
296phdr_to_last_cached_entry(struct smem_partition_header *phdr)
297{
298 void *p = phdr;
299
300 return p + le32_to_cpu(phdr->offset_free_cached);
301}
302
303static struct smem_private_entry *
304phdr_to_first_uncached_entry(struct smem_partition_header *phdr)
305{
306 void *p = phdr;
307
308 return p + sizeof(*phdr);
309}
310
311static struct smem_private_entry *
312uncached_entry_next(struct smem_private_entry *e)
313{
314 void *p = e;
315
316 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) +
317 le32_to_cpu(e->size);
318}
319
320static struct smem_private_entry *
321cached_entry_next(struct smem_private_entry *e, size_t cacheline)
322{
323 void *p = e;
324
325 return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline);
326}
327
328static void *uncached_entry_to_item(struct smem_private_entry *e)
329{
330 void *p = e;
331
332 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr);
333}
334
335static void *cached_entry_to_item(struct smem_private_entry *e)
336{
337 void *p = e;
338
339 return p - le32_to_cpu(e->size);
340}
341
342/* Pointer to the one and only smem handle */
343static struct qcom_smem *__smem;
344
345/* Timeout (ms) for the trylock of remote spinlocks */
346#define HWSPINLOCK_TIMEOUT 1000
347
348static int qcom_smem_alloc_private(struct qcom_smem *smem,
349 struct smem_partition_header *phdr,
350 unsigned item,
351 size_t size)
352{
353 struct smem_private_entry *hdr, *end;
354 size_t alloc_size;
355 void *cached;
356
357 hdr = phdr_to_first_uncached_entry(phdr);
358 end = phdr_to_last_uncached_entry(phdr);
359 cached = phdr_to_last_cached_entry(phdr);
360
361 while (hdr < end) {
362 if (hdr->canary != SMEM_PRIVATE_CANARY)
363 goto bad_canary;
364 if (le16_to_cpu(hdr->item) == item)
365 return -EEXIST;
366
367 hdr = uncached_entry_next(hdr);
368 }
369
370 /* Check that we don't grow into the cached region */
371 alloc_size = sizeof(*hdr) + ALIGN(size, 8);
372 if ((void *)hdr + alloc_size > cached) {
373 dev_err(smem->dev, "Out of memory\n");
374 return -ENOSPC;
375 }
376
377 hdr->canary = SMEM_PRIVATE_CANARY;
378 hdr->item = cpu_to_le16(item);
379 hdr->size = cpu_to_le32(ALIGN(size, 8));
380 hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size);
381 hdr->padding_hdr = 0;
382
383 /*
384 * Ensure the header is written before we advance the free offset, so
385 * that remote processors that does not take the remote spinlock still
386 * gets a consistent view of the linked list.
387 */
388 wmb();
389 le32_add_cpu(&phdr->offset_free_uncached, alloc_size);
390
391 return 0;
392bad_canary:
393 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
394 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
395
396 return -EINVAL;
397}
398
399static int qcom_smem_alloc_global(struct qcom_smem *smem,
400 unsigned item,
401 size_t size)
402{
403 struct smem_global_entry *entry;
404 struct smem_header *header;
405
406 header = smem->regions[0].virt_base;
407 entry = &header->toc[item];
408 if (entry->allocated)
409 return -EEXIST;
410
411 size = ALIGN(size, 8);
412 if (WARN_ON(size > le32_to_cpu(header->available)))
413 return -ENOMEM;
414
415 entry->offset = header->free_offset;
416 entry->size = cpu_to_le32(size);
417
418 /*
419 * Ensure the header is consistent before we mark the item allocated,
420 * so that remote processors will get a consistent view of the item
421 * even though they do not take the spinlock on read.
422 */
423 wmb();
424 entry->allocated = cpu_to_le32(1);
425
426 le32_add_cpu(&header->free_offset, size);
427 le32_add_cpu(&header->available, -size);
428
429 return 0;
430}
431
432/**
433 * qcom_smem_alloc() - allocate space for a smem item
434 * @host: remote processor id, or -1
435 * @item: smem item handle
436 * @size: number of bytes to be allocated
437 *
438 * Allocate space for a given smem item of size @size, given that the item is
439 * not yet allocated.
440 */
441int qcom_smem_alloc(unsigned host, unsigned item, size_t size)
442{
443 struct smem_partition_header *phdr;
444 unsigned long flags;
445 int ret;
446
447 if (!__smem)
448 return -EPROBE_DEFER;
449
450 if (item < SMEM_ITEM_LAST_FIXED) {
451 dev_err(__smem->dev,
452 "Rejecting allocation of static entry %d\n", item);
453 return -EINVAL;
454 }
455
456 if (WARN_ON(item >= __smem->item_count))
457 return -EINVAL;
458
459 ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
460 HWSPINLOCK_TIMEOUT,
461 &flags);
462 if (ret)
463 return ret;
464
465 if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
466 phdr = __smem->partitions[host];
467 ret = qcom_smem_alloc_private(__smem, phdr, item, size);
468 } else if (__smem->global_partition) {
469 phdr = __smem->global_partition;
470 ret = qcom_smem_alloc_private(__smem, phdr, item, size);
471 } else {
472 ret = qcom_smem_alloc_global(__smem, item, size);
473 }
474
475 hwspin_unlock_irqrestore(__smem->hwlock, &flags);
476
477 return ret;
478}
479EXPORT_SYMBOL(qcom_smem_alloc);
480
481static void *qcom_smem_get_global(struct qcom_smem *smem,
482 unsigned item,
483 size_t *size)
484{
485 struct smem_header *header;
486 struct smem_region *region;
487 struct smem_global_entry *entry;
488 u32 aux_base;
489 unsigned i;
490
491 header = smem->regions[0].virt_base;
492 entry = &header->toc[item];
493 if (!entry->allocated)
494 return ERR_PTR(-ENXIO);
495
496 aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK;
497
498 for (i = 0; i < smem->num_regions; i++) {
499 region = &smem->regions[i];
500
501 if (region->aux_base == aux_base || !aux_base) {
502 if (size != NULL)
503 *size = le32_to_cpu(entry->size);
504 return region->virt_base + le32_to_cpu(entry->offset);
505 }
506 }
507
508 return ERR_PTR(-ENOENT);
509}
510
511static void *qcom_smem_get_private(struct qcom_smem *smem,
512 struct smem_partition_header *phdr,
513 size_t cacheline,
514 unsigned item,
515 size_t *size)
516{
517 struct smem_private_entry *e, *end;
518
519 e = phdr_to_first_uncached_entry(phdr);
520 end = phdr_to_last_uncached_entry(phdr);
521
522 while (e < end) {
523 if (e->canary != SMEM_PRIVATE_CANARY)
524 goto invalid_canary;
525
526 if (le16_to_cpu(e->item) == item) {
527 if (size != NULL)
528 *size = le32_to_cpu(e->size) -
529 le16_to_cpu(e->padding_data);
530
531 return uncached_entry_to_item(e);
532 }
533
534 e = uncached_entry_next(e);
535 }
536
537 /* Item was not found in the uncached list, search the cached list */
538
539 e = phdr_to_first_cached_entry(phdr, cacheline);
540 end = phdr_to_last_cached_entry(phdr);
541
542 while (e > end) {
543 if (e->canary != SMEM_PRIVATE_CANARY)
544 goto invalid_canary;
545
546 if (le16_to_cpu(e->item) == item) {
547 if (size != NULL)
548 *size = le32_to_cpu(e->size) -
549 le16_to_cpu(e->padding_data);
550
551 return cached_entry_to_item(e);
552 }
553
554 e = cached_entry_next(e, cacheline);
555 }
556
557 return ERR_PTR(-ENOENT);
558
559invalid_canary:
560 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
561 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
562
563 return ERR_PTR(-EINVAL);
564}
565
566/**
567 * qcom_smem_get() - resolve ptr of size of a smem item
568 * @host: the remote processor, or -1
569 * @item: smem item handle
570 * @size: pointer to be filled out with size of the item
571 *
572 * Looks up smem item and returns pointer to it. Size of smem
573 * item is returned in @size.
574 */
575void *qcom_smem_get(unsigned host, unsigned item, size_t *size)
576{
577 struct smem_partition_header *phdr;
578 unsigned long flags;
579 size_t cacheln;
580 int ret;
581 void *ptr = ERR_PTR(-EPROBE_DEFER);
582
583 if (!__smem)
584 return ptr;
585
586 if (WARN_ON(item >= __smem->item_count))
587 return ERR_PTR(-EINVAL);
588
589 ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
590 HWSPINLOCK_TIMEOUT,
591 &flags);
592 if (ret)
593 return ERR_PTR(ret);
594
595 if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
596 phdr = __smem->partitions[host];
597 cacheln = __smem->cacheline[host];
598 ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size);
599 } else if (__smem->global_partition) {
600 phdr = __smem->global_partition;
601 cacheln = __smem->global_cacheline;
602 ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size);
603 } else {
604 ptr = qcom_smem_get_global(__smem, item, size);
605 }
606
607 hwspin_unlock_irqrestore(__smem->hwlock, &flags);
608
609 return ptr;
610
611}
612EXPORT_SYMBOL(qcom_smem_get);
613
614/**
615 * qcom_smem_get_free_space() - retrieve amount of free space in a partition
616 * @host: the remote processor identifying a partition, or -1
617 *
618 * To be used by smem clients as a quick way to determine if any new
619 * allocations has been made.
620 */
621int qcom_smem_get_free_space(unsigned host)
622{
623 struct smem_partition_header *phdr;
624 struct smem_header *header;
625 unsigned ret;
626
627 if (!__smem)
628 return -EPROBE_DEFER;
629
630 if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
631 phdr = __smem->partitions[host];
632 ret = le32_to_cpu(phdr->offset_free_cached) -
633 le32_to_cpu(phdr->offset_free_uncached);
634 } else if (__smem->global_partition) {
635 phdr = __smem->global_partition;
636 ret = le32_to_cpu(phdr->offset_free_cached) -
637 le32_to_cpu(phdr->offset_free_uncached);
638 } else {
639 header = __smem->regions[0].virt_base;
640 ret = le32_to_cpu(header->available);
641 }
642
643 return ret;
644}
645EXPORT_SYMBOL(qcom_smem_get_free_space);
646
647/**
648 * qcom_smem_virt_to_phys() - return the physical address associated
649 * with an smem item pointer (previously returned by qcom_smem_get()
650 * @p: the virtual address to convert
651 *
652 * Returns 0 if the pointer provided is not within any smem region.
653 */
654phys_addr_t qcom_smem_virt_to_phys(void *p)
655{
656 unsigned i;
657
658 for (i = 0; i < __smem->num_regions; i++) {
659 struct smem_region *region = &__smem->regions[i];
660
661 if (p < region->virt_base)
662 continue;
663 if (p < region->virt_base + region->size) {
664 u64 offset = p - region->virt_base;
665
666 return (phys_addr_t)region->aux_base + offset;
667 }
668 }
669
670 return 0;
671}
672EXPORT_SYMBOL(qcom_smem_virt_to_phys);
673
674static int qcom_smem_get_sbl_version(struct qcom_smem *smem)
675{
676 struct smem_header *header;
677 __le32 *versions;
678
679 header = smem->regions[0].virt_base;
680 versions = header->version;
681
682 return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]);
683}
684
685static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem)
686{
687 struct smem_ptable *ptable;
688 u32 version;
689
690 ptable = smem->regions[0].virt_base + smem->regions[0].size - SZ_4K;
691 if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic)))
692 return ERR_PTR(-ENOENT);
693
694 version = le32_to_cpu(ptable->version);
695 if (version != 1) {
696 dev_err(smem->dev,
697 "Unsupported partition header version %d\n", version);
698 return ERR_PTR(-EINVAL);
699 }
700 return ptable;
701}
702
703static u32 qcom_smem_get_item_count(struct qcom_smem *smem)
704{
705 struct smem_ptable *ptable;
706 struct smem_info *info;
707
708 ptable = qcom_smem_get_ptable(smem);
709 if (IS_ERR_OR_NULL(ptable))
710 return SMEM_ITEM_COUNT;
711
712 info = (struct smem_info *)&ptable->entry[ptable->num_entries];
713 if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic)))
714 return SMEM_ITEM_COUNT;
715
716 return le16_to_cpu(info->num_items);
717}
718
719/*
720 * Validate the partition header for a partition whose partition
721 * table entry is supplied. Returns a pointer to its header if
722 * valid, or a null pointer otherwise.
723 */
724static struct smem_partition_header *
725qcom_smem_partition_header(struct qcom_smem *smem,
726 struct smem_ptable_entry *entry, u16 host0, u16 host1)
727{
728 struct smem_partition_header *header;
729 u32 size;
730
731 header = smem->regions[0].virt_base + le32_to_cpu(entry->offset);
732
733 if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) {
734 dev_err(smem->dev, "bad partition magic %02x %02x %02x %02x\n",
735 header->magic[0], header->magic[1],
736 header->magic[2], header->magic[3]);
737 return NULL;
738 }
739
740 if (host0 != le16_to_cpu(header->host0)) {
741 dev_err(smem->dev, "bad host0 (%hu != %hu)\n",
742 host0, le16_to_cpu(header->host0));
743 return NULL;
744 }
745 if (host1 != le16_to_cpu(header->host1)) {
746 dev_err(smem->dev, "bad host1 (%hu != %hu)\n",
747 host1, le16_to_cpu(header->host1));
748 return NULL;
749 }
750
751 size = le32_to_cpu(header->size);
752 if (size != le32_to_cpu(entry->size)) {
753 dev_err(smem->dev, "bad partition size (%u != %u)\n",
754 size, le32_to_cpu(entry->size));
755 return NULL;
756 }
757
758 if (le32_to_cpu(header->offset_free_uncached) > size) {
759 dev_err(smem->dev, "bad partition free uncached (%u > %u)\n",
760 le32_to_cpu(header->offset_free_uncached), size);
761 return NULL;
762 }
763
764 return header;
765}
766
767static int qcom_smem_set_global_partition(struct qcom_smem *smem)
768{
769 struct smem_partition_header *header;
770 struct smem_ptable_entry *entry;
771 struct smem_ptable *ptable;
772 bool found = false;
773 int i;
774
775 if (smem->global_partition) {
776 dev_err(smem->dev, "Already found the global partition\n");
777 return -EINVAL;
778 }
779
780 ptable = qcom_smem_get_ptable(smem);
781 if (IS_ERR(ptable))
782 return PTR_ERR(ptable);
783
784 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
785 entry = &ptable->entry[i];
786 if (!le32_to_cpu(entry->offset))
787 continue;
788 if (!le32_to_cpu(entry->size))
789 continue;
790
791 if (le16_to_cpu(entry->host0) != SMEM_GLOBAL_HOST)
792 continue;
793
794 if (le16_to_cpu(entry->host1) == SMEM_GLOBAL_HOST) {
795 found = true;
796 break;
797 }
798 }
799
800 if (!found) {
801 dev_err(smem->dev, "Missing entry for global partition\n");
802 return -EINVAL;
803 }
804
805 header = qcom_smem_partition_header(smem, entry,
806 SMEM_GLOBAL_HOST, SMEM_GLOBAL_HOST);
807 if (!header)
808 return -EINVAL;
809
810 smem->global_partition = header;
811 smem->global_cacheline = le32_to_cpu(entry->cacheline);
812
813 return 0;
814}
815
816static int
817qcom_smem_enumerate_partitions(struct qcom_smem *smem, u16 local_host)
818{
819 struct smem_partition_header *header;
820 struct smem_ptable_entry *entry;
821 struct smem_ptable *ptable;
822 unsigned int remote_host;
823 u16 host0, host1;
824 int i;
825
826 ptable = qcom_smem_get_ptable(smem);
827 if (IS_ERR(ptable))
828 return PTR_ERR(ptable);
829
830 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
831 entry = &ptable->entry[i];
832 if (!le32_to_cpu(entry->offset))
833 continue;
834 if (!le32_to_cpu(entry->size))
835 continue;
836
837 host0 = le16_to_cpu(entry->host0);
838 host1 = le16_to_cpu(entry->host1);
839 if (host0 == local_host)
840 remote_host = host1;
841 else if (host1 == local_host)
842 remote_host = host0;
843 else
844 continue;
845
846 if (remote_host >= SMEM_HOST_COUNT) {
847 dev_err(smem->dev, "bad host %hu\n", remote_host);
848 return -EINVAL;
849 }
850
851 if (smem->partitions[remote_host]) {
852 dev_err(smem->dev, "duplicate host %hu\n", remote_host);
853 return -EINVAL;
854 }
855
856 header = qcom_smem_partition_header(smem, entry, host0, host1);
857 if (!header)
858 return -EINVAL;
859
860 smem->partitions[remote_host] = header;
861 smem->cacheline[remote_host] = le32_to_cpu(entry->cacheline);
862 }
863
864 return 0;
865}
866
867static int qcom_smem_map_memory(struct qcom_smem *smem, struct device *dev,
868 const char *name, int i)
869{
870 struct device_node *np;
871 struct resource r;
872 resource_size_t size;
873 int ret;
874
875 np = of_parse_phandle(dev->of_node, name, 0);
876 if (!np) {
877 dev_err(dev, "No %s specified\n", name);
878 return -EINVAL;
879 }
880
881 ret = of_address_to_resource(np, 0, &r);
882 of_node_put(np);
883 if (ret)
884 return ret;
885 size = resource_size(&r);
886
887 smem->regions[i].virt_base = devm_ioremap_wc(dev, r.start, size);
888 if (!smem->regions[i].virt_base)
889 return -ENOMEM;
890 smem->regions[i].aux_base = (u32)r.start;
891 smem->regions[i].size = size;
892
893 return 0;
894}
895
896static int qcom_smem_probe(struct platform_device *pdev)
897{
898 struct smem_header *header;
899 struct qcom_smem *smem;
900 size_t array_size;
901 int num_regions;
902 int hwlock_id;
903 u32 version;
904 int ret;
905
906 num_regions = 1;
907 if (of_find_property(pdev->dev.of_node, "qcom,rpm-msg-ram", NULL))
908 num_regions++;
909
910 array_size = num_regions * sizeof(struct smem_region);
911 smem = devm_kzalloc(&pdev->dev, sizeof(*smem) + array_size, GFP_KERNEL);
912 if (!smem)
913 return -ENOMEM;
914
915 smem->dev = &pdev->dev;
916 smem->num_regions = num_regions;
917
918 ret = qcom_smem_map_memory(smem, &pdev->dev, "memory-region", 0);
919 if (ret)
920 return ret;
921
922 if (num_regions > 1 && (ret = qcom_smem_map_memory(smem, &pdev->dev,
923 "qcom,rpm-msg-ram", 1)))
924 return ret;
925
926 header = smem->regions[0].virt_base;
927 if (le32_to_cpu(header->initialized) != 1 ||
928 le32_to_cpu(header->reserved)) {
929 dev_err(&pdev->dev, "SMEM is not initialized by SBL\n");
930 return -EINVAL;
931 }
932
933 version = qcom_smem_get_sbl_version(smem);
934 switch (version >> 16) {
935 case SMEM_GLOBAL_PART_VERSION:
936 ret = qcom_smem_set_global_partition(smem);
937 if (ret < 0)
938 return ret;
939 smem->item_count = qcom_smem_get_item_count(smem);
940 break;
941 case SMEM_GLOBAL_HEAP_VERSION:
942 smem->item_count = SMEM_ITEM_COUNT;
943 break;
944 default:
945 dev_err(&pdev->dev, "Unsupported SMEM version 0x%x\n", version);
946 return -EINVAL;
947 }
948
949 BUILD_BUG_ON(SMEM_HOST_APPS >= SMEM_HOST_COUNT);
950 ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS);
951 if (ret < 0 && ret != -ENOENT)
952 return ret;
953
954 hwlock_id = of_hwspin_lock_get_id(pdev->dev.of_node, 0);
955 if (hwlock_id < 0) {
956 if (hwlock_id != -EPROBE_DEFER)
957 dev_err(&pdev->dev, "failed to retrieve hwlock\n");
958 return hwlock_id;
959 }
960
961 smem->hwlock = hwspin_lock_request_specific(hwlock_id);
962 if (!smem->hwlock)
963 return -ENXIO;
964
965 __smem = smem;
966
967 smem->socinfo = platform_device_register_data(&pdev->dev, "qcom-socinfo",
968 PLATFORM_DEVID_NONE, NULL,
969 0);
970 if (IS_ERR(smem->socinfo))
971 dev_dbg(&pdev->dev, "failed to register socinfo device\n");
972
973 return 0;
974}
975
976static int qcom_smem_remove(struct platform_device *pdev)
977{
978 platform_device_unregister(__smem->socinfo);
979
980 hwspin_lock_free(__smem->hwlock);
981 __smem = NULL;
982
983 return 0;
984}
985
986static const struct of_device_id qcom_smem_of_match[] = {
987 { .compatible = "qcom,smem" },
988 {}
989};
990MODULE_DEVICE_TABLE(of, qcom_smem_of_match);
991
992static struct platform_driver qcom_smem_driver = {
993 .probe = qcom_smem_probe,
994 .remove = qcom_smem_remove,
995 .driver = {
996 .name = "qcom-smem",
997 .of_match_table = qcom_smem_of_match,
998 .suppress_bind_attrs = true,
999 },
1000};
1001
1002static int __init qcom_smem_init(void)
1003{
1004 return platform_driver_register(&qcom_smem_driver);
1005}
1006arch_initcall(qcom_smem_init);
1007
1008static void __exit qcom_smem_exit(void)
1009{
1010 platform_driver_unregister(&qcom_smem_driver);
1011}
1012module_exit(qcom_smem_exit)
1013
1014MODULE_AUTHOR("Bjorn Andersson <bjorn.andersson@sonymobile.com>");
1015MODULE_DESCRIPTION("Qualcomm Shared Memory Manager");
1016MODULE_LICENSE("GPL v2");